0bb2eb19f23bee455026249d4bdf828e99d50813
[platform/upstream/linaro-gcc.git] / gcc / ggc-common.c
1 /* Simple garbage collection for the GNU compiler.
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 /* Generic garbage collection (GC) functions and data, not specific to
21    any particular GC implementation.  */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "hash-table.h"
27 #include "ggc.h"
28 #include "ggc-internal.h"
29 #include "diagnostic-core.h"
30 #include "params.h"
31 #include "hosthooks.h"
32 #include "hosthooks-def.h"
33 #include "plugin.h"
34 #include "vec.h"
35 #include "timevar.h"
36
37 /* When set, ggc_collect will do collection.  */
38 bool ggc_force_collect;
39
40 /* When true, protect the contents of the identifier hash table.  */
41 bool ggc_protect_identifiers = true;
42
43 /* Statistics about the allocation.  */
44 static ggc_statistics *ggc_stats;
45
46 struct traversal_state;
47
48 static int ggc_htab_delete (void **, void *);
49 static int compare_ptr_data (const void *, const void *);
50 static void relocate_ptrs (void *, void *);
51 static void write_pch_globals (const struct ggc_root_tab * const *tab,
52                                struct traversal_state *state);
53
54 /* Maintain global roots that are preserved during GC.  */
55
56 /* Process a slot of an htab by deleting it if it has not been marked.  */
57
58 static int
59 ggc_htab_delete (void **slot, void *info)
60 {
61   const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
62
63   if (! (*r->marked_p) (*slot))
64     htab_clear_slot (*r->base, slot);
65   else
66     (*r->cb) (*slot);
67
68   return 1;
69 }
70
71
72 /* This extra vector of dynamically registered root_tab-s is used by
73    ggc_mark_roots and gives the ability to dynamically add new GGC root
74    tables, for instance from some plugins; this vector is on the heap
75    since it is used by GGC internally.  */
76 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
77 static vec<const_ggc_root_tab_t> extra_root_vec;
78
79 /* Dynamically register a new GGC root table RT. This is useful for
80    plugins. */
81
82 void
83 ggc_register_root_tab (const struct ggc_root_tab* rt)
84 {
85   if (rt)
86     extra_root_vec.safe_push (rt);
87 }
88
89 /* This extra vector of dynamically registered cache_tab-s is used by
90    ggc_mark_roots and gives the ability to dynamically add new GGC cache
91    tables, for instance from some plugins; this vector is on the heap
92    since it is used by GGC internally.  */
93 typedef const struct ggc_cache_tab *const_ggc_cache_tab_t;
94 static vec<const_ggc_cache_tab_t> extra_cache_vec;
95
96 /* Dynamically register a new GGC cache table CT. This is useful for
97    plugins. */
98
99 void
100 ggc_register_cache_tab (const struct ggc_cache_tab* ct)
101 {
102   if (ct)
103     extra_cache_vec.safe_push (ct);
104 }
105
106 /* Scan a hash table that has objects which are to be deleted if they are not
107    already marked.  */
108
109 static void
110 ggc_scan_cache_tab (const_ggc_cache_tab_t ctp)
111 {
112   const struct ggc_cache_tab *cti;
113
114   for (cti = ctp; cti->base != NULL; cti++)
115     if (*cti->base)
116       {
117         ggc_set_mark (*cti->base);
118         htab_traverse_noresize (*cti->base, ggc_htab_delete,
119                                 CONST_CAST (void *, (const void *)cti));
120         ggc_set_mark ((*cti->base)->entries);
121       }
122 }
123
124 /* Mark all the roots in the table RT.  */
125
126 static void
127 ggc_mark_root_tab (const_ggc_root_tab_t rt)
128 {
129   size_t i;
130
131   for ( ; rt->base != NULL; rt++)
132     for (i = 0; i < rt->nelt; i++)
133       (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
134 }
135
136 /* Iterate through all registered roots and mark each element.  */
137
138 void
139 ggc_mark_roots (void)
140 {
141   const struct ggc_root_tab *const *rt;
142   const_ggc_root_tab_t rtp, rti;
143   const struct ggc_cache_tab *const *ct;
144   const_ggc_cache_tab_t ctp;
145   size_t i;
146
147   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
148     for (rti = *rt; rti->base != NULL; rti++)
149       memset (rti->base, 0, rti->stride);
150
151   for (rt = gt_ggc_rtab; *rt; rt++)
152     ggc_mark_root_tab (*rt);
153
154   FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
155     ggc_mark_root_tab (rtp);
156
157   if (ggc_protect_identifiers)
158     ggc_mark_stringpool ();
159
160   /* Now scan all hash tables that have objects which are to be deleted if
161      they are not already marked.  */
162   for (ct = gt_ggc_cache_rtab; *ct; ct++)
163     ggc_scan_cache_tab (*ct);
164
165   FOR_EACH_VEC_ELT (extra_cache_vec, i, ctp)
166     ggc_scan_cache_tab (ctp);
167
168   if (! ggc_protect_identifiers)
169     ggc_purge_stringpool ();
170
171   /* Some plugins may call ggc_set_mark from here.  */
172   invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
173 }
174
175 /* Allocate a block of memory, then clear it.  */
176 void *
177 ggc_internal_cleared_alloc_stat (size_t size MEM_STAT_DECL)
178 {
179   void *buf = ggc_internal_alloc_stat (size PASS_MEM_STAT);
180   memset (buf, 0, size);
181   return buf;
182 }
183
184 /* Resize a block of memory, possibly re-allocating it.  */
185 void *
186 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
187 {
188   void *r;
189   size_t old_size;
190
191   if (x == NULL)
192     return ggc_internal_alloc_stat (size PASS_MEM_STAT);
193
194   old_size = ggc_get_size (x);
195
196   if (size <= old_size)
197     {
198       /* Mark the unwanted memory as unaccessible.  We also need to make
199          the "new" size accessible, since ggc_get_size returns the size of
200          the pool, not the size of the individually allocated object, the
201          size which was previously made accessible.  Unfortunately, we
202          don't know that previously allocated size.  Without that
203          knowledge we have to lose some initialization-tracking for the
204          old parts of the object.  An alternative is to mark the whole
205          old_size as reachable, but that would lose tracking of writes
206          after the end of the object (by small offsets).  Discard the
207          handle to avoid handle leak.  */
208       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
209                                                     old_size - size));
210       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
211       return x;
212     }
213
214   r = ggc_internal_alloc_stat (size PASS_MEM_STAT);
215
216   /* Since ggc_get_size returns the size of the pool, not the size of the
217      individually allocated object, we'd access parts of the old object
218      that were marked invalid with the memcpy below.  We lose a bit of the
219      initialization-tracking since some of it may be uninitialized.  */
220   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
221
222   memcpy (r, x, old_size);
223
224   /* The old object is not supposed to be used anymore.  */
225   ggc_free (x);
226
227   return r;
228 }
229
230 void *
231 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
232                                     size_t n ATTRIBUTE_UNUSED)
233 {
234   gcc_assert (c * n == sizeof (struct htab));
235   return ggc_alloc_cleared_htab ();
236 }
237
238 /* TODO: once we actually use type information in GGC, create a new tag
239    gt_gcc_ptr_array and use it for pointer arrays.  */
240 void *
241 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
242 {
243   gcc_assert (sizeof (PTR *) == n);
244   return ggc_internal_cleared_vec_alloc (sizeof (PTR *), c);
245 }
246
247 /* These are for splay_tree_new_ggc.  */
248 void *
249 ggc_splay_alloc (int sz, void *nl)
250 {
251   gcc_assert (!nl);
252   return ggc_internal_alloc (sz);
253 }
254
255 void
256 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
257 {
258   gcc_assert (!nl);
259 }
260
261 /* Print statistics that are independent of the collector in use.  */
262 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
263                   ? (x) \
264                   : ((x) < 1024*1024*10 \
265                      ? (x) / 1024 \
266                      : (x) / (1024*1024))))
267 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
268
269 void
270 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
271                              ggc_statistics *stats)
272 {
273   /* Set the pointer so that during collection we will actually gather
274      the statistics.  */
275   ggc_stats = stats;
276
277   /* Then do one collection to fill in the statistics.  */
278   ggc_collect ();
279
280   /* At present, we don't really gather any interesting statistics.  */
281
282   /* Don't gather statistics any more.  */
283   ggc_stats = NULL;
284 }
285 \f
286 /* Functions for saving and restoring GCable memory to disk.  */
287
288 struct ptr_data
289 {
290   void *obj;
291   void *note_ptr_cookie;
292   gt_note_pointers note_ptr_fn;
293   gt_handle_reorder reorder_fn;
294   size_t size;
295   void *new_addr;
296 };
297
298 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
299
300 /* Helper for hashing saving_htab.  */
301
302 struct saving_hasher : typed_free_remove <ptr_data>
303 {
304   typedef ptr_data value_type;
305   typedef void compare_type;
306   static inline hashval_t hash (const value_type *);
307   static inline bool equal (const value_type *, const compare_type *);
308 };
309
310 inline hashval_t
311 saving_hasher::hash (const value_type *p)
312 {
313   return POINTER_HASH (p->obj);
314 }
315
316 inline bool
317 saving_hasher::equal (const value_type *p1, const compare_type *p2)
318 {
319   return p1->obj == p2;
320 }
321
322 static hash_table <saving_hasher> saving_htab;
323
324 /* Register an object in the hash table.  */
325
326 int
327 gt_pch_note_object (void *obj, void *note_ptr_cookie,
328                     gt_note_pointers note_ptr_fn)
329 {
330   struct ptr_data **slot;
331
332   if (obj == NULL || obj == (void *) 1)
333     return 0;
334
335   slot = (struct ptr_data **)
336     saving_htab.find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
337   if (*slot != NULL)
338     {
339       gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
340                   && (*slot)->note_ptr_cookie == note_ptr_cookie);
341       return 0;
342     }
343
344   *slot = XCNEW (struct ptr_data);
345   (*slot)->obj = obj;
346   (*slot)->note_ptr_fn = note_ptr_fn;
347   (*slot)->note_ptr_cookie = note_ptr_cookie;
348   if (note_ptr_fn == gt_pch_p_S)
349     (*slot)->size = strlen ((const char *)obj) + 1;
350   else
351     (*slot)->size = ggc_get_size (obj);
352   return 1;
353 }
354
355 /* Register an object in the hash table.  */
356
357 void
358 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
359                      gt_handle_reorder reorder_fn)
360 {
361   struct ptr_data *data;
362
363   if (obj == NULL || obj == (void *) 1)
364     return;
365
366   data = (struct ptr_data *)
367     saving_htab.find_with_hash (obj, POINTER_HASH (obj));
368   gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
369
370   data->reorder_fn = reorder_fn;
371 }
372
373 /* Handy state for the traversal functions.  */
374
375 struct traversal_state
376 {
377   FILE *f;
378   struct ggc_pch_data *d;
379   size_t count;
380   struct ptr_data **ptrs;
381   size_t ptrs_i;
382 };
383
384 /* Callbacks for htab_traverse.  */
385
386 int
387 ggc_call_count (ptr_data **slot, traversal_state *state)
388 {
389   struct ptr_data *d = *slot;
390
391   ggc_pch_count_object (state->d, d->obj, d->size,
392                         d->note_ptr_fn == gt_pch_p_S);
393   state->count++;
394   return 1;
395 }
396
397 int
398 ggc_call_alloc (ptr_data **slot, traversal_state *state)
399 {
400   struct ptr_data *d = *slot;
401
402   d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
403                                       d->note_ptr_fn == gt_pch_p_S);
404   state->ptrs[state->ptrs_i++] = d;
405   return 1;
406 }
407
408 /* Callback for qsort.  */
409
410 static int
411 compare_ptr_data (const void *p1_p, const void *p2_p)
412 {
413   const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
414   const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
415   return (((size_t)p1->new_addr > (size_t)p2->new_addr)
416           - ((size_t)p1->new_addr < (size_t)p2->new_addr));
417 }
418
419 /* Callbacks for note_ptr_fn.  */
420
421 static void
422 relocate_ptrs (void *ptr_p, void *state_p)
423 {
424   void **ptr = (void **)ptr_p;
425   struct traversal_state *state ATTRIBUTE_UNUSED
426     = (struct traversal_state *)state_p;
427   struct ptr_data *result;
428
429   if (*ptr == NULL || *ptr == (void *)1)
430     return;
431
432   result = (struct ptr_data *)
433     saving_htab.find_with_hash (*ptr, POINTER_HASH (*ptr));
434   gcc_assert (result);
435   *ptr = result->new_addr;
436 }
437
438 /* Write out, after relocation, the pointers in TAB.  */
439 static void
440 write_pch_globals (const struct ggc_root_tab * const *tab,
441                    struct traversal_state *state)
442 {
443   const struct ggc_root_tab *const *rt;
444   const struct ggc_root_tab *rti;
445   size_t i;
446
447   for (rt = tab; *rt; rt++)
448     for (rti = *rt; rti->base != NULL; rti++)
449       for (i = 0; i < rti->nelt; i++)
450         {
451           void *ptr = *(void **)((char *)rti->base + rti->stride * i);
452           struct ptr_data *new_ptr;
453           if (ptr == NULL || ptr == (void *)1)
454             {
455               if (fwrite (&ptr, sizeof (void *), 1, state->f)
456                   != 1)
457                 fatal_error ("can%'t write PCH file: %m");
458             }
459           else
460             {
461               new_ptr = (struct ptr_data *)
462                 saving_htab.find_with_hash (ptr, POINTER_HASH (ptr));
463               if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
464                   != 1)
465                 fatal_error ("can%'t write PCH file: %m");
466             }
467         }
468 }
469
470 /* Hold the information we need to mmap the file back in.  */
471
472 struct mmap_info
473 {
474   size_t offset;
475   size_t size;
476   void *preferred_base;
477 };
478
479 /* Write out the state of the compiler to F.  */
480
481 void
482 gt_pch_save (FILE *f)
483 {
484   const struct ggc_root_tab *const *rt;
485   const struct ggc_root_tab *rti;
486   size_t i;
487   struct traversal_state state;
488   char *this_object = NULL;
489   size_t this_object_size = 0;
490   struct mmap_info mmi;
491   const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
492
493   gt_pch_save_stringpool ();
494
495   timevar_push (TV_PCH_PTR_REALLOC);
496   saving_htab.create (50000);
497
498   for (rt = gt_ggc_rtab; *rt; rt++)
499     for (rti = *rt; rti->base != NULL; rti++)
500       for (i = 0; i < rti->nelt; i++)
501         (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
502
503   for (rt = gt_pch_cache_rtab; *rt; rt++)
504     for (rti = *rt; rti->base != NULL; rti++)
505       for (i = 0; i < rti->nelt; i++)
506         (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
507
508   /* Prepare the objects for writing, determine addresses and such.  */
509   state.f = f;
510   state.d = init_ggc_pch ();
511   state.count = 0;
512   saving_htab.traverse <traversal_state *, ggc_call_count> (&state);
513
514   mmi.size = ggc_pch_total_size (state.d);
515
516   /* Try to arrange things so that no relocation is necessary, but
517      don't try very hard.  On most platforms, this will always work,
518      and on the rest it's a lot of work to do better.
519      (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
520      HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
521   mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
522
523   ggc_pch_this_base (state.d, mmi.preferred_base);
524
525   state.ptrs = XNEWVEC (struct ptr_data *, state.count);
526   state.ptrs_i = 0;
527
528   saving_htab.traverse <traversal_state *, ggc_call_alloc> (&state);
529   timevar_pop (TV_PCH_PTR_REALLOC);
530
531   timevar_push (TV_PCH_PTR_SORT);
532   qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
533   timevar_pop (TV_PCH_PTR_SORT);
534
535   /* Write out all the scalar variables.  */
536   for (rt = gt_pch_scalar_rtab; *rt; rt++)
537     for (rti = *rt; rti->base != NULL; rti++)
538       if (fwrite (rti->base, rti->stride, 1, f) != 1)
539         fatal_error ("can%'t write PCH file: %m");
540
541   /* Write out all the global pointers, after translation.  */
542   write_pch_globals (gt_ggc_rtab, &state);
543   write_pch_globals (gt_pch_cache_rtab, &state);
544
545   /* Pad the PCH file so that the mmapped area starts on an allocation
546      granularity (usually page) boundary.  */
547   {
548     long o;
549     o = ftell (state.f) + sizeof (mmi);
550     if (o == -1)
551       fatal_error ("can%'t get position in PCH file: %m");
552     mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
553     if (mmi.offset == mmap_offset_alignment)
554       mmi.offset = 0;
555     mmi.offset += o;
556   }
557   if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
558     fatal_error ("can%'t write PCH file: %m");
559   if (mmi.offset != 0
560       && fseek (state.f, mmi.offset, SEEK_SET) != 0)
561     fatal_error ("can%'t write padding to PCH file: %m");
562
563   ggc_pch_prepare_write (state.d, state.f);
564
565 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
566   vec<char> vbits = vNULL;
567 #endif
568
569   /* Actually write out the objects.  */
570   for (i = 0; i < state.count; i++)
571     {
572       if (this_object_size < state.ptrs[i]->size)
573         {
574           this_object_size = state.ptrs[i]->size;
575           this_object = XRESIZEVAR (char, this_object, this_object_size);
576         }
577 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
578       /* obj might contain uninitialized bytes, e.g. in the trailing
579          padding of the object.  Avoid warnings by making the memory
580          temporarily defined and then restoring previous state.  */
581       int get_vbits = 0;
582       size_t valid_size = state.ptrs[i]->size;
583       if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
584         {
585           if (vbits.length () < valid_size)
586             vbits.safe_grow (valid_size);
587           get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
588                                           vbits.address (), valid_size);
589           if (get_vbits == 3)
590             {
591               /* We assume that first part of obj is addressable, and
592                  the rest is unaddressable.  Find out where the boundary is
593                  using binary search.  */
594               size_t lo = 0, hi = valid_size;
595               while (hi > lo)
596                 {
597                   size_t mid = (lo + hi) / 2;
598                   get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
599                                                   + mid, vbits.address (),
600                                                   1);
601                   if (get_vbits == 3)
602                     hi = mid;
603                   else if (get_vbits == 1)
604                     lo = mid + 1;
605                   else
606                     break;
607                 }
608               if (get_vbits == 1 || get_vbits == 3)
609                 {
610                   valid_size = lo;
611                   get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
612                                                   vbits.address (),
613                                                   valid_size);
614                 }
615             }
616           if (get_vbits == 1)
617             VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
618                                                          state.ptrs[i]->size));
619         }
620 #endif
621       memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
622       if (state.ptrs[i]->reorder_fn != NULL)
623         state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
624                                    state.ptrs[i]->note_ptr_cookie,
625                                    relocate_ptrs, &state);
626       state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
627                                   state.ptrs[i]->note_ptr_cookie,
628                                   relocate_ptrs, &state);
629       ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
630                             state.ptrs[i]->new_addr, state.ptrs[i]->size,
631                             state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
632       if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
633         memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
634 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
635       if (__builtin_expect (get_vbits == 1, 0))
636         {
637           (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
638                                      valid_size);
639           if (valid_size != state.ptrs[i]->size)
640             VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
641                                                           state.ptrs[i]->obj
642                                                           + valid_size,
643                                                           state.ptrs[i]->size
644                                                           - valid_size));
645         }
646 #endif
647     }
648 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
649   vbits.release ();
650 #endif
651
652   ggc_pch_finish (state.d, state.f);
653   gt_pch_fixup_stringpool ();
654
655   XDELETE (state.ptrs);
656   XDELETE (this_object);
657   saving_htab.dispose ();
658 }
659
660 /* Read the state of the compiler back in from F.  */
661
662 void
663 gt_pch_restore (FILE *f)
664 {
665   const struct ggc_root_tab *const *rt;
666   const struct ggc_root_tab *rti;
667   size_t i;
668   struct mmap_info mmi;
669   int result;
670
671   /* Delete any deletable objects.  This makes ggc_pch_read much
672      faster, as it can be sure that no GCable objects remain other
673      than the ones just read in.  */
674   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
675     for (rti = *rt; rti->base != NULL; rti++)
676       memset (rti->base, 0, rti->stride);
677
678   /* Read in all the scalar variables.  */
679   for (rt = gt_pch_scalar_rtab; *rt; rt++)
680     for (rti = *rt; rti->base != NULL; rti++)
681       if (fread (rti->base, rti->stride, 1, f) != 1)
682         fatal_error ("can%'t read PCH file: %m");
683
684   /* Read in all the global pointers, in 6 easy loops.  */
685   for (rt = gt_ggc_rtab; *rt; rt++)
686     for (rti = *rt; rti->base != NULL; rti++)
687       for (i = 0; i < rti->nelt; i++)
688         if (fread ((char *)rti->base + rti->stride * i,
689                    sizeof (void *), 1, f) != 1)
690           fatal_error ("can%'t read PCH file: %m");
691
692   for (rt = gt_pch_cache_rtab; *rt; rt++)
693     for (rti = *rt; rti->base != NULL; rti++)
694       for (i = 0; i < rti->nelt; i++)
695         if (fread ((char *)rti->base + rti->stride * i,
696                    sizeof (void *), 1, f) != 1)
697           fatal_error ("can%'t read PCH file: %m");
698
699   if (fread (&mmi, sizeof (mmi), 1, f) != 1)
700     fatal_error ("can%'t read PCH file: %m");
701
702   result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
703                                           fileno (f), mmi.offset);
704   if (result < 0)
705     fatal_error ("had to relocate PCH");
706   if (result == 0)
707     {
708       if (fseek (f, mmi.offset, SEEK_SET) != 0
709           || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
710         fatal_error ("can%'t read PCH file: %m");
711     }
712   else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
713     fatal_error ("can%'t read PCH file: %m");
714
715   ggc_pch_read (f, mmi.preferred_base);
716
717   gt_pch_restore_stringpool ();
718 }
719
720 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
721    Select no address whatsoever, and let gt_pch_save choose what it will with
722    malloc, presumably.  */
723
724 void *
725 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
726                             int fd ATTRIBUTE_UNUSED)
727 {
728   return NULL;
729 }
730
731 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
732    Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
733    same as base, indicating that the memory has been allocated but needs to
734    be read in from the file.  Return -1 if the address differs, to relocation
735    of the PCH file would be required.  */
736
737 int
738 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
739                             size_t offset ATTRIBUTE_UNUSED)
740 {
741   void *addr = xmalloc (size);
742   return (addr == base) - 1;
743 }
744
745 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
746    alignment required for allocating virtual memory. Usually this is the
747    same as pagesize.  */
748
749 size_t
750 default_gt_pch_alloc_granularity (void)
751 {
752   return getpagesize();
753 }
754
755 #if HAVE_MMAP_FILE
756 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
757    We temporarily allocate SIZE bytes, and let the kernel place the data
758    wherever it will.  If it worked, that's our spot, if not we're likely
759    to be in trouble.  */
760
761 void *
762 mmap_gt_pch_get_address (size_t size, int fd)
763 {
764   void *ret;
765
766   ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
767   if (ret == (void *) MAP_FAILED)
768     ret = NULL;
769   else
770     munmap ((caddr_t) ret, size);
771
772   return ret;
773 }
774
775 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
776    Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
777    mapping the data at BASE, -1 if we couldn't.
778
779    This version assumes that the kernel honors the START operand of mmap
780    even without MAP_FIXED if START through START+SIZE are not currently
781    mapped with something.  */
782
783 int
784 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
785 {
786   void *addr;
787
788   /* We're called with size == 0 if we're not planning to load a PCH
789      file at all.  This allows the hook to free any static space that
790      we might have allocated at link time.  */
791   if (size == 0)
792     return -1;
793
794   addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
795                fd, offset);
796
797   return addr == base ? 1 : -1;
798 }
799 #endif /* HAVE_MMAP_FILE */
800
801 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
802
803 /* Modify the bound based on rlimits.  */
804 static double
805 ggc_rlimit_bound (double limit)
806 {
807 #if defined(HAVE_GETRLIMIT)
808   struct rlimit rlim;
809 # if defined (RLIMIT_AS)
810   /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
811      any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
812   if (getrlimit (RLIMIT_AS, &rlim) == 0
813       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
814       && rlim.rlim_cur < limit)
815     limit = rlim.rlim_cur;
816 # elif defined (RLIMIT_DATA)
817   /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
818      might be on an OS that has a broken mmap.  (Others don't bound
819      mmap at all, apparently.)  */
820   if (getrlimit (RLIMIT_DATA, &rlim) == 0
821       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
822       && rlim.rlim_cur < limit
823       /* Darwin has this horribly bogus default setting of
824          RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
825          appears to be ignored.  Ignore such silliness.  If a limit
826          this small was actually effective for mmap, GCC wouldn't even
827          start up.  */
828       && rlim.rlim_cur >= 8 * 1024 * 1024)
829     limit = rlim.rlim_cur;
830 # endif /* RLIMIT_AS or RLIMIT_DATA */
831 #endif /* HAVE_GETRLIMIT */
832
833   return limit;
834 }
835
836 /* Heuristic to set a default for GGC_MIN_EXPAND.  */
837 static int
838 ggc_min_expand_heuristic (void)
839 {
840   double min_expand = physmem_total();
841
842   /* Adjust for rlimits.  */
843   min_expand = ggc_rlimit_bound (min_expand);
844
845   /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
846      a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
847   min_expand /= 1024*1024*1024;
848   min_expand *= 70;
849   min_expand = MIN (min_expand, 70);
850   min_expand += 30;
851
852   return min_expand;
853 }
854
855 /* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
856 static int
857 ggc_min_heapsize_heuristic (void)
858 {
859   double phys_kbytes = physmem_total();
860   double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
861
862   phys_kbytes /= 1024; /* Convert to Kbytes.  */
863   limit_kbytes /= 1024;
864
865   /* The heuristic is RAM/8, with a lower bound of 4M and an upper
866      bound of 128M (when RAM >= 1GB).  */
867   phys_kbytes /= 8;
868
869 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
870   /* Try not to overrun the RSS limit while doing garbage collection.
871      The RSS limit is only advisory, so no margin is subtracted.  */
872  {
873    struct rlimit rlim;
874    if (getrlimit (RLIMIT_RSS, &rlim) == 0
875        && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
876      phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
877  }
878 # endif
879
880   /* Don't blindly run over our data limit; do GC at least when the
881      *next* GC would be within 20Mb of the limit or within a quarter of
882      the limit, whichever is larger.  If GCC does hit the data limit,
883      compilation will fail, so this tries to be conservative.  */
884   limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
885   limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
886   phys_kbytes = MIN (phys_kbytes, limit_kbytes);
887
888   phys_kbytes = MAX (phys_kbytes, 4 * 1024);
889   phys_kbytes = MIN (phys_kbytes, 128 * 1024);
890
891   return phys_kbytes;
892 }
893 #endif
894
895 void
896 init_ggc_heuristics (void)
897 {
898 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
899   set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ());
900   set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ());
901 #endif
902 }
903
904 /* Datastructure used to store per-call-site statistics.  */
905 struct loc_descriptor
906 {
907   const char *file;
908   int line;
909   const char *function;
910   int times;
911   size_t allocated;
912   size_t overhead;
913   size_t freed;
914   size_t collected;
915 };
916
917 /* Hash table helper.  */
918
919 struct loc_desc_hasher : typed_noop_remove <loc_descriptor>
920 {
921   typedef loc_descriptor value_type;
922   typedef loc_descriptor compare_type;
923   static inline hashval_t hash (const value_type *);
924   static inline bool equal (const value_type *, const compare_type *);
925 };
926
927 inline hashval_t
928 loc_desc_hasher::hash (const value_type *d)
929 {
930   return htab_hash_pointer (d->function) | d->line;
931 }
932
933 inline bool
934 loc_desc_hasher::equal (const value_type *d, const compare_type *d2)
935 {
936   return (d->file == d2->file && d->line == d2->line
937           && d->function == d2->function);
938 }
939
940 /* Hashtable used for statistics.  */
941 static hash_table <loc_desc_hasher> loc_hash;
942
943 struct ptr_hash_entry
944 {
945   void *ptr;
946   struct loc_descriptor *loc;
947   size_t size;
948 };
949
950 /* Helper for ptr_hash table.  */
951
952 struct ptr_hash_hasher : typed_noop_remove <ptr_hash_entry>
953 {
954   typedef ptr_hash_entry value_type;
955   typedef void compare_type;
956   static inline hashval_t hash (const value_type *);
957   static inline bool equal (const value_type *, const compare_type *);
958 };
959
960 inline hashval_t
961 ptr_hash_hasher::hash (const value_type *d)
962 {
963   return htab_hash_pointer (d->ptr);
964 }
965
966 inline bool
967 ptr_hash_hasher::equal (const value_type *p, const compare_type *p2)
968 {
969   return (p->ptr == p2);
970 }
971
972 /* Hashtable converting address of allocated field to loc descriptor.  */
973 static hash_table <ptr_hash_hasher> ptr_hash;
974
975 /* Return descriptor for given call site, create new one if needed.  */
976 static struct loc_descriptor *
977 make_loc_descriptor (const char *name, int line, const char *function)
978 {
979   struct loc_descriptor loc;
980   struct loc_descriptor **slot;
981
982   loc.file = name;
983   loc.line = line;
984   loc.function = function;
985   if (!loc_hash.is_created ())
986     loc_hash.create (10);
987
988   slot = loc_hash.find_slot (&loc, INSERT);
989   if (*slot)
990     return *slot;
991   *slot = XCNEW (struct loc_descriptor);
992   (*slot)->file = name;
993   (*slot)->line = line;
994   (*slot)->function = function;
995   return *slot;
996 }
997
998 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
999 void
1000 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
1001                      const char *name, int line, const char *function)
1002 {
1003   struct loc_descriptor *loc = make_loc_descriptor (name, line, function);
1004   struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
1005   ptr_hash_entry **slot;
1006
1007   p->ptr = ptr;
1008   p->loc = loc;
1009   p->size = allocated + overhead;
1010   if (!ptr_hash.is_created ())
1011     ptr_hash.create (10);
1012   slot = ptr_hash.find_slot_with_hash (ptr, htab_hash_pointer (ptr), INSERT);
1013   gcc_assert (!*slot);
1014   *slot = p;
1015
1016   loc->times++;
1017   loc->allocated+=allocated;
1018   loc->overhead+=overhead;
1019 }
1020
1021 /* Helper function for prune_overhead_list.  See if SLOT is still marked and
1022    remove it from hashtable if it is not.  */
1023 int
1024 ggc_prune_ptr (ptr_hash_entry **slot, void *b ATTRIBUTE_UNUSED)
1025 {
1026   struct ptr_hash_entry *p = *slot;
1027   if (!ggc_marked_p (p->ptr))
1028     {
1029       p->loc->collected += p->size;
1030       ptr_hash.clear_slot (slot);
1031       free (p);
1032     }
1033   return 1;
1034 }
1035
1036 /* After live values has been marked, walk all recorded pointers and see if
1037    they are still live.  */
1038 void
1039 ggc_prune_overhead_list (void)
1040 {
1041   ptr_hash.traverse <void *, ggc_prune_ptr> (NULL);
1042 }
1043
1044 /* Notice that the pointer has been freed.  */
1045 void
1046 ggc_free_overhead (void *ptr)
1047 {
1048   ptr_hash_entry **slot;
1049   slot = ptr_hash.find_slot_with_hash (ptr, htab_hash_pointer (ptr), NO_INSERT);
1050   struct ptr_hash_entry *p;
1051   /* The pointer might be not found if a PCH read happened between allocation
1052      and ggc_free () call.  FIXME: account memory properly in the presence of
1053      PCH. */
1054   if (!slot)
1055       return;
1056   p = (struct ptr_hash_entry *) *slot;
1057   p->loc->freed += p->size;
1058   ptr_hash.clear_slot (slot);
1059   free (p);
1060 }
1061
1062 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
1063 static int
1064 final_cmp_statistic (const void *loc1, const void *loc2)
1065 {
1066   const struct loc_descriptor *const l1 =
1067     *(const struct loc_descriptor *const *) loc1;
1068   const struct loc_descriptor *const l2 =
1069     *(const struct loc_descriptor *const *) loc2;
1070   long diff;
1071   diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
1072           (l2->allocated + l2->overhead - l2->freed));
1073   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1074 }
1075
1076 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
1077 static int
1078 cmp_statistic (const void *loc1, const void *loc2)
1079 {
1080   const struct loc_descriptor *const l1 =
1081     *(const struct loc_descriptor *const *) loc1;
1082   const struct loc_descriptor *const l2 =
1083     *(const struct loc_descriptor *const *) loc2;
1084   long diff;
1085
1086   diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) -
1087           (l2->allocated + l2->overhead - l2->freed - l2->collected));
1088   if (diff)
1089     return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1090   diff =  ((long)(l1->allocated + l1->overhead - l1->freed) -
1091            (l2->allocated + l2->overhead - l2->freed));
1092   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1093 }
1094
1095 /* Collect array of the descriptors from hashtable.  */
1096 static struct loc_descriptor **loc_array;
1097 int
1098 ggc_add_statistics (loc_descriptor **slot, int *n)
1099 {
1100   loc_array[*n] = *slot;
1101   (*n)++;
1102   return 1;
1103 }
1104
1105 /* Dump per-site memory statistics.  */
1106
1107 void
1108 dump_ggc_loc_statistics (bool final)
1109 {
1110   int nentries = 0;
1111   char s[4096];
1112   size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
1113   int i;
1114
1115   if (! GATHER_STATISTICS)
1116     return;
1117
1118   ggc_force_collect = true;
1119   ggc_collect ();
1120
1121   loc_array = XCNEWVEC (struct loc_descriptor *,
1122                         loc_hash.elements_with_deleted ());
1123   fprintf (stderr, "-------------------------------------------------------\n");
1124   fprintf (stderr, "\n%-48s %10s       %10s       %10s       %10s       %10s\n",
1125            "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1126   fprintf (stderr, "-------------------------------------------------------\n");
1127   loc_hash.traverse <int *, ggc_add_statistics> (&nentries);
1128   qsort (loc_array, nentries, sizeof (*loc_array),
1129          final ? final_cmp_statistic : cmp_statistic);
1130   for (i = 0; i < nentries; i++)
1131     {
1132       struct loc_descriptor *d = loc_array[i];
1133       allocated += d->allocated;
1134       times += d->times;
1135       freed += d->freed;
1136       collected += d->collected;
1137       overhead += d->overhead;
1138     }
1139   for (i = 0; i < nentries; i++)
1140     {
1141       struct loc_descriptor *d = loc_array[i];
1142       if (d->allocated)
1143         {
1144           const char *s1 = d->file;
1145           const char *s2;
1146           while ((s2 = strstr (s1, "gcc/")))
1147             s1 = s2 + 4;
1148           sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
1149           s[48] = 0;
1150           fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
1151                    (long)d->collected,
1152                    (d->collected) * 100.0 / collected,
1153                    (long)d->freed,
1154                    (d->freed) * 100.0 / freed,
1155                    (long)(d->allocated + d->overhead - d->freed - d->collected),
1156                    (d->allocated + d->overhead - d->freed - d->collected) * 100.0
1157                    / (allocated + overhead - freed - collected),
1158                    (long)d->overhead,
1159                    d->overhead * 100.0 / overhead,
1160                    (long)d->times);
1161         }
1162     }
1163   fprintf (stderr, "%-48s %10ld       %10ld       %10ld       %10ld       %10ld\n",
1164            "Total", (long)collected, (long)freed,
1165            (long)(allocated + overhead - freed - collected), (long)overhead,
1166            (long)times);
1167   fprintf (stderr, "%-48s %10s       %10s       %10s       %10s       %10s\n",
1168            "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1169   fprintf (stderr, "-------------------------------------------------------\n");
1170   ggc_force_collect = false;
1171 }