Update change log
[platform/upstream/gcc48.git] / gcc / et-forest.c
1 /* ET-trees data structure implementation.
2    Contributed by Pavel Nejedly
3    Copyright (C) 2002-2013 Free Software Foundation, Inc.
4
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
10
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.
19
20   The ET-forest structure is described in:
21     D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
22     J.  G'omput. System Sci., 26(3):362 381, 1983.
23 */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "et-forest.h"
29 #include "alloc-pool.h"
30
31 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
32 #undef DEBUG_ET
33
34 #ifdef DEBUG_ET
35 #include "basic-block.h" /* To access index in record_path_before_1.  */
36 #endif
37
38 /* The occurrence of a node in the et tree.  */
39 struct et_occ
40 {
41   struct et_node *of;           /* The node.  */
42
43   struct et_occ *parent;        /* Parent in the splay-tree.  */
44   struct et_occ *prev;          /* Left son in the splay-tree.  */
45   struct et_occ *next;          /* Right son in the splay-tree.  */
46
47   int depth;                    /* The depth of the node is the sum of depth
48                                    fields on the path to the root.  */
49   int min;                      /* The minimum value of the depth in the subtree
50                                    is obtained by adding sum of depth fields
51                                    on the path to the root.  */
52   struct et_occ *min_occ;       /* The occurrence in the subtree with the minimal
53                                    depth.  */
54 };
55
56 static alloc_pool et_nodes;
57 static alloc_pool et_occurrences;
58
59 /* Changes depth of OCC to D.  */
60
61 static inline void
62 set_depth (struct et_occ *occ, int d)
63 {
64   if (!occ)
65     return;
66
67   occ->min += d - occ->depth;
68   occ->depth = d;
69 }
70
71 /* Adds D to the depth of OCC.  */
72
73 static inline void
74 set_depth_add (struct et_occ *occ, int d)
75 {
76   if (!occ)
77     return;
78
79   occ->min += d;
80   occ->depth += d;
81 }
82
83 /* Sets prev field of OCC to P.  */
84
85 static inline void
86 set_prev (struct et_occ *occ, struct et_occ *t)
87 {
88 #ifdef DEBUG_ET
89   gcc_assert (occ != t);
90 #endif
91
92   occ->prev = t;
93   if (t)
94     t->parent = occ;
95 }
96
97 /* Sets next field of OCC to P.  */
98
99 static inline void
100 set_next (struct et_occ *occ, struct et_occ *t)
101 {
102 #ifdef DEBUG_ET
103   gcc_assert (occ != t);
104 #endif
105
106   occ->next = t;
107   if (t)
108     t->parent = occ;
109 }
110
111 /* Recompute minimum for occurrence OCC.  */
112
113 static inline void
114 et_recomp_min (struct et_occ *occ)
115 {
116   struct et_occ *mson = occ->prev;
117
118   if (!mson
119       || (occ->next
120           && mson->min > occ->next->min))
121       mson = occ->next;
122
123   if (mson && mson->min < 0)
124     {
125       occ->min = mson->min + occ->depth;
126       occ->min_occ = mson->min_occ;
127     }
128   else
129     {
130       occ->min = occ->depth;
131       occ->min_occ = occ;
132     }
133 }
134
135 #ifdef DEBUG_ET
136 /* Checks whether neighborhood of OCC seems sane.  */
137
138 static void
139 et_check_occ_sanity (struct et_occ *occ)
140 {
141   if (!occ)
142     return;
143
144   gcc_assert (occ->parent != occ);
145   gcc_assert (occ->prev != occ);
146   gcc_assert (occ->next != occ);
147   gcc_assert (!occ->next || occ->next != occ->prev);
148
149   if (occ->next)
150     {
151       gcc_assert (occ->next != occ->parent);
152       gcc_assert (occ->next->parent == occ);
153     }
154
155   if (occ->prev)
156     {
157       gcc_assert (occ->prev != occ->parent);
158       gcc_assert (occ->prev->parent == occ);
159     }
160
161   gcc_assert (!occ->parent
162               || occ->parent->prev == occ
163               || occ->parent->next == occ);
164 }
165
166 /* Checks whether tree rooted at OCC is sane.  */
167
168 static void
169 et_check_sanity (struct et_occ *occ)
170 {
171   et_check_occ_sanity (occ);
172   if (occ->prev)
173     et_check_sanity (occ->prev);
174   if (occ->next)
175     et_check_sanity (occ->next);
176 }
177
178 /* Checks whether tree containing OCC is sane.  */
179
180 static void
181 et_check_tree_sanity (struct et_occ *occ)
182 {
183   while (occ->parent)
184     occ = occ->parent;
185
186   et_check_sanity (occ);
187 }
188
189 /* For recording the paths.  */
190
191 /* An ad-hoc constant; if the function has more blocks, this won't work,
192    but since it is used for debugging only, it does not matter.  */
193 #define MAX_NODES 100000
194
195 static int len;
196 static void *datas[MAX_NODES];
197 static int depths[MAX_NODES];
198
199 /* Records the path represented by OCC, with depth incremented by DEPTH.  */
200
201 static int
202 record_path_before_1 (struct et_occ *occ, int depth)
203 {
204   int mn, m;
205
206   depth += occ->depth;
207   mn = depth;
208
209   if (occ->prev)
210     {
211       m = record_path_before_1 (occ->prev, depth);
212       if (m < mn)
213         mn = m;
214     }
215
216   fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
217
218   gcc_assert (len < MAX_NODES);
219
220   depths[len] = depth;
221   datas[len] = occ->of;
222   len++;
223
224   if (occ->next)
225     {
226       m = record_path_before_1 (occ->next, depth);
227       if (m < mn)
228         mn = m;
229     }
230
231   gcc_assert (mn == occ->min + depth - occ->depth);
232
233   return mn;
234 }
235
236 /* Records the path represented by a tree containing OCC.  */
237
238 static void
239 record_path_before (struct et_occ *occ)
240 {
241   while (occ->parent)
242     occ = occ->parent;
243
244   len = 0;
245   record_path_before_1 (occ, 0);
246   fprintf (stderr, "\n");
247 }
248
249 /* Checks whether the path represented by OCC, with depth incremented by DEPTH,
250    was not changed since the last recording.  */
251
252 static int
253 check_path_after_1 (struct et_occ *occ, int depth)
254 {
255   int mn, m;
256
257   depth += occ->depth;
258   mn = depth;
259
260   if (occ->next)
261     {
262       m = check_path_after_1 (occ->next, depth);
263       if (m < mn)
264         mn =  m;
265     }
266
267   len--;
268   gcc_assert (depths[len] == depth && datas[len] == occ->of);
269
270   if (occ->prev)
271     {
272       m = check_path_after_1 (occ->prev, depth);
273       if (m < mn)
274         mn =  m;
275     }
276
277   gcc_assert (mn == occ->min + depth - occ->depth);
278
279   return mn;
280 }
281
282 /* Checks whether the path represented by a tree containing OCC was
283    not changed since the last recording.  */
284
285 static void
286 check_path_after (struct et_occ *occ)
287 {
288   while (occ->parent)
289     occ = occ->parent;
290
291   check_path_after_1 (occ, 0);
292   gcc_assert (!len);
293 }
294
295 #endif
296
297 /* Splay the occurrence OCC to the root of the tree.  */
298
299 static void
300 et_splay (struct et_occ *occ)
301 {
302   struct et_occ *f, *gf, *ggf;
303   int occ_depth, f_depth, gf_depth;
304
305 #ifdef DEBUG_ET
306   record_path_before (occ);
307   et_check_tree_sanity (occ);
308 #endif
309
310   while (occ->parent)
311     {
312       occ_depth = occ->depth;
313
314       f = occ->parent;
315       f_depth = f->depth;
316
317       gf = f->parent;
318
319       if (!gf)
320         {
321           set_depth_add (occ, f_depth);
322           occ->min_occ = f->min_occ;
323           occ->min = f->min;
324
325           if (f->prev == occ)
326             {
327               /* zig */
328               set_prev (f, occ->next);
329               set_next (occ, f);
330               set_depth_add (f->prev, occ_depth);
331             }
332           else
333             {
334               /* zag */
335               set_next (f, occ->prev);
336               set_prev (occ, f);
337               set_depth_add (f->next, occ_depth);
338             }
339           set_depth (f, -occ_depth);
340           occ->parent = NULL;
341
342           et_recomp_min (f);
343 #ifdef DEBUG_ET
344           et_check_tree_sanity (occ);
345           check_path_after (occ);
346 #endif
347           return;
348         }
349
350       gf_depth = gf->depth;
351
352       set_depth_add (occ, f_depth + gf_depth);
353       occ->min_occ = gf->min_occ;
354       occ->min = gf->min;
355
356       ggf = gf->parent;
357
358       if (gf->prev == f)
359         {
360           if (f->prev == occ)
361             {
362               /* zig zig */
363               set_prev (gf, f->next);
364               set_prev (f, occ->next);
365               set_next (occ, f);
366               set_next (f, gf);
367
368               set_depth (f, -occ_depth);
369               set_depth_add (f->prev, occ_depth);
370               set_depth (gf, -f_depth);
371               set_depth_add (gf->prev, f_depth);
372             }
373           else
374             {
375               /* zag zig */
376               set_prev (gf, occ->next);
377               set_next (f, occ->prev);
378               set_prev (occ, f);
379               set_next (occ, gf);
380
381               set_depth (f, -occ_depth);
382               set_depth_add (f->next, occ_depth);
383               set_depth (gf, -occ_depth - f_depth);
384               set_depth_add (gf->prev, occ_depth + f_depth);
385             }
386         }
387       else
388         {
389           if (f->prev == occ)
390             {
391               /* zig zag */
392               set_next (gf, occ->prev);
393               set_prev (f, occ->next);
394               set_prev (occ, gf);
395               set_next (occ, f);
396
397               set_depth (f, -occ_depth);
398               set_depth_add (f->prev, occ_depth);
399               set_depth (gf, -occ_depth - f_depth);
400               set_depth_add (gf->next, occ_depth + f_depth);
401             }
402           else
403             {
404               /* zag zag */
405               set_next (gf, f->prev);
406               set_next (f, occ->prev);
407               set_prev (occ, f);
408               set_prev (f, gf);
409
410               set_depth (f, -occ_depth);
411               set_depth_add (f->next, occ_depth);
412               set_depth (gf, -f_depth);
413               set_depth_add (gf->next, f_depth);
414             }
415         }
416
417       occ->parent = ggf;
418       if (ggf)
419         {
420           if (ggf->prev == gf)
421             ggf->prev = occ;
422           else
423             ggf->next = occ;
424         }
425
426       et_recomp_min (gf);
427       et_recomp_min (f);
428 #ifdef DEBUG_ET
429       et_check_tree_sanity (occ);
430 #endif
431     }
432
433 #ifdef DEBUG_ET
434   et_check_sanity (occ);
435   check_path_after (occ);
436 #endif
437 }
438
439 /* Create a new et tree occurrence of NODE.  */
440
441 static struct et_occ *
442 et_new_occ (struct et_node *node)
443 {
444   struct et_occ *nw;
445
446   if (!et_occurrences)
447     et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
448   nw = (struct et_occ *) pool_alloc (et_occurrences);
449
450   nw->of = node;
451   nw->parent = NULL;
452   nw->prev = NULL;
453   nw->next = NULL;
454
455   nw->depth = 0;
456   nw->min_occ = nw;
457   nw->min = 0;
458
459   return nw;
460 }
461
462 /* Create a new et tree containing DATA.  */
463
464 struct et_node *
465 et_new_tree (void *data)
466 {
467   struct et_node *nw;
468
469   if (!et_nodes)
470     et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
471   nw = (struct et_node *) pool_alloc (et_nodes);
472
473   nw->data = data;
474   nw->father = NULL;
475   nw->left = NULL;
476   nw->right = NULL;
477   nw->son = NULL;
478
479   nw->rightmost_occ = et_new_occ (nw);
480   nw->parent_occ = NULL;
481
482   return nw;
483 }
484
485 /* Releases et tree T.  */
486
487 void
488 et_free_tree (struct et_node *t)
489 {
490   while (t->son)
491     et_split (t->son);
492
493   if (t->father)
494     et_split (t);
495
496   pool_free (et_occurrences, t->rightmost_occ);
497   pool_free (et_nodes, t);
498 }
499
500 /* Releases et tree T without maintaining other nodes.  */
501
502 void
503 et_free_tree_force (struct et_node *t)
504 {
505   pool_free (et_occurrences, t->rightmost_occ);
506   if (t->parent_occ)
507     pool_free (et_occurrences, t->parent_occ);
508   pool_free (et_nodes, t);
509 }
510
511 /* Release the alloc pools, if they are empty.  */
512
513 void
514 et_free_pools (void)
515 {
516   free_alloc_pool_if_empty (&et_occurrences);
517   free_alloc_pool_if_empty (&et_nodes);
518 }
519
520 /* Sets father of et tree T to FATHER.  */
521
522 void
523 et_set_father (struct et_node *t, struct et_node *father)
524 {
525   struct et_node *left, *right;
526   struct et_occ *rmost, *left_part, *new_f_occ, *p;
527
528   /* Update the path represented in the splay tree.  */
529   new_f_occ = et_new_occ (father);
530
531   rmost = father->rightmost_occ;
532   et_splay (rmost);
533
534   left_part = rmost->prev;
535
536   p = t->rightmost_occ;
537   et_splay (p);
538
539   set_prev (new_f_occ, left_part);
540   set_next (new_f_occ, p);
541
542   p->depth++;
543   p->min++;
544   et_recomp_min (new_f_occ);
545
546   set_prev (rmost, new_f_occ);
547
548   if (new_f_occ->min + rmost->depth < rmost->min)
549     {
550       rmost->min = new_f_occ->min + rmost->depth;
551       rmost->min_occ = new_f_occ->min_occ;
552     }
553
554   t->parent_occ = new_f_occ;
555
556   /* Update the tree.  */
557   t->father = father;
558   right = father->son;
559   if (right)
560     left = right->left;
561   else
562     left = right = t;
563
564   left->right = t;
565   right->left = t;
566   t->left = left;
567   t->right = right;
568
569   father->son = t;
570
571 #ifdef DEBUG_ET
572   et_check_tree_sanity (rmost);
573   record_path_before (rmost);
574 #endif
575 }
576
577 /* Splits the edge from T to its father.  */
578
579 void
580 et_split (struct et_node *t)
581 {
582   struct et_node *father = t->father;
583   struct et_occ *r, *l, *rmost, *p_occ;
584
585   /* Update the path represented by the splay tree.  */
586   rmost = t->rightmost_occ;
587   et_splay (rmost);
588
589   for (r = rmost->next; r->prev; r = r->prev)
590     continue;
591   et_splay (r);
592
593   r->prev->parent = NULL;
594   p_occ = t->parent_occ;
595   et_splay (p_occ);
596   t->parent_occ = NULL;
597
598   l = p_occ->prev;
599   p_occ->next->parent = NULL;
600
601   set_prev (r, l);
602
603   et_recomp_min (r);
604
605   et_splay (rmost);
606   rmost->depth = 0;
607   rmost->min = 0;
608
609   pool_free (et_occurrences, p_occ);
610
611   /* Update the tree.  */
612   if (father->son == t)
613     father->son = t->right;
614   if (father->son == t)
615     father->son = NULL;
616   else
617     {
618       t->left->right = t->right;
619       t->right->left = t->left;
620     }
621   t->left = t->right = NULL;
622   t->father = NULL;
623
624 #ifdef DEBUG_ET
625   et_check_tree_sanity (rmost);
626   record_path_before (rmost);
627
628   et_check_tree_sanity (r);
629   record_path_before (r);
630 #endif
631 }
632
633 /* Finds the nearest common ancestor of the nodes N1 and N2.  */
634
635 struct et_node *
636 et_nca (struct et_node *n1, struct et_node *n2)
637 {
638   struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
639   struct et_occ *l, *r, *ret;
640   int mn;
641
642   if (n1 == n2)
643     return n1;
644
645   et_splay (o1);
646   l = o1->prev;
647   r = o1->next;
648   if (l)
649     l->parent = NULL;
650   if (r)
651     r->parent = NULL;
652   et_splay (o2);
653
654   if (l == o2 || (l && l->parent != NULL))
655     {
656       ret = o2->next;
657
658       set_prev (o1, o2);
659       if (r)
660         r->parent = o1;
661     }
662   else if (r == o2 || (r && r->parent != NULL))
663     {
664       ret = o2->prev;
665
666       set_next (o1, o2);
667       if (l)
668         l->parent = o1;
669     }
670   else
671     {
672       /* O1 and O2 are in different components of the forest.  */
673       if (l)
674         l->parent = o1;
675       if (r)
676         r->parent = o1;
677       return NULL;
678     }
679
680   if (0 < o2->depth)
681     {
682       om = o1;
683       mn = o1->depth;
684     }
685   else
686     {
687       om = o2;
688       mn = o2->depth + o1->depth;
689     }
690
691 #ifdef DEBUG_ET
692   et_check_tree_sanity (o2);
693 #endif
694
695   if (ret && ret->min + o1->depth + o2->depth < mn)
696     return ret->min_occ->of;
697   else
698     return om->of;
699 }
700
701 /* Checks whether the node UP is an ancestor of the node DOWN.  */
702
703 bool
704 et_below (struct et_node *down, struct et_node *up)
705 {
706   struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
707   struct et_occ *l, *r;
708
709   if (up == down)
710     return true;
711
712   et_splay (u);
713   l = u->prev;
714   r = u->next;
715
716   if (!l)
717     return false;
718
719   l->parent = NULL;
720
721   if (r)
722     r->parent = NULL;
723
724   et_splay (d);
725
726   if (l == d || l->parent != NULL)
727     {
728       if (r)
729         r->parent = u;
730       set_prev (u, d);
731 #ifdef DEBUG_ET
732       et_check_tree_sanity (u);
733 #endif
734     }
735   else
736     {
737       l->parent = u;
738
739       /* In case O1 and O2 are in two different trees, we must just restore the
740          original state.  */
741       if (r && r->parent != NULL)
742         set_next (u, d);
743       else
744         set_next (u, r);
745
746 #ifdef DEBUG_ET
747       et_check_tree_sanity (u);
748 #endif
749       return false;
750     }
751
752   if (0 >= d->depth)
753     return false;
754
755   return !d->next || d->next->min + d->depth >= 0;
756 }
757
758 /* Returns the root of the tree that contains NODE.  */
759
760 struct et_node *
761 et_root (struct et_node *node)
762 {
763   struct et_occ *occ = node->rightmost_occ, *r;
764
765   /* The root of the tree corresponds to the rightmost occurrence in the
766      represented path.  */
767   et_splay (occ);
768   for (r = occ; r->next; r = r->next)
769     continue;
770   et_splay (r);
771
772   return r->of;
773 }