Update change log
[platform/upstream/gcc48.git] / gcc / ipa-inline.c
1 /* Inlining decision heuristics.
2    Copyright (C) 2003-2013 Free Software Foundation, Inc.
3    Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20
21 /*  Inlining decision heuristics
22
23     The implementation of inliner is organized as follows:
24
25     inlining heuristics limits
26
27       can_inline_edge_p allow to check that particular inlining is allowed
28       by the limits specified by user (allowed function growth, growth and so
29       on).
30
31       Functions are inlined when it is obvious the result is profitable (such
32       as functions called once or when inlining reduce code size).
33       In addition to that we perform inlining of small functions and recursive
34       inlining.
35
36     inlining heuristics
37
38        The inliner itself is split into two passes:
39
40        pass_early_inlining
41
42          Simple local inlining pass inlining callees into current function.
43          This pass makes no use of whole unit analysis and thus it can do only
44          very simple decisions based on local properties.
45
46          The strength of the pass is that it is run in topological order
47          (reverse postorder) on the callgraph. Functions are converted into SSA
48          form just before this pass and optimized subsequently. As a result, the
49          callees of the function seen by the early inliner was already optimized
50          and results of early inlining adds a lot of optimization opportunities
51          for the local optimization.
52
53          The pass handle the obvious inlining decisions within the compilation
54          unit - inlining auto inline functions, inlining for size and
55          flattening.
56
57          main strength of the pass is the ability to eliminate abstraction
58          penalty in C++ code (via combination of inlining and early
59          optimization) and thus improve quality of analysis done by real IPA
60          optimizers.
61
62          Because of lack of whole unit knowledge, the pass can not really make
63          good code size/performance tradeoffs.  It however does very simple
64          speculative inlining allowing code size to grow by
65          EARLY_INLINING_INSNS when callee is leaf function.  In this case the
66          optimizations performed later are very likely to eliminate the cost.
67
68        pass_ipa_inline
69
70          This is the real inliner able to handle inlining with whole program
71          knowledge. It performs following steps:
72
73          1) inlining of small functions.  This is implemented by greedy
74          algorithm ordering all inlinable cgraph edges by their badness and
75          inlining them in this order as long as inline limits allows doing so.
76
77          This heuristics is not very good on inlining recursive calls. Recursive
78          calls can be inlined with results similar to loop unrolling. To do so,
79          special purpose recursive inliner is executed on function when
80          recursive edge is met as viable candidate.
81
82          2) Unreachable functions are removed from callgraph.  Inlining leads
83          to devirtualization and other modification of callgraph so functions
84          may become unreachable during the process. Also functions declared as
85          extern inline or virtual functions are removed, since after inlining
86          we no longer need the offline bodies.
87
88          3) Functions called once and not exported from the unit are inlined.
89          This should almost always lead to reduction of code size by eliminating
90          the need for offline copy of the function.  */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "tree-inline.h"
98 #include "langhooks.h"
99 #include "flags.h"
100 #include "cgraph.h"
101 #include "diagnostic.h"
102 #include "gimple-pretty-print.h"
103 #include "params.h"
104 #include "fibheap.h"
105 #include "intl.h"
106 #include "tree-pass.h"
107 #include "coverage.h"
108 #include "ggc.h"
109 #include "rtl.h"
110 #include "tree-flow.h"
111 #include "ipa-prop.h"
112 #include "except.h"
113 #include "target.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116
117 /* Statistics we collect about inlining algorithm.  */
118 static int overall_size;
119 static gcov_type max_count;
120
121 /* Return false when inlining edge E would lead to violating
122    limits on function unit growth or stack usage growth.  
123
124    The relative function body growth limit is present generally
125    to avoid problems with non-linear behavior of the compiler.
126    To allow inlining huge functions into tiny wrapper, the limit
127    is always based on the bigger of the two functions considered.
128
129    For stack growth limits we always base the growth in stack usage
130    of the callers.  We want to prevent applications from segfaulting
131    on stack overflow when functions with huge stack frames gets
132    inlined. */
133
134 static bool
135 caller_growth_limits (struct cgraph_edge *e)
136 {
137   struct cgraph_node *to = e->caller;
138   struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
139   int newsize;
140   int limit = 0;
141   HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
142   struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
143
144   /* Look for function e->caller is inlined to.  While doing
145      so work out the largest function body on the way.  As
146      described above, we want to base our function growth
147      limits based on that.  Not on the self size of the
148      outer function, not on the self size of inline code
149      we immediately inline to.  This is the most relaxed
150      interpretation of the rule "do not grow large functions
151      too much in order to prevent compiler from exploding".  */
152   while (true)
153     {
154       info = inline_summary (to);
155       if (limit < info->self_size)
156         limit = info->self_size;
157       if (stack_size_limit < info->estimated_self_stack_size)
158         stack_size_limit = info->estimated_self_stack_size;
159       if (to->global.inlined_to)
160         to = to->callers->caller;
161       else
162         break;
163     }
164
165   what_info = inline_summary (what);
166
167   if (limit < what_info->self_size)
168     limit = what_info->self_size;
169
170   limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
171
172   /* Check the size after inlining against the function limits.  But allow
173      the function to shrink if it went over the limits by forced inlining.  */
174   newsize = estimate_size_after_inlining (to, e);
175   if (newsize >= info->size
176       && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
177       && newsize > limit)
178     {
179       e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
180       return false;
181     }
182
183   if (!what_info->estimated_stack_size)
184     return true;
185
186   /* FIXME: Stack size limit often prevents inlining in Fortran programs
187      due to large i/o datastructures used by the Fortran front-end.
188      We ought to ignore this limit when we know that the edge is executed
189      on every invocation of the caller (i.e. its call statement dominates
190      exit block).  We do not track this information, yet.  */
191   stack_size_limit += ((gcov_type)stack_size_limit
192                        * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
193
194   inlined_stack = (outer_info->stack_frame_offset
195                    + outer_info->estimated_self_stack_size
196                    + what_info->estimated_stack_size);
197   /* Check new stack consumption with stack consumption at the place
198      stack is used.  */
199   if (inlined_stack > stack_size_limit
200       /* If function already has large stack usage from sibling
201          inline call, we can inline, too.
202          This bit overoptimistically assume that we are good at stack
203          packing.  */
204       && inlined_stack > info->estimated_stack_size
205       && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
206     {
207       e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
208       return false;
209     }
210   return true;
211 }
212
213 /* Dump info about why inlining has failed.  */
214
215 static void
216 report_inline_failed_reason (struct cgraph_edge *e)
217 {
218   if (dump_file)
219     {
220       fprintf (dump_file, "  not inlinable: %s/%i -> %s/%i, %s\n",
221                xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
222                xstrdup (cgraph_node_name (e->callee)), e->callee->uid,
223                cgraph_inline_failed_string (e->inline_failed));
224     }
225 }
226
227 /* Decide if we can inline the edge and possibly update
228    inline_failed reason.  
229    We check whether inlining is possible at all and whether
230    caller growth limits allow doing so.  
231
232    if REPORT is true, output reason to the dump file.  */
233
234 static bool
235 can_inline_edge_p (struct cgraph_edge *e, bool report)
236 {
237   bool inlinable = true;
238   enum availability avail;
239   struct cgraph_node *callee
240     = cgraph_function_or_thunk_node (e->callee, &avail);
241   tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
242   tree callee_tree
243     = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
244   struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
245   struct function *callee_cfun
246     = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
247
248   if (!caller_cfun && e->caller->clone_of)
249     caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
250
251   if (!callee_cfun && callee && callee->clone_of)
252     callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
253
254   gcc_assert (e->inline_failed);
255
256   if (!callee || !callee->analyzed)
257     {
258       e->inline_failed = CIF_BODY_NOT_AVAILABLE;
259       inlinable = false;
260     }
261   else if (!inline_summary (callee)->inlinable)
262     {
263       e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
264       inlinable = false;
265     }
266   else if (avail <= AVAIL_OVERWRITABLE)
267     {
268       e->inline_failed = CIF_OVERWRITABLE;
269       return false;
270     }
271   else if (e->call_stmt_cannot_inline_p)
272     {
273       e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
274       inlinable = false;
275     }
276   /* Don't inline if the functions have different EH personalities.  */
277   else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
278            && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
279            && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
280                != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
281     {
282       e->inline_failed = CIF_EH_PERSONALITY;
283       inlinable = false;
284     }
285   /* TM pure functions should not be inlined into non-TM_pure
286      functions.  */
287   else if (is_tm_pure (callee->symbol.decl)
288            && !is_tm_pure (e->caller->symbol.decl))
289     {
290       e->inline_failed = CIF_UNSPECIFIED;
291       inlinable = false;
292     }
293   /* Don't inline if the callee can throw non-call exceptions but the
294      caller cannot.
295      FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
296      Move the flag into cgraph node or mirror it in the inline summary.  */
297   else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
298            && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
299     {
300       e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
301       inlinable = false;
302     }
303   /* Check compatibility of target optimization options.  */
304   else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
305                                                 callee->symbol.decl))
306     {
307       e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
308       inlinable = false;
309     }
310   /* Check if caller growth allows the inlining.  */
311   else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
312            && !lookup_attribute ("flatten",
313                                  DECL_ATTRIBUTES
314                                    (e->caller->global.inlined_to
315                                     ? e->caller->global.inlined_to->symbol.decl
316                                     : e->caller->symbol.decl))
317            && !caller_growth_limits (e))
318     inlinable = false;
319   /* Don't inline a function with a higher optimization level than the
320      caller.  FIXME: this is really just tip of iceberg of handling
321      optimization attribute.  */
322   else if (caller_tree != callee_tree)
323     {
324       struct cl_optimization *caller_opt
325         = TREE_OPTIMIZATION ((caller_tree)
326                              ? caller_tree
327                              : optimization_default_node);
328
329       struct cl_optimization *callee_opt
330         = TREE_OPTIMIZATION ((callee_tree)
331                              ? callee_tree
332                              : optimization_default_node);
333
334       if (((caller_opt->x_optimize > callee_opt->x_optimize)
335            || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
336           /* gcc.dg/pr43564.c.  Look at forced inline even in -O0.  */
337           && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
338         {
339           e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
340           inlinable = false;
341         }
342     }
343
344   if (!inlinable && report)
345     report_inline_failed_reason (e);
346   return inlinable;
347 }
348
349
350 /* Return true if the edge E is inlinable during early inlining.  */
351
352 static bool
353 can_early_inline_edge_p (struct cgraph_edge *e)
354 {
355   struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
356                                                               NULL);
357   /* Early inliner might get called at WPA stage when IPA pass adds new
358      function.  In this case we can not really do any of early inlining
359      because function bodies are missing.  */
360   if (!gimple_has_body_p (callee->symbol.decl))
361     {
362       e->inline_failed = CIF_BODY_NOT_AVAILABLE;
363       return false;
364     }
365   /* In early inliner some of callees may not be in SSA form yet
366      (i.e. the callgraph is cyclic and we did not process
367      the callee by early inliner, yet).  We don't have CIF code for this
368      case; later we will re-do the decision in the real inliner.  */
369   if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
370       || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
371     {
372       if (dump_file)
373         fprintf (dump_file, "  edge not inlinable: not in SSA form\n");
374       return false;
375     }
376   if (!can_inline_edge_p (e, true))
377     return false;
378   return true;
379 }
380
381
382 /* Return number of calls in N.  Ignore cheap builtins.  */
383
384 static int
385 num_calls (struct cgraph_node *n)
386 {
387   struct cgraph_edge *e;
388   int num = 0;
389
390   for (e = n->callees; e; e = e->next_callee)
391     if (!is_inexpensive_builtin (e->callee->symbol.decl))
392       num++;
393   return num;
394 }
395
396
397 /* Return true if we are interested in inlining small function.  */
398
399 static bool
400 want_early_inline_function_p (struct cgraph_edge *e)
401 {
402   bool want_inline = true;
403   struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
404
405   if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
406     ;
407   else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
408            && !flag_inline_small_functions)
409     {
410       e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
411       report_inline_failed_reason (e);
412       want_inline = false;
413     }
414   else
415     {
416       int growth = estimate_edge_growth (e);
417       int n;
418
419       if (growth <= 0)
420         ;
421       else if (!cgraph_maybe_hot_edge_p (e)
422                && growth > 0)
423         {
424           if (dump_file)
425             fprintf (dump_file, "  will not early inline: %s/%i->%s/%i, "
426                      "call is cold and code would grow by %i\n",
427                      xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
428                      xstrdup (cgraph_node_name (callee)), callee->uid,
429                      growth);
430           want_inline = false;
431         }
432       else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
433         {
434           if (dump_file)
435             fprintf (dump_file, "  will not early inline: %s/%i->%s/%i, "
436                      "growth %i exceeds --param early-inlining-insns\n",
437                      xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
438                      xstrdup (cgraph_node_name (callee)), callee->uid,
439                      growth);
440           want_inline = false;
441         }
442       else if ((n = num_calls (callee)) != 0
443                && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
444         {
445           if (dump_file)
446             fprintf (dump_file, "  will not early inline: %s/%i->%s/%i, "
447                      "growth %i exceeds --param early-inlining-insns "
448                      "divided by number of calls\n",
449                      xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
450                      xstrdup (cgraph_node_name (callee)), callee->uid,
451                      growth);
452           want_inline = false;
453         }
454     }
455   return want_inline;
456 }
457
458 /* Compute time of the edge->caller + edge->callee execution when inlining
459    does not happen.  */
460
461 inline gcov_type
462 compute_uninlined_call_time (struct inline_summary *callee_info,
463                              struct cgraph_edge *edge)
464 {
465   gcov_type uninlined_call_time =
466     RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
467           CGRAPH_FREQ_BASE);
468   gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
469                                           ? edge->caller->global.inlined_to
470                                           : edge->caller)->time;
471   return uninlined_call_time + caller_time;
472 }
473
474 /* Same as compute_uinlined_call_time but compute time when inlining
475    does happen.  */
476
477 inline gcov_type
478 compute_inlined_call_time (struct cgraph_edge *edge,
479                            int edge_time)
480 {
481   gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
482                                           ? edge->caller->global.inlined_to
483                                           : edge->caller)->time;
484   gcov_type time = (caller_time
485                     + RDIV (((gcov_type) edge_time
486                              - inline_edge_summary (edge)->call_stmt_time)
487                     * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
488   /* Possible one roundoff error, but watch for overflows.  */
489   gcc_checking_assert (time >= INT_MIN / 2);
490   if (time < 0)
491     time = 0;
492   return time;
493 }
494
495 /* Return true if the speedup for inlining E is bigger than
496    PARAM_MAX_INLINE_MIN_SPEEDUP.  */
497
498 static bool
499 big_speedup_p (struct cgraph_edge *e)
500 {
501   gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
502                                                 e);
503   gcov_type inlined_time = compute_inlined_call_time (e,
504                                                       estimate_edge_time (e));
505   if (time - inlined_time
506       > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
507     return true;
508   return false;
509 }
510
511 /* Return true if we are interested in inlining small function.
512    When REPORT is true, report reason to dump file.  */
513
514 static bool
515 want_inline_small_function_p (struct cgraph_edge *e, bool report)
516 {
517   bool want_inline = true;
518   struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
519
520   if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
521     ;
522   else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
523            && !flag_inline_small_functions)
524     {
525       e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
526       want_inline = false;
527     }
528   else
529     {
530       int growth = estimate_edge_growth (e);
531       inline_hints hints = estimate_edge_hints (e);
532       bool big_speedup = big_speedup_p (e);
533
534       if (growth <= 0)
535         ;
536       /* Apply MAX_INLINE_INSNS_SINGLE limit.  Do not do so when
537          hints suggests that inlining given function is very profitable.  */
538       else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
539                && growth >= MAX_INLINE_INSNS_SINGLE
540                && !big_speedup
541                && !(hints & (INLINE_HINT_indirect_call
542                              | INLINE_HINT_loop_iterations
543                              | INLINE_HINT_array_index
544                              | INLINE_HINT_loop_stride)))
545         {
546           e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
547           want_inline = false;
548         }
549       /* Before giving up based on fact that caller size will grow, allow
550          functions that are called few times and eliminating the offline
551          copy will lead to overall code size reduction.
552          Not all of these will be handled by subsequent inlining of functions
553          called once: in particular weak functions are not handled or funcitons
554          that inline to multiple calls but a lot of bodies is optimized out.
555          Finally we want to inline earlier to allow inlining of callbacks.
556
557          This is slightly wrong on aggressive side:  it is entirely possible
558          that function is called many times with a context where inlining
559          reduces code size and few times with a context where inlining increase
560          code size.  Resoluting growth estimate will be negative even if it
561          would make more sense to keep offline copy and do not inline into the
562          call sites that makes the code size grow.  
563
564          When badness orders the calls in a way that code reducing calls come
565          first, this situation is not a problem at all: after inlining all
566          "good" calls, we will realize that keeping the function around is
567          better.  */
568       else if (growth <= MAX_INLINE_INSNS_SINGLE
569                /* Unlike for functions called once, we play unsafe with
570                   COMDATs.  We can allow that since we know functions
571                   in consideration are small (and thus risk is small) and
572                   moreover grow estimates already accounts that COMDAT
573                   functions may or may not disappear when eliminated from
574                   current unit. With good probability making aggressive
575                   choice in all units is going to make overall program
576                   smaller.
577
578                   Consequently we ask cgraph_can_remove_if_no_direct_calls_p
579                   instead of
580                   cgraph_will_be_removed_from_program_if_no_direct_calls  */
581                 && !DECL_EXTERNAL (callee->symbol.decl)
582                 && cgraph_can_remove_if_no_direct_calls_p (callee)
583                 && estimate_growth (callee) <= 0)
584         ;
585       else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
586                && !flag_inline_functions)
587         {
588           e->inline_failed = CIF_NOT_DECLARED_INLINED;
589           want_inline = false;
590         }
591       /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
592          Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
593          inlining given function is very profitable.  */
594       else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
595                && !big_speedup
596                && growth >= ((hints & (INLINE_HINT_indirect_call
597                                        | INLINE_HINT_loop_iterations
598                                        | INLINE_HINT_array_index
599                                        | INLINE_HINT_loop_stride))
600                              ? MAX (MAX_INLINE_INSNS_AUTO,
601                                     MAX_INLINE_INSNS_SINGLE)
602                              : MAX_INLINE_INSNS_AUTO))
603         {
604           e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
605           want_inline = false;
606         }
607       /* If call is cold, do not inline when function body would grow. */
608       else if (!cgraph_maybe_hot_edge_p (e))
609         {
610           e->inline_failed = CIF_UNLIKELY_CALL;
611           want_inline = false;
612         }
613     }
614   if (!want_inline && report)
615     report_inline_failed_reason (e);
616   return want_inline;
617 }
618
619 /* EDGE is self recursive edge.
620    We hand two cases - when function A is inlining into itself
621    or when function A is being inlined into another inliner copy of function
622    A within function B.  
623
624    In first case OUTER_NODE points to the toplevel copy of A, while
625    in the second case OUTER_NODE points to the outermost copy of A in B.
626
627    In both cases we want to be extra selective since
628    inlining the call will just introduce new recursive calls to appear.  */
629
630 static bool
631 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
632                                    struct cgraph_node *outer_node,
633                                    bool peeling,
634                                    int depth)
635 {
636   char const *reason = NULL;
637   bool want_inline = true;
638   int caller_freq = CGRAPH_FREQ_BASE;
639   int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
640
641   if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
642     max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
643
644   if (!cgraph_maybe_hot_edge_p (edge))
645     {
646       reason = "recursive call is cold";
647       want_inline = false;
648     }
649   else if (max_count && !outer_node->count)
650     {
651       reason = "not executed in profile";
652       want_inline = false;
653     }
654   else if (depth > max_depth)
655     {
656       reason = "--param max-inline-recursive-depth exceeded.";
657       want_inline = false;
658     }
659
660   if (outer_node->global.inlined_to)
661     caller_freq = outer_node->callers->frequency;
662
663   if (!want_inline)
664     ;
665   /* Inlining of self recursive function into copy of itself within other function
666      is transformation similar to loop peeling.
667
668      Peeling is profitable if we can inline enough copies to make probability
669      of actual call to the self recursive function very small.  Be sure that
670      the probability of recursion is small.
671
672      We ensure that the frequency of recursing is at most 1 - (1/max_depth).
673      This way the expected number of recision is at most max_depth.  */
674   else if (peeling)
675     {
676       int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
677                                          / max_depth);
678       int i;
679       for (i = 1; i < depth; i++)
680         max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
681       if (max_count
682           && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
683               >= max_prob))
684         {
685           reason = "profile of recursive call is too large";
686           want_inline = false;
687         }
688       if (!max_count
689           && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
690               >= max_prob))
691         {
692           reason = "frequency of recursive call is too large";
693           want_inline = false;
694         }
695     }
696   /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
697      depth is large.  We reduce function call overhead and increase chances that
698      things fit in hardware return predictor.
699
700      Recursive inlining might however increase cost of stack frame setup
701      actually slowing down functions whose recursion tree is wide rather than
702      deep.
703
704      Deciding reliably on when to do recursive inlining without profile feedback
705      is tricky.  For now we disable recursive inlining when probability of self
706      recursion is low. 
707
708      Recursive inlining of self recursive call within loop also results in large loop
709      depths that generally optimize badly.  We may want to throttle down inlining
710      in those cases.  In particular this seems to happen in one of libstdc++ rb tree
711      methods.  */
712   else
713     {
714       if (max_count
715           && (edge->count * 100 / outer_node->count
716               <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
717         {
718           reason = "profile of recursive call is too small";
719           want_inline = false;
720         }
721       else if (!max_count
722                && (edge->frequency * 100 / caller_freq
723                    <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
724         {
725           reason = "frequency of recursive call is too small";
726           want_inline = false;
727         }
728     }
729   if (!want_inline && dump_file)
730     fprintf (dump_file, "   not inlining recursively: %s\n", reason);
731   return want_inline;
732 }
733
734 /* Return true when NODE has caller other than EDGE. 
735    Worker for cgraph_for_node_and_aliases.  */
736
737 static bool
738 check_caller_edge (struct cgraph_node *node, void *edge)
739 {
740   return (node->callers
741           && node->callers != edge);
742 }
743
744
745 /* Decide if inlining NODE would reduce unit size by eliminating
746    the offline copy of function.  
747    When COLD is true the cold calls are considered, too.  */
748
749 static bool
750 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
751 {
752    struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
753    struct cgraph_edge *e;
754    bool has_hot_call = false;
755
756    /* Does it have callers?  */
757    if (!node->callers)
758      return false;
759    /* Already inlined?  */
760    if (function->global.inlined_to)
761      return false;
762    if (cgraph_function_or_thunk_node (node, NULL) != node)
763      return false;
764    /* Inlining into all callers would increase size?  */
765    if (estimate_growth (node) > 0)
766      return false;
767    /* Maybe other aliases has more direct calls.  */
768    if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
769      return false;
770    /* All inlines must be possible.  */
771    for (e = node->callers; e; e = e->next_caller)
772      {
773        if (!can_inline_edge_p (e, true))
774          return false;
775        if (!has_hot_call && cgraph_maybe_hot_edge_p (e))
776          has_hot_call = 1;
777      }
778
779    if (!cold && !has_hot_call)
780      return false;
781    return true;
782 }
783
784 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
785
786 /* Return relative time improvement for inlining EDGE in range
787    1...RELATIVE_TIME_BENEFIT_RANGE  */
788
789 static inline int
790 relative_time_benefit (struct inline_summary *callee_info,
791                        struct cgraph_edge *edge,
792                        int edge_time)
793 {
794   gcov_type relbenefit;
795   gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
796   gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
797
798   /* Inlining into extern inline function is not a win.  */
799   if (DECL_EXTERNAL (edge->caller->global.inlined_to
800                      ? edge->caller->global.inlined_to->symbol.decl
801                      : edge->caller->symbol.decl))
802     return 1;
803
804   /* Watch overflows.  */
805   gcc_checking_assert (uninlined_call_time >= 0);
806   gcc_checking_assert (inlined_call_time >= 0);
807   gcc_checking_assert (uninlined_call_time >= inlined_call_time);
808
809   /* Compute relative time benefit, i.e. how much the call becomes faster.
810      ??? perhaps computing how much the caller+calle together become faster
811      would lead to more realistic results.  */
812   if (!uninlined_call_time)
813     uninlined_call_time = 1;
814   relbenefit =
815     RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
816           uninlined_call_time);
817   relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
818   gcc_checking_assert (relbenefit >= 0);
819   relbenefit = MAX (relbenefit, 1);
820   return relbenefit;
821 }
822
823
824 /* A cost model driving the inlining heuristics in a way so the edges with
825    smallest badness are inlined first.  After each inlining is performed
826    the costs of all caller edges of nodes affected are recomputed so the
827    metrics may accurately depend on values such as number of inlinable callers
828    of the function or function body size.  */
829
830 static int
831 edge_badness (struct cgraph_edge *edge, bool dump)
832 {
833   gcov_type badness;
834   int growth, edge_time;
835   struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
836                                                               NULL);
837   struct inline_summary *callee_info = inline_summary (callee);
838   inline_hints hints;
839
840   if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
841     return INT_MIN;
842
843   growth = estimate_edge_growth (edge);
844   edge_time = estimate_edge_time (edge);
845   hints = estimate_edge_hints (edge);
846   gcc_checking_assert (edge_time >= 0);
847   gcc_checking_assert (edge_time <= callee_info->time);
848   gcc_checking_assert (growth <= callee_info->size);
849
850   if (dump)
851     {
852       fprintf (dump_file, "    Badness calculation for %s/%i -> %s/%i\n",
853                xstrdup (cgraph_node_name (edge->caller)),
854                edge->caller->uid,
855                xstrdup (cgraph_node_name (callee)),
856                edge->callee->uid);
857       fprintf (dump_file, "      size growth %i, time %i ",
858                growth,
859                edge_time);
860       dump_inline_hints (dump_file, hints);
861       if (big_speedup_p (edge))
862         fprintf (dump_file, " big_speedup");
863       fprintf (dump_file, "\n");
864     }
865
866   /* Always prefer inlining saving code size.  */
867   if (growth <= 0)
868     {
869       badness = INT_MIN / 2 + growth;
870       if (dump)
871         fprintf (dump_file, "      %i: Growth %i <= 0\n", (int) badness,
872                  growth);
873     }
874
875   /* When profiling is available, compute badness as:
876
877                 relative_edge_count * relative_time_benefit
878      goodness = -------------------------------------------
879                 growth_f_caller
880      badness = -goodness  
881
882     The fraction is upside down, because on edge counts and time beneits
883     the bounds are known. Edge growth is essentially unlimited.  */
884
885   else if (max_count)
886     {
887       int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
888       badness =
889         ((int)
890          ((double) edge->count * INT_MIN / 2 / max_count / RELATIVE_TIME_BENEFIT_RANGE) *
891          relbenefit) / growth;
892       
893       /* Be sure that insanity of the profile won't lead to increasing counts
894          in the scalling and thus to overflow in the computation above.  */
895       gcc_assert (max_count >= edge->count);
896       if (dump)
897         {
898           fprintf (dump_file,
899                    "      %i (relative %f): profile info. Relative count %f"
900                    " * Relative benefit %f\n",
901                    (int) badness, (double) badness / INT_MIN,
902                    (double) edge->count / max_count,
903                    relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
904         }
905     }
906
907   /* When function local profile is available. Compute badness as:
908      
909                  relative_time_benefit
910      goodness =  ---------------------------------
911                  growth_of_caller * overall_growth
912
913      badness = - goodness
914
915      compensated by the inline hints.
916   */
917   else if (flag_guess_branch_prob)
918     {
919       badness = (relative_time_benefit (callee_info, edge, edge_time)
920                  * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
921       badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
922       gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
923       if ((hints & (INLINE_HINT_indirect_call
924                     | INLINE_HINT_loop_iterations
925                     | INLINE_HINT_array_index
926                     | INLINE_HINT_loop_stride))
927           || callee_info->growth <= 0)
928         badness *= 8;
929       if (hints & (INLINE_HINT_same_scc))
930         badness /= 16;
931       else if (hints & (INLINE_HINT_in_scc))
932         badness /= 8;
933       else if (hints & (INLINE_HINT_cross_module))
934         badness /= 2;
935       gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
936       if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
937         badness *= 16;
938       if (dump)
939         {
940           fprintf (dump_file,
941                    "      %i: guessed profile. frequency %f,"
942                    " benefit %f%%, time w/o inlining %i, time w inlining %i"
943                    " overall growth %i (current) %i (original)\n",
944                    (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
945                    relative_time_benefit (callee_info, edge, edge_time) * 100.0
946                    / RELATIVE_TIME_BENEFIT_RANGE, 
947                    (int)compute_uninlined_call_time (callee_info, edge),
948                    (int)compute_inlined_call_time (edge, edge_time),
949                    estimate_growth (callee),
950                    callee_info->growth);
951         }
952     }
953   /* When function local profile is not available or it does not give
954      useful information (ie frequency is zero), base the cost on
955      loop nest and overall size growth, so we optimize for overall number
956      of functions fully inlined in program.  */
957   else
958     {
959       int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
960       badness = growth * 256;
961
962       /* Decrease badness if call is nested.  */
963       if (badness > 0)
964         badness >>= nest;
965       else
966         {
967           badness <<= nest;
968         }
969       if (dump)
970         fprintf (dump_file, "      %i: no profile. nest %i\n", (int) badness,
971                  nest);
972     }
973
974   /* Ensure that we did not overflow in all the fixed point math above.  */
975   gcc_assert (badness >= INT_MIN);
976   gcc_assert (badness <= INT_MAX - 1);
977   /* Make recursive inlining happen always after other inlining is done.  */
978   if (cgraph_edge_recursive_p (edge))
979     return badness + 1;
980   else
981     return badness;
982 }
983
984 /* Recompute badness of EDGE and update its key in HEAP if needed.  */
985 static inline void
986 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
987 {
988   int badness = edge_badness (edge, false);
989   if (edge->aux)
990     {
991       fibnode_t n = (fibnode_t) edge->aux;
992       gcc_checking_assert (n->data == edge);
993
994       /* fibheap_replace_key only decrease the keys.
995          When we increase the key we do not update heap
996          and instead re-insert the element once it becomes
997          a minimum of heap.  */
998       if (badness < n->key)
999         {
1000           if (dump_file && (dump_flags & TDF_DETAILS))
1001             {
1002               fprintf (dump_file,
1003                        "  decreasing badness %s/%i -> %s/%i, %i to %i\n",
1004                        xstrdup (cgraph_node_name (edge->caller)),
1005                        edge->caller->uid,
1006                        xstrdup (cgraph_node_name (edge->callee)),
1007                        edge->callee->uid,
1008                        (int)n->key,
1009                        badness);
1010             }
1011           fibheap_replace_key (heap, n, badness);
1012           gcc_checking_assert (n->key == badness);
1013         }
1014     }
1015   else
1016     {
1017        if (dump_file && (dump_flags & TDF_DETAILS))
1018          {
1019            fprintf (dump_file,
1020                     "  enqueuing call %s/%i -> %s/%i, badness %i\n",
1021                     xstrdup (cgraph_node_name (edge->caller)),
1022                     edge->caller->uid,
1023                     xstrdup (cgraph_node_name (edge->callee)),
1024                     edge->callee->uid,
1025                     badness);
1026          }
1027       edge->aux = fibheap_insert (heap, badness, edge);
1028     }
1029 }
1030
1031
1032 /* NODE was inlined.
1033    All caller edges needs to be resetted because
1034    size estimates change. Similarly callees needs reset
1035    because better context may be known.  */
1036
1037 static void
1038 reset_edge_caches (struct cgraph_node *node)
1039 {
1040   struct cgraph_edge *edge;
1041   struct cgraph_edge *e = node->callees;
1042   struct cgraph_node *where = node;
1043   int i;
1044   struct ipa_ref *ref;
1045
1046   if (where->global.inlined_to)
1047     where = where->global.inlined_to;
1048
1049   /* WHERE body size has changed, the cached growth is invalid.  */
1050   reset_node_growth_cache (where);
1051
1052   for (edge = where->callers; edge; edge = edge->next_caller)
1053     if (edge->inline_failed)
1054       reset_edge_growth_cache (edge);
1055   for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
1056                                               i, ref); i++)
1057     if (ref->use == IPA_REF_ALIAS)
1058       reset_edge_caches (ipa_ref_referring_node (ref));
1059
1060   if (!e)
1061     return;
1062
1063   while (true)
1064     if (!e->inline_failed && e->callee->callees)
1065       e = e->callee->callees;
1066     else
1067       {
1068         if (e->inline_failed)
1069           reset_edge_growth_cache (e);
1070         if (e->next_callee)
1071           e = e->next_callee;
1072         else
1073           {
1074             do
1075               {
1076                 if (e->caller == node)
1077                   return;
1078                 e = e->caller->callers;
1079               }
1080             while (!e->next_callee);
1081             e = e->next_callee;
1082           }
1083       }
1084 }
1085
1086 /* Recompute HEAP nodes for each of caller of NODE.
1087    UPDATED_NODES track nodes we already visited, to avoid redundant work.
1088    When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1089    it is inlinable. Otherwise check all edges.  */
1090
1091 static void
1092 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1093                     bitmap updated_nodes,
1094                     struct cgraph_edge *check_inlinablity_for)
1095 {
1096   struct cgraph_edge *edge;
1097   int i;
1098   struct ipa_ref *ref;
1099
1100   if ((!node->alias && !inline_summary (node)->inlinable)
1101       || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1102       || node->global.inlined_to)
1103     return;
1104   if (!bitmap_set_bit (updated_nodes, node->uid))
1105     return;
1106
1107   for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1108                                               i, ref); i++)
1109     if (ref->use == IPA_REF_ALIAS)
1110       {
1111         struct cgraph_node *alias = ipa_ref_referring_node (ref);
1112         update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1113       }
1114
1115   for (edge = node->callers; edge; edge = edge->next_caller)
1116     if (edge->inline_failed)
1117       {
1118         if (!check_inlinablity_for
1119             || check_inlinablity_for == edge)
1120           {
1121             if (can_inline_edge_p (edge, false)
1122                 && want_inline_small_function_p (edge, false))
1123               update_edge_key (heap, edge);
1124             else if (edge->aux)
1125               {
1126                 report_inline_failed_reason (edge);
1127                 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1128                 edge->aux = NULL;
1129               }
1130           }
1131         else if (edge->aux)
1132           update_edge_key (heap, edge);
1133       }
1134 }
1135
1136 /* Recompute HEAP nodes for each uninlined call in NODE.
1137    This is used when we know that edge badnesses are going only to increase
1138    (we introduced new call site) and thus all we need is to insert newly
1139    created edges into heap.  */
1140
1141 static void
1142 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1143                     bitmap updated_nodes)
1144 {
1145   struct cgraph_edge *e = node->callees;
1146
1147   if (!e)
1148     return;
1149   while (true)
1150     if (!e->inline_failed && e->callee->callees)
1151       e = e->callee->callees;
1152     else
1153       {
1154         enum availability avail;
1155         struct cgraph_node *callee;
1156         /* We do not reset callee growth cache here.  Since we added a new call,
1157            growth chould have just increased and consequentely badness metric
1158            don't need updating.  */
1159         if (e->inline_failed
1160             && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1161             && inline_summary (callee)->inlinable
1162             && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1163             && !bitmap_bit_p (updated_nodes, callee->uid))
1164           {
1165             if (can_inline_edge_p (e, false)
1166                 && want_inline_small_function_p (e, false))
1167               update_edge_key (heap, e);
1168             else if (e->aux)
1169               {
1170                 report_inline_failed_reason (e);
1171                 fibheap_delete_node (heap, (fibnode_t) e->aux);
1172                 e->aux = NULL;
1173               }
1174           }
1175         if (e->next_callee)
1176           e = e->next_callee;
1177         else
1178           {
1179             do
1180               {
1181                 if (e->caller == node)
1182                   return;
1183                 e = e->caller->callers;
1184               }
1185             while (!e->next_callee);
1186             e = e->next_callee;
1187           }
1188       }
1189 }
1190
1191 /* Enqueue all recursive calls from NODE into priority queue depending on
1192    how likely we want to recursively inline the call.  */
1193
1194 static void
1195 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1196                         fibheap_t heap)
1197 {
1198   struct cgraph_edge *e;
1199   enum availability avail;
1200
1201   for (e = where->callees; e; e = e->next_callee)
1202     if (e->callee == node
1203         || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1204             && avail > AVAIL_OVERWRITABLE))
1205       {
1206         /* When profile feedback is available, prioritize by expected number
1207            of calls.  */
1208         fibheap_insert (heap,
1209                         !max_count ? -e->frequency
1210                         : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1211                         e);
1212       }
1213   for (e = where->callees; e; e = e->next_callee)
1214     if (!e->inline_failed)
1215       lookup_recursive_calls (node, e->callee, heap);
1216 }
1217
1218 /* Decide on recursive inlining: in the case function has recursive calls,
1219    inline until body size reaches given argument.  If any new indirect edges
1220    are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1221    is NULL.  */
1222
1223 static bool
1224 recursive_inlining (struct cgraph_edge *edge,
1225                     vec<cgraph_edge_p> *new_edges)
1226 {
1227   int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1228   fibheap_t heap;
1229   struct cgraph_node *node;
1230   struct cgraph_edge *e;
1231   struct cgraph_node *master_clone = NULL, *next;
1232   int depth = 0;
1233   int n = 0;
1234
1235   node = edge->caller;
1236   if (node->global.inlined_to)
1237     node = node->global.inlined_to;
1238
1239   if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1240     limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1241
1242   /* Make sure that function is small enough to be considered for inlining.  */
1243   if (estimate_size_after_inlining (node, edge)  >= limit)
1244     return false;
1245   heap = fibheap_new ();
1246   lookup_recursive_calls (node, node, heap);
1247   if (fibheap_empty (heap))
1248     {
1249       fibheap_delete (heap);
1250       return false;
1251     }
1252
1253   if (dump_file)
1254     fprintf (dump_file,
1255              "  Performing recursive inlining on %s\n",
1256              cgraph_node_name (node));
1257
1258   /* Do the inlining and update list of recursive call during process.  */
1259   while (!fibheap_empty (heap))
1260     {
1261       struct cgraph_edge *curr
1262         = (struct cgraph_edge *) fibheap_extract_min (heap);
1263       struct cgraph_node *cnode, *dest = curr->callee;
1264
1265       if (!can_inline_edge_p (curr, true))
1266         continue;
1267
1268       /* MASTER_CLONE is produced in the case we already started modified
1269          the function. Be sure to redirect edge to the original body before
1270          estimating growths otherwise we will be seeing growths after inlining
1271          the already modified body.  */
1272       if (master_clone)
1273         {
1274           cgraph_redirect_edge_callee (curr, master_clone);
1275           reset_edge_growth_cache (curr);
1276         }
1277
1278       if (estimate_size_after_inlining (node, curr) > limit)
1279         {
1280           cgraph_redirect_edge_callee (curr, dest);
1281           reset_edge_growth_cache (curr);
1282           break;
1283         }
1284
1285       depth = 1;
1286       for (cnode = curr->caller;
1287            cnode->global.inlined_to; cnode = cnode->callers->caller)
1288         if (node->symbol.decl
1289             == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1290           depth++;
1291
1292       if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1293         {
1294           cgraph_redirect_edge_callee (curr, dest);
1295           reset_edge_growth_cache (curr);
1296           continue;
1297         }
1298
1299       if (dump_file)
1300         {
1301           fprintf (dump_file,
1302                    "   Inlining call of depth %i", depth);
1303           if (node->count)
1304             {
1305               fprintf (dump_file, " called approx. %.2f times per call",
1306                        (double)curr->count / node->count);
1307             }
1308           fprintf (dump_file, "\n");
1309         }
1310       if (!master_clone)
1311         {
1312           /* We need original clone to copy around.  */
1313           master_clone = cgraph_clone_node (node, node->symbol.decl,
1314                                             node->count, CGRAPH_FREQ_BASE,
1315                                             false, vNULL, true);
1316           for (e = master_clone->callees; e; e = e->next_callee)
1317             if (!e->inline_failed)
1318               clone_inlined_nodes (e, true, false, NULL);
1319           cgraph_redirect_edge_callee (curr, master_clone);
1320           reset_edge_growth_cache (curr);
1321         }
1322
1323       inline_call (curr, false, new_edges, &overall_size, true);
1324       lookup_recursive_calls (node, curr->callee, heap);
1325       n++;
1326     }
1327
1328   if (!fibheap_empty (heap) && dump_file)
1329     fprintf (dump_file, "    Recursive inlining growth limit met.\n");
1330   fibheap_delete (heap);
1331
1332   if (!master_clone)
1333     return false;
1334
1335   if (dump_file)
1336     fprintf (dump_file,
1337              "\n   Inlined %i times, "
1338              "body grown from size %i to %i, time %i to %i\n", n,
1339              inline_summary (master_clone)->size, inline_summary (node)->size,
1340              inline_summary (master_clone)->time, inline_summary (node)->time);
1341
1342   /* Remove master clone we used for inlining.  We rely that clones inlined
1343      into master clone gets queued just before master clone so we don't
1344      need recursion.  */
1345   for (node = cgraph_first_function (); node != master_clone;
1346        node = next)
1347     {
1348       next = cgraph_next_function (node);
1349       if (node->global.inlined_to == master_clone)
1350         cgraph_remove_node (node);
1351     }
1352   cgraph_remove_node (master_clone);
1353   return true;
1354 }
1355
1356
1357 /* Given whole compilation unit estimate of INSNS, compute how large we can
1358    allow the unit to grow.  */
1359
1360 static int
1361 compute_max_insns (int insns)
1362 {
1363   int max_insns = insns;
1364   if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1365     max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1366
1367   return ((HOST_WIDEST_INT) max_insns
1368           * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1369 }
1370
1371
1372 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP.  */
1373
1374 static void
1375 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1376 {
1377   while (new_edges.length () > 0)
1378     {
1379       struct cgraph_edge *edge = new_edges.pop ();
1380
1381       gcc_assert (!edge->aux);
1382       if (edge->inline_failed
1383           && can_inline_edge_p (edge, true)
1384           && want_inline_small_function_p (edge, true))
1385         edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1386     }
1387 }
1388
1389
1390 /* We use greedy algorithm for inlining of small functions:
1391    All inline candidates are put into prioritized heap ordered in
1392    increasing badness.
1393
1394    The inlining of small functions is bounded by unit growth parameters.  */
1395
1396 static void
1397 inline_small_functions (void)
1398 {
1399   struct cgraph_node *node;
1400   struct cgraph_edge *edge;
1401   fibheap_t edge_heap = fibheap_new ();
1402   bitmap updated_nodes = BITMAP_ALLOC (NULL);
1403   int min_size, max_size;
1404   vec<cgraph_edge_p> new_indirect_edges = vNULL;
1405   int initial_size = 0;
1406   struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1407
1408   if (flag_indirect_inlining)
1409     new_indirect_edges.create (8);
1410
1411   /* Compute overall unit size and other global parameters used by badness
1412      metrics.  */
1413
1414   max_count = 0;
1415   ipa_reduced_postorder (order, true, true, NULL);
1416   free (order);
1417
1418   FOR_EACH_DEFINED_FUNCTION (node)
1419     if (!node->global.inlined_to)
1420       {
1421         if (cgraph_function_with_gimple_body_p (node)
1422             || node->thunk.thunk_p)
1423           {
1424             struct inline_summary *info = inline_summary (node);
1425             struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux;
1426
1427             if (!DECL_EXTERNAL (node->symbol.decl))
1428               initial_size += info->size;
1429             info->growth = estimate_growth (node);
1430             if (dfs && dfs->next_cycle)
1431               {
1432                 struct cgraph_node *n2;
1433                 int id = dfs->scc_no + 1;
1434                 for (n2 = node; n2;
1435                      n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle)
1436                   {
1437                     struct inline_summary *info2 = inline_summary (n2);
1438                     if (info2->scc_no)
1439                       break;
1440                     info2->scc_no = id;
1441                   }
1442               }
1443           }
1444
1445         for (edge = node->callers; edge; edge = edge->next_caller)
1446           if (max_count < edge->count)
1447             max_count = edge->count;
1448       }
1449   ipa_free_postorder_info ();
1450   initialize_growth_caches ();
1451
1452   if (dump_file)
1453     fprintf (dump_file,
1454              "\nDeciding on inlining of small functions.  Starting with size %i.\n",
1455              initial_size);
1456
1457   overall_size = initial_size;
1458   max_size = compute_max_insns (overall_size);
1459   min_size = overall_size;
1460
1461   /* Populate the heeap with all edges we might inline.  */
1462
1463   FOR_EACH_DEFINED_FUNCTION (node)
1464     if (!node->global.inlined_to)
1465       {
1466         if (dump_file)
1467           fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1468                    cgraph_node_name (node), node->uid);
1469
1470         for (edge = node->callers; edge; edge = edge->next_caller)
1471           if (edge->inline_failed
1472               && can_inline_edge_p (edge, true)
1473               && want_inline_small_function_p (edge, true)
1474               && edge->inline_failed)
1475             {
1476               gcc_assert (!edge->aux);
1477               update_edge_key (edge_heap, edge);
1478             }
1479       }
1480
1481   gcc_assert (in_lto_p
1482               || !max_count
1483               || (profile_info && flag_branch_probabilities));
1484
1485   while (!fibheap_empty (edge_heap))
1486     {
1487       int old_size = overall_size;
1488       struct cgraph_node *where, *callee;
1489       int badness = fibheap_min_key (edge_heap);
1490       int current_badness;
1491       int cached_badness;
1492       int growth;
1493
1494       edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1495       gcc_assert (edge->aux);
1496       edge->aux = NULL;
1497       if (!edge->inline_failed)
1498         continue;
1499
1500       /* Be sure that caches are maintained consistent.  
1501          We can not make this ENABLE_CHECKING only because it cause different
1502          updates of the fibheap queue.  */
1503       cached_badness = edge_badness (edge, false);
1504       reset_edge_growth_cache (edge);
1505       reset_node_growth_cache (edge->callee);
1506
1507       /* When updating the edge costs, we only decrease badness in the keys.
1508          Increases of badness are handled lazilly; when we see key with out
1509          of date value on it, we re-insert it now.  */
1510       current_badness = edge_badness (edge, false);
1511       gcc_assert (cached_badness == current_badness);
1512       gcc_assert (current_badness >= badness);
1513       if (current_badness != badness)
1514         {
1515           edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1516           continue;
1517         }
1518
1519       if (!can_inline_edge_p (edge, true))
1520         continue;
1521       
1522       callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1523       growth = estimate_edge_growth (edge);
1524       if (dump_file)
1525         {
1526           fprintf (dump_file,
1527                    "\nConsidering %s with %i size\n",
1528                    cgraph_node_name (callee),
1529                    inline_summary (callee)->size);
1530           fprintf (dump_file,
1531                    " to be inlined into %s in %s:%i\n"
1532                    " Estimated growth after inlined into all is %+i insns.\n"
1533                    " Estimated badness is %i, frequency %.2f.\n",
1534                    cgraph_node_name (edge->caller),
1535                    flag_wpa ? "unknown"
1536                    : gimple_filename ((const_gimple) edge->call_stmt),
1537                    flag_wpa ? -1
1538                    : gimple_lineno ((const_gimple) edge->call_stmt),
1539                    estimate_growth (callee),
1540                    badness,
1541                    edge->frequency / (double)CGRAPH_FREQ_BASE);
1542           if (edge->count)
1543             fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1544                      edge->count);
1545           if (dump_flags & TDF_DETAILS)
1546             edge_badness (edge, true);
1547         }
1548
1549       if (overall_size + growth > max_size
1550           && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1551         {
1552           edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1553           report_inline_failed_reason (edge);
1554           continue;
1555         }
1556
1557       if (!want_inline_small_function_p (edge, true))
1558         continue;
1559
1560       /* Heuristics for inlining small functions works poorly for
1561          recursive calls where we do efect similar to loop unrolling.
1562          When inliing such edge seems profitable, leave decision on
1563          specific inliner.  */
1564       if (cgraph_edge_recursive_p (edge))
1565         {
1566           where = edge->caller;
1567           if (where->global.inlined_to)
1568             where = where->global.inlined_to;
1569           if (!recursive_inlining (edge,
1570                                    flag_indirect_inlining
1571                                    ? &new_indirect_edges : NULL))
1572             {
1573               edge->inline_failed = CIF_RECURSIVE_INLINING;
1574               continue;
1575             }
1576           reset_edge_caches (where);
1577           /* Recursive inliner inlines all recursive calls of the function
1578              at once. Consequently we need to update all callee keys.  */
1579           if (flag_indirect_inlining)
1580             add_new_edges_to_heap (edge_heap, new_indirect_edges);
1581           update_callee_keys (edge_heap, where, updated_nodes);
1582         }
1583       else
1584         {
1585           struct cgraph_node *outer_node = NULL;
1586           int depth = 0;
1587
1588           /* Consider the case where self recursive function A is inlined into B.
1589              This is desired optimization in some cases, since it leads to effect
1590              similar of loop peeling and we might completely optimize out the
1591              recursive call.  However we must be extra selective.  */
1592
1593           where = edge->caller;
1594           while (where->global.inlined_to)
1595             {
1596               if (where->symbol.decl == callee->symbol.decl)
1597                 outer_node = where, depth++;
1598               where = where->callers->caller;
1599             }
1600           if (outer_node
1601               && !want_inline_self_recursive_call_p (edge, outer_node,
1602                                                      true, depth))
1603             {
1604               edge->inline_failed
1605                 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1606                    ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1607               continue;
1608             }
1609           else if (depth && dump_file)
1610             fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1611
1612           gcc_checking_assert (!callee->global.inlined_to);
1613           inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1614           if (flag_indirect_inlining)
1615             add_new_edges_to_heap (edge_heap, new_indirect_edges);
1616
1617           reset_edge_caches (edge->callee);
1618           reset_node_growth_cache (callee);
1619
1620           update_callee_keys (edge_heap, where, updated_nodes);
1621         }
1622       where = edge->caller;
1623       if (where->global.inlined_to)
1624         where = where->global.inlined_to;
1625
1626       /* Our profitability metric can depend on local properties
1627          such as number of inlinable calls and size of the function body.
1628          After inlining these properties might change for the function we
1629          inlined into (since it's body size changed) and for the functions
1630          called by function we inlined (since number of it inlinable callers
1631          might change).  */
1632       update_caller_keys (edge_heap, where, updated_nodes, NULL);
1633       bitmap_clear (updated_nodes);
1634
1635       if (dump_file)
1636         {
1637           fprintf (dump_file,
1638                    " Inlined into %s which now has time %i and size %i,"
1639                    "net change of %+i.\n",
1640                    cgraph_node_name (edge->caller),
1641                    inline_summary (edge->caller)->time,
1642                    inline_summary (edge->caller)->size,
1643                    overall_size - old_size);
1644         }
1645       if (min_size > overall_size)
1646         {
1647           min_size = overall_size;
1648           max_size = compute_max_insns (min_size);
1649
1650           if (dump_file)
1651             fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1652         }
1653     }
1654
1655   free_growth_caches ();
1656   new_indirect_edges.release ();
1657   fibheap_delete (edge_heap);
1658   if (dump_file)
1659     fprintf (dump_file,
1660              "Unit growth for small function inlining: %i->%i (%i%%)\n",
1661              initial_size, overall_size,
1662              initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1663   BITMAP_FREE (updated_nodes);
1664 }
1665
1666 /* Flatten NODE.  Performed both during early inlining and
1667    at IPA inlining time.  */
1668
1669 static void
1670 flatten_function (struct cgraph_node *node, bool early)
1671 {
1672   struct cgraph_edge *e;
1673
1674   /* We shouldn't be called recursively when we are being processed.  */
1675   gcc_assert (node->symbol.aux == NULL);
1676
1677   node->symbol.aux = (void *) node;
1678
1679   for (e = node->callees; e; e = e->next_callee)
1680     {
1681       struct cgraph_node *orig_callee;
1682       struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1683
1684       /* We've hit cycle?  It is time to give up.  */
1685       if (callee->symbol.aux)
1686         {
1687           if (dump_file)
1688             fprintf (dump_file,
1689                      "Not inlining %s into %s to avoid cycle.\n",
1690                      xstrdup (cgraph_node_name (callee)),
1691                      xstrdup (cgraph_node_name (e->caller)));
1692           e->inline_failed = CIF_RECURSIVE_INLINING;
1693           continue;
1694         }
1695
1696       /* When the edge is already inlined, we just need to recurse into
1697          it in order to fully flatten the leaves.  */
1698       if (!e->inline_failed)
1699         {
1700           flatten_function (callee, early);
1701           continue;
1702         }
1703
1704       /* Flatten attribute needs to be processed during late inlining. For
1705          extra code quality we however do flattening during early optimization,
1706          too.  */
1707       if (!early
1708           ? !can_inline_edge_p (e, true)
1709           : !can_early_inline_edge_p (e))
1710         continue;
1711
1712       if (cgraph_edge_recursive_p (e))
1713         {
1714           if (dump_file)
1715             fprintf (dump_file, "Not inlining: recursive call.\n");
1716           continue;
1717         }
1718
1719       if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1720           != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1721         {
1722           if (dump_file)
1723             fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1724           continue;
1725         }
1726
1727       /* Inline the edge and flatten the inline clone.  Avoid
1728          recursing through the original node if the node was cloned.  */
1729       if (dump_file)
1730         fprintf (dump_file, " Inlining %s into %s.\n",
1731                  xstrdup (cgraph_node_name (callee)),
1732                  xstrdup (cgraph_node_name (e->caller)));
1733       orig_callee = callee;
1734       inline_call (e, true, NULL, NULL, false);
1735       if (e->callee != orig_callee)
1736         orig_callee->symbol.aux = (void *) node;
1737       flatten_function (e->callee, early);
1738       if (e->callee != orig_callee)
1739         orig_callee->symbol.aux = NULL;
1740     }
1741
1742   node->symbol.aux = NULL;
1743   if (!node->global.inlined_to)
1744     inline_update_overall_summary (node);
1745 }
1746
1747 /* Decide on the inlining.  We do so in the topological order to avoid
1748    expenses on updating data structures.  */
1749
1750 static unsigned int
1751 ipa_inline (void)
1752 {
1753   struct cgraph_node *node;
1754   int nnodes;
1755   struct cgraph_node **order =
1756     XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1757   int i;
1758
1759   if (in_lto_p && optimize)
1760     ipa_update_after_lto_read ();
1761
1762   if (dump_file)
1763     dump_inline_summaries (dump_file);
1764
1765   nnodes = ipa_reverse_postorder (order);
1766
1767   FOR_EACH_FUNCTION (node)
1768     node->symbol.aux = 0;
1769
1770   if (dump_file)
1771     fprintf (dump_file, "\nFlattening functions:\n");
1772
1773   /* In the first pass handle functions to be flattened.  Do this with
1774      a priority so none of our later choices will make this impossible.  */
1775   for (i = nnodes - 1; i >= 0; i--)
1776     {
1777       node = order[i];
1778
1779       /* Handle nodes to be flattened.
1780          Ideally when processing callees we stop inlining at the
1781          entry of cycles, possibly cloning that entry point and
1782          try to flatten itself turning it into a self-recursive
1783          function.  */
1784       if (lookup_attribute ("flatten",
1785                             DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1786         {
1787           if (dump_file)
1788             fprintf (dump_file,
1789                      "Flattening %s\n", cgraph_node_name (node));
1790           flatten_function (node, false);
1791         }
1792     }
1793
1794   inline_small_functions ();
1795   symtab_remove_unreachable_nodes (false, dump_file);
1796   free (order);
1797
1798   /* Inline functions with a property that after inlining into all callers the
1799      code size will shrink because the out-of-line copy is eliminated. 
1800      We do this regardless on the callee size as long as function growth limits
1801      are met.  */
1802   if (flag_inline_functions_called_once)
1803     {
1804       int cold;
1805       if (dump_file)
1806         fprintf (dump_file,
1807                  "\nDeciding on functions to be inlined into all callers:\n");
1808
1809       /* Inlining one function called once has good chance of preventing
1810          inlining other function into the same callee.  Ideally we should
1811          work in priority order, but probably inlining hot functions first
1812          is good cut without the extra pain of maintaining the queue.
1813
1814          ??? this is not really fitting the bill perfectly: inlining function
1815          into callee often leads to better optimization of callee due to
1816          increased context for optimization.
1817          For example if main() function calls a function that outputs help
1818          and then function that does the main optmization, we should inline
1819          the second with priority even if both calls are cold by themselves.
1820
1821          We probably want to implement new predicate replacing our use of
1822          maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1823          to be hot.  */
1824       for (cold = 0; cold <= 1; cold ++)
1825         {
1826           FOR_EACH_DEFINED_FUNCTION (node)
1827             {
1828               if (want_inline_function_to_all_callers_p (node, cold))
1829                 {
1830                   int num_calls = 0;
1831                   struct cgraph_edge *e;
1832                   for (e = node->callers; e; e = e->next_caller)
1833                     num_calls++;
1834                   while (node->callers && !node->global.inlined_to)
1835                     {
1836                       struct cgraph_node *caller = node->callers->caller;
1837
1838                       if (dump_file)
1839                         {
1840                           fprintf (dump_file,
1841                                    "\nInlining %s size %i.\n",
1842                                    cgraph_node_name (node),
1843                                    inline_summary (node)->size);
1844                           fprintf (dump_file,
1845                                    " Called once from %s %i insns.\n",
1846                                    cgraph_node_name (node->callers->caller),
1847                                    inline_summary (node->callers->caller)->size);
1848                         }
1849
1850                       inline_call (node->callers, true, NULL, NULL, true);
1851                       if (dump_file)
1852                         fprintf (dump_file,
1853                                  " Inlined into %s which now has %i size\n",
1854                                  cgraph_node_name (caller),
1855                                  inline_summary (caller)->size);
1856                       if (!num_calls--)
1857                         {
1858                           if (dump_file)
1859                             fprintf (dump_file, "New calls found; giving up.\n");
1860                           break;
1861                         }
1862                     }
1863                 }
1864             }
1865         }
1866     }
1867
1868   /* Free ipa-prop structures if they are no longer needed.  */
1869   if (optimize)
1870     ipa_free_all_structures_after_iinln ();
1871
1872   if (dump_file)
1873     fprintf (dump_file,
1874              "\nInlined %i calls, eliminated %i functions\n\n",
1875              ncalls_inlined, nfunctions_inlined);
1876
1877   if (dump_file)
1878     dump_inline_summaries (dump_file);
1879   /* In WPA we use inline summaries for partitioning process.  */
1880   if (!flag_wpa)
1881     inline_free_summary ();
1882   return 0;
1883 }
1884
1885 /* Inline always-inline function calls in NODE.  */
1886
1887 static bool
1888 inline_always_inline_functions (struct cgraph_node *node)
1889 {
1890   struct cgraph_edge *e;
1891   bool inlined = false;
1892
1893   for (e = node->callees; e; e = e->next_callee)
1894     {
1895       struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1896       if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1897         continue;
1898
1899       if (cgraph_edge_recursive_p (e))
1900         {
1901           if (dump_file)
1902             fprintf (dump_file, "  Not inlining recursive call to %s.\n",
1903                      cgraph_node_name (e->callee));
1904           e->inline_failed = CIF_RECURSIVE_INLINING;
1905           continue;
1906         }
1907
1908       if (!can_early_inline_edge_p (e))
1909         continue;
1910
1911       if (dump_file)
1912         fprintf (dump_file, "  Inlining %s into %s (always_inline).\n",
1913                  xstrdup (cgraph_node_name (e->callee)),
1914                  xstrdup (cgraph_node_name (e->caller)));
1915       inline_call (e, true, NULL, NULL, false);
1916       inlined = true;
1917     }
1918   if (inlined)
1919     inline_update_overall_summary (node);
1920
1921   return inlined;
1922 }
1923
1924 /* Decide on the inlining.  We do so in the topological order to avoid
1925    expenses on updating data structures.  */
1926
1927 static bool
1928 early_inline_small_functions (struct cgraph_node *node)
1929 {
1930   struct cgraph_edge *e;
1931   bool inlined = false;
1932
1933   for (e = node->callees; e; e = e->next_callee)
1934     {
1935       struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1936       if (!inline_summary (callee)->inlinable
1937           || !e->inline_failed)
1938         continue;
1939
1940       /* Do not consider functions not declared inline.  */
1941       if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
1942           && !flag_inline_small_functions
1943           && !flag_inline_functions)
1944         continue;
1945
1946       if (dump_file)
1947         fprintf (dump_file, "Considering inline candidate %s.\n",
1948                  cgraph_node_name (callee));
1949
1950       if (!can_early_inline_edge_p (e))
1951         continue;
1952
1953       if (cgraph_edge_recursive_p (e))
1954         {
1955           if (dump_file)
1956             fprintf (dump_file, "  Not inlining: recursive call.\n");
1957           continue;
1958         }
1959
1960       if (!want_early_inline_function_p (e))
1961         continue;
1962
1963       if (dump_file)
1964         fprintf (dump_file, " Inlining %s into %s.\n",
1965                  xstrdup (cgraph_node_name (callee)),
1966                  xstrdup (cgraph_node_name (e->caller)));
1967       inline_call (e, true, NULL, NULL, true);
1968       inlined = true;
1969     }
1970
1971   return inlined;
1972 }
1973
1974 /* Do inlining of small functions.  Doing so early helps profiling and other
1975    passes to be somewhat more effective and avoids some code duplication in
1976    later real inlining pass for testcases with very many function calls.  */
1977 static unsigned int
1978 early_inliner (void)
1979 {
1980   struct cgraph_node *node = cgraph_get_node (current_function_decl);
1981   struct cgraph_edge *edge;
1982   unsigned int todo = 0;
1983   int iterations = 0;
1984   bool inlined = false;
1985
1986   if (seen_error ())
1987     return 0;
1988
1989   /* Do nothing if datastructures for ipa-inliner are already computed.  This
1990      happens when some pass decides to construct new function and
1991      cgraph_add_new_function calls lowering passes and early optimization on
1992      it.  This may confuse ourself when early inliner decide to inline call to
1993      function clone, because function clones don't have parameter list in
1994      ipa-prop matching their signature.  */
1995   if (ipa_node_params_vector.exists ())
1996     return 0;
1997
1998 #ifdef ENABLE_CHECKING
1999   verify_cgraph_node (node);
2000 #endif
2001
2002   /* Even when not optimizing or not inlining inline always-inline
2003      functions.  */
2004   inlined = inline_always_inline_functions (node);
2005
2006   if (!optimize
2007       || flag_no_inline
2008       || !flag_early_inlining
2009       /* Never inline regular functions into always-inline functions
2010          during incremental inlining.  This sucks as functions calling
2011          always inline functions will get less optimized, but at the
2012          same time inlining of functions calling always inline
2013          function into an always inline function might introduce
2014          cycles of edges to be always inlined in the callgraph.
2015
2016          We might want to be smarter and just avoid this type of inlining.  */
2017       || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
2018     ;
2019   else if (lookup_attribute ("flatten",
2020                              DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2021     {
2022       /* When the function is marked to be flattened, recursively inline
2023          all calls in it.  */
2024       if (dump_file)
2025         fprintf (dump_file,
2026                  "Flattening %s\n", cgraph_node_name (node));
2027       flatten_function (node, true);
2028       inlined = true;
2029     }
2030   else
2031     {
2032       /* We iterate incremental inlining to get trivial cases of indirect
2033          inlining.  */
2034       while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2035              && early_inline_small_functions (node))
2036         {
2037           timevar_push (TV_INTEGRATION);
2038           todo |= optimize_inline_calls (current_function_decl);
2039
2040           /* Technically we ought to recompute inline parameters so the new
2041              iteration of early inliner works as expected.  We however have
2042              values approximately right and thus we only need to update edge
2043              info that might be cleared out for newly discovered edges.  */
2044           for (edge = node->callees; edge; edge = edge->next_callee)
2045             {
2046               struct inline_edge_summary *es = inline_edge_summary (edge);
2047               es->call_stmt_size
2048                 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2049               es->call_stmt_time
2050                 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2051               if (edge->callee->symbol.decl
2052                   && !gimple_check_call_matching_types (edge->call_stmt,
2053                                                         edge->callee->symbol.decl))
2054                 edge->call_stmt_cannot_inline_p = true;
2055             }
2056           timevar_pop (TV_INTEGRATION);
2057           iterations++;
2058           inlined = false;
2059         }
2060       if (dump_file)
2061         fprintf (dump_file, "Iterations: %i\n", iterations);
2062     }
2063
2064   if (inlined)
2065     {
2066       timevar_push (TV_INTEGRATION);
2067       todo |= optimize_inline_calls (current_function_decl);
2068       timevar_pop (TV_INTEGRATION);
2069     }
2070
2071   cfun->always_inline_functions_inlined = true;
2072
2073   return todo;
2074 }
2075
2076 struct gimple_opt_pass pass_early_inline =
2077 {
2078  {
2079   GIMPLE_PASS,
2080   "einline",                            /* name */
2081   OPTGROUP_INLINE,                      /* optinfo_flags */
2082   NULL,                                 /* gate */
2083   early_inliner,                        /* execute */
2084   NULL,                                 /* sub */
2085   NULL,                                 /* next */
2086   0,                                    /* static_pass_number */
2087   TV_EARLY_INLINING,                    /* tv_id */
2088   PROP_ssa,                             /* properties_required */
2089   0,                                    /* properties_provided */
2090   0,                                    /* properties_destroyed */
2091   0,                                    /* todo_flags_start */
2092   0                                     /* todo_flags_finish */
2093  }
2094 };
2095
2096
2097 /* When to run IPA inlining.  Inlining of always-inline functions
2098    happens during early inlining.
2099
2100    Enable inlining unconditoinally at -flto.  We need size estimates to
2101    drive partitioning.  */
2102
2103 static bool
2104 gate_ipa_inline (void)
2105 {
2106   return optimize || flag_lto || flag_wpa;
2107 }
2108
2109 struct ipa_opt_pass_d pass_ipa_inline =
2110 {
2111  {
2112   IPA_PASS,
2113   "inline",                             /* name */
2114   OPTGROUP_INLINE,                      /* optinfo_flags */
2115   gate_ipa_inline,                      /* gate */
2116   ipa_inline,                           /* execute */
2117   NULL,                                 /* sub */
2118   NULL,                                 /* next */
2119   0,                                    /* static_pass_number */
2120   TV_IPA_INLINING,                      /* tv_id */
2121   0,                                    /* properties_required */
2122   0,                                    /* properties_provided */
2123   0,                                    /* properties_destroyed */
2124   TODO_remove_functions,                /* todo_flags_finish */
2125   TODO_dump_symtab 
2126   | TODO_remove_functions | TODO_ggc_collect    /* todo_flags_finish */
2127  },
2128  inline_generate_summary,               /* generate_summary */
2129  inline_write_summary,                  /* write_summary */
2130  inline_read_summary,                   /* read_summary */
2131  NULL,                                  /* write_optimization_summary */
2132  NULL,                                  /* read_optimization_summary */
2133  NULL,                                  /* stmt_fixup */
2134  0,                                     /* TODOs */
2135  inline_transform,                      /* function_transform */
2136  NULL,                                  /* variable_transform */
2137 };