Eliminate last_basic_block macro.
[platform/upstream/gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2    Copyright (C) 2000-2013 Free Software Foundation, Inc.
3    Contributed by Michael Matz (matz@ifh.de).
4
5    This file is part of GCC.
6
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3, or (at your option)
10    any later version.
11
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22    to compute the dominators in a control flow graph.  A basic block D is said
23    to dominate another block X, when all paths from the entry node of the CFG
24    to X go also over D.  The dominance relation is a transitive reflexive
25    relation and its minimal transitive reduction is a tree, called the
26    dominator tree.  So for each block X besides the entry block exists a
27    block I(X), called the immediate dominator of X, which is the parent of X
28    in the dominator tree.
29
30    The algorithm computes this dominator tree implicitly by computing for
31    each block its immediate dominator.  We use tree balancing and path
32    compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33    slowly growing functional inverse of the Ackerman function.  */
34
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "obstack.h"
42 #include "basic-block.h"
43 #include "diagnostic-core.h"
44 #include "et-forest.h"
45 #include "timevar.h"
46 #include "pointer-set.h"
47 #include "graphds.h"
48 #include "bitmap.h"
49
50 /* We name our nodes with integers, beginning with 1.  Zero is reserved for
51    'undefined' or 'end of list'.  The name of each node is given by the dfs
52    number of the corresponding basic block.  Please note, that we include the
53    artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54    support multiple entry points.  Its dfs number is of course 1.  */
55
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
58
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60    this structure through all our 'methods'.  It holds various arrays
61    reflecting the (sub)structure of the flowgraph.  Most of them are of type
62    TBB and are also indexed by TBB.  */
63
64 struct dom_info
65 {
66   /* The parent of a node in the DFS tree.  */
67   TBB *dfs_parent;
68   /* For a node x key[x] is roughly the node nearest to the root from which
69      exists a way to x only over nodes behind x.  Such a node is also called
70      semidominator.  */
71   TBB *key;
72   /* The value in path_min[x] is the node y on the path from x to the root of
73      the tree x is in with the smallest key[y].  */
74   TBB *path_min;
75   /* bucket[x] points to the first node of the set of nodes having x as key.  */
76   TBB *bucket;
77   /* And next_bucket[x] points to the next node.  */
78   TBB *next_bucket;
79   /* After the algorithm is done, dom[x] contains the immediate dominator
80      of x.  */
81   TBB *dom;
82
83   /* The following few fields implement the structures needed for disjoint
84      sets.  */
85   /* set_chain[x] is the next node on the path from x to the representative
86      of the set containing x.  If set_chain[x]==0 then x is a root.  */
87   TBB *set_chain;
88   /* set_size[x] is the number of elements in the set named by x.  */
89   unsigned int *set_size;
90   /* set_child[x] is used for balancing the tree representing a set.  It can
91      be understood as the next sibling of x.  */
92   TBB *set_child;
93
94   /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95      number of that node in DFS order counted from 1.  This is an index
96      into most of the other arrays in this structure.  */
97   TBB *dfs_order;
98   /* If x is the DFS-index of a node which corresponds with a basic block,
99      dfs_to_bb[x] is that basic block.  Note, that in our structure there are
100      more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101      is true for every basic block bb, but not the opposite.  */
102   basic_block *dfs_to_bb;
103
104   /* This is the next free DFS number when creating the DFS tree.  */
105   unsigned int dfsnum;
106   /* The number of nodes in the DFS tree (==dfsnum-1).  */
107   unsigned int nodes;
108
109   /* Blocks with bits set here have a fake edge to EXIT.  These are used
110      to turn a DFS forest into a proper tree.  */
111   bitmap fake_exit_edge;
112 };
113
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
117 static void calc_dfs_tree (struct dom_info *, bool);
118 static void compress (struct dom_info *, TBB);
119 static TBB eval (struct dom_info *, TBB);
120 static void link_roots (struct dom_info *, TBB, TBB);
121 static void calc_idoms (struct dom_info *, bool);
122 void debug_dominance_info (enum cdi_direction);
123 void debug_dominance_tree (enum cdi_direction, basic_block);
124
125 /* Helper macro for allocating and initializing an array,
126    for aesthetic reasons.  */
127 #define init_ar(var, type, num, content)                        \
128   do                                                            \
129     {                                                           \
130       unsigned int i = 1;    /* Catch content == i.  */         \
131       if (! (content))                                          \
132         (var) = XCNEWVEC (type, num);                           \
133       else                                                      \
134         {                                                       \
135           (var) = XNEWVEC (type, (num));                        \
136           for (i = 0; i < num; i++)                             \
137             (var)[i] = (content);                               \
138         }                                                       \
139     }                                                           \
140   while (0)
141
142 /* Allocate all needed memory in a pessimistic fashion (so we round up).
143    This initializes the contents of DI, which already must be allocated.  */
144
145 static void
146 init_dom_info (struct dom_info *di, enum cdi_direction dir)
147 {
148   /* We need memory for n_basic_blocks nodes.  */
149   unsigned int num = n_basic_blocks_for_fn (cfun);
150   init_ar (di->dfs_parent, TBB, num, 0);
151   init_ar (di->path_min, TBB, num, i);
152   init_ar (di->key, TBB, num, i);
153   init_ar (di->dom, TBB, num, 0);
154
155   init_ar (di->bucket, TBB, num, 0);
156   init_ar (di->next_bucket, TBB, num, 0);
157
158   init_ar (di->set_chain, TBB, num, 0);
159   init_ar (di->set_size, unsigned int, num, 1);
160   init_ar (di->set_child, TBB, num, 0);
161
162   init_ar (di->dfs_order, TBB,
163            (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
164   init_ar (di->dfs_to_bb, basic_block, num, 0);
165
166   di->dfsnum = 1;
167   di->nodes = 0;
168
169   switch (dir)
170     {
171       case CDI_DOMINATORS:
172         di->fake_exit_edge = NULL;
173         break;
174       case CDI_POST_DOMINATORS:
175         di->fake_exit_edge = BITMAP_ALLOC (NULL);
176         break;
177       default:
178         gcc_unreachable ();
179         break;
180     }
181 }
182
183 #undef init_ar
184
185 /* Map dominance calculation type to array index used for various
186    dominance information arrays.  This version is simple -- it will need
187    to be modified, obviously, if additional values are added to
188    cdi_direction.  */
189
190 static unsigned int
191 dom_convert_dir_to_idx (enum cdi_direction dir)
192 {
193   gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
194   return dir - 1;
195 }
196
197 /* Free all allocated memory in DI, but not DI itself.  */
198
199 static void
200 free_dom_info (struct dom_info *di)
201 {
202   free (di->dfs_parent);
203   free (di->path_min);
204   free (di->key);
205   free (di->dom);
206   free (di->bucket);
207   free (di->next_bucket);
208   free (di->set_chain);
209   free (di->set_size);
210   free (di->set_child);
211   free (di->dfs_order);
212   free (di->dfs_to_bb);
213   BITMAP_FREE (di->fake_exit_edge);
214 }
215
216 /* The nonrecursive variant of creating a DFS tree.  DI is our working
217    structure, BB the starting basic block for this tree and REVERSE
218    is true, if predecessors should be visited instead of successors of a
219    node.  After this is done all nodes reachable from BB were visited, have
220    assigned their dfs number and are linked together to form a tree.  */
221
222 static void
223 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
224 {
225   /* We call this _only_ if bb is not already visited.  */
226   edge e;
227   TBB child_i, my_i = 0;
228   edge_iterator *stack;
229   edge_iterator ei, einext;
230   int sp;
231   /* Start block (the entry block for forward problem, exit block for backward
232      problem).  */
233   basic_block en_block;
234   /* Ending block.  */
235   basic_block ex_block;
236
237   stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
238   sp = 0;
239
240   /* Initialize our border blocks, and the first edge.  */
241   if (reverse)
242     {
243       ei = ei_start (bb->preds);
244       en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
245       ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
246     }
247   else
248     {
249       ei = ei_start (bb->succs);
250       en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
251       ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
252     }
253
254   /* When the stack is empty we break out of this loop.  */
255   while (1)
256     {
257       basic_block bn;
258
259       /* This loop traverses edges e in depth first manner, and fills the
260          stack.  */
261       while (!ei_end_p (ei))
262         {
263           e = ei_edge (ei);
264
265           /* Deduce from E the current and the next block (BB and BN), and the
266              next edge.  */
267           if (reverse)
268             {
269               bn = e->src;
270
271               /* If the next node BN is either already visited or a border
272                  block the current edge is useless, and simply overwritten
273                  with the next edge out of the current node.  */
274               if (bn == ex_block || di->dfs_order[bn->index])
275                 {
276                   ei_next (&ei);
277                   continue;
278                 }
279               bb = e->dest;
280               einext = ei_start (bn->preds);
281             }
282           else
283             {
284               bn = e->dest;
285               if (bn == ex_block || di->dfs_order[bn->index])
286                 {
287                   ei_next (&ei);
288                   continue;
289                 }
290               bb = e->src;
291               einext = ei_start (bn->succs);
292             }
293
294           gcc_assert (bn != en_block);
295
296           /* Fill the DFS tree info calculatable _before_ recursing.  */
297           if (bb != en_block)
298             my_i = di->dfs_order[bb->index];
299           else
300             my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
301           child_i = di->dfs_order[bn->index] = di->dfsnum++;
302           di->dfs_to_bb[child_i] = bn;
303           di->dfs_parent[child_i] = my_i;
304
305           /* Save the current point in the CFG on the stack, and recurse.  */
306           stack[sp++] = ei;
307           ei = einext;
308         }
309
310       if (!sp)
311         break;
312       ei = stack[--sp];
313
314       /* OK.  The edge-list was exhausted, meaning normally we would
315          end the recursion.  After returning from the recursive call,
316          there were (may be) other statements which were run after a
317          child node was completely considered by DFS.  Here is the
318          point to do it in the non-recursive variant.
319          E.g. The block just completed is in e->dest for forward DFS,
320          the block not yet completed (the parent of the one above)
321          in e->src.  This could be used e.g. for computing the number of
322          descendants or the tree depth.  */
323       ei_next (&ei);
324     }
325   free (stack);
326 }
327
328 /* The main entry for calculating the DFS tree or forest.  DI is our working
329    structure and REVERSE is true, if we are interested in the reverse flow
330    graph.  In that case the result is not necessarily a tree but a forest,
331    because there may be nodes from which the EXIT_BLOCK is unreachable.  */
332
333 static void
334 calc_dfs_tree (struct dom_info *di, bool reverse)
335 {
336   /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE).  */
337   basic_block begin = (reverse
338                        ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
339   di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
340   di->dfs_to_bb[di->dfsnum] = begin;
341   di->dfsnum++;
342
343   calc_dfs_tree_nonrec (di, begin, reverse);
344
345   if (reverse)
346     {
347       /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
348          They are reverse-unreachable.  In the dom-case we disallow such
349          nodes, but in post-dom we have to deal with them.
350
351          There are two situations in which this occurs.  First, noreturn
352          functions.  Second, infinite loops.  In the first case we need to
353          pretend that there is an edge to the exit block.  In the second
354          case, we wind up with a forest.  We need to process all noreturn
355          blocks before we know if we've got any infinite loops.  */
356
357       basic_block b;
358       bool saw_unconnected = false;
359
360       FOR_EACH_BB_REVERSE (b)
361         {
362           if (EDGE_COUNT (b->succs) > 0)
363             {
364               if (di->dfs_order[b->index] == 0)
365                 saw_unconnected = true;
366               continue;
367             }
368           bitmap_set_bit (di->fake_exit_edge, b->index);
369           di->dfs_order[b->index] = di->dfsnum;
370           di->dfs_to_bb[di->dfsnum] = b;
371           di->dfs_parent[di->dfsnum] =
372             di->dfs_order[last_basic_block_for_fn (cfun)];
373           di->dfsnum++;
374           calc_dfs_tree_nonrec (di, b, reverse);
375         }
376
377       if (saw_unconnected)
378         {
379           FOR_EACH_BB_REVERSE (b)
380             {
381               basic_block b2;
382               if (di->dfs_order[b->index])
383                 continue;
384               b2 = dfs_find_deadend (b);
385               gcc_checking_assert (di->dfs_order[b2->index] == 0);
386               bitmap_set_bit (di->fake_exit_edge, b2->index);
387               di->dfs_order[b2->index] = di->dfsnum;
388               di->dfs_to_bb[di->dfsnum] = b2;
389               di->dfs_parent[di->dfsnum] =
390                 di->dfs_order[last_basic_block_for_fn (cfun)];
391               di->dfsnum++;
392               calc_dfs_tree_nonrec (di, b2, reverse);
393               gcc_checking_assert (di->dfs_order[b->index]);
394             }
395         }
396     }
397
398   di->nodes = di->dfsnum - 1;
399
400   /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
401   gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
402 }
403
404 /* Compress the path from V to the root of its set and update path_min at the
405    same time.  After compress(di, V) set_chain[V] is the root of the set V is
406    in and path_min[V] is the node with the smallest key[] value on the path
407    from V to that root.  */
408
409 static void
410 compress (struct dom_info *di, TBB v)
411 {
412   /* Btw. It's not worth to unrecurse compress() as the depth is usually not
413      greater than 5 even for huge graphs (I've not seen call depth > 4).
414      Also performance wise compress() ranges _far_ behind eval().  */
415   TBB parent = di->set_chain[v];
416   if (di->set_chain[parent])
417     {
418       compress (di, parent);
419       if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
420         di->path_min[v] = di->path_min[parent];
421       di->set_chain[v] = di->set_chain[parent];
422     }
423 }
424
425 /* Compress the path from V to the set root of V if needed (when the root has
426    changed since the last call).  Returns the node with the smallest key[]
427    value on the path from V to the root.  */
428
429 static inline TBB
430 eval (struct dom_info *di, TBB v)
431 {
432   /* The representative of the set V is in, also called root (as the set
433      representation is a tree).  */
434   TBB rep = di->set_chain[v];
435
436   /* V itself is the root.  */
437   if (!rep)
438     return di->path_min[v];
439
440   /* Compress only if necessary.  */
441   if (di->set_chain[rep])
442     {
443       compress (di, v);
444       rep = di->set_chain[v];
445     }
446
447   if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
448     return di->path_min[v];
449   else
450     return di->path_min[rep];
451 }
452
453 /* This essentially merges the two sets of V and W, giving a single set with
454    the new root V.  The internal representation of these disjoint sets is a
455    balanced tree.  Currently link(V,W) is only used with V being the parent
456    of W.  */
457
458 static void
459 link_roots (struct dom_info *di, TBB v, TBB w)
460 {
461   TBB s = w;
462
463   /* Rebalance the tree.  */
464   while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
465     {
466       if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
467           >= 2 * di->set_size[di->set_child[s]])
468         {
469           di->set_chain[di->set_child[s]] = s;
470           di->set_child[s] = di->set_child[di->set_child[s]];
471         }
472       else
473         {
474           di->set_size[di->set_child[s]] = di->set_size[s];
475           s = di->set_chain[s] = di->set_child[s];
476         }
477     }
478
479   di->path_min[s] = di->path_min[w];
480   di->set_size[v] += di->set_size[w];
481   if (di->set_size[v] < 2 * di->set_size[w])
482     {
483       TBB tmp = s;
484       s = di->set_child[v];
485       di->set_child[v] = tmp;
486     }
487
488   /* Merge all subtrees.  */
489   while (s)
490     {
491       di->set_chain[s] = v;
492       s = di->set_child[s];
493     }
494 }
495
496 /* This calculates the immediate dominators (or post-dominators if REVERSE is
497    true).  DI is our working structure and should hold the DFS forest.
498    On return the immediate dominator to node V is in di->dom[V].  */
499
500 static void
501 calc_idoms (struct dom_info *di, bool reverse)
502 {
503   TBB v, w, k, par;
504   basic_block en_block;
505   edge_iterator ei, einext;
506
507   if (reverse)
508     en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
509   else
510     en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
511
512   /* Go backwards in DFS order, to first look at the leafs.  */
513   v = di->nodes;
514   while (v > 1)
515     {
516       basic_block bb = di->dfs_to_bb[v];
517       edge e;
518
519       par = di->dfs_parent[v];
520       k = v;
521
522       ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
523
524       if (reverse)
525         {
526           /* If this block has a fake edge to exit, process that first.  */
527           if (bitmap_bit_p (di->fake_exit_edge, bb->index))
528             {
529               einext = ei;
530               einext.index = 0;
531               goto do_fake_exit_edge;
532             }
533         }
534
535       /* Search all direct predecessors for the smallest node with a path
536          to them.  That way we have the smallest node with also a path to
537          us only over nodes behind us.  In effect we search for our
538          semidominator.  */
539       while (!ei_end_p (ei))
540         {
541           TBB k1;
542           basic_block b;
543
544           e = ei_edge (ei);
545           b = (reverse) ? e->dest : e->src;
546           einext = ei;
547           ei_next (&einext);
548
549           if (b == en_block)
550             {
551             do_fake_exit_edge:
552               k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
553             }
554           else
555             k1 = di->dfs_order[b->index];
556
557           /* Call eval() only if really needed.  If k1 is above V in DFS tree,
558              then we know, that eval(k1) == k1 and key[k1] == k1.  */
559           if (k1 > v)
560             k1 = di->key[eval (di, k1)];
561           if (k1 < k)
562             k = k1;
563
564           ei = einext;
565         }
566
567       di->key[v] = k;
568       link_roots (di, par, v);
569       di->next_bucket[v] = di->bucket[k];
570       di->bucket[k] = v;
571
572       /* Transform semidominators into dominators.  */
573       for (w = di->bucket[par]; w; w = di->next_bucket[w])
574         {
575           k = eval (di, w);
576           if (di->key[k] < di->key[w])
577             di->dom[w] = k;
578           else
579             di->dom[w] = par;
580         }
581       /* We don't need to cleanup next_bucket[].  */
582       di->bucket[par] = 0;
583       v--;
584     }
585
586   /* Explicitly define the dominators.  */
587   di->dom[1] = 0;
588   for (v = 2; v <= di->nodes; v++)
589     if (di->dom[v] != di->key[v])
590       di->dom[v] = di->dom[di->dom[v]];
591 }
592
593 /* Assign dfs numbers starting from NUM to NODE and its sons.  */
594
595 static void
596 assign_dfs_numbers (struct et_node *node, int *num)
597 {
598   struct et_node *son;
599
600   node->dfs_num_in = (*num)++;
601
602   if (node->son)
603     {
604       assign_dfs_numbers (node->son, num);
605       for (son = node->son->right; son != node->son; son = son->right)
606         assign_dfs_numbers (son, num);
607     }
608
609   node->dfs_num_out = (*num)++;
610 }
611
612 /* Compute the data necessary for fast resolving of dominator queries in a
613    static dominator tree.  */
614
615 static void
616 compute_dom_fast_query (enum cdi_direction dir)
617 {
618   int num = 0;
619   basic_block bb;
620   unsigned int dir_index = dom_convert_dir_to_idx (dir);
621
622   gcc_checking_assert (dom_info_available_p (dir));
623
624   if (dom_computed[dir_index] == DOM_OK)
625     return;
626
627   FOR_ALL_BB (bb)
628     {
629       if (!bb->dom[dir_index]->father)
630         assign_dfs_numbers (bb->dom[dir_index], &num);
631     }
632
633   dom_computed[dir_index] = DOM_OK;
634 }
635
636 /* The main entry point into this module.  DIR is set depending on whether
637    we want to compute dominators or postdominators.  */
638
639 void
640 calculate_dominance_info (enum cdi_direction dir)
641 {
642   struct dom_info di;
643   basic_block b;
644   unsigned int dir_index = dom_convert_dir_to_idx (dir);
645   bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
646
647   if (dom_computed[dir_index] == DOM_OK)
648     return;
649
650   timevar_push (TV_DOMINANCE);
651   if (!dom_info_available_p (dir))
652     {
653       gcc_assert (!n_bbs_in_dom_tree[dir_index]);
654
655       FOR_ALL_BB (b)
656         {
657           b->dom[dir_index] = et_new_tree (b);
658         }
659       n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
660
661       init_dom_info (&di, dir);
662       calc_dfs_tree (&di, reverse);
663       calc_idoms (&di, reverse);
664
665       FOR_EACH_BB (b)
666         {
667           TBB d = di.dom[di.dfs_order[b->index]];
668
669           if (di.dfs_to_bb[d])
670             et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
671         }
672
673       free_dom_info (&di);
674       dom_computed[dir_index] = DOM_NO_FAST_QUERY;
675     }
676
677   compute_dom_fast_query (dir);
678
679   timevar_pop (TV_DOMINANCE);
680 }
681
682 /* Free dominance information for direction DIR.  */
683 void
684 free_dominance_info (enum cdi_direction dir)
685 {
686   basic_block bb;
687   unsigned int dir_index = dom_convert_dir_to_idx (dir);
688
689   if (!dom_info_available_p (dir))
690     return;
691
692   FOR_ALL_BB (bb)
693     {
694       et_free_tree_force (bb->dom[dir_index]);
695       bb->dom[dir_index] = NULL;
696     }
697   et_free_pools ();
698
699   n_bbs_in_dom_tree[dir_index] = 0;
700
701   dom_computed[dir_index] = DOM_NONE;
702 }
703
704 /* Return the immediate dominator of basic block BB.  */
705 basic_block
706 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
707 {
708   unsigned int dir_index = dom_convert_dir_to_idx (dir);
709   struct et_node *node = bb->dom[dir_index];
710
711   gcc_checking_assert (dom_computed[dir_index]);
712
713   if (!node->father)
714     return NULL;
715
716   return (basic_block) node->father->data;
717 }
718
719 /* Set the immediate dominator of the block possibly removing
720    existing edge.  NULL can be used to remove any edge.  */
721 void
722 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
723                          basic_block dominated_by)
724 {
725   unsigned int dir_index = dom_convert_dir_to_idx (dir);
726   struct et_node *node = bb->dom[dir_index];
727
728   gcc_checking_assert (dom_computed[dir_index]);
729
730   if (node->father)
731     {
732       if (node->father->data == dominated_by)
733         return;
734       et_split (node);
735     }
736
737   if (dominated_by)
738     et_set_father (node, dominated_by->dom[dir_index]);
739
740   if (dom_computed[dir_index] == DOM_OK)
741     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
742 }
743
744 /* Returns the list of basic blocks immediately dominated by BB, in the
745    direction DIR.  */
746 vec<basic_block> 
747 get_dominated_by (enum cdi_direction dir, basic_block bb)
748 {
749   unsigned int dir_index = dom_convert_dir_to_idx (dir);
750   struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
751   vec<basic_block> bbs = vNULL;
752
753   gcc_checking_assert (dom_computed[dir_index]);
754
755   if (!son)
756     return vNULL;
757
758   bbs.safe_push ((basic_block) son->data);
759   for (ason = son->right; ason != son; ason = ason->right)
760     bbs.safe_push ((basic_block) ason->data);
761
762   return bbs;
763 }
764
765 /* Returns the list of basic blocks that are immediately dominated (in
766    direction DIR) by some block between N_REGION ones stored in REGION,
767    except for blocks in the REGION itself.  */
768
769 vec<basic_block> 
770 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
771                          unsigned n_region)
772 {
773   unsigned i;
774   basic_block dom;
775   vec<basic_block> doms = vNULL;
776
777   for (i = 0; i < n_region; i++)
778     region[i]->flags |= BB_DUPLICATED;
779   for (i = 0; i < n_region; i++)
780     for (dom = first_dom_son (dir, region[i]);
781          dom;
782          dom = next_dom_son (dir, dom))
783       if (!(dom->flags & BB_DUPLICATED))
784         doms.safe_push (dom);
785   for (i = 0; i < n_region; i++)
786     region[i]->flags &= ~BB_DUPLICATED;
787
788   return doms;
789 }
790
791 /* Returns the list of basic blocks including BB dominated by BB, in the
792    direction DIR up to DEPTH in the dominator tree.  The DEPTH of zero will
793    produce a vector containing all dominated blocks.  The vector will be sorted
794    in preorder.  */
795
796 vec<basic_block> 
797 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
798 {
799   vec<basic_block> bbs = vNULL;
800   unsigned i;
801   unsigned next_level_start;
802
803   i = 0;
804   bbs.safe_push (bb);
805   next_level_start = 1; /* = bbs.length (); */
806
807   do
808     {
809       basic_block son;
810
811       bb = bbs[i++];
812       for (son = first_dom_son (dir, bb);
813            son;
814            son = next_dom_son (dir, son))
815         bbs.safe_push (son);
816
817       if (i == next_level_start && --depth)
818         next_level_start = bbs.length ();
819     }
820   while (i < next_level_start);
821
822   return bbs;
823 }
824
825 /* Returns the list of basic blocks including BB dominated by BB, in the
826    direction DIR.  The vector will be sorted in preorder.  */
827
828 vec<basic_block> 
829 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
830 {
831   return get_dominated_to_depth (dir, bb, 0);
832 }
833
834 /* Redirect all edges pointing to BB to TO.  */
835 void
836 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
837                                basic_block to)
838 {
839   unsigned int dir_index = dom_convert_dir_to_idx (dir);
840   struct et_node *bb_node, *to_node, *son;
841
842   bb_node = bb->dom[dir_index];
843   to_node = to->dom[dir_index];
844
845   gcc_checking_assert (dom_computed[dir_index]);
846
847   if (!bb_node->son)
848     return;
849
850   while (bb_node->son)
851     {
852       son = bb_node->son;
853
854       et_split (son);
855       et_set_father (son, to_node);
856     }
857
858   if (dom_computed[dir_index] == DOM_OK)
859     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
860 }
861
862 /* Find first basic block in the tree dominating both BB1 and BB2.  */
863 basic_block
864 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
865 {
866   unsigned int dir_index = dom_convert_dir_to_idx (dir);
867
868   gcc_checking_assert (dom_computed[dir_index]);
869
870   if (!bb1)
871     return bb2;
872   if (!bb2)
873     return bb1;
874
875   return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
876 }
877
878
879 /* Find the nearest common dominator for the basic blocks in BLOCKS,
880    using dominance direction DIR.  */
881
882 basic_block
883 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
884 {
885   unsigned i, first;
886   bitmap_iterator bi;
887   basic_block dom;
888
889   first = bitmap_first_set_bit (blocks);
890   dom = BASIC_BLOCK_FOR_FN (cfun, first);
891   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
892     if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
893       dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
894
895   return dom;
896 }
897
898 /*  Given a dominator tree, we can determine whether one thing
899     dominates another in constant time by using two DFS numbers:
900
901     1. The number for when we visit a node on the way down the tree
902     2. The number for when we visit a node on the way back up the tree
903
904     You can view these as bounds for the range of dfs numbers the
905     nodes in the subtree of the dominator tree rooted at that node
906     will contain.
907
908     The dominator tree is always a simple acyclic tree, so there are
909     only three possible relations two nodes in the dominator tree have
910     to each other:
911
912     1. Node A is above Node B (and thus, Node A dominates node B)
913
914      A
915      |
916      C
917     / \
918    B   D
919
920
921    In the above case, DFS_Number_In of A will be <= DFS_Number_In of
922    B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
923    because we must hit A in the dominator tree *before* B on the walk
924    down, and we will hit A *after* B on the walk back up
925
926    2. Node A is below node B (and thus, node B dominates node A)
927
928
929      B
930      |
931      A
932     / \
933    C   D
934
935    In the above case, DFS_Number_In of A will be >= DFS_Number_In of
936    B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
937
938    This is because we must hit A in the dominator tree *after* B on
939    the walk down, and we will hit A *before* B on the walk back up
940
941    3. Node A and B are siblings (and thus, neither dominates the other)
942
943      C
944      |
945      D
946     / \
947    A   B
948
949    In the above case, DFS_Number_In of A will *always* be <=
950    DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
951    DFS_Number_Out of B.  This is because we will always finish the dfs
952    walk of one of the subtrees before the other, and thus, the dfs
953    numbers for one subtree can't intersect with the range of dfs
954    numbers for the other subtree.  If you swap A and B's position in
955    the dominator tree, the comparison changes direction, but the point
956    is that both comparisons will always go the same way if there is no
957    dominance relationship.
958
959    Thus, it is sufficient to write
960
961    A_Dominates_B (node A, node B)
962    {
963      return DFS_Number_In(A) <= DFS_Number_In(B)
964             && DFS_Number_Out (A) >= DFS_Number_Out(B);
965    }
966
967    A_Dominated_by_B (node A, node B)
968    {
969      return DFS_Number_In(A) >= DFS_Number_In(A)
970             && DFS_Number_Out (A) <= DFS_Number_Out(B);
971    }  */
972
973 /* Return TRUE in case BB1 is dominated by BB2.  */
974 bool
975 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
976 {
977   unsigned int dir_index = dom_convert_dir_to_idx (dir);
978   struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
979
980   gcc_checking_assert (dom_computed[dir_index]);
981
982   if (dom_computed[dir_index] == DOM_OK)
983     return (n1->dfs_num_in >= n2->dfs_num_in
984             && n1->dfs_num_out <= n2->dfs_num_out);
985
986   return et_below (n1, n2);
987 }
988
989 /* Returns the entry dfs number for basic block BB, in the direction DIR.  */
990
991 unsigned
992 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
993 {
994   unsigned int dir_index = dom_convert_dir_to_idx (dir);
995   struct et_node *n = bb->dom[dir_index];
996
997   gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
998   return n->dfs_num_in;
999 }
1000
1001 /* Returns the exit dfs number for basic block BB, in the direction DIR.  */
1002
1003 unsigned
1004 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1005 {
1006   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1007   struct et_node *n = bb->dom[dir_index];
1008
1009   gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1010   return n->dfs_num_out;
1011 }
1012
1013 /* Verify invariants of dominator structure.  */
1014 DEBUG_FUNCTION void
1015 verify_dominators (enum cdi_direction dir)
1016 {
1017   int err = 0;
1018   basic_block bb, imm_bb, imm_bb_correct;
1019   struct dom_info di;
1020   bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1021
1022   gcc_assert (dom_info_available_p (dir));
1023
1024   init_dom_info (&di, dir);
1025   calc_dfs_tree (&di, reverse);
1026   calc_idoms (&di, reverse);
1027
1028   FOR_EACH_BB (bb)
1029     {
1030       imm_bb = get_immediate_dominator (dir, bb);
1031       if (!imm_bb)
1032         {
1033           error ("dominator of %d status unknown", bb->index);
1034           err = 1;
1035         }
1036
1037       imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1038       if (imm_bb != imm_bb_correct)
1039         {
1040           error ("dominator of %d should be %d, not %d",
1041                  bb->index, imm_bb_correct->index, imm_bb->index);
1042           err = 1;
1043         }
1044     }
1045
1046   free_dom_info (&di);
1047   gcc_assert (!err);
1048 }
1049
1050 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1051    assuming that dominators of other blocks are correct.  We also use it to
1052    recompute the dominators in a restricted area, by iterating it until it
1053    reaches a fixed point.  */
1054
1055 basic_block
1056 recompute_dominator (enum cdi_direction dir, basic_block bb)
1057 {
1058   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1059   basic_block dom_bb = NULL;
1060   edge e;
1061   edge_iterator ei;
1062
1063   gcc_checking_assert (dom_computed[dir_index]);
1064
1065   if (dir == CDI_DOMINATORS)
1066     {
1067       FOR_EACH_EDGE (e, ei, bb->preds)
1068         {
1069           if (!dominated_by_p (dir, e->src, bb))
1070             dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1071         }
1072     }
1073   else
1074     {
1075       FOR_EACH_EDGE (e, ei, bb->succs)
1076         {
1077           if (!dominated_by_p (dir, e->dest, bb))
1078             dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1079         }
1080     }
1081
1082   return dom_bb;
1083 }
1084
1085 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1086    of BBS.  We assume that all the immediate dominators except for those of the
1087    blocks in BBS are correct.  If CONSERVATIVE is true, we also assume that the
1088    currently recorded immediate dominators of blocks in BBS really dominate the
1089    blocks.  The basic blocks for that we determine the dominator are removed
1090    from BBS.  */
1091
1092 static void
1093 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1094                                 bool conservative)
1095 {
1096   unsigned i;
1097   bool single;
1098   basic_block bb, dom = NULL;
1099   edge_iterator ei;
1100   edge e;
1101
1102   for (i = 0; bbs.iterate (i, &bb);)
1103     {
1104       if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1105         goto succeed;
1106
1107       if (single_pred_p (bb))
1108         {
1109           set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1110           goto succeed;
1111         }
1112
1113       if (!conservative)
1114         goto fail;
1115
1116       single = true;
1117       dom = NULL;
1118       FOR_EACH_EDGE (e, ei, bb->preds)
1119         {
1120           if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1121             continue;
1122
1123           if (!dom)
1124             dom = e->src;
1125           else
1126             {
1127               single = false;
1128               dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1129             }
1130         }
1131
1132       gcc_assert (dom != NULL);
1133       if (single
1134           || find_edge (dom, bb))
1135         {
1136           set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1137           goto succeed;
1138         }
1139
1140 fail:
1141       i++;
1142       continue;
1143
1144 succeed:
1145       bbs.unordered_remove (i);
1146     }
1147 }
1148
1149 /* Returns root of the dominance tree in the direction DIR that contains
1150    BB.  */
1151
1152 static basic_block
1153 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1154 {
1155   return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1156 }
1157
1158 /* See the comment in iterate_fix_dominators.  Finds the immediate dominators
1159    for the sons of Y, found using the SON and BROTHER arrays representing
1160    the dominance tree of graph G.  BBS maps the vertices of G to the basic
1161    blocks.  */
1162
1163 static void
1164 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1165                                int y, int *son, int *brother)
1166 {
1167   bitmap gprime;
1168   int i, a, nc;
1169   vec<int> *sccs;
1170   basic_block bb, dom, ybb;
1171   unsigned si;
1172   edge e;
1173   edge_iterator ei;
1174
1175   if (son[y] == -1)
1176     return;
1177   if (y == (int) bbs.length ())
1178     ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179   else
1180     ybb = bbs[y];
1181
1182   if (brother[son[y]] == -1)
1183     {
1184       /* Handle the common case Y has just one son specially.  */
1185       bb = bbs[son[y]];
1186       set_immediate_dominator (CDI_DOMINATORS, bb,
1187                                recompute_dominator (CDI_DOMINATORS, bb));
1188       identify_vertices (g, y, son[y]);
1189       return;
1190     }
1191
1192   gprime = BITMAP_ALLOC (NULL);
1193   for (a = son[y]; a != -1; a = brother[a])
1194     bitmap_set_bit (gprime, a);
1195
1196   nc = graphds_scc (g, gprime);
1197   BITMAP_FREE (gprime);
1198
1199   /* ???  Needed to work around the pre-processor confusion with
1200      using a multi-argument template type as macro argument.  */
1201   typedef vec<int> vec_int_heap;
1202   sccs = XCNEWVEC (vec_int_heap, nc);
1203   for (a = son[y]; a != -1; a = brother[a])
1204     sccs[g->vertices[a].component].safe_push (a);
1205
1206   for (i = nc - 1; i >= 0; i--)
1207     {
1208       dom = NULL;
1209       FOR_EACH_VEC_ELT (sccs[i], si, a)
1210         {
1211           bb = bbs[a];
1212           FOR_EACH_EDGE (e, ei, bb->preds)
1213             {
1214               if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1215                 continue;
1216
1217               dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1218             }
1219         }
1220
1221       gcc_assert (dom != NULL);
1222       FOR_EACH_VEC_ELT (sccs[i], si, a)
1223         {
1224           bb = bbs[a];
1225           set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1226         }
1227     }
1228
1229   for (i = 0; i < nc; i++)
1230     sccs[i].release ();
1231   free (sccs);
1232
1233   for (a = son[y]; a != -1; a = brother[a])
1234     identify_vertices (g, y, a);
1235 }
1236
1237 /* Recompute dominance information for basic blocks in the set BBS.  The
1238    function assumes that the immediate dominators of all the other blocks
1239    in CFG are correct, and that there are no unreachable blocks.
1240
1241    If CONSERVATIVE is true, we additionally assume that all the ancestors of
1242    a block of BBS in the current dominance tree dominate it.  */
1243
1244 void
1245 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1246                         bool conservative)
1247 {
1248   unsigned i;
1249   basic_block bb, dom;
1250   struct graph *g;
1251   int n, y;
1252   size_t dom_i;
1253   edge e;
1254   edge_iterator ei;
1255   pointer_map<int> *map;
1256   int *parent, *son, *brother;
1257   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1258
1259   /* We only support updating dominators.  There are some problems with
1260      updating postdominators (need to add fake edges from infinite loops
1261      and noreturn functions), and since we do not currently use
1262      iterate_fix_dominators for postdominators, any attempt to handle these
1263      problems would be unused, untested, and almost surely buggy.  We keep
1264      the DIR argument for consistency with the rest of the dominator analysis
1265      interface.  */
1266   gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1267
1268   /* The algorithm we use takes inspiration from the following papers, although
1269      the details are quite different from any of them:
1270
1271      [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1272          Dominator Tree of a Reducible Flowgraph
1273      [2]  V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1274           dominator trees
1275      [3]  K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1276           Algorithm
1277
1278      First, we use the following heuristics to decrease the size of the BBS
1279      set:
1280        a) if BB has a single predecessor, then its immediate dominator is this
1281           predecessor
1282        additionally, if CONSERVATIVE is true:
1283        b) if all the predecessors of BB except for one (X) are dominated by BB,
1284           then X is the immediate dominator of BB
1285        c) if the nearest common ancestor of the predecessors of BB is X and
1286           X -> BB is an edge in CFG, then X is the immediate dominator of BB
1287
1288      Then, we need to establish the dominance relation among the basic blocks
1289      in BBS.  We split the dominance tree by removing the immediate dominator
1290      edges from BBS, creating a forest F.  We form a graph G whose vertices
1291      are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1292      X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1293      whose root is X.  We then determine dominance tree of G.  Note that
1294      for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1295      In this step, we can use arbitrary algorithm to determine dominators.
1296      We decided to prefer the algorithm [3] to the algorithm of
1297      Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1298      10 during gcc bootstrap), and [3] should perform better in this case.
1299
1300      Finally, we need to determine the immediate dominators for the basic
1301      blocks of BBS.  If the immediate dominator of X in G is Y, then
1302      the immediate dominator of X in CFG belongs to the tree of F rooted in
1303      Y.  We process the dominator tree T of G recursively, starting from leaves.
1304      Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1305      subtrees of the dominance tree of CFG rooted in X_i are already correct.
1306      Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}.  We make
1307      the following observations:
1308        (i) the immediate dominator of all blocks in a strongly connected
1309            component of G' is the same
1310        (ii) if X has no predecessors in G', then the immediate dominator of X
1311             is the nearest common ancestor of the predecessors of X in the
1312             subtree of F rooted in Y
1313      Therefore, it suffices to find the topological ordering of G', and
1314      process the nodes X_i in this order using the rules (i) and (ii).
1315      Then, we contract all the nodes X_i with Y in G, so that the further
1316      steps work correctly.  */
1317
1318   if (!conservative)
1319     {
1320       /* Split the tree now.  If the idoms of blocks in BBS are not
1321          conservatively correct, setting the dominators using the
1322          heuristics in prune_bbs_to_update_dominators could
1323          create cycles in the dominance "tree", and cause ICE.  */
1324       FOR_EACH_VEC_ELT (bbs, i, bb)
1325         set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1326     }
1327
1328   prune_bbs_to_update_dominators (bbs, conservative);
1329   n = bbs.length ();
1330
1331   if (n == 0)
1332     return;
1333
1334   if (n == 1)
1335     {
1336       bb = bbs[0];
1337       set_immediate_dominator (CDI_DOMINATORS, bb,
1338                                recompute_dominator (CDI_DOMINATORS, bb));
1339       return;
1340     }
1341
1342   /* Construct the graph G.  */
1343   map = new pointer_map<int>;
1344   FOR_EACH_VEC_ELT (bbs, i, bb)
1345     {
1346       /* If the dominance tree is conservatively correct, split it now.  */
1347       if (conservative)
1348         set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1349       *map->insert (bb) = i;
1350     }
1351   *map->insert (ENTRY_BLOCK_PTR_FOR_FN (cfun)) = n;
1352
1353   g = new_graph (n + 1);
1354   for (y = 0; y < g->n_vertices; y++)
1355     g->vertices[y].data = BITMAP_ALLOC (NULL);
1356   FOR_EACH_VEC_ELT (bbs, i, bb)
1357     {
1358       FOR_EACH_EDGE (e, ei, bb->preds)
1359         {
1360           dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1361           if (dom == bb)
1362             continue;
1363
1364           dom_i = *map->contains (dom);
1365
1366           /* Do not include parallel edges to G.  */
1367           if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1368             continue;
1369
1370           add_edge (g, dom_i, i);
1371         }
1372     }
1373   for (y = 0; y < g->n_vertices; y++)
1374     BITMAP_FREE (g->vertices[y].data);
1375   delete map;
1376
1377   /* Find the dominator tree of G.  */
1378   son = XNEWVEC (int, n + 1);
1379   brother = XNEWVEC (int, n + 1);
1380   parent = XNEWVEC (int, n + 1);
1381   graphds_domtree (g, n, parent, son, brother);
1382
1383   /* Finally, traverse the tree and find the immediate dominators.  */
1384   for (y = n; son[y] != -1; y = son[y])
1385     continue;
1386   while (y != -1)
1387     {
1388       determine_dominators_for_sons (g, bbs, y, son, brother);
1389
1390       if (brother[y] != -1)
1391         {
1392           y = brother[y];
1393           while (son[y] != -1)
1394             y = son[y];
1395         }
1396       else
1397         y = parent[y];
1398     }
1399
1400   free (son);
1401   free (brother);
1402   free (parent);
1403
1404   free_graph (g);
1405 }
1406
1407 void
1408 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1409 {
1410   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1411
1412   gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1413
1414   n_bbs_in_dom_tree[dir_index]++;
1415
1416   bb->dom[dir_index] = et_new_tree (bb);
1417
1418   if (dom_computed[dir_index] == DOM_OK)
1419     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1420 }
1421
1422 void
1423 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1424 {
1425   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1426
1427   gcc_checking_assert (dom_computed[dir_index]);
1428
1429   et_free_tree (bb->dom[dir_index]);
1430   bb->dom[dir_index] = NULL;
1431   n_bbs_in_dom_tree[dir_index]--;
1432
1433   if (dom_computed[dir_index] == DOM_OK)
1434     dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1435 }
1436
1437 /* Returns the first son of BB in the dominator or postdominator tree
1438    as determined by DIR.  */
1439
1440 basic_block
1441 first_dom_son (enum cdi_direction dir, basic_block bb)
1442 {
1443   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1444   struct et_node *son = bb->dom[dir_index]->son;
1445
1446   return (basic_block) (son ? son->data : NULL);
1447 }
1448
1449 /* Returns the next dominance son after BB in the dominator or postdominator
1450    tree as determined by DIR, or NULL if it was the last one.  */
1451
1452 basic_block
1453 next_dom_son (enum cdi_direction dir, basic_block bb)
1454 {
1455   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1456   struct et_node *next = bb->dom[dir_index]->right;
1457
1458   return (basic_block) (next->father->son == next ? NULL : next->data);
1459 }
1460
1461 /* Return dominance availability for dominance info DIR.  */
1462
1463 enum dom_state
1464 dom_info_state (enum cdi_direction dir)
1465 {
1466   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1467
1468   return dom_computed[dir_index];
1469 }
1470
1471 /* Set the dominance availability for dominance info DIR to NEW_STATE.  */
1472
1473 void
1474 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1475 {
1476   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1477
1478   dom_computed[dir_index] = new_state;
1479 }
1480
1481 /* Returns true if dominance information for direction DIR is available.  */
1482
1483 bool
1484 dom_info_available_p (enum cdi_direction dir)
1485 {
1486   unsigned int dir_index = dom_convert_dir_to_idx (dir);
1487
1488   return dom_computed[dir_index] != DOM_NONE;
1489 }
1490
1491 DEBUG_FUNCTION void
1492 debug_dominance_info (enum cdi_direction dir)
1493 {
1494   basic_block bb, bb2;
1495   FOR_EACH_BB (bb)
1496     if ((bb2 = get_immediate_dominator (dir, bb)))
1497       fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1498 }
1499
1500 /* Prints to stderr representation of the dominance tree (for direction DIR)
1501    rooted in ROOT, indented by INDENT tabulators.  If INDENT_FIRST is false,
1502    the first line of the output is not indented.  */
1503
1504 static void
1505 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1506                         unsigned indent, bool indent_first)
1507 {
1508   basic_block son;
1509   unsigned i;
1510   bool first = true;
1511
1512   if (indent_first)
1513     for (i = 0; i < indent; i++)
1514       fprintf (stderr, "\t");
1515   fprintf (stderr, "%d\t", root->index);
1516
1517   for (son = first_dom_son (dir, root);
1518        son;
1519        son = next_dom_son (dir, son))
1520     {
1521       debug_dominance_tree_1 (dir, son, indent + 1, !first);
1522       first = false;
1523     }
1524
1525   if (first)
1526     fprintf (stderr, "\n");
1527 }
1528
1529 /* Prints to stderr representation of the dominance tree (for direction DIR)
1530    rooted in ROOT.  */
1531
1532 DEBUG_FUNCTION void
1533 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1534 {
1535   debug_dominance_tree_1 (dir, root, 0, false);
1536 }