1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
5 Copyright (C) 2014-2022 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
42 bitmask_inv_cst_vector_p)
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
56 #include "cfn-operators.pd"
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
62 Also define operand lists:
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
71 (define_operator_list X##FN BUILT_IN_I##FN \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
86 (define_operator_list COND_UNARY
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
92 mult trunc_div trunc_mod rdiv
95 bit_and bit_ior bit_xor
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
179 (for op (plus pointer_plus minus bit_ior bit_xor)
181 (op @0 integer_zerop)
184 /* 0 +p index -> (type)index */
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
189 /* ptr - 0 -> (type)ptr */
191 (pointer_diff @0 integer_zerop)
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
233 Also note that operand_equal_p is always false if an operand
237 (if (!FLOAT_TYPE_P (type)
238 || (!tree_expr_maybe_nan_p (@0)
239 && !tree_expr_maybe_infinite_p (@0)
240 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
241 || !HONOR_SIGNED_ZEROS (type))))
242 { build_zero_cst (type); }))
244 (pointer_diff @@0 @0)
245 { build_zero_cst (type); })
248 (mult @0 integer_zerop@1)
251 /* -x == x -> x == 0 */
254 (cmp:c @0 (negate @0))
255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
256 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
257 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
259 /* Maybe fold x * 0 to 0. The expressions aren't the same
260 when x is NaN, since x * 0 is also NaN. Nor are they the
261 same in modes with signed zeros, since multiplying a
262 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
263 since x * 0 is NaN. */
265 (mult @0 real_zerop@1)
266 (if (!tree_expr_maybe_nan_p (@0)
267 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
268 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
271 /* In IEEE floating point, x*1 is not equivalent to x for snans.
272 Likewise for complex arithmetic with signed zeros. */
275 (if (!tree_expr_maybe_signaling_nan_p (@0)
276 && (!HONOR_SIGNED_ZEROS (type)
277 || !COMPLEX_FLOAT_TYPE_P (type)))
280 /* Transform x * -1.0 into -x. */
282 (mult @0 real_minus_onep)
283 (if (!tree_expr_maybe_signaling_nan_p (@0)
284 && (!HONOR_SIGNED_ZEROS (type)
285 || !COMPLEX_FLOAT_TYPE_P (type)))
288 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
289 unless the target has native support for the former but not the latter. */
291 (mult @0 VECTOR_CST@1)
292 (if (initializer_each_zero_or_onep (@1)
293 && !HONOR_SNANS (type)
294 && !HONOR_SIGNED_ZEROS (type))
295 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
297 && (!VECTOR_MODE_P (TYPE_MODE (type))
298 || (VECTOR_MODE_P (TYPE_MODE (itype))
299 && optab_handler (and_optab,
300 TYPE_MODE (itype)) != CODE_FOR_nothing)))
301 (view_convert (bit_and:itype (view_convert @0)
302 (ne @1 { build_zero_cst (type); })))))))
304 (for cmp (gt ge lt le)
305 outp (convert convert negate negate)
306 outn (negate negate convert convert)
307 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
308 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
309 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
310 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
312 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
313 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
315 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
316 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
317 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
318 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
320 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
321 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
324 /* Transform X * copysign (1.0, X) into abs(X). */
326 (mult:c @0 (COPYSIGN_ALL real_onep @0))
327 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
330 /* Transform X * copysign (1.0, -X) into -abs(X). */
332 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
333 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
336 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
338 (COPYSIGN_ALL REAL_CST@0 @1)
339 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
340 (COPYSIGN_ALL (negate @0) @1)))
342 /* X * 1, X / 1 -> X. */
343 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
348 /* (A / (1 << B)) -> (A >> B).
349 Only for unsigned A. For signed A, this would not preserve rounding
351 For example: (-1 / ( 1 << B)) != -1 >> B.
352 Also also widening conversions, like:
353 (A / (unsigned long long) (1U << B)) -> (A >> B)
355 (A / (unsigned long long) (1 << B)) -> (A >> B).
356 If the left shift is signed, it can be done only if the upper bits
357 of A starting from shift's type sign bit are zero, as
358 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
359 so it is valid only if A >> 31 is zero. */
361 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
362 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
363 && (!VECTOR_TYPE_P (type)
364 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
365 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
366 && (useless_type_conversion_p (type, TREE_TYPE (@1))
367 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
368 && (TYPE_UNSIGNED (TREE_TYPE (@1))
369 || (element_precision (type)
370 == element_precision (TREE_TYPE (@1)))
371 || (INTEGRAL_TYPE_P (type)
372 && (tree_nonzero_bits (@0)
373 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
375 element_precision (type))) == 0)))))
376 (if (!VECTOR_TYPE_P (type)
377 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
378 && element_precision (TREE_TYPE (@3)) < element_precision (type))
379 (convert (rshift @3 @2))
382 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
383 undefined behavior in constexpr evaluation, and assuming that the division
384 traps enables better optimizations than these anyway. */
385 (for div (trunc_div ceil_div floor_div round_div exact_div)
386 /* 0 / X is always zero. */
388 (div integer_zerop@0 @1)
389 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
390 (if (!integer_zerop (@1))
394 (div @0 integer_minus_onep@1)
395 (if (!TYPE_UNSIGNED (type))
397 /* X / bool_range_Y is X. */
400 (if (INTEGRAL_TYPE_P (type)
401 && ssa_name_has_boolean_range (@1)
402 && !flag_non_call_exceptions)
407 /* But not for 0 / 0 so that we can get the proper warnings and errors.
408 And not for _Fract types where we can't build 1. */
409 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
410 && !integer_zerop (@0)
411 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
412 { build_one_cst (type); }))
413 /* X / abs (X) is X < 0 ? -1 : 1. */
416 (if (INTEGRAL_TYPE_P (type)
417 && TYPE_OVERFLOW_UNDEFINED (type)
418 && !integer_zerop (@0)
419 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
420 (cond (lt @0 { build_zero_cst (type); })
421 { build_minus_one_cst (type); } { build_one_cst (type); })))
424 (div:C @0 (negate @0))
425 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
426 && TYPE_OVERFLOW_UNDEFINED (type)
427 && !integer_zerop (@0)
428 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
429 { build_minus_one_cst (type); })))
431 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
432 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
433 for MOD instead of DIV. */
434 (for floor_divmod (floor_div floor_mod)
435 trunc_divmod (trunc_div trunc_mod)
438 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
439 && TYPE_UNSIGNED (type))
440 (trunc_divmod @0 @1))))
442 /* 1 / X -> X == 1 for unsigned integer X.
443 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
444 But not for 1 / 0 so that we can get proper warnings and errors,
445 and not for 1-bit integers as they are edge cases better handled
448 (trunc_div integer_onep@0 @1)
449 (if (INTEGRAL_TYPE_P (type)
450 && TYPE_PRECISION (type) > 1
451 && !integer_zerop (@1)
452 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
453 (if (TYPE_UNSIGNED (type))
454 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
455 (with { tree utype = unsigned_type_for (type); }
456 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
457 { build_int_cst (utype, 2); })
458 @1 { build_zero_cst (type); })))))
460 /* Combine two successive divisions. Note that combining ceil_div
461 and floor_div is trickier and combining round_div even more so. */
462 (for div (trunc_div exact_div)
464 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
466 wi::overflow_type overflow;
467 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
468 TYPE_SIGN (type), &overflow);
470 (if (div == EXACT_DIV_EXPR
471 || optimize_successive_divisions_p (@2, @3))
473 (div @0 { wide_int_to_tree (type, mul); })
474 (if (TYPE_UNSIGNED (type)
475 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
476 { build_zero_cst (type); }))))))
478 /* Combine successive multiplications. Similar to above, but handling
479 overflow is different. */
481 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
483 wi::overflow_type overflow;
484 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
485 TYPE_SIGN (type), &overflow);
487 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
488 otherwise undefined overflow implies that @0 must be zero. */
489 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
490 (mult @0 { wide_int_to_tree (type, mul); }))))
492 /* Similar to above, but there could be an extra add/sub between
493 successive multuiplications. */
495 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
497 bool overflowed = true;
498 wi::overflow_type ovf1, ovf2;
499 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
500 TYPE_SIGN (type), &ovf1);
501 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
502 TYPE_SIGN (type), &ovf2);
503 if (TYPE_OVERFLOW_UNDEFINED (type))
507 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
508 && get_global_range_query ()->range_of_expr (vr0, @4)
509 && vr0.kind () == VR_RANGE)
511 wide_int wmin0 = vr0.lower_bound ();
512 wide_int wmax0 = vr0.upper_bound ();
513 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
514 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
515 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
517 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
518 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
519 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
528 /* Skip folding on overflow. */
530 (plus (mult @0 { wide_int_to_tree (type, mul); })
531 { wide_int_to_tree (type, add); }))))
533 /* Similar to above, but a multiplication between successive additions. */
535 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
537 bool overflowed = true;
538 wi::overflow_type ovf1;
539 wi::overflow_type ovf2;
540 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
541 TYPE_SIGN (type), &ovf1);
542 wide_int add = wi::add (mul, wi::to_wide (@3),
543 TYPE_SIGN (type), &ovf2);
544 if (TYPE_OVERFLOW_UNDEFINED (type))
548 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
549 && get_global_range_query ()->range_of_expr (vr0, @0)
550 && vr0.kind () == VR_RANGE)
552 wide_int wmin0 = vr0.lower_bound ();
553 wide_int wmax0 = vr0.upper_bound ();
554 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
555 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
556 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
558 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
559 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
560 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
569 /* Skip folding on overflow. */
571 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
573 /* Optimize A / A to 1.0 if we don't care about
574 NaNs or Infinities. */
577 (if (FLOAT_TYPE_P (type)
578 && ! HONOR_NANS (type)
579 && ! HONOR_INFINITIES (type))
580 { build_one_cst (type); }))
582 /* Optimize -A / A to -1.0 if we don't care about
583 NaNs or Infinities. */
585 (rdiv:C @0 (negate @0))
586 (if (FLOAT_TYPE_P (type)
587 && ! HONOR_NANS (type)
588 && ! HONOR_INFINITIES (type))
589 { build_minus_one_cst (type); }))
591 /* PR71078: x / abs(x) -> copysign (1.0, x) */
593 (rdiv:C (convert? @0) (convert? (abs @0)))
594 (if (SCALAR_FLOAT_TYPE_P (type)
595 && ! HONOR_NANS (type)
596 && ! HONOR_INFINITIES (type))
598 (if (types_match (type, float_type_node))
599 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
600 (if (types_match (type, double_type_node))
601 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
602 (if (types_match (type, long_double_type_node))
603 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
605 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
608 (if (!tree_expr_maybe_signaling_nan_p (@0))
611 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
613 (rdiv @0 real_minus_onep)
614 (if (!tree_expr_maybe_signaling_nan_p (@0))
617 (if (flag_reciprocal_math)
618 /* Convert (A/B)/C to A/(B*C). */
620 (rdiv (rdiv:s @0 @1) @2)
621 (rdiv @0 (mult @1 @2)))
623 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
625 (rdiv @0 (mult:s @1 REAL_CST@2))
627 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
629 (rdiv (mult @0 { tem; } ) @1))))
631 /* Convert A/(B/C) to (A/B)*C */
633 (rdiv @0 (rdiv:s @1 @2))
634 (mult (rdiv @0 @1) @2)))
636 /* Simplify x / (- y) to -x / y. */
638 (rdiv @0 (negate @1))
639 (rdiv (negate @0) @1))
641 (if (flag_unsafe_math_optimizations)
642 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
643 Since C / x may underflow to zero, do this only for unsafe math. */
644 (for op (lt le gt ge)
647 (op (rdiv REAL_CST@0 @1) real_zerop@2)
648 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
650 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
652 /* For C < 0, use the inverted operator. */
653 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
656 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
657 (for div (trunc_div ceil_div floor_div round_div exact_div)
659 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
660 (if (integer_pow2p (@2)
661 && tree_int_cst_sgn (@2) > 0
662 && tree_nop_conversion_p (type, TREE_TYPE (@0))
663 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
665 { build_int_cst (integer_type_node,
666 wi::exact_log2 (wi::to_wide (@2))); }))))
668 /* If ARG1 is a constant, we can convert this to a multiply by the
669 reciprocal. This does not have the same rounding properties,
670 so only do this if -freciprocal-math. We can actually
671 always safely do it if ARG1 is a power of two, but it's hard to
672 tell if it is or not in a portable manner. */
673 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
677 (if (flag_reciprocal_math
680 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
682 (mult @0 { tem; } )))
683 (if (cst != COMPLEX_CST)
684 (with { tree inverse = exact_inverse (type, @1); }
686 (mult @0 { inverse; } ))))))))
688 (for mod (ceil_mod floor_mod round_mod trunc_mod)
689 /* 0 % X is always zero. */
691 (mod integer_zerop@0 @1)
692 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
693 (if (!integer_zerop (@1))
695 /* X % 1 is always zero. */
697 (mod @0 integer_onep)
698 { build_zero_cst (type); })
699 /* X % -1 is zero. */
701 (mod @0 integer_minus_onep@1)
702 (if (!TYPE_UNSIGNED (type))
703 { build_zero_cst (type); }))
707 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
708 (if (!integer_zerop (@0))
709 { build_zero_cst (type); }))
710 /* (X % Y) % Y is just X % Y. */
712 (mod (mod@2 @0 @1) @1)
714 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
716 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
717 (if (ANY_INTEGRAL_TYPE_P (type)
718 && TYPE_OVERFLOW_UNDEFINED (type)
719 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
721 { build_zero_cst (type); }))
722 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
723 modulo and comparison, since it is simpler and equivalent. */
726 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
727 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
728 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
729 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
731 /* X % -C is the same as X % C. */
733 (trunc_mod @0 INTEGER_CST@1)
734 (if (TYPE_SIGN (type) == SIGNED
735 && !TREE_OVERFLOW (@1)
736 && wi::neg_p (wi::to_wide (@1))
737 && !TYPE_OVERFLOW_TRAPS (type)
738 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
739 && !sign_bit_p (@1, @1))
740 (trunc_mod @0 (negate @1))))
742 /* X % -Y is the same as X % Y. */
744 (trunc_mod @0 (convert? (negate @1)))
745 (if (INTEGRAL_TYPE_P (type)
746 && !TYPE_UNSIGNED (type)
747 && !TYPE_OVERFLOW_TRAPS (type)
748 && tree_nop_conversion_p (type, TREE_TYPE (@1))
749 /* Avoid this transformation if X might be INT_MIN or
750 Y might be -1, because we would then change valid
751 INT_MIN % -(-1) into invalid INT_MIN % -1. */
752 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
753 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
755 (trunc_mod @0 (convert @1))))
757 /* X - (X / Y) * Y is the same as X % Y. */
759 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
760 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
761 (convert (trunc_mod @0 @1))))
763 /* x * (1 + y / x) - y -> x - y % x */
765 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
766 (if (INTEGRAL_TYPE_P (type))
767 (minus @0 (trunc_mod @1 @0))))
769 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
770 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
771 Also optimize A % (C << N) where C is a power of 2,
772 to A & ((C << N) - 1).
773 Also optimize "A shift (B % C)", if C is a power of 2, to
774 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
775 and assume (B % C) is nonnegative as shifts negative values would
777 (match (power_of_two_cand @1)
779 (match (power_of_two_cand @1)
780 (lshift INTEGER_CST@1 @2))
781 (for mod (trunc_mod floor_mod)
782 (for shift (lshift rshift)
784 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
785 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
786 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
789 (mod @0 (convert? (power_of_two_cand@1 @2)))
790 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
791 /* Allow any integral conversions of the divisor, except
792 conversion from narrower signed to wider unsigned type
793 where if @1 would be negative power of two, the divisor
794 would not be a power of two. */
795 && INTEGRAL_TYPE_P (type)
796 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
797 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
798 || TYPE_UNSIGNED (TREE_TYPE (@1))
799 || !TYPE_UNSIGNED (type))
800 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
801 (with { tree utype = TREE_TYPE (@1);
802 if (!TYPE_OVERFLOW_WRAPS (utype))
803 utype = unsigned_type_for (utype); }
804 (bit_and @0 (convert (minus (convert:utype @1)
805 { build_one_cst (utype); })))))))
807 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
809 (trunc_div (mult @0 integer_pow2p@1) @1)
810 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
811 (bit_and @0 { wide_int_to_tree
812 (type, wi::mask (TYPE_PRECISION (type)
813 - wi::exact_log2 (wi::to_wide (@1)),
814 false, TYPE_PRECISION (type))); })))
816 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
818 (mult (trunc_div @0 integer_pow2p@1) @1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
820 (bit_and @0 (negate @1))))
822 /* Simplify (t * 2) / 2) -> t. */
823 (for div (trunc_div ceil_div floor_div round_div exact_div)
825 (div (mult:c @0 @1) @1)
826 (if (ANY_INTEGRAL_TYPE_P (type))
827 (if (TYPE_OVERFLOW_UNDEFINED (type))
832 bool overflowed = true;
833 value_range vr0, vr1;
834 if (INTEGRAL_TYPE_P (type)
835 && get_global_range_query ()->range_of_expr (vr0, @0)
836 && get_global_range_query ()->range_of_expr (vr1, @1)
837 && vr0.kind () == VR_RANGE
838 && vr1.kind () == VR_RANGE)
840 wide_int wmin0 = vr0.lower_bound ();
841 wide_int wmax0 = vr0.upper_bound ();
842 wide_int wmin1 = vr1.lower_bound ();
843 wide_int wmax1 = vr1.upper_bound ();
844 /* If the multiplication can't overflow/wrap around, then
845 it can be optimized too. */
846 wi::overflow_type min_ovf, max_ovf;
847 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
848 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
849 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
851 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
852 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
853 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
864 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
869 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
872 (pows (op @0) REAL_CST@1)
873 (with { HOST_WIDE_INT n; }
874 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
876 /* Likewise for powi. */
879 (pows (op @0) INTEGER_CST@1)
880 (if ((wi::to_wide (@1) & 1) == 0)
882 /* Strip negate and abs from both operands of hypot. */
890 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
891 (for copysigns (COPYSIGN_ALL)
893 (copysigns (op @0) @1)
896 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
901 /* Convert absu(x)*absu(x) -> x*x. */
903 (mult (absu@1 @0) @1)
904 (mult (convert@2 @0) @2))
906 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
910 (coss (copysigns @0 @1))
913 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
917 (pows (copysigns @0 @2) REAL_CST@1)
918 (with { HOST_WIDE_INT n; }
919 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
921 /* Likewise for powi. */
925 (pows (copysigns @0 @2) INTEGER_CST@1)
926 (if ((wi::to_wide (@1) & 1) == 0)
931 /* hypot(copysign(x, y), z) -> hypot(x, z). */
933 (hypots (copysigns @0 @1) @2)
935 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
937 (hypots @0 (copysigns @1 @2))
940 /* copysign(x, CST) -> [-]abs (x). */
941 (for copysigns (COPYSIGN_ALL)
943 (copysigns @0 REAL_CST@1)
944 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
948 /* copysign(copysign(x, y), z) -> copysign(x, z). */
949 (for copysigns (COPYSIGN_ALL)
951 (copysigns (copysigns @0 @1) @2)
954 /* copysign(x,y)*copysign(x,y) -> x*x. */
955 (for copysigns (COPYSIGN_ALL)
957 (mult (copysigns@2 @0 @1) @2)
960 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
961 (for ccoss (CCOS CCOSH)
966 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
967 (for ops (conj negate)
973 /* Fold (a * (1 << b)) into (a << b) */
975 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
976 (if (! FLOAT_TYPE_P (type)
977 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
980 /* Fold (1 << (C - x)) where C = precision(type) - 1
981 into ((1 << C) >> x). */
983 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
984 (if (INTEGRAL_TYPE_P (type)
985 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
987 (if (TYPE_UNSIGNED (type))
988 (rshift (lshift @0 @2) @3)
990 { tree utype = unsigned_type_for (type); }
991 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
993 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
995 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
996 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
997 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
998 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
999 (bit_and (convert @0)
1000 { wide_int_to_tree (type,
1001 wi::lshift (wone, wi::to_wide (@2))); }))))
1003 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1004 (for cst (INTEGER_CST VECTOR_CST)
1006 (rshift (negate:s @0) cst@1)
1007 (if (!TYPE_UNSIGNED (type)
1008 && TYPE_OVERFLOW_UNDEFINED (type))
1009 (with { tree stype = TREE_TYPE (@1);
1010 tree bt = truth_type_for (type);
1011 tree zeros = build_zero_cst (type);
1012 tree cst = NULL_TREE; }
1014 /* Handle scalar case. */
1015 (if (INTEGRAL_TYPE_P (type)
1016 /* If we apply the rule to the scalar type before vectorization
1017 we will enforce the result of the comparison being a bool
1018 which will require an extra AND on the result that will be
1019 indistinguishable from when the user did actually want 0
1020 or 1 as the result so it can't be removed. */
1021 && canonicalize_math_after_vectorization_p ()
1022 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1023 (negate (convert (gt @0 { zeros; }))))
1024 /* Handle vector case. */
1025 (if (VECTOR_INTEGER_TYPE_P (type)
1026 /* First check whether the target has the same mode for vector
1027 comparison results as it's operands do. */
1028 && TYPE_MODE (bt) == TYPE_MODE (type)
1029 /* Then check to see if the target is able to expand the comparison
1030 with the given type later on, otherwise we may ICE. */
1031 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1032 && (cst = uniform_integer_cst_p (@1)) != NULL
1033 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1034 (view_convert (gt:bt @0 { zeros; }))))))))
1036 /* Fold (C1/X)*C2 into (C1*C2)/X. */
1038 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1039 (if (flag_associative_math
1042 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1044 (rdiv { tem; } @1)))))
1046 /* Simplify ~X & X as zero. */
1048 (bit_and:c (convert? @0) (convert? (bit_not @0)))
1049 { build_zero_cst (type); })
1051 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1053 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1054 (if (TYPE_UNSIGNED (type))
1055 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1057 (for bitop (bit_and bit_ior)
1059 /* PR35691: Transform
1060 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1061 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
1063 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1064 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1065 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1066 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1067 (cmp (bit_ior @0 (convert @1)) @2)))
1069 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1070 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1072 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1073 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1075 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1076 (cmp (bit_and @0 (convert @1)) @2))))
1078 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1080 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
1081 (minus (bit_xor @0 @1) @1))
1083 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
1084 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1085 (minus (bit_xor @0 @1) @1)))
1087 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1089 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
1090 (minus @1 (bit_xor @0 @1)))
1092 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1093 (for op (bit_ior bit_xor plus)
1095 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
1098 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
1099 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1102 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1104 (bit_ior:c (bit_xor:c @0 @1) @0)
1107 /* (a & ~b) | (a ^ b) --> a ^ b */
1109 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1112 /* (a & ~b) ^ ~a --> ~(a & b) */
1114 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1115 (bit_not (bit_and @0 @1)))
1117 /* (~a & b) ^ a --> (a | b) */
1119 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1122 /* (a | b) & ~(a ^ b) --> a & b */
1124 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1127 /* a | ~(a ^ b) --> a | ~b */
1129 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1130 (bit_ior @0 (bit_not @1)))
1132 /* (a | b) | (a &^ b) --> a | b */
1133 (for op (bit_and bit_xor)
1135 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1138 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1140 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1143 /* ~(~a & b) --> a | ~b */
1145 (bit_not (bit_and:cs (bit_not @0) @1))
1146 (bit_ior @0 (bit_not @1)))
1148 /* ~(~a | b) --> a & ~b */
1150 (bit_not (bit_ior:cs (bit_not @0) @1))
1151 (bit_and @0 (bit_not @1)))
1153 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1155 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1156 (bit_and @3 (bit_not @2)))
1158 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1160 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1163 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1165 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1166 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1168 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1170 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1171 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1173 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1175 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1176 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1177 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1180 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1181 ((A & N) + B) & M -> (A + B) & M
1182 Similarly if (N & M) == 0,
1183 ((A | N) + B) & M -> (A + B) & M
1184 and for - instead of + (or unary - instead of +)
1185 and/or ^ instead of |.
1186 If B is constant and (B & M) == 0, fold into A & M. */
1187 (for op (plus minus)
1188 (for bitop (bit_and bit_ior bit_xor)
1190 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1193 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1194 @3, @4, @1, ERROR_MARK, NULL_TREE,
1197 (convert (bit_and (op (convert:utype { pmop[0]; })
1198 (convert:utype { pmop[1]; }))
1199 (convert:utype @2))))))
1201 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1204 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1205 NULL_TREE, NULL_TREE, @1, bitop, @3,
1208 (convert (bit_and (op (convert:utype { pmop[0]; })
1209 (convert:utype { pmop[1]; }))
1210 (convert:utype @2)))))))
1212 (bit_and (op:s @0 @1) INTEGER_CST@2)
1215 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1216 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1217 NULL_TREE, NULL_TREE, pmop); }
1219 (convert (bit_and (op (convert:utype { pmop[0]; })
1220 (convert:utype { pmop[1]; }))
1221 (convert:utype @2)))))))
1222 (for bitop (bit_and bit_ior bit_xor)
1224 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1227 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1228 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1229 NULL_TREE, NULL_TREE, pmop); }
1231 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1232 (convert:utype @1)))))))
1234 /* X % Y is smaller than Y. */
1237 (cmp (trunc_mod @0 @1) @1)
1238 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1239 { constant_boolean_node (cmp == LT_EXPR, type); })))
1242 (cmp @1 (trunc_mod @0 @1))
1243 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1244 { constant_boolean_node (cmp == GT_EXPR, type); })))
1248 (bit_ior @0 integer_all_onesp@1)
1253 (bit_ior @0 integer_zerop)
1258 (bit_and @0 integer_zerop@1)
1264 (for op (bit_ior bit_xor plus)
1266 (op:c (convert? @0) (convert? (bit_not @0)))
1267 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1272 { build_zero_cst (type); })
1274 /* Canonicalize X ^ ~0 to ~X. */
1276 (bit_xor @0 integer_all_onesp@1)
1281 (bit_and @0 integer_all_onesp)
1284 /* x & x -> x, x | x -> x */
1285 (for bitop (bit_and bit_ior)
1290 /* x & C -> x if we know that x & ~C == 0. */
1293 (bit_and SSA_NAME@0 INTEGER_CST@1)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1299 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1301 (bit_not (minus (bit_not @0) @1))
1304 (bit_not (plus:c (bit_not @0) @1))
1307 /* ~(X - Y) -> ~X + Y. */
1309 (bit_not (minus:s @0 @1))
1310 (plus (bit_not @0) @1))
1312 (bit_not (plus:s @0 INTEGER_CST@1))
1313 (if ((INTEGRAL_TYPE_P (type)
1314 && TYPE_UNSIGNED (type))
1315 || (!TYPE_OVERFLOW_SANITIZED (type)
1316 && may_negate_without_overflow_p (@1)))
1317 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1320 /* ~X + Y -> (Y - X) - 1. */
1322 (plus:c (bit_not @0) @1)
1323 (if (ANY_INTEGRAL_TYPE_P (type)
1324 && TYPE_OVERFLOW_WRAPS (type)
1325 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1326 && !integer_all_onesp (@1))
1327 (plus (minus @1 @0) { build_minus_one_cst (type); })
1328 (if (INTEGRAL_TYPE_P (type)
1329 && TREE_CODE (@1) == INTEGER_CST
1330 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1332 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1335 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1337 (bit_not (rshift:s @0 @1))
1338 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1339 (rshift (bit_not! @0) @1)
1340 /* For logical right shifts, this is possible only if @0 doesn't
1341 have MSB set and the logical right shift is changed into
1342 arithmetic shift. */
1343 (if (!wi::neg_p (tree_nonzero_bits (@0)))
1344 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1345 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1347 /* x + (x & 1) -> (x + 1) & ~1 */
1349 (plus:c @0 (bit_and:s @0 integer_onep@1))
1350 (bit_and (plus @0 @1) (bit_not @1)))
1352 /* x & ~(x & y) -> x & ~y */
1353 /* x | ~(x | y) -> x | ~y */
1354 (for bitop (bit_and bit_ior)
1356 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1357 (bitop @0 (bit_not @1))))
1359 /* (~x & y) | ~(x | y) -> ~x */
1361 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1364 /* (x | y) ^ (x | ~y) -> ~x */
1366 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1369 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1371 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1372 (bit_not (bit_xor @0 @1)))
1374 /* (~x | y) ^ (x ^ y) -> x | ~y */
1376 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1377 (bit_ior @0 (bit_not @1)))
1379 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1381 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1382 (bit_not (bit_and @0 @1)))
1384 /* (x | y) & ~x -> y & ~x */
1385 /* (x & y) | ~x -> y | ~x */
1386 (for bitop (bit_and bit_ior)
1387 rbitop (bit_ior bit_and)
1389 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1392 /* (x & y) ^ (x | y) -> x ^ y */
1394 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1397 /* (x ^ y) ^ (x | y) -> x & y */
1399 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1402 /* (x & y) + (x ^ y) -> x | y */
1403 /* (x & y) | (x ^ y) -> x | y */
1404 /* (x & y) ^ (x ^ y) -> x | y */
1405 (for op (plus bit_ior bit_xor)
1407 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1410 /* (x & y) + (x | y) -> x + y */
1412 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1415 /* (x + y) - (x | y) -> x & y */
1417 (minus (plus @0 @1) (bit_ior @0 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1419 && !TYPE_SATURATING (type))
1422 /* (x + y) - (x & y) -> x | y */
1424 (minus (plus @0 @1) (bit_and @0 @1))
1425 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1426 && !TYPE_SATURATING (type))
1429 /* (x | y) - y -> (x & ~y) */
1431 (minus (bit_ior:cs @0 @1) @1)
1432 (bit_and @0 (bit_not @1)))
1434 /* (x | y) - (x ^ y) -> x & y */
1436 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1439 /* (x | y) - (x & y) -> x ^ y */
1441 (minus (bit_ior @0 @1) (bit_and @0 @1))
1444 /* (x | y) & ~(x & y) -> x ^ y */
1446 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1449 /* (x | y) & (~x ^ y) -> x & y */
1451 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1454 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1456 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1457 (bit_not (bit_xor @0 @1)))
1459 /* (~x | y) ^ (x | ~y) -> x ^ y */
1461 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1464 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1466 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1467 (nop_convert2? (bit_ior @0 @1))))
1469 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1470 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1471 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1472 && !TYPE_SATURATING (TREE_TYPE (@2)))
1473 (bit_not (convert (bit_xor @0 @1)))))
1475 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1477 (nop_convert3? (bit_ior @0 @1)))
1478 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1479 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1480 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1481 && !TYPE_SATURATING (TREE_TYPE (@2)))
1482 (bit_not (convert (bit_xor @0 @1)))))
1484 (minus (nop_convert1? (bit_and @0 @1))
1485 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1487 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1488 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1489 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1490 && !TYPE_SATURATING (TREE_TYPE (@2)))
1491 (bit_not (convert (bit_xor @0 @1)))))
1493 /* ~x & ~y -> ~(x | y)
1494 ~x | ~y -> ~(x & y) */
1495 (for op (bit_and bit_ior)
1496 rop (bit_ior bit_and)
1498 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1499 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1500 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1501 (bit_not (rop (convert @0) (convert @1))))))
1503 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1504 with a constant, and the two constants have no bits in common,
1505 we should treat this as a BIT_IOR_EXPR since this may produce more
1507 (for op (bit_xor plus)
1509 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1510 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1511 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1512 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1513 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1514 (bit_ior (convert @4) (convert @5)))))
1516 /* (X | Y) ^ X -> Y & ~ X*/
1518 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1519 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1520 (convert (bit_and @1 (bit_not @0)))))
1522 /* Convert ~X ^ ~Y to X ^ Y. */
1524 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1525 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1526 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1527 (bit_xor (convert @0) (convert @1))))
1529 /* Convert ~X ^ C to X ^ ~C. */
1531 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1532 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1533 (bit_xor (convert @0) (bit_not @1))))
1535 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1536 (for opo (bit_and bit_xor)
1537 opi (bit_xor bit_and)
1539 (opo:c (opi:cs @0 @1) @1)
1540 (bit_and (bit_not @0) @1)))
1542 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1543 operands are another bit-wise operation with a common input. If so,
1544 distribute the bit operations to save an operation and possibly two if
1545 constants are involved. For example, convert
1546 (A | B) & (A | C) into A | (B & C)
1547 Further simplification will occur if B and C are constants. */
1548 (for op (bit_and bit_ior bit_xor)
1549 rop (bit_ior bit_and bit_and)
1551 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1552 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1553 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1554 (rop (convert @0) (op (convert @1) (convert @2))))))
1556 /* Some simple reassociation for bit operations, also handled in reassoc. */
1557 /* (X & Y) & Y -> X & Y
1558 (X | Y) | Y -> X | Y */
1559 (for op (bit_and bit_ior)
1561 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1563 /* (X ^ Y) ^ Y -> X */
1565 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1567 /* (X & Y) & (X & Z) -> (X & Y) & Z
1568 (X | Y) | (X | Z) -> (X | Y) | Z */
1569 (for op (bit_and bit_ior)
1571 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1572 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1573 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1574 (if (single_use (@5) && single_use (@6))
1575 (op @3 (convert @2))
1576 (if (single_use (@3) && single_use (@4))
1577 (op (convert @1) @5))))))
1578 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1580 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1582 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1583 (bit_xor (convert @1) (convert @2))))
1585 /* Convert abs (abs (X)) into abs (X).
1586 also absu (absu (X)) into absu (X). */
1592 (absu (convert@2 (absu@1 @0)))
1593 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1596 /* Convert abs[u] (-X) -> abs[u] (X). */
1605 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1607 (abs tree_expr_nonnegative_p@0)
1611 (absu tree_expr_nonnegative_p@0)
1614 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1616 (mult:c (nop_convert1?
1617 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1620 (if (INTEGRAL_TYPE_P (type)
1621 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1622 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1623 (if (TYPE_UNSIGNED (type))
1630 /* A few cases of fold-const.cc negate_expr_p predicate. */
1631 (match negate_expr_p
1633 (if ((INTEGRAL_TYPE_P (type)
1634 && TYPE_UNSIGNED (type))
1635 || (!TYPE_OVERFLOW_SANITIZED (type)
1636 && may_negate_without_overflow_p (t)))))
1637 (match negate_expr_p
1639 (match negate_expr_p
1641 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1642 (match negate_expr_p
1644 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1645 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1647 (match negate_expr_p
1649 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1650 (match negate_expr_p
1652 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1653 || (FLOAT_TYPE_P (type)
1654 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1655 && !HONOR_SIGNED_ZEROS (type)))))
1657 /* (-A) * (-B) -> A * B */
1659 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1660 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1661 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1662 (mult (convert @0) (convert (negate @1)))))
1664 /* -(A + B) -> (-B) - A. */
1666 (negate (plus:c @0 negate_expr_p@1))
1667 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1668 && !HONOR_SIGNED_ZEROS (type))
1669 (minus (negate @1) @0)))
1671 /* -(A - B) -> B - A. */
1673 (negate (minus @0 @1))
1674 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1675 || (FLOAT_TYPE_P (type)
1676 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1677 && !HONOR_SIGNED_ZEROS (type)))
1680 (negate (pointer_diff @0 @1))
1681 (if (TYPE_OVERFLOW_UNDEFINED (type))
1682 (pointer_diff @1 @0)))
1684 /* A - B -> A + (-B) if B is easily negatable. */
1686 (minus @0 negate_expr_p@1)
1687 (if (!FIXED_POINT_TYPE_P (type))
1688 (plus @0 (negate @1))))
1690 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1692 (negate (mult:c@0 @1 negate_expr_p@2))
1693 (if (! TYPE_UNSIGNED (type)
1694 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1696 (mult @1 (negate @2))))
1699 (negate (rdiv@0 @1 negate_expr_p@2))
1700 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1702 (rdiv @1 (negate @2))))
1705 (negate (rdiv@0 negate_expr_p@1 @2))
1706 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1708 (rdiv (negate @1) @2)))
1710 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1712 (negate (convert? (rshift @0 INTEGER_CST@1)))
1713 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1714 && wi::to_wide (@1) == element_precision (type) - 1)
1715 (with { tree stype = TREE_TYPE (@0);
1716 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1717 : unsigned_type_for (stype); }
1718 (if (VECTOR_TYPE_P (type))
1719 (view_convert (rshift (view_convert:ntype @0) @1))
1720 (convert (rshift (convert:ntype @0) @1))))))
1722 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1724 For bitwise binary operations apply operand conversions to the
1725 binary operation result instead of to the operands. This allows
1726 to combine successive conversions and bitwise binary operations.
1727 We combine the above two cases by using a conditional convert. */
1728 (for bitop (bit_and bit_ior bit_xor)
1730 (bitop (convert@2 @0) (convert?@3 @1))
1731 (if (((TREE_CODE (@1) == INTEGER_CST
1732 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1733 && (int_fits_type_p (@1, TREE_TYPE (@0))
1734 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1735 || types_match (@0, @1))
1736 /* ??? This transform conflicts with fold-const.cc doing
1737 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1738 constants (if x has signed type, the sign bit cannot be set
1739 in c). This folds extension into the BIT_AND_EXPR.
1740 Restrict it to GIMPLE to avoid endless recursions. */
1741 && (bitop != BIT_AND_EXPR || GIMPLE)
1742 && (/* That's a good idea if the conversion widens the operand, thus
1743 after hoisting the conversion the operation will be narrower.
1744 It is also a good if the conversion is a nop as moves the
1745 conversion to one side; allowing for combining of the conversions. */
1746 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1747 /* The conversion check for being a nop can only be done at the gimple
1748 level as fold_binary has some re-association code which can conflict
1749 with this if there is a "constant" which is not a full INTEGER_CST. */
1750 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1751 /* It's also a good idea if the conversion is to a non-integer
1753 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1754 /* Or if the precision of TO is not the same as the precision
1756 || !type_has_mode_precision_p (type)
1757 /* In GIMPLE, getting rid of 2 conversions for one new results
1760 && TREE_CODE (@1) != INTEGER_CST
1761 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1763 && single_use (@3))))
1764 (convert (bitop @0 (convert @1)))))
1765 /* In GIMPLE, getting rid of 2 conversions for one new results
1768 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1770 && TREE_CODE (@1) != INTEGER_CST
1771 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1772 && types_match (type, @0))
1773 (bitop @0 (convert @1)))))
1775 (for bitop (bit_and bit_ior)
1776 rbitop (bit_ior bit_and)
1777 /* (x | y) & x -> x */
1778 /* (x & y) | x -> x */
1780 (bitop:c (rbitop:c @0 @1) @0)
1782 /* (~x | y) & x -> x & y */
1783 /* (~x & y) | x -> x | y */
1785 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1788 /* ((x | y) & z) | x -> (z & y) | x */
1790 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1791 (bit_ior (bit_and @2 @1) @0))
1793 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1795 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1796 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1798 /* Combine successive equal operations with constants. */
1799 (for bitop (bit_and bit_ior bit_xor)
1801 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1802 (if (!CONSTANT_CLASS_P (@0))
1803 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1804 folded to a constant. */
1805 (bitop @0 (bitop @1 @2))
1806 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1807 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1808 the values involved are such that the operation can't be decided at
1809 compile time. Try folding one of @0 or @1 with @2 to see whether
1810 that combination can be decided at compile time.
1812 Keep the existing form if both folds fail, to avoid endless
1814 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1816 (bitop @1 { cst1; })
1817 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1819 (bitop @0 { cst2; }))))))))
1821 /* Try simple folding for X op !X, and X op X with the help
1822 of the truth_valued_p and logical_inverted_value predicates. */
1823 (match truth_valued_p
1825 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1826 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1827 (match truth_valued_p
1829 (match truth_valued_p
1832 (match (logical_inverted_value @0)
1834 (match (logical_inverted_value @0)
1835 (bit_not truth_valued_p@0))
1836 (match (logical_inverted_value @0)
1837 (eq @0 integer_zerop))
1838 (match (logical_inverted_value @0)
1839 (ne truth_valued_p@0 integer_truep))
1840 (match (logical_inverted_value @0)
1841 (bit_xor truth_valued_p@0 integer_truep))
1845 (bit_and:c @0 (logical_inverted_value @0))
1846 { build_zero_cst (type); })
1847 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1848 (for op (bit_ior bit_xor)
1850 (op:c truth_valued_p@0 (logical_inverted_value @0))
1851 { constant_boolean_node (true, type); }))
1852 /* X ==/!= !X is false/true. */
1855 (op:c truth_valued_p@0 (logical_inverted_value @0))
1856 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1860 (bit_not (bit_not @0))
1863 (match zero_one_valued_p
1865 (if (INTEGRAL_TYPE_P (type) && tree_nonzero_bits (@0) == 1)))
1866 (match zero_one_valued_p
1869 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
1871 (mult zero_one_valued_p@0 zero_one_valued_p@1)
1872 (if (INTEGRAL_TYPE_P (type))
1875 /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
1877 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
1878 (if (INTEGRAL_TYPE_P (type)
1879 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1880 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
1881 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1882 (mult (convert @0) @1)))
1884 /* Narrow integer multiplication by a zero_one_valued_p operand.
1885 Multiplication by [0,1] is guaranteed not to overflow. */
1887 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
1888 (if (INTEGRAL_TYPE_P (type)
1889 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1890 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
1891 (mult (convert @1) (convert @2))))
1893 /* Convert ~ (-A) to A - 1. */
1895 (bit_not (convert? (negate @0)))
1896 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1897 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1898 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1900 /* Convert - (~A) to A + 1. */
1902 (negate (nop_convert? (bit_not @0)))
1903 (plus (view_convert @0) { build_each_one_cst (type); }))
1905 /* (a & b) ^ (a == b) -> !(a | b) */
1906 /* (a & b) == (a ^ b) -> !(a | b) */
1907 (for first_op (bit_xor eq)
1908 second_op (eq bit_xor)
1910 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
1911 (bit_not (bit_ior @0 @1))))
1913 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1915 (bit_not (convert? (minus @0 integer_each_onep)))
1916 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1917 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1918 (convert (negate @0))))
1920 (bit_not (convert? (plus @0 integer_all_onesp)))
1921 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1922 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1923 (convert (negate @0))))
1925 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1927 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1928 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1929 (convert (bit_xor @0 (bit_not @1)))))
1931 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1932 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1933 (convert (bit_xor @0 @1))))
1935 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1937 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1938 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1939 (bit_not (bit_xor (view_convert @0) @1))))
1941 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1943 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1944 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1946 /* Fold A - (A & B) into ~B & A. */
1948 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1949 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1950 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1951 (convert (bit_and (bit_not @1) @0))))
1953 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1954 (if (!canonicalize_math_p ())
1955 (for cmp (gt lt ge le)
1957 (mult (convert (cmp @0 @1)) @2)
1958 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1960 /* For integral types with undefined overflow and C != 0 fold
1961 x * C EQ/NE y * C into x EQ/NE y. */
1964 (cmp (mult:c @0 @1) (mult:c @2 @1))
1965 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1966 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1967 && tree_expr_nonzero_p (@1))
1970 /* For integral types with wrapping overflow and C odd fold
1971 x * C EQ/NE y * C into x EQ/NE y. */
1974 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1975 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1976 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1977 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1980 /* For integral types with undefined overflow and C != 0 fold
1981 x * C RELOP y * C into:
1983 x RELOP y for nonnegative C
1984 y RELOP x for negative C */
1985 (for cmp (lt gt le ge)
1987 (cmp (mult:c @0 @1) (mult:c @2 @1))
1988 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1989 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1990 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1992 (if (TREE_CODE (@1) == INTEGER_CST
1993 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1996 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2000 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2001 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2002 && TYPE_UNSIGNED (TREE_TYPE (@0))
2003 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
2004 && (wi::to_wide (@2)
2005 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
2006 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2007 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2009 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2010 (for cmp (simple_comparison)
2012 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2013 (if (element_precision (@3) >= element_precision (@0)
2014 && types_match (@0, @1))
2015 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
2016 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2018 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2021 tree utype = unsigned_type_for (TREE_TYPE (@0));
2023 (cmp (convert:utype @1) (convert:utype @0)))))
2024 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2025 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2029 tree utype = unsigned_type_for (TREE_TYPE (@0));
2031 (cmp (convert:utype @0) (convert:utype @1)))))))))
2033 /* X / C1 op C2 into a simple range test. */
2034 (for cmp (simple_comparison)
2036 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2037 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2038 && integer_nonzerop (@1)
2039 && !TREE_OVERFLOW (@1)
2040 && !TREE_OVERFLOW (@2))
2041 (with { tree lo, hi; bool neg_overflow;
2042 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2045 (if (code == LT_EXPR || code == GE_EXPR)
2046 (if (TREE_OVERFLOW (lo))
2047 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2048 (if (code == LT_EXPR)
2051 (if (code == LE_EXPR || code == GT_EXPR)
2052 (if (TREE_OVERFLOW (hi))
2053 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2054 (if (code == LE_EXPR)
2058 { build_int_cst (type, code == NE_EXPR); })
2059 (if (code == EQ_EXPR && !hi)
2061 (if (code == EQ_EXPR && !lo)
2063 (if (code == NE_EXPR && !hi)
2065 (if (code == NE_EXPR && !lo)
2068 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2072 tree etype = range_check_type (TREE_TYPE (@0));
2075 hi = fold_convert (etype, hi);
2076 lo = fold_convert (etype, lo);
2077 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2080 (if (etype && hi && !TREE_OVERFLOW (hi))
2081 (if (code == EQ_EXPR)
2082 (le (minus (convert:etype @0) { lo; }) { hi; })
2083 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2085 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2086 (for op (lt le ge gt)
2088 (op (plus:c @0 @2) (plus:c @1 @2))
2089 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2090 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2092 /* For equality and subtraction, this is also true with wrapping overflow. */
2093 (for op (eq ne minus)
2095 (op (plus:c @0 @2) (plus:c @1 @2))
2096 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2097 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2098 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2101 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2102 (for op (lt le ge gt)
2104 (op (minus @0 @2) (minus @1 @2))
2105 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2106 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2108 /* For equality and subtraction, this is also true with wrapping overflow. */
2109 (for op (eq ne minus)
2111 (op (minus @0 @2) (minus @1 @2))
2112 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2113 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2114 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2116 /* And for pointers... */
2117 (for op (simple_comparison)
2119 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2120 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2123 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2124 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2125 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2126 (pointer_diff @0 @1)))
2128 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2129 (for op (lt le ge gt)
2131 (op (minus @2 @0) (minus @2 @1))
2132 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2133 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2135 /* For equality and subtraction, this is also true with wrapping overflow. */
2136 (for op (eq ne minus)
2138 (op (minus @2 @0) (minus @2 @1))
2139 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2140 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2141 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2143 /* And for pointers... */
2144 (for op (simple_comparison)
2146 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2147 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2150 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2151 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2152 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2153 (pointer_diff @1 @0)))
2155 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2156 (for op (lt le gt ge)
2158 (op:c (plus:c@2 @0 @1) @1)
2159 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2160 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2161 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2162 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2163 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2164 /* For equality, this is also true with wrapping overflow. */
2167 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2168 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2169 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2170 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2171 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2172 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2173 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2174 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2176 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2177 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2178 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2179 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2180 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2182 /* X - Y < X is the same as Y > 0 when there is no overflow.
2183 For equality, this is also true with wrapping overflow. */
2184 (for op (simple_comparison)
2186 (op:c @0 (minus@2 @0 @1))
2187 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2188 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2189 || ((op == EQ_EXPR || op == NE_EXPR)
2190 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2191 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2192 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2195 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2196 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2200 (cmp (trunc_div @0 @1) integer_zerop)
2201 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2202 /* Complex ==/!= is allowed, but not </>=. */
2203 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2204 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2207 /* X == C - X can never be true if C is odd. */
2210 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2211 (if (TREE_INT_CST_LOW (@1) & 1)
2212 { constant_boolean_node (cmp == NE_EXPR, type); })))
2214 /* Arguments on which one can call get_nonzero_bits to get the bits
2216 (match with_possible_nonzero_bits
2218 (match with_possible_nonzero_bits
2220 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2221 /* Slightly extended version, do not make it recursive to keep it cheap. */
2222 (match (with_possible_nonzero_bits2 @0)
2223 with_possible_nonzero_bits@0)
2224 (match (with_possible_nonzero_bits2 @0)
2225 (bit_and:c with_possible_nonzero_bits@0 @2))
2227 /* Same for bits that are known to be set, but we do not have
2228 an equivalent to get_nonzero_bits yet. */
2229 (match (with_certain_nonzero_bits2 @0)
2231 (match (with_certain_nonzero_bits2 @0)
2232 (bit_ior @1 INTEGER_CST@0))
2234 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2237 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2238 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2239 { constant_boolean_node (cmp == NE_EXPR, type); })))
2241 /* ((X inner_op C0) outer_op C1)
2242 With X being a tree where value_range has reasoned certain bits to always be
2243 zero throughout its computed value range,
2244 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2245 where zero_mask has 1's for all bits that are sure to be 0 in
2247 if (inner_op == '^') C0 &= ~C1;
2248 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2249 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2251 (for inner_op (bit_ior bit_xor)
2252 outer_op (bit_xor bit_ior)
2255 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2259 wide_int zero_mask_not;
2263 if (TREE_CODE (@2) == SSA_NAME)
2264 zero_mask_not = get_nonzero_bits (@2);
2268 if (inner_op == BIT_XOR_EXPR)
2270 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2271 cst_emit = C0 | wi::to_wide (@1);
2275 C0 = wi::to_wide (@0);
2276 cst_emit = C0 ^ wi::to_wide (@1);
2279 (if (!fail && (C0 & zero_mask_not) == 0)
2280 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2281 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2282 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2284 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2286 (pointer_plus (pointer_plus:s @0 @1) @3)
2287 (pointer_plus @0 (plus @1 @3)))
2290 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2291 (convert:type (pointer_plus @0 (plus @1 @3))))
2298 tem4 = (unsigned long) tem3;
2303 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2304 /* Conditionally look through a sign-changing conversion. */
2305 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2306 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2307 || (GENERIC && type == TREE_TYPE (@1))))
2310 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2311 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2315 tem = (sizetype) ptr;
2319 and produce the simpler and easier to analyze with respect to alignment
2320 ... = ptr & ~algn; */
2322 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2323 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2324 (bit_and @0 { algn; })))
2326 /* Try folding difference of addresses. */
2328 (minus (convert ADDR_EXPR@0) (convert @1))
2329 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2330 (with { poly_int64 diff; }
2331 (if (ptr_difference_const (@0, @1, &diff))
2332 { build_int_cst_type (type, diff); }))))
2334 (minus (convert @0) (convert ADDR_EXPR@1))
2335 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2336 (with { poly_int64 diff; }
2337 (if (ptr_difference_const (@0, @1, &diff))
2338 { build_int_cst_type (type, diff); }))))
2340 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2341 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2342 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2343 (with { poly_int64 diff; }
2344 (if (ptr_difference_const (@0, @1, &diff))
2345 { build_int_cst_type (type, diff); }))))
2347 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2348 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2349 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2350 (with { poly_int64 diff; }
2351 (if (ptr_difference_const (@0, @1, &diff))
2352 { build_int_cst_type (type, diff); }))))
2354 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2356 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2357 (with { poly_int64 diff; }
2358 (if (ptr_difference_const (@0, @2, &diff))
2359 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2361 /* (&a+b) !=/== (&a[1] + c) -> sizeof(a[0]) + b !=/== c */
2364 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2365 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2366 (if (ptr_difference_const (@0, @2, &diff))
2367 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2369 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2371 (convert (pointer_diff @0 INTEGER_CST@1))
2372 (if (POINTER_TYPE_P (type))
2373 { build_fold_addr_expr_with_type
2374 (build2 (MEM_REF, char_type_node, @0,
2375 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2378 /* If arg0 is derived from the address of an object or function, we may
2379 be able to fold this expression using the object or function's
2382 (bit_and (convert? @0) INTEGER_CST@1)
2383 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2384 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2388 unsigned HOST_WIDE_INT bitpos;
2389 get_pointer_alignment_1 (@0, &align, &bitpos);
2391 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2392 { wide_int_to_tree (type, (wi::to_wide (@1)
2393 & (bitpos / BITS_PER_UNIT))); }))))
2397 (if (INTEGRAL_TYPE_P (type)
2398 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2402 (if (INTEGRAL_TYPE_P (type)
2403 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2405 /* x > y && x != XXX_MIN --> x > y
2406 x > y && x == XXX_MIN --> false . */
2409 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2411 (if (eqne == EQ_EXPR)
2412 { constant_boolean_node (false, type); })
2413 (if (eqne == NE_EXPR)
2417 /* x < y && x != XXX_MAX --> x < y
2418 x < y && x == XXX_MAX --> false. */
2421 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2423 (if (eqne == EQ_EXPR)
2424 { constant_boolean_node (false, type); })
2425 (if (eqne == NE_EXPR)
2429 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2431 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2434 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2436 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2439 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2441 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2444 /* x <= y || x != XXX_MIN --> true. */
2446 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2447 { constant_boolean_node (true, type); })
2449 /* x <= y || x == XXX_MIN --> x <= y. */
2451 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2454 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2456 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2459 /* x >= y || x != XXX_MAX --> true
2460 x >= y || x == XXX_MAX --> x >= y. */
2463 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2465 (if (eqne == EQ_EXPR)
2467 (if (eqne == NE_EXPR)
2468 { constant_boolean_node (true, type); }))))
2470 /* y == XXX_MIN || x < y --> x <= y - 1 */
2472 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
2473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2474 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2475 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2477 /* y != XXX_MIN && x >= y --> x > y - 1 */
2479 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
2480 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2481 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2482 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2484 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2485 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2488 (for code2 (eq ne lt gt le ge)
2490 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2493 int cmp = tree_int_cst_compare (@1, @2);
2497 case EQ_EXPR: val = (cmp == 0); break;
2498 case NE_EXPR: val = (cmp != 0); break;
2499 case LT_EXPR: val = (cmp < 0); break;
2500 case GT_EXPR: val = (cmp > 0); break;
2501 case LE_EXPR: val = (cmp <= 0); break;
2502 case GE_EXPR: val = (cmp >= 0); break;
2503 default: gcc_unreachable ();
2507 (if (code1 == EQ_EXPR && val) @3)
2508 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2509 (if (code1 == NE_EXPR && !val) @4))))))
2511 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2513 (for code1 (lt le gt ge)
2514 (for code2 (lt le gt ge)
2516 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2519 int cmp = tree_int_cst_compare (@1, @2);
2522 /* Choose the more restrictive of two < or <= comparisons. */
2523 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2524 && (code2 == LT_EXPR || code2 == LE_EXPR))
2525 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2528 /* Likewise chose the more restrictive of two > or >= comparisons. */
2529 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2530 && (code2 == GT_EXPR || code2 == GE_EXPR))
2531 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2534 /* Check for singleton ranges. */
2536 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2537 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2539 /* Check for disjoint ranges. */
2541 && (code1 == LT_EXPR || code1 == LE_EXPR)
2542 && (code2 == GT_EXPR || code2 == GE_EXPR))
2543 { constant_boolean_node (false, type); })
2545 && (code1 == GT_EXPR || code1 == GE_EXPR)
2546 && (code2 == LT_EXPR || code2 == LE_EXPR))
2547 { constant_boolean_node (false, type); })
2550 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2551 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2554 (for code2 (eq ne lt gt le ge)
2556 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2559 int cmp = tree_int_cst_compare (@1, @2);
2563 case EQ_EXPR: val = (cmp == 0); break;
2564 case NE_EXPR: val = (cmp != 0); break;
2565 case LT_EXPR: val = (cmp < 0); break;
2566 case GT_EXPR: val = (cmp > 0); break;
2567 case LE_EXPR: val = (cmp <= 0); break;
2568 case GE_EXPR: val = (cmp >= 0); break;
2569 default: gcc_unreachable ();
2573 (if (code1 == EQ_EXPR && val) @4)
2574 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2575 (if (code1 == NE_EXPR && !val) @3))))))
2577 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2579 (for code1 (lt le gt ge)
2580 (for code2 (lt le gt ge)
2582 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2585 int cmp = tree_int_cst_compare (@1, @2);
2588 /* Choose the more restrictive of two < or <= comparisons. */
2589 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2590 && (code2 == LT_EXPR || code2 == LE_EXPR))
2591 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2594 /* Likewise chose the more restrictive of two > or >= comparisons. */
2595 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2596 && (code2 == GT_EXPR || code2 == GE_EXPR))
2597 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2600 /* Check for singleton ranges. */
2602 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2603 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2605 /* Check for disjoint ranges. */
2607 && (code1 == LT_EXPR || code1 == LE_EXPR)
2608 && (code2 == GT_EXPR || code2 == GE_EXPR))
2609 { constant_boolean_node (true, type); })
2611 && (code1 == GT_EXPR || code1 == GE_EXPR)
2612 && (code2 == LT_EXPR || code2 == LE_EXPR))
2613 { constant_boolean_node (true, type); })
2616 /* We can't reassociate at all for saturating types. */
2617 (if (!TYPE_SATURATING (type))
2619 /* Contract negates. */
2620 /* A + (-B) -> A - B */
2622 (plus:c @0 (convert? (negate @1)))
2623 /* Apply STRIP_NOPS on the negate. */
2624 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2625 && !TYPE_OVERFLOW_SANITIZED (type))
2629 if (INTEGRAL_TYPE_P (type)
2630 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2631 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2633 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2634 /* A - (-B) -> A + B */
2636 (minus @0 (convert? (negate @1)))
2637 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2638 && !TYPE_OVERFLOW_SANITIZED (type))
2642 if (INTEGRAL_TYPE_P (type)
2643 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2644 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2646 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2648 Sign-extension is ok except for INT_MIN, which thankfully cannot
2649 happen without overflow. */
2651 (negate (convert (negate @1)))
2652 (if (INTEGRAL_TYPE_P (type)
2653 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2654 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2655 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2656 && !TYPE_OVERFLOW_SANITIZED (type)
2657 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2660 (negate (convert negate_expr_p@1))
2661 (if (SCALAR_FLOAT_TYPE_P (type)
2662 && ((DECIMAL_FLOAT_TYPE_P (type)
2663 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2664 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2665 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2666 (convert (negate @1))))
2668 (negate (nop_convert? (negate @1)))
2669 (if (!TYPE_OVERFLOW_SANITIZED (type)
2670 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2673 /* We can't reassociate floating-point unless -fassociative-math
2674 or fixed-point plus or minus because of saturation to +-Inf. */
2675 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2676 && !FIXED_POINT_TYPE_P (type))
2678 /* Match patterns that allow contracting a plus-minus pair
2679 irrespective of overflow issues. */
2680 /* (A +- B) - A -> +- B */
2681 /* (A +- B) -+ B -> A */
2682 /* A - (A +- B) -> -+ B */
2683 /* A +- (B -+ A) -> +- B */
2685 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2688 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2689 (if (!ANY_INTEGRAL_TYPE_P (type)
2690 || TYPE_OVERFLOW_WRAPS (type))
2691 (negate (view_convert @1))
2692 (view_convert (negate @1))))
2694 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2697 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2698 (if (!ANY_INTEGRAL_TYPE_P (type)
2699 || TYPE_OVERFLOW_WRAPS (type))
2700 (negate (view_convert @1))
2701 (view_convert (negate @1))))
2703 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2705 /* (A +- B) + (C - A) -> C +- B */
2706 /* (A + B) - (A - C) -> B + C */
2707 /* More cases are handled with comparisons. */
2709 (plus:c (plus:c @0 @1) (minus @2 @0))
2712 (plus:c (minus @0 @1) (minus @2 @0))
2715 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2716 (if (TYPE_OVERFLOW_UNDEFINED (type)
2717 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2718 (pointer_diff @2 @1)))
2720 (minus (plus:c @0 @1) (minus @0 @2))
2723 /* (A +- CST1) +- CST2 -> A + CST3
2724 Use view_convert because it is safe for vectors and equivalent for
2726 (for outer_op (plus minus)
2727 (for inner_op (plus minus)
2728 neg_inner_op (minus plus)
2730 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2732 /* If one of the types wraps, use that one. */
2733 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2734 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2735 forever if something doesn't simplify into a constant. */
2736 (if (!CONSTANT_CLASS_P (@0))
2737 (if (outer_op == PLUS_EXPR)
2738 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2739 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2740 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2741 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2742 (if (outer_op == PLUS_EXPR)
2743 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2744 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2745 /* If the constant operation overflows we cannot do the transform
2746 directly as we would introduce undefined overflow, for example
2747 with (a - 1) + INT_MIN. */
2748 (if (types_match (type, @0))
2749 (with { tree cst = const_binop (outer_op == inner_op
2750 ? PLUS_EXPR : MINUS_EXPR,
2752 (if (cst && !TREE_OVERFLOW (cst))
2753 (inner_op @0 { cst; } )
2754 /* X+INT_MAX+1 is X-INT_MIN. */
2755 (if (INTEGRAL_TYPE_P (type) && cst
2756 && wi::to_wide (cst) == wi::min_value (type))
2757 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2758 /* Last resort, use some unsigned type. */
2759 (with { tree utype = unsigned_type_for (type); }
2761 (view_convert (inner_op
2762 (view_convert:utype @0)
2764 { drop_tree_overflow (cst); }))))))))))))))
2766 /* (CST1 - A) +- CST2 -> CST3 - A */
2767 (for outer_op (plus minus)
2769 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2770 /* If one of the types wraps, use that one. */
2771 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2772 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2773 forever if something doesn't simplify into a constant. */
2774 (if (!CONSTANT_CLASS_P (@0))
2775 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2776 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2777 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2778 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2779 (if (types_match (type, @0))
2780 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2781 (if (cst && !TREE_OVERFLOW (cst))
2782 (minus { cst; } @0))))))))
2784 /* CST1 - (CST2 - A) -> CST3 + A
2785 Use view_convert because it is safe for vectors and equivalent for
2788 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2789 /* If one of the types wraps, use that one. */
2790 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2791 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2792 forever if something doesn't simplify into a constant. */
2793 (if (!CONSTANT_CLASS_P (@0))
2794 (plus (view_convert @0) (minus @1 (view_convert @2))))
2795 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2796 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2797 (view_convert (plus @0 (minus (view_convert @1) @2)))
2798 (if (types_match (type, @0))
2799 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2800 (if (cst && !TREE_OVERFLOW (cst))
2801 (plus { cst; } @0)))))))
2803 /* ((T)(A)) + CST -> (T)(A + CST) */
2806 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2807 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2808 && TREE_CODE (type) == INTEGER_TYPE
2809 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2810 && int_fits_type_p (@1, TREE_TYPE (@0)))
2811 /* Perform binary operation inside the cast if the constant fits
2812 and (A + CST)'s range does not overflow. */
2815 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2816 max_ovf = wi::OVF_OVERFLOW;
2817 tree inner_type = TREE_TYPE (@0);
2820 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2821 TYPE_SIGN (inner_type));
2824 if (get_global_range_query ()->range_of_expr (vr, @0)
2825 && vr.kind () == VR_RANGE)
2827 wide_int wmin0 = vr.lower_bound ();
2828 wide_int wmax0 = vr.upper_bound ();
2829 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2830 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2833 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2834 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2838 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2840 (for op (plus minus)
2842 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2843 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2844 && TREE_CODE (type) == INTEGER_TYPE
2845 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2846 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2847 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2848 && TYPE_OVERFLOW_WRAPS (type))
2849 (plus (convert @0) (op @2 (convert @1))))))
2852 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2853 to a simple value. */
2854 (for op (plus minus)
2856 (op (convert @0) (convert @1))
2857 (if (INTEGRAL_TYPE_P (type)
2858 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2859 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2860 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2861 && !TYPE_OVERFLOW_TRAPS (type)
2862 && !TYPE_OVERFLOW_SANITIZED (type))
2863 (convert (op! @0 @1)))))
2867 (plus:c (bit_not @0) @0)
2868 (if (!TYPE_OVERFLOW_TRAPS (type))
2869 { build_all_ones_cst (type); }))
2873 (plus (convert? (bit_not @0)) integer_each_onep)
2874 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2875 (negate (convert @0))))
2879 (minus (convert? (negate @0)) integer_each_onep)
2880 (if (!TYPE_OVERFLOW_TRAPS (type)
2881 && TREE_CODE (type) != COMPLEX_TYPE
2882 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2883 (bit_not (convert @0))))
2887 (minus integer_all_onesp @0)
2888 (if (TREE_CODE (type) != COMPLEX_TYPE)
2891 /* (T)(P + A) - (T)P -> (T) A */
2893 (minus (convert (plus:c @@0 @1))
2895 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2896 /* For integer types, if A has a smaller type
2897 than T the result depends on the possible
2899 E.g. T=size_t, A=(unsigned)429497295, P>0.
2900 However, if an overflow in P + A would cause
2901 undefined behavior, we can assume that there
2903 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2904 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2907 (minus (convert (pointer_plus @@0 @1))
2909 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2910 /* For pointer types, if the conversion of A to the
2911 final type requires a sign- or zero-extension,
2912 then we have to punt - it is not defined which
2914 || (POINTER_TYPE_P (TREE_TYPE (@0))
2915 && TREE_CODE (@1) == INTEGER_CST
2916 && tree_int_cst_sign_bit (@1) == 0))
2919 (pointer_diff (pointer_plus @@0 @1) @0)
2920 /* The second argument of pointer_plus must be interpreted as signed, and
2921 thus sign-extended if necessary. */
2922 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2923 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2924 second arg is unsigned even when we need to consider it as signed,
2925 we don't want to diagnose overflow here. */
2926 (convert (view_convert:stype @1))))
2928 /* (T)P - (T)(P + A) -> -(T) A */
2930 (minus (convert? @0)
2931 (convert (plus:c @@0 @1)))
2932 (if (INTEGRAL_TYPE_P (type)
2933 && TYPE_OVERFLOW_UNDEFINED (type)
2934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2935 (with { tree utype = unsigned_type_for (type); }
2936 (convert (negate (convert:utype @1))))
2937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2938 /* For integer types, if A has a smaller type
2939 than T the result depends on the possible
2941 E.g. T=size_t, A=(unsigned)429497295, P>0.
2942 However, if an overflow in P + A would cause
2943 undefined behavior, we can assume that there
2945 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2946 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2947 (negate (convert @1)))))
2950 (convert (pointer_plus @@0 @1)))
2951 (if (INTEGRAL_TYPE_P (type)
2952 && TYPE_OVERFLOW_UNDEFINED (type)
2953 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2954 (with { tree utype = unsigned_type_for (type); }
2955 (convert (negate (convert:utype @1))))
2956 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2957 /* For pointer types, if the conversion of A to the
2958 final type requires a sign- or zero-extension,
2959 then we have to punt - it is not defined which
2961 || (POINTER_TYPE_P (TREE_TYPE (@0))
2962 && TREE_CODE (@1) == INTEGER_CST
2963 && tree_int_cst_sign_bit (@1) == 0))
2964 (negate (convert @1)))))
2966 (pointer_diff @0 (pointer_plus @@0 @1))
2967 /* The second argument of pointer_plus must be interpreted as signed, and
2968 thus sign-extended if necessary. */
2969 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2970 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2971 second arg is unsigned even when we need to consider it as signed,
2972 we don't want to diagnose overflow here. */
2973 (negate (convert (view_convert:stype @1)))))
2975 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2977 (minus (convert (plus:c @@0 @1))
2978 (convert (plus:c @0 @2)))
2979 (if (INTEGRAL_TYPE_P (type)
2980 && TYPE_OVERFLOW_UNDEFINED (type)
2981 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2982 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2983 (with { tree utype = unsigned_type_for (type); }
2984 (convert (minus (convert:utype @1) (convert:utype @2))))
2985 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2986 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2987 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2988 /* For integer types, if A has a smaller type
2989 than T the result depends on the possible
2991 E.g. T=size_t, A=(unsigned)429497295, P>0.
2992 However, if an overflow in P + A would cause
2993 undefined behavior, we can assume that there
2995 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2996 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2999 (minus (convert @1) (convert @2)))))
3001 (minus (convert (pointer_plus @@0 @1))
3002 (convert (pointer_plus @0 @2)))
3003 (if (INTEGRAL_TYPE_P (type)
3004 && TYPE_OVERFLOW_UNDEFINED (type)
3005 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3006 (with { tree utype = unsigned_type_for (type); }
3007 (convert (minus (convert:utype @1) (convert:utype @2))))
3008 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3009 /* For pointer types, if the conversion of A to the
3010 final type requires a sign- or zero-extension,
3011 then we have to punt - it is not defined which
3013 || (POINTER_TYPE_P (TREE_TYPE (@0))
3014 && TREE_CODE (@1) == INTEGER_CST
3015 && tree_int_cst_sign_bit (@1) == 0
3016 && TREE_CODE (@2) == INTEGER_CST
3017 && tree_int_cst_sign_bit (@2) == 0))
3018 (minus (convert @1) (convert @2)))))
3020 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3021 (pointer_diff @0 @1))
3023 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3024 /* The second argument of pointer_plus must be interpreted as signed, and
3025 thus sign-extended if necessary. */
3026 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3027 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3028 second arg is unsigned even when we need to consider it as signed,
3029 we don't want to diagnose overflow here. */
3030 (minus (convert (view_convert:stype @1))
3031 (convert (view_convert:stype @2)))))))
3033 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3034 Modeled after fold_plusminus_mult_expr. */
3035 (if (!TYPE_SATURATING (type)
3036 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3037 (for plusminus (plus minus)
3039 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
3040 (if (!ANY_INTEGRAL_TYPE_P (type)
3041 || TYPE_OVERFLOW_WRAPS (type)
3042 || (INTEGRAL_TYPE_P (type)
3043 && tree_expr_nonzero_p (@0)
3044 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3045 (if (single_use (@3) || single_use (@4))
3046 /* If @1 +- @2 is constant require a hard single-use on either
3047 original operand (but not on both). */
3048 (mult (plusminus @1 @2) @0)
3049 (mult! (plusminus @1 @2) @0)
3051 /* We cannot generate constant 1 for fract. */
3052 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3054 (plusminus @0 (mult:c@3 @0 @2))
3055 (if ((!ANY_INTEGRAL_TYPE_P (type)
3056 || TYPE_OVERFLOW_WRAPS (type)
3057 /* For @0 + @0*@2 this transformation would introduce UB
3058 (where there was none before) for @0 in [-1,0] and @2 max.
3059 For @0 - @0*@2 this transformation would introduce UB
3060 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
3061 || (INTEGRAL_TYPE_P (type)
3062 && ((tree_expr_nonzero_p (@0)
3063 && expr_not_equal_to (@0,
3064 wi::minus_one (TYPE_PRECISION (type))))
3065 || (plusminus == PLUS_EXPR
3066 ? expr_not_equal_to (@2,
3067 wi::max_value (TYPE_PRECISION (type), SIGNED))
3068 /* Let's ignore the @0 -1 and @2 min case. */
3069 : (expr_not_equal_to (@2,
3070 wi::min_value (TYPE_PRECISION (type), SIGNED))
3071 && expr_not_equal_to (@2,
3072 wi::min_value (TYPE_PRECISION (type), SIGNED)
3075 (mult (plusminus { build_one_cst (type); } @2) @0)))
3077 (plusminus (mult:c@3 @0 @2) @0)
3078 (if ((!ANY_INTEGRAL_TYPE_P (type)
3079 || TYPE_OVERFLOW_WRAPS (type)
3080 /* For @0*@2 + @0 this transformation would introduce UB
3081 (where there was none before) for @0 in [-1,0] and @2 max.
3082 For @0*@2 - @0 this transformation would introduce UB
3083 for @0 0 and @2 min. */
3084 || (INTEGRAL_TYPE_P (type)
3085 && ((tree_expr_nonzero_p (@0)
3086 && (plusminus == MINUS_EXPR
3087 || expr_not_equal_to (@0,
3088 wi::minus_one (TYPE_PRECISION (type)))))
3089 || expr_not_equal_to (@2,
3090 (plusminus == PLUS_EXPR
3091 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3092 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
3094 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
3097 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3098 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3100 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3101 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3102 && tree_fits_uhwi_p (@1)
3103 && tree_to_uhwi (@1) < element_precision (type)
3104 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3105 || optab_handler (smul_optab,
3106 TYPE_MODE (type)) != CODE_FOR_nothing))
3107 (with { tree t = type;
3108 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3109 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3110 element_precision (type));
3112 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3114 cst = build_uniform_cst (t, cst); }
3115 (convert (mult (convert:t @0) { cst; })))))
3117 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3118 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3119 && tree_fits_uhwi_p (@1)
3120 && tree_to_uhwi (@1) < element_precision (type)
3121 && tree_fits_uhwi_p (@2)
3122 && tree_to_uhwi (@2) < element_precision (type)
3123 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3124 || optab_handler (smul_optab,
3125 TYPE_MODE (type)) != CODE_FOR_nothing))
3126 (with { tree t = type;
3127 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3128 unsigned int prec = element_precision (type);
3129 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3130 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3131 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3133 cst = build_uniform_cst (t, cst); }
3134 (convert (mult (convert:t @0) { cst; })))))
3137 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3138 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3139 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3140 (for op (bit_ior bit_xor)
3142 (op (mult:s@0 @1 INTEGER_CST@2)
3143 (mult:s@3 @1 INTEGER_CST@4))
3144 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3145 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3147 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3149 (op:c (mult:s@0 @1 INTEGER_CST@2)
3150 (lshift:s@3 @1 INTEGER_CST@4))
3151 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3152 && tree_int_cst_sgn (@4) > 0
3153 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3154 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3155 wide_int c = wi::add (wi::to_wide (@2),
3156 wi::lshift (wone, wi::to_wide (@4))); }
3157 (mult @1 { wide_int_to_tree (type, c); }))))
3159 (op:c (mult:s@0 @1 INTEGER_CST@2)
3161 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3162 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3164 { wide_int_to_tree (type,
3165 wi::add (wi::to_wide (@2), 1)); })))
3167 (op (lshift:s@0 @1 INTEGER_CST@2)
3168 (lshift:s@3 @1 INTEGER_CST@4))
3169 (if (INTEGRAL_TYPE_P (type)
3170 && tree_int_cst_sgn (@2) > 0
3171 && tree_int_cst_sgn (@4) > 0
3172 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3173 (with { tree t = type;
3174 if (!TYPE_OVERFLOW_WRAPS (t))
3175 t = unsigned_type_for (t);
3176 wide_int wone = wi::one (TYPE_PRECISION (t));
3177 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3178 wi::lshift (wone, wi::to_wide (@4))); }
3179 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3181 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3183 (if (INTEGRAL_TYPE_P (type)
3184 && tree_int_cst_sgn (@2) > 0
3185 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3186 (with { tree t = type;
3187 if (!TYPE_OVERFLOW_WRAPS (t))
3188 t = unsigned_type_for (t);
3189 wide_int wone = wi::one (TYPE_PRECISION (t));
3190 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3191 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3193 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3195 (for minmax (min max)
3199 /* For fmin() and fmax(), skip folding when both are sNaN. */
3200 (for minmax (FMIN_ALL FMAX_ALL)
3203 (if (!tree_expr_maybe_signaling_nan_p (@0))
3205 /* min(max(x,y),y) -> y. */
3207 (min:c (max:c @0 @1) @1)
3209 /* max(min(x,y),y) -> y. */
3211 (max:c (min:c @0 @1) @1)
3213 /* max(a,-a) -> abs(a). */
3215 (max:c @0 (negate @0))
3216 (if (TREE_CODE (type) != COMPLEX_TYPE
3217 && (! ANY_INTEGRAL_TYPE_P (type)
3218 || TYPE_OVERFLOW_UNDEFINED (type)))
3220 /* min(a,-a) -> -abs(a). */
3222 (min:c @0 (negate @0))
3223 (if (TREE_CODE (type) != COMPLEX_TYPE
3224 && (! ANY_INTEGRAL_TYPE_P (type)
3225 || TYPE_OVERFLOW_UNDEFINED (type)))
3230 (if (INTEGRAL_TYPE_P (type)
3231 && TYPE_MIN_VALUE (type)
3232 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3234 (if (INTEGRAL_TYPE_P (type)
3235 && TYPE_MAX_VALUE (type)
3236 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3241 (if (INTEGRAL_TYPE_P (type)
3242 && TYPE_MAX_VALUE (type)
3243 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3245 (if (INTEGRAL_TYPE_P (type)
3246 && TYPE_MIN_VALUE (type)
3247 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3250 /* max (a, a + CST) -> a + CST where CST is positive. */
3251 /* max (a, a + CST) -> a where CST is negative. */
3253 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3254 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3255 (if (tree_int_cst_sgn (@1) > 0)
3259 /* min (a, a + CST) -> a where CST is positive. */
3260 /* min (a, a + CST) -> a + CST where CST is negative. */
3262 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3263 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3264 (if (tree_int_cst_sgn (@1) > 0)
3268 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3269 the addresses are known to be less, equal or greater. */
3270 (for minmax (min max)
3273 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3276 poly_int64 off0, off1;
3278 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3279 off0, off1, GENERIC);
3282 (if (minmax == MIN_EXPR)
3283 (if (known_le (off0, off1))
3285 (if (known_gt (off0, off1))
3287 (if (known_ge (off0, off1))
3289 (if (known_lt (off0, off1))
3292 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3293 and the outer convert demotes the expression back to x's type. */
3294 (for minmax (min max)
3296 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3297 (if (INTEGRAL_TYPE_P (type)
3298 && types_match (@1, type) && int_fits_type_p (@2, type)
3299 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3300 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3301 (minmax @1 (convert @2)))))
3303 (for minmax (FMIN_ALL FMAX_ALL)
3304 /* If either argument is NaN and other one is not sNaN, return the other
3305 one. Avoid the transformation if we get (and honor) a signalling NaN. */
3307 (minmax:c @0 REAL_CST@1)
3308 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3309 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
3310 && !tree_expr_maybe_signaling_nan_p (@0))
3312 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3313 functions to return the numeric arg if the other one is NaN.
3314 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3315 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3316 worry about it either. */
3317 (if (flag_finite_math_only)
3324 /* min (-A, -B) -> -max (A, B) */
3325 (for minmax (min max FMIN_ALL FMAX_ALL)
3326 maxmin (max min FMAX_ALL FMIN_ALL)
3328 (minmax (negate:s@2 @0) (negate:s@3 @1))
3329 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3330 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3331 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3332 (negate (maxmin @0 @1)))))
3333 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3334 MAX (~X, ~Y) -> ~MIN (X, Y) */
3335 (for minmax (min max)
3338 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3339 (bit_not (maxmin @0 @1))))
3341 /* MIN (X, Y) == X -> X <= Y */
3342 (for minmax (min min max max)
3346 (cmp:c (minmax:c @0 @1) @0)
3347 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3349 /* MIN (X, 5) == 0 -> X == 0
3350 MIN (X, 5) == 7 -> false */
3353 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3354 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3355 TYPE_SIGN (TREE_TYPE (@0))))
3356 { constant_boolean_node (cmp == NE_EXPR, type); }
3357 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3358 TYPE_SIGN (TREE_TYPE (@0))))
3362 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3363 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3364 TYPE_SIGN (TREE_TYPE (@0))))
3365 { constant_boolean_node (cmp == NE_EXPR, type); }
3366 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3367 TYPE_SIGN (TREE_TYPE (@0))))
3369 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3370 (for minmax (min min max max min min max max )
3371 cmp (lt le gt ge gt ge lt le )
3372 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3374 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3375 (comb (cmp @0 @2) (cmp @1 @2))))
3377 /* X <= MAX(X, Y) -> true
3378 X > MAX(X, Y) -> false
3379 X >= MIN(X, Y) -> true
3380 X < MIN(X, Y) -> false */
3381 (for minmax (min min max max )
3384 (cmp @0 (minmax:c @0 @1))
3385 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3387 /* Undo fancy ways of writing max/min or other ?: expressions, like
3388 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
3389 People normally use ?: and that is what we actually try to optimize. */
3390 /* Transform A + (B-A)*cmp into cmp ? B : A. */
3392 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
3393 (if (INTEGRAL_TYPE_P (type)
3394 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3395 (cond (convert:boolean_type_node @2) @1 @0)))
3396 /* Transform A - (A-B)*cmp into cmp ? B : A. */
3398 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
3399 (if (INTEGRAL_TYPE_P (type)
3400 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3401 (cond (convert:boolean_type_node @2) @1 @0)))
3402 /* Transform A ^ (A^B)*cmp into cmp ? B : A. */
3404 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
3405 (if (INTEGRAL_TYPE_P (type)
3406 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3407 (cond (convert:boolean_type_node @2) @1 @0)))
3409 /* Simplifications of shift and rotates. */
3411 (for rotate (lrotate rrotate)
3413 (rotate integer_all_onesp@0 @1)
3416 /* Optimize -1 >> x for arithmetic right shifts. */
3418 (rshift integer_all_onesp@0 @1)
3419 (if (!TYPE_UNSIGNED (type))
3422 /* Optimize (x >> c) << c into x & (-1<<c). */
3424 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3425 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3426 /* It doesn't matter if the right shift is arithmetic or logical. */
3427 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3430 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3431 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3432 /* Allow intermediate conversion to integral type with whatever sign, as
3433 long as the low TYPE_PRECISION (type)
3434 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3435 && INTEGRAL_TYPE_P (type)
3436 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3437 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3438 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3439 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3440 || wi::geu_p (wi::to_wide (@1),
3441 TYPE_PRECISION (type)
3442 - TYPE_PRECISION (TREE_TYPE (@2)))))
3443 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3445 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3448 (rshift (lshift @0 INTEGER_CST@1) @1)
3449 (if (TYPE_UNSIGNED (type)
3450 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3451 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3453 /* Optimize x >> x into 0 */
3456 { build_zero_cst (type); })
3458 (for shiftrotate (lrotate rrotate lshift rshift)
3460 (shiftrotate @0 integer_zerop)
3463 (shiftrotate integer_zerop@0 @1)
3465 /* Prefer vector1 << scalar to vector1 << vector2
3466 if vector2 is uniform. */
3467 (for vec (VECTOR_CST CONSTRUCTOR)
3469 (shiftrotate @0 vec@1)
3470 (with { tree tem = uniform_vector_p (@1); }
3472 (shiftrotate @0 { tem; }))))))
3474 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3475 Y is 0. Similarly for X >> Y. */
3477 (for shift (lshift rshift)
3479 (shift @0 SSA_NAME@1)
3480 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3482 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3483 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3485 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3489 /* Rewrite an LROTATE_EXPR by a constant into an
3490 RROTATE_EXPR by a new constant. */
3492 (lrotate @0 INTEGER_CST@1)
3493 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3494 build_int_cst (TREE_TYPE (@1),
3495 element_precision (type)), @1); }))
3497 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3498 (for op (lrotate rrotate rshift lshift)
3500 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3501 (with { unsigned int prec = element_precision (type); }
3502 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3503 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3504 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3505 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3506 (with { unsigned int low = (tree_to_uhwi (@1)
3507 + tree_to_uhwi (@2)); }
3508 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3509 being well defined. */
3511 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3512 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3513 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3514 { build_zero_cst (type); }
3515 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3516 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3519 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3521 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3522 (if ((wi::to_wide (@1) & 1) != 0)
3523 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3524 { build_zero_cst (type); }))
3526 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3527 either to false if D is smaller (unsigned comparison) than C, or to
3528 x == log2 (D) - log2 (C). Similarly for right shifts. */
3532 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3533 (with { int c1 = wi::clz (wi::to_wide (@1));
3534 int c2 = wi::clz (wi::to_wide (@2)); }
3536 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3537 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3539 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3540 (if (tree_int_cst_sgn (@1) > 0)
3541 (with { int c1 = wi::clz (wi::to_wide (@1));
3542 int c2 = wi::clz (wi::to_wide (@2)); }
3544 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3545 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3547 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3548 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3552 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3553 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3555 || (!integer_zerop (@2)
3556 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3557 { constant_boolean_node (cmp == NE_EXPR, type); }
3558 (if (!integer_zerop (@2)
3559 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3560 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3562 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3563 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3564 if the new mask might be further optimized. */
3565 (for shift (lshift rshift)
3567 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3569 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3570 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3571 && tree_fits_uhwi_p (@1)
3572 && tree_to_uhwi (@1) > 0
3573 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3576 unsigned int shiftc = tree_to_uhwi (@1);
3577 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3578 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3579 tree shift_type = TREE_TYPE (@3);
3582 if (shift == LSHIFT_EXPR)
3583 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3584 else if (shift == RSHIFT_EXPR
3585 && type_has_mode_precision_p (shift_type))
3587 prec = TYPE_PRECISION (TREE_TYPE (@3));
3589 /* See if more bits can be proven as zero because of
3592 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3594 tree inner_type = TREE_TYPE (@0);
3595 if (type_has_mode_precision_p (inner_type)
3596 && TYPE_PRECISION (inner_type) < prec)
3598 prec = TYPE_PRECISION (inner_type);
3599 /* See if we can shorten the right shift. */
3601 shift_type = inner_type;
3602 /* Otherwise X >> C1 is all zeros, so we'll optimize
3603 it into (X, 0) later on by making sure zerobits
3607 zerobits = HOST_WIDE_INT_M1U;
3610 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3611 zerobits <<= prec - shiftc;
3613 /* For arithmetic shift if sign bit could be set, zerobits
3614 can contain actually sign bits, so no transformation is
3615 possible, unless MASK masks them all away. In that
3616 case the shift needs to be converted into logical shift. */
3617 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3618 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3620 if ((mask & zerobits) == 0)
3621 shift_type = unsigned_type_for (TREE_TYPE (@3));
3627 /* ((X << 16) & 0xff00) is (X, 0). */
3628 (if ((mask & zerobits) == mask)
3629 { build_int_cst (type, 0); }
3630 (with { newmask = mask | zerobits; }
3631 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3634 /* Only do the transformation if NEWMASK is some integer
3636 for (prec = BITS_PER_UNIT;
3637 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3638 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3641 (if (prec < HOST_BITS_PER_WIDE_INT
3642 || newmask == HOST_WIDE_INT_M1U)
3644 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3645 (if (!tree_int_cst_equal (newmaskt, @2))
3646 (if (shift_type != TREE_TYPE (@3))
3647 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3648 (bit_and @4 { newmaskt; })))))))))))))
3650 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3656 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3657 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3658 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3659 wi::exact_log2 (wi::to_wide (@1))); }))))
3661 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3662 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3663 (for shift (lshift rshift)
3664 (for bit_op (bit_and bit_xor bit_ior)
3666 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3667 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3668 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3670 (bit_op (shift (convert @0) @1) { mask; })))))))
3672 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3674 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3675 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3676 && (element_precision (TREE_TYPE (@0))
3677 <= element_precision (TREE_TYPE (@1))
3678 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3680 { tree shift_type = TREE_TYPE (@0); }
3681 (convert (rshift (convert:shift_type @1) @2)))))
3683 /* ~(~X >>r Y) -> X >>r Y
3684 ~(~X <<r Y) -> X <<r Y */
3685 (for rotate (lrotate rrotate)
3687 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3688 (if ((element_precision (TREE_TYPE (@0))
3689 <= element_precision (TREE_TYPE (@1))
3690 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3691 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3692 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3694 { tree rotate_type = TREE_TYPE (@0); }
3695 (convert (rotate (convert:rotate_type @1) @2))))))
3698 (for rotate (lrotate rrotate)
3699 invrot (rrotate lrotate)
3700 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3702 (cmp (rotate @1 @0) (rotate @2 @0))
3704 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3706 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3707 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3708 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3710 (cmp (rotate @0 @1) INTEGER_CST@2)
3711 (if (integer_zerop (@2) || integer_all_onesp (@2))
3714 /* Narrow a lshift by constant. */
3716 (convert (lshift:s@0 @1 INTEGER_CST@2))
3717 (if (INTEGRAL_TYPE_P (type)
3718 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3719 && !integer_zerop (@2)
3720 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
3721 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3722 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
3723 (lshift (convert @1) @2)
3724 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
3725 { build_zero_cst (type); }))))
3727 /* Simplifications of conversions. */
3729 /* Basic strip-useless-type-conversions / strip_nops. */
3730 (for cvt (convert view_convert float fix_trunc)
3733 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3734 || (GENERIC && type == TREE_TYPE (@0)))
3737 /* Contract view-conversions. */
3739 (view_convert (view_convert @0))
3742 /* For integral conversions with the same precision or pointer
3743 conversions use a NOP_EXPR instead. */
3746 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3747 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3748 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3751 /* Strip inner integral conversions that do not change precision or size, or
3752 zero-extend while keeping the same size (for bool-to-char). */
3754 (view_convert (convert@0 @1))
3755 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3756 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3757 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3758 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3759 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3760 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3763 /* Simplify a view-converted empty or single-element constructor. */
3765 (view_convert CONSTRUCTOR@0)
3767 { tree ctor = (TREE_CODE (@0) == SSA_NAME
3768 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
3770 (if (CONSTRUCTOR_NELTS (ctor) == 0)
3771 { build_zero_cst (type); })
3772 (if (CONSTRUCTOR_NELTS (ctor) == 1
3773 && VECTOR_TYPE_P (TREE_TYPE (ctor))
3774 && operand_equal_p (TYPE_SIZE (type),
3775 TYPE_SIZE (TREE_TYPE
3776 (CONSTRUCTOR_ELT (ctor, 0)->value))))
3777 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
3779 /* Re-association barriers around constants and other re-association
3780 barriers can be removed. */
3782 (paren CONSTANT_CLASS_P@0)
3785 (paren (paren@1 @0))
3788 /* Handle cases of two conversions in a row. */
3789 (for ocvt (convert float fix_trunc)
3790 (for icvt (convert float)
3795 tree inside_type = TREE_TYPE (@0);
3796 tree inter_type = TREE_TYPE (@1);
3797 int inside_int = INTEGRAL_TYPE_P (inside_type);
3798 int inside_ptr = POINTER_TYPE_P (inside_type);
3799 int inside_float = FLOAT_TYPE_P (inside_type);
3800 int inside_vec = VECTOR_TYPE_P (inside_type);
3801 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3802 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3803 int inter_int = INTEGRAL_TYPE_P (inter_type);
3804 int inter_ptr = POINTER_TYPE_P (inter_type);
3805 int inter_float = FLOAT_TYPE_P (inter_type);
3806 int inter_vec = VECTOR_TYPE_P (inter_type);
3807 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3808 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3809 int final_int = INTEGRAL_TYPE_P (type);
3810 int final_ptr = POINTER_TYPE_P (type);
3811 int final_float = FLOAT_TYPE_P (type);
3812 int final_vec = VECTOR_TYPE_P (type);
3813 unsigned int final_prec = TYPE_PRECISION (type);
3814 int final_unsignedp = TYPE_UNSIGNED (type);
3817 /* In addition to the cases of two conversions in a row
3818 handled below, if we are converting something to its own
3819 type via an object of identical or wider precision, neither
3820 conversion is needed. */
3821 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3823 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3824 && (((inter_int || inter_ptr) && final_int)
3825 || (inter_float && final_float))
3826 && inter_prec >= final_prec)
3829 /* Likewise, if the intermediate and initial types are either both
3830 float or both integer, we don't need the middle conversion if the
3831 former is wider than the latter and doesn't change the signedness
3832 (for integers). Avoid this if the final type is a pointer since
3833 then we sometimes need the middle conversion. */
3834 (if (((inter_int && inside_int) || (inter_float && inside_float))
3835 && (final_int || final_float)
3836 && inter_prec >= inside_prec
3837 && (inter_float || inter_unsignedp == inside_unsignedp))
3840 /* If we have a sign-extension of a zero-extended value, we can
3841 replace that by a single zero-extension. Likewise if the
3842 final conversion does not change precision we can drop the
3843 intermediate conversion. */
3844 (if (inside_int && inter_int && final_int
3845 && ((inside_prec < inter_prec && inter_prec < final_prec
3846 && inside_unsignedp && !inter_unsignedp)
3847 || final_prec == inter_prec))
3850 /* Two conversions in a row are not needed unless:
3851 - some conversion is floating-point (overstrict for now), or
3852 - some conversion is a vector (overstrict for now), or
3853 - the intermediate type is narrower than both initial and
3855 - the intermediate type and innermost type differ in signedness,
3856 and the outermost type is wider than the intermediate, or
3857 - the initial type is a pointer type and the precisions of the
3858 intermediate and final types differ, or
3859 - the final type is a pointer type and the precisions of the
3860 initial and intermediate types differ. */
3861 (if (! inside_float && ! inter_float && ! final_float
3862 && ! inside_vec && ! inter_vec && ! final_vec
3863 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3864 && ! (inside_int && inter_int
3865 && inter_unsignedp != inside_unsignedp
3866 && inter_prec < final_prec)
3867 && ((inter_unsignedp && inter_prec > inside_prec)
3868 == (final_unsignedp && final_prec > inter_prec))
3869 && ! (inside_ptr && inter_prec != final_prec)
3870 && ! (final_ptr && inside_prec != inter_prec))
3873 /* A truncation to an unsigned type (a zero-extension) should be
3874 canonicalized as bitwise and of a mask. */
3875 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3876 && final_int && inter_int && inside_int
3877 && final_prec == inside_prec
3878 && final_prec > inter_prec
3880 (convert (bit_and @0 { wide_int_to_tree
3882 wi::mask (inter_prec, false,
3883 TYPE_PRECISION (inside_type))); })))
3885 /* If we are converting an integer to a floating-point that can
3886 represent it exactly and back to an integer, we can skip the
3887 floating-point conversion. */
3888 (if (GIMPLE /* PR66211 */
3889 && inside_int && inter_float && final_int &&
3890 (unsigned) significand_size (TYPE_MODE (inter_type))
3891 >= inside_prec - !inside_unsignedp)
3894 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
3895 float_type. Only do the transformation if we do not need to preserve
3896 trapping behaviour, so require !flag_trapping_math. */
3899 (float (fix_trunc @0))
3900 (if (!flag_trapping_math
3901 && types_match (type, TREE_TYPE (@0))
3902 && direct_internal_fn_supported_p (IFN_TRUNC, type,
3907 /* If we have a narrowing conversion to an integral type that is fed by a
3908 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3909 masks off bits outside the final type (and nothing else). */
3911 (convert (bit_and @0 INTEGER_CST@1))
3912 (if (INTEGRAL_TYPE_P (type)
3913 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3914 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3915 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3916 TYPE_PRECISION (type)), 0))
3920 /* (X /[ex] A) * A -> X. */
3922 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3925 /* Simplify (A / B) * B + (A % B) -> A. */
3926 (for div (trunc_div ceil_div floor_div round_div)
3927 mod (trunc_mod ceil_mod floor_mod round_mod)
3929 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3932 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3933 (for op (plus minus)
3935 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3936 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3937 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3940 wi::overflow_type overflow;
3941 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3942 TYPE_SIGN (type), &overflow);
3944 (if (types_match (type, TREE_TYPE (@2))
3945 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3946 (op @0 { wide_int_to_tree (type, mul); })
3947 (with { tree utype = unsigned_type_for (type); }
3948 (convert (op (convert:utype @0)
3949 (mult (convert:utype @1) (convert:utype @2))))))))))
3951 /* Canonicalization of binary operations. */
3953 /* Convert X + -C into X - C. */
3955 (plus @0 REAL_CST@1)
3956 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3957 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3958 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3959 (minus @0 { tem; })))))
3961 /* Convert x+x into x*2. */
3964 (if (SCALAR_FLOAT_TYPE_P (type))
3965 (mult @0 { build_real (type, dconst2); })
3966 (if (INTEGRAL_TYPE_P (type))
3967 (mult @0 { build_int_cst (type, 2); }))))
3971 (minus integer_zerop @1)
3974 (pointer_diff integer_zerop @1)
3975 (negate (convert @1)))
3977 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3978 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3979 (-ARG1 + ARG0) reduces to -ARG1. */
3981 (minus real_zerop@0 @1)
3982 (if (fold_real_zero_addition_p (type, @1, @0, 0))
3985 /* Transform x * -1 into -x. */
3987 (mult @0 integer_minus_onep)
3990 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3991 signed overflow for CST != 0 && CST != -1. */
3993 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3994 (if (TREE_CODE (@2) != INTEGER_CST
3996 && !integer_zerop (@1) && !integer_minus_onep (@1))
3997 (mult (mult @0 @2) @1)))
3999 /* True if we can easily extract the real and imaginary parts of a complex
4001 (match compositional_complex
4002 (convert? (complex @0 @1)))
4004 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4006 (complex (realpart @0) (imagpart @0))
4009 (realpart (complex @0 @1))
4012 (imagpart (complex @0 @1))
4015 /* Sometimes we only care about half of a complex expression. */
4017 (realpart (convert?:s (conj:s @0)))
4018 (convert (realpart @0)))
4020 (imagpart (convert?:s (conj:s @0)))
4021 (convert (negate (imagpart @0))))
4022 (for part (realpart imagpart)
4023 (for op (plus minus)
4025 (part (convert?:s@2 (op:s @0 @1)))
4026 (convert (op (part @0) (part @1))))))
4028 (realpart (convert?:s (CEXPI:s @0)))
4031 (imagpart (convert?:s (CEXPI:s @0)))
4034 /* conj(conj(x)) -> x */
4036 (conj (convert? (conj @0)))
4037 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4040 /* conj({x,y}) -> {x,-y} */
4042 (conj (convert?:s (complex:s @0 @1)))
4043 (with { tree itype = TREE_TYPE (type); }
4044 (complex (convert:itype @0) (negate (convert:itype @1)))))
4046 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4047 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
4048 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
4053 (bswap (bit_not (bswap @0)))
4055 (for bitop (bit_xor bit_ior bit_and)
4057 (bswap (bitop:c (bswap @0) @1))
4058 (bitop @0 (bswap @1))))
4061 (cmp (bswap@2 @0) (bswap @1))
4062 (with { tree ctype = TREE_TYPE (@2); }
4063 (cmp (convert:ctype @0) (convert:ctype @1))))
4065 (cmp (bswap @0) INTEGER_CST@1)
4066 (with { tree ctype = TREE_TYPE (@1); }
4067 (cmp (convert:ctype @0) (bswap! @1)))))
4068 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4070 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4072 (if (BITS_PER_UNIT == 8
4073 && tree_fits_uhwi_p (@2)
4074 && tree_fits_uhwi_p (@3))
4077 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4078 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4079 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4080 unsigned HOST_WIDE_INT lo = bits & 7;
4081 unsigned HOST_WIDE_INT hi = bits - lo;
4084 && mask < (256u>>lo)
4085 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4086 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4088 (bit_and (convert @1) @3)
4091 tree utype = unsigned_type_for (TREE_TYPE (@1));
4092 tree nst = build_int_cst (integer_type_node, ns);
4094 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4095 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4097 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4098 (if (BITS_PER_UNIT == 8
4099 && CHAR_TYPE_SIZE == 8
4100 && tree_fits_uhwi_p (@1))
4103 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4104 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
4105 /* If the bswap was extended before the original shift, this
4106 byte (shift) has the sign of the extension, not the sign of
4107 the original shift. */
4108 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4110 /* Special case: logical right shift of sign-extended bswap.
4111 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4112 (if (TYPE_PRECISION (type) > prec
4113 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4114 && TYPE_UNSIGNED (type)
4115 && bits < prec && bits + 8 >= prec)
4116 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4117 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4118 (if (bits + 8 == prec)
4119 (if (TYPE_UNSIGNED (st))
4120 (convert (convert:unsigned_char_type_node @0))
4121 (convert (convert:signed_char_type_node @0)))
4122 (if (bits < prec && bits + 8 > prec)
4125 tree nst = build_int_cst (integer_type_node, bits & 7);
4126 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
4127 : signed_char_type_node;
4129 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
4130 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
4132 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
4133 (if (BITS_PER_UNIT == 8
4134 && tree_fits_uhwi_p (@1)
4135 && tree_to_uhwi (@1) < 256)
4138 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4139 tree utype = unsigned_type_for (TREE_TYPE (@0));
4140 tree nst = build_int_cst (integer_type_node, prec - 8);
4142 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
4145 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4147 /* Simplify constant conditions.
4148 Only optimize constant conditions when the selected branch
4149 has the same type as the COND_EXPR. This avoids optimizing
4150 away "c ? x : throw", where the throw has a void type.
4151 Note that we cannot throw away the fold-const.cc variant nor
4152 this one as we depend on doing this transform before possibly
4153 A ? B : B -> B triggers and the fold-const.cc one can optimize
4154 0 ? A : B to B even if A has side-effects. Something
4155 genmatch cannot handle. */
4157 (cond INTEGER_CST@0 @1 @2)
4158 (if (integer_zerop (@0))
4159 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4161 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4164 (vec_cond VECTOR_CST@0 @1 @2)
4165 (if (integer_all_onesp (@0))
4167 (if (integer_zerop (@0))
4170 /* Sink unary operations to branches, but only if we do fold both. */
4171 (for op (negate bit_not abs absu)
4173 (op (vec_cond:s @0 @1 @2))
4174 (vec_cond @0 (op! @1) (op! @2))))
4176 /* Sink binary operation to branches, but only if we can fold it. */
4177 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4178 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4179 trunc_mod ceil_mod floor_mod round_mod min max)
4180 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4182 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4183 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4185 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4187 (op (vec_cond:s @0 @1 @2) @3)
4188 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4190 (op @3 (vec_cond:s @0 @1 @2))
4191 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4194 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4195 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4198 int ibit = tree_log2 (@0);
4199 int ibit2 = tree_log2 (@1);
4203 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4205 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4206 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4209 int ibit = tree_log2 (@0);
4210 int ibit2 = tree_log2 (@1);
4214 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4216 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4219 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4221 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4223 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4226 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4228 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4230 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4231 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4234 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4235 TYPE_PRECISION(type)));
4236 int ibit2 = tree_log2 (@1);
4240 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4242 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4244 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4247 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4248 TYPE_PRECISION(type)));
4249 int ibit2 = tree_log2 (@1);
4253 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4255 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4258 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4260 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4262 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4265 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4267 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4271 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4272 Currently disabled after pass lvec because ARM understands
4273 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4275 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4276 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4277 (vec_cond (bit_and @0 @3) @1 @2)))
4279 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4280 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4281 (vec_cond (bit_ior @0 @3) @1 @2)))
4283 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4284 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4285 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4287 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4288 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4289 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4291 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4293 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4294 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4295 (vec_cond (bit_and @0 @1) @2 @3)))
4297 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4298 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4299 (vec_cond (bit_ior @0 @1) @2 @3)))
4301 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4302 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4303 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4305 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4306 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4307 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4309 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4310 types are compatible. */
4312 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4313 (if (VECTOR_BOOLEAN_TYPE_P (type)
4314 && types_match (type, TREE_TYPE (@0)))
4315 (if (integer_zerop (@1) && integer_all_onesp (@2))
4317 (if (integer_all_onesp (@1) && integer_zerop (@2))
4320 /* A few simplifications of "a ? CST1 : CST2". */
4321 /* NOTE: Only do this on gimple as the if-chain-to-switch
4322 optimization depends on the gimple to have if statements in it. */
4325 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4327 (if (integer_zerop (@2))
4329 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4330 (if (integer_onep (@1))
4331 (convert (convert:boolean_type_node @0)))
4332 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4333 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4335 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4337 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4338 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4339 here as the powerof2cst case above will handle that case correctly. */
4340 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4341 (negate (convert (convert:boolean_type_node @0))))))
4342 (if (integer_zerop (@1))
4344 tree booltrue = constant_boolean_node (true, boolean_type_node);
4347 /* a ? 0 : 1 -> !a. */
4348 (if (integer_onep (@2))
4349 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4350 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4351 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4353 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4355 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4357 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4358 here as the powerof2cst case above will handle that case correctly. */
4359 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4360 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4369 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
4370 (if (INTEGRAL_TYPE_P (type)
4371 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4372 (cond @1 (convert @2) (convert @3))))
4374 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4376 /* This pattern implements two kinds simplification:
4379 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4380 1) Conversions are type widening from smaller type.
4381 2) Const c1 equals to c2 after canonicalizing comparison.
4382 3) Comparison has tree code LT, LE, GT or GE.
4383 This specific pattern is needed when (cmp (convert x) c) may not
4384 be simplified by comparison patterns because of multiple uses of
4385 x. It also makes sense here because simplifying across multiple
4386 referred var is always benefitial for complicated cases.
4389 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4390 (for cmp (lt le gt ge eq)
4392 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4395 tree from_type = TREE_TYPE (@1);
4396 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4397 enum tree_code code = ERROR_MARK;
4399 if (INTEGRAL_TYPE_P (from_type)
4400 && int_fits_type_p (@2, from_type)
4401 && (types_match (c1_type, from_type)
4402 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4403 && (TYPE_UNSIGNED (from_type)
4404 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4405 && (types_match (c2_type, from_type)
4406 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4407 && (TYPE_UNSIGNED (from_type)
4408 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4412 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4414 /* X <= Y - 1 equals to X < Y. */
4417 /* X > Y - 1 equals to X >= Y. */
4421 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4423 /* X < Y + 1 equals to X <= Y. */
4426 /* X >= Y + 1 equals to X > Y. */
4430 if (code != ERROR_MARK
4431 || wi::to_widest (@2) == wi::to_widest (@3))
4433 if (cmp == LT_EXPR || cmp == LE_EXPR)
4435 if (cmp == GT_EXPR || cmp == GE_EXPR)
4439 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4440 else if (int_fits_type_p (@3, from_type))
4444 (if (code == MAX_EXPR)
4445 (convert (max @1 (convert @2)))
4446 (if (code == MIN_EXPR)
4447 (convert (min @1 (convert @2)))
4448 (if (code == EQ_EXPR)
4449 (convert (cond (eq @1 (convert @3))
4450 (convert:from_type @3) (convert:from_type @2)))))))))
4452 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4454 1) OP is PLUS or MINUS.
4455 2) CMP is LT, LE, GT or GE.
4456 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4458 This pattern also handles special cases like:
4460 A) Operand x is a unsigned to signed type conversion and c1 is
4461 integer zero. In this case,
4462 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4463 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4464 B) Const c1 may not equal to (C3 op' C2). In this case we also
4465 check equality for (c1+1) and (c1-1) by adjusting comparison
4468 TODO: Though signed type is handled by this pattern, it cannot be
4469 simplified at the moment because C standard requires additional
4470 type promotion. In order to match&simplify it here, the IR needs
4471 to be cleaned up by other optimizers, i.e, VRP. */
4472 (for op (plus minus)
4473 (for cmp (lt le gt ge)
4475 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4476 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4477 (if (types_match (from_type, to_type)
4478 /* Check if it is special case A). */
4479 || (TYPE_UNSIGNED (from_type)
4480 && !TYPE_UNSIGNED (to_type)
4481 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4482 && integer_zerop (@1)
4483 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4486 wi::overflow_type overflow = wi::OVF_NONE;
4487 enum tree_code code, cmp_code = cmp;
4489 wide_int c1 = wi::to_wide (@1);
4490 wide_int c2 = wi::to_wide (@2);
4491 wide_int c3 = wi::to_wide (@3);
4492 signop sgn = TYPE_SIGN (from_type);
4494 /* Handle special case A), given x of unsigned type:
4495 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4496 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4497 if (!types_match (from_type, to_type))
4499 if (cmp_code == LT_EXPR)
4501 if (cmp_code == GE_EXPR)
4503 c1 = wi::max_value (to_type);
4505 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4506 compute (c3 op' c2) and check if it equals to c1 with op' being
4507 the inverted operator of op. Make sure overflow doesn't happen
4508 if it is undefined. */
4509 if (op == PLUS_EXPR)
4510 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4512 real_c1 = wi::add (c3, c2, sgn, &overflow);
4515 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4517 /* Check if c1 equals to real_c1. Boundary condition is handled
4518 by adjusting comparison operation if necessary. */
4519 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4522 /* X <= Y - 1 equals to X < Y. */
4523 if (cmp_code == LE_EXPR)
4525 /* X > Y - 1 equals to X >= Y. */
4526 if (cmp_code == GT_EXPR)
4529 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4532 /* X < Y + 1 equals to X <= Y. */
4533 if (cmp_code == LT_EXPR)
4535 /* X >= Y + 1 equals to X > Y. */
4536 if (cmp_code == GE_EXPR)
4539 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4541 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4543 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4548 (if (code == MAX_EXPR)
4549 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4550 { wide_int_to_tree (from_type, c2); })
4551 (if (code == MIN_EXPR)
4552 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4553 { wide_int_to_tree (from_type, c2); })))))))))
4556 /* A >= B ? A : B -> max (A, B) and friends. The code is still
4557 in fold_cond_expr_with_comparison for GENERIC folding with
4558 some extra constraints. */
4559 (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
4561 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
4562 (convert3? @0) (convert4? @1))
4563 (if (!HONOR_SIGNED_ZEROS (type)
4564 && ((INTEGRAL_TYPE_P (type)
4565 /* Allow widening conversions of the data. */
4566 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
4567 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
4568 || (tree_nop_conversion_p (type, TREE_TYPE (@0))
4569 && tree_nop_conversion_p (type, TREE_TYPE (@1)))))
4571 (if (cmp == EQ_EXPR)
4572 (if (VECTOR_TYPE_P (type))
4575 (if (cmp == NE_EXPR)
4576 (if (VECTOR_TYPE_P (type))
4579 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
4580 (if (!HONOR_NANS (type))
4581 (if (VECTOR_TYPE_P (type))
4582 (view_convert (min @c0 @c1))
4583 (convert (min @c0 @c1)))))
4584 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
4585 (if (!HONOR_NANS (type))
4586 (if (VECTOR_TYPE_P (type))
4587 (view_convert (max @c0 @c1))
4588 (convert (max @c0 @c1)))))
4589 (if (cmp == UNEQ_EXPR)
4590 (if (!HONOR_NANS (type))
4591 (if (VECTOR_TYPE_P (type))
4594 (if (cmp == LTGT_EXPR)
4595 (if (!HONOR_NANS (type))
4596 (if (VECTOR_TYPE_P (type))
4598 (convert @c0))))))))
4601 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4603 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4604 (if (!TYPE_SATURATING (type)
4605 && (TYPE_OVERFLOW_WRAPS (type)
4606 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4607 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4610 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4612 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4613 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4616 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4617 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4619 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4620 (if (TYPE_UNSIGNED (type))
4621 (cond (ge @0 @1) (negate @0) @2)))
4623 (for cnd (cond vec_cond)
4624 /* A ? B : (A ? X : C) -> A ? B : C. */
4626 (cnd @0 (cnd @0 @1 @2) @3)
4629 (cnd @0 @1 (cnd @0 @2 @3))
4631 /* A ? B : (!A ? C : X) -> A ? B : C. */
4632 /* ??? This matches embedded conditions open-coded because genmatch
4633 would generate matching code for conditions in separate stmts only.
4634 The following is still important to merge then and else arm cases
4635 from if-conversion. */
4637 (cnd @0 @1 (cnd @2 @3 @4))
4638 (if (inverse_conditions_p (@0, @2))
4641 (cnd @0 (cnd @1 @2 @3) @4)
4642 (if (inverse_conditions_p (@0, @1))
4645 /* A ? B : B -> B. */
4650 /* !A ? B : C -> A ? C : B. */
4652 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4655 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4656 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4657 Need to handle UN* comparisons.
4659 None of these transformations work for modes with signed
4660 zeros. If A is +/-0, the first two transformations will
4661 change the sign of the result (from +0 to -0, or vice
4662 versa). The last four will fix the sign of the result,
4663 even though the original expressions could be positive or
4664 negative, depending on the sign of A.
4666 Note that all these transformations are correct if A is
4667 NaN, since the two alternatives (A and -A) are also NaNs. */
4669 (for cnd (cond vec_cond)
4670 /* A == 0 ? A : -A same as -A */
4673 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4674 (if (!HONOR_SIGNED_ZEROS (type))
4677 (cnd (cmp @0 zerop) integer_zerop (negate@1 @0))
4678 (if (!HONOR_SIGNED_ZEROS (type))
4681 /* A != 0 ? A : -A same as A */
4684 (cnd (cmp @0 zerop) @0 (negate @0))
4685 (if (!HONOR_SIGNED_ZEROS (type))
4688 (cnd (cmp @0 zerop) @0 integer_zerop)
4689 (if (!HONOR_SIGNED_ZEROS (type))
4692 /* A >=/> 0 ? A : -A same as abs (A) */
4695 (cnd (cmp @0 zerop) @0 (negate @0))
4696 (if (!HONOR_SIGNED_ZEROS (type)
4697 && !TYPE_UNSIGNED (type))
4699 /* A <=/< 0 ? A : -A same as -abs (A) */
4702 (cnd (cmp @0 zerop) @0 (negate @0))
4703 (if (!HONOR_SIGNED_ZEROS (type)
4704 && !TYPE_UNSIGNED (type))
4705 (if (ANY_INTEGRAL_TYPE_P (type)
4706 && !TYPE_OVERFLOW_WRAPS (type))
4708 tree utype = unsigned_type_for (type);
4710 (convert (negate (absu:utype @0))))
4711 (negate (abs @0)))))
4715 /* -(type)!A -> (type)A - 1. */
4717 (negate (convert?:s (logical_inverted_value:s @0)))
4718 (if (INTEGRAL_TYPE_P (type)
4719 && TREE_CODE (type) != BOOLEAN_TYPE
4720 && TYPE_PRECISION (type) > 1
4721 && TREE_CODE (@0) == SSA_NAME
4722 && ssa_name_has_boolean_range (@0))
4723 (plus (convert:type @0) { build_all_ones_cst (type); })))
4725 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4726 return all -1 or all 0 results. */
4727 /* ??? We could instead convert all instances of the vec_cond to negate,
4728 but that isn't necessarily a win on its own. */
4730 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4731 (if (VECTOR_TYPE_P (type)
4732 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4733 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4734 && (TYPE_MODE (TREE_TYPE (type))
4735 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4736 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4738 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
4740 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4741 (if (VECTOR_TYPE_P (type)
4742 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4743 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4744 && (TYPE_MODE (TREE_TYPE (type))
4745 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4746 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4749 /* Simplifications of comparisons. */
4751 /* See if we can reduce the magnitude of a constant involved in a
4752 comparison by changing the comparison code. This is a canonicalization
4753 formerly done by maybe_canonicalize_comparison_1. */
4757 (cmp @0 uniform_integer_cst_p@1)
4758 (with { tree cst = uniform_integer_cst_p (@1); }
4759 (if (tree_int_cst_sgn (cst) == -1)
4760 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4761 wide_int_to_tree (TREE_TYPE (cst),
4767 (cmp @0 uniform_integer_cst_p@1)
4768 (with { tree cst = uniform_integer_cst_p (@1); }
4769 (if (tree_int_cst_sgn (cst) == 1)
4770 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4771 wide_int_to_tree (TREE_TYPE (cst),
4772 wi::to_wide (cst) - 1)); })))))
4774 /* We can simplify a logical negation of a comparison to the
4775 inverted comparison. As we cannot compute an expression
4776 operator using invert_tree_comparison we have to simulate
4777 that with expression code iteration. */
4778 (for cmp (tcc_comparison)
4779 icmp (inverted_tcc_comparison)
4780 ncmp (inverted_tcc_comparison_with_nans)
4781 /* Ideally we'd like to combine the following two patterns
4782 and handle some more cases by using
4783 (logical_inverted_value (cmp @0 @1))
4784 here but for that genmatch would need to "inline" that.
4785 For now implement what forward_propagate_comparison did. */
4787 (bit_not (cmp @0 @1))
4788 (if (VECTOR_TYPE_P (type)
4789 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4790 /* Comparison inversion may be impossible for trapping math,
4791 invert_tree_comparison will tell us. But we can't use
4792 a computed operator in the replacement tree thus we have
4793 to play the trick below. */
4794 (with { enum tree_code ic = invert_tree_comparison
4795 (cmp, HONOR_NANS (@0)); }
4801 (bit_xor (cmp @0 @1) integer_truep)
4802 (with { enum tree_code ic = invert_tree_comparison
4803 (cmp, HONOR_NANS (@0)); }
4808 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
4810 (ne (cmp@2 @0 @1) integer_zerop)
4811 (if (types_match (type, TREE_TYPE (@2)))
4814 (eq (cmp@2 @0 @1) integer_truep)
4815 (if (types_match (type, TREE_TYPE (@2)))
4818 (ne (cmp@2 @0 @1) integer_truep)
4819 (if (types_match (type, TREE_TYPE (@2)))
4820 (with { enum tree_code ic = invert_tree_comparison
4821 (cmp, HONOR_NANS (@0)); }
4827 (eq (cmp@2 @0 @1) integer_zerop)
4828 (if (types_match (type, TREE_TYPE (@2)))
4829 (with { enum tree_code ic = invert_tree_comparison
4830 (cmp, HONOR_NANS (@0)); }
4836 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4837 ??? The transformation is valid for the other operators if overflow
4838 is undefined for the type, but performing it here badly interacts
4839 with the transformation in fold_cond_expr_with_comparison which
4840 attempts to synthetize ABS_EXPR. */
4842 (for sub (minus pointer_diff)
4844 (cmp (sub@2 @0 @1) integer_zerop)
4845 (if (single_use (@2))
4848 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4849 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
4852 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4853 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4854 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4855 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4856 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4857 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4858 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
4860 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4861 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4862 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4863 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4864 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4866 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4867 signed arithmetic case. That form is created by the compiler
4868 often enough for folding it to be of value. One example is in
4869 computing loop trip counts after Operator Strength Reduction. */
4870 (for cmp (simple_comparison)
4871 scmp (swapped_simple_comparison)
4873 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4874 /* Handle unfolded multiplication by zero. */
4875 (if (integer_zerop (@1))
4877 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4878 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4880 /* If @1 is negative we swap the sense of the comparison. */
4881 (if (tree_int_cst_sgn (@1) < 0)
4885 /* For integral types with undefined overflow fold
4886 x * C1 == C2 into x == C2 / C1 or false.
4887 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4891 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4892 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4893 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4894 && wi::to_wide (@1) != 0)
4895 (with { widest_int quot; }
4896 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4897 TYPE_SIGN (TREE_TYPE (@0)), "))
4898 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4899 { constant_boolean_node (cmp == NE_EXPR, type); }))
4900 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4901 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4902 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
4905 tree itype = TREE_TYPE (@0);
4906 int p = TYPE_PRECISION (itype);
4907 wide_int m = wi::one (p + 1) << p;
4908 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4909 wide_int i = wide_int::from (wi::mod_inv (a, m),
4910 p, TYPE_SIGN (itype));
4911 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4914 /* Simplify comparison of something with itself. For IEEE
4915 floating-point, we can only do some of these simplifications. */
4919 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4920 || ! tree_expr_maybe_nan_p (@0))
4921 { constant_boolean_node (true, type); }
4923 /* With -ftrapping-math conversion to EQ loses an exception. */
4924 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
4925 || ! flag_trapping_math))
4931 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4932 || ! tree_expr_maybe_nan_p (@0))
4933 { constant_boolean_node (false, type); })))
4934 (for cmp (unle unge uneq)
4937 { constant_boolean_node (true, type); }))
4938 (for cmp (unlt ungt)
4944 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
4945 { constant_boolean_node (false, type); }))
4947 /* x == ~x -> false */
4948 /* x != ~x -> true */
4951 (cmp:c @0 (bit_not @0))
4952 { constant_boolean_node (cmp == NE_EXPR, type); }))
4954 /* Fold ~X op ~Y as Y op X. */
4955 (for cmp (simple_comparison)
4957 (cmp (bit_not@2 @0) (bit_not@3 @1))
4958 (if (single_use (@2) && single_use (@3))
4961 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
4962 (for cmp (simple_comparison)
4963 scmp (swapped_simple_comparison)
4965 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4966 (if (single_use (@2)
4967 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4968 (scmp @0 (bit_not @1)))))
4970 (for cmp (simple_comparison)
4971 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
4973 (cmp (convert@2 @0) (convert? @1))
4974 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4975 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4976 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4977 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4978 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4981 tree type1 = TREE_TYPE (@1);
4982 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4984 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4985 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4986 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4987 type1 = float_type_node;
4988 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4989 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4990 type1 = double_type_node;
4993 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4994 ? TREE_TYPE (@0) : type1);
4996 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4997 (cmp (convert:newtype @0) (convert:newtype @1))))))
5001 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
5003 /* a CMP (-0) -> a CMP 0 */
5004 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
5005 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
5006 /* (-0) CMP b -> 0 CMP b. */
5007 (if (TREE_CODE (@0) == REAL_CST
5008 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
5009 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
5010 /* x != NaN is always true, other ops are always false. */
5011 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5012 && !tree_expr_signaling_nan_p (@1)
5013 && !tree_expr_maybe_signaling_nan_p (@0))
5014 { constant_boolean_node (cmp == NE_EXPR, type); })
5015 /* NaN != y is always true, other ops are always false. */
5016 (if (TREE_CODE (@0) == REAL_CST
5017 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
5018 && !tree_expr_signaling_nan_p (@0)
5019 && !tree_expr_signaling_nan_p (@1))
5020 { constant_boolean_node (cmp == NE_EXPR, type); })
5021 /* Fold comparisons against infinity. */
5022 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
5023 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
5026 REAL_VALUE_TYPE max;
5027 enum tree_code code = cmp;
5028 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
5030 code = swap_tree_comparison (code);
5033 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
5034 (if (code == GT_EXPR
5035 && !(HONOR_NANS (@0) && flag_trapping_math))
5036 { constant_boolean_node (false, type); })
5037 (if (code == LE_EXPR)
5038 /* x <= +Inf is always true, if we don't care about NaNs. */
5039 (if (! HONOR_NANS (@0))
5040 { constant_boolean_node (true, type); }
5041 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
5042 an "invalid" exception. */
5043 (if (!flag_trapping_math)
5045 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
5046 for == this introduces an exception for x a NaN. */
5047 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
5049 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5051 (lt @0 { build_real (TREE_TYPE (@0), max); })
5052 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
5053 /* x < +Inf is always equal to x <= DBL_MAX. */
5054 (if (code == LT_EXPR)
5055 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5057 (ge @0 { build_real (TREE_TYPE (@0), max); })
5058 (le @0 { build_real (TREE_TYPE (@0), max); }))))
5059 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
5060 an exception for x a NaN so use an unordered comparison. */
5061 (if (code == NE_EXPR)
5062 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5063 (if (! HONOR_NANS (@0))
5065 (ge @0 { build_real (TREE_TYPE (@0), max); })
5066 (le @0 { build_real (TREE_TYPE (@0), max); }))
5068 (unge @0 { build_real (TREE_TYPE (@0), max); })
5069 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
5071 /* If this is a comparison of a real constant with a PLUS_EXPR
5072 or a MINUS_EXPR of a real constant, we can convert it into a
5073 comparison with a revised real constant as long as no overflow
5074 occurs when unsafe_math_optimizations are enabled. */
5075 (if (flag_unsafe_math_optimizations)
5076 (for op (plus minus)
5078 (cmp (op @0 REAL_CST@1) REAL_CST@2)
5081 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
5082 TREE_TYPE (@1), @2, @1);
5084 (if (tem && !TREE_OVERFLOW (tem))
5085 (cmp @0 { tem; }))))))
5087 /* Likewise, we can simplify a comparison of a real constant with
5088 a MINUS_EXPR whose first operand is also a real constant, i.e.
5089 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
5090 floating-point types only if -fassociative-math is set. */
5091 (if (flag_associative_math)
5093 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
5094 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
5095 (if (tem && !TREE_OVERFLOW (tem))
5096 (cmp { tem; } @1)))))
5098 /* Fold comparisons against built-in math functions. */
5099 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
5102 (cmp (sq @0) REAL_CST@1)
5104 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
5106 /* sqrt(x) < y is always false, if y is negative. */
5107 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
5108 { constant_boolean_node (false, type); })
5109 /* sqrt(x) > y is always true, if y is negative and we
5110 don't care about NaNs, i.e. negative values of x. */
5111 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
5112 { constant_boolean_node (true, type); })
5113 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5114 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
5115 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
5117 /* sqrt(x) < 0 is always false. */
5118 (if (cmp == LT_EXPR)
5119 { constant_boolean_node (false, type); })
5120 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
5121 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
5122 { constant_boolean_node (true, type); })
5123 /* sqrt(x) <= 0 -> x == 0. */
5124 (if (cmp == LE_EXPR)
5126 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
5127 == or !=. In the last case:
5129 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
5131 if x is negative or NaN. Due to -funsafe-math-optimizations,
5132 the results for other x follow from natural arithmetic. */
5134 (if ((cmp == LT_EXPR
5138 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5139 /* Give up for -frounding-math. */
5140 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
5144 enum tree_code ncmp = cmp;
5145 const real_format *fmt
5146 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
5147 real_arithmetic (&c2, MULT_EXPR,
5148 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
5149 real_convert (&c2, fmt, &c2);
5150 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
5151 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
5152 if (!REAL_VALUE_ISINF (c2))
5154 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5155 build_real (TREE_TYPE (@0), c2));
5156 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5158 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
5159 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
5160 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
5161 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
5162 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
5163 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
5166 /* With rounding to even, sqrt of up to 3 different values
5167 gives the same normal result, so in some cases c2 needs
5169 REAL_VALUE_TYPE c2alt, tow;
5170 if (cmp == LT_EXPR || cmp == GE_EXPR)
5174 real_nextafter (&c2alt, fmt, &c2, &tow);
5175 real_convert (&c2alt, fmt, &c2alt);
5176 if (REAL_VALUE_ISINF (c2alt))
5180 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5181 build_real (TREE_TYPE (@0), c2alt));
5182 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5184 else if (real_equal (&TREE_REAL_CST (c3),
5185 &TREE_REAL_CST (@1)))
5191 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5192 (if (REAL_VALUE_ISINF (c2))
5193 /* sqrt(x) > y is x == +Inf, when y is very large. */
5194 (if (HONOR_INFINITIES (@0))
5195 (eq @0 { build_real (TREE_TYPE (@0), c2); })
5196 { constant_boolean_node (false, type); })
5197 /* sqrt(x) > c is the same as x > c*c. */
5198 (if (ncmp != ERROR_MARK)
5199 (if (ncmp == GE_EXPR)
5200 (ge @0 { build_real (TREE_TYPE (@0), c2); })
5201 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
5202 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
5203 (if (REAL_VALUE_ISINF (c2))
5205 /* sqrt(x) < y is always true, when y is a very large
5206 value and we don't care about NaNs or Infinities. */
5207 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
5208 { constant_boolean_node (true, type); })
5209 /* sqrt(x) < y is x != +Inf when y is very large and we
5210 don't care about NaNs. */
5211 (if (! HONOR_NANS (@0))
5212 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
5213 /* sqrt(x) < y is x >= 0 when y is very large and we
5214 don't care about Infinities. */
5215 (if (! HONOR_INFINITIES (@0))
5216 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
5217 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5220 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5221 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5222 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5223 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5224 (if (ncmp == LT_EXPR)
5225 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5226 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5227 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5228 (if (ncmp != ERROR_MARK && GENERIC)
5229 (if (ncmp == LT_EXPR)
5231 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5232 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5234 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5235 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5236 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5238 (cmp (sq @0) (sq @1))
5239 (if (! HONOR_NANS (@0))
5242 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
5243 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5244 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5246 (cmp (float@0 @1) (float @2))
5247 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5248 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5251 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5252 tree type1 = TREE_TYPE (@1);
5253 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5254 tree type2 = TREE_TYPE (@2);
5255 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5257 (if (fmt.can_represent_integral_type_p (type1)
5258 && fmt.can_represent_integral_type_p (type2))
5259 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5260 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5261 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5262 && type1_signed_p >= type2_signed_p)
5263 (icmp @1 (convert @2))
5264 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5265 && type1_signed_p <= type2_signed_p)
5266 (icmp (convert:type2 @1) @2)
5267 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5268 && type1_signed_p == type2_signed_p)
5269 (icmp @1 @2))))))))))
5271 /* Optimize various special cases of (FTYPE) N CMP CST. */
5272 (for cmp (lt le eq ne ge gt)
5273 icmp (le le eq ne ge ge)
5275 (cmp (float @0) REAL_CST@1)
5276 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5277 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5280 tree itype = TREE_TYPE (@0);
5281 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5282 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5283 /* Be careful to preserve any potential exceptions due to
5284 NaNs. qNaNs are ok in == or != context.
5285 TODO: relax under -fno-trapping-math or
5286 -fno-signaling-nans. */
5288 = real_isnan (cst) && (cst->signalling
5289 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5291 /* TODO: allow non-fitting itype and SNaNs when
5292 -fno-trapping-math. */
5293 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5296 signop isign = TYPE_SIGN (itype);
5297 REAL_VALUE_TYPE imin, imax;
5298 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5299 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5301 REAL_VALUE_TYPE icst;
5302 if (cmp == GT_EXPR || cmp == GE_EXPR)
5303 real_ceil (&icst, fmt, cst);
5304 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5305 real_floor (&icst, fmt, cst);
5307 real_trunc (&icst, fmt, cst);
5309 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5311 bool overflow_p = false;
5313 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5316 /* Optimize cases when CST is outside of ITYPE's range. */
5317 (if (real_compare (LT_EXPR, cst, &imin))
5318 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5320 (if (real_compare (GT_EXPR, cst, &imax))
5321 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5323 /* Remove cast if CST is an integer representable by ITYPE. */
5325 (cmp @0 { gcc_assert (!overflow_p);
5326 wide_int_to_tree (itype, icst_val); })
5328 /* When CST is fractional, optimize
5329 (FTYPE) N == CST -> 0
5330 (FTYPE) N != CST -> 1. */
5331 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5332 { constant_boolean_node (cmp == NE_EXPR, type); })
5333 /* Otherwise replace with sensible integer constant. */
5336 gcc_checking_assert (!overflow_p);
5338 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5340 /* Fold A /[ex] B CMP C to A CMP B * C. */
5343 (cmp (exact_div @0 @1) INTEGER_CST@2)
5344 (if (!integer_zerop (@1))
5345 (if (wi::to_wide (@2) == 0)
5347 (if (TREE_CODE (@1) == INTEGER_CST)
5350 wi::overflow_type ovf;
5351 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5352 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5355 { constant_boolean_node (cmp == NE_EXPR, type); }
5356 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5357 (for cmp (lt le gt ge)
5359 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5360 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5363 wi::overflow_type ovf;
5364 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5365 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5368 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5369 TYPE_SIGN (TREE_TYPE (@2)))
5370 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5371 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5373 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5375 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5376 For large C (more than min/B+2^size), this is also true, with the
5377 multiplication computed modulo 2^size.
5378 For intermediate C, this just tests the sign of A. */
5379 (for cmp (lt le gt ge)
5382 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5383 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5384 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5385 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5388 tree utype = TREE_TYPE (@2);
5389 wide_int denom = wi::to_wide (@1);
5390 wide_int right = wi::to_wide (@2);
5391 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5392 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5393 bool small = wi::leu_p (right, smax);
5394 bool large = wi::geu_p (right, smin);
5396 (if (small || large)
5397 (cmp (convert:utype @0) (mult @2 (convert @1)))
5398 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5400 /* Unordered tests if either argument is a NaN. */
5402 (bit_ior (unordered @0 @0) (unordered @1 @1))
5403 (if (types_match (@0, @1))
5406 (bit_and (ordered @0 @0) (ordered @1 @1))
5407 (if (types_match (@0, @1))
5410 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5413 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5416 /* Simple range test simplifications. */
5417 /* A < B || A >= B -> true. */
5418 (for test1 (lt le le le ne ge)
5419 test2 (ge gt ge ne eq ne)
5421 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5422 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5423 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5424 { constant_boolean_node (true, type); })))
5425 /* A < B && A >= B -> false. */
5426 (for test1 (lt lt lt le ne eq)
5427 test2 (ge gt eq gt eq gt)
5429 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5431 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5432 { constant_boolean_node (false, type); })))
5434 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5435 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5437 Note that comparisons
5438 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5439 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5440 will be canonicalized to above so there's no need to
5447 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5448 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5451 tree ty = TREE_TYPE (@0);
5452 unsigned prec = TYPE_PRECISION (ty);
5453 wide_int mask = wi::to_wide (@2, prec);
5454 wide_int rhs = wi::to_wide (@3, prec);
5455 signop sgn = TYPE_SIGN (ty);
5457 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5458 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5459 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5460 { build_zero_cst (ty); }))))))
5462 /* -A CMP -B -> B CMP A. */
5463 (for cmp (tcc_comparison)
5464 scmp (swapped_tcc_comparison)
5466 (cmp (negate @0) (negate @1))
5467 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5468 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5469 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5472 (cmp (negate @0) CONSTANT_CLASS_P@1)
5473 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5474 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5476 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5477 (if (tem && !TREE_OVERFLOW (tem))
5478 (scmp @0 { tem; }))))))
5480 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5483 (op (abs @0) zerop@1)
5486 /* From fold_sign_changed_comparison and fold_widened_comparison.
5487 FIXME: the lack of symmetry is disturbing. */
5488 (for cmp (simple_comparison)
5490 (cmp (convert@0 @00) (convert?@1 @10))
5491 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5492 /* Disable this optimization if we're casting a function pointer
5493 type on targets that require function pointer canonicalization. */
5494 && !(targetm.have_canonicalize_funcptr_for_compare ()
5495 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5496 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5497 || (POINTER_TYPE_P (TREE_TYPE (@10))
5498 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5500 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5501 && (TREE_CODE (@10) == INTEGER_CST
5503 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5506 && !POINTER_TYPE_P (TREE_TYPE (@00)))
5507 /* ??? The special-casing of INTEGER_CST conversion was in the original
5508 code and here to avoid a spurious overflow flag on the resulting
5509 constant which fold_convert produces. */
5510 (if (TREE_CODE (@1) == INTEGER_CST)
5511 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5512 TREE_OVERFLOW (@1)); })
5513 (cmp @00 (convert @1)))
5515 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5516 /* If possible, express the comparison in the shorter mode. */
5517 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5518 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5519 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5520 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5521 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5522 || ((TYPE_PRECISION (TREE_TYPE (@00))
5523 >= TYPE_PRECISION (TREE_TYPE (@10)))
5524 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5525 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5526 || (TREE_CODE (@10) == INTEGER_CST
5527 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5528 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5529 (cmp @00 (convert @10))
5530 (if (TREE_CODE (@10) == INTEGER_CST
5531 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5532 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5535 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5536 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5537 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5538 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5540 (if (above || below)
5541 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5542 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5543 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5544 { constant_boolean_node (above ? true : false, type); }
5545 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5546 { constant_boolean_node (above ? false : true, type); }))))))))))))
5550 /* SSA names are canonicalized to 2nd place. */
5551 (cmp addr@0 SSA_NAME@1)
5553 { poly_int64 off; tree base; }
5554 /* A local variable can never be pointed to by
5555 the default SSA name of an incoming parameter. */
5556 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5557 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5558 && (base = get_base_address (TREE_OPERAND (@0, 0)))
5559 && TREE_CODE (base) == VAR_DECL
5560 && auto_var_in_fn_p (base, current_function_decl))
5561 (if (cmp == NE_EXPR)
5562 { constant_boolean_node (true, type); }
5563 { constant_boolean_node (false, type); })
5564 /* If the address is based on @1 decide using the offset. */
5565 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5566 && TREE_CODE (base) == MEM_REF
5567 && TREE_OPERAND (base, 0) == @1)
5568 (with { off += mem_ref_offset (base).force_shwi (); }
5569 (if (known_ne (off, 0))
5570 { constant_boolean_node (cmp == NE_EXPR, type); }
5571 (if (known_eq (off, 0))
5572 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5574 /* Equality compare simplifications from fold_binary */
5577 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5578 Similarly for NE_EXPR. */
5580 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5581 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5582 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5583 { constant_boolean_node (cmp == NE_EXPR, type); }))
5585 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5587 (cmp (bit_xor @0 @1) integer_zerop)
5590 /* (X ^ Y) == Y becomes X == 0.
5591 Likewise (X ^ Y) == X becomes Y == 0. */
5593 (cmp:c (bit_xor:c @0 @1) @0)
5594 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5596 /* (X & Y) == X becomes (X & ~Y) == 0. */
5598 (cmp:c (bit_and:c @0 @1) @0)
5599 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5601 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5602 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5603 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5604 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5605 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5606 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5607 && !wi::neg_p (wi::to_wide (@1)))
5608 (cmp (bit_and @0 (convert (bit_not @1)))
5609 { build_zero_cst (TREE_TYPE (@0)); })))
5611 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5613 (cmp:c (bit_ior:c @0 @1) @1)
5614 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5616 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5618 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5619 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5620 (cmp @0 (bit_xor @1 (convert @2)))))
5623 (cmp (convert? addr@0) integer_zerop)
5624 (if (tree_single_nonzero_warnv_p (@0, NULL))
5625 { constant_boolean_node (cmp == NE_EXPR, type); }))
5627 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5629 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5630 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5632 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5633 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5634 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5635 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5640 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5641 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5642 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5643 && types_match (@0, @1))
5644 (ncmp (bit_xor @0 @1) @2)))))
5645 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5646 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5650 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5651 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5652 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5653 && types_match (@0, @1))
5654 (ncmp (bit_xor @0 @1) @2))))
5656 /* If we have (A & C) == C where C is a power of 2, convert this into
5657 (A & C) != 0. Similarly for NE_EXPR. */
5661 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5662 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5664 /* From fold_binary_op_with_conditional_arg handle the case of
5665 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
5666 compares simplify. */
5667 (for cmp (simple_comparison)
5669 (cmp:c (cond @0 @1 @2) @3)
5670 /* Do not move possibly trapping operations into the conditional as this
5671 pessimizes code and causes gimplification issues when applied late. */
5672 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
5673 || operation_could_trap_p (cmp, true, false, @3))
5674 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
5677 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5678 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5680 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5681 (if (INTEGRAL_TYPE_P (type)
5682 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5683 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5684 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5687 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5689 (if (cmp == LT_EXPR)
5690 (bit_xor (convert (rshift @0 {shifter;})) @1)
5691 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5692 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5693 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5695 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5696 (if (INTEGRAL_TYPE_P (type)
5697 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5698 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5699 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5702 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5704 (if (cmp == GE_EXPR)
5705 (bit_xor (convert (rshift @0 {shifter;})) @1)
5706 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5708 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5709 convert this into a shift followed by ANDing with D. */
5712 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5713 INTEGER_CST@2 integer_zerop)
5714 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5716 int shift = (wi::exact_log2 (wi::to_wide (@2))
5717 - wi::exact_log2 (wi::to_wide (@1)));
5721 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5723 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5726 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5727 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5731 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5732 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5733 && type_has_mode_precision_p (TREE_TYPE (@0))
5734 && element_precision (@2) >= element_precision (@0)
5735 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5736 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5737 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5739 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
5740 this into a right shift or sign extension followed by ANDing with C. */
5743 (lt @0 integer_zerop)
5744 INTEGER_CST@1 integer_zerop)
5745 (if (integer_pow2p (@1)
5746 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5748 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5752 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5754 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5755 sign extension followed by AND with C will achieve the effect. */
5756 (bit_and (convert @0) @1)))))
5758 /* When the addresses are not directly of decls compare base and offset.
5759 This implements some remaining parts of fold_comparison address
5760 comparisons but still no complete part of it. Still it is good
5761 enough to make fold_stmt not regress when not dispatching to fold_binary. */
5762 (for cmp (simple_comparison)
5764 (cmp (convert1?@2 addr@0) (convert2? addr@1))
5767 poly_int64 off0, off1;
5769 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5770 off0, off1, GENERIC);
5774 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5775 { constant_boolean_node (known_eq (off0, off1), type); })
5776 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5777 { constant_boolean_node (known_ne (off0, off1), type); })
5778 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5779 { constant_boolean_node (known_lt (off0, off1), type); })
5780 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5781 { constant_boolean_node (known_le (off0, off1), type); })
5782 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5783 { constant_boolean_node (known_ge (off0, off1), type); })
5784 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5785 { constant_boolean_node (known_gt (off0, off1), type); }))
5788 (if (cmp == EQ_EXPR)
5789 { constant_boolean_node (false, type); })
5790 (if (cmp == NE_EXPR)
5791 { constant_boolean_node (true, type); })))))))
5793 /* Simplify pointer equality compares using PTA. */
5797 (if (POINTER_TYPE_P (TREE_TYPE (@0))
5798 && ptrs_compare_unequal (@0, @1))
5799 { constant_boolean_node (neeq != EQ_EXPR, type); })))
5801 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5802 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5803 Disable the transform if either operand is pointer to function.
5804 This broke pr22051-2.c for arm where function pointer
5805 canonicalizaion is not wanted. */
5809 (cmp (convert @0) INTEGER_CST@1)
5810 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5811 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5812 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5813 /* Don't perform this optimization in GENERIC if @0 has reference
5814 type when sanitizing. See PR101210. */
5816 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5817 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5818 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5819 && POINTER_TYPE_P (TREE_TYPE (@1))
5820 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5821 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5822 (cmp @0 (convert @1)))))
5824 /* Non-equality compare simplifications from fold_binary */
5825 (for cmp (lt gt le ge)
5826 /* Comparisons with the highest or lowest possible integer of
5827 the specified precision will have known values. */
5829 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5830 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5831 || POINTER_TYPE_P (TREE_TYPE (@1))
5832 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5833 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5836 tree cst = uniform_integer_cst_p (@1);
5837 tree arg1_type = TREE_TYPE (cst);
5838 unsigned int prec = TYPE_PRECISION (arg1_type);
5839 wide_int max = wi::max_value (arg1_type);
5840 wide_int signed_max = wi::max_value (prec, SIGNED);
5841 wide_int min = wi::min_value (arg1_type);
5844 (if (wi::to_wide (cst) == max)
5846 (if (cmp == GT_EXPR)
5847 { constant_boolean_node (false, type); })
5848 (if (cmp == GE_EXPR)
5850 (if (cmp == LE_EXPR)
5851 { constant_boolean_node (true, type); })
5852 (if (cmp == LT_EXPR)
5854 (if (wi::to_wide (cst) == min)
5856 (if (cmp == LT_EXPR)
5857 { constant_boolean_node (false, type); })
5858 (if (cmp == LE_EXPR)
5860 (if (cmp == GE_EXPR)
5861 { constant_boolean_node (true, type); })
5862 (if (cmp == GT_EXPR)
5864 (if (wi::to_wide (cst) == max - 1)
5866 (if (cmp == GT_EXPR)
5867 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5868 wide_int_to_tree (TREE_TYPE (cst),
5871 (if (cmp == LE_EXPR)
5872 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5873 wide_int_to_tree (TREE_TYPE (cst),
5876 (if (wi::to_wide (cst) == min + 1)
5878 (if (cmp == GE_EXPR)
5879 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5880 wide_int_to_tree (TREE_TYPE (cst),
5883 (if (cmp == LT_EXPR)
5884 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5885 wide_int_to_tree (TREE_TYPE (cst),
5888 (if (wi::to_wide (cst) == signed_max
5889 && TYPE_UNSIGNED (arg1_type)
5890 /* We will flip the signedness of the comparison operator
5891 associated with the mode of @1, so the sign bit is
5892 specified by this mode. Check that @1 is the signed
5893 max associated with this sign bit. */
5894 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5895 /* signed_type does not work on pointer types. */
5896 && INTEGRAL_TYPE_P (arg1_type))
5897 /* The following case also applies to X < signed_max+1
5898 and X >= signed_max+1 because previous transformations. */
5899 (if (cmp == LE_EXPR || cmp == GT_EXPR)
5900 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5902 (if (cst == @1 && cmp == LE_EXPR)
5903 (ge (convert:st @0) { build_zero_cst (st); }))
5904 (if (cst == @1 && cmp == GT_EXPR)
5905 (lt (convert:st @0) { build_zero_cst (st); }))
5906 (if (cmp == LE_EXPR)
5907 (ge (view_convert:st @0) { build_zero_cst (st); }))
5908 (if (cmp == GT_EXPR)
5909 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5911 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5912 /* If the second operand is NaN, the result is constant. */
5915 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5916 && (cmp != LTGT_EXPR || ! flag_trapping_math))
5917 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5918 ? false : true, type); })))
5920 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
5924 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5925 { constant_boolean_node (true, type); })
5926 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5927 { constant_boolean_node (false, type); })))
5929 /* Fold ORDERED if either operand must be NaN, or neither can be. */
5933 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5934 { constant_boolean_node (false, type); })
5935 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5936 { constant_boolean_node (true, type); })))
5938 /* bool_var != 0 becomes bool_var. */
5940 (ne @0 integer_zerop)
5941 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5942 && types_match (type, TREE_TYPE (@0)))
5944 /* bool_var == 1 becomes bool_var. */
5946 (eq @0 integer_onep)
5947 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5948 && types_match (type, TREE_TYPE (@0)))
5951 bool_var == 0 becomes !bool_var or
5952 bool_var != 1 becomes !bool_var
5953 here because that only is good in assignment context as long
5954 as we require a tcc_comparison in GIMPLE_CONDs where we'd
5955 replace if (x == 0) with tem = ~x; if (tem != 0) which is
5956 clearly less optimal and which we'll transform again in forwprop. */
5958 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
5959 where ~Y + 1 == pow2 and Z = ~Y. */
5960 (for cst (VECTOR_CST INTEGER_CST)
5964 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
5965 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
5966 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
5967 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
5969 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5970 (icmp (view_convert:utype @0) { csts; }))))))))
5972 /* When one argument is a constant, overflow detection can be simplified.
5973 Currently restricted to single use so as not to interfere too much with
5974 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
5975 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
5976 (for cmp (lt le ge gt)
5979 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5980 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5981 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5982 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5983 && wi::to_wide (@1) != 0
5986 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5987 signop sign = TYPE_SIGN (TREE_TYPE (@0));
5989 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5990 wi::max_value (prec, sign)
5991 - wi::to_wide (@1)); })))))
5993 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5994 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
5995 expects the long form, so we restrict the transformation for now. */
5998 (cmp:c (minus@2 @0 @1) @0)
5999 (if (single_use (@2)
6000 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6001 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6004 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
6007 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
6008 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6009 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6012 /* Testing for overflow is unnecessary if we already know the result. */
6017 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
6018 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6019 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6020 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6025 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
6026 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6027 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6028 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6030 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
6031 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
6035 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
6036 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
6037 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6038 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6040 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
6041 is at least twice as wide as type of A and B, simplify to
6042 __builtin_mul_overflow (A, B, <unused>). */
6045 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
6047 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6048 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6049 && TYPE_UNSIGNED (TREE_TYPE (@0))
6050 && (TYPE_PRECISION (TREE_TYPE (@3))
6051 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
6052 && tree_fits_uhwi_p (@2)
6053 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
6054 && types_match (@0, @1)
6055 && type_has_mode_precision_p (TREE_TYPE (@0))
6056 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
6057 != CODE_FOR_nothing))
6058 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6059 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6061 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
6062 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
6064 (ovf (convert@2 @0) @1)
6065 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6066 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6067 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6068 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6071 (ovf @1 (convert@2 @0))
6072 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6073 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6074 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6075 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6078 /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
6079 are unsigned to x > (umax / cst). Similarly for signed type, but
6080 in that case it needs to be outside of a range. */
6082 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
6083 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6084 && TYPE_MAX_VALUE (TREE_TYPE (@0))
6085 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
6086 && int_fits_type_p (@1, TREE_TYPE (@0)))
6087 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
6088 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
6089 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
6090 (if (integer_minus_onep (@1))
6091 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
6094 tree div = fold_convert (TREE_TYPE (@0), @1);
6095 tree lo = int_const_binop (TRUNC_DIV_EXPR,
6096 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
6097 tree hi = int_const_binop (TRUNC_DIV_EXPR,
6098 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
6099 tree etype = range_check_type (TREE_TYPE (@0));
6102 if (wi::neg_p (wi::to_wide (div)))
6104 lo = fold_convert (etype, lo);
6105 hi = fold_convert (etype, hi);
6106 hi = int_const_binop (MINUS_EXPR, hi, lo);
6110 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
6112 /* Simplification of math builtins. These rules must all be optimizations
6113 as well as IL simplifications. If there is a possibility that the new
6114 form could be a pessimization, the rule should go in the canonicalization
6115 section that follows this one.
6117 Rules can generally go in this section if they satisfy one of
6120 - the rule describes an identity
6122 - the rule replaces calls with something as simple as addition or
6125 - the rule contains unary calls only and simplifies the surrounding
6126 arithmetic. (The idea here is to exclude non-unary calls in which
6127 one operand is constant and in which the call is known to be cheap
6128 when the operand has that value.) */
6130 (if (flag_unsafe_math_optimizations)
6131 /* Simplify sqrt(x) * sqrt(x) -> x. */
6133 (mult (SQRT_ALL@1 @0) @1)
6134 (if (!tree_expr_maybe_signaling_nan_p (@0))
6137 (for op (plus minus)
6138 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
6142 (rdiv (op @0 @2) @1)))
6144 (for cmp (lt le gt ge)
6145 neg_cmp (gt ge lt le)
6146 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
6148 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
6150 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
6152 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
6153 || (real_zerop (tem) && !real_zerop (@1))))
6155 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
6157 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
6158 (neg_cmp @0 { tem; })))))))
6160 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
6161 (for root (SQRT CBRT)
6163 (mult (root:s @0) (root:s @1))
6164 (root (mult @0 @1))))
6166 /* Simplify expN(x) * expN(y) -> expN(x+y). */
6167 (for exps (EXP EXP2 EXP10 POW10)
6169 (mult (exps:s @0) (exps:s @1))
6170 (exps (plus @0 @1))))
6172 /* Simplify a/root(b/c) into a*root(c/b). */
6173 (for root (SQRT CBRT)
6175 (rdiv @0 (root:s (rdiv:s @1 @2)))
6176 (mult @0 (root (rdiv @2 @1)))))
6178 /* Simplify x/expN(y) into x*expN(-y). */
6179 (for exps (EXP EXP2 EXP10 POW10)
6181 (rdiv @0 (exps:s @1))
6182 (mult @0 (exps (negate @1)))))
6184 (for logs (LOG LOG2 LOG10 LOG10)
6185 exps (EXP EXP2 EXP10 POW10)
6186 /* logN(expN(x)) -> x. */
6190 /* expN(logN(x)) -> x. */
6195 /* Optimize logN(func()) for various exponential functions. We
6196 want to determine the value "x" and the power "exponent" in
6197 order to transform logN(x**exponent) into exponent*logN(x). */
6198 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
6199 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
6202 (if (SCALAR_FLOAT_TYPE_P (type))
6208 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
6209 x = build_real_truncate (type, dconst_e ());
6212 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
6213 x = build_real (type, dconst2);
6217 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
6219 REAL_VALUE_TYPE dconst10;
6220 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
6221 x = build_real (type, dconst10);
6228 (mult (logs { x; }) @0)))))
6236 (if (SCALAR_FLOAT_TYPE_P (type))
6242 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
6243 x = build_real (type, dconsthalf);
6246 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
6247 x = build_real_truncate (type, dconst_third ());
6253 (mult { x; } (logs @0))))))
6255 /* logN(pow(x,exponent)) -> exponent*logN(x). */
6256 (for logs (LOG LOG2 LOG10)
6260 (mult @1 (logs @0))))
6262 /* pow(C,x) -> exp(log(C)*x) if C > 0,
6263 or if C is a positive power of 2,
6264 pow(C,x) -> exp2(log2(C)*x). */
6272 (pows REAL_CST@0 @1)
6273 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6274 && real_isfinite (TREE_REAL_CST_PTR (@0))
6275 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6276 the use_exp2 case until after vectorization. It seems actually
6277 beneficial for all constants to postpone this until later,
6278 because exp(log(C)*x), while faster, will have worse precision
6279 and if x folds into a constant too, that is unnecessary
6281 && canonicalize_math_after_vectorization_p ())
6283 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6284 bool use_exp2 = false;
6285 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6286 && value->cl == rvc_normal)
6288 REAL_VALUE_TYPE frac_rvt = *value;
6289 SET_REAL_EXP (&frac_rvt, 1);
6290 if (real_equal (&frac_rvt, &dconst1))
6295 (if (optimize_pow_to_exp (@0, @1))
6296 (exps (mult (logs @0) @1)))
6297 (exp2s (mult (log2s @0) @1)))))))
6300 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6302 exps (EXP EXP2 EXP10 POW10)
6303 logs (LOG LOG2 LOG10 LOG10)
6305 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6306 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6307 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6308 (exps (plus (mult (logs @0) @1) @2)))))
6313 exps (EXP EXP2 EXP10 POW10)
6314 /* sqrt(expN(x)) -> expN(x*0.5). */
6317 (exps (mult @0 { build_real (type, dconsthalf); })))
6318 /* cbrt(expN(x)) -> expN(x/3). */
6321 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6322 /* pow(expN(x), y) -> expN(x*y). */
6325 (exps (mult @0 @1))))
6327 /* tan(atan(x)) -> x. */
6334 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6338 copysigns (COPYSIGN)
6343 REAL_VALUE_TYPE r_cst;
6344 build_sinatan_real (&r_cst, type);
6345 tree t_cst = build_real (type, r_cst);
6346 tree t_one = build_one_cst (type);
6348 (if (SCALAR_FLOAT_TYPE_P (type))
6349 (cond (lt (abs @0) { t_cst; })
6350 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6351 (copysigns { t_one; } @0))))))
6353 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6357 copysigns (COPYSIGN)
6362 REAL_VALUE_TYPE r_cst;
6363 build_sinatan_real (&r_cst, type);
6364 tree t_cst = build_real (type, r_cst);
6365 tree t_one = build_one_cst (type);
6366 tree t_zero = build_zero_cst (type);
6368 (if (SCALAR_FLOAT_TYPE_P (type))
6369 (cond (lt (abs @0) { t_cst; })
6370 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6371 (copysigns { t_zero; } @0))))))
6373 (if (!flag_errno_math)
6374 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6379 (sinhs (atanhs:s @0))
6380 (with { tree t_one = build_one_cst (type); }
6381 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6383 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6388 (coshs (atanhs:s @0))
6389 (with { tree t_one = build_one_cst (type); }
6390 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6392 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6394 (CABS (complex:C @0 real_zerop@1))
6397 /* trunc(trunc(x)) -> trunc(x), etc. */
6398 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6402 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6403 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6405 (fns integer_valued_real_p@0)
6408 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6410 (HYPOT:c @0 real_zerop@1)
6413 /* pow(1,x) -> 1. */
6415 (POW real_onep@0 @1)
6419 /* copysign(x,x) -> x. */
6420 (COPYSIGN_ALL @0 @0)
6424 /* copysign(x,-x) -> -x. */
6425 (COPYSIGN_ALL @0 (negate@1 @0))
6429 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6430 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6433 (for scale (LDEXP SCALBN SCALBLN)
6434 /* ldexp(0, x) -> 0. */
6436 (scale real_zerop@0 @1)
6438 /* ldexp(x, 0) -> x. */
6440 (scale @0 integer_zerop@1)
6442 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6444 (scale REAL_CST@0 @1)
6445 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6448 /* Canonicalization of sequences of math builtins. These rules represent
6449 IL simplifications but are not necessarily optimizations.
6451 The sincos pass is responsible for picking "optimal" implementations
6452 of math builtins, which may be more complicated and can sometimes go
6453 the other way, e.g. converting pow into a sequence of sqrts.
6454 We only want to do these canonicalizations before the pass has run. */
6456 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6457 /* Simplify tan(x) * cos(x) -> sin(x). */
6459 (mult:c (TAN:s @0) (COS:s @0))
6462 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6464 (mult:c @0 (POW:s @0 REAL_CST@1))
6465 (if (!TREE_OVERFLOW (@1))
6466 (POW @0 (plus @1 { build_one_cst (type); }))))
6468 /* Simplify sin(x) / cos(x) -> tan(x). */
6470 (rdiv (SIN:s @0) (COS:s @0))
6473 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6475 (rdiv (SINH:s @0) (COSH:s @0))
6478 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6480 (rdiv (TANH:s @0) (SINH:s @0))
6481 (rdiv {build_one_cst (type);} (COSH @0)))
6483 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6485 (rdiv (COS:s @0) (SIN:s @0))
6486 (rdiv { build_one_cst (type); } (TAN @0)))
6488 /* Simplify sin(x) / tan(x) -> cos(x). */
6490 (rdiv (SIN:s @0) (TAN:s @0))
6491 (if (! HONOR_NANS (@0)
6492 && ! HONOR_INFINITIES (@0))
6495 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6497 (rdiv (TAN:s @0) (SIN:s @0))
6498 (if (! HONOR_NANS (@0)
6499 && ! HONOR_INFINITIES (@0))
6500 (rdiv { build_one_cst (type); } (COS @0))))
6502 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6504 (mult (POW:s @0 @1) (POW:s @0 @2))
6505 (POW @0 (plus @1 @2)))
6507 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6509 (mult (POW:s @0 @1) (POW:s @2 @1))
6510 (POW (mult @0 @2) @1))
6512 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6514 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6515 (POWI (mult @0 @2) @1))
6517 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6519 (rdiv (POW:s @0 REAL_CST@1) @0)
6520 (if (!TREE_OVERFLOW (@1))
6521 (POW @0 (minus @1 { build_one_cst (type); }))))
6523 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6525 (rdiv @0 (POW:s @1 @2))
6526 (mult @0 (POW @1 (negate @2))))
6531 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6534 (pows @0 { build_real (type, dconst_quarter ()); }))
6535 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6538 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6539 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6542 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6543 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6545 (cbrts (cbrts tree_expr_nonnegative_p@0))
6546 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6547 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6549 (sqrts (pows @0 @1))
6550 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6551 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6553 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6554 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6555 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6557 (pows (sqrts @0) @1)
6558 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6559 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6561 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6562 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6563 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6565 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6566 (pows @0 (mult @1 @2))))
6568 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6570 (CABS (complex @0 @0))
6571 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6573 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6576 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6578 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6583 (cexps compositional_complex@0)
6584 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6586 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6587 (mult @1 (imagpart @2)))))))
6589 (if (canonicalize_math_p ())
6590 /* floor(x) -> trunc(x) if x is nonnegative. */
6591 (for floors (FLOOR_ALL)
6594 (floors tree_expr_nonnegative_p@0)
6597 (match double_value_p
6599 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6600 (for froms (BUILT_IN_TRUNCL
6612 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6613 (if (optimize && canonicalize_math_p ())
6615 (froms (convert double_value_p@0))
6616 (convert (tos @0)))))
6618 (match float_value_p
6620 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6621 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6622 BUILT_IN_FLOORL BUILT_IN_FLOOR
6623 BUILT_IN_CEILL BUILT_IN_CEIL
6624 BUILT_IN_ROUNDL BUILT_IN_ROUND
6625 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6626 BUILT_IN_RINTL BUILT_IN_RINT)
6627 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6628 BUILT_IN_FLOORF BUILT_IN_FLOORF
6629 BUILT_IN_CEILF BUILT_IN_CEILF
6630 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6631 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6632 BUILT_IN_RINTF BUILT_IN_RINTF)
6633 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6635 (if (optimize && canonicalize_math_p ()
6636 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6638 (froms (convert float_value_p@0))
6639 (convert (tos @0)))))
6642 (match float16_value_p
6644 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6645 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6646 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6647 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6648 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6649 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6650 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6651 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6652 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6653 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6654 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6655 IFN_CEIL IFN_CEIL IFN_CEIL
6656 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6657 IFN_ROUND IFN_ROUND IFN_ROUND
6658 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6659 IFN_RINT IFN_RINT IFN_RINT
6660 IFN_SQRT IFN_SQRT IFN_SQRT)
6661 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6662 if x is a _Float16. */
6664 (convert (froms (convert float16_value_p@0)))
6666 && types_match (type, TREE_TYPE (@0))
6667 && direct_internal_fn_supported_p (as_internal_fn (tos),
6668 type, OPTIMIZE_FOR_BOTH))
6671 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6672 x,y is float value, similar for _Float16/double. */
6673 (for copysigns (COPYSIGN_ALL)
6675 (convert (copysigns (convert@2 @0) (convert @1)))
6677 && !HONOR_SNANS (@2)
6678 && types_match (type, TREE_TYPE (@0))
6679 && types_match (type, TREE_TYPE (@1))
6680 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6681 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6682 type, OPTIMIZE_FOR_BOTH))
6683 (IFN_COPYSIGN @0 @1))))
6685 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6686 tos (IFN_FMA IFN_FMA IFN_FMA)
6688 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6689 (if (flag_unsafe_math_optimizations
6691 && FLOAT_TYPE_P (type)
6692 && FLOAT_TYPE_P (TREE_TYPE (@3))
6693 && types_match (type, TREE_TYPE (@0))
6694 && types_match (type, TREE_TYPE (@1))
6695 && types_match (type, TREE_TYPE (@2))
6696 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6697 && direct_internal_fn_supported_p (as_internal_fn (tos),
6698 type, OPTIMIZE_FOR_BOTH))
6701 (for maxmin (max min)
6703 (convert (maxmin (convert@2 @0) (convert @1)))
6705 && FLOAT_TYPE_P (type)
6706 && FLOAT_TYPE_P (TREE_TYPE (@2))
6707 && types_match (type, TREE_TYPE (@0))
6708 && types_match (type, TREE_TYPE (@1))
6709 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6713 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
6714 tos (XFLOOR XCEIL XROUND XRINT)
6715 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
6716 (if (optimize && canonicalize_math_p ())
6718 (froms (convert double_value_p@0))
6721 (for froms (XFLOORL XCEILL XROUNDL XRINTL
6722 XFLOOR XCEIL XROUND XRINT)
6723 tos (XFLOORF XCEILF XROUNDF XRINTF)
6724 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6726 (if (optimize && canonicalize_math_p ())
6728 (froms (convert float_value_p@0))
6731 (if (canonicalize_math_p ())
6732 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
6733 (for floors (IFLOOR LFLOOR LLFLOOR)
6735 (floors tree_expr_nonnegative_p@0)
6738 (if (canonicalize_math_p ())
6739 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
6740 (for fns (IFLOOR LFLOOR LLFLOOR
6742 IROUND LROUND LLROUND)
6744 (fns integer_valued_real_p@0)
6746 (if (!flag_errno_math)
6747 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
6748 (for rints (IRINT LRINT LLRINT)
6750 (rints integer_valued_real_p@0)
6753 (if (canonicalize_math_p ())
6754 (for ifn (IFLOOR ICEIL IROUND IRINT)
6755 lfn (LFLOOR LCEIL LROUND LRINT)
6756 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6757 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6758 sizeof (int) == sizeof (long). */
6759 (if (TYPE_PRECISION (integer_type_node)
6760 == TYPE_PRECISION (long_integer_type_node))
6763 (lfn:long_integer_type_node @0)))
6764 /* Canonicalize llround (x) to lround (x) on LP64 targets where
6765 sizeof (long long) == sizeof (long). */
6766 (if (TYPE_PRECISION (long_long_integer_type_node)
6767 == TYPE_PRECISION (long_integer_type_node))
6770 (lfn:long_integer_type_node @0)))))
6772 /* cproj(x) -> x if we're ignoring infinities. */
6775 (if (!HONOR_INFINITIES (type))
6778 /* If the real part is inf and the imag part is known to be
6779 nonnegative, return (inf + 0i). */
6781 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6782 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6783 { build_complex_inf (type, false); }))
6785 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
6787 (CPROJ (complex @0 REAL_CST@1))
6788 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6789 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6795 (pows @0 REAL_CST@1)
6797 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6798 REAL_VALUE_TYPE tmp;
6801 /* pow(x,0) -> 1. */
6802 (if (real_equal (value, &dconst0))
6803 { build_real (type, dconst1); })
6804 /* pow(x,1) -> x. */
6805 (if (real_equal (value, &dconst1))
6807 /* pow(x,-1) -> 1/x. */
6808 (if (real_equal (value, &dconstm1))
6809 (rdiv { build_real (type, dconst1); } @0))
6810 /* pow(x,0.5) -> sqrt(x). */
6811 (if (flag_unsafe_math_optimizations
6812 && canonicalize_math_p ()
6813 && real_equal (value, &dconsthalf))
6815 /* pow(x,1/3) -> cbrt(x). */
6816 (if (flag_unsafe_math_optimizations
6817 && canonicalize_math_p ()
6818 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6819 real_equal (value, &tmp)))
6822 /* powi(1,x) -> 1. */
6824 (POWI real_onep@0 @1)
6828 (POWI @0 INTEGER_CST@1)
6830 /* powi(x,0) -> 1. */
6831 (if (wi::to_wide (@1) == 0)
6832 { build_real (type, dconst1); })
6833 /* powi(x,1) -> x. */
6834 (if (wi::to_wide (@1) == 1)
6836 /* powi(x,-1) -> 1/x. */
6837 (if (wi::to_wide (@1) == -1)
6838 (rdiv { build_real (type, dconst1); } @0))))
6840 /* Narrowing of arithmetic and logical operations.
6842 These are conceptually similar to the transformations performed for
6843 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
6844 term we want to move all that code out of the front-ends into here. */
6846 /* Convert (outertype)((innertype0)a+(innertype1)b)
6847 into ((newtype)a+(newtype)b) where newtype
6848 is the widest mode from all of these. */
6849 (for op (plus minus mult rdiv)
6851 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6852 /* If we have a narrowing conversion of an arithmetic operation where
6853 both operands are widening conversions from the same type as the outer
6854 narrowing conversion. Then convert the innermost operands to a
6855 suitable unsigned type (to avoid introducing undefined behavior),
6856 perform the operation and convert the result to the desired type. */
6857 (if (INTEGRAL_TYPE_P (type)
6860 /* We check for type compatibility between @0 and @1 below,
6861 so there's no need to check that @2/@4 are integral types. */
6862 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6863 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6864 /* The precision of the type of each operand must match the
6865 precision of the mode of each operand, similarly for the
6867 && type_has_mode_precision_p (TREE_TYPE (@1))
6868 && type_has_mode_precision_p (TREE_TYPE (@2))
6869 && type_has_mode_precision_p (type)
6870 /* The inner conversion must be a widening conversion. */
6871 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
6872 && types_match (@1, type)
6873 && (types_match (@1, @2)
6874 /* Or the second operand is const integer or converted const
6875 integer from valueize. */
6876 || poly_int_tree_p (@4)))
6877 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
6878 (op @1 (convert @2))
6879 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6880 (convert (op (convert:utype @1)
6881 (convert:utype @2)))))
6882 (if (FLOAT_TYPE_P (type)
6883 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6884 == DECIMAL_FLOAT_TYPE_P (type))
6885 (with { tree arg0 = strip_float_extensions (@1);
6886 tree arg1 = strip_float_extensions (@2);
6887 tree itype = TREE_TYPE (@0);
6888 tree ty1 = TREE_TYPE (arg0);
6889 tree ty2 = TREE_TYPE (arg1);
6890 enum tree_code code = TREE_CODE (itype); }
6891 (if (FLOAT_TYPE_P (ty1)
6892 && FLOAT_TYPE_P (ty2))
6893 (with { tree newtype = type;
6894 if (TYPE_MODE (ty1) == SDmode
6895 || TYPE_MODE (ty2) == SDmode
6896 || TYPE_MODE (type) == SDmode)
6897 newtype = dfloat32_type_node;
6898 if (TYPE_MODE (ty1) == DDmode
6899 || TYPE_MODE (ty2) == DDmode
6900 || TYPE_MODE (type) == DDmode)
6901 newtype = dfloat64_type_node;
6902 if (TYPE_MODE (ty1) == TDmode
6903 || TYPE_MODE (ty2) == TDmode
6904 || TYPE_MODE (type) == TDmode)
6905 newtype = dfloat128_type_node; }
6906 (if ((newtype == dfloat32_type_node
6907 || newtype == dfloat64_type_node
6908 || newtype == dfloat128_type_node)
6910 && types_match (newtype, type))
6911 (op (convert:newtype @1) (convert:newtype @2))
6912 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
6914 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
6916 /* Sometimes this transformation is safe (cannot
6917 change results through affecting double rounding
6918 cases) and sometimes it is not. If NEWTYPE is
6919 wider than TYPE, e.g. (float)((long double)double
6920 + (long double)double) converted to
6921 (float)(double + double), the transformation is
6922 unsafe regardless of the details of the types
6923 involved; double rounding can arise if the result
6924 of NEWTYPE arithmetic is a NEWTYPE value half way
6925 between two representable TYPE values but the
6926 exact value is sufficiently different (in the
6927 right direction) for this difference to be
6928 visible in ITYPE arithmetic. If NEWTYPE is the
6929 same as TYPE, however, the transformation may be
6930 safe depending on the types involved: it is safe
6931 if the ITYPE has strictly more than twice as many
6932 mantissa bits as TYPE, can represent infinities
6933 and NaNs if the TYPE can, and has sufficient
6934 exponent range for the product or ratio of two
6935 values representable in the TYPE to be within the
6936 range of normal values of ITYPE. */
6937 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6938 && (flag_unsafe_math_optimizations
6939 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6940 && real_can_shorten_arithmetic (TYPE_MODE (itype),
6942 && !excess_precision_type (newtype)))
6943 && !types_match (itype, newtype))
6944 (convert:type (op (convert:newtype @1)
6945 (convert:newtype @2)))
6950 /* This is another case of narrowing, specifically when there's an outer
6951 BIT_AND_EXPR which masks off bits outside the type of the innermost
6952 operands. Like the previous case we have to convert the operands
6953 to unsigned types to avoid introducing undefined behavior for the
6954 arithmetic operation. */
6955 (for op (minus plus)
6957 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6958 (if (INTEGRAL_TYPE_P (type)
6959 /* We check for type compatibility between @0 and @1 below,
6960 so there's no need to check that @1/@3 are integral types. */
6961 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6962 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6963 /* The precision of the type of each operand must match the
6964 precision of the mode of each operand, similarly for the
6966 && type_has_mode_precision_p (TREE_TYPE (@0))
6967 && type_has_mode_precision_p (TREE_TYPE (@1))
6968 && type_has_mode_precision_p (type)
6969 /* The inner conversion must be a widening conversion. */
6970 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6971 && types_match (@0, @1)
6972 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6973 <= TYPE_PRECISION (TREE_TYPE (@0)))
6974 && (wi::to_wide (@4)
6975 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6976 true, TYPE_PRECISION (type))) == 0)
6977 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6978 (with { tree ntype = TREE_TYPE (@0); }
6979 (convert (bit_and (op @0 @1) (convert:ntype @4))))
6980 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6981 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6982 (convert:utype @4))))))))
6984 /* Transform (@0 < @1 and @0 < @2) to use min,
6985 (@0 > @1 and @0 > @2) to use max */
6986 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6987 op (lt le gt ge lt le gt ge )
6988 ext (min min max max max max min min )
6990 (logic (op:cs @0 @1) (op:cs @0 @2))
6991 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6992 && TREE_CODE (@0) != INTEGER_CST)
6993 (op @0 (ext @1 @2)))))
6996 /* signbit(x) -> 0 if x is nonnegative. */
6997 (SIGNBIT tree_expr_nonnegative_p@0)
6998 { integer_zero_node; })
7001 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
7003 (if (!HONOR_SIGNED_ZEROS (@0))
7004 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
7006 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
7008 (for op (plus minus)
7011 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7012 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7013 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
7014 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
7015 && !TYPE_SATURATING (TREE_TYPE (@0)))
7016 (with { tree res = int_const_binop (rop, @2, @1); }
7017 (if (TREE_OVERFLOW (res)
7018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7019 { constant_boolean_node (cmp == NE_EXPR, type); }
7020 (if (single_use (@3))
7021 (cmp @0 { TREE_OVERFLOW (res)
7022 ? drop_tree_overflow (res) : res; }))))))))
7023 (for cmp (lt le gt ge)
7024 (for op (plus minus)
7027 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7028 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7029 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7030 (with { tree res = int_const_binop (rop, @2, @1); }
7031 (if (TREE_OVERFLOW (res))
7033 fold_overflow_warning (("assuming signed overflow does not occur "
7034 "when simplifying conditional to constant"),
7035 WARN_STRICT_OVERFLOW_CONDITIONAL);
7036 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
7037 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
7038 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
7039 TYPE_SIGN (TREE_TYPE (@1)))
7040 != (op == MINUS_EXPR);
7041 constant_boolean_node (less == ovf_high, type);
7043 (if (single_use (@3))
7046 fold_overflow_warning (("assuming signed overflow does not occur "
7047 "when changing X +- C1 cmp C2 to "
7049 WARN_STRICT_OVERFLOW_COMPARISON);
7051 (cmp @0 { res; })))))))))
7053 /* Canonicalizations of BIT_FIELD_REFs. */
7056 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
7057 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
7060 (BIT_FIELD_REF (view_convert @0) @1 @2)
7061 (BIT_FIELD_REF @0 @1 @2))
7064 (BIT_FIELD_REF @0 @1 integer_zerop)
7065 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
7069 (BIT_FIELD_REF @0 @1 @2)
7071 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
7072 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7074 (if (integer_zerop (@2))
7075 (view_convert (realpart @0)))
7076 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7077 (view_convert (imagpart @0)))))
7078 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7079 && INTEGRAL_TYPE_P (type)
7080 /* On GIMPLE this should only apply to register arguments. */
7081 && (! GIMPLE || is_gimple_reg (@0))
7082 /* A bit-field-ref that referenced the full argument can be stripped. */
7083 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
7084 && integer_zerop (@2))
7085 /* Low-parts can be reduced to integral conversions.
7086 ??? The following doesn't work for PDP endian. */
7087 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
7088 /* But only do this after vectorization. */
7089 && canonicalize_math_after_vectorization_p ()
7090 /* Don't even think about BITS_BIG_ENDIAN. */
7091 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
7092 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
7093 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
7094 ? (TYPE_PRECISION (TREE_TYPE (@0))
7095 - TYPE_PRECISION (type))
7099 /* Simplify vector extracts. */
7102 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
7103 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
7104 && tree_fits_uhwi_p (TYPE_SIZE (type))
7105 && ((tree_to_uhwi (TYPE_SIZE (type))
7106 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7107 || (VECTOR_TYPE_P (type)
7108 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
7109 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
7112 tree ctor = (TREE_CODE (@0) == SSA_NAME
7113 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7114 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
7115 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
7116 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
7117 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
7120 && (idx % width) == 0
7122 && known_le ((idx + n) / width,
7123 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
7128 /* Constructor elements can be subvectors. */
7130 if (CONSTRUCTOR_NELTS (ctor) != 0)
7132 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
7133 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
7134 k = TYPE_VECTOR_SUBPARTS (cons_elem);
7136 unsigned HOST_WIDE_INT elt, count, const_k;
7139 /* We keep an exact subset of the constructor elements. */
7140 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
7141 (if (CONSTRUCTOR_NELTS (ctor) == 0)
7142 { build_zero_cst (type); }
7144 (if (elt < CONSTRUCTOR_NELTS (ctor))
7145 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
7146 { build_zero_cst (type); })
7147 /* We don't want to emit new CTORs unless the old one goes away.
7148 ??? Eventually allow this if the CTOR ends up constant or
7150 (if (single_use (@0))
7153 vec<constructor_elt, va_gc> *vals;
7154 vec_alloc (vals, count);
7155 bool constant_p = true;
7157 for (unsigned i = 0;
7158 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
7160 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
7161 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
7162 if (!CONSTANT_CLASS_P (e))
7165 tree evtype = (types_match (TREE_TYPE (type),
7166 TREE_TYPE (TREE_TYPE (ctor)))
7168 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
7170 res = (constant_p ? build_vector_from_ctor (evtype, vals)
7171 : build_constructor (evtype, vals));
7173 (view_convert { res; }))))))
7174 /* The bitfield references a single constructor element. */
7175 (if (k.is_constant (&const_k)
7176 && idx + n <= (idx / const_k + 1) * const_k)
7178 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
7179 { build_zero_cst (type); })
7181 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
7182 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
7183 @1 { bitsize_int ((idx % const_k) * width); })))))))))
7185 /* Simplify a bit extraction from a bit insertion for the cases with
7186 the inserted element fully covering the extraction or the insertion
7187 not touching the extraction. */
7189 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
7192 unsigned HOST_WIDE_INT isize;
7193 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
7194 isize = TYPE_PRECISION (TREE_TYPE (@1));
7196 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
7199 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7200 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
7201 wi::to_wide (@ipos) + isize))
7202 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
7204 - wi::to_wide (@ipos)); }))
7205 (if (wi::geu_p (wi::to_wide (@ipos),
7206 wi::to_wide (@rpos) + wi::to_wide (@rsize))
7207 || wi::geu_p (wi::to_wide (@rpos),
7208 wi::to_wide (@ipos) + isize))
7209 (BIT_FIELD_REF @0 @rsize @rpos)))))
7211 (if (canonicalize_math_after_vectorization_p ())
7214 (fmas:c (negate @0) @1 @2)
7215 (IFN_FNMA @0 @1 @2))
7217 (fmas @0 @1 (negate @2))
7220 (fmas:c (negate @0) @1 (negate @2))
7221 (IFN_FNMS @0 @1 @2))
7223 (negate (fmas@3 @0 @1 @2))
7224 (if (single_use (@3))
7225 (IFN_FNMS @0 @1 @2))))
7228 (IFN_FMS:c (negate @0) @1 @2)
7229 (IFN_FNMS @0 @1 @2))
7231 (IFN_FMS @0 @1 (negate @2))
7234 (IFN_FMS:c (negate @0) @1 (negate @2))
7235 (IFN_FNMA @0 @1 @2))
7237 (negate (IFN_FMS@3 @0 @1 @2))
7238 (if (single_use (@3))
7239 (IFN_FNMA @0 @1 @2)))
7242 (IFN_FNMA:c (negate @0) @1 @2)
7245 (IFN_FNMA @0 @1 (negate @2))
7246 (IFN_FNMS @0 @1 @2))
7248 (IFN_FNMA:c (negate @0) @1 (negate @2))
7251 (negate (IFN_FNMA@3 @0 @1 @2))
7252 (if (single_use (@3))
7253 (IFN_FMS @0 @1 @2)))
7256 (IFN_FNMS:c (negate @0) @1 @2)
7259 (IFN_FNMS @0 @1 (negate @2))
7260 (IFN_FNMA @0 @1 @2))
7262 (IFN_FNMS:c (negate @0) @1 (negate @2))
7265 (negate (IFN_FNMS@3 @0 @1 @2))
7266 (if (single_use (@3))
7267 (IFN_FMA @0 @1 @2))))
7269 /* CLZ simplifications. */
7274 (op (clz:s@2 @0) INTEGER_CST@1)
7275 (if (integer_zerop (@1) && single_use (@2))
7276 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
7277 (with { tree type0 = TREE_TYPE (@0);
7278 tree stype = signed_type_for (type0);
7279 HOST_WIDE_INT val = 0;
7280 /* Punt on hypothetical weird targets. */
7282 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7288 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7289 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7290 (with { bool ok = true;
7291 HOST_WIDE_INT val = 0;
7292 tree type0 = TREE_TYPE (@0);
7293 /* Punt on hypothetical weird targets. */
7295 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7297 && val == TYPE_PRECISION (type0) - 1)
7300 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7301 (op @0 { build_one_cst (type0); })))))))
7303 /* CTZ simplifications. */
7305 (for op (ge gt le lt)
7308 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7309 (op (ctz:s @0) INTEGER_CST@1)
7310 (with { bool ok = true;
7311 HOST_WIDE_INT val = 0;
7312 if (!tree_fits_shwi_p (@1))
7316 val = tree_to_shwi (@1);
7317 /* Canonicalize to >= or <. */
7318 if (op == GT_EXPR || op == LE_EXPR)
7320 if (val == HOST_WIDE_INT_MAX)
7326 bool zero_res = false;
7327 HOST_WIDE_INT zero_val = 0;
7328 tree type0 = TREE_TYPE (@0);
7329 int prec = TYPE_PRECISION (type0);
7331 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7336 (if (ok && (!zero_res || zero_val >= val))
7337 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7339 (if (ok && (!zero_res || zero_val < val))
7340 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7341 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7342 (cmp (bit_and @0 { wide_int_to_tree (type0,
7343 wi::mask (val, false, prec)); })
7344 { build_zero_cst (type0); })))))))
7347 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7348 (op (ctz:s @0) INTEGER_CST@1)
7349 (with { bool zero_res = false;
7350 HOST_WIDE_INT zero_val = 0;
7351 tree type0 = TREE_TYPE (@0);
7352 int prec = TYPE_PRECISION (type0);
7354 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7358 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7359 (if (!zero_res || zero_val != wi::to_widest (@1))
7360 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7361 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7362 (op (bit_and @0 { wide_int_to_tree (type0,
7363 wi::mask (tree_to_uhwi (@1) + 1,
7365 { wide_int_to_tree (type0,
7366 wi::shifted_mask (tree_to_uhwi (@1), 1,
7367 false, prec)); })))))))
7369 /* POPCOUNT simplifications. */
7370 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7372 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7373 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7374 (POPCOUNT (bit_ior @0 @1))))
7376 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7377 (for popcount (POPCOUNT)
7378 (for cmp (le eq ne gt)
7381 (cmp (popcount @0) integer_zerop)
7382 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7384 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7386 (bit_and (POPCOUNT @0) integer_onep)
7389 /* PARITY simplifications. */
7390 /* parity(~X) is parity(X). */
7392 (PARITY (bit_not @0))
7395 /* parity(X)^parity(Y) is parity(X^Y). */
7397 (bit_xor (PARITY:s @0) (PARITY:s @1))
7398 (PARITY (bit_xor @0 @1)))
7400 /* Common POPCOUNT/PARITY simplifications. */
7401 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7402 (for pfun (POPCOUNT PARITY)
7405 (with { wide_int nz = tree_nonzero_bits (@0); }
7409 (if (wi::popcount (nz) == 1)
7410 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7411 (convert (rshift:utype (convert:utype @0)
7412 { build_int_cst (integer_type_node,
7413 wi::ctz (nz)); }))))))))
7416 /* 64- and 32-bits branchless implementations of popcount are detected:
7418 int popcount64c (uint64_t x)
7420 x -= (x >> 1) & 0x5555555555555555ULL;
7421 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7422 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7423 return (x * 0x0101010101010101ULL) >> 56;
7426 int popcount32c (uint32_t x)
7428 x -= (x >> 1) & 0x55555555;
7429 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7430 x = (x + (x >> 4)) & 0x0f0f0f0f;
7431 return (x * 0x01010101) >> 24;
7438 (rshift @8 INTEGER_CST@5)
7440 (bit_and @6 INTEGER_CST@7)
7444 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7450 /* Check constants and optab. */
7451 (with { unsigned prec = TYPE_PRECISION (type);
7452 int shift = (64 - prec) & 63;
7453 unsigned HOST_WIDE_INT c1
7454 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7455 unsigned HOST_WIDE_INT c2
7456 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7457 unsigned HOST_WIDE_INT c3
7458 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7459 unsigned HOST_WIDE_INT c4
7460 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7465 && TYPE_UNSIGNED (type)
7466 && integer_onep (@4)
7467 && wi::to_widest (@10) == 2
7468 && wi::to_widest (@5) == 4
7469 && wi::to_widest (@1) == prec - 8
7470 && tree_to_uhwi (@2) == c1
7471 && tree_to_uhwi (@3) == c2
7472 && tree_to_uhwi (@9) == c3
7473 && tree_to_uhwi (@7) == c3
7474 && tree_to_uhwi (@11) == c4)
7475 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7477 (convert (IFN_POPCOUNT:type @0))
7478 /* Try to do popcount in two halves. PREC must be at least
7479 five bits for this to work without extension before adding. */
7481 tree half_type = NULL_TREE;
7482 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7485 && m.require () != TYPE_MODE (type))
7487 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7488 half_type = build_nonstandard_integer_type (half_prec, 1);
7490 gcc_assert (half_prec > 2);
7492 (if (half_type != NULL_TREE
7493 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7496 (IFN_POPCOUNT:half_type (convert @0))
7497 (IFN_POPCOUNT:half_type (convert (rshift @0
7498 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7500 /* __builtin_ffs needs to deal on many targets with the possible zero
7501 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7502 should lead to better code. */
7504 (FFS tree_expr_nonzero_p@0)
7505 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7506 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7507 OPTIMIZE_FOR_SPEED))
7508 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7509 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7512 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7514 /* __builtin_ffs (X) == 0 -> X == 0.
7515 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7518 (cmp (ffs@2 @0) INTEGER_CST@1)
7519 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7521 (if (integer_zerop (@1))
7522 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7523 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7524 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7525 (if (single_use (@2))
7526 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7527 wi::mask (tree_to_uhwi (@1),
7529 { wide_int_to_tree (TREE_TYPE (@0),
7530 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7531 false, prec)); }))))))
7533 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7537 bit_op (bit_and bit_ior)
7539 (cmp (ffs@2 @0) INTEGER_CST@1)
7540 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7542 (if (integer_zerop (@1))
7543 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7544 (if (tree_int_cst_sgn (@1) < 0)
7545 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7546 (if (wi::to_widest (@1) >= prec)
7547 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7548 (if (wi::to_widest (@1) == prec - 1)
7549 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7550 wi::shifted_mask (prec - 1, 1,
7552 (if (single_use (@2))
7553 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7555 { wide_int_to_tree (TREE_TYPE (@0),
7556 wi::mask (tree_to_uhwi (@1),
7558 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7565 --> r = .COND_FN (cond, a, b)
7569 --> r = .COND_FN (~cond, b, a). */
7571 (for uncond_op (UNCOND_UNARY)
7572 cond_op (COND_UNARY)
7574 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7575 (with { tree op_type = TREE_TYPE (@3); }
7576 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7577 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7578 (cond_op @0 @1 @2))))
7580 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7581 (with { tree op_type = TREE_TYPE (@3); }
7582 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7583 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7584 (cond_op (bit_not @0) @2 @1)))))
7593 r = c ? a1 op a2 : b;
7595 if the target can do it in one go. This makes the operation conditional
7596 on c, so could drop potentially-trapping arithmetic, but that's a valid
7597 simplification if the result of the operation isn't needed.
7599 Avoid speculatively generating a stand-alone vector comparison
7600 on targets that might not support them. Any target implementing
7601 conditional internal functions must support the same comparisons
7602 inside and outside a VEC_COND_EXPR. */
7604 (for uncond_op (UNCOND_BINARY)
7605 cond_op (COND_BINARY)
7607 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7608 (with { tree op_type = TREE_TYPE (@4); }
7609 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7610 && is_truth_type_for (op_type, TREE_TYPE (@0))
7612 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7614 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7615 (with { tree op_type = TREE_TYPE (@4); }
7616 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7617 && is_truth_type_for (op_type, TREE_TYPE (@0))
7619 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7621 /* Same for ternary operations. */
7622 (for uncond_op (UNCOND_TERNARY)
7623 cond_op (COND_TERNARY)
7625 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7626 (with { tree op_type = TREE_TYPE (@5); }
7627 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7628 && is_truth_type_for (op_type, TREE_TYPE (@0))
7630 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7632 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7633 (with { tree op_type = TREE_TYPE (@5); }
7634 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7635 && is_truth_type_for (op_type, TREE_TYPE (@0))
7637 (view_convert (cond_op (bit_not @0) @2 @3 @4
7638 (view_convert:op_type @1)))))))
7641 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7642 "else" value of an IFN_COND_*. */
7643 (for cond_op (COND_BINARY)
7645 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7646 (with { tree op_type = TREE_TYPE (@3); }
7647 (if (element_precision (type) == element_precision (op_type))
7648 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7650 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7651 (with { tree op_type = TREE_TYPE (@5); }
7652 (if (inverse_conditions_p (@0, @2)
7653 && element_precision (type) == element_precision (op_type))
7654 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7656 /* Same for ternary operations. */
7657 (for cond_op (COND_TERNARY)
7659 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7660 (with { tree op_type = TREE_TYPE (@4); }
7661 (if (element_precision (type) == element_precision (op_type))
7662 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7664 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7665 (with { tree op_type = TREE_TYPE (@6); }
7666 (if (inverse_conditions_p (@0, @2)
7667 && element_precision (type) == element_precision (op_type))
7668 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7670 /* Detect simplication for a conditional reduction where
7673 c = mask2 ? d + a : d
7677 c = mask1 && mask2 ? d + b : d. */
7679 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7680 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7682 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7685 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7686 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7688 If pointers are known not to wrap, B checks whether @1 bytes starting
7689 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7690 bytes. A is more efficiently tested as:
7692 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7694 The equivalent expression for B is given by replacing @1 with @1 - 1:
7696 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7698 @0 and @2 can be swapped in both expressions without changing the result.
7700 The folds rely on sizetype's being unsigned (which is always true)
7701 and on its being the same width as the pointer (which we have to check).
7703 The fold replaces two pointer_plus expressions, two comparisons and
7704 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7705 the best case it's a saving of two operations. The A fold retains one
7706 of the original pointer_pluses, so is a win even if both pointer_pluses
7707 are used elsewhere. The B fold is a wash if both pointer_pluses are
7708 used elsewhere, since all we end up doing is replacing a comparison with
7709 a pointer_plus. We do still apply the fold under those circumstances
7710 though, in case applying it to other conditions eventually makes one of the
7711 pointer_pluses dead. */
7712 (for ior (truth_orif truth_or bit_ior)
7715 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7716 (cmp:cs (pointer_plus@4 @2 @1) @0))
7717 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7718 && TYPE_OVERFLOW_WRAPS (sizetype)
7719 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7720 /* Calculate the rhs constant. */
7721 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7722 offset_int rhs = off * 2; }
7723 /* Always fails for negative values. */
7724 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7725 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7726 pick a canonical order. This increases the chances of using the
7727 same pointer_plus in multiple checks. */
7728 (with { bool swap_p = tree_swap_operands_p (@0, @2);
7729 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7730 (if (cmp == LT_EXPR)
7731 (gt (convert:sizetype
7732 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7733 { swap_p ? @0 : @2; }))
7735 (gt (convert:sizetype
7736 (pointer_diff:ssizetype
7737 (pointer_plus { swap_p ? @2 : @0; }
7738 { wide_int_to_tree (sizetype, off); })
7739 { swap_p ? @0 : @2; }))
7740 { rhs_tree; })))))))))
7742 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7744 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7745 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7746 (with { int i = single_nonzero_element (@1); }
7748 (with { tree elt = vector_cst_elt (@1, i);
7749 tree elt_type = TREE_TYPE (elt);
7750 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7751 tree size = bitsize_int (elt_bits);
7752 tree pos = bitsize_int (elt_bits * i); }
7755 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7758 /* Fold reduction of a single nonzero element constructor. */
7759 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7760 (simplify (reduc (CONSTRUCTOR@0))
7761 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
7762 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7763 tree elt = ctor_single_nonzero_element (ctor); }
7765 && !HONOR_SNANS (type)
7766 && !HONOR_SIGNED_ZEROS (type))
7769 /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
7770 (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
7771 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
7772 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
7773 (simplify (reduc (op @0 VECTOR_CST@1))
7774 (op (reduc:type @0) (reduc:type @1))))
7777 (vec_perm @0 @1 VECTOR_CST@2)
7780 tree op0 = @0, op1 = @1, op2 = @2;
7781 machine_mode result_mode = TYPE_MODE (type);
7782 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
7784 /* Build a vector of integers from the tree mask. */
7785 vec_perm_builder builder;
7786 if (!tree_to_vec_perm_builder (&builder, op2))
7789 /* Create a vec_perm_indices for the integer vector. */
7790 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7791 bool single_arg = (op0 == op1);
7792 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7794 (if (sel.series_p (0, 1, 0, 1))
7796 (if (sel.series_p (0, 1, nelts, 1))
7802 if (sel.all_from_input_p (0))
7804 else if (sel.all_from_input_p (1))
7807 sel.rotate_inputs (1);
7809 else if (known_ge (poly_uint64 (sel[0]), nelts))
7811 std::swap (op0, op1);
7812 sel.rotate_inputs (1);
7816 tree cop0 = op0, cop1 = op1;
7817 if (TREE_CODE (op0) == SSA_NAME
7818 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7819 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7820 cop0 = gimple_assign_rhs1 (def);
7821 if (TREE_CODE (op1) == SSA_NAME
7822 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7823 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7824 cop1 = gimple_assign_rhs1 (def);
7828 (if ((TREE_CODE (cop0) == VECTOR_CST
7829 || TREE_CODE (cop0) == CONSTRUCTOR)
7830 && (TREE_CODE (cop1) == VECTOR_CST
7831 || TREE_CODE (cop1) == CONSTRUCTOR)
7832 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7836 bool changed = (op0 == op1 && !single_arg);
7837 tree ins = NULL_TREE;
7840 /* See if the permutation is performing a single element
7841 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7842 in that case. But only if the vector mode is supported,
7843 otherwise this is invalid GIMPLE. */
7844 if (op_mode != BLKmode
7845 && (TREE_CODE (cop0) == VECTOR_CST
7846 || TREE_CODE (cop0) == CONSTRUCTOR
7847 || TREE_CODE (cop1) == VECTOR_CST
7848 || TREE_CODE (cop1) == CONSTRUCTOR))
7850 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
7853 /* After canonicalizing the first elt to come from the
7854 first vector we only can insert the first elt from
7855 the first vector. */
7857 if ((ins = fold_read_from_vector (cop0, sel[0])))
7860 /* The above can fail for two-element vectors which always
7861 appear to insert the first element, so try inserting
7862 into the second lane as well. For more than two
7863 elements that's wasted time. */
7864 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
7866 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
7867 for (at = 0; at < encoded_nelts; ++at)
7868 if (maybe_ne (sel[at], at))
7870 if (at < encoded_nelts
7871 && (known_eq (at + 1, nelts)
7872 || sel.series_p (at + 1, 1, at + 1, 1)))
7874 if (known_lt (poly_uint64 (sel[at]), nelts))
7875 ins = fold_read_from_vector (cop0, sel[at]);
7877 ins = fold_read_from_vector (cop1, sel[at] - nelts);
7882 /* Generate a canonical form of the selector. */
7883 if (!ins && sel.encoding () != builder)
7885 /* Some targets are deficient and fail to expand a single
7886 argument permutation while still allowing an equivalent
7887 2-argument version. */
7889 if (sel.ninputs () == 2
7890 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
7891 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7894 vec_perm_indices sel2 (builder, 2, nelts);
7895 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
7896 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
7898 /* Not directly supported with either encoding,
7899 so use the preferred form. */
7900 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7902 if (!operand_equal_p (op2, oldop2, 0))
7907 (bit_insert { op0; } { ins; }
7908 { bitsize_int (at * vector_element_bits (type)); })
7910 (vec_perm { op0; } { op1; } { op2; }))))))))))
7912 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
7914 (match vec_same_elem_p
7917 (match vec_same_elem_p
7919 (if (TREE_CODE (@0) == SSA_NAME
7920 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
7922 (match vec_same_elem_p
7924 (if (uniform_vector_p (@0))))
7928 (vec_perm vec_same_elem_p@0 @0 @1)
7931 /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
7933 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
7934 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
7935 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
7937 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
7938 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
7939 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
7942 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
7943 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
7944 constant which when multiplied by a power of 2 contains a unique value
7945 in the top 5 or 6 bits. This is then indexed into a table which maps it
7946 to the number of trailing zeroes. */
7947 (match (ctz_table_index @1 @2 @3)
7948 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
7950 (match (cond_expr_convert_p @0 @2 @3 @6)
7951 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
7952 (if (INTEGRAL_TYPE_P (type)
7953 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7954 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
7955 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7956 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
7957 && TYPE_PRECISION (TREE_TYPE (@0))
7958 == TYPE_PRECISION (TREE_TYPE (@2))
7959 && TYPE_PRECISION (TREE_TYPE (@0))
7960 == TYPE_PRECISION (TREE_TYPE (@3))
7961 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
7962 signess when convert is truncation, but not ok for extension since
7963 it's sign_extend vs zero_extend. */
7964 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
7965 || (TYPE_UNSIGNED (TREE_TYPE (@2))
7966 == TYPE_UNSIGNED (TREE_TYPE (@3))))
7968 && single_use (@5))))
7970 (for bit_op (bit_and bit_ior bit_xor)
7971 (match (bitwise_induction_p @0 @2 @3)
7973 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
7976 (match (bitwise_induction_p @0 @2 @3)
7978 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))