Update change log
[platform/upstream/gcc48.git] / gcc / fwprop.c
1 /* RTL-based forward propagation pass for GNU compiler.
2    Copyright (C) 2005-2013 Free Software Foundation, Inc.
3    Contributed by Paolo Bonzini and Steven Bosscher.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "emit-rtl.h"
41
42
43 /* This pass does simple forward propagation and simplification when an
44    operand of an insn can only come from a single def.  This pass uses
45    df.c, so it is global.  However, we only do limited analysis of
46    available expressions.
47
48    1) The pass tries to propagate the source of the def into the use,
49    and checks if the result is independent of the substituted value.
50    For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51    zero, independent of the source register.
52
53    In particular, we propagate constants into the use site.  Sometimes
54    RTL expansion did not put the constant in the same insn on purpose,
55    to satisfy a predicate, and the result will fail to be recognized;
56    but this happens rarely and in this case we can still create a
57    REG_EQUAL note.  For multi-word operations, this
58
59       (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60       (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61       (set (subreg:SI (reg:DI 122) 0)
62          (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63       (set (subreg:SI (reg:DI 122) 4)
64          (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
65
66    can be simplified to the much simpler
67
68       (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69       (set (subreg:SI (reg:DI 122) 4) (const_int -1))
70
71    This particular propagation is also effective at putting together
72    complex addressing modes.  We are more aggressive inside MEMs, in
73    that all definitions are propagated if the use is in a MEM; if the
74    result is a valid memory address we check address_cost to decide
75    whether the substitution is worthwhile.
76
77    2) The pass propagates register copies.  This is not as effective as
78    the copy propagation done by CSE's canon_reg, which works by walking
79    the instruction chain, it can help the other transformations.
80
81    We should consider removing this optimization, and instead reorder the
82    RTL passes, because GCSE does this transformation too.  With some luck,
83    the CSE pass at the end of rest_of_handle_gcse could also go away.
84
85    3) The pass looks for paradoxical subregs that are actually unnecessary.
86    Things like this:
87
88      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90      (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91                                 (subreg:SI (reg:QI 121) 0)))
92
93    are very common on machines that can only do word-sized operations.
94    For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95    if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96    we can replace the paradoxical subreg with simply (reg:WIDE M).  The
97    above will simplify this to
98
99      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101      (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
102
103    where the first two insns are now dead.
104
105    We used to use reaching definitions to find which uses have a
106    single reaching definition (sounds obvious...), but this is too
107    complex a problem in nasty testcases like PR33928.  Now we use the
108    multiple definitions problem in df-problems.c.  The similarity
109    between that problem and SSA form creation is taken further, in
110    that fwprop does a dominator walk to create its chains; however,
111    instead of creating a PHI function where multiple definitions meet
112    I just punt and record only singleton use-def chains, which is
113    all that is needed by fwprop.  */
114
115
116 static int num_changes;
117
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
121
122 /* The MD bitmaps are trimmed to include only live registers to cut
123    memory usage on testcases like insn-recog.c.  Track live registers
124    in the basic block and do not perform forward propagation if the
125    destination is a dead pseudo occurring in a note.  */
126 static bitmap local_md;
127 static bitmap local_lr;
128
129 /* Return the only def in USE's use-def chain, or NULL if there is
130    more than one def in the chain.  */
131
132 static inline df_ref
133 get_def_for_use (df_ref use)
134 {
135   return use_def_ref[DF_REF_ID (use)];
136 }
137
138
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140    TOP_FLAG says which artificials uses should be used, when DEF_REC
141    is an artificial def vector.  LOCAL_MD is modified as after a
142    df_md_simulate_* function; we do more or less the same processing
143    done there, so we do not use those functions.  */
144
145 #define DF_MD_GEN_FLAGS \
146         (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
147
148 static void
149 process_defs (df_ref *def_rec, int top_flag)
150 {
151   df_ref def;
152   while ((def = *def_rec++) != NULL)
153     {
154       df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
155       unsigned int dregno;
156
157       if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
158         continue;
159
160       dregno = DF_REF_REGNO (def);
161       if (curr_def)
162         reg_defs_stack.safe_push (curr_def);
163       else
164         {
165           /* Do not store anything if "transitioning" from NULL to NULL.  But
166              otherwise, push a special entry on the stack to tell the
167              leave_block callback that the entry in reg_defs was NULL.  */
168           if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
169             ;
170           else
171             reg_defs_stack.safe_push (def);
172         }
173
174       if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175         {
176           bitmap_set_bit (local_md, dregno);
177           reg_defs[dregno] = NULL;
178         }
179       else
180         {
181           bitmap_clear_bit (local_md, dregno);
182           reg_defs[dregno] = def;
183         }
184     }
185 }
186
187
188 /* Fill the use_def_ref vector with values for the uses in USE_REC,
189    taking reaching definitions info from LOCAL_MD and REG_DEFS.
190    TOP_FLAG says which artificials uses should be used, when USE_REC
191    is an artificial use vector.  */
192
193 static void
194 process_uses (df_ref *use_rec, int top_flag)
195 {
196   df_ref use;
197   while ((use = *use_rec++) != NULL)
198     if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
199       {
200         unsigned int uregno = DF_REF_REGNO (use);
201         if (reg_defs[uregno]
202             && !bitmap_bit_p (local_md, uregno)
203             && bitmap_bit_p (local_lr, uregno))
204           use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
205       }
206 }
207
208
209 static void
210 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
211                             basic_block bb)
212 {
213   int bb_index = bb->index;
214   struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
215   struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
216   rtx insn;
217
218   bitmap_copy (local_md, &md_bb_info->in);
219   bitmap_copy (local_lr, &lr_bb_info->in);
220
221   /* Push a marker for the leave_block callback.  */
222   reg_defs_stack.safe_push (NULL);
223
224   process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
225   process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
226
227   /* We don't call df_simulate_initialize_forwards, as it may overestimate
228      the live registers if there are unused artificial defs.  We prefer
229      liveness to be underestimated.  */
230
231   FOR_BB_INSNS (bb, insn)
232     if (INSN_P (insn))
233       {
234         unsigned int uid = INSN_UID (insn);
235         process_uses (DF_INSN_UID_USES (uid), 0);
236         process_uses (DF_INSN_UID_EQ_USES (uid), 0);
237         process_defs (DF_INSN_UID_DEFS (uid), 0);
238         df_simulate_one_insn_forwards (bb, insn, local_lr);
239       }
240
241   process_uses (df_get_artificial_uses (bb_index), 0);
242   process_defs (df_get_artificial_defs (bb_index), 0);
243 }
244
245 /* Pop the definitions created in this basic block when leaving its
246    dominated parts.  */
247
248 static void
249 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
250                             basic_block bb ATTRIBUTE_UNUSED)
251 {
252   df_ref saved_def;
253   while ((saved_def = reg_defs_stack.pop ()) != NULL)
254     {
255       unsigned int dregno = DF_REF_REGNO (saved_def);
256
257       /* See also process_defs.  */
258       if (saved_def == reg_defs[dregno])
259         reg_defs[dregno] = NULL;
260       else
261         reg_defs[dregno] = saved_def;
262     }
263 }
264
265
266 /* Build a vector holding the reaching definitions of uses reached by a
267    single dominating definition.  */
268
269 static void
270 build_single_def_use_links (void)
271 {
272   struct dom_walk_data walk_data;
273
274   /* We use the multiple definitions problem to compute our restricted
275      use-def chains.  */
276   df_set_flags (DF_EQ_NOTES);
277   df_md_add_problem ();
278   df_note_add_problem ();
279   df_analyze ();
280   df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
281
282   use_def_ref.create (DF_USES_TABLE_SIZE ());
283   use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
284
285   reg_defs.create (max_reg_num ());
286   reg_defs.safe_grow_cleared (max_reg_num ());
287
288   reg_defs_stack.create (n_basic_blocks * 10);
289   local_md = BITMAP_ALLOC (NULL);
290   local_lr = BITMAP_ALLOC (NULL);
291
292   /* Walk the dominator tree looking for single reaching definitions
293      dominating the uses.  This is similar to how SSA form is built.  */
294   walk_data.dom_direction = CDI_DOMINATORS;
295   walk_data.initialize_block_local_data = NULL;
296   walk_data.before_dom_children = single_def_use_enter_block;
297   walk_data.after_dom_children = single_def_use_leave_block;
298
299   init_walk_dominator_tree (&walk_data);
300   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
301   fini_walk_dominator_tree (&walk_data);
302
303   BITMAP_FREE (local_lr);
304   BITMAP_FREE (local_md);
305   reg_defs.release ();
306   reg_defs_stack.release ();
307 }
308
309 \f
310 /* Do not try to replace constant addresses or addresses of local and
311    argument slots.  These MEM expressions are made only once and inserted
312    in many instructions, as well as being used to control symbol table
313    output.  It is not safe to clobber them.
314
315    There are some uncommon cases where the address is already in a register
316    for some reason, but we cannot take advantage of that because we have
317    no easy way to unshare the MEM.  In addition, looking up all stack
318    addresses is costly.  */
319
320 static bool
321 can_simplify_addr (rtx addr)
322 {
323   rtx reg;
324
325   if (CONSTANT_ADDRESS_P (addr))
326     return false;
327
328   if (GET_CODE (addr) == PLUS)
329     reg = XEXP (addr, 0);
330   else
331     reg = addr;
332
333   return (!REG_P (reg)
334           || (REGNO (reg) != FRAME_POINTER_REGNUM
335               && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
336               && REGNO (reg) != ARG_POINTER_REGNUM));
337 }
338
339 /* Returns a canonical version of X for the address, from the point of view,
340    that all multiplications are represented as MULT instead of the multiply
341    by a power of 2 being represented as ASHIFT.
342
343    Every ASHIFT we find has been made by simplify_gen_binary and was not
344    there before, so it is not shared.  So we can do this in place.  */
345
346 static void
347 canonicalize_address (rtx x)
348 {
349   for (;;)
350     switch (GET_CODE (x))
351       {
352       case ASHIFT:
353         if (CONST_INT_P (XEXP (x, 1))
354             && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
355             && INTVAL (XEXP (x, 1)) >= 0)
356           {
357             HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
358             PUT_CODE (x, MULT);
359             XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
360                                         GET_MODE (x));
361           }
362
363         x = XEXP (x, 0);
364         break;
365
366       case PLUS:
367         if (GET_CODE (XEXP (x, 0)) == PLUS
368             || GET_CODE (XEXP (x, 0)) == ASHIFT
369             || GET_CODE (XEXP (x, 0)) == CONST)
370           canonicalize_address (XEXP (x, 0));
371
372         x = XEXP (x, 1);
373         break;
374
375       case CONST:
376         x = XEXP (x, 0);
377         break;
378
379       default:
380         return;
381       }
382 }
383
384 /* OLD is a memory address.  Return whether it is good to use NEW instead,
385    for a memory access in the given MODE.  */
386
387 static bool
388 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
389                         addr_space_t as, bool speed)
390 {
391   int gain;
392
393   if (rtx_equal_p (old_rtx, new_rtx)
394       || !memory_address_addr_space_p (mode, new_rtx, as))
395     return false;
396
397   /* Copy propagation is always ok.  */
398   if (REG_P (old_rtx) && REG_P (new_rtx))
399     return true;
400
401   /* Prefer the new address if it is less expensive.  */
402   gain = (address_cost (old_rtx, mode, as, speed)
403           - address_cost (new_rtx, mode, as, speed));
404
405   /* If the addresses have equivalent cost, prefer the new address
406      if it has the highest `set_src_cost'.  That has the potential of
407      eliminating the most insns without additional costs, and it
408      is the same that cse.c used to do.  */
409   if (gain == 0)
410     gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
411
412   return (gain > 0);
413 }
414
415
416 /* Flags for the last parameter of propagate_rtx_1.  */
417
418 enum {
419   /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
420      if it is false, propagate_rtx_1 returns false if, for at least
421      one occurrence OLD, it failed to collapse the result to a constant.
422      For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
423      collapse to zero if replacing (reg:M B) with (reg:M A).
424
425      PR_CAN_APPEAR is disregarded inside MEMs: in that case,
426      propagate_rtx_1 just tries to make cheaper and valid memory
427      addresses.  */
428   PR_CAN_APPEAR = 1,
429
430   /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
431      outside memory addresses.  This is needed because propagate_rtx_1 does
432      not do any analysis on memory; thus it is very conservative and in general
433      it will fail if non-read-only MEMs are found in the source expression.
434
435      PR_HANDLE_MEM is set when the source of the propagation was not
436      another MEM.  Then, it is safe not to treat non-read-only MEMs as
437      ``opaque'' objects.  */
438   PR_HANDLE_MEM = 2,
439
440   /* Set when costs should be optimized for speed.  */
441   PR_OPTIMIZE_FOR_SPEED = 4
442 };
443
444
445 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
446    resulting expression.  Replace *PX with a new RTL expression if an
447    occurrence of OLD was found.
448
449    This is only a wrapper around simplify-rtx.c: do not add any pattern
450    matching code here.  (The sole exception is the handling of LO_SUM, but
451    that is because there is no simplify_gen_* function for LO_SUM).  */
452
453 static bool
454 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
455 {
456   rtx x = *px, tem = NULL_RTX, op0, op1, op2;
457   enum rtx_code code = GET_CODE (x);
458   enum machine_mode mode = GET_MODE (x);
459   enum machine_mode op_mode;
460   bool can_appear = (flags & PR_CAN_APPEAR) != 0;
461   bool valid_ops = true;
462
463   if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
464     {
465       /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
466          they have side effects or not).  */
467       *px = (side_effects_p (x)
468              ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
469              : gen_rtx_SCRATCH (GET_MODE (x)));
470       return false;
471     }
472
473   /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
474      address, and we are *not* inside one.  */
475   if (x == old_rtx)
476     {
477       *px = new_rtx;
478       return can_appear;
479     }
480
481   /* If this is an expression, try recursive substitution.  */
482   switch (GET_RTX_CLASS (code))
483     {
484     case RTX_UNARY:
485       op0 = XEXP (x, 0);
486       op_mode = GET_MODE (op0);
487       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
488       if (op0 == XEXP (x, 0))
489         return true;
490       tem = simplify_gen_unary (code, mode, op0, op_mode);
491       break;
492
493     case RTX_BIN_ARITH:
494     case RTX_COMM_ARITH:
495       op0 = XEXP (x, 0);
496       op1 = XEXP (x, 1);
497       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
498       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
499       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
500         return true;
501       tem = simplify_gen_binary (code, mode, op0, op1);
502       break;
503
504     case RTX_COMPARE:
505     case RTX_COMM_COMPARE:
506       op0 = XEXP (x, 0);
507       op1 = XEXP (x, 1);
508       op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
509       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
510       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
511       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
512         return true;
513       tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
514       break;
515
516     case RTX_TERNARY:
517     case RTX_BITFIELD_OPS:
518       op0 = XEXP (x, 0);
519       op1 = XEXP (x, 1);
520       op2 = XEXP (x, 2);
521       op_mode = GET_MODE (op0);
522       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
523       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
524       valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
525       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
526         return true;
527       if (op_mode == VOIDmode)
528         op_mode = GET_MODE (op0);
529       tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
530       break;
531
532     case RTX_EXTRA:
533       /* The only case we try to handle is a SUBREG.  */
534       if (code == SUBREG)
535         {
536           op0 = XEXP (x, 0);
537           valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
538           if (op0 == XEXP (x, 0))
539             return true;
540           tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
541                                      SUBREG_BYTE (x));
542         }
543       break;
544
545     case RTX_OBJ:
546       if (code == MEM && x != new_rtx)
547         {
548           rtx new_op0;
549           op0 = XEXP (x, 0);
550
551           /* There are some addresses that we cannot work on.  */
552           if (!can_simplify_addr (op0))
553             return true;
554
555           op0 = new_op0 = targetm.delegitimize_address (op0);
556           valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
557                                         flags | PR_CAN_APPEAR);
558
559           /* Dismiss transformation that we do not want to carry on.  */
560           if (!valid_ops
561               || new_op0 == op0
562               || !(GET_MODE (new_op0) == GET_MODE (op0)
563                    || GET_MODE (new_op0) == VOIDmode))
564             return true;
565
566           canonicalize_address (new_op0);
567
568           /* Copy propagations are always ok.  Otherwise check the costs.  */
569           if (!(REG_P (old_rtx) && REG_P (new_rtx))
570               && !should_replace_address (op0, new_op0, GET_MODE (x),
571                                           MEM_ADDR_SPACE (x),
572                                           flags & PR_OPTIMIZE_FOR_SPEED))
573             return true;
574
575           tem = replace_equiv_address_nv (x, new_op0);
576         }
577
578       else if (code == LO_SUM)
579         {
580           op0 = XEXP (x, 0);
581           op1 = XEXP (x, 1);
582
583           /* The only simplification we do attempts to remove references to op0
584              or make it constant -- in both cases, op0's invalidity will not
585              make the result invalid.  */
586           propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
587           valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
588           if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
589             return true;
590
591           /* (lo_sum (high x) x) -> x  */
592           if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
593             tem = op1;
594           else
595             tem = gen_rtx_LO_SUM (mode, op0, op1);
596
597           /* OP1 is likely not a legitimate address, otherwise there would have
598              been no LO_SUM.  We want it to disappear if it is invalid, return
599              false in that case.  */
600           return memory_address_p (mode, tem);
601         }
602
603       else if (code == REG)
604         {
605           if (rtx_equal_p (x, old_rtx))
606             {
607               *px = new_rtx;
608               return can_appear;
609             }
610         }
611       break;
612
613     default:
614       break;
615     }
616
617   /* No change, no trouble.  */
618   if (tem == NULL_RTX)
619     return true;
620
621   *px = tem;
622
623   /* The replacement we made so far is valid, if all of the recursive
624      replacements were valid, or we could simplify everything to
625      a constant.  */
626   return valid_ops || can_appear || CONSTANT_P (tem);
627 }
628
629
630 /* for_each_rtx traversal function that returns 1 if BODY points to
631    a non-constant mem.  */
632
633 static int
634 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
635 {
636   rtx x = *body;
637   return MEM_P (x) && !MEM_READONLY_P (x);
638 }
639
640
641 /* Replace all occurrences of OLD in X with NEW and try to simplify the
642    resulting expression (in mode MODE).  Return a new expression if it is
643    a constant, otherwise X.
644
645    Simplifications where occurrences of NEW collapse to a constant are always
646    accepted.  All simplifications are accepted if NEW is a pseudo too.
647    Otherwise, we accept simplifications that have a lower or equal cost.  */
648
649 static rtx
650 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
651                bool speed)
652 {
653   rtx tem;
654   bool collapsed;
655   int flags;
656
657   if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
658     return NULL_RTX;
659
660   flags = 0;
661   if (REG_P (new_rtx)
662       || CONSTANT_P (new_rtx)
663       || (GET_CODE (new_rtx) == SUBREG
664           && REG_P (SUBREG_REG (new_rtx))
665           && (GET_MODE_SIZE (mode)
666               <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
667     flags |= PR_CAN_APPEAR;
668   if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
669     flags |= PR_HANDLE_MEM;
670
671   if (speed)
672     flags |= PR_OPTIMIZE_FOR_SPEED;
673
674   tem = x;
675   collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
676   if (tem == x || !collapsed)
677     return NULL_RTX;
678
679   /* gen_lowpart_common will not be able to process VOIDmode entities other
680      than CONST_INTs.  */
681   if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
682     return NULL_RTX;
683
684   if (GET_MODE (tem) == VOIDmode)
685     tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
686   else
687     gcc_assert (GET_MODE (tem) == mode);
688
689   return tem;
690 }
691
692
693 \f
694
695 /* Return true if the register from reference REF is killed
696    between FROM to (but not including) TO.  */
697
698 static bool
699 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
700 {
701   rtx insn;
702
703   for (insn = from; insn != to; insn = NEXT_INSN (insn))
704     {
705       df_ref *def_rec;
706       if (!INSN_P (insn))
707         continue;
708
709       for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
710         {
711           df_ref def = *def_rec;
712           if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
713             return true;
714         }
715     }
716   return false;
717 }
718
719
720 /* Check if the given DEF is available in INSN.  This would require full
721    computation of available expressions; we check only restricted conditions:
722    - if DEF is the sole definition of its register, go ahead;
723    - in the same basic block, we check for no definitions killing the
724      definition of DEF_INSN;
725    - if USE's basic block has DEF's basic block as the sole predecessor,
726      we check if the definition is killed after DEF_INSN or before
727      TARGET_INSN insn, in their respective basic blocks.  */
728 static bool
729 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
730 {
731   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
732   basic_block target_bb = BLOCK_FOR_INSN (target_insn);
733   int regno;
734   df_ref def;
735
736   /* We used to have a def reaching a use that is _before_ the def,
737      with the def not dominating the use even though the use and def
738      are in the same basic block, when a register may be used
739      uninitialized in a loop.  This should not happen anymore since
740      we do not use reaching definitions, but still we test for such
741      cases and assume that DEF is not available.  */
742   if (def_bb == target_bb
743       ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
744       : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
745     return true;
746
747   /* Check if the reg in USE has only one definition.  We already
748      know that this definition reaches use, or we wouldn't be here.
749      However, this is invalid for hard registers because if they are
750      live at the beginning of the function it does not mean that we
751      have an uninitialized access.  */
752   regno = DF_REF_REGNO (use);
753   def = DF_REG_DEF_CHAIN (regno);
754   if (def
755       && DF_REF_NEXT_REG (def) == NULL
756       && regno >= FIRST_PSEUDO_REGISTER)
757     return false;
758
759   /* Check locally if we are in the same basic block.  */
760   if (def_bb == target_bb)
761     return local_ref_killed_between_p (use, def_insn, target_insn);
762
763   /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
764   if (single_pred_p (target_bb)
765       && single_pred (target_bb) == def_bb)
766     {
767       df_ref x;
768
769       /* See if USE is killed between DEF_INSN and the last insn in the
770          basic block containing DEF_INSN.  */
771       x = df_bb_regno_last_def_find (def_bb, regno);
772       if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
773         return true;
774
775       /* See if USE is killed between TARGET_INSN and the first insn in the
776          basic block containing TARGET_INSN.  */
777       x = df_bb_regno_first_def_find (target_bb, regno);
778       if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
779         return true;
780
781       return false;
782     }
783
784   /* Otherwise assume the worst case.  */
785   return true;
786 }
787
788
789 /* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
790    would require full computation of available expressions;
791    we check only restricted conditions, see use_killed_between.  */
792 static bool
793 all_uses_available_at (rtx def_insn, rtx target_insn)
794 {
795   df_ref *use_rec;
796   struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
797   rtx def_set = single_set (def_insn);
798   rtx next;
799
800   gcc_assert (def_set);
801
802   /* If target_insn comes right after def_insn, which is very common
803      for addresses, we can use a quicker test.  Ignore debug insns
804      other than target insns for this.  */
805   next = NEXT_INSN (def_insn);
806   while (next && next != target_insn && DEBUG_INSN_P (next))
807     next = NEXT_INSN (next);
808   if (next == target_insn && REG_P (SET_DEST (def_set)))
809     {
810       rtx def_reg = SET_DEST (def_set);
811
812       /* If the insn uses the reg that it defines, the substitution is
813          invalid.  */
814       for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
815         {
816           df_ref use = *use_rec;
817           if (rtx_equal_p (DF_REF_REG (use), def_reg))
818             return false;
819         }
820       for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
821         {
822           df_ref use = *use_rec;
823           if (rtx_equal_p (DF_REF_REG (use), def_reg))
824             return false;
825         }
826     }
827   else
828     {
829       rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
830
831       /* Look at all the uses of DEF_INSN, and see if they are not
832          killed between DEF_INSN and TARGET_INSN.  */
833       for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
834         {
835           df_ref use = *use_rec;
836           if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
837             return false;
838           if (use_killed_between (use, def_insn, target_insn))
839             return false;
840         }
841       for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
842         {
843           df_ref use = *use_rec;
844           if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
845             return false;
846           if (use_killed_between (use, def_insn, target_insn))
847             return false;
848         }
849     }
850
851   return true;
852 }
853
854 \f
855 static df_ref *active_defs;
856 #ifdef ENABLE_CHECKING
857 static sparseset active_defs_check;
858 #endif
859
860 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
861    mentioned in USE_REC.  Register the valid entries in ACTIVE_DEFS_CHECK
862    too, for checking purposes.  */
863
864 static void
865 register_active_defs (df_ref *use_rec)
866 {
867   while (*use_rec)
868     {
869       df_ref use = *use_rec++;
870       df_ref def = get_def_for_use (use);
871       int regno = DF_REF_REGNO (use);
872
873 #ifdef ENABLE_CHECKING
874       sparseset_set_bit (active_defs_check, regno);
875 #endif
876       active_defs[regno] = def;
877     }
878 }
879
880
881 /* Build the use->def links that we use to update the dataflow info
882    for new uses.  Note that building the links is very cheap and if
883    it were done earlier, they could be used to rule out invalid
884    propagations (in addition to what is done in all_uses_available_at).
885    I'm not doing this yet, though.  */
886
887 static void
888 update_df_init (rtx def_insn, rtx insn)
889 {
890 #ifdef ENABLE_CHECKING
891   sparseset_clear (active_defs_check);
892 #endif
893   register_active_defs (DF_INSN_USES (def_insn));
894   register_active_defs (DF_INSN_USES (insn));
895   register_active_defs (DF_INSN_EQ_USES (insn));
896 }
897
898
899 /* Update the USE_DEF_REF array for the given use, using the active definitions
900    in the ACTIVE_DEFS array to match pseudos to their def. */
901
902 static inline void
903 update_uses (df_ref *use_rec)
904 {
905   while (*use_rec)
906     {
907       df_ref use = *use_rec++;
908       int regno = DF_REF_REGNO (use);
909
910       /* Set up the use-def chain.  */
911       if (DF_REF_ID (use) >= (int) use_def_ref.length ())
912         use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
913
914 #ifdef ENABLE_CHECKING
915       gcc_assert (sparseset_bit_p (active_defs_check, regno));
916 #endif
917       use_def_ref[DF_REF_ID (use)] = active_defs[regno];
918     }
919 }
920
921
922 /* Update the USE_DEF_REF array for the uses in INSN.  Only update note
923    uses if NOTES_ONLY is true.  */
924
925 static void
926 update_df (rtx insn, rtx note)
927 {
928   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
929
930   if (note)
931     {
932       df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
933       df_notes_rescan (insn);
934     }
935   else
936     {
937       df_uses_create (&PATTERN (insn), insn, 0);
938       df_insn_rescan (insn);
939       update_uses (DF_INSN_INFO_USES (insn_info));
940     }
941
942   update_uses (DF_INSN_INFO_EQ_USES (insn_info));
943 }
944
945
946 /* Try substituting NEW into LOC, which originated from forward propagation
947    of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
948    substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
949    new insn is not recognized.  Return whether the substitution was
950    performed.  */
951
952 static bool
953 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
954 {
955   rtx insn = DF_REF_INSN (use);
956   rtx set = single_set (insn);
957   rtx note = NULL_RTX;
958   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
959   int old_cost = 0;
960   bool ok;
961
962   update_df_init (def_insn, insn);
963
964   /* forward_propagate_subreg may be operating on an instruction with
965      multiple sets.  If so, assume the cost of the new instruction is
966      not greater than the old one.  */
967   if (set)
968     old_cost = set_src_cost (SET_SRC (set), speed);
969   if (dump_file)
970     {
971       fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
972       print_inline_rtx (dump_file, *loc, 2);
973       fprintf (dump_file, "\n with ");
974       print_inline_rtx (dump_file, new_rtx, 2);
975       fprintf (dump_file, "\n");
976     }
977
978   validate_unshare_change (insn, loc, new_rtx, true);
979   if (!verify_changes (0))
980     {
981       if (dump_file)
982         fprintf (dump_file, "Changes to insn %d not recognized\n",
983                  INSN_UID (insn));
984       ok = false;
985     }
986
987   else if (DF_REF_TYPE (use) == DF_REF_REG_USE
988            && set
989            && set_src_cost (SET_SRC (set), speed) > old_cost)
990     {
991       if (dump_file)
992         fprintf (dump_file, "Changes to insn %d not profitable\n",
993                  INSN_UID (insn));
994       ok = false;
995     }
996
997   else
998     {
999       if (dump_file)
1000         fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1001       ok = true;
1002     }
1003
1004   if (ok)
1005     {
1006       confirm_change_group ();
1007       num_changes++;
1008     }
1009   else
1010     {
1011       cancel_changes (0);
1012
1013       /* Can also record a simplified value in a REG_EQUAL note,
1014          making a new one if one does not already exist.  */
1015       if (set_reg_equal)
1016         {
1017           if (dump_file)
1018             fprintf (dump_file, " Setting REG_EQUAL note\n");
1019
1020           note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1021         }
1022     }
1023
1024   if ((ok || note) && !CONSTANT_P (new_rtx))
1025     update_df (insn, note);
1026
1027   return ok;
1028 }
1029
1030 /* For the given single_set INSN, containing SRC known to be a
1031    ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1032    is redundant due to the register being set by a LOAD_EXTEND_OP
1033    load from memory.  */
1034
1035 static bool
1036 free_load_extend (rtx src, rtx insn)
1037 {
1038   rtx reg;
1039   df_ref *use_vec;
1040   df_ref use = 0, def;
1041
1042   reg = XEXP (src, 0);
1043 #ifdef LOAD_EXTEND_OP
1044   if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1045 #endif
1046     return false;
1047
1048   for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1049     {
1050       use = *use_vec;
1051
1052       if (!DF_REF_IS_ARTIFICIAL (use)
1053           && DF_REF_TYPE (use) == DF_REF_REG_USE
1054           && DF_REF_REG (use) == reg)
1055         break;
1056     }
1057   if (!use)
1058     return false;
1059
1060   def = get_def_for_use (use);
1061   if (!def)
1062     return false;
1063
1064   if (DF_REF_IS_ARTIFICIAL (def))
1065     return false;
1066
1067   if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1068     {
1069       rtx patt = PATTERN (DF_REF_INSN (def));
1070
1071       if (GET_CODE (patt) == SET
1072           && GET_CODE (SET_SRC (patt)) == MEM
1073           && rtx_equal_p (SET_DEST (patt), reg))
1074         return true;
1075     }
1076   return false;
1077 }
1078
1079 /* If USE is a subreg, see if it can be replaced by a pseudo.  */
1080
1081 static bool
1082 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1083 {
1084   rtx use_reg = DF_REF_REG (use);
1085   rtx use_insn, src;
1086
1087   /* Only consider subregs... */
1088   enum machine_mode use_mode = GET_MODE (use_reg);
1089   if (GET_CODE (use_reg) != SUBREG
1090       || !REG_P (SET_DEST (def_set)))
1091     return false;
1092
1093   /* If this is a paradoxical SUBREG...  */
1094   if (GET_MODE_SIZE (use_mode)
1095       > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1096     {
1097       /* If this is a paradoxical SUBREG, we have no idea what value the
1098          extra bits would have.  However, if the operand is equivalent to
1099          a SUBREG whose operand is the same as our mode, and all the modes
1100          are within a word, we can just use the inner operand because
1101          these SUBREGs just say how to treat the register.  */
1102       use_insn = DF_REF_INSN (use);
1103       src = SET_SRC (def_set);
1104       if (GET_CODE (src) == SUBREG
1105           && REG_P (SUBREG_REG (src))
1106           && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1107           && GET_MODE (SUBREG_REG (src)) == use_mode
1108           && subreg_lowpart_p (src)
1109           && all_uses_available_at (def_insn, use_insn))
1110         return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1111                                  def_insn, false);
1112     }
1113
1114   /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1115      is the low part of the reg being extended then just use the inner
1116      operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1117      be removed due to it matching a LOAD_EXTEND_OP load from memory,
1118      or due to the operation being a no-op when applied to registers.
1119      For example, if we have:
1120
1121          A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1122          B: (... (subreg:SI (reg:DI X)) ...)
1123
1124      and mode_rep_extended says that Y is already sign-extended,
1125      the backend will typically allow A to be combined with the
1126      definition of Y or, failing that, allow A to be deleted after
1127      reload through register tying.  Introducing more uses of Y
1128      prevents both optimisations.  */
1129   else if (subreg_lowpart_p (use_reg))
1130     {
1131       use_insn = DF_REF_INSN (use);
1132       src = SET_SRC (def_set);
1133       if ((GET_CODE (src) == ZERO_EXTEND
1134            || GET_CODE (src) == SIGN_EXTEND)
1135           && REG_P (XEXP (src, 0))
1136           && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1137           && GET_MODE (XEXP (src, 0)) == use_mode
1138           && !free_load_extend (src, def_insn)
1139           && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1140               != (int) GET_CODE (src))
1141           && all_uses_available_at (def_insn, use_insn))
1142         return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1143                                  def_insn, false);
1144     }
1145
1146   return false;
1147 }
1148
1149 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */
1150
1151 static bool
1152 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1153 {
1154   rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1155   int speed_p, i;
1156   df_ref *use_vec;
1157
1158   gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1159
1160   src = SET_SRC (def_set);
1161   use_pat = PATTERN (use_insn);
1162
1163   /* In __asm don't replace if src might need more registers than
1164      reg, as that could increase register pressure on the __asm.  */
1165   use_vec = DF_INSN_USES (def_insn);
1166   if (use_vec[0] && use_vec[1])
1167     return false;
1168
1169   update_df_init (def_insn, use_insn);
1170   speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1171   asm_operands = NULL_RTX;
1172   switch (GET_CODE (use_pat))
1173     {
1174     case ASM_OPERANDS:
1175       asm_operands = use_pat;
1176       break;
1177     case SET:
1178       if (MEM_P (SET_DEST (use_pat)))
1179         {
1180           loc = &SET_DEST (use_pat);
1181           new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1182           if (new_rtx)
1183             validate_unshare_change (use_insn, loc, new_rtx, true);
1184         }
1185       asm_operands = SET_SRC (use_pat);
1186       break;
1187     case PARALLEL:
1188       for (i = 0; i < XVECLEN (use_pat, 0); i++)
1189         if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1190           {
1191             if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1192               {
1193                 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1194                 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1195                                          src, speed_p);
1196                 if (new_rtx)
1197                   validate_unshare_change (use_insn, loc, new_rtx, true);
1198               }
1199             asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1200           }
1201         else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1202           asm_operands = XVECEXP (use_pat, 0, i);
1203       break;
1204     default:
1205       gcc_unreachable ();
1206     }
1207
1208   gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1209   for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1210     {
1211       loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1212       new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1213       if (new_rtx)
1214         validate_unshare_change (use_insn, loc, new_rtx, true);
1215     }
1216
1217   if (num_changes_pending () == 0 || !apply_change_group ())
1218     return false;
1219
1220   update_df (use_insn, NULL);
1221   num_changes++;
1222   return true;
1223 }
1224
1225 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1226    result.  */
1227
1228 static bool
1229 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1230 {
1231   rtx use_insn = DF_REF_INSN (use);
1232   rtx use_set = single_set (use_insn);
1233   rtx src, reg, new_rtx, *loc;
1234   bool set_reg_equal;
1235   enum machine_mode mode;
1236   int asm_use = -1;
1237
1238   if (INSN_CODE (use_insn) < 0)
1239     asm_use = asm_noperands (PATTERN (use_insn));
1240
1241   if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1242     return false;
1243
1244   /* Do not propagate into PC, CC0, etc.  */
1245   if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1246     return false;
1247
1248   /* If def and use are subreg, check if they match.  */
1249   reg = DF_REF_REG (use);
1250   if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1251     {
1252       if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1253         return false;
1254     }
1255   /* Check if the def had a subreg, but the use has the whole reg.  */
1256   else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1257     return false;
1258   /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
1259      previous case, the optimization is possible and often useful indeed.  */
1260   else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1261     reg = SUBREG_REG (reg);
1262
1263   /* Make sure that we can treat REG as having the same mode as the
1264      source of DEF_SET.  */
1265   if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1266     return false;
1267
1268   /* Check if the substitution is valid (last, because it's the most
1269      expensive check!).  */
1270   src = SET_SRC (def_set);
1271   if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1272     return false;
1273
1274   /* Check if the def is loading something from the constant pool; in this
1275      case we would undo optimization such as compress_float_constant.
1276      Still, we can set a REG_EQUAL note.  */
1277   if (MEM_P (src) && MEM_READONLY_P (src))
1278     {
1279       rtx x = avoid_constant_pool_reference (src);
1280       if (x != src && use_set)
1281         {
1282           rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1283           rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1284           rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1285           if (old_rtx != new_rtx)
1286             set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1287         }
1288       return false;
1289     }
1290
1291   if (asm_use >= 0)
1292     return forward_propagate_asm (use, def_insn, def_set, reg);
1293
1294   /* Else try simplifying.  */
1295
1296   if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1297     {
1298       loc = &SET_DEST (use_set);
1299       set_reg_equal = false;
1300     }
1301   else if (!use_set)
1302     {
1303       loc = &INSN_VAR_LOCATION_LOC (use_insn);
1304       set_reg_equal = false;
1305     }
1306   else
1307     {
1308       rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1309       if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1310         loc = &XEXP (note, 0);
1311       else
1312         loc = &SET_SRC (use_set);
1313
1314       /* Do not replace an existing REG_EQUAL note if the insn is not
1315          recognized.  Either we're already replacing in the note, or we'll
1316          separately try plugging the definition in the note and simplifying.
1317          And only install a REQ_EQUAL note when the destination is a REG
1318          that isn't mentioned in USE_SET, as the note would be invalid
1319          otherwise.  We also don't want to install a note if we are merely
1320          propagating a pseudo since verifying that this pseudo isn't dead
1321          is a pain; moreover such a note won't help anything.  */
1322       set_reg_equal = (note == NULL_RTX
1323                        && REG_P (SET_DEST (use_set))
1324                        && !REG_P (src)
1325                        && !(GET_CODE (src) == SUBREG
1326                             && REG_P (SUBREG_REG (src)))
1327                        && !reg_mentioned_p (SET_DEST (use_set),
1328                                             SET_SRC (use_set)));
1329     }
1330
1331   if (GET_MODE (*loc) == VOIDmode)
1332     mode = GET_MODE (SET_DEST (use_set));
1333   else
1334     mode = GET_MODE (*loc);
1335
1336   new_rtx = propagate_rtx (*loc, mode, reg, src,
1337                            optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1338
1339   if (!new_rtx)
1340     return false;
1341
1342   return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1343 }
1344
1345
1346 /* Given a use USE of an insn, if it has a single reaching
1347    definition, try to forward propagate it into that insn.
1348    Return true if cfg cleanup will be needed.  */
1349
1350 static bool
1351 forward_propagate_into (df_ref use)
1352 {
1353   df_ref def;
1354   rtx def_insn, def_set, use_insn;
1355   rtx parent;
1356
1357   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1358     return false;
1359   if (DF_REF_IS_ARTIFICIAL (use))
1360     return false;
1361
1362   /* Only consider uses that have a single definition.  */
1363   def = get_def_for_use (use);
1364   if (!def)
1365     return false;
1366   if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1367     return false;
1368   if (DF_REF_IS_ARTIFICIAL (def))
1369     return false;
1370
1371   /* Do not propagate loop invariant definitions inside the loop.  */
1372   if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1373     return false;
1374
1375   /* Check if the use is still present in the insn!  */
1376   use_insn = DF_REF_INSN (use);
1377   if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1378     parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1379   else
1380     parent = PATTERN (use_insn);
1381
1382   if (!reg_mentioned_p (DF_REF_REG (use), parent))
1383     return false;
1384
1385   def_insn = DF_REF_INSN (def);
1386   if (multiple_sets (def_insn))
1387     return false;
1388   def_set = single_set (def_insn);
1389   if (!def_set)
1390     return false;
1391
1392   /* Only try one kind of propagation.  If two are possible, we'll
1393      do it on the following iterations.  */
1394   if (forward_propagate_and_simplify (use, def_insn, def_set)
1395       || forward_propagate_subreg (use, def_insn, def_set))
1396     {
1397       if (cfun->can_throw_non_call_exceptions
1398           && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1399           && purge_dead_edges (DF_REF_BB (use)))
1400         return true;
1401     }
1402   return false;
1403 }
1404
1405 \f
1406 static void
1407 fwprop_init (void)
1408 {
1409   num_changes = 0;
1410   calculate_dominance_info (CDI_DOMINATORS);
1411
1412   /* We do not always want to propagate into loops, so we have to find
1413      loops and be careful about them.  Avoid CFG modifications so that
1414      we don't have to update dominance information afterwards for
1415      build_single_def_use_links.  */
1416   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1417
1418   build_single_def_use_links ();
1419   df_set_flags (DF_DEFER_INSN_RESCAN);
1420
1421   active_defs = XNEWVEC (df_ref, max_reg_num ());
1422 #ifdef ENABLE_CHECKING
1423   active_defs_check = sparseset_alloc (max_reg_num ());
1424 #endif
1425 }
1426
1427 static void
1428 fwprop_done (void)
1429 {
1430   loop_optimizer_finalize ();
1431
1432   use_def_ref.release ();
1433   free (active_defs);
1434 #ifdef ENABLE_CHECKING
1435   sparseset_free (active_defs_check);
1436 #endif
1437
1438   free_dominance_info (CDI_DOMINATORS);
1439   cleanup_cfg (0);
1440   delete_trivially_dead_insns (get_insns (), max_reg_num ());
1441
1442   if (dump_file)
1443     fprintf (dump_file,
1444              "\nNumber of successful forward propagations: %d\n\n",
1445              num_changes);
1446 }
1447
1448
1449 /* Main entry point.  */
1450
1451 static bool
1452 gate_fwprop (void)
1453 {
1454   return optimize > 0 && flag_forward_propagate;
1455 }
1456
1457 static unsigned int
1458 fwprop (void)
1459 {
1460   unsigned i;
1461   bool need_cleanup = false;
1462
1463   fwprop_init ();
1464
1465   /* Go through all the uses.  df_uses_create will create new ones at the
1466      end, and we'll go through them as well.
1467
1468      Do not forward propagate addresses into loops until after unrolling.
1469      CSE did so because it was able to fix its own mess, but we are not.  */
1470
1471   for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1472     {
1473       df_ref use = DF_USES_GET (i);
1474       if (use)
1475         if (DF_REF_TYPE (use) == DF_REF_REG_USE
1476             || DF_REF_BB (use)->loop_father == NULL
1477             /* The outer most loop is not really a loop.  */
1478             || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1479           need_cleanup |= forward_propagate_into (use);
1480     }
1481
1482   fwprop_done ();
1483   if (need_cleanup)
1484     cleanup_cfg (0);
1485   return 0;
1486 }
1487
1488 struct rtl_opt_pass pass_rtl_fwprop =
1489 {
1490  {
1491   RTL_PASS,
1492   "fwprop1",                            /* name */
1493   OPTGROUP_NONE,                        /* optinfo_flags */
1494   gate_fwprop,                          /* gate */
1495   fwprop,                               /* execute */
1496   NULL,                                 /* sub */
1497   NULL,                                 /* next */
1498   0,                                    /* static_pass_number */
1499   TV_FWPROP,                            /* tv_id */
1500   0,                                    /* properties_required */
1501   0,                                    /* properties_provided */
1502   0,                                    /* properties_destroyed */
1503   0,                                    /* todo_flags_start */
1504   TODO_df_finish
1505     | TODO_verify_flow
1506     | TODO_verify_rtl_sharing           /* todo_flags_finish */
1507  }
1508 };
1509
1510 static unsigned int
1511 fwprop_addr (void)
1512 {
1513   unsigned i;
1514   bool need_cleanup = false;
1515
1516   fwprop_init ();
1517
1518   /* Go through all the uses.  df_uses_create will create new ones at the
1519      end, and we'll go through them as well.  */
1520   for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1521     {
1522       df_ref use = DF_USES_GET (i);
1523       if (use)
1524         if (DF_REF_TYPE (use) != DF_REF_REG_USE
1525             && DF_REF_BB (use)->loop_father != NULL
1526             /* The outer most loop is not really a loop.  */
1527             && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1528           need_cleanup |= forward_propagate_into (use);
1529     }
1530
1531   fwprop_done ();
1532
1533   if (need_cleanup)
1534     cleanup_cfg (0);
1535   return 0;
1536 }
1537
1538 struct rtl_opt_pass pass_rtl_fwprop_addr =
1539 {
1540  {
1541   RTL_PASS,
1542   "fwprop2",                            /* name */
1543   OPTGROUP_NONE,                        /* optinfo_flags */
1544   gate_fwprop,                          /* gate */
1545   fwprop_addr,                          /* execute */
1546   NULL,                                 /* sub */
1547   NULL,                                 /* next */
1548   0,                                    /* static_pass_number */
1549   TV_FWPROP,                            /* tv_id */
1550   0,                                    /* properties_required */
1551   0,                                    /* properties_provided */
1552   0,                                    /* properties_destroyed */
1553   0,                                    /* todo_flags_start */
1554   TODO_df_finish | TODO_verify_rtl_sharing  /* todo_flags_finish */
1555  }
1556 };