config.gcc (mips*-*-*): Add frame-header-opt.o to extra_objs.
[platform/upstream/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below).  A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23      A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27      You have freedom to copy and modify this GNU Manual, like GNU
28      software.  Copies published by the Free Software Foundation raise
29      funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37     [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41     [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking.  The ``overall options'' allow you to stop this
72 process at an intermediate stage.  For example, the @option{-c} option
73 says not to run the linker.  Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing.  Some options
77 control the preprocessor and others the compiler itself.  Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly.  If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands.  Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments.  For the most part, the order
102 you use doesn't matter.  Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified.  Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}.  This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary::      Brief list of all options, without explanations.
120 * Overall Options::     Controlling the kind of output:
121                         an executable, object files, assembler files,
122                         or preprocessed source.
123 * Invoking G++::        Compiling C++ programs.
124 * C Dialect Options::   Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127                         and Objective-C++.
128 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
129                         be formatted.
130 * Warning Options::     How picky should the compiler be?
131 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
132 * Optimize Options::    How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134                          Also, getting dependency information for Make.
135 * Assembler Options::   Passing options to the assembler.
136 * Link Options::        Specifying libraries and so on.
137 * Directory Options::   Where to find header files and libraries.
138                         Where to find the compiler executable files.
139 * Spec Files::          How to pass switches to sub-processes.
140 * Target Options::      Running a cross-compiler, or an old version of GCC.
141 * Submodel Options::    Specifying minor hardware or convention variations,
142                         such as 68010 vs 68020.
143 * Code Gen Options::    Specifying conventions for function calls, data layout
144                         and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type.  Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c  -S  -E  -o @var{file}  -no-canonical-prefixes  @gol
161 -pipe  -pass-exit-codes  @gol
162 -x @var{language}  -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg}  @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
171 -fhosted  -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision  -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields  -fsigned-char @gol
175 -funsigned-bitfields  -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
180 -fconstexpr-depth=@var{n}  -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines  -fms-extensions @gol
187 -fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
188 -fno-optional-diags  -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo  -fno-rtti -fsized-deallocation @gol
191 -fstats  -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics  -fuse-cxa-atexit @gol
194 -fno-weak  -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
202 -Wnamespaces -Wnarrowing @gol
203 -Wnoexcept -Wnon-virtual-dtor  -Wreorder @gol
204 -Weffc++  -Wstrict-null-sentinel -Wtemplates @gol
205 -Wno-non-template-friend  -Wold-style-cast @gol
206 -Woverloaded-virtual  -Wno-pmf-conversions @gol
207 -Wsign-promo -Wvirtual-inheritance}
208
209 @item Objective-C and Objective-C++ Language Options
210 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
211 Objective-C and Objective-C++ Dialects}.
212 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
213 -fgnu-runtime  -fnext-runtime @gol
214 -fno-nil-receivers @gol
215 -fobjc-abi-version=@var{n} @gol
216 -fobjc-call-cxx-cdtors @gol
217 -fobjc-direct-dispatch @gol
218 -fobjc-exceptions @gol
219 -fobjc-gc @gol
220 -fobjc-nilcheck @gol
221 -fobjc-std=objc1 @gol
222 -fno-local-ivars @gol
223 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
224 -freplace-objc-classes @gol
225 -fzero-link @gol
226 -gen-decls @gol
227 -Wassign-intercept @gol
228 -Wno-protocol  -Wselector @gol
229 -Wstrict-selector-match @gol
230 -Wundeclared-selector}
231
232 @item Diagnostic Message Formatting Options
233 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
234 @gccoptlist{-fmessage-length=@var{n}  @gol
235 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
236 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
237 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
238
239 @item Warning Options
240 @xref{Warning Options,,Options to Request or Suppress Warnings}.
241 @gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
242 -pedantic-errors @gol
243 -w  -Wextra  -Wall  -Waddress  -Waggregate-return  @gol
244 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
245 -Wbool-compare -Wduplicated-cond -Wframe-address @gol
246 -Wno-attributes -Wno-builtin-macro-redefined @gol
247 -Wc90-c99-compat -Wc99-c11-compat @gol
248 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align  -Wcast-qual  @gol
249 -Wchar-subscripts -Wclobbered  -Wcomment -Wconditionally-supported  @gol
250 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp  @gol
251 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
252 -Wdisabled-optimization @gol
253 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
254 -Wno-div-by-zero -Wdouble-promotion -Wempty-body  -Wenum-compare @gol
255 -Wno-endif-labels -Werror  -Werror=* @gol
256 -Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
257 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
258 -Wformat-security  -Wformat-signedness  -Wformat-y2k @gol
259 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
260 -Wignored-qualifiers  -Wincompatible-pointer-types @gol
261 -Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
262 -Winit-self  -Winline  -Wno-int-conversion @gol
263 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
264 -Wnull-dereference @gol
265 -Winvalid-pch -Wlarger-than=@var{len}  -Wunsafe-loop-optimizations @gol
266 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
267 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
268 -Wmisleading-indentation -Wmissing-braces @gol
269 -Wmissing-field-initializers -Wmissing-include-dirs @gol
270 -Wno-multichar  -Wnonnull  -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
271 -Wodr  -Wno-overflow  -Wopenmp-simd @gol
272 -Woverride-init-side-effects @gol
273 -Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded @gol
274 -Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
275 -Wpointer-arith  -Wno-pointer-to-int-cast @gol
276 -Wredundant-decls  -Wno-return-local-addr @gol
277 -Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
278 -Wshift-overflow -Wshift-overflow=@var{n} @gol
279 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
280 -Wsign-compare  -Wsign-conversion -Wfloat-conversion @gol
281 -Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
282 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
283 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
284 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
285 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
286 -Wmissing-format-attribute -Wsubobject-linkage @gol
287 -Wswitch  -Wswitch-default  -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
288 -Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
289 -Wtype-limits  -Wundef @gol
290 -Wuninitialized  -Wunknown-pragmas  -Wno-pragmas @gol
291 -Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
292 -Wunused-label  -Wunused-local-typedefs -Wunused-parameter @gol
293 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
294 -Wunused-const-variable @gol
295 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
296 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
297 -Wvla -Wvolatile-register-var  -Wwrite-strings @gol
298 -Wzero-as-null-pointer-constant}
299
300 @item C and Objective-C-only Warning Options
301 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
302 -Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
303 -Wold-style-declaration  -Wold-style-definition @gol
304 -Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
305 -Wdeclaration-after-statement -Wpointer-sign}
306
307 @item Debugging Options
308 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
309 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
310 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
311 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
312 -fsanitize-undefined-trap-on-error @gol
313 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
314 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
315 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
316 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
317 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
318 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
319 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
320 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
321 -fchkp-use-wrappers @gol
322 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
323 -fdisable-ipa-@var{pass_name} @gol
324 -fdisable-rtl-@var{pass_name} @gol
325 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
326 -fdisable-tree-@var{pass_name} @gol
327 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
328 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
329 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
330 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
331 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
332 -fdump-passes @gol
333 -fdump-statistics @gol
334 -fdump-tree-all @gol
335 -fdump-tree-original@r{[}-@var{n}@r{]}  @gol
336 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-cfg -fdump-tree-alias @gol
338 -fdump-tree-ch @gol
339 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-gimple@r{[}-raw@r{]} @gol
342 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-nrv -fdump-tree-vect @gol
348 -fdump-tree-sink @gol
349 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
351 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
352 -fdump-tree-vtable-verify @gol
353 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
354 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
355 -fdump-final-insns=@var{file} @gol
356 -fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
357 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
358 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
359 -fenable-@var{kind}-@var{pass} @gol
360 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
361 -fdebug-types-section -fmem-report-wpa @gol
362 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
363 -fopt-info @gol
364 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
365 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
366 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
367 -fstack-usage  -ftest-coverage  -ftime-report -fvar-tracking @gol
368 -fvar-tracking-assignments  -fvar-tracking-assignments-toggle @gol
369 -g  -g@var{level}  -gtoggle  -gcoff  -gdwarf-@var{version} @gol
370 -ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
371 -gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
372 -gvms  -gxcoff  -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
373 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
374 -fdebug-prefix-map=@var{old}=@var{new} @gol
375 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
376 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
377 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
378 -print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
379 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
380 -print-sysroot -print-sysroot-headers-suffix @gol
381 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
382
383 @item Optimization Options
384 @xref{Optimize Options,,Options that Control Optimization}.
385 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
386 -falign-jumps[=@var{n}] @gol
387 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
388 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
389 -fauto-inc-dec -fbranch-probabilities @gol
390 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
391 -fbtr-bb-exclusive -fcaller-saves @gol
392 -fcombine-stack-adjustments -fconserve-stack @gol
393 -fcompare-elim -fcprop-registers -fcrossjumping @gol
394 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
395 -fcx-limited-range @gol
396 -fdata-sections -fdce -fdelayed-branch @gol
397 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
398 -fdevirtualize-at-ltrans -fdse @gol
399 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
400 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
401 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
402 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
403 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
404 -fif-conversion2 -findirect-inlining @gol
405 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
406 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
407 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
408 -fira-algorithm=@var{algorithm} @gol
409 -fira-region=@var{region} -fira-hoist-pressure @gol
410 -fira-loop-pressure -fno-ira-share-save-slots @gol
411 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
412 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
413 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
414 -flive-range-shrinkage @gol
415 -floop-block -floop-interchange -floop-strip-mine @gol
416 -floop-unroll-and-jam -floop-nest-optimize @gol
417 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
418 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
419 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
420 -fmove-loop-invariants -fno-branch-count-reg @gol
421 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
422 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
423 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
424 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
425 -fomit-frame-pointer -foptimize-sibling-calls @gol
426 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
427 -fprefetch-loop-arrays -fprofile-report @gol
428 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
429 -fprofile-generate=@var{path} @gol
430 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
431 -fprofile-reorder-functions @gol
432 -freciprocal-math -free -frename-registers -freorder-blocks @gol
433 -freorder-blocks-algorithm=@var{algorithm} @gol
434 -freorder-blocks-and-partition -freorder-functions @gol
435 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
436 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
437 -fsched-spec-load -fsched-spec-load-dangerous @gol
438 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
439 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
440 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
441 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
442 -fschedule-fusion @gol
443 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
444 -fselective-scheduling -fselective-scheduling2 @gol
445 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
446 -fsemantic-interposition @gol
447 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
448 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
449 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
450 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
451 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
452 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
453 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
454 -ftree-dse -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
455 -ftree-loop-if-convert-stores -ftree-loop-im @gol
456 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
457 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
458 -ftree-loop-vectorize @gol
459 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
460 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
461 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
462 -ftree-vectorize -ftree-vrp @gol
463 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
464 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
465 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
466 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
467 --param @var{name}=@var{value}
468 -O  -O0  -O1  -O2  -O3  -Os -Ofast -Og}
469
470 @item Preprocessor Options
471 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
472 @gccoptlist{-A@var{question}=@var{answer} @gol
473 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
474 -C  -dD  -dI  -dM  -dN @gol
475 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
476 -idirafter @var{dir} @gol
477 -include @var{file}  -imacros @var{file} @gol
478 -iprefix @var{file}  -iwithprefix @var{dir} @gol
479 -iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
480 -imultilib @var{dir} -isysroot @var{dir} @gol
481 -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
482 -P  -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
483 -remap -trigraphs  -undef  -U@var{macro}  @gol
484 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
485
486 @item Assembler Option
487 @xref{Assembler Options,,Passing Options to the Assembler}.
488 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
489
490 @item Linker Options
491 @xref{Link Options,,Options for Linking}.
492 @gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker} -l@var{library} @gol
493 -nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
494 -s  -static -static-libgcc -static-libstdc++ @gol
495 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
496 -static-libmpx -static-libmpxwrappers @gol
497 -shared -shared-libgcc  -symbolic @gol
498 -T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
499 -u @var{symbol} -z @var{keyword}}
500
501 @item Directory Options
502 @xref{Directory Options,,Options for Directory Search}.
503 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
504 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
505 --sysroot=@var{dir} --no-sysroot-suffix}
506
507 @item Machine Dependent Options
508 @xref{Submodel Options,,Hardware Models and Configurations}.
509 @c This list is ordered alphanumerically by subsection name.
510 @c Try and put the significant identifier (CPU or system) first,
511 @c so users have a clue at guessing where the ones they want will be.
512
513 @emph{AArch64 Options}
514 @gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
515 -mgeneral-regs-only @gol
516 -mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
517 -mstrict-align @gol
518 -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
519 -mtls-dialect=desc  -mtls-dialect=traditional @gol
520 -mtls-size=@var{size} @gol
521 -mfix-cortex-a53-835769  -mno-fix-cortex-a53-835769 @gol
522 -mfix-cortex-a53-843419  -mno-fix-cortex-a53-843419 @gol
523 -march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}}
524
525 @emph{Adapteva Epiphany Options}
526 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
527 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
528 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
529 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
530 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
531 -msplit-vecmove-early -m1reg-@var{reg}}
532
533 @emph{ARC Options}
534 @gccoptlist{-mbarrel-shifter @gol
535 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
536 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
537 -mea -mno-mpy -mmul32x16 -mmul64 @gol
538 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
539 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
540 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
541 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
542 -mucb-mcount -mvolatile-cache @gol
543 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
544 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
545 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
546 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
547 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
548 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
549
550 @emph{ARM Options}
551 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
552 -mabi=@var{name} @gol
553 -mapcs-stack-check  -mno-apcs-stack-check @gol
554 -mapcs-float  -mno-apcs-float @gol
555 -mapcs-reentrant  -mno-apcs-reentrant @gol
556 -msched-prolog  -mno-sched-prolog @gol
557 -mlittle-endian  -mbig-endian @gol
558 -mfloat-abi=@var{name} @gol
559 -mfp16-format=@var{name}
560 -mthumb-interwork  -mno-thumb-interwork @gol
561 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
562 -mtune=@var{name} -mprint-tune-info @gol
563 -mstructure-size-boundary=@var{n} @gol
564 -mabort-on-noreturn @gol
565 -mlong-calls  -mno-long-calls @gol
566 -msingle-pic-base  -mno-single-pic-base @gol
567 -mpic-register=@var{reg} @gol
568 -mnop-fun-dllimport @gol
569 -mpoke-function-name @gol
570 -mthumb  -marm @gol
571 -mtpcs-frame  -mtpcs-leaf-frame @gol
572 -mcaller-super-interworking  -mcallee-super-interworking @gol
573 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
574 -mword-relocations @gol
575 -mfix-cortex-m3-ldrd @gol
576 -munaligned-access @gol
577 -mneon-for-64bits @gol
578 -mslow-flash-data @gol
579 -masm-syntax-unified @gol
580 -mrestrict-it}
581
582 @emph{AVR Options}
583 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
584 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
585 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
586
587 @emph{Blackfin Options}
588 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
589 -msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
590 -mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
591 -mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
592 -mno-id-shared-library  -mshared-library-id=@var{n} @gol
593 -mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
594 -msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
595 -mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram @gol
596 -micplb}
597
598 @emph{C6X Options}
599 @gccoptlist{-mbig-endian  -mlittle-endian -march=@var{cpu} @gol
600 -msim -msdata=@var{sdata-type}}
601
602 @emph{CRIS Options}
603 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
604 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
605 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
606 -mstack-align  -mdata-align  -mconst-align @gol
607 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
608 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
609 -mmul-bug-workaround  -mno-mul-bug-workaround}
610
611 @emph{CR16 Options}
612 @gccoptlist{-mmac @gol
613 -mcr16cplus -mcr16c @gol
614 -msim -mint32 -mbit-ops
615 -mdata-model=@var{model}}
616
617 @emph{Darwin Options}
618 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
619 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
620 -client_name  -compatibility_version  -current_version @gol
621 -dead_strip @gol
622 -dependency-file  -dylib_file  -dylinker_install_name @gol
623 -dynamic  -dynamiclib  -exported_symbols_list @gol
624 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
625 -force_flat_namespace  -headerpad_max_install_names @gol
626 -iframework @gol
627 -image_base  -init  -install_name  -keep_private_externs @gol
628 -multi_module  -multiply_defined  -multiply_defined_unused @gol
629 -noall_load   -no_dead_strip_inits_and_terms @gol
630 -nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
631 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
632 -private_bundle  -read_only_relocs  -sectalign @gol
633 -sectobjectsymbols  -whyload  -seg1addr @gol
634 -sectcreate  -sectobjectsymbols  -sectorder @gol
635 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
636 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
637 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
638 -single_module  -static  -sub_library  -sub_umbrella @gol
639 -twolevel_namespace  -umbrella  -undefined @gol
640 -unexported_symbols_list  -weak_reference_mismatches @gol
641 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
642 -mkernel -mone-byte-bool}
643
644 @emph{DEC Alpha Options}
645 @gccoptlist{-mno-fp-regs  -msoft-float @gol
646 -mieee  -mieee-with-inexact  -mieee-conformant @gol
647 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
648 -mtrap-precision=@var{mode}  -mbuild-constants @gol
649 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
650 -mbwx  -mmax  -mfix  -mcix @gol
651 -mfloat-vax  -mfloat-ieee @gol
652 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
653 -msmall-text  -mlarge-text @gol
654 -mmemory-latency=@var{time}}
655
656 @emph{FR30 Options}
657 @gccoptlist{-msmall-model -mno-lsim}
658
659 @emph{FT32 Options}
660 @gccoptlist{-msim -mlra}
661
662 @emph{FRV Options}
663 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
664 -mhard-float  -msoft-float @gol
665 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
666 -mdouble  -mno-double @gol
667 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
668 -mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
669 -mlinked-fp  -mlong-calls  -malign-labels @gol
670 -mlibrary-pic  -macc-4  -macc-8 @gol
671 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
672 -moptimize-membar -mno-optimize-membar @gol
673 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
674 -mvliw-branch  -mno-vliw-branch @gol
675 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
676 -mno-nested-cond-exec  -mtomcat-stats @gol
677 -mTLS -mtls @gol
678 -mcpu=@var{cpu}}
679
680 @emph{GNU/Linux Options}
681 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
682 -tno-android-cc -tno-android-ld}
683
684 @emph{H8/300 Options}
685 @gccoptlist{-mrelax  -mh  -ms  -mn  -mexr -mno-exr  -mint32  -malign-300}
686
687 @emph{HPPA Options}
688 @gccoptlist{-march=@var{architecture-type} @gol
689 -mdisable-fpregs  -mdisable-indexing @gol
690 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
691 -mfixed-range=@var{register-range} @gol
692 -mjump-in-delay -mlinker-opt -mlong-calls @gol
693 -mlong-load-store  -mno-disable-fpregs @gol
694 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
695 -mno-jump-in-delay  -mno-long-load-store @gol
696 -mno-portable-runtime  -mno-soft-float @gol
697 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
698 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
699 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
700 -munix=@var{unix-std}  -nolibdld  -static  -threads}
701
702 @emph{IA-64 Options}
703 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
704 -mvolatile-asm-stop  -mregister-names  -msdata -mno-sdata @gol
705 -mconstant-gp  -mauto-pic  -mfused-madd @gol
706 -minline-float-divide-min-latency @gol
707 -minline-float-divide-max-throughput @gol
708 -mno-inline-float-divide @gol
709 -minline-int-divide-min-latency @gol
710 -minline-int-divide-max-throughput  @gol
711 -mno-inline-int-divide @gol
712 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
713 -mno-inline-sqrt @gol
714 -mdwarf2-asm -mearly-stop-bits @gol
715 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
716 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
717 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
718 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
719 -msched-spec-ldc -msched-spec-control-ldc @gol
720 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
721 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
722 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
723 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
724
725 @emph{LM32 Options}
726 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
727 -msign-extend-enabled -muser-enabled}
728
729 @emph{M32R/D Options}
730 @gccoptlist{-m32r2 -m32rx -m32r @gol
731 -mdebug @gol
732 -malign-loops -mno-align-loops @gol
733 -missue-rate=@var{number} @gol
734 -mbranch-cost=@var{number} @gol
735 -mmodel=@var{code-size-model-type} @gol
736 -msdata=@var{sdata-type} @gol
737 -mno-flush-func -mflush-func=@var{name} @gol
738 -mno-flush-trap -mflush-trap=@var{number} @gol
739 -G @var{num}}
740
741 @emph{M32C Options}
742 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
743
744 @emph{M680x0 Options}
745 @gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
746 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
747 -m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
748 -mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
749 -mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
750 -mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
751 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
752 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
753 -mxgot -mno-xgot}
754
755 @emph{MCore Options}
756 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
757 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
758 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
759 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
760 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
761
762 @emph{MeP Options}
763 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
764 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
765 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
766 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
767 -mtiny=@var{n}}
768
769 @emph{MicroBlaze Options}
770 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
771 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
772 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
773 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
774 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
775
776 @emph{MIPS Options}
777 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
778 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
779 -mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
780 -mips16  -mno-mips16  -mflip-mips16 @gol
781 -minterlink-compressed -mno-interlink-compressed @gol
782 -minterlink-mips16  -mno-interlink-mips16 @gol
783 -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
784 -mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
785 -mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
786 -mno-float  -msingle-float  -mdouble-float @gol
787 -modd-spreg -mno-odd-spreg @gol
788 -mcompact-branches=@var{policy} @gol
789 -mabs=@var{mode}  -mnan=@var{encoding} @gol
790 -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
791 -mmcu -mmno-mcu @gol
792 -meva -mno-eva @gol
793 -mvirt -mno-virt @gol
794 -mxpa -mno-xpa @gol
795 -mmicromips -mno-micromips @gol
796 -mfpu=@var{fpu-type} @gol
797 -msmartmips  -mno-smartmips @gol
798 -mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
799 -mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
800 -mlong64  -mlong32  -msym32  -mno-sym32 @gol
801 -G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
802 -mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
803 -membedded-data  -mno-embedded-data @gol
804 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
805 -mcode-readable=@var{setting} @gol
806 -msplit-addresses  -mno-split-addresses @gol
807 -mexplicit-relocs  -mno-explicit-relocs @gol
808 -mcheck-zero-division  -mno-check-zero-division @gol
809 -mdivide-traps  -mdivide-breaks @gol
810 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
811 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd  -mno-fused-madd  -nocpp @gol
812 -mfix-24k -mno-fix-24k @gol
813 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
814 -mfix-r10000 -mno-fix-r10000  -mfix-rm7000 -mno-fix-rm7000 @gol
815 -mfix-vr4120  -mno-fix-vr4120 @gol
816 -mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
817 -mflush-func=@var{func}  -mno-flush-func @gol
818 -mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
819 -mfp-exceptions -mno-fp-exceptions @gol
820 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
821 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
822 -mframe-header-opt -mno-frame-header-opt}
823
824 @emph{MMIX Options}
825 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
826 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
827 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
828 -mno-base-addresses  -msingle-exit  -mno-single-exit}
829
830 @emph{MN10300 Options}
831 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
832 -mno-am33 -mam33 -mam33-2 -mam34 @gol
833 -mtune=@var{cpu-type} @gol
834 -mreturn-pointer-on-d0 @gol
835 -mno-crt0  -mrelax -mliw -msetlb}
836
837 @emph{Moxie Options}
838 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
839
840 @emph{MSP430 Options}
841 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
842 -mcode-region= -mdata-region= @gol
843 -mhwmult= -minrt}
844
845 @emph{NDS32 Options}
846 @gccoptlist{-mbig-endian -mlittle-endian @gol
847 -mreduced-regs -mfull-regs @gol
848 -mcmov -mno-cmov @gol
849 -mperf-ext -mno-perf-ext @gol
850 -mv3push -mno-v3push @gol
851 -m16bit -mno-16bit @gol
852 -misr-vector-size=@var{num} @gol
853 -mcache-block-size=@var{num} @gol
854 -march=@var{arch} @gol
855 -mcmodel=@var{code-model} @gol
856 -mctor-dtor -mrelax}
857
858 @emph{Nios II Options}
859 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
860 -mel -meb @gol
861 -mno-bypass-cache -mbypass-cache @gol
862 -mno-cache-volatile -mcache-volatile @gol
863 -mno-fast-sw-div -mfast-sw-div @gol
864 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
865 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
866 -mcustom-fpu-cfg=@var{name} @gol
867 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
868 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
869
870 @emph{Nvidia PTX Options}
871 @gccoptlist{-m32 -m64 -mmainkernel}
872
873 @emph{PDP-11 Options}
874 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
875 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
876 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
877 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
878 -mbranch-expensive  -mbranch-cheap @gol
879 -munix-asm  -mdec-asm}
880
881 @emph{picoChip Options}
882 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
883 -msymbol-as-address -mno-inefficient-warnings}
884
885 @emph{PowerPC Options}
886 See RS/6000 and PowerPC Options.
887
888 @emph{RL78 Options}
889 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
890 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
891 -m64bit-doubles -m32bit-doubles}
892
893 @emph{RS/6000 and PowerPC Options}
894 @gccoptlist{-mcpu=@var{cpu-type} @gol
895 -mtune=@var{cpu-type} @gol
896 -mcmodel=@var{code-model} @gol
897 -mpowerpc64 @gol
898 -maltivec  -mno-altivec @gol
899 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
900 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
901 -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb -mpopcntd -mno-popcntd @gol
902 -mfprnd  -mno-fprnd @gol
903 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
904 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
905 -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
906 -malign-power  -malign-natural @gol
907 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
908 -msingle-float -mdouble-float -msimple-fpu @gol
909 -mstring  -mno-string  -mupdate  -mno-update @gol
910 -mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
911 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
912 -mstrict-align  -mno-strict-align  -mrelocatable @gol
913 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
914 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
915 -mdynamic-no-pic  -maltivec -mswdiv  -msingle-pic-base @gol
916 -mprioritize-restricted-insns=@var{priority} @gol
917 -msched-costly-dep=@var{dependence_type} @gol
918 -minsert-sched-nops=@var{scheme} @gol
919 -mcall-sysv  -mcall-netbsd @gol
920 -maix-struct-return  -msvr4-struct-return @gol
921 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
922 -mblock-move-inline-limit=@var{num} @gol
923 -misel -mno-isel @gol
924 -misel=yes  -misel=no @gol
925 -mspe -mno-spe @gol
926 -mspe=yes  -mspe=no @gol
927 -mpaired @gol
928 -mgen-cell-microcode -mwarn-cell-microcode @gol
929 -mvrsave -mno-vrsave @gol
930 -mmulhw -mno-mulhw @gol
931 -mdlmzb -mno-dlmzb @gol
932 -mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
933 -mprototype  -mno-prototype @gol
934 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
935 -msdata=@var{opt}  -mvxworks  -G @var{num}  -pthread @gol
936 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
937 -mno-recip-precision @gol
938 -mveclibabi=@var{type} -mfriz -mno-friz @gol
939 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
940 -msave-toc-indirect -mno-save-toc-indirect @gol
941 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
942 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
943 -mquad-memory -mno-quad-memory @gol
944 -mquad-memory-atomic -mno-quad-memory-atomic @gol
945 -mcompat-align-parm -mno-compat-align-parm @gol
946 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
947 -mupper-regs -mno-upper-regs}
948
949 @emph{RX Options}
950 @gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
951 -mcpu=@gol
952 -mbig-endian-data -mlittle-endian-data @gol
953 -msmall-data @gol
954 -msim  -mno-sim@gol
955 -mas100-syntax -mno-as100-syntax@gol
956 -mrelax@gol
957 -mmax-constant-size=@gol
958 -mint-register=@gol
959 -mpid@gol
960 -mallow-string-insns -mno-allow-string-insns@gol
961 -mno-warn-multiple-fast-interrupts@gol
962 -msave-acc-in-interrupts}
963
964 @emph{S/390 and zSeries Options}
965 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
966 -mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp @gol
967 -mlong-double-64 -mlong-double-128 @gol
968 -mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
969 -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
970 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
971 -mhtm -mvx -mzvector @gol
972 -mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
973 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard @gol
974 -mhotpatch=@var{halfwords},@var{halfwords}}
975
976 @emph{Score Options}
977 @gccoptlist{-meb -mel @gol
978 -mnhwloop @gol
979 -muls @gol
980 -mmac @gol
981 -mscore5 -mscore5u -mscore7 -mscore7d}
982
983 @emph{SH Options}
984 @gccoptlist{-m1  -m2  -m2e @gol
985 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
986 -m3  -m3e @gol
987 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
988 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
989 -mb  -ml  -mdalign  -mrelax @gol
990 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
991 -mieee -mno-ieee -mbitops  -misize  -minline-ic_invalidate -mpadstruct @gol
992 -mspace -mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
993 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
994 -maccumulate-outgoing-args @gol
995 -matomic-model=@var{atomic-model} @gol
996 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
997 -mcbranch-force-delay-slot @gol
998 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
999 -mpretend-cmove -mtas}
1000
1001 @emph{Solaris 2 Options}
1002 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text  -mno-impure-text @gol
1003 -pthreads -pthread}
1004
1005 @emph{SPARC Options}
1006 @gccoptlist{-mcpu=@var{cpu-type} @gol
1007 -mtune=@var{cpu-type} @gol
1008 -mcmodel=@var{code-model} @gol
1009 -mmemory-model=@var{mem-model} @gol
1010 -m32  -m64  -mapp-regs  -mno-app-regs @gol
1011 -mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1012 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1013 -mhard-quad-float  -msoft-quad-float @gol
1014 -mstack-bias  -mno-stack-bias @gol
1015 -munaligned-doubles  -mno-unaligned-doubles @gol
1016 -muser-mode  -mno-user-mode @gol
1017 -mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1018 -mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1019 -mcbcond -mno-cbcond @gol
1020 -mfmaf  -mno-fmaf  -mpopc  -mno-popc @gol
1021 -mfix-at697f -mfix-ut699}
1022
1023 @emph{SPU Options}
1024 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1025 -msafe-dma -munsafe-dma @gol
1026 -mbranch-hints @gol
1027 -msmall-mem -mlarge-mem -mstdmain @gol
1028 -mfixed-range=@var{register-range} @gol
1029 -mea32 -mea64 @gol
1030 -maddress-space-conversion -mno-address-space-conversion @gol
1031 -mcache-size=@var{cache-size} @gol
1032 -matomic-updates -mno-atomic-updates}
1033
1034 @emph{System V Options}
1035 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1036
1037 @emph{TILE-Gx Options}
1038 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1039 -mcmodel=@var{code-model}}
1040
1041 @emph{TILEPro Options}
1042 @gccoptlist{-mcpu=@var{cpu} -m32}
1043
1044 @emph{V850 Options}
1045 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1046 -mprolog-function  -mno-prolog-function  -mspace @gol
1047 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1048 -mapp-regs  -mno-app-regs @gol
1049 -mdisable-callt  -mno-disable-callt @gol
1050 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1051 -mv850e -mv850 -mv850e3v5 @gol
1052 -mloop @gol
1053 -mrelax @gol
1054 -mlong-jumps @gol
1055 -msoft-float @gol
1056 -mhard-float @gol
1057 -mgcc-abi @gol
1058 -mrh850-abi @gol
1059 -mbig-switch}
1060
1061 @emph{VAX Options}
1062 @gccoptlist{-mg  -mgnu  -munix}
1063
1064 @emph{Visium Options}
1065 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1066 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1067
1068 @emph{VMS Options}
1069 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1070 -mpointer-size=@var{size}}
1071
1072 @emph{VxWorks Options}
1073 @gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1074 -Xbind-lazy  -Xbind-now}
1075
1076 @emph{x86 Options}
1077 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1078 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1079 -mfpmath=@var{unit} @gol
1080 -masm=@var{dialect}  -mno-fancy-math-387 @gol
1081 -mno-fp-ret-in-387  -msoft-float @gol
1082 -mno-wide-multiply  -mrtd  -malign-double @gol
1083 -mpreferred-stack-boundary=@var{num} @gol
1084 -mincoming-stack-boundary=@var{num} @gol
1085 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1086 -mrecip -mrecip=@var{opt} @gol
1087 -mvzeroupper -mprefer-avx128 @gol
1088 -mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1089 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1090 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1091 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1092 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1093 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1094 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1095 -mno-align-stringops  -minline-all-stringops @gol
1096 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1097 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1098 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1099 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1100 -mregparm=@var{num}  -msseregparm @gol
1101 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1102 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1103 -momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
1104 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1105 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1106 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1107 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1108 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1109
1110 @emph{x86 Windows Options}
1111 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1112 -mnop-fun-dllimport -mthread @gol
1113 -municode -mwin32 -mwindows -fno-set-stack-executable}
1114
1115 @emph{Xstormy16 Options}
1116 @gccoptlist{-msim}
1117
1118 @emph{Xtensa Options}
1119 @gccoptlist{-mconst16 -mno-const16 @gol
1120 -mfused-madd  -mno-fused-madd @gol
1121 -mforce-no-pic @gol
1122 -mserialize-volatile  -mno-serialize-volatile @gol
1123 -mtext-section-literals  -mno-text-section-literals @gol
1124 -mauto-litpools  -mno-auto-litpools @gol
1125 -mtarget-align  -mno-target-align @gol
1126 -mlongcalls  -mno-longcalls}
1127
1128 @emph{zSeries Options}
1129 See S/390 and zSeries Options.
1130
1131 @item Code Generation Options
1132 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1133 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
1134 -ffixed-@var{reg}  -fexceptions @gol
1135 -fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
1136 -fasynchronous-unwind-tables @gol
1137 -fno-gnu-unique @gol
1138 -finhibit-size-directive  -finstrument-functions @gol
1139 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1140 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1141 -fno-common  -fno-ident @gol
1142 -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE -fno-plt @gol
1143 -fno-jump-tables @gol
1144 -frecord-gcc-switches @gol
1145 -freg-struct-return  -fshort-enums @gol
1146 -fshort-double  -fshort-wchar @gol
1147 -fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
1148 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
1149 -fno-stack-limit -fsplit-stack @gol
1150 -fleading-underscore  -ftls-model=@var{model} @gol
1151 -fstack-reuse=@var{reuse_level} @gol
1152 -ftrapv  -fwrapv  -fbounds-check @gol
1153 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1154 -fstrict-volatile-bitfields -fsync-libcalls}
1155 @end table
1156
1157
1158 @node Overall Options
1159 @section Options Controlling the Kind of Output
1160
1161 Compilation can involve up to four stages: preprocessing, compilation
1162 proper, assembly and linking, always in that order.  GCC is capable of
1163 preprocessing and compiling several files either into several
1164 assembler input files, or into one assembler input file; then each
1165 assembler input file produces an object file, and linking combines all
1166 the object files (those newly compiled, and those specified as input)
1167 into an executable file.
1168
1169 @cindex file name suffix
1170 For any given input file, the file name suffix determines what kind of
1171 compilation is done:
1172
1173 @table @gcctabopt
1174 @item @var{file}.c
1175 C source code that must be preprocessed.
1176
1177 @item @var{file}.i
1178 C source code that should not be preprocessed.
1179
1180 @item @var{file}.ii
1181 C++ source code that should not be preprocessed.
1182
1183 @item @var{file}.m
1184 Objective-C source code.  Note that you must link with the @file{libobjc}
1185 library to make an Objective-C program work.
1186
1187 @item @var{file}.mi
1188 Objective-C source code that should not be preprocessed.
1189
1190 @item @var{file}.mm
1191 @itemx @var{file}.M
1192 Objective-C++ source code.  Note that you must link with the @file{libobjc}
1193 library to make an Objective-C++ program work.  Note that @samp{.M} refers
1194 to a literal capital M@.
1195
1196 @item @var{file}.mii
1197 Objective-C++ source code that should not be preprocessed.
1198
1199 @item @var{file}.h
1200 C, C++, Objective-C or Objective-C++ header file to be turned into a
1201 precompiled header (default), or C, C++ header file to be turned into an
1202 Ada spec (via the @option{-fdump-ada-spec} switch).
1203
1204 @item @var{file}.cc
1205 @itemx @var{file}.cp
1206 @itemx @var{file}.cxx
1207 @itemx @var{file}.cpp
1208 @itemx @var{file}.CPP
1209 @itemx @var{file}.c++
1210 @itemx @var{file}.C
1211 C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1212 the last two letters must both be literally @samp{x}.  Likewise,
1213 @samp{.C} refers to a literal capital C@.
1214
1215 @item @var{file}.mm
1216 @itemx @var{file}.M
1217 Objective-C++ source code that must be preprocessed.
1218
1219 @item @var{file}.mii
1220 Objective-C++ source code that should not be preprocessed.
1221
1222 @item @var{file}.hh
1223 @itemx @var{file}.H
1224 @itemx @var{file}.hp
1225 @itemx @var{file}.hxx
1226 @itemx @var{file}.hpp
1227 @itemx @var{file}.HPP
1228 @itemx @var{file}.h++
1229 @itemx @var{file}.tcc
1230 C++ header file to be turned into a precompiled header or Ada spec.
1231
1232 @item @var{file}.f
1233 @itemx @var{file}.for
1234 @itemx @var{file}.ftn
1235 Fixed form Fortran source code that should not be preprocessed.
1236
1237 @item @var{file}.F
1238 @itemx @var{file}.FOR
1239 @itemx @var{file}.fpp
1240 @itemx @var{file}.FPP
1241 @itemx @var{file}.FTN
1242 Fixed form Fortran source code that must be preprocessed (with the traditional
1243 preprocessor).
1244
1245 @item @var{file}.f90
1246 @itemx @var{file}.f95
1247 @itemx @var{file}.f03
1248 @itemx @var{file}.f08
1249 Free form Fortran source code that should not be preprocessed.
1250
1251 @item @var{file}.F90
1252 @itemx @var{file}.F95
1253 @itemx @var{file}.F03
1254 @itemx @var{file}.F08
1255 Free form Fortran source code that must be preprocessed (with the
1256 traditional preprocessor).
1257
1258 @item @var{file}.go
1259 Go source code.
1260
1261 @c FIXME: Descriptions of Java file types.
1262 @c @var{file}.java
1263 @c @var{file}.class
1264 @c @var{file}.zip
1265 @c @var{file}.jar
1266
1267 @item @var{file}.ads
1268 Ada source code file that contains a library unit declaration (a
1269 declaration of a package, subprogram, or generic, or a generic
1270 instantiation), or a library unit renaming declaration (a package,
1271 generic, or subprogram renaming declaration).  Such files are also
1272 called @dfn{specs}.
1273
1274 @item @var{file}.adb
1275 Ada source code file containing a library unit body (a subprogram or
1276 package body).  Such files are also called @dfn{bodies}.
1277
1278 @c GCC also knows about some suffixes for languages not yet included:
1279 @c Pascal:
1280 @c @var{file}.p
1281 @c @var{file}.pas
1282 @c Ratfor:
1283 @c @var{file}.r
1284
1285 @item @var{file}.s
1286 Assembler code.
1287
1288 @item @var{file}.S
1289 @itemx @var{file}.sx
1290 Assembler code that must be preprocessed.
1291
1292 @item @var{other}
1293 An object file to be fed straight into linking.
1294 Any file name with no recognized suffix is treated this way.
1295 @end table
1296
1297 @opindex x
1298 You can specify the input language explicitly with the @option{-x} option:
1299
1300 @table @gcctabopt
1301 @item -x @var{language}
1302 Specify explicitly the @var{language} for the following input files
1303 (rather than letting the compiler choose a default based on the file
1304 name suffix).  This option applies to all following input files until
1305 the next @option{-x} option.  Possible values for @var{language} are:
1306 @smallexample
1307 c  c-header  cpp-output
1308 c++  c++-header  c++-cpp-output
1309 objective-c  objective-c-header  objective-c-cpp-output
1310 objective-c++ objective-c++-header objective-c++-cpp-output
1311 assembler  assembler-with-cpp
1312 ada
1313 f77  f77-cpp-input f95  f95-cpp-input
1314 go
1315 java
1316 @end smallexample
1317
1318 @item -x none
1319 Turn off any specification of a language, so that subsequent files are
1320 handled according to their file name suffixes (as they are if @option{-x}
1321 has not been used at all).
1322
1323 @item -pass-exit-codes
1324 @opindex pass-exit-codes
1325 Normally the @command{gcc} program exits with the code of 1 if any
1326 phase of the compiler returns a non-success return code.  If you specify
1327 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1328 the numerically highest error produced by any phase returning an error
1329 indication.  The C, C++, and Fortran front ends return 4 if an internal
1330 compiler error is encountered.
1331 @end table
1332
1333 If you only want some of the stages of compilation, you can use
1334 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1335 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1336 @command{gcc} is to stop.  Note that some combinations (for example,
1337 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1338
1339 @table @gcctabopt
1340 @item -c
1341 @opindex c
1342 Compile or assemble the source files, but do not link.  The linking
1343 stage simply is not done.  The ultimate output is in the form of an
1344 object file for each source file.
1345
1346 By default, the object file name for a source file is made by replacing
1347 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1348
1349 Unrecognized input files, not requiring compilation or assembly, are
1350 ignored.
1351
1352 @item -S
1353 @opindex S
1354 Stop after the stage of compilation proper; do not assemble.  The output
1355 is in the form of an assembler code file for each non-assembler input
1356 file specified.
1357
1358 By default, the assembler file name for a source file is made by
1359 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1360
1361 Input files that don't require compilation are ignored.
1362
1363 @item -E
1364 @opindex E
1365 Stop after the preprocessing stage; do not run the compiler proper.  The
1366 output is in the form of preprocessed source code, which is sent to the
1367 standard output.
1368
1369 Input files that don't require preprocessing are ignored.
1370
1371 @cindex output file option
1372 @item -o @var{file}
1373 @opindex o
1374 Place output in file @var{file}.  This applies to whatever
1375 sort of output is being produced, whether it be an executable file,
1376 an object file, an assembler file or preprocessed C code.
1377
1378 If @option{-o} is not specified, the default is to put an executable
1379 file in @file{a.out}, the object file for
1380 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1381 assembler file in @file{@var{source}.s}, a precompiled header file in
1382 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1383 standard output.
1384
1385 @item -v
1386 @opindex v
1387 Print (on standard error output) the commands executed to run the stages
1388 of compilation.  Also print the version number of the compiler driver
1389 program and of the preprocessor and the compiler proper.
1390
1391 @item -###
1392 @opindex ###
1393 Like @option{-v} except the commands are not executed and arguments
1394 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1395 This is useful for shell scripts to capture the driver-generated command lines.
1396
1397 @item -pipe
1398 @opindex pipe
1399 Use pipes rather than temporary files for communication between the
1400 various stages of compilation.  This fails to work on some systems where
1401 the assembler is unable to read from a pipe; but the GNU assembler has
1402 no trouble.
1403
1404 @item --help
1405 @opindex help
1406 Print (on the standard output) a description of the command-line options
1407 understood by @command{gcc}.  If the @option{-v} option is also specified
1408 then @option{--help} is also passed on to the various processes
1409 invoked by @command{gcc}, so that they can display the command-line options
1410 they accept.  If the @option{-Wextra} option has also been specified
1411 (prior to the @option{--help} option), then command-line options that
1412 have no documentation associated with them are also displayed.
1413
1414 @item --target-help
1415 @opindex target-help
1416 Print (on the standard output) a description of target-specific command-line
1417 options for each tool.  For some targets extra target-specific
1418 information may also be printed.
1419
1420 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1421 Print (on the standard output) a description of the command-line
1422 options understood by the compiler that fit into all specified classes
1423 and qualifiers.  These are the supported classes:
1424
1425 @table @asis
1426 @item @samp{optimizers}
1427 Display all of the optimization options supported by the
1428 compiler.
1429
1430 @item @samp{warnings}
1431 Display all of the options controlling warning messages
1432 produced by the compiler.
1433
1434 @item @samp{target}
1435 Display target-specific options.  Unlike the
1436 @option{--target-help} option however, target-specific options of the
1437 linker and assembler are not displayed.  This is because those
1438 tools do not currently support the extended @option{--help=} syntax.
1439
1440 @item @samp{params}
1441 Display the values recognized by the @option{--param}
1442 option.
1443
1444 @item @var{language}
1445 Display the options supported for @var{language}, where
1446 @var{language} is the name of one of the languages supported in this
1447 version of GCC@.
1448
1449 @item @samp{common}
1450 Display the options that are common to all languages.
1451 @end table
1452
1453 These are the supported qualifiers:
1454
1455 @table @asis
1456 @item @samp{undocumented}
1457 Display only those options that are undocumented.
1458
1459 @item @samp{joined}
1460 Display options taking an argument that appears after an equal
1461 sign in the same continuous piece of text, such as:
1462 @samp{--help=target}.
1463
1464 @item @samp{separate}
1465 Display options taking an argument that appears as a separate word
1466 following the original option, such as: @samp{-o output-file}.
1467 @end table
1468
1469 Thus for example to display all the undocumented target-specific
1470 switches supported by the compiler, use:
1471
1472 @smallexample
1473 --help=target,undocumented
1474 @end smallexample
1475
1476 The sense of a qualifier can be inverted by prefixing it with the
1477 @samp{^} character, so for example to display all binary warning
1478 options (i.e., ones that are either on or off and that do not take an
1479 argument) that have a description, use:
1480
1481 @smallexample
1482 --help=warnings,^joined,^undocumented
1483 @end smallexample
1484
1485 The argument to @option{--help=} should not consist solely of inverted
1486 qualifiers.
1487
1488 Combining several classes is possible, although this usually
1489 restricts the output so much that there is nothing to display.  One
1490 case where it does work, however, is when one of the classes is
1491 @var{target}.  For example, to display all the target-specific
1492 optimization options, use:
1493
1494 @smallexample
1495 --help=target,optimizers
1496 @end smallexample
1497
1498 The @option{--help=} option can be repeated on the command line.  Each
1499 successive use displays its requested class of options, skipping
1500 those that have already been displayed.
1501
1502 If the @option{-Q} option appears on the command line before the
1503 @option{--help=} option, then the descriptive text displayed by
1504 @option{--help=} is changed.  Instead of describing the displayed
1505 options, an indication is given as to whether the option is enabled,
1506 disabled or set to a specific value (assuming that the compiler
1507 knows this at the point where the @option{--help=} option is used).
1508
1509 Here is a truncated example from the ARM port of @command{gcc}:
1510
1511 @smallexample
1512   % gcc -Q -mabi=2 --help=target -c
1513   The following options are target specific:
1514   -mabi=                                2
1515   -mabort-on-noreturn                   [disabled]
1516   -mapcs                                [disabled]
1517 @end smallexample
1518
1519 The output is sensitive to the effects of previous command-line
1520 options, so for example it is possible to find out which optimizations
1521 are enabled at @option{-O2} by using:
1522
1523 @smallexample
1524 -Q -O2 --help=optimizers
1525 @end smallexample
1526
1527 Alternatively you can discover which binary optimizations are enabled
1528 by @option{-O3} by using:
1529
1530 @smallexample
1531 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1532 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1533 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1534 @end smallexample
1535
1536 @item -no-canonical-prefixes
1537 @opindex no-canonical-prefixes
1538 Do not expand any symbolic links, resolve references to @samp{/../}
1539 or @samp{/./}, or make the path absolute when generating a relative
1540 prefix.
1541
1542 @item --version
1543 @opindex version
1544 Display the version number and copyrights of the invoked GCC@.
1545
1546 @item -wrapper
1547 @opindex wrapper
1548 Invoke all subcommands under a wrapper program.  The name of the
1549 wrapper program and its parameters are passed as a comma separated
1550 list.
1551
1552 @smallexample
1553 gcc -c t.c -wrapper gdb,--args
1554 @end smallexample
1555
1556 @noindent
1557 This invokes all subprograms of @command{gcc} under
1558 @samp{gdb --args}, thus the invocation of @command{cc1} is
1559 @samp{gdb --args cc1 @dots{}}.
1560
1561 @item -fplugin=@var{name}.so
1562 @opindex fplugin
1563 Load the plugin code in file @var{name}.so, assumed to be a
1564 shared object to be dlopen'd by the compiler.  The base name of
1565 the shared object file is used to identify the plugin for the
1566 purposes of argument parsing (See
1567 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1568 Each plugin should define the callback functions specified in the
1569 Plugins API.
1570
1571 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1572 @opindex fplugin-arg
1573 Define an argument called @var{key} with a value of @var{value}
1574 for the plugin called @var{name}.
1575
1576 @item -fdump-ada-spec@r{[}-slim@r{]}
1577 @opindex fdump-ada-spec
1578 For C and C++ source and include files, generate corresponding Ada specs.
1579 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1580 GNAT User's Guide}, which provides detailed documentation on this feature.
1581
1582 @item -fada-spec-parent=@var{unit}
1583 @opindex fada-spec-parent
1584 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1585 Ada specs as child units of parent @var{unit}.
1586
1587 @item -fdump-go-spec=@var{file}
1588 @opindex fdump-go-spec
1589 For input files in any language, generate corresponding Go
1590 declarations in @var{file}.  This generates Go @code{const},
1591 @code{type}, @code{var}, and @code{func} declarations which may be a
1592 useful way to start writing a Go interface to code written in some
1593 other language.
1594
1595 @include @value{srcdir}/../libiberty/at-file.texi
1596 @end table
1597
1598 @node Invoking G++
1599 @section Compiling C++ Programs
1600
1601 @cindex suffixes for C++ source
1602 @cindex C++ source file suffixes
1603 C++ source files conventionally use one of the suffixes @samp{.C},
1604 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1605 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1606 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1607 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1608 files with these names and compiles them as C++ programs even if you
1609 call the compiler the same way as for compiling C programs (usually
1610 with the name @command{gcc}).
1611
1612 @findex g++
1613 @findex c++
1614 However, the use of @command{gcc} does not add the C++ library.
1615 @command{g++} is a program that calls GCC and automatically specifies linking
1616 against the C++ library.  It treats @samp{.c},
1617 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1618 files unless @option{-x} is used.  This program is also useful when
1619 precompiling a C header file with a @samp{.h} extension for use in C++
1620 compilations.  On many systems, @command{g++} is also installed with
1621 the name @command{c++}.
1622
1623 @cindex invoking @command{g++}
1624 When you compile C++ programs, you may specify many of the same
1625 command-line options that you use for compiling programs in any
1626 language; or command-line options meaningful for C and related
1627 languages; or options that are meaningful only for C++ programs.
1628 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1629 explanations of options for languages related to C@.
1630 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1631 explanations of options that are meaningful only for C++ programs.
1632
1633 @node C Dialect Options
1634 @section Options Controlling C Dialect
1635 @cindex dialect options
1636 @cindex language dialect options
1637 @cindex options, dialect
1638
1639 The following options control the dialect of C (or languages derived
1640 from C, such as C++, Objective-C and Objective-C++) that the compiler
1641 accepts:
1642
1643 @table @gcctabopt
1644 @cindex ANSI support
1645 @cindex ISO support
1646 @item -ansi
1647 @opindex ansi
1648 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1649 equivalent to @option{-std=c++98}.
1650
1651 This turns off certain features of GCC that are incompatible with ISO
1652 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1653 such as the @code{asm} and @code{typeof} keywords, and
1654 predefined macros such as @code{unix} and @code{vax} that identify the
1655 type of system you are using.  It also enables the undesirable and
1656 rarely used ISO trigraph feature.  For the C compiler,
1657 it disables recognition of C++ style @samp{//} comments as well as
1658 the @code{inline} keyword.
1659
1660 The alternate keywords @code{__asm__}, @code{__extension__},
1661 @code{__inline__} and @code{__typeof__} continue to work despite
1662 @option{-ansi}.  You would not want to use them in an ISO C program, of
1663 course, but it is useful to put them in header files that might be included
1664 in compilations done with @option{-ansi}.  Alternate predefined macros
1665 such as @code{__unix__} and @code{__vax__} are also available, with or
1666 without @option{-ansi}.
1667
1668 The @option{-ansi} option does not cause non-ISO programs to be
1669 rejected gratuitously.  For that, @option{-Wpedantic} is required in
1670 addition to @option{-ansi}.  @xref{Warning Options}.
1671
1672 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1673 option is used.  Some header files may notice this macro and refrain
1674 from declaring certain functions or defining certain macros that the
1675 ISO standard doesn't call for; this is to avoid interfering with any
1676 programs that might use these names for other things.
1677
1678 Functions that are normally built in but do not have semantics
1679 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1680 functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1681 built-in functions provided by GCC}, for details of the functions
1682 affected.
1683
1684 @item -std=
1685 @opindex std
1686 Determine the language standard. @xref{Standards,,Language Standards
1687 Supported by GCC}, for details of these standard versions.  This option
1688 is currently only supported when compiling C or C++.
1689
1690 The compiler can accept several base standards, such as @samp{c90} or
1691 @samp{c++98}, and GNU dialects of those standards, such as
1692 @samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1693 compiler accepts all programs following that standard plus those
1694 using GNU extensions that do not contradict it.  For example,
1695 @option{-std=c90} turns off certain features of GCC that are
1696 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1697 keywords, but not other GNU extensions that do not have a meaning in
1698 ISO C90, such as omitting the middle term of a @code{?:}
1699 expression. On the other hand, when a GNU dialect of a standard is
1700 specified, all features supported by the compiler are enabled, even when
1701 those features change the meaning of the base standard.  As a result, some
1702 strict-conforming programs may be rejected.  The particular standard
1703 is used by @option{-Wpedantic} to identify which features are GNU
1704 extensions given that version of the standard. For example
1705 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1706 comments, while @option{-std=gnu99 -Wpedantic} does not.
1707
1708 A value for this option must be provided; possible values are
1709
1710 @table @samp
1711 @item c90
1712 @itemx c89
1713 @itemx iso9899:1990
1714 Support all ISO C90 programs (certain GNU extensions that conflict
1715 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1716
1717 @item iso9899:199409
1718 ISO C90 as modified in amendment 1.
1719
1720 @item c99
1721 @itemx c9x
1722 @itemx iso9899:1999
1723 @itemx iso9899:199x
1724 ISO C99.  This standard is substantially completely supported, modulo
1725 bugs and floating-point issues
1726 (mainly but not entirely relating to optional C99 features from
1727 Annexes F and G).  See
1728 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1729 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1730
1731 @item c11
1732 @itemx c1x
1733 @itemx iso9899:2011
1734 ISO C11, the 2011 revision of the ISO C standard.  This standard is
1735 substantially completely supported, modulo bugs, floating-point issues
1736 (mainly but not entirely relating to optional C11 features from
1737 Annexes F and G) and the optional Annexes K (Bounds-checking
1738 interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1739
1740 @item gnu90
1741 @itemx gnu89
1742 GNU dialect of ISO C90 (including some C99 features).
1743
1744 @item gnu99
1745 @itemx gnu9x
1746 GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1747
1748 @item gnu11
1749 @itemx gnu1x
1750 GNU dialect of ISO C11.  This is the default for C code.
1751 The name @samp{gnu1x} is deprecated.
1752
1753 @item c++98
1754 @itemx c++03
1755 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1756 additional defect reports. Same as @option{-ansi} for C++ code.
1757
1758 @item gnu++98
1759 @itemx gnu++03
1760 GNU dialect of @option{-std=c++98}.  This is the default for
1761 C++ code.
1762
1763 @item c++11
1764 @itemx c++0x
1765 The 2011 ISO C++ standard plus amendments.
1766 The name @samp{c++0x} is deprecated.
1767
1768 @item gnu++11
1769 @itemx gnu++0x
1770 GNU dialect of @option{-std=c++11}.
1771 The name @samp{gnu++0x} is deprecated.
1772
1773 @item c++14
1774 @itemx c++1y
1775 The 2014 ISO C++ standard plus amendments.
1776 The name @samp{c++1y} is deprecated.
1777
1778 @item gnu++14
1779 @itemx gnu++1y
1780 GNU dialect of @option{-std=c++14}.
1781 The name @samp{gnu++1y} is deprecated.
1782
1783 @item c++1z
1784 The next revision of the ISO C++ standard, tentatively planned for
1785 2017.  Support is highly experimental, and will almost certainly
1786 change in incompatible ways in future releases.
1787
1788 @item gnu++1z
1789 GNU dialect of @option{-std=c++1z}.  Support is highly experimental,
1790 and will almost certainly change in incompatible ways in future
1791 releases.
1792 @end table
1793
1794 @item -fgnu89-inline
1795 @opindex fgnu89-inline
1796 The option @option{-fgnu89-inline} tells GCC to use the traditional
1797 GNU semantics for @code{inline} functions when in C99 mode.
1798 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1799 Using this option is roughly equivalent to adding the
1800 @code{gnu_inline} function attribute to all inline functions
1801 (@pxref{Function Attributes}).
1802
1803 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1804 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1805 specifies the default behavior).
1806 This option is not supported in @option{-std=c90} or
1807 @option{-std=gnu90} mode.
1808
1809 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1810 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1811 in effect for @code{inline} functions.  @xref{Common Predefined
1812 Macros,,,cpp,The C Preprocessor}.
1813
1814 @item -aux-info @var{filename}
1815 @opindex aux-info
1816 Output to the given filename prototyped declarations for all functions
1817 declared and/or defined in a translation unit, including those in header
1818 files.  This option is silently ignored in any language other than C@.
1819
1820 Besides declarations, the file indicates, in comments, the origin of
1821 each declaration (source file and line), whether the declaration was
1822 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1823 @samp{O} for old, respectively, in the first character after the line
1824 number and the colon), and whether it came from a declaration or a
1825 definition (@samp{C} or @samp{F}, respectively, in the following
1826 character).  In the case of function definitions, a K&R-style list of
1827 arguments followed by their declarations is also provided, inside
1828 comments, after the declaration.
1829
1830 @item -fallow-parameterless-variadic-functions
1831 @opindex fallow-parameterless-variadic-functions
1832 Accept variadic functions without named parameters.
1833
1834 Although it is possible to define such a function, this is not very
1835 useful as it is not possible to read the arguments.  This is only
1836 supported for C as this construct is allowed by C++.
1837
1838 @item -fno-asm
1839 @opindex fno-asm
1840 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1841 keyword, so that code can use these words as identifiers.  You can use
1842 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1843 instead.  @option{-ansi} implies @option{-fno-asm}.
1844
1845 In C++, this switch only affects the @code{typeof} keyword, since
1846 @code{asm} and @code{inline} are standard keywords.  You may want to
1847 use the @option{-fno-gnu-keywords} flag instead, which has the same
1848 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1849 switch only affects the @code{asm} and @code{typeof} keywords, since
1850 @code{inline} is a standard keyword in ISO C99.
1851
1852 @item -fno-builtin
1853 @itemx -fno-builtin-@var{function}
1854 @opindex fno-builtin
1855 @cindex built-in functions
1856 Don't recognize built-in functions that do not begin with
1857 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1858 functions provided by GCC}, for details of the functions affected,
1859 including those which are not built-in functions when @option{-ansi} or
1860 @option{-std} options for strict ISO C conformance are used because they
1861 do not have an ISO standard meaning.
1862
1863 GCC normally generates special code to handle certain built-in functions
1864 more efficiently; for instance, calls to @code{alloca} may become single
1865 instructions which adjust the stack directly, and calls to @code{memcpy}
1866 may become inline copy loops.  The resulting code is often both smaller
1867 and faster, but since the function calls no longer appear as such, you
1868 cannot set a breakpoint on those calls, nor can you change the behavior
1869 of the functions by linking with a different library.  In addition,
1870 when a function is recognized as a built-in function, GCC may use
1871 information about that function to warn about problems with calls to
1872 that function, or to generate more efficient code, even if the
1873 resulting code still contains calls to that function.  For example,
1874 warnings are given with @option{-Wformat} for bad calls to
1875 @code{printf} when @code{printf} is built in and @code{strlen} is
1876 known not to modify global memory.
1877
1878 With the @option{-fno-builtin-@var{function}} option
1879 only the built-in function @var{function} is
1880 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1881 function is named that is not built-in in this version of GCC, this
1882 option is ignored.  There is no corresponding
1883 @option{-fbuiltin-@var{function}} option; if you wish to enable
1884 built-in functions selectively when using @option{-fno-builtin} or
1885 @option{-ffreestanding}, you may define macros such as:
1886
1887 @smallexample
1888 #define abs(n)          __builtin_abs ((n))
1889 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
1890 @end smallexample
1891
1892 @item -fhosted
1893 @opindex fhosted
1894 @cindex hosted environment
1895
1896 Assert that compilation targets a hosted environment.  This implies
1897 @option{-fbuiltin}.  A hosted environment is one in which the
1898 entire standard library is available, and in which @code{main} has a return
1899 type of @code{int}.  Examples are nearly everything except a kernel.
1900 This is equivalent to @option{-fno-freestanding}.
1901
1902 @item -ffreestanding
1903 @opindex ffreestanding
1904 @cindex hosted environment
1905
1906 Assert that compilation targets a freestanding environment.  This
1907 implies @option{-fno-builtin}.  A freestanding environment
1908 is one in which the standard library may not exist, and program startup may
1909 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1910 This is equivalent to @option{-fno-hosted}.
1911
1912 @xref{Standards,,Language Standards Supported by GCC}, for details of
1913 freestanding and hosted environments.
1914
1915 @item -fopenacc
1916 @opindex fopenacc
1917 @cindex OpenACC accelerator programming
1918 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1919 @code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
1920 compiler generates accelerated code according to the OpenACC Application
1921 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}.  This option
1922 implies @option{-pthread}, and thus is only supported on targets that
1923 have support for @option{-pthread}.
1924
1925 Note that this is an experimental feature, incomplete, and subject to
1926 change in future versions of GCC.  See
1927 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1928
1929 @item -fopenmp
1930 @opindex fopenmp
1931 @cindex OpenMP parallel
1932 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1933 @code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
1934 compiler generates parallel code according to the OpenMP Application
1935 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}.  This option
1936 implies @option{-pthread}, and thus is only supported on targets that
1937 have support for @option{-pthread}. @option{-fopenmp} implies
1938 @option{-fopenmp-simd}.
1939
1940 @item -fopenmp-simd
1941 @opindex fopenmp-simd
1942 @cindex OpenMP SIMD
1943 @cindex SIMD
1944 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1945 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1946 are ignored.
1947
1948 @item -fcilkplus
1949 @opindex fcilkplus
1950 @cindex Enable Cilk Plus
1951 Enable the usage of Cilk Plus language extension features for C/C++.
1952 When the option @option{-fcilkplus} is specified, enable the usage of
1953 the Cilk Plus Language extension features for C/C++.  The present
1954 implementation follows ABI version 1.2.  This is an experimental
1955 feature that is only partially complete, and whose interface may
1956 change in future versions of GCC as the official specification
1957 changes.  Currently, all features but @code{_Cilk_for} have been
1958 implemented.
1959
1960 @item -fgnu-tm
1961 @opindex fgnu-tm
1962 When the option @option{-fgnu-tm} is specified, the compiler
1963 generates code for the Linux variant of Intel's current Transactional
1964 Memory ABI specification document (Revision 1.1, May 6 2009).  This is
1965 an experimental feature whose interface may change in future versions
1966 of GCC, as the official specification changes.  Please note that not
1967 all architectures are supported for this feature.
1968
1969 For more information on GCC's support for transactional memory,
1970 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1971 Transactional Memory Library}.
1972
1973 Note that the transactional memory feature is not supported with
1974 non-call exceptions (@option{-fnon-call-exceptions}).
1975
1976 @item -fms-extensions
1977 @opindex fms-extensions
1978 Accept some non-standard constructs used in Microsoft header files.
1979
1980 In C++ code, this allows member names in structures to be similar
1981 to previous types declarations.
1982
1983 @smallexample
1984 typedef int UOW;
1985 struct ABC @{
1986   UOW UOW;
1987 @};
1988 @end smallexample
1989
1990 Some cases of unnamed fields in structures and unions are only
1991 accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
1992 fields within structs/unions}, for details.
1993
1994 Note that this option is off for all targets but x86 
1995 targets using ms-abi.
1996
1997 @item -fplan9-extensions
1998 @opindex fplan9-extensions
1999 Accept some non-standard constructs used in Plan 9 code.
2000
2001 This enables @option{-fms-extensions}, permits passing pointers to
2002 structures with anonymous fields to functions that expect pointers to
2003 elements of the type of the field, and permits referring to anonymous
2004 fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2005 struct/union fields within structs/unions}, for details.  This is only
2006 supported for C, not C++.
2007
2008 @item -trigraphs
2009 @opindex trigraphs
2010 Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
2011 options for strict ISO C conformance) implies @option{-trigraphs}.
2012
2013 @cindex traditional C language
2014 @cindex C language, traditional
2015 @item -traditional
2016 @itemx -traditional-cpp
2017 @opindex traditional-cpp
2018 @opindex traditional
2019 Formerly, these options caused GCC to attempt to emulate a pre-standard
2020 C compiler.  They are now only supported with the @option{-E} switch.
2021 The preprocessor continues to support a pre-standard mode.  See the GNU
2022 CPP manual for details.
2023
2024 @item -fcond-mismatch
2025 @opindex fcond-mismatch
2026 Allow conditional expressions with mismatched types in the second and
2027 third arguments.  The value of such an expression is void.  This option
2028 is not supported for C++.
2029
2030 @item -flax-vector-conversions
2031 @opindex flax-vector-conversions
2032 Allow implicit conversions between vectors with differing numbers of
2033 elements and/or incompatible element types.  This option should not be
2034 used for new code.
2035
2036 @item -funsigned-char
2037 @opindex funsigned-char
2038 Let the type @code{char} be unsigned, like @code{unsigned char}.
2039
2040 Each kind of machine has a default for what @code{char} should
2041 be.  It is either like @code{unsigned char} by default or like
2042 @code{signed char} by default.
2043
2044 Ideally, a portable program should always use @code{signed char} or
2045 @code{unsigned char} when it depends on the signedness of an object.
2046 But many programs have been written to use plain @code{char} and
2047 expect it to be signed, or expect it to be unsigned, depending on the
2048 machines they were written for.  This option, and its inverse, let you
2049 make such a program work with the opposite default.
2050
2051 The type @code{char} is always a distinct type from each of
2052 @code{signed char} or @code{unsigned char}, even though its behavior
2053 is always just like one of those two.
2054
2055 @item -fsigned-char
2056 @opindex fsigned-char
2057 Let the type @code{char} be signed, like @code{signed char}.
2058
2059 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2060 the negative form of @option{-funsigned-char}.  Likewise, the option
2061 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2062
2063 @item -fsigned-bitfields
2064 @itemx -funsigned-bitfields
2065 @itemx -fno-signed-bitfields
2066 @itemx -fno-unsigned-bitfields
2067 @opindex fsigned-bitfields
2068 @opindex funsigned-bitfields
2069 @opindex fno-signed-bitfields
2070 @opindex fno-unsigned-bitfields
2071 These options control whether a bit-field is signed or unsigned, when the
2072 declaration does not use either @code{signed} or @code{unsigned}.  By
2073 default, such a bit-field is signed, because this is consistent: the
2074 basic integer types such as @code{int} are signed types.
2075 @end table
2076
2077 @node C++ Dialect Options
2078 @section Options Controlling C++ Dialect
2079
2080 @cindex compiler options, C++
2081 @cindex C++ options, command-line
2082 @cindex options, C++
2083 This section describes the command-line options that are only meaningful
2084 for C++ programs.  You can also use most of the GNU compiler options
2085 regardless of what language your program is in.  For example, you
2086 might compile a file @file{firstClass.C} like this:
2087
2088 @smallexample
2089 g++ -g -fstrict-enums -O -c firstClass.C
2090 @end smallexample
2091
2092 @noindent
2093 In this example, only @option{-fstrict-enums} is an option meant
2094 only for C++ programs; you can use the other options with any
2095 language supported by GCC@.
2096
2097 Here is a list of options that are @emph{only} for compiling C++ programs:
2098
2099 @table @gcctabopt
2100
2101 @item -fabi-version=@var{n}
2102 @opindex fabi-version
2103 Use version @var{n} of the C++ ABI@.  The default is version 0.
2104
2105 Version 0 refers to the version conforming most closely to
2106 the C++ ABI specification.  Therefore, the ABI obtained using version 0
2107 will change in different versions of G++ as ABI bugs are fixed.
2108
2109 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2110
2111 Version 2 is the version of the C++ ABI that first appeared in G++
2112 3.4, and was the default through G++ 4.9.
2113
2114 Version 3 corrects an error in mangling a constant address as a
2115 template argument.
2116
2117 Version 4, which first appeared in G++ 4.5, implements a standard
2118 mangling for vector types.
2119
2120 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2121 attribute const/volatile on function pointer types, decltype of a
2122 plain decl, and use of a function parameter in the declaration of
2123 another parameter.
2124
2125 Version 6, which first appeared in G++ 4.7, corrects the promotion
2126 behavior of C++11 scoped enums and the mangling of template argument
2127 packs, const/static_cast, prefix ++ and --, and a class scope function
2128 used as a template argument.
2129
2130 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2131 builtin type and corrects the mangling of lambdas in default argument
2132 scope.
2133
2134 Version 8, which first appeared in G++ 4.9, corrects the substitution
2135 behavior of function types with function-cv-qualifiers.
2136
2137 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2138 @code{nullptr_t}.
2139
2140 Version 10, which first appeared in G++ 6.1, adds mangling of
2141 attributes that affect type identity, such as ia32 calling convention
2142 attributes (e.g. @samp{stdcall}).
2143
2144 See also @option{-Wabi}.
2145
2146 @item -fabi-compat-version=@var{n}
2147 @opindex fabi-compat-version
2148 On targets that support strong aliases, G++
2149 works around mangling changes by creating an alias with the correct
2150 mangled name when defining a symbol with an incorrect mangled name.
2151 This switch specifies which ABI version to use for the alias.
2152
2153 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2154 compatibility).  If another ABI version is explicitly selected, this
2155 defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2156 use @option{-fabi-compat-version=2}.
2157
2158 If this option is not provided but @option{-Wabi=@var{n}} is, that
2159 version is used for compatibility aliases.  If this option is provided
2160 along with @option{-Wabi} (without the version), the version from this
2161 option is used for the warning.
2162
2163 @item -fno-access-control
2164 @opindex fno-access-control
2165 Turn off all access checking.  This switch is mainly useful for working
2166 around bugs in the access control code.
2167
2168 @item -fcheck-new
2169 @opindex fcheck-new
2170 Check that the pointer returned by @code{operator new} is non-null
2171 before attempting to modify the storage allocated.  This check is
2172 normally unnecessary because the C++ standard specifies that
2173 @code{operator new} only returns @code{0} if it is declared
2174 @code{throw()}, in which case the compiler always checks the
2175 return value even without this option.  In all other cases, when
2176 @code{operator new} has a non-empty exception specification, memory
2177 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2178 @samp{new (nothrow)}.
2179
2180 @item -fconstexpr-depth=@var{n}
2181 @opindex fconstexpr-depth
2182 Set the maximum nested evaluation depth for C++11 constexpr functions
2183 to @var{n}.  A limit is needed to detect endless recursion during
2184 constant expression evaluation.  The minimum specified by the standard
2185 is 512.
2186
2187 @item -fdeduce-init-list
2188 @opindex fdeduce-init-list
2189 Enable deduction of a template type parameter as
2190 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2191
2192 @smallexample
2193 template <class T> auto forward(T t) -> decltype (realfn (t))
2194 @{
2195   return realfn (t);
2196 @}
2197
2198 void f()
2199 @{
2200   forward(@{1,2@}); // call forward<std::initializer_list<int>>
2201 @}
2202 @end smallexample
2203
2204 This deduction was implemented as a possible extension to the
2205 originally proposed semantics for the C++11 standard, but was not part
2206 of the final standard, so it is disabled by default.  This option is
2207 deprecated, and may be removed in a future version of G++.
2208
2209 @item -ffriend-injection
2210 @opindex ffriend-injection
2211 Inject friend functions into the enclosing namespace, so that they are
2212 visible outside the scope of the class in which they are declared.
2213 Friend functions were documented to work this way in the old Annotated
2214 C++ Reference Manual.  
2215 However, in ISO C++ a friend function that is not declared
2216 in an enclosing scope can only be found using argument dependent
2217 lookup.  GCC defaults to the standard behavior.
2218
2219 This option is for compatibility, and may be removed in a future
2220 release of G++.
2221
2222 @item -fno-elide-constructors
2223 @opindex fno-elide-constructors
2224 The C++ standard allows an implementation to omit creating a temporary
2225 that is only used to initialize another object of the same type.
2226 Specifying this option disables that optimization, and forces G++ to
2227 call the copy constructor in all cases.
2228
2229 @item -fno-enforce-eh-specs
2230 @opindex fno-enforce-eh-specs
2231 Don't generate code to check for violation of exception specifications
2232 at run time.  This option violates the C++ standard, but may be useful
2233 for reducing code size in production builds, much like defining
2234 @code{NDEBUG}.  This does not give user code permission to throw
2235 exceptions in violation of the exception specifications; the compiler
2236 still optimizes based on the specifications, so throwing an
2237 unexpected exception results in undefined behavior at run time.
2238
2239 @item -fextern-tls-init
2240 @itemx -fno-extern-tls-init
2241 @opindex fextern-tls-init
2242 @opindex fno-extern-tls-init
2243 The C++11 and OpenMP standards allow @code{thread_local} and
2244 @code{threadprivate} variables to have dynamic (runtime)
2245 initialization.  To support this, any use of such a variable goes
2246 through a wrapper function that performs any necessary initialization.
2247 When the use and definition of the variable are in the same
2248 translation unit, this overhead can be optimized away, but when the
2249 use is in a different translation unit there is significant overhead
2250 even if the variable doesn't actually need dynamic initialization.  If
2251 the programmer can be sure that no use of the variable in a
2252 non-defining TU needs to trigger dynamic initialization (either
2253 because the variable is statically initialized, or a use of the
2254 variable in the defining TU will be executed before any uses in
2255 another TU), they can avoid this overhead with the
2256 @option{-fno-extern-tls-init} option.
2257
2258 On targets that support symbol aliases, the default is
2259 @option{-fextern-tls-init}.  On targets that do not support symbol
2260 aliases, the default is @option{-fno-extern-tls-init}.
2261
2262 @item -ffor-scope
2263 @itemx -fno-for-scope
2264 @opindex ffor-scope
2265 @opindex fno-for-scope
2266 If @option{-ffor-scope} is specified, the scope of variables declared in
2267 a @i{for-init-statement} is limited to the @code{for} loop itself,
2268 as specified by the C++ standard.
2269 If @option{-fno-for-scope} is specified, the scope of variables declared in
2270 a @i{for-init-statement} extends to the end of the enclosing scope,
2271 as was the case in old versions of G++, and other (traditional)
2272 implementations of C++.
2273
2274 If neither flag is given, the default is to follow the standard,
2275 but to allow and give a warning for old-style code that would
2276 otherwise be invalid, or have different behavior.
2277
2278 @item -fno-gnu-keywords
2279 @opindex fno-gnu-keywords
2280 Do not recognize @code{typeof} as a keyword, so that code can use this
2281 word as an identifier.  You can use the keyword @code{__typeof__} instead.
2282 @option{-ansi} implies @option{-fno-gnu-keywords}.
2283
2284 @item -fno-implicit-templates
2285 @opindex fno-implicit-templates
2286 Never emit code for non-inline templates that are instantiated
2287 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2288 @xref{Template Instantiation}, for more information.
2289
2290 @item -fno-implicit-inline-templates
2291 @opindex fno-implicit-inline-templates
2292 Don't emit code for implicit instantiations of inline templates, either.
2293 The default is to handle inlines differently so that compiles with and
2294 without optimization need the same set of explicit instantiations.
2295
2296 @item -fno-implement-inlines
2297 @opindex fno-implement-inlines
2298 To save space, do not emit out-of-line copies of inline functions
2299 controlled by @code{#pragma implementation}.  This causes linker
2300 errors if these functions are not inlined everywhere they are called.
2301
2302 @item -fms-extensions
2303 @opindex fms-extensions
2304 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2305 int and getting a pointer to member function via non-standard syntax.
2306
2307 @item -fno-nonansi-builtins
2308 @opindex fno-nonansi-builtins
2309 Disable built-in declarations of functions that are not mandated by
2310 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2311 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2312
2313 @item -fnothrow-opt
2314 @opindex fnothrow-opt
2315 Treat a @code{throw()} exception specification as if it were a
2316 @code{noexcept} specification to reduce or eliminate the text size
2317 overhead relative to a function with no exception specification.  If
2318 the function has local variables of types with non-trivial
2319 destructors, the exception specification actually makes the
2320 function smaller because the EH cleanups for those variables can be
2321 optimized away.  The semantic effect is that an exception thrown out of
2322 a function with such an exception specification results in a call
2323 to @code{terminate} rather than @code{unexpected}.
2324
2325 @item -fno-operator-names
2326 @opindex fno-operator-names
2327 Do not treat the operator name keywords @code{and}, @code{bitand},
2328 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2329 synonyms as keywords.
2330
2331 @item -fno-optional-diags
2332 @opindex fno-optional-diags
2333 Disable diagnostics that the standard says a compiler does not need to
2334 issue.  Currently, the only such diagnostic issued by G++ is the one for
2335 a name having multiple meanings within a class.
2336
2337 @item -fpermissive
2338 @opindex fpermissive
2339 Downgrade some diagnostics about nonconformant code from errors to
2340 warnings.  Thus, using @option{-fpermissive} allows some
2341 nonconforming code to compile.
2342
2343 @item -fno-pretty-templates
2344 @opindex fno-pretty-templates
2345 When an error message refers to a specialization of a function
2346 template, the compiler normally prints the signature of the
2347 template followed by the template arguments and any typedefs or
2348 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2349 rather than @code{void f(int)}) so that it's clear which template is
2350 involved.  When an error message refers to a specialization of a class
2351 template, the compiler omits any template arguments that match
2352 the default template arguments for that template.  If either of these
2353 behaviors make it harder to understand the error message rather than
2354 easier, you can use @option{-fno-pretty-templates} to disable them.
2355
2356 @item -frepo
2357 @opindex frepo
2358 Enable automatic template instantiation at link time.  This option also
2359 implies @option{-fno-implicit-templates}.  @xref{Template
2360 Instantiation}, for more information.
2361
2362 @item -fno-rtti
2363 @opindex fno-rtti
2364 Disable generation of information about every class with virtual
2365 functions for use by the C++ run-time type identification features
2366 (@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2367 of the language, you can save some space by using this flag.  Note that
2368 exception handling uses the same information, but G++ generates it as
2369 needed. The @code{dynamic_cast} operator can still be used for casts that
2370 do not require run-time type information, i.e.@: casts to @code{void *} or to
2371 unambiguous base classes.
2372
2373 @item -fsized-deallocation
2374 @opindex fsized-deallocation
2375 Enable the built-in global declarations
2376 @smallexample
2377 void operator delete (void *, std::size_t) noexcept;
2378 void operator delete[] (void *, std::size_t) noexcept;
2379 @end smallexample
2380 as introduced in C++14.  This is useful for user-defined replacement
2381 deallocation functions that, for example, use the size of the object
2382 to make deallocation faster.  Enabled by default under
2383 @option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2384 warns about places that might want to add a definition.
2385
2386 @item -fstats
2387 @opindex fstats
2388 Emit statistics about front-end processing at the end of the compilation.
2389 This information is generally only useful to the G++ development team.
2390
2391 @item -fstrict-enums
2392 @opindex fstrict-enums
2393 Allow the compiler to optimize using the assumption that a value of
2394 enumerated type can only be one of the values of the enumeration (as
2395 defined in the C++ standard; basically, a value that can be
2396 represented in the minimum number of bits needed to represent all the
2397 enumerators).  This assumption may not be valid if the program uses a
2398 cast to convert an arbitrary integer value to the enumerated type.
2399
2400 @item -ftemplate-backtrace-limit=@var{n}
2401 @opindex ftemplate-backtrace-limit
2402 Set the maximum number of template instantiation notes for a single
2403 warning or error to @var{n}.  The default value is 10.
2404
2405 @item -ftemplate-depth=@var{n}
2406 @opindex ftemplate-depth
2407 Set the maximum instantiation depth for template classes to @var{n}.
2408 A limit on the template instantiation depth is needed to detect
2409 endless recursions during template class instantiation.  ANSI/ISO C++
2410 conforming programs must not rely on a maximum depth greater than 17
2411 (changed to 1024 in C++11).  The default value is 900, as the compiler
2412 can run out of stack space before hitting 1024 in some situations.
2413
2414 @item -fno-threadsafe-statics
2415 @opindex fno-threadsafe-statics
2416 Do not emit the extra code to use the routines specified in the C++
2417 ABI for thread-safe initialization of local statics.  You can use this
2418 option to reduce code size slightly in code that doesn't need to be
2419 thread-safe.
2420
2421 @item -fuse-cxa-atexit
2422 @opindex fuse-cxa-atexit
2423 Register destructors for objects with static storage duration with the
2424 @code{__cxa_atexit} function rather than the @code{atexit} function.
2425 This option is required for fully standards-compliant handling of static
2426 destructors, but only works if your C library supports
2427 @code{__cxa_atexit}.
2428
2429 @item -fno-use-cxa-get-exception-ptr
2430 @opindex fno-use-cxa-get-exception-ptr
2431 Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2432 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2433 if the runtime routine is not available.
2434
2435 @item -fvisibility-inlines-hidden
2436 @opindex fvisibility-inlines-hidden
2437 This switch declares that the user does not attempt to compare
2438 pointers to inline functions or methods where the addresses of the two functions
2439 are taken in different shared objects.
2440
2441 The effect of this is that GCC may, effectively, mark inline methods with
2442 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2443 appear in the export table of a DSO and do not require a PLT indirection
2444 when used within the DSO@.  Enabling this option can have a dramatic effect
2445 on load and link times of a DSO as it massively reduces the size of the
2446 dynamic export table when the library makes heavy use of templates.
2447
2448 The behavior of this switch is not quite the same as marking the
2449 methods as hidden directly, because it does not affect static variables
2450 local to the function or cause the compiler to deduce that
2451 the function is defined in only one shared object.
2452
2453 You may mark a method as having a visibility explicitly to negate the
2454 effect of the switch for that method.  For example, if you do want to
2455 compare pointers to a particular inline method, you might mark it as
2456 having default visibility.  Marking the enclosing class with explicit
2457 visibility has no effect.
2458
2459 Explicitly instantiated inline methods are unaffected by this option
2460 as their linkage might otherwise cross a shared library boundary.
2461 @xref{Template Instantiation}.
2462
2463 @item -fvisibility-ms-compat
2464 @opindex fvisibility-ms-compat
2465 This flag attempts to use visibility settings to make GCC's C++
2466 linkage model compatible with that of Microsoft Visual Studio.
2467
2468 The flag makes these changes to GCC's linkage model:
2469
2470 @enumerate
2471 @item
2472 It sets the default visibility to @code{hidden}, like
2473 @option{-fvisibility=hidden}.
2474
2475 @item
2476 Types, but not their members, are not hidden by default.
2477
2478 @item
2479 The One Definition Rule is relaxed for types without explicit
2480 visibility specifications that are defined in more than one
2481 shared object: those declarations are permitted if they are
2482 permitted when this option is not used.
2483 @end enumerate
2484
2485 In new code it is better to use @option{-fvisibility=hidden} and
2486 export those classes that are intended to be externally visible.
2487 Unfortunately it is possible for code to rely, perhaps accidentally,
2488 on the Visual Studio behavior.
2489
2490 Among the consequences of these changes are that static data members
2491 of the same type with the same name but defined in different shared
2492 objects are different, so changing one does not change the other;
2493 and that pointers to function members defined in different shared
2494 objects may not compare equal.  When this flag is given, it is a
2495 violation of the ODR to define types with the same name differently.
2496
2497 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2498 @opindex fvtable-verify
2499 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2500 feature that verifies at run time, for every virtual call, that
2501 the vtable pointer through which the call is made is valid for the type of
2502 the object, and has not been corrupted or overwritten.  If an invalid vtable
2503 pointer is detected at run time, an error is reported and execution of the
2504 program is immediately halted.
2505
2506 This option causes run-time data structures to be built at program startup,
2507 which are used for verifying the vtable pointers.  
2508 The options @samp{std} and @samp{preinit}
2509 control the timing of when these data structures are built.  In both cases the
2510 data structures are built before execution reaches @code{main}.  Using
2511 @option{-fvtable-verify=std} causes the data structures to be built after
2512 shared libraries have been loaded and initialized.
2513 @option{-fvtable-verify=preinit} causes them to be built before shared
2514 libraries have been loaded and initialized.
2515
2516 If this option appears multiple times in the command line with different
2517 values specified, @samp{none} takes highest priority over both @samp{std} and
2518 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2519
2520 @item -fvtv-debug
2521 @opindex fvtv-debug
2522 When used in conjunction with @option{-fvtable-verify=std} or 
2523 @option{-fvtable-verify=preinit}, causes debug versions of the 
2524 runtime functions for the vtable verification feature to be called.  
2525 This flag also causes the compiler to log information about which 
2526 vtable pointers it finds for each class.
2527 This information is written to a file named @file{vtv_set_ptr_data.log} 
2528 in the directory named by the environment variable @env{VTV_LOGS_DIR} 
2529 if that is defined or the current working directory otherwise.
2530
2531 Note:  This feature @emph{appends} data to the log file. If you want a fresh log
2532 file, be sure to delete any existing one.
2533
2534 @item -fvtv-counts
2535 @opindex fvtv-counts
2536 This is a debugging flag.  When used in conjunction with
2537 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2538 causes the compiler to keep track of the total number of virtual calls
2539 it encounters and the number of verifications it inserts.  It also
2540 counts the number of calls to certain run-time library functions
2541 that it inserts and logs this information for each compilation unit.
2542 The compiler writes this information to a file named
2543 @file{vtv_count_data.log} in the directory named by the environment
2544 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2545 directory otherwise.  It also counts the size of the vtable pointer sets
2546 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2547 in the same directory.
2548
2549 Note:  This feature @emph{appends} data to the log files.  To get fresh log
2550 files, be sure to delete any existing ones.
2551
2552 @item -fno-weak
2553 @opindex fno-weak
2554 Do not use weak symbol support, even if it is provided by the linker.
2555 By default, G++ uses weak symbols if they are available.  This
2556 option exists only for testing, and should not be used by end-users;
2557 it results in inferior code and has no benefits.  This option may
2558 be removed in a future release of G++.
2559
2560 @item -nostdinc++
2561 @opindex nostdinc++
2562 Do not search for header files in the standard directories specific to
2563 C++, but do still search the other standard directories.  (This option
2564 is used when building the C++ library.)
2565 @end table
2566
2567 In addition, these optimization, warning, and code generation options
2568 have meanings only for C++ programs:
2569
2570 @table @gcctabopt
2571 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2572 @opindex Wabi
2573 @opindex Wno-abi
2574 Warn when G++ it generates code that is probably not compatible with
2575 the vendor-neutral C++ ABI@.  Since G++ now defaults to updating the
2576 ABI with each major release, normally @option{-Wabi} will warn only if
2577 there is a check added later in a release series for an ABI issue
2578 discovered since the initial release.  @option{-Wabi} will warn about
2579 more things if an older ABI version is selected (with
2580 @option{-fabi-version=@var{n}}).
2581
2582 @option{-Wabi} can also be used with an explicit version number to
2583 warn about compatibility with a particular @option{-fabi-version}
2584 level, e.g. @option{-Wabi=2} to warn about changes relative to
2585 @option{-fabi-version=2}.
2586
2587 If an explicit version number is provided and
2588 @option{-fabi-compat-version} is not specified, the version number
2589 from this option is used for compatibility aliases.  If no explicit
2590 version number is provided with this option, but
2591 @option{-fabi-compat-version} is specified, that version number is
2592 used for ABI warnings.
2593
2594 Although an effort has been made to warn about
2595 all such cases, there are probably some cases that are not warned about,
2596 even though G++ is generating incompatible code.  There may also be
2597 cases where warnings are emitted even though the code that is generated
2598 is compatible.
2599
2600 You should rewrite your code to avoid these warnings if you are
2601 concerned about the fact that code generated by G++ may not be binary
2602 compatible with code generated by other compilers.
2603
2604 Known incompatibilities in @option{-fabi-version=2} (which was the
2605 default from GCC 3.4 to 4.9) include:
2606
2607 @itemize @bullet
2608
2609 @item
2610 A template with a non-type template parameter of reference type was
2611 mangled incorrectly:
2612 @smallexample
2613 extern int N;
2614 template <int &> struct S @{@};
2615 void n (S<N>) @{2@}
2616 @end smallexample
2617
2618 This was fixed in @option{-fabi-version=3}.
2619
2620 @item
2621 SIMD vector types declared using @code{__attribute ((vector_size))} were
2622 mangled in a non-standard way that does not allow for overloading of
2623 functions taking vectors of different sizes.
2624
2625 The mangling was changed in @option{-fabi-version=4}.
2626
2627 @item
2628 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2629 qualifiers, and @code{decltype} of a plain declaration was folded away.
2630
2631 These mangling issues were fixed in @option{-fabi-version=5}.
2632
2633 @item
2634 Scoped enumerators passed as arguments to a variadic function are
2635 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2636 On most targets this does not actually affect the parameter passing
2637 ABI, as there is no way to pass an argument smaller than @code{int}.
2638
2639 Also, the ABI changed the mangling of template argument packs,
2640 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2641 a class scope function used as a template argument.
2642
2643 These issues were corrected in @option{-fabi-version=6}.
2644
2645 @item
2646 Lambdas in default argument scope were mangled incorrectly, and the
2647 ABI changed the mangling of @code{nullptr_t}.
2648
2649 These issues were corrected in @option{-fabi-version=7}.
2650
2651 @item
2652 When mangling a function type with function-cv-qualifiers, the
2653 un-qualified function type was incorrectly treated as a substitution
2654 candidate.
2655
2656 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2657
2658 @item
2659 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2660 unaligned accesses.  Note that this did not affect the ABI of a
2661 function with a @code{nullptr_t} parameter, as parameters have a
2662 minimum alignment.
2663
2664 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2665
2666 @item
2667 Target-specific attributes that affect the identity of a type, such as
2668 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2669 did not affect the mangled name, leading to name collisions when
2670 function pointers were used as template arguments.
2671
2672 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2673
2674 @end itemize
2675
2676 It also warns about psABI-related changes.  The known psABI changes at this
2677 point include:
2678
2679 @itemize @bullet
2680
2681 @item
2682 For SysV/x86-64, unions with @code{long double} members are 
2683 passed in memory as specified in psABI.  For example:
2684
2685 @smallexample
2686 union U @{
2687   long double ld;
2688   int i;
2689 @};
2690 @end smallexample
2691
2692 @noindent
2693 @code{union U} is always passed in memory.
2694
2695 @end itemize
2696
2697 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2698 @opindex Wabi-tag
2699 @opindex -Wabi-tag
2700 Warn when a type with an ABI tag is used in a context that does not
2701 have that ABI tag.  See @ref{C++ Attributes} for more information
2702 about ABI tags.
2703
2704 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2705 @opindex Wctor-dtor-privacy
2706 @opindex Wno-ctor-dtor-privacy
2707 Warn when a class seems unusable because all the constructors or
2708 destructors in that class are private, and it has neither friends nor
2709 public static member functions.  Also warn if there are no non-private
2710 methods, and there's at least one private member function that isn't
2711 a constructor or destructor.
2712
2713 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2714 @opindex Wdelete-non-virtual-dtor
2715 @opindex Wno-delete-non-virtual-dtor
2716 Warn when @code{delete} is used to destroy an instance of a class that
2717 has virtual functions and non-virtual destructor. It is unsafe to delete
2718 an instance of a derived class through a pointer to a base class if the
2719 base class does not have a virtual destructor.  This warning is enabled
2720 by @option{-Wall}.
2721
2722 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2723 @opindex Wliteral-suffix
2724 @opindex Wno-literal-suffix
2725 Warn when a string or character literal is followed by a ud-suffix which does
2726 not begin with an underscore.  As a conforming extension, GCC treats such
2727 suffixes as separate preprocessing tokens in order to maintain backwards
2728 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2729 For example:
2730
2731 @smallexample
2732 #define __STDC_FORMAT_MACROS
2733 #include <inttypes.h>
2734 #include <stdio.h>
2735
2736 int main() @{
2737   int64_t i64 = 123;
2738   printf("My int64: %" PRId64"\n", i64);
2739 @}
2740 @end smallexample
2741
2742 In this case, @code{PRId64} is treated as a separate preprocessing token.
2743
2744 This warning is enabled by default.
2745
2746 @item -Wlto-type-mismatch
2747 @opindex Wlto-type-mismatch
2748 @opindex Wno-lto-type-mistmach
2749
2750 During the link-time optimization warn about type mismatches in between
2751 global declarations from different compilation units.
2752 Requires @option{-flto} to be enabled.  Enabled by default.
2753
2754 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2755 @opindex Wnarrowing
2756 @opindex Wno-narrowing
2757 Warn when a narrowing conversion prohibited by C++11 occurs within
2758 @samp{@{ @}}, e.g.
2759
2760 @smallexample
2761 int i = @{ 2.2 @}; // error: narrowing from double to int
2762 @end smallexample
2763
2764 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2765
2766 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2767 required by the standard.  Note that this does not affect the meaning
2768 of well-formed code; narrowing conversions are still considered
2769 ill-formed in SFINAE context.
2770
2771 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2772 @opindex Wnoexcept
2773 @opindex Wno-noexcept
2774 Warn when a noexcept-expression evaluates to false because of a call
2775 to a function that does not have a non-throwing exception
2776 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2777 the compiler to never throw an exception.
2778
2779 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2780 @opindex Wnon-virtual-dtor
2781 @opindex Wno-non-virtual-dtor
2782 Warn when a class has virtual functions and an accessible non-virtual
2783 destructor itself or in an accessible polymorphic base class, in which
2784 case it is possible but unsafe to delete an instance of a derived
2785 class through a pointer to the class itself or base class.  This
2786 warning is automatically enabled if @option{-Weffc++} is specified.
2787
2788 @item -Wreorder @r{(C++ and Objective-C++ only)}
2789 @opindex Wreorder
2790 @opindex Wno-reorder
2791 @cindex reordering, warning
2792 @cindex warning for reordering of member initializers
2793 Warn when the order of member initializers given in the code does not
2794 match the order in which they must be executed.  For instance:
2795
2796 @smallexample
2797 struct A @{
2798   int i;
2799   int j;
2800   A(): j (0), i (1) @{ @}
2801 @};
2802 @end smallexample
2803
2804 @noindent
2805 The compiler rearranges the member initializers for @code{i}
2806 and @code{j} to match the declaration order of the members, emitting
2807 a warning to that effect.  This warning is enabled by @option{-Wall}.
2808
2809 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2810 @opindex fext-numeric-literals
2811 @opindex fno-ext-numeric-literals
2812 Accept imaginary, fixed-point, or machine-defined
2813 literal number suffixes as GNU extensions.
2814 When this option is turned off these suffixes are treated
2815 as C++11 user-defined literal numeric suffixes.
2816 This is on by default for all pre-C++11 dialects and all GNU dialects:
2817 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2818 @option{-std=gnu++14}.
2819 This option is off by default
2820 for ISO C++11 onwards (@option{-std=c++11}, ...).
2821 @end table
2822
2823 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2824
2825 @table @gcctabopt
2826 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2827 @opindex Weffc++
2828 @opindex Wno-effc++
2829 Warn about violations of the following style guidelines from Scott Meyers'
2830 @cite{Effective C++} series of books:
2831
2832 @itemize @bullet
2833 @item
2834 Define a copy constructor and an assignment operator for classes
2835 with dynamically-allocated memory.
2836
2837 @item
2838 Prefer initialization to assignment in constructors.
2839
2840 @item
2841 Have @code{operator=} return a reference to @code{*this}.
2842
2843 @item
2844 Don't try to return a reference when you must return an object.
2845
2846 @item
2847 Distinguish between prefix and postfix forms of increment and
2848 decrement operators.
2849
2850 @item
2851 Never overload @code{&&}, @code{||}, or @code{,}.
2852
2853 @end itemize
2854
2855 This option also enables @option{-Wnon-virtual-dtor}, which is also
2856 one of the effective C++ recommendations.  However, the check is
2857 extended to warn about the lack of virtual destructor in accessible
2858 non-polymorphic bases classes too.
2859
2860 When selecting this option, be aware that the standard library
2861 headers do not obey all of these guidelines; use @samp{grep -v}
2862 to filter out those warnings.
2863
2864 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2865 @opindex Wstrict-null-sentinel
2866 @opindex Wno-strict-null-sentinel
2867 Warn about the use of an uncasted @code{NULL} as sentinel.  When
2868 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2869 to @code{__null}.  Although it is a null pointer constant rather than a
2870 null pointer, it is guaranteed to be of the same size as a pointer.
2871 But this use is not portable across different compilers.
2872
2873 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2874 @opindex Wno-non-template-friend
2875 @opindex Wnon-template-friend
2876 Disable warnings when non-templatized friend functions are declared
2877 within a template.  Since the advent of explicit template specification
2878 support in G++, if the name of the friend is an unqualified-id (i.e.,
2879 @samp{friend foo(int)}), the C++ language specification demands that the
2880 friend declare or define an ordinary, nontemplate function.  (Section
2881 14.5.3).  Before G++ implemented explicit specification, unqualified-ids
2882 could be interpreted as a particular specialization of a templatized
2883 function.  Because this non-conforming behavior is no longer the default
2884 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2885 check existing code for potential trouble spots and is on by default.
2886 This new compiler behavior can be turned off with
2887 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2888 but disables the helpful warning.
2889
2890 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2891 @opindex Wold-style-cast
2892 @opindex Wno-old-style-cast
2893 Warn if an old-style (C-style) cast to a non-void type is used within
2894 a C++ program.  The new-style casts (@code{dynamic_cast},
2895 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2896 less vulnerable to unintended effects and much easier to search for.
2897
2898 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2899 @opindex Woverloaded-virtual
2900 @opindex Wno-overloaded-virtual
2901 @cindex overloaded virtual function, warning
2902 @cindex warning for overloaded virtual function
2903 Warn when a function declaration hides virtual functions from a
2904 base class.  For example, in:
2905
2906 @smallexample
2907 struct A @{
2908   virtual void f();
2909 @};
2910
2911 struct B: public A @{
2912   void f(int);
2913 @};
2914 @end smallexample
2915
2916 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2917 like:
2918
2919 @smallexample
2920 B* b;
2921 b->f();
2922 @end smallexample
2923
2924 @noindent
2925 fails to compile.
2926
2927 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2928 @opindex Wno-pmf-conversions
2929 @opindex Wpmf-conversions
2930 Disable the diagnostic for converting a bound pointer to member function
2931 to a plain pointer.
2932
2933 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2934 @opindex Wsign-promo
2935 @opindex Wno-sign-promo
2936 Warn when overload resolution chooses a promotion from unsigned or
2937 enumerated type to a signed type, over a conversion to an unsigned type of
2938 the same size.  Previous versions of G++ tried to preserve
2939 unsignedness, but the standard mandates the current behavior.
2940
2941 @item -Wtemplates @r{(C++ and Objective-C++ only)}
2942 @opindex Wtemplates
2943 Warn when a primary template declaration is encountered.  Some coding
2944 rules disallow templates, and this may be used to enforce that rule.
2945 The warning is inactive inside a system header file, such as the STL, so
2946 one can still use the STL.  One may also instantiate or specialize
2947 templates.
2948
2949 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
2950 @opindex Wmultiple-inheritance
2951 Warn when a class is defined with multiple direct base classes.  Some
2952 coding rules disallow multiple inheritance, and this may be used to
2953 enforce that rule.  The warning is inactive inside a system header file,
2954 such as the STL, so one can still use the STL.  One may also define
2955 classes that indirectly use multiple inheritance.
2956
2957 @item -Wvirtual-inheritance
2958 @opindex Wvirtual-inheritance
2959 Warn when a class is defined with a virtual direct base classe.  Some
2960 coding rules disallow multiple inheritance, and this may be used to
2961 enforce that rule.  The warning is inactive inside a system header file,
2962 such as the STL, so one can still use the STL.  One may also define
2963 classes that indirectly use virtual inheritance.
2964
2965 @item -Wnamespaces
2966 @opindex Wnamespaces
2967 Warn when a namespace definition is opened.  Some coding rules disallow
2968 namespaces, and this may be used to enforce that rule.  The warning is
2969 inactive inside a system header file, such as the STL, so one can still
2970 use the STL.  One may also use using directives and qualified names.
2971
2972 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2973 @opindex Wterminate
2974 @opindex Wno-terminate
2975 Disable the warning about a throw-expression that will immediately
2976 result in a call to @code{terminate}.
2977 @end table
2978
2979 @node Objective-C and Objective-C++ Dialect Options
2980 @section Options Controlling Objective-C and Objective-C++ Dialects
2981
2982 @cindex compiler options, Objective-C and Objective-C++
2983 @cindex Objective-C and Objective-C++ options, command-line
2984 @cindex options, Objective-C and Objective-C++
2985 (NOTE: This manual does not describe the Objective-C and Objective-C++
2986 languages themselves.  @xref{Standards,,Language Standards
2987 Supported by GCC}, for references.)
2988
2989 This section describes the command-line options that are only meaningful
2990 for Objective-C and Objective-C++ programs.  You can also use most of
2991 the language-independent GNU compiler options.
2992 For example, you might compile a file @file{some_class.m} like this:
2993
2994 @smallexample
2995 gcc -g -fgnu-runtime -O -c some_class.m
2996 @end smallexample
2997
2998 @noindent
2999 In this example, @option{-fgnu-runtime} is an option meant only for
3000 Objective-C and Objective-C++ programs; you can use the other options with
3001 any language supported by GCC@.
3002
3003 Note that since Objective-C is an extension of the C language, Objective-C
3004 compilations may also use options specific to the C front-end (e.g.,
3005 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
3006 C++-specific options (e.g., @option{-Wabi}).
3007
3008 Here is a list of options that are @emph{only} for compiling Objective-C
3009 and Objective-C++ programs:
3010
3011 @table @gcctabopt
3012 @item -fconstant-string-class=@var{class-name}
3013 @opindex fconstant-string-class
3014 Use @var{class-name} as the name of the class to instantiate for each
3015 literal string specified with the syntax @code{@@"@dots{}"}.  The default
3016 class name is @code{NXConstantString} if the GNU runtime is being used, and
3017 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
3018 @option{-fconstant-cfstrings} option, if also present, overrides the
3019 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3020 to be laid out as constant CoreFoundation strings.
3021
3022 @item -fgnu-runtime
3023 @opindex fgnu-runtime
3024 Generate object code compatible with the standard GNU Objective-C
3025 runtime.  This is the default for most types of systems.
3026
3027 @item -fnext-runtime
3028 @opindex fnext-runtime
3029 Generate output compatible with the NeXT runtime.  This is the default
3030 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
3031 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3032 used.
3033
3034 @item -fno-nil-receivers
3035 @opindex fno-nil-receivers
3036 Assume that all Objective-C message dispatches (@code{[receiver
3037 message:arg]}) in this translation unit ensure that the receiver is
3038 not @code{nil}.  This allows for more efficient entry points in the
3039 runtime to be used.  This option is only available in conjunction with
3040 the NeXT runtime and ABI version 0 or 1.
3041
3042 @item -fobjc-abi-version=@var{n}
3043 @opindex fobjc-abi-version
3044 Use version @var{n} of the Objective-C ABI for the selected runtime.
3045 This option is currently supported only for the NeXT runtime.  In that
3046 case, Version 0 is the traditional (32-bit) ABI without support for
3047 properties and other Objective-C 2.0 additions.  Version 1 is the
3048 traditional (32-bit) ABI with support for properties and other
3049 Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
3050 nothing is specified, the default is Version 0 on 32-bit target
3051 machines, and Version 2 on 64-bit target machines.
3052
3053 @item -fobjc-call-cxx-cdtors
3054 @opindex fobjc-call-cxx-cdtors
3055 For each Objective-C class, check if any of its instance variables is a
3056 C++ object with a non-trivial default constructor.  If so, synthesize a
3057 special @code{- (id) .cxx_construct} instance method which runs
3058 non-trivial default constructors on any such instance variables, in order,
3059 and then return @code{self}.  Similarly, check if any instance variable
3060 is a C++ object with a non-trivial destructor, and if so, synthesize a
3061 special @code{- (void) .cxx_destruct} method which runs
3062 all such default destructors, in reverse order.
3063
3064 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3065 methods thusly generated only operate on instance variables
3066 declared in the current Objective-C class, and not those inherited
3067 from superclasses.  It is the responsibility of the Objective-C
3068 runtime to invoke all such methods in an object's inheritance
3069 hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
3070 by the runtime immediately after a new object instance is allocated;
3071 the @code{- (void) .cxx_destruct} methods are invoked immediately
3072 before the runtime deallocates an object instance.
3073
3074 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3075 support for invoking the @code{- (id) .cxx_construct} and
3076 @code{- (void) .cxx_destruct} methods.
3077
3078 @item -fobjc-direct-dispatch
3079 @opindex fobjc-direct-dispatch
3080 Allow fast jumps to the message dispatcher.  On Darwin this is
3081 accomplished via the comm page.
3082
3083 @item -fobjc-exceptions
3084 @opindex fobjc-exceptions
3085 Enable syntactic support for structured exception handling in
3086 Objective-C, similar to what is offered by C++ and Java.  This option
3087 is required to use the Objective-C keywords @code{@@try},
3088 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3089 @code{@@synchronized}.  This option is available with both the GNU
3090 runtime and the NeXT runtime (but not available in conjunction with
3091 the NeXT runtime on Mac OS X 10.2 and earlier).
3092
3093 @item -fobjc-gc
3094 @opindex fobjc-gc
3095 Enable garbage collection (GC) in Objective-C and Objective-C++
3096 programs.  This option is only available with the NeXT runtime; the
3097 GNU runtime has a different garbage collection implementation that
3098 does not require special compiler flags.
3099
3100 @item -fobjc-nilcheck
3101 @opindex fobjc-nilcheck
3102 For the NeXT runtime with version 2 of the ABI, check for a nil
3103 receiver in method invocations before doing the actual method call.
3104 This is the default and can be disabled using
3105 @option{-fno-objc-nilcheck}.  Class methods and super calls are never
3106 checked for nil in this way no matter what this flag is set to.
3107 Currently this flag does nothing when the GNU runtime, or an older
3108 version of the NeXT runtime ABI, is used.
3109
3110 @item -fobjc-std=objc1
3111 @opindex fobjc-std
3112 Conform to the language syntax of Objective-C 1.0, the language
3113 recognized by GCC 4.0.  This only affects the Objective-C additions to
3114 the C/C++ language; it does not affect conformance to C/C++ standards,
3115 which is controlled by the separate C/C++ dialect option flags.  When
3116 this option is used with the Objective-C or Objective-C++ compiler,
3117 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3118 This is useful if you need to make sure that your Objective-C code can
3119 be compiled with older versions of GCC@.
3120
3121 @item -freplace-objc-classes
3122 @opindex freplace-objc-classes
3123 Emit a special marker instructing @command{ld(1)} not to statically link in
3124 the resulting object file, and allow @command{dyld(1)} to load it in at
3125 run time instead.  This is used in conjunction with the Fix-and-Continue
3126 debugging mode, where the object file in question may be recompiled and
3127 dynamically reloaded in the course of program execution, without the need
3128 to restart the program itself.  Currently, Fix-and-Continue functionality
3129 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3130 and later.
3131
3132 @item -fzero-link
3133 @opindex fzero-link
3134 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3135 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3136 compile time) with static class references that get initialized at load time,
3137 which improves run-time performance.  Specifying the @option{-fzero-link} flag
3138 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3139 to be retained.  This is useful in Zero-Link debugging mode, since it allows
3140 for individual class implementations to be modified during program execution.
3141 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3142 regardless of command-line options.
3143
3144 @item -fno-local-ivars
3145 @opindex fno-local-ivars
3146 @opindex flocal-ivars
3147 By default instance variables in Objective-C can be accessed as if
3148 they were local variables from within the methods of the class they're
3149 declared in.  This can lead to shadowing between instance variables
3150 and other variables declared either locally inside a class method or
3151 globally with the same name.  Specifying the @option{-fno-local-ivars}
3152 flag disables this behavior thus avoiding variable shadowing issues.
3153
3154 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3155 @opindex fivar-visibility
3156 Set the default instance variable visibility to the specified option
3157 so that instance variables declared outside the scope of any access
3158 modifier directives default to the specified visibility.
3159
3160 @item -gen-decls
3161 @opindex gen-decls
3162 Dump interface declarations for all classes seen in the source file to a
3163 file named @file{@var{sourcename}.decl}.
3164
3165 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3166 @opindex Wassign-intercept
3167 @opindex Wno-assign-intercept
3168 Warn whenever an Objective-C assignment is being intercepted by the
3169 garbage collector.
3170
3171 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3172 @opindex Wno-protocol
3173 @opindex Wprotocol
3174 If a class is declared to implement a protocol, a warning is issued for
3175 every method in the protocol that is not implemented by the class.  The
3176 default behavior is to issue a warning for every method not explicitly
3177 implemented in the class, even if a method implementation is inherited
3178 from the superclass.  If you use the @option{-Wno-protocol} option, then
3179 methods inherited from the superclass are considered to be implemented,
3180 and no warning is issued for them.
3181
3182 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3183 @opindex Wselector
3184 @opindex Wno-selector
3185 Warn if multiple methods of different types for the same selector are
3186 found during compilation.  The check is performed on the list of methods
3187 in the final stage of compilation.  Additionally, a check is performed
3188 for each selector appearing in a @code{@@selector(@dots{})}
3189 expression, and a corresponding method for that selector has been found
3190 during compilation.  Because these checks scan the method table only at
3191 the end of compilation, these warnings are not produced if the final
3192 stage of compilation is not reached, for example because an error is
3193 found during compilation, or because the @option{-fsyntax-only} option is
3194 being used.
3195
3196 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3197 @opindex Wstrict-selector-match
3198 @opindex Wno-strict-selector-match
3199 Warn if multiple methods with differing argument and/or return types are
3200 found for a given selector when attempting to send a message using this
3201 selector to a receiver of type @code{id} or @code{Class}.  When this flag
3202 is off (which is the default behavior), the compiler omits such warnings
3203 if any differences found are confined to types that share the same size
3204 and alignment.
3205
3206 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3207 @opindex Wundeclared-selector
3208 @opindex Wno-undeclared-selector
3209 Warn if a @code{@@selector(@dots{})} expression referring to an
3210 undeclared selector is found.  A selector is considered undeclared if no
3211 method with that name has been declared before the
3212 @code{@@selector(@dots{})} expression, either explicitly in an
3213 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3214 an @code{@@implementation} section.  This option always performs its
3215 checks as soon as a @code{@@selector(@dots{})} expression is found,
3216 while @option{-Wselector} only performs its checks in the final stage of
3217 compilation.  This also enforces the coding style convention
3218 that methods and selectors must be declared before being used.
3219
3220 @item -print-objc-runtime-info
3221 @opindex print-objc-runtime-info
3222 Generate C header describing the largest structure that is passed by
3223 value, if any.
3224
3225 @end table
3226
3227 @node Diagnostic Message Formatting Options
3228 @section Options to Control Diagnostic Messages Formatting
3229 @cindex options to control diagnostics formatting
3230 @cindex diagnostic messages
3231 @cindex message formatting
3232
3233 Traditionally, diagnostic messages have been formatted irrespective of
3234 the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3235 options described below
3236 to control the formatting algorithm for diagnostic messages, 
3237 e.g.@: how many characters per line, how often source location
3238 information should be reported.  Note that some language front ends may not
3239 honor these options.
3240
3241 @table @gcctabopt
3242 @item -fmessage-length=@var{n}
3243 @opindex fmessage-length
3244 Try to format error messages so that they fit on lines of about
3245 @var{n} characters.  If @var{n} is zero, then no line-wrapping is
3246 done; each error message appears on a single line.  This is the
3247 default for all front ends.
3248
3249 @item -fdiagnostics-show-location=once
3250 @opindex fdiagnostics-show-location
3251 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3252 reporter to emit source location information @emph{once}; that is, in
3253 case the message is too long to fit on a single physical line and has to
3254 be wrapped, the source location won't be emitted (as prefix) again,
3255 over and over, in subsequent continuation lines.  This is the default
3256 behavior.
3257
3258 @item -fdiagnostics-show-location=every-line
3259 Only meaningful in line-wrapping mode.  Instructs the diagnostic
3260 messages reporter to emit the same source location information (as
3261 prefix) for physical lines that result from the process of breaking
3262 a message which is too long to fit on a single line.
3263
3264 @item -fdiagnostics-color[=@var{WHEN}]
3265 @itemx -fno-diagnostics-color
3266 @opindex fdiagnostics-color
3267 @cindex highlight, color, colour
3268 @vindex GCC_COLORS @r{environment variable}
3269 Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3270 or @samp{auto}.  The default depends on how the compiler has been configured,
3271 it can be any of the above @var{WHEN} options or also @samp{never}
3272 if @env{GCC_COLORS} environment variable isn't present in the environment,
3273 and @samp{auto} otherwise.
3274 @samp{auto} means to use color only when the standard error is a terminal.
3275 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3276 aliases for @option{-fdiagnostics-color=always} and
3277 @option{-fdiagnostics-color=never}, respectively.
3278
3279 The colors are defined by the environment variable @env{GCC_COLORS}.
3280 Its value is a colon-separated list of capabilities and Select Graphic
3281 Rendition (SGR) substrings. SGR commands are interpreted by the
3282 terminal or terminal emulator.  (See the section in the documentation
3283 of your text terminal for permitted values and their meanings as
3284 character attributes.)  These substring values are integers in decimal
3285 representation and can be concatenated with semicolons.
3286 Common values to concatenate include
3287 @samp{1} for bold,
3288 @samp{4} for underline,
3289 @samp{5} for blink,
3290 @samp{7} for inverse,
3291 @samp{39} for default foreground color,
3292 @samp{30} to @samp{37} for foreground colors,
3293 @samp{90} to @samp{97} for 16-color mode foreground colors,
3294 @samp{38;5;0} to @samp{38;5;255}
3295 for 88-color and 256-color modes foreground colors,
3296 @samp{49} for default background color,
3297 @samp{40} to @samp{47} for background colors,
3298 @samp{100} to @samp{107} for 16-color mode background colors,
3299 and @samp{48;5;0} to @samp{48;5;255}
3300 for 88-color and 256-color modes background colors.
3301
3302 The default @env{GCC_COLORS} is
3303 @smallexample
3304 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3305 @end smallexample
3306 @noindent
3307 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3308 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3309 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3310 string disables colors.
3311 Supported capabilities are as follows.
3312
3313 @table @code
3314 @item error=
3315 @vindex error GCC_COLORS @r{capability}
3316 SGR substring for error: markers.
3317
3318 @item warning=
3319 @vindex warning GCC_COLORS @r{capability}
3320 SGR substring for warning: markers.
3321
3322 @item note=
3323 @vindex note GCC_COLORS @r{capability}
3324 SGR substring for note: markers.
3325
3326 @item caret=
3327 @vindex caret GCC_COLORS @r{capability}
3328 SGR substring for caret line.
3329
3330 @item locus=
3331 @vindex locus GCC_COLORS @r{capability}
3332 SGR substring for location information, @samp{file:line} or
3333 @samp{file:line:column} etc.
3334
3335 @item quote=
3336 @vindex quote GCC_COLORS @r{capability}
3337 SGR substring for information printed within quotes.
3338 @end table
3339
3340 @item -fno-diagnostics-show-option
3341 @opindex fno-diagnostics-show-option
3342 @opindex fdiagnostics-show-option
3343 By default, each diagnostic emitted includes text indicating the
3344 command-line option that directly controls the diagnostic (if such an
3345 option is known to the diagnostic machinery).  Specifying the
3346 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3347
3348 @item -fno-diagnostics-show-caret
3349 @opindex fno-diagnostics-show-caret
3350 @opindex fdiagnostics-show-caret
3351 By default, each diagnostic emitted includes the original source line
3352 and a caret '^' indicating the column.  This option suppresses this
3353 information.  The source line is truncated to @var{n} characters, if
3354 the @option{-fmessage-length=n} option is given.  When the output is done
3355 to the terminal, the width is limited to the width given by the
3356 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3357
3358 @end table
3359
3360 @node Warning Options
3361 @section Options to Request or Suppress Warnings
3362 @cindex options to control warnings
3363 @cindex warning messages
3364 @cindex messages, warning
3365 @cindex suppressing warnings
3366
3367 Warnings are diagnostic messages that report constructions that
3368 are not inherently erroneous but that are risky or suggest there
3369 may have been an error.
3370
3371 The following language-independent options do not enable specific
3372 warnings but control the kinds of diagnostics produced by GCC@.
3373
3374 @table @gcctabopt
3375 @cindex syntax checking
3376 @item -fsyntax-only
3377 @opindex fsyntax-only
3378 Check the code for syntax errors, but don't do anything beyond that.
3379
3380 @item -fmax-errors=@var{n}
3381 @opindex fmax-errors
3382 Limits the maximum number of error messages to @var{n}, at which point
3383 GCC bails out rather than attempting to continue processing the source
3384 code.  If @var{n} is 0 (the default), there is no limit on the number
3385 of error messages produced.  If @option{-Wfatal-errors} is also
3386 specified, then @option{-Wfatal-errors} takes precedence over this
3387 option.
3388
3389 @item -w
3390 @opindex w
3391 Inhibit all warning messages.
3392
3393 @item -Werror
3394 @opindex Werror
3395 @opindex Wno-error
3396 Make all warnings into errors.
3397
3398 @item -Werror=
3399 @opindex Werror=
3400 @opindex Wno-error=
3401 Make the specified warning into an error.  The specifier for a warning
3402 is appended; for example @option{-Werror=switch} turns the warnings
3403 controlled by @option{-Wswitch} into errors.  This switch takes a
3404 negative form, to be used to negate @option{-Werror} for specific
3405 warnings; for example @option{-Wno-error=switch} makes
3406 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3407 is in effect.
3408
3409 The warning message for each controllable warning includes the
3410 option that controls the warning.  That option can then be used with
3411 @option{-Werror=} and @option{-Wno-error=} as described above.
3412 (Printing of the option in the warning message can be disabled using the
3413 @option{-fno-diagnostics-show-option} flag.)
3414
3415 Note that specifying @option{-Werror=}@var{foo} automatically implies
3416 @option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3417 imply anything.
3418
3419 @item -Wfatal-errors
3420 @opindex Wfatal-errors
3421 @opindex Wno-fatal-errors
3422 This option causes the compiler to abort compilation on the first error
3423 occurred rather than trying to keep going and printing further error
3424 messages.
3425
3426 @end table
3427
3428 You can request many specific warnings with options beginning with
3429 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3430 implicit declarations.  Each of these specific warning options also
3431 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3432 example, @option{-Wno-implicit}.  This manual lists only one of the
3433 two forms, whichever is not the default.  For further
3434 language-specific options also refer to @ref{C++ Dialect Options} and
3435 @ref{Objective-C and Objective-C++ Dialect Options}.
3436
3437 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3438 options, such as @option{-Wunused}, which may turn on further options,
3439 such as @option{-Wunused-value}. The combined effect of positive and
3440 negative forms is that more specific options have priority over less
3441 specific ones, independently of their position in the command-line. For
3442 options of the same specificity, the last one takes effect. Options
3443 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3444 as if they appeared at the end of the command-line.
3445
3446 When an unrecognized warning option is requested (e.g.,
3447 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3448 that the option is not recognized.  However, if the @option{-Wno-} form
3449 is used, the behavior is slightly different: no diagnostic is
3450 produced for @option{-Wno-unknown-warning} unless other diagnostics
3451 are being produced.  This allows the use of new @option{-Wno-} options
3452 with old compilers, but if something goes wrong, the compiler
3453 warns that an unrecognized option is present.
3454
3455 @table @gcctabopt
3456 @item -Wpedantic
3457 @itemx -pedantic
3458 @opindex pedantic
3459 @opindex Wpedantic
3460 Issue all the warnings demanded by strict ISO C and ISO C++;
3461 reject all programs that use forbidden extensions, and some other
3462 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3463 version of the ISO C standard specified by any @option{-std} option used.
3464
3465 Valid ISO C and ISO C++ programs should compile properly with or without
3466 this option (though a rare few require @option{-ansi} or a
3467 @option{-std} option specifying the required version of ISO C)@.  However,
3468 without this option, certain GNU extensions and traditional C and C++
3469 features are supported as well.  With this option, they are rejected.
3470
3471 @option{-Wpedantic} does not cause warning messages for use of the
3472 alternate keywords whose names begin and end with @samp{__}.  Pedantic
3473 warnings are also disabled in the expression that follows
3474 @code{__extension__}.  However, only system header files should use
3475 these escape routes; application programs should avoid them.
3476 @xref{Alternate Keywords}.
3477
3478 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3479 C conformance.  They soon find that it does not do quite what they want:
3480 it finds some non-ISO practices, but not all---only those for which
3481 ISO C @emph{requires} a diagnostic, and some others for which
3482 diagnostics have been added.
3483
3484 A feature to report any failure to conform to ISO C might be useful in
3485 some instances, but would require considerable additional work and would
3486 be quite different from @option{-Wpedantic}.  We don't have plans to
3487 support such a feature in the near future.
3488
3489 Where the standard specified with @option{-std} represents a GNU
3490 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3491 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3492 extended dialect is based.  Warnings from @option{-Wpedantic} are given
3493 where they are required by the base standard.  (It does not make sense
3494 for such warnings to be given only for features not in the specified GNU
3495 C dialect, since by definition the GNU dialects of C include all
3496 features the compiler supports with the given option, and there would be
3497 nothing to warn about.)
3498
3499 @item -pedantic-errors
3500 @opindex pedantic-errors
3501 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3502 requires a diagnostic, in some cases where there is undefined behavior
3503 at compile-time and in some other cases that do not prevent compilation
3504 of programs that are valid according to the standard. This is not
3505 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3506 by this option and not enabled by the latter and vice versa.
3507
3508 @item -Wall
3509 @opindex Wall
3510 @opindex Wno-all
3511 This enables all the warnings about constructions that some users
3512 consider questionable, and that are easy to avoid (or modify to
3513 prevent the warning), even in conjunction with macros.  This also
3514 enables some language-specific warnings described in @ref{C++ Dialect
3515 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3516
3517 @option{-Wall} turns on the following warning flags:
3518
3519 @gccoptlist{-Waddress   @gol
3520 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3521 -Wc++11-compat  -Wc++14-compat@gol
3522 -Wchar-subscripts  @gol
3523 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3524 -Wimplicit-int @r{(C and Objective-C only)} @gol
3525 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3526 -Wbool-compare  @gol
3527 -Wduplicated-cond  @gol
3528 -Wcomment  @gol
3529 -Wformat   @gol
3530 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3531 -Wmaybe-uninitialized @gol
3532 -Wmissing-braces @r{(only for C/ObjC)} @gol
3533 -Wnonnull  @gol
3534 -Wopenmp-simd @gol
3535 -Wparentheses  @gol
3536 -Wpointer-sign  @gol
3537 -Wreorder   @gol
3538 -Wreturn-type  @gol
3539 -Wsequence-point  @gol
3540 -Wsign-compare @r{(only in C++)}  @gol
3541 -Wstrict-aliasing  @gol
3542 -Wstrict-overflow=1  @gol
3543 -Wswitch  @gol
3544 -Wtautological-compare  @gol
3545 -Wtrigraphs  @gol
3546 -Wuninitialized  @gol
3547 -Wunknown-pragmas  @gol
3548 -Wunused-function  @gol
3549 -Wunused-label     @gol
3550 -Wunused-value     @gol
3551 -Wunused-variable  @gol
3552 -Wvolatile-register-var @gol
3553 }
3554
3555 Note that some warning flags are not implied by @option{-Wall}.  Some of
3556 them warn about constructions that users generally do not consider
3557 questionable, but which occasionally you might wish to check for;
3558 others warn about constructions that are necessary or hard to avoid in
3559 some cases, and there is no simple way to modify the code to suppress
3560 the warning. Some of them are enabled by @option{-Wextra} but many of
3561 them must be enabled individually.
3562
3563 @item -Wextra
3564 @opindex W
3565 @opindex Wextra
3566 @opindex Wno-extra
3567 This enables some extra warning flags that are not enabled by
3568 @option{-Wall}. (This option used to be called @option{-W}.  The older
3569 name is still supported, but the newer name is more descriptive.)
3570
3571 @gccoptlist{-Wclobbered  @gol
3572 -Wempty-body  @gol
3573 -Wignored-qualifiers @gol
3574 -Wmissing-field-initializers  @gol
3575 -Wmissing-parameter-type @r{(C only)}  @gol
3576 -Wold-style-declaration @r{(C only)}  @gol
3577 -Woverride-init  @gol
3578 -Wsign-compare  @gol
3579 -Wtype-limits  @gol
3580 -Wuninitialized  @gol
3581 -Wshift-negative-value  @gol
3582 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3583 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
3584 }
3585
3586 The option @option{-Wextra} also prints warning messages for the
3587 following cases:
3588
3589 @itemize @bullet
3590
3591 @item
3592 A pointer is compared against integer zero with @code{<}, @code{<=},
3593 @code{>}, or @code{>=}.
3594
3595 @item
3596 (C++ only) An enumerator and a non-enumerator both appear in a
3597 conditional expression.
3598
3599 @item
3600 (C++ only) Ambiguous virtual bases.
3601
3602 @item
3603 (C++ only) Subscripting an array that has been declared @code{register}.
3604
3605 @item
3606 (C++ only) Taking the address of a variable that has been declared
3607 @code{register}.
3608
3609 @item
3610 (C++ only) A base class is not initialized in a derived class's copy
3611 constructor.
3612
3613 @end itemize
3614
3615 @item -Wchar-subscripts
3616 @opindex Wchar-subscripts
3617 @opindex Wno-char-subscripts
3618 Warn if an array subscript has type @code{char}.  This is a common cause
3619 of error, as programmers often forget that this type is signed on some
3620 machines.
3621 This warning is enabled by @option{-Wall}.
3622
3623 @item -Wcomment
3624 @opindex Wcomment
3625 @opindex Wno-comment
3626 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3627 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3628 This warning is enabled by @option{-Wall}.
3629
3630 @item -Wno-coverage-mismatch
3631 @opindex Wno-coverage-mismatch
3632 Warn if feedback profiles do not match when using the
3633 @option{-fprofile-use} option.
3634 If a source file is changed between compiling with @option{-fprofile-gen} and
3635 with @option{-fprofile-use}, the files with the profile feedback can fail
3636 to match the source file and GCC cannot use the profile feedback
3637 information.  By default, this warning is enabled and is treated as an
3638 error.  @option{-Wno-coverage-mismatch} can be used to disable the
3639 warning or @option{-Wno-error=coverage-mismatch} can be used to
3640 disable the error.  Disabling the error for this warning can result in
3641 poorly optimized code and is useful only in the
3642 case of very minor changes such as bug fixes to an existing code-base.
3643 Completely disabling the warning is not recommended.
3644
3645 @item -Wno-cpp
3646 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3647
3648 Suppress warning messages emitted by @code{#warning} directives.
3649
3650 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3651 @opindex Wdouble-promotion
3652 @opindex Wno-double-promotion
3653 Give a warning when a value of type @code{float} is implicitly
3654 promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
3655 floating-point unit implement @code{float} in hardware, but emulate
3656 @code{double} in software.  On such a machine, doing computations
3657 using @code{double} values is much more expensive because of the
3658 overhead required for software emulation.
3659
3660 It is easy to accidentally do computations with @code{double} because
3661 floating-point literals are implicitly of type @code{double}.  For
3662 example, in:
3663 @smallexample
3664 @group
3665 float area(float radius)
3666 @{
3667    return 3.14159 * radius * radius;
3668 @}
3669 @end group
3670 @end smallexample
3671 the compiler performs the entire computation with @code{double}
3672 because the floating-point literal is a @code{double}.
3673
3674 @item -Wformat
3675 @itemx -Wformat=@var{n}
3676 @opindex Wformat
3677 @opindex Wno-format
3678 @opindex ffreestanding
3679 @opindex fno-builtin
3680 @opindex Wformat=
3681 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3682 the arguments supplied have types appropriate to the format string
3683 specified, and that the conversions specified in the format string make
3684 sense.  This includes standard functions, and others specified by format
3685 attributes (@pxref{Function Attributes}), in the @code{printf},
3686 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3687 not in the C standard) families (or other target-specific families).
3688 Which functions are checked without format attributes having been
3689 specified depends on the standard version selected, and such checks of
3690 functions without the attribute specified are disabled by
3691 @option{-ffreestanding} or @option{-fno-builtin}.
3692
3693 The formats are checked against the format features supported by GNU
3694 libc version 2.2.  These include all ISO C90 and C99 features, as well
3695 as features from the Single Unix Specification and some BSD and GNU
3696 extensions.  Other library implementations may not support all these
3697 features; GCC does not support warning about features that go beyond a
3698 particular library's limitations.  However, if @option{-Wpedantic} is used
3699 with @option{-Wformat}, warnings are given about format features not
3700 in the selected standard version (but not for @code{strfmon} formats,
3701 since those are not in any version of the C standard).  @xref{C Dialect
3702 Options,,Options Controlling C Dialect}.
3703
3704 @table @gcctabopt
3705 @item -Wformat=1
3706 @itemx -Wformat
3707 @opindex Wformat
3708 @opindex Wformat=1
3709 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3710 @option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
3711 @option{-Wformat} also checks for null format arguments for several
3712 functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
3713 aspects of this level of format checking can be disabled by the
3714 options: @option{-Wno-format-contains-nul},
3715 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3716 @option{-Wformat} is enabled by @option{-Wall}.
3717
3718 @item -Wno-format-contains-nul
3719 @opindex Wno-format-contains-nul
3720 @opindex Wformat-contains-nul
3721 If @option{-Wformat} is specified, do not warn about format strings that
3722 contain NUL bytes.
3723
3724 @item -Wno-format-extra-args
3725 @opindex Wno-format-extra-args
3726 @opindex Wformat-extra-args
3727 If @option{-Wformat} is specified, do not warn about excess arguments to a
3728 @code{printf} or @code{scanf} format function.  The C standard specifies
3729 that such arguments are ignored.
3730
3731 Where the unused arguments lie between used arguments that are
3732 specified with @samp{$} operand number specifications, normally
3733 warnings are still given, since the implementation could not know what
3734 type to pass to @code{va_arg} to skip the unused arguments.  However,
3735 in the case of @code{scanf} formats, this option suppresses the
3736 warning if the unused arguments are all pointers, since the Single
3737 Unix Specification says that such unused arguments are allowed.
3738
3739 @item -Wno-format-zero-length
3740 @opindex Wno-format-zero-length
3741 @opindex Wformat-zero-length
3742 If @option{-Wformat} is specified, do not warn about zero-length formats.
3743 The C standard specifies that zero-length formats are allowed.
3744
3745
3746 @item -Wformat=2
3747 @opindex Wformat=2
3748 Enable @option{-Wformat} plus additional format checks.  Currently
3749 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3750 -Wformat-y2k}.
3751
3752 @item -Wformat-nonliteral
3753 @opindex Wformat-nonliteral
3754 @opindex Wno-format-nonliteral
3755 If @option{-Wformat} is specified, also warn if the format string is not a
3756 string literal and so cannot be checked, unless the format function
3757 takes its format arguments as a @code{va_list}.
3758
3759 @item -Wformat-security
3760 @opindex Wformat-security
3761 @opindex Wno-format-security
3762 If @option{-Wformat} is specified, also warn about uses of format
3763 functions that represent possible security problems.  At present, this
3764 warns about calls to @code{printf} and @code{scanf} functions where the
3765 format string is not a string literal and there are no format arguments,
3766 as in @code{printf (foo);}.  This may be a security hole if the format
3767 string came from untrusted input and contains @samp{%n}.  (This is
3768 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3769 in future warnings may be added to @option{-Wformat-security} that are not
3770 included in @option{-Wformat-nonliteral}.)
3771
3772 @item -Wformat-signedness
3773 @opindex Wformat-signedness
3774 @opindex Wno-format-signedness
3775 If @option{-Wformat} is specified, also warn if the format string
3776 requires an unsigned argument and the argument is signed and vice versa.
3777
3778 @item -Wformat-y2k
3779 @opindex Wformat-y2k
3780 @opindex Wno-format-y2k
3781 If @option{-Wformat} is specified, also warn about @code{strftime}
3782 formats that may yield only a two-digit year.
3783 @end table
3784
3785 @item -Wnonnull
3786 @opindex Wnonnull
3787 @opindex Wno-nonnull
3788 Warn about passing a null pointer for arguments marked as
3789 requiring a non-null value by the @code{nonnull} function attribute.
3790
3791 Also warns when comparing an argument marked with the @code{nonnull}
3792 function attribute against null inside the function.
3793
3794 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
3795 can be disabled with the @option{-Wno-nonnull} option.
3796
3797 @item -Wnull-dereference
3798 @opindex Wnull-dereference
3799 @opindex Wno-null-dereference
3800 Warn if the compiler detects paths that trigger erroneous or
3801 undefined behavior due to dereferencing a null pointer.  This option
3802 is only active when @option{-fdelete-null-pointer-checks} is active,
3803 which is enabled by optimizations in most targets.  The precision of
3804 the warnings depends on the optimization options used.
3805
3806 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3807 @opindex Winit-self
3808 @opindex Wno-init-self
3809 Warn about uninitialized variables that are initialized with themselves.
3810 Note this option can only be used with the @option{-Wuninitialized} option.
3811
3812 For example, GCC warns about @code{i} being uninitialized in the
3813 following snippet only when @option{-Winit-self} has been specified:
3814 @smallexample
3815 @group
3816 int f()
3817 @{
3818   int i = i;
3819   return i;
3820 @}
3821 @end group
3822 @end smallexample
3823
3824 This warning is enabled by @option{-Wall} in C++.
3825
3826 @item -Wimplicit-int @r{(C and Objective-C only)}
3827 @opindex Wimplicit-int
3828 @opindex Wno-implicit-int
3829 Warn when a declaration does not specify a type.
3830 This warning is enabled by @option{-Wall}.
3831
3832 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3833 @opindex Wimplicit-function-declaration
3834 @opindex Wno-implicit-function-declaration
3835 Give a warning whenever a function is used before being declared. In
3836 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3837 enabled by default and it is made into an error by
3838 @option{-pedantic-errors}. This warning is also enabled by
3839 @option{-Wall}.
3840
3841 @item -Wimplicit @r{(C and Objective-C only)}
3842 @opindex Wimplicit
3843 @opindex Wno-implicit
3844 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3845 This warning is enabled by @option{-Wall}.
3846
3847 @item -Wignored-qualifiers @r{(C and C++ only)}
3848 @opindex Wignored-qualifiers
3849 @opindex Wno-ignored-qualifiers
3850 Warn if the return type of a function has a type qualifier
3851 such as @code{const}.  For ISO C such a type qualifier has no effect,
3852 since the value returned by a function is not an lvalue.
3853 For C++, the warning is only emitted for scalar types or @code{void}.
3854 ISO C prohibits qualified @code{void} return types on function
3855 definitions, so such return types always receive a warning
3856 even without this option.
3857
3858 This warning is also enabled by @option{-Wextra}.
3859
3860 @item -Wmain
3861 @opindex Wmain
3862 @opindex Wno-main
3863 Warn if the type of @code{main} is suspicious.  @code{main} should be
3864 a function with external linkage, returning int, taking either zero
3865 arguments, two, or three arguments of appropriate types.  This warning
3866 is enabled by default in C++ and is enabled by either @option{-Wall}
3867 or @option{-Wpedantic}.
3868
3869 @item -Wmisleading-indentation @r{(C and C++ only)}
3870 @opindex Wmisleading-indentation
3871 @opindex Wno-misleading-indentation
3872 Warn when the indentation of the code does not reflect the block structure.
3873 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3874 @code{for} clauses with a guarded statement that does not use braces,
3875 followed by an unguarded statement with the same indentation.
3876
3877 This warning is disabled by default.
3878
3879 In the following example, the call to ``bar'' is misleadingly indented as
3880 if it were guarded by the ``if'' conditional.
3881
3882 @smallexample
3883   if (some_condition ())
3884     foo ();
3885     bar ();  /* Gotcha: this is not guarded by the "if".  */
3886 @end smallexample
3887
3888 In the case of mixed tabs and spaces, the warning uses the
3889 @option{-ftabstop=} option to determine if the statements line up
3890 (defaulting to 8).
3891
3892 The warning is not issued for code involving multiline preprocessor logic
3893 such as the following example.
3894
3895 @smallexample
3896   if (flagA)
3897     foo (0);
3898 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3899   if (flagB)
3900 #endif
3901     foo (1);
3902 @end smallexample
3903
3904 The warning is not issued after a @code{#line} directive, since this
3905 typically indicates autogenerated code, and no assumptions can be made
3906 about the layout of the file that the directive references.
3907
3908 @item -Wmissing-braces
3909 @opindex Wmissing-braces
3910 @opindex Wno-missing-braces
3911 Warn if an aggregate or union initializer is not fully bracketed.  In
3912 the following example, the initializer for @code{a} is not fully
3913 bracketed, but that for @code{b} is fully bracketed.  This warning is
3914 enabled by @option{-Wall} in C.
3915
3916 @smallexample
3917 int a[2][2] = @{ 0, 1, 2, 3 @};
3918 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3919 @end smallexample
3920
3921 This warning is enabled by @option{-Wall}.
3922
3923 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3924 @opindex Wmissing-include-dirs
3925 @opindex Wno-missing-include-dirs
3926 Warn if a user-supplied include directory does not exist.
3927
3928 @item -Wparentheses
3929 @opindex Wparentheses
3930 @opindex Wno-parentheses
3931 Warn if parentheses are omitted in certain contexts, such
3932 as when there is an assignment in a context where a truth value
3933 is expected, or when operators are nested whose precedence people
3934 often get confused about.
3935
3936 Also warn if a comparison like @code{x<=y<=z} appears; this is
3937 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3938 interpretation from that of ordinary mathematical notation.
3939
3940 Also warn about constructions where there may be confusion to which
3941 @code{if} statement an @code{else} branch belongs.  Here is an example of
3942 such a case:
3943
3944 @smallexample
3945 @group
3946 @{
3947   if (a)
3948     if (b)
3949       foo ();
3950   else
3951     bar ();
3952 @}
3953 @end group
3954 @end smallexample
3955
3956 In C/C++, every @code{else} branch belongs to the innermost possible
3957 @code{if} statement, which in this example is @code{if (b)}.  This is
3958 often not what the programmer expected, as illustrated in the above
3959 example by indentation the programmer chose.  When there is the
3960 potential for this confusion, GCC issues a warning when this flag
3961 is specified.  To eliminate the warning, add explicit braces around
3962 the innermost @code{if} statement so there is no way the @code{else}
3963 can belong to the enclosing @code{if}.  The resulting code
3964 looks like this:
3965
3966 @smallexample
3967 @group
3968 @{
3969   if (a)
3970     @{
3971       if (b)
3972         foo ();
3973       else
3974         bar ();
3975     @}
3976 @}
3977 @end group
3978 @end smallexample
3979
3980 Also warn for dangerous uses of the GNU extension to
3981 @code{?:} with omitted middle operand. When the condition
3982 in the @code{?}: operator is a boolean expression, the omitted value is
3983 always 1.  Often programmers expect it to be a value computed
3984 inside the conditional expression instead.
3985
3986 This warning is enabled by @option{-Wall}.
3987
3988 @item -Wsequence-point
3989 @opindex Wsequence-point
3990 @opindex Wno-sequence-point
3991 Warn about code that may have undefined semantics because of violations
3992 of sequence point rules in the C and C++ standards.
3993
3994 The C and C++ standards define the order in which expressions in a C/C++
3995 program are evaluated in terms of @dfn{sequence points}, which represent
3996 a partial ordering between the execution of parts of the program: those
3997 executed before the sequence point, and those executed after it.  These
3998 occur after the evaluation of a full expression (one which is not part
3999 of a larger expression), after the evaluation of the first operand of a
4000 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4001 function is called (but after the evaluation of its arguments and the
4002 expression denoting the called function), and in certain other places.
4003 Other than as expressed by the sequence point rules, the order of
4004 evaluation of subexpressions of an expression is not specified.  All
4005 these rules describe only a partial order rather than a total order,
4006 since, for example, if two functions are called within one expression
4007 with no sequence point between them, the order in which the functions
4008 are called is not specified.  However, the standards committee have
4009 ruled that function calls do not overlap.
4010
4011 It is not specified when between sequence points modifications to the
4012 values of objects take effect.  Programs whose behavior depends on this
4013 have undefined behavior; the C and C++ standards specify that ``Between
4014 the previous and next sequence point an object shall have its stored
4015 value modified at most once by the evaluation of an expression.
4016 Furthermore, the prior value shall be read only to determine the value
4017 to be stored.''.  If a program breaks these rules, the results on any
4018 particular implementation are entirely unpredictable.
4019
4020 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4021 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
4022 diagnosed by this option, and it may give an occasional false positive
4023 result, but in general it has been found fairly effective at detecting
4024 this sort of problem in programs.
4025
4026 The standard is worded confusingly, therefore there is some debate
4027 over the precise meaning of the sequence point rules in subtle cases.
4028 Links to discussions of the problem, including proposed formal
4029 definitions, may be found on the GCC readings page, at
4030 @uref{http://gcc.gnu.org/@/readings.html}.
4031
4032 This warning is enabled by @option{-Wall} for C and C++.
4033
4034 @item -Wno-return-local-addr
4035 @opindex Wno-return-local-addr
4036 @opindex Wreturn-local-addr
4037 Do not warn about returning a pointer (or in C++, a reference) to a
4038 variable that goes out of scope after the function returns.
4039
4040 @item -Wreturn-type
4041 @opindex Wreturn-type
4042 @opindex Wno-return-type
4043 Warn whenever a function is defined with a return type that defaults
4044 to @code{int}.  Also warn about any @code{return} statement with no
4045 return value in a function whose return type is not @code{void}
4046 (falling off the end of the function body is considered returning
4047 without a value), and about a @code{return} statement with an
4048 expression in a function whose return type is @code{void}.
4049
4050 For C++, a function without return type always produces a diagnostic
4051 message, even when @option{-Wno-return-type} is specified.  The only
4052 exceptions are @code{main} and functions defined in system headers.
4053
4054 This warning is enabled by @option{-Wall}.
4055
4056 @item -Wshift-count-negative
4057 @opindex Wshift-count-negative
4058 @opindex Wno-shift-count-negative
4059 Warn if shift count is negative. This warning is enabled by default.
4060
4061 @item -Wshift-count-overflow
4062 @opindex Wshift-count-overflow
4063 @opindex Wno-shift-count-overflow
4064 Warn if shift count >= width of type. This warning is enabled by default.
4065
4066 @item -Wshift-negative-value
4067 @opindex Wshift-negative-value
4068 @opindex Wno-shift-negative-value
4069 Warn if left shifting a negative value.  This warning is enabled by
4070 @option{-Wextra} in C99 and C++11 modes (and newer).
4071
4072 @item -Wshift-overflow
4073 @itemx -Wshift-overflow=@var{n}
4074 @opindex Wshift-overflow
4075 @opindex Wno-shift-overflow
4076 Warn about left shift overflows.  This warning is enabled by
4077 default in C99 and C++11 modes (and newer).
4078
4079 @table @gcctabopt
4080 @item -Wshift-overflow=1
4081 This is the warning level of @option{-Wshift-overflow} and is enabled
4082 by default in C99 and C++11 modes (and newer).  This warning level does
4083 not warn about left-shifting 1 into the sign bit.  (However, in C, such
4084 an overflow is still rejected in contexts where an integer constant expression
4085 is required.)
4086
4087 @item -Wshift-overflow=2
4088 This warning level also warns about left-shifting 1 into the sign bit,
4089 unless C++14 mode is active.
4090 @end table
4091
4092 @item -Wswitch
4093 @opindex Wswitch
4094 @opindex Wno-switch
4095 Warn whenever a @code{switch} statement has an index of enumerated type
4096 and lacks a @code{case} for one or more of the named codes of that
4097 enumeration.  (The presence of a @code{default} label prevents this
4098 warning.)  @code{case} labels outside the enumeration range also
4099 provoke warnings when this option is used (even if there is a
4100 @code{default} label).
4101 This warning is enabled by @option{-Wall}.
4102
4103 @item -Wswitch-default
4104 @opindex Wswitch-default
4105 @opindex Wno-switch-default
4106 Warn whenever a @code{switch} statement does not have a @code{default}
4107 case.
4108
4109 @item -Wswitch-enum
4110 @opindex Wswitch-enum
4111 @opindex Wno-switch-enum
4112 Warn whenever a @code{switch} statement has an index of enumerated type
4113 and lacks a @code{case} for one or more of the named codes of that
4114 enumeration.  @code{case} labels outside the enumeration range also
4115 provoke warnings when this option is used.  The only difference
4116 between @option{-Wswitch} and this option is that this option gives a
4117 warning about an omitted enumeration code even if there is a
4118 @code{default} label.
4119
4120 @item -Wswitch-bool
4121 @opindex Wswitch-bool
4122 @opindex Wno-switch-bool
4123 Warn whenever a @code{switch} statement has an index of boolean type
4124 and the case values are outside the range of a boolean type.
4125 It is possible to suppress this warning by casting the controlling
4126 expression to a type other than @code{bool}.  For example:
4127 @smallexample
4128 @group
4129 switch ((int) (a == 4))
4130   @{
4131   @dots{}
4132   @}
4133 @end group
4134 @end smallexample
4135 This warning is enabled by default for C and C++ programs.
4136
4137 @item -Wsync-nand @r{(C and C++ only)}
4138 @opindex Wsync-nand
4139 @opindex Wno-sync-nand
4140 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4141 built-in functions are used.  These functions changed semantics in GCC 4.4.
4142
4143 @item -Wtrigraphs
4144 @opindex Wtrigraphs
4145 @opindex Wno-trigraphs
4146 Warn if any trigraphs are encountered that might change the meaning of
4147 the program (trigraphs within comments are not warned about).
4148 This warning is enabled by @option{-Wall}.
4149
4150 @item -Wunused-but-set-parameter
4151 @opindex Wunused-but-set-parameter
4152 @opindex Wno-unused-but-set-parameter
4153 Warn whenever a function parameter is assigned to, but otherwise unused
4154 (aside from its declaration).
4155
4156 To suppress this warning use the @code{unused} attribute
4157 (@pxref{Variable Attributes}).
4158
4159 This warning is also enabled by @option{-Wunused} together with
4160 @option{-Wextra}.
4161
4162 @item -Wunused-but-set-variable
4163 @opindex Wunused-but-set-variable
4164 @opindex Wno-unused-but-set-variable
4165 Warn whenever a local variable is assigned to, but otherwise unused
4166 (aside from its declaration).
4167 This warning is enabled by @option{-Wall}.
4168
4169 To suppress this warning use the @code{unused} attribute
4170 (@pxref{Variable Attributes}).
4171
4172 This warning is also enabled by @option{-Wunused}, which is enabled
4173 by @option{-Wall}.
4174
4175 @item -Wunused-function
4176 @opindex Wunused-function
4177 @opindex Wno-unused-function
4178 Warn whenever a static function is declared but not defined or a
4179 non-inline static function is unused.
4180 This warning is enabled by @option{-Wall}.
4181
4182 @item -Wunused-label
4183 @opindex Wunused-label
4184 @opindex Wno-unused-label
4185 Warn whenever a label is declared but not used.
4186 This warning is enabled by @option{-Wall}.
4187
4188 To suppress this warning use the @code{unused} attribute
4189 (@pxref{Variable Attributes}).
4190
4191 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4192 @opindex Wunused-local-typedefs
4193 Warn when a typedef locally defined in a function is not used.
4194 This warning is enabled by @option{-Wall}.
4195
4196 @item -Wunused-parameter
4197 @opindex Wunused-parameter
4198 @opindex Wno-unused-parameter
4199 Warn whenever a function parameter is unused aside from its declaration.
4200
4201 To suppress this warning use the @code{unused} attribute
4202 (@pxref{Variable Attributes}).
4203
4204 @item -Wno-unused-result
4205 @opindex Wunused-result
4206 @opindex Wno-unused-result
4207 Do not warn if a caller of a function marked with attribute
4208 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4209 its return value. The default is @option{-Wunused-result}.
4210
4211 @item -Wunused-variable
4212 @opindex Wunused-variable
4213 @opindex Wno-unused-variable
4214 Warn whenever a local or static variable is unused aside from its
4215 declaration. This option implies @option{-Wunused-const-variable} for C,
4216 but not for C++. This warning is enabled by @option{-Wall}.
4217
4218 To suppress this warning use the @code{unused} attribute
4219 (@pxref{Variable Attributes}).
4220
4221 @item -Wunused-const-variable
4222 @opindex Wunused-const-variable
4223 @opindex Wno-unused-const-variable
4224 Warn whenever a constant static variable is unused aside from its declaration.
4225 This warning is enabled by @option{-Wunused-variable} for C, but not for C++.
4226 In C++ this is normally not an error since const variables take the place of
4227 @code{#define}s in C++.
4228
4229 To suppress this warning use the @code{unused} attribute
4230 (@pxref{Variable Attributes}).
4231
4232 @item -Wunused-value
4233 @opindex Wunused-value
4234 @opindex Wno-unused-value
4235 Warn whenever a statement computes a result that is explicitly not
4236 used. To suppress this warning cast the unused expression to
4237 @code{void}. This includes an expression-statement or the left-hand
4238 side of a comma expression that contains no side effects. For example,
4239 an expression such as @code{x[i,j]} causes a warning, while
4240 @code{x[(void)i,j]} does not.
4241
4242 This warning is enabled by @option{-Wall}.
4243
4244 @item -Wunused
4245 @opindex Wunused
4246 @opindex Wno-unused
4247 All the above @option{-Wunused} options combined.
4248
4249 In order to get a warning about an unused function parameter, you must
4250 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4251 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4252
4253 @item -Wuninitialized
4254 @opindex Wuninitialized
4255 @opindex Wno-uninitialized
4256 Warn if an automatic variable is used without first being initialized
4257 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4258 warn if a non-static reference or non-static @code{const} member
4259 appears in a class without constructors.
4260
4261 If you want to warn about code that uses the uninitialized value of the
4262 variable in its own initializer, use the @option{-Winit-self} option.
4263
4264 These warnings occur for individual uninitialized or clobbered
4265 elements of structure, union or array variables as well as for
4266 variables that are uninitialized or clobbered as a whole.  They do
4267 not occur for variables or elements declared @code{volatile}.  Because
4268 these warnings depend on optimization, the exact variables or elements
4269 for which there are warnings depends on the precise optimization
4270 options and version of GCC used.
4271
4272 Note that there may be no warning about a variable that is used only
4273 to compute a value that itself is never used, because such
4274 computations may be deleted by data flow analysis before the warnings
4275 are printed.
4276
4277 @item -Wmaybe-uninitialized
4278 @opindex Wmaybe-uninitialized
4279 @opindex Wno-maybe-uninitialized
4280 For an automatic variable, if there exists a path from the function
4281 entry to a use of the variable that is initialized, but there exist
4282 some other paths for which the variable is not initialized, the compiler
4283 emits a warning if it cannot prove the uninitialized paths are not
4284 executed at run time. These warnings are made optional because GCC is
4285 not smart enough to see all the reasons why the code might be correct
4286 in spite of appearing to have an error.  Here is one example of how
4287 this can happen:
4288
4289 @smallexample
4290 @group
4291 @{
4292   int x;
4293   switch (y)
4294     @{
4295     case 1: x = 1;
4296       break;
4297     case 2: x = 4;
4298       break;
4299     case 3: x = 5;
4300     @}
4301   foo (x);
4302 @}
4303 @end group
4304 @end smallexample
4305
4306 @noindent
4307 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4308 always initialized, but GCC doesn't know this. To suppress the
4309 warning, you need to provide a default case with assert(0) or
4310 similar code.
4311
4312 @cindex @code{longjmp} warnings
4313 This option also warns when a non-volatile automatic variable might be
4314 changed by a call to @code{longjmp}.  These warnings as well are possible
4315 only in optimizing compilation.
4316
4317 The compiler sees only the calls to @code{setjmp}.  It cannot know
4318 where @code{longjmp} will be called; in fact, a signal handler could
4319 call it at any point in the code.  As a result, you may get a warning
4320 even when there is in fact no problem because @code{longjmp} cannot
4321 in fact be called at the place that would cause a problem.
4322
4323 Some spurious warnings can be avoided if you declare all the functions
4324 you use that never return as @code{noreturn}.  @xref{Function
4325 Attributes}.
4326
4327 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4328
4329 @item -Wunknown-pragmas
4330 @opindex Wunknown-pragmas
4331 @opindex Wno-unknown-pragmas
4332 @cindex warning for unknown pragmas
4333 @cindex unknown pragmas, warning
4334 @cindex pragmas, warning of unknown
4335 Warn when a @code{#pragma} directive is encountered that is not understood by 
4336 GCC@.  If this command-line option is used, warnings are even issued
4337 for unknown pragmas in system header files.  This is not the case if
4338 the warnings are only enabled by the @option{-Wall} command-line option.
4339
4340 @item -Wno-pragmas
4341 @opindex Wno-pragmas
4342 @opindex Wpragmas
4343 Do not warn about misuses of pragmas, such as incorrect parameters,
4344 invalid syntax, or conflicts between pragmas.  See also
4345 @option{-Wunknown-pragmas}.
4346
4347 @item -Wstrict-aliasing
4348 @opindex Wstrict-aliasing
4349 @opindex Wno-strict-aliasing
4350 This option is only active when @option{-fstrict-aliasing} is active.
4351 It warns about code that might break the strict aliasing rules that the
4352 compiler is using for optimization.  The warning does not catch all
4353 cases, but does attempt to catch the more common pitfalls.  It is
4354 included in @option{-Wall}.
4355 It is equivalent to @option{-Wstrict-aliasing=3}
4356
4357 @item -Wstrict-aliasing=n
4358 @opindex Wstrict-aliasing=n
4359 This option is only active when @option{-fstrict-aliasing} is active.
4360 It warns about code that might break the strict aliasing rules that the
4361 compiler is using for optimization.
4362 Higher levels correspond to higher accuracy (fewer false positives).
4363 Higher levels also correspond to more effort, similar to the way @option{-O} 
4364 works.
4365 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4366
4367 Level 1: Most aggressive, quick, least accurate.
4368 Possibly useful when higher levels
4369 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4370 false negatives.  However, it has many false positives.
4371 Warns for all pointer conversions between possibly incompatible types,
4372 even if never dereferenced.  Runs in the front end only.
4373
4374 Level 2: Aggressive, quick, not too precise.
4375 May still have many false positives (not as many as level 1 though),
4376 and few false negatives (but possibly more than level 1).
4377 Unlike level 1, it only warns when an address is taken.  Warns about
4378 incomplete types.  Runs in the front end only.
4379
4380 Level 3 (default for @option{-Wstrict-aliasing}):
4381 Should have very few false positives and few false
4382 negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
4383 Takes care of the common pun+dereference pattern in the front end:
4384 @code{*(int*)&some_float}.
4385 If optimization is enabled, it also runs in the back end, where it deals
4386 with multiple statement cases using flow-sensitive points-to information.
4387 Only warns when the converted pointer is dereferenced.
4388 Does not warn about incomplete types.
4389
4390 @item -Wstrict-overflow
4391 @itemx -Wstrict-overflow=@var{n}
4392 @opindex Wstrict-overflow
4393 @opindex Wno-strict-overflow
4394 This option is only active when @option{-fstrict-overflow} is active.
4395 It warns about cases where the compiler optimizes based on the
4396 assumption that signed overflow does not occur.  Note that it does not
4397 warn about all cases where the code might overflow: it only warns
4398 about cases where the compiler implements some optimization.  Thus
4399 this warning depends on the optimization level.
4400
4401 An optimization that assumes that signed overflow does not occur is
4402 perfectly safe if the values of the variables involved are such that
4403 overflow never does, in fact, occur.  Therefore this warning can
4404 easily give a false positive: a warning about code that is not
4405 actually a problem.  To help focus on important issues, several
4406 warning levels are defined.  No warnings are issued for the use of
4407 undefined signed overflow when estimating how many iterations a loop
4408 requires, in particular when determining whether a loop will be
4409 executed at all.
4410
4411 @table @gcctabopt
4412 @item -Wstrict-overflow=1
4413 Warn about cases that are both questionable and easy to avoid.  For
4414 example,  with @option{-fstrict-overflow}, the compiler simplifies
4415 @code{x + 1 > x} to @code{1}.  This level of
4416 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4417 are not, and must be explicitly requested.
4418
4419 @item -Wstrict-overflow=2
4420 Also warn about other cases where a comparison is simplified to a
4421 constant.  For example: @code{abs (x) >= 0}.  This can only be
4422 simplified when @option{-fstrict-overflow} is in effect, because
4423 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4424 zero.  @option{-Wstrict-overflow} (with no level) is the same as
4425 @option{-Wstrict-overflow=2}.
4426
4427 @item -Wstrict-overflow=3
4428 Also warn about other cases where a comparison is simplified.  For
4429 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4430
4431 @item -Wstrict-overflow=4
4432 Also warn about other simplifications not covered by the above cases.
4433 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4434
4435 @item -Wstrict-overflow=5
4436 Also warn about cases where the compiler reduces the magnitude of a
4437 constant involved in a comparison.  For example: @code{x + 2 > y} is
4438 simplified to @code{x + 1 >= y}.  This is reported only at the
4439 highest warning level because this simplification applies to many
4440 comparisons, so this warning level gives a very large number of
4441 false positives.
4442 @end table
4443
4444 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4445 @opindex Wsuggest-attribute=
4446 @opindex Wno-suggest-attribute=
4447 Warn for cases where adding an attribute may be beneficial. The
4448 attributes currently supported are listed below.
4449
4450 @table @gcctabopt
4451 @item -Wsuggest-attribute=pure
4452 @itemx -Wsuggest-attribute=const
4453 @itemx -Wsuggest-attribute=noreturn
4454 @opindex Wsuggest-attribute=pure
4455 @opindex Wno-suggest-attribute=pure
4456 @opindex Wsuggest-attribute=const
4457 @opindex Wno-suggest-attribute=const
4458 @opindex Wsuggest-attribute=noreturn
4459 @opindex Wno-suggest-attribute=noreturn
4460
4461 Warn about functions that might be candidates for attributes
4462 @code{pure}, @code{const} or @code{noreturn}.  The compiler only warns for
4463 functions visible in other compilation units or (in the case of @code{pure} and
4464 @code{const}) if it cannot prove that the function returns normally. A function
4465 returns normally if it doesn't contain an infinite loop or return abnormally
4466 by throwing, calling @code{abort} or trapping.  This analysis requires option
4467 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4468 higher.  Higher optimization levels improve the accuracy of the analysis.
4469
4470 @item -Wsuggest-attribute=format
4471 @itemx -Wmissing-format-attribute
4472 @opindex Wsuggest-attribute=format
4473 @opindex Wmissing-format-attribute
4474 @opindex Wno-suggest-attribute=format
4475 @opindex Wno-missing-format-attribute
4476 @opindex Wformat
4477 @opindex Wno-format
4478
4479 Warn about function pointers that might be candidates for @code{format}
4480 attributes.  Note these are only possible candidates, not absolute ones.
4481 GCC guesses that function pointers with @code{format} attributes that
4482 are used in assignment, initialization, parameter passing or return
4483 statements should have a corresponding @code{format} attribute in the
4484 resulting type.  I.e.@: the left-hand side of the assignment or
4485 initialization, the type of the parameter variable, or the return type
4486 of the containing function respectively should also have a @code{format}
4487 attribute to avoid the warning.
4488
4489 GCC also warns about function definitions that might be
4490 candidates for @code{format} attributes.  Again, these are only
4491 possible candidates.  GCC guesses that @code{format} attributes
4492 might be appropriate for any function that calls a function like
4493 @code{vprintf} or @code{vscanf}, but this might not always be the
4494 case, and some functions for which @code{format} attributes are
4495 appropriate may not be detected.
4496 @end table
4497
4498 @item -Wsuggest-final-types
4499 @opindex Wno-suggest-final-types
4500 @opindex Wsuggest-final-types
4501 Warn about types with virtual methods where code quality would be improved
4502 if the type were declared with the C++11 @code{final} specifier, 
4503 or, if possible,
4504 declared in an anonymous namespace. This allows GCC to more aggressively
4505 devirtualize the polymorphic calls. This warning is more effective with link
4506 time optimization, where the information about the class hierarchy graph is
4507 more complete.
4508
4509 @item -Wsuggest-final-methods
4510 @opindex Wno-suggest-final-methods
4511 @opindex Wsuggest-final-methods
4512 Warn about virtual methods where code quality would be improved if the method
4513 were declared with the C++11 @code{final} specifier, 
4514 or, if possible, its type were
4515 declared in an anonymous namespace or with the @code{final} specifier.
4516 This warning is
4517 more effective with link time optimization, where the information about the
4518 class hierarchy graph is more complete. It is recommended to first consider
4519 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4520 annotations.
4521
4522 @item -Wsuggest-override
4523 Warn about overriding virtual functions that are not marked with the override
4524 keyword.
4525
4526 @item -Warray-bounds
4527 @itemx -Warray-bounds=@var{n}
4528 @opindex Wno-array-bounds
4529 @opindex Warray-bounds
4530 This option is only active when @option{-ftree-vrp} is active
4531 (default for @option{-O2} and above). It warns about subscripts to arrays
4532 that are always out of bounds. This warning is enabled by @option{-Wall}.
4533
4534 @table @gcctabopt
4535 @item -Warray-bounds=1
4536 This is the warning level of @option{-Warray-bounds} and is enabled
4537 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4538
4539 @item -Warray-bounds=2
4540 This warning level also warns about out of bounds access for
4541 arrays at the end of a struct and for arrays accessed through
4542 pointers. This warning level may give a larger number of
4543 false positives and is deactivated by default.
4544 @end table
4545
4546 @item -Wbool-compare
4547 @opindex Wno-bool-compare
4548 @opindex Wbool-compare
4549 Warn about boolean expression compared with an integer value different from
4550 @code{true}/@code{false}.  For instance, the following comparison is
4551 always false:
4552 @smallexample
4553 int n = 5;
4554 @dots{}
4555 if ((n > 1) == 2) @{ @dots{} @}
4556 @end smallexample
4557 This warning is enabled by @option{-Wall}.
4558
4559 @item -Wduplicated-cond
4560 @opindex Wno-duplicated-cond
4561 @opindex Wduplicated-cond
4562 Warn about duplicated conditions in an if-else-if chain.  For instance,
4563 warn for the following code:
4564 @smallexample
4565 if (p->q != NULL) @{ @dots{} @}
4566 else if (p->q != NULL) @{ @dots{} @}
4567 @end smallexample
4568 This warning is enabled by @option{-Wall}.
4569
4570 @item -Wframe-address
4571 @opindex Wno-frame-address
4572 @opindex Wframe-address
4573 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4574 is called with an argument greater than 0.  Such calls may return indeterminate
4575 values or crash the program.  The warning is included in @option{-Wall}.
4576
4577 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4578 @opindex Wno-discarded-qualifiers
4579 @opindex Wdiscarded-qualifiers
4580 Do not warn if type qualifiers on pointers are being discarded.
4581 Typically, the compiler warns if a @code{const char *} variable is
4582 passed to a function that takes a @code{char *} parameter.  This option
4583 can be used to suppress such a warning.
4584
4585 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4586 @opindex Wno-discarded-array-qualifiers
4587 @opindex Wdiscarded-array-qualifiers
4588 Do not warn if type qualifiers on arrays which are pointer targets
4589 are being discarded. Typically, the compiler warns if a
4590 @code{const int (*)[]} variable is passed to a function that
4591 takes a @code{int (*)[]} parameter.  This option can be used to
4592 suppress such a warning.
4593
4594 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4595 @opindex Wno-incompatible-pointer-types
4596 @opindex Wincompatible-pointer-types
4597 Do not warn when there is a conversion between pointers that have incompatible
4598 types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
4599 which warns for pointer argument passing or assignment with different
4600 signedness.
4601
4602 @item -Wno-int-conversion @r{(C and Objective-C only)}
4603 @opindex Wno-int-conversion
4604 @opindex Wint-conversion
4605 Do not warn about incompatible integer to pointer and pointer to integer
4606 conversions.  This warning is about implicit conversions; for explicit
4607 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4608 @option{-Wno-pointer-to-int-cast} may be used.
4609
4610 @item -Wno-div-by-zero
4611 @opindex Wno-div-by-zero
4612 @opindex Wdiv-by-zero
4613 Do not warn about compile-time integer division by zero.  Floating-point
4614 division by zero is not warned about, as it can be a legitimate way of
4615 obtaining infinities and NaNs.
4616
4617 @item -Wsystem-headers
4618 @opindex Wsystem-headers
4619 @opindex Wno-system-headers
4620 @cindex warnings from system headers
4621 @cindex system headers, warnings from
4622 Print warning messages for constructs found in system header files.
4623 Warnings from system headers are normally suppressed, on the assumption
4624 that they usually do not indicate real problems and would only make the
4625 compiler output harder to read.  Using this command-line option tells
4626 GCC to emit warnings from system headers as if they occurred in user
4627 code.  However, note that using @option{-Wall} in conjunction with this
4628 option does @emph{not} warn about unknown pragmas in system
4629 headers---for that, @option{-Wunknown-pragmas} must also be used.
4630
4631 @item -Wtautological-compare
4632 @opindex Wtautological-compare
4633 @opindex Wno-tautological-compare
4634 Warn if a self-comparison always evaluates to true or false.  This
4635 warning detects various mistakes such as:
4636 @smallexample
4637 int i = 1;
4638 @dots{}
4639 if (i > i) @{ @dots{} @}
4640 @end smallexample
4641 This warning is enabled by @option{-Wall}.
4642
4643 @item -Wtrampolines
4644 @opindex Wtrampolines
4645 @opindex Wno-trampolines
4646 Warn about trampolines generated for pointers to nested functions.
4647 A trampoline is a small piece of data or code that is created at run
4648 time on the stack when the address of a nested function is taken, and is
4649 used to call the nested function indirectly.  For some targets, it is
4650 made up of data only and thus requires no special treatment.  But, for
4651 most targets, it is made up of code and thus requires the stack to be
4652 made executable in order for the program to work properly.
4653
4654 @item -Wfloat-equal
4655 @opindex Wfloat-equal
4656 @opindex Wno-float-equal
4657 Warn if floating-point values are used in equality comparisons.
4658
4659 The idea behind this is that sometimes it is convenient (for the
4660 programmer) to consider floating-point values as approximations to
4661 infinitely precise real numbers.  If you are doing this, then you need
4662 to compute (by analyzing the code, or in some other way) the maximum or
4663 likely maximum error that the computation introduces, and allow for it
4664 when performing comparisons (and when producing output, but that's a
4665 different problem).  In particular, instead of testing for equality, you
4666 should check to see whether the two values have ranges that overlap; and
4667 this is done with the relational operators, so equality comparisons are
4668 probably mistaken.
4669
4670 @item -Wtraditional @r{(C and Objective-C only)}
4671 @opindex Wtraditional
4672 @opindex Wno-traditional
4673 Warn about certain constructs that behave differently in traditional and
4674 ISO C@.  Also warn about ISO C constructs that have no traditional C
4675 equivalent, and/or problematic constructs that should be avoided.
4676
4677 @itemize @bullet
4678 @item
4679 Macro parameters that appear within string literals in the macro body.
4680 In traditional C macro replacement takes place within string literals,
4681 but in ISO C it does not.
4682
4683 @item
4684 In traditional C, some preprocessor directives did not exist.
4685 Traditional preprocessors only considered a line to be a directive
4686 if the @samp{#} appeared in column 1 on the line.  Therefore
4687 @option{-Wtraditional} warns about directives that traditional C
4688 understands but ignores because the @samp{#} does not appear as the
4689 first character on the line.  It also suggests you hide directives like
4690 @code{#pragma} not understood by traditional C by indenting them.  Some
4691 traditional implementations do not recognize @code{#elif}, so this option
4692 suggests avoiding it altogether.
4693
4694 @item
4695 A function-like macro that appears without arguments.
4696
4697 @item
4698 The unary plus operator.
4699
4700 @item
4701 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4702 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
4703 constants.)  Note, these suffixes appear in macros defined in the system
4704 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4705 Use of these macros in user code might normally lead to spurious
4706 warnings, however GCC's integrated preprocessor has enough context to
4707 avoid warning in these cases.
4708
4709 @item
4710 A function declared external in one block and then used after the end of
4711 the block.
4712
4713 @item
4714 A @code{switch} statement has an operand of type @code{long}.
4715
4716 @item
4717 A non-@code{static} function declaration follows a @code{static} one.
4718 This construct is not accepted by some traditional C compilers.
4719
4720 @item
4721 The ISO type of an integer constant has a different width or
4722 signedness from its traditional type.  This warning is only issued if
4723 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
4724 typically represent bit patterns, are not warned about.
4725
4726 @item
4727 Usage of ISO string concatenation is detected.
4728
4729 @item
4730 Initialization of automatic aggregates.
4731
4732 @item
4733 Identifier conflicts with labels.  Traditional C lacks a separate
4734 namespace for labels.
4735
4736 @item
4737 Initialization of unions.  If the initializer is zero, the warning is
4738 omitted.  This is done under the assumption that the zero initializer in
4739 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4740 initializer warnings and relies on default initialization to zero in the
4741 traditional C case.
4742
4743 @item
4744 Conversions by prototypes between fixed/floating-point values and vice
4745 versa.  The absence of these prototypes when compiling with traditional
4746 C causes serious problems.  This is a subset of the possible
4747 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4748
4749 @item
4750 Use of ISO C style function definitions.  This warning intentionally is
4751 @emph{not} issued for prototype declarations or variadic functions
4752 because these ISO C features appear in your code when using
4753 libiberty's traditional C compatibility macros, @code{PARAMS} and
4754 @code{VPARAMS}.  This warning is also bypassed for nested functions
4755 because that feature is already a GCC extension and thus not relevant to
4756 traditional C compatibility.
4757 @end itemize
4758
4759 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4760 @opindex Wtraditional-conversion
4761 @opindex Wno-traditional-conversion
4762 Warn if a prototype causes a type conversion that is different from what
4763 would happen to the same argument in the absence of a prototype.  This
4764 includes conversions of fixed point to floating and vice versa, and
4765 conversions changing the width or signedness of a fixed-point argument
4766 except when the same as the default promotion.
4767
4768 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4769 @opindex Wdeclaration-after-statement
4770 @opindex Wno-declaration-after-statement
4771 Warn when a declaration is found after a statement in a block.  This
4772 construct, known from C++, was introduced with ISO C99 and is by default
4773 allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
4774
4775 @item -Wundef
4776 @opindex Wundef
4777 @opindex Wno-undef
4778 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4779
4780 @item -Wno-endif-labels
4781 @opindex Wno-endif-labels
4782 @opindex Wendif-labels
4783 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4784
4785 @item -Wshadow
4786 @opindex Wshadow
4787 @opindex Wno-shadow
4788 Warn whenever a local variable or type declaration shadows another
4789 variable, parameter, type, class member (in C++), or instance variable
4790 (in Objective-C) or whenever a built-in function is shadowed. Note
4791 that in C++, the compiler warns if a local variable shadows an
4792 explicit typedef, but not if it shadows a struct/class/enum.
4793
4794 @item -Wno-shadow-ivar @r{(Objective-C only)}
4795 @opindex Wno-shadow-ivar
4796 @opindex Wshadow-ivar
4797 Do not warn whenever a local variable shadows an instance variable in an
4798 Objective-C method.
4799
4800 @item -Wlarger-than=@var{len}
4801 @opindex Wlarger-than=@var{len}
4802 @opindex Wlarger-than-@var{len}
4803 Warn whenever an object of larger than @var{len} bytes is defined.
4804
4805 @item -Wframe-larger-than=@var{len}
4806 @opindex Wframe-larger-than
4807 Warn if the size of a function frame is larger than @var{len} bytes.
4808 The computation done to determine the stack frame size is approximate
4809 and not conservative.
4810 The actual requirements may be somewhat greater than @var{len}
4811 even if you do not get a warning.  In addition, any space allocated
4812 via @code{alloca}, variable-length arrays, or related constructs
4813 is not included by the compiler when determining
4814 whether or not to issue a warning.
4815
4816 @item -Wno-free-nonheap-object
4817 @opindex Wno-free-nonheap-object
4818 @opindex Wfree-nonheap-object
4819 Do not warn when attempting to free an object that was not allocated
4820 on the heap.
4821
4822 @item -Wstack-usage=@var{len}
4823 @opindex Wstack-usage
4824 Warn if the stack usage of a function might be larger than @var{len} bytes.
4825 The computation done to determine the stack usage is conservative.
4826 Any space allocated via @code{alloca}, variable-length arrays, or related
4827 constructs is included by the compiler when determining whether or not to
4828 issue a warning.
4829
4830 The message is in keeping with the output of @option{-fstack-usage}.
4831
4832 @itemize
4833 @item
4834 If the stack usage is fully static but exceeds the specified amount, it's:
4835
4836 @smallexample
4837   warning: stack usage is 1120 bytes
4838 @end smallexample
4839 @item
4840 If the stack usage is (partly) dynamic but bounded, it's:
4841
4842 @smallexample
4843   warning: stack usage might be 1648 bytes
4844 @end smallexample
4845 @item
4846 If the stack usage is (partly) dynamic and not bounded, it's:
4847
4848 @smallexample
4849   warning: stack usage might be unbounded
4850 @end smallexample
4851 @end itemize
4852
4853 @item -Wunsafe-loop-optimizations
4854 @opindex Wunsafe-loop-optimizations
4855 @opindex Wno-unsafe-loop-optimizations
4856 Warn if the loop cannot be optimized because the compiler cannot
4857 assume anything on the bounds of the loop indices.  With
4858 @option{-funsafe-loop-optimizations} warn if the compiler makes
4859 such assumptions.
4860
4861 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4862 @opindex Wno-pedantic-ms-format
4863 @opindex Wpedantic-ms-format
4864 When used in combination with @option{-Wformat}
4865 and @option{-pedantic} without GNU extensions, this option
4866 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4867 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4868 which depend on the MS runtime.
4869
4870 @item -Wpointer-arith
4871 @opindex Wpointer-arith
4872 @opindex Wno-pointer-arith
4873 Warn about anything that depends on the ``size of'' a function type or
4874 of @code{void}.  GNU C assigns these types a size of 1, for
4875 convenience in calculations with @code{void *} pointers and pointers
4876 to functions.  In C++, warn also when an arithmetic operation involves
4877 @code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
4878
4879 @item -Wtype-limits
4880 @opindex Wtype-limits
4881 @opindex Wno-type-limits
4882 Warn if a comparison is always true or always false due to the limited
4883 range of the data type, but do not warn for constant expressions.  For
4884 example, warn if an unsigned variable is compared against zero with
4885 @code{<} or @code{>=}.  This warning is also enabled by
4886 @option{-Wextra}.
4887
4888 @item -Wbad-function-cast @r{(C and Objective-C only)}
4889 @opindex Wbad-function-cast
4890 @opindex Wno-bad-function-cast
4891 Warn when a function call is cast to a non-matching type.
4892 For example, warn if a call to a function returning an integer type 
4893 is cast to a pointer type.
4894
4895 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4896 @opindex Wc90-c99-compat
4897 @opindex Wno-c90-c99-compat
4898 Warn about features not present in ISO C90, but present in ISO C99.
4899 For instance, warn about use of variable length arrays, @code{long long}
4900 type, @code{bool} type, compound literals, designated initializers, and so
4901 on.  This option is independent of the standards mode.  Warnings are disabled
4902 in the expression that follows @code{__extension__}.
4903
4904 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4905 @opindex Wc99-c11-compat
4906 @opindex Wno-c99-c11-compat
4907 Warn about features not present in ISO C99, but present in ISO C11.
4908 For instance, warn about use of anonymous structures and unions,
4909 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4910 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4911 and so on.  This option is independent of the standards mode.  Warnings are
4912 disabled in the expression that follows @code{__extension__}.
4913
4914 @item -Wc++-compat @r{(C and Objective-C only)}
4915 @opindex Wc++-compat
4916 Warn about ISO C constructs that are outside of the common subset of
4917 ISO C and ISO C++, e.g.@: request for implicit conversion from
4918 @code{void *} to a pointer to non-@code{void} type.
4919
4920 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4921 @opindex Wc++11-compat
4922 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4923 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4924 in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
4925 enabled by @option{-Wall}.
4926
4927 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4928 @opindex Wc++14-compat
4929 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4930 and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
4931
4932 @item -Wcast-qual
4933 @opindex Wcast-qual
4934 @opindex Wno-cast-qual
4935 Warn whenever a pointer is cast so as to remove a type qualifier from
4936 the target type.  For example, warn if a @code{const char *} is cast
4937 to an ordinary @code{char *}.
4938
4939 Also warn when making a cast that introduces a type qualifier in an
4940 unsafe way.  For example, casting @code{char **} to @code{const char **}
4941 is unsafe, as in this example:
4942
4943 @smallexample
4944   /* p is char ** value.  */
4945   const char **q = (const char **) p;
4946   /* Assignment of readonly string to const char * is OK.  */
4947   *q = "string";
4948   /* Now char** pointer points to read-only memory.  */
4949   **p = 'b';
4950 @end smallexample
4951
4952 @item -Wcast-align
4953 @opindex Wcast-align
4954 @opindex Wno-cast-align
4955 Warn whenever a pointer is cast such that the required alignment of the
4956 target is increased.  For example, warn if a @code{char *} is cast to
4957 an @code{int *} on machines where integers can only be accessed at
4958 two- or four-byte boundaries.
4959
4960 @item -Wwrite-strings
4961 @opindex Wwrite-strings
4962 @opindex Wno-write-strings
4963 When compiling C, give string constants the type @code{const
4964 char[@var{length}]} so that copying the address of one into a
4965 non-@code{const} @code{char *} pointer produces a warning.  These
4966 warnings help you find at compile time code that can try to write
4967 into a string constant, but only if you have been very careful about
4968 using @code{const} in declarations and prototypes.  Otherwise, it is
4969 just a nuisance. This is why we did not make @option{-Wall} request
4970 these warnings.
4971
4972 When compiling C++, warn about the deprecated conversion from string
4973 literals to @code{char *}.  This warning is enabled by default for C++
4974 programs.
4975
4976 @item -Wclobbered
4977 @opindex Wclobbered
4978 @opindex Wno-clobbered
4979 Warn for variables that might be changed by @code{longjmp} or
4980 @code{vfork}.  This warning is also enabled by @option{-Wextra}.
4981
4982 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4983 @opindex Wconditionally-supported
4984 @opindex Wno-conditionally-supported
4985 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4986
4987 @item -Wconversion
4988 @opindex Wconversion
4989 @opindex Wno-conversion
4990 Warn for implicit conversions that may alter a value. This includes
4991 conversions between real and integer, like @code{abs (x)} when
4992 @code{x} is @code{double}; conversions between signed and unsigned,
4993 like @code{unsigned ui = -1}; and conversions to smaller types, like
4994 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4995 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4996 changed by the conversion like in @code{abs (2.0)}.  Warnings about
4997 conversions between signed and unsigned integers can be disabled by
4998 using @option{-Wno-sign-conversion}.
4999
5000 For C++, also warn for confusing overload resolution for user-defined
5001 conversions; and conversions that never use a type conversion
5002 operator: conversions to @code{void}, the same type, a base class or a
5003 reference to them. Warnings about conversions between signed and
5004 unsigned integers are disabled by default in C++ unless
5005 @option{-Wsign-conversion} is explicitly enabled.
5006
5007 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5008 @opindex Wconversion-null
5009 @opindex Wno-conversion-null
5010 Do not warn for conversions between @code{NULL} and non-pointer
5011 types. @option{-Wconversion-null} is enabled by default.
5012
5013 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5014 @opindex Wzero-as-null-pointer-constant
5015 @opindex Wno-zero-as-null-pointer-constant
5016 Warn when a literal '0' is used as null pointer constant.  This can
5017 be useful to facilitate the conversion to @code{nullptr} in C++11.
5018
5019 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5020 @opindex Wsubobject-linkage
5021 @opindex Wno-subobject-linkage
5022 Warn if a class type has a base or a field whose type uses the anonymous
5023 namespace or depends on a type with no linkage.  If a type A depends on
5024 a type B with no or internal linkage, defining it in multiple
5025 translation units would be an ODR violation because the meaning of B
5026 is different in each translation unit.  If A only appears in a single
5027 translation unit, the best way to silence the warning is to give it
5028 internal linkage by putting it in an anonymous namespace as well.  The
5029 compiler doesn't give this warning for types defined in the main .C
5030 file, as those are unlikely to have multiple definitions.
5031 @option{-Wsubobject-linkage} is enabled by default.
5032
5033 @item -Wdate-time
5034 @opindex Wdate-time
5035 @opindex Wno-date-time
5036 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5037 are encountered as they might prevent bit-wise-identical reproducible
5038 compilations.
5039
5040 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5041 @opindex Wdelete-incomplete
5042 @opindex Wno-delete-incomplete
5043 Warn when deleting a pointer to incomplete type, which may cause
5044 undefined behavior at runtime.  This warning is enabled by default.
5045
5046 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5047 @opindex Wuseless-cast
5048 @opindex Wno-useless-cast
5049 Warn when an expression is casted to its own type.
5050
5051 @item -Wempty-body
5052 @opindex Wempty-body
5053 @opindex Wno-empty-body
5054 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5055 while} statement.  This warning is also enabled by @option{-Wextra}.
5056
5057 @item -Wenum-compare
5058 @opindex Wenum-compare
5059 @opindex Wno-enum-compare
5060 Warn about a comparison between values of different enumerated types.
5061 In C++ enumeral mismatches in conditional expressions are also
5062 diagnosed and the warning is enabled by default.  In C this warning is 
5063 enabled by @option{-Wall}.
5064
5065 @item -Wjump-misses-init @r{(C, Objective-C only)}
5066 @opindex Wjump-misses-init
5067 @opindex Wno-jump-misses-init
5068 Warn if a @code{goto} statement or a @code{switch} statement jumps
5069 forward across the initialization of a variable, or jumps backward to a
5070 label after the variable has been initialized.  This only warns about
5071 variables that are initialized when they are declared.  This warning is
5072 only supported for C and Objective-C; in C++ this sort of branch is an
5073 error in any case.
5074
5075 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
5076 can be disabled with the @option{-Wno-jump-misses-init} option.
5077
5078 @item -Wsign-compare
5079 @opindex Wsign-compare
5080 @opindex Wno-sign-compare
5081 @cindex warning for comparison of signed and unsigned values
5082 @cindex comparison of signed and unsigned values, warning
5083 @cindex signed and unsigned values, comparison warning
5084 Warn when a comparison between signed and unsigned values could produce
5085 an incorrect result when the signed value is converted to unsigned.
5086 This warning is also enabled by @option{-Wextra}; to get the other warnings
5087 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
5088
5089 @item -Wsign-conversion
5090 @opindex Wsign-conversion
5091 @opindex Wno-sign-conversion
5092 Warn for implicit conversions that may change the sign of an integer
5093 value, like assigning a signed integer expression to an unsigned
5094 integer variable. An explicit cast silences the warning. In C, this
5095 option is enabled also by @option{-Wconversion}.
5096
5097 @item -Wfloat-conversion
5098 @opindex Wfloat-conversion
5099 @opindex Wno-float-conversion
5100 Warn for implicit conversions that reduce the precision of a real value.
5101 This includes conversions from real to integer, and from higher precision
5102 real to lower precision real values.  This option is also enabled by
5103 @option{-Wconversion}.
5104
5105 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5106 @opindex Wsized-deallocation
5107 @opindex Wno-sized-deallocation
5108 Warn about a definition of an unsized deallocation function
5109 @smallexample
5110 void operator delete (void *) noexcept;
5111 void operator delete[] (void *) noexcept;
5112 @end smallexample
5113 without a definition of the corresponding sized deallocation function
5114 @smallexample
5115 void operator delete (void *, std::size_t) noexcept;
5116 void operator delete[] (void *, std::size_t) noexcept;
5117 @end smallexample
5118 or vice versa.  Enabled by @option{-Wextra} along with
5119 @option{-fsized-deallocation}.
5120
5121 @item -Wsizeof-pointer-memaccess
5122 @opindex Wsizeof-pointer-memaccess
5123 @opindex Wno-sizeof-pointer-memaccess
5124 Warn for suspicious length parameters to certain string and memory built-in
5125 functions if the argument uses @code{sizeof}.  This warning warns e.g.@:
5126 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5127 but a pointer, and suggests a possible fix, or about
5128 @code{memcpy (&foo, ptr, sizeof (&foo));}.  This warning is enabled by
5129 @option{-Wall}.
5130
5131 @item -Wsizeof-array-argument
5132 @opindex Wsizeof-array-argument
5133 @opindex Wno-sizeof-array-argument
5134 Warn when the @code{sizeof} operator is applied to a parameter that is
5135 declared as an array in a function definition.  This warning is enabled by
5136 default for C and C++ programs.
5137
5138 @item -Wmemset-transposed-args
5139 @opindex Wmemset-transposed-args
5140 @opindex Wno-memset-transposed-args
5141 Warn for suspicious calls to the @code{memset} built-in function, if the
5142 second argument is not zero and the third argument is zero.  This warns e.g.@
5143 about @code{memset (buf, sizeof buf, 0)} where most probably
5144 @code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
5145 is only emitted if the third argument is literal zero.  If it is some
5146 expression that is folded to zero, a cast of zero to some type, etc., 
5147 it is far less likely that the user has mistakenly exchanged the arguments 
5148 and no warning is emitted.  This warning is enabled by @option{-Wall}.
5149
5150 @item -Waddress
5151 @opindex Waddress
5152 @opindex Wno-address
5153 Warn about suspicious uses of memory addresses. These include using
5154 the address of a function in a conditional expression, such as
5155 @code{void func(void); if (func)}, and comparisons against the memory
5156 address of a string literal, such as @code{if (x == "abc")}.  Such
5157 uses typically indicate a programmer error: the address of a function
5158 always evaluates to true, so their use in a conditional usually
5159 indicate that the programmer forgot the parentheses in a function
5160 call; and comparisons against string literals result in unspecified
5161 behavior and are not portable in C, so they usually indicate that the
5162 programmer intended to use @code{strcmp}.  This warning is enabled by
5163 @option{-Wall}.
5164
5165 @item -Wlogical-op
5166 @opindex Wlogical-op
5167 @opindex Wno-logical-op
5168 Warn about suspicious uses of logical operators in expressions.
5169 This includes using logical operators in contexts where a
5170 bit-wise operator is likely to be expected.  Also warns when
5171 the operands of a logical operator are the same:
5172 @smallexample
5173 extern int a;
5174 if (a < 0 && a < 0) @{ @dots{} @}
5175 @end smallexample
5176
5177 @item -Wlogical-not-parentheses
5178 @opindex Wlogical-not-parentheses
5179 @opindex Wno-logical-not-parentheses
5180 Warn about logical not used on the left hand side operand of a comparison.
5181 This option does not warn if the RHS operand is of a boolean type.  Its
5182 purpose is to detect suspicious code like the following:
5183 @smallexample
5184 int a;
5185 @dots{}
5186 if (!a > 1) @{ @dots{} @}
5187 @end smallexample
5188
5189 It is possible to suppress the warning by wrapping the LHS into
5190 parentheses:
5191 @smallexample
5192 if ((!a) > 1) @{ @dots{} @}
5193 @end smallexample
5194
5195 This warning is enabled by @option{-Wall}.
5196
5197 @item -Waggregate-return
5198 @opindex Waggregate-return
5199 @opindex Wno-aggregate-return
5200 Warn if any functions that return structures or unions are defined or
5201 called.  (In languages where you can return an array, this also elicits
5202 a warning.)
5203
5204 @item -Wno-aggressive-loop-optimizations
5205 @opindex Wno-aggressive-loop-optimizations
5206 @opindex Waggressive-loop-optimizations
5207 Warn if in a loop with constant number of iterations the compiler detects
5208 undefined behavior in some statement during one or more of the iterations.
5209
5210 @item -Wno-attributes
5211 @opindex Wno-attributes
5212 @opindex Wattributes
5213 Do not warn if an unexpected @code{__attribute__} is used, such as
5214 unrecognized attributes, function attributes applied to variables,
5215 etc.  This does not stop errors for incorrect use of supported
5216 attributes.
5217
5218 @item -Wno-builtin-macro-redefined
5219 @opindex Wno-builtin-macro-redefined
5220 @opindex Wbuiltin-macro-redefined
5221 Do not warn if certain built-in macros are redefined.  This suppresses
5222 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5223 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5224
5225 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5226 @opindex Wstrict-prototypes
5227 @opindex Wno-strict-prototypes
5228 Warn if a function is declared or defined without specifying the
5229 argument types.  (An old-style function definition is permitted without
5230 a warning if preceded by a declaration that specifies the argument
5231 types.)
5232
5233 @item -Wold-style-declaration @r{(C and Objective-C only)}
5234 @opindex Wold-style-declaration
5235 @opindex Wno-old-style-declaration
5236 Warn for obsolescent usages, according to the C Standard, in a
5237 declaration. For example, warn if storage-class specifiers like
5238 @code{static} are not the first things in a declaration.  This warning
5239 is also enabled by @option{-Wextra}.
5240
5241 @item -Wold-style-definition @r{(C and Objective-C only)}
5242 @opindex Wold-style-definition
5243 @opindex Wno-old-style-definition
5244 Warn if an old-style function definition is used.  A warning is given
5245 even if there is a previous prototype.
5246
5247 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5248 @opindex Wmissing-parameter-type
5249 @opindex Wno-missing-parameter-type
5250 A function parameter is declared without a type specifier in K&R-style
5251 functions:
5252
5253 @smallexample
5254 void foo(bar) @{ @}
5255 @end smallexample
5256
5257 This warning is also enabled by @option{-Wextra}.
5258
5259 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5260 @opindex Wmissing-prototypes
5261 @opindex Wno-missing-prototypes
5262 Warn if a global function is defined without a previous prototype
5263 declaration.  This warning is issued even if the definition itself
5264 provides a prototype.  Use this option to detect global functions
5265 that do not have a matching prototype declaration in a header file.
5266 This option is not valid for C++ because all function declarations
5267 provide prototypes and a non-matching declaration declares an
5268 overload rather than conflict with an earlier declaration.
5269 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5270
5271 @item -Wmissing-declarations
5272 @opindex Wmissing-declarations
5273 @opindex Wno-missing-declarations
5274 Warn if a global function is defined without a previous declaration.
5275 Do so even if the definition itself provides a prototype.
5276 Use this option to detect global functions that are not declared in
5277 header files.  In C, no warnings are issued for functions with previous
5278 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5279 missing prototypes.  In C++, no warnings are issued for function templates,
5280 or for inline functions, or for functions in anonymous namespaces.
5281
5282 @item -Wmissing-field-initializers
5283 @opindex Wmissing-field-initializers
5284 @opindex Wno-missing-field-initializers
5285 @opindex W
5286 @opindex Wextra
5287 @opindex Wno-extra
5288 Warn if a structure's initializer has some fields missing.  For
5289 example, the following code causes such a warning, because
5290 @code{x.h} is implicitly zero:
5291
5292 @smallexample
5293 struct s @{ int f, g, h; @};
5294 struct s x = @{ 3, 4 @};
5295 @end smallexample
5296
5297 This option does not warn about designated initializers, so the following
5298 modification does not trigger a warning:
5299
5300 @smallexample
5301 struct s @{ int f, g, h; @};
5302 struct s x = @{ .f = 3, .g = 4 @};
5303 @end smallexample
5304
5305 In C++ this option does not warn either about the empty @{ @}
5306 initializer, for example:
5307
5308 @smallexample
5309 struct s @{ int f, g, h; @};
5310 s x = @{ @};
5311 @end smallexample
5312
5313 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
5314 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5315
5316 @item -Wno-multichar
5317 @opindex Wno-multichar
5318 @opindex Wmultichar
5319 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5320 Usually they indicate a typo in the user's code, as they have
5321 implementation-defined values, and should not be used in portable code.
5322
5323 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5324 @opindex Wnormalized=
5325 @opindex Wnormalized
5326 @opindex Wno-normalized
5327 @cindex NFC
5328 @cindex NFKC
5329 @cindex character set, input normalization
5330 In ISO C and ISO C++, two identifiers are different if they are
5331 different sequences of characters.  However, sometimes when characters
5332 outside the basic ASCII character set are used, you can have two
5333 different character sequences that look the same.  To avoid confusion,
5334 the ISO 10646 standard sets out some @dfn{normalization rules} which
5335 when applied ensure that two sequences that look the same are turned into
5336 the same sequence.  GCC can warn you if you are using identifiers that
5337 have not been normalized; this option controls that warning.
5338
5339 There are four levels of warning supported by GCC@.  The default is
5340 @option{-Wnormalized=nfc}, which warns about any identifier that is
5341 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
5342 recommended form for most uses.  It is equivalent to
5343 @option{-Wnormalized}.
5344
5345 Unfortunately, there are some characters allowed in identifiers by
5346 ISO C and ISO C++ that, when turned into NFC, are not allowed in 
5347 identifiers.  That is, there's no way to use these symbols in portable
5348 ISO C or C++ and have all your identifiers in NFC@.
5349 @option{-Wnormalized=id} suppresses the warning for these characters.
5350 It is hoped that future versions of the standards involved will correct
5351 this, which is why this option is not the default.
5352
5353 You can switch the warning off for all characters by writing
5354 @option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
5355 only do this if you are using some other normalization scheme (like
5356 ``D''), because otherwise you can easily create bugs that are
5357 literally impossible to see.
5358
5359 Some characters in ISO 10646 have distinct meanings but look identical
5360 in some fonts or display methodologies, especially once formatting has
5361 been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5362 LETTER N'', displays just like a regular @code{n} that has been
5363 placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
5364 normalization scheme to convert all these into a standard form as
5365 well, and GCC warns if your code is not in NFKC if you use
5366 @option{-Wnormalized=nfkc}.  This warning is comparable to warning
5367 about every identifier that contains the letter O because it might be
5368 confused with the digit 0, and so is not the default, but may be
5369 useful as a local coding convention if the programming environment 
5370 cannot be fixed to display these characters distinctly.
5371
5372 @item -Wno-deprecated
5373 @opindex Wno-deprecated
5374 @opindex Wdeprecated
5375 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
5376
5377 @item -Wno-deprecated-declarations
5378 @opindex Wno-deprecated-declarations
5379 @opindex Wdeprecated-declarations
5380 Do not warn about uses of functions (@pxref{Function Attributes}),
5381 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5382 Attributes}) marked as deprecated by using the @code{deprecated}
5383 attribute.
5384
5385 @item -Wno-overflow
5386 @opindex Wno-overflow
5387 @opindex Woverflow
5388 Do not warn about compile-time overflow in constant expressions.
5389
5390 @item -Wno-odr
5391 @opindex Wno-odr
5392 @opindex Wodr
5393 Warn about One Definition Rule violations during link-time optimization.
5394 Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
5395
5396 @item -Wopenmp-simd
5397 @opindex Wopenm-simd
5398 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5399 simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
5400 option can be used to relax the cost model.
5401
5402 @item -Woverride-init @r{(C and Objective-C only)}
5403 @opindex Woverride-init
5404 @opindex Wno-override-init
5405 @opindex W
5406 @opindex Wextra
5407 @opindex Wno-extra
5408 Warn if an initialized field without side effects is overridden when
5409 using designated initializers (@pxref{Designated Inits, , Designated
5410 Initializers}).
5411
5412 This warning is included in @option{-Wextra}.  To get other
5413 @option{-Wextra} warnings without this one, use @option{-Wextra
5414 -Wno-override-init}.
5415
5416 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5417 @opindex Woverride-init-side-effects
5418 @opindex Wno-override-init-side-effects
5419 Warn if an initialized field with side effects is overridden when
5420 using designated initializers (@pxref{Designated Inits, , Designated
5421 Initializers}).  This warning is enabled by default.
5422
5423 @item -Wpacked
5424 @opindex Wpacked
5425 @opindex Wno-packed
5426 Warn if a structure is given the packed attribute, but the packed
5427 attribute has no effect on the layout or size of the structure.
5428 Such structures may be mis-aligned for little benefit.  For
5429 instance, in this code, the variable @code{f.x} in @code{struct bar}
5430 is misaligned even though @code{struct bar} does not itself
5431 have the packed attribute:
5432
5433 @smallexample
5434 @group
5435 struct foo @{
5436   int x;
5437   char a, b, c, d;
5438 @} __attribute__((packed));
5439 struct bar @{
5440   char z;
5441   struct foo f;
5442 @};
5443 @end group
5444 @end smallexample
5445
5446 @item -Wpacked-bitfield-compat
5447 @opindex Wpacked-bitfield-compat
5448 @opindex Wno-packed-bitfield-compat
5449 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5450 on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
5451 the change can lead to differences in the structure layout.  GCC
5452 informs you when the offset of such a field has changed in GCC 4.4.
5453 For example there is no longer a 4-bit padding between field @code{a}
5454 and @code{b} in this structure:
5455
5456 @smallexample
5457 struct foo
5458 @{
5459   char a:4;
5460   char b:8;
5461 @} __attribute__ ((packed));
5462 @end smallexample
5463
5464 This warning is enabled by default.  Use
5465 @option{-Wno-packed-bitfield-compat} to disable this warning.
5466
5467 @item -Wpadded
5468 @opindex Wpadded
5469 @opindex Wno-padded
5470 Warn if padding is included in a structure, either to align an element
5471 of the structure or to align the whole structure.  Sometimes when this
5472 happens it is possible to rearrange the fields of the structure to
5473 reduce the padding and so make the structure smaller.
5474
5475 @item -Wredundant-decls
5476 @opindex Wredundant-decls
5477 @opindex Wno-redundant-decls
5478 Warn if anything is declared more than once in the same scope, even in
5479 cases where multiple declaration is valid and changes nothing.
5480
5481 @item -Wnested-externs @r{(C and Objective-C only)}
5482 @opindex Wnested-externs
5483 @opindex Wno-nested-externs
5484 Warn if an @code{extern} declaration is encountered within a function.
5485
5486 @item -Wno-inherited-variadic-ctor
5487 @opindex Winherited-variadic-ctor
5488 @opindex Wno-inherited-variadic-ctor
5489 Suppress warnings about use of C++11 inheriting constructors when the
5490 base class inherited from has a C variadic constructor; the warning is
5491 on by default because the ellipsis is not inherited.
5492
5493 @item -Winline
5494 @opindex Winline
5495 @opindex Wno-inline
5496 Warn if a function that is declared as inline cannot be inlined.
5497 Even with this option, the compiler does not warn about failures to
5498 inline functions declared in system headers.
5499
5500 The compiler uses a variety of heuristics to determine whether or not
5501 to inline a function.  For example, the compiler takes into account
5502 the size of the function being inlined and the amount of inlining
5503 that has already been done in the current function.  Therefore,
5504 seemingly insignificant changes in the source program can cause the
5505 warnings produced by @option{-Winline} to appear or disappear.
5506
5507 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5508 @opindex Wno-invalid-offsetof
5509 @opindex Winvalid-offsetof
5510 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5511 type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
5512 to a non-standard-layout type is undefined.  In existing C++ implementations,
5513 however, @code{offsetof} typically gives meaningful results.
5514 This flag is for users who are aware that they are
5515 writing nonportable code and who have deliberately chosen to ignore the
5516 warning about it.
5517
5518 The restrictions on @code{offsetof} may be relaxed in a future version
5519 of the C++ standard.
5520
5521 @item -Wno-int-to-pointer-cast
5522 @opindex Wno-int-to-pointer-cast
5523 @opindex Wint-to-pointer-cast
5524 Suppress warnings from casts to pointer type of an integer of a
5525 different size. In C++, casting to a pointer type of smaller size is
5526 an error. @option{Wint-to-pointer-cast} is enabled by default.
5527
5528
5529 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5530 @opindex Wno-pointer-to-int-cast
5531 @opindex Wpointer-to-int-cast
5532 Suppress warnings from casts from a pointer to an integer type of a
5533 different size.
5534
5535 @item -Winvalid-pch
5536 @opindex Winvalid-pch
5537 @opindex Wno-invalid-pch
5538 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5539 the search path but can't be used.
5540
5541 @item -Wlong-long
5542 @opindex Wlong-long
5543 @opindex Wno-long-long
5544 Warn if @code{long long} type is used.  This is enabled by either
5545 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5546 modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
5547
5548 @item -Wvariadic-macros
5549 @opindex Wvariadic-macros
5550 @opindex Wno-variadic-macros
5551 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5552 alternate syntax is used in ISO C99 mode.  This is enabled by either
5553 @option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
5554 messages, use @option{-Wno-variadic-macros}.
5555
5556 @item -Wvarargs
5557 @opindex Wvarargs
5558 @opindex Wno-varargs
5559 Warn upon questionable usage of the macros used to handle variable
5560 arguments like @code{va_start}.  This is default.  To inhibit the
5561 warning messages, use @option{-Wno-varargs}.
5562
5563 @item -Wvector-operation-performance
5564 @opindex Wvector-operation-performance
5565 @opindex Wno-vector-operation-performance
5566 Warn if vector operation is not implemented via SIMD capabilities of the
5567 architecture.  Mainly useful for the performance tuning.
5568 Vector operation can be implemented @code{piecewise}, which means that the
5569 scalar operation is performed on every vector element; 
5570 @code{in parallel}, which means that the vector operation is implemented
5571 using scalars of wider type, which normally is more performance efficient;
5572 and @code{as a single scalar}, which means that vector fits into a
5573 scalar type.
5574
5575 @item -Wno-virtual-move-assign
5576 @opindex Wvirtual-move-assign
5577 @opindex Wno-virtual-move-assign
5578 Suppress warnings about inheriting from a virtual base with a
5579 non-trivial C++11 move assignment operator.  This is dangerous because
5580 if the virtual base is reachable along more than one path, it is
5581 moved multiple times, which can mean both objects end up in the
5582 moved-from state.  If the move assignment operator is written to avoid
5583 moving from a moved-from object, this warning can be disabled.
5584
5585 @item -Wvla
5586 @opindex Wvla
5587 @opindex Wno-vla
5588 Warn if variable length array is used in the code.
5589 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5590 the variable length array.
5591
5592 @item -Wvolatile-register-var
5593 @opindex Wvolatile-register-var
5594 @opindex Wno-volatile-register-var
5595 Warn if a register variable is declared volatile.  The volatile
5596 modifier does not inhibit all optimizations that may eliminate reads
5597 and/or writes to register variables.  This warning is enabled by
5598 @option{-Wall}.
5599
5600 @item -Wdisabled-optimization
5601 @opindex Wdisabled-optimization
5602 @opindex Wno-disabled-optimization
5603 Warn if a requested optimization pass is disabled.  This warning does
5604 not generally indicate that there is anything wrong with your code; it
5605 merely indicates that GCC's optimizers are unable to handle the code
5606 effectively.  Often, the problem is that your code is too big or too
5607 complex; GCC refuses to optimize programs when the optimization
5608 itself is likely to take inordinate amounts of time.
5609
5610 @item -Wpointer-sign @r{(C and Objective-C only)}
5611 @opindex Wpointer-sign
5612 @opindex Wno-pointer-sign
5613 Warn for pointer argument passing or assignment with different signedness.
5614 This option is only supported for C and Objective-C@.  It is implied by
5615 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5616 @option{-Wno-pointer-sign}.
5617
5618 @item -Wstack-protector
5619 @opindex Wstack-protector
5620 @opindex Wno-stack-protector
5621 This option is only active when @option{-fstack-protector} is active.  It
5622 warns about functions that are not protected against stack smashing.
5623
5624 @item -Woverlength-strings
5625 @opindex Woverlength-strings
5626 @opindex Wno-overlength-strings
5627 Warn about string constants that are longer than the ``minimum
5628 maximum'' length specified in the C standard.  Modern compilers
5629 generally allow string constants that are much longer than the
5630 standard's minimum limit, but very portable programs should avoid
5631 using longer strings.
5632
5633 The limit applies @emph{after} string constant concatenation, and does
5634 not count the trailing NUL@.  In C90, the limit was 509 characters; in
5635 C99, it was raised to 4095.  C++98 does not specify a normative
5636 minimum maximum, so we do not diagnose overlength strings in C++@.
5637
5638 This option is implied by @option{-Wpedantic}, and can be disabled with
5639 @option{-Wno-overlength-strings}.
5640
5641 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5642 @opindex Wunsuffixed-float-constants
5643
5644 Issue a warning for any floating constant that does not have
5645 a suffix.  When used together with @option{-Wsystem-headers} it
5646 warns about such constants in system header files.  This can be useful
5647 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5648 from the decimal floating-point extension to C99.
5649
5650 @item -Wno-designated-init @r{(C and Objective-C only)}
5651 Suppress warnings when a positional initializer is used to initialize
5652 a structure that has been marked with the @code{designated_init}
5653 attribute.
5654
5655 @end table
5656
5657 @node Debugging Options
5658 @section Options for Debugging Your Program or GCC
5659 @cindex options, debugging
5660 @cindex debugging information options
5661
5662 GCC has various special options that are used for debugging
5663 either your program or GCC:
5664
5665 @table @gcctabopt
5666 @item -g
5667 @opindex g
5668 Produce debugging information in the operating system's native format
5669 (stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
5670 information.
5671
5672 On most systems that use stabs format, @option{-g} enables use of extra
5673 debugging information that only GDB can use; this extra information
5674 makes debugging work better in GDB but probably makes other debuggers
5675 crash or
5676 refuse to read the program.  If you want to control for certain whether
5677 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5678 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5679
5680 GCC allows you to use @option{-g} with
5681 @option{-O}.  The shortcuts taken by optimized code may occasionally
5682 produce surprising results: some variables you declared may not exist
5683 at all; flow of control may briefly move where you did not expect it;
5684 some statements may not be executed because they compute constant
5685 results or their values are already at hand; some statements may
5686 execute in different places because they have been moved out of loops.
5687
5688 Nevertheless it proves possible to debug optimized output.  This makes
5689 it reasonable to use the optimizer for programs that might have bugs.
5690
5691 The following options are useful when GCC is generated with the
5692 capability for more than one debugging format.
5693
5694 @item -gsplit-dwarf
5695 @opindex gsplit-dwarf
5696 Separate as much dwarf debugging information as possible into a
5697 separate output file with the extension .dwo.  This option allows
5698 the build system to avoid linking files with debug information.  To
5699 be useful, this option requires a debugger capable of reading .dwo
5700 files.
5701
5702 @item -ggdb
5703 @opindex ggdb
5704 Produce debugging information for use by GDB@.  This means to use the
5705 most expressive format available (DWARF 2, stabs, or the native format
5706 if neither of those are supported), including GDB extensions if at all
5707 possible.
5708
5709 @item -gpubnames
5710 @opindex gpubnames
5711 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5712
5713 @item -ggnu-pubnames
5714 @opindex ggnu-pubnames
5715 Generate .debug_pubnames and .debug_pubtypes sections in a format
5716 suitable for conversion into a GDB@ index.  This option is only useful
5717 with a linker that can produce GDB@ index version 7.
5718
5719 @item -gstabs
5720 @opindex gstabs
5721 Produce debugging information in stabs format (if that is supported),
5722 without GDB extensions.  This is the format used by DBX on most BSD
5723 systems.  On MIPS, Alpha and System V Release 4 systems this option
5724 produces stabs debugging output that is not understood by DBX or SDB@.
5725 On System V Release 4 systems this option requires the GNU assembler.
5726
5727 @item -feliminate-unused-debug-symbols
5728 @opindex feliminate-unused-debug-symbols
5729 Produce debugging information in stabs format (if that is supported),
5730 for only symbols that are actually used.
5731
5732 @item -femit-class-debug-always
5733 @opindex femit-class-debug-always
5734 Instead of emitting debugging information for a C++ class in only one
5735 object file, emit it in all object files using the class.  This option
5736 should be used only with debuggers that are unable to handle the way GCC
5737 normally emits debugging information for classes because using this
5738 option increases the size of debugging information by as much as a
5739 factor of two.
5740
5741 @item -fdebug-types-section
5742 @opindex fdebug-types-section
5743 @opindex fno-debug-types-section
5744 When using DWARF Version 4 or higher, type DIEs can be put into
5745 their own @code{.debug_types} section instead of making them part of the
5746 @code{.debug_info} section.  It is more efficient to put them in a separate
5747 comdat sections since the linker can then remove duplicates.
5748 But not all DWARF consumers support @code{.debug_types} sections yet
5749 and on some objects @code{.debug_types} produces larger instead of smaller
5750 debugging information.
5751
5752 @item -gstabs+
5753 @opindex gstabs+
5754 Produce debugging information in stabs format (if that is supported),
5755 using GNU extensions understood only by the GNU debugger (GDB)@.  The
5756 use of these extensions is likely to make other debuggers crash or
5757 refuse to read the program.
5758
5759 @item -gcoff
5760 @opindex gcoff
5761 Produce debugging information in COFF format (if that is supported).
5762 This is the format used by SDB on most System V systems prior to
5763 System V Release 4.
5764
5765 @item -gxcoff
5766 @opindex gxcoff
5767 Produce debugging information in XCOFF format (if that is supported).
5768 This is the format used by the DBX debugger on IBM RS/6000 systems.
5769
5770 @item -gxcoff+
5771 @opindex gxcoff+
5772 Produce debugging information in XCOFF format (if that is supported),
5773 using GNU extensions understood only by the GNU debugger (GDB)@.  The
5774 use of these extensions is likely to make other debuggers crash or
5775 refuse to read the program, and may cause assemblers other than the GNU
5776 assembler (GAS) to fail with an error.
5777
5778 @item -gdwarf-@var{version}
5779 @opindex gdwarf-@var{version}
5780 Produce debugging information in DWARF format (if that is supported).
5781 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5782 for most targets is 4.  DWARF Version 5 is only experimental.
5783
5784 Note that with DWARF Version 2, some ports require and always
5785 use some non-conflicting DWARF 3 extensions in the unwind tables.
5786
5787 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5788 for maximum benefit.
5789
5790 @item -grecord-gcc-switches
5791 @opindex grecord-gcc-switches
5792 This switch causes the command-line options used to invoke the
5793 compiler that may affect code generation to be appended to the
5794 DW_AT_producer attribute in DWARF debugging information.  The options
5795 are concatenated with spaces separating them from each other and from
5796 the compiler version.  See also @option{-frecord-gcc-switches} for another
5797 way of storing compiler options into the object file.  This is the default.
5798
5799 @item -gno-record-gcc-switches
5800 @opindex gno-record-gcc-switches
5801 Disallow appending command-line options to the DW_AT_producer attribute
5802 in DWARF debugging information.
5803
5804 @item -gstrict-dwarf
5805 @opindex gstrict-dwarf
5806 Disallow using extensions of later DWARF standard version than selected
5807 with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
5808 DWARF extensions from later standard versions is allowed.
5809
5810 @item -gno-strict-dwarf
5811 @opindex gno-strict-dwarf
5812 Allow using extensions of later DWARF standard version than selected with
5813 @option{-gdwarf-@var{version}}.
5814
5815 @item -gz@r{[}=@var{type}@r{]}
5816 @opindex gz
5817 Produce compressed debug sections in DWARF format, if that is supported.
5818 If @var{type} is not given, the default type depends on the capabilities
5819 of the assembler and linker used.  @var{type} may be one of
5820 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5821 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5822 compression in traditional GNU format).  If the linker doesn't support
5823 writing compressed debug sections, the option is rejected.  Otherwise,
5824 if the assembler does not support them, @option{-gz} is silently ignored
5825 when producing object files.
5826
5827 @item -gvms
5828 @opindex gvms
5829 Produce debugging information in Alpha/VMS debug format (if that is
5830 supported).  This is the format used by DEBUG on Alpha/VMS systems.
5831
5832 @item -g@var{level}
5833 @itemx -ggdb@var{level}
5834 @itemx -gstabs@var{level}
5835 @itemx -gcoff@var{level}
5836 @itemx -gxcoff@var{level}
5837 @itemx -gvms@var{level}
5838 Request debugging information and also use @var{level} to specify how
5839 much information.  The default level is 2.
5840
5841 Level 0 produces no debug information at all.  Thus, @option{-g0} negates
5842 @option{-g}.
5843
5844 Level 1 produces minimal information, enough for making backtraces in
5845 parts of the program that you don't plan to debug.  This includes
5846 descriptions of functions and external variables, and line number
5847 tables, but no information about local variables.
5848
5849 Level 3 includes extra information, such as all the macro definitions
5850 present in the program.  Some debuggers support macro expansion when
5851 you use @option{-g3}.
5852
5853 @option{-gdwarf-2} does not accept a concatenated debug level, because
5854 GCC used to support an option @option{-gdwarf} that meant to generate
5855 debug information in version 1 of the DWARF format (which is very
5856 different from version 2), and it would have been too confusing.  That
5857 debug format is long obsolete, but the option cannot be changed now.
5858 Instead use an additional @option{-g@var{level}} option to change the
5859 debug level for DWARF.
5860
5861 @item -gtoggle
5862 @opindex gtoggle
5863 Turn off generation of debug info, if leaving out this option
5864 generates it, or turn it on at level 2 otherwise.  The position of this
5865 argument in the command line does not matter; it takes effect after all
5866 other options are processed, and it does so only once, no matter how
5867 many times it is given.  This is mainly intended to be used with
5868 @option{-fcompare-debug}.
5869
5870 @item -fsanitize=address
5871 @opindex fsanitize=address
5872 Enable AddressSanitizer, a fast memory error detector.
5873 Memory access instructions are instrumented to detect
5874 out-of-bounds and use-after-free bugs.
5875 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
5876 more details.  The run-time behavior can be influenced using the
5877 @env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
5878 the available options are shown at startup of the instrumended program.  See
5879 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
5880 for a list of supported options.
5881
5882 @item -fsanitize=kernel-address
5883 @opindex fsanitize=kernel-address
5884 Enable AddressSanitizer for Linux kernel.
5885 See @uref{https://github.com/google/kasan/wiki} for more details.
5886
5887 @item -fsanitize=thread
5888 @opindex fsanitize=thread
5889 Enable ThreadSanitizer, a fast data race detector.
5890 Memory access instructions are instrumented to detect
5891 data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
5892 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5893 environment variable; see
5894 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
5895 supported options.
5896
5897 @item -fsanitize=leak
5898 @opindex fsanitize=leak
5899 Enable LeakSanitizer, a memory leak detector.
5900 This option only matters for linking of executables and if neither
5901 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used.  In that
5902 case the executable is linked against a library that overrides @code{malloc}
5903 and other allocator functions.  See
5904 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
5905 details.  The run-time behavior can be influenced using the
5906 @env{LSAN_OPTIONS} environment variable.
5907
5908 @item -fsanitize=undefined
5909 @opindex fsanitize=undefined
5910 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5911 Various computations are instrumented to detect undefined behavior
5912 at runtime.  Current suboptions are:
5913
5914 @table @gcctabopt
5915
5916 @item -fsanitize=shift
5917 @opindex fsanitize=shift
5918 This option enables checking that the result of a shift operation is
5919 not undefined.  Note that what exactly is considered undefined differs
5920 slightly between C and C++, as well as between ISO C90 and C99, etc.
5921
5922 @item -fsanitize=integer-divide-by-zero
5923 @opindex fsanitize=integer-divide-by-zero
5924 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5925
5926 @item -fsanitize=unreachable
5927 @opindex fsanitize=unreachable
5928 With this option, the compiler turns the @code{__builtin_unreachable}
5929 call into a diagnostics message call instead.  When reaching the
5930 @code{__builtin_unreachable} call, the behavior is undefined.
5931
5932 @item -fsanitize=vla-bound
5933 @opindex fsanitize=vla-bound
5934 This option instructs the compiler to check that the size of a variable
5935 length array is positive.
5936
5937 @item -fsanitize=null
5938 @opindex fsanitize=null
5939 This option enables pointer checking.  Particularly, the application
5940 built with this option turned on will issue an error message when it
5941 tries to dereference a NULL pointer, or if a reference (possibly an
5942 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5943 on an object pointed by a NULL pointer.
5944
5945 @item -fsanitize=return
5946 @opindex fsanitize=return
5947 This option enables return statement checking.  Programs
5948 built with this option turned on will issue an error message
5949 when the end of a non-void function is reached without actually
5950 returning a value.  This option works in C++ only.
5951
5952 @item -fsanitize=signed-integer-overflow
5953 @opindex fsanitize=signed-integer-overflow
5954 This option enables signed integer overflow checking.  We check that
5955 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5956 does not overflow in the signed arithmetics.  Note, integer promotion
5957 rules must be taken into account.  That is, the following is not an
5958 overflow:
5959 @smallexample
5960 signed char a = SCHAR_MAX;
5961 a++;
5962 @end smallexample
5963
5964 @item -fsanitize=bounds
5965 @opindex fsanitize=bounds
5966 This option enables instrumentation of array bounds.  Various out of bounds
5967 accesses are detected.  Flexible array members, flexible array member-like
5968 arrays, and initializers of variables with static storage are not instrumented.
5969
5970 @item -fsanitize=bounds-strict
5971 @opindex fsanitize=bounds-strict
5972 This option enables strict instrumentation of array bounds.  Most out of bounds
5973 accesses are detected, including flexible array members and flexible array
5974 member-like arrays.  Initializers of variables with static storage are not
5975 instrumented.
5976
5977 @item -fsanitize=alignment
5978 @opindex fsanitize=alignment
5979
5980 This option enables checking of alignment of pointers when they are
5981 dereferenced, or when a reference is bound to insufficiently aligned target,
5982 or when a method or constructor is invoked on insufficiently aligned object.
5983
5984 @item -fsanitize=object-size
5985 @opindex fsanitize=object-size
5986 This option enables instrumentation of memory references using the
5987 @code{__builtin_object_size} function.  Various out of bounds pointer
5988 accesses are detected.
5989
5990 @item -fsanitize=float-divide-by-zero
5991 @opindex fsanitize=float-divide-by-zero
5992 Detect floating-point division by zero.  Unlike other similar options,
5993 @option{-fsanitize=float-divide-by-zero} is not enabled by
5994 @option{-fsanitize=undefined}, since floating-point division by zero can
5995 be a legitimate way of obtaining infinities and NaNs.
5996
5997 @item -fsanitize=float-cast-overflow
5998 @opindex fsanitize=float-cast-overflow
5999 This option enables floating-point type to integer conversion checking.
6000 We check that the result of the conversion does not overflow.
6001 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
6002 not enabled by @option{-fsanitize=undefined}.
6003 This option does not work well with @code{FE_INVALID} exceptions enabled.
6004
6005 @item -fsanitize=nonnull-attribute
6006 @opindex fsanitize=nonnull-attribute
6007
6008 This option enables instrumentation of calls, checking whether null values
6009 are not passed to arguments marked as requiring a non-null value by the
6010 @code{nonnull} function attribute.
6011
6012 @item -fsanitize=returns-nonnull-attribute
6013 @opindex fsanitize=returns-nonnull-attribute
6014
6015 This option enables instrumentation of return statements in functions
6016 marked with @code{returns_nonnull} function attribute, to detect returning
6017 of null values from such functions.
6018
6019 @item -fsanitize=bool
6020 @opindex fsanitize=bool
6021
6022 This option enables instrumentation of loads from bool.  If a value other
6023 than 0/1 is loaded, a run-time error is issued.
6024
6025 @item -fsanitize=enum
6026 @opindex fsanitize=enum
6027
6028 This option enables instrumentation of loads from an enum type.  If
6029 a value outside the range of values for the enum type is loaded,
6030 a run-time error is issued.
6031
6032 @item -fsanitize=vptr
6033 @opindex fsanitize=vptr
6034
6035 This option enables instrumentation of C++ member function calls, member
6036 accesses and some conversions between pointers to base and derived classes,
6037 to verify the referenced object has the correct dynamic type.
6038
6039 @end table
6040
6041 While @option{-ftrapv} causes traps for signed overflows to be emitted,
6042 @option{-fsanitize=undefined} gives a diagnostic message.
6043 This currently works only for the C family of languages.
6044
6045 @item -fno-sanitize=all
6046 @opindex fno-sanitize=all
6047
6048 This option disables all previously enabled sanitizers.
6049 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
6050 together.
6051
6052 @item -fasan-shadow-offset=@var{number}
6053 @opindex fasan-shadow-offset
6054 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
6055 It is useful for experimenting with different shadow memory layouts in
6056 Kernel AddressSanitizer.
6057
6058 @item -fsanitize-sections=@var{s1},@var{s2},...
6059 @opindex fsanitize-sections
6060 Sanitize global variables in selected user-defined sections.  @var{si} may
6061 contain wildcards.
6062
6063 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
6064 @opindex fsanitize-recover
6065 @opindex fno-sanitize-recover
6066 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
6067 mentioned in comma-separated list of @var{opts}.  Enabling this option
6068 for a sanitizer component causes it to attempt to continue
6069 running the program as if no error happened.  This means multiple
6070 runtime errors can be reported in a single program run, and the exit
6071 code of the program may indicate success even when errors
6072 have been reported.  The @option{-fno-sanitize-recover=} option
6073 can be used to alter
6074 this behavior: only the first detected error is reported
6075 and program then exits with a non-zero exit code.
6076
6077 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
6078 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
6079 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
6080 @option{-fsanitize=kernel-address}.  For these sanitizers error recovery is turned on by default.
6081 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
6082 accepted, the former enables recovery for all sanitizers that support it,
6083 the latter disables recovery for all sanitizers that support it.
6084
6085 Syntax without explicit @var{opts} parameter is deprecated.  It is equivalent to
6086 @smallexample
6087 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6088 @end smallexample
6089 @noindent
6090 Similarly @option{-fno-sanitize-recover} is equivalent to
6091 @smallexample
6092 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6093 @end smallexample
6094
6095 @item -fsanitize-undefined-trap-on-error
6096 @opindex fsanitize-undefined-trap-on-error
6097 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
6098 report undefined behavior using @code{__builtin_trap} rather than
6099 a @code{libubsan} library routine.  The advantage of this is that the
6100 @code{libubsan} library is not needed and is not linked in, so this
6101 is usable even in freestanding environments.
6102
6103 @item -fcheck-pointer-bounds
6104 @opindex fcheck-pointer-bounds
6105 @opindex fno-check-pointer-bounds
6106 @cindex Pointer Bounds Checker options
6107 Enable Pointer Bounds Checker instrumentation.  Each memory reference
6108 is instrumented with checks of the pointer used for memory access against
6109 bounds associated with that pointer.  
6110
6111 Currently there
6112 is only an implementation for Intel MPX available, thus x86 target
6113 and @option{-mmpx} are required to enable this feature.  
6114 MPX-based instrumentation requires
6115 a runtime library to enable MPX in hardware and handle bounds
6116 violation signals.  By default when @option{-fcheck-pointer-bounds}
6117 and @option{-mmpx} options are used to link a program, the GCC driver
6118 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
6119 library.  It also passes '-z bndplt' to a linker in case it supports this
6120 option (which is checked on libmpx configuration).  Note that old versions
6121 of linker may ignore option.  Gold linker doesn't support '-z bndplt'
6122 option.  With no '-z bndplt' support in linker all calls to dynamic libraries
6123 lose passed bounds reducing overall protection level.  It's highly
6124 recommended to use linker with '-z bndplt' support.  In case such linker
6125 is not available it is adviced to always use @option{-static-libmpxwrappers}
6126 for better protection level or use @option{-static} to completely avoid
6127 external calls to dynamic libraries.  MPX-based instrumentation
6128 may be used for debugging and also may be included in production code
6129 to increase program security.  Depending on usage, you may
6130 have different requirements for the runtime library.  The current version
6131 of the MPX runtime library is more oriented for use as a debugging
6132 tool.  MPX runtime library usage implies @option{-lpthread}.  See
6133 also @option{-static-libmpx}.  The runtime library  behavior can be
6134 influenced using various @env{CHKP_RT_*} environment variables.  See
6135 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
6136 for more details.
6137
6138 Generated instrumentation may be controlled by various
6139 @option{-fchkp-*} options and by the @code{bnd_variable_size}
6140 structure field attribute (@pxref{Type Attributes}) and
6141 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
6142 (@pxref{Function Attributes}).  GCC also provides a number of built-in
6143 functions for controlling the Pointer Bounds Checker.  @xref{Pointer
6144 Bounds Checker builtins}, for more information.
6145
6146 @item -fchkp-check-incomplete-type
6147 @opindex fchkp-check-incomplete-type
6148 @opindex fno-chkp-check-incomplete-type
6149 Generate pointer bounds checks for variables with incomplete type.
6150 Enabled by default.
6151
6152 @item -fchkp-narrow-bounds
6153 @opindex fchkp-narrow-bounds
6154 @opindex fno-chkp-narrow-bounds
6155 Controls bounds used by Pointer Bounds Checker for pointers to object
6156 fields.  If narrowing is enabled then field bounds are used.  Otherwise
6157 object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
6158 and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
6159
6160 @item -fchkp-first-field-has-own-bounds
6161 @opindex fchkp-first-field-has-own-bounds
6162 @opindex fno-chkp-first-field-has-own-bounds
6163 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6164 first field in the structure.  By default a pointer to the first field has
6165 the same bounds as a pointer to the whole structure.
6166
6167 @item -fchkp-narrow-to-innermost-array
6168 @opindex fchkp-narrow-to-innermost-array
6169 @opindex fno-chkp-narrow-to-innermost-array
6170 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6171 case of nested static array access.  By default this option is disabled and
6172 bounds of the outermost array are used.
6173
6174 @item -fchkp-optimize
6175 @opindex fchkp-optimize
6176 @opindex fno-chkp-optimize
6177 Enables Pointer Bounds Checker optimizations.  Enabled by default at
6178 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6179
6180 @item -fchkp-use-fast-string-functions
6181 @opindex fchkp-use-fast-string-functions
6182 @opindex fno-chkp-use-fast-string-functions
6183 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6184 by Pointer Bounds Checker.  Disabled by default.
6185
6186 @item -fchkp-use-nochk-string-functions
6187 @opindex fchkp-use-nochk-string-functions
6188 @opindex fno-chkp-use-nochk-string-functions
6189 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6190 by Pointer Bounds Checker.  Disabled by default.
6191
6192 @item -fchkp-use-static-bounds
6193 @opindex fchkp-use-static-bounds
6194 @opindex fno-chkp-use-static-bounds
6195 Allow Pointer Bounds Checker to generate static bounds holding
6196 bounds of static variables.  Enabled by default.
6197
6198 @item -fchkp-use-static-const-bounds
6199 @opindex fchkp-use-static-const-bounds
6200 @opindex fno-chkp-use-static-const-bounds
6201 Use statically-initialized bounds for constant bounds instead of
6202 generating them each time they are required.  By default enabled when
6203 @option{-fchkp-use-static-bounds} is enabled.
6204
6205 @item -fchkp-treat-zero-dynamic-size-as-infinite
6206 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6207 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6208 With this option, objects with incomplete type whose
6209 dynamically-obtained size is zero are treated as having infinite size
6210 instead by Pointer Bounds
6211 Checker.  This option may be helpful if a program is linked with a library
6212 missing size information for some symbols.  Disabled by default.
6213
6214 @item -fchkp-check-read
6215 @opindex fchkp-check-read
6216 @opindex fno-chkp-check-read
6217 Instructs Pointer Bounds Checker to generate checks for all read
6218 accesses to memory.  Enabled by default.
6219
6220 @item -fchkp-check-write
6221 @opindex fchkp-check-write
6222 @opindex fno-chkp-check-write
6223 Instructs Pointer Bounds Checker to generate checks for all write
6224 accesses to memory.  Enabled by default.
6225
6226 @item -fchkp-store-bounds
6227 @opindex fchkp-store-bounds
6228 @opindex fno-chkp-store-bounds
6229 Instructs Pointer Bounds Checker to generate bounds stores for
6230 pointer writes.  Enabled by default.
6231
6232 @item -fchkp-instrument-calls
6233 @opindex fchkp-instrument-calls
6234 @opindex fno-chkp-instrument-calls
6235 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6236 Enabled by default.
6237
6238 @item -fchkp-instrument-marked-only
6239 @opindex fchkp-instrument-marked-only
6240 @opindex fno-chkp-instrument-marked-only
6241 Instructs Pointer Bounds Checker to instrument only functions
6242 marked with the @code{bnd_instrument} attribute
6243 (@pxref{Function Attributes}).  Disabled by default.
6244
6245 @item -fchkp-use-wrappers
6246 @opindex fchkp-use-wrappers
6247 @opindex fno-chkp-use-wrappers
6248 Allows Pointer Bounds Checker to replace calls to built-in functions
6249 with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
6250 is used to link a program, the GCC driver automatically links
6251 against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
6252 Enabled by default.
6253
6254 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6255 @opindex fdump-final-insns
6256 Dump the final internal representation (RTL) to @var{file}.  If the
6257 optional argument is omitted (or if @var{file} is @code{.}), the name
6258 of the dump file is determined by appending @code{.gkd} to the
6259 compilation output file name.
6260
6261 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6262 @opindex fcompare-debug
6263 @opindex fno-compare-debug
6264 If no error occurs during compilation, run the compiler a second time,
6265 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6266 passed to the second compilation.  Dump the final internal
6267 representation in both compilations, and print an error if they differ.
6268
6269 If the equal sign is omitted, the default @option{-gtoggle} is used.
6270
6271 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6272 and nonzero, implicitly enables @option{-fcompare-debug}.  If
6273 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6274 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6275 is used.
6276
6277 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6278 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6279 of the final representation and the second compilation, preventing even
6280 @env{GCC_COMPARE_DEBUG} from taking effect.
6281
6282 To verify full coverage during @option{-fcompare-debug} testing, set
6283 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6284 which GCC rejects as an invalid option in any actual compilation
6285 (rather than preprocessing, assembly or linking).  To get just a
6286 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6287 not overridden} will do.
6288
6289 @item -fcompare-debug-second
6290 @opindex fcompare-debug-second
6291 This option is implicitly passed to the compiler for the second
6292 compilation requested by @option{-fcompare-debug}, along with options to
6293 silence warnings, and omitting other options that would cause
6294 side-effect compiler outputs to files or to the standard output.  Dump
6295 files and preserved temporary files are renamed so as to contain the
6296 @code{.gk} additional extension during the second compilation, to avoid
6297 overwriting those generated by the first.
6298
6299 When this option is passed to the compiler driver, it causes the
6300 @emph{first} compilation to be skipped, which makes it useful for little
6301 other than debugging the compiler proper.
6302
6303 @item -feliminate-dwarf2-dups
6304 @opindex feliminate-dwarf2-dups
6305 Compress DWARF 2 debugging information by eliminating duplicated
6306 information about each symbol.  This option only makes sense when
6307 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6308
6309 @item -femit-struct-debug-baseonly
6310 @opindex femit-struct-debug-baseonly
6311 Emit debug information for struct-like types
6312 only when the base name of the compilation source file
6313 matches the base name of file in which the struct is defined.
6314
6315 This option substantially reduces the size of debugging information,
6316 but at significant potential loss in type information to the debugger.
6317 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6318 See @option{-femit-struct-debug-detailed} for more detailed control.
6319
6320 This option works only with DWARF 2.
6321
6322 @item -femit-struct-debug-reduced
6323 @opindex femit-struct-debug-reduced
6324 Emit debug information for struct-like types
6325 only when the base name of the compilation source file
6326 matches the base name of file in which the type is defined,
6327 unless the struct is a template or defined in a system header.
6328
6329 This option significantly reduces the size of debugging information,
6330 with some potential loss in type information to the debugger.
6331 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6332 See @option{-femit-struct-debug-detailed} for more detailed control.
6333
6334 This option works only with DWARF 2.
6335
6336 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6337 @opindex femit-struct-debug-detailed
6338 Specify the struct-like types
6339 for which the compiler generates debug information.
6340 The intent is to reduce duplicate struct debug information
6341 between different object files within the same program.
6342
6343 This option is a detailed version of
6344 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6345 which serves for most needs.
6346
6347 A specification has the syntax@*
6348 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6349
6350 The optional first word limits the specification to
6351 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6352 A struct type is used directly when it is the type of a variable, member.
6353 Indirect uses arise through pointers to structs.
6354 That is, when use of an incomplete struct is valid, the use is indirect.
6355 An example is
6356 @samp{struct one direct; struct two * indirect;}.
6357
6358 The optional second word limits the specification to
6359 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6360 Generic structs are a bit complicated to explain.
6361 For C++, these are non-explicit specializations of template classes,
6362 or non-template classes within the above.
6363 Other programming languages have generics,
6364 but @option{-femit-struct-debug-detailed} does not yet implement them.
6365
6366 The third word specifies the source files for those
6367 structs for which the compiler should emit debug information.
6368 The values @samp{none} and @samp{any} have the normal meaning.
6369 The value @samp{base} means that
6370 the base of name of the file in which the type declaration appears
6371 must match the base of the name of the main compilation file.
6372 In practice, this means that when compiling @file{foo.c}, debug information
6373 is generated for types declared in that file and @file{foo.h},
6374 but not other header files.
6375 The value @samp{sys} means those types satisfying @samp{base}
6376 or declared in system or compiler headers.
6377
6378 You may need to experiment to determine the best settings for your application.
6379
6380 The default is @option{-femit-struct-debug-detailed=all}.
6381
6382 This option works only with DWARF 2.
6383
6384 @item -fno-merge-debug-strings
6385 @opindex fmerge-debug-strings
6386 @opindex fno-merge-debug-strings
6387 Direct the linker to not merge together strings in the debugging
6388 information that are identical in different object files.  Merging is
6389 not supported by all assemblers or linkers.  Merging decreases the size
6390 of the debug information in the output file at the cost of increasing
6391 link processing time.  Merging is enabled by default.
6392
6393 @item -fdebug-prefix-map=@var{old}=@var{new}
6394 @opindex fdebug-prefix-map
6395 When compiling files in directory @file{@var{old}}, record debugging
6396 information describing them as in @file{@var{new}} instead.
6397
6398 @item -fno-dwarf2-cfi-asm
6399 @opindex fdwarf2-cfi-asm
6400 @opindex fno-dwarf2-cfi-asm
6401 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6402 instead of using GAS @code{.cfi_*} directives.
6403
6404 @cindex @command{prof}
6405 @item -p
6406 @opindex p
6407 Generate extra code to write profile information suitable for the
6408 analysis program @command{prof}.  You must use this option when compiling
6409 the source files you want data about, and you must also use it when
6410 linking.
6411
6412 @cindex @command{gprof}
6413 @item -pg
6414 @opindex pg
6415 Generate extra code to write profile information suitable for the
6416 analysis program @command{gprof}.  You must use this option when compiling
6417 the source files you want data about, and you must also use it when
6418 linking.
6419
6420 @item -Q
6421 @opindex Q
6422 Makes the compiler print out each function name as it is compiled, and
6423 print some statistics about each pass when it finishes.
6424
6425 @item -ftime-report
6426 @opindex ftime-report
6427 Makes the compiler print some statistics about the time consumed by each
6428 pass when it finishes.
6429
6430 @item -fmem-report
6431 @opindex fmem-report
6432 Makes the compiler print some statistics about permanent memory
6433 allocation when it finishes.
6434
6435 @item -fmem-report-wpa
6436 @opindex fmem-report-wpa
6437 Makes the compiler print some statistics about permanent memory
6438 allocation for the WPA phase only.
6439
6440 @item -fpre-ipa-mem-report
6441 @opindex fpre-ipa-mem-report
6442 @item -fpost-ipa-mem-report
6443 @opindex fpost-ipa-mem-report
6444 Makes the compiler print some statistics about permanent memory
6445 allocation before or after interprocedural optimization.
6446
6447 @item -fprofile-report
6448 @opindex fprofile-report
6449 Makes the compiler print some statistics about consistency of the
6450 (estimated) profile and effect of individual passes.
6451
6452 @item -fstack-usage
6453 @opindex fstack-usage
6454 Makes the compiler output stack usage information for the program, on a
6455 per-function basis.  The filename for the dump is made by appending
6456 @file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
6457 the output file, if explicitly specified and it is not an executable,
6458 otherwise it is the basename of the source file.  An entry is made up
6459 of three fields:
6460
6461 @itemize
6462 @item
6463 The name of the function.
6464 @item
6465 A number of bytes.
6466 @item
6467 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6468 @end itemize
6469
6470 The qualifier @code{static} means that the function manipulates the stack
6471 statically: a fixed number of bytes are allocated for the frame on function
6472 entry and released on function exit; no stack adjustments are otherwise made
6473 in the function.  The second field is this fixed number of bytes.
6474
6475 The qualifier @code{dynamic} means that the function manipulates the stack
6476 dynamically: in addition to the static allocation described above, stack
6477 adjustments are made in the body of the function, for example to push/pop
6478 arguments around function calls.  If the qualifier @code{bounded} is also
6479 present, the amount of these adjustments is bounded at compile time and
6480 the second field is an upper bound of the total amount of stack used by
6481 the function.  If it is not present, the amount of these adjustments is
6482 not bounded at compile time and the second field only represents the
6483 bounded part.
6484
6485 @item -fprofile-arcs
6486 @opindex fprofile-arcs
6487 Add code so that program flow @dfn{arcs} are instrumented.  During
6488 execution the program records how many times each branch and call is
6489 executed and how many times it is taken or returns.  When the compiled
6490 program exits it saves this data to a file called
6491 @file{@var{auxname}.gcda} for each source file.  The data may be used for
6492 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6493 test coverage analysis (@option{-ftest-coverage}).  Each object file's
6494 @var{auxname} is generated from the name of the output file, if
6495 explicitly specified and it is not the final executable, otherwise it is
6496 the basename of the source file.  In both cases any suffix is removed
6497 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6498 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6499 @xref{Cross-profiling}.
6500
6501 @cindex @command{gcov}
6502 @item --coverage
6503 @opindex coverage
6504
6505 This option is used to compile and link code instrumented for coverage
6506 analysis.  The option is a synonym for @option{-fprofile-arcs}
6507 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6508 linking).  See the documentation for those options for more details.
6509
6510 @itemize
6511
6512 @item
6513 Compile the source files with @option{-fprofile-arcs} plus optimization
6514 and code generation options.  For test coverage analysis, use the
6515 additional @option{-ftest-coverage} option.  You do not need to profile
6516 every source file in a program.
6517
6518 @item
6519 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6520 (the latter implies the former).
6521
6522 @item
6523 Run the program on a representative workload to generate the arc profile
6524 information.  This may be repeated any number of times.  You can run
6525 concurrent instances of your program, and provided that the file system
6526 supports locking, the data files will be correctly updated.  Also
6527 @code{fork} calls are detected and correctly handled (double counting
6528 will not happen).
6529
6530 @item
6531 For profile-directed optimizations, compile the source files again with
6532 the same optimization and code generation options plus
6533 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6534 Control Optimization}).
6535
6536 @item
6537 For test coverage analysis, use @command{gcov} to produce human readable
6538 information from the @file{.gcno} and @file{.gcda} files.  Refer to the
6539 @command{gcov} documentation for further information.
6540
6541 @end itemize
6542
6543 With @option{-fprofile-arcs}, for each function of your program GCC
6544 creates a program flow graph, then finds a spanning tree for the graph.
6545 Only arcs that are not on the spanning tree have to be instrumented: the
6546 compiler adds code to count the number of times that these arcs are
6547 executed.  When an arc is the only exit or only entrance to a block, the
6548 instrumentation code can be added to the block; otherwise, a new basic
6549 block must be created to hold the instrumentation code.
6550
6551 @need 2000
6552 @item -ftest-coverage
6553 @opindex ftest-coverage
6554 Produce a notes file that the @command{gcov} code-coverage utility
6555 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6556 show program coverage.  Each source file's note file is called
6557 @file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
6558 above for a description of @var{auxname} and instructions on how to
6559 generate test coverage data.  Coverage data matches the source files
6560 more closely if you do not optimize.
6561
6562 @item -fdbg-cnt-list
6563 @opindex fdbg-cnt-list
6564 Print the name and the counter upper bound for all debug counters.
6565
6566
6567 @item -fdbg-cnt=@var{counter-value-list}
6568 @opindex fdbg-cnt
6569 Set the internal debug counter upper bound.  @var{counter-value-list}
6570 is a comma-separated list of @var{name}:@var{value} pairs
6571 which sets the upper bound of each debug counter @var{name} to @var{value}.
6572 All debug counters have the initial upper bound of @code{UINT_MAX};
6573 thus @code{dbg_cnt} returns true always unless the upper bound
6574 is set by this option.
6575 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6576 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6577
6578 @item -fenable-@var{kind}-@var{pass}
6579 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6580 @opindex fdisable-
6581 @opindex fenable-
6582
6583 This is a set of options that are used to explicitly disable/enable
6584 optimization passes.  These options are intended for use for debugging GCC.
6585 Compiler users should use regular options for enabling/disabling
6586 passes instead.
6587
6588 @table @gcctabopt
6589
6590 @item -fdisable-ipa-@var{pass}
6591 Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
6592 statically invoked in the compiler multiple times, the pass name should be
6593 appended with a sequential number starting from 1.
6594
6595 @item -fdisable-rtl-@var{pass}
6596 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6597 Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6598 statically invoked in the compiler multiple times, the pass name should be
6599 appended with a sequential number starting from 1.  @var{range-list} is a 
6600 comma-separated list of function ranges or assembler names.  Each range is a number
6601 pair separated by a colon.  The range is inclusive in both ends.  If the range
6602 is trivial, the number pair can be simplified as a single number.  If the
6603 function's call graph node's @var{uid} falls within one of the specified ranges,
6604 the @var{pass} is disabled for that function.  The @var{uid} is shown in the
6605 function header of a dump file, and the pass names can be dumped by using
6606 option @option{-fdump-passes}.
6607
6608 @item -fdisable-tree-@var{pass}
6609 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6610 Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
6611 option arguments.
6612
6613 @item -fenable-ipa-@var{pass}
6614 Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6615 statically invoked in the compiler multiple times, the pass name should be
6616 appended with a sequential number starting from 1.
6617
6618 @item -fenable-rtl-@var{pass}
6619 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6620 Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
6621 description and examples.
6622
6623 @item -fenable-tree-@var{pass}
6624 @itemx -fenable-tree-@var{pass}=@var{range-list}
6625 Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
6626 of option arguments.
6627
6628 @end table
6629
6630 Here are some examples showing uses of these options.
6631
6632 @smallexample
6633
6634 # disable ccp1 for all functions
6635    -fdisable-tree-ccp1
6636 # disable complete unroll for function whose cgraph node uid is 1
6637    -fenable-tree-cunroll=1
6638 # disable gcse2 for functions at the following ranges [1,1],
6639 # [300,400], and [400,1000]
6640 # disable gcse2 for functions foo and foo2
6641    -fdisable-rtl-gcse2=foo,foo2
6642 # disable early inlining
6643    -fdisable-tree-einline
6644 # disable ipa inlining
6645    -fdisable-ipa-inline
6646 # enable tree full unroll
6647    -fenable-tree-unroll
6648
6649 @end smallexample
6650
6651 @item -d@var{letters}
6652 @itemx -fdump-rtl-@var{pass}
6653 @itemx -fdump-rtl-@var{pass}=@var{filename}
6654 @opindex d
6655 @opindex fdump-rtl-@var{pass}
6656 Says to make debugging dumps during compilation at times specified by
6657 @var{letters}.  This is used for debugging the RTL-based passes of the
6658 compiler.  The file names for most of the dumps are made by appending
6659 a pass number and a word to the @var{dumpname}, and the files are
6660 created in the directory of the output file. In case of
6661 @option{=@var{filename}} option, the dump is output on the given file
6662 instead of the pass numbered dump files. Note that the pass number is
6663 computed statically as passes get registered into the pass manager.
6664 Thus the numbering is not related to the dynamic order of execution of
6665 passes.  In particular, a pass installed by a plugin could have a
6666 number over 200 even if it executed quite early.  @var{dumpname} is
6667 generated from the name of the output file, if explicitly specified
6668 and it is not an executable, otherwise it is the basename of the
6669 source file. These switches may have different effects when
6670 @option{-E} is used for preprocessing.
6671
6672 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6673 @option{-d} option @var{letters}.  Here are the possible
6674 letters for use in @var{pass} and @var{letters}, and their meanings:
6675
6676 @table @gcctabopt
6677
6678 @item -fdump-rtl-alignments
6679 @opindex fdump-rtl-alignments
6680 Dump after branch alignments have been computed.
6681
6682 @item -fdump-rtl-asmcons
6683 @opindex fdump-rtl-asmcons
6684 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6685
6686 @item -fdump-rtl-auto_inc_dec
6687 @opindex fdump-rtl-auto_inc_dec
6688 Dump after auto-inc-dec discovery.  This pass is only run on
6689 architectures that have auto inc or auto dec instructions.
6690
6691 @item -fdump-rtl-barriers
6692 @opindex fdump-rtl-barriers
6693 Dump after cleaning up the barrier instructions.
6694
6695 @item -fdump-rtl-bbpart
6696 @opindex fdump-rtl-bbpart
6697 Dump after partitioning hot and cold basic blocks.
6698
6699 @item -fdump-rtl-bbro
6700 @opindex fdump-rtl-bbro
6701 Dump after block reordering.
6702
6703 @item -fdump-rtl-btl1
6704 @itemx -fdump-rtl-btl2
6705 @opindex fdump-rtl-btl2
6706 @opindex fdump-rtl-btl2
6707 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6708 after the two branch
6709 target load optimization passes.
6710
6711 @item -fdump-rtl-bypass
6712 @opindex fdump-rtl-bypass
6713 Dump after jump bypassing and control flow optimizations.
6714
6715 @item -fdump-rtl-combine
6716 @opindex fdump-rtl-combine
6717 Dump after the RTL instruction combination pass.
6718
6719 @item -fdump-rtl-compgotos
6720 @opindex fdump-rtl-compgotos
6721 Dump after duplicating the computed gotos.
6722
6723 @item -fdump-rtl-ce1
6724 @itemx -fdump-rtl-ce2
6725 @itemx -fdump-rtl-ce3
6726 @opindex fdump-rtl-ce1
6727 @opindex fdump-rtl-ce2
6728 @opindex fdump-rtl-ce3
6729 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6730 @option{-fdump-rtl-ce3} enable dumping after the three
6731 if conversion passes.
6732
6733 @item -fdump-rtl-cprop_hardreg
6734 @opindex fdump-rtl-cprop_hardreg
6735 Dump after hard register copy propagation.
6736
6737 @item -fdump-rtl-csa
6738 @opindex fdump-rtl-csa
6739 Dump after combining stack adjustments.
6740
6741 @item -fdump-rtl-cse1
6742 @itemx -fdump-rtl-cse2
6743 @opindex fdump-rtl-cse1
6744 @opindex fdump-rtl-cse2
6745 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6746 the two common subexpression elimination passes.
6747
6748 @item -fdump-rtl-dce
6749 @opindex fdump-rtl-dce
6750 Dump after the standalone dead code elimination passes.
6751
6752 @item -fdump-rtl-dbr
6753 @opindex fdump-rtl-dbr
6754 Dump after delayed branch scheduling.
6755
6756 @item -fdump-rtl-dce1
6757 @itemx -fdump-rtl-dce2
6758 @opindex fdump-rtl-dce1
6759 @opindex fdump-rtl-dce2
6760 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6761 the two dead store elimination passes.
6762
6763 @item -fdump-rtl-eh
6764 @opindex fdump-rtl-eh
6765 Dump after finalization of EH handling code.
6766
6767 @item -fdump-rtl-eh_ranges
6768 @opindex fdump-rtl-eh_ranges
6769 Dump after conversion of EH handling range regions.
6770
6771 @item -fdump-rtl-expand
6772 @opindex fdump-rtl-expand
6773 Dump after RTL generation.
6774
6775 @item -fdump-rtl-fwprop1
6776 @itemx -fdump-rtl-fwprop2
6777 @opindex fdump-rtl-fwprop1
6778 @opindex fdump-rtl-fwprop2
6779 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6780 dumping after the two forward propagation passes.
6781
6782 @item -fdump-rtl-gcse1
6783 @itemx -fdump-rtl-gcse2
6784 @opindex fdump-rtl-gcse1
6785 @opindex fdump-rtl-gcse2
6786 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6787 after global common subexpression elimination.
6788
6789 @item -fdump-rtl-init-regs
6790 @opindex fdump-rtl-init-regs
6791 Dump after the initialization of the registers.
6792
6793 @item -fdump-rtl-initvals
6794 @opindex fdump-rtl-initvals
6795 Dump after the computation of the initial value sets.
6796
6797 @item -fdump-rtl-into_cfglayout
6798 @opindex fdump-rtl-into_cfglayout
6799 Dump after converting to cfglayout mode.
6800
6801 @item -fdump-rtl-ira
6802 @opindex fdump-rtl-ira
6803 Dump after iterated register allocation.
6804
6805 @item -fdump-rtl-jump
6806 @opindex fdump-rtl-jump
6807 Dump after the second jump optimization.
6808
6809 @item -fdump-rtl-loop2
6810 @opindex fdump-rtl-loop2
6811 @option{-fdump-rtl-loop2} enables dumping after the rtl
6812 loop optimization passes.
6813
6814 @item -fdump-rtl-mach
6815 @opindex fdump-rtl-mach
6816 Dump after performing the machine dependent reorganization pass, if that
6817 pass exists.
6818
6819 @item -fdump-rtl-mode_sw
6820 @opindex fdump-rtl-mode_sw
6821 Dump after removing redundant mode switches.
6822
6823 @item -fdump-rtl-rnreg
6824 @opindex fdump-rtl-rnreg
6825 Dump after register renumbering.
6826
6827 @item -fdump-rtl-outof_cfglayout
6828 @opindex fdump-rtl-outof_cfglayout
6829 Dump after converting from cfglayout mode.
6830
6831 @item -fdump-rtl-peephole2
6832 @opindex fdump-rtl-peephole2
6833 Dump after the peephole pass.
6834
6835 @item -fdump-rtl-postreload
6836 @opindex fdump-rtl-postreload
6837 Dump after post-reload optimizations.
6838
6839 @item -fdump-rtl-pro_and_epilogue
6840 @opindex fdump-rtl-pro_and_epilogue
6841 Dump after generating the function prologues and epilogues.
6842
6843 @item -fdump-rtl-sched1
6844 @itemx -fdump-rtl-sched2
6845 @opindex fdump-rtl-sched1
6846 @opindex fdump-rtl-sched2
6847 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6848 after the basic block scheduling passes.
6849
6850 @item -fdump-rtl-ree
6851 @opindex fdump-rtl-ree
6852 Dump after sign/zero extension elimination.
6853
6854 @item -fdump-rtl-seqabstr
6855 @opindex fdump-rtl-seqabstr
6856 Dump after common sequence discovery.
6857
6858 @item -fdump-rtl-shorten
6859 @opindex fdump-rtl-shorten
6860 Dump after shortening branches.
6861
6862 @item -fdump-rtl-sibling
6863 @opindex fdump-rtl-sibling
6864 Dump after sibling call optimizations.
6865
6866 @item -fdump-rtl-split1
6867 @itemx -fdump-rtl-split2
6868 @itemx -fdump-rtl-split3
6869 @itemx -fdump-rtl-split4
6870 @itemx -fdump-rtl-split5
6871 @opindex fdump-rtl-split1
6872 @opindex fdump-rtl-split2
6873 @opindex fdump-rtl-split3
6874 @opindex fdump-rtl-split4
6875 @opindex fdump-rtl-split5
6876 These options enable dumping after five rounds of
6877 instruction splitting.
6878
6879 @item -fdump-rtl-sms
6880 @opindex fdump-rtl-sms
6881 Dump after modulo scheduling.  This pass is only run on some
6882 architectures.
6883
6884 @item -fdump-rtl-stack
6885 @opindex fdump-rtl-stack
6886 Dump after conversion from GCC's ``flat register file'' registers to the
6887 x87's stack-like registers.  This pass is only run on x86 variants.
6888
6889 @item -fdump-rtl-subreg1
6890 @itemx -fdump-rtl-subreg2
6891 @opindex fdump-rtl-subreg1
6892 @opindex fdump-rtl-subreg2
6893 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6894 the two subreg expansion passes.
6895
6896 @item -fdump-rtl-unshare
6897 @opindex fdump-rtl-unshare
6898 Dump after all rtl has been unshared.
6899
6900 @item -fdump-rtl-vartrack
6901 @opindex fdump-rtl-vartrack
6902 Dump after variable tracking.
6903
6904 @item -fdump-rtl-vregs
6905 @opindex fdump-rtl-vregs
6906 Dump after converting virtual registers to hard registers.
6907
6908 @item -fdump-rtl-web
6909 @opindex fdump-rtl-web
6910 Dump after live range splitting.
6911
6912 @item -fdump-rtl-regclass
6913 @itemx -fdump-rtl-subregs_of_mode_init
6914 @itemx -fdump-rtl-subregs_of_mode_finish
6915 @itemx -fdump-rtl-dfinit
6916 @itemx -fdump-rtl-dfinish
6917 @opindex fdump-rtl-regclass
6918 @opindex fdump-rtl-subregs_of_mode_init
6919 @opindex fdump-rtl-subregs_of_mode_finish
6920 @opindex fdump-rtl-dfinit
6921 @opindex fdump-rtl-dfinish
6922 These dumps are defined but always produce empty files.
6923
6924 @item -da
6925 @itemx -fdump-rtl-all
6926 @opindex da
6927 @opindex fdump-rtl-all
6928 Produce all the dumps listed above.
6929
6930 @item -dA
6931 @opindex dA
6932 Annotate the assembler output with miscellaneous debugging information.
6933
6934 @item -dD
6935 @opindex dD
6936 Dump all macro definitions, at the end of preprocessing, in addition to
6937 normal output.
6938
6939 @item -dH
6940 @opindex dH
6941 Produce a core dump whenever an error occurs.
6942
6943 @item -dp
6944 @opindex dp
6945 Annotate the assembler output with a comment indicating which
6946 pattern and alternative is used.  The length of each instruction is
6947 also printed.
6948
6949 @item -dP
6950 @opindex dP
6951 Dump the RTL in the assembler output as a comment before each instruction.
6952 Also turns on @option{-dp} annotation.
6953
6954 @item -dx
6955 @opindex dx
6956 Just generate RTL for a function instead of compiling it.  Usually used
6957 with @option{-fdump-rtl-expand}.
6958 @end table
6959
6960 @item -fdump-noaddr
6961 @opindex fdump-noaddr
6962 When doing debugging dumps, suppress address output.  This makes it more
6963 feasible to use diff on debugging dumps for compiler invocations with
6964 different compiler binaries and/or different
6965 text / bss / data / heap / stack / dso start locations.
6966
6967 @item -freport-bug
6968 @opindex freport-bug
6969 Collect and dump debug information into temporary file if ICE in C/C++
6970 compiler occured.
6971
6972 @item -fdump-unnumbered
6973 @opindex fdump-unnumbered
6974 When doing debugging dumps, suppress instruction numbers and address output.
6975 This makes it more feasible to use diff on debugging dumps for compiler
6976 invocations with different options, in particular with and without
6977 @option{-g}.
6978
6979 @item -fdump-unnumbered-links
6980 @opindex fdump-unnumbered-links
6981 When doing debugging dumps (see @option{-d} option above), suppress
6982 instruction numbers for the links to the previous and next instructions
6983 in a sequence.
6984
6985 @item -fdump-translation-unit @r{(C++ only)}
6986 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6987 @opindex fdump-translation-unit
6988 Dump a representation of the tree structure for the entire translation
6989 unit to a file.  The file name is made by appending @file{.tu} to the
6990 source file name, and the file is created in the same directory as the
6991 output file.  If the @samp{-@var{options}} form is used, @var{options}
6992 controls the details of the dump as described for the
6993 @option{-fdump-tree} options.
6994
6995 @item -fdump-class-hierarchy @r{(C++ only)}
6996 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6997 @opindex fdump-class-hierarchy
6998 Dump a representation of each class's hierarchy and virtual function
6999 table layout to a file.  The file name is made by appending
7000 @file{.class} to the source file name, and the file is created in the
7001 same directory as the output file.  If the @samp{-@var{options}} form
7002 is used, @var{options} controls the details of the dump as described
7003 for the @option{-fdump-tree} options.
7004
7005 @item -fdump-ipa-@var{switch}
7006 @opindex fdump-ipa
7007 Control the dumping at various stages of inter-procedural analysis
7008 language tree to a file.  The file name is generated by appending a
7009 switch specific suffix to the source file name, and the file is created
7010 in the same directory as the output file.  The following dumps are
7011 possible:
7012
7013 @table @samp
7014 @item all
7015 Enables all inter-procedural analysis dumps.
7016
7017 @item cgraph
7018 Dumps information about call-graph optimization, unused function removal,
7019 and inlining decisions.
7020
7021 @item inline
7022 Dump after function inlining.
7023
7024 @end table
7025
7026 @item -fdump-passes
7027 @opindex fdump-passes
7028 Dump the list of optimization passes that are turned on and off by
7029 the current command-line options.
7030
7031 @item -fdump-statistics-@var{option}
7032 @opindex fdump-statistics
7033 Enable and control dumping of pass statistics in a separate file.  The
7034 file name is generated by appending a suffix ending in
7035 @samp{.statistics} to the source file name, and the file is created in
7036 the same directory as the output file.  If the @samp{-@var{option}}
7037 form is used, @samp{-stats} causes counters to be summed over the
7038 whole compilation unit while @samp{-details} dumps every event as
7039 the passes generate them.  The default with no option is to sum
7040 counters for each function compiled.
7041
7042 @item -fdump-tree-@var{switch}
7043 @itemx -fdump-tree-@var{switch}-@var{options}
7044 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
7045 @opindex fdump-tree
7046 Control the dumping at various stages of processing the intermediate
7047 language tree to a file.  The file name is generated by appending a
7048 switch-specific suffix to the source file name, and the file is
7049 created in the same directory as the output file. In case of
7050 @option{=@var{filename}} option, the dump is output on the given file
7051 instead of the auto named dump files.  If the @samp{-@var{options}}
7052 form is used, @var{options} is a list of @samp{-} separated options
7053 which control the details of the dump.  Not all options are applicable
7054 to all dumps; those that are not meaningful are ignored.  The
7055 following options are available
7056
7057 @table @samp
7058 @item address
7059 Print the address of each node.  Usually this is not meaningful as it
7060 changes according to the environment and source file.  Its primary use
7061 is for tying up a dump file with a debug environment.
7062 @item asmname
7063 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
7064 in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
7065 use working backward from mangled names in the assembly file.
7066 @item slim
7067 When dumping front-end intermediate representations, inhibit dumping
7068 of members of a scope or body of a function merely because that scope
7069 has been reached.  Only dump such items when they are directly reachable
7070 by some other path.
7071
7072 When dumping pretty-printed trees, this option inhibits dumping the
7073 bodies of control structures.
7074
7075 When dumping RTL, print the RTL in slim (condensed) form instead of
7076 the default LISP-like representation.
7077 @item raw
7078 Print a raw representation of the tree.  By default, trees are
7079 pretty-printed into a C-like representation.
7080 @item details
7081 Enable more detailed dumps (not honored by every dump option). Also
7082 include information from the optimization passes.
7083 @item stats
7084 Enable dumping various statistics about the pass (not honored by every dump
7085 option).
7086 @item blocks
7087 Enable showing basic block boundaries (disabled in raw dumps).
7088 @item graph
7089 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
7090 dump a representation of the control flow graph suitable for viewing with
7091 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
7092 the file is pretty-printed as a subgraph, so that GraphViz can render them
7093 all in a single plot.
7094
7095 This option currently only works for RTL dumps, and the RTL is always
7096 dumped in slim form.
7097 @item vops
7098 Enable showing virtual operands for every statement.
7099 @item lineno
7100 Enable showing line numbers for statements.
7101 @item uid
7102 Enable showing the unique ID (@code{DECL_UID}) for each variable.
7103 @item verbose
7104 Enable showing the tree dump for each statement.
7105 @item eh
7106 Enable showing the EH region number holding each statement.
7107 @item scev
7108 Enable showing scalar evolution analysis details.
7109 @item optimized
7110 Enable showing optimization information (only available in certain
7111 passes).
7112 @item missed
7113 Enable showing missed optimization information (only available in certain
7114 passes).
7115 @item note
7116 Enable other detailed optimization information (only available in
7117 certain passes).
7118 @item =@var{filename}
7119 Instead of an auto named dump file, output into the given file
7120 name. The file names @file{stdout} and @file{stderr} are treated
7121 specially and are considered already open standard streams. For
7122 example,
7123
7124 @smallexample
7125 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
7126      -fdump-tree-pre=stderr file.c
7127 @end smallexample
7128
7129 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
7130 output on to @file{stderr}. If two conflicting dump filenames are
7131 given for the same pass, then the latter option overrides the earlier
7132 one.
7133
7134 @item all
7135 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
7136 and @option{lineno}.
7137
7138 @item optall
7139 Turn on all optimization options, i.e., @option{optimized},
7140 @option{missed}, and @option{note}.
7141 @end table
7142
7143 The following tree dumps are possible:
7144 @table @samp
7145
7146 @item original
7147 @opindex fdump-tree-original
7148 Dump before any tree based optimization, to @file{@var{file}.original}.
7149
7150 @item optimized
7151 @opindex fdump-tree-optimized
7152 Dump after all tree based optimization, to @file{@var{file}.optimized}.
7153
7154 @item gimple
7155 @opindex fdump-tree-gimple
7156 Dump each function before and after the gimplification pass to a file.  The
7157 file name is made by appending @file{.gimple} to the source file name.
7158
7159 @item cfg
7160 @opindex fdump-tree-cfg
7161 Dump the control flow graph of each function to a file.  The file name is
7162 made by appending @file{.cfg} to the source file name.
7163
7164 @item ch
7165 @opindex fdump-tree-ch
7166 Dump each function after copying loop headers.  The file name is made by
7167 appending @file{.ch} to the source file name.
7168
7169 @item ssa
7170 @opindex fdump-tree-ssa
7171 Dump SSA related information to a file.  The file name is made by appending
7172 @file{.ssa} to the source file name.
7173
7174 @item alias
7175 @opindex fdump-tree-alias
7176 Dump aliasing information for each function.  The file name is made by
7177 appending @file{.alias} to the source file name.
7178
7179 @item ccp
7180 @opindex fdump-tree-ccp
7181 Dump each function after CCP@.  The file name is made by appending
7182 @file{.ccp} to the source file name.
7183
7184 @item storeccp
7185 @opindex fdump-tree-storeccp
7186 Dump each function after STORE-CCP@.  The file name is made by appending
7187 @file{.storeccp} to the source file name.
7188
7189 @item pre
7190 @opindex fdump-tree-pre
7191 Dump trees after partial redundancy elimination.  The file name is made
7192 by appending @file{.pre} to the source file name.
7193
7194 @item fre
7195 @opindex fdump-tree-fre
7196 Dump trees after full redundancy elimination.  The file name is made
7197 by appending @file{.fre} to the source file name.
7198
7199 @item copyprop
7200 @opindex fdump-tree-copyprop
7201 Dump trees after copy propagation.  The file name is made
7202 by appending @file{.copyprop} to the source file name.
7203
7204 @item store_copyprop
7205 @opindex fdump-tree-store_copyprop
7206 Dump trees after store copy-propagation.  The file name is made
7207 by appending @file{.store_copyprop} to the source file name.
7208
7209 @item dce
7210 @opindex fdump-tree-dce
7211 Dump each function after dead code elimination.  The file name is made by
7212 appending @file{.dce} to the source file name.
7213
7214 @item sra
7215 @opindex fdump-tree-sra
7216 Dump each function after performing scalar replacement of aggregates.  The
7217 file name is made by appending @file{.sra} to the source file name.
7218
7219 @item sink
7220 @opindex fdump-tree-sink
7221 Dump each function after performing code sinking.  The file name is made
7222 by appending @file{.sink} to the source file name.
7223
7224 @item dom
7225 @opindex fdump-tree-dom
7226 Dump each function after applying dominator tree optimizations.  The file
7227 name is made by appending @file{.dom} to the source file name.
7228
7229 @item dse
7230 @opindex fdump-tree-dse
7231 Dump each function after applying dead store elimination.  The file
7232 name is made by appending @file{.dse} to the source file name.
7233
7234 @item phiopt
7235 @opindex fdump-tree-phiopt
7236 Dump each function after optimizing PHI nodes into straightline code.  The file
7237 name is made by appending @file{.phiopt} to the source file name.
7238
7239 @item forwprop
7240 @opindex fdump-tree-forwprop
7241 Dump each function after forward propagating single use variables.  The file
7242 name is made by appending @file{.forwprop} to the source file name.
7243
7244 @item nrv
7245 @opindex fdump-tree-nrv
7246 Dump each function after applying the named return value optimization on
7247 generic trees.  The file name is made by appending @file{.nrv} to the source
7248 file name.
7249
7250 @item vect
7251 @opindex fdump-tree-vect
7252 Dump each function after applying vectorization of loops.  The file name is
7253 made by appending @file{.vect} to the source file name.
7254
7255 @item slp
7256 @opindex fdump-tree-slp
7257 Dump each function after applying vectorization of basic blocks.  The file name
7258 is made by appending @file{.slp} to the source file name.
7259
7260 @item vrp
7261 @opindex fdump-tree-vrp
7262 Dump each function after Value Range Propagation (VRP).  The file name
7263 is made by appending @file{.vrp} to the source file name.
7264
7265 @item oaccdevlow
7266 @opindex fdump-tree-oaccdevlow
7267 Dump each function after applying device-specific OpenACC transformations.
7268 The file name is made by appending @file{.oaccdevlow} to the source file name.
7269
7270 @item all
7271 @opindex fdump-tree-all
7272 Enable all the available tree dumps with the flags provided in this option.
7273 @end table
7274
7275 @item -fopt-info
7276 @itemx -fopt-info-@var{options}
7277 @itemx -fopt-info-@var{options}=@var{filename}
7278 @opindex fopt-info
7279 Controls optimization dumps from various optimization passes. If the
7280 @samp{-@var{options}} form is used, @var{options} is a list of
7281 @samp{-} separated option keywords to select the dump details and
7282 optimizations.  
7283
7284 The @var{options} can be divided into two groups: options describing the
7285 verbosity of the dump, and options describing which optimizations
7286 should be included. The options from both the groups can be freely
7287 mixed as they are non-overlapping. However, in case of any conflicts,
7288 the later options override the earlier options on the command
7289 line. 
7290
7291 The following options control the dump verbosity:
7292
7293 @table @samp
7294 @item optimized
7295 Print information when an optimization is successfully applied. It is
7296 up to a pass to decide which information is relevant. For example, the
7297 vectorizer passes print the source location of loops which are
7298 successfully vectorized.
7299 @item missed
7300 Print information about missed optimizations. Individual passes
7301 control which information to include in the output. 
7302 @item note
7303 Print verbose information about optimizations, such as certain
7304 transformations, more detailed messages about decisions etc.
7305 @item all
7306 Print detailed optimization information. This includes
7307 @samp{optimized}, @samp{missed}, and @samp{note}.
7308 @end table
7309
7310 One or more of the following option keywords can be used to describe a
7311 group of optimizations:
7312
7313 @table @samp
7314 @item ipa
7315 Enable dumps from all interprocedural optimizations.
7316 @item loop
7317 Enable dumps from all loop optimizations.
7318 @item inline
7319 Enable dumps from all inlining optimizations.
7320 @item vec
7321 Enable dumps from all vectorization optimizations.
7322 @item optall
7323 Enable dumps from all optimizations. This is a superset of
7324 the optimization groups listed above.
7325 @end table
7326
7327 If @var{options} is
7328 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7329 info about successful optimizations from all the passes.  
7330
7331 If the @var{filename} is provided, then the dumps from all the
7332 applicable optimizations are concatenated into the @var{filename}.
7333 Otherwise the dump is output onto @file{stderr}. Though multiple
7334 @option{-fopt-info} options are accepted, only one of them can include
7335 a @var{filename}. If other filenames are provided then all but the
7336 first such option are ignored.
7337
7338 Note that the output @var{filename} is overwritten
7339 in case of multiple translation units. If a combined output from
7340 multiple translation units is desired, @file{stderr} should be used
7341 instead.
7342
7343 In the following example, the optimization info is output to
7344 @file{stderr}:
7345
7346 @smallexample
7347 gcc -O3 -fopt-info
7348 @end smallexample
7349
7350 This example:
7351 @smallexample
7352 gcc -O3 -fopt-info-missed=missed.all
7353 @end smallexample
7354
7355 @noindent
7356 outputs missed optimization report from all the passes into
7357 @file{missed.all}, and this one:
7358
7359 @smallexample
7360 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7361 @end smallexample
7362
7363 @noindent
7364 prints information about missed optimization opportunities from
7365 vectorization passes on @file{stderr}.  
7366 Note that @option{-fopt-info-vec-missed} is equivalent to 
7367 @option{-fopt-info-missed-vec}.
7368
7369 As another example,
7370 @smallexample
7371 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7372 @end smallexample
7373
7374 @noindent
7375 outputs information about missed optimizations as well as
7376 optimized locations from all the inlining passes into
7377 @file{inline.txt}.
7378
7379 Finally, consider:
7380
7381 @smallexample
7382 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7383 @end smallexample
7384
7385 @noindent
7386 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7387 in conflict since only one output file is allowed. In this case, only
7388 the first option takes effect and the subsequent options are
7389 ignored. Thus only @file{vec.miss} is produced which contains
7390 dumps from the vectorizer about missed opportunities.
7391
7392 @item -frandom-seed=@var{number}
7393 @opindex frandom-seed
7394 This option provides a seed that GCC uses in place of
7395 random numbers in generating certain symbol names
7396 that have to be different in every compiled file.  It is also used to
7397 place unique stamps in coverage data files and the object files that
7398 produce them.  You can use the @option{-frandom-seed} option to produce
7399 reproducibly identical object files.
7400
7401 The @var{number} should be different for every file you compile.
7402
7403 @item -fsched-verbose=@var{n}
7404 @opindex fsched-verbose
7405 On targets that use instruction scheduling, this option controls the
7406 amount of debugging output the scheduler prints.  This information is
7407 written to standard error, unless @option{-fdump-rtl-sched1} or
7408 @option{-fdump-rtl-sched2} is specified, in which case it is output
7409 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7410 respectively.  However for @var{n} greater than nine, the output is
7411 always printed to standard error.
7412
7413 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7414 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7415 For @var{n} greater than one, it also output basic block probabilities,
7416 detailed ready list information and unit/insn info.  For @var{n} greater
7417 than two, it includes RTL at abort point, control-flow and regions info.
7418 And for @var{n} over four, @option{-fsched-verbose} also includes
7419 dependence info.
7420
7421 @item -save-temps
7422 @itemx -save-temps=cwd
7423 @opindex save-temps
7424 Store the usual ``temporary'' intermediate files permanently; place them
7425 in the current directory and name them based on the source file.  Thus,
7426 compiling @file{foo.c} with @option{-c -save-temps} produces files
7427 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
7428 preprocessed @file{foo.i} output file even though the compiler now
7429 normally uses an integrated preprocessor.
7430
7431 When used in combination with the @option{-x} command-line option,
7432 @option{-save-temps} is sensible enough to avoid over writing an
7433 input source file with the same extension as an intermediate file.
7434 The corresponding intermediate file may be obtained by renaming the
7435 source file before using @option{-save-temps}.
7436
7437 If you invoke GCC in parallel, compiling several different source
7438 files that share a common base name in different subdirectories or the
7439 same source file compiled for multiple output destinations, it is
7440 likely that the different parallel compilers will interfere with each
7441 other, and overwrite the temporary files.  For instance:
7442
7443 @smallexample
7444 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7445 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7446 @end smallexample
7447
7448 may result in @file{foo.i} and @file{foo.o} being written to
7449 simultaneously by both compilers.
7450
7451 @item -save-temps=obj
7452 @opindex save-temps=obj
7453 Store the usual ``temporary'' intermediate files permanently.  If the
7454 @option{-o} option is used, the temporary files are based on the
7455 object file.  If the @option{-o} option is not used, the
7456 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7457
7458 For example:
7459
7460 @smallexample
7461 gcc -save-temps=obj -c foo.c
7462 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7463 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7464 @end smallexample
7465
7466 @noindent
7467 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7468 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7469 @file{dir2/yfoobar.o}.
7470
7471 @item -time@r{[}=@var{file}@r{]}
7472 @opindex time
7473 Report the CPU time taken by each subprocess in the compilation
7474 sequence.  For C source files, this is the compiler proper and assembler
7475 (plus the linker if linking is done).
7476
7477 Without the specification of an output file, the output looks like this:
7478
7479 @smallexample
7480 # cc1 0.12 0.01
7481 # as 0.00 0.01
7482 @end smallexample
7483
7484 The first number on each line is the ``user time'', that is time spent
7485 executing the program itself.  The second number is ``system time'',
7486 time spent executing operating system routines on behalf of the program.
7487 Both numbers are in seconds.
7488
7489 With the specification of an output file, the output is appended to the
7490 named file, and it looks like this:
7491
7492 @smallexample
7493 0.12 0.01 cc1 @var{options}
7494 0.00 0.01 as @var{options}
7495 @end smallexample
7496
7497 The ``user time'' and the ``system time'' are moved before the program
7498 name, and the options passed to the program are displayed, so that one
7499 can later tell what file was being compiled, and with which options.
7500
7501 @item -fvar-tracking
7502 @opindex fvar-tracking
7503 Run variable tracking pass.  It computes where variables are stored at each
7504 position in code.  Better debugging information is then generated
7505 (if the debugging information format supports this information).
7506
7507 It is enabled by default when compiling with optimization (@option{-Os},
7508 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7509 the debug info format supports it.
7510
7511 @item -fvar-tracking-assignments
7512 @opindex fvar-tracking-assignments
7513 @opindex fno-var-tracking-assignments
7514 Annotate assignments to user variables early in the compilation and
7515 attempt to carry the annotations over throughout the compilation all the
7516 way to the end, in an attempt to improve debug information while
7517 optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7518
7519 It can be enabled even if var-tracking is disabled, in which case
7520 annotations are created and maintained, but discarded at the end.
7521 By default, this flag is enabled together with @option{-fvar-tracking},
7522 except when selective scheduling is enabled.
7523
7524 @item -fvar-tracking-assignments-toggle
7525 @opindex fvar-tracking-assignments-toggle
7526 @opindex fno-var-tracking-assignments-toggle
7527 Toggle @option{-fvar-tracking-assignments}, in the same way that
7528 @option{-gtoggle} toggles @option{-g}.
7529
7530 @item -print-file-name=@var{library}
7531 @opindex print-file-name
7532 Print the full absolute name of the library file @var{library} that
7533 would be used when linking---and don't do anything else.  With this
7534 option, GCC does not compile or link anything; it just prints the
7535 file name.
7536
7537 @item -print-multi-directory
7538 @opindex print-multi-directory
7539 Print the directory name corresponding to the multilib selected by any
7540 other switches present in the command line.  This directory is supposed
7541 to exist in @env{GCC_EXEC_PREFIX}.
7542
7543 @item -print-multi-lib
7544 @opindex print-multi-lib
7545 Print the mapping from multilib directory names to compiler switches
7546 that enable them.  The directory name is separated from the switches by
7547 @samp{;}, and each switch starts with an @samp{@@} instead of the
7548 @samp{-}, without spaces between multiple switches.  This is supposed to
7549 ease shell processing.
7550
7551 @item -print-multi-os-directory
7552 @opindex print-multi-os-directory
7553 Print the path to OS libraries for the selected
7554 multilib, relative to some @file{lib} subdirectory.  If OS libraries are
7555 present in the @file{lib} subdirectory and no multilibs are used, this is
7556 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7557 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7558 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7559 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7560
7561 @item -print-multiarch
7562 @opindex print-multiarch
7563 Print the path to OS libraries for the selected multiarch,
7564 relative to some @file{lib} subdirectory.
7565
7566 @item -print-prog-name=@var{program}
7567 @opindex print-prog-name
7568 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7569
7570 @item -print-libgcc-file-name
7571 @opindex print-libgcc-file-name
7572 Same as @option{-print-file-name=libgcc.a}.
7573
7574 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7575 but you do want to link with @file{libgcc.a}.  You can do:
7576
7577 @smallexample
7578 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7579 @end smallexample
7580
7581 @item -print-search-dirs
7582 @opindex print-search-dirs
7583 Print the name of the configured installation directory and a list of
7584 program and library directories @command{gcc} searches---and don't do anything else.
7585
7586 This is useful when @command{gcc} prints the error message
7587 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7588 To resolve this you either need to put @file{cpp0} and the other compiler
7589 components where @command{gcc} expects to find them, or you can set the environment
7590 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7591 Don't forget the trailing @samp{/}.
7592 @xref{Environment Variables}.
7593
7594 @item -print-sysroot
7595 @opindex print-sysroot
7596 Print the target sysroot directory that is used during
7597 compilation.  This is the target sysroot specified either at configure
7598 time or using the @option{--sysroot} option, possibly with an extra
7599 suffix that depends on compilation options.  If no target sysroot is
7600 specified, the option prints nothing.
7601
7602 @item -print-sysroot-headers-suffix
7603 @opindex print-sysroot-headers-suffix
7604 Print the suffix added to the target sysroot when searching for
7605 headers, or give an error if the compiler is not configured with such
7606 a suffix---and don't do anything else.
7607
7608 @item -dumpmachine
7609 @opindex dumpmachine
7610 Print the compiler's target machine (for example,
7611 @samp{i686-pc-linux-gnu})---and don't do anything else.
7612
7613 @item -dumpversion
7614 @opindex dumpversion
7615 Print the compiler version (for example, @code{3.0})---and don't do
7616 anything else.
7617
7618 @item -dumpspecs
7619 @opindex dumpspecs
7620 Print the compiler's built-in specs---and don't do anything else.  (This
7621 is used when GCC itself is being built.)  @xref{Spec Files}.
7622
7623 @item -fno-eliminate-unused-debug-types
7624 @opindex feliminate-unused-debug-types
7625 @opindex fno-eliminate-unused-debug-types
7626 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol 
7627 output for types that are nowhere used in the source file being compiled.
7628 Sometimes it is useful to have GCC emit debugging
7629 information for all types declared in a compilation
7630 unit, regardless of whether or not they are actually used
7631 in that compilation unit, for example 
7632 if, in the debugger, you want to cast a value to a type that is
7633 not actually used in your program (but is declared).  More often,
7634 however, this results in a significant amount of wasted space.
7635 @end table
7636
7637 @node Optimize Options
7638 @section Options That Control Optimization
7639 @cindex optimize options
7640 @cindex options, optimization
7641
7642 These options control various sorts of optimizations.
7643
7644 Without any optimization option, the compiler's goal is to reduce the
7645 cost of compilation and to make debugging produce the expected
7646 results.  Statements are independent: if you stop the program with a
7647 breakpoint between statements, you can then assign a new value to any
7648 variable or change the program counter to any other statement in the
7649 function and get exactly the results you expect from the source
7650 code.
7651
7652 Turning on optimization flags makes the compiler attempt to improve
7653 the performance and/or code size at the expense of compilation time
7654 and possibly the ability to debug the program.
7655
7656 The compiler performs optimization based on the knowledge it has of the
7657 program.  Compiling multiple files at once to a single output file mode allows
7658 the compiler to use information gained from all of the files when compiling
7659 each of them.
7660
7661 Not all optimizations are controlled directly by a flag.  Only
7662 optimizations that have a flag are listed in this section.
7663
7664 Most optimizations are only enabled if an @option{-O} level is set on
7665 the command line.  Otherwise they are disabled, even if individual
7666 optimization flags are specified.
7667
7668 Depending on the target and how GCC was configured, a slightly different
7669 set of optimizations may be enabled at each @option{-O} level than
7670 those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7671 to find out the exact set of optimizations that are enabled at each level.
7672 @xref{Overall Options}, for examples.
7673
7674 @table @gcctabopt
7675 @item -O
7676 @itemx -O1
7677 @opindex O
7678 @opindex O1
7679 Optimize.  Optimizing compilation takes somewhat more time, and a lot
7680 more memory for a large function.
7681
7682 With @option{-O}, the compiler tries to reduce code size and execution
7683 time, without performing any optimizations that take a great deal of
7684 compilation time.
7685
7686 @option{-O} turns on the following optimization flags:
7687 @gccoptlist{
7688 -fauto-inc-dec @gol
7689 -fbranch-count-reg @gol
7690 -fcombine-stack-adjustments @gol
7691 -fcompare-elim @gol
7692 -fcprop-registers @gol
7693 -fdce @gol
7694 -fdefer-pop @gol
7695 -fdelayed-branch @gol
7696 -fdse @gol
7697 -fforward-propagate @gol
7698 -fguess-branch-probability @gol
7699 -fif-conversion2 @gol
7700 -fif-conversion @gol
7701 -finline-functions-called-once @gol
7702 -fipa-pure-const @gol
7703 -fipa-profile @gol
7704 -fipa-reference @gol
7705 -fmerge-constants @gol
7706 -fmove-loop-invariants @gol
7707 -freorder-blocks @gol
7708 -fshrink-wrap @gol
7709 -fsplit-wide-types @gol
7710 -ftree-bit-ccp @gol
7711 -ftree-ccp @gol
7712 -fssa-phiopt @gol
7713 -ftree-ch @gol
7714 -ftree-coalesce-vars @gol
7715 -ftree-copy-prop @gol
7716 -ftree-dce @gol
7717 -ftree-dominator-opts @gol
7718 -ftree-dse @gol
7719 -ftree-forwprop @gol
7720 -ftree-fre @gol
7721 -ftree-phiprop @gol
7722 -ftree-sink @gol
7723 -ftree-slsr @gol
7724 -ftree-sra @gol
7725 -ftree-pta @gol
7726 -ftree-ter @gol
7727 -funit-at-a-time}
7728
7729 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7730 where doing so does not interfere with debugging.
7731
7732 @item -O2
7733 @opindex O2
7734 Optimize even more.  GCC performs nearly all supported optimizations
7735 that do not involve a space-speed tradeoff.
7736 As compared to @option{-O}, this option increases both compilation time
7737 and the performance of the generated code.
7738
7739 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
7740 also turns on the following optimization flags:
7741 @gccoptlist{-fthread-jumps @gol
7742 -falign-functions  -falign-jumps @gol
7743 -falign-loops  -falign-labels @gol
7744 -fcaller-saves @gol
7745 -fcrossjumping @gol
7746 -fcse-follow-jumps  -fcse-skip-blocks @gol
7747 -fdelete-null-pointer-checks @gol
7748 -fdevirtualize -fdevirtualize-speculatively @gol
7749 -fexpensive-optimizations @gol
7750 -fgcse  -fgcse-lm  @gol
7751 -fhoist-adjacent-loads @gol
7752 -finline-small-functions @gol
7753 -findirect-inlining @gol
7754 -fipa-cp @gol
7755 -fipa-cp-alignment @gol
7756 -fipa-sra @gol
7757 -fipa-icf @gol
7758 -fisolate-erroneous-paths-dereference @gol
7759 -flra-remat @gol
7760 -foptimize-sibling-calls @gol
7761 -foptimize-strlen @gol
7762 -fpartial-inlining @gol
7763 -fpeephole2 @gol
7764 -freorder-blocks-algorithm=stc @gol
7765 -freorder-blocks-and-partition -freorder-functions @gol
7766 -frerun-cse-after-loop  @gol
7767 -fsched-interblock  -fsched-spec @gol
7768 -fschedule-insns  -fschedule-insns2 @gol
7769 -fstrict-aliasing -fstrict-overflow @gol
7770 -ftree-builtin-call-dce @gol
7771 -ftree-switch-conversion -ftree-tail-merge @gol
7772 -ftree-pre @gol
7773 -ftree-vrp @gol
7774 -fipa-ra}
7775
7776 Please note the warning under @option{-fgcse} about
7777 invoking @option{-O2} on programs that use computed gotos.
7778
7779 @item -O3
7780 @opindex O3
7781 Optimize yet more.  @option{-O3} turns on all optimizations specified
7782 by @option{-O2} and also turns on the @option{-finline-functions},
7783 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7784 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7785 @option{-ftree-loop-distribute-patterns},
7786 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7787 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7788
7789 @item -O0
7790 @opindex O0
7791 Reduce compilation time and make debugging produce the expected
7792 results.  This is the default.
7793
7794 @item -Os
7795 @opindex Os
7796 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7797 do not typically increase code size.  It also performs further
7798 optimizations designed to reduce code size.
7799
7800 @option{-Os} disables the following optimization flags:
7801 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7802 -falign-labels  -freorder-blocks  -freorder-blocks-algorithm=stc @gol
7803 -freorder-blocks-and-partition  -fprefetch-loop-arrays}
7804
7805 @item -Ofast
7806 @opindex Ofast
7807 Disregard strict standards compliance.  @option{-Ofast} enables all
7808 @option{-O3} optimizations.  It also enables optimizations that are not
7809 valid for all standard-compliant programs.
7810 It turns on @option{-ffast-math} and the Fortran-specific
7811 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7812
7813 @item -Og
7814 @opindex Og
7815 Optimize debugging experience.  @option{-Og} enables optimizations
7816 that do not interfere with debugging. It should be the optimization
7817 level of choice for the standard edit-compile-debug cycle, offering
7818 a reasonable level of optimization while maintaining fast compilation
7819 and a good debugging experience.
7820
7821 If you use multiple @option{-O} options, with or without level numbers,
7822 the last such option is the one that is effective.
7823 @end table
7824
7825 Options of the form @option{-f@var{flag}} specify machine-independent
7826 flags.  Most flags have both positive and negative forms; the negative
7827 form of @option{-ffoo} is @option{-fno-foo}.  In the table
7828 below, only one of the forms is listed---the one you typically 
7829 use.  You can figure out the other form by either removing @samp{no-}
7830 or adding it.
7831
7832 The following options control specific optimizations.  They are either
7833 activated by @option{-O} options or are related to ones that are.  You
7834 can use the following flags in the rare cases when ``fine-tuning'' of
7835 optimizations to be performed is desired.
7836
7837 @table @gcctabopt
7838 @item -fno-defer-pop
7839 @opindex fno-defer-pop
7840 Always pop the arguments to each function call as soon as that function
7841 returns.  For machines that must pop arguments after a function call,
7842 the compiler normally lets arguments accumulate on the stack for several
7843 function calls and pops them all at once.
7844
7845 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7846
7847 @item -fforward-propagate
7848 @opindex fforward-propagate
7849 Perform a forward propagation pass on RTL@.  The pass tries to combine two
7850 instructions and checks if the result can be simplified.  If loop unrolling
7851 is active, two passes are performed and the second is scheduled after
7852 loop unrolling.
7853
7854 This option is enabled by default at optimization levels @option{-O},
7855 @option{-O2}, @option{-O3}, @option{-Os}.
7856
7857 @item -ffp-contract=@var{style}
7858 @opindex ffp-contract
7859 @option{-ffp-contract=off} disables floating-point expression contraction.
7860 @option{-ffp-contract=fast} enables floating-point expression contraction
7861 such as forming of fused multiply-add operations if the target has
7862 native support for them.
7863 @option{-ffp-contract=on} enables floating-point expression contraction
7864 if allowed by the language standard.  This is currently not implemented
7865 and treated equal to @option{-ffp-contract=off}.
7866
7867 The default is @option{-ffp-contract=fast}.
7868
7869 @item -fomit-frame-pointer
7870 @opindex fomit-frame-pointer
7871 Don't keep the frame pointer in a register for functions that
7872 don't need one.  This avoids the instructions to save, set up and
7873 restore frame pointers; it also makes an extra register available
7874 in many functions.  @strong{It also makes debugging impossible on
7875 some machines.}
7876
7877 On some machines, such as the VAX, this flag has no effect, because
7878 the standard calling sequence automatically handles the frame pointer
7879 and nothing is saved by pretending it doesn't exist.  The
7880 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7881 whether a target machine supports this flag.  @xref{Registers,,Register
7882 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7883
7884 The default setting (when not optimizing for
7885 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7886 @option{-fomit-frame-pointer}.  You can configure GCC with the
7887 @option{--enable-frame-pointer} configure option to change the default.
7888
7889 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7890
7891 @item -foptimize-sibling-calls
7892 @opindex foptimize-sibling-calls
7893 Optimize sibling and tail recursive calls.
7894
7895 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7896
7897 @item -foptimize-strlen
7898 @opindex foptimize-strlen
7899 Optimize various standard C string functions (e.g. @code{strlen},
7900 @code{strchr} or @code{strcpy}) and
7901 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7902
7903 Enabled at levels @option{-O2}, @option{-O3}.
7904
7905 @item -fno-inline
7906 @opindex fno-inline
7907 Do not expand any functions inline apart from those marked with
7908 the @code{always_inline} attribute.  This is the default when not
7909 optimizing.
7910
7911 Single functions can be exempted from inlining by marking them
7912 with the @code{noinline} attribute.
7913
7914 @item -finline-small-functions
7915 @opindex finline-small-functions
7916 Integrate functions into their callers when their body is smaller than expected
7917 function call code (so overall size of program gets smaller).  The compiler
7918 heuristically decides which functions are simple enough to be worth integrating
7919 in this way.  This inlining applies to all functions, even those not declared
7920 inline.
7921
7922 Enabled at level @option{-O2}.
7923
7924 @item -findirect-inlining
7925 @opindex findirect-inlining
7926 Inline also indirect calls that are discovered to be known at compile
7927 time thanks to previous inlining.  This option has any effect only
7928 when inlining itself is turned on by the @option{-finline-functions}
7929 or @option{-finline-small-functions} options.
7930
7931 Enabled at level @option{-O2}.
7932
7933 @item -finline-functions
7934 @opindex finline-functions
7935 Consider all functions for inlining, even if they are not declared inline.
7936 The compiler heuristically decides which functions are worth integrating
7937 in this way.
7938
7939 If all calls to a given function are integrated, and the function is
7940 declared @code{static}, then the function is normally not output as
7941 assembler code in its own right.
7942
7943 Enabled at level @option{-O3}.
7944
7945 @item -finline-functions-called-once
7946 @opindex finline-functions-called-once
7947 Consider all @code{static} functions called once for inlining into their
7948 caller even if they are not marked @code{inline}.  If a call to a given
7949 function is integrated, then the function is not output as assembler code
7950 in its own right.
7951
7952 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7953
7954 @item -fearly-inlining
7955 @opindex fearly-inlining
7956 Inline functions marked by @code{always_inline} and functions whose body seems
7957 smaller than the function call overhead early before doing
7958 @option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7959 makes profiling significantly cheaper and usually inlining faster on programs
7960 having large chains of nested wrapper functions.
7961
7962 Enabled by default.
7963
7964 @item -fipa-sra
7965 @opindex fipa-sra
7966 Perform interprocedural scalar replacement of aggregates, removal of
7967 unused parameters and replacement of parameters passed by reference
7968 by parameters passed by value.
7969
7970 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7971
7972 @item -finline-limit=@var{n}
7973 @opindex finline-limit
7974 By default, GCC limits the size of functions that can be inlined.  This flag
7975 allows coarse control of this limit.  @var{n} is the size of functions that
7976 can be inlined in number of pseudo instructions.
7977
7978 Inlining is actually controlled by a number of parameters, which may be
7979 specified individually by using @option{--param @var{name}=@var{value}}.
7980 The @option{-finline-limit=@var{n}} option sets some of these parameters
7981 as follows:
7982
7983 @table @gcctabopt
7984 @item max-inline-insns-single
7985 is set to @var{n}/2.
7986 @item max-inline-insns-auto
7987 is set to @var{n}/2.
7988 @end table
7989
7990 See below for a documentation of the individual
7991 parameters controlling inlining and for the defaults of these parameters.
7992
7993 @emph{Note:} there may be no value to @option{-finline-limit} that results
7994 in default behavior.
7995
7996 @emph{Note:} pseudo instruction represents, in this particular context, an
7997 abstract measurement of function's size.  In no way does it represent a count
7998 of assembly instructions and as such its exact meaning might change from one
7999 release to an another.
8000
8001 @item -fno-keep-inline-dllexport
8002 @opindex fno-keep-inline-dllexport
8003 This is a more fine-grained version of @option{-fkeep-inline-functions},
8004 which applies only to functions that are declared using the @code{dllexport}
8005 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
8006 Functions}.)
8007
8008 @item -fkeep-inline-functions
8009 @opindex fkeep-inline-functions
8010 In C, emit @code{static} functions that are declared @code{inline}
8011 into the object file, even if the function has been inlined into all
8012 of its callers.  This switch does not affect functions using the
8013 @code{extern inline} extension in GNU C90@.  In C++, emit any and all
8014 inline functions into the object file.
8015
8016 @item -fkeep-static-consts
8017 @opindex fkeep-static-consts
8018 Emit variables declared @code{static const} when optimization isn't turned
8019 on, even if the variables aren't referenced.
8020
8021 GCC enables this option by default.  If you want to force the compiler to
8022 check if a variable is referenced, regardless of whether or not
8023 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8024
8025 @item -fmerge-constants
8026 @opindex fmerge-constants
8027 Attempt to merge identical constants (string constants and floating-point
8028 constants) across compilation units.
8029
8030 This option is the default for optimized compilation if the assembler and
8031 linker support it.  Use @option{-fno-merge-constants} to inhibit this
8032 behavior.
8033
8034 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8035
8036 @item -fmerge-all-constants
8037 @opindex fmerge-all-constants
8038 Attempt to merge identical constants and identical variables.
8039
8040 This option implies @option{-fmerge-constants}.  In addition to
8041 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8042 arrays or initialized constant variables with integral or floating-point
8043 types.  Languages like C or C++ require each variable, including multiple
8044 instances of the same variable in recursive calls, to have distinct locations,
8045 so using this option results in non-conforming
8046 behavior.
8047
8048 @item -fmodulo-sched
8049 @opindex fmodulo-sched
8050 Perform swing modulo scheduling immediately before the first scheduling
8051 pass.  This pass looks at innermost loops and reorders their
8052 instructions by overlapping different iterations.
8053
8054 @item -fmodulo-sched-allow-regmoves
8055 @opindex fmodulo-sched-allow-regmoves
8056 Perform more aggressive SMS-based modulo scheduling with register moves
8057 allowed.  By setting this flag certain anti-dependences edges are
8058 deleted, which triggers the generation of reg-moves based on the
8059 life-range analysis.  This option is effective only with
8060 @option{-fmodulo-sched} enabled.
8061
8062 @item -fno-branch-count-reg
8063 @opindex fno-branch-count-reg
8064 Do not use ``decrement and branch'' instructions on a count register,
8065 but instead generate a sequence of instructions that decrement a
8066 register, compare it against zero, then branch based upon the result.
8067 This option is only meaningful on architectures that support such
8068 instructions, which include x86, PowerPC, IA-64 and S/390.
8069
8070 Enabled by default at @option{-O1} and higher.
8071
8072 The default is @option{-fbranch-count-reg}.
8073
8074 @item -fno-function-cse
8075 @opindex fno-function-cse
8076 Do not put function addresses in registers; make each instruction that
8077 calls a constant function contain the function's address explicitly.
8078
8079 This option results in less efficient code, but some strange hacks
8080 that alter the assembler output may be confused by the optimizations
8081 performed when this option is not used.
8082
8083 The default is @option{-ffunction-cse}
8084
8085 @item -fno-zero-initialized-in-bss
8086 @opindex fno-zero-initialized-in-bss
8087 If the target supports a BSS section, GCC by default puts variables that
8088 are initialized to zero into BSS@.  This can save space in the resulting
8089 code.
8090
8091 This option turns off this behavior because some programs explicitly
8092 rely on variables going to the data section---e.g., so that the
8093 resulting executable can find the beginning of that section and/or make
8094 assumptions based on that.
8095
8096 The default is @option{-fzero-initialized-in-bss}.
8097
8098 @item -fthread-jumps
8099 @opindex fthread-jumps
8100 Perform optimizations that check to see if a jump branches to a
8101 location where another comparison subsumed by the first is found.  If
8102 so, the first branch is redirected to either the destination of the
8103 second branch or a point immediately following it, depending on whether
8104 the condition is known to be true or false.
8105
8106 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8107
8108 @item -fsplit-wide-types
8109 @opindex fsplit-wide-types
8110 When using a type that occupies multiple registers, such as @code{long
8111 long} on a 32-bit system, split the registers apart and allocate them
8112 independently.  This normally generates better code for those types,
8113 but may make debugging more difficult.
8114
8115 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8116 @option{-Os}.
8117
8118 @item -fcse-follow-jumps
8119 @opindex fcse-follow-jumps
8120 In common subexpression elimination (CSE), scan through jump instructions
8121 when the target of the jump is not reached by any other path.  For
8122 example, when CSE encounters an @code{if} statement with an
8123 @code{else} clause, CSE follows the jump when the condition
8124 tested is false.
8125
8126 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8127
8128 @item -fcse-skip-blocks
8129 @opindex fcse-skip-blocks
8130 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8131 follow jumps that conditionally skip over blocks.  When CSE
8132 encounters a simple @code{if} statement with no else clause,
8133 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8134 body of the @code{if}.
8135
8136 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8137
8138 @item -frerun-cse-after-loop
8139 @opindex frerun-cse-after-loop
8140 Re-run common subexpression elimination after loop optimizations are
8141 performed.
8142
8143 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8144
8145 @item -fgcse
8146 @opindex fgcse
8147 Perform a global common subexpression elimination pass.
8148 This pass also performs global constant and copy propagation.
8149
8150 @emph{Note:} When compiling a program using computed gotos, a GCC
8151 extension, you may get better run-time performance if you disable
8152 the global common subexpression elimination pass by adding
8153 @option{-fno-gcse} to the command line.
8154
8155 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8156
8157 @item -fgcse-lm
8158 @opindex fgcse-lm
8159 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8160 attempts to move loads that are only killed by stores into themselves.  This
8161 allows a loop containing a load/store sequence to be changed to a load outside
8162 the loop, and a copy/store within the loop.
8163
8164 Enabled by default when @option{-fgcse} is enabled.
8165
8166 @item -fgcse-sm
8167 @opindex fgcse-sm
8168 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8169 global common subexpression elimination.  This pass attempts to move
8170 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
8171 loops containing a load/store sequence can be changed to a load before
8172 the loop and a store after the loop.
8173
8174 Not enabled at any optimization level.
8175
8176 @item -fgcse-las
8177 @opindex fgcse-las
8178 When @option{-fgcse-las} is enabled, the global common subexpression
8179 elimination pass eliminates redundant loads that come after stores to the
8180 same memory location (both partial and full redundancies).
8181
8182 Not enabled at any optimization level.
8183
8184 @item -fgcse-after-reload
8185 @opindex fgcse-after-reload
8186 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8187 pass is performed after reload.  The purpose of this pass is to clean up
8188 redundant spilling.
8189
8190 @item -faggressive-loop-optimizations
8191 @opindex faggressive-loop-optimizations
8192 This option tells the loop optimizer to use language constraints to
8193 derive bounds for the number of iterations of a loop.  This assumes that
8194 loop code does not invoke undefined behavior by for example causing signed
8195 integer overflows or out-of-bound array accesses.  The bounds for the
8196 number of iterations of a loop are used to guide loop unrolling and peeling
8197 and loop exit test optimizations.
8198 This option is enabled by default.
8199
8200 @item -funsafe-loop-optimizations
8201 @opindex funsafe-loop-optimizations
8202 This option tells the loop optimizer to assume that loop indices do not
8203 overflow, and that loops with nontrivial exit condition are not
8204 infinite.  This enables a wider range of loop optimizations even if
8205 the loop optimizer itself cannot prove that these assumptions are valid.
8206 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8207 if it finds this kind of loop.
8208
8209 @item -fcrossjumping
8210 @opindex fcrossjumping
8211 Perform cross-jumping transformation.
8212 This transformation unifies equivalent code and saves code size.  The
8213 resulting code may or may not perform better than without cross-jumping.
8214
8215 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8216
8217 @item -fauto-inc-dec
8218 @opindex fauto-inc-dec
8219 Combine increments or decrements of addresses with memory accesses.
8220 This pass is always skipped on architectures that do not have
8221 instructions to support this.  Enabled by default at @option{-O} and
8222 higher on architectures that support this.
8223
8224 @item -fdce
8225 @opindex fdce
8226 Perform dead code elimination (DCE) on RTL@.
8227 Enabled by default at @option{-O} and higher.
8228
8229 @item -fdse
8230 @opindex fdse
8231 Perform dead store elimination (DSE) on RTL@.
8232 Enabled by default at @option{-O} and higher.
8233
8234 @item -fif-conversion
8235 @opindex fif-conversion
8236 Attempt to transform conditional jumps into branch-less equivalents.  This
8237 includes use of conditional moves, min, max, set flags and abs instructions, and
8238 some tricks doable by standard arithmetics.  The use of conditional execution
8239 on chips where it is available is controlled by @option{-fif-conversion2}.
8240
8241 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8242
8243 @item -fif-conversion2
8244 @opindex fif-conversion2
8245 Use conditional execution (where available) to transform conditional jumps into
8246 branch-less equivalents.
8247
8248 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8249
8250 @item -fdeclone-ctor-dtor
8251 @opindex fdeclone-ctor-dtor
8252 The C++ ABI requires multiple entry points for constructors and
8253 destructors: one for a base subobject, one for a complete object, and
8254 one for a virtual destructor that calls operator delete afterwards.
8255 For a hierarchy with virtual bases, the base and complete variants are
8256 clones, which means two copies of the function.  With this option, the
8257 base and complete variants are changed to be thunks that call a common
8258 implementation.
8259
8260 Enabled by @option{-Os}.
8261
8262 @item -fdelete-null-pointer-checks
8263 @opindex fdelete-null-pointer-checks
8264 Assume that programs cannot safely dereference null pointers, and that
8265 no code or data element resides at address zero.
8266 This option enables simple constant
8267 folding optimizations at all optimization levels.  In addition, other
8268 optimization passes in GCC use this flag to control global dataflow
8269 analyses that eliminate useless checks for null pointers; these assume
8270 that a memory access to address zero always results in a trap, so
8271 that if a pointer is checked after it has already been dereferenced,
8272 it cannot be null.
8273
8274 Note however that in some environments this assumption is not true.
8275 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8276 for programs that depend on that behavior.
8277
8278 This option is enabled by default on most targets.  On Nios II ELF, it
8279 defaults to off.  On AVR and CR16, this option is completely disabled.  
8280
8281 Passes that use the dataflow information
8282 are enabled independently at different optimization levels.
8283
8284 @item -fdevirtualize
8285 @opindex fdevirtualize
8286 Attempt to convert calls to virtual functions to direct calls.  This
8287 is done both within a procedure and interprocedurally as part of
8288 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8289 propagation (@option{-fipa-cp}).
8290 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8291
8292 @item -fdevirtualize-speculatively
8293 @opindex fdevirtualize-speculatively
8294 Attempt to convert calls to virtual functions to speculative direct calls.
8295 Based on the analysis of the type inheritance graph, determine for a given call
8296 the set of likely targets. If the set is small, preferably of size 1, change
8297 the call into a conditional deciding between direct and indirect calls.  The
8298 speculative calls enable more optimizations, such as inlining.  When they seem
8299 useless after further optimization, they are converted back into original form.
8300
8301 @item -fdevirtualize-at-ltrans
8302 @opindex fdevirtualize-at-ltrans
8303 Stream extra information needed for aggressive devirtualization when running
8304 the link-time optimizer in local transformation mode.  
8305 This option enables more devirtualization but
8306 significantly increases the size of streamed data. For this reason it is
8307 disabled by default.
8308
8309 @item -fexpensive-optimizations
8310 @opindex fexpensive-optimizations
8311 Perform a number of minor optimizations that are relatively expensive.
8312
8313 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8314
8315 @item -free
8316 @opindex free
8317 Attempt to remove redundant extension instructions.  This is especially
8318 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8319 registers after writing to their lower 32-bit half.
8320
8321 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8322 @option{-O3}, @option{-Os}.
8323
8324 @item -fno-lifetime-dse
8325 @opindex fno-lifetime-dse
8326 In C++ the value of an object is only affected by changes within its
8327 lifetime: when the constructor begins, the object has an indeterminate
8328 value, and any changes during the lifetime of the object are dead when
8329 the object is destroyed.  Normally dead store elimination will take
8330 advantage of this; if your code relies on the value of the object
8331 storage persisting beyond the lifetime of the object, you can use this
8332 flag to disable this optimization.
8333
8334 @item -flive-range-shrinkage
8335 @opindex flive-range-shrinkage
8336 Attempt to decrease register pressure through register live range
8337 shrinkage.  This is helpful for fast processors with small or moderate
8338 size register sets.
8339
8340 @item -fira-algorithm=@var{algorithm}
8341 @opindex fira-algorithm
8342 Use the specified coloring algorithm for the integrated register
8343 allocator.  The @var{algorithm} argument can be @samp{priority}, which
8344 specifies Chow's priority coloring, or @samp{CB}, which specifies
8345 Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8346 for all architectures, but for those targets that do support it, it is
8347 the default because it generates better code.
8348
8349 @item -fira-region=@var{region}
8350 @opindex fira-region
8351 Use specified regions for the integrated register allocator.  The
8352 @var{region} argument should be one of the following:
8353
8354 @table @samp
8355
8356 @item all
8357 Use all loops as register allocation regions.
8358 This can give the best results for machines with a small and/or
8359 irregular register set.
8360
8361 @item mixed
8362 Use all loops except for loops with small register pressure 
8363 as the regions.  This value usually gives
8364 the best results in most cases and for most architectures,
8365 and is enabled by default when compiling with optimization for speed
8366 (@option{-O}, @option{-O2}, @dots{}).
8367
8368 @item one
8369 Use all functions as a single region.  
8370 This typically results in the smallest code size, and is enabled by default for
8371 @option{-Os} or @option{-O0}.
8372
8373 @end table
8374
8375 @item -fira-hoist-pressure
8376 @opindex fira-hoist-pressure
8377 Use IRA to evaluate register pressure in the code hoisting pass for
8378 decisions to hoist expressions.  This option usually results in smaller
8379 code, but it can slow the compiler down.
8380
8381 This option is enabled at level @option{-Os} for all targets.
8382
8383 @item -fira-loop-pressure
8384 @opindex fira-loop-pressure
8385 Use IRA to evaluate register pressure in loops for decisions to move
8386 loop invariants.  This option usually results in generation
8387 of faster and smaller code on machines with large register files (>= 32
8388 registers), but it can slow the compiler down.
8389
8390 This option is enabled at level @option{-O3} for some targets.
8391
8392 @item -fno-ira-share-save-slots
8393 @opindex fno-ira-share-save-slots
8394 Disable sharing of stack slots used for saving call-used hard
8395 registers living through a call.  Each hard register gets a
8396 separate stack slot, and as a result function stack frames are
8397 larger.
8398
8399 @item -fno-ira-share-spill-slots
8400 @opindex fno-ira-share-spill-slots
8401 Disable sharing of stack slots allocated for pseudo-registers.  Each
8402 pseudo-register that does not get a hard register gets a separate
8403 stack slot, and as a result function stack frames are larger.
8404
8405 @item -fira-verbose=@var{n}
8406 @opindex fira-verbose
8407 Control the verbosity of the dump file for the integrated register allocator.
8408 The default value is 5.  If the value @var{n} is greater or equal to 10,
8409 the dump output is sent to stderr using the same format as @var{n} minus 10.
8410
8411 @item -flra-remat
8412 @opindex flra-remat
8413 Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8414 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8415 values if it is profitable.
8416
8417 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8418
8419 @item -fdelayed-branch
8420 @opindex fdelayed-branch
8421 If supported for the target machine, attempt to reorder instructions
8422 to exploit instruction slots available after delayed branch
8423 instructions.
8424
8425 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8426
8427 @item -fschedule-insns
8428 @opindex fschedule-insns
8429 If supported for the target machine, attempt to reorder instructions to
8430 eliminate execution stalls due to required data being unavailable.  This
8431 helps machines that have slow floating point or memory load instructions
8432 by allowing other instructions to be issued until the result of the load
8433 or floating-point instruction is required.
8434
8435 Enabled at levels @option{-O2}, @option{-O3}.
8436
8437 @item -fschedule-insns2
8438 @opindex fschedule-insns2
8439 Similar to @option{-fschedule-insns}, but requests an additional pass of
8440 instruction scheduling after register allocation has been done.  This is
8441 especially useful on machines with a relatively small number of
8442 registers and where memory load instructions take more than one cycle.
8443
8444 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8445
8446 @item -fno-sched-interblock
8447 @opindex fno-sched-interblock
8448 Don't schedule instructions across basic blocks.  This is normally
8449 enabled by default when scheduling before register allocation, i.e.@:
8450 with @option{-fschedule-insns} or at @option{-O2} or higher.
8451
8452 @item -fno-sched-spec
8453 @opindex fno-sched-spec
8454 Don't allow speculative motion of non-load instructions.  This is normally
8455 enabled by default when scheduling before register allocation, i.e.@:
8456 with @option{-fschedule-insns} or at @option{-O2} or higher.
8457
8458 @item -fsched-pressure
8459 @opindex fsched-pressure
8460 Enable register pressure sensitive insn scheduling before register
8461 allocation.  This only makes sense when scheduling before register
8462 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8463 @option{-O2} or higher.  Usage of this option can improve the
8464 generated code and decrease its size by preventing register pressure
8465 increase above the number of available hard registers and subsequent
8466 spills in register allocation.
8467
8468 @item -fsched-spec-load
8469 @opindex fsched-spec-load
8470 Allow speculative motion of some load instructions.  This only makes
8471 sense when scheduling before register allocation, i.e.@: with
8472 @option{-fschedule-insns} or at @option{-O2} or higher.
8473
8474 @item -fsched-spec-load-dangerous
8475 @opindex fsched-spec-load-dangerous
8476 Allow speculative motion of more load instructions.  This only makes
8477 sense when scheduling before register allocation, i.e.@: with
8478 @option{-fschedule-insns} or at @option{-O2} or higher.
8479
8480 @item -fsched-stalled-insns
8481 @itemx -fsched-stalled-insns=@var{n}
8482 @opindex fsched-stalled-insns
8483 Define how many insns (if any) can be moved prematurely from the queue
8484 of stalled insns into the ready list during the second scheduling pass.
8485 @option{-fno-sched-stalled-insns} means that no insns are moved
8486 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8487 on how many queued insns can be moved prematurely.
8488 @option{-fsched-stalled-insns} without a value is equivalent to
8489 @option{-fsched-stalled-insns=1}.
8490
8491 @item -fsched-stalled-insns-dep
8492 @itemx -fsched-stalled-insns-dep=@var{n}
8493 @opindex fsched-stalled-insns-dep
8494 Define how many insn groups (cycles) are examined for a dependency
8495 on a stalled insn that is a candidate for premature removal from the queue
8496 of stalled insns.  This has an effect only during the second scheduling pass,
8497 and only if @option{-fsched-stalled-insns} is used.
8498 @option{-fno-sched-stalled-insns-dep} is equivalent to
8499 @option{-fsched-stalled-insns-dep=0}.
8500 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8501 @option{-fsched-stalled-insns-dep=1}.
8502
8503 @item -fsched2-use-superblocks
8504 @opindex fsched2-use-superblocks
8505 When scheduling after register allocation, use superblock scheduling.
8506 This allows motion across basic block boundaries,
8507 resulting in faster schedules.  This option is experimental, as not all machine
8508 descriptions used by GCC model the CPU closely enough to avoid unreliable
8509 results from the algorithm.
8510
8511 This only makes sense when scheduling after register allocation, i.e.@: with
8512 @option{-fschedule-insns2} or at @option{-O2} or higher.
8513
8514 @item -fsched-group-heuristic
8515 @opindex fsched-group-heuristic
8516 Enable the group heuristic in the scheduler.  This heuristic favors
8517 the instruction that belongs to a schedule group.  This is enabled
8518 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8519 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8520
8521 @item -fsched-critical-path-heuristic
8522 @opindex fsched-critical-path-heuristic
8523 Enable the critical-path heuristic in the scheduler.  This heuristic favors
8524 instructions on the critical path.  This is enabled by default when
8525 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8526 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8527
8528 @item -fsched-spec-insn-heuristic
8529 @opindex fsched-spec-insn-heuristic
8530 Enable the speculative instruction heuristic in the scheduler.  This
8531 heuristic favors speculative instructions with greater dependency weakness.
8532 This is enabled by default when scheduling is enabled, i.e.@:
8533 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8534 or at @option{-O2} or higher.
8535
8536 @item -fsched-rank-heuristic
8537 @opindex fsched-rank-heuristic
8538 Enable the rank heuristic in the scheduler.  This heuristic favors
8539 the instruction belonging to a basic block with greater size or frequency.
8540 This is enabled by default when scheduling is enabled, i.e.@:
8541 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8542 at @option{-O2} or higher.
8543
8544 @item -fsched-last-insn-heuristic
8545 @opindex fsched-last-insn-heuristic
8546 Enable the last-instruction heuristic in the scheduler.  This heuristic
8547 favors the instruction that is less dependent on the last instruction
8548 scheduled.  This is enabled by default when scheduling is enabled,
8549 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8550 at @option{-O2} or higher.
8551
8552 @item -fsched-dep-count-heuristic
8553 @opindex fsched-dep-count-heuristic
8554 Enable the dependent-count heuristic in the scheduler.  This heuristic
8555 favors the instruction that has more instructions depending on it.
8556 This is enabled by default when scheduling is enabled, i.e.@:
8557 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8558 at @option{-O2} or higher.
8559
8560 @item -freschedule-modulo-scheduled-loops
8561 @opindex freschedule-modulo-scheduled-loops
8562 Modulo scheduling is performed before traditional scheduling.  If a loop
8563 is modulo scheduled, later scheduling passes may change its schedule.  
8564 Use this option to control that behavior.
8565
8566 @item -fselective-scheduling
8567 @opindex fselective-scheduling
8568 Schedule instructions using selective scheduling algorithm.  Selective
8569 scheduling runs instead of the first scheduler pass.
8570
8571 @item -fselective-scheduling2
8572 @opindex fselective-scheduling2
8573 Schedule instructions using selective scheduling algorithm.  Selective
8574 scheduling runs instead of the second scheduler pass.
8575
8576 @item -fsel-sched-pipelining
8577 @opindex fsel-sched-pipelining
8578 Enable software pipelining of innermost loops during selective scheduling.
8579 This option has no effect unless one of @option{-fselective-scheduling} or
8580 @option{-fselective-scheduling2} is turned on.
8581
8582 @item -fsel-sched-pipelining-outer-loops
8583 @opindex fsel-sched-pipelining-outer-loops
8584 When pipelining loops during selective scheduling, also pipeline outer loops.
8585 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8586
8587 @item -fsemantic-interposition
8588 @opindex fsemantic-interposition
8589 Some object formats, like ELF, allow interposing of symbols by the 
8590 dynamic linker.
8591 This means that for symbols exported from the DSO, the compiler cannot perform
8592 interprocedural propagation, inlining and other optimizations in anticipation
8593 that the function or variable in question may change. While this feature is
8594 useful, for example, to rewrite memory allocation functions by a debugging
8595 implementation, it is expensive in the terms of code quality.
8596 With @option{-fno-semantic-interposition} the compiler assumes that 
8597 if interposition happens for functions the overwriting function will have 
8598 precisely the same semantics (and side effects). 
8599 Similarly if interposition happens
8600 for variables, the constructor of the variable will be the same. The flag
8601 has no effect for functions explicitly declared inline 
8602 (where it is never allowed for interposition to change semantics) 
8603 and for symbols explicitly declared weak.
8604
8605 @item -fshrink-wrap
8606 @opindex fshrink-wrap
8607 Emit function prologues only before parts of the function that need it,
8608 rather than at the top of the function.  This flag is enabled by default at
8609 @option{-O} and higher.
8610
8611 @item -fcaller-saves
8612 @opindex fcaller-saves
8613 Enable allocation of values to registers that are clobbered by
8614 function calls, by emitting extra instructions to save and restore the
8615 registers around such calls.  Such allocation is done only when it
8616 seems to result in better code.
8617
8618 This option is always enabled by default on certain machines, usually
8619 those which have no call-preserved registers to use instead.
8620
8621 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8622
8623 @item -fcombine-stack-adjustments
8624 @opindex fcombine-stack-adjustments
8625 Tracks stack adjustments (pushes and pops) and stack memory references
8626 and then tries to find ways to combine them.
8627
8628 Enabled by default at @option{-O1} and higher.
8629
8630 @item -fipa-ra
8631 @opindex fipa-ra
8632 Use caller save registers for allocation if those registers are not used by
8633 any called function.  In that case it is not necessary to save and restore
8634 them around calls.  This is only possible if called functions are part of
8635 same compilation unit as current function and they are compiled before it.
8636
8637 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8638
8639 @item -fconserve-stack
8640 @opindex fconserve-stack
8641 Attempt to minimize stack usage.  The compiler attempts to use less
8642 stack space, even if that makes the program slower.  This option
8643 implies setting the @option{large-stack-frame} parameter to 100
8644 and the @option{large-stack-frame-growth} parameter to 400.
8645
8646 @item -ftree-reassoc
8647 @opindex ftree-reassoc
8648 Perform reassociation on trees.  This flag is enabled by default
8649 at @option{-O} and higher.
8650
8651 @item -ftree-pre
8652 @opindex ftree-pre
8653 Perform partial redundancy elimination (PRE) on trees.  This flag is
8654 enabled by default at @option{-O2} and @option{-O3}.
8655
8656 @item -ftree-partial-pre
8657 @opindex ftree-partial-pre
8658 Make partial redundancy elimination (PRE) more aggressive.  This flag is
8659 enabled by default at @option{-O3}.
8660
8661 @item -ftree-forwprop
8662 @opindex ftree-forwprop
8663 Perform forward propagation on trees.  This flag is enabled by default
8664 at @option{-O} and higher.
8665
8666 @item -ftree-fre
8667 @opindex ftree-fre
8668 Perform full redundancy elimination (FRE) on trees.  The difference
8669 between FRE and PRE is that FRE only considers expressions
8670 that are computed on all paths leading to the redundant computation.
8671 This analysis is faster than PRE, though it exposes fewer redundancies.
8672 This flag is enabled by default at @option{-O} and higher.
8673
8674 @item -ftree-phiprop
8675 @opindex ftree-phiprop
8676 Perform hoisting of loads from conditional pointers on trees.  This
8677 pass is enabled by default at @option{-O} and higher.
8678
8679 @item -fhoist-adjacent-loads
8680 @opindex fhoist-adjacent-loads
8681 Speculatively hoist loads from both branches of an if-then-else if the
8682 loads are from adjacent locations in the same structure and the target
8683 architecture has a conditional move instruction.  This flag is enabled
8684 by default at @option{-O2} and higher.
8685
8686 @item -ftree-copy-prop
8687 @opindex ftree-copy-prop
8688 Perform copy propagation on trees.  This pass eliminates unnecessary
8689 copy operations.  This flag is enabled by default at @option{-O} and
8690 higher.
8691
8692 @item -fipa-pure-const
8693 @opindex fipa-pure-const
8694 Discover which functions are pure or constant.
8695 Enabled by default at @option{-O} and higher.
8696
8697 @item -fipa-reference
8698 @opindex fipa-reference
8699 Discover which static variables do not escape the
8700 compilation unit.
8701 Enabled by default at @option{-O} and higher.
8702
8703 @item -fipa-pta
8704 @opindex fipa-pta
8705 Perform interprocedural pointer analysis and interprocedural modification
8706 and reference analysis.  This option can cause excessive memory and
8707 compile-time usage on large compilation units.  It is not enabled by
8708 default at any optimization level.
8709
8710 @item -fipa-profile
8711 @opindex fipa-profile
8712 Perform interprocedural profile propagation.  The functions called only from
8713 cold functions are marked as cold. Also functions executed once (such as
8714 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8715 functions and loop less parts of functions executed once are then optimized for
8716 size.
8717 Enabled by default at @option{-O} and higher.
8718
8719 @item -fipa-cp
8720 @opindex fipa-cp
8721 Perform interprocedural constant propagation.
8722 This optimization analyzes the program to determine when values passed
8723 to functions are constants and then optimizes accordingly.
8724 This optimization can substantially increase performance
8725 if the application has constants passed to functions.
8726 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8727
8728 @item -fipa-cp-clone
8729 @opindex fipa-cp-clone
8730 Perform function cloning to make interprocedural constant propagation stronger.
8731 When enabled, interprocedural constant propagation performs function cloning
8732 when externally visible function can be called with constant arguments.
8733 Because this optimization can create multiple copies of functions,
8734 it may significantly increase code size
8735 (see @option{--param ipcp-unit-growth=@var{value}}).
8736 This flag is enabled by default at @option{-O3}.
8737
8738 @item -fipa-cp-alignment
8739 @opindex -fipa-cp-alignment
8740 When enabled, this optimization propagates alignment of function
8741 parameters to support better vectorization and string operations.
8742
8743 This flag is enabled by default at @option{-O2} and @option{-Os}.  It
8744 requires that @option{-fipa-cp} is enabled.
8745
8746 @item -fipa-icf
8747 @opindex fipa-icf
8748 Perform Identical Code Folding for functions and read-only variables.
8749 The optimization reduces code size and may disturb unwind stacks by replacing
8750 a function by equivalent one with a different name. The optimization works
8751 more effectively with link time optimization enabled.
8752
8753 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8754 works on different levels and thus the optimizations are not same - there are
8755 equivalences that are found only by GCC and equivalences found only by Gold.
8756
8757 This flag is enabled by default at @option{-O2} and @option{-Os}.
8758
8759 @item -fisolate-erroneous-paths-dereference
8760 @opindex fisolate-erroneous-paths-dereference
8761 Detect paths that trigger erroneous or undefined behavior due to
8762 dereferencing a null pointer.  Isolate those paths from the main control
8763 flow and turn the statement with erroneous or undefined behavior into a trap.
8764 This flag is enabled by default at @option{-O2} and higher and depends on
8765 @option{-fdelete-null-pointer-checks} also being enabled.
8766
8767 @item -fisolate-erroneous-paths-attribute
8768 @opindex fisolate-erroneous-paths-attribute
8769 Detect paths that trigger erroneous or undefined behavior due a null value
8770 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8771 attribute.  Isolate those paths from the main control flow and turn the
8772 statement with erroneous or undefined behavior into a trap.  This is not
8773 currently enabled, but may be enabled by @option{-O2} in the future.
8774
8775 @item -ftree-sink
8776 @opindex ftree-sink
8777 Perform forward store motion  on trees.  This flag is
8778 enabled by default at @option{-O} and higher.
8779
8780 @item -ftree-bit-ccp
8781 @opindex ftree-bit-ccp
8782 Perform sparse conditional bit constant propagation on trees and propagate
8783 pointer alignment information.
8784 This pass only operates on local scalar variables and is enabled by default
8785 at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8786
8787 @item -ftree-ccp
8788 @opindex ftree-ccp
8789 Perform sparse conditional constant propagation (CCP) on trees.  This
8790 pass only operates on local scalar variables and is enabled by default
8791 at @option{-O} and higher.
8792
8793 @item -fssa-phiopt
8794 @opindex fssa-phiopt
8795 Perform pattern matching on SSA PHI nodes to optimize conditional
8796 code.  This pass is enabled by default at @option{-O} and higher.
8797
8798 @item -ftree-switch-conversion
8799 @opindex ftree-switch-conversion
8800 Perform conversion of simple initializations in a switch to
8801 initializations from a scalar array.  This flag is enabled by default
8802 at @option{-O2} and higher.
8803
8804 @item -ftree-tail-merge
8805 @opindex ftree-tail-merge
8806 Look for identical code sequences.  When found, replace one with a jump to the
8807 other.  This optimization is known as tail merging or cross jumping.  This flag
8808 is enabled by default at @option{-O2} and higher.  The compilation time
8809 in this pass can
8810 be limited using @option{max-tail-merge-comparisons} parameter and
8811 @option{max-tail-merge-iterations} parameter.
8812
8813 @item -ftree-dce
8814 @opindex ftree-dce
8815 Perform dead code elimination (DCE) on trees.  This flag is enabled by
8816 default at @option{-O} and higher.
8817
8818 @item -ftree-builtin-call-dce
8819 @opindex ftree-builtin-call-dce
8820 Perform conditional dead code elimination (DCE) for calls to built-in functions
8821 that may set @code{errno} but are otherwise side-effect free.  This flag is
8822 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8823 specified.
8824
8825 @item -ftree-dominator-opts
8826 @opindex ftree-dominator-opts
8827 Perform a variety of simple scalar cleanups (constant/copy
8828 propagation, redundancy elimination, range propagation and expression
8829 simplification) based on a dominator tree traversal.  This also
8830 performs jump threading (to reduce jumps to jumps). This flag is
8831 enabled by default at @option{-O} and higher.
8832
8833 @item -ftree-dse
8834 @opindex ftree-dse
8835 Perform dead store elimination (DSE) on trees.  A dead store is a store into
8836 a memory location that is later overwritten by another store without
8837 any intervening loads.  In this case the earlier store can be deleted.  This
8838 flag is enabled by default at @option{-O} and higher.
8839
8840 @item -ftree-ch
8841 @opindex ftree-ch
8842 Perform loop header copying on trees.  This is beneficial since it increases
8843 effectiveness of code motion optimizations.  It also saves one jump.  This flag
8844 is enabled by default at @option{-O} and higher.  It is not enabled
8845 for @option{-Os}, since it usually increases code size.
8846
8847 @item -ftree-loop-optimize
8848 @opindex ftree-loop-optimize
8849 Perform loop optimizations on trees.  This flag is enabled by default
8850 at @option{-O} and higher.
8851
8852 @item -ftree-loop-linear
8853 @itemx -floop-interchange
8854 @itemx -floop-strip-mine
8855 @itemx -floop-block
8856 @itemx -floop-unroll-and-jam
8857 @opindex ftree-loop-linear
8858 @opindex floop-interchange
8859 @opindex floop-strip-mine
8860 @opindex floop-block
8861 @opindex floop-unroll-and-jam
8862 Perform loop nest optimizations.  Same as
8863 @option{-floop-nest-optimize}.  To use this code transformation, GCC has
8864 to be configured with @option{--with-isl} to enable the Graphite loop
8865 transformation infrastructure.
8866
8867 @item -fgraphite-identity
8868 @opindex fgraphite-identity
8869 Enable the identity transformation for graphite.  For every SCoP we generate
8870 the polyhedral representation and transform it back to gimple.  Using
8871 @option{-fgraphite-identity} we can check the costs or benefits of the
8872 GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8873 are also performed by the code generator ISL, like index splitting and
8874 dead code elimination in loops.
8875
8876 @item -floop-nest-optimize
8877 @opindex floop-nest-optimize
8878 Enable the ISL based loop nest optimizer.  This is a generic loop nest
8879 optimizer based on the Pluto optimization algorithms.  It calculates a loop
8880 structure optimized for data-locality and parallelism.  This option
8881 is experimental.
8882
8883 @item -floop-parallelize-all
8884 @opindex floop-parallelize-all
8885 Use the Graphite data dependence analysis to identify loops that can
8886 be parallelized.  Parallelize all the loops that can be analyzed to
8887 not contain loop carried dependences without checking that it is
8888 profitable to parallelize the loops.
8889
8890 @item -ftree-coalesce-vars
8891 @opindex ftree-coalesce-vars
8892 While transforming the program out of the SSA representation, attempt to
8893 reduce copying by coalescing versions of different user-defined
8894 variables, instead of just compiler temporaries.  This may severely
8895 limit the ability to debug an optimized program compiled with
8896 @option{-fno-var-tracking-assignments}.  In the negated form, this flag
8897 prevents SSA coalescing of user variables.  This option is enabled by
8898 default if optimization is enabled, and it does very little otherwise.
8899
8900 @item -ftree-loop-if-convert
8901 @opindex ftree-loop-if-convert
8902 Attempt to transform conditional jumps in the innermost loops to
8903 branch-less equivalents.  The intent is to remove control-flow from
8904 the innermost loops in order to improve the ability of the
8905 vectorization pass to handle these loops.  This is enabled by default
8906 if vectorization is enabled.
8907
8908 @item -ftree-loop-if-convert-stores
8909 @opindex ftree-loop-if-convert-stores
8910 Attempt to also if-convert conditional jumps containing memory writes.
8911 This transformation can be unsafe for multi-threaded programs as it
8912 transforms conditional memory writes into unconditional memory writes.
8913 For example,
8914 @smallexample
8915 for (i = 0; i < N; i++)
8916   if (cond)
8917     A[i] = expr;
8918 @end smallexample
8919 is transformed to
8920 @smallexample
8921 for (i = 0; i < N; i++)
8922   A[i] = cond ? expr : A[i];
8923 @end smallexample
8924 potentially producing data races.
8925
8926 @item -ftree-loop-distribution
8927 @opindex ftree-loop-distribution
8928 Perform loop distribution.  This flag can improve cache performance on
8929 big loop bodies and allow further loop optimizations, like
8930 parallelization or vectorization, to take place.  For example, the loop
8931 @smallexample
8932 DO I = 1, N
8933   A(I) = B(I) + C
8934   D(I) = E(I) * F
8935 ENDDO
8936 @end smallexample
8937 is transformed to
8938 @smallexample
8939 DO I = 1, N
8940    A(I) = B(I) + C
8941 ENDDO
8942 DO I = 1, N
8943    D(I) = E(I) * F
8944 ENDDO
8945 @end smallexample
8946
8947 @item -ftree-loop-distribute-patterns
8948 @opindex ftree-loop-distribute-patterns
8949 Perform loop distribution of patterns that can be code generated with
8950 calls to a library.  This flag is enabled by default at @option{-O3}.
8951
8952 This pass distributes the initialization loops and generates a call to
8953 memset zero.  For example, the loop
8954 @smallexample
8955 DO I = 1, N
8956   A(I) = 0
8957   B(I) = A(I) + I
8958 ENDDO
8959 @end smallexample
8960 is transformed to
8961 @smallexample
8962 DO I = 1, N
8963    A(I) = 0
8964 ENDDO
8965 DO I = 1, N
8966    B(I) = A(I) + I
8967 ENDDO
8968 @end smallexample
8969 and the initialization loop is transformed into a call to memset zero.
8970
8971 @item -ftree-loop-im
8972 @opindex ftree-loop-im
8973 Perform loop invariant motion on trees.  This pass moves only invariants that
8974 are hard to handle at RTL level (function calls, operations that expand to
8975 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8976 operands of conditions that are invariant out of the loop, so that we can use
8977 just trivial invariantness analysis in loop unswitching.  The pass also includes
8978 store motion.
8979
8980 @item -ftree-loop-ivcanon
8981 @opindex ftree-loop-ivcanon
8982 Create a canonical counter for number of iterations in loops for which
8983 determining number of iterations requires complicated analysis.  Later
8984 optimizations then may determine the number easily.  Useful especially
8985 in connection with unrolling.
8986
8987 @item -fivopts
8988 @opindex fivopts
8989 Perform induction variable optimizations (strength reduction, induction
8990 variable merging and induction variable elimination) on trees.
8991
8992 @item -ftree-parallelize-loops=n
8993 @opindex ftree-parallelize-loops
8994 Parallelize loops, i.e., split their iteration space to run in n threads.
8995 This is only possible for loops whose iterations are independent
8996 and can be arbitrarily reordered.  The optimization is only
8997 profitable on multiprocessor machines, for loops that are CPU-intensive,
8998 rather than constrained e.g.@: by memory bandwidth.  This option
8999 implies @option{-pthread}, and thus is only supported on targets
9000 that have support for @option{-pthread}.
9001
9002 @item -ftree-pta
9003 @opindex ftree-pta
9004 Perform function-local points-to analysis on trees.  This flag is
9005 enabled by default at @option{-O} and higher.
9006
9007 @item -ftree-sra
9008 @opindex ftree-sra
9009 Perform scalar replacement of aggregates.  This pass replaces structure
9010 references with scalars to prevent committing structures to memory too
9011 early.  This flag is enabled by default at @option{-O} and higher.
9012
9013 @item -ftree-ter
9014 @opindex ftree-ter
9015 Perform temporary expression replacement during the SSA->normal phase.  Single
9016 use/single def temporaries are replaced at their use location with their
9017 defining expression.  This results in non-GIMPLE code, but gives the expanders
9018 much more complex trees to work on resulting in better RTL generation.  This is
9019 enabled by default at @option{-O} and higher.
9020
9021 @item -ftree-slsr
9022 @opindex ftree-slsr
9023 Perform straight-line strength reduction on trees.  This recognizes related
9024 expressions involving multiplications and replaces them by less expensive
9025 calculations when possible.  This is enabled by default at @option{-O} and
9026 higher.
9027
9028 @item -ftree-vectorize
9029 @opindex ftree-vectorize
9030 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9031 and @option{-ftree-slp-vectorize} if not explicitly specified.
9032
9033 @item -ftree-loop-vectorize
9034 @opindex ftree-loop-vectorize
9035 Perform loop vectorization on trees. This flag is enabled by default at
9036 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9037
9038 @item -ftree-slp-vectorize
9039 @opindex ftree-slp-vectorize
9040 Perform basic block vectorization on trees. This flag is enabled by default at
9041 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9042
9043 @item -fvect-cost-model=@var{model}
9044 @opindex fvect-cost-model
9045 Alter the cost model used for vectorization.  The @var{model} argument
9046 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9047 With the @samp{unlimited} model the vectorized code-path is assumed
9048 to be profitable while with the @samp{dynamic} model a runtime check
9049 guards the vectorized code-path to enable it only for iteration
9050 counts that will likely execute faster than when executing the original
9051 scalar loop.  The @samp{cheap} model disables vectorization of
9052 loops where doing so would be cost prohibitive for example due to
9053 required runtime checks for data dependence or alignment but otherwise
9054 is equal to the @samp{dynamic} model.
9055 The default cost model depends on other optimization flags and is
9056 either @samp{dynamic} or @samp{cheap}.
9057
9058 @item -fsimd-cost-model=@var{model}
9059 @opindex fsimd-cost-model
9060 Alter the cost model used for vectorization of loops marked with the OpenMP
9061 or Cilk Plus simd directive.  The @var{model} argument should be one of
9062 @samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
9063 have the same meaning as described in @option{-fvect-cost-model} and by
9064 default a cost model defined with @option{-fvect-cost-model} is used.
9065
9066 @item -ftree-vrp
9067 @opindex ftree-vrp
9068 Perform Value Range Propagation on trees.  This is similar to the
9069 constant propagation pass, but instead of values, ranges of values are
9070 propagated.  This allows the optimizers to remove unnecessary range
9071 checks like array bound checks and null pointer checks.  This is
9072 enabled by default at @option{-O2} and higher.  Null pointer check
9073 elimination is only done if @option{-fdelete-null-pointer-checks} is
9074 enabled.
9075
9076 @item -fsplit-ivs-in-unroller
9077 @opindex fsplit-ivs-in-unroller
9078 Enables expression of values of induction variables in later iterations
9079 of the unrolled loop using the value in the first iteration.  This breaks
9080 long dependency chains, thus improving efficiency of the scheduling passes.
9081
9082 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9083 same effect.  However, that is not reliable in cases where the loop body
9084 is more complicated than a single basic block.  It also does not work at all
9085 on some architectures due to restrictions in the CSE pass.
9086
9087 This optimization is enabled by default.
9088
9089 @item -fvariable-expansion-in-unroller
9090 @opindex fvariable-expansion-in-unroller
9091 With this option, the compiler creates multiple copies of some
9092 local variables when unrolling a loop, which can result in superior code.
9093
9094 @item -fpartial-inlining
9095 @opindex fpartial-inlining
9096 Inline parts of functions.  This option has any effect only
9097 when inlining itself is turned on by the @option{-finline-functions}
9098 or @option{-finline-small-functions} options.
9099
9100 Enabled at level @option{-O2}.
9101
9102 @item -fpredictive-commoning
9103 @opindex fpredictive-commoning
9104 Perform predictive commoning optimization, i.e., reusing computations
9105 (especially memory loads and stores) performed in previous
9106 iterations of loops.
9107
9108 This option is enabled at level @option{-O3}.
9109
9110 @item -fprefetch-loop-arrays
9111 @opindex fprefetch-loop-arrays
9112 If supported by the target machine, generate instructions to prefetch
9113 memory to improve the performance of loops that access large arrays.
9114
9115 This option may generate better or worse code; results are highly
9116 dependent on the structure of loops within the source code.
9117
9118 Disabled at level @option{-Os}.
9119
9120 @item -fno-peephole
9121 @itemx -fno-peephole2
9122 @opindex fno-peephole
9123 @opindex fno-peephole2
9124 Disable any machine-specific peephole optimizations.  The difference
9125 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9126 are implemented in the compiler; some targets use one, some use the
9127 other, a few use both.
9128
9129 @option{-fpeephole} is enabled by default.
9130 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9131
9132 @item -fno-guess-branch-probability
9133 @opindex fno-guess-branch-probability
9134 Do not guess branch probabilities using heuristics.
9135
9136 GCC uses heuristics to guess branch probabilities if they are
9137 not provided by profiling feedback (@option{-fprofile-arcs}).  These
9138 heuristics are based on the control flow graph.  If some branch probabilities
9139 are specified by @code{__builtin_expect}, then the heuristics are
9140 used to guess branch probabilities for the rest of the control flow graph,
9141 taking the @code{__builtin_expect} info into account.  The interactions
9142 between the heuristics and @code{__builtin_expect} can be complex, and in
9143 some cases, it may be useful to disable the heuristics so that the effects
9144 of @code{__builtin_expect} are easier to understand.
9145
9146 The default is @option{-fguess-branch-probability} at levels
9147 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9148
9149 @item -freorder-blocks
9150 @opindex freorder-blocks
9151 Reorder basic blocks in the compiled function in order to reduce number of
9152 taken branches and improve code locality.
9153
9154 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9155
9156 @item -freorder-blocks-algorithm=@var{algorithm}
9157 @opindex freorder-blocks-algorithm
9158 Use the specified algorithm for basic block reordering.  The
9159 @var{algorithm} argument can be @samp{simple}, which does not increase
9160 code size (except sometimes due to secondary effects like alignment),
9161 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9162 put all often executed code together, minimizing the number of branches
9163 executed by making extra copies of code.
9164
9165 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9166 @samp{stc} at levels @option{-O2}, @option{-O3}.
9167
9168 @item -freorder-blocks-and-partition
9169 @opindex freorder-blocks-and-partition
9170 In addition to reordering basic blocks in the compiled function, in order
9171 to reduce number of taken branches, partitions hot and cold basic blocks
9172 into separate sections of the assembly and .o files, to improve
9173 paging and cache locality performance.
9174
9175 This optimization is automatically turned off in the presence of
9176 exception handling, for linkonce sections, for functions with a user-defined
9177 section attribute and on any architecture that does not support named
9178 sections.
9179
9180 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9181
9182 @item -freorder-functions
9183 @opindex freorder-functions
9184 Reorder functions in the object file in order to
9185 improve code locality.  This is implemented by using special
9186 subsections @code{.text.hot} for most frequently executed functions and
9187 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9188 the linker so object file format must support named sections and linker must
9189 place them in a reasonable way.
9190
9191 Also profile feedback must be available to make this option effective.  See
9192 @option{-fprofile-arcs} for details.
9193
9194 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9195
9196 @item -fstrict-aliasing
9197 @opindex fstrict-aliasing
9198 Allow the compiler to assume the strictest aliasing rules applicable to
9199 the language being compiled.  For C (and C++), this activates
9200 optimizations based on the type of expressions.  In particular, an
9201 object of one type is assumed never to reside at the same address as an
9202 object of a different type, unless the types are almost the same.  For
9203 example, an @code{unsigned int} can alias an @code{int}, but not a
9204 @code{void*} or a @code{double}.  A character type may alias any other
9205 type.
9206
9207 @anchor{Type-punning}Pay special attention to code like this:
9208 @smallexample
9209 union a_union @{
9210   int i;
9211   double d;
9212 @};
9213
9214 int f() @{
9215   union a_union t;
9216   t.d = 3.0;
9217   return t.i;
9218 @}
9219 @end smallexample
9220 The practice of reading from a different union member than the one most
9221 recently written to (called ``type-punning'') is common.  Even with
9222 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9223 is accessed through the union type.  So, the code above works as
9224 expected.  @xref{Structures unions enumerations and bit-fields
9225 implementation}.  However, this code might not:
9226 @smallexample
9227 int f() @{
9228   union a_union t;
9229   int* ip;
9230   t.d = 3.0;
9231   ip = &t.i;
9232   return *ip;
9233 @}
9234 @end smallexample
9235
9236 Similarly, access by taking the address, casting the resulting pointer
9237 and dereferencing the result has undefined behavior, even if the cast
9238 uses a union type, e.g.:
9239 @smallexample
9240 int f() @{
9241   double d = 3.0;
9242   return ((union a_union *) &d)->i;
9243 @}
9244 @end smallexample
9245
9246 The @option{-fstrict-aliasing} option is enabled at levels
9247 @option{-O2}, @option{-O3}, @option{-Os}.
9248
9249 @item -fstrict-overflow
9250 @opindex fstrict-overflow
9251 Allow the compiler to assume strict signed overflow rules, depending
9252 on the language being compiled.  For C (and C++) this means that
9253 overflow when doing arithmetic with signed numbers is undefined, which
9254 means that the compiler may assume that it does not happen.  This
9255 permits various optimizations.  For example, the compiler assumes
9256 that an expression like @code{i + 10 > i} is always true for
9257 signed @code{i}.  This assumption is only valid if signed overflow is
9258 undefined, as the expression is false if @code{i + 10} overflows when
9259 using twos complement arithmetic.  When this option is in effect any
9260 attempt to determine whether an operation on signed numbers 
9261 overflows must be written carefully to not actually involve overflow.
9262
9263 This option also allows the compiler to assume strict pointer
9264 semantics: given a pointer to an object, if adding an offset to that
9265 pointer does not produce a pointer to the same object, the addition is
9266 undefined.  This permits the compiler to conclude that @code{p + u >
9267 p} is always true for a pointer @code{p} and unsigned integer
9268 @code{u}.  This assumption is only valid because pointer wraparound is
9269 undefined, as the expression is false if @code{p + u} overflows using
9270 twos complement arithmetic.
9271
9272 See also the @option{-fwrapv} option.  Using @option{-fwrapv} means
9273 that integer signed overflow is fully defined: it wraps.  When
9274 @option{-fwrapv} is used, there is no difference between
9275 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9276 integers.  With @option{-fwrapv} certain types of overflow are
9277 permitted.  For example, if the compiler gets an overflow when doing
9278 arithmetic on constants, the overflowed value can still be used with
9279 @option{-fwrapv}, but not otherwise.
9280
9281 The @option{-fstrict-overflow} option is enabled at levels
9282 @option{-O2}, @option{-O3}, @option{-Os}.
9283
9284 @item -falign-functions
9285 @itemx -falign-functions=@var{n}
9286 @opindex falign-functions
9287 Align the start of functions to the next power-of-two greater than
9288 @var{n}, skipping up to @var{n} bytes.  For instance,
9289 @option{-falign-functions=32} aligns functions to the next 32-byte
9290 boundary, but @option{-falign-functions=24} aligns to the next
9291 32-byte boundary only if this can be done by skipping 23 bytes or less.
9292
9293 @option{-fno-align-functions} and @option{-falign-functions=1} are
9294 equivalent and mean that functions are not aligned.
9295
9296 Some assemblers only support this flag when @var{n} is a power of two;
9297 in that case, it is rounded up.
9298
9299 If @var{n} is not specified or is zero, use a machine-dependent default.
9300
9301 Enabled at levels @option{-O2}, @option{-O3}.
9302
9303 @item -falign-labels
9304 @itemx -falign-labels=@var{n}
9305 @opindex falign-labels
9306 Align all branch targets to a power-of-two boundary, skipping up to
9307 @var{n} bytes like @option{-falign-functions}.  This option can easily
9308 make code slower, because it must insert dummy operations for when the
9309 branch target is reached in the usual flow of the code.
9310
9311 @option{-fno-align-labels} and @option{-falign-labels=1} are
9312 equivalent and mean that labels are not aligned.
9313
9314 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9315 are greater than this value, then their values are used instead.
9316
9317 If @var{n} is not specified or is zero, use a machine-dependent default
9318 which is very likely to be @samp{1}, meaning no alignment.
9319
9320 Enabled at levels @option{-O2}, @option{-O3}.
9321
9322 @item -falign-loops
9323 @itemx -falign-loops=@var{n}
9324 @opindex falign-loops
9325 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9326 like @option{-falign-functions}.  If the loops are
9327 executed many times, this makes up for any execution of the dummy
9328 operations.
9329
9330 @option{-fno-align-loops} and @option{-falign-loops=1} are
9331 equivalent and mean that loops are not aligned.
9332
9333 If @var{n} is not specified or is zero, use a machine-dependent default.
9334
9335 Enabled at levels @option{-O2}, @option{-O3}.
9336
9337 @item -falign-jumps
9338 @itemx -falign-jumps=@var{n}
9339 @opindex falign-jumps
9340 Align branch targets to a power-of-two boundary, for branch targets
9341 where the targets can only be reached by jumping, skipping up to @var{n}
9342 bytes like @option{-falign-functions}.  In this case, no dummy operations
9343 need be executed.
9344
9345 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9346 equivalent and mean that loops are not aligned.
9347
9348 If @var{n} is not specified or is zero, use a machine-dependent default.
9349
9350 Enabled at levels @option{-O2}, @option{-O3}.
9351
9352 @item -funit-at-a-time
9353 @opindex funit-at-a-time
9354 This option is left for compatibility reasons. @option{-funit-at-a-time}
9355 has no effect, while @option{-fno-unit-at-a-time} implies
9356 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9357
9358 Enabled by default.
9359
9360 @item -fno-toplevel-reorder
9361 @opindex fno-toplevel-reorder
9362 Do not reorder top-level functions, variables, and @code{asm}
9363 statements.  Output them in the same order that they appear in the
9364 input file.  When this option is used, unreferenced static variables
9365 are not removed.  This option is intended to support existing code
9366 that relies on a particular ordering.  For new code, it is better to
9367 use attributes when possible.
9368
9369 Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9370 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9371 targets.
9372
9373 @item -fweb
9374 @opindex fweb
9375 Constructs webs as commonly used for register allocation purposes and assign
9376 each web individual pseudo register.  This allows the register allocation pass
9377 to operate on pseudos directly, but also strengthens several other optimization
9378 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9379 however, make debugging impossible, since variables no longer stay in a
9380 ``home register''.
9381
9382 Enabled by default with @option{-funroll-loops}.
9383
9384 @item -fwhole-program
9385 @opindex fwhole-program
9386 Assume that the current compilation unit represents the whole program being
9387 compiled.  All public functions and variables with the exception of @code{main}
9388 and those merged by attribute @code{externally_visible} become static functions
9389 and in effect are optimized more aggressively by interprocedural optimizers.
9390
9391 This option should not be used in combination with @option{-flto}.
9392 Instead relying on a linker plugin should provide safer and more precise
9393 information.
9394
9395 @item -flto[=@var{n}]
9396 @opindex flto
9397 This option runs the standard link-time optimizer.  When invoked
9398 with source code, it generates GIMPLE (one of GCC's internal
9399 representations) and writes it to special ELF sections in the object
9400 file.  When the object files are linked together, all the function
9401 bodies are read from these ELF sections and instantiated as if they
9402 had been part of the same translation unit.
9403
9404 To use the link-time optimizer, @option{-flto} and optimization
9405 options should be specified at compile time and during the final link.
9406 For example:
9407
9408 @smallexample
9409 gcc -c -O2 -flto foo.c
9410 gcc -c -O2 -flto bar.c
9411 gcc -o myprog -flto -O2 foo.o bar.o
9412 @end smallexample
9413
9414 The first two invocations to GCC save a bytecode representation
9415 of GIMPLE into special ELF sections inside @file{foo.o} and
9416 @file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9417 @file{foo.o} and @file{bar.o}, merges the two files into a single
9418 internal image, and compiles the result as usual.  Since both
9419 @file{foo.o} and @file{bar.o} are merged into a single image, this
9420 causes all the interprocedural analyses and optimizations in GCC to
9421 work across the two files as if they were a single one.  This means,
9422 for example, that the inliner is able to inline functions in
9423 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9424
9425 Another (simpler) way to enable link-time optimization is:
9426
9427 @smallexample
9428 gcc -o myprog -flto -O2 foo.c bar.c
9429 @end smallexample
9430
9431 The above generates bytecode for @file{foo.c} and @file{bar.c},
9432 merges them together into a single GIMPLE representation and optimizes
9433 them as usual to produce @file{myprog}.
9434
9435 The only important thing to keep in mind is that to enable link-time
9436 optimizations you need to use the GCC driver to perform the link-step.
9437 GCC then automatically performs link-time optimization if any of the
9438 objects involved were compiled with the @option{-flto} command-line option.  
9439 You generally
9440 should specify the optimization options to be used for link-time
9441 optimization though GCC tries to be clever at guessing an
9442 optimization level to use from the options used at compile-time
9443 if you fail to specify one at link-time.  You can always override
9444 the automatic decision to do link-time optimization at link-time
9445 by passing @option{-fno-lto} to the link command.
9446
9447 To make whole program optimization effective, it is necessary to make
9448 certain whole program assumptions.  The compiler needs to know
9449 what functions and variables can be accessed by libraries and runtime
9450 outside of the link-time optimized unit.  When supported by the linker,
9451 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9452 to the compiler about used and externally visible symbols.  When
9453 the linker plugin is not available, @option{-fwhole-program} should be
9454 used to allow the compiler to make these assumptions, which leads
9455 to more aggressive optimization decisions.
9456
9457 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9458 compiled with @option{-flto}, the generated object file is larger than
9459 a regular object file because it contains GIMPLE bytecodes and the usual
9460 final code (see @option{-ffat-lto-objects}.  This means that
9461 object files with LTO information can be linked as normal object
9462 files; if @option{-fno-lto} is passed to the linker, no
9463 interprocedural optimizations are applied.  Note that when
9464 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9465 but you cannot perform a regular, non-LTO link on them.
9466
9467 Additionally, the optimization flags used to compile individual files
9468 are not necessarily related to those used at link time.  For instance,
9469
9470 @smallexample
9471 gcc -c -O0 -ffat-lto-objects -flto foo.c
9472 gcc -c -O0 -ffat-lto-objects -flto bar.c
9473 gcc -o myprog -O3 foo.o bar.o
9474 @end smallexample
9475
9476 This produces individual object files with unoptimized assembler
9477 code, but the resulting binary @file{myprog} is optimized at
9478 @option{-O3}.  If, instead, the final binary is generated with
9479 @option{-fno-lto}, then @file{myprog} is not optimized.
9480
9481 When producing the final binary, GCC only
9482 applies link-time optimizations to those files that contain bytecode.
9483 Therefore, you can mix and match object files and libraries with
9484 GIMPLE bytecodes and final object code.  GCC automatically selects
9485 which files to optimize in LTO mode and which files to link without
9486 further processing.
9487
9488 There are some code generation flags preserved by GCC when
9489 generating bytecodes, as they need to be used during the final link
9490 stage.  Generally options specified at link-time override those
9491 specified at compile-time.
9492
9493 If you do not specify an optimization level option @option{-O} at
9494 link-time then GCC computes one based on the optimization levels
9495 used when compiling the object files.  The highest optimization
9496 level wins here.
9497
9498 Currently, the following options and their setting are take from
9499 the first object file that explicitely specified it: 
9500 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9501 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9502 and all the @option{-m} target flags.
9503
9504 Certain ABI changing flags are required to match in all compilation-units
9505 and trying to override this at link-time with a conflicting value
9506 is ignored.  This includes options such as @option{-freg-struct-return}
9507 and @option{-fpcc-struct-return}. 
9508
9509 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9510 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9511 are passed through to the link stage and merged conservatively for
9512 conflicting translation units.  Specifically
9513 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9514 precedence and for example @option{-ffp-contract=off} takes precedence
9515 over @option{-ffp-contract=fast}.  You can override them at linke-time.
9516
9517 It is recommended that you compile all the files participating in the
9518 same link with the same options and also specify those options at
9519 link time.
9520
9521 If LTO encounters objects with C linkage declared with incompatible
9522 types in separate translation units to be linked together (undefined
9523 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9524 issued.  The behavior is still undefined at run time.  Similar
9525 diagnostics may be raised for other languages.
9526
9527 Another feature of LTO is that it is possible to apply interprocedural
9528 optimizations on files written in different languages:
9529
9530 @smallexample
9531 gcc -c -flto foo.c
9532 g++ -c -flto bar.cc
9533 gfortran -c -flto baz.f90
9534 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9535 @end smallexample
9536
9537 Notice that the final link is done with @command{g++} to get the C++
9538 runtime libraries and @option{-lgfortran} is added to get the Fortran
9539 runtime libraries.  In general, when mixing languages in LTO mode, you
9540 should use the same link command options as when mixing languages in a
9541 regular (non-LTO) compilation.
9542
9543 If object files containing GIMPLE bytecode are stored in a library archive, say
9544 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9545 are using a linker with plugin support.  To create static libraries suitable
9546 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9547 and @command{ranlib}; 
9548 to show the symbols of object files with GIMPLE bytecode, use
9549 @command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9550 and @command{nm} have been compiled with plugin support.  At link time, use the the
9551 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9552 the LTO optimization process:
9553
9554 @smallexample
9555 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9556 @end smallexample
9557
9558 With the linker plugin enabled, the linker extracts the needed
9559 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9560 to make them part of the aggregated GIMPLE image to be optimized.
9561
9562 If you are not using a linker with plugin support and/or do not
9563 enable the linker plugin, then the objects inside @file{libfoo.a}
9564 are extracted and linked as usual, but they do not participate
9565 in the LTO optimization process.  In order to make a static library suitable
9566 for both LTO optimization and usual linkage, compile its object files with
9567 @option{-flto} @option{-ffat-lto-objects}.
9568
9569 Link-time optimizations do not require the presence of the whole program to
9570 operate.  If the program does not require any symbols to be exported, it is
9571 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9572 the interprocedural optimizers to use more aggressive assumptions which may
9573 lead to improved optimization opportunities.
9574 Use of @option{-fwhole-program} is not needed when linker plugin is
9575 active (see @option{-fuse-linker-plugin}).
9576
9577 The current implementation of LTO makes no
9578 attempt to generate bytecode that is portable between different
9579 types of hosts.  The bytecode files are versioned and there is a
9580 strict version check, so bytecode files generated in one version of
9581 GCC do not work with an older or newer version of GCC.
9582
9583 Link-time optimization does not work well with generation of debugging
9584 information.  Combining @option{-flto} with
9585 @option{-g} is currently experimental and expected to produce unexpected
9586 results.
9587
9588 If you specify the optional @var{n}, the optimization and code
9589 generation done at link time is executed in parallel using @var{n}
9590 parallel jobs by utilizing an installed @command{make} program.  The
9591 environment variable @env{MAKE} may be used to override the program
9592 used.  The default value for @var{n} is 1.
9593
9594 You can also specify @option{-flto=jobserver} to use GNU make's
9595 job server mode to determine the number of parallel jobs. This
9596 is useful when the Makefile calling GCC is already executing in parallel.
9597 You must prepend a @samp{+} to the command recipe in the parent Makefile
9598 for this to work.  This option likely only works if @env{MAKE} is
9599 GNU make.
9600
9601 @item -flto-partition=@var{alg}
9602 @opindex flto-partition
9603 Specify the partitioning algorithm used by the link-time optimizer.
9604 The value is either @samp{1to1} to specify a partitioning mirroring
9605 the original source files or @samp{balanced} to specify partitioning
9606 into equally sized chunks (whenever possible) or @samp{max} to create
9607 new partition for every symbol where possible.  Specifying @samp{none}
9608 as an algorithm disables partitioning and streaming completely. 
9609 The default value is @samp{balanced}. While @samp{1to1} can be used
9610 as an workaround for various code ordering issues, the @samp{max}
9611 partitioning is intended for internal testing only.
9612 The value @samp{one} specifies that exactly one partition should be
9613 used while the value @samp{none} bypasses partitioning and executes
9614 the link-time optimization step directly from the WPA phase.
9615
9616 @item -flto-odr-type-merging
9617 @opindex flto-odr-type-merging
9618 Enable streaming of mangled types names of C++ types and their unification
9619 at linktime.  This increases size of LTO object files, but enable
9620 diagnostics about One Definition Rule violations.
9621
9622 @item -flto-compression-level=@var{n}
9623 @opindex flto-compression-level
9624 This option specifies the level of compression used for intermediate
9625 language written to LTO object files, and is only meaningful in
9626 conjunction with LTO mode (@option{-flto}).  Valid
9627 values are 0 (no compression) to 9 (maximum compression).  Values
9628 outside this range are clamped to either 0 or 9.  If the option is not
9629 given, a default balanced compression setting is used.
9630
9631 @item -flto-report
9632 @opindex flto-report
9633 Prints a report with internal details on the workings of the link-time
9634 optimizer.  The contents of this report vary from version to version.
9635 It is meant to be useful to GCC developers when processing object
9636 files in LTO mode (via @option{-flto}).
9637
9638 Disabled by default.
9639
9640 @item -flto-report-wpa
9641 @opindex flto-report-wpa
9642 Like @option{-flto-report}, but only print for the WPA phase of Link
9643 Time Optimization.
9644
9645 @item -fuse-linker-plugin
9646 @opindex fuse-linker-plugin
9647 Enables the use of a linker plugin during link-time optimization.  This
9648 option relies on plugin support in the linker, which is available in gold
9649 or in GNU ld 2.21 or newer.
9650
9651 This option enables the extraction of object files with GIMPLE bytecode out
9652 of library archives. This improves the quality of optimization by exposing
9653 more code to the link-time optimizer.  This information specifies what
9654 symbols can be accessed externally (by non-LTO object or during dynamic
9655 linking).  Resulting code quality improvements on binaries (and shared
9656 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9657 See @option{-flto} for a description of the effect of this flag and how to
9658 use it.
9659
9660 This option is enabled by default when LTO support in GCC is enabled
9661 and GCC was configured for use with
9662 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9663
9664 @item -ffat-lto-objects
9665 @opindex ffat-lto-objects
9666 Fat LTO objects are object files that contain both the intermediate language
9667 and the object code. This makes them usable for both LTO linking and normal
9668 linking. This option is effective only when compiling with @option{-flto}
9669 and is ignored at link time.
9670
9671 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9672 requires the complete toolchain to be aware of LTO. It requires a linker with
9673 linker plugin support for basic functionality.  Additionally,
9674 @command{nm}, @command{ar} and @command{ranlib}
9675 need to support linker plugins to allow a full-featured build environment
9676 (capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9677 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9678 to these tools. With non fat LTO makefiles need to be modified to use them.
9679
9680 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9681 support.
9682
9683 @item -fcompare-elim
9684 @opindex fcompare-elim
9685 After register allocation and post-register allocation instruction splitting,
9686 identify arithmetic instructions that compute processor flags similar to a
9687 comparison operation based on that arithmetic.  If possible, eliminate the
9688 explicit comparison operation.
9689
9690 This pass only applies to certain targets that cannot explicitly represent
9691 the comparison operation before register allocation is complete.
9692
9693 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9694
9695 @item -fcprop-registers
9696 @opindex fcprop-registers
9697 After register allocation and post-register allocation instruction splitting,
9698 perform a copy-propagation pass to try to reduce scheduling dependencies
9699 and occasionally eliminate the copy.
9700
9701 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9702
9703 @item -fprofile-correction
9704 @opindex fprofile-correction
9705 Profiles collected using an instrumented binary for multi-threaded programs may
9706 be inconsistent due to missed counter updates. When this option is specified,
9707 GCC uses heuristics to correct or smooth out such inconsistencies. By
9708 default, GCC emits an error message when an inconsistent profile is detected.
9709
9710 @item -fprofile-dir=@var{path}
9711 @opindex fprofile-dir
9712
9713 Set the directory to search for the profile data files in to @var{path}.
9714 This option affects only the profile data generated by
9715 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9716 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9717 and its related options.  Both absolute and relative paths can be used.
9718 By default, GCC uses the current directory as @var{path}, thus the
9719 profile data file appears in the same directory as the object file.
9720
9721 @item -fprofile-generate
9722 @itemx -fprofile-generate=@var{path}
9723 @opindex fprofile-generate
9724
9725 Enable options usually used for instrumenting application to produce
9726 profile useful for later recompilation with profile feedback based
9727 optimization.  You must use @option{-fprofile-generate} both when
9728 compiling and when linking your program.
9729
9730 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9731
9732 If @var{path} is specified, GCC looks at the @var{path} to find
9733 the profile feedback data files. See @option{-fprofile-dir}.
9734
9735 @item -fprofile-use
9736 @itemx -fprofile-use=@var{path}
9737 @opindex fprofile-use
9738 Enable profile feedback-directed optimizations, 
9739 and the following optimizations
9740 which are generally profitable only with profile feedback available:
9741 @option{-fbranch-probabilities}, @option{-fvpt},
9742 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9743 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9744
9745 By default, GCC emits an error message if the feedback profiles do not
9746 match the source code.  This error can be turned into a warning by using
9747 @option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9748 code.
9749
9750 If @var{path} is specified, GCC looks at the @var{path} to find
9751 the profile feedback data files. See @option{-fprofile-dir}.
9752
9753 @item -fauto-profile
9754 @itemx -fauto-profile=@var{path}
9755 @opindex fauto-profile
9756 Enable sampling-based feedback-directed optimizations, 
9757 and the following optimizations
9758 which are generally profitable only with profile feedback available:
9759 @option{-fbranch-probabilities}, @option{-fvpt},
9760 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9761 @option{-ftree-vectorize},
9762 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9763 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9764 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9765
9766 @var{path} is the name of a file containing AutoFDO profile information.
9767 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9768
9769 Producing an AutoFDO profile data file requires running your program
9770 with the @command{perf} utility on a supported GNU/Linux target system.
9771 For more information, see @uref{https://perf.wiki.kernel.org/}.
9772
9773 E.g.
9774 @smallexample
9775 perf record -e br_inst_retired:near_taken -b -o perf.data \
9776     -- your_program
9777 @end smallexample
9778
9779 Then use the @command{create_gcov} tool to convert the raw profile data
9780 to a format that can be used by GCC.@  You must also supply the 
9781 unstripped binary for your program to this tool.  
9782 See @uref{https://github.com/google/autofdo}.
9783
9784 E.g.
9785 @smallexample
9786 create_gcov --binary=your_program.unstripped --profile=perf.data \
9787     --gcov=profile.afdo
9788 @end smallexample
9789 @end table
9790
9791 The following options control compiler behavior regarding floating-point 
9792 arithmetic.  These options trade off between speed and
9793 correctness.  All must be specifically enabled.
9794
9795 @table @gcctabopt
9796 @item -ffloat-store
9797 @opindex ffloat-store
9798 Do not store floating-point variables in registers, and inhibit other
9799 options that might change whether a floating-point value is taken from a
9800 register or memory.
9801
9802 @cindex floating-point precision
9803 This option prevents undesirable excess precision on machines such as
9804 the 68000 where the floating registers (of the 68881) keep more
9805 precision than a @code{double} is supposed to have.  Similarly for the
9806 x86 architecture.  For most programs, the excess precision does only
9807 good, but a few programs rely on the precise definition of IEEE floating
9808 point.  Use @option{-ffloat-store} for such programs, after modifying
9809 them to store all pertinent intermediate computations into variables.
9810
9811 @item -fexcess-precision=@var{style}
9812 @opindex fexcess-precision
9813 This option allows further control over excess precision on machines
9814 where floating-point registers have more precision than the IEEE
9815 @code{float} and @code{double} types and the processor does not
9816 support operations rounding to those types.  By default,
9817 @option{-fexcess-precision=fast} is in effect; this means that
9818 operations are carried out in the precision of the registers and that
9819 it is unpredictable when rounding to the types specified in the source
9820 code takes place.  When compiling C, if
9821 @option{-fexcess-precision=standard} is specified then excess
9822 precision follows the rules specified in ISO C99; in particular,
9823 both casts and assignments cause values to be rounded to their
9824 semantic types (whereas @option{-ffloat-store} only affects
9825 assignments).  This option is enabled by default for C if a strict
9826 conformance option such as @option{-std=c99} is used.
9827
9828 @opindex mfpmath
9829 @option{-fexcess-precision=standard} is not implemented for languages
9830 other than C, and has no effect if
9831 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9832 specified.  On the x86, it also has no effect if @option{-mfpmath=sse}
9833 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9834 semantics apply without excess precision, and in the latter, rounding
9835 is unpredictable.
9836
9837 @item -ffast-math
9838 @opindex ffast-math
9839 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9840 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9841 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9842
9843 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9844
9845 This option is not turned on by any @option{-O} option besides
9846 @option{-Ofast} since it can result in incorrect output for programs
9847 that depend on an exact implementation of IEEE or ISO rules/specifications
9848 for math functions. It may, however, yield faster code for programs
9849 that do not require the guarantees of these specifications.
9850
9851 @item -fno-math-errno
9852 @opindex fno-math-errno
9853 Do not set @code{errno} after calling math functions that are executed
9854 with a single instruction, e.g., @code{sqrt}.  A program that relies on
9855 IEEE exceptions for math error handling may want to use this flag
9856 for speed while maintaining IEEE arithmetic compatibility.
9857
9858 This option is not turned on by any @option{-O} option since
9859 it can result in incorrect output for programs that depend on
9860 an exact implementation of IEEE or ISO rules/specifications for
9861 math functions. It may, however, yield faster code for programs
9862 that do not require the guarantees of these specifications.
9863
9864 The default is @option{-fmath-errno}.
9865
9866 On Darwin systems, the math library never sets @code{errno}.  There is
9867 therefore no reason for the compiler to consider the possibility that
9868 it might, and @option{-fno-math-errno} is the default.
9869
9870 @item -funsafe-math-optimizations
9871 @opindex funsafe-math-optimizations
9872
9873 Allow optimizations for floating-point arithmetic that (a) assume
9874 that arguments and results are valid and (b) may violate IEEE or
9875 ANSI standards.  When used at link-time, it may include libraries
9876 or startup files that change the default FPU control word or other
9877 similar optimizations.
9878
9879 This option is not turned on by any @option{-O} option since
9880 it can result in incorrect output for programs that depend on
9881 an exact implementation of IEEE or ISO rules/specifications for
9882 math functions. It may, however, yield faster code for programs
9883 that do not require the guarantees of these specifications.
9884 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9885 @option{-fassociative-math} and @option{-freciprocal-math}.
9886
9887 The default is @option{-fno-unsafe-math-optimizations}.
9888
9889 @item -fassociative-math
9890 @opindex fassociative-math
9891
9892 Allow re-association of operands in series of floating-point operations.
9893 This violates the ISO C and C++ language standard by possibly changing
9894 computation result.  NOTE: re-ordering may change the sign of zero as
9895 well as ignore NaNs and inhibit or create underflow or overflow (and
9896 thus cannot be used on code that relies on rounding behavior like
9897 @code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9898 and thus may not be used when ordered comparisons are required.
9899 This option requires that both @option{-fno-signed-zeros} and
9900 @option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9901 much sense with @option{-frounding-math}. For Fortran the option
9902 is automatically enabled when both @option{-fno-signed-zeros} and
9903 @option{-fno-trapping-math} are in effect.
9904
9905 The default is @option{-fno-associative-math}.
9906
9907 @item -freciprocal-math
9908 @opindex freciprocal-math
9909
9910 Allow the reciprocal of a value to be used instead of dividing by
9911 the value if this enables optimizations.  For example @code{x / y}
9912 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9913 is subject to common subexpression elimination.  Note that this loses
9914 precision and increases the number of flops operating on the value.
9915
9916 The default is @option{-fno-reciprocal-math}.
9917
9918 @item -ffinite-math-only
9919 @opindex ffinite-math-only
9920 Allow optimizations for floating-point arithmetic that assume
9921 that arguments and results are not NaNs or +-Infs.
9922
9923 This option is not turned on by any @option{-O} option since
9924 it can result in incorrect output for programs that depend on
9925 an exact implementation of IEEE or ISO rules/specifications for
9926 math functions. It may, however, yield faster code for programs
9927 that do not require the guarantees of these specifications.
9928
9929 The default is @option{-fno-finite-math-only}.
9930
9931 @item -fno-signed-zeros
9932 @opindex fno-signed-zeros
9933 Allow optimizations for floating-point arithmetic that ignore the
9934 signedness of zero.  IEEE arithmetic specifies the behavior of
9935 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9936 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9937 This option implies that the sign of a zero result isn't significant.
9938
9939 The default is @option{-fsigned-zeros}.
9940
9941 @item -fno-trapping-math
9942 @opindex fno-trapping-math
9943 Compile code assuming that floating-point operations cannot generate
9944 user-visible traps.  These traps include division by zero, overflow,
9945 underflow, inexact result and invalid operation.  This option requires
9946 that @option{-fno-signaling-nans} be in effect.  Setting this option may
9947 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9948
9949 This option should never be turned on by any @option{-O} option since
9950 it can result in incorrect output for programs that depend on
9951 an exact implementation of IEEE or ISO rules/specifications for
9952 math functions.
9953
9954 The default is @option{-ftrapping-math}.
9955
9956 @item -frounding-math
9957 @opindex frounding-math
9958 Disable transformations and optimizations that assume default floating-point
9959 rounding behavior.  This is round-to-zero for all floating point
9960 to integer conversions, and round-to-nearest for all other arithmetic
9961 truncations.  This option should be specified for programs that change
9962 the FP rounding mode dynamically, or that may be executed with a
9963 non-default rounding mode.  This option disables constant folding of
9964 floating-point expressions at compile time (which may be affected by
9965 rounding mode) and arithmetic transformations that are unsafe in the
9966 presence of sign-dependent rounding modes.
9967
9968 The default is @option{-fno-rounding-math}.
9969
9970 This option is experimental and does not currently guarantee to
9971 disable all GCC optimizations that are affected by rounding mode.
9972 Future versions of GCC may provide finer control of this setting
9973 using C99's @code{FENV_ACCESS} pragma.  This command-line option
9974 will be used to specify the default state for @code{FENV_ACCESS}.
9975
9976 @item -fsignaling-nans
9977 @opindex fsignaling-nans
9978 Compile code assuming that IEEE signaling NaNs may generate user-visible
9979 traps during floating-point operations.  Setting this option disables
9980 optimizations that may change the number of exceptions visible with
9981 signaling NaNs.  This option implies @option{-ftrapping-math}.
9982
9983 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9984 be defined.
9985
9986 The default is @option{-fno-signaling-nans}.
9987
9988 This option is experimental and does not currently guarantee to
9989 disable all GCC optimizations that affect signaling NaN behavior.
9990
9991 @item -fsingle-precision-constant
9992 @opindex fsingle-precision-constant
9993 Treat floating-point constants as single precision instead of
9994 implicitly converting them to double-precision constants.
9995
9996 @item -fcx-limited-range
9997 @opindex fcx-limited-range
9998 When enabled, this option states that a range reduction step is not
9999 needed when performing complex division.  Also, there is no checking
10000 whether the result of a complex multiplication or division is @code{NaN
10001 + I*NaN}, with an attempt to rescue the situation in that case.  The
10002 default is @option{-fno-cx-limited-range}, but is enabled by
10003 @option{-ffast-math}.
10004
10005 This option controls the default setting of the ISO C99
10006 @code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
10007 all languages.
10008
10009 @item -fcx-fortran-rules
10010 @opindex fcx-fortran-rules
10011 Complex multiplication and division follow Fortran rules.  Range
10012 reduction is done as part of complex division, but there is no checking
10013 whether the result of a complex multiplication or division is @code{NaN
10014 + I*NaN}, with an attempt to rescue the situation in that case.
10015
10016 The default is @option{-fno-cx-fortran-rules}.
10017
10018 @end table
10019
10020 The following options control optimizations that may improve
10021 performance, but are not enabled by any @option{-O} options.  This
10022 section includes experimental options that may produce broken code.
10023
10024 @table @gcctabopt
10025 @item -fbranch-probabilities
10026 @opindex fbranch-probabilities
10027 After running a program compiled with @option{-fprofile-arcs}
10028 (@pxref{Debugging Options,, Options for Debugging Your Program or
10029 @command{gcc}}), you can compile it a second time using
10030 @option{-fbranch-probabilities}, to improve optimizations based on
10031 the number of times each branch was taken.  When a program
10032 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10033 counts to a file called @file{@var{sourcename}.gcda} for each source
10034 file.  The information in this data file is very dependent on the
10035 structure of the generated code, so you must use the same source code
10036 and the same optimization options for both compilations.
10037
10038 With @option{-fbranch-probabilities}, GCC puts a
10039 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10040 These can be used to improve optimization.  Currently, they are only
10041 used in one place: in @file{reorg.c}, instead of guessing which path a
10042 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10043 exactly determine which path is taken more often.
10044
10045 @item -fprofile-values
10046 @opindex fprofile-values
10047 If combined with @option{-fprofile-arcs}, it adds code so that some
10048 data about values of expressions in the program is gathered.
10049
10050 With @option{-fbranch-probabilities}, it reads back the data gathered
10051 from profiling values of expressions for usage in optimizations.
10052
10053 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
10054
10055 @item -fprofile-reorder-functions
10056 @opindex fprofile-reorder-functions
10057 Function reordering based on profile instrumentation collects
10058 first time of execution of a function and orders these functions
10059 in ascending order.
10060
10061 Enabled with @option{-fprofile-use}.
10062
10063 @item -fvpt
10064 @opindex fvpt
10065 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10066 to add code to gather information about values of expressions.
10067
10068 With @option{-fbranch-probabilities}, it reads back the data gathered
10069 and actually performs the optimizations based on them.
10070 Currently the optimizations include specialization of division operations
10071 using the knowledge about the value of the denominator.
10072
10073 @item -frename-registers
10074 @opindex frename-registers
10075 Attempt to avoid false dependencies in scheduled code by making use
10076 of registers left over after register allocation.  This optimization
10077 most benefits processors with lots of registers.  Depending on the
10078 debug information format adopted by the target, however, it can
10079 make debugging impossible, since variables no longer stay in
10080 a ``home register''.
10081
10082 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10083
10084 @item -fschedule-fusion
10085 @opindex fschedule-fusion
10086 Performs a target dependent pass over the instruction stream to schedule
10087 instructions of same type together because target machine can execute them
10088 more efficiently if they are adjacent to each other in the instruction flow.
10089
10090 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10091
10092 @item -ftracer
10093 @opindex ftracer
10094 Perform tail duplication to enlarge superblock size.  This transformation
10095 simplifies the control flow of the function allowing other optimizations to do
10096 a better job.
10097
10098 Enabled with @option{-fprofile-use}.
10099
10100 @item -funroll-loops
10101 @opindex funroll-loops
10102 Unroll loops whose number of iterations can be determined at compile time or
10103 upon entry to the loop.  @option{-funroll-loops} implies
10104 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10105 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10106 a small constant number of iterations).  This option makes code larger, and may
10107 or may not make it run faster.
10108
10109 Enabled with @option{-fprofile-use}.
10110
10111 @item -funroll-all-loops
10112 @opindex funroll-all-loops
10113 Unroll all loops, even if their number of iterations is uncertain when
10114 the loop is entered.  This usually makes programs run more slowly.
10115 @option{-funroll-all-loops} implies the same options as
10116 @option{-funroll-loops}.
10117
10118 @item -fpeel-loops
10119 @opindex fpeel-loops
10120 Peels loops for which there is enough information that they do not
10121 roll much (from profile feedback).  It also turns on complete loop peeling
10122 (i.e.@: complete removal of loops with small constant number of iterations).
10123
10124 Enabled with @option{-fprofile-use}.
10125
10126 @item -fmove-loop-invariants
10127 @opindex fmove-loop-invariants
10128 Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
10129 at level @option{-O1}
10130
10131 @item -funswitch-loops
10132 @opindex funswitch-loops
10133 Move branches with loop invariant conditions out of the loop, with duplicates
10134 of the loop on both branches (modified according to result of the condition).
10135
10136 @item -ffunction-sections
10137 @itemx -fdata-sections
10138 @opindex ffunction-sections
10139 @opindex fdata-sections
10140 Place each function or data item into its own section in the output
10141 file if the target supports arbitrary sections.  The name of the
10142 function or the name of the data item determines the section's name
10143 in the output file.
10144
10145 Use these options on systems where the linker can perform optimizations
10146 to improve locality of reference in the instruction space.  Most systems
10147 using the ELF object format and SPARC processors running Solaris 2 have
10148 linkers with such optimizations.  AIX may have these optimizations in
10149 the future.
10150
10151 Only use these options when there are significant benefits from doing
10152 so.  When you specify these options, the assembler and linker
10153 create larger object and executable files and are also slower.
10154 You cannot use @command{gprof} on all systems if you
10155 specify this option, and you may have problems with debugging if
10156 you specify both this option and @option{-g}.
10157
10158 @item -fbranch-target-load-optimize
10159 @opindex fbranch-target-load-optimize
10160 Perform branch target register load optimization before prologue / epilogue
10161 threading.
10162 The use of target registers can typically be exposed only during reload,
10163 thus hoisting loads out of loops and doing inter-block scheduling needs
10164 a separate optimization pass.
10165
10166 @item -fbranch-target-load-optimize2
10167 @opindex fbranch-target-load-optimize2
10168 Perform branch target register load optimization after prologue / epilogue
10169 threading.
10170
10171 @item -fbtr-bb-exclusive
10172 @opindex fbtr-bb-exclusive
10173 When performing branch target register load optimization, don't reuse
10174 branch target registers within any basic block.
10175
10176 @item -fstack-protector
10177 @opindex fstack-protector
10178 Emit extra code to check for buffer overflows, such as stack smashing
10179 attacks.  This is done by adding a guard variable to functions with
10180 vulnerable objects.  This includes functions that call @code{alloca}, and
10181 functions with buffers larger than 8 bytes.  The guards are initialized
10182 when a function is entered and then checked when the function exits.
10183 If a guard check fails, an error message is printed and the program exits.
10184
10185 @item -fstack-protector-all
10186 @opindex fstack-protector-all
10187 Like @option{-fstack-protector} except that all functions are protected.
10188
10189 @item -fstack-protector-strong
10190 @opindex fstack-protector-strong
10191 Like @option{-fstack-protector} but includes additional functions to
10192 be protected --- those that have local array definitions, or have
10193 references to local frame addresses.
10194
10195 @item -fstack-protector-explicit
10196 @opindex fstack-protector-explicit
10197 Like @option{-fstack-protector} but only protects those functions which
10198 have the @code{stack_protect} attribute
10199
10200 @item -fstdarg-opt
10201 @opindex fstdarg-opt
10202 Optimize the prologue of variadic argument functions with respect to usage of
10203 those arguments.
10204
10205 @item -fsection-anchors
10206 @opindex fsection-anchors
10207 Try to reduce the number of symbolic address calculations by using
10208 shared ``anchor'' symbols to address nearby objects.  This transformation
10209 can help to reduce the number of GOT entries and GOT accesses on some
10210 targets.
10211
10212 For example, the implementation of the following function @code{foo}:
10213
10214 @smallexample
10215 static int a, b, c;
10216 int foo (void) @{ return a + b + c; @}
10217 @end smallexample
10218
10219 @noindent
10220 usually calculates the addresses of all three variables, but if you
10221 compile it with @option{-fsection-anchors}, it accesses the variables
10222 from a common anchor point instead.  The effect is similar to the
10223 following pseudocode (which isn't valid C):
10224
10225 @smallexample
10226 int foo (void)
10227 @{
10228   register int *xr = &x;
10229   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10230 @}
10231 @end smallexample
10232
10233 Not all targets support this option.
10234
10235 @item --param @var{name}=@var{value}
10236 @opindex param
10237 In some places, GCC uses various constants to control the amount of
10238 optimization that is done.  For example, GCC does not inline functions
10239 that contain more than a certain number of instructions.  You can
10240 control some of these constants on the command line using the
10241 @option{--param} option.
10242
10243 The names of specific parameters, and the meaning of the values, are
10244 tied to the internals of the compiler, and are subject to change
10245 without notice in future releases.
10246
10247 In each case, the @var{value} is an integer.  The allowable choices for
10248 @var{name} are:
10249
10250 @table @gcctabopt
10251 @item predictable-branch-outcome
10252 When branch is predicted to be taken with probability lower than this threshold
10253 (in percent), then it is considered well predictable. The default is 10.
10254
10255 @item max-crossjump-edges
10256 The maximum number of incoming edges to consider for cross-jumping.
10257 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10258 the number of edges incoming to each block.  Increasing values mean
10259 more aggressive optimization, making the compilation time increase with
10260 probably small improvement in executable size.
10261
10262 @item min-crossjump-insns
10263 The minimum number of instructions that must be matched at the end
10264 of two blocks before cross-jumping is performed on them.  This
10265 value is ignored in the case where all instructions in the block being
10266 cross-jumped from are matched.  The default value is 5.
10267
10268 @item max-grow-copy-bb-insns
10269 The maximum code size expansion factor when copying basic blocks
10270 instead of jumping.  The expansion is relative to a jump instruction.
10271 The default value is 8.
10272
10273 @item max-goto-duplication-insns
10274 The maximum number of instructions to duplicate to a block that jumps
10275 to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
10276 passes, GCC factors computed gotos early in the compilation process,
10277 and unfactors them as late as possible.  Only computed jumps at the
10278 end of a basic blocks with no more than max-goto-duplication-insns are
10279 unfactored.  The default value is 8.
10280
10281 @item max-delay-slot-insn-search
10282 The maximum number of instructions to consider when looking for an
10283 instruction to fill a delay slot.  If more than this arbitrary number of
10284 instructions are searched, the time savings from filling the delay slot
10285 are minimal, so stop searching.  Increasing values mean more
10286 aggressive optimization, making the compilation time increase with probably
10287 small improvement in execution time.
10288
10289 @item max-delay-slot-live-search
10290 When trying to fill delay slots, the maximum number of instructions to
10291 consider when searching for a block with valid live register
10292 information.  Increasing this arbitrarily chosen value means more
10293 aggressive optimization, increasing the compilation time.  This parameter
10294 should be removed when the delay slot code is rewritten to maintain the
10295 control-flow graph.
10296
10297 @item max-gcse-memory
10298 The approximate maximum amount of memory that can be allocated in
10299 order to perform the global common subexpression elimination
10300 optimization.  If more memory than specified is required, the
10301 optimization is not done.
10302
10303 @item max-gcse-insertion-ratio
10304 If the ratio of expression insertions to deletions is larger than this value
10305 for any expression, then RTL PRE inserts or removes the expression and thus
10306 leaves partially redundant computations in the instruction stream.  The default value is 20.
10307
10308 @item max-pending-list-length
10309 The maximum number of pending dependencies scheduling allows
10310 before flushing the current state and starting over.  Large functions
10311 with few branches or calls can create excessively large lists which
10312 needlessly consume memory and resources.
10313
10314 @item max-modulo-backtrack-attempts
10315 The maximum number of backtrack attempts the scheduler should make
10316 when modulo scheduling a loop.  Larger values can exponentially increase
10317 compilation time.
10318
10319 @item max-inline-insns-single
10320 Several parameters control the tree inliner used in GCC@.
10321 This number sets the maximum number of instructions (counted in GCC's
10322 internal representation) in a single function that the tree inliner
10323 considers for inlining.  This only affects functions declared
10324 inline and methods implemented in a class declaration (C++).
10325 The default value is 400.
10326
10327 @item max-inline-insns-auto
10328 When you use @option{-finline-functions} (included in @option{-O3}),
10329 a lot of functions that would otherwise not be considered for inlining
10330 by the compiler are investigated.  To those functions, a different
10331 (more restrictive) limit compared to functions declared inline can
10332 be applied.
10333 The default value is 40.
10334
10335 @item inline-min-speedup
10336 When estimated performance improvement of caller + callee runtime exceeds this
10337 threshold (in precent), the function can be inlined regardless the limit on
10338 @option{--param max-inline-insns-single} and @option{--param
10339 max-inline-insns-auto}.
10340
10341 @item large-function-insns
10342 The limit specifying really large functions.  For functions larger than this
10343 limit after inlining, inlining is constrained by
10344 @option{--param large-function-growth}.  This parameter is useful primarily
10345 to avoid extreme compilation time caused by non-linear algorithms used by the
10346 back end.
10347 The default value is 2700.
10348
10349 @item large-function-growth
10350 Specifies maximal growth of large function caused by inlining in percents.
10351 The default value is 100 which limits large function growth to 2.0 times
10352 the original size.
10353
10354 @item large-unit-insns
10355 The limit specifying large translation unit.  Growth caused by inlining of
10356 units larger than this limit is limited by @option{--param inline-unit-growth}.
10357 For small units this might be too tight.
10358 For example, consider a unit consisting of function A
10359 that is inline and B that just calls A three times.  If B is small relative to
10360 A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10361 large units consisting of small inlineable functions, however, the overall unit
10362 growth limit is needed to avoid exponential explosion of code size.  Thus for
10363 smaller units, the size is increased to @option{--param large-unit-insns}
10364 before applying @option{--param inline-unit-growth}.  The default is 10000.
10365
10366 @item inline-unit-growth
10367 Specifies maximal overall growth of the compilation unit caused by inlining.
10368 The default value is 20 which limits unit growth to 1.2 times the original
10369 size. Cold functions (either marked cold via an attribute or by profile
10370 feedback) are not accounted into the unit size.
10371
10372 @item ipcp-unit-growth
10373 Specifies maximal overall growth of the compilation unit caused by
10374 interprocedural constant propagation.  The default value is 10 which limits
10375 unit growth to 1.1 times the original size.
10376
10377 @item large-stack-frame
10378 The limit specifying large stack frames.  While inlining the algorithm is trying
10379 to not grow past this limit too much.  The default value is 256 bytes.
10380
10381 @item large-stack-frame-growth
10382 Specifies maximal growth of large stack frames caused by inlining in percents.
10383 The default value is 1000 which limits large stack frame growth to 11 times
10384 the original size.
10385
10386 @item max-inline-insns-recursive
10387 @itemx max-inline-insns-recursive-auto
10388 Specifies the maximum number of instructions an out-of-line copy of a
10389 self-recursive inline
10390 function can grow into by performing recursive inlining.
10391
10392 @option{--param max-inline-insns-recursive} applies to functions
10393 declared inline.
10394 For functions not declared inline, recursive inlining
10395 happens only when @option{-finline-functions} (included in @option{-O3}) is
10396 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10397 default value is 450.
10398
10399 @item max-inline-recursive-depth
10400 @itemx max-inline-recursive-depth-auto
10401 Specifies the maximum recursion depth used for recursive inlining.
10402
10403 @option{--param max-inline-recursive-depth} applies to functions
10404 declared inline.  For functions not declared inline, recursive inlining
10405 happens only when @option{-finline-functions} (included in @option{-O3}) is
10406 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10407 default value is 8.
10408
10409 @item min-inline-recursive-probability
10410 Recursive inlining is profitable only for function having deep recursion
10411 in average and can hurt for function having little recursion depth by
10412 increasing the prologue size or complexity of function body to other
10413 optimizers.
10414
10415 When profile feedback is available (see @option{-fprofile-generate}) the actual
10416 recursion depth can be guessed from probability that function recurses via a
10417 given call expression.  This parameter limits inlining only to call expressions
10418 whose probability exceeds the given threshold (in percents).
10419 The default value is 10.
10420
10421 @item early-inlining-insns
10422 Specify growth that the early inliner can make.  In effect it increases
10423 the amount of inlining for code having a large abstraction penalty.
10424 The default value is 14.
10425
10426 @item max-early-inliner-iterations
10427 Limit of iterations of the early inliner.  This basically bounds
10428 the number of nested indirect calls the early inliner can resolve.
10429 Deeper chains are still handled by late inlining.
10430
10431 @item comdat-sharing-probability
10432 Probability (in percent) that C++ inline function with comdat visibility
10433 are shared across multiple compilation units.  The default value is 20.
10434
10435 @item profile-func-internal-id
10436 A parameter to control whether to use function internal id in profile
10437 database lookup. If the value is 0, the compiler uses an id that
10438 is based on function assembler name and filename, which makes old profile
10439 data more tolerant to source changes such as function reordering etc.
10440 The default value is 0.
10441
10442 @item min-vect-loop-bound
10443 The minimum number of iterations under which loops are not vectorized
10444 when @option{-ftree-vectorize} is used.  The number of iterations after
10445 vectorization needs to be greater than the value specified by this option
10446 to allow vectorization.  The default value is 0.
10447
10448 @item gcse-cost-distance-ratio
10449 Scaling factor in calculation of maximum distance an expression
10450 can be moved by GCSE optimizations.  This is currently supported only in the
10451 code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10452 is with simple expressions, i.e., the expressions that have cost
10453 less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10454 hoisting of simple expressions.  The default value is 10.
10455
10456 @item gcse-unrestricted-cost
10457 Cost, roughly measured as the cost of a single typical machine
10458 instruction, at which GCSE optimizations do not constrain
10459 the distance an expression can travel.  This is currently
10460 supported only in the code hoisting pass.  The lesser the cost,
10461 the more aggressive code hoisting is.  Specifying 0 
10462 allows all expressions to travel unrestricted distances.
10463 The default value is 3.
10464
10465 @item max-hoist-depth
10466 The depth of search in the dominator tree for expressions to hoist.
10467 This is used to avoid quadratic behavior in hoisting algorithm.
10468 The value of 0 does not limit on the search, but may slow down compilation
10469 of huge functions.  The default value is 30.
10470
10471 @item max-tail-merge-comparisons
10472 The maximum amount of similar bbs to compare a bb with.  This is used to
10473 avoid quadratic behavior in tree tail merging.  The default value is 10.
10474
10475 @item max-tail-merge-iterations
10476 The maximum amount of iterations of the pass over the function.  This is used to
10477 limit compilation time in tree tail merging.  The default value is 2.
10478
10479 @item max-unrolled-insns
10480 The maximum number of instructions that a loop may have to be unrolled.
10481 If a loop is unrolled, this parameter also determines how many times
10482 the loop code is unrolled.
10483
10484 @item max-average-unrolled-insns
10485 The maximum number of instructions biased by probabilities of their execution
10486 that a loop may have to be unrolled.  If a loop is unrolled,
10487 this parameter also determines how many times the loop code is unrolled.
10488
10489 @item max-unroll-times
10490 The maximum number of unrollings of a single loop.
10491
10492 @item max-peeled-insns
10493 The maximum number of instructions that a loop may have to be peeled.
10494 If a loop is peeled, this parameter also determines how many times
10495 the loop code is peeled.
10496
10497 @item max-peel-times
10498 The maximum number of peelings of a single loop.
10499
10500 @item max-peel-branches
10501 The maximum number of branches on the hot path through the peeled sequence.
10502
10503 @item max-completely-peeled-insns
10504 The maximum number of insns of a completely peeled loop.
10505
10506 @item max-completely-peel-times
10507 The maximum number of iterations of a loop to be suitable for complete peeling.
10508
10509 @item max-completely-peel-loop-nest-depth
10510 The maximum depth of a loop nest suitable for complete peeling.
10511
10512 @item max-unswitch-insns
10513 The maximum number of insns of an unswitched loop.
10514
10515 @item max-unswitch-level
10516 The maximum number of branches unswitched in a single loop.
10517
10518 @item lim-expensive
10519 The minimum cost of an expensive expression in the loop invariant motion.
10520
10521 @item iv-consider-all-candidates-bound
10522 Bound on number of candidates for induction variables, below which
10523 all candidates are considered for each use in induction variable
10524 optimizations.  If there are more candidates than this,
10525 only the most relevant ones are considered to avoid quadratic time complexity.
10526
10527 @item iv-max-considered-uses
10528 The induction variable optimizations give up on loops that contain more
10529 induction variable uses.
10530
10531 @item iv-always-prune-cand-set-bound
10532 If the number of candidates in the set is smaller than this value,
10533 always try to remove unnecessary ivs from the set
10534 when adding a new one.
10535
10536 @item scev-max-expr-size
10537 Bound on size of expressions used in the scalar evolutions analyzer.
10538 Large expressions slow the analyzer.
10539
10540 @item scev-max-expr-complexity
10541 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10542 Complex expressions slow the analyzer.
10543
10544 @item vect-max-version-for-alignment-checks
10545 The maximum number of run-time checks that can be performed when
10546 doing loop versioning for alignment in the vectorizer.
10547
10548 @item vect-max-version-for-alias-checks
10549 The maximum number of run-time checks that can be performed when
10550 doing loop versioning for alias in the vectorizer.
10551
10552 @item vect-max-peeling-for-alignment
10553 The maximum number of loop peels to enhance access alignment
10554 for vectorizer. Value -1 means 'no limit'.
10555
10556 @item max-iterations-to-track
10557 The maximum number of iterations of a loop the brute-force algorithm
10558 for analysis of the number of iterations of the loop tries to evaluate.
10559
10560 @item hot-bb-count-ws-permille
10561 A basic block profile count is considered hot if it contributes to 
10562 the given permillage (i.e. 0...1000) of the entire profiled execution.
10563
10564 @item hot-bb-frequency-fraction
10565 Select fraction of the entry block frequency of executions of basic block in
10566 function given basic block needs to have to be considered hot.
10567
10568 @item max-predicted-iterations
10569 The maximum number of loop iterations we predict statically.  This is useful
10570 in cases where a function contains a single loop with known bound and
10571 another loop with unknown bound.
10572 The known number of iterations is predicted correctly, while
10573 the unknown number of iterations average to roughly 10.  This means that the
10574 loop without bounds appears artificially cold relative to the other one.
10575
10576 @item builtin-expect-probability
10577 Control the probability of the expression having the specified value. This
10578 parameter takes a percentage (i.e. 0 ... 100) as input.
10579 The default probability of 90 is obtained empirically.
10580
10581 @item align-threshold
10582
10583 Select fraction of the maximal frequency of executions of a basic block in
10584 a function to align the basic block.
10585
10586 @item align-loop-iterations
10587
10588 A loop expected to iterate at least the selected number of iterations is
10589 aligned.
10590
10591 @item tracer-dynamic-coverage
10592 @itemx tracer-dynamic-coverage-feedback
10593
10594 This value is used to limit superblock formation once the given percentage of
10595 executed instructions is covered.  This limits unnecessary code size
10596 expansion.
10597
10598 The @option{tracer-dynamic-coverage-feedback} parameter
10599 is used only when profile
10600 feedback is available.  The real profiles (as opposed to statically estimated
10601 ones) are much less balanced allowing the threshold to be larger value.
10602
10603 @item tracer-max-code-growth
10604 Stop tail duplication once code growth has reached given percentage.  This is
10605 a rather artificial limit, as most of the duplicates are eliminated later in
10606 cross jumping, so it may be set to much higher values than is the desired code
10607 growth.
10608
10609 @item tracer-min-branch-ratio
10610
10611 Stop reverse growth when the reverse probability of best edge is less than this
10612 threshold (in percent).
10613
10614 @item tracer-min-branch-ratio
10615 @itemx tracer-min-branch-ratio-feedback
10616
10617 Stop forward growth if the best edge has probability lower than this
10618 threshold.
10619
10620 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10621 compilation for profile feedback and one for compilation without.  The value
10622 for compilation with profile feedback needs to be more conservative (higher) in
10623 order to make tracer effective.
10624
10625 @item max-cse-path-length
10626
10627 The maximum number of basic blocks on path that CSE considers.
10628 The default is 10.
10629
10630 @item max-cse-insns
10631 The maximum number of instructions CSE processes before flushing.
10632 The default is 1000.
10633
10634 @item ggc-min-expand
10635
10636 GCC uses a garbage collector to manage its own memory allocation.  This
10637 parameter specifies the minimum percentage by which the garbage
10638 collector's heap should be allowed to expand between collections.
10639 Tuning this may improve compilation speed; it has no effect on code
10640 generation.
10641
10642 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10643 RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10644 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10645 GCC is not able to calculate RAM on a particular platform, the lower
10646 bound of 30% is used.  Setting this parameter and
10647 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10648 every opportunity.  This is extremely slow, but can be useful for
10649 debugging.
10650
10651 @item ggc-min-heapsize
10652
10653 Minimum size of the garbage collector's heap before it begins bothering
10654 to collect garbage.  The first collection occurs after the heap expands
10655 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10656 tuning this may improve compilation speed, and has no effect on code
10657 generation.
10658
10659 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10660 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10661 with a lower bound of 4096 (four megabytes) and an upper bound of
10662 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10663 particular platform, the lower bound is used.  Setting this parameter
10664 very large effectively disables garbage collection.  Setting this
10665 parameter and @option{ggc-min-expand} to zero causes a full collection
10666 to occur at every opportunity.
10667
10668 @item max-reload-search-insns
10669 The maximum number of instruction reload should look backward for equivalent
10670 register.  Increasing values mean more aggressive optimization, making the
10671 compilation time increase with probably slightly better performance.
10672 The default value is 100.
10673
10674 @item max-cselib-memory-locations
10675 The maximum number of memory locations cselib should take into account.
10676 Increasing values mean more aggressive optimization, making the compilation time
10677 increase with probably slightly better performance.  The default value is 500.
10678
10679 @item reorder-blocks-duplicate
10680 @itemx reorder-blocks-duplicate-feedback
10681
10682 Used by the basic block reordering pass to decide whether to use unconditional
10683 branch or duplicate the code on its destination.  Code is duplicated when its
10684 estimated size is smaller than this value multiplied by the estimated size of
10685 unconditional jump in the hot spots of the program.
10686
10687 The @option{reorder-block-duplicate-feedback} parameter
10688 is used only when profile
10689 feedback is available.  It may be set to higher values than
10690 @option{reorder-block-duplicate} since information about the hot spots is more
10691 accurate.
10692
10693 @item max-sched-ready-insns
10694 The maximum number of instructions ready to be issued the scheduler should
10695 consider at any given time during the first scheduling pass.  Increasing
10696 values mean more thorough searches, making the compilation time increase
10697 with probably little benefit.  The default value is 100.
10698
10699 @item max-sched-region-blocks
10700 The maximum number of blocks in a region to be considered for
10701 interblock scheduling.  The default value is 10.
10702
10703 @item max-pipeline-region-blocks
10704 The maximum number of blocks in a region to be considered for
10705 pipelining in the selective scheduler.  The default value is 15.
10706
10707 @item max-sched-region-insns
10708 The maximum number of insns in a region to be considered for
10709 interblock scheduling.  The default value is 100.
10710
10711 @item max-pipeline-region-insns
10712 The maximum number of insns in a region to be considered for
10713 pipelining in the selective scheduler.  The default value is 200.
10714
10715 @item min-spec-prob
10716 The minimum probability (in percents) of reaching a source block
10717 for interblock speculative scheduling.  The default value is 40.
10718
10719 @item max-sched-extend-regions-iters
10720 The maximum number of iterations through CFG to extend regions.
10721 A value of 0 (the default) disables region extensions.
10722
10723 @item max-sched-insn-conflict-delay
10724 The maximum conflict delay for an insn to be considered for speculative motion.
10725 The default value is 3.
10726
10727 @item sched-spec-prob-cutoff
10728 The minimal probability of speculation success (in percents), so that
10729 speculative insns are scheduled.
10730 The default value is 40.
10731
10732 @item sched-spec-state-edge-prob-cutoff
10733 The minimum probability an edge must have for the scheduler to save its
10734 state across it.
10735 The default value is 10.
10736
10737 @item sched-mem-true-dep-cost
10738 Minimal distance (in CPU cycles) between store and load targeting same
10739 memory locations.  The default value is 1.
10740
10741 @item selsched-max-lookahead
10742 The maximum size of the lookahead window of selective scheduling.  It is a
10743 depth of search for available instructions.
10744 The default value is 50.
10745
10746 @item selsched-max-sched-times
10747 The maximum number of times that an instruction is scheduled during
10748 selective scheduling.  This is the limit on the number of iterations
10749 through which the instruction may be pipelined.  The default value is 2.
10750
10751 @item selsched-max-insns-to-rename
10752 The maximum number of best instructions in the ready list that are considered
10753 for renaming in the selective scheduler.  The default value is 2.
10754
10755 @item sms-min-sc
10756 The minimum value of stage count that swing modulo scheduler
10757 generates.  The default value is 2.
10758
10759 @item max-last-value-rtl
10760 The maximum size measured as number of RTLs that can be recorded in an expression
10761 in combiner for a pseudo register as last known value of that register.  The default
10762 is 10000.
10763
10764 @item max-combine-insns
10765 The maximum number of instructions the RTL combiner tries to combine.
10766 The default value is 2 at @option{-Og} and 4 otherwise.
10767
10768 @item integer-share-limit
10769 Small integer constants can use a shared data structure, reducing the
10770 compiler's memory usage and increasing its speed.  This sets the maximum
10771 value of a shared integer constant.  The default value is 256.
10772
10773 @item ssp-buffer-size
10774 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10775 protection when @option{-fstack-protection} is used.
10776
10777 @item min-size-for-stack-sharing
10778 The minimum size of variables taking part in stack slot sharing when not
10779 optimizing. The default value is 32.
10780
10781 @item max-jump-thread-duplication-stmts
10782 Maximum number of statements allowed in a block that needs to be
10783 duplicated when threading jumps.
10784
10785 @item max-fields-for-field-sensitive
10786 Maximum number of fields in a structure treated in
10787 a field sensitive manner during pointer analysis.  The default is zero
10788 for @option{-O0} and @option{-O1},
10789 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10790
10791 @item prefetch-latency
10792 Estimate on average number of instructions that are executed before
10793 prefetch finishes.  The distance prefetched ahead is proportional
10794 to this constant.  Increasing this number may also lead to less
10795 streams being prefetched (see @option{simultaneous-prefetches}).
10796
10797 @item simultaneous-prefetches
10798 Maximum number of prefetches that can run at the same time.
10799
10800 @item l1-cache-line-size
10801 The size of cache line in L1 cache, in bytes.
10802
10803 @item l1-cache-size
10804 The size of L1 cache, in kilobytes.
10805
10806 @item l2-cache-size
10807 The size of L2 cache, in kilobytes.
10808
10809 @item min-insn-to-prefetch-ratio
10810 The minimum ratio between the number of instructions and the
10811 number of prefetches to enable prefetching in a loop.
10812
10813 @item prefetch-min-insn-to-mem-ratio
10814 The minimum ratio between the number of instructions and the
10815 number of memory references to enable prefetching in a loop.
10816
10817 @item use-canonical-types
10818 Whether the compiler should use the ``canonical'' type system.  By
10819 default, this should always be 1, which uses a more efficient internal
10820 mechanism for comparing types in C++ and Objective-C++.  However, if
10821 bugs in the canonical type system are causing compilation failures,
10822 set this value to 0 to disable canonical types.
10823
10824 @item switch-conversion-max-branch-ratio
10825 Switch initialization conversion refuses to create arrays that are
10826 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10827 branches in the switch.
10828
10829 @item max-partial-antic-length
10830 Maximum length of the partial antic set computed during the tree
10831 partial redundancy elimination optimization (@option{-ftree-pre}) when
10832 optimizing at @option{-O3} and above.  For some sorts of source code
10833 the enhanced partial redundancy elimination optimization can run away,
10834 consuming all of the memory available on the host machine.  This
10835 parameter sets a limit on the length of the sets that are computed,
10836 which prevents the runaway behavior.  Setting a value of 0 for
10837 this parameter allows an unlimited set length.
10838
10839 @item sccvn-max-scc-size
10840 Maximum size of a strongly connected component (SCC) during SCCVN
10841 processing.  If this limit is hit, SCCVN processing for the whole
10842 function is not done and optimizations depending on it are
10843 disabled.  The default maximum SCC size is 10000.
10844
10845 @item sccvn-max-alias-queries-per-access
10846 Maximum number of alias-oracle queries we perform when looking for
10847 redundancies for loads and stores.  If this limit is hit the search
10848 is aborted and the load or store is not considered redundant.  The
10849 number of queries is algorithmically limited to the number of
10850 stores on all paths from the load to the function entry.
10851 The default maxmimum number of queries is 1000.
10852
10853 @item ira-max-loops-num
10854 IRA uses regional register allocation by default.  If a function
10855 contains more loops than the number given by this parameter, only at most
10856 the given number of the most frequently-executed loops form regions
10857 for regional register allocation.  The default value of the
10858 parameter is 100.
10859
10860 @item ira-max-conflict-table-size 
10861 Although IRA uses a sophisticated algorithm to compress the conflict
10862 table, the table can still require excessive amounts of memory for
10863 huge functions.  If the conflict table for a function could be more
10864 than the size in MB given by this parameter, the register allocator
10865 instead uses a faster, simpler, and lower-quality
10866 algorithm that does not require building a pseudo-register conflict table.  
10867 The default value of the parameter is 2000.
10868
10869 @item ira-loop-reserved-regs
10870 IRA can be used to evaluate more accurate register pressure in loops
10871 for decisions to move loop invariants (see @option{-O3}).  The number
10872 of available registers reserved for some other purposes is given
10873 by this parameter.  The default value of the parameter is 2, which is
10874 the minimal number of registers needed by typical instructions.
10875 This value is the best found from numerous experiments.
10876
10877 @item lra-inheritance-ebb-probability-cutoff
10878 LRA tries to reuse values reloaded in registers in subsequent insns.
10879 This optimization is called inheritance.  EBB is used as a region to
10880 do this optimization.  The parameter defines a minimal fall-through
10881 edge probability in percentage used to add BB to inheritance EBB in
10882 LRA.  The default value of the parameter is 40.  The value was chosen
10883 from numerous runs of SPEC2000 on x86-64.
10884
10885 @item loop-invariant-max-bbs-in-loop
10886 Loop invariant motion can be very expensive, both in compilation time and
10887 in amount of needed compile-time memory, with very large loops.  Loops
10888 with more basic blocks than this parameter won't have loop invariant
10889 motion optimization performed on them.  The default value of the
10890 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10891
10892 @item loop-max-datarefs-for-datadeps
10893 Building data dapendencies is expensive for very large loops.  This
10894 parameter limits the number of data references in loops that are
10895 considered for data dependence analysis.  These large loops are no
10896 handled by the optimizations using loop data dependencies.
10897 The default value is 1000.
10898
10899 @item max-vartrack-size
10900 Sets a maximum number of hash table slots to use during variable
10901 tracking dataflow analysis of any function.  If this limit is exceeded
10902 with variable tracking at assignments enabled, analysis for that
10903 function is retried without it, after removing all debug insns from
10904 the function.  If the limit is exceeded even without debug insns, var
10905 tracking analysis is completely disabled for the function.  Setting
10906 the parameter to zero makes it unlimited.
10907
10908 @item max-vartrack-expr-depth
10909 Sets a maximum number of recursion levels when attempting to map
10910 variable names or debug temporaries to value expressions.  This trades
10911 compilation time for more complete debug information.  If this is set too
10912 low, value expressions that are available and could be represented in
10913 debug information may end up not being used; setting this higher may
10914 enable the compiler to find more complex debug expressions, but compile
10915 time and memory use may grow.  The default is 12.
10916
10917 @item min-nondebug-insn-uid
10918 Use uids starting at this parameter for nondebug insns.  The range below
10919 the parameter is reserved exclusively for debug insns created by
10920 @option{-fvar-tracking-assignments}, but debug insns may get
10921 (non-overlapping) uids above it if the reserved range is exhausted.
10922
10923 @item ipa-sra-ptr-growth-factor
10924 IPA-SRA replaces a pointer to an aggregate with one or more new
10925 parameters only when their cumulative size is less or equal to
10926 @option{ipa-sra-ptr-growth-factor} times the size of the original
10927 pointer parameter.
10928
10929 @item sra-max-scalarization-size-Ospeed
10930 @item sra-max-scalarization-size-Osize
10931 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10932 replace scalar parts of aggregates with uses of independent scalar
10933 variables.  These parameters control the maximum size, in storage units,
10934 of aggregate which is considered for replacement when compiling for
10935 speed
10936 (@option{sra-max-scalarization-size-Ospeed}) or size
10937 (@option{sra-max-scalarization-size-Osize}) respectively.
10938
10939 @item tm-max-aggregate-size
10940 When making copies of thread-local variables in a transaction, this
10941 parameter specifies the size in bytes after which variables are
10942 saved with the logging functions as opposed to save/restore code
10943 sequence pairs.  This option only applies when using
10944 @option{-fgnu-tm}.
10945
10946 @item graphite-max-nb-scop-params
10947 To avoid exponential effects in the Graphite loop transforms, the
10948 number of parameters in a Static Control Part (SCoP) is bounded.  The
10949 default value is 10 parameters.  A variable whose value is unknown at
10950 compilation time and defined outside a SCoP is a parameter of the SCoP.
10951
10952 @item graphite-max-bbs-per-function
10953 To avoid exponential effects in the detection of SCoPs, the size of
10954 the functions analyzed by Graphite is bounded.  The default value is
10955 100 basic blocks.
10956
10957 @item loop-block-tile-size
10958 Loop blocking or strip mining transforms, enabled with
10959 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10960 loop in the loop nest by a given number of iterations.  The strip
10961 length can be changed using the @option{loop-block-tile-size}
10962 parameter.  The default value is 51 iterations.
10963
10964 @item loop-unroll-jam-size
10965 Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The 
10966 default value is 4.
10967
10968 @item loop-unroll-jam-depth
10969 Specify the dimension to be unrolled (counting from the most inner loop)
10970 for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10971
10972 @item ipa-cp-value-list-size
10973 IPA-CP attempts to track all possible values and types passed to a function's
10974 parameter in order to propagate them and perform devirtualization.
10975 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10976 stores per one formal parameter of a function.
10977
10978 @item ipa-cp-eval-threshold
10979 IPA-CP calculates its own score of cloning profitability heuristics
10980 and performs those cloning opportunities with scores that exceed
10981 @option{ipa-cp-eval-threshold}.
10982
10983 @item ipa-cp-recursion-penalty
10984 Percentage penalty the recursive functions will receive when they
10985 are evaluated for cloning.
10986
10987 @item ipa-cp-single-call-penalty
10988 Percentage penalty functions containg a single call to another
10989 function will receive when they are evaluated for cloning.
10990
10991
10992 @item ipa-max-agg-items
10993 IPA-CP is also capable to propagate a number of scalar values passed
10994 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10995 number of such values per one parameter.
10996
10997 @item ipa-cp-loop-hint-bonus
10998 When IPA-CP determines that a cloning candidate would make the number
10999 of iterations of a loop known, it adds a bonus of
11000 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11001 the candidate.
11002
11003 @item ipa-cp-array-index-hint-bonus
11004 When IPA-CP determines that a cloning candidate would make the index of
11005 an array access known, it adds a bonus of
11006 @option{ipa-cp-array-index-hint-bonus} to the profitability
11007 score of the candidate.
11008
11009 @item ipa-max-aa-steps
11010 During its analysis of function bodies, IPA-CP employs alias analysis
11011 in order to track values pointed to by function parameters.  In order
11012 not spend too much time analyzing huge functions, it gives up and
11013 consider all memory clobbered after examining
11014 @option{ipa-max-aa-steps} statements modifying memory.
11015
11016 @item lto-partitions
11017 Specify desired number of partitions produced during WHOPR compilation.
11018 The number of partitions should exceed the number of CPUs used for compilation.
11019 The default value is 32.
11020
11021 @item lto-minpartition
11022 Size of minimal partition for WHOPR (in estimated instructions).
11023 This prevents expenses of splitting very small programs into too many
11024 partitions.
11025
11026 @item cxx-max-namespaces-for-diagnostic-help
11027 The maximum number of namespaces to consult for suggestions when C++
11028 name lookup fails for an identifier.  The default is 1000.
11029
11030 @item sink-frequency-threshold
11031 The maximum relative execution frequency (in percents) of the target block
11032 relative to a statement's original block to allow statement sinking of a
11033 statement.  Larger numbers result in more aggressive statement sinking.
11034 The default value is 75.  A small positive adjustment is applied for
11035 statements with memory operands as those are even more profitable so sink.
11036
11037 @item max-stores-to-sink
11038 The maximum number of conditional stores paires that can be sunk.  Set to 0
11039 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11040 (@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
11041
11042 @item allow-store-data-races
11043 Allow optimizers to introduce new data races on stores.
11044 Set to 1 to allow, otherwise to 0.  This option is enabled by default
11045 at optimization level @option{-Ofast}.
11046
11047 @item case-values-threshold
11048 The smallest number of different values for which it is best to use a
11049 jump-table instead of a tree of conditional branches.  If the value is
11050 0, use the default for the machine.  The default is 0.
11051
11052 @item tree-reassoc-width
11053 Set the maximum number of instructions executed in parallel in
11054 reassociated tree. This parameter overrides target dependent
11055 heuristics used by default if has non zero value.
11056
11057 @item sched-pressure-algorithm
11058 Choose between the two available implementations of
11059 @option{-fsched-pressure}.  Algorithm 1 is the original implementation
11060 and is the more likely to prevent instructions from being reordered.
11061 Algorithm 2 was designed to be a compromise between the relatively
11062 conservative approach taken by algorithm 1 and the rather aggressive
11063 approach taken by the default scheduler.  It relies more heavily on
11064 having a regular register file and accurate register pressure classes.
11065 See @file{haifa-sched.c} in the GCC sources for more details.
11066
11067 The default choice depends on the target.
11068
11069 @item max-slsr-cand-scan
11070 Set the maximum number of existing candidates that are considered when
11071 seeking a basis for a new straight-line strength reduction candidate.
11072
11073 @item asan-globals
11074 Enable buffer overflow detection for global objects.  This kind
11075 of protection is enabled by default if you are using
11076 @option{-fsanitize=address} option.
11077 To disable global objects protection use @option{--param asan-globals=0}.
11078
11079 @item asan-stack
11080 Enable buffer overflow detection for stack objects.  This kind of
11081 protection is enabled by default when using @option{-fsanitize=address}.
11082 To disable stack protection use @option{--param asan-stack=0} option.
11083
11084 @item asan-instrument-reads
11085 Enable buffer overflow detection for memory reads.  This kind of
11086 protection is enabled by default when using @option{-fsanitize=address}.
11087 To disable memory reads protection use
11088 @option{--param asan-instrument-reads=0}.
11089
11090 @item asan-instrument-writes
11091 Enable buffer overflow detection for memory writes.  This kind of
11092 protection is enabled by default when using @option{-fsanitize=address}.
11093 To disable memory writes protection use
11094 @option{--param asan-instrument-writes=0} option.
11095
11096 @item asan-memintrin
11097 Enable detection for built-in functions.  This kind of protection
11098 is enabled by default when using @option{-fsanitize=address}.
11099 To disable built-in functions protection use
11100 @option{--param asan-memintrin=0}.
11101
11102 @item asan-use-after-return
11103 Enable detection of use-after-return.  This kind of protection
11104 is enabled by default when using @option{-fsanitize=address} option.
11105 To disable use-after-return detection use 
11106 @option{--param asan-use-after-return=0}.
11107
11108 @item asan-instrumentation-with-call-threshold
11109 If number of memory accesses in function being instrumented
11110 is greater or equal to this number, use callbacks instead of inline checks.
11111 E.g. to disable inline code use
11112 @option{--param asan-instrumentation-with-call-threshold=0}.
11113
11114 @item chkp-max-ctor-size
11115 Static constructors generated by Pointer Bounds Checker may become very
11116 large and significantly increase compile time at optimization level
11117 @option{-O1} and higher.  This parameter is a maximum nubmer of statements
11118 in a single generated constructor.  Default value is 5000.
11119
11120 @item max-fsm-thread-path-insns
11121 Maximum number of instructions to copy when duplicating blocks on a
11122 finite state automaton jump thread path.  The default is 100.
11123
11124 @item max-fsm-thread-length
11125 Maximum number of basic blocks on a finite state automaton jump thread
11126 path.  The default is 10.
11127
11128 @item max-fsm-thread-paths
11129 Maximum number of new jump thread paths to create for a finite state
11130 automaton.  The default is 50.
11131
11132 @item parloops-chunk-size
11133 Chunk size of omp schedule for loops parallelized by parloops.  The default
11134 is 0.
11135
11136 @item max-ssa-name-query-depth
11137 Maximum depth of recursion when querying properties of SSA names in things
11138 like fold routines.  One level of recursion corresponds to following a
11139 use-def chain.
11140 @end table
11141 @end table
11142
11143 @node Preprocessor Options
11144 @section Options Controlling the Preprocessor
11145 @cindex preprocessor options
11146 @cindex options, preprocessor
11147
11148 These options control the C preprocessor, which is run on each C source
11149 file before actual compilation.
11150
11151 If you use the @option{-E} option, nothing is done except preprocessing.
11152 Some of these options make sense only together with @option{-E} because
11153 they cause the preprocessor output to be unsuitable for actual
11154 compilation.
11155
11156 @table @gcctabopt
11157 @item -Wp,@var{option}
11158 @opindex Wp
11159 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11160 and pass @var{option} directly through to the preprocessor.  If
11161 @var{option} contains commas, it is split into multiple options at the
11162 commas.  However, many options are modified, translated or interpreted
11163 by the compiler driver before being passed to the preprocessor, and
11164 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
11165 interface is undocumented and subject to change, so whenever possible
11166 you should avoid using @option{-Wp} and let the driver handle the
11167 options instead.
11168
11169 @item -Xpreprocessor @var{option}
11170 @opindex Xpreprocessor
11171 Pass @var{option} as an option to the preprocessor.  You can use this to
11172 supply system-specific preprocessor options that GCC does not 
11173 recognize.
11174
11175 If you want to pass an option that takes an argument, you must use
11176 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11177
11178 @item -no-integrated-cpp
11179 @opindex no-integrated-cpp
11180 Perform preprocessing as a separate pass before compilation.
11181 By default, GCC performs preprocessing as an integrated part of
11182 input tokenization and parsing.
11183 If this option is provided, the appropriate language front end
11184 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11185 and Objective-C, respectively) is instead invoked twice,
11186 once for preprocessing only and once for actual compilation
11187 of the preprocessed input.
11188 This option may be useful in conjunction with the @option{-B} or
11189 @option{-wrapper} options to specify an alternate preprocessor or
11190 perform additional processing of the program source between
11191 normal preprocessing and compilation.
11192 @end table
11193
11194 @include cppopts.texi
11195
11196 @node Assembler Options
11197 @section Passing Options to the Assembler
11198
11199 @c prevent bad page break with this line
11200 You can pass options to the assembler.
11201
11202 @table @gcctabopt
11203 @item -Wa,@var{option}
11204 @opindex Wa
11205 Pass @var{option} as an option to the assembler.  If @var{option}
11206 contains commas, it is split into multiple options at the commas.
11207
11208 @item -Xassembler @var{option}
11209 @opindex Xassembler
11210 Pass @var{option} as an option to the assembler.  You can use this to
11211 supply system-specific assembler options that GCC does not
11212 recognize.
11213
11214 If you want to pass an option that takes an argument, you must use
11215 @option{-Xassembler} twice, once for the option and once for the argument.
11216
11217 @end table
11218
11219 @node Link Options
11220 @section Options for Linking
11221 @cindex link options
11222 @cindex options, linking
11223
11224 These options come into play when the compiler links object files into
11225 an executable output file.  They are meaningless if the compiler is
11226 not doing a link step.
11227
11228 @table @gcctabopt
11229 @cindex file names
11230 @item @var{object-file-name}
11231 A file name that does not end in a special recognized suffix is
11232 considered to name an object file or library.  (Object files are
11233 distinguished from libraries by the linker according to the file
11234 contents.)  If linking is done, these object files are used as input
11235 to the linker.
11236
11237 @item -c
11238 @itemx -S
11239 @itemx -E
11240 @opindex c
11241 @opindex S
11242 @opindex E
11243 If any of these options is used, then the linker is not run, and
11244 object file names should not be used as arguments.  @xref{Overall
11245 Options}.
11246
11247 @item -fuse-ld=bfd
11248 @opindex fuse-ld=bfd
11249 Use the @command{bfd} linker instead of the default linker.
11250
11251 @item -fuse-ld=gold
11252 @opindex fuse-ld=gold
11253 Use the @command{gold} linker instead of the default linker.
11254
11255 @cindex Libraries
11256 @item -l@var{library}
11257 @itemx -l @var{library}
11258 @opindex l
11259 Search the library named @var{library} when linking.  (The second
11260 alternative with the library as a separate argument is only for
11261 POSIX compliance and is not recommended.)
11262
11263 It makes a difference where in the command you write this option; the
11264 linker searches and processes libraries and object files in the order they
11265 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11266 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
11267 to functions in @samp{z}, those functions may not be loaded.
11268
11269 The linker searches a standard list of directories for the library,
11270 which is actually a file named @file{lib@var{library}.a}.  The linker
11271 then uses this file as if it had been specified precisely by name.
11272
11273 The directories searched include several standard system directories
11274 plus any that you specify with @option{-L}.
11275
11276 Normally the files found this way are library files---archive files
11277 whose members are object files.  The linker handles an archive file by
11278 scanning through it for members which define symbols that have so far
11279 been referenced but not defined.  But if the file that is found is an
11280 ordinary object file, it is linked in the usual fashion.  The only
11281 difference between using an @option{-l} option and specifying a file name
11282 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11283 and searches several directories.
11284
11285 @item -lobjc
11286 @opindex lobjc
11287 You need this special case of the @option{-l} option in order to
11288 link an Objective-C or Objective-C++ program.
11289
11290 @item -nostartfiles
11291 @opindex nostartfiles
11292 Do not use the standard system startup files when linking.
11293 The standard system libraries are used normally, unless @option{-nostdlib}
11294 or @option{-nodefaultlibs} is used.
11295
11296 @item -nodefaultlibs
11297 @opindex nodefaultlibs
11298 Do not use the standard system libraries when linking.
11299 Only the libraries you specify are passed to the linker, and options
11300 specifying linkage of the system libraries, such as @option{-static-libgcc}
11301 or @option{-shared-libgcc}, are ignored.  
11302 The standard startup files are used normally, unless @option{-nostartfiles}
11303 is used.  
11304
11305 The compiler may generate calls to @code{memcmp},
11306 @code{memset}, @code{memcpy} and @code{memmove}.
11307 These entries are usually resolved by entries in
11308 libc.  These entry points should be supplied through some other
11309 mechanism when this option is specified.
11310
11311 @item -nostdlib
11312 @opindex nostdlib
11313 Do not use the standard system startup files or libraries when linking.
11314 No startup files and only the libraries you specify are passed to
11315 the linker, and options specifying linkage of the system libraries, such as
11316 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11317
11318 The compiler may generate calls to @code{memcmp}, @code{memset},
11319 @code{memcpy} and @code{memmove}.
11320 These entries are usually resolved by entries in
11321 libc.  These entry points should be supplied through some other
11322 mechanism when this option is specified.
11323
11324 @cindex @option{-lgcc}, use with @option{-nostdlib}
11325 @cindex @option{-nostdlib} and unresolved references
11326 @cindex unresolved references and @option{-nostdlib}
11327 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11328 @cindex @option{-nodefaultlibs} and unresolved references
11329 @cindex unresolved references and @option{-nodefaultlibs}
11330 One of the standard libraries bypassed by @option{-nostdlib} and
11331 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11332 which GCC uses to overcome shortcomings of particular machines, or special
11333 needs for some languages.
11334 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11335 Collection (GCC) Internals},
11336 for more discussion of @file{libgcc.a}.)
11337 In most cases, you need @file{libgcc.a} even when you want to avoid
11338 other standard libraries.  In other words, when you specify @option{-nostdlib}
11339 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11340 This ensures that you have no unresolved references to internal GCC
11341 library subroutines.
11342 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11343 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11344 GNU Compiler Collection (GCC) Internals}.)
11345
11346 @item -pie
11347 @opindex pie
11348 Produce a position independent executable on targets that support it.
11349 For predictable results, you must also specify the same set of options
11350 used for compilation (@option{-fpie}, @option{-fPIE},
11351 or model suboptions) when you specify this linker option.
11352
11353 @item -no-pie
11354 @opindex no-pie
11355 Don't produce a position independent executable.
11356
11357 @item -rdynamic
11358 @opindex rdynamic
11359 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11360 that support it. This instructs the linker to add all symbols, not
11361 only used ones, to the dynamic symbol table. This option is needed
11362 for some uses of @code{dlopen} or to allow obtaining backtraces
11363 from within a program.
11364
11365 @item -s
11366 @opindex s
11367 Remove all symbol table and relocation information from the executable.
11368
11369 @item -static
11370 @opindex static
11371 On systems that support dynamic linking, this prevents linking with the shared
11372 libraries.  On other systems, this option has no effect.
11373
11374 @item -shared
11375 @opindex shared
11376 Produce a shared object which can then be linked with other objects to
11377 form an executable.  Not all systems support this option.  For predictable
11378 results, you must also specify the same set of options used for compilation
11379 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11380 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11381 needs to build supplementary stub code for constructors to work.  On
11382 multi-libbed systems, @samp{gcc -shared} must select the correct support
11383 libraries to link against.  Failing to supply the correct flags may lead
11384 to subtle defects.  Supplying them in cases where they are not necessary
11385 is innocuous.}
11386
11387 @item -shared-libgcc
11388 @itemx -static-libgcc
11389 @opindex shared-libgcc
11390 @opindex static-libgcc
11391 On systems that provide @file{libgcc} as a shared library, these options
11392 force the use of either the shared or static version, respectively.
11393 If no shared version of @file{libgcc} was built when the compiler was
11394 configured, these options have no effect.
11395
11396 There are several situations in which an application should use the
11397 shared @file{libgcc} instead of the static version.  The most common
11398 of these is when the application wishes to throw and catch exceptions
11399 across different shared libraries.  In that case, each of the libraries
11400 as well as the application itself should use the shared @file{libgcc}.
11401
11402 Therefore, the G++ and GCJ drivers automatically add
11403 @option{-shared-libgcc} whenever you build a shared library or a main
11404 executable, because C++ and Java programs typically use exceptions, so
11405 this is the right thing to do.
11406
11407 If, instead, you use the GCC driver to create shared libraries, you may
11408 find that they are not always linked with the shared @file{libgcc}.
11409 If GCC finds, at its configuration time, that you have a non-GNU linker
11410 or a GNU linker that does not support option @option{--eh-frame-hdr},
11411 it links the shared version of @file{libgcc} into shared libraries
11412 by default.  Otherwise, it takes advantage of the linker and optimizes
11413 away the linking with the shared version of @file{libgcc}, linking with
11414 the static version of libgcc by default.  This allows exceptions to
11415 propagate through such shared libraries, without incurring relocation
11416 costs at library load time.
11417
11418 However, if a library or main executable is supposed to throw or catch
11419 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11420 for the languages used in the program, or using the option
11421 @option{-shared-libgcc}, such that it is linked with the shared
11422 @file{libgcc}.
11423
11424 @item -static-libasan
11425 @opindex static-libasan
11426 When the @option{-fsanitize=address} option is used to link a program,
11427 the GCC driver automatically links against @option{libasan}.  If
11428 @file{libasan} is available as a shared library, and the @option{-static}
11429 option is not used, then this links against the shared version of
11430 @file{libasan}.  The @option{-static-libasan} option directs the GCC
11431 driver to link @file{libasan} statically, without necessarily linking
11432 other libraries statically.
11433
11434 @item -static-libtsan
11435 @opindex static-libtsan
11436 When the @option{-fsanitize=thread} option is used to link a program,
11437 the GCC driver automatically links against @option{libtsan}.  If
11438 @file{libtsan} is available as a shared library, and the @option{-static}
11439 option is not used, then this links against the shared version of
11440 @file{libtsan}.  The @option{-static-libtsan} option directs the GCC
11441 driver to link @file{libtsan} statically, without necessarily linking
11442 other libraries statically.
11443
11444 @item -static-liblsan
11445 @opindex static-liblsan
11446 When the @option{-fsanitize=leak} option is used to link a program,
11447 the GCC driver automatically links against @option{liblsan}.  If
11448 @file{liblsan} is available as a shared library, and the @option{-static}
11449 option is not used, then this links against the shared version of
11450 @file{liblsan}.  The @option{-static-liblsan} option directs the GCC
11451 driver to link @file{liblsan} statically, without necessarily linking
11452 other libraries statically.
11453
11454 @item -static-libubsan
11455 @opindex static-libubsan
11456 When the @option{-fsanitize=undefined} option is used to link a program,
11457 the GCC driver automatically links against @option{libubsan}.  If
11458 @file{libubsan} is available as a shared library, and the @option{-static}
11459 option is not used, then this links against the shared version of
11460 @file{libubsan}.  The @option{-static-libubsan} option directs the GCC
11461 driver to link @file{libubsan} statically, without necessarily linking
11462 other libraries statically.
11463
11464 @item -static-libmpx
11465 @opindex static-libmpx
11466 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11467 used to link a program, the GCC driver automatically links against
11468 @file{libmpx}.  If @file{libmpx} is available as a shared library,
11469 and the @option{-static} option is not used, then this links against
11470 the shared version of @file{libmpx}.  The @option{-static-libmpx}
11471 option directs the GCC driver to link @file{libmpx} statically,
11472 without necessarily linking other libraries statically.
11473
11474 @item -static-libmpxwrappers
11475 @opindex static-libmpxwrappers
11476 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11477 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11478 GCC driver automatically links against @file{libmpxwrappers}.  If
11479 @file{libmpxwrappers} is available as a shared library, and the
11480 @option{-static} option is not used, then this links against the shared
11481 version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
11482 option directs the GCC driver to link @file{libmpxwrappers} statically,
11483 without necessarily linking other libraries statically.
11484
11485 @item -static-libstdc++
11486 @opindex static-libstdc++
11487 When the @command{g++} program is used to link a C++ program, it
11488 normally automatically links against @option{libstdc++}.  If
11489 @file{libstdc++} is available as a shared library, and the
11490 @option{-static} option is not used, then this links against the
11491 shared version of @file{libstdc++}.  That is normally fine.  However, it
11492 is sometimes useful to freeze the version of @file{libstdc++} used by
11493 the program without going all the way to a fully static link.  The
11494 @option{-static-libstdc++} option directs the @command{g++} driver to
11495 link @file{libstdc++} statically, without necessarily linking other
11496 libraries statically.
11497
11498 @item -symbolic
11499 @opindex symbolic
11500 Bind references to global symbols when building a shared object.  Warn
11501 about any unresolved references (unless overridden by the link editor
11502 option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
11503 this option.
11504
11505 @item -T @var{script}
11506 @opindex T
11507 @cindex linker script
11508 Use @var{script} as the linker script.  This option is supported by most
11509 systems using the GNU linker.  On some targets, such as bare-board
11510 targets without an operating system, the @option{-T} option may be required
11511 when linking to avoid references to undefined symbols.
11512
11513 @item -Xlinker @var{option}
11514 @opindex Xlinker
11515 Pass @var{option} as an option to the linker.  You can use this to
11516 supply system-specific linker options that GCC does not recognize.
11517
11518 If you want to pass an option that takes a separate argument, you must use
11519 @option{-Xlinker} twice, once for the option and once for the argument.
11520 For example, to pass @option{-assert definitions}, you must write
11521 @option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
11522 @option{-Xlinker "-assert definitions"}, because this passes the entire
11523 string as a single argument, which is not what the linker expects.
11524
11525 When using the GNU linker, it is usually more convenient to pass
11526 arguments to linker options using the @option{@var{option}=@var{value}}
11527 syntax than as separate arguments.  For example, you can specify
11528 @option{-Xlinker -Map=output.map} rather than
11529 @option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
11530 this syntax for command-line options.
11531
11532 @item -Wl,@var{option}
11533 @opindex Wl
11534 Pass @var{option} as an option to the linker.  If @var{option} contains
11535 commas, it is split into multiple options at the commas.  You can use this
11536 syntax to pass an argument to the option.
11537 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11538 linker.  When using the GNU linker, you can also get the same effect with
11539 @option{-Wl,-Map=output.map}.
11540
11541 @item -u @var{symbol}
11542 @opindex u
11543 Pretend the symbol @var{symbol} is undefined, to force linking of
11544 library modules to define it.  You can use @option{-u} multiple times with
11545 different symbols to force loading of additional library modules.
11546
11547 @item -z @var{keyword}
11548 @opindex z
11549 @option{-z} is passed directly on to the linker along with the keyword
11550 @var{keyword}. See the section in the documentation of your linker for
11551 permitted values and their meanings.
11552 @end table
11553
11554 @node Directory Options
11555 @section Options for Directory Search
11556 @cindex directory options
11557 @cindex options, directory search
11558 @cindex search path
11559
11560 These options specify directories to search for header files, for
11561 libraries and for parts of the compiler:
11562
11563 @table @gcctabopt
11564 @item -I@var{dir}
11565 @opindex I
11566 Add the directory @var{dir} to the head of the list of directories to be
11567 searched for header files.  This can be used to override a system header
11568 file, substituting your own version, since these directories are
11569 searched before the system header file directories.  However, you should
11570 not use this option to add directories that contain vendor-supplied
11571 system header files (use @option{-isystem} for that).  If you use more than
11572 one @option{-I} option, the directories are scanned in left-to-right
11573 order; the standard system directories come after.
11574
11575 If a standard system include directory, or a directory specified with
11576 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11577 option is ignored.  The directory is still searched but as a
11578 system directory at its normal position in the system include chain.
11579 This is to ensure that GCC's procedure to fix buggy system headers and
11580 the ordering for the @code{include_next} directive are not inadvertently changed.
11581 If you really need to change the search order for system directories,
11582 use the @option{-nostdinc} and/or @option{-isystem} options.
11583
11584 @item -iplugindir=@var{dir}
11585 @opindex iplugindir=
11586 Set the directory to search for plugins that are passed
11587 by @option{-fplugin=@var{name}} instead of
11588 @option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
11589 to be used by the user, but only passed by the driver.
11590
11591 @item -iquote@var{dir}
11592 @opindex iquote
11593 Add the directory @var{dir} to the head of the list of directories to
11594 be searched for header files only for the case of @code{#include
11595 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11596 otherwise just like @option{-I}.
11597
11598 @item -L@var{dir}
11599 @opindex L
11600 Add directory @var{dir} to the list of directories to be searched
11601 for @option{-l}.
11602
11603 @item -B@var{prefix}
11604 @opindex B
11605 This option specifies where to find the executables, libraries,
11606 include files, and data files of the compiler itself.
11607
11608 The compiler driver program runs one or more of the subprograms
11609 @command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
11610 @var{prefix} as a prefix for each program it tries to run, both with and
11611 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11612
11613 For each subprogram to be run, the compiler driver first tries the
11614 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
11615 is not specified, the driver tries two standard prefixes, 
11616 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
11617 those results in a file name that is found, the unmodified program
11618 name is searched for using the directories specified in your
11619 @env{PATH} environment variable.
11620
11621 The compiler checks to see if the path provided by @option{-B}
11622 refers to a directory, and if necessary it adds a directory
11623 separator character at the end of the path.
11624
11625 @option{-B} prefixes that effectively specify directory names also apply
11626 to libraries in the linker, because the compiler translates these
11627 options into @option{-L} options for the linker.  They also apply to
11628 include files in the preprocessor, because the compiler translates these
11629 options into @option{-isystem} options for the preprocessor.  In this case,
11630 the compiler appends @samp{include} to the prefix.
11631
11632 The runtime support file @file{libgcc.a} can also be searched for using
11633 the @option{-B} prefix, if needed.  If it is not found there, the two
11634 standard prefixes above are tried, and that is all.  The file is left
11635 out of the link if it is not found by those means.
11636
11637 Another way to specify a prefix much like the @option{-B} prefix is to use
11638 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
11639 Variables}.
11640
11641 As a special kludge, if the path provided by @option{-B} is
11642 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11643 9, then it is replaced by @file{[dir/]include}.  This is to help
11644 with boot-strapping the compiler.
11645
11646 @item -specs=@var{file}
11647 @opindex specs
11648 Process @var{file} after the compiler reads in the standard @file{specs}
11649 file, in order to override the defaults which the @command{gcc} driver
11650 program uses when determining what switches to pass to @command{cc1},
11651 @command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
11652 @option{-specs=@var{file}} can be specified on the command line, and they
11653 are processed in order, from left to right.
11654
11655 @item --sysroot=@var{dir}
11656 @opindex sysroot
11657 Use @var{dir} as the logical root directory for headers and libraries.
11658 For example, if the compiler normally searches for headers in
11659 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11660 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11661
11662 If you use both this option and the @option{-isysroot} option, then
11663 the @option{--sysroot} option applies to libraries, but the
11664 @option{-isysroot} option applies to header files.
11665
11666 The GNU linker (beginning with version 2.16) has the necessary support
11667 for this option.  If your linker does not support this option, the
11668 header file aspect of @option{--sysroot} still works, but the
11669 library aspect does not.
11670
11671 @item --no-sysroot-suffix
11672 @opindex no-sysroot-suffix
11673 For some targets, a suffix is added to the root directory specified
11674 with @option{--sysroot}, depending on the other options used, so that
11675 headers may for example be found in
11676 @file{@var{dir}/@var{suffix}/usr/include} instead of
11677 @file{@var{dir}/usr/include}.  This option disables the addition of
11678 such a suffix.
11679
11680 @item -I-
11681 @opindex I-
11682 This option has been deprecated.  Please use @option{-iquote} instead for
11683 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11684 option.
11685 Any directories you specify with @option{-I} options before the @option{-I-}
11686 option are searched only for the case of @code{#include "@var{file}"};
11687 they are not searched for @code{#include <@var{file}>}.
11688
11689 If additional directories are specified with @option{-I} options after
11690 the @option{-I-} option, these directories are searched for all @code{#include}
11691 directives.  (Ordinarily @emph{all} @option{-I} directories are used
11692 this way.)
11693
11694 In addition, the @option{-I-} option inhibits the use of the current
11695 directory (where the current input file came from) as the first search
11696 directory for @code{#include "@var{file}"}.  There is no way to
11697 override this effect of @option{-I-}.  With @option{-I.} you can specify
11698 searching the directory that is current when the compiler is
11699 invoked.  That is not exactly the same as what the preprocessor does
11700 by default, but it is often satisfactory.
11701
11702 @option{-I-} does not inhibit the use of the standard system directories
11703 for header files.  Thus, @option{-I-} and @option{-nostdinc} are
11704 independent.
11705 @end table
11706
11707 @c man end
11708
11709 @node Spec Files
11710 @section Specifying Subprocesses and the Switches to Pass to Them
11711 @cindex Spec Files
11712
11713 @command{gcc} is a driver program.  It performs its job by invoking a
11714 sequence of other programs to do the work of compiling, assembling and
11715 linking.  GCC interprets its command-line parameters and uses these to
11716 deduce which programs it should invoke, and which command-line options
11717 it ought to place on their command lines.  This behavior is controlled
11718 by @dfn{spec strings}.  In most cases there is one spec string for each
11719 program that GCC can invoke, but a few programs have multiple spec
11720 strings to control their behavior.  The spec strings built into GCC can
11721 be overridden by using the @option{-specs=} command-line switch to specify
11722 a spec file.
11723
11724 @dfn{Spec files} are plaintext files that are used to construct spec
11725 strings.  They consist of a sequence of directives separated by blank
11726 lines.  The type of directive is determined by the first non-whitespace
11727 character on the line, which can be one of the following:
11728
11729 @table @code
11730 @item %@var{command}
11731 Issues a @var{command} to the spec file processor.  The commands that can
11732 appear here are:
11733
11734 @table @code
11735 @item %include <@var{file}>
11736 @cindex @code{%include}
11737 Search for @var{file} and insert its text at the current point in the
11738 specs file.
11739
11740 @item %include_noerr <@var{file}>
11741 @cindex @code{%include_noerr}
11742 Just like @samp{%include}, but do not generate an error message if the include
11743 file cannot be found.
11744
11745 @item %rename @var{old_name} @var{new_name}
11746 @cindex @code{%rename}
11747 Rename the spec string @var{old_name} to @var{new_name}.
11748
11749 @end table
11750
11751 @item *[@var{spec_name}]:
11752 This tells the compiler to create, override or delete the named spec
11753 string.  All lines after this directive up to the next directive or
11754 blank line are considered to be the text for the spec string.  If this
11755 results in an empty string then the spec is deleted.  (Or, if the
11756 spec did not exist, then nothing happens.)  Otherwise, if the spec
11757 does not currently exist a new spec is created.  If the spec does
11758 exist then its contents are overridden by the text of this
11759 directive, unless the first character of that text is the @samp{+}
11760 character, in which case the text is appended to the spec.
11761
11762 @item [@var{suffix}]:
11763 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
11764 and up to the next directive or blank line are considered to make up the
11765 spec string for the indicated suffix.  When the compiler encounters an
11766 input file with the named suffix, it processes the spec string in
11767 order to work out how to compile that file.  For example:
11768
11769 @smallexample
11770 .ZZ:
11771 z-compile -input %i
11772 @end smallexample
11773
11774 This says that any input file whose name ends in @samp{.ZZ} should be
11775 passed to the program @samp{z-compile}, which should be invoked with the
11776 command-line switch @option{-input} and with the result of performing the
11777 @samp{%i} substitution.  (See below.)
11778
11779 As an alternative to providing a spec string, the text following a
11780 suffix directive can be one of the following:
11781
11782 @table @code
11783 @item @@@var{language}
11784 This says that the suffix is an alias for a known @var{language}.  This is
11785 similar to using the @option{-x} command-line switch to GCC to specify a
11786 language explicitly.  For example:
11787
11788 @smallexample
11789 .ZZ:
11790 @@c++
11791 @end smallexample
11792
11793 Says that .ZZ files are, in fact, C++ source files.
11794
11795 @item #@var{name}
11796 This causes an error messages saying:
11797
11798 @smallexample
11799 @var{name} compiler not installed on this system.
11800 @end smallexample
11801 @end table
11802
11803 GCC already has an extensive list of suffixes built into it.
11804 This directive adds an entry to the end of the list of suffixes, but
11805 since the list is searched from the end backwards, it is effectively
11806 possible to override earlier entries using this technique.
11807
11808 @end table
11809
11810 GCC has the following spec strings built into it.  Spec files can
11811 override these strings or create their own.  Note that individual
11812 targets can also add their own spec strings to this list.
11813
11814 @smallexample
11815 asm          Options to pass to the assembler
11816 asm_final    Options to pass to the assembler post-processor
11817 cpp          Options to pass to the C preprocessor
11818 cc1          Options to pass to the C compiler
11819 cc1plus      Options to pass to the C++ compiler
11820 endfile      Object files to include at the end of the link
11821 link         Options to pass to the linker
11822 lib          Libraries to include on the command line to the linker
11823 libgcc       Decides which GCC support library to pass to the linker
11824 linker       Sets the name of the linker
11825 predefines   Defines to be passed to the C preprocessor
11826 signed_char  Defines to pass to CPP to say whether @code{char} is signed
11827              by default
11828 startfile    Object files to include at the start of the link
11829 @end smallexample
11830
11831 Here is a small example of a spec file:
11832
11833 @smallexample
11834 %rename lib                 old_lib
11835
11836 *lib:
11837 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11838 @end smallexample
11839
11840 This example renames the spec called @samp{lib} to @samp{old_lib} and
11841 then overrides the previous definition of @samp{lib} with a new one.
11842 The new definition adds in some extra command-line options before
11843 including the text of the old definition.
11844
11845 @dfn{Spec strings} are a list of command-line options to be passed to their
11846 corresponding program.  In addition, the spec strings can contain
11847 @samp{%}-prefixed sequences to substitute variable text or to
11848 conditionally insert text into the command line.  Using these constructs
11849 it is possible to generate quite complex command lines.
11850
11851 Here is a table of all defined @samp{%}-sequences for spec
11852 strings.  Note that spaces are not generated automatically around the
11853 results of expanding these sequences.  Therefore you can concatenate them
11854 together or combine them with constant text in a single argument.
11855
11856 @table @code
11857 @item %%
11858 Substitute one @samp{%} into the program name or argument.
11859
11860 @item %i
11861 Substitute the name of the input file being processed.
11862
11863 @item %b
11864 Substitute the basename of the input file being processed.
11865 This is the substring up to (and not including) the last period
11866 and not including the directory.
11867
11868 @item %B
11869 This is the same as @samp{%b}, but include the file suffix (text after
11870 the last period).
11871
11872 @item %d
11873 Marks the argument containing or following the @samp{%d} as a
11874 temporary file name, so that that file is deleted if GCC exits
11875 successfully.  Unlike @samp{%g}, this contributes no text to the
11876 argument.
11877
11878 @item %g@var{suffix}
11879 Substitute a file name that has suffix @var{suffix} and is chosen
11880 once per compilation, and mark the argument in the same way as
11881 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
11882 name is now chosen in a way that is hard to predict even when previously
11883 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11884 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
11885 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11886 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
11887 was simply substituted with a file name chosen once per compilation,
11888 without regard to any appended suffix (which was therefore treated
11889 just like ordinary text), making such attacks more likely to succeed.
11890
11891 @item %u@var{suffix}
11892 Like @samp{%g}, but generates a new temporary file name
11893 each time it appears instead of once per compilation.
11894
11895 @item %U@var{suffix}
11896 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11897 new one if there is no such last file name.  In the absence of any
11898 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11899 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11900 involves the generation of two distinct file names, one
11901 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
11902 simply substituted with a file name chosen for the previous @samp{%u},
11903 without regard to any appended suffix.
11904
11905 @item %j@var{suffix}
11906 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11907 writable, and if @option{-save-temps} is not used; 
11908 otherwise, substitute the name
11909 of a temporary file, just like @samp{%u}.  This temporary file is not
11910 meant for communication between processes, but rather as a junk
11911 disposal mechanism.
11912
11913 @item %|@var{suffix}
11914 @itemx %m@var{suffix}
11915 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
11916 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11917 all.  These are the two most common ways to instruct a program that it
11918 should read from standard input or write to standard output.  If you
11919 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11920 construct: see for example @file{f/lang-specs.h}.
11921
11922 @item %.@var{SUFFIX}
11923 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11924 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
11925 terminated by the next space or %.
11926
11927 @item %w
11928 Marks the argument containing or following the @samp{%w} as the
11929 designated output file of this compilation.  This puts the argument
11930 into the sequence of arguments that @samp{%o} substitutes.
11931
11932 @item %o
11933 Substitutes the names of all the output files, with spaces
11934 automatically placed around them.  You should write spaces
11935 around the @samp{%o} as well or the results are undefined.
11936 @samp{%o} is for use in the specs for running the linker.
11937 Input files whose names have no recognized suffix are not compiled
11938 at all, but they are included among the output files, so they are
11939 linked.
11940
11941 @item %O
11942 Substitutes the suffix for object files.  Note that this is
11943 handled specially when it immediately follows @samp{%g, %u, or %U},
11944 because of the need for those to form complete file names.  The
11945 handling is such that @samp{%O} is treated exactly as if it had already
11946 been substituted, except that @samp{%g, %u, and %U} do not currently
11947 support additional @var{suffix} characters following @samp{%O} as they do
11948 following, for example, @samp{.o}.
11949
11950 @item %p
11951 Substitutes the standard macro predefinitions for the
11952 current target machine.  Use this when running @command{cpp}.
11953
11954 @item %P
11955 Like @samp{%p}, but puts @samp{__} before and after the name of each
11956 predefined macro, except for macros that start with @samp{__} or with
11957 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
11958 C@.
11959
11960 @item %I
11961 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11962 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11963 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11964 and @option{-imultilib} as necessary.
11965
11966 @item %s
11967 Current argument is the name of a library or startup file of some sort.
11968 Search for that file in a standard list of directories and substitute
11969 the full name found.  The current working directory is included in the
11970 list of directories scanned.
11971
11972 @item %T
11973 Current argument is the name of a linker script.  Search for that file
11974 in the current list of directories to scan for libraries. If the file
11975 is located insert a @option{--script} option into the command line
11976 followed by the full path name found.  If the file is not found then
11977 generate an error message.  Note: the current working directory is not
11978 searched.
11979
11980 @item %e@var{str}
11981 Print @var{str} as an error message.  @var{str} is terminated by a newline.
11982 Use this when inconsistent options are detected.
11983
11984 @item %(@var{name})
11985 Substitute the contents of spec string @var{name} at this point.
11986
11987 @item %x@{@var{option}@}
11988 Accumulate an option for @samp{%X}.
11989
11990 @item %X
11991 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11992 spec string.
11993
11994 @item %Y
11995 Output the accumulated assembler options specified by @option{-Wa}.
11996
11997 @item %Z
11998 Output the accumulated preprocessor options specified by @option{-Wp}.
11999
12000 @item %a
12001 Process the @code{asm} spec.  This is used to compute the
12002 switches to be passed to the assembler.
12003
12004 @item %A
12005 Process the @code{asm_final} spec.  This is a spec string for
12006 passing switches to an assembler post-processor, if such a program is
12007 needed.
12008
12009 @item %l
12010 Process the @code{link} spec.  This is the spec for computing the
12011 command line passed to the linker.  Typically it makes use of the
12012 @samp{%L %G %S %D and %E} sequences.
12013
12014 @item %D
12015 Dump out a @option{-L} option for each directory that GCC believes might
12016 contain startup files.  If the target supports multilibs then the
12017 current multilib directory is prepended to each of these paths.
12018
12019 @item %L
12020 Process the @code{lib} spec.  This is a spec string for deciding which
12021 libraries are included on the command line to the linker.
12022
12023 @item %G
12024 Process the @code{libgcc} spec.  This is a spec string for deciding
12025 which GCC support library is included on the command line to the linker.
12026
12027 @item %S
12028 Process the @code{startfile} spec.  This is a spec for deciding which
12029 object files are the first ones passed to the linker.  Typically
12030 this might be a file named @file{crt0.o}.
12031
12032 @item %E
12033 Process the @code{endfile} spec.  This is a spec string that specifies
12034 the last object files that are passed to the linker.
12035
12036 @item %C
12037 Process the @code{cpp} spec.  This is used to construct the arguments
12038 to be passed to the C preprocessor.
12039
12040 @item %1
12041 Process the @code{cc1} spec.  This is used to construct the options to be
12042 passed to the actual C compiler (@command{cc1}).
12043
12044 @item %2
12045 Process the @code{cc1plus} spec.  This is used to construct the options to be
12046 passed to the actual C++ compiler (@command{cc1plus}).
12047
12048 @item %*
12049 Substitute the variable part of a matched option.  See below.
12050 Note that each comma in the substituted string is replaced by
12051 a single space.
12052
12053 @item %<@code{S}
12054 Remove all occurrences of @code{-S} from the command line.  Note---this
12055 command is position dependent.  @samp{%} commands in the spec string
12056 before this one see @code{-S}, @samp{%} commands in the spec string
12057 after this one do not.
12058
12059 @item %:@var{function}(@var{args})
12060 Call the named function @var{function}, passing it @var{args}.
12061 @var{args} is first processed as a nested spec string, then split
12062 into an argument vector in the usual fashion.  The function returns
12063 a string which is processed as if it had appeared literally as part
12064 of the current spec.
12065
12066 The following built-in spec functions are provided:
12067
12068 @table @code
12069 @item @code{getenv}
12070 The @code{getenv} spec function takes two arguments: an environment
12071 variable name and a string.  If the environment variable is not
12072 defined, a fatal error is issued.  Otherwise, the return value is the
12073 value of the environment variable concatenated with the string.  For
12074 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12075
12076 @smallexample
12077 %:getenv(TOPDIR /include)
12078 @end smallexample
12079
12080 expands to @file{/path/to/top/include}.
12081
12082 @item @code{if-exists}
12083 The @code{if-exists} spec function takes one argument, an absolute
12084 pathname to a file.  If the file exists, @code{if-exists} returns the
12085 pathname.  Here is a small example of its usage:
12086
12087 @smallexample
12088 *startfile:
12089 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12090 @end smallexample
12091
12092 @item @code{if-exists-else}
12093 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12094 spec function, except that it takes two arguments.  The first argument is
12095 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
12096 returns the pathname.  If it does not exist, it returns the second argument.
12097 This way, @code{if-exists-else} can be used to select one file or another,
12098 based on the existence of the first.  Here is a small example of its usage:
12099
12100 @smallexample
12101 *startfile:
12102 crt0%O%s %:if-exists(crti%O%s) \
12103 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12104 @end smallexample
12105
12106 @item @code{replace-outfile}
12107 The @code{replace-outfile} spec function takes two arguments.  It looks for the
12108 first argument in the outfiles array and replaces it with the second argument.  Here
12109 is a small example of its usage:
12110
12111 @smallexample
12112 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12113 @end smallexample
12114
12115 @item @code{remove-outfile}
12116 The @code{remove-outfile} spec function takes one argument.  It looks for the
12117 first argument in the outfiles array and removes it.  Here is a small example
12118 its usage:
12119
12120 @smallexample
12121 %:remove-outfile(-lm)
12122 @end smallexample
12123
12124 @item @code{pass-through-libs}
12125 The @code{pass-through-libs} spec function takes any number of arguments.  It
12126 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12127 assumes are the names of linker input library archive files) and returns a
12128 result containing all the found arguments each prepended by
12129 @option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
12130 intended to be passed to the LTO linker plugin.
12131
12132 @smallexample
12133 %:pass-through-libs(%G %L %G)
12134 @end smallexample
12135
12136 @item @code{print-asm-header}
12137 The @code{print-asm-header} function takes no arguments and simply
12138 prints a banner like:
12139
12140 @smallexample
12141 Assembler options
12142 =================
12143
12144 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12145 @end smallexample
12146
12147 It is used to separate compiler options from assembler options
12148 in the @option{--target-help} output.
12149 @end table
12150
12151 @item %@{@code{S}@}
12152 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12153 If that switch is not specified, this substitutes nothing.  Note that
12154 the leading dash is omitted when specifying this option, and it is
12155 automatically inserted if the substitution is performed.  Thus the spec
12156 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12157 and outputs the command-line option @option{-foo}.
12158
12159 @item %W@{@code{S}@}
12160 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12161 deleted on failure.
12162
12163 @item %@{@code{S}*@}
12164 Substitutes all the switches specified to GCC whose names start
12165 with @code{-S}, but which also take an argument.  This is used for
12166 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12167 GCC considers @option{-o foo} as being
12168 one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
12169 text, including the space.  Thus two arguments are generated.
12170
12171 @item %@{@code{S}*&@code{T}*@}
12172 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12173 (the order of @code{S} and @code{T} in the spec is not significant).
12174 There can be any number of ampersand-separated variables; for each the
12175 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
12176
12177 @item %@{@code{S}:@code{X}@}
12178 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12179
12180 @item %@{!@code{S}:@code{X}@}
12181 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12182
12183 @item %@{@code{S}*:@code{X}@}
12184 Substitutes @code{X} if one or more switches whose names start with
12185 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
12186 once, no matter how many such switches appeared.  However, if @code{%*}
12187 appears somewhere in @code{X}, then @code{X} is substituted once
12188 for each matching switch, with the @code{%*} replaced by the part of
12189 that switch matching the @code{*}.
12190
12191 If @code{%*} appears as the last part of a spec sequence then a space
12192 is added after the end of the last substitution.  If there is more
12193 text in the sequence, however, then a space is not generated.  This
12194 allows the @code{%*} substitution to be used as part of a larger
12195 string.  For example, a spec string like this:
12196
12197 @smallexample
12198 %@{mcu=*:--script=%*/memory.ld@}
12199 @end smallexample
12200
12201 @noindent
12202 when matching an option like @option{-mcu=newchip} produces:
12203
12204 @smallexample
12205 --script=newchip/memory.ld
12206 @end smallexample
12207
12208 @item %@{.@code{S}:@code{X}@}
12209 Substitutes @code{X}, if processing a file with suffix @code{S}.
12210
12211 @item %@{!.@code{S}:@code{X}@}
12212 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12213
12214 @item %@{,@code{S}:@code{X}@}
12215 Substitutes @code{X}, if processing a file for language @code{S}.
12216
12217 @item %@{!,@code{S}:@code{X}@}
12218 Substitutes @code{X}, if not processing a file for language @code{S}.
12219
12220 @item %@{@code{S}|@code{P}:@code{X}@}
12221 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12222 GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12223 @code{*} sequences as well, although they have a stronger binding than
12224 the @samp{|}.  If @code{%*} appears in @code{X}, all of the
12225 alternatives must be starred, and only the first matching alternative
12226 is substituted.
12227
12228 For example, a spec string like this:
12229
12230 @smallexample
12231 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12232 @end smallexample
12233
12234 @noindent
12235 outputs the following command-line options from the following input
12236 command-line options:
12237
12238 @smallexample
12239 fred.c        -foo -baz
12240 jim.d         -bar -boggle
12241 -d fred.c     -foo -baz -boggle
12242 -d jim.d      -bar -baz -boggle
12243 @end smallexample
12244
12245 @item %@{S:X; T:Y; :D@}
12246
12247 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12248 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
12249 be as many clauses as you need.  This may be combined with @code{.},
12250 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12251
12252
12253 @end table
12254
12255 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12256 construct may contain other nested @samp{%} constructs or spaces, or
12257 even newlines.  They are processed as usual, as described above.
12258 Trailing white space in @code{X} is ignored.  White space may also
12259 appear anywhere on the left side of the colon in these constructs,
12260 except between @code{.} or @code{*} and the corresponding word.
12261
12262 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12263 handled specifically in these constructs.  If another value of
12264 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12265 @option{-W} switch is found later in the command line, the earlier
12266 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12267 just one letter, which passes all matching options.
12268
12269 The character @samp{|} at the beginning of the predicate text is used to
12270 indicate that a command should be piped to the following command, but
12271 only if @option{-pipe} is specified.
12272
12273 It is built into GCC which switches take arguments and which do not.
12274 (You might think it would be useful to generalize this to allow each
12275 compiler's spec to say which switches take arguments.  But this cannot
12276 be done in a consistent fashion.  GCC cannot even decide which input
12277 files have been specified without knowing which switches take arguments,
12278 and it must know which input files to compile in order to tell which
12279 compilers to run).
12280
12281 GCC also knows implicitly that arguments starting in @option{-l} are to be
12282 treated as compiler output files, and passed to the linker in their
12283 proper position among the other output files.
12284
12285 @c man begin OPTIONS
12286
12287 @node Target Options
12288 @section Specifying Target Machine and Compiler Version
12289 @cindex target options
12290 @cindex cross compiling
12291 @cindex specifying machine version
12292 @cindex specifying compiler version and target machine
12293 @cindex compiler version, specifying
12294 @cindex target machine, specifying
12295
12296 The usual way to run GCC is to run the executable called @command{gcc}, or
12297 @command{@var{machine}-gcc} when cross-compiling, or
12298 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12299 one that was installed last.
12300
12301 @node Submodel Options
12302 @section Hardware Models and Configurations
12303 @cindex submodel options
12304 @cindex specifying hardware config
12305 @cindex hardware models and configurations, specifying
12306 @cindex machine dependent options
12307
12308 Each target machine types can have its own
12309 special options, starting with @samp{-m}, to choose among various
12310 hardware models or configurations---for example, 68010 vs 68020,
12311 floating coprocessor or none.  A single installed version of the
12312 compiler can compile for any model or configuration, according to the
12313 options specified.
12314
12315 Some configurations of the compiler also support additional special
12316 options, usually for compatibility with other compilers on the same
12317 platform.
12318
12319 @c This list is ordered alphanumerically by subsection name.
12320 @c It should be the same order and spelling as these options are listed
12321 @c in Machine Dependent Options
12322
12323 @menu
12324 * AArch64 Options::
12325 * Adapteva Epiphany Options::
12326 * ARC Options::
12327 * ARM Options::
12328 * AVR Options::
12329 * Blackfin Options::
12330 * C6X Options::
12331 * CRIS Options::
12332 * CR16 Options::
12333 * Darwin Options::
12334 * DEC Alpha Options::
12335 * FR30 Options::
12336 * FT32 Options::
12337 * FRV Options::
12338 * GNU/Linux Options::
12339 * H8/300 Options::
12340 * HPPA Options::
12341 * IA-64 Options::
12342 * LM32 Options::
12343 * M32C Options::
12344 * M32R/D Options::
12345 * M680x0 Options::
12346 * MCore Options::
12347 * MeP Options::
12348 * MicroBlaze Options::
12349 * MIPS Options::
12350 * MMIX Options::
12351 * MN10300 Options::
12352 * Moxie Options::
12353 * MSP430 Options::
12354 * NDS32 Options::
12355 * Nios II Options::
12356 * Nvidia PTX Options::
12357 * PDP-11 Options::
12358 * picoChip Options::
12359 * PowerPC Options::
12360 * RL78 Options::
12361 * RS/6000 and PowerPC Options::
12362 * RX Options::
12363 * S/390 and zSeries Options::
12364 * Score Options::
12365 * SH Options::
12366 * Solaris 2 Options::
12367 * SPARC Options::
12368 * SPU Options::
12369 * System V Options::
12370 * TILE-Gx Options::
12371 * TILEPro Options::
12372 * V850 Options::
12373 * VAX Options::
12374 * Visium Options::
12375 * VMS Options::
12376 * VxWorks Options::
12377 * x86 Options::
12378 * x86 Windows Options::
12379 * Xstormy16 Options::
12380 * Xtensa Options::
12381 * zSeries Options::
12382 @end menu
12383
12384 @node AArch64 Options
12385 @subsection AArch64 Options
12386 @cindex AArch64 Options
12387
12388 These options are defined for AArch64 implementations:
12389
12390 @table @gcctabopt
12391
12392 @item -mabi=@var{name}
12393 @opindex mabi
12394 Generate code for the specified data model.  Permissible values
12395 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12396 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12397 but long int and pointer are 64-bit.
12398
12399 The default depends on the specific target configuration.  Note that
12400 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12401 entire program with the same ABI, and link with a compatible set of libraries.
12402
12403 @item -mbig-endian
12404 @opindex mbig-endian
12405 Generate big-endian code.  This is the default when GCC is configured for an
12406 @samp{aarch64_be-*-*} target.
12407
12408 @item -mgeneral-regs-only
12409 @opindex mgeneral-regs-only
12410 Generate code which uses only the general-purpose registers.  This is equivalent
12411 to feature modifier @option{nofp} of @option{-march} or @option{-mcpu}, except
12412 that @option{-mgeneral-regs-only} takes precedence over any conflicting feature
12413 modifier regardless of sequence.
12414
12415 @item -mlittle-endian
12416 @opindex mlittle-endian
12417 Generate little-endian code.  This is the default when GCC is configured for an
12418 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12419
12420 @item -mcmodel=tiny
12421 @opindex mcmodel=tiny
12422 Generate code for the tiny code model.  The program and its statically defined
12423 symbols must be within 1GB of each other.  Pointers are 64 bits.  Programs can
12424 be statically or dynamically linked.  This model is not fully implemented and
12425 mostly treated as @samp{small}.
12426
12427 @item -mcmodel=small
12428 @opindex mcmodel=small
12429 Generate code for the small code model.  The program and its statically defined
12430 symbols must be within 4GB of each other.  Pointers are 64 bits.  Programs can
12431 be statically or dynamically linked.  This is the default code model.
12432
12433 @item -mcmodel=large
12434 @opindex mcmodel=large
12435 Generate code for the large code model.  This makes no assumptions about
12436 addresses and sizes of sections.  Pointers are 64 bits.  Programs can be
12437 statically linked only.
12438
12439 @item -mstrict-align
12440 @opindex mstrict-align
12441 Do not assume that unaligned memory references are handled by the system.
12442
12443 @item -momit-leaf-frame-pointer
12444 @itemx -mno-omit-leaf-frame-pointer
12445 @opindex momit-leaf-frame-pointer
12446 @opindex mno-omit-leaf-frame-pointer
12447 Omit or keep the frame pointer in leaf functions.  The former behaviour is the
12448 default.
12449
12450 @item -mtls-dialect=desc
12451 @opindex mtls-dialect=desc
12452 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12453 of TLS variables.  This is the default.
12454
12455 @item -mtls-dialect=traditional
12456 @opindex mtls-dialect=traditional
12457 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12458 of TLS variables.
12459
12460 @item -mtls-size=@var{size}
12461 @opindex mtls-size
12462 Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
12463 This option depends on binutils higher than 2.25.
12464
12465 @item -mfix-cortex-a53-835769
12466 @itemx -mno-fix-cortex-a53-835769
12467 @opindex mfix-cortex-a53-835769
12468 @opindex mno-fix-cortex-a53-835769
12469 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12470 This involves inserting a NOP instruction between memory instructions and
12471 64-bit integer multiply-accumulate instructions.
12472
12473 @item -mfix-cortex-a53-843419
12474 @itemx -mno-fix-cortex-a53-843419
12475 @opindex mfix-cortex-a53-843419
12476 @opindex mno-fix-cortex-a53-843419
12477 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12478 This erratum workaround is made at link time and this will only pass the
12479 corresponding flag to the linker.
12480
12481 @item -march=@var{name}
12482 @opindex march
12483 Specify the name of the target architecture, optionally suffixed by one or
12484 more feature modifiers.  This option has the form
12485 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12486
12487 The permissible values for @var{arch} are @samp{armv8-a} or
12488 @samp{armv8.1-a}.
12489
12490 For the permissible values for @var{feature}, see the sub-section on
12491 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12492 Feature Modifiers}.  Where conflicting feature modifiers are
12493 specified, the right-most feature is used.
12494
12495 Additionally on native AArch64 GNU/Linux systems the value
12496 @samp{native} is available.  This option causes the compiler to pick the
12497 architecture of the host system.  If the compiler is unable to recognize the
12498 architecture of the host system this option has no effect.
12499
12500 GCC uses @var{name} to determine what kind of instructions it can emit
12501 when generating assembly code.  If @option{-march} is specified
12502 without either of @option{-mtune} or @option{-mcpu} also being
12503 specified, the code is tuned to perform well across a range of target
12504 processors implementing the target architecture.
12505
12506 @item -mtune=@var{name}
12507 @opindex mtune
12508 Specify the name of the target processor for which GCC should tune the
12509 performance of the code.  Permissible values for this option are:
12510 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12511 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12512
12513 Additionally, this option can specify that GCC should tune the performance
12514 of the code for a big.LITTLE system.  Permissible values for this
12515 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12516
12517 Additionally on native AArch64 GNU/Linux systems the value
12518 @samp{native} is available.  This option causes the compiler to pick
12519 the architecture of and tune the performance of the code for the
12520 processor of the host system.  If the compiler is unable to recognize
12521 the processor of the host system this option has no effect.
12522
12523 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12524 are specified, the code is tuned to perform well across a range
12525 of target processors.
12526
12527 This option cannot be suffixed by feature modifiers.
12528
12529 @item -mcpu=@var{name}
12530 @opindex mcpu
12531 Specify the name of the target processor, optionally suffixed by one
12532 or more feature modifiers.  This option has the form
12533 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12534 the permissible values for @var{cpu} are the same as those available
12535 for @option{-mtune}.  The permissible values for @var{feature} are
12536 documented in the sub-section on
12537 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12538 Feature Modifiers}.  Where conflicting feature modifiers are
12539 specified, the right-most feature is used.
12540
12541 Additionally on native AArch64 GNU/Linux systems the value
12542 @samp{native} is available.  This option causes the compiler to tune
12543 the performance of the code for the processor of the host system.  If
12544 the compiler is unable to recognize the processor of the host system
12545 this option has no effect.
12546
12547 GCC uses @var{name} to determine what kind of instructions it can emit when
12548 generating assembly code (as if by @option{-march}) and to determine
12549 the target processor for which to tune for performance (as if
12550 by @option{-mtune}).  Where this option is used in conjunction
12551 with @option{-march} or @option{-mtune}, those options take precedence
12552 over the appropriate part of this option.
12553
12554 @item -moverride=@var{string}
12555 @opindex moverride
12556 Override tuning decisions made by the back-end in response to a
12557 @option{-mtune=} switch.  The syntax, semantics, and accepted values
12558 for @var{string} in this option are not guaranteed to be consistent
12559 across releases.
12560
12561 This option is only intended to be useful when developing GCC.
12562
12563 @item -mpc-relative-literal-loads
12564 @opindex mpcrelativeliteralloads
12565 Enable PC relative literal loads. If this option is used, literal
12566 pools are assumed to have a range of up to 1MiB and an appropriate
12567 instruction sequence is used. This option has no impact when used
12568 with @option{-mcmodel=tiny}.
12569
12570 @end table
12571
12572 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12573 @anchor{aarch64-feature-modifiers}
12574 @cindex @option{-march} feature modifiers
12575 @cindex @option{-mcpu} feature modifiers
12576 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12577 the following and their inverses @option{no@var{feature}}:
12578
12579 @table @samp
12580 @item crc
12581 Enable CRC extension.
12582 @item crypto
12583 Enable Crypto extension.  This also enables Advanced SIMD and floating-point
12584 instructions.
12585 @item fp
12586 Enable floating-point instructions.  This is on by default for all possible
12587 values for options @option{-march} and @option{-mcpu}.
12588 @item simd
12589 Enable Advanced SIMD instructions.  This also enables floating-point
12590 instructions.  This is on by default for all possible values for options
12591 @option{-march} and @option{-mcpu}.
12592 @item lse
12593 Enable Large System Extension instructions.
12594 @item pan
12595 Enable Privileged Access Never support.
12596 @item lor
12597 Enable Limited Ordering Regions support.
12598 @item rdma
12599 Enable ARMv8.1 Advanced SIMD instructions.  This implies Advanced SIMD
12600 is enabled.
12601
12602 @end table
12603
12604 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12605 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12606 implies @option{nosimd} implies @option{nocrypto}.
12607
12608 @node Adapteva Epiphany Options
12609 @subsection Adapteva Epiphany Options
12610
12611 These @samp{-m} options are defined for Adapteva Epiphany:
12612
12613 @table @gcctabopt
12614 @item -mhalf-reg-file
12615 @opindex mhalf-reg-file
12616 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12617 That allows code to run on hardware variants that lack these registers.
12618
12619 @item -mprefer-short-insn-regs
12620 @opindex mprefer-short-insn-regs
12621 Preferrentially allocate registers that allow short instruction generation.
12622 This can result in increased instruction count, so this may either reduce or
12623 increase overall code size.
12624
12625 @item -mbranch-cost=@var{num}
12626 @opindex mbranch-cost
12627 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12628 This cost is only a heuristic and is not guaranteed to produce
12629 consistent results across releases.
12630
12631 @item -mcmove
12632 @opindex mcmove
12633 Enable the generation of conditional moves.
12634
12635 @item -mnops=@var{num}
12636 @opindex mnops
12637 Emit @var{num} NOPs before every other generated instruction.
12638
12639 @item -mno-soft-cmpsf
12640 @opindex mno-soft-cmpsf
12641 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12642 and test the flags.  This is faster than a software comparison, but can
12643 get incorrect results in the presence of NaNs, or when two different small
12644 numbers are compared such that their difference is calculated as zero.
12645 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12646 software comparisons.
12647
12648 @item -mstack-offset=@var{num}
12649 @opindex mstack-offset
12650 Set the offset between the top of the stack and the stack pointer.
12651 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12652 can be used by leaf functions without stack allocation.
12653 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12654 Note also that this option changes the ABI; compiling a program with a
12655 different stack offset than the libraries have been compiled with
12656 generally does not work.
12657 This option can be useful if you want to evaluate if a different stack
12658 offset would give you better code, but to actually use a different stack
12659 offset to build working programs, it is recommended to configure the
12660 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12661
12662 @item -mno-round-nearest
12663 @opindex mno-round-nearest
12664 Make the scheduler assume that the rounding mode has been set to
12665 truncating.  The default is @option{-mround-nearest}.
12666
12667 @item -mlong-calls
12668 @opindex mlong-calls
12669 If not otherwise specified by an attribute, assume all calls might be beyond
12670 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12671 function address into a register before performing a (otherwise direct) call.
12672 This is the default.
12673
12674 @item -mshort-calls
12675 @opindex short-calls
12676 If not otherwise specified by an attribute, assume all direct calls are
12677 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12678 for direct calls.  The default is @option{-mlong-calls}.
12679
12680 @item -msmall16
12681 @opindex msmall16
12682 Assume addresses can be loaded as 16-bit unsigned values.  This does not
12683 apply to function addresses for which @option{-mlong-calls} semantics
12684 are in effect.
12685
12686 @item -mfp-mode=@var{mode}
12687 @opindex mfp-mode
12688 Set the prevailing mode of the floating-point unit.
12689 This determines the floating-point mode that is provided and expected
12690 at function call and return time.  Making this mode match the mode you
12691 predominantly need at function start can make your programs smaller and
12692 faster by avoiding unnecessary mode switches.
12693
12694 @var{mode} can be set to one the following values:
12695
12696 @table @samp
12697 @item caller
12698 Any mode at function entry is valid, and retained or restored when
12699 the function returns, and when it calls other functions.
12700 This mode is useful for compiling libraries or other compilation units
12701 you might want to incorporate into different programs with different
12702 prevailing FPU modes, and the convenience of being able to use a single
12703 object file outweighs the size and speed overhead for any extra
12704 mode switching that might be needed, compared with what would be needed
12705 with a more specific choice of prevailing FPU mode.
12706
12707 @item truncate
12708 This is the mode used for floating-point calculations with
12709 truncating (i.e.@: round towards zero) rounding mode.  That includes
12710 conversion from floating point to integer.
12711
12712 @item round-nearest
12713 This is the mode used for floating-point calculations with
12714 round-to-nearest-or-even rounding mode.
12715
12716 @item int
12717 This is the mode used to perform integer calculations in the FPU, e.g.@:
12718 integer multiply, or integer multiply-and-accumulate.
12719 @end table
12720
12721 The default is @option{-mfp-mode=caller}
12722
12723 @item -mnosplit-lohi
12724 @itemx -mno-postinc
12725 @itemx -mno-postmodify
12726 @opindex mnosplit-lohi
12727 @opindex mno-postinc
12728 @opindex mno-postmodify
12729 Code generation tweaks that disable, respectively, splitting of 32-bit
12730 loads, generation of post-increment addresses, and generation of
12731 post-modify addresses.  The defaults are @option{msplit-lohi},
12732 @option{-mpost-inc}, and @option{-mpost-modify}.
12733
12734 @item -mnovect-double
12735 @opindex mno-vect-double
12736 Change the preferred SIMD mode to SImode.  The default is
12737 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12738
12739 @item -max-vect-align=@var{num}
12740 @opindex max-vect-align
12741 The maximum alignment for SIMD vector mode types.
12742 @var{num} may be 4 or 8.  The default is 8.
12743 Note that this is an ABI change, even though many library function
12744 interfaces are unaffected if they don't use SIMD vector modes
12745 in places that affect size and/or alignment of relevant types.
12746
12747 @item -msplit-vecmove-early
12748 @opindex msplit-vecmove-early
12749 Split vector moves into single word moves before reload.  In theory this
12750 can give better register allocation, but so far the reverse seems to be
12751 generally the case.
12752
12753 @item -m1reg-@var{reg}
12754 @opindex m1reg-
12755 Specify a register to hold the constant @minus{}1, which makes loading small negative
12756 constants and certain bitmasks faster.
12757 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12758 which specify use of that register as a fixed register,
12759 and @samp{none}, which means that no register is used for this
12760 purpose.  The default is @option{-m1reg-none}.
12761
12762 @end table
12763
12764 @node ARC Options
12765 @subsection ARC Options
12766 @cindex ARC options
12767
12768 The following options control the architecture variant for which code
12769 is being compiled:
12770
12771 @c architecture variants
12772 @table @gcctabopt
12773
12774 @item -mbarrel-shifter
12775 @opindex mbarrel-shifter
12776 Generate instructions supported by barrel shifter.  This is the default
12777 unless @option{-mcpu=ARC601} is in effect.
12778
12779 @item -mcpu=@var{cpu}
12780 @opindex mcpu
12781 Set architecture type, register usage, and instruction scheduling
12782 parameters for @var{cpu}.  There are also shortcut alias options
12783 available for backward compatibility and convenience.  Supported
12784 values for @var{cpu} are
12785
12786 @table @samp
12787 @opindex mA6
12788 @opindex mARC600
12789 @item ARC600
12790 Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
12791
12792 @item ARC601
12793 @opindex mARC601
12794 Compile for ARC601.  Alias: @option{-mARC601}.
12795
12796 @item ARC700
12797 @opindex mA7
12798 @opindex mARC700
12799 Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
12800 This is the default when configured with @option{--with-cpu=arc700}@.
12801 @end table
12802
12803 @item -mdpfp
12804 @opindex mdpfp
12805 @itemx -mdpfp-compact
12806 @opindex mdpfp-compact
12807 FPX: Generate Double Precision FPX instructions, tuned for the compact
12808 implementation.
12809
12810 @item -mdpfp-fast
12811 @opindex mdpfp-fast
12812 FPX: Generate Double Precision FPX instructions, tuned for the fast
12813 implementation.
12814
12815 @item -mno-dpfp-lrsr
12816 @opindex mno-dpfp-lrsr
12817 Disable LR and SR instructions from using FPX extension aux registers.
12818
12819 @item -mea
12820 @opindex mea
12821 Generate Extended arithmetic instructions.  Currently only
12822 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12823 supported.  This is always enabled for @option{-mcpu=ARC700}.
12824
12825 @item -mno-mpy
12826 @opindex mno-mpy
12827 Do not generate mpy instructions for ARC700.
12828
12829 @item -mmul32x16
12830 @opindex mmul32x16
12831 Generate 32x16 bit multiply and mac instructions.
12832
12833 @item -mmul64
12834 @opindex mmul64
12835 Generate mul64 and mulu64 instructions.  Only valid for @option{-mcpu=ARC600}.
12836
12837 @item -mnorm
12838 @opindex mnorm
12839 Generate norm instruction.  This is the default if @option{-mcpu=ARC700}
12840 is in effect.
12841
12842 @item -mspfp
12843 @opindex mspfp
12844 @itemx -mspfp-compact
12845 @opindex mspfp-compact
12846 FPX: Generate Single Precision FPX instructions, tuned for the compact
12847 implementation.
12848
12849 @item -mspfp-fast
12850 @opindex mspfp-fast
12851 FPX: Generate Single Precision FPX instructions, tuned for the fast
12852 implementation.
12853
12854 @item -msimd
12855 @opindex msimd
12856 Enable generation of ARC SIMD instructions via target-specific
12857 builtins.  Only valid for @option{-mcpu=ARC700}.
12858
12859 @item -msoft-float
12860 @opindex msoft-float
12861 This option ignored; it is provided for compatibility purposes only.
12862 Software floating point code is emitted by default, and this default
12863 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12864 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12865 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12866
12867 @item -mswap
12868 @opindex mswap
12869 Generate swap instructions.
12870
12871 @end table
12872
12873 The following options are passed through to the assembler, and also
12874 define preprocessor macro symbols.
12875
12876 @c Flags used by the assembler, but for which we define preprocessor
12877 @c macro symbols as well.
12878 @table @gcctabopt
12879 @item -mdsp-packa
12880 @opindex mdsp-packa
12881 Passed down to the assembler to enable the DSP Pack A extensions.
12882 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12883
12884 @item -mdvbf
12885 @opindex mdvbf
12886 Passed down to the assembler to enable the dual viterbi butterfly
12887 extension.  Also sets the preprocessor symbol @code{__Xdvbf}.
12888
12889 @c ARC700 4.10 extension instruction
12890 @item -mlock
12891 @opindex mlock
12892 Passed down to the assembler to enable the Locked Load/Store
12893 Conditional extension.  Also sets the preprocessor symbol
12894 @code{__Xlock}.
12895
12896 @item -mmac-d16
12897 @opindex mmac-d16
12898 Passed down to the assembler.  Also sets the preprocessor symbol
12899 @code{__Xxmac_d16}.
12900
12901 @item -mmac-24
12902 @opindex mmac-24
12903 Passed down to the assembler.  Also sets the preprocessor symbol
12904 @code{__Xxmac_24}.
12905
12906 @c ARC700 4.10 extension instruction
12907 @item -mrtsc
12908 @opindex mrtsc
12909 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12910 extension instruction.  Also sets the preprocessor symbol
12911 @code{__Xrtsc}.
12912
12913 @c ARC700 4.10 extension instruction
12914 @item -mswape
12915 @opindex mswape
12916 Passed down to the assembler to enable the swap byte ordering
12917 extension instruction.  Also sets the preprocessor symbol
12918 @code{__Xswape}.
12919
12920 @item -mtelephony
12921 @opindex mtelephony
12922 Passed down to the assembler to enable dual and single operand
12923 instructions for telephony.  Also sets the preprocessor symbol
12924 @code{__Xtelephony}.
12925
12926 @item -mxy
12927 @opindex mxy
12928 Passed down to the assembler to enable the XY Memory extension.  Also
12929 sets the preprocessor symbol @code{__Xxy}.
12930
12931 @end table
12932
12933 The following options control how the assembly code is annotated:
12934
12935 @c Assembly annotation options
12936 @table @gcctabopt
12937 @item -misize
12938 @opindex misize
12939 Annotate assembler instructions with estimated addresses.
12940
12941 @item -mannotate-align
12942 @opindex mannotate-align
12943 Explain what alignment considerations lead to the decision to make an
12944 instruction short or long.
12945
12946 @end table
12947
12948 The following options are passed through to the linker:
12949
12950 @c options passed through to the linker
12951 @table @gcctabopt
12952 @item -marclinux
12953 @opindex marclinux
12954 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12955 This option is enabled by default in tool chains built for
12956 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12957 when profiling is not requested.
12958
12959 @item -marclinux_prof
12960 @opindex marclinux_prof
12961 Passed through to the linker, to specify use of the
12962 @code{arclinux_prof} emulation.  This option is enabled by default in
12963 tool chains built for @w{@code{arc-linux-uclibc}} and
12964 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12965
12966 @end table
12967
12968 The following options control the semantics of generated code:
12969
12970 @c semantically relevant code generation options
12971 @table @gcctabopt
12972 @item -mepilogue-cfi
12973 @opindex mepilogue-cfi
12974 Enable generation of call frame information for epilogues.
12975
12976 @item -mno-epilogue-cfi
12977 @opindex mno-epilogue-cfi
12978 Disable generation of call frame information for epilogues.
12979
12980 @item -mlong-calls
12981 @opindex mlong-calls
12982 Generate call insns as register indirect calls, thus providing access
12983 to the full 32-bit address range.
12984
12985 @item -mmedium-calls
12986 @opindex mmedium-calls
12987 Don't use less than 25 bit addressing range for calls, which is the
12988 offset available for an unconditional branch-and-link
12989 instruction.  Conditional execution of function calls is suppressed, to
12990 allow use of the 25-bit range, rather than the 21-bit range with
12991 conditional branch-and-link.  This is the default for tool chains built
12992 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12993
12994 @item -mno-sdata
12995 @opindex mno-sdata
12996 Do not generate sdata references.  This is the default for tool chains
12997 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12998 targets.
12999
13000 @item -mucb-mcount
13001 @opindex mucb-mcount
13002 Instrument with mcount calls as used in UCB code.  I.e. do the
13003 counting in the callee, not the caller.  By default ARC instrumentation
13004 counts in the caller.
13005
13006 @item -mvolatile-cache
13007 @opindex mvolatile-cache
13008 Use ordinarily cached memory accesses for volatile references.  This is the
13009 default.
13010
13011 @item -mno-volatile-cache
13012 @opindex mno-volatile-cache
13013 Enable cache bypass for volatile references.
13014
13015 @end table
13016
13017 The following options fine tune code generation:
13018 @c code generation tuning options
13019 @table @gcctabopt
13020 @item -malign-call
13021 @opindex malign-call
13022 Do alignment optimizations for call instructions.
13023
13024 @item -mauto-modify-reg
13025 @opindex mauto-modify-reg
13026 Enable the use of pre/post modify with register displacement.
13027
13028 @item -mbbit-peephole
13029 @opindex mbbit-peephole
13030 Enable bbit peephole2.
13031
13032 @item -mno-brcc
13033 @opindex mno-brcc
13034 This option disables a target-specific pass in @file{arc_reorg} to
13035 generate @code{BRcc} instructions.  It has no effect on @code{BRcc}
13036 generation driven by the combiner pass.
13037
13038 @item -mcase-vector-pcrel
13039 @opindex mcase-vector-pcrel
13040 Use pc-relative switch case tables - this enables case table shortening.
13041 This is the default for @option{-Os}.
13042
13043 @item -mcompact-casesi
13044 @opindex mcompact-casesi
13045 Enable compact casesi pattern.
13046 This is the default for @option{-Os}.
13047
13048 @item -mno-cond-exec
13049 @opindex mno-cond-exec
13050 Disable ARCompact specific pass to generate conditional execution instructions.
13051 Due to delay slot scheduling and interactions between operand numbers,
13052 literal sizes, instruction lengths, and the support for conditional execution,
13053 the target-independent pass to generate conditional execution is often lacking,
13054 so the ARC port has kept a special pass around that tries to find more
13055 conditional execution generating opportunities after register allocation,
13056 branch shortening, and delay slot scheduling have been done.  This pass
13057 generally, but not always, improves performance and code size, at the cost of
13058 extra compilation time, which is why there is an option to switch it off.
13059 If you have a problem with call instructions exceeding their allowable
13060 offset range because they are conditionalized, you should consider using
13061 @option{-mmedium-calls} instead.
13062
13063 @item -mearly-cbranchsi
13064 @opindex mearly-cbranchsi
13065 Enable pre-reload use of the cbranchsi pattern.
13066
13067 @item -mexpand-adddi
13068 @opindex mexpand-adddi
13069 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13070 @code{add.f}, @code{adc} etc.
13071
13072 @item -mindexed-loads
13073 @opindex mindexed-loads
13074 Enable the use of indexed loads.  This can be problematic because some
13075 optimizers then assume that indexed stores exist, which is not
13076 the case.
13077
13078 @item -mlra
13079 @opindex mlra
13080 Enable Local Register Allocation.  This is still experimental for ARC,
13081 so by default the compiler uses standard reload
13082 (i.e. @option{-mno-lra}).
13083
13084 @item -mlra-priority-none
13085 @opindex mlra-priority-none
13086 Don't indicate any priority for target registers.
13087
13088 @item -mlra-priority-compact
13089 @opindex mlra-priority-compact
13090 Indicate target register priority for r0..r3 / r12..r15.
13091
13092 @item -mlra-priority-noncompact
13093 @opindex mlra-priority-noncompact
13094 Reduce target regsiter priority for r0..r3 / r12..r15.
13095
13096 @item -mno-millicode
13097 @opindex mno-millicode
13098 When optimizing for size (using @option{-Os}), prologues and epilogues
13099 that have to save or restore a large number of registers are often
13100 shortened by using call to a special function in libgcc; this is
13101 referred to as a @emph{millicode} call.  As these calls can pose
13102 performance issues, and/or cause linking issues when linking in a
13103 nonstandard way, this option is provided to turn off millicode call
13104 generation.
13105
13106 @item -mmixed-code
13107 @opindex mmixed-code
13108 Tweak register allocation to help 16-bit instruction generation.
13109 This generally has the effect of decreasing the average instruction size
13110 while increasing the instruction count.
13111
13112 @item -mq-class
13113 @opindex mq-class
13114 Enable 'q' instruction alternatives.
13115 This is the default for @option{-Os}.
13116
13117 @item -mRcq
13118 @opindex mRcq
13119 Enable Rcq constraint handling - most short code generation depends on this.
13120 This is the default.
13121
13122 @item -mRcw
13123 @opindex mRcw
13124 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13125 This is the default.
13126
13127 @item -msize-level=@var{level}
13128 @opindex msize-level
13129 Fine-tune size optimization with regards to instruction lengths and alignment.
13130 The recognized values for @var{level} are:
13131 @table @samp
13132 @item 0
13133 No size optimization.  This level is deprecated and treated like @samp{1}.
13134
13135 @item 1
13136 Short instructions are used opportunistically.
13137
13138 @item 2
13139 In addition, alignment of loops and of code after barriers are dropped.
13140
13141 @item 3
13142 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13143
13144 @end table
13145
13146 This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
13147 the behavior when this is not set is equivalent to level @samp{1}.
13148
13149 @item -mtune=@var{cpu}
13150 @opindex mtune
13151 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13152 by @option{-mcpu=}.
13153
13154 Supported values for @var{cpu} are
13155
13156 @table @samp
13157 @item ARC600
13158 Tune for ARC600 cpu.
13159
13160 @item ARC601
13161 Tune for ARC601 cpu.
13162
13163 @item ARC700
13164 Tune for ARC700 cpu with standard multiplier block.
13165
13166 @item ARC700-xmac
13167 Tune for ARC700 cpu with XMAC block.
13168
13169 @item ARC725D
13170 Tune for ARC725D cpu.
13171
13172 @item ARC750D
13173 Tune for ARC750D cpu.
13174
13175 @end table
13176
13177 @item -mmultcost=@var{num}
13178 @opindex mmultcost
13179 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13180 normal instruction.
13181
13182 @item -munalign-prob-threshold=@var{probability}
13183 @opindex munalign-prob-threshold
13184 Set probability threshold for unaligning branches.
13185 When tuning for @samp{ARC700} and optimizing for speed, branches without
13186 filled delay slot are preferably emitted unaligned and long, unless
13187 profiling indicates that the probability for the branch to be taken
13188 is below @var{probability}.  @xref{Cross-profiling}.
13189 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13190
13191 @end table
13192
13193 The following options are maintained for backward compatibility, but
13194 are now deprecated and will be removed in a future release:
13195
13196 @c Deprecated options
13197 @table @gcctabopt
13198
13199 @item -margonaut
13200 @opindex margonaut
13201 Obsolete FPX.
13202
13203 @item -mbig-endian
13204 @opindex mbig-endian
13205 @itemx -EB
13206 @opindex EB
13207 Compile code for big endian targets.  Use of these options is now
13208 deprecated.  Users wanting big-endian code, should use the
13209 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13210 building the tool chain, for which big-endian is the default.
13211
13212 @item -mlittle-endian
13213 @opindex mlittle-endian
13214 @itemx -EL
13215 @opindex EL
13216 Compile code for little endian targets.  Use of these options is now
13217 deprecated.  Users wanting little-endian code should use the
13218 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13219 building the tool chain, for which little-endian is the default.
13220
13221 @item -mbarrel_shifter
13222 @opindex mbarrel_shifter
13223 Replaced by @option{-mbarrel-shifter}.
13224
13225 @item -mdpfp_compact
13226 @opindex mdpfp_compact
13227 Replaced by @option{-mdpfp-compact}.
13228
13229 @item -mdpfp_fast
13230 @opindex mdpfp_fast
13231 Replaced by @option{-mdpfp-fast}.
13232
13233 @item -mdsp_packa
13234 @opindex mdsp_packa
13235 Replaced by @option{-mdsp-packa}.
13236
13237 @item -mEA
13238 @opindex mEA
13239 Replaced by @option{-mea}.
13240
13241 @item -mmac_24
13242 @opindex mmac_24
13243 Replaced by @option{-mmac-24}.
13244
13245 @item -mmac_d16
13246 @opindex mmac_d16
13247 Replaced by @option{-mmac-d16}.
13248
13249 @item -mspfp_compact
13250 @opindex mspfp_compact
13251 Replaced by @option{-mspfp-compact}.
13252
13253 @item -mspfp_fast
13254 @opindex mspfp_fast
13255 Replaced by @option{-mspfp-fast}.
13256
13257 @item -mtune=@var{cpu}
13258 @opindex mtune
13259 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13260 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13261 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13262
13263 @item -multcost=@var{num}
13264 @opindex multcost
13265 Replaced by @option{-mmultcost}.
13266
13267 @end table
13268
13269 @node ARM Options
13270 @subsection ARM Options
13271 @cindex ARM options
13272
13273 These @samp{-m} options are defined for the ARM port:
13274
13275 @table @gcctabopt
13276 @item -mabi=@var{name}
13277 @opindex mabi
13278 Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
13279 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13280
13281 @item -mapcs-frame
13282 @opindex mapcs-frame
13283 Generate a stack frame that is compliant with the ARM Procedure Call
13284 Standard for all functions, even if this is not strictly necessary for
13285 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
13286 with this option causes the stack frames not to be generated for
13287 leaf functions.  The default is @option{-mno-apcs-frame}.
13288 This option is deprecated.
13289
13290 @item -mapcs
13291 @opindex mapcs
13292 This is a synonym for @option{-mapcs-frame} and is deprecated.
13293
13294 @ignore
13295 @c not currently implemented
13296 @item -mapcs-stack-check
13297 @opindex mapcs-stack-check
13298 Generate code to check the amount of stack space available upon entry to
13299 every function (that actually uses some stack space).  If there is
13300 insufficient space available then either the function
13301 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13302 called, depending upon the amount of stack space required.  The runtime
13303 system is required to provide these functions.  The default is
13304 @option{-mno-apcs-stack-check}, since this produces smaller code.
13305
13306 @c not currently implemented
13307 @item -mapcs-float
13308 @opindex mapcs-float
13309 Pass floating-point arguments using the floating-point registers.  This is
13310 one of the variants of the APCS@.  This option is recommended if the
13311 target hardware has a floating-point unit or if a lot of floating-point
13312 arithmetic is going to be performed by the code.  The default is
13313 @option{-mno-apcs-float}, since the size of integer-only code is 
13314 slightly increased if @option{-mapcs-float} is used.
13315
13316 @c not currently implemented
13317 @item -mapcs-reentrant
13318 @opindex mapcs-reentrant
13319 Generate reentrant, position-independent code.  The default is
13320 @option{-mno-apcs-reentrant}.
13321 @end ignore
13322
13323 @item -mthumb-interwork
13324 @opindex mthumb-interwork
13325 Generate code that supports calling between the ARM and Thumb
13326 instruction sets.  Without this option, on pre-v5 architectures, the
13327 two instruction sets cannot be reliably used inside one program.  The
13328 default is @option{-mno-thumb-interwork}, since slightly larger code
13329 is generated when @option{-mthumb-interwork} is specified.  In AAPCS
13330 configurations this option is meaningless.
13331
13332 @item -mno-sched-prolog
13333 @opindex mno-sched-prolog
13334 Prevent the reordering of instructions in the function prologue, or the
13335 merging of those instruction with the instructions in the function's
13336 body.  This means that all functions start with a recognizable set
13337 of instructions (or in fact one of a choice from a small set of
13338 different function prologues), and this information can be used to
13339 locate the start of functions inside an executable piece of code.  The
13340 default is @option{-msched-prolog}.
13341
13342 @item -mfloat-abi=@var{name}
13343 @opindex mfloat-abi
13344 Specifies which floating-point ABI to use.  Permissible values
13345 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13346
13347 Specifying @samp{soft} causes GCC to generate output containing
13348 library calls for floating-point operations.
13349 @samp{softfp} allows the generation of code using hardware floating-point
13350 instructions, but still uses the soft-float calling conventions.
13351 @samp{hard} allows generation of floating-point instructions
13352 and uses FPU-specific calling conventions.
13353
13354 The default depends on the specific target configuration.  Note that
13355 the hard-float and soft-float ABIs are not link-compatible; you must
13356 compile your entire program with the same ABI, and link with a
13357 compatible set of libraries.
13358
13359 @item -mlittle-endian
13360 @opindex mlittle-endian
13361 Generate code for a processor running in little-endian mode.  This is
13362 the default for all standard configurations.
13363
13364 @item -mbig-endian
13365 @opindex mbig-endian
13366 Generate code for a processor running in big-endian mode; the default is
13367 to compile code for a little-endian processor.
13368
13369 @item -march=@var{name}
13370 @opindex march
13371 This specifies the name of the target ARM architecture.  GCC uses this
13372 name to determine what kind of instructions it can emit when generating
13373 assembly code.  This option can be used in conjunction with or instead
13374 of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
13375 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13376 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13377 @samp{armv6}, @samp{armv6j},
13378 @samp{armv6t2}, @samp{armv6z}, @samp{armv6kz}, @samp{armv6-m},
13379 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13380 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13381 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13382
13383 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13384 extensions.
13385
13386 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13387 architecture together with the optional CRC32 extensions.
13388
13389 @option{-march=native} causes the compiler to auto-detect the architecture
13390 of the build computer.  At present, this feature is only supported on
13391 GNU/Linux, and not all architectures are recognized.  If the auto-detect
13392 is unsuccessful the option has no effect.
13393
13394 @item -mtune=@var{name}
13395 @opindex mtune
13396 This option specifies the name of the target ARM processor for
13397 which GCC should tune the performance of the code.
13398 For some ARM implementations better performance can be obtained by using
13399 this option.
13400 Permissible names are: @samp{arm2}, @samp{arm250},
13401 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13402 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13403 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13404 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13405 @samp{arm720},
13406 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13407 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13408 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13409 @samp{strongarm1110},
13410 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13411 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13412 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13413 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13414 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13415 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13416 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13417 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13418 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13419 @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13420 @samp{cortex-r4},
13421 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13422 @samp{cortex-m4},
13423 @samp{cortex-m3},
13424 @samp{cortex-m1},
13425 @samp{cortex-m0},
13426 @samp{cortex-m0plus},
13427 @samp{cortex-m1.small-multiply},
13428 @samp{cortex-m0.small-multiply},
13429 @samp{cortex-m0plus.small-multiply},
13430 @samp{exynos-m1},
13431 @samp{marvell-pj4},
13432 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13433 @samp{fa526}, @samp{fa626},
13434 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13435 @samp{xgene1}.
13436
13437 Additionally, this option can specify that GCC should tune the performance
13438 of the code for a big.LITTLE system.  Permissible names are:
13439 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13440 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13441
13442 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13443 performance for a blend of processors within architecture @var{arch}.
13444 The aim is to generate code that run well on the current most popular
13445 processors, balancing between optimizations that benefit some CPUs in the
13446 range, and avoiding performance pitfalls of other CPUs.  The effects of
13447 this option may change in future GCC versions as CPU models come and go.
13448
13449 @option{-mtune=native} causes the compiler to auto-detect the CPU
13450 of the build computer.  At present, this feature is only supported on
13451 GNU/Linux, and not all architectures are recognized.  If the auto-detect is
13452 unsuccessful the option has no effect.
13453
13454 @item -mcpu=@var{name}
13455 @opindex mcpu
13456 This specifies the name of the target ARM processor.  GCC uses this name
13457 to derive the name of the target ARM architecture (as if specified
13458 by @option{-march}) and the ARM processor type for which to tune for
13459 performance (as if specified by @option{-mtune}).  Where this option
13460 is used in conjunction with @option{-march} or @option{-mtune},
13461 those options take precedence over the appropriate part of this option.
13462
13463 Permissible names for this option are the same as those for
13464 @option{-mtune}.
13465
13466 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13467 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13468 See @option{-mtune} for more information.
13469
13470 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13471 of the build computer.  At present, this feature is only supported on
13472 GNU/Linux, and not all architectures are recognized.  If the auto-detect
13473 is unsuccessful the option has no effect.
13474
13475 @item -mfpu=@var{name}
13476 @opindex mfpu
13477 This specifies what floating-point hardware (or hardware emulation) is
13478 available on the target.  Permissible names are: @samp{vfp}, @samp{vfpv3},
13479 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13480 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13481 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13482 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13483 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13484
13485 If @option{-msoft-float} is specified this specifies the format of
13486 floating-point values.
13487
13488 If the selected floating-point hardware includes the NEON extension
13489 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13490 operations are not generated by GCC's auto-vectorization pass unless
13491 @option{-funsafe-math-optimizations} is also specified.  This is
13492 because NEON hardware does not fully implement the IEEE 754 standard for
13493 floating-point arithmetic (in particular denormal values are treated as
13494 zero), so the use of NEON instructions may lead to a loss of precision.
13495
13496 @item -mfp16-format=@var{name}
13497 @opindex mfp16-format
13498 Specify the format of the @code{__fp16} half-precision floating-point type.
13499 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13500 the default is @samp{none}, in which case the @code{__fp16} type is not
13501 defined.  @xref{Half-Precision}, for more information.
13502
13503 @item -mstructure-size-boundary=@var{n}
13504 @opindex mstructure-size-boundary
13505 The sizes of all structures and unions are rounded up to a multiple
13506 of the number of bits set by this option.  Permissible values are 8, 32
13507 and 64.  The default value varies for different toolchains.  For the COFF
13508 targeted toolchain the default value is 8.  A value of 64 is only allowed
13509 if the underlying ABI supports it.
13510
13511 Specifying a larger number can produce faster, more efficient code, but
13512 can also increase the size of the program.  Different values are potentially
13513 incompatible.  Code compiled with one value cannot necessarily expect to
13514 work with code or libraries compiled with another value, if they exchange
13515 information using structures or unions.
13516
13517 @item -mabort-on-noreturn
13518 @opindex mabort-on-noreturn
13519 Generate a call to the function @code{abort} at the end of a
13520 @code{noreturn} function.  It is executed if the function tries to
13521 return.
13522
13523 @item -mlong-calls
13524 @itemx -mno-long-calls
13525 @opindex mlong-calls
13526 @opindex mno-long-calls
13527 Tells the compiler to perform function calls by first loading the
13528 address of the function into a register and then performing a subroutine
13529 call on this register.  This switch is needed if the target function
13530 lies outside of the 64-megabyte addressing range of the offset-based
13531 version of subroutine call instruction.
13532
13533 Even if this switch is enabled, not all function calls are turned
13534 into long calls.  The heuristic is that static functions, functions
13535 that have the @code{short_call} attribute, functions that are inside
13536 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13537 definitions have already been compiled within the current compilation
13538 unit are not turned into long calls.  The exceptions to this rule are
13539 that weak function definitions, functions with the @code{long_call}
13540 attribute or the @code{section} attribute, and functions that are within
13541 the scope of a @code{#pragma long_calls} directive are always
13542 turned into long calls.
13543
13544 This feature is not enabled by default.  Specifying
13545 @option{-mno-long-calls} restores the default behavior, as does
13546 placing the function calls within the scope of a @code{#pragma
13547 long_calls_off} directive.  Note these switches have no effect on how
13548 the compiler generates code to handle function calls via function
13549 pointers.
13550
13551 @item -msingle-pic-base
13552 @opindex msingle-pic-base
13553 Treat the register used for PIC addressing as read-only, rather than
13554 loading it in the prologue for each function.  The runtime system is
13555 responsible for initializing this register with an appropriate value
13556 before execution begins.
13557
13558 @item -mpic-register=@var{reg}
13559 @opindex mpic-register
13560 Specify the register to be used for PIC addressing.
13561 For standard PIC base case, the default is any suitable register
13562 determined by compiler.  For single PIC base case, the default is
13563 @samp{R9} if target is EABI based or stack-checking is enabled,
13564 otherwise the default is @samp{R10}.
13565
13566 @item -mpic-data-is-text-relative
13567 @opindex mpic-data-is-text-relative
13568 Assume that each data segments are relative to text segment at load time.
13569 Therefore, it permits addressing data using PC-relative operations.
13570 This option is on by default for targets other than VxWorks RTP.
13571
13572 @item -mpoke-function-name
13573 @opindex mpoke-function-name
13574 Write the name of each function into the text section, directly
13575 preceding the function prologue.  The generated code is similar to this:
13576
13577 @smallexample
13578      t0
13579          .ascii "arm_poke_function_name", 0
13580          .align
13581      t1
13582          .word 0xff000000 + (t1 - t0)
13583      arm_poke_function_name
13584          mov     ip, sp
13585          stmfd   sp!, @{fp, ip, lr, pc@}
13586          sub     fp, ip, #4
13587 @end smallexample
13588
13589 When performing a stack backtrace, code can inspect the value of
13590 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
13591 location @code{pc - 12} and the top 8 bits are set, then we know that
13592 there is a function name embedded immediately preceding this location
13593 and has length @code{((pc[-3]) & 0xff000000)}.
13594
13595 @item -mthumb
13596 @itemx -marm
13597 @opindex marm
13598 @opindex mthumb
13599
13600 Select between generating code that executes in ARM and Thumb
13601 states.  The default for most configurations is to generate code
13602 that executes in ARM state, but the default can be changed by
13603 configuring GCC with the @option{--with-mode=}@var{state}
13604 configure option.
13605
13606 You can also override the ARM and Thumb mode for each function
13607 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13608 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13609
13610 @item -mtpcs-frame
13611 @opindex mtpcs-frame
13612 Generate a stack frame that is compliant with the Thumb Procedure Call
13613 Standard for all non-leaf functions.  (A leaf function is one that does
13614 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
13615
13616 @item -mtpcs-leaf-frame
13617 @opindex mtpcs-leaf-frame
13618 Generate a stack frame that is compliant with the Thumb Procedure Call
13619 Standard for all leaf functions.  (A leaf function is one that does
13620 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
13621
13622 @item -mcallee-super-interworking
13623 @opindex mcallee-super-interworking
13624 Gives all externally visible functions in the file being compiled an ARM
13625 instruction set header which switches to Thumb mode before executing the
13626 rest of the function.  This allows these functions to be called from
13627 non-interworking code.  This option is not valid in AAPCS configurations
13628 because interworking is enabled by default.
13629
13630 @item -mcaller-super-interworking
13631 @opindex mcaller-super-interworking
13632 Allows calls via function pointers (including virtual functions) to
13633 execute correctly regardless of whether the target code has been
13634 compiled for interworking or not.  There is a small overhead in the cost
13635 of executing a function pointer if this option is enabled.  This option
13636 is not valid in AAPCS configurations because interworking is enabled
13637 by default.
13638
13639 @item -mtp=@var{name}
13640 @opindex mtp
13641 Specify the access model for the thread local storage pointer.  The valid
13642 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13643 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13644 (supported in the arm6k architecture), and @samp{auto}, which uses the
13645 best available method for the selected processor.  The default setting is
13646 @samp{auto}.
13647
13648 @item -mtls-dialect=@var{dialect}
13649 @opindex mtls-dialect
13650 Specify the dialect to use for accessing thread local storage.  Two
13651 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
13652 @samp{gnu} dialect selects the original GNU scheme for supporting
13653 local and global dynamic TLS models.  The @samp{gnu2} dialect
13654 selects the GNU descriptor scheme, which provides better performance
13655 for shared libraries.  The GNU descriptor scheme is compatible with
13656 the original scheme, but does require new assembler, linker and
13657 library support.  Initial and local exec TLS models are unaffected by
13658 this option and always use the original scheme.
13659
13660 @item -mword-relocations
13661 @opindex mword-relocations
13662 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13663 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13664 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13665 is specified.
13666
13667 @item -mfix-cortex-m3-ldrd
13668 @opindex mfix-cortex-m3-ldrd
13669 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13670 with overlapping destination and base registers are used.  This option avoids
13671 generating these instructions.  This option is enabled by default when
13672 @option{-mcpu=cortex-m3} is specified.
13673
13674 @item -munaligned-access
13675 @itemx -mno-unaligned-access
13676 @opindex munaligned-access
13677 @opindex mno-unaligned-access
13678 Enables (or disables) reading and writing of 16- and 32- bit values
13679 from addresses that are not 16- or 32- bit aligned.  By default
13680 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13681 architectures, and enabled for all other architectures.  If unaligned
13682 access is not enabled then words in packed data structures are
13683 accessed a byte at a time.
13684
13685 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13686 generated object file to either true or false, depending upon the
13687 setting of this option.  If unaligned access is enabled then the
13688 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13689 defined.
13690
13691 @item -mneon-for-64bits
13692 @opindex mneon-for-64bits
13693 Enables using Neon to handle scalar 64-bits operations. This is
13694 disabled by default since the cost of moving data from core registers
13695 to Neon is high.
13696
13697 @item -mslow-flash-data
13698 @opindex mslow-flash-data
13699 Assume loading data from flash is slower than fetching instruction.
13700 Therefore literal load is minimized for better performance.
13701 This option is only supported when compiling for ARMv7 M-profile and
13702 off by default.
13703
13704 @item -masm-syntax-unified
13705 @opindex masm-syntax-unified
13706 Assume inline assembler is using unified asm syntax.  The default is
13707 currently off which implies divided syntax.  Currently this option is
13708 available only for Thumb1 and has no effect on ARM state and Thumb2.
13709 However, this may change in future releases of GCC.  Divided syntax
13710 should be considered deprecated.
13711
13712 @item -mrestrict-it
13713 @opindex mrestrict-it
13714 Restricts generation of IT blocks to conform to the rules of ARMv8.
13715 IT blocks can only contain a single 16-bit instruction from a select
13716 set of instructions. This option is on by default for ARMv8 Thumb mode.
13717
13718 @item -mprint-tune-info
13719 @opindex mprint-tune-info
13720 Print CPU tuning information as comment in assembler file.  This is
13721 an option used only for regression testing of the compiler and not
13722 intended for ordinary use in compiling code.  This option is disabled
13723 by default.
13724 @end table
13725
13726 @node AVR Options
13727 @subsection AVR Options
13728 @cindex AVR Options
13729
13730 These options are defined for AVR implementations:
13731
13732 @table @gcctabopt
13733 @item -mmcu=@var{mcu}
13734 @opindex mmcu
13735 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13736
13737 The default for this option is@tie{}@samp{avr2}.
13738
13739 GCC supports the following AVR devices and ISAs:
13740
13741 @include avr-mmcu.texi
13742
13743 @item -maccumulate-args
13744 @opindex maccumulate-args
13745 Accumulate outgoing function arguments and acquire/release the needed
13746 stack space for outgoing function arguments once in function
13747 prologue/epilogue.  Without this option, outgoing arguments are pushed
13748 before calling a function and popped afterwards.
13749
13750 Popping the arguments after the function call can be expensive on
13751 AVR so that accumulating the stack space might lead to smaller
13752 executables because arguments need not to be removed from the
13753 stack after such a function call.
13754
13755 This option can lead to reduced code size for functions that perform
13756 several calls to functions that get their arguments on the stack like
13757 calls to printf-like functions.
13758
13759 @item -mbranch-cost=@var{cost}
13760 @opindex mbranch-cost
13761 Set the branch costs for conditional branch instructions to
13762 @var{cost}.  Reasonable values for @var{cost} are small, non-negative
13763 integers. The default branch cost is 0.
13764
13765 @item -mcall-prologues
13766 @opindex mcall-prologues
13767 Functions prologues/epilogues are expanded as calls to appropriate
13768 subroutines.  Code size is smaller.
13769
13770 @item -mint8
13771 @opindex mint8
13772 Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
13773 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13774 and @code{long long} is 4 bytes.  Please note that this option does not
13775 conform to the C standards, but it results in smaller code
13776 size.
13777
13778 @item -mn-flash=@var{num}
13779 @opindex mn-flash
13780 Assume that the flash memory has a size of 
13781 @var{num} times 64@tie{}KiB.
13782
13783 @item -mno-interrupts
13784 @opindex mno-interrupts
13785 Generated code is not compatible with hardware interrupts.
13786 Code size is smaller.
13787
13788 @item -mrelax
13789 @opindex mrelax
13790 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13791 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13792 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13793 the assembler's command line and the @option{--relax} option to the
13794 linker's command line.
13795
13796 Jump relaxing is performed by the linker because jump offsets are not
13797 known before code is located. Therefore, the assembler code generated by the
13798 compiler is the same, but the instructions in the executable may
13799 differ from instructions in the assembler code.
13800
13801 Relaxing must be turned on if linker stubs are needed, see the
13802 section on @code{EIND} and linker stubs below.
13803
13804 @item -mrmw
13805 @opindex mrmw
13806 Assume that the device supports the Read-Modify-Write
13807 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13808
13809 @item -msp8
13810 @opindex msp8
13811 Treat the stack pointer register as an 8-bit register,
13812 i.e.@: assume the high byte of the stack pointer is zero.
13813 In general, you don't need to set this option by hand.
13814
13815 This option is used internally by the compiler to select and
13816 build multilibs for architectures @code{avr2} and @code{avr25}.
13817 These architectures mix devices with and without @code{SPH}.
13818 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13819 the compiler driver adds or removes this option from the compiler
13820 proper's command line, because the compiler then knows if the device
13821 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13822 register or not.
13823
13824 @item -mstrict-X
13825 @opindex mstrict-X
13826 Use address register @code{X} in a way proposed by the hardware.  This means
13827 that @code{X} is only used in indirect, post-increment or
13828 pre-decrement addressing.
13829
13830 Without this option, the @code{X} register may be used in the same way
13831 as @code{Y} or @code{Z} which then is emulated by additional
13832 instructions.  
13833 For example, loading a value with @code{X+const} addressing with a
13834 small non-negative @code{const < 64} to a register @var{Rn} is
13835 performed as
13836
13837 @example
13838 adiw r26, const   ; X += const
13839 ld   @var{Rn}, X        ; @var{Rn} = *X
13840 sbiw r26, const   ; X -= const
13841 @end example
13842
13843 @item -mtiny-stack
13844 @opindex mtiny-stack
13845 Only change the lower 8@tie{}bits of the stack pointer.
13846
13847 @item -nodevicelib
13848 @opindex nodevicelib
13849 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13850
13851 @item -Waddr-space-convert
13852 @opindex Waddr-space-convert
13853 Warn about conversions between address spaces in the case where the
13854 resulting address space is not contained in the incoming address space.
13855 @end table
13856
13857 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13858 @cindex @code{EIND}
13859 Pointers in the implementation are 16@tie{}bits wide.
13860 The address of a function or label is represented as word address so
13861 that indirect jumps and calls can target any code address in the
13862 range of 64@tie{}Ki words.
13863
13864 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13865 bytes of program memory space, there is a special function register called
13866 @code{EIND} that serves as most significant part of the target address
13867 when @code{EICALL} or @code{EIJMP} instructions are used.
13868
13869 Indirect jumps and calls on these devices are handled as follows by
13870 the compiler and are subject to some limitations:
13871
13872 @itemize @bullet
13873
13874 @item
13875 The compiler never sets @code{EIND}.
13876
13877 @item
13878 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13879 instructions or might read @code{EIND} directly in order to emulate an
13880 indirect call/jump by means of a @code{RET} instruction.
13881
13882 @item
13883 The compiler assumes that @code{EIND} never changes during the startup
13884 code or during the application. In particular, @code{EIND} is not
13885 saved/restored in function or interrupt service routine
13886 prologue/epilogue.
13887
13888 @item
13889 For indirect calls to functions and computed goto, the linker
13890 generates @emph{stubs}. Stubs are jump pads sometimes also called
13891 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13892 The stub contains a direct jump to the desired address.
13893
13894 @item
13895 Linker relaxation must be turned on so that the linker generates
13896 the stubs correctly in all situations. See the compiler option
13897 @option{-mrelax} and the linker option @option{--relax}.
13898 There are corner cases where the linker is supposed to generate stubs
13899 but aborts without relaxation and without a helpful error message.
13900
13901 @item
13902 The default linker script is arranged for code with @code{EIND = 0}.
13903 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13904 linker script has to be used in order to place the sections whose
13905 name start with @code{.trampolines} into the segment where @code{EIND}
13906 points to.
13907
13908 @item
13909 The startup code from libgcc never sets @code{EIND}.
13910 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13911 For the impact of AVR-LibC on @code{EIND}, see the
13912 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13913
13914 @item
13915 It is legitimate for user-specific startup code to set up @code{EIND}
13916 early, for example by means of initialization code located in
13917 section @code{.init3}. Such code runs prior to general startup code
13918 that initializes RAM and calls constructors, but after the bit
13919 of startup code from AVR-LibC that sets @code{EIND} to the segment
13920 where the vector table is located.
13921 @example
13922 #include <avr/io.h>
13923
13924 static void
13925 __attribute__((section(".init3"),naked,used,no_instrument_function))
13926 init3_set_eind (void)
13927 @{
13928   __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13929                   "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13930 @}
13931 @end example
13932
13933 @noindent
13934 The @code{__trampolines_start} symbol is defined in the linker script.
13935
13936 @item
13937 Stubs are generated automatically by the linker if
13938 the following two conditions are met:
13939 @itemize @minus
13940
13941 @item The address of a label is taken by means of the @code{gs} modifier
13942 (short for @emph{generate stubs}) like so:
13943 @example
13944 LDI r24, lo8(gs(@var{func}))
13945 LDI r25, hi8(gs(@var{func}))
13946 @end example
13947 @item The final location of that label is in a code segment
13948 @emph{outside} the segment where the stubs are located.
13949 @end itemize
13950
13951 @item
13952 The compiler emits such @code{gs} modifiers for code labels in the
13953 following situations:
13954 @itemize @minus
13955 @item Taking address of a function or code label.
13956 @item Computed goto.
13957 @item If prologue-save function is used, see @option{-mcall-prologues}
13958 command-line option.
13959 @item Switch/case dispatch tables. If you do not want such dispatch
13960 tables you can specify the @option{-fno-jump-tables} command-line option.
13961 @item C and C++ constructors/destructors called during startup/shutdown.
13962 @item If the tools hit a @code{gs()} modifier explained above.
13963 @end itemize
13964
13965 @item
13966 Jumping to non-symbolic addresses like so is @emph{not} supported:
13967
13968 @example
13969 int main (void)
13970 @{
13971     /* Call function at word address 0x2 */
13972     return ((int(*)(void)) 0x2)();
13973 @}
13974 @end example
13975
13976 Instead, a stub has to be set up, i.e.@: the function has to be called
13977 through a symbol (@code{func_4} in the example):
13978
13979 @example
13980 int main (void)
13981 @{
13982     extern int func_4 (void);
13983
13984     /* Call function at byte address 0x4 */
13985     return func_4();
13986 @}
13987 @end example
13988
13989 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13990 Alternatively, @code{func_4} can be defined in the linker script.
13991 @end itemize
13992
13993 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13994 @cindex @code{RAMPD}
13995 @cindex @code{RAMPX}
13996 @cindex @code{RAMPY}
13997 @cindex @code{RAMPZ}
13998 Some AVR devices support memories larger than the 64@tie{}KiB range
13999 that can be accessed with 16-bit pointers.  To access memory locations
14000 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
14001 register is used as high part of the address:
14002 The @code{X}, @code{Y}, @code{Z} address register is concatenated
14003 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
14004 register, respectively, to get a wide address. Similarly,
14005 @code{RAMPD} is used together with direct addressing.
14006
14007 @itemize
14008 @item
14009 The startup code initializes the @code{RAMP} special function
14010 registers with zero.
14011
14012 @item
14013 If a @ref{AVR Named Address Spaces,named address space} other than
14014 generic or @code{__flash} is used, then @code{RAMPZ} is set
14015 as needed before the operation.
14016
14017 @item
14018 If the device supports RAM larger than 64@tie{}KiB and the compiler
14019 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
14020 is reset to zero after the operation.
14021
14022 @item
14023 If the device comes with a specific @code{RAMP} register, the ISR
14024 prologue/epilogue saves/restores that SFR and initializes it with
14025 zero in case the ISR code might (implicitly) use it.
14026
14027 @item
14028 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
14029 If you use inline assembler to read from locations outside the
14030 16-bit address range and change one of the @code{RAMP} registers,
14031 you must reset it to zero after the access.
14032
14033 @end itemize
14034
14035 @subsubsection AVR Built-in Macros
14036
14037 GCC defines several built-in macros so that the user code can test
14038 for the presence or absence of features.  Almost any of the following
14039 built-in macros are deduced from device capabilities and thus
14040 triggered by the @option{-mmcu=} command-line option.
14041
14042 For even more AVR-specific built-in macros see
14043 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14044
14045 @table @code
14046
14047 @item __AVR_ARCH__
14048 Build-in macro that resolves to a decimal number that identifies the
14049 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14050 Possible values are:
14051
14052 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14053 @code{4}, @code{5}, @code{51}, @code{6}
14054
14055 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14056 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14057
14058 respectively and
14059
14060 @code{100}, @code{102}, @code{104},
14061 @code{105}, @code{106}, @code{107}
14062
14063 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14064 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14065 If @var{mcu} specifies a device, this built-in macro is set
14066 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14067 defined to @code{4}.
14068
14069 @item __AVR_@var{Device}__
14070 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14071 the device's name. For example, @option{-mmcu=atmega8} defines the
14072 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14073 @code{__AVR_ATtiny261A__}, etc.
14074
14075 The built-in macros' names follow
14076 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14077 the device name as from the AVR user manual. The difference between
14078 @var{Device} in the built-in macro and @var{device} in
14079 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14080
14081 If @var{device} is not a device but only a core architecture like
14082 @samp{avr51}, this macro is not defined.
14083
14084 @item __AVR_DEVICE_NAME__
14085 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14086 the device's name. For example, with @option{-mmcu=atmega8} the macro
14087 is defined to @code{atmega8}.
14088
14089 If @var{device} is not a device but only a core architecture like
14090 @samp{avr51}, this macro is not defined.
14091
14092 @item __AVR_XMEGA__
14093 The device / architecture belongs to the XMEGA family of devices.
14094
14095 @item __AVR_HAVE_ELPM__
14096 The device has the @code{ELPM} instruction.
14097
14098 @item __AVR_HAVE_ELPMX__
14099 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14100 R@var{n},Z+} instructions.
14101
14102 @item __AVR_HAVE_MOVW__
14103 The device has the @code{MOVW} instruction to perform 16-bit
14104 register-register moves.
14105
14106 @item __AVR_HAVE_LPMX__
14107 The device has the @code{LPM R@var{n},Z} and
14108 @code{LPM R@var{n},Z+} instructions.
14109
14110 @item __AVR_HAVE_MUL__
14111 The device has a hardware multiplier. 
14112
14113 @item __AVR_HAVE_JMP_CALL__
14114 The device has the @code{JMP} and @code{CALL} instructions.
14115 This is the case for devices with at least 16@tie{}KiB of program
14116 memory.
14117
14118 @item __AVR_HAVE_EIJMP_EICALL__
14119 @itemx __AVR_3_BYTE_PC__
14120 The device has the @code{EIJMP} and @code{EICALL} instructions.
14121 This is the case for devices with more than 128@tie{}KiB of program memory.
14122 This also means that the program counter
14123 (PC) is 3@tie{}bytes wide.
14124
14125 @item __AVR_2_BYTE_PC__
14126 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14127 with up to 128@tie{}KiB of program memory.
14128
14129 @item __AVR_HAVE_8BIT_SP__
14130 @itemx __AVR_HAVE_16BIT_SP__
14131 The stack pointer (SP) register is treated as 8-bit respectively
14132 16-bit register by the compiler.
14133 The definition of these macros is affected by @option{-mtiny-stack}.
14134
14135 @item __AVR_HAVE_SPH__
14136 @itemx __AVR_SP8__
14137 The device has the SPH (high part of stack pointer) special function
14138 register or has an 8-bit stack pointer, respectively.
14139 The definition of these macros is affected by @option{-mmcu=} and
14140 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14141 by @option{-msp8}.
14142
14143 @item __AVR_HAVE_RAMPD__
14144 @itemx __AVR_HAVE_RAMPX__
14145 @itemx __AVR_HAVE_RAMPY__
14146 @itemx __AVR_HAVE_RAMPZ__
14147 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14148 @code{RAMPZ} special function register, respectively.
14149
14150 @item __NO_INTERRUPTS__
14151 This macro reflects the @option{-mno-interrupts} command-line option.
14152
14153 @item __AVR_ERRATA_SKIP__
14154 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14155 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14156 instructions because of a hardware erratum.  Skip instructions are
14157 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14158 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14159 set.
14160
14161 @item __AVR_ISA_RMW__
14162 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14163
14164 @item __AVR_SFR_OFFSET__=@var{offset}
14165 Instructions that can address I/O special function registers directly
14166 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14167 address as if addressed by an instruction to access RAM like @code{LD}
14168 or @code{STS}. This offset depends on the device architecture and has
14169 to be subtracted from the RAM address in order to get the
14170 respective I/O@tie{}address.
14171
14172 @item __WITH_AVRLIBC__
14173 The compiler is configured to be used together with AVR-Libc.
14174 See the @option{--with-avrlibc} configure option.
14175
14176 @end table
14177
14178 @node Blackfin Options
14179 @subsection Blackfin Options
14180 @cindex Blackfin Options
14181
14182 @table @gcctabopt
14183 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14184 @opindex mcpu=
14185 Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
14186 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14187 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14188 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14189 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14190 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14191 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14192 @samp{bf561}, @samp{bf592}.
14193
14194 The optional @var{sirevision} specifies the silicon revision of the target
14195 Blackfin processor.  Any workarounds available for the targeted silicon revision
14196 are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
14197 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14198 are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
14199 hexadecimal digits representing the major and minor numbers in the silicon
14200 revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14201 is not defined.  If @var{sirevision} is @samp{any}, the
14202 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14203 If this optional @var{sirevision} is not used, GCC assumes the latest known
14204 silicon revision of the targeted Blackfin processor.
14205
14206 GCC defines a preprocessor macro for the specified @var{cpu}.
14207 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14208 provided by libgloss to be linked in if @option{-msim} is not given.
14209
14210 Without this option, @samp{bf532} is used as the processor by default.
14211
14212 Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
14213 only the preprocessor macro is defined.
14214
14215 @item -msim
14216 @opindex msim
14217 Specifies that the program will be run on the simulator.  This causes
14218 the simulator BSP provided by libgloss to be linked in.  This option
14219 has effect only for @samp{bfin-elf} toolchain.
14220 Certain other options, such as @option{-mid-shared-library} and
14221 @option{-mfdpic}, imply @option{-msim}.
14222
14223 @item -momit-leaf-frame-pointer
14224 @opindex momit-leaf-frame-pointer
14225 Don't keep the frame pointer in a register for leaf functions.  This
14226 avoids the instructions to save, set up and restore frame pointers and
14227 makes an extra register available in leaf functions.  The option
14228 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14229 which might make debugging harder.
14230
14231 @item -mspecld-anomaly
14232 @opindex mspecld-anomaly
14233 When enabled, the compiler ensures that the generated code does not
14234 contain speculative loads after jump instructions. If this option is used,
14235 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14236
14237 @item -mno-specld-anomaly
14238 @opindex mno-specld-anomaly
14239 Don't generate extra code to prevent speculative loads from occurring.
14240
14241 @item -mcsync-anomaly
14242 @opindex mcsync-anomaly
14243 When enabled, the compiler ensures that the generated code does not
14244 contain CSYNC or SSYNC instructions too soon after conditional branches.
14245 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14246
14247 @item -mno-csync-anomaly
14248 @opindex mno-csync-anomaly
14249 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14250 occurring too soon after a conditional branch.
14251
14252 @item -mlow-64k
14253 @opindex mlow-64k
14254 When enabled, the compiler is free to take advantage of the knowledge that
14255 the entire program fits into the low 64k of memory.
14256
14257 @item -mno-low-64k
14258 @opindex mno-low-64k
14259 Assume that the program is arbitrarily large.  This is the default.
14260
14261 @item -mstack-check-l1
14262 @opindex mstack-check-l1
14263 Do stack checking using information placed into L1 scratchpad memory by the
14264 uClinux kernel.
14265
14266 @item -mid-shared-library
14267 @opindex mid-shared-library
14268 Generate code that supports shared libraries via the library ID method.
14269 This allows for execute in place and shared libraries in an environment
14270 without virtual memory management.  This option implies @option{-fPIC}.
14271 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14272
14273 @item -mno-id-shared-library
14274 @opindex mno-id-shared-library
14275 Generate code that doesn't assume ID-based shared libraries are being used.
14276 This is the default.
14277
14278 @item -mleaf-id-shared-library
14279 @opindex mleaf-id-shared-library
14280 Generate code that supports shared libraries via the library ID method,
14281 but assumes that this library or executable won't link against any other
14282 ID shared libraries.  That allows the compiler to use faster code for jumps
14283 and calls.
14284
14285 @item -mno-leaf-id-shared-library
14286 @opindex mno-leaf-id-shared-library
14287 Do not assume that the code being compiled won't link against any ID shared
14288 libraries.  Slower code is generated for jump and call insns.
14289
14290 @item -mshared-library-id=n
14291 @opindex mshared-library-id
14292 Specifies the identification number of the ID-based shared library being
14293 compiled.  Specifying a value of 0 generates more compact code; specifying
14294 other values forces the allocation of that number to the current
14295 library but is no more space- or time-efficient than omitting this option.
14296
14297 @item -msep-data
14298 @opindex msep-data
14299 Generate code that allows the data segment to be located in a different
14300 area of memory from the text segment.  This allows for execute in place in
14301 an environment without virtual memory management by eliminating relocations
14302 against the text section.
14303
14304 @item -mno-sep-data
14305 @opindex mno-sep-data
14306 Generate code that assumes that the data segment follows the text segment.
14307 This is the default.
14308
14309 @item -mlong-calls
14310 @itemx -mno-long-calls
14311 @opindex mlong-calls
14312 @opindex mno-long-calls
14313 Tells the compiler to perform function calls by first loading the
14314 address of the function into a register and then performing a subroutine
14315 call on this register.  This switch is needed if the target function
14316 lies outside of the 24-bit addressing range of the offset-based
14317 version of subroutine call instruction.
14318
14319 This feature is not enabled by default.  Specifying
14320 @option{-mno-long-calls} restores the default behavior.  Note these
14321 switches have no effect on how the compiler generates code to handle
14322 function calls via function pointers.
14323
14324 @item -mfast-fp
14325 @opindex mfast-fp
14326 Link with the fast floating-point library. This library relaxes some of
14327 the IEEE floating-point standard's rules for checking inputs against
14328 Not-a-Number (NAN), in the interest of performance.
14329
14330 @item -minline-plt
14331 @opindex minline-plt
14332 Enable inlining of PLT entries in function calls to functions that are
14333 not known to bind locally.  It has no effect without @option{-mfdpic}.
14334
14335 @item -mmulticore
14336 @opindex mmulticore
14337 Build a standalone application for multicore Blackfin processors. 
14338 This option causes proper start files and link scripts supporting 
14339 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
14340 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
14341
14342 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14343 selects the one-application-per-core programming model.  Without
14344 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14345 programming model is used. In this model, the main function of Core B
14346 should be named as @code{coreb_main}.
14347
14348 If this option is not used, the single-core application programming
14349 model is used.
14350
14351 @item -mcorea
14352 @opindex mcorea
14353 Build a standalone application for Core A of BF561 when using
14354 the one-application-per-core programming model. Proper start files
14355 and link scripts are used to support Core A, and the macro
14356 @code{__BFIN_COREA} is defined.
14357 This option can only be used in conjunction with @option{-mmulticore}.
14358
14359 @item -mcoreb
14360 @opindex mcoreb
14361 Build a standalone application for Core B of BF561 when using
14362 the one-application-per-core programming model. Proper start files
14363 and link scripts are used to support Core B, and the macro
14364 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14365 should be used instead of @code{main}. 
14366 This option can only be used in conjunction with @option{-mmulticore}.
14367
14368 @item -msdram
14369 @opindex msdram
14370 Build a standalone application for SDRAM. Proper start files and
14371 link scripts are used to put the application into SDRAM, and the macro
14372 @code{__BFIN_SDRAM} is defined.
14373 The loader should initialize SDRAM before loading the application.
14374
14375 @item -micplb
14376 @opindex micplb
14377 Assume that ICPLBs are enabled at run time.  This has an effect on certain
14378 anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
14379 are enabled; for standalone applications the default is off.
14380 @end table
14381
14382 @node C6X Options
14383 @subsection C6X Options
14384 @cindex C6X Options
14385
14386 @table @gcctabopt
14387 @item -march=@var{name}
14388 @opindex march
14389 This specifies the name of the target architecture.  GCC uses this
14390 name to determine what kind of instructions it can emit when generating
14391 assembly code.  Permissible names are: @samp{c62x},
14392 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14393
14394 @item -mbig-endian
14395 @opindex mbig-endian
14396 Generate code for a big-endian target.
14397
14398 @item -mlittle-endian
14399 @opindex mlittle-endian
14400 Generate code for a little-endian target.  This is the default.
14401
14402 @item -msim
14403 @opindex msim
14404 Choose startup files and linker script suitable for the simulator.
14405
14406 @item -msdata=default
14407 @opindex msdata=default
14408 Put small global and static data in the @code{.neardata} section,
14409 which is pointed to by register @code{B14}.  Put small uninitialized
14410 global and static data in the @code{.bss} section, which is adjacent
14411 to the @code{.neardata} section.  Put small read-only data into the
14412 @code{.rodata} section.  The corresponding sections used for large
14413 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14414
14415 @item -msdata=all
14416 @opindex msdata=all
14417 Put all data, not just small objects, into the sections reserved for
14418 small data, and use addressing relative to the @code{B14} register to
14419 access them.
14420
14421 @item -msdata=none
14422 @opindex msdata=none
14423 Make no use of the sections reserved for small data, and use absolute
14424 addresses to access all data.  Put all initialized global and static
14425 data in the @code{.fardata} section, and all uninitialized data in the
14426 @code{.far} section.  Put all constant data into the @code{.const}
14427 section.
14428 @end table
14429
14430 @node CRIS Options
14431 @subsection CRIS Options
14432 @cindex CRIS Options
14433
14434 These options are defined specifically for the CRIS ports.
14435
14436 @table @gcctabopt
14437 @item -march=@var{architecture-type}
14438 @itemx -mcpu=@var{architecture-type}
14439 @opindex march
14440 @opindex mcpu
14441 Generate code for the specified architecture.  The choices for
14442 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14443 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14444 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14445 @samp{v10}.
14446
14447 @item -mtune=@var{architecture-type}
14448 @opindex mtune
14449 Tune to @var{architecture-type} everything applicable about the generated
14450 code, except for the ABI and the set of available instructions.  The
14451 choices for @var{architecture-type} are the same as for
14452 @option{-march=@var{architecture-type}}.
14453
14454 @item -mmax-stack-frame=@var{n}
14455 @opindex mmax-stack-frame
14456 Warn when the stack frame of a function exceeds @var{n} bytes.
14457
14458 @item -metrax4
14459 @itemx -metrax100
14460 @opindex metrax4
14461 @opindex metrax100
14462 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14463 @option{-march=v3} and @option{-march=v8} respectively.
14464
14465 @item -mmul-bug-workaround
14466 @itemx -mno-mul-bug-workaround
14467 @opindex mmul-bug-workaround
14468 @opindex mno-mul-bug-workaround
14469 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14470 models where it applies.  This option is active by default.
14471
14472 @item -mpdebug
14473 @opindex mpdebug
14474 Enable CRIS-specific verbose debug-related information in the assembly
14475 code.  This option also has the effect of turning off the @samp{#NO_APP}
14476 formatted-code indicator to the assembler at the beginning of the
14477 assembly file.
14478
14479 @item -mcc-init
14480 @opindex mcc-init
14481 Do not use condition-code results from previous instruction; always emit
14482 compare and test instructions before use of condition codes.
14483
14484 @item -mno-side-effects
14485 @opindex mno-side-effects
14486 Do not emit instructions with side effects in addressing modes other than
14487 post-increment.
14488
14489 @item -mstack-align
14490 @itemx -mno-stack-align
14491 @itemx -mdata-align
14492 @itemx -mno-data-align
14493 @itemx -mconst-align
14494 @itemx -mno-const-align
14495 @opindex mstack-align
14496 @opindex mno-stack-align
14497 @opindex mdata-align
14498 @opindex mno-data-align
14499 @opindex mconst-align
14500 @opindex mno-const-align
14501 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14502 stack frame, individual data and constants to be aligned for the maximum
14503 single data access size for the chosen CPU model.  The default is to
14504 arrange for 32-bit alignment.  ABI details such as structure layout are
14505 not affected by these options.
14506
14507 @item -m32-bit
14508 @itemx -m16-bit
14509 @itemx -m8-bit
14510 @opindex m32-bit
14511 @opindex m16-bit
14512 @opindex m8-bit
14513 Similar to the stack- data- and const-align options above, these options
14514 arrange for stack frame, writable data and constants to all be 32-bit,
14515 16-bit or 8-bit aligned.  The default is 32-bit alignment.
14516
14517 @item -mno-prologue-epilogue
14518 @itemx -mprologue-epilogue
14519 @opindex mno-prologue-epilogue
14520 @opindex mprologue-epilogue
14521 With @option{-mno-prologue-epilogue}, the normal function prologue and
14522 epilogue which set up the stack frame are omitted and no return
14523 instructions or return sequences are generated in the code.  Use this
14524 option only together with visual inspection of the compiled code: no
14525 warnings or errors are generated when call-saved registers must be saved,
14526 or storage for local variables needs to be allocated.
14527
14528 @item -mno-gotplt
14529 @itemx -mgotplt
14530 @opindex mno-gotplt
14531 @opindex mgotplt
14532 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14533 instruction sequences that load addresses for functions from the PLT part
14534 of the GOT rather than (traditional on other architectures) calls to the
14535 PLT@.  The default is @option{-mgotplt}.
14536
14537 @item -melf
14538 @opindex melf
14539 Legacy no-op option only recognized with the cris-axis-elf and
14540 cris-axis-linux-gnu targets.
14541
14542 @item -mlinux
14543 @opindex mlinux
14544 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14545
14546 @item -sim
14547 @opindex sim
14548 This option, recognized for the cris-axis-elf, arranges
14549 to link with input-output functions from a simulator library.  Code,
14550 initialized data and zero-initialized data are allocated consecutively.
14551
14552 @item -sim2
14553 @opindex sim2
14554 Like @option{-sim}, but pass linker options to locate initialized data at
14555 0x40000000 and zero-initialized data at 0x80000000.
14556 @end table
14557
14558 @node CR16 Options
14559 @subsection CR16 Options
14560 @cindex CR16 Options
14561
14562 These options are defined specifically for the CR16 ports.
14563
14564 @table @gcctabopt
14565
14566 @item -mmac
14567 @opindex mmac
14568 Enable the use of multiply-accumulate instructions. Disabled by default.
14569
14570 @item -mcr16cplus
14571 @itemx -mcr16c
14572 @opindex mcr16cplus
14573 @opindex mcr16c
14574 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
14575 is default.
14576
14577 @item -msim
14578 @opindex msim
14579 Links the library libsim.a which is in compatible with simulator. Applicable
14580 to ELF compiler only.
14581
14582 @item -mint32
14583 @opindex mint32
14584 Choose integer type as 32-bit wide.
14585
14586 @item -mbit-ops
14587 @opindex mbit-ops
14588 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14589
14590 @item -mdata-model=@var{model}
14591 @opindex mdata-model
14592 Choose a data model. The choices for @var{model} are @samp{near},
14593 @samp{far} or @samp{medium}. @samp{medium} is default.
14594 However, @samp{far} is not valid with @option{-mcr16c}, as the
14595 CR16C architecture does not support the far data model.
14596 @end table
14597
14598 @node Darwin Options
14599 @subsection Darwin Options
14600 @cindex Darwin options
14601
14602 These options are defined for all architectures running the Darwin operating
14603 system.
14604
14605 FSF GCC on Darwin does not create ``fat'' object files; it creates
14606 an object file for the single architecture that GCC was built to
14607 target.  Apple's GCC on Darwin does create ``fat'' files if multiple
14608 @option{-arch} options are used; it does so by running the compiler or
14609 linker multiple times and joining the results together with
14610 @file{lipo}.
14611
14612 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14613 @samp{i686}) is determined by the flags that specify the ISA
14614 that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
14615 @option{-force_cpusubtype_ALL} option can be used to override this.
14616
14617 The Darwin tools vary in their behavior when presented with an ISA
14618 mismatch.  The assembler, @file{as}, only permits instructions to
14619 be used that are valid for the subtype of the file it is generating,
14620 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14621 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14622 and prints an error if asked to create a shared library with a less
14623 restrictive subtype than its input files (for instance, trying to put
14624 a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
14625 for executables, @command{ld}, quietly gives the executable the most
14626 restrictive subtype of any of its input files.
14627
14628 @table @gcctabopt
14629 @item -F@var{dir}
14630 @opindex F
14631 Add the framework directory @var{dir} to the head of the list of
14632 directories to be searched for header files.  These directories are
14633 interleaved with those specified by @option{-I} options and are
14634 scanned in a left-to-right order.
14635
14636 A framework directory is a directory with frameworks in it.  A
14637 framework is a directory with a @file{Headers} and/or
14638 @file{PrivateHeaders} directory contained directly in it that ends
14639 in @file{.framework}.  The name of a framework is the name of this
14640 directory excluding the @file{.framework}.  Headers associated with
14641 the framework are found in one of those two directories, with
14642 @file{Headers} being searched first.  A subframework is a framework
14643 directory that is in a framework's @file{Frameworks} directory.
14644 Includes of subframework headers can only appear in a header of a
14645 framework that contains the subframework, or in a sibling subframework
14646 header.  Two subframeworks are siblings if they occur in the same
14647 framework.  A subframework should not have the same name as a
14648 framework; a warning is issued if this is violated.  Currently a
14649 subframework cannot have subframeworks; in the future, the mechanism
14650 may be extended to support this.  The standard frameworks can be found
14651 in @file{/System/Library/Frameworks} and
14652 @file{/Library/Frameworks}.  An example include looks like
14653 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14654 the name of the framework and @file{header.h} is found in the
14655 @file{PrivateHeaders} or @file{Headers} directory.
14656
14657 @item -iframework@var{dir}
14658 @opindex iframework
14659 Like @option{-F} except the directory is a treated as a system
14660 directory.  The main difference between this @option{-iframework} and
14661 @option{-F} is that with @option{-iframework} the compiler does not
14662 warn about constructs contained within header files found via
14663 @var{dir}.  This option is valid only for the C family of languages.
14664
14665 @item -gused
14666 @opindex gused
14667 Emit debugging information for symbols that are used.  For stabs
14668 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14669 This is by default ON@.
14670
14671 @item -gfull
14672 @opindex gfull
14673 Emit debugging information for all symbols and types.
14674
14675 @item -mmacosx-version-min=@var{version}
14676 The earliest version of MacOS X that this executable will run on
14677 is @var{version}.  Typical values of @var{version} include @code{10.1},
14678 @code{10.2}, and @code{10.3.9}.
14679
14680 If the compiler was built to use the system's headers by default,
14681 then the default for this option is the system version on which the
14682 compiler is running, otherwise the default is to make choices that
14683 are compatible with as many systems and code bases as possible.
14684
14685 @item -mkernel
14686 @opindex mkernel
14687 Enable kernel development mode.  The @option{-mkernel} option sets
14688 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14689 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14690 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14691 applicable.  This mode also sets @option{-mno-altivec},
14692 @option{-msoft-float}, @option{-fno-builtin} and
14693 @option{-mlong-branch} for PowerPC targets.
14694
14695 @item -mone-byte-bool
14696 @opindex mone-byte-bool
14697 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14698 By default @code{sizeof(bool)} is @code{4} when compiling for
14699 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14700 option has no effect on x86.
14701
14702 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14703 to generate code that is not binary compatible with code generated
14704 without that switch.  Using this switch may require recompiling all
14705 other modules in a program, including system libraries.  Use this
14706 switch to conform to a non-default data model.
14707
14708 @item -mfix-and-continue
14709 @itemx -ffix-and-continue
14710 @itemx -findirect-data
14711 @opindex mfix-and-continue
14712 @opindex ffix-and-continue
14713 @opindex findirect-data
14714 Generate code suitable for fast turnaround development, such as to
14715 allow GDB to dynamically load @file{.o} files into already-running
14716 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
14717 are provided for backwards compatibility.
14718
14719 @item -all_load
14720 @opindex all_load
14721 Loads all members of static archive libraries.
14722 See man ld(1) for more information.
14723
14724 @item -arch_errors_fatal
14725 @opindex arch_errors_fatal
14726 Cause the errors having to do with files that have the wrong architecture
14727 to be fatal.
14728
14729 @item -bind_at_load
14730 @opindex bind_at_load
14731 Causes the output file to be marked such that the dynamic linker will
14732 bind all undefined references when the file is loaded or launched.
14733
14734 @item -bundle
14735 @opindex bundle
14736 Produce a Mach-o bundle format file.
14737 See man ld(1) for more information.
14738
14739 @item -bundle_loader @var{executable}
14740 @opindex bundle_loader
14741 This option specifies the @var{executable} that will load the build
14742 output file being linked.  See man ld(1) for more information.
14743
14744 @item -dynamiclib
14745 @opindex dynamiclib
14746 When passed this option, GCC produces a dynamic library instead of
14747 an executable when linking, using the Darwin @file{libtool} command.
14748
14749 @item -force_cpusubtype_ALL
14750 @opindex force_cpusubtype_ALL
14751 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14752 one controlled by the @option{-mcpu} or @option{-march} option.
14753
14754 @item -allowable_client  @var{client_name}
14755 @itemx -client_name
14756 @itemx -compatibility_version
14757 @itemx -current_version
14758 @itemx -dead_strip
14759 @itemx -dependency-file
14760 @itemx -dylib_file
14761 @itemx -dylinker_install_name
14762 @itemx -dynamic
14763 @itemx -exported_symbols_list
14764 @itemx -filelist
14765 @need 800
14766 @itemx -flat_namespace
14767 @itemx -force_flat_namespace
14768 @itemx -headerpad_max_install_names
14769 @itemx -image_base
14770 @itemx -init
14771 @itemx -install_name
14772 @itemx -keep_private_externs
14773 @itemx -multi_module
14774 @itemx -multiply_defined
14775 @itemx -multiply_defined_unused
14776 @need 800
14777 @itemx -noall_load
14778 @itemx -no_dead_strip_inits_and_terms
14779 @itemx -nofixprebinding
14780 @itemx -nomultidefs
14781 @itemx -noprebind
14782 @itemx -noseglinkedit
14783 @itemx -pagezero_size
14784 @itemx -prebind
14785 @itemx -prebind_all_twolevel_modules
14786 @itemx -private_bundle
14787 @need 800
14788 @itemx -read_only_relocs
14789 @itemx -sectalign
14790 @itemx -sectobjectsymbols
14791 @itemx -whyload
14792 @itemx -seg1addr
14793 @itemx -sectcreate
14794 @itemx -sectobjectsymbols
14795 @itemx -sectorder
14796 @itemx -segaddr
14797 @itemx -segs_read_only_addr
14798 @need 800
14799 @itemx -segs_read_write_addr
14800 @itemx -seg_addr_table
14801 @itemx -seg_addr_table_filename
14802 @itemx -seglinkedit
14803 @itemx -segprot
14804 @itemx -segs_read_only_addr
14805 @itemx -segs_read_write_addr
14806 @itemx -single_module
14807 @itemx -static
14808 @itemx -sub_library
14809 @need 800
14810 @itemx -sub_umbrella
14811 @itemx -twolevel_namespace
14812 @itemx -umbrella
14813 @itemx -undefined
14814 @itemx -unexported_symbols_list
14815 @itemx -weak_reference_mismatches
14816 @itemx -whatsloaded
14817 @opindex allowable_client
14818 @opindex client_name
14819 @opindex compatibility_version
14820 @opindex current_version
14821 @opindex dead_strip
14822 @opindex dependency-file
14823 @opindex dylib_file
14824 @opindex dylinker_install_name
14825 @opindex dynamic
14826 @opindex exported_symbols_list
14827 @opindex filelist
14828 @opindex flat_namespace
14829 @opindex force_flat_namespace
14830 @opindex headerpad_max_install_names
14831 @opindex image_base
14832 @opindex init
14833 @opindex install_name
14834 @opindex keep_private_externs
14835 @opindex multi_module
14836 @opindex multiply_defined
14837 @opindex multiply_defined_unused
14838 @opindex noall_load
14839 @opindex no_dead_strip_inits_and_terms
14840 @opindex nofixprebinding
14841 @opindex nomultidefs
14842 @opindex noprebind
14843 @opindex noseglinkedit
14844 @opindex pagezero_size
14845 @opindex prebind
14846 @opindex prebind_all_twolevel_modules
14847 @opindex private_bundle
14848 @opindex read_only_relocs
14849 @opindex sectalign
14850 @opindex sectobjectsymbols
14851 @opindex whyload
14852 @opindex seg1addr
14853 @opindex sectcreate
14854 @opindex sectobjectsymbols
14855 @opindex sectorder
14856 @opindex segaddr
14857 @opindex segs_read_only_addr
14858 @opindex segs_read_write_addr
14859 @opindex seg_addr_table
14860 @opindex seg_addr_table_filename
14861 @opindex seglinkedit
14862 @opindex segprot
14863 @opindex segs_read_only_addr
14864 @opindex segs_read_write_addr
14865 @opindex single_module
14866 @opindex static
14867 @opindex sub_library
14868 @opindex sub_umbrella
14869 @opindex twolevel_namespace
14870 @opindex umbrella
14871 @opindex undefined
14872 @opindex unexported_symbols_list
14873 @opindex weak_reference_mismatches
14874 @opindex whatsloaded
14875 These options are passed to the Darwin linker.  The Darwin linker man page
14876 describes them in detail.
14877 @end table
14878
14879 @node DEC Alpha Options
14880 @subsection DEC Alpha Options
14881
14882 These @samp{-m} options are defined for the DEC Alpha implementations:
14883
14884 @table @gcctabopt
14885 @item -mno-soft-float
14886 @itemx -msoft-float
14887 @opindex mno-soft-float
14888 @opindex msoft-float
14889 Use (do not use) the hardware floating-point instructions for
14890 floating-point operations.  When @option{-msoft-float} is specified,
14891 functions in @file{libgcc.a} are used to perform floating-point
14892 operations.  Unless they are replaced by routines that emulate the
14893 floating-point operations, or compiled in such a way as to call such
14894 emulations routines, these routines issue floating-point
14895 operations.   If you are compiling for an Alpha without floating-point
14896 operations, you must ensure that the library is built so as not to call
14897 them.
14898
14899 Note that Alpha implementations without floating-point operations are
14900 required to have floating-point registers.
14901
14902 @item -mfp-reg
14903 @itemx -mno-fp-regs
14904 @opindex mfp-reg
14905 @opindex mno-fp-regs
14906 Generate code that uses (does not use) the floating-point register set.
14907 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
14908 register set is not used, floating-point operands are passed in integer
14909 registers as if they were integers and floating-point results are passed
14910 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
14911 so any function with a floating-point argument or return value called by code
14912 compiled with @option{-mno-fp-regs} must also be compiled with that
14913 option.
14914
14915 A typical use of this option is building a kernel that does not use,
14916 and hence need not save and restore, any floating-point registers.
14917
14918 @item -mieee
14919 @opindex mieee
14920 The Alpha architecture implements floating-point hardware optimized for
14921 maximum performance.  It is mostly compliant with the IEEE floating-point
14922 standard.  However, for full compliance, software assistance is
14923 required.  This option generates code fully IEEE-compliant code
14924 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14925 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14926 defined during compilation.  The resulting code is less efficient but is
14927 able to correctly support denormalized numbers and exceptional IEEE
14928 values such as not-a-number and plus/minus infinity.  Other Alpha
14929 compilers call this option @option{-ieee_with_no_inexact}.
14930
14931 @item -mieee-with-inexact
14932 @opindex mieee-with-inexact
14933 This is like @option{-mieee} except the generated code also maintains
14934 the IEEE @var{inexact-flag}.  Turning on this option causes the
14935 generated code to implement fully-compliant IEEE math.  In addition to
14936 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14937 macro.  On some Alpha implementations the resulting code may execute
14938 significantly slower than the code generated by default.  Since there is
14939 very little code that depends on the @var{inexact-flag}, you should
14940 normally not specify this option.  Other Alpha compilers call this
14941 option @option{-ieee_with_inexact}.
14942
14943 @item -mfp-trap-mode=@var{trap-mode}
14944 @opindex mfp-trap-mode
14945 This option controls what floating-point related traps are enabled.
14946 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14947 The trap mode can be set to one of four values:
14948
14949 @table @samp
14950 @item n
14951 This is the default (normal) setting.  The only traps that are enabled
14952 are the ones that cannot be disabled in software (e.g., division by zero
14953 trap).
14954
14955 @item u
14956 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14957 as well.
14958
14959 @item su
14960 Like @samp{u}, but the instructions are marked to be safe for software
14961 completion (see Alpha architecture manual for details).
14962
14963 @item sui
14964 Like @samp{su}, but inexact traps are enabled as well.
14965 @end table
14966
14967 @item -mfp-rounding-mode=@var{rounding-mode}
14968 @opindex mfp-rounding-mode
14969 Selects the IEEE rounding mode.  Other Alpha compilers call this option
14970 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
14971 of:
14972
14973 @table @samp
14974 @item n
14975 Normal IEEE rounding mode.  Floating-point numbers are rounded towards
14976 the nearest machine number or towards the even machine number in case
14977 of a tie.
14978
14979 @item m
14980 Round towards minus infinity.
14981
14982 @item c
14983 Chopped rounding mode.  Floating-point numbers are rounded towards zero.
14984
14985 @item d
14986 Dynamic rounding mode.  A field in the floating-point control register
14987 (@var{fpcr}, see Alpha architecture reference manual) controls the
14988 rounding mode in effect.  The C library initializes this register for
14989 rounding towards plus infinity.  Thus, unless your program modifies the
14990 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14991 @end table
14992
14993 @item -mtrap-precision=@var{trap-precision}
14994 @opindex mtrap-precision
14995 In the Alpha architecture, floating-point traps are imprecise.  This
14996 means without software assistance it is impossible to recover from a
14997 floating trap and program execution normally needs to be terminated.
14998 GCC can generate code that can assist operating system trap handlers
14999 in determining the exact location that caused a floating-point trap.
15000 Depending on the requirements of an application, different levels of
15001 precisions can be selected:
15002
15003 @table @samp
15004 @item p
15005 Program precision.  This option is the default and means a trap handler
15006 can only identify which program caused a floating-point exception.
15007
15008 @item f
15009 Function precision.  The trap handler can determine the function that
15010 caused a floating-point exception.
15011
15012 @item i
15013 Instruction precision.  The trap handler can determine the exact
15014 instruction that caused a floating-point exception.
15015 @end table
15016
15017 Other Alpha compilers provide the equivalent options called
15018 @option{-scope_safe} and @option{-resumption_safe}.
15019
15020 @item -mieee-conformant
15021 @opindex mieee-conformant
15022 This option marks the generated code as IEEE conformant.  You must not
15023 use this option unless you also specify @option{-mtrap-precision=i} and either
15024 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
15025 is to emit the line @samp{.eflag 48} in the function prologue of the
15026 generated assembly file.
15027
15028 @item -mbuild-constants
15029 @opindex mbuild-constants
15030 Normally GCC examines a 32- or 64-bit integer constant to
15031 see if it can construct it from smaller constants in two or three
15032 instructions.  If it cannot, it outputs the constant as a literal and
15033 generates code to load it from the data segment at run time.
15034
15035 Use this option to require GCC to construct @emph{all} integer constants
15036 using code, even if it takes more instructions (the maximum is six).
15037
15038 You typically use this option to build a shared library dynamic
15039 loader.  Itself a shared library, it must relocate itself in memory
15040 before it can find the variables and constants in its own data segment.
15041
15042 @item -mbwx
15043 @itemx -mno-bwx
15044 @itemx -mcix
15045 @itemx -mno-cix
15046 @itemx -mfix
15047 @itemx -mno-fix
15048 @itemx -mmax
15049 @itemx -mno-max
15050 @opindex mbwx
15051 @opindex mno-bwx
15052 @opindex mcix
15053 @opindex mno-cix
15054 @opindex mfix
15055 @opindex mno-fix
15056 @opindex mmax
15057 @opindex mno-max
15058 Indicate whether GCC should generate code to use the optional BWX,
15059 CIX, FIX and MAX instruction sets.  The default is to use the instruction
15060 sets supported by the CPU type specified via @option{-mcpu=} option or that
15061 of the CPU on which GCC was built if none is specified.
15062
15063 @item -mfloat-vax
15064 @itemx -mfloat-ieee
15065 @opindex mfloat-vax
15066 @opindex mfloat-ieee
15067 Generate code that uses (does not use) VAX F and G floating-point
15068 arithmetic instead of IEEE single and double precision.
15069
15070 @item -mexplicit-relocs
15071 @itemx -mno-explicit-relocs
15072 @opindex mexplicit-relocs
15073 @opindex mno-explicit-relocs
15074 Older Alpha assemblers provided no way to generate symbol relocations
15075 except via assembler macros.  Use of these macros does not allow
15076 optimal instruction scheduling.  GNU binutils as of version 2.12
15077 supports a new syntax that allows the compiler to explicitly mark
15078 which relocations should apply to which instructions.  This option
15079 is mostly useful for debugging, as GCC detects the capabilities of
15080 the assembler when it is built and sets the default accordingly.
15081
15082 @item -msmall-data
15083 @itemx -mlarge-data
15084 @opindex msmall-data
15085 @opindex mlarge-data
15086 When @option{-mexplicit-relocs} is in effect, static data is
15087 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
15088 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15089 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15090 16-bit relocations off of the @code{$gp} register.  This limits the
15091 size of the small data area to 64KB, but allows the variables to be
15092 directly accessed via a single instruction.
15093
15094 The default is @option{-mlarge-data}.  With this option the data area
15095 is limited to just below 2GB@.  Programs that require more than 2GB of
15096 data must use @code{malloc} or @code{mmap} to allocate the data in the
15097 heap instead of in the program's data segment.
15098
15099 When generating code for shared libraries, @option{-fpic} implies
15100 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15101
15102 @item -msmall-text
15103 @itemx -mlarge-text
15104 @opindex msmall-text
15105 @opindex mlarge-text
15106 When @option{-msmall-text} is used, the compiler assumes that the
15107 code of the entire program (or shared library) fits in 4MB, and is
15108 thus reachable with a branch instruction.  When @option{-msmall-data}
15109 is used, the compiler can assume that all local symbols share the
15110 same @code{$gp} value, and thus reduce the number of instructions
15111 required for a function call from 4 to 1.
15112
15113 The default is @option{-mlarge-text}.
15114
15115 @item -mcpu=@var{cpu_type}
15116 @opindex mcpu
15117 Set the instruction set and instruction scheduling parameters for
15118 machine type @var{cpu_type}.  You can specify either the @samp{EV}
15119 style name or the corresponding chip number.  GCC supports scheduling
15120 parameters for the EV4, EV5 and EV6 family of processors and
15121 chooses the default values for the instruction set from the processor
15122 you specify.  If you do not specify a processor type, GCC defaults
15123 to the processor on which the compiler was built.
15124
15125 Supported values for @var{cpu_type} are
15126
15127 @table @samp
15128 @item ev4
15129 @itemx ev45
15130 @itemx 21064
15131 Schedules as an EV4 and has no instruction set extensions.
15132
15133 @item ev5
15134 @itemx 21164
15135 Schedules as an EV5 and has no instruction set extensions.
15136
15137 @item ev56
15138 @itemx 21164a
15139 Schedules as an EV5 and supports the BWX extension.
15140
15141 @item pca56
15142 @itemx 21164pc
15143 @itemx 21164PC
15144 Schedules as an EV5 and supports the BWX and MAX extensions.
15145
15146 @item ev6
15147 @itemx 21264
15148 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15149
15150 @item ev67
15151 @itemx 21264a
15152 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15153 @end table
15154
15155 Native toolchains also support the value @samp{native},
15156 which selects the best architecture option for the host processor.
15157 @option{-mcpu=native} has no effect if GCC does not recognize
15158 the processor.
15159
15160 @item -mtune=@var{cpu_type}
15161 @opindex mtune
15162 Set only the instruction scheduling parameters for machine type
15163 @var{cpu_type}.  The instruction set is not changed.
15164
15165 Native toolchains also support the value @samp{native},
15166 which selects the best architecture option for the host processor.
15167 @option{-mtune=native} has no effect if GCC does not recognize
15168 the processor.
15169
15170 @item -mmemory-latency=@var{time}
15171 @opindex mmemory-latency
15172 Sets the latency the scheduler should assume for typical memory
15173 references as seen by the application.  This number is highly
15174 dependent on the memory access patterns used by the application
15175 and the size of the external cache on the machine.
15176
15177 Valid options for @var{time} are
15178
15179 @table @samp
15180 @item @var{number}
15181 A decimal number representing clock cycles.
15182
15183 @item L1
15184 @itemx L2
15185 @itemx L3
15186 @itemx main
15187 The compiler contains estimates of the number of clock cycles for
15188 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15189 (also called Dcache, Scache, and Bcache), as well as to main memory.
15190 Note that L3 is only valid for EV5.
15191
15192 @end table
15193 @end table
15194
15195 @node FR30 Options
15196 @subsection FR30 Options
15197 @cindex FR30 Options
15198
15199 These options are defined specifically for the FR30 port.
15200
15201 @table @gcctabopt
15202
15203 @item -msmall-model
15204 @opindex msmall-model
15205 Use the small address space model.  This can produce smaller code, but
15206 it does assume that all symbolic values and addresses fit into a
15207 20-bit range.
15208
15209 @item -mno-lsim
15210 @opindex mno-lsim
15211 Assume that runtime support has been provided and so there is no need
15212 to include the simulator library (@file{libsim.a}) on the linker
15213 command line.
15214
15215 @end table
15216
15217 @node FT32 Options
15218 @subsection FT32 Options
15219 @cindex FT32 Options
15220
15221 These options are defined specifically for the FT32 port.
15222
15223 @table @gcctabopt
15224
15225 @item -msim
15226 @opindex msim
15227 Specifies that the program will be run on the simulator.  This causes
15228 an alternate runtime startup and library to be linked.
15229 You must not use this option when generating programs that will run on
15230 real hardware; you must provide your own runtime library for whatever
15231 I/O functions are needed.
15232
15233 @item -mlra
15234 @opindex mlra
15235 Enable Local Register Allocation.  This is still experimental for FT32,
15236 so by default the compiler uses standard reload.
15237
15238 @end table
15239
15240 @node FRV Options
15241 @subsection FRV Options
15242 @cindex FRV Options
15243
15244 @table @gcctabopt
15245 @item -mgpr-32
15246 @opindex mgpr-32
15247
15248 Only use the first 32 general-purpose registers.
15249
15250 @item -mgpr-64
15251 @opindex mgpr-64
15252
15253 Use all 64 general-purpose registers.
15254
15255 @item -mfpr-32
15256 @opindex mfpr-32
15257
15258 Use only the first 32 floating-point registers.
15259
15260 @item -mfpr-64
15261 @opindex mfpr-64
15262
15263 Use all 64 floating-point registers.
15264
15265 @item -mhard-float
15266 @opindex mhard-float
15267
15268 Use hardware instructions for floating-point operations.
15269
15270 @item -msoft-float
15271 @opindex msoft-float
15272
15273 Use library routines for floating-point operations.
15274
15275 @item -malloc-cc
15276 @opindex malloc-cc
15277
15278 Dynamically allocate condition code registers.
15279
15280 @item -mfixed-cc
15281 @opindex mfixed-cc
15282
15283 Do not try to dynamically allocate condition code registers, only
15284 use @code{icc0} and @code{fcc0}.
15285
15286 @item -mdword
15287 @opindex mdword
15288
15289 Change ABI to use double word insns.
15290
15291 @item -mno-dword
15292 @opindex mno-dword
15293
15294 Do not use double word instructions.
15295
15296 @item -mdouble
15297 @opindex mdouble
15298
15299 Use floating-point double instructions.
15300
15301 @item -mno-double
15302 @opindex mno-double
15303
15304 Do not use floating-point double instructions.
15305
15306 @item -mmedia
15307 @opindex mmedia
15308
15309 Use media instructions.
15310
15311 @item -mno-media
15312 @opindex mno-media
15313
15314 Do not use media instructions.
15315
15316 @item -mmuladd
15317 @opindex mmuladd
15318
15319 Use multiply and add/subtract instructions.
15320
15321 @item -mno-muladd
15322 @opindex mno-muladd
15323
15324 Do not use multiply and add/subtract instructions.
15325
15326 @item -mfdpic
15327 @opindex mfdpic
15328
15329 Select the FDPIC ABI, which uses function descriptors to represent
15330 pointers to functions.  Without any PIC/PIE-related options, it
15331 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
15332 assumes GOT entries and small data are within a 12-bit range from the
15333 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15334 are computed with 32 bits.
15335 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15336
15337 @item -minline-plt
15338 @opindex minline-plt
15339
15340 Enable inlining of PLT entries in function calls to functions that are
15341 not known to bind locally.  It has no effect without @option{-mfdpic}.
15342 It's enabled by default if optimizing for speed and compiling for
15343 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15344 optimization option such as @option{-O3} or above is present in the
15345 command line.
15346
15347 @item -mTLS
15348 @opindex mTLS
15349
15350 Assume a large TLS segment when generating thread-local code.
15351
15352 @item -mtls
15353 @opindex mtls
15354
15355 Do not assume a large TLS segment when generating thread-local code.
15356
15357 @item -mgprel-ro
15358 @opindex mgprel-ro
15359
15360 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15361 that is known to be in read-only sections.  It's enabled by default,
15362 except for @option{-fpic} or @option{-fpie}: even though it may help
15363 make the global offset table smaller, it trades 1 instruction for 4.
15364 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15365 one of which may be shared by multiple symbols, and it avoids the need
15366 for a GOT entry for the referenced symbol, so it's more likely to be a
15367 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
15368
15369 @item -multilib-library-pic
15370 @opindex multilib-library-pic
15371
15372 Link with the (library, not FD) pic libraries.  It's implied by
15373 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15374 @option{-fpic} without @option{-mfdpic}.  You should never have to use
15375 it explicitly.
15376
15377 @item -mlinked-fp
15378 @opindex mlinked-fp
15379
15380 Follow the EABI requirement of always creating a frame pointer whenever
15381 a stack frame is allocated.  This option is enabled by default and can
15382 be disabled with @option{-mno-linked-fp}.
15383
15384 @item -mlong-calls
15385 @opindex mlong-calls
15386
15387 Use indirect addressing to call functions outside the current
15388 compilation unit.  This allows the functions to be placed anywhere
15389 within the 32-bit address space.
15390
15391 @item -malign-labels
15392 @opindex malign-labels
15393
15394 Try to align labels to an 8-byte boundary by inserting NOPs into the
15395 previous packet.  This option only has an effect when VLIW packing
15396 is enabled.  It doesn't create new packets; it merely adds NOPs to
15397 existing ones.
15398
15399 @item -mlibrary-pic
15400 @opindex mlibrary-pic
15401
15402 Generate position-independent EABI code.
15403
15404 @item -macc-4
15405 @opindex macc-4
15406
15407 Use only the first four media accumulator registers.
15408
15409 @item -macc-8
15410 @opindex macc-8
15411
15412 Use all eight media accumulator registers.
15413
15414 @item -mpack
15415 @opindex mpack
15416
15417 Pack VLIW instructions.
15418
15419 @item -mno-pack
15420 @opindex mno-pack
15421
15422 Do not pack VLIW instructions.
15423
15424 @item -mno-eflags
15425 @opindex mno-eflags
15426
15427 Do not mark ABI switches in e_flags.
15428
15429 @item -mcond-move
15430 @opindex mcond-move
15431
15432 Enable the use of conditional-move instructions (default).
15433
15434 This switch is mainly for debugging the compiler and will likely be removed
15435 in a future version.
15436
15437 @item -mno-cond-move
15438 @opindex mno-cond-move
15439
15440 Disable the use of conditional-move instructions.
15441
15442 This switch is mainly for debugging the compiler and will likely be removed
15443 in a future version.
15444
15445 @item -mscc
15446 @opindex mscc
15447
15448 Enable the use of conditional set instructions (default).
15449
15450 This switch is mainly for debugging the compiler and will likely be removed
15451 in a future version.
15452
15453 @item -mno-scc
15454 @opindex mno-scc
15455
15456 Disable the use of conditional set instructions.
15457
15458 This switch is mainly for debugging the compiler and will likely be removed
15459 in a future version.
15460
15461 @item -mcond-exec
15462 @opindex mcond-exec
15463
15464 Enable the use of conditional execution (default).
15465
15466 This switch is mainly for debugging the compiler and will likely be removed
15467 in a future version.
15468
15469 @item -mno-cond-exec
15470 @opindex mno-cond-exec
15471
15472 Disable the use of conditional execution.
15473
15474 This switch is mainly for debugging the compiler and will likely be removed
15475 in a future version.
15476
15477 @item -mvliw-branch
15478 @opindex mvliw-branch
15479
15480 Run a pass to pack branches into VLIW instructions (default).
15481
15482 This switch is mainly for debugging the compiler and will likely be removed
15483 in a future version.
15484
15485 @item -mno-vliw-branch
15486 @opindex mno-vliw-branch
15487
15488 Do not run a pass to pack branches into VLIW instructions.
15489
15490 This switch is mainly for debugging the compiler and will likely be removed
15491 in a future version.
15492
15493 @item -mmulti-cond-exec
15494 @opindex mmulti-cond-exec
15495
15496 Enable optimization of @code{&&} and @code{||} in conditional execution
15497 (default).
15498
15499 This switch is mainly for debugging the compiler and will likely be removed
15500 in a future version.
15501
15502 @item -mno-multi-cond-exec
15503 @opindex mno-multi-cond-exec
15504
15505 Disable optimization of @code{&&} and @code{||} in conditional execution.
15506
15507 This switch is mainly for debugging the compiler and will likely be removed
15508 in a future version.
15509
15510 @item -mnested-cond-exec
15511 @opindex mnested-cond-exec
15512
15513 Enable nested conditional execution optimizations (default).
15514
15515 This switch is mainly for debugging the compiler and will likely be removed
15516 in a future version.
15517
15518 @item -mno-nested-cond-exec
15519 @opindex mno-nested-cond-exec
15520
15521 Disable nested conditional execution optimizations.
15522
15523 This switch is mainly for debugging the compiler and will likely be removed
15524 in a future version.
15525
15526 @item -moptimize-membar
15527 @opindex moptimize-membar
15528
15529 This switch removes redundant @code{membar} instructions from the
15530 compiler-generated code.  It is enabled by default.
15531
15532 @item -mno-optimize-membar
15533 @opindex mno-optimize-membar
15534
15535 This switch disables the automatic removal of redundant @code{membar}
15536 instructions from the generated code.
15537
15538 @item -mtomcat-stats
15539 @opindex mtomcat-stats
15540
15541 Cause gas to print out tomcat statistics.
15542
15543 @item -mcpu=@var{cpu}
15544 @opindex mcpu
15545
15546 Select the processor type for which to generate code.  Possible values are
15547 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15548 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15549
15550 @end table
15551
15552 @node GNU/Linux Options
15553 @subsection GNU/Linux Options
15554
15555 These @samp{-m} options are defined for GNU/Linux targets:
15556
15557 @table @gcctabopt
15558 @item -mglibc
15559 @opindex mglibc
15560 Use the GNU C library.  This is the default except
15561 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15562 @samp{*-*-linux-*android*} targets.
15563
15564 @item -muclibc
15565 @opindex muclibc
15566 Use uClibc C library.  This is the default on
15567 @samp{*-*-linux-*uclibc*} targets.
15568
15569 @item -mmusl
15570 @opindex mmusl
15571 Use the musl C library.  This is the default on
15572 @samp{*-*-linux-*musl*} targets.
15573
15574 @item -mbionic
15575 @opindex mbionic
15576 Use Bionic C library.  This is the default on
15577 @samp{*-*-linux-*android*} targets.
15578
15579 @item -mandroid
15580 @opindex mandroid
15581 Compile code compatible with Android platform.  This is the default on
15582 @samp{*-*-linux-*android*} targets.
15583
15584 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15585 @option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
15586 this option makes the GCC driver pass Android-specific options to the linker.
15587 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15588 to be defined.
15589
15590 @item -tno-android-cc
15591 @opindex tno-android-cc
15592 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15593 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15594 @option{-fno-rtti} by default.
15595
15596 @item -tno-android-ld
15597 @opindex tno-android-ld
15598 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15599 linking options to the linker.
15600
15601 @end table
15602
15603 @node H8/300 Options
15604 @subsection H8/300 Options
15605
15606 These @samp{-m} options are defined for the H8/300 implementations:
15607
15608 @table @gcctabopt
15609 @item -mrelax
15610 @opindex mrelax
15611 Shorten some address references at link time, when possible; uses the
15612 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
15613 ld, Using ld}, for a fuller description.
15614
15615 @item -mh
15616 @opindex mh
15617 Generate code for the H8/300H@.
15618
15619 @item -ms
15620 @opindex ms
15621 Generate code for the H8S@.
15622
15623 @item -mn
15624 @opindex mn
15625 Generate code for the H8S and H8/300H in the normal mode.  This switch
15626 must be used either with @option{-mh} or @option{-ms}.
15627
15628 @item -ms2600
15629 @opindex ms2600
15630 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
15631
15632 @item -mexr
15633 @opindex mexr
15634 Extended registers are stored on stack before execution of function
15635 with monitor attribute. Default option is @option{-mexr}.
15636 This option is valid only for H8S targets.
15637
15638 @item -mno-exr
15639 @opindex mno-exr
15640 Extended registers are not stored on stack before execution of function 
15641 with monitor attribute. Default option is @option{-mno-exr}. 
15642 This option is valid only for H8S targets.
15643
15644 @item -mint32
15645 @opindex mint32
15646 Make @code{int} data 32 bits by default.
15647
15648 @item -malign-300
15649 @opindex malign-300
15650 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15651 The default for the H8/300H and H8S is to align longs and floats on
15652 4-byte boundaries.
15653 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15654 This option has no effect on the H8/300.
15655 @end table
15656
15657 @node HPPA Options
15658 @subsection HPPA Options
15659 @cindex HPPA Options
15660
15661 These @samp{-m} options are defined for the HPPA family of computers:
15662
15663 @table @gcctabopt
15664 @item -march=@var{architecture-type}
15665 @opindex march
15666 Generate code for the specified architecture.  The choices for
15667 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15668 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
15669 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15670 architecture option for your machine.  Code compiled for lower numbered
15671 architectures runs on higher numbered architectures, but not the
15672 other way around.
15673
15674 @item -mpa-risc-1-0
15675 @itemx -mpa-risc-1-1
15676 @itemx -mpa-risc-2-0
15677 @opindex mpa-risc-1-0
15678 @opindex mpa-risc-1-1
15679 @opindex mpa-risc-2-0
15680 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15681
15682 @item -mjump-in-delay
15683 @opindex mjump-in-delay
15684 This option is ignored and provided for compatibility purposes only.
15685
15686 @item -mdisable-fpregs
15687 @opindex mdisable-fpregs
15688 Prevent floating-point registers from being used in any manner.  This is
15689 necessary for compiling kernels that perform lazy context switching of
15690 floating-point registers.  If you use this option and attempt to perform
15691 floating-point operations, the compiler aborts.
15692
15693 @item -mdisable-indexing
15694 @opindex mdisable-indexing
15695 Prevent the compiler from using indexing address modes.  This avoids some
15696 rather obscure problems when compiling MIG generated code under MACH@.
15697
15698 @item -mno-space-regs
15699 @opindex mno-space-regs
15700 Generate code that assumes the target has no space registers.  This allows
15701 GCC to generate faster indirect calls and use unscaled index address modes.
15702
15703 Such code is suitable for level 0 PA systems and kernels.
15704
15705 @item -mfast-indirect-calls
15706 @opindex mfast-indirect-calls
15707 Generate code that assumes calls never cross space boundaries.  This
15708 allows GCC to emit code that performs faster indirect calls.
15709
15710 This option does not work in the presence of shared libraries or nested
15711 functions.
15712
15713 @item -mfixed-range=@var{register-range}
15714 @opindex mfixed-range
15715 Generate code treating the given register range as fixed registers.
15716 A fixed register is one that the register allocator cannot use.  This is
15717 useful when compiling kernel code.  A register range is specified as
15718 two registers separated by a dash.  Multiple register ranges can be
15719 specified separated by a comma.
15720
15721 @item -mlong-load-store
15722 @opindex mlong-load-store
15723 Generate 3-instruction load and store sequences as sometimes required by
15724 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
15725 the HP compilers.
15726
15727 @item -mportable-runtime
15728 @opindex mportable-runtime
15729 Use the portable calling conventions proposed by HP for ELF systems.
15730
15731 @item -mgas
15732 @opindex mgas
15733 Enable the use of assembler directives only GAS understands.
15734
15735 @item -mschedule=@var{cpu-type}
15736 @opindex mschedule
15737 Schedule code according to the constraints for the machine type
15738 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
15739 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
15740 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15741 proper scheduling option for your machine.  The default scheduling is
15742 @samp{8000}.
15743
15744 @item -mlinker-opt
15745 @opindex mlinker-opt
15746 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
15747 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
15748 linkers in which they give bogus error messages when linking some programs.
15749
15750 @item -msoft-float
15751 @opindex msoft-float
15752 Generate output containing library calls for floating point.
15753 @strong{Warning:} the requisite libraries are not available for all HPPA
15754 targets.  Normally the facilities of the machine's usual C compiler are
15755 used, but this cannot be done directly in cross-compilation.  You must make
15756 your own arrangements to provide suitable library functions for
15757 cross-compilation.
15758
15759 @option{-msoft-float} changes the calling convention in the output file;
15760 therefore, it is only useful if you compile @emph{all} of a program with
15761 this option.  In particular, you need to compile @file{libgcc.a}, the
15762 library that comes with GCC, with @option{-msoft-float} in order for
15763 this to work.
15764
15765 @item -msio
15766 @opindex msio
15767 Generate the predefine, @code{_SIO}, for server IO@.  The default is
15768 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
15769 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
15770 options are available under HP-UX and HI-UX@.
15771
15772 @item -mgnu-ld
15773 @opindex mgnu-ld
15774 Use options specific to GNU @command{ld}.
15775 This passes @option{-shared} to @command{ld} when
15776 building a shared library.  It is the default when GCC is configured,
15777 explicitly or implicitly, with the GNU linker.  This option does not
15778 affect which @command{ld} is called; it only changes what parameters
15779 are passed to that @command{ld}.
15780 The @command{ld} that is called is determined by the
15781 @option{--with-ld} configure option, GCC's program search path, and
15782 finally by the user's @env{PATH}.  The linker used by GCC can be printed
15783 using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
15784 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15785
15786 @item -mhp-ld
15787 @opindex mhp-ld
15788 Use options specific to HP @command{ld}.
15789 This passes @option{-b} to @command{ld} when building
15790 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15791 links.  It is the default when GCC is configured, explicitly or
15792 implicitly, with the HP linker.  This option does not affect
15793 which @command{ld} is called; it only changes what parameters are passed to that
15794 @command{ld}.
15795 The @command{ld} that is called is determined by the @option{--with-ld}
15796 configure option, GCC's program search path, and finally by the user's
15797 @env{PATH}.  The linker used by GCC can be printed using @samp{which
15798 `gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
15799 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15800
15801 @item -mlong-calls
15802 @opindex mno-long-calls
15803 Generate code that uses long call sequences.  This ensures that a call
15804 is always able to reach linker generated stubs.  The default is to generate
15805 long calls only when the distance from the call site to the beginning
15806 of the function or translation unit, as the case may be, exceeds a
15807 predefined limit set by the branch type being used.  The limits for
15808 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15809 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
15810 240,000 bytes.
15811
15812 Distances are measured from the beginning of functions when using the
15813 @option{-ffunction-sections} option, or when using the @option{-mgas}
15814 and @option{-mno-portable-runtime} options together under HP-UX with
15815 the SOM linker.
15816
15817 It is normally not desirable to use this option as it degrades
15818 performance.  However, it may be useful in large applications,
15819 particularly when partial linking is used to build the application.
15820
15821 The types of long calls used depends on the capabilities of the
15822 assembler and linker, and the type of code being generated.  The
15823 impact on systems that support long absolute calls, and long pic
15824 symbol-difference or pc-relative calls should be relatively small.
15825 However, an indirect call is used on 32-bit ELF systems in pic code
15826 and it is quite long.
15827
15828 @item -munix=@var{unix-std}
15829 @opindex march
15830 Generate compiler predefines and select a startfile for the specified
15831 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
15832 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
15833 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
15834 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
15835 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15836 and later.
15837
15838 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15839 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15840 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15841 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15842 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15843 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15844
15845 It is @emph{important} to note that this option changes the interfaces
15846 for various library routines.  It also affects the operational behavior
15847 of the C library.  Thus, @emph{extreme} care is needed in using this
15848 option.
15849
15850 Library code that is intended to operate with more than one UNIX
15851 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15852 as appropriate.  Most GNU software doesn't provide this capability.
15853
15854 @item -nolibdld
15855 @opindex nolibdld
15856 Suppress the generation of link options to search libdld.sl when the
15857 @option{-static} option is specified on HP-UX 10 and later.
15858
15859 @item -static
15860 @opindex static
15861 The HP-UX implementation of setlocale in libc has a dependency on
15862 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
15863 when the @option{-static} option is specified, special link options
15864 are needed to resolve this dependency.
15865
15866 On HP-UX 10 and later, the GCC driver adds the necessary options to
15867 link with libdld.sl when the @option{-static} option is specified.
15868 This causes the resulting binary to be dynamic.  On the 64-bit port,
15869 the linkers generate dynamic binaries by default in any case.  The
15870 @option{-nolibdld} option can be used to prevent the GCC driver from
15871 adding these link options.
15872
15873 @item -threads
15874 @opindex threads
15875 Add support for multithreading with the @dfn{dce thread} library
15876 under HP-UX@.  This option sets flags for both the preprocessor and
15877 linker.
15878 @end table
15879
15880 @node IA-64 Options
15881 @subsection IA-64 Options
15882 @cindex IA-64 Options
15883
15884 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15885
15886 @table @gcctabopt
15887 @item -mbig-endian
15888 @opindex mbig-endian
15889 Generate code for a big-endian target.  This is the default for HP-UX@.
15890
15891 @item -mlittle-endian
15892 @opindex mlittle-endian
15893 Generate code for a little-endian target.  This is the default for AIX5
15894 and GNU/Linux.
15895
15896 @item -mgnu-as
15897 @itemx -mno-gnu-as
15898 @opindex mgnu-as
15899 @opindex mno-gnu-as
15900 Generate (or don't) code for the GNU assembler.  This is the default.
15901 @c Also, this is the default if the configure option @option{--with-gnu-as}
15902 @c is used.
15903
15904 @item -mgnu-ld
15905 @itemx -mno-gnu-ld
15906 @opindex mgnu-ld
15907 @opindex mno-gnu-ld
15908 Generate (or don't) code for the GNU linker.  This is the default.
15909 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15910 @c is used.
15911
15912 @item -mno-pic
15913 @opindex mno-pic
15914 Generate code that does not use a global pointer register.  The result
15915 is not position independent code, and violates the IA-64 ABI@.
15916
15917 @item -mvolatile-asm-stop
15918 @itemx -mno-volatile-asm-stop
15919 @opindex mvolatile-asm-stop
15920 @opindex mno-volatile-asm-stop
15921 Generate (or don't) a stop bit immediately before and after volatile asm
15922 statements.
15923
15924 @item -mregister-names
15925 @itemx -mno-register-names
15926 @opindex mregister-names
15927 @opindex mno-register-names
15928 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15929 the stacked registers.  This may make assembler output more readable.
15930
15931 @item -mno-sdata
15932 @itemx -msdata
15933 @opindex mno-sdata
15934 @opindex msdata
15935 Disable (or enable) optimizations that use the small data section.  This may
15936 be useful for working around optimizer bugs.
15937
15938 @item -mconstant-gp
15939 @opindex mconstant-gp
15940 Generate code that uses a single constant global pointer value.  This is
15941 useful when compiling kernel code.
15942
15943 @item -mauto-pic
15944 @opindex mauto-pic
15945 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
15946 This is useful when compiling firmware code.
15947
15948 @item -minline-float-divide-min-latency
15949 @opindex minline-float-divide-min-latency
15950 Generate code for inline divides of floating-point values
15951 using the minimum latency algorithm.
15952
15953 @item -minline-float-divide-max-throughput
15954 @opindex minline-float-divide-max-throughput
15955 Generate code for inline divides of floating-point values
15956 using the maximum throughput algorithm.
15957
15958 @item -mno-inline-float-divide
15959 @opindex mno-inline-float-divide
15960 Do not generate inline code for divides of floating-point values.
15961
15962 @item -minline-int-divide-min-latency
15963 @opindex minline-int-divide-min-latency
15964 Generate code for inline divides of integer values
15965 using the minimum latency algorithm.
15966
15967 @item -minline-int-divide-max-throughput
15968 @opindex minline-int-divide-max-throughput
15969 Generate code for inline divides of integer values
15970 using the maximum throughput algorithm.
15971
15972 @item -mno-inline-int-divide
15973 @opindex mno-inline-int-divide
15974 Do not generate inline code for divides of integer values.
15975
15976 @item -minline-sqrt-min-latency
15977 @opindex minline-sqrt-min-latency
15978 Generate code for inline square roots
15979 using the minimum latency algorithm.
15980
15981 @item -minline-sqrt-max-throughput
15982 @opindex minline-sqrt-max-throughput
15983 Generate code for inline square roots
15984 using the maximum throughput algorithm.
15985
15986 @item -mno-inline-sqrt
15987 @opindex mno-inline-sqrt
15988 Do not generate inline code for @code{sqrt}.
15989
15990 @item -mfused-madd
15991 @itemx -mno-fused-madd
15992 @opindex mfused-madd
15993 @opindex mno-fused-madd
15994 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15995 instructions.  The default is to use these instructions.
15996
15997 @item -mno-dwarf2-asm
15998 @itemx -mdwarf2-asm
15999 @opindex mno-dwarf2-asm
16000 @opindex mdwarf2-asm
16001 Don't (or do) generate assembler code for the DWARF 2 line number debugging
16002 info.  This may be useful when not using the GNU assembler.
16003
16004 @item -mearly-stop-bits
16005 @itemx -mno-early-stop-bits
16006 @opindex mearly-stop-bits
16007 @opindex mno-early-stop-bits
16008 Allow stop bits to be placed earlier than immediately preceding the
16009 instruction that triggered the stop bit.  This can improve instruction
16010 scheduling, but does not always do so.
16011
16012 @item -mfixed-range=@var{register-range}
16013 @opindex mfixed-range
16014 Generate code treating the given register range as fixed registers.
16015 A fixed register is one that the register allocator cannot use.  This is
16016 useful when compiling kernel code.  A register range is specified as
16017 two registers separated by a dash.  Multiple register ranges can be
16018 specified separated by a comma.
16019
16020 @item -mtls-size=@var{tls-size}
16021 @opindex mtls-size
16022 Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
16023 64.
16024
16025 @item -mtune=@var{cpu-type}
16026 @opindex mtune
16027 Tune the instruction scheduling for a particular CPU, Valid values are
16028 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
16029 and @samp{mckinley}.
16030
16031 @item -milp32
16032 @itemx -mlp64
16033 @opindex milp32
16034 @opindex mlp64
16035 Generate code for a 32-bit or 64-bit environment.
16036 The 32-bit environment sets int, long and pointer to 32 bits.
16037 The 64-bit environment sets int to 32 bits and long and pointer
16038 to 64 bits.  These are HP-UX specific flags.
16039
16040 @item -mno-sched-br-data-spec
16041 @itemx -msched-br-data-spec
16042 @opindex mno-sched-br-data-spec
16043 @opindex msched-br-data-spec
16044 (Dis/En)able data speculative scheduling before reload.
16045 This results in generation of @code{ld.a} instructions and
16046 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16047 The default is 'disable'.
16048
16049 @item -msched-ar-data-spec
16050 @itemx -mno-sched-ar-data-spec
16051 @opindex msched-ar-data-spec
16052 @opindex mno-sched-ar-data-spec
16053 (En/Dis)able data speculative scheduling after reload.
16054 This results in generation of @code{ld.a} instructions and
16055 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16056 The default is 'enable'.
16057
16058 @item -mno-sched-control-spec
16059 @itemx -msched-control-spec
16060 @opindex mno-sched-control-spec
16061 @opindex msched-control-spec
16062 (Dis/En)able control speculative scheduling.  This feature is
16063 available only during region scheduling (i.e.@: before reload).
16064 This results in generation of the @code{ld.s} instructions and
16065 the corresponding check instructions @code{chk.s}.
16066 The default is 'disable'.
16067
16068 @item -msched-br-in-data-spec
16069 @itemx -mno-sched-br-in-data-spec
16070 @opindex msched-br-in-data-spec
16071 @opindex mno-sched-br-in-data-spec
16072 (En/Dis)able speculative scheduling of the instructions that
16073 are dependent on the data speculative loads before reload.
16074 This is effective only with @option{-msched-br-data-spec} enabled.
16075 The default is 'enable'.
16076
16077 @item -msched-ar-in-data-spec
16078 @itemx -mno-sched-ar-in-data-spec
16079 @opindex msched-ar-in-data-spec
16080 @opindex mno-sched-ar-in-data-spec
16081 (En/Dis)able speculative scheduling of the instructions that
16082 are dependent on the data speculative loads after reload.
16083 This is effective only with @option{-msched-ar-data-spec} enabled.
16084 The default is 'enable'.
16085
16086 @item -msched-in-control-spec
16087 @itemx -mno-sched-in-control-spec
16088 @opindex msched-in-control-spec
16089 @opindex mno-sched-in-control-spec
16090 (En/Dis)able speculative scheduling of the instructions that
16091 are dependent on the control speculative loads.
16092 This is effective only with @option{-msched-control-spec} enabled.
16093 The default is 'enable'.
16094
16095 @item -mno-sched-prefer-non-data-spec-insns
16096 @itemx -msched-prefer-non-data-spec-insns
16097 @opindex mno-sched-prefer-non-data-spec-insns
16098 @opindex msched-prefer-non-data-spec-insns
16099 If enabled, data-speculative instructions are chosen for schedule
16100 only if there are no other choices at the moment.  This makes
16101 the use of the data speculation much more conservative.
16102 The default is 'disable'.
16103
16104 @item -mno-sched-prefer-non-control-spec-insns
16105 @itemx -msched-prefer-non-control-spec-insns
16106 @opindex mno-sched-prefer-non-control-spec-insns
16107 @opindex msched-prefer-non-control-spec-insns
16108 If enabled, control-speculative instructions are chosen for schedule
16109 only if there are no other choices at the moment.  This makes
16110 the use of the control speculation much more conservative.
16111 The default is 'disable'.
16112
16113 @item -mno-sched-count-spec-in-critical-path
16114 @itemx -msched-count-spec-in-critical-path
16115 @opindex mno-sched-count-spec-in-critical-path
16116 @opindex msched-count-spec-in-critical-path
16117 If enabled, speculative dependencies are considered during
16118 computation of the instructions priorities.  This makes the use of the
16119 speculation a bit more conservative.
16120 The default is 'disable'.
16121
16122 @item -msched-spec-ldc
16123 @opindex msched-spec-ldc
16124 Use a simple data speculation check.  This option is on by default.
16125
16126 @item -msched-control-spec-ldc
16127 @opindex msched-spec-ldc
16128 Use a simple check for control speculation.  This option is on by default.
16129
16130 @item -msched-stop-bits-after-every-cycle
16131 @opindex msched-stop-bits-after-every-cycle
16132 Place a stop bit after every cycle when scheduling.  This option is on
16133 by default.
16134
16135 @item -msched-fp-mem-deps-zero-cost
16136 @opindex msched-fp-mem-deps-zero-cost
16137 Assume that floating-point stores and loads are not likely to cause a conflict
16138 when placed into the same instruction group.  This option is disabled by
16139 default.
16140
16141 @item -msel-sched-dont-check-control-spec
16142 @opindex msel-sched-dont-check-control-spec
16143 Generate checks for control speculation in selective scheduling.
16144 This flag is disabled by default.
16145
16146 @item -msched-max-memory-insns=@var{max-insns}
16147 @opindex msched-max-memory-insns
16148 Limit on the number of memory insns per instruction group, giving lower
16149 priority to subsequent memory insns attempting to schedule in the same
16150 instruction group. Frequently useful to prevent cache bank conflicts.
16151 The default value is 1.
16152
16153 @item -msched-max-memory-insns-hard-limit
16154 @opindex msched-max-memory-insns-hard-limit
16155 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16156 disallowing more than that number in an instruction group.
16157 Otherwise, the limit is ``soft'', meaning that non-memory operations
16158 are preferred when the limit is reached, but memory operations may still
16159 be scheduled.
16160
16161 @end table
16162
16163 @node LM32 Options
16164 @subsection LM32 Options
16165 @cindex LM32 options
16166
16167 These @option{-m} options are defined for the LatticeMico32 architecture:
16168
16169 @table @gcctabopt
16170 @item -mbarrel-shift-enabled
16171 @opindex mbarrel-shift-enabled
16172 Enable barrel-shift instructions.
16173
16174 @item -mdivide-enabled
16175 @opindex mdivide-enabled
16176 Enable divide and modulus instructions.
16177
16178 @item -mmultiply-enabled
16179 @opindex multiply-enabled
16180 Enable multiply instructions.
16181
16182 @item -msign-extend-enabled
16183 @opindex msign-extend-enabled
16184 Enable sign extend instructions.
16185
16186 @item -muser-enabled
16187 @opindex muser-enabled
16188 Enable user-defined instructions.
16189
16190 @end table
16191
16192 @node M32C Options
16193 @subsection M32C Options
16194 @cindex M32C options
16195
16196 @table @gcctabopt
16197 @item -mcpu=@var{name}
16198 @opindex mcpu=
16199 Select the CPU for which code is generated.  @var{name} may be one of
16200 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16201 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16202 the M32C/80 series.
16203
16204 @item -msim
16205 @opindex msim
16206 Specifies that the program will be run on the simulator.  This causes
16207 an alternate runtime library to be linked in which supports, for
16208 example, file I/O@.  You must not use this option when generating
16209 programs that will run on real hardware; you must provide your own
16210 runtime library for whatever I/O functions are needed.
16211
16212 @item -memregs=@var{number}
16213 @opindex memregs=
16214 Specifies the number of memory-based pseudo-registers GCC uses
16215 during code generation.  These pseudo-registers are used like real
16216 registers, so there is a tradeoff between GCC's ability to fit the
16217 code into available registers, and the performance penalty of using
16218 memory instead of registers.  Note that all modules in a program must
16219 be compiled with the same value for this option.  Because of that, you
16220 must not use this option with GCC's default runtime libraries.
16221
16222 @end table
16223
16224 @node M32R/D Options
16225 @subsection M32R/D Options
16226 @cindex M32R/D options
16227
16228 These @option{-m} options are defined for Renesas M32R/D architectures:
16229
16230 @table @gcctabopt
16231 @item -m32r2
16232 @opindex m32r2
16233 Generate code for the M32R/2@.
16234
16235 @item -m32rx
16236 @opindex m32rx
16237 Generate code for the M32R/X@.
16238
16239 @item -m32r
16240 @opindex m32r
16241 Generate code for the M32R@.  This is the default.
16242
16243 @item -mmodel=small
16244 @opindex mmodel=small
16245 Assume all objects live in the lower 16MB of memory (so that their addresses
16246 can be loaded with the @code{ld24} instruction), and assume all subroutines
16247 are reachable with the @code{bl} instruction.
16248 This is the default.
16249
16250 The addressability of a particular object can be set with the
16251 @code{model} attribute.
16252
16253 @item -mmodel=medium
16254 @opindex mmodel=medium
16255 Assume objects may be anywhere in the 32-bit address space (the compiler
16256 generates @code{seth/add3} instructions to load their addresses), and
16257 assume all subroutines are reachable with the @code{bl} instruction.
16258
16259 @item -mmodel=large
16260 @opindex mmodel=large
16261 Assume objects may be anywhere in the 32-bit address space (the compiler
16262 generates @code{seth/add3} instructions to load their addresses), and
16263 assume subroutines may not be reachable with the @code{bl} instruction
16264 (the compiler generates the much slower @code{seth/add3/jl}
16265 instruction sequence).
16266
16267 @item -msdata=none
16268 @opindex msdata=none
16269 Disable use of the small data area.  Variables are put into
16270 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16271 @code{section} attribute has been specified).
16272 This is the default.
16273
16274 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16275 Objects may be explicitly put in the small data area with the
16276 @code{section} attribute using one of these sections.
16277
16278 @item -msdata=sdata
16279 @opindex msdata=sdata
16280 Put small global and static data in the small data area, but do not
16281 generate special code to reference them.
16282
16283 @item -msdata=use
16284 @opindex msdata=use
16285 Put small global and static data in the small data area, and generate
16286 special instructions to reference them.
16287
16288 @item -G @var{num}
16289 @opindex G
16290 @cindex smaller data references
16291 Put global and static objects less than or equal to @var{num} bytes
16292 into the small data or BSS sections instead of the normal data or BSS
16293 sections.  The default value of @var{num} is 8.
16294 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16295 for this option to have any effect.
16296
16297 All modules should be compiled with the same @option{-G @var{num}} value.
16298 Compiling with different values of @var{num} may or may not work; if it
16299 doesn't the linker gives an error message---incorrect code is not
16300 generated.
16301
16302 @item -mdebug
16303 @opindex mdebug
16304 Makes the M32R-specific code in the compiler display some statistics
16305 that might help in debugging programs.
16306
16307 @item -malign-loops
16308 @opindex malign-loops
16309 Align all loops to a 32-byte boundary.
16310
16311 @item -mno-align-loops
16312 @opindex mno-align-loops
16313 Do not enforce a 32-byte alignment for loops.  This is the default.
16314
16315 @item -missue-rate=@var{number}
16316 @opindex missue-rate=@var{number}
16317 Issue @var{number} instructions per cycle.  @var{number} can only be 1
16318 or 2.
16319
16320 @item -mbranch-cost=@var{number}
16321 @opindex mbranch-cost=@var{number}
16322 @var{number} can only be 1 or 2.  If it is 1 then branches are
16323 preferred over conditional code, if it is 2, then the opposite applies.
16324
16325 @item -mflush-trap=@var{number}
16326 @opindex mflush-trap=@var{number}
16327 Specifies the trap number to use to flush the cache.  The default is
16328 12.  Valid numbers are between 0 and 15 inclusive.
16329
16330 @item -mno-flush-trap
16331 @opindex mno-flush-trap
16332 Specifies that the cache cannot be flushed by using a trap.
16333
16334 @item -mflush-func=@var{name}
16335 @opindex mflush-func=@var{name}
16336 Specifies the name of the operating system function to call to flush
16337 the cache.  The default is @samp{_flush_cache}, but a function call
16338 is only used if a trap is not available.
16339
16340 @item -mno-flush-func
16341 @opindex mno-flush-func
16342 Indicates that there is no OS function for flushing the cache.
16343
16344 @end table
16345
16346 @node M680x0 Options
16347 @subsection M680x0 Options
16348 @cindex M680x0 options
16349
16350 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16351 The default settings depend on which architecture was selected when
16352 the compiler was configured; the defaults for the most common choices
16353 are given below.
16354
16355 @table @gcctabopt
16356 @item -march=@var{arch}
16357 @opindex march
16358 Generate code for a specific M680x0 or ColdFire instruction set
16359 architecture.  Permissible values of @var{arch} for M680x0
16360 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16361 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
16362 architectures are selected according to Freescale's ISA classification
16363 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16364 @samp{isab} and @samp{isac}.
16365
16366 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16367 code for a ColdFire target.  The @var{arch} in this macro is one of the
16368 @option{-march} arguments given above.
16369
16370 When used together, @option{-march} and @option{-mtune} select code
16371 that runs on a family of similar processors but that is optimized
16372 for a particular microarchitecture.
16373
16374 @item -mcpu=@var{cpu}
16375 @opindex mcpu
16376 Generate code for a specific M680x0 or ColdFire processor.
16377 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16378 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16379 and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
16380 below, which also classifies the CPUs into families:
16381
16382 @multitable @columnfractions 0.20 0.80
16383 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16384 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16385 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16386 @item @samp{5206e} @tab @samp{5206e}
16387 @item @samp{5208} @tab @samp{5207} @samp{5208}
16388 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16389 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16390 @item @samp{5216} @tab @samp{5214} @samp{5216}
16391 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16392 @item @samp{5225} @tab @samp{5224} @samp{5225}
16393 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16394 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16395 @item @samp{5249} @tab @samp{5249}
16396 @item @samp{5250} @tab @samp{5250}
16397 @item @samp{5271} @tab @samp{5270} @samp{5271}
16398 @item @samp{5272} @tab @samp{5272}
16399 @item @samp{5275} @tab @samp{5274} @samp{5275}
16400 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16401 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16402 @item @samp{5307} @tab @samp{5307}
16403 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16404 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16405 @item @samp{5407} @tab @samp{5407}
16406 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16407 @end multitable
16408
16409 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16410 @var{arch} is compatible with @var{cpu}.  Other combinations of
16411 @option{-mcpu} and @option{-march} are rejected.
16412
16413 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16414 @var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
16415 where the value of @var{family} is given by the table above.
16416
16417 @item -mtune=@var{tune}
16418 @opindex mtune
16419 Tune the code for a particular microarchitecture within the
16420 constraints set by @option{-march} and @option{-mcpu}.
16421 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16422 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16423 and @samp{cpu32}.  The ColdFire microarchitectures
16424 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16425
16426 You can also use @option{-mtune=68020-40} for code that needs
16427 to run relatively well on 68020, 68030 and 68040 targets.
16428 @option{-mtune=68020-60} is similar but includes 68060 targets
16429 as well.  These two options select the same tuning decisions as
16430 @option{-m68020-40} and @option{-m68020-60} respectively.
16431
16432 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16433 when tuning for 680x0 architecture @var{arch}.  It also defines
16434 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16435 option is used.  If GCC is tuning for a range of architectures,
16436 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16437 it defines the macros for every architecture in the range.
16438
16439 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16440 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16441 of the arguments given above.
16442
16443 @item -m68000
16444 @itemx -mc68000
16445 @opindex m68000
16446 @opindex mc68000
16447 Generate output for a 68000.  This is the default
16448 when the compiler is configured for 68000-based systems.
16449 It is equivalent to @option{-march=68000}.
16450
16451 Use this option for microcontrollers with a 68000 or EC000 core,
16452 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16453
16454 @item -m68010
16455 @opindex m68010
16456 Generate output for a 68010.  This is the default
16457 when the compiler is configured for 68010-based systems.
16458 It is equivalent to @option{-march=68010}.
16459
16460 @item -m68020
16461 @itemx -mc68020
16462 @opindex m68020
16463 @opindex mc68020
16464 Generate output for a 68020.  This is the default
16465 when the compiler is configured for 68020-based systems.
16466 It is equivalent to @option{-march=68020}.
16467
16468 @item -m68030
16469 @opindex m68030
16470 Generate output for a 68030.  This is the default when the compiler is
16471 configured for 68030-based systems.  It is equivalent to
16472 @option{-march=68030}.
16473
16474 @item -m68040
16475 @opindex m68040
16476 Generate output for a 68040.  This is the default when the compiler is
16477 configured for 68040-based systems.  It is equivalent to
16478 @option{-march=68040}.
16479
16480 This option inhibits the use of 68881/68882 instructions that have to be
16481 emulated by software on the 68040.  Use this option if your 68040 does not
16482 have code to emulate those instructions.
16483
16484 @item -m68060
16485 @opindex m68060
16486 Generate output for a 68060.  This is the default when the compiler is
16487 configured for 68060-based systems.  It is equivalent to
16488 @option{-march=68060}.
16489
16490 This option inhibits the use of 68020 and 68881/68882 instructions that
16491 have to be emulated by software on the 68060.  Use this option if your 68060
16492 does not have code to emulate those instructions.
16493
16494 @item -mcpu32
16495 @opindex mcpu32
16496 Generate output for a CPU32.  This is the default
16497 when the compiler is configured for CPU32-based systems.
16498 It is equivalent to @option{-march=cpu32}.
16499
16500 Use this option for microcontrollers with a
16501 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16502 68336, 68340, 68341, 68349 and 68360.
16503
16504 @item -m5200
16505 @opindex m5200
16506 Generate output for a 520X ColdFire CPU@.  This is the default
16507 when the compiler is configured for 520X-based systems.
16508 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16509 in favor of that option.
16510
16511 Use this option for microcontroller with a 5200 core, including
16512 the MCF5202, MCF5203, MCF5204 and MCF5206.
16513
16514 @item -m5206e
16515 @opindex m5206e
16516 Generate output for a 5206e ColdFire CPU@.  The option is now
16517 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16518
16519 @item -m528x
16520 @opindex m528x
16521 Generate output for a member of the ColdFire 528X family.
16522 The option is now deprecated in favor of the equivalent
16523 @option{-mcpu=528x}.
16524
16525 @item -m5307
16526 @opindex m5307
16527 Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
16528 in favor of the equivalent @option{-mcpu=5307}.
16529
16530 @item -m5407
16531 @opindex m5407
16532 Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
16533 in favor of the equivalent @option{-mcpu=5407}.
16534
16535 @item -mcfv4e
16536 @opindex mcfv4e
16537 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16538 This includes use of hardware floating-point instructions.
16539 The option is equivalent to @option{-mcpu=547x}, and is now
16540 deprecated in favor of that option.
16541
16542 @item -m68020-40
16543 @opindex m68020-40
16544 Generate output for a 68040, without using any of the new instructions.
16545 This results in code that can run relatively efficiently on either a
16546 68020/68881 or a 68030 or a 68040.  The generated code does use the
16547 68881 instructions that are emulated on the 68040.
16548
16549 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16550
16551 @item -m68020-60
16552 @opindex m68020-60
16553 Generate output for a 68060, without using any of the new instructions.
16554 This results in code that can run relatively efficiently on either a
16555 68020/68881 or a 68030 or a 68040.  The generated code does use the
16556 68881 instructions that are emulated on the 68060.
16557
16558 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16559
16560 @item -mhard-float
16561 @itemx -m68881
16562 @opindex mhard-float
16563 @opindex m68881
16564 Generate floating-point instructions.  This is the default for 68020
16565 and above, and for ColdFire devices that have an FPU@.  It defines the
16566 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16567 on ColdFire targets.
16568
16569 @item -msoft-float
16570 @opindex msoft-float
16571 Do not generate floating-point instructions; use library calls instead.
16572 This is the default for 68000, 68010, and 68832 targets.  It is also
16573 the default for ColdFire devices that have no FPU.
16574
16575 @item -mdiv
16576 @itemx -mno-div
16577 @opindex mdiv
16578 @opindex mno-div
16579 Generate (do not generate) ColdFire hardware divide and remainder
16580 instructions.  If @option{-march} is used without @option{-mcpu},
16581 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16582 architectures.  Otherwise, the default is taken from the target CPU
16583 (either the default CPU, or the one specified by @option{-mcpu}).  For
16584 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16585 @option{-mcpu=5206e}.
16586
16587 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16588
16589 @item -mshort
16590 @opindex mshort
16591 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16592 Additionally, parameters passed on the stack are also aligned to a
16593 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16594
16595 @item -mno-short
16596 @opindex mno-short
16597 Do not consider type @code{int} to be 16 bits wide.  This is the default.
16598
16599 @item -mnobitfield
16600 @itemx -mno-bitfield
16601 @opindex mnobitfield
16602 @opindex mno-bitfield
16603 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
16604 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16605
16606 @item -mbitfield
16607 @opindex mbitfield
16608 Do use the bit-field instructions.  The @option{-m68020} option implies
16609 @option{-mbitfield}.  This is the default if you use a configuration
16610 designed for a 68020.
16611
16612 @item -mrtd
16613 @opindex mrtd
16614 Use a different function-calling convention, in which functions
16615 that take a fixed number of arguments return with the @code{rtd}
16616 instruction, which pops their arguments while returning.  This
16617 saves one instruction in the caller since there is no need to pop
16618 the arguments there.
16619
16620 This calling convention is incompatible with the one normally
16621 used on Unix, so you cannot use it if you need to call libraries
16622 compiled with the Unix compiler.
16623
16624 Also, you must provide function prototypes for all functions that
16625 take variable numbers of arguments (including @code{printf});
16626 otherwise incorrect code is generated for calls to those
16627 functions.
16628
16629 In addition, seriously incorrect code results if you call a
16630 function with too many arguments.  (Normally, extra arguments are
16631 harmlessly ignored.)
16632
16633 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16634 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16635
16636 @item -mno-rtd
16637 @opindex mno-rtd
16638 Do not use the calling conventions selected by @option{-mrtd}.
16639 This is the default.
16640
16641 @item -malign-int
16642 @itemx -mno-align-int
16643 @opindex malign-int
16644 @opindex mno-align-int
16645 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16646 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16647 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16648 Aligning variables on 32-bit boundaries produces code that runs somewhat
16649 faster on processors with 32-bit busses at the expense of more memory.
16650
16651 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16652 aligns structures containing the above types differently than
16653 most published application binary interface specifications for the m68k.
16654
16655 @item -mpcrel
16656 @opindex mpcrel
16657 Use the pc-relative addressing mode of the 68000 directly, instead of
16658 using a global offset table.  At present, this option implies @option{-fpic},
16659 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
16660 not presently supported with @option{-mpcrel}, though this could be supported for
16661 68020 and higher processors.
16662
16663 @item -mno-strict-align
16664 @itemx -mstrict-align
16665 @opindex mno-strict-align
16666 @opindex mstrict-align
16667 Do not (do) assume that unaligned memory references are handled by
16668 the system.
16669
16670 @item -msep-data
16671 Generate code that allows the data segment to be located in a different
16672 area of memory from the text segment.  This allows for execute-in-place in
16673 an environment without virtual memory management.  This option implies
16674 @option{-fPIC}.
16675
16676 @item -mno-sep-data
16677 Generate code that assumes that the data segment follows the text segment.
16678 This is the default.
16679
16680 @item -mid-shared-library
16681 Generate code that supports shared libraries via the library ID method.
16682 This allows for execute-in-place and shared libraries in an environment
16683 without virtual memory management.  This option implies @option{-fPIC}.
16684
16685 @item -mno-id-shared-library
16686 Generate code that doesn't assume ID-based shared libraries are being used.
16687 This is the default.
16688
16689 @item -mshared-library-id=n
16690 Specifies the identification number of the ID-based shared library being
16691 compiled.  Specifying a value of 0 generates more compact code; specifying
16692 other values forces the allocation of that number to the current
16693 library, but is no more space- or time-efficient than omitting this option.
16694
16695 @item -mxgot
16696 @itemx -mno-xgot
16697 @opindex mxgot
16698 @opindex mno-xgot
16699 When generating position-independent code for ColdFire, generate code
16700 that works if the GOT has more than 8192 entries.  This code is
16701 larger and slower than code generated without this option.  On M680x0
16702 processors, this option is not needed; @option{-fPIC} suffices.
16703
16704 GCC normally uses a single instruction to load values from the GOT@.
16705 While this is relatively efficient, it only works if the GOT
16706 is smaller than about 64k.  Anything larger causes the linker
16707 to report an error such as:
16708
16709 @cindex relocation truncated to fit (ColdFire)
16710 @smallexample
16711 relocation truncated to fit: R_68K_GOT16O foobar
16712 @end smallexample
16713
16714 If this happens, you should recompile your code with @option{-mxgot}.
16715 It should then work with very large GOTs.  However, code generated with
16716 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16717 the value of a global symbol.
16718
16719 Note that some linkers, including newer versions of the GNU linker,
16720 can create multiple GOTs and sort GOT entries.  If you have such a linker,
16721 you should only need to use @option{-mxgot} when compiling a single
16722 object file that accesses more than 8192 GOT entries.  Very few do.
16723
16724 These options have no effect unless GCC is generating
16725 position-independent code.
16726
16727 @end table
16728
16729 @node MCore Options
16730 @subsection MCore Options
16731 @cindex MCore options
16732
16733 These are the @samp{-m} options defined for the Motorola M*Core
16734 processors.
16735
16736 @table @gcctabopt
16737
16738 @item -mhardlit
16739 @itemx -mno-hardlit
16740 @opindex mhardlit
16741 @opindex mno-hardlit
16742 Inline constants into the code stream if it can be done in two
16743 instructions or less.
16744
16745 @item -mdiv
16746 @itemx -mno-div
16747 @opindex mdiv
16748 @opindex mno-div
16749 Use the divide instruction.  (Enabled by default).
16750
16751 @item -mrelax-immediate
16752 @itemx -mno-relax-immediate
16753 @opindex mrelax-immediate
16754 @opindex mno-relax-immediate
16755 Allow arbitrary-sized immediates in bit operations.
16756
16757 @item -mwide-bitfields
16758 @itemx -mno-wide-bitfields
16759 @opindex mwide-bitfields
16760 @opindex mno-wide-bitfields
16761 Always treat bit-fields as @code{int}-sized.
16762
16763 @item -m4byte-functions
16764 @itemx -mno-4byte-functions
16765 @opindex m4byte-functions
16766 @opindex mno-4byte-functions
16767 Force all functions to be aligned to a 4-byte boundary.
16768
16769 @item -mcallgraph-data
16770 @itemx -mno-callgraph-data
16771 @opindex mcallgraph-data
16772 @opindex mno-callgraph-data
16773 Emit callgraph information.
16774
16775 @item -mslow-bytes
16776 @itemx -mno-slow-bytes
16777 @opindex mslow-bytes
16778 @opindex mno-slow-bytes
16779 Prefer word access when reading byte quantities.
16780
16781 @item -mlittle-endian
16782 @itemx -mbig-endian
16783 @opindex mlittle-endian
16784 @opindex mbig-endian
16785 Generate code for a little-endian target.
16786
16787 @item -m210
16788 @itemx -m340
16789 @opindex m210
16790 @opindex m340
16791 Generate code for the 210 processor.
16792
16793 @item -mno-lsim
16794 @opindex mno-lsim
16795 Assume that runtime support has been provided and so omit the
16796 simulator library (@file{libsim.a)} from the linker command line.
16797
16798 @item -mstack-increment=@var{size}
16799 @opindex mstack-increment
16800 Set the maximum amount for a single stack increment operation.  Large
16801 values can increase the speed of programs that contain functions
16802 that need a large amount of stack space, but they can also trigger a
16803 segmentation fault if the stack is extended too much.  The default
16804 value is 0x1000.
16805
16806 @end table
16807
16808 @node MeP Options
16809 @subsection MeP Options
16810 @cindex MeP options
16811
16812 @table @gcctabopt
16813
16814 @item -mabsdiff
16815 @opindex mabsdiff
16816 Enables the @code{abs} instruction, which is the absolute difference
16817 between two registers.
16818
16819 @item -mall-opts
16820 @opindex mall-opts
16821 Enables all the optional instructions---average, multiply, divide, bit
16822 operations, leading zero, absolute difference, min/max, clip, and
16823 saturation.
16824
16825
16826 @item -maverage
16827 @opindex maverage
16828 Enables the @code{ave} instruction, which computes the average of two
16829 registers.
16830
16831 @item -mbased=@var{n}
16832 @opindex mbased=
16833 Variables of size @var{n} bytes or smaller are placed in the
16834 @code{.based} section by default.  Based variables use the @code{$tp}
16835 register as a base register, and there is a 128-byte limit to the
16836 @code{.based} section.
16837
16838 @item -mbitops
16839 @opindex mbitops
16840 Enables the bit operation instructions---bit test (@code{btstm}), set
16841 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16842 test-and-set (@code{tas}).
16843
16844 @item -mc=@var{name}
16845 @opindex mc=
16846 Selects which section constant data is placed in.  @var{name} may
16847 be @samp{tiny}, @samp{near}, or @samp{far}.
16848
16849 @item -mclip
16850 @opindex mclip
16851 Enables the @code{clip} instruction.  Note that @option{-mclip} is not
16852 useful unless you also provide @option{-mminmax}.
16853
16854 @item -mconfig=@var{name}
16855 @opindex mconfig=
16856 Selects one of the built-in core configurations.  Each MeP chip has
16857 one or more modules in it; each module has a core CPU and a variety of
16858 coprocessors, optional instructions, and peripherals.  The
16859 @code{MeP-Integrator} tool, not part of GCC, provides these
16860 configurations through this option; using this option is the same as
16861 using all the corresponding command-line options.  The default
16862 configuration is @samp{default}.
16863
16864 @item -mcop
16865 @opindex mcop
16866 Enables the coprocessor instructions.  By default, this is a 32-bit
16867 coprocessor.  Note that the coprocessor is normally enabled via the
16868 @option{-mconfig=} option.
16869
16870 @item -mcop32
16871 @opindex mcop32
16872 Enables the 32-bit coprocessor's instructions.
16873
16874 @item -mcop64
16875 @opindex mcop64
16876 Enables the 64-bit coprocessor's instructions.
16877
16878 @item -mivc2
16879 @opindex mivc2
16880 Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
16881
16882 @item -mdc
16883 @opindex mdc
16884 Causes constant variables to be placed in the @code{.near} section.
16885
16886 @item -mdiv
16887 @opindex mdiv
16888 Enables the @code{div} and @code{divu} instructions.
16889
16890 @item -meb
16891 @opindex meb
16892 Generate big-endian code.
16893
16894 @item -mel
16895 @opindex mel
16896 Generate little-endian code.
16897
16898 @item -mio-volatile
16899 @opindex mio-volatile
16900 Tells the compiler that any variable marked with the @code{io}
16901 attribute is to be considered volatile.
16902
16903 @item -ml
16904 @opindex ml
16905 Causes variables to be assigned to the @code{.far} section by default.
16906
16907 @item -mleadz
16908 @opindex mleadz
16909 Enables the @code{leadz} (leading zero) instruction.
16910
16911 @item -mm
16912 @opindex mm
16913 Causes variables to be assigned to the @code{.near} section by default.
16914
16915 @item -mminmax
16916 @opindex mminmax
16917 Enables the @code{min} and @code{max} instructions.
16918
16919 @item -mmult
16920 @opindex mmult
16921 Enables the multiplication and multiply-accumulate instructions.
16922
16923 @item -mno-opts
16924 @opindex mno-opts
16925 Disables all the optional instructions enabled by @option{-mall-opts}.
16926
16927 @item -mrepeat
16928 @opindex mrepeat
16929 Enables the @code{repeat} and @code{erepeat} instructions, used for
16930 low-overhead looping.
16931
16932 @item -ms
16933 @opindex ms
16934 Causes all variables to default to the @code{.tiny} section.  Note
16935 that there is a 65536-byte limit to this section.  Accesses to these
16936 variables use the @code{%gp} base register.
16937
16938 @item -msatur
16939 @opindex msatur
16940 Enables the saturation instructions.  Note that the compiler does not
16941 currently generate these itself, but this option is included for
16942 compatibility with other tools, like @code{as}.
16943
16944 @item -msdram
16945 @opindex msdram
16946 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16947
16948 @item -msim
16949 @opindex msim
16950 Link the simulator run-time libraries.
16951
16952 @item -msimnovec
16953 @opindex msimnovec
16954 Link the simulator runtime libraries, excluding built-in support
16955 for reset and exception vectors and tables.
16956
16957 @item -mtf
16958 @opindex mtf
16959 Causes all functions to default to the @code{.far} section.  Without
16960 this option, functions default to the @code{.near} section.
16961
16962 @item -mtiny=@var{n}
16963 @opindex mtiny=
16964 Variables that are @var{n} bytes or smaller are allocated to the
16965 @code{.tiny} section.  These variables use the @code{$gp} base
16966 register.  The default for this option is 4, but note that there's a
16967 65536-byte limit to the @code{.tiny} section.
16968
16969 @end table
16970
16971 @node MicroBlaze Options
16972 @subsection MicroBlaze Options
16973 @cindex MicroBlaze Options
16974
16975 @table @gcctabopt
16976
16977 @item -msoft-float
16978 @opindex msoft-float
16979 Use software emulation for floating point (default).
16980
16981 @item -mhard-float
16982 @opindex mhard-float
16983 Use hardware floating-point instructions.
16984
16985 @item -mmemcpy
16986 @opindex mmemcpy
16987 Do not optimize block moves, use @code{memcpy}.
16988
16989 @item -mno-clearbss
16990 @opindex mno-clearbss
16991 This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
16992
16993 @item -mcpu=@var{cpu-type}
16994 @opindex mcpu=
16995 Use features of, and schedule code for, the given CPU.
16996 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16997 where @var{X} is a major version, @var{YY} is the minor version, and
16998 @var{Z} is compatibility code.  Example values are @samp{v3.00.a},
16999 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
17000
17001 @item -mxl-soft-mul
17002 @opindex mxl-soft-mul
17003 Use software multiply emulation (default).
17004
17005 @item -mxl-soft-div
17006 @opindex mxl-soft-div
17007 Use software emulation for divides (default).
17008
17009 @item -mxl-barrel-shift
17010 @opindex mxl-barrel-shift
17011 Use the hardware barrel shifter.
17012
17013 @item -mxl-pattern-compare
17014 @opindex mxl-pattern-compare
17015 Use pattern compare instructions.
17016
17017 @item -msmall-divides
17018 @opindex msmall-divides
17019 Use table lookup optimization for small signed integer divisions.
17020
17021 @item -mxl-stack-check
17022 @opindex mxl-stack-check
17023 This option is deprecated.  Use @option{-fstack-check} instead.
17024
17025 @item -mxl-gp-opt
17026 @opindex mxl-gp-opt
17027 Use GP-relative @code{.sdata}/@code{.sbss} sections.
17028
17029 @item -mxl-multiply-high
17030 @opindex mxl-multiply-high
17031 Use multiply high instructions for high part of 32x32 multiply.
17032
17033 @item -mxl-float-convert
17034 @opindex mxl-float-convert
17035 Use hardware floating-point conversion instructions.
17036
17037 @item -mxl-float-sqrt
17038 @opindex mxl-float-sqrt
17039 Use hardware floating-point square root instruction.
17040
17041 @item -mbig-endian
17042 @opindex mbig-endian
17043 Generate code for a big-endian target.
17044
17045 @item -mlittle-endian
17046 @opindex mlittle-endian
17047 Generate code for a little-endian target.
17048
17049 @item -mxl-reorder
17050 @opindex mxl-reorder
17051 Use reorder instructions (swap and byte reversed load/store).
17052
17053 @item -mxl-mode-@var{app-model}
17054 Select application model @var{app-model}.  Valid models are
17055 @table @samp
17056 @item executable
17057 normal executable (default), uses startup code @file{crt0.o}.
17058
17059 @item xmdstub
17060 for use with Xilinx Microprocessor Debugger (XMD) based
17061 software intrusive debug agent called xmdstub. This uses startup file
17062 @file{crt1.o} and sets the start address of the program to 0x800.
17063
17064 @item bootstrap
17065 for applications that are loaded using a bootloader.
17066 This model uses startup file @file{crt2.o} which does not contain a processor
17067 reset vector handler. This is suitable for transferring control on a
17068 processor reset to the bootloader rather than the application.
17069
17070 @item novectors
17071 for applications that do not require any of the
17072 MicroBlaze vectors. This option may be useful for applications running
17073 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17074 @end table
17075
17076 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17077 @option{-mxl-mode-@var{app-model}}.
17078
17079 @end table
17080
17081 @node MIPS Options
17082 @subsection MIPS Options
17083 @cindex MIPS options
17084
17085 @table @gcctabopt
17086
17087 @item -EB
17088 @opindex EB
17089 Generate big-endian code.
17090
17091 @item -EL
17092 @opindex EL
17093 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
17094 configurations.
17095
17096 @item -march=@var{arch}
17097 @opindex march
17098 Generate code that runs on @var{arch}, which can be the name of a
17099 generic MIPS ISA, or the name of a particular processor.
17100 The ISA names are:
17101 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17102 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17103 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17104 @samp{mips64r5} and @samp{mips64r6}.
17105 The processor names are:
17106 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17107 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17108 @samp{5kc}, @samp{5kf},
17109 @samp{20kc},
17110 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17111 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17112 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17113 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17114 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17115 @samp{i6400},
17116 @samp{interaptiv},
17117 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17118 @samp{m4k},
17119 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17120 @samp{m5100}, @samp{m5101},
17121 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17122 @samp{orion},
17123 @samp{p5600},
17124 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17125 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17126 @samp{rm7000}, @samp{rm9000},
17127 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17128 @samp{sb1},
17129 @samp{sr71000},
17130 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17131 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17132 @samp{xlr} and @samp{xlp}.
17133 The special value @samp{from-abi} selects the
17134 most compatible architecture for the selected ABI (that is,
17135 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17136
17137 The native Linux/GNU toolchain also supports the value @samp{native},
17138 which selects the best architecture option for the host processor.
17139 @option{-march=native} has no effect if GCC does not recognize
17140 the processor.
17141
17142 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17143 (for example, @option{-march=r2k}).  Prefixes are optional, and
17144 @samp{vr} may be written @samp{r}.
17145
17146 Names of the form @samp{@var{n}f2_1} refer to processors with
17147 FPUs clocked at half the rate of the core, names of the form
17148 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17149 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17150 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17151 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17152 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17153 accepted as synonyms for @samp{@var{n}f1_1}.
17154
17155 GCC defines two macros based on the value of this option.  The first
17156 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17157 a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
17158 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17159 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17160 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17161
17162 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17163 above.  In other words, it has the full prefix and does not
17164 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
17165 the macro names the resolved architecture (either @code{"mips1"} or
17166 @code{"mips3"}).  It names the default architecture when no
17167 @option{-march} option is given.
17168
17169 @item -mtune=@var{arch}
17170 @opindex mtune
17171 Optimize for @var{arch}.  Among other things, this option controls
17172 the way instructions are scheduled, and the perceived cost of arithmetic
17173 operations.  The list of @var{arch} values is the same as for
17174 @option{-march}.
17175
17176 When this option is not used, GCC optimizes for the processor
17177 specified by @option{-march}.  By using @option{-march} and
17178 @option{-mtune} together, it is possible to generate code that
17179 runs on a family of processors, but optimize the code for one
17180 particular member of that family.
17181
17182 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17183 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17184 @option{-march} ones described above.
17185
17186 @item -mips1
17187 @opindex mips1
17188 Equivalent to @option{-march=mips1}.
17189
17190 @item -mips2
17191 @opindex mips2
17192 Equivalent to @option{-march=mips2}.
17193
17194 @item -mips3
17195 @opindex mips3
17196 Equivalent to @option{-march=mips3}.
17197
17198 @item -mips4
17199 @opindex mips4
17200 Equivalent to @option{-march=mips4}.
17201
17202 @item -mips32
17203 @opindex mips32
17204 Equivalent to @option{-march=mips32}.
17205
17206 @item -mips32r3
17207 @opindex mips32r3
17208 Equivalent to @option{-march=mips32r3}.
17209
17210 @item -mips32r5
17211 @opindex mips32r5
17212 Equivalent to @option{-march=mips32r5}.
17213
17214 @item -mips32r6
17215 @opindex mips32r6
17216 Equivalent to @option{-march=mips32r6}.
17217
17218 @item -mips64
17219 @opindex mips64
17220 Equivalent to @option{-march=mips64}.
17221
17222 @item -mips64r2
17223 @opindex mips64r2
17224 Equivalent to @option{-march=mips64r2}.
17225
17226 @item -mips64r3
17227 @opindex mips64r3
17228 Equivalent to @option{-march=mips64r3}.
17229
17230 @item -mips64r5
17231 @opindex mips64r5
17232 Equivalent to @option{-march=mips64r5}.
17233
17234 @item -mips64r6
17235 @opindex mips64r6
17236 Equivalent to @option{-march=mips64r6}.
17237
17238 @item -mips16
17239 @itemx -mno-mips16
17240 @opindex mips16
17241 @opindex mno-mips16
17242 Generate (do not generate) MIPS16 code.  If GCC is targeting a
17243 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17244
17245 MIPS16 code generation can also be controlled on a per-function basis
17246 by means of @code{mips16} and @code{nomips16} attributes.
17247 @xref{Function Attributes}, for more information.
17248
17249 @item -mflip-mips16
17250 @opindex mflip-mips16
17251 Generate MIPS16 code on alternating functions.  This option is provided
17252 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17253 not intended for ordinary use in compiling user code.
17254
17255 @item -minterlink-compressed
17256 @item -mno-interlink-compressed
17257 @opindex minterlink-compressed
17258 @opindex mno-interlink-compressed
17259 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17260 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17261
17262 For example, code using the standard ISA encoding cannot jump directly
17263 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17264 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17265 knows that the target of the jump is not compressed.
17266
17267 @item -minterlink-mips16
17268 @itemx -mno-interlink-mips16
17269 @opindex minterlink-mips16
17270 @opindex mno-interlink-mips16
17271 Aliases of @option{-minterlink-compressed} and
17272 @option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
17273 and are retained for backwards compatibility.
17274
17275 @item -mabi=32
17276 @itemx -mabi=o64
17277 @itemx -mabi=n32
17278 @itemx -mabi=64
17279 @itemx -mabi=eabi
17280 @opindex mabi=32
17281 @opindex mabi=o64
17282 @opindex mabi=n32
17283 @opindex mabi=64
17284 @opindex mabi=eabi
17285 Generate code for the given ABI@.
17286
17287 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
17288 generates 64-bit code when you select a 64-bit architecture, but you
17289 can use @option{-mgp32} to get 32-bit code instead.
17290
17291 For information about the O64 ABI, see
17292 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17293
17294 GCC supports a variant of the o32 ABI in which floating-point registers
17295 are 64 rather than 32 bits wide.  You can select this combination with
17296 @option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
17297 and @code{mfhc1} instructions and is therefore only supported for
17298 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17299
17300 The register assignments for arguments and return values remain the
17301 same, but each scalar value is passed in a single 64-bit register
17302 rather than a pair of 32-bit registers.  For example, scalar
17303 floating-point values are returned in @samp{$f0} only, not a
17304 @samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
17305 remains the same in that the even-numbered double-precision registers
17306 are saved.
17307
17308 Two additional variants of the o32 ABI are supported to enable
17309 a transition from 32-bit to 64-bit registers.  These are FPXX
17310 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17311 The FPXX extension mandates that all code must execute correctly
17312 when run using 32-bit or 64-bit registers.  The code can be interlinked
17313 with either FP32 or FP64, but not both.
17314 The FP64A extension is similar to the FP64 extension but forbids the
17315 use of odd-numbered single-precision registers.  This can be used
17316 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17317 processors and allows both FP32 and FP64A code to interlink and
17318 run in the same process without changing FPU modes.
17319
17320 @item -mabicalls
17321 @itemx -mno-abicalls
17322 @opindex mabicalls
17323 @opindex mno-abicalls
17324 Generate (do not generate) code that is suitable for SVR4-style
17325 dynamic objects.  @option{-mabicalls} is the default for SVR4-based
17326 systems.
17327
17328 @item -mshared
17329 @itemx -mno-shared
17330 Generate (do not generate) code that is fully position-independent,
17331 and that can therefore be linked into shared libraries.  This option
17332 only affects @option{-mabicalls}.
17333
17334 All @option{-mabicalls} code has traditionally been position-independent,
17335 regardless of options like @option{-fPIC} and @option{-fpic}.  However,
17336 as an extension, the GNU toolchain allows executables to use absolute
17337 accesses for locally-binding symbols.  It can also use shorter GP
17338 initialization sequences and generate direct calls to locally-defined
17339 functions.  This mode is selected by @option{-mno-shared}.
17340
17341 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17342 objects that can only be linked by the GNU linker.  However, the option
17343 does not affect the ABI of the final executable; it only affects the ABI
17344 of relocatable objects.  Using @option{-mno-shared} generally makes
17345 executables both smaller and quicker.
17346
17347 @option{-mshared} is the default.
17348
17349 @item -mplt
17350 @itemx -mno-plt
17351 @opindex mplt
17352 @opindex mno-plt
17353 Assume (do not assume) that the static and dynamic linkers
17354 support PLTs and copy relocations.  This option only affects
17355 @option{-mno-shared -mabicalls}.  For the n64 ABI, this option
17356 has no effect without @option{-msym32}.
17357
17358 You can make @option{-mplt} the default by configuring
17359 GCC with @option{--with-mips-plt}.  The default is
17360 @option{-mno-plt} otherwise.
17361
17362 @item -mxgot
17363 @itemx -mno-xgot
17364 @opindex mxgot
17365 @opindex mno-xgot
17366 Lift (do not lift) the usual restrictions on the size of the global
17367 offset table.
17368
17369 GCC normally uses a single instruction to load values from the GOT@.
17370 While this is relatively efficient, it only works if the GOT
17371 is smaller than about 64k.  Anything larger causes the linker
17372 to report an error such as:
17373
17374 @cindex relocation truncated to fit (MIPS)
17375 @smallexample
17376 relocation truncated to fit: R_MIPS_GOT16 foobar
17377 @end smallexample
17378
17379 If this happens, you should recompile your code with @option{-mxgot}.
17380 This works with very large GOTs, although the code is also
17381 less efficient, since it takes three instructions to fetch the
17382 value of a global symbol.
17383
17384 Note that some linkers can create multiple GOTs.  If you have such a
17385 linker, you should only need to use @option{-mxgot} when a single object
17386 file accesses more than 64k's worth of GOT entries.  Very few do.
17387
17388 These options have no effect unless GCC is generating position
17389 independent code.
17390
17391 @item -mgp32
17392 @opindex mgp32
17393 Assume that general-purpose registers are 32 bits wide.
17394
17395 @item -mgp64
17396 @opindex mgp64
17397 Assume that general-purpose registers are 64 bits wide.
17398
17399 @item -mfp32
17400 @opindex mfp32
17401 Assume that floating-point registers are 32 bits wide.
17402
17403 @item -mfp64
17404 @opindex mfp64
17405 Assume that floating-point registers are 64 bits wide.
17406
17407 @item -mfpxx
17408 @opindex mfpxx
17409 Do not assume the width of floating-point registers.
17410
17411 @item -mhard-float
17412 @opindex mhard-float
17413 Use floating-point coprocessor instructions.
17414
17415 @item -msoft-float
17416 @opindex msoft-float
17417 Do not use floating-point coprocessor instructions.  Implement
17418 floating-point calculations using library calls instead.
17419
17420 @item -mno-float
17421 @opindex mno-float
17422 Equivalent to @option{-msoft-float}, but additionally asserts that the
17423 program being compiled does not perform any floating-point operations.
17424 This option is presently supported only by some bare-metal MIPS
17425 configurations, where it may select a special set of libraries
17426 that lack all floating-point support (including, for example, the
17427 floating-point @code{printf} formats).  
17428 If code compiled with @option{-mno-float} accidentally contains
17429 floating-point operations, it is likely to suffer a link-time
17430 or run-time failure.
17431
17432 @item -msingle-float
17433 @opindex msingle-float
17434 Assume that the floating-point coprocessor only supports single-precision
17435 operations.
17436
17437 @item -mdouble-float
17438 @opindex mdouble-float
17439 Assume that the floating-point coprocessor supports double-precision
17440 operations.  This is the default.
17441
17442 @item -modd-spreg
17443 @itemx -mno-odd-spreg
17444 @opindex modd-spreg
17445 @opindex mno-odd-spreg
17446 Enable the use of odd-numbered single-precision floating-point registers
17447 for the o32 ABI.  This is the default for processors that are known to
17448 support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17449 is set by default.
17450
17451 @item -mcompact-branches=never
17452 @itemx -mcompact-branches=optimal
17453 @itemx -mcompact-branches=always
17454 @opindex mcompact-branches=never
17455 @opindex mcompact-branches=optimal
17456 @opindex mcompact-branches=always
17457 These options control which form of branches will be generated.  The
17458 default is @option{-mcompact-branches=optimal}.
17459
17460 The @option{-mcompact-branches=never} option ensures that compact branch
17461 instructions will never be generated.
17462
17463 The @option{-mcompact-branches=always} option ensures that a compact
17464 branch instruction will be generated if available.  If a compact branch
17465 instruction is not available, a delay slot form of the branch will be
17466 used instead.
17467
17468 This option is supported from MIPS Release 6 onwards.
17469
17470 The @option{-mcompact-branches=optimal} option will cause a delay slot
17471 branch to be used if one is available in the current ISA and the delay
17472 slot is successfully filled.  If the delay slot is not filled, a compact
17473 branch will be chosen if one is available.
17474
17475 @item -mabs=2008
17476 @itemx -mabs=legacy
17477 @opindex mabs=2008
17478 @opindex mabs=legacy
17479 These options control the treatment of the special not-a-number (NaN)
17480 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17481 @code{neg.@i{fmt}} machine instructions.
17482
17483 By default or when @option{-mabs=legacy} is used the legacy
17484 treatment is selected.  In this case these instructions are considered
17485 arithmetic and avoided where correct operation is required and the
17486 input operand might be a NaN.  A longer sequence of instructions that
17487 manipulate the sign bit of floating-point datum manually is used
17488 instead unless the @option{-ffinite-math-only} option has also been
17489 specified.
17490
17491 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
17492 this case these instructions are considered non-arithmetic and therefore
17493 operating correctly in all cases, including in particular where the
17494 input operand is a NaN.  These instructions are therefore always used
17495 for the respective operations.
17496
17497 @item -mnan=2008
17498 @itemx -mnan=legacy
17499 @opindex mnan=2008
17500 @opindex mnan=legacy
17501 These options control the encoding of the special not-a-number (NaN)
17502 IEEE 754 floating-point data.
17503
17504 The @option{-mnan=legacy} option selects the legacy encoding.  In this
17505 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17506 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17507 by the first bit of their trailing significand field being 1.
17508
17509 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
17510 this case qNaNs are denoted by the first bit of their trailing
17511 significand field being 1, whereas sNaNs are denoted by the first bit of
17512 their trailing significand field being 0.
17513
17514 The default is @option{-mnan=legacy} unless GCC has been configured with
17515 @option{--with-nan=2008}.
17516
17517 @item -mllsc
17518 @itemx -mno-llsc
17519 @opindex mllsc
17520 @opindex mno-llsc
17521 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17522 implement atomic memory built-in functions.  When neither option is
17523 specified, GCC uses the instructions if the target architecture
17524 supports them.
17525
17526 @option{-mllsc} is useful if the runtime environment can emulate the
17527 instructions and @option{-mno-llsc} can be useful when compiling for
17528 nonstandard ISAs.  You can make either option the default by
17529 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17530 respectively.  @option{--with-llsc} is the default for some
17531 configurations; see the installation documentation for details.
17532
17533 @item -mdsp
17534 @itemx -mno-dsp
17535 @opindex mdsp
17536 @opindex mno-dsp
17537 Use (do not use) revision 1 of the MIPS DSP ASE@.
17538 @xref{MIPS DSP Built-in Functions}.  This option defines the
17539 preprocessor macro @code{__mips_dsp}.  It also defines
17540 @code{__mips_dsp_rev} to 1.
17541
17542 @item -mdspr2
17543 @itemx -mno-dspr2
17544 @opindex mdspr2
17545 @opindex mno-dspr2
17546 Use (do not use) revision 2 of the MIPS DSP ASE@.
17547 @xref{MIPS DSP Built-in Functions}.  This option defines the
17548 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17549 It also defines @code{__mips_dsp_rev} to 2.
17550
17551 @item -msmartmips
17552 @itemx -mno-smartmips
17553 @opindex msmartmips
17554 @opindex mno-smartmips
17555 Use (do not use) the MIPS SmartMIPS ASE.
17556
17557 @item -mpaired-single
17558 @itemx -mno-paired-single
17559 @opindex mpaired-single
17560 @opindex mno-paired-single
17561 Use (do not use) paired-single floating-point instructions.
17562 @xref{MIPS Paired-Single Support}.  This option requires
17563 hardware floating-point support to be enabled.
17564
17565 @item -mdmx
17566 @itemx -mno-mdmx
17567 @opindex mdmx
17568 @opindex mno-mdmx
17569 Use (do not use) MIPS Digital Media Extension instructions.
17570 This option can only be used when generating 64-bit code and requires
17571 hardware floating-point support to be enabled.
17572
17573 @item -mips3d
17574 @itemx -mno-mips3d
17575 @opindex mips3d
17576 @opindex mno-mips3d
17577 Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
17578 The option @option{-mips3d} implies @option{-mpaired-single}.
17579
17580 @item -mmicromips
17581 @itemx -mno-micromips
17582 @opindex mmicromips
17583 @opindex mno-mmicromips
17584 Generate (do not generate) microMIPS code.
17585
17586 MicroMIPS code generation can also be controlled on a per-function basis
17587 by means of @code{micromips} and @code{nomicromips} attributes.
17588 @xref{Function Attributes}, for more information.
17589
17590 @item -mmt
17591 @itemx -mno-mt
17592 @opindex mmt
17593 @opindex mno-mt
17594 Use (do not use) MT Multithreading instructions.
17595
17596 @item -mmcu
17597 @itemx -mno-mcu
17598 @opindex mmcu
17599 @opindex mno-mcu
17600 Use (do not use) the MIPS MCU ASE instructions.
17601
17602 @item -meva
17603 @itemx -mno-eva
17604 @opindex meva
17605 @opindex mno-eva
17606 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17607
17608 @item -mvirt
17609 @itemx -mno-virt
17610 @opindex mvirt
17611 @opindex mno-virt
17612 Use (do not use) the MIPS Virtualization Application Specific instructions.
17613
17614 @item -mxpa
17615 @itemx -mno-xpa
17616 @opindex mxpa
17617 @opindex mno-xpa
17618 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17619
17620 @item -mlong64
17621 @opindex mlong64
17622 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
17623 an explanation of the default and the way that the pointer size is
17624 determined.
17625
17626 @item -mlong32
17627 @opindex mlong32
17628 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17629
17630 The default size of @code{int}s, @code{long}s and pointers depends on
17631 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
17632 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17633 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
17634 or the same size as integer registers, whichever is smaller.
17635
17636 @item -msym32
17637 @itemx -mno-sym32
17638 @opindex msym32
17639 @opindex mno-sym32
17640 Assume (do not assume) that all symbols have 32-bit values, regardless
17641 of the selected ABI@.  This option is useful in combination with
17642 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17643 to generate shorter and faster references to symbolic addresses.
17644
17645 @item -G @var{num}
17646 @opindex G
17647 Put definitions of externally-visible data in a small data section
17648 if that data is no bigger than @var{num} bytes.  GCC can then generate
17649 more efficient accesses to the data; see @option{-mgpopt} for details.
17650
17651 The default @option{-G} option depends on the configuration.
17652
17653 @item -mlocal-sdata
17654 @itemx -mno-local-sdata
17655 @opindex mlocal-sdata
17656 @opindex mno-local-sdata
17657 Extend (do not extend) the @option{-G} behavior to local data too,
17658 such as to static variables in C@.  @option{-mlocal-sdata} is the
17659 default for all configurations.
17660
17661 If the linker complains that an application is using too much small data,
17662 you might want to try rebuilding the less performance-critical parts with
17663 @option{-mno-local-sdata}.  You might also want to build large
17664 libraries with @option{-mno-local-sdata}, so that the libraries leave
17665 more room for the main program.
17666
17667 @item -mextern-sdata
17668 @itemx -mno-extern-sdata
17669 @opindex mextern-sdata
17670 @opindex mno-extern-sdata
17671 Assume (do not assume) that externally-defined data is in
17672 a small data section if the size of that data is within the @option{-G} limit.
17673 @option{-mextern-sdata} is the default for all configurations.
17674
17675 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17676 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17677 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17678 is placed in a small data section.  If @var{Var} is defined by another
17679 module, you must either compile that module with a high-enough
17680 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17681 definition.  If @var{Var} is common, you must link the application
17682 with a high-enough @option{-G} setting.
17683
17684 The easiest way of satisfying these restrictions is to compile
17685 and link every module with the same @option{-G} option.  However,
17686 you may wish to build a library that supports several different
17687 small data limits.  You can do this by compiling the library with
17688 the highest supported @option{-G} setting and additionally using
17689 @option{-mno-extern-sdata} to stop the library from making assumptions
17690 about externally-defined data.
17691
17692 @item -mgpopt
17693 @itemx -mno-gpopt
17694 @opindex mgpopt
17695 @opindex mno-gpopt
17696 Use (do not use) GP-relative accesses for symbols that are known to be
17697 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17698 @option{-mextern-sdata}.  @option{-mgpopt} is the default for all
17699 configurations.
17700
17701 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17702 might not hold the value of @code{_gp}.  For example, if the code is
17703 part of a library that might be used in a boot monitor, programs that
17704 call boot monitor routines pass an unknown value in @code{$gp}.
17705 (In such situations, the boot monitor itself is usually compiled
17706 with @option{-G0}.)
17707
17708 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17709 @option{-mno-extern-sdata}.
17710
17711 @item -membedded-data
17712 @itemx -mno-embedded-data
17713 @opindex membedded-data
17714 @opindex mno-embedded-data
17715 Allocate variables to the read-only data section first if possible, then
17716 next in the small data section if possible, otherwise in data.  This gives
17717 slightly slower code than the default, but reduces the amount of RAM required
17718 when executing, and thus may be preferred for some embedded systems.
17719
17720 @item -muninit-const-in-rodata
17721 @itemx -mno-uninit-const-in-rodata
17722 @opindex muninit-const-in-rodata
17723 @opindex mno-uninit-const-in-rodata
17724 Put uninitialized @code{const} variables in the read-only data section.
17725 This option is only meaningful in conjunction with @option{-membedded-data}.
17726
17727 @item -mcode-readable=@var{setting}
17728 @opindex mcode-readable
17729 Specify whether GCC may generate code that reads from executable sections.
17730 There are three possible settings:
17731
17732 @table @gcctabopt
17733 @item -mcode-readable=yes
17734 Instructions may freely access executable sections.  This is the
17735 default setting.
17736
17737 @item -mcode-readable=pcrel
17738 MIPS16 PC-relative load instructions can access executable sections,
17739 but other instructions must not do so.  This option is useful on 4KSc
17740 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17741 It is also useful on processors that can be configured to have a dual
17742 instruction/data SRAM interface and that, like the M4K, automatically
17743 redirect PC-relative loads to the instruction RAM.
17744
17745 @item -mcode-readable=no
17746 Instructions must not access executable sections.  This option can be
17747 useful on targets that are configured to have a dual instruction/data
17748 SRAM interface but that (unlike the M4K) do not automatically redirect
17749 PC-relative loads to the instruction RAM.
17750 @end table
17751
17752 @item -msplit-addresses
17753 @itemx -mno-split-addresses
17754 @opindex msplit-addresses
17755 @opindex mno-split-addresses
17756 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17757 relocation operators.  This option has been superseded by
17758 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17759
17760 @item -mexplicit-relocs
17761 @itemx -mno-explicit-relocs
17762 @opindex mexplicit-relocs
17763 @opindex mno-explicit-relocs
17764 Use (do not use) assembler relocation operators when dealing with symbolic
17765 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
17766 is to use assembler macros instead.
17767
17768 @option{-mexplicit-relocs} is the default if GCC was configured
17769 to use an assembler that supports relocation operators.
17770
17771 @item -mcheck-zero-division
17772 @itemx -mno-check-zero-division
17773 @opindex mcheck-zero-division
17774 @opindex mno-check-zero-division
17775 Trap (do not trap) on integer division by zero.
17776
17777 The default is @option{-mcheck-zero-division}.
17778
17779 @item -mdivide-traps
17780 @itemx -mdivide-breaks
17781 @opindex mdivide-traps
17782 @opindex mdivide-breaks
17783 MIPS systems check for division by zero by generating either a
17784 conditional trap or a break instruction.  Using traps results in
17785 smaller code, but is only supported on MIPS II and later.  Also, some
17786 versions of the Linux kernel have a bug that prevents trap from
17787 generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
17788 allow conditional traps on architectures that support them and
17789 @option{-mdivide-breaks} to force the use of breaks.
17790
17791 The default is usually @option{-mdivide-traps}, but this can be
17792 overridden at configure time using @option{--with-divide=breaks}.
17793 Divide-by-zero checks can be completely disabled using
17794 @option{-mno-check-zero-division}.
17795
17796 @item -mmemcpy
17797 @itemx -mno-memcpy
17798 @opindex mmemcpy
17799 @opindex mno-memcpy
17800 Force (do not force) the use of @code{memcpy} for non-trivial block
17801 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
17802 most constant-sized copies.
17803
17804 @item -mlong-calls
17805 @itemx -mno-long-calls
17806 @opindex mlong-calls
17807 @opindex mno-long-calls
17808 Disable (do not disable) use of the @code{jal} instruction.  Calling
17809 functions using @code{jal} is more efficient but requires the caller
17810 and callee to be in the same 256 megabyte segment.
17811
17812 This option has no effect on abicalls code.  The default is
17813 @option{-mno-long-calls}.
17814
17815 @item -mmad
17816 @itemx -mno-mad
17817 @opindex mmad
17818 @opindex mno-mad
17819 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17820 instructions, as provided by the R4650 ISA@.
17821
17822 @item -mimadd
17823 @itemx -mno-imadd
17824 @opindex mimadd
17825 @opindex mno-imadd
17826 Enable (disable) use of the @code{madd} and @code{msub} integer
17827 instructions.  The default is @option{-mimadd} on architectures
17828 that support @code{madd} and @code{msub} except for the 74k 
17829 architecture where it was found to generate slower code.
17830
17831 @item -mfused-madd
17832 @itemx -mno-fused-madd
17833 @opindex mfused-madd
17834 @opindex mno-fused-madd
17835 Enable (disable) use of the floating-point multiply-accumulate
17836 instructions, when they are available.  The default is
17837 @option{-mfused-madd}.
17838
17839 On the R8000 CPU when multiply-accumulate instructions are used,
17840 the intermediate product is calculated to infinite precision
17841 and is not subject to the FCSR Flush to Zero bit.  This may be
17842 undesirable in some circumstances.  On other processors the result
17843 is numerically identical to the equivalent computation using
17844 separate multiply, add, subtract and negate instructions.
17845
17846 @item -nocpp
17847 @opindex nocpp
17848 Tell the MIPS assembler to not run its preprocessor over user
17849 assembler files (with a @samp{.s} suffix) when assembling them.
17850
17851 @item -mfix-24k
17852 @item -mno-fix-24k
17853 @opindex mfix-24k
17854 @opindex mno-fix-24k
17855 Work around the 24K E48 (lost data on stores during refill) errata.
17856 The workarounds are implemented by the assembler rather than by GCC@.
17857
17858 @item -mfix-r4000
17859 @itemx -mno-fix-r4000
17860 @opindex mfix-r4000
17861 @opindex mno-fix-r4000
17862 Work around certain R4000 CPU errata:
17863 @itemize @minus
17864 @item
17865 A double-word or a variable shift may give an incorrect result if executed
17866 immediately after starting an integer division.
17867 @item
17868 A double-word or a variable shift may give an incorrect result if executed
17869 while an integer multiplication is in progress.
17870 @item
17871 An integer division may give an incorrect result if started in a delay slot
17872 of a taken branch or a jump.
17873 @end itemize
17874
17875 @item -mfix-r4400
17876 @itemx -mno-fix-r4400
17877 @opindex mfix-r4400
17878 @opindex mno-fix-r4400
17879 Work around certain R4400 CPU errata:
17880 @itemize @minus
17881 @item
17882 A double-word or a variable shift may give an incorrect result if executed
17883 immediately after starting an integer division.
17884 @end itemize
17885
17886 @item -mfix-r10000
17887 @itemx -mno-fix-r10000
17888 @opindex mfix-r10000
17889 @opindex mno-fix-r10000
17890 Work around certain R10000 errata:
17891 @itemize @minus
17892 @item
17893 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17894 prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
17895 @end itemize
17896
17897 This option can only be used if the target architecture supports
17898 branch-likely instructions.  @option{-mfix-r10000} is the default when
17899 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17900 otherwise.
17901
17902 @item -mfix-rm7000
17903 @itemx -mno-fix-rm7000
17904 @opindex mfix-rm7000
17905 Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
17906 workarounds are implemented by the assembler rather than by GCC@.
17907
17908 @item -mfix-vr4120
17909 @itemx -mno-fix-vr4120
17910 @opindex mfix-vr4120
17911 Work around certain VR4120 errata:
17912 @itemize @minus
17913 @item
17914 @code{dmultu} does not always produce the correct result.
17915 @item
17916 @code{div} and @code{ddiv} do not always produce the correct result if one
17917 of the operands is negative.
17918 @end itemize
17919 The workarounds for the division errata rely on special functions in
17920 @file{libgcc.a}.  At present, these functions are only provided by
17921 the @code{mips64vr*-elf} configurations.
17922
17923 Other VR4120 errata require a NOP to be inserted between certain pairs of
17924 instructions.  These errata are handled by the assembler, not by GCC itself.
17925
17926 @item -mfix-vr4130
17927 @opindex mfix-vr4130
17928 Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
17929 workarounds are implemented by the assembler rather than by GCC,
17930 although GCC avoids using @code{mflo} and @code{mfhi} if the
17931 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17932 instructions are available instead.
17933
17934 @item -mfix-sb1
17935 @itemx -mno-fix-sb1
17936 @opindex mfix-sb1
17937 Work around certain SB-1 CPU core errata.
17938 (This flag currently works around the SB-1 revision 2
17939 ``F1'' and ``F2'' floating-point errata.)
17940
17941 @item -mr10k-cache-barrier=@var{setting}
17942 @opindex mr10k-cache-barrier
17943 Specify whether GCC should insert cache barriers to avoid the
17944 side-effects of speculation on R10K processors.
17945
17946 In common with many processors, the R10K tries to predict the outcome
17947 of a conditional branch and speculatively executes instructions from
17948 the ``taken'' branch.  It later aborts these instructions if the
17949 predicted outcome is wrong.  However, on the R10K, even aborted
17950 instructions can have side effects.
17951
17952 This problem only affects kernel stores and, depending on the system,
17953 kernel loads.  As an example, a speculatively-executed store may load
17954 the target memory into cache and mark the cache line as dirty, even if
17955 the store itself is later aborted.  If a DMA operation writes to the
17956 same area of memory before the ``dirty'' line is flushed, the cached
17957 data overwrites the DMA-ed data.  See the R10K processor manual
17958 for a full description, including other potential problems.
17959
17960 One workaround is to insert cache barrier instructions before every memory
17961 access that might be speculatively executed and that might have side
17962 effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
17963 controls GCC's implementation of this workaround.  It assumes that
17964 aborted accesses to any byte in the following regions does not have
17965 side effects:
17966
17967 @enumerate
17968 @item
17969 the memory occupied by the current function's stack frame;
17970
17971 @item
17972 the memory occupied by an incoming stack argument;
17973
17974 @item
17975 the memory occupied by an object with a link-time-constant address.
17976 @end enumerate
17977
17978 It is the kernel's responsibility to ensure that speculative
17979 accesses to these regions are indeed safe.
17980
17981 If the input program contains a function declaration such as:
17982
17983 @smallexample
17984 void foo (void);
17985 @end smallexample
17986
17987 then the implementation of @code{foo} must allow @code{j foo} and
17988 @code{jal foo} to be executed speculatively.  GCC honors this
17989 restriction for functions it compiles itself.  It expects non-GCC
17990 functions (such as hand-written assembly code) to do the same.
17991
17992 The option has three forms:
17993
17994 @table @gcctabopt
17995 @item -mr10k-cache-barrier=load-store
17996 Insert a cache barrier before a load or store that might be
17997 speculatively executed and that might have side effects even
17998 if aborted.
17999
18000 @item -mr10k-cache-barrier=store
18001 Insert a cache barrier before a store that might be speculatively
18002 executed and that might have side effects even if aborted.
18003
18004 @item -mr10k-cache-barrier=none
18005 Disable the insertion of cache barriers.  This is the default setting.
18006 @end table
18007
18008 @item -mflush-func=@var{func}
18009 @itemx -mno-flush-func
18010 @opindex mflush-func
18011 Specifies the function to call to flush the I and D caches, or to not
18012 call any such function.  If called, the function must take the same
18013 arguments as the common @code{_flush_func}, that is, the address of the
18014 memory range for which the cache is being flushed, the size of the
18015 memory range, and the number 3 (to flush both caches).  The default
18016 depends on the target GCC was configured for, but commonly is either
18017 @code{_flush_func} or @code{__cpu_flush}.
18018
18019 @item mbranch-cost=@var{num}
18020 @opindex mbranch-cost
18021 Set the cost of branches to roughly @var{num} ``simple'' instructions.
18022 This cost is only a heuristic and is not guaranteed to produce
18023 consistent results across releases.  A zero cost redundantly selects
18024 the default, which is based on the @option{-mtune} setting.
18025
18026 @item -mbranch-likely
18027 @itemx -mno-branch-likely
18028 @opindex mbranch-likely
18029 @opindex mno-branch-likely
18030 Enable or disable use of Branch Likely instructions, regardless of the
18031 default for the selected architecture.  By default, Branch Likely
18032 instructions may be generated if they are supported by the selected
18033 architecture.  An exception is for the MIPS32 and MIPS64 architectures
18034 and processors that implement those architectures; for those, Branch
18035 Likely instructions are not be generated by default because the MIPS32
18036 and MIPS64 architectures specifically deprecate their use.
18037
18038 @item -mfp-exceptions
18039 @itemx -mno-fp-exceptions
18040 @opindex mfp-exceptions
18041 Specifies whether FP exceptions are enabled.  This affects how
18042 FP instructions are scheduled for some processors.
18043 The default is that FP exceptions are
18044 enabled.
18045
18046 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
18047 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
18048 FP pipe.
18049
18050 @item -mvr4130-align
18051 @itemx -mno-vr4130-align
18052 @opindex mvr4130-align
18053 The VR4130 pipeline is two-way superscalar, but can only issue two
18054 instructions together if the first one is 8-byte aligned.  When this
18055 option is enabled, GCC aligns pairs of instructions that it
18056 thinks should execute in parallel.
18057
18058 This option only has an effect when optimizing for the VR4130.
18059 It normally makes code faster, but at the expense of making it bigger.
18060 It is enabled by default at optimization level @option{-O3}.
18061
18062 @item -msynci
18063 @itemx -mno-synci
18064 @opindex msynci
18065 Enable (disable) generation of @code{synci} instructions on
18066 architectures that support it.  The @code{synci} instructions (if
18067 enabled) are generated when @code{__builtin___clear_cache} is
18068 compiled.
18069
18070 This option defaults to @option{-mno-synci}, but the default can be
18071 overridden by configuring GCC with @option{--with-synci}.
18072
18073 When compiling code for single processor systems, it is generally safe
18074 to use @code{synci}.  However, on many multi-core (SMP) systems, it
18075 does not invalidate the instruction caches on all cores and may lead
18076 to undefined behavior.
18077
18078 @item -mrelax-pic-calls
18079 @itemx -mno-relax-pic-calls
18080 @opindex mrelax-pic-calls
18081 Try to turn PIC calls that are normally dispatched via register
18082 @code{$25} into direct calls.  This is only possible if the linker can
18083 resolve the destination at link-time and if the destination is within
18084 range for a direct call.
18085
18086 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18087 an assembler and a linker that support the @code{.reloc} assembly
18088 directive and @option{-mexplicit-relocs} is in effect.  With
18089 @option{-mno-explicit-relocs}, this optimization can be performed by the
18090 assembler and the linker alone without help from the compiler.
18091
18092 @item -mmcount-ra-address
18093 @itemx -mno-mcount-ra-address
18094 @opindex mmcount-ra-address
18095 @opindex mno-mcount-ra-address
18096 Emit (do not emit) code that allows @code{_mcount} to modify the
18097 calling function's return address.  When enabled, this option extends
18098 the usual @code{_mcount} interface with a new @var{ra-address}
18099 parameter, which has type @code{intptr_t *} and is passed in register
18100 @code{$12}.  @code{_mcount} can then modify the return address by
18101 doing both of the following:
18102 @itemize
18103 @item
18104 Returning the new address in register @code{$31}.
18105 @item
18106 Storing the new address in @code{*@var{ra-address}},
18107 if @var{ra-address} is nonnull.
18108 @end itemize
18109
18110 The default is @option{-mno-mcount-ra-address}.
18111
18112 @item -mframe-header-opt
18113 @itemx -mno-frame-header-opt
18114 @opindex mframe-header-opt
18115 Enable (disable) frame header optimization in the o32 ABI.  When using the
18116 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
18117 function to write out register arguments.  When enabled, this optimization
18118 will suppress the allocation of the frame header if it can be determined that
18119 it is unused.
18120
18121 This optimization is off by default at all optimization levels.
18122
18123 @end table
18124
18125 @node MMIX Options
18126 @subsection MMIX Options
18127 @cindex MMIX Options
18128
18129 These options are defined for the MMIX:
18130
18131 @table @gcctabopt
18132 @item -mlibfuncs
18133 @itemx -mno-libfuncs
18134 @opindex mlibfuncs
18135 @opindex mno-libfuncs
18136 Specify that intrinsic library functions are being compiled, passing all
18137 values in registers, no matter the size.
18138
18139 @item -mepsilon
18140 @itemx -mno-epsilon
18141 @opindex mepsilon
18142 @opindex mno-epsilon
18143 Generate floating-point comparison instructions that compare with respect
18144 to the @code{rE} epsilon register.
18145
18146 @item -mabi=mmixware
18147 @itemx -mabi=gnu
18148 @opindex mabi=mmixware
18149 @opindex mabi=gnu
18150 Generate code that passes function parameters and return values that (in
18151 the called function) are seen as registers @code{$0} and up, as opposed to
18152 the GNU ABI which uses global registers @code{$231} and up.
18153
18154 @item -mzero-extend
18155 @itemx -mno-zero-extend
18156 @opindex mzero-extend
18157 @opindex mno-zero-extend
18158 When reading data from memory in sizes shorter than 64 bits, use (do not
18159 use) zero-extending load instructions by default, rather than
18160 sign-extending ones.
18161
18162 @item -mknuthdiv
18163 @itemx -mno-knuthdiv
18164 @opindex mknuthdiv
18165 @opindex mno-knuthdiv
18166 Make the result of a division yielding a remainder have the same sign as
18167 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
18168 remainder follows the sign of the dividend.  Both methods are
18169 arithmetically valid, the latter being almost exclusively used.
18170
18171 @item -mtoplevel-symbols
18172 @itemx -mno-toplevel-symbols
18173 @opindex mtoplevel-symbols
18174 @opindex mno-toplevel-symbols
18175 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18176 code can be used with the @code{PREFIX} assembly directive.
18177
18178 @item -melf
18179 @opindex melf
18180 Generate an executable in the ELF format, rather than the default
18181 @samp{mmo} format used by the @command{mmix} simulator.
18182
18183 @item -mbranch-predict
18184 @itemx -mno-branch-predict
18185 @opindex mbranch-predict
18186 @opindex mno-branch-predict
18187 Use (do not use) the probable-branch instructions, when static branch
18188 prediction indicates a probable branch.
18189
18190 @item -mbase-addresses
18191 @itemx -mno-base-addresses
18192 @opindex mbase-addresses
18193 @opindex mno-base-addresses
18194 Generate (do not generate) code that uses @emph{base addresses}.  Using a
18195 base address automatically generates a request (handled by the assembler
18196 and the linker) for a constant to be set up in a global register.  The
18197 register is used for one or more base address requests within the range 0
18198 to 255 from the value held in the register.  The generally leads to short
18199 and fast code, but the number of different data items that can be
18200 addressed is limited.  This means that a program that uses lots of static
18201 data may require @option{-mno-base-addresses}.
18202
18203 @item -msingle-exit
18204 @itemx -mno-single-exit
18205 @opindex msingle-exit
18206 @opindex mno-single-exit
18207 Force (do not force) generated code to have a single exit point in each
18208 function.
18209 @end table
18210
18211 @node MN10300 Options
18212 @subsection MN10300 Options
18213 @cindex MN10300 options
18214
18215 These @option{-m} options are defined for Matsushita MN10300 architectures:
18216
18217 @table @gcctabopt
18218 @item -mmult-bug
18219 @opindex mmult-bug
18220 Generate code to avoid bugs in the multiply instructions for the MN10300
18221 processors.  This is the default.
18222
18223 @item -mno-mult-bug
18224 @opindex mno-mult-bug
18225 Do not generate code to avoid bugs in the multiply instructions for the
18226 MN10300 processors.
18227
18228 @item -mam33
18229 @opindex mam33
18230 Generate code using features specific to the AM33 processor.
18231
18232 @item -mno-am33
18233 @opindex mno-am33
18234 Do not generate code using features specific to the AM33 processor.  This
18235 is the default.
18236
18237 @item -mam33-2
18238 @opindex mam33-2
18239 Generate code using features specific to the AM33/2.0 processor.
18240
18241 @item -mam34
18242 @opindex mam34
18243 Generate code using features specific to the AM34 processor.
18244
18245 @item -mtune=@var{cpu-type}
18246 @opindex mtune
18247 Use the timing characteristics of the indicated CPU type when
18248 scheduling instructions.  This does not change the targeted processor
18249 type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
18250 @samp{am33-2} or @samp{am34}.
18251
18252 @item -mreturn-pointer-on-d0
18253 @opindex mreturn-pointer-on-d0
18254 When generating a function that returns a pointer, return the pointer
18255 in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
18256 only in @code{a0}, and attempts to call such functions without a prototype
18257 result in errors.  Note that this option is on by default; use
18258 @option{-mno-return-pointer-on-d0} to disable it.
18259
18260 @item -mno-crt0
18261 @opindex mno-crt0
18262 Do not link in the C run-time initialization object file.
18263
18264 @item -mrelax
18265 @opindex mrelax
18266 Indicate to the linker that it should perform a relaxation optimization pass
18267 to shorten branches, calls and absolute memory addresses.  This option only
18268 has an effect when used on the command line for the final link step.
18269
18270 This option makes symbolic debugging impossible.
18271
18272 @item -mliw
18273 @opindex mliw
18274 Allow the compiler to generate @emph{Long Instruction Word}
18275 instructions if the target is the @samp{AM33} or later.  This is the
18276 default.  This option defines the preprocessor macro @code{__LIW__}.
18277
18278 @item -mnoliw
18279 @opindex mnoliw
18280 Do not allow the compiler to generate @emph{Long Instruction Word}
18281 instructions.  This option defines the preprocessor macro
18282 @code{__NO_LIW__}.
18283
18284 @item -msetlb
18285 @opindex msetlb
18286 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18287 instructions if the target is the @samp{AM33} or later.  This is the
18288 default.  This option defines the preprocessor macro @code{__SETLB__}.
18289
18290 @item -mnosetlb
18291 @opindex mnosetlb
18292 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18293 instructions.  This option defines the preprocessor macro
18294 @code{__NO_SETLB__}.
18295
18296 @end table
18297
18298 @node Moxie Options
18299 @subsection Moxie Options
18300 @cindex Moxie Options
18301
18302 @table @gcctabopt
18303
18304 @item -meb
18305 @opindex meb
18306 Generate big-endian code.  This is the default for @samp{moxie-*-*}
18307 configurations.
18308
18309 @item -mel
18310 @opindex mel
18311 Generate little-endian code.
18312
18313 @item -mmul.x
18314 @opindex mmul.x
18315 Generate mul.x and umul.x instructions.  This is the default for
18316 @samp{moxiebox-*-*} configurations.
18317
18318 @item -mno-crt0
18319 @opindex mno-crt0
18320 Do not link in the C run-time initialization object file.
18321
18322 @end table
18323
18324 @node MSP430 Options
18325 @subsection MSP430 Options
18326 @cindex MSP430 Options
18327
18328 These options are defined for the MSP430:
18329
18330 @table @gcctabopt
18331
18332 @item -masm-hex
18333 @opindex masm-hex
18334 Force assembly output to always use hex constants.  Normally such
18335 constants are signed decimals, but this option is available for
18336 testsuite and/or aesthetic purposes.
18337
18338 @item -mmcu=
18339 @opindex mmcu=
18340 Select the MCU to target.  This is used to create a C preprocessor
18341 symbol based upon the MCU name, converted to upper case and pre- and
18342 post-fixed with @samp{__}.  This in turn is used by the
18343 @file{msp430.h} header file to select an MCU-specific supplementary
18344 header file.
18345
18346 The option also sets the ISA to use.  If the MCU name is one that is
18347 known to only support the 430 ISA then that is selected, otherwise the
18348 430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
18349 used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
18350 name selects the 430X ISA.
18351
18352 In addition an MCU-specific linker script is added to the linker
18353 command line.  The script's name is the name of the MCU with
18354 @file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18355 command line defines the C preprocessor symbol @code{__XXX__} and
18356 cause the linker to search for a script called @file{xxx.ld}.
18357
18358 This option is also passed on to the assembler.
18359
18360 @item -mcpu=
18361 @opindex mcpu=
18362 Specifies the ISA to use.  Accepted values are @samp{msp430},
18363 @samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
18364 @option{-mmcu=} option should be used to select the ISA.
18365
18366 @item -msim
18367 @opindex msim
18368 Link to the simulator runtime libraries and linker script.  Overrides
18369 any scripts that would be selected by the @option{-mmcu=} option.
18370
18371 @item -mlarge
18372 @opindex mlarge
18373 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18374
18375 @item -msmall
18376 @opindex msmall
18377 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18378
18379 @item -mrelax
18380 @opindex mrelax
18381 This option is passed to the assembler and linker, and allows the
18382 linker to perform certain optimizations that cannot be done until
18383 the final link.
18384
18385 @item mhwmult=
18386 @opindex mhwmult=
18387 Describes the type of hardware multiply supported by the target.
18388 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18389 for the original 16-bit-only multiply supported by early MCUs.
18390 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18391 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18392 A value of @samp{auto} can also be given.  This tells GCC to deduce
18393 the hardware multiply support based upon the MCU name provided by the
18394 @option{-mmcu} option.  If no @option{-mmcu} option is specified then
18395 @samp{32bit} hardware multiply support is assumed.  @samp{auto} is the
18396 default setting.
18397
18398 Hardware multiplies are normally performed by calling a library
18399 routine.  This saves space in the generated code.  When compiling at
18400 @option{-O3} or higher however the hardware multiplier is invoked
18401 inline.  This makes for bigger, but faster code.
18402
18403 The hardware multiply routines disable interrupts whilst running and
18404 restore the previous interrupt state when they finish.  This makes
18405 them safe to use inside interrupt handlers as well as in normal code.
18406
18407 @item -minrt
18408 @opindex minrt
18409 Enable the use of a minimum runtime environment - no static
18410 initializers or constructors.  This is intended for memory-constrained
18411 devices.  The compiler includes special symbols in some objects
18412 that tell the linker and runtime which code fragments are required.
18413
18414 @item -mcode-region=
18415 @itemx -mdata-region=
18416 @opindex mcode-region
18417 @opindex mdata-region
18418 These options tell the compiler where to place functions and data that
18419 do not have one of the @code{lower}, @code{upper}, @code{either} or
18420 @code{section} attributes.  Possible values are @code{lower},
18421 @code{upper}, @code{either} or @code{any}.  The first three behave
18422 like the corresponding attribute.  The fourth possible value -
18423 @code{any} - is the default.  It leaves placement entirely up to the
18424 linker script and how it assigns the standard sections (.text, .data
18425 etc) to the memory regions.
18426
18427 @end table
18428
18429 @node NDS32 Options
18430 @subsection NDS32 Options
18431 @cindex NDS32 Options
18432
18433 These options are defined for NDS32 implementations:
18434
18435 @table @gcctabopt
18436
18437 @item -mbig-endian
18438 @opindex mbig-endian
18439 Generate code in big-endian mode.
18440
18441 @item -mlittle-endian
18442 @opindex mlittle-endian
18443 Generate code in little-endian mode.
18444
18445 @item -mreduced-regs
18446 @opindex mreduced-regs
18447 Use reduced-set registers for register allocation.
18448
18449 @item -mfull-regs
18450 @opindex mfull-regs
18451 Use full-set registers for register allocation.
18452
18453 @item -mcmov
18454 @opindex mcmov
18455 Generate conditional move instructions.
18456
18457 @item -mno-cmov
18458 @opindex mno-cmov
18459 Do not generate conditional move instructions.
18460
18461 @item -mperf-ext
18462 @opindex mperf-ext
18463 Generate performance extension instructions.
18464
18465 @item -mno-perf-ext
18466 @opindex mno-perf-ext
18467 Do not generate performance extension instructions.
18468
18469 @item -mv3push
18470 @opindex mv3push
18471 Generate v3 push25/pop25 instructions.
18472
18473 @item -mno-v3push
18474 @opindex mno-v3push
18475 Do not generate v3 push25/pop25 instructions.
18476
18477 @item -m16-bit
18478 @opindex m16-bit
18479 Generate 16-bit instructions.
18480
18481 @item -mno-16-bit
18482 @opindex mno-16-bit
18483 Do not generate 16-bit instructions.
18484
18485 @item -misr-vector-size=@var{num}
18486 @opindex misr-vector-size
18487 Specify the size of each interrupt vector, which must be 4 or 16.
18488
18489 @item -mcache-block-size=@var{num}
18490 @opindex mcache-block-size
18491 Specify the size of each cache block,
18492 which must be a power of 2 between 4 and 512.
18493
18494 @item -march=@var{arch}
18495 @opindex march
18496 Specify the name of the target architecture.
18497
18498 @item -mcmodel=@var{code-model}
18499 @opindex mcmodel
18500 Set the code model to one of
18501 @table @asis
18502 @item @samp{small}
18503 All the data and read-only data segments must be within 512KB addressing space.
18504 The text segment must be within 16MB addressing space.
18505 @item @samp{medium}
18506 The data segment must be within 512KB while the read-only data segment can be
18507 within 4GB addressing space.  The text segment should be still within 16MB
18508 addressing space.
18509 @item @samp{large}
18510 All the text and data segments can be within 4GB addressing space.
18511 @end table
18512
18513 @item -mctor-dtor
18514 @opindex mctor-dtor
18515 Enable constructor/destructor feature.
18516
18517 @item -mrelax
18518 @opindex mrelax
18519 Guide linker to relax instructions.
18520
18521 @end table
18522
18523 @node Nios II Options
18524 @subsection Nios II Options
18525 @cindex Nios II options
18526 @cindex Altera Nios II options
18527
18528 These are the options defined for the Altera Nios II processor.
18529
18530 @table @gcctabopt
18531
18532 @item -G @var{num}
18533 @opindex G
18534 @cindex smaller data references
18535 Put global and static objects less than or equal to @var{num} bytes
18536 into the small data or BSS sections instead of the normal data or BSS
18537 sections.  The default value of @var{num} is 8.
18538
18539 @item -mgpopt=@var{option}
18540 @item -mgpopt
18541 @itemx -mno-gpopt
18542 @opindex mgpopt
18543 @opindex mno-gpopt
18544 Generate (do not generate) GP-relative accesses.  The following 
18545 @var{option} names are recognized:
18546
18547 @table @samp
18548
18549 @item none
18550 Do not generate GP-relative accesses.
18551
18552 @item local
18553 Generate GP-relative accesses for small data objects that are not 
18554 external, weak, or uninitialized common symbols.  
18555 Also use GP-relative addressing for objects that
18556 have been explicitly placed in a small data section via a @code{section}
18557 attribute.
18558
18559 @item global
18560 As for @samp{local}, but also generate GP-relative accesses for
18561 small data objects that are external, weak, or common.  If you use this option,
18562 you must ensure that all parts of your program (including libraries) are
18563 compiled with the same @option{-G} setting.
18564
18565 @item data
18566 Generate GP-relative accesses for all data objects in the program.  If you
18567 use this option, the entire data and BSS segments
18568 of your program must fit in 64K of memory and you must use an appropriate
18569 linker script to allocate them within the addressible range of the
18570 global pointer.
18571
18572 @item all
18573 Generate GP-relative addresses for function pointers as well as data
18574 pointers.  If you use this option, the entire text, data, and BSS segments
18575 of your program must fit in 64K of memory and you must use an appropriate
18576 linker script to allocate them within the addressible range of the
18577 global pointer.
18578
18579 @end table
18580
18581 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18582 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18583
18584 The default is @option{-mgpopt} except when @option{-fpic} or
18585 @option{-fPIC} is specified to generate position-independent code.
18586 Note that the Nios II ABI does not permit GP-relative accesses from
18587 shared libraries.
18588
18589 You may need to specify @option{-mno-gpopt} explicitly when building
18590 programs that include large amounts of small data, including large
18591 GOT data sections.  In this case, the 16-bit offset for GP-relative
18592 addressing may not be large enough to allow access to the entire 
18593 small data section.
18594
18595 @item -mel
18596 @itemx -meb
18597 @opindex mel
18598 @opindex meb
18599 Generate little-endian (default) or big-endian (experimental) code,
18600 respectively.
18601
18602 @item -march=@var{arch}
18603 @opindex march
18604 This specifies the name of the target Nios II architecture.  GCC uses this
18605 name to determine what kind of instructions it can emit when generating
18606 assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
18607
18608 The preprocessor macro @code{__nios2_arch__} is available to programs,
18609 with value 1 or 2, indicating the targeted ISA level.
18610
18611 @item -mbypass-cache
18612 @itemx -mno-bypass-cache
18613 @opindex mno-bypass-cache
18614 @opindex mbypass-cache
18615 Force all load and store instructions to always bypass cache by 
18616 using I/O variants of the instructions. The default is not to
18617 bypass the cache.
18618
18619 @item -mno-cache-volatile 
18620 @itemx -mcache-volatile       
18621 @opindex mcache-volatile 
18622 @opindex mno-cache-volatile
18623 Volatile memory access bypass the cache using the I/O variants of 
18624 the load and store instructions. The default is not to bypass the cache.
18625
18626 @item -mno-fast-sw-div
18627 @itemx -mfast-sw-div
18628 @opindex mno-fast-sw-div
18629 @opindex mfast-sw-div
18630 Do not use table-based fast divide for small numbers. The default 
18631 is to use the fast divide at @option{-O3} and above.
18632
18633 @item -mno-hw-mul
18634 @itemx -mhw-mul
18635 @itemx -mno-hw-mulx
18636 @itemx -mhw-mulx
18637 @itemx -mno-hw-div
18638 @itemx -mhw-div
18639 @opindex mno-hw-mul
18640 @opindex mhw-mul
18641 @opindex mno-hw-mulx
18642 @opindex mhw-mulx
18643 @opindex mno-hw-div
18644 @opindex mhw-div
18645 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
18646 instructions by the compiler. The default is to emit @code{mul}
18647 and not emit @code{div} and @code{mulx}.
18648
18649 @item -mbmx
18650 @itemx -mno-bmx
18651 @itemx -mcdx
18652 @itemx -mno-cdx
18653 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
18654 CDX (code density) instructions.  Enabling these instructions also
18655 requires @option{-march=r2}.  Since these instructions are optional
18656 extensions to the R2 architecture, the default is not to emit them.
18657
18658 @item -mcustom-@var{insn}=@var{N}
18659 @itemx -mno-custom-@var{insn}
18660 @opindex mcustom-@var{insn}
18661 @opindex mno-custom-@var{insn}
18662 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18663 custom instruction with encoding @var{N} when generating code that uses 
18664 @var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
18665 instruction 253 for single-precision floating-point add operations instead
18666 of the default behavior of using a library call.
18667
18668 The following values of @var{insn} are supported.  Except as otherwise
18669 noted, floating-point operations are expected to be implemented with
18670 normal IEEE 754 semantics and correspond directly to the C operators or the
18671 equivalent GCC built-in functions (@pxref{Other Builtins}).
18672
18673 Single-precision floating point:
18674 @table @asis
18675
18676 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18677 Binary arithmetic operations.
18678
18679 @item @samp{fnegs}
18680 Unary negation.
18681
18682 @item @samp{fabss}
18683 Unary absolute value.
18684
18685 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18686 Comparison operations.
18687
18688 @item @samp{fmins}, @samp{fmaxs}
18689 Floating-point minimum and maximum.  These instructions are only
18690 generated if @option{-ffinite-math-only} is specified.
18691
18692 @item @samp{fsqrts}
18693 Unary square root operation.
18694
18695 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18696 Floating-point trigonometric and exponential functions.  These instructions
18697 are only generated if @option{-funsafe-math-optimizations} is also specified.
18698
18699 @end table
18700
18701 Double-precision floating point:
18702 @table @asis
18703
18704 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18705 Binary arithmetic operations.
18706
18707 @item @samp{fnegd}
18708 Unary negation.
18709
18710 @item @samp{fabsd}
18711 Unary absolute value.
18712
18713 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18714 Comparison operations.
18715
18716 @item @samp{fmind}, @samp{fmaxd}
18717 Double-precision minimum and maximum.  These instructions are only
18718 generated if @option{-ffinite-math-only} is specified.
18719
18720 @item @samp{fsqrtd}
18721 Unary square root operation.
18722
18723 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18724 Double-precision trigonometric and exponential functions.  These instructions
18725 are only generated if @option{-funsafe-math-optimizations} is also specified.
18726
18727 @end table
18728
18729 Conversions:
18730 @table @asis
18731 @item @samp{fextsd}
18732 Conversion from single precision to double precision.
18733
18734 @item @samp{ftruncds}
18735 Conversion from double precision to single precision.
18736
18737 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18738 Conversion from floating point to signed or unsigned integer types, with
18739 truncation towards zero.
18740
18741 @item @samp{round}
18742 Conversion from single-precision floating point to signed integer,
18743 rounding to the nearest integer and ties away from zero.
18744 This corresponds to the @code{__builtin_lroundf} function when
18745 @option{-fno-math-errno} is used.
18746
18747 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18748 Conversion from signed or unsigned integer types to floating-point types.
18749
18750 @end table
18751
18752 In addition, all of the following transfer instructions for internal
18753 registers X and Y must be provided to use any of the double-precision
18754 floating-point instructions.  Custom instructions taking two
18755 double-precision source operands expect the first operand in the
18756 64-bit register X.  The other operand (or only operand of a unary
18757 operation) is given to the custom arithmetic instruction with the
18758 least significant half in source register @var{src1} and the most
18759 significant half in @var{src2}.  A custom instruction that returns a
18760 double-precision result returns the most significant 32 bits in the
18761 destination register and the other half in 32-bit register Y.  
18762 GCC automatically generates the necessary code sequences to write
18763 register X and/or read register Y when double-precision floating-point
18764 instructions are used.
18765
18766 @table @asis
18767
18768 @item @samp{fwrx}
18769 Write @var{src1} into the least significant half of X and @var{src2} into
18770 the most significant half of X.
18771
18772 @item @samp{fwry}
18773 Write @var{src1} into Y.
18774
18775 @item @samp{frdxhi}, @samp{frdxlo}
18776 Read the most or least (respectively) significant half of X and store it in
18777 @var{dest}.
18778
18779 @item @samp{frdy}
18780 Read the value of Y and store it into @var{dest}.
18781 @end table
18782
18783 Note that you can gain more local control over generation of Nios II custom
18784 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18785 and @code{target("no-custom-@var{insn}")} function attributes
18786 (@pxref{Function Attributes})
18787 or pragmas (@pxref{Function Specific Option Pragmas}).
18788
18789 @item -mcustom-fpu-cfg=@var{name}
18790 @opindex mcustom-fpu-cfg
18791
18792 This option enables a predefined, named set of custom instruction encodings
18793 (see @option{-mcustom-@var{insn}} above).  
18794 Currently, the following sets are defined:
18795
18796 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18797 @gccoptlist{-mcustom-fmuls=252 @gol
18798 -mcustom-fadds=253 @gol
18799 -mcustom-fsubs=254 @gol
18800 -fsingle-precision-constant}
18801
18802 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18803 @gccoptlist{-mcustom-fmuls=252 @gol
18804 -mcustom-fadds=253 @gol
18805 -mcustom-fsubs=254 @gol
18806 -mcustom-fdivs=255 @gol
18807 -fsingle-precision-constant}
18808
18809 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18810 @gccoptlist{-mcustom-floatus=243 @gol
18811 -mcustom-fixsi=244 @gol
18812 -mcustom-floatis=245 @gol
18813 -mcustom-fcmpgts=246 @gol
18814 -mcustom-fcmples=249 @gol
18815 -mcustom-fcmpeqs=250 @gol
18816 -mcustom-fcmpnes=251 @gol
18817 -mcustom-fmuls=252 @gol
18818 -mcustom-fadds=253 @gol
18819 -mcustom-fsubs=254 @gol
18820 -mcustom-fdivs=255 @gol
18821 -fsingle-precision-constant}
18822
18823 Custom instruction assignments given by individual
18824 @option{-mcustom-@var{insn}=} options override those given by
18825 @option{-mcustom-fpu-cfg=}, regardless of the
18826 order of the options on the command line.
18827
18828 Note that you can gain more local control over selection of a FPU
18829 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18830 function attribute (@pxref{Function Attributes})
18831 or pragma (@pxref{Function Specific Option Pragmas}).
18832
18833 @end table
18834
18835 These additional @samp{-m} options are available for the Altera Nios II
18836 ELF (bare-metal) target:
18837
18838 @table @gcctabopt
18839
18840 @item -mhal
18841 @opindex mhal
18842 Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
18843 startup and termination code, and is typically used in conjunction with
18844 @option{-msys-crt0=} to specify the location of the alternate startup code
18845 provided by the HAL BSP.
18846
18847 @item -msmallc
18848 @opindex msmallc
18849 Link with a limited version of the C library, @option{-lsmallc}, rather than
18850 Newlib.
18851
18852 @item -msys-crt0=@var{startfile}
18853 @opindex msys-crt0
18854 @var{startfile} is the file name of the startfile (crt0) to use 
18855 when linking.  This option is only useful in conjunction with @option{-mhal}.
18856
18857 @item -msys-lib=@var{systemlib}
18858 @opindex msys-lib
18859 @var{systemlib} is the library name of the library that provides
18860 low-level system calls required by the C library,
18861 e.g. @code{read} and @code{write}.
18862 This option is typically used to link with a library provided by a HAL BSP.
18863
18864 @end table
18865
18866 @node Nvidia PTX Options
18867 @subsection Nvidia PTX Options
18868 @cindex Nvidia PTX options
18869 @cindex nvptx options
18870
18871 These options are defined for Nvidia PTX:
18872
18873 @table @gcctabopt
18874
18875 @item -m32
18876 @itemx -m64
18877 @opindex m32
18878 @opindex m64
18879 Generate code for 32-bit or 64-bit ABI.
18880
18881 @item -mmainkernel
18882 @opindex mmainkernel
18883 Link in code for a __main kernel.  This is for stand-alone instead of
18884 offloading execution.
18885
18886 @end table
18887
18888 @node PDP-11 Options
18889 @subsection PDP-11 Options
18890 @cindex PDP-11 Options
18891
18892 These options are defined for the PDP-11:
18893
18894 @table @gcctabopt
18895 @item -mfpu
18896 @opindex mfpu
18897 Use hardware FPP floating point.  This is the default.  (FIS floating
18898 point on the PDP-11/40 is not supported.)
18899
18900 @item -msoft-float
18901 @opindex msoft-float
18902 Do not use hardware floating point.
18903
18904 @item -mac0
18905 @opindex mac0
18906 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18907
18908 @item -mno-ac0
18909 @opindex mno-ac0
18910 Return floating-point results in memory.  This is the default.
18911
18912 @item -m40
18913 @opindex m40
18914 Generate code for a PDP-11/40.
18915
18916 @item -m45
18917 @opindex m45
18918 Generate code for a PDP-11/45.  This is the default.
18919
18920 @item -m10
18921 @opindex m10
18922 Generate code for a PDP-11/10.
18923
18924 @item -mbcopy-builtin
18925 @opindex mbcopy-builtin
18926 Use inline @code{movmemhi} patterns for copying memory.  This is the
18927 default.
18928
18929 @item -mbcopy
18930 @opindex mbcopy
18931 Do not use inline @code{movmemhi} patterns for copying memory.
18932
18933 @item -mint16
18934 @itemx -mno-int32
18935 @opindex mint16
18936 @opindex mno-int32
18937 Use 16-bit @code{int}.  This is the default.
18938
18939 @item -mint32
18940 @itemx -mno-int16
18941 @opindex mint32
18942 @opindex mno-int16
18943 Use 32-bit @code{int}.
18944
18945 @item -mfloat64
18946 @itemx -mno-float32
18947 @opindex mfloat64
18948 @opindex mno-float32
18949 Use 64-bit @code{float}.  This is the default.
18950
18951 @item -mfloat32
18952 @itemx -mno-float64
18953 @opindex mfloat32
18954 @opindex mno-float64
18955 Use 32-bit @code{float}.
18956
18957 @item -mabshi
18958 @opindex mabshi
18959 Use @code{abshi2} pattern.  This is the default.
18960
18961 @item -mno-abshi
18962 @opindex mno-abshi
18963 Do not use @code{abshi2} pattern.
18964
18965 @item -mbranch-expensive
18966 @opindex mbranch-expensive
18967 Pretend that branches are expensive.  This is for experimenting with
18968 code generation only.
18969
18970 @item -mbranch-cheap
18971 @opindex mbranch-cheap
18972 Do not pretend that branches are expensive.  This is the default.
18973
18974 @item -munix-asm
18975 @opindex munix-asm
18976 Use Unix assembler syntax.  This is the default when configured for
18977 @samp{pdp11-*-bsd}.
18978
18979 @item -mdec-asm
18980 @opindex mdec-asm
18981 Use DEC assembler syntax.  This is the default when configured for any
18982 PDP-11 target other than @samp{pdp11-*-bsd}.
18983 @end table
18984
18985 @node picoChip Options
18986 @subsection picoChip Options
18987 @cindex picoChip options
18988
18989 These @samp{-m} options are defined for picoChip implementations:
18990
18991 @table @gcctabopt
18992
18993 @item -mae=@var{ae_type}
18994 @opindex mcpu
18995 Set the instruction set, register set, and instruction scheduling
18996 parameters for array element type @var{ae_type}.  Supported values
18997 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18998
18999 @option{-mae=ANY} selects a completely generic AE type.  Code
19000 generated with this option runs on any of the other AE types.  The
19001 code is not as efficient as it would be if compiled for a specific
19002 AE type, and some types of operation (e.g., multiplication) do not
19003 work properly on all types of AE.
19004
19005 @option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
19006 for compiled code, and is the default.
19007
19008 @option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
19009 option may suffer from poor performance of byte (char) manipulation,
19010 since the DSP AE does not provide hardware support for byte load/stores.
19011
19012 @item -msymbol-as-address
19013 Enable the compiler to directly use a symbol name as an address in a
19014 load/store instruction, without first loading it into a
19015 register.  Typically, the use of this option generates larger
19016 programs, which run faster than when the option isn't used.  However, the
19017 results vary from program to program, so it is left as a user option,
19018 rather than being permanently enabled.
19019
19020 @item -mno-inefficient-warnings
19021 Disables warnings about the generation of inefficient code.  These
19022 warnings can be generated, for example, when compiling code that
19023 performs byte-level memory operations on the MAC AE type.  The MAC AE has
19024 no hardware support for byte-level memory operations, so all byte
19025 load/stores must be synthesized from word load/store operations.  This is
19026 inefficient and a warning is generated to indicate
19027 that you should rewrite the code to avoid byte operations, or to target
19028 an AE type that has the necessary hardware support.  This option disables
19029 these warnings.
19030
19031 @end table
19032
19033 @node PowerPC Options
19034 @subsection PowerPC Options
19035 @cindex PowerPC options
19036
19037 These are listed under @xref{RS/6000 and PowerPC Options}.
19038
19039 @node RL78 Options
19040 @subsection RL78 Options
19041 @cindex RL78 Options
19042
19043 @table @gcctabopt
19044
19045 @item -msim
19046 @opindex msim
19047 Links in additional target libraries to support operation within a
19048 simulator.
19049
19050 @item -mmul=none
19051 @itemx -mmul=g10
19052 @itemx -mmul=g13
19053 @itemx -mmul=g14
19054 @itemx -mmul=rl78
19055 @opindex mmul
19056 Specifies the type of hardware multiplication and division support to
19057 be used.  The simplest is @code{none}, which uses software for both
19058 multiplication and division.  This is the default.  The @code{g13}
19059 value is for the hardware multiply/divide peripheral found on the
19060 RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
19061 the multiplication and division instructions supported by the RL78/G14
19062 (S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
19063 the value @code{mg10} is an alias for @code{none}.
19064
19065 In addition a C preprocessor macro is defined, based upon the setting
19066 of this option.  Possible values are: @code{__RL78_MUL_NONE__},
19067 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
19068
19069 @item -mcpu=g10
19070 @itemx -mcpu=g13
19071 @itemx -mcpu=g14
19072 @itemx -mcpu=rl78
19073 @opindex mcpu
19074 Specifies the RL78 core to target.  The default is the G14 core, also
19075 known as an S3 core or just RL78.  The G13 or S2 core does not have
19076 multiply or divide instructions, instead it uses a hardware peripheral
19077 for these operations.  The G10 or S1 core does not have register
19078 banks, so it uses a different calling convention.
19079
19080 If this option is set it also selects the type of hardware multiply
19081 support to use, unless this is overridden by an explicit
19082 @option{-mmul=none} option on the command line.  Thus specifying
19083 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19084 peripheral and specifying @option{-mcpu=g10} disables the use of
19085 hardware multipications altogether.
19086
19087 Note, although the RL78/G14 core is the default target, specifying
19088 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19089 change the behaviour of the toolchain since it also enables G14
19090 hardware multiply support.  If these options are not specified on the
19091 command line then software multiplication routines will be used even
19092 though the code targets the RL78 core.  This is for backwards
19093 compatibility with older toolchains which did not have hardware
19094 multiply and divide support.
19095
19096 In addition a C preprocessor macro is defined, based upon the setting
19097 of this option.  Possible values are: @code{__RL78_G10__},
19098 @code{__RL78_G13__} or @code{__RL78_G14__}.
19099
19100 @item -mg10
19101 @itemx -mg13
19102 @itemx -mg14
19103 @itemx -mrl78
19104 @opindex mg10
19105 @opindex mg13
19106 @opindex mg14
19107 @opindex mrl78
19108 These are aliases for the corresponding @option{-mcpu=} option.  They
19109 are provided for backwards compatibility.
19110
19111 @item -mallregs
19112 @opindex mallregs
19113 Allow the compiler to use all of the available registers.  By default
19114 registers @code{r24..r31} are reserved for use in interrupt handlers.
19115 With this option enabled these registers can be used in ordinary
19116 functions as well.
19117
19118 @item -m64bit-doubles
19119 @itemx -m32bit-doubles
19120 @opindex m64bit-doubles
19121 @opindex m32bit-doubles
19122 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19123 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
19124 @option{-m32bit-doubles}.
19125
19126 @end table
19127
19128 @node RS/6000 and PowerPC Options
19129 @subsection IBM RS/6000 and PowerPC Options
19130 @cindex RS/6000 and PowerPC Options
19131 @cindex IBM RS/6000 and PowerPC Options
19132
19133 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19134 @table @gcctabopt
19135 @item -mpowerpc-gpopt
19136 @itemx -mno-powerpc-gpopt
19137 @itemx -mpowerpc-gfxopt
19138 @itemx -mno-powerpc-gfxopt
19139 @need 800
19140 @itemx -mpowerpc64
19141 @itemx -mno-powerpc64
19142 @itemx -mmfcrf
19143 @itemx -mno-mfcrf
19144 @itemx -mpopcntb
19145 @itemx -mno-popcntb
19146 @itemx -mpopcntd
19147 @itemx -mno-popcntd
19148 @itemx -mfprnd
19149 @itemx -mno-fprnd
19150 @need 800
19151 @itemx -mcmpb
19152 @itemx -mno-cmpb
19153 @itemx -mmfpgpr
19154 @itemx -mno-mfpgpr
19155 @itemx -mhard-dfp
19156 @itemx -mno-hard-dfp
19157 @opindex mpowerpc-gpopt
19158 @opindex mno-powerpc-gpopt
19159 @opindex mpowerpc-gfxopt
19160 @opindex mno-powerpc-gfxopt
19161 @opindex mpowerpc64
19162 @opindex mno-powerpc64
19163 @opindex mmfcrf
19164 @opindex mno-mfcrf
19165 @opindex mpopcntb
19166 @opindex mno-popcntb
19167 @opindex mpopcntd
19168 @opindex mno-popcntd
19169 @opindex mfprnd
19170 @opindex mno-fprnd
19171 @opindex mcmpb
19172 @opindex mno-cmpb
19173 @opindex mmfpgpr
19174 @opindex mno-mfpgpr
19175 @opindex mhard-dfp
19176 @opindex mno-hard-dfp
19177 You use these options to specify which instructions are available on the
19178 processor you are using.  The default value of these options is
19179 determined when configuring GCC@.  Specifying the
19180 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19181 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
19182 rather than the options listed above.
19183
19184 Specifying @option{-mpowerpc-gpopt} allows
19185 GCC to use the optional PowerPC architecture instructions in the
19186 General Purpose group, including floating-point square root.  Specifying
19187 @option{-mpowerpc-gfxopt} allows GCC to
19188 use the optional PowerPC architecture instructions in the Graphics
19189 group, including floating-point select.
19190
19191 The @option{-mmfcrf} option allows GCC to generate the move from
19192 condition register field instruction implemented on the POWER4
19193 processor and other processors that support the PowerPC V2.01
19194 architecture.
19195 The @option{-mpopcntb} option allows GCC to generate the popcount and
19196 double-precision FP reciprocal estimate instruction implemented on the
19197 POWER5 processor and other processors that support the PowerPC V2.02
19198 architecture.
19199 The @option{-mpopcntd} option allows GCC to generate the popcount
19200 instruction implemented on the POWER7 processor and other processors
19201 that support the PowerPC V2.06 architecture.
19202 The @option{-mfprnd} option allows GCC to generate the FP round to
19203 integer instructions implemented on the POWER5+ processor and other
19204 processors that support the PowerPC V2.03 architecture.
19205 The @option{-mcmpb} option allows GCC to generate the compare bytes
19206 instruction implemented on the POWER6 processor and other processors
19207 that support the PowerPC V2.05 architecture.
19208 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19209 general-purpose register instructions implemented on the POWER6X
19210 processor and other processors that support the extended PowerPC V2.05
19211 architecture.
19212 The @option{-mhard-dfp} option allows GCC to generate the decimal
19213 floating-point instructions implemented on some POWER processors.
19214
19215 The @option{-mpowerpc64} option allows GCC to generate the additional
19216 64-bit instructions that are found in the full PowerPC64 architecture
19217 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
19218 @option{-mno-powerpc64}.
19219
19220 @item -mcpu=@var{cpu_type}
19221 @opindex mcpu
19222 Set architecture type, register usage, and
19223 instruction scheduling parameters for machine type @var{cpu_type}.
19224 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19225 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19226 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19227 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19228 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19229 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19230 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19231 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19232 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19233 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19234 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19235
19236 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19237 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19238 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19239 architecture machine types, with an appropriate, generic processor
19240 model assumed for scheduling purposes.
19241
19242 The other options specify a specific processor.  Code generated under
19243 those options runs best on that processor, and may not run at all on
19244 others.
19245
19246 The @option{-mcpu} options automatically enable or disable the
19247 following options:
19248
19249 @gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
19250 -mpopcntb -mpopcntd  -mpowerpc64 @gol
19251 -mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
19252 -msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
19253 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19254 -mquad-memory -mquad-memory-atomic}
19255
19256 The particular options set for any particular CPU varies between
19257 compiler versions, depending on what setting seems to produce optimal
19258 code for that CPU; it doesn't necessarily reflect the actual hardware's
19259 capabilities.  If you wish to set an individual option to a particular
19260 value, you may specify it after the @option{-mcpu} option, like
19261 @option{-mcpu=970 -mno-altivec}.
19262
19263 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19264 not enabled or disabled by the @option{-mcpu} option at present because
19265 AIX does not have full support for these options.  You may still
19266 enable or disable them individually if you're sure it'll work in your
19267 environment.
19268
19269 @item -mtune=@var{cpu_type}
19270 @opindex mtune
19271 Set the instruction scheduling parameters for machine type
19272 @var{cpu_type}, but do not set the architecture type or register usage,
19273 as @option{-mcpu=@var{cpu_type}} does.  The same
19274 values for @var{cpu_type} are used for @option{-mtune} as for
19275 @option{-mcpu}.  If both are specified, the code generated uses the
19276 architecture and registers set by @option{-mcpu}, but the
19277 scheduling parameters set by @option{-mtune}.
19278
19279 @item -mcmodel=small
19280 @opindex mcmodel=small
19281 Generate PowerPC64 code for the small model: The TOC is limited to
19282 64k.
19283
19284 @item -mcmodel=medium
19285 @opindex mcmodel=medium
19286 Generate PowerPC64 code for the medium model: The TOC and other static
19287 data may be up to a total of 4G in size.
19288
19289 @item -mcmodel=large
19290 @opindex mcmodel=large
19291 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19292 in size.  Other data and code is only limited by the 64-bit address
19293 space.
19294
19295 @item -maltivec
19296 @itemx -mno-altivec
19297 @opindex maltivec
19298 @opindex mno-altivec
19299 Generate code that uses (does not use) AltiVec instructions, and also
19300 enable the use of built-in functions that allow more direct access to
19301 the AltiVec instruction set.  You may also need to set
19302 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19303 enhancements.
19304
19305 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19306 @option{-maltivec=be}, the element order for Altivec intrinsics such
19307 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
19308 match array element order corresponding to the endianness of the
19309 target.  That is, element zero identifies the leftmost element in a
19310 vector register when targeting a big-endian platform, and identifies
19311 the rightmost element in a vector register when targeting a
19312 little-endian platform.
19313
19314 @item -maltivec=be
19315 @opindex maltivec=be
19316 Generate Altivec instructions using big-endian element order,
19317 regardless of whether the target is big- or little-endian.  This is
19318 the default when targeting a big-endian platform.
19319
19320 The element order is used to interpret element numbers in Altivec
19321 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19322 @code{vec_insert}.  By default, these match array element order
19323 corresponding to the endianness for the target.
19324
19325 @item -maltivec=le
19326 @opindex maltivec=le
19327 Generate Altivec instructions using little-endian element order,
19328 regardless of whether the target is big- or little-endian.  This is
19329 the default when targeting a little-endian platform.  This option is
19330 currently ignored when targeting a big-endian platform.
19331
19332 The element order is used to interpret element numbers in Altivec
19333 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19334 @code{vec_insert}.  By default, these match array element order
19335 corresponding to the endianness for the target.
19336
19337 @item -mvrsave
19338 @itemx -mno-vrsave
19339 @opindex mvrsave
19340 @opindex mno-vrsave
19341 Generate VRSAVE instructions when generating AltiVec code.
19342
19343 @item -mgen-cell-microcode
19344 @opindex mgen-cell-microcode
19345 Generate Cell microcode instructions.
19346
19347 @item -mwarn-cell-microcode
19348 @opindex mwarn-cell-microcode
19349 Warn when a Cell microcode instruction is emitted.  An example
19350 of a Cell microcode instruction is a variable shift.
19351
19352 @item -msecure-plt
19353 @opindex msecure-plt
19354 Generate code that allows @command{ld} and @command{ld.so}
19355 to build executables and shared
19356 libraries with non-executable @code{.plt} and @code{.got} sections.
19357 This is a PowerPC
19358 32-bit SYSV ABI option.
19359
19360 @item -mbss-plt
19361 @opindex mbss-plt
19362 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19363 fills in, and
19364 requires @code{.plt} and @code{.got}
19365 sections that are both writable and executable.
19366 This is a PowerPC 32-bit SYSV ABI option.
19367
19368 @item -misel
19369 @itemx -mno-isel
19370 @opindex misel
19371 @opindex mno-isel
19372 This switch enables or disables the generation of ISEL instructions.
19373
19374 @item -misel=@var{yes/no}
19375 This switch has been deprecated.  Use @option{-misel} and
19376 @option{-mno-isel} instead.
19377
19378 @item -mspe
19379 @itemx -mno-spe
19380 @opindex mspe
19381 @opindex mno-spe
19382 This switch enables or disables the generation of SPE simd
19383 instructions.
19384
19385 @item -mpaired
19386 @itemx -mno-paired
19387 @opindex mpaired
19388 @opindex mno-paired
19389 This switch enables or disables the generation of PAIRED simd
19390 instructions.
19391
19392 @item -mspe=@var{yes/no}
19393 This option has been deprecated.  Use @option{-mspe} and
19394 @option{-mno-spe} instead.
19395
19396 @item -mvsx
19397 @itemx -mno-vsx
19398 @opindex mvsx
19399 @opindex mno-vsx
19400 Generate code that uses (does not use) vector/scalar (VSX)
19401 instructions, and also enable the use of built-in functions that allow
19402 more direct access to the VSX instruction set.
19403
19404 @item -mcrypto
19405 @itemx -mno-crypto
19406 @opindex mcrypto
19407 @opindex mno-crypto
19408 Enable the use (disable) of the built-in functions that allow direct
19409 access to the cryptographic instructions that were added in version
19410 2.07 of the PowerPC ISA.
19411
19412 @item -mdirect-move
19413 @itemx -mno-direct-move
19414 @opindex mdirect-move
19415 @opindex mno-direct-move
19416 Generate code that uses (does not use) the instructions to move data
19417 between the general purpose registers and the vector/scalar (VSX)
19418 registers that were added in version 2.07 of the PowerPC ISA.
19419
19420 @item -mpower8-fusion
19421 @itemx -mno-power8-fusion
19422 @opindex mpower8-fusion
19423 @opindex mno-power8-fusion
19424 Generate code that keeps (does not keeps) some integer operations
19425 adjacent so that the instructions can be fused together on power8 and
19426 later processors.
19427
19428 @item -mpower8-vector
19429 @itemx -mno-power8-vector
19430 @opindex mpower8-vector
19431 @opindex mno-power8-vector
19432 Generate code that uses (does not use) the vector and scalar
19433 instructions that were added in version 2.07 of the PowerPC ISA.  Also
19434 enable the use of built-in functions that allow more direct access to
19435 the vector instructions.
19436
19437 @item -mquad-memory
19438 @itemx -mno-quad-memory
19439 @opindex mquad-memory
19440 @opindex mno-quad-memory
19441 Generate code that uses (does not use) the non-atomic quad word memory
19442 instructions.  The @option{-mquad-memory} option requires use of
19443 64-bit mode.
19444
19445 @item -mquad-memory-atomic
19446 @itemx -mno-quad-memory-atomic
19447 @opindex mquad-memory-atomic
19448 @opindex mno-quad-memory-atomic
19449 Generate code that uses (does not use) the atomic quad word memory
19450 instructions.  The @option{-mquad-memory-atomic} option requires use of
19451 64-bit mode.
19452
19453 @item -mupper-regs-df
19454 @itemx -mno-upper-regs-df
19455 @opindex mupper-regs-df
19456 @opindex mno-upper-regs-df
19457 Generate code that uses (does not use) the scalar double precision
19458 instructions that target all 64 registers in the vector/scalar
19459 floating point register set that were added in version 2.06 of the
19460 PowerPC ISA.  @option{-mupper-regs-df} is turned on by default if you
19461 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19462 @option{-mvsx} options.
19463
19464 @item -mupper-regs-sf
19465 @itemx -mno-upper-regs-sf
19466 @opindex mupper-regs-sf
19467 @opindex mno-upper-regs-sf
19468 Generate code that uses (does not use) the scalar single precision
19469 instructions that target all 64 registers in the vector/scalar
19470 floating point register set that were added in version 2.07 of the
19471 PowerPC ISA.  @option{-mupper-regs-sf} is turned on by default if you
19472 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19473 options.
19474
19475 @item -mupper-regs
19476 @itemx -mno-upper-regs
19477 @opindex mupper-regs
19478 @opindex mno-upper-regs
19479 Generate code that uses (does not use) the scalar
19480 instructions that target all 64 registers in the vector/scalar
19481 floating point register set, depending on the model of the machine.
19482
19483 If the @option{-mno-upper-regs} option is used, it turns off both
19484 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19485
19486 @item -mfloat-gprs=@var{yes/single/double/no}
19487 @itemx -mfloat-gprs
19488 @opindex mfloat-gprs
19489 This switch enables or disables the generation of floating-point
19490 operations on the general-purpose registers for architectures that
19491 support it.
19492
19493 The argument @samp{yes} or @samp{single} enables the use of
19494 single-precision floating-point operations.
19495
19496 The argument @samp{double} enables the use of single and
19497 double-precision floating-point operations.
19498
19499 The argument @samp{no} disables floating-point operations on the
19500 general-purpose registers.
19501
19502 This option is currently only available on the MPC854x.
19503
19504 @item -m32
19505 @itemx -m64
19506 @opindex m32
19507 @opindex m64
19508 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19509 targets (including GNU/Linux).  The 32-bit environment sets int, long
19510 and pointer to 32 bits and generates code that runs on any PowerPC
19511 variant.  The 64-bit environment sets int to 32 bits and long and
19512 pointer to 64 bits, and generates code for PowerPC64, as for
19513 @option{-mpowerpc64}.
19514
19515 @item -mfull-toc
19516 @itemx -mno-fp-in-toc
19517 @itemx -mno-sum-in-toc
19518 @itemx -mminimal-toc
19519 @opindex mfull-toc
19520 @opindex mno-fp-in-toc
19521 @opindex mno-sum-in-toc
19522 @opindex mminimal-toc
19523 Modify generation of the TOC (Table Of Contents), which is created for
19524 every executable file.  The @option{-mfull-toc} option is selected by
19525 default.  In that case, GCC allocates at least one TOC entry for
19526 each unique non-automatic variable reference in your program.  GCC
19527 also places floating-point constants in the TOC@.  However, only
19528 16,384 entries are available in the TOC@.
19529
19530 If you receive a linker error message that saying you have overflowed
19531 the available TOC space, you can reduce the amount of TOC space used
19532 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19533 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19534 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19535 generate code to calculate the sum of an address and a constant at
19536 run time instead of putting that sum into the TOC@.  You may specify one
19537 or both of these options.  Each causes GCC to produce very slightly
19538 slower and larger code at the expense of conserving TOC space.
19539
19540 If you still run out of space in the TOC even when you specify both of
19541 these options, specify @option{-mminimal-toc} instead.  This option causes
19542 GCC to make only one TOC entry for every file.  When you specify this
19543 option, GCC produces code that is slower and larger but which
19544 uses extremely little TOC space.  You may wish to use this option
19545 only on files that contain less frequently-executed code.
19546
19547 @item -maix64
19548 @itemx -maix32
19549 @opindex maix64
19550 @opindex maix32
19551 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19552 @code{long} type, and the infrastructure needed to support them.
19553 Specifying @option{-maix64} implies @option{-mpowerpc64},
19554 while @option{-maix32} disables the 64-bit ABI and
19555 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
19556
19557 @item -mxl-compat
19558 @itemx -mno-xl-compat
19559 @opindex mxl-compat
19560 @opindex mno-xl-compat
19561 Produce code that conforms more closely to IBM XL compiler semantics
19562 when using AIX-compatible ABI@.  Pass floating-point arguments to
19563 prototyped functions beyond the register save area (RSA) on the stack
19564 in addition to argument FPRs.  Do not assume that most significant
19565 double in 128-bit long double value is properly rounded when comparing
19566 values and converting to double.  Use XL symbol names for long double
19567 support routines.
19568
19569 The AIX calling convention was extended but not initially documented to
19570 handle an obscure K&R C case of calling a function that takes the
19571 address of its arguments with fewer arguments than declared.  IBM XL
19572 compilers access floating-point arguments that do not fit in the
19573 RSA from the stack when a subroutine is compiled without
19574 optimization.  Because always storing floating-point arguments on the
19575 stack is inefficient and rarely needed, this option is not enabled by
19576 default and only is necessary when calling subroutines compiled by IBM
19577 XL compilers without optimization.
19578
19579 @item -mpe
19580 @opindex mpe
19581 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
19582 application written to use message passing with special startup code to
19583 enable the application to run.  The system must have PE installed in the
19584 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19585 must be overridden with the @option{-specs=} option to specify the
19586 appropriate directory location.  The Parallel Environment does not
19587 support threads, so the @option{-mpe} option and the @option{-pthread}
19588 option are incompatible.
19589
19590 @item -malign-natural
19591 @itemx -malign-power
19592 @opindex malign-natural
19593 @opindex malign-power
19594 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19595 @option{-malign-natural} overrides the ABI-defined alignment of larger
19596 types, such as floating-point doubles, on their natural size-based boundary.
19597 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19598 alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
19599
19600 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19601 is not supported.
19602
19603 @item -msoft-float
19604 @itemx -mhard-float
19605 @opindex msoft-float
19606 @opindex mhard-float
19607 Generate code that does not use (uses) the floating-point register set.
19608 Software floating-point emulation is provided if you use the
19609 @option{-msoft-float} option, and pass the option to GCC when linking.
19610
19611 @item -msingle-float
19612 @itemx -mdouble-float
19613 @opindex msingle-float
19614 @opindex mdouble-float
19615 Generate code for single- or double-precision floating-point operations.
19616 @option{-mdouble-float} implies @option{-msingle-float}.
19617
19618 @item -msimple-fpu
19619 @opindex msimple-fpu
19620 Do not generate @code{sqrt} and @code{div} instructions for hardware
19621 floating-point unit.
19622
19623 @item -mfpu=@var{name}
19624 @opindex mfpu
19625 Specify type of floating-point unit.  Valid values for @var{name} are
19626 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19627 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19628 @samp{sp_full} (equivalent to @option{-msingle-float}),
19629 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19630
19631 @item -mxilinx-fpu
19632 @opindex mxilinx-fpu
19633 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19634
19635 @item -mmultiple
19636 @itemx -mno-multiple
19637 @opindex mmultiple
19638 @opindex mno-multiple
19639 Generate code that uses (does not use) the load multiple word
19640 instructions and the store multiple word instructions.  These
19641 instructions are generated by default on POWER systems, and not
19642 generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
19643 PowerPC systems, since those instructions do not work when the
19644 processor is in little-endian mode.  The exceptions are PPC740 and
19645 PPC750 which permit these instructions in little-endian mode.
19646
19647 @item -mstring
19648 @itemx -mno-string
19649 @opindex mstring
19650 @opindex mno-string
19651 Generate code that uses (does not use) the load string instructions
19652 and the store string word instructions to save multiple registers and
19653 do small block moves.  These instructions are generated by default on
19654 POWER systems, and not generated on PowerPC systems.  Do not use
19655 @option{-mstring} on little-endian PowerPC systems, since those
19656 instructions do not work when the processor is in little-endian mode.
19657 The exceptions are PPC740 and PPC750 which permit these instructions
19658 in little-endian mode.
19659
19660 @item -mupdate
19661 @itemx -mno-update
19662 @opindex mupdate
19663 @opindex mno-update
19664 Generate code that uses (does not use) the load or store instructions
19665 that update the base register to the address of the calculated memory
19666 location.  These instructions are generated by default.  If you use
19667 @option{-mno-update}, there is a small window between the time that the
19668 stack pointer is updated and the address of the previous frame is
19669 stored, which means code that walks the stack frame across interrupts or
19670 signals may get corrupted data.
19671
19672 @item -mavoid-indexed-addresses
19673 @itemx -mno-avoid-indexed-addresses
19674 @opindex mavoid-indexed-addresses
19675 @opindex mno-avoid-indexed-addresses
19676 Generate code that tries to avoid (not avoid) the use of indexed load
19677 or store instructions. These instructions can incur a performance
19678 penalty on Power6 processors in certain situations, such as when
19679 stepping through large arrays that cross a 16M boundary.  This option
19680 is enabled by default when targeting Power6 and disabled otherwise.
19681
19682 @item -mfused-madd
19683 @itemx -mno-fused-madd
19684 @opindex mfused-madd
19685 @opindex mno-fused-madd
19686 Generate code that uses (does not use) the floating-point multiply and
19687 accumulate instructions.  These instructions are generated by default
19688 if hardware floating point is used.  The machine-dependent
19689 @option{-mfused-madd} option is now mapped to the machine-independent
19690 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19691 mapped to @option{-ffp-contract=off}.
19692
19693 @item -mmulhw
19694 @itemx -mno-mulhw
19695 @opindex mmulhw
19696 @opindex mno-mulhw
19697 Generate code that uses (does not use) the half-word multiply and
19698 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19699 These instructions are generated by default when targeting those
19700 processors.
19701
19702 @item -mdlmzb
19703 @itemx -mno-dlmzb
19704 @opindex mdlmzb
19705 @opindex mno-dlmzb
19706 Generate code that uses (does not use) the string-search @samp{dlmzb}
19707 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
19708 generated by default when targeting those processors.
19709
19710 @item -mno-bit-align
19711 @itemx -mbit-align
19712 @opindex mno-bit-align
19713 @opindex mbit-align
19714 On System V.4 and embedded PowerPC systems do not (do) force structures
19715 and unions that contain bit-fields to be aligned to the base type of the
19716 bit-field.
19717
19718 For example, by default a structure containing nothing but 8
19719 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19720 boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
19721 the structure is aligned to a 1-byte boundary and is 1 byte in
19722 size.
19723
19724 @item -mno-strict-align
19725 @itemx -mstrict-align
19726 @opindex mno-strict-align
19727 @opindex mstrict-align
19728 On System V.4 and embedded PowerPC systems do not (do) assume that
19729 unaligned memory references are handled by the system.
19730
19731 @item -mrelocatable
19732 @itemx -mno-relocatable
19733 @opindex mrelocatable
19734 @opindex mno-relocatable
19735 Generate code that allows (does not allow) a static executable to be
19736 relocated to a different address at run time.  A simple embedded
19737 PowerPC system loader should relocate the entire contents of
19738 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19739 a table of 32-bit addresses generated by this option.  For this to
19740 work, all objects linked together must be compiled with
19741 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19742 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19743
19744 @item -mrelocatable-lib
19745 @itemx -mno-relocatable-lib
19746 @opindex mrelocatable-lib
19747 @opindex mno-relocatable-lib
19748 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19749 @code{.fixup} section to allow static executables to be relocated at
19750 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19751 alignment of @option{-mrelocatable}.  Objects compiled with
19752 @option{-mrelocatable-lib} may be linked with objects compiled with
19753 any combination of the @option{-mrelocatable} options.
19754
19755 @item -mno-toc
19756 @itemx -mtoc
19757 @opindex mno-toc
19758 @opindex mtoc
19759 On System V.4 and embedded PowerPC systems do not (do) assume that
19760 register 2 contains a pointer to a global area pointing to the addresses
19761 used in the program.
19762
19763 @item -mlittle
19764 @itemx -mlittle-endian
19765 @opindex mlittle
19766 @opindex mlittle-endian
19767 On System V.4 and embedded PowerPC systems compile code for the
19768 processor in little-endian mode.  The @option{-mlittle-endian} option is
19769 the same as @option{-mlittle}.
19770
19771 @item -mbig
19772 @itemx -mbig-endian
19773 @opindex mbig
19774 @opindex mbig-endian
19775 On System V.4 and embedded PowerPC systems compile code for the
19776 processor in big-endian mode.  The @option{-mbig-endian} option is
19777 the same as @option{-mbig}.
19778
19779 @item -mdynamic-no-pic
19780 @opindex mdynamic-no-pic
19781 On Darwin and Mac OS X systems, compile code so that it is not
19782 relocatable, but that its external references are relocatable.  The
19783 resulting code is suitable for applications, but not shared
19784 libraries.
19785
19786 @item -msingle-pic-base
19787 @opindex msingle-pic-base
19788 Treat the register used for PIC addressing as read-only, rather than
19789 loading it in the prologue for each function.  The runtime system is
19790 responsible for initializing this register with an appropriate value
19791 before execution begins.
19792
19793 @item -mprioritize-restricted-insns=@var{priority}
19794 @opindex mprioritize-restricted-insns
19795 This option controls the priority that is assigned to
19796 dispatch-slot restricted instructions during the second scheduling
19797 pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
19798 or @samp{2} to assign no, highest, or second-highest (respectively) 
19799 priority to dispatch-slot restricted
19800 instructions.
19801
19802 @item -msched-costly-dep=@var{dependence_type}
19803 @opindex msched-costly-dep
19804 This option controls which dependences are considered costly
19805 by the target during instruction scheduling.  The argument
19806 @var{dependence_type} takes one of the following values:
19807
19808 @table @asis
19809 @item @samp{no}
19810 No dependence is costly.
19811
19812 @item @samp{all}
19813 All dependences are costly.
19814
19815 @item @samp{true_store_to_load}
19816 A true dependence from store to load is costly.
19817
19818 @item @samp{store_to_load}
19819 Any dependence from store to load is costly.
19820
19821 @item @var{number}
19822 Any dependence for which the latency is greater than or equal to 
19823 @var{number} is costly.
19824 @end table
19825
19826 @item -minsert-sched-nops=@var{scheme}
19827 @opindex minsert-sched-nops
19828 This option controls which NOP insertion scheme is used during
19829 the second scheduling pass.  The argument @var{scheme} takes one of the
19830 following values:
19831
19832 @table @asis
19833 @item @samp{no}
19834 Don't insert NOPs.
19835
19836 @item @samp{pad}
19837 Pad with NOPs any dispatch group that has vacant issue slots,
19838 according to the scheduler's grouping.
19839
19840 @item @samp{regroup_exact}
19841 Insert NOPs to force costly dependent insns into
19842 separate groups.  Insert exactly as many NOPs as needed to force an insn
19843 to a new group, according to the estimated processor grouping.
19844
19845 @item @var{number}
19846 Insert NOPs to force costly dependent insns into
19847 separate groups.  Insert @var{number} NOPs to force an insn to a new group.
19848 @end table
19849
19850 @item -mcall-sysv
19851 @opindex mcall-sysv
19852 On System V.4 and embedded PowerPC systems compile code using calling
19853 conventions that adhere to the March 1995 draft of the System V
19854 Application Binary Interface, PowerPC processor supplement.  This is the
19855 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19856
19857 @item -mcall-sysv-eabi
19858 @itemx -mcall-eabi
19859 @opindex mcall-sysv-eabi
19860 @opindex mcall-eabi
19861 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19862
19863 @item -mcall-sysv-noeabi
19864 @opindex mcall-sysv-noeabi
19865 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19866
19867 @item -mcall-aixdesc
19868 @opindex m
19869 On System V.4 and embedded PowerPC systems compile code for the AIX
19870 operating system.
19871
19872 @item -mcall-linux
19873 @opindex mcall-linux
19874 On System V.4 and embedded PowerPC systems compile code for the
19875 Linux-based GNU system.
19876
19877 @item -mcall-freebsd
19878 @opindex mcall-freebsd
19879 On System V.4 and embedded PowerPC systems compile code for the
19880 FreeBSD operating system.
19881
19882 @item -mcall-netbsd
19883 @opindex mcall-netbsd
19884 On System V.4 and embedded PowerPC systems compile code for the
19885 NetBSD operating system.
19886
19887 @item -mcall-openbsd
19888 @opindex mcall-netbsd
19889 On System V.4 and embedded PowerPC systems compile code for the
19890 OpenBSD operating system.
19891
19892 @item -maix-struct-return
19893 @opindex maix-struct-return
19894 Return all structures in memory (as specified by the AIX ABI)@.
19895
19896 @item -msvr4-struct-return
19897 @opindex msvr4-struct-return
19898 Return structures smaller than 8 bytes in registers (as specified by the
19899 SVR4 ABI)@.
19900
19901 @item -mabi=@var{abi-type}
19902 @opindex mabi
19903 Extend the current ABI with a particular extension, or remove such extension.
19904 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19905 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19906 @samp{elfv1}, @samp{elfv2}@.
19907
19908 @item -mabi=spe
19909 @opindex mabi=spe
19910 Extend the current ABI with SPE ABI extensions.  This does not change
19911 the default ABI, instead it adds the SPE ABI extensions to the current
19912 ABI@.
19913
19914 @item -mabi=no-spe
19915 @opindex mabi=no-spe
19916 Disable Book-E SPE ABI extensions for the current ABI@.
19917
19918 @item -mabi=ibmlongdouble
19919 @opindex mabi=ibmlongdouble
19920 Change the current ABI to use IBM extended-precision long double.
19921 This is a PowerPC 32-bit SYSV ABI option.
19922
19923 @item -mabi=ieeelongdouble
19924 @opindex mabi=ieeelongdouble
19925 Change the current ABI to use IEEE extended-precision long double.
19926 This is a PowerPC 32-bit Linux ABI option.
19927
19928 @item -mabi=elfv1
19929 @opindex mabi=elfv1
19930 Change the current ABI to use the ELFv1 ABI.
19931 This is the default ABI for big-endian PowerPC 64-bit Linux.
19932 Overriding the default ABI requires special system support and is
19933 likely to fail in spectacular ways.
19934
19935 @item -mabi=elfv2
19936 @opindex mabi=elfv2
19937 Change the current ABI to use the ELFv2 ABI.
19938 This is the default ABI for little-endian PowerPC 64-bit Linux.
19939 Overriding the default ABI requires special system support and is
19940 likely to fail in spectacular ways.
19941
19942 @item -mprototype
19943 @itemx -mno-prototype
19944 @opindex mprototype
19945 @opindex mno-prototype
19946 On System V.4 and embedded PowerPC systems assume that all calls to
19947 variable argument functions are properly prototyped.  Otherwise, the
19948 compiler must insert an instruction before every non-prototyped call to
19949 set or clear bit 6 of the condition code register (@code{CR}) to
19950 indicate whether floating-point values are passed in the floating-point
19951 registers in case the function takes variable arguments.  With
19952 @option{-mprototype}, only calls to prototyped variable argument functions
19953 set or clear the bit.
19954
19955 @item -msim
19956 @opindex msim
19957 On embedded PowerPC systems, assume that the startup module is called
19958 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19959 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
19960 configurations.
19961
19962 @item -mmvme
19963 @opindex mmvme
19964 On embedded PowerPC systems, assume that the startup module is called
19965 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19966 @file{libc.a}.
19967
19968 @item -mads
19969 @opindex mads
19970 On embedded PowerPC systems, assume that the startup module is called
19971 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19972 @file{libc.a}.
19973
19974 @item -myellowknife
19975 @opindex myellowknife
19976 On embedded PowerPC systems, assume that the startup module is called
19977 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19978 @file{libc.a}.
19979
19980 @item -mvxworks
19981 @opindex mvxworks
19982 On System V.4 and embedded PowerPC systems, specify that you are
19983 compiling for a VxWorks system.
19984
19985 @item -memb
19986 @opindex memb
19987 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19988 header to indicate that @samp{eabi} extended relocations are used.
19989
19990 @item -meabi
19991 @itemx -mno-eabi
19992 @opindex meabi
19993 @opindex mno-eabi
19994 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19995 Embedded Applications Binary Interface (EABI), which is a set of
19996 modifications to the System V.4 specifications.  Selecting @option{-meabi}
19997 means that the stack is aligned to an 8-byte boundary, a function
19998 @code{__eabi} is called from @code{main} to set up the EABI
19999 environment, and the @option{-msdata} option can use both @code{r2} and
20000 @code{r13} to point to two separate small data areas.  Selecting
20001 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
20002 no EABI initialization function is called from @code{main}, and the
20003 @option{-msdata} option only uses @code{r13} to point to a single
20004 small data area.  The @option{-meabi} option is on by default if you
20005 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
20006
20007 @item -msdata=eabi
20008 @opindex msdata=eabi
20009 On System V.4 and embedded PowerPC systems, put small initialized
20010 @code{const} global and static data in the @code{.sdata2} section, which
20011 is pointed to by register @code{r2}.  Put small initialized
20012 non-@code{const} global and static data in the @code{.sdata} section,
20013 which is pointed to by register @code{r13}.  Put small uninitialized
20014 global and static data in the @code{.sbss} section, which is adjacent to
20015 the @code{.sdata} section.  The @option{-msdata=eabi} option is
20016 incompatible with the @option{-mrelocatable} option.  The
20017 @option{-msdata=eabi} option also sets the @option{-memb} option.
20018
20019 @item -msdata=sysv
20020 @opindex msdata=sysv
20021 On System V.4 and embedded PowerPC systems, put small global and static
20022 data in the @code{.sdata} section, which is pointed to by register
20023 @code{r13}.  Put small uninitialized global and static data in the
20024 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
20025 The @option{-msdata=sysv} option is incompatible with the
20026 @option{-mrelocatable} option.
20027
20028 @item -msdata=default
20029 @itemx -msdata
20030 @opindex msdata=default
20031 @opindex msdata
20032 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
20033 compile code the same as @option{-msdata=eabi}, otherwise compile code the
20034 same as @option{-msdata=sysv}.
20035
20036 @item -msdata=data
20037 @opindex msdata=data
20038 On System V.4 and embedded PowerPC systems, put small global
20039 data in the @code{.sdata} section.  Put small uninitialized global
20040 data in the @code{.sbss} section.  Do not use register @code{r13}
20041 to address small data however.  This is the default behavior unless
20042 other @option{-msdata} options are used.
20043
20044 @item -msdata=none
20045 @itemx -mno-sdata
20046 @opindex msdata=none
20047 @opindex mno-sdata
20048 On embedded PowerPC systems, put all initialized global and static data
20049 in the @code{.data} section, and all uninitialized data in the
20050 @code{.bss} section.
20051
20052 @item -mblock-move-inline-limit=@var{num}
20053 @opindex mblock-move-inline-limit
20054 Inline all block moves (such as calls to @code{memcpy} or structure
20055 copies) less than or equal to @var{num} bytes.  The minimum value for
20056 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
20057 targets.  The default value is target-specific.
20058
20059 @item -G @var{num}
20060 @opindex G
20061 @cindex smaller data references (PowerPC)
20062 @cindex .sdata/.sdata2 references (PowerPC)
20063 On embedded PowerPC systems, put global and static items less than or
20064 equal to @var{num} bytes into the small data or BSS sections instead of
20065 the normal data or BSS section.  By default, @var{num} is 8.  The
20066 @option{-G @var{num}} switch is also passed to the linker.
20067 All modules should be compiled with the same @option{-G @var{num}} value.
20068
20069 @item -mregnames
20070 @itemx -mno-regnames
20071 @opindex mregnames
20072 @opindex mno-regnames
20073 On System V.4 and embedded PowerPC systems do (do not) emit register
20074 names in the assembly language output using symbolic forms.
20075
20076 @item -mlongcall
20077 @itemx -mno-longcall
20078 @opindex mlongcall
20079 @opindex mno-longcall
20080 By default assume that all calls are far away so that a longer and more
20081 expensive calling sequence is required.  This is required for calls
20082 farther than 32 megabytes (33,554,432 bytes) from the current location.
20083 A short call is generated if the compiler knows
20084 the call cannot be that far away.  This setting can be overridden by
20085 the @code{shortcall} function attribute, or by @code{#pragma
20086 longcall(0)}.
20087
20088 Some linkers are capable of detecting out-of-range calls and generating
20089 glue code on the fly.  On these systems, long calls are unnecessary and
20090 generate slower code.  As of this writing, the AIX linker can do this,
20091 as can the GNU linker for PowerPC/64.  It is planned to add this feature
20092 to the GNU linker for 32-bit PowerPC systems as well.
20093
20094 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20095 callee, L42}, plus a @dfn{branch island} (glue code).  The two target
20096 addresses represent the callee and the branch island.  The
20097 Darwin/PPC linker prefers the first address and generates a @code{bl
20098 callee} if the PPC @code{bl} instruction reaches the callee directly;
20099 otherwise, the linker generates @code{bl L42} to call the branch
20100 island.  The branch island is appended to the body of the
20101 calling function; it computes the full 32-bit address of the callee
20102 and jumps to it.
20103
20104 On Mach-O (Darwin) systems, this option directs the compiler emit to
20105 the glue for every direct call, and the Darwin linker decides whether
20106 to use or discard it.
20107
20108 In the future, GCC may ignore all longcall specifications
20109 when the linker is known to generate glue.
20110
20111 @item -mtls-markers
20112 @itemx -mno-tls-markers
20113 @opindex mtls-markers
20114 @opindex mno-tls-markers
20115 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20116 specifying the function argument.  The relocation allows the linker to
20117 reliably associate function call with argument setup instructions for
20118 TLS optimization, which in turn allows GCC to better schedule the
20119 sequence.
20120
20121 @item -pthread
20122 @opindex pthread
20123 Adds support for multithreading with the @dfn{pthreads} library.
20124 This option sets flags for both the preprocessor and linker.
20125
20126 @item -mrecip
20127 @itemx -mno-recip
20128 @opindex mrecip
20129 This option enables use of the reciprocal estimate and
20130 reciprocal square root estimate instructions with additional
20131 Newton-Raphson steps to increase precision instead of doing a divide or
20132 square root and divide for floating-point arguments.  You should use
20133 the @option{-ffast-math} option when using @option{-mrecip} (or at
20134 least @option{-funsafe-math-optimizations},
20135 @option{-finite-math-only}, @option{-freciprocal-math} and
20136 @option{-fno-trapping-math}).  Note that while the throughput of the
20137 sequence is generally higher than the throughput of the non-reciprocal
20138 instruction, the precision of the sequence can be decreased by up to 2
20139 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20140 roots.
20141
20142 @item -mrecip=@var{opt}
20143 @opindex mrecip=opt
20144 This option controls which reciprocal estimate instructions
20145 may be used.  @var{opt} is a comma-separated list of options, which may
20146 be preceded by a @code{!} to invert the option:
20147
20148 @table @samp
20149
20150 @item all
20151 Enable all estimate instructions.
20152
20153 @item default 
20154 Enable the default instructions, equivalent to @option{-mrecip}.
20155
20156 @item none 
20157 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20158
20159 @item div 
20160 Enable the reciprocal approximation instructions for both 
20161 single and double precision.
20162
20163 @item divf 
20164 Enable the single-precision reciprocal approximation instructions.
20165
20166 @item divd 
20167 Enable the double-precision reciprocal approximation instructions.
20168
20169 @item rsqrt 
20170 Enable the reciprocal square root approximation instructions for both
20171 single and double precision.
20172
20173 @item rsqrtf 
20174 Enable the single-precision reciprocal square root approximation instructions.
20175
20176 @item rsqrtd 
20177 Enable the double-precision reciprocal square root approximation instructions.
20178
20179 @end table
20180
20181 So, for example, @option{-mrecip=all,!rsqrtd} enables
20182 all of the reciprocal estimate instructions, except for the
20183 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20184 which handle the double-precision reciprocal square root calculations.
20185
20186 @item -mrecip-precision
20187 @itemx -mno-recip-precision
20188 @opindex mrecip-precision
20189 Assume (do not assume) that the reciprocal estimate instructions
20190 provide higher-precision estimates than is mandated by the PowerPC
20191 ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20192 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20193 The double-precision square root estimate instructions are not generated by
20194 default on low-precision machines, since they do not provide an
20195 estimate that converges after three steps.
20196
20197 @item -mveclibabi=@var{type}
20198 @opindex mveclibabi
20199 Specifies the ABI type to use for vectorizing intrinsics using an
20200 external library.  The only type supported at present is @samp{mass},
20201 which specifies to use IBM's Mathematical Acceleration Subsystem
20202 (MASS) libraries for vectorizing intrinsics using external libraries.
20203 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20204 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20205 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20206 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20207 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20208 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20209 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20210 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20211 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20212 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20213 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20214 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20215 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20216 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20217 for power7.  Both @option{-ftree-vectorize} and
20218 @option{-funsafe-math-optimizations} must also be enabled.  The MASS
20219 libraries must be specified at link time.
20220
20221 @item -mfriz
20222 @itemx -mno-friz
20223 @opindex mfriz
20224 Generate (do not generate) the @code{friz} instruction when the
20225 @option{-funsafe-math-optimizations} option is used to optimize
20226 rounding of floating-point values to 64-bit integer and back to floating
20227 point.  The @code{friz} instruction does not return the same value if
20228 the floating-point number is too large to fit in an integer.
20229
20230 @item -mpointers-to-nested-functions
20231 @itemx -mno-pointers-to-nested-functions
20232 @opindex mpointers-to-nested-functions
20233 Generate (do not generate) code to load up the static chain register
20234 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20235 systems where a function pointer points to a 3-word descriptor giving
20236 the function address, TOC value to be loaded in register @code{r2}, and
20237 static chain value to be loaded in register @code{r11}.  The
20238 @option{-mpointers-to-nested-functions} is on by default.  You cannot
20239 call through pointers to nested functions or pointers
20240 to functions compiled in other languages that use the static chain if
20241 you use @option{-mno-pointers-to-nested-functions}.
20242
20243 @item -msave-toc-indirect
20244 @itemx -mno-save-toc-indirect
20245 @opindex msave-toc-indirect
20246 Generate (do not generate) code to save the TOC value in the reserved
20247 stack location in the function prologue if the function calls through
20248 a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
20249 saved in the prologue, it is saved just before the call through the
20250 pointer.  The @option{-mno-save-toc-indirect} option is the default.
20251
20252 @item -mcompat-align-parm
20253 @itemx -mno-compat-align-parm
20254 @opindex mcompat-align-parm
20255 Generate (do not generate) code to pass structure parameters with a
20256 maximum alignment of 64 bits, for compatibility with older versions
20257 of GCC.
20258
20259 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20260 structure parameter on a 128-bit boundary when that structure contained
20261 a member requiring 128-bit alignment.  This is corrected in more
20262 recent versions of GCC.  This option may be used to generate code
20263 that is compatible with functions compiled with older versions of
20264 GCC.
20265
20266 The @option{-mno-compat-align-parm} option is the default.
20267 @end table
20268
20269 @node RX Options
20270 @subsection RX Options
20271 @cindex RX Options
20272
20273 These command-line options are defined for RX targets:
20274
20275 @table @gcctabopt
20276 @item -m64bit-doubles
20277 @itemx -m32bit-doubles
20278 @opindex m64bit-doubles
20279 @opindex m32bit-doubles
20280 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20281 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
20282 @option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
20283 works on 32-bit values, which is why the default is
20284 @option{-m32bit-doubles}.
20285
20286 @item -fpu
20287 @itemx -nofpu
20288 @opindex fpu
20289 @opindex nofpu
20290 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20291 floating-point hardware.  The default is enabled for the RX600
20292 series and disabled for the RX200 series.
20293
20294 Floating-point instructions are only generated for 32-bit floating-point 
20295 values, however, so the FPU hardware is not used for doubles if the
20296 @option{-m64bit-doubles} option is used.
20297
20298 @emph{Note} If the @option{-fpu} option is enabled then
20299 @option{-funsafe-math-optimizations} is also enabled automatically.
20300 This is because the RX FPU instructions are themselves unsafe.
20301
20302 @item -mcpu=@var{name}
20303 @opindex mcpu
20304 Selects the type of RX CPU to be targeted.  Currently three types are
20305 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20306 the specific @samp{RX610} CPU.  The default is @samp{RX600}.
20307
20308 The only difference between @samp{RX600} and @samp{RX610} is that the
20309 @samp{RX610} does not support the @code{MVTIPL} instruction.
20310
20311 The @samp{RX200} series does not have a hardware floating-point unit
20312 and so @option{-nofpu} is enabled by default when this type is
20313 selected.
20314
20315 @item -mbig-endian-data
20316 @itemx -mlittle-endian-data
20317 @opindex mbig-endian-data
20318 @opindex mlittle-endian-data
20319 Store data (but not code) in the big-endian format.  The default is
20320 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20321 format.
20322
20323 @item -msmall-data-limit=@var{N}
20324 @opindex msmall-data-limit
20325 Specifies the maximum size in bytes of global and static variables
20326 which can be placed into the small data area.  Using the small data
20327 area can lead to smaller and faster code, but the size of area is
20328 limited and it is up to the programmer to ensure that the area does
20329 not overflow.  Also when the small data area is used one of the RX's
20330 registers (usually @code{r13}) is reserved for use pointing to this
20331 area, so it is no longer available for use by the compiler.  This
20332 could result in slower and/or larger code if variables are pushed onto
20333 the stack instead of being held in this register.
20334
20335 Note, common variables (variables that have not been initialized) and
20336 constants are not placed into the small data area as they are assigned
20337 to other sections in the output executable.
20338
20339 The default value is zero, which disables this feature.  Note, this
20340 feature is not enabled by default with higher optimization levels
20341 (@option{-O2} etc) because of the potentially detrimental effects of
20342 reserving a register.  It is up to the programmer to experiment and
20343 discover whether this feature is of benefit to their program.  See the
20344 description of the @option{-mpid} option for a description of how the
20345 actual register to hold the small data area pointer is chosen.
20346
20347 @item -msim
20348 @itemx -mno-sim
20349 @opindex msim
20350 @opindex mno-sim
20351 Use the simulator runtime.  The default is to use the libgloss
20352 board-specific runtime.
20353
20354 @item -mas100-syntax
20355 @itemx -mno-as100-syntax
20356 @opindex mas100-syntax
20357 @opindex mno-as100-syntax
20358 When generating assembler output use a syntax that is compatible with
20359 Renesas's AS100 assembler.  This syntax can also be handled by the GAS
20360 assembler, but it has some restrictions so it is not generated by default.
20361
20362 @item -mmax-constant-size=@var{N}
20363 @opindex mmax-constant-size
20364 Specifies the maximum size, in bytes, of a constant that can be used as
20365 an operand in a RX instruction.  Although the RX instruction set does
20366 allow constants of up to 4 bytes in length to be used in instructions,
20367 a longer value equates to a longer instruction.  Thus in some
20368 circumstances it can be beneficial to restrict the size of constants
20369 that are used in instructions.  Constants that are too big are instead
20370 placed into a constant pool and referenced via register indirection.
20371
20372 The value @var{N} can be between 0 and 4.  A value of 0 (the default)
20373 or 4 means that constants of any size are allowed.
20374
20375 @item -mrelax
20376 @opindex mrelax
20377 Enable linker relaxation.  Linker relaxation is a process whereby the
20378 linker attempts to reduce the size of a program by finding shorter
20379 versions of various instructions.  Disabled by default.
20380
20381 @item -mint-register=@var{N}
20382 @opindex mint-register
20383 Specify the number of registers to reserve for fast interrupt handler
20384 functions.  The value @var{N} can be between 0 and 4.  A value of 1
20385 means that register @code{r13} is reserved for the exclusive use
20386 of fast interrupt handlers.  A value of 2 reserves @code{r13} and
20387 @code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
20388 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20389 A value of 0, the default, does not reserve any registers.
20390
20391 @item -msave-acc-in-interrupts
20392 @opindex msave-acc-in-interrupts
20393 Specifies that interrupt handler functions should preserve the
20394 accumulator register.  This is only necessary if normal code might use
20395 the accumulator register, for example because it performs 64-bit
20396 multiplications.  The default is to ignore the accumulator as this
20397 makes the interrupt handlers faster.
20398
20399 @item -mpid
20400 @itemx -mno-pid
20401 @opindex mpid
20402 @opindex mno-pid
20403 Enables the generation of position independent data.  When enabled any
20404 access to constant data is done via an offset from a base address
20405 held in a register.  This allows the location of constant data to be
20406 determined at run time without requiring the executable to be
20407 relocated, which is a benefit to embedded applications with tight
20408 memory constraints.  Data that can be modified is not affected by this
20409 option.
20410
20411 Note, using this feature reserves a register, usually @code{r13}, for
20412 the constant data base address.  This can result in slower and/or
20413 larger code, especially in complicated functions.
20414
20415 The actual register chosen to hold the constant data base address
20416 depends upon whether the @option{-msmall-data-limit} and/or the
20417 @option{-mint-register} command-line options are enabled.  Starting
20418 with register @code{r13} and proceeding downwards, registers are
20419 allocated first to satisfy the requirements of @option{-mint-register},
20420 then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
20421 is possible for the small data area register to be @code{r8} if both
20422 @option{-mint-register=4} and @option{-mpid} are specified on the
20423 command line.
20424
20425 By default this feature is not enabled.  The default can be restored
20426 via the @option{-mno-pid} command-line option.
20427
20428 @item -mno-warn-multiple-fast-interrupts
20429 @itemx -mwarn-multiple-fast-interrupts
20430 @opindex mno-warn-multiple-fast-interrupts
20431 @opindex mwarn-multiple-fast-interrupts
20432 Prevents GCC from issuing a warning message if it finds more than one
20433 fast interrupt handler when it is compiling a file.  The default is to
20434 issue a warning for each extra fast interrupt handler found, as the RX
20435 only supports one such interrupt.
20436
20437 @item -mallow-string-insns
20438 @itemx -mno-allow-string-insns
20439 @opindex mallow-string-insns
20440 @opindex mno-allow-string-insns
20441 Enables or disables the use of the string manipulation instructions
20442 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20443 @code{SWHILE} and also the @code{RMPA} instruction.  These
20444 instructions may prefetch data, which is not safe to do if accessing
20445 an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
20446 for more information).
20447
20448 The default is to allow these instructions, but it is not possible for
20449 GCC to reliably detect all circumstances where a string instruction
20450 might be used to access an I/O register, so their use cannot be
20451 disabled automatically.  Instead it is reliant upon the programmer to
20452 use the @option{-mno-allow-string-insns} option if their program
20453 accesses I/O space.
20454
20455 When the instructions are enabled GCC defines the C preprocessor
20456 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20457 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20458 @end table
20459
20460 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20461 has special significance to the RX port when used with the
20462 @code{interrupt} function attribute.  This attribute indicates a
20463 function intended to process fast interrupts.  GCC ensures
20464 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20465 and/or @code{r13} and only provided that the normal use of the
20466 corresponding registers have been restricted via the
20467 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20468 options.
20469
20470 @node S/390 and zSeries Options
20471 @subsection S/390 and zSeries Options
20472 @cindex S/390 and zSeries Options
20473
20474 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20475
20476 @table @gcctabopt
20477 @item -mhard-float
20478 @itemx -msoft-float
20479 @opindex mhard-float
20480 @opindex msoft-float
20481 Use (do not use) the hardware floating-point instructions and registers
20482 for floating-point operations.  When @option{-msoft-float} is specified,
20483 functions in @file{libgcc.a} are used to perform floating-point
20484 operations.  When @option{-mhard-float} is specified, the compiler
20485 generates IEEE floating-point instructions.  This is the default.
20486
20487 @item -mhard-dfp
20488 @itemx -mno-hard-dfp
20489 @opindex mhard-dfp
20490 @opindex mno-hard-dfp
20491 Use (do not use) the hardware decimal-floating-point instructions for
20492 decimal-floating-point operations.  When @option{-mno-hard-dfp} is
20493 specified, functions in @file{libgcc.a} are used to perform
20494 decimal-floating-point operations.  When @option{-mhard-dfp} is
20495 specified, the compiler generates decimal-floating-point hardware
20496 instructions.  This is the default for @option{-march=z9-ec} or higher.
20497
20498 @item -mlong-double-64
20499 @itemx -mlong-double-128
20500 @opindex mlong-double-64
20501 @opindex mlong-double-128
20502 These switches control the size of @code{long double} type. A size
20503 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20504 type. This is the default.
20505
20506 @item -mbackchain
20507 @itemx -mno-backchain
20508 @opindex mbackchain
20509 @opindex mno-backchain
20510 Store (do not store) the address of the caller's frame as backchain pointer
20511 into the callee's stack frame.
20512 A backchain may be needed to allow debugging using tools that do not understand
20513 DWARF 2 call frame information.
20514 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20515 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20516 the backchain is placed into the topmost word of the 96/160 byte register
20517 save area.
20518
20519 In general, code compiled with @option{-mbackchain} is call-compatible with
20520 code compiled with @option{-mmo-backchain}; however, use of the backchain
20521 for debugging purposes usually requires that the whole binary is built with
20522 @option{-mbackchain}.  Note that the combination of @option{-mbackchain},
20523 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20524 to build a linux kernel use @option{-msoft-float}.
20525
20526 The default is to not maintain the backchain.
20527
20528 @item -mpacked-stack
20529 @itemx -mno-packed-stack
20530 @opindex mpacked-stack
20531 @opindex mno-packed-stack
20532 Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
20533 specified, the compiler uses the all fields of the 96/160 byte register save
20534 area only for their default purpose; unused fields still take up stack space.
20535 When @option{-mpacked-stack} is specified, register save slots are densely
20536 packed at the top of the register save area; unused space is reused for other
20537 purposes, allowing for more efficient use of the available stack space.
20538 However, when @option{-mbackchain} is also in effect, the topmost word of
20539 the save area is always used to store the backchain, and the return address
20540 register is always saved two words below the backchain.
20541
20542 As long as the stack frame backchain is not used, code generated with
20543 @option{-mpacked-stack} is call-compatible with code generated with
20544 @option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
20545 S/390 or zSeries generated code that uses the stack frame backchain at run
20546 time, not just for debugging purposes.  Such code is not call-compatible
20547 with code compiled with @option{-mpacked-stack}.  Also, note that the
20548 combination of @option{-mbackchain},
20549 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20550 to build a linux kernel use @option{-msoft-float}.
20551
20552 The default is to not use the packed stack layout.
20553
20554 @item -msmall-exec
20555 @itemx -mno-small-exec
20556 @opindex msmall-exec
20557 @opindex mno-small-exec
20558 Generate (or do not generate) code using the @code{bras} instruction
20559 to do subroutine calls.
20560 This only works reliably if the total executable size does not
20561 exceed 64k.  The default is to use the @code{basr} instruction instead,
20562 which does not have this limitation.
20563
20564 @item -m64
20565 @itemx -m31
20566 @opindex m64
20567 @opindex m31
20568 When @option{-m31} is specified, generate code compliant to the
20569 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
20570 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
20571 particular to generate 64-bit instructions.  For the @samp{s390}
20572 targets, the default is @option{-m31}, while the @samp{s390x}
20573 targets default to @option{-m64}.
20574
20575 @item -mzarch
20576 @itemx -mesa
20577 @opindex mzarch
20578 @opindex mesa
20579 When @option{-mzarch} is specified, generate code using the
20580 instructions available on z/Architecture.
20581 When @option{-mesa} is specified, generate code using the
20582 instructions available on ESA/390.  Note that @option{-mesa} is
20583 not possible with @option{-m64}.
20584 When generating code compliant to the GNU/Linux for S/390 ABI,
20585 the default is @option{-mesa}.  When generating code compliant
20586 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20587
20588 @item -mhtm
20589 @itemx -mno-htm
20590 @opindex mhtm
20591 @opindex mno-htm
20592 The @option{-mhtm} option enables a set of builtins making use of
20593 instructions available with the transactional execution facility
20594 introduced with the IBM zEnterprise EC12 machine generation
20595 @ref{S/390 System z Built-in Functions}.
20596 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
20597
20598 @item -mvx
20599 @itemx -mno-vx
20600 @opindex mvx
20601 @opindex mno-vx
20602 When @option{-mvx} is specified, generate code using the instructions
20603 available with the vector extension facility introduced with the IBM
20604 z13 machine generation.
20605 This option changes the ABI for some vector type values with regard to
20606 alignment and calling conventions.  In case vector type values are
20607 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
20608 command will be added to mark the resulting binary with the ABI used.
20609 @option{-mvx} is enabled by default when using @option{-march=z13}.
20610
20611 @item -mzvector
20612 @itemx -mno-zvector
20613 @opindex mzvector
20614 @opindex mno-zvector
20615 The @option{-mzvector} option enables vector language extensions and
20616 builtins using instructions available with the vector extension
20617 facility introduced with the IBM z13 machine generation.
20618 This option adds support for @samp{vector} to be used as a keyword to
20619 define vector type variables and arguments.  @samp{vector} is only
20620 available when GNU extensions are enabled.  It will not be expanded
20621 when requesting strict standard compliance e.g. with @option{-std=c99}.
20622 In addition to the GCC low-level builtins @option{-mzvector} enables
20623 a set of builtins added for compatibility with Altivec-style
20624 implementations like Power and Cell.  In order to make use of these
20625 builtins the header file @file{vecintrin.h} needs to be included.
20626 @option{-mzvector} is disabled by default.
20627
20628 @item -mmvcle
20629 @itemx -mno-mvcle
20630 @opindex mmvcle
20631 @opindex mno-mvcle
20632 Generate (or do not generate) code using the @code{mvcle} instruction
20633 to perform block moves.  When @option{-mno-mvcle} is specified,
20634 use a @code{mvc} loop instead.  This is the default unless optimizing for
20635 size.
20636
20637 @item -mdebug
20638 @itemx -mno-debug
20639 @opindex mdebug
20640 @opindex mno-debug
20641 Print (or do not print) additional debug information when compiling.
20642 The default is to not print debug information.
20643
20644 @item -march=@var{cpu-type}
20645 @opindex march
20646 Generate code that runs on @var{cpu-type}, which is the name of a system
20647 representing a certain processor type.  Possible values for
20648 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20649 @samp{z9-109}, @samp{z9-ec}, @samp{z10},  @samp{z196}, @samp{zEC12},
20650 and @samp{z13}.
20651 When generating code using the instructions available on z/Architecture,
20652 the default is @option{-march=z900}.  Otherwise, the default is
20653 @option{-march=g5}.
20654
20655 @item -mtune=@var{cpu-type}
20656 @opindex mtune
20657 Tune to @var{cpu-type} everything applicable about the generated code,
20658 except for the ABI and the set of available instructions.
20659 The list of @var{cpu-type} values is the same as for @option{-march}.
20660 The default is the value used for @option{-march}.
20661
20662 @item -mtpf-trace
20663 @itemx -mno-tpf-trace
20664 @opindex mtpf-trace
20665 @opindex mno-tpf-trace
20666 Generate code that adds (does not add) in TPF OS specific branches to trace
20667 routines in the operating system.  This option is off by default, even
20668 when compiling for the TPF OS@.
20669
20670 @item -mfused-madd
20671 @itemx -mno-fused-madd
20672 @opindex mfused-madd
20673 @opindex mno-fused-madd
20674 Generate code that uses (does not use) the floating-point multiply and
20675 accumulate instructions.  These instructions are generated by default if
20676 hardware floating point is used.
20677
20678 @item -mwarn-framesize=@var{framesize}
20679 @opindex mwarn-framesize
20680 Emit a warning if the current function exceeds the given frame size.  Because
20681 this is a compile-time check it doesn't need to be a real problem when the program
20682 runs.  It is intended to identify functions that most probably cause
20683 a stack overflow.  It is useful to be used in an environment with limited stack
20684 size e.g.@: the linux kernel.
20685
20686 @item -mwarn-dynamicstack
20687 @opindex mwarn-dynamicstack
20688 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20689 arrays.  This is generally a bad idea with a limited stack size.
20690
20691 @item -mstack-guard=@var{stack-guard}
20692 @itemx -mstack-size=@var{stack-size}
20693 @opindex mstack-guard
20694 @opindex mstack-size
20695 If these options are provided the S/390 back end emits additional instructions in
20696 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20697 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20698 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20699 the frame size of the compiled function is chosen.
20700 These options are intended to be used to help debugging stack overflow problems.
20701 The additionally emitted code causes only little overhead and hence can also be
20702 used in production-like systems without greater performance degradation.  The given
20703 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20704 @var{stack-guard} without exceeding 64k.
20705 In order to be efficient the extra code makes the assumption that the stack starts
20706 at an address aligned to the value given by @var{stack-size}.
20707 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20708
20709 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20710 @opindex mhotpatch
20711 If the hotpatch option is enabled, a ``hot-patching'' function
20712 prologue is generated for all functions in the compilation unit.
20713 The funtion label is prepended with the given number of two-byte
20714 NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
20715 the label, 2 * @var{post-halfwords} bytes are appended, using the
20716 largest NOP like instructions the architecture allows (maximum
20717 1000000).
20718
20719 If both arguments are zero, hotpatching is disabled.
20720
20721 This option can be overridden for individual functions with the
20722 @code{hotpatch} attribute.
20723 @end table
20724
20725 @node Score Options
20726 @subsection Score Options
20727 @cindex Score Options
20728
20729 These options are defined for Score implementations:
20730
20731 @table @gcctabopt
20732 @item -meb
20733 @opindex meb
20734 Compile code for big-endian mode.  This is the default.
20735
20736 @item -mel
20737 @opindex mel
20738 Compile code for little-endian mode.
20739
20740 @item -mnhwloop
20741 @opindex mnhwloop
20742 Disable generation of @code{bcnz} instructions.
20743
20744 @item -muls
20745 @opindex muls
20746 Enable generation of unaligned load and store instructions.
20747
20748 @item -mmac
20749 @opindex mmac
20750 Enable the use of multiply-accumulate instructions. Disabled by default.
20751
20752 @item -mscore5
20753 @opindex mscore5
20754 Specify the SCORE5 as the target architecture.
20755
20756 @item -mscore5u
20757 @opindex mscore5u
20758 Specify the SCORE5U of the target architecture.
20759
20760 @item -mscore7
20761 @opindex mscore7
20762 Specify the SCORE7 as the target architecture. This is the default.
20763
20764 @item -mscore7d
20765 @opindex mscore7d
20766 Specify the SCORE7D as the target architecture.
20767 @end table
20768
20769 @node SH Options
20770 @subsection SH Options
20771
20772 These @samp{-m} options are defined for the SH implementations:
20773
20774 @table @gcctabopt
20775 @item -m1
20776 @opindex m1
20777 Generate code for the SH1.
20778
20779 @item -m2
20780 @opindex m2
20781 Generate code for the SH2.
20782
20783 @item -m2e
20784 Generate code for the SH2e.
20785
20786 @item -m2a-nofpu
20787 @opindex m2a-nofpu
20788 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20789 that the floating-point unit is not used.
20790
20791 @item -m2a-single-only
20792 @opindex m2a-single-only
20793 Generate code for the SH2a-FPU, in such a way that no double-precision
20794 floating-point operations are used.
20795
20796 @item -m2a-single
20797 @opindex m2a-single
20798 Generate code for the SH2a-FPU assuming the floating-point unit is in
20799 single-precision mode by default.
20800
20801 @item -m2a
20802 @opindex m2a
20803 Generate code for the SH2a-FPU assuming the floating-point unit is in
20804 double-precision mode by default.
20805
20806 @item -m3
20807 @opindex m3
20808 Generate code for the SH3.
20809
20810 @item -m3e
20811 @opindex m3e
20812 Generate code for the SH3e.
20813
20814 @item -m4-nofpu
20815 @opindex m4-nofpu
20816 Generate code for the SH4 without a floating-point unit.
20817
20818 @item -m4-single-only
20819 @opindex m4-single-only
20820 Generate code for the SH4 with a floating-point unit that only
20821 supports single-precision arithmetic.
20822
20823 @item -m4-single
20824 @opindex m4-single
20825 Generate code for the SH4 assuming the floating-point unit is in
20826 single-precision mode by default.
20827
20828 @item -m4
20829 @opindex m4
20830 Generate code for the SH4.
20831
20832 @item -m4-100
20833 @opindex m4-100
20834 Generate code for SH4-100.
20835
20836 @item -m4-100-nofpu
20837 @opindex m4-100-nofpu
20838 Generate code for SH4-100 in such a way that the
20839 floating-point unit is not used.
20840
20841 @item -m4-100-single
20842 @opindex m4-100-single
20843 Generate code for SH4-100 assuming the floating-point unit is in
20844 single-precision mode by default.
20845
20846 @item -m4-100-single-only
20847 @opindex m4-100-single-only
20848 Generate code for SH4-100 in such a way that no double-precision
20849 floating-point operations are used.
20850
20851 @item -m4-200
20852 @opindex m4-200
20853 Generate code for SH4-200.
20854
20855 @item -m4-200-nofpu
20856 @opindex m4-200-nofpu
20857 Generate code for SH4-200 without in such a way that the
20858 floating-point unit is not used.
20859
20860 @item -m4-200-single
20861 @opindex m4-200-single
20862 Generate code for SH4-200 assuming the floating-point unit is in
20863 single-precision mode by default.
20864
20865 @item -m4-200-single-only
20866 @opindex m4-200-single-only
20867 Generate code for SH4-200 in such a way that no double-precision
20868 floating-point operations are used.
20869
20870 @item -m4-300
20871 @opindex m4-300
20872 Generate code for SH4-300.
20873
20874 @item -m4-300-nofpu
20875 @opindex m4-300-nofpu
20876 Generate code for SH4-300 without in such a way that the
20877 floating-point unit is not used.
20878
20879 @item -m4-300-single
20880 @opindex m4-300-single
20881 Generate code for SH4-300 in such a way that no double-precision
20882 floating-point operations are used.
20883
20884 @item -m4-300-single-only
20885 @opindex m4-300-single-only
20886 Generate code for SH4-300 in such a way that no double-precision
20887 floating-point operations are used.
20888
20889 @item -m4-340
20890 @opindex m4-340
20891 Generate code for SH4-340 (no MMU, no FPU).
20892
20893 @item -m4-500
20894 @opindex m4-500
20895 Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
20896 assembler.
20897
20898 @item -m4a-nofpu
20899 @opindex m4a-nofpu
20900 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20901 floating-point unit is not used.
20902
20903 @item -m4a-single-only
20904 @opindex m4a-single-only
20905 Generate code for the SH4a, in such a way that no double-precision
20906 floating-point operations are used.
20907
20908 @item -m4a-single
20909 @opindex m4a-single
20910 Generate code for the SH4a assuming the floating-point unit is in
20911 single-precision mode by default.
20912
20913 @item -m4a
20914 @opindex m4a
20915 Generate code for the SH4a.
20916
20917 @item -m4al
20918 @opindex m4al
20919 Same as @option{-m4a-nofpu}, except that it implicitly passes
20920 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
20921 instructions at the moment.
20922
20923 @item -mb
20924 @opindex mb
20925 Compile code for the processor in big-endian mode.
20926
20927 @item -ml
20928 @opindex ml
20929 Compile code for the processor in little-endian mode.
20930
20931 @item -mdalign
20932 @opindex mdalign
20933 Align doubles at 64-bit boundaries.  Note that this changes the calling
20934 conventions, and thus some functions from the standard C library do
20935 not work unless you recompile it first with @option{-mdalign}.
20936
20937 @item -mrelax
20938 @opindex mrelax
20939 Shorten some address references at link time, when possible; uses the
20940 linker option @option{-relax}.
20941
20942 @item -mbigtable
20943 @opindex mbigtable
20944 Use 32-bit offsets in @code{switch} tables.  The default is to use
20945 16-bit offsets.
20946
20947 @item -mbitops
20948 @opindex mbitops
20949 Enable the use of bit manipulation instructions on SH2A.
20950
20951 @item -mfmovd
20952 @opindex mfmovd
20953 Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
20954 alignment constraints.
20955
20956 @item -mrenesas
20957 @opindex mrenesas
20958 Comply with the calling conventions defined by Renesas.
20959
20960 @item -mno-renesas
20961 @opindex mno-renesas
20962 Comply with the calling conventions defined for GCC before the Renesas
20963 conventions were available.  This option is the default for all
20964 targets of the SH toolchain.
20965
20966 @item -mnomacsave
20967 @opindex mnomacsave
20968 Mark the @code{MAC} register as call-clobbered, even if
20969 @option{-mrenesas} is given.
20970
20971 @item -mieee
20972 @itemx -mno-ieee
20973 @opindex mieee
20974 @opindex mno-ieee
20975 Control the IEEE compliance of floating-point comparisons, which affects the
20976 handling of cases where the result of a comparison is unordered.  By default
20977 @option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
20978 enabled @option{-mno-ieee} is implicitly set, which results in faster
20979 floating-point greater-equal and less-equal comparisons.  The implcit settings
20980 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20981
20982 @item -minline-ic_invalidate
20983 @opindex minline-ic_invalidate
20984 Inline code to invalidate instruction cache entries after setting up
20985 nested function trampolines.
20986 This option has no effect if @option{-musermode} is in effect and the selected
20987 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20988 instruction.
20989 If the selected code generation option does not allow the use of the @code{icbi}
20990 instruction, and @option{-musermode} is not in effect, the inlined code
20991 manipulates the instruction cache address array directly with an associative
20992 write.  This not only requires privileged mode at run time, but it also
20993 fails if the cache line had been mapped via the TLB and has become unmapped.
20994
20995 @item -misize
20996 @opindex misize
20997 Dump instruction size and location in the assembly code.
20998
20999 @item -mpadstruct
21000 @opindex mpadstruct
21001 This option is deprecated.  It pads structures to multiple of 4 bytes,
21002 which is incompatible with the SH ABI@.
21003
21004 @item -matomic-model=@var{model}
21005 @opindex matomic-model=@var{model}
21006 Sets the model of atomic operations and additional parameters as a comma
21007 separated list.  For details on the atomic built-in functions see
21008 @ref{__atomic Builtins}.  The following models and parameters are supported:
21009
21010 @table @samp
21011
21012 @item none
21013 Disable compiler generated atomic sequences and emit library calls for atomic
21014 operations.  This is the default if the target is not @code{sh*-*-linux*}.
21015
21016 @item soft-gusa
21017 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
21018 built-in functions.  The generated atomic sequences require additional support
21019 from the interrupt/exception handling code of the system and are only suitable
21020 for SH3* and SH4* single-core systems.  This option is enabled by default when
21021 the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
21022 this option also partially utilizes the hardware atomic instructions
21023 @code{movli.l} and @code{movco.l} to create more efficient code, unless
21024 @samp{strict} is specified.  
21025
21026 @item soft-tcb
21027 Generate software atomic sequences that use a variable in the thread control
21028 block.  This is a variation of the gUSA sequences which can also be used on
21029 SH1* and SH2* targets.  The generated atomic sequences require additional
21030 support from the interrupt/exception handling code of the system and are only
21031 suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
21032 parameter has to be specified as well.
21033
21034 @item soft-imask
21035 Generate software atomic sequences that temporarily disable interrupts by
21036 setting @code{SR.IMASK = 1111}.  This model works only when the program runs
21037 in privileged mode and is only suitable for single-core systems.  Additional
21038 support from the interrupt/exception handling code of the system is not
21039 required.  This model is enabled by default when the target is
21040 @code{sh*-*-linux*} and SH1* or SH2*.
21041
21042 @item hard-llcs
21043 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
21044 instructions only.  This is only available on SH4A and is suitable for
21045 multi-core systems.  Since the hardware instructions support only 32 bit atomic
21046 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
21047 Code compiled with this option is also compatible with other software
21048 atomic model interrupt/exception handling systems if executed on an SH4A
21049 system.  Additional support from the interrupt/exception handling code of the
21050 system is not required for this model.
21051
21052 @item gbr-offset=
21053 This parameter specifies the offset in bytes of the variable in the thread
21054 control block structure that should be used by the generated atomic sequences
21055 when the @samp{soft-tcb} model has been selected.  For other models this
21056 parameter is ignored.  The specified value must be an integer multiple of four
21057 and in the range 0-1020.
21058
21059 @item strict
21060 This parameter prevents mixed usage of multiple atomic models, even if they
21061 are compatible, and makes the compiler generate atomic sequences of the
21062 specified model only.
21063
21064 @end table
21065
21066 @item -mtas
21067 @opindex mtas
21068 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21069 Notice that depending on the particular hardware and software configuration
21070 this can degrade overall performance due to the operand cache line flushes
21071 that are implied by the @code{tas.b} instruction.  On multi-core SH4A
21072 processors the @code{tas.b} instruction must be used with caution since it
21073 can result in data corruption for certain cache configurations.
21074
21075 @item -mprefergot
21076 @opindex mprefergot
21077 When generating position-independent code, emit function calls using
21078 the Global Offset Table instead of the Procedure Linkage Table.
21079
21080 @item -musermode
21081 @itemx -mno-usermode
21082 @opindex musermode
21083 @opindex mno-usermode
21084 Don't allow (allow) the compiler generating privileged mode code.  Specifying
21085 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21086 inlined code would not work in user mode.  @option{-musermode} is the default
21087 when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
21088 @option{-musermode} has no effect, since there is no user mode.
21089
21090 @item -multcost=@var{number}
21091 @opindex multcost=@var{number}
21092 Set the cost to assume for a multiply insn.
21093
21094 @item -mdiv=@var{strategy}
21095 @opindex mdiv=@var{strategy}
21096 Set the division strategy to be used for integer division operations.
21097 @var{strategy} can be one of: 
21098
21099 @table @samp
21100
21101 @item call-div1
21102 Calls a library function that uses the single-step division instruction
21103 @code{div1} to perform the operation.  Division by zero calculates an
21104 unspecified result and does not trap.  This is the default except for SH4,
21105 SH2A and SHcompact.
21106
21107 @item call-fp
21108 Calls a library function that performs the operation in double precision
21109 floating point.  Division by zero causes a floating-point exception.  This is
21110 the default for SHcompact with FPU.  Specifying this for targets that do not
21111 have a double precision FPU defaults to @code{call-div1}.
21112
21113 @item call-table
21114 Calls a library function that uses a lookup table for small divisors and
21115 the @code{div1} instruction with case distinction for larger divisors.  Division
21116 by zero calculates an unspecified result and does not trap.  This is the default
21117 for SH4.  Specifying this for targets that do not have dynamic shift
21118 instructions defaults to @code{call-div1}.
21119
21120 @end table
21121
21122 When a division strategy has not been specified the default strategy is
21123 selected based on the current target.  For SH2A the default strategy is to
21124 use the @code{divs} and @code{divu} instructions instead of library function
21125 calls.
21126
21127 @item -maccumulate-outgoing-args
21128 @opindex maccumulate-outgoing-args
21129 Reserve space once for outgoing arguments in the function prologue rather
21130 than around each call.  Generally beneficial for performance and size.  Also
21131 needed for unwinding to avoid changing the stack frame around conditional code.
21132
21133 @item -mdivsi3_libfunc=@var{name}
21134 @opindex mdivsi3_libfunc=@var{name}
21135 Set the name of the library function used for 32-bit signed division to
21136 @var{name}.
21137 This only affects the name used in the @samp{call} division strategies, and
21138 the compiler still expects the same sets of input/output/clobbered registers as
21139 if this option were not present.
21140
21141 @item -mfixed-range=@var{register-range}
21142 @opindex mfixed-range
21143 Generate code treating the given register range as fixed registers.
21144 A fixed register is one that the register allocator can not use.  This is
21145 useful when compiling kernel code.  A register range is specified as
21146 two registers separated by a dash.  Multiple register ranges can be
21147 specified separated by a comma.
21148
21149 @item -mbranch-cost=@var{num}
21150 @opindex mbranch-cost=@var{num}
21151 Assume @var{num} to be the cost for a branch instruction.  Higher numbers
21152 make the compiler try to generate more branch-free code if possible.  
21153 If not specified the value is selected depending on the processor type that
21154 is being compiled for.
21155
21156 @item -mzdcbranch
21157 @itemx -mno-zdcbranch
21158 @opindex mzdcbranch
21159 @opindex mno-zdcbranch
21160 Assume (do not assume) that zero displacement conditional branch instructions
21161 @code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
21162 compiler prefers zero displacement branch code sequences.  This is
21163 enabled by default when generating code for SH4 and SH4A.  It can be explicitly
21164 disabled by specifying @option{-mno-zdcbranch}.
21165
21166 @item -mcbranch-force-delay-slot
21167 @opindex mcbranch-force-delay-slot
21168 Force the usage of delay slots for conditional branches, which stuffs the delay
21169 slot with a @code{nop} if a suitable instruction can't be found.  By default
21170 this option is disabled.  It can be enabled to work around hardware bugs as
21171 found in the original SH7055.
21172
21173 @item -mfused-madd
21174 @itemx -mno-fused-madd
21175 @opindex mfused-madd
21176 @opindex mno-fused-madd
21177 Generate code that uses (does not use) the floating-point multiply and
21178 accumulate instructions.  These instructions are generated by default
21179 if hardware floating point is used.  The machine-dependent
21180 @option{-mfused-madd} option is now mapped to the machine-independent
21181 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21182 mapped to @option{-ffp-contract=off}.
21183
21184 @item -mfsca
21185 @itemx -mno-fsca
21186 @opindex mfsca
21187 @opindex mno-fsca
21188 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21189 and cosine approximations.  The option @option{-mfsca} must be used in
21190 combination with @option{-funsafe-math-optimizations}.  It is enabled by default
21191 when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
21192 approximations even if @option{-funsafe-math-optimizations} is in effect.
21193
21194 @item -mfsrra
21195 @itemx -mno-fsrra
21196 @opindex mfsrra
21197 @opindex mno-fsrra
21198 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21199 reciprocal square root approximations.  The option @option{-mfsrra} must be used
21200 in combination with @option{-funsafe-math-optimizations} and
21201 @option{-ffinite-math-only}.  It is enabled by default when generating code for
21202 SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
21203 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21204 in effect.
21205
21206 @item -mpretend-cmove
21207 @opindex mpretend-cmove
21208 Prefer zero-displacement conditional branches for conditional move instruction
21209 patterns.  This can result in faster code on the SH4 processor.
21210
21211 @end table
21212
21213 @node Solaris 2 Options
21214 @subsection Solaris 2 Options
21215 @cindex Solaris 2 options
21216
21217 These @samp{-m} options are supported on Solaris 2:
21218
21219 @table @gcctabopt
21220 @item -mclear-hwcap
21221 @opindex mclear-hwcap
21222 @option{-mclear-hwcap} tells the compiler to remove the hardware
21223 capabilities generated by the Solaris assembler.  This is only necessary
21224 when object files use ISA extensions not supported by the current
21225 machine, but check at runtime whether or not to use them.
21226
21227 @item -mimpure-text
21228 @opindex mimpure-text
21229 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21230 the compiler to not pass @option{-z text} to the linker when linking a
21231 shared object.  Using this option, you can link position-dependent
21232 code into a shared object.
21233
21234 @option{-mimpure-text} suppresses the ``relocations remain against
21235 allocatable but non-writable sections'' linker error message.
21236 However, the necessary relocations trigger copy-on-write, and the
21237 shared object is not actually shared across processes.  Instead of
21238 using @option{-mimpure-text}, you should compile all source code with
21239 @option{-fpic} or @option{-fPIC}.
21240
21241 @end table
21242
21243 These switches are supported in addition to the above on Solaris 2:
21244
21245 @table @gcctabopt
21246 @item -pthreads
21247 @opindex pthreads
21248 Add support for multithreading using the POSIX threads library.  This
21249 option sets flags for both the preprocessor and linker.  This option does
21250 not affect the thread safety of object code produced  by the compiler or
21251 that of libraries supplied with it.
21252
21253 @item -pthread
21254 @opindex pthread
21255 This is a synonym for @option{-pthreads}.
21256 @end table
21257
21258 @node SPARC Options
21259 @subsection SPARC Options
21260 @cindex SPARC options
21261
21262 These @samp{-m} options are supported on the SPARC:
21263
21264 @table @gcctabopt
21265 @item -mno-app-regs
21266 @itemx -mapp-regs
21267 @opindex mno-app-regs
21268 @opindex mapp-regs
21269 Specify @option{-mapp-regs} to generate output using the global registers
21270 2 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
21271 global register 1, each global register 2 through 4 is then treated as an
21272 allocable register that is clobbered by function calls.  This is the default.
21273
21274 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21275 specify @option{-mno-app-regs}.  You should compile libraries and system
21276 software with this option.
21277
21278 @item -mflat
21279 @itemx -mno-flat
21280 @opindex mflat
21281 @opindex mno-flat
21282 With @option{-mflat}, the compiler does not generate save/restore instructions
21283 and uses a ``flat'' or single register window model.  This model is compatible
21284 with the regular register window model.  The local registers and the input
21285 registers (0--5) are still treated as ``call-saved'' registers and are
21286 saved on the stack as needed.
21287
21288 With @option{-mno-flat} (the default), the compiler generates save/restore
21289 instructions (except for leaf functions).  This is the normal operating mode.
21290
21291 @item -mfpu
21292 @itemx -mhard-float
21293 @opindex mfpu
21294 @opindex mhard-float
21295 Generate output containing floating-point instructions.  This is the
21296 default.
21297
21298 @item -mno-fpu
21299 @itemx -msoft-float
21300 @opindex mno-fpu
21301 @opindex msoft-float
21302 Generate output containing library calls for floating point.
21303 @strong{Warning:} the requisite libraries are not available for all SPARC
21304 targets.  Normally the facilities of the machine's usual C compiler are
21305 used, but this cannot be done directly in cross-compilation.  You must make
21306 your own arrangements to provide suitable library functions for
21307 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
21308 @samp{sparclite-*-*} do provide software floating-point support.
21309
21310 @option{-msoft-float} changes the calling convention in the output file;
21311 therefore, it is only useful if you compile @emph{all} of a program with
21312 this option.  In particular, you need to compile @file{libgcc.a}, the
21313 library that comes with GCC, with @option{-msoft-float} in order for
21314 this to work.
21315
21316 @item -mhard-quad-float
21317 @opindex mhard-quad-float
21318 Generate output containing quad-word (long double) floating-point
21319 instructions.
21320
21321 @item -msoft-quad-float
21322 @opindex msoft-quad-float
21323 Generate output containing library calls for quad-word (long double)
21324 floating-point instructions.  The functions called are those specified
21325 in the SPARC ABI@.  This is the default.
21326
21327 As of this writing, there are no SPARC implementations that have hardware
21328 support for the quad-word floating-point instructions.  They all invoke
21329 a trap handler for one of these instructions, and then the trap handler
21330 emulates the effect of the instruction.  Because of the trap handler overhead,
21331 this is much slower than calling the ABI library routines.  Thus the
21332 @option{-msoft-quad-float} option is the default.
21333
21334 @item -mno-unaligned-doubles
21335 @itemx -munaligned-doubles
21336 @opindex mno-unaligned-doubles
21337 @opindex munaligned-doubles
21338 Assume that doubles have 8-byte alignment.  This is the default.
21339
21340 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21341 alignment only if they are contained in another type, or if they have an
21342 absolute address.  Otherwise, it assumes they have 4-byte alignment.
21343 Specifying this option avoids some rare compatibility problems with code
21344 generated by other compilers.  It is not the default because it results
21345 in a performance loss, especially for floating-point code.
21346
21347 @item -muser-mode
21348 @itemx -mno-user-mode
21349 @opindex muser-mode
21350 @opindex mno-user-mode
21351 Do not generate code that can only run in supervisor mode.  This is relevant
21352 only for the @code{casa} instruction emitted for the LEON3 processor.  This
21353 is the default.
21354
21355 @item -mno-faster-structs
21356 @itemx -mfaster-structs
21357 @opindex mno-faster-structs
21358 @opindex mfaster-structs
21359 With @option{-mfaster-structs}, the compiler assumes that structures
21360 should have 8-byte alignment.  This enables the use of pairs of
21361 @code{ldd} and @code{std} instructions for copies in structure
21362 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21363 However, the use of this changed alignment directly violates the SPARC
21364 ABI@.  Thus, it's intended only for use on targets where the developer
21365 acknowledges that their resulting code is not directly in line with
21366 the rules of the ABI@.
21367
21368 @item -mcpu=@var{cpu_type}
21369 @opindex mcpu
21370 Set the instruction set, register set, and instruction scheduling parameters
21371 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21372 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21373 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21374 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21375 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21376 @samp{niagara3} and @samp{niagara4}.
21377
21378 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21379 which selects the best architecture option for the host processor.
21380 @option{-mcpu=native} has no effect if GCC does not recognize
21381 the processor.
21382
21383 Default instruction scheduling parameters are used for values that select
21384 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
21385 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21386
21387 Here is a list of each supported architecture and their supported
21388 implementations.
21389
21390 @table @asis
21391 @item v7
21392 cypress, leon3v7
21393
21394 @item v8
21395 supersparc, hypersparc, leon, leon3
21396
21397 @item sparclite
21398 f930, f934, sparclite86x
21399
21400 @item sparclet
21401 tsc701
21402
21403 @item v9
21404 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21405 @end table
21406
21407 By default (unless configured otherwise), GCC generates code for the V7
21408 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
21409 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21410 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
21411 SPARCStation 1, 2, IPX etc.
21412
21413 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21414 architecture.  The only difference from V7 code is that the compiler emits
21415 the integer multiply and integer divide instructions which exist in SPARC-V8
21416 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
21417 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21418 2000 series.
21419
21420 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21421 the SPARC architecture.  This adds the integer multiply, integer divide step
21422 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21423 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21424 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
21425 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21426 MB86934 chip, which is the more recent SPARClite with FPU@.
21427
21428 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21429 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
21430 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21431 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
21432 optimizes it for the TEMIC SPARClet chip.
21433
21434 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21435 architecture.  This adds 64-bit integer and floating-point move instructions,
21436 3 additional floating-point condition code registers and conditional move
21437 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
21438 optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
21439 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21440 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
21441 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21442 Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
21443 additionally optimizes it for Sun UltraSPARC T2 chips. With
21444 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21445 UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
21446 additionally optimizes it for Sun UltraSPARC T4 chips.
21447
21448 @item -mtune=@var{cpu_type}
21449 @opindex mtune
21450 Set the instruction scheduling parameters for machine type
21451 @var{cpu_type}, but do not set the instruction set or register set that the
21452 option @option{-mcpu=@var{cpu_type}} does.
21453
21454 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21455 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21456 that select a particular CPU implementation.  Those are @samp{cypress},
21457 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21458 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21459 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21460 @samp{niagara3} and @samp{niagara4}.  With native Solaris and GNU/Linux
21461 toolchains, @samp{native} can also be used.
21462
21463 @item -mv8plus
21464 @itemx -mno-v8plus
21465 @opindex mv8plus
21466 @opindex mno-v8plus
21467 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
21468 difference from the V8 ABI is that the global and out registers are
21469 considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
21470 mode for all SPARC-V9 processors.
21471
21472 @item -mvis
21473 @itemx -mno-vis
21474 @opindex mvis
21475 @opindex mno-vis
21476 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21477 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
21478
21479 @item -mvis2
21480 @itemx -mno-vis2
21481 @opindex mvis2
21482 @opindex mno-vis2
21483 With @option{-mvis2}, GCC generates code that takes advantage of
21484 version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
21485 default is @option{-mvis2} when targeting a cpu that supports such
21486 instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
21487 also sets @option{-mvis}.
21488
21489 @item -mvis3
21490 @itemx -mno-vis3
21491 @opindex mvis3
21492 @opindex mno-vis3
21493 With @option{-mvis3}, GCC generates code that takes advantage of
21494 version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
21495 default is @option{-mvis3} when targeting a cpu that supports such
21496 instructions, such as niagara-3 and later.  Setting @option{-mvis3}
21497 also sets @option{-mvis2} and @option{-mvis}.
21498
21499 @item -mcbcond
21500 @itemx -mno-cbcond
21501 @opindex mcbcond
21502 @opindex mno-cbcond
21503 With @option{-mcbcond}, GCC generates code that takes advantage of
21504 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21505 The default is @option{-mcbcond} when targeting a cpu that supports such
21506 instructions, such as niagara-4 and later.
21507
21508 @item -mpopc
21509 @itemx -mno-popc
21510 @opindex mpopc
21511 @opindex mno-popc
21512 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21513 population count instruction.  The default is @option{-mpopc}
21514 when targeting a cpu that supports such instructions, such as Niagara-2 and
21515 later.
21516
21517 @item -mfmaf
21518 @itemx -mno-fmaf
21519 @opindex mfmaf
21520 @opindex mno-fmaf
21521 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21522 Fused Multiply-Add Floating-point extensions.  The default is @option{-mfmaf}
21523 when targeting a cpu that supports such instructions, such as Niagara-3 and
21524 later.
21525
21526 @item -mfix-at697f
21527 @opindex mfix-at697f
21528 Enable the documented workaround for the single erratum of the Atmel AT697F
21529 processor (which corresponds to erratum #13 of the AT697E processor).
21530
21531 @item -mfix-ut699
21532 @opindex mfix-ut699
21533 Enable the documented workarounds for the floating-point errata and the data
21534 cache nullify errata of the UT699 processor.
21535 @end table
21536
21537 These @samp{-m} options are supported in addition to the above
21538 on SPARC-V9 processors in 64-bit environments:
21539
21540 @table @gcctabopt
21541 @item -m32
21542 @itemx -m64
21543 @opindex m32
21544 @opindex m64
21545 Generate code for a 32-bit or 64-bit environment.
21546 The 32-bit environment sets int, long and pointer to 32 bits.
21547 The 64-bit environment sets int to 32 bits and long and pointer
21548 to 64 bits.
21549
21550 @item -mcmodel=@var{which}
21551 @opindex mcmodel
21552 Set the code model to one of
21553
21554 @table @samp
21555 @item medlow
21556 The Medium/Low code model: 64-bit addresses, programs
21557 must be linked in the low 32 bits of memory.  Programs can be statically
21558 or dynamically linked.
21559
21560 @item medmid
21561 The Medium/Middle code model: 64-bit addresses, programs
21562 must be linked in the low 44 bits of memory, the text and data segments must
21563 be less than 2GB in size and the data segment must be located within 2GB of
21564 the text segment.
21565
21566 @item medany
21567 The Medium/Anywhere code model: 64-bit addresses, programs
21568 may be linked anywhere in memory, the text and data segments must be less
21569 than 2GB in size and the data segment must be located within 2GB of the
21570 text segment.
21571
21572 @item embmedany
21573 The Medium/Anywhere code model for embedded systems:
21574 64-bit addresses, the text and data segments must be less than 2GB in
21575 size, both starting anywhere in memory (determined at link time).  The
21576 global register %g4 points to the base of the data segment.  Programs
21577 are statically linked and PIC is not supported.
21578 @end table
21579
21580 @item -mmemory-model=@var{mem-model}
21581 @opindex mmemory-model
21582 Set the memory model in force on the processor to one of
21583
21584 @table @samp
21585 @item default
21586 The default memory model for the processor and operating system.
21587
21588 @item rmo
21589 Relaxed Memory Order
21590
21591 @item pso
21592 Partial Store Order
21593
21594 @item tso
21595 Total Store Order
21596
21597 @item sc
21598 Sequential Consistency
21599 @end table
21600
21601 These memory models are formally defined in Appendix D of the Sparc V9
21602 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21603
21604 @item -mstack-bias
21605 @itemx -mno-stack-bias
21606 @opindex mstack-bias
21607 @opindex mno-stack-bias
21608 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21609 frame pointer if present, are offset by @minus{}2047 which must be added back
21610 when making stack frame references.  This is the default in 64-bit mode.
21611 Otherwise, assume no such offset is present.
21612 @end table
21613
21614 @node SPU Options
21615 @subsection SPU Options
21616 @cindex SPU options
21617
21618 These @samp{-m} options are supported on the SPU:
21619
21620 @table @gcctabopt
21621 @item -mwarn-reloc
21622 @itemx -merror-reloc
21623 @opindex mwarn-reloc
21624 @opindex merror-reloc
21625
21626 The loader for SPU does not handle dynamic relocations.  By default, GCC
21627 gives an error when it generates code that requires a dynamic
21628 relocation.  @option{-mno-error-reloc} disables the error,
21629 @option{-mwarn-reloc} generates a warning instead.
21630
21631 @item -msafe-dma
21632 @itemx -munsafe-dma
21633 @opindex msafe-dma
21634 @opindex munsafe-dma
21635
21636 Instructions that initiate or test completion of DMA must not be
21637 reordered with respect to loads and stores of the memory that is being
21638 accessed.
21639 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21640 memory accesses, but that can lead to inefficient code in places where the
21641 memory is known to not change.  Rather than mark the memory as volatile,
21642 you can use @option{-msafe-dma} to tell the compiler to treat
21643 the DMA instructions as potentially affecting all memory.  
21644
21645 @item -mbranch-hints
21646 @opindex mbranch-hints
21647
21648 By default, GCC generates a branch hint instruction to avoid
21649 pipeline stalls for always-taken or probably-taken branches.  A hint
21650 is not generated closer than 8 instructions away from its branch.
21651 There is little reason to disable them, except for debugging purposes,
21652 or to make an object a little bit smaller.
21653
21654 @item -msmall-mem
21655 @itemx -mlarge-mem
21656 @opindex msmall-mem
21657 @opindex mlarge-mem
21658
21659 By default, GCC generates code assuming that addresses are never larger
21660 than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
21661 a full 32-bit address.
21662
21663 @item -mstdmain
21664 @opindex mstdmain
21665
21666 By default, GCC links against startup code that assumes the SPU-style
21667 main function interface (which has an unconventional parameter list).
21668 With @option{-mstdmain}, GCC links your program against startup
21669 code that assumes a C99-style interface to @code{main}, including a
21670 local copy of @code{argv} strings.
21671
21672 @item -mfixed-range=@var{register-range}
21673 @opindex mfixed-range
21674 Generate code treating the given register range as fixed registers.
21675 A fixed register is one that the register allocator cannot use.  This is
21676 useful when compiling kernel code.  A register range is specified as
21677 two registers separated by a dash.  Multiple register ranges can be
21678 specified separated by a comma.
21679
21680 @item -mea32
21681 @itemx -mea64
21682 @opindex mea32
21683 @opindex mea64
21684 Compile code assuming that pointers to the PPU address space accessed
21685 via the @code{__ea} named address space qualifier are either 32 or 64
21686 bits wide.  The default is 32 bits.  As this is an ABI-changing option,
21687 all object code in an executable must be compiled with the same setting.
21688
21689 @item -maddress-space-conversion
21690 @itemx -mno-address-space-conversion
21691 @opindex maddress-space-conversion
21692 @opindex mno-address-space-conversion
21693 Allow/disallow treating the @code{__ea} address space as superset
21694 of the generic address space.  This enables explicit type casts
21695 between @code{__ea} and generic pointer as well as implicit
21696 conversions of generic pointers to @code{__ea} pointers.  The
21697 default is to allow address space pointer conversions.
21698
21699 @item -mcache-size=@var{cache-size}
21700 @opindex mcache-size
21701 This option controls the version of libgcc that the compiler links to an
21702 executable and selects a software-managed cache for accessing variables
21703 in the @code{__ea} address space with a particular cache size.  Possible
21704 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21705 and @samp{128}.  The default cache size is 64KB.
21706
21707 @item -matomic-updates
21708 @itemx -mno-atomic-updates
21709 @opindex matomic-updates
21710 @opindex mno-atomic-updates
21711 This option controls the version of libgcc that the compiler links to an
21712 executable and selects whether atomic updates to the software-managed
21713 cache of PPU-side variables are used.  If you use atomic updates, changes
21714 to a PPU variable from SPU code using the @code{__ea} named address space
21715 qualifier do not interfere with changes to other PPU variables residing
21716 in the same cache line from PPU code.  If you do not use atomic updates,
21717 such interference may occur; however, writing back cache lines is
21718 more efficient.  The default behavior is to use atomic updates.
21719
21720 @item -mdual-nops
21721 @itemx -mdual-nops=@var{n}
21722 @opindex mdual-nops
21723 By default, GCC inserts nops to increase dual issue when it expects
21724 it to increase performance.  @var{n} can be a value from 0 to 10.  A
21725 smaller @var{n} inserts fewer nops.  10 is the default, 0 is the
21726 same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
21727
21728 @item -mhint-max-nops=@var{n}
21729 @opindex mhint-max-nops
21730 Maximum number of nops to insert for a branch hint.  A branch hint must
21731 be at least 8 instructions away from the branch it is affecting.  GCC
21732 inserts up to @var{n} nops to enforce this, otherwise it does not
21733 generate the branch hint.
21734
21735 @item -mhint-max-distance=@var{n}
21736 @opindex mhint-max-distance
21737 The encoding of the branch hint instruction limits the hint to be within
21738 256 instructions of the branch it is affecting.  By default, GCC makes
21739 sure it is within 125.
21740
21741 @item -msafe-hints
21742 @opindex msafe-hints
21743 Work around a hardware bug that causes the SPU to stall indefinitely.
21744 By default, GCC inserts the @code{hbrp} instruction to make sure
21745 this stall won't happen.
21746
21747 @end table
21748
21749 @node System V Options
21750 @subsection Options for System V
21751
21752 These additional options are available on System V Release 4 for
21753 compatibility with other compilers on those systems:
21754
21755 @table @gcctabopt
21756 @item -G
21757 @opindex G
21758 Create a shared object.
21759 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21760
21761 @item -Qy
21762 @opindex Qy
21763 Identify the versions of each tool used by the compiler, in a
21764 @code{.ident} assembler directive in the output.
21765
21766 @item -Qn
21767 @opindex Qn
21768 Refrain from adding @code{.ident} directives to the output file (this is
21769 the default).
21770
21771 @item -YP,@var{dirs}
21772 @opindex YP
21773 Search the directories @var{dirs}, and no others, for libraries
21774 specified with @option{-l}.
21775
21776 @item -Ym,@var{dir}
21777 @opindex Ym
21778 Look in the directory @var{dir} to find the M4 preprocessor.
21779 The assembler uses this option.
21780 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21781 @c the generic assembler that comes with Solaris takes just -Ym.
21782 @end table
21783
21784 @node TILE-Gx Options
21785 @subsection TILE-Gx Options
21786 @cindex TILE-Gx options
21787
21788 These @samp{-m} options are supported on the TILE-Gx:
21789
21790 @table @gcctabopt
21791 @item -mcmodel=small
21792 @opindex mcmodel=small
21793 Generate code for the small model.  The distance for direct calls is
21794 limited to 500M in either direction.  PC-relative addresses are 32
21795 bits.  Absolute addresses support the full address range.
21796
21797 @item -mcmodel=large
21798 @opindex mcmodel=large
21799 Generate code for the large model.  There is no limitation on call
21800 distance, pc-relative addresses, or absolute addresses.
21801
21802 @item -mcpu=@var{name}
21803 @opindex mcpu
21804 Selects the type of CPU to be targeted.  Currently the only supported
21805 type is @samp{tilegx}.
21806
21807 @item -m32
21808 @itemx -m64
21809 @opindex m32
21810 @opindex m64
21811 Generate code for a 32-bit or 64-bit environment.  The 32-bit
21812 environment sets int, long, and pointer to 32 bits.  The 64-bit
21813 environment sets int to 32 bits and long and pointer to 64 bits.
21814
21815 @item -mbig-endian
21816 @itemx -mlittle-endian
21817 @opindex mbig-endian
21818 @opindex mlittle-endian
21819 Generate code in big/little endian mode, respectively.
21820 @end table
21821
21822 @node TILEPro Options
21823 @subsection TILEPro Options
21824 @cindex TILEPro options
21825
21826 These @samp{-m} options are supported on the TILEPro:
21827
21828 @table @gcctabopt
21829 @item -mcpu=@var{name}
21830 @opindex mcpu
21831 Selects the type of CPU to be targeted.  Currently the only supported
21832 type is @samp{tilepro}.
21833
21834 @item -m32
21835 @opindex m32
21836 Generate code for a 32-bit environment, which sets int, long, and
21837 pointer to 32 bits.  This is the only supported behavior so the flag
21838 is essentially ignored.
21839 @end table
21840
21841 @node V850 Options
21842 @subsection V850 Options
21843 @cindex V850 Options
21844
21845 These @samp{-m} options are defined for V850 implementations:
21846
21847 @table @gcctabopt
21848 @item -mlong-calls
21849 @itemx -mno-long-calls
21850 @opindex mlong-calls
21851 @opindex mno-long-calls
21852 Treat all calls as being far away (near).  If calls are assumed to be
21853 far away, the compiler always loads the function's address into a
21854 register, and calls indirect through the pointer.
21855
21856 @item -mno-ep
21857 @itemx -mep
21858 @opindex mno-ep
21859 @opindex mep
21860 Do not optimize (do optimize) basic blocks that use the same index
21861 pointer 4 or more times to copy pointer into the @code{ep} register, and
21862 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
21863 option is on by default if you optimize.
21864
21865 @item -mno-prolog-function
21866 @itemx -mprolog-function
21867 @opindex mno-prolog-function
21868 @opindex mprolog-function
21869 Do not use (do use) external functions to save and restore registers
21870 at the prologue and epilogue of a function.  The external functions
21871 are slower, but use less code space if more than one function saves
21872 the same number of registers.  The @option{-mprolog-function} option
21873 is on by default if you optimize.
21874
21875 @item -mspace
21876 @opindex mspace
21877 Try to make the code as small as possible.  At present, this just turns
21878 on the @option{-mep} and @option{-mprolog-function} options.
21879
21880 @item -mtda=@var{n}
21881 @opindex mtda
21882 Put static or global variables whose size is @var{n} bytes or less into
21883 the tiny data area that register @code{ep} points to.  The tiny data
21884 area can hold up to 256 bytes in total (128 bytes for byte references).
21885
21886 @item -msda=@var{n}
21887 @opindex msda
21888 Put static or global variables whose size is @var{n} bytes or less into
21889 the small data area that register @code{gp} points to.  The small data
21890 area can hold up to 64 kilobytes.
21891
21892 @item -mzda=@var{n}
21893 @opindex mzda
21894 Put static or global variables whose size is @var{n} bytes or less into
21895 the first 32 kilobytes of memory.
21896
21897 @item -mv850
21898 @opindex mv850
21899 Specify that the target processor is the V850.
21900
21901 @item -mv850e3v5
21902 @opindex mv850e3v5
21903 Specify that the target processor is the V850E3V5.  The preprocessor
21904 constant @code{__v850e3v5__} is defined if this option is used.
21905
21906 @item -mv850e2v4
21907 @opindex mv850e2v4
21908 Specify that the target processor is the V850E3V5.  This is an alias for
21909 the @option{-mv850e3v5} option.
21910
21911 @item -mv850e2v3
21912 @opindex mv850e2v3
21913 Specify that the target processor is the V850E2V3.  The preprocessor
21914 constant @code{__v850e2v3__} is defined if this option is used.
21915
21916 @item -mv850e2
21917 @opindex mv850e2
21918 Specify that the target processor is the V850E2.  The preprocessor
21919 constant @code{__v850e2__} is defined if this option is used.
21920
21921 @item -mv850e1
21922 @opindex mv850e1
21923 Specify that the target processor is the V850E1.  The preprocessor
21924 constants @code{__v850e1__} and @code{__v850e__} are defined if
21925 this option is used.
21926
21927 @item -mv850es
21928 @opindex mv850es
21929 Specify that the target processor is the V850ES.  This is an alias for
21930 the @option{-mv850e1} option.
21931
21932 @item -mv850e
21933 @opindex mv850e
21934 Specify that the target processor is the V850E@.  The preprocessor
21935 constant @code{__v850e__} is defined if this option is used.
21936
21937 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21938 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21939 are defined then a default target processor is chosen and the
21940 relevant @samp{__v850*__} preprocessor constant is defined.
21941
21942 The preprocessor constants @code{__v850} and @code{__v851__} are always
21943 defined, regardless of which processor variant is the target.
21944
21945 @item -mdisable-callt
21946 @itemx -mno-disable-callt
21947 @opindex mdisable-callt
21948 @opindex mno-disable-callt
21949 This option suppresses generation of the @code{CALLT} instruction for the
21950 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21951 architecture.
21952
21953 This option is enabled by default when the RH850 ABI is
21954 in use (see @option{-mrh850-abi}), and disabled by default when the
21955 GCC ABI is in use.  If @code{CALLT} instructions are being generated
21956 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21957
21958 @item -mrelax
21959 @itemx -mno-relax
21960 @opindex mrelax
21961 @opindex mno-relax
21962 Pass on (or do not pass on) the @option{-mrelax} command-line option
21963 to the assembler.
21964
21965 @item -mlong-jumps
21966 @itemx -mno-long-jumps
21967 @opindex mlong-jumps
21968 @opindex mno-long-jumps
21969 Disable (or re-enable) the generation of PC-relative jump instructions.
21970
21971 @item -msoft-float
21972 @itemx -mhard-float
21973 @opindex msoft-float
21974 @opindex mhard-float
21975 Disable (or re-enable) the generation of hardware floating point
21976 instructions.  This option is only significant when the target
21977 architecture is @samp{V850E2V3} or higher.  If hardware floating point
21978 instructions are being generated then the C preprocessor symbol
21979 @code{__FPU_OK__} is defined, otherwise the symbol
21980 @code{__NO_FPU__} is defined.
21981
21982 @item -mloop
21983 @opindex mloop
21984 Enables the use of the e3v5 LOOP instruction.  The use of this
21985 instruction is not enabled by default when the e3v5 architecture is
21986 selected because its use is still experimental.
21987
21988 @item -mrh850-abi
21989 @itemx -mghs
21990 @opindex mrh850-abi
21991 @opindex mghs
21992 Enables support for the RH850 version of the V850 ABI.  This is the
21993 default.  With this version of the ABI the following rules apply:
21994
21995 @itemize
21996 @item
21997 Integer sized structures and unions are returned via a memory pointer
21998 rather than a register.
21999
22000 @item
22001 Large structures and unions (more than 8 bytes in size) are passed by
22002 value.
22003
22004 @item
22005 Functions are aligned to 16-bit boundaries.
22006
22007 @item
22008 The @option{-m8byte-align} command-line option is supported.
22009
22010 @item
22011 The @option{-mdisable-callt} command-line option is enabled by
22012 default.  The @option{-mno-disable-callt} command-line option is not
22013 supported.
22014 @end itemize
22015
22016 When this version of the ABI is enabled the C preprocessor symbol
22017 @code{__V850_RH850_ABI__} is defined.
22018
22019 @item -mgcc-abi
22020 @opindex mgcc-abi
22021 Enables support for the old GCC version of the V850 ABI.  With this
22022 version of the ABI the following rules apply:
22023
22024 @itemize
22025 @item
22026 Integer sized structures and unions are returned in register @code{r10}.
22027
22028 @item
22029 Large structures and unions (more than 8 bytes in size) are passed by
22030 reference.
22031
22032 @item
22033 Functions are aligned to 32-bit boundaries, unless optimizing for
22034 size.
22035
22036 @item
22037 The @option{-m8byte-align} command-line option is not supported.
22038
22039 @item
22040 The @option{-mdisable-callt} command-line option is supported but not
22041 enabled by default.
22042 @end itemize
22043
22044 When this version of the ABI is enabled the C preprocessor symbol
22045 @code{__V850_GCC_ABI__} is defined.
22046
22047 @item -m8byte-align
22048 @itemx -mno-8byte-align
22049 @opindex m8byte-align
22050 @opindex mno-8byte-align
22051 Enables support for @code{double} and @code{long long} types to be
22052 aligned on 8-byte boundaries.  The default is to restrict the
22053 alignment of all objects to at most 4-bytes.  When
22054 @option{-m8byte-align} is in effect the C preprocessor symbol
22055 @code{__V850_8BYTE_ALIGN__} is defined.
22056
22057 @item -mbig-switch
22058 @opindex mbig-switch
22059 Generate code suitable for big switch tables.  Use this option only if
22060 the assembler/linker complain about out of range branches within a switch
22061 table.
22062
22063 @item -mapp-regs
22064 @opindex mapp-regs
22065 This option causes r2 and r5 to be used in the code generated by
22066 the compiler.  This setting is the default.
22067
22068 @item -mno-app-regs
22069 @opindex mno-app-regs
22070 This option causes r2 and r5 to be treated as fixed registers.
22071
22072 @end table
22073
22074 @node VAX Options
22075 @subsection VAX Options
22076 @cindex VAX options
22077
22078 These @samp{-m} options are defined for the VAX:
22079
22080 @table @gcctabopt
22081 @item -munix
22082 @opindex munix
22083 Do not output certain jump instructions (@code{aobleq} and so on)
22084 that the Unix assembler for the VAX cannot handle across long
22085 ranges.
22086
22087 @item -mgnu
22088 @opindex mgnu
22089 Do output those jump instructions, on the assumption that the
22090 GNU assembler is being used.
22091
22092 @item -mg
22093 @opindex mg
22094 Output code for G-format floating-point numbers instead of D-format.
22095 @end table
22096
22097 @node Visium Options
22098 @subsection Visium Options
22099 @cindex Visium options
22100
22101 @table @gcctabopt
22102
22103 @item -mdebug
22104 @opindex mdebug
22105 A program which performs file I/O and is destined to run on an MCM target
22106 should be linked with this option.  It causes the libraries libc.a and
22107 libdebug.a to be linked.  The program should be run on the target under
22108 the control of the GDB remote debugging stub.
22109
22110 @item -msim
22111 @opindex msim
22112 A program which performs file I/O and is destined to run on the simulator
22113 should be linked with option.  This causes libraries libc.a and libsim.a to
22114 be linked.
22115
22116 @item -mfpu
22117 @itemx -mhard-float
22118 @opindex mfpu
22119 @opindex mhard-float
22120 Generate code containing floating-point instructions.  This is the
22121 default.
22122
22123 @item -mno-fpu
22124 @itemx -msoft-float
22125 @opindex mno-fpu
22126 @opindex msoft-float
22127 Generate code containing library calls for floating-point.
22128
22129 @option{-msoft-float} changes the calling convention in the output file;
22130 therefore, it is only useful if you compile @emph{all} of a program with
22131 this option.  In particular, you need to compile @file{libgcc.a}, the
22132 library that comes with GCC, with @option{-msoft-float} in order for
22133 this to work.
22134
22135 @item -mcpu=@var{cpu_type}
22136 @opindex mcpu
22137 Set the instruction set, register set, and instruction scheduling parameters
22138 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
22139 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22140
22141 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22142
22143 By default (unless configured otherwise), GCC generates code for the GR5
22144 variant of the Visium architecture.  
22145
22146 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22147 architecture.  The only difference from GR5 code is that the compiler will
22148 generate block move instructions.
22149
22150 @item -mtune=@var{cpu_type}
22151 @opindex mtune
22152 Set the instruction scheduling parameters for machine type @var{cpu_type},
22153 but do not set the instruction set or register set that the option
22154 @option{-mcpu=@var{cpu_type}} would.
22155
22156 @item -msv-mode
22157 @opindex msv-mode
22158 Generate code for the supervisor mode, where there are no restrictions on
22159 the access to general registers.  This is the default.
22160
22161 @item -muser-mode
22162 @opindex muser-mode
22163 Generate code for the user mode, where the access to some general registers
22164 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22165 mode; on the GR6, only registers r29 to r31 are affected.
22166 @end table
22167
22168 @node VMS Options
22169 @subsection VMS Options
22170
22171 These @samp{-m} options are defined for the VMS implementations:
22172
22173 @table @gcctabopt
22174 @item -mvms-return-codes
22175 @opindex mvms-return-codes
22176 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22177 condition (e.g.@ error) codes.
22178
22179 @item -mdebug-main=@var{prefix}
22180 @opindex mdebug-main=@var{prefix}
22181 Flag the first routine whose name starts with @var{prefix} as the main
22182 routine for the debugger.
22183
22184 @item -mmalloc64
22185 @opindex mmalloc64
22186 Default to 64-bit memory allocation routines.
22187
22188 @item -mpointer-size=@var{size}
22189 @opindex mpointer-size=@var{size}
22190 Set the default size of pointers. Possible options for @var{size} are
22191 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22192 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22193 The later option disables @code{pragma pointer_size}.
22194 @end table
22195
22196 @node VxWorks Options
22197 @subsection VxWorks Options
22198 @cindex VxWorks Options
22199
22200 The options in this section are defined for all VxWorks targets.
22201 Options specific to the target hardware are listed with the other
22202 options for that target.
22203
22204 @table @gcctabopt
22205 @item -mrtp
22206 @opindex mrtp
22207 GCC can generate code for both VxWorks kernels and real time processes
22208 (RTPs).  This option switches from the former to the latter.  It also
22209 defines the preprocessor macro @code{__RTP__}.
22210
22211 @item -non-static
22212 @opindex non-static
22213 Link an RTP executable against shared libraries rather than static
22214 libraries.  The options @option{-static} and @option{-shared} can
22215 also be used for RTPs (@pxref{Link Options}); @option{-static}
22216 is the default.
22217
22218 @item -Bstatic
22219 @itemx -Bdynamic
22220 @opindex Bstatic
22221 @opindex Bdynamic
22222 These options are passed down to the linker.  They are defined for
22223 compatibility with Diab.
22224
22225 @item -Xbind-lazy
22226 @opindex Xbind-lazy
22227 Enable lazy binding of function calls.  This option is equivalent to
22228 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22229
22230 @item -Xbind-now
22231 @opindex Xbind-now
22232 Disable lazy binding of function calls.  This option is the default and
22233 is defined for compatibility with Diab.
22234 @end table
22235
22236 @node x86 Options
22237 @subsection x86 Options
22238 @cindex x86 Options
22239
22240 These @samp{-m} options are defined for the x86 family of computers.
22241
22242 @table @gcctabopt
22243
22244 @item -march=@var{cpu-type}
22245 @opindex march
22246 Generate instructions for the machine type @var{cpu-type}.  In contrast to
22247 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
22248 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22249 to generate code that may not run at all on processors other than the one
22250 indicated.  Specifying @option{-march=@var{cpu-type}} implies 
22251 @option{-mtune=@var{cpu-type}}.
22252
22253 The choices for @var{cpu-type} are:
22254
22255 @table @samp
22256 @item native
22257 This selects the CPU to generate code for at compilation time by determining
22258 the processor type of the compiling machine.  Using @option{-march=native}
22259 enables all instruction subsets supported by the local machine (hence
22260 the result might not run on different machines).  Using @option{-mtune=native}
22261 produces code optimized for the local machine under the constraints
22262 of the selected instruction set.  
22263
22264 @item i386
22265 Original Intel i386 CPU@.
22266
22267 @item i486
22268 Intel i486 CPU@.  (No scheduling is implemented for this chip.)
22269
22270 @item i586
22271 @itemx pentium
22272 Intel Pentium CPU with no MMX support.
22273
22274 @item lakemont
22275 Intel Lakemont MCU, based on Intel Pentium CPU.
22276
22277 @item pentium-mmx
22278 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22279
22280 @item pentiumpro
22281 Intel Pentium Pro CPU@.
22282
22283 @item i686
22284 When used with @option{-march}, the Pentium Pro
22285 instruction set is used, so the code runs on all i686 family chips.
22286 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22287
22288 @item pentium2
22289 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22290 support.
22291
22292 @item pentium3
22293 @itemx pentium3m
22294 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22295 set support.
22296
22297 @item pentium-m
22298 Intel Pentium M; low-power version of Intel Pentium III CPU
22299 with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
22300
22301 @item pentium4
22302 @itemx pentium4m
22303 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22304
22305 @item prescott
22306 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22307 set support.
22308
22309 @item nocona
22310 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22311 SSE2 and SSE3 instruction set support.
22312
22313 @item core2
22314 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22315 instruction set support.
22316
22317 @item nehalem
22318 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22319 SSE4.1, SSE4.2 and POPCNT instruction set support.
22320
22321 @item westmere
22322 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22323 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22324
22325 @item sandybridge
22326 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22327 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22328
22329 @item ivybridge
22330 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22331 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22332 instruction set support.
22333
22334 @item haswell
22335 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22336 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22337 BMI, BMI2 and F16C instruction set support.
22338
22339 @item broadwell
22340 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22341 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22342 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22343
22344 @item skylake
22345 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22346 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22347 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
22348 XSAVES instruction set support.
22349
22350 @item bonnell
22351 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22352 instruction set support.
22353
22354 @item silvermont
22355 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22356 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22357
22358 @item knl
22359 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22360 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22361 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22362 AVX512CD instruction set support.
22363
22364 @item skylake-avx512
22365 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22366 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22367 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
22368 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
22369
22370 @item k6
22371 AMD K6 CPU with MMX instruction set support.
22372
22373 @item k6-2
22374 @itemx k6-3
22375 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22376
22377 @item athlon
22378 @itemx athlon-tbird
22379 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22380 support.
22381
22382 @item athlon-4
22383 @itemx athlon-xp
22384 @itemx athlon-mp
22385 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22386 instruction set support.
22387
22388 @item k8
22389 @itemx opteron
22390 @itemx athlon64
22391 @itemx athlon-fx
22392 Processors based on the AMD K8 core with x86-64 instruction set support,
22393 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22394 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22395 instruction set extensions.)
22396
22397 @item k8-sse3
22398 @itemx opteron-sse3
22399 @itemx athlon64-sse3
22400 Improved versions of AMD K8 cores with SSE3 instruction set support.
22401
22402 @item amdfam10
22403 @itemx barcelona
22404 CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
22405 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22406 instruction set extensions.)
22407
22408 @item bdver1
22409 CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
22410 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22411 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22412 @item bdver2
22413 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22414 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22415 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
22416 extensions.)
22417 @item bdver3
22418 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22419 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
22420 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 
22421 64-bit instruction set extensions.
22422 @item bdver4
22423 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22424 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
22425 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, 
22426 SSE4.2, ABM and 64-bit instruction set extensions.
22427
22428 @item znver1
22429 AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
22430 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
22431 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
22432 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
22433 instruction set extensions.
22434
22435 @item btver1
22436 CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
22437 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22438 instruction set extensions.)
22439
22440 @item btver2
22441 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22442 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22443 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22444
22445 @item winchip-c6
22446 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22447 set support.
22448
22449 @item winchip2
22450 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22451 instruction set support.
22452
22453 @item c3
22454 VIA C3 CPU with MMX and 3DNow!@: instruction set support.  (No scheduling is
22455 implemented for this chip.)
22456
22457 @item c3-2
22458 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22459 (No scheduling is
22460 implemented for this chip.)
22461
22462 @item geode
22463 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22464 @end table
22465
22466 @item -mtune=@var{cpu-type}
22467 @opindex mtune
22468 Tune to @var{cpu-type} everything applicable about the generated code, except
22469 for the ABI and the set of available instructions.  
22470 While picking a specific @var{cpu-type} schedules things appropriately
22471 for that particular chip, the compiler does not generate any code that
22472 cannot run on the default machine type unless you use a
22473 @option{-march=@var{cpu-type}} option.
22474 For example, if GCC is configured for i686-pc-linux-gnu
22475 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22476 but still runs on i686 machines.
22477
22478 The choices for @var{cpu-type} are the same as for @option{-march}.
22479 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22480
22481 @table @samp
22482 @item generic
22483 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22484 If you know the CPU on which your code will run, then you should use
22485 the corresponding @option{-mtune} or @option{-march} option instead of
22486 @option{-mtune=generic}.  But, if you do not know exactly what CPU users
22487 of your application will have, then you should use this option.
22488
22489 As new processors are deployed in the marketplace, the behavior of this
22490 option will change.  Therefore, if you upgrade to a newer version of
22491 GCC, code generation controlled by this option will change to reflect
22492 the processors
22493 that are most common at the time that version of GCC is released.
22494
22495 There is no @option{-march=generic} option because @option{-march}
22496 indicates the instruction set the compiler can use, and there is no
22497 generic instruction set applicable to all processors.  In contrast,
22498 @option{-mtune} indicates the processor (or, in this case, collection of
22499 processors) for which the code is optimized.
22500
22501 @item intel
22502 Produce code optimized for the most current Intel processors, which are
22503 Haswell and Silvermont for this version of GCC.  If you know the CPU
22504 on which your code will run, then you should use the corresponding
22505 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22506 But, if you want your application performs better on both Haswell and
22507 Silvermont, then you should use this option.
22508
22509 As new Intel processors are deployed in the marketplace, the behavior of
22510 this option will change.  Therefore, if you upgrade to a newer version of
22511 GCC, code generation controlled by this option will change to reflect
22512 the most current Intel processors at the time that version of GCC is
22513 released.
22514
22515 There is no @option{-march=intel} option because @option{-march} indicates
22516 the instruction set the compiler can use, and there is no common
22517 instruction set applicable to all processors.  In contrast,
22518 @option{-mtune} indicates the processor (or, in this case, collection of
22519 processors) for which the code is optimized.
22520 @end table
22521
22522 @item -mcpu=@var{cpu-type}
22523 @opindex mcpu
22524 A deprecated synonym for @option{-mtune}.
22525
22526 @item -mfpmath=@var{unit}
22527 @opindex mfpmath
22528 Generate floating-point arithmetic for selected unit @var{unit}.  The choices
22529 for @var{unit} are:
22530
22531 @table @samp
22532 @item 387
22533 Use the standard 387 floating-point coprocessor present on the majority of chips and
22534 emulated otherwise.  Code compiled with this option runs almost everywhere.
22535 The temporary results are computed in 80-bit precision instead of the precision
22536 specified by the type, resulting in slightly different results compared to most
22537 of other chips.  See @option{-ffloat-store} for more detailed description.
22538
22539 This is the default choice for x86-32 targets.
22540
22541 @item sse
22542 Use scalar floating-point instructions present in the SSE instruction set.
22543 This instruction set is supported by Pentium III and newer chips,
22544 and in the AMD line
22545 by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
22546 instruction set supports only single-precision arithmetic, thus the double and
22547 extended-precision arithmetic are still done using 387.  A later version, present
22548 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22549 arithmetic too.
22550
22551 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22552 or @option{-msse2} switches to enable SSE extensions and make this option
22553 effective.  For the x86-64 compiler, these extensions are enabled by default.
22554
22555 The resulting code should be considerably faster in the majority of cases and avoid
22556 the numerical instability problems of 387 code, but may break some existing
22557 code that expects temporaries to be 80 bits.
22558
22559 This is the default choice for the x86-64 compiler.
22560
22561 @item sse,387
22562 @itemx sse+387
22563 @itemx both
22564 Attempt to utilize both instruction sets at once.  This effectively doubles the
22565 amount of available registers, and on chips with separate execution units for
22566 387 and SSE the execution resources too.  Use this option with care, as it is
22567 still experimental, because the GCC register allocator does not model separate
22568 functional units well, resulting in unstable performance.
22569 @end table
22570
22571 @item -masm=@var{dialect}
22572 @opindex masm=@var{dialect}
22573 Output assembly instructions using selected @var{dialect}.  Also affects
22574 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22575 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22576 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22577 not support @samp{intel}.
22578
22579 @item -mieee-fp
22580 @itemx -mno-ieee-fp
22581 @opindex mieee-fp
22582 @opindex mno-ieee-fp
22583 Control whether or not the compiler uses IEEE floating-point
22584 comparisons.  These correctly handle the case where the result of a
22585 comparison is unordered.
22586
22587 @item -msoft-float
22588 @opindex msoft-float
22589 Generate output containing library calls for floating point.
22590
22591 @strong{Warning:} the requisite libraries are not part of GCC@.
22592 Normally the facilities of the machine's usual C compiler are used, but
22593 this can't be done directly in cross-compilation.  You must make your
22594 own arrangements to provide suitable library functions for
22595 cross-compilation.
22596
22597 On machines where a function returns floating-point results in the 80387
22598 register stack, some floating-point opcodes may be emitted even if
22599 @option{-msoft-float} is used.
22600
22601 @item -mno-fp-ret-in-387
22602 @opindex mno-fp-ret-in-387
22603 Do not use the FPU registers for return values of functions.
22604
22605 The usual calling convention has functions return values of types
22606 @code{float} and @code{double} in an FPU register, even if there
22607 is no FPU@.  The idea is that the operating system should emulate
22608 an FPU@.
22609
22610 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22611 in ordinary CPU registers instead.
22612
22613 @item -mno-fancy-math-387
22614 @opindex mno-fancy-math-387
22615 Some 387 emulators do not support the @code{sin}, @code{cos} and
22616 @code{sqrt} instructions for the 387.  Specify this option to avoid
22617 generating those instructions.  This option is the default on
22618 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
22619 indicates that the target CPU always has an FPU and so the
22620 instruction does not need emulation.  These
22621 instructions are not generated unless you also use the
22622 @option{-funsafe-math-optimizations} switch.
22623
22624 @item -malign-double
22625 @itemx -mno-align-double
22626 @opindex malign-double
22627 @opindex mno-align-double
22628 Control whether GCC aligns @code{double}, @code{long double}, and
22629 @code{long long} variables on a two-word boundary or a one-word
22630 boundary.  Aligning @code{double} variables on a two-word boundary
22631 produces code that runs somewhat faster on a Pentium at the
22632 expense of more memory.
22633
22634 On x86-64, @option{-malign-double} is enabled by default.
22635
22636 @strong{Warning:} if you use the @option{-malign-double} switch,
22637 structures containing the above types are aligned differently than
22638 the published application binary interface specifications for the x86-32
22639 and are not binary compatible with structures in code compiled
22640 without that switch.
22641
22642 @item -m96bit-long-double
22643 @itemx -m128bit-long-double
22644 @opindex m96bit-long-double
22645 @opindex m128bit-long-double
22646 These switches control the size of @code{long double} type.  The x86-32
22647 application binary interface specifies the size to be 96 bits,
22648 so @option{-m96bit-long-double} is the default in 32-bit mode.
22649
22650 Modern architectures (Pentium and newer) prefer @code{long double}
22651 to be aligned to an 8- or 16-byte boundary.  In arrays or structures
22652 conforming to the ABI, this is not possible.  So specifying
22653 @option{-m128bit-long-double} aligns @code{long double}
22654 to a 16-byte boundary by padding the @code{long double} with an additional
22655 32-bit zero.
22656
22657 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22658 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22659
22660 Notice that neither of these options enable any extra precision over the x87
22661 standard of 80 bits for a @code{long double}.
22662
22663 @strong{Warning:} if you override the default value for your target ABI, this
22664 changes the size of 
22665 structures and arrays containing @code{long double} variables,
22666 as well as modifying the function calling convention for functions taking
22667 @code{long double}.  Hence they are not binary-compatible
22668 with code compiled without that switch.
22669
22670 @item -mlong-double-64
22671 @itemx -mlong-double-80
22672 @itemx -mlong-double-128
22673 @opindex mlong-double-64
22674 @opindex mlong-double-80
22675 @opindex mlong-double-128
22676 These switches control the size of @code{long double} type. A size
22677 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22678 type. This is the default for 32-bit Bionic C library.  A size
22679 of 128 bits makes the @code{long double} type equivalent to the
22680 @code{__float128} type. This is the default for 64-bit Bionic C library.
22681
22682 @strong{Warning:} if you override the default value for your target ABI, this
22683 changes the size of
22684 structures and arrays containing @code{long double} variables,
22685 as well as modifying the function calling convention for functions taking
22686 @code{long double}.  Hence they are not binary-compatible
22687 with code compiled without that switch.
22688
22689 @item -malign-data=@var{type}
22690 @opindex malign-data
22691 Control how GCC aligns variables.  Supported values for @var{type} are
22692 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22693 and earlier, @samp{abi} uses alignment value as specified by the
22694 psABI, and @samp{cacheline} uses increased alignment value to match
22695 the cache line size.  @samp{compat} is the default.
22696
22697 @item -mlarge-data-threshold=@var{threshold}
22698 @opindex mlarge-data-threshold
22699 When @option{-mcmodel=medium} is specified, data objects larger than
22700 @var{threshold} are placed in the large data section.  This value must be the
22701 same across all objects linked into the binary, and defaults to 65535.
22702
22703 @item -mrtd
22704 @opindex mrtd
22705 Use a different function-calling convention, in which functions that
22706 take a fixed number of arguments return with the @code{ret @var{num}}
22707 instruction, which pops their arguments while returning.  This saves one
22708 instruction in the caller since there is no need to pop the arguments
22709 there.
22710
22711 You can specify that an individual function is called with this calling
22712 sequence with the function attribute @code{stdcall}.  You can also
22713 override the @option{-mrtd} option by using the function attribute
22714 @code{cdecl}.  @xref{Function Attributes}.
22715
22716 @strong{Warning:} this calling convention is incompatible with the one
22717 normally used on Unix, so you cannot use it if you need to call
22718 libraries compiled with the Unix compiler.
22719
22720 Also, you must provide function prototypes for all functions that
22721 take variable numbers of arguments (including @code{printf});
22722 otherwise incorrect code is generated for calls to those
22723 functions.
22724
22725 In addition, seriously incorrect code results if you call a
22726 function with too many arguments.  (Normally, extra arguments are
22727 harmlessly ignored.)
22728
22729 @item -mregparm=@var{num}
22730 @opindex mregparm
22731 Control how many registers are used to pass integer arguments.  By
22732 default, no registers are used to pass arguments, and at most 3
22733 registers can be used.  You can control this behavior for a specific
22734 function by using the function attribute @code{regparm}.
22735 @xref{Function Attributes}.
22736
22737 @strong{Warning:} if you use this switch, and
22738 @var{num} is nonzero, then you must build all modules with the same
22739 value, including any libraries.  This includes the system libraries and
22740 startup modules.
22741
22742 @item -msseregparm
22743 @opindex msseregparm
22744 Use SSE register passing conventions for float and double arguments
22745 and return values.  You can control this behavior for a specific
22746 function by using the function attribute @code{sseregparm}.
22747 @xref{Function Attributes}.
22748
22749 @strong{Warning:} if you use this switch then you must build all
22750 modules with the same value, including any libraries.  This includes
22751 the system libraries and startup modules.
22752
22753 @item -mvect8-ret-in-mem
22754 @opindex mvect8-ret-in-mem
22755 Return 8-byte vectors in memory instead of MMX registers.  This is the
22756 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22757 Studio compilers until version 12.  Later compiler versions (starting
22758 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22759 is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
22760 you need to remain compatible with existing code produced by those
22761 previous compiler versions or older versions of GCC@.
22762
22763 @item -mpc32
22764 @itemx -mpc64
22765 @itemx -mpc80
22766 @opindex mpc32
22767 @opindex mpc64
22768 @opindex mpc80
22769
22770 Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
22771 is specified, the significands of results of floating-point operations are
22772 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22773 significands of results of floating-point operations to 53 bits (double
22774 precision) and @option{-mpc80} rounds the significands of results of
22775 floating-point operations to 64 bits (extended double precision), which is
22776 the default.  When this option is used, floating-point operations in higher
22777 precisions are not available to the programmer without setting the FPU
22778 control word explicitly.
22779
22780 Setting the rounding of floating-point operations to less than the default
22781 80 bits can speed some programs by 2% or more.  Note that some mathematical
22782 libraries assume that extended-precision (80-bit) floating-point operations
22783 are enabled by default; routines in such libraries could suffer significant
22784 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22785 when this option is used to set the precision to less than extended precision.
22786
22787 @item -mstackrealign
22788 @opindex mstackrealign
22789 Realign the stack at entry.  On the x86, the @option{-mstackrealign}
22790 option generates an alternate prologue and epilogue that realigns the
22791 run-time stack if necessary.  This supports mixing legacy codes that keep
22792 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22793 SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
22794 applicable to individual functions.
22795
22796 @item -mpreferred-stack-boundary=@var{num}
22797 @opindex mpreferred-stack-boundary
22798 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22799 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
22800 the default is 4 (16 bytes or 128 bits).
22801
22802 @strong{Warning:} When generating code for the x86-64 architecture with
22803 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22804 used to keep the stack boundary aligned to 8 byte boundary.  Since
22805 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22806 intended to be used in controlled environment where stack space is
22807 important limitation.  This option leads to wrong code when functions
22808 compiled with 16 byte stack alignment (such as functions from a standard
22809 library) are called with misaligned stack.  In this case, SSE
22810 instructions may lead to misaligned memory access traps.  In addition,
22811 variable arguments are handled incorrectly for 16 byte aligned
22812 objects (including x87 long double and __int128), leading to wrong
22813 results.  You must build all modules with
22814 @option{-mpreferred-stack-boundary=3}, including any libraries.  This
22815 includes the system libraries and startup modules.
22816
22817 @item -mincoming-stack-boundary=@var{num}
22818 @opindex mincoming-stack-boundary
22819 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22820 boundary.  If @option{-mincoming-stack-boundary} is not specified,
22821 the one specified by @option{-mpreferred-stack-boundary} is used.
22822
22823 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22824 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22825 suffer significant run time performance penalties.  On Pentium III, the
22826 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22827 properly if it is not 16-byte aligned.
22828
22829 To ensure proper alignment of this values on the stack, the stack boundary
22830 must be as aligned as that required by any value stored on the stack.
22831 Further, every function must be generated such that it keeps the stack
22832 aligned.  Thus calling a function compiled with a higher preferred
22833 stack boundary from a function compiled with a lower preferred stack
22834 boundary most likely misaligns the stack.  It is recommended that
22835 libraries that use callbacks always use the default setting.
22836
22837 This extra alignment does consume extra stack space, and generally
22838 increases code size.  Code that is sensitive to stack space usage, such
22839 as embedded systems and operating system kernels, may want to reduce the
22840 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22841
22842 @need 200
22843 @item -mmmx
22844 @opindex mmmx
22845 @need 200
22846 @itemx -msse
22847 @opindex msse
22848 @need 200
22849 @itemx -msse2
22850 @opindex msse2
22851 @need 200
22852 @itemx -msse3
22853 @opindex msse3
22854 @need 200
22855 @itemx -mssse3
22856 @opindex mssse3
22857 @need 200
22858 @itemx -msse4
22859 @opindex msse4
22860 @need 200
22861 @itemx -msse4a
22862 @opindex msse4a
22863 @need 200
22864 @itemx -msse4.1
22865 @opindex msse4.1
22866 @need 200
22867 @itemx -msse4.2
22868 @opindex msse4.2
22869 @need 200
22870 @itemx -mavx
22871 @opindex mavx
22872 @need 200
22873 @itemx -mavx2
22874 @opindex mavx2
22875 @need 200
22876 @itemx -mavx512f
22877 @opindex mavx512f
22878 @need 200
22879 @itemx -mavx512pf
22880 @opindex mavx512pf
22881 @need 200
22882 @itemx -mavx512er
22883 @opindex mavx512er
22884 @need 200
22885 @itemx -mavx512cd
22886 @opindex mavx512cd
22887 @need 200
22888 @itemx -mavx512vl
22889 @opindex mavx512vl
22890 @need 200
22891 @itemx -mavx512bw
22892 @opindex mavx512bw
22893 @need 200
22894 @itemx -mavx512dq
22895 @opindex mavx512dq
22896 @need 200
22897 @itemx -mavx512ifma
22898 @opindex mavx512ifma
22899 @need 200
22900 @itemx -mavx512vbmi
22901 @opindex mavx512vbmi
22902 @need 200
22903 @itemx -msha
22904 @opindex msha
22905 @need 200
22906 @itemx -maes
22907 @opindex maes
22908 @need 200
22909 @itemx -mpclmul
22910 @opindex mpclmul
22911 @need 200
22912 @itemx -mclfushopt
22913 @opindex mclfushopt
22914 @need 200
22915 @itemx -mfsgsbase
22916 @opindex mfsgsbase
22917 @need 200
22918 @itemx -mrdrnd
22919 @opindex mrdrnd
22920 @need 200
22921 @itemx -mf16c
22922 @opindex mf16c
22923 @need 200
22924 @itemx -mfma
22925 @opindex mfma
22926 @need 200
22927 @itemx -mfma4
22928 @opindex mfma4
22929 @need 200
22930 @itemx -mno-fma4
22931 @opindex mno-fma4
22932 @need 200
22933 @itemx -mprefetchwt1
22934 @opindex mprefetchwt1
22935 @need 200
22936 @itemx -mxop
22937 @opindex mxop
22938 @need 200
22939 @itemx -mlwp
22940 @opindex mlwp
22941 @need 200
22942 @itemx -m3dnow
22943 @opindex m3dnow
22944 @need 200
22945 @itemx -mpopcnt
22946 @opindex mpopcnt
22947 @need 200
22948 @itemx -mabm
22949 @opindex mabm
22950 @need 200
22951 @itemx -mbmi
22952 @opindex mbmi
22953 @need 200
22954 @itemx -mbmi2
22955 @need 200
22956 @itemx -mlzcnt
22957 @opindex mlzcnt
22958 @need 200
22959 @itemx -mfxsr
22960 @opindex mfxsr
22961 @need 200
22962 @itemx -mxsave
22963 @opindex mxsave
22964 @need 200
22965 @itemx -mxsaveopt
22966 @opindex mxsaveopt
22967 @need 200
22968 @itemx -mxsavec
22969 @opindex mxsavec
22970 @need 200
22971 @itemx -mxsaves
22972 @opindex mxsaves
22973 @need 200
22974 @itemx -mrtm
22975 @opindex mrtm
22976 @need 200
22977 @itemx -mtbm
22978 @opindex mtbm
22979 @need 200
22980 @itemx -mmpx
22981 @opindex mmpx
22982 @need 200
22983 @itemx -mmwaitx
22984 @opindex mmwaitx
22985 These switches enable the use of instructions in the MMX, SSE,
22986 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22987 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22988 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
22989 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22990 extended instruction sets.  Each has a corresponding @option{-mno-} option
22991 to disable use of these instructions.
22992
22993 These extensions are also available as built-in functions: see
22994 @ref{x86 Built-in Functions}, for details of the functions enabled and
22995 disabled by these switches.
22996
22997 To generate SSE/SSE2 instructions automatically from floating-point
22998 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22999
23000 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
23001 generates new AVX instructions or AVX equivalence for all SSEx instructions
23002 when needed.
23003
23004 These options enable GCC to use these extended instructions in
23005 generated code, even without @option{-mfpmath=sse}.  Applications that
23006 perform run-time CPU detection must compile separate files for each
23007 supported architecture, using the appropriate flags.  In particular,
23008 the file containing the CPU detection code should be compiled without
23009 these options.
23010
23011 @item -mdump-tune-features
23012 @opindex mdump-tune-features
23013 This option instructs GCC to dump the names of the x86 performance 
23014 tuning features and default settings. The names can be used in 
23015 @option{-mtune-ctrl=@var{feature-list}}.
23016
23017 @item -mtune-ctrl=@var{feature-list}
23018 @opindex mtune-ctrl=@var{feature-list}
23019 This option is used to do fine grain control of x86 code generation features.
23020 @var{feature-list} is a comma separated list of @var{feature} names. See also
23021 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
23022 on if it is not preceded with @samp{^}, otherwise, it is turned off. 
23023 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
23024 developers. Using it may lead to code paths not covered by testing and can
23025 potentially result in compiler ICEs or runtime errors.
23026
23027 @item -mno-default
23028 @opindex mno-default
23029 This option instructs GCC to turn off all tunable features. See also 
23030 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
23031
23032 @item -mcld
23033 @opindex mcld
23034 This option instructs GCC to emit a @code{cld} instruction in the prologue
23035 of functions that use string instructions.  String instructions depend on
23036 the DF flag to select between autoincrement or autodecrement mode.  While the
23037 ABI specifies the DF flag to be cleared on function entry, some operating
23038 systems violate this specification by not clearing the DF flag in their
23039 exception dispatchers.  The exception handler can be invoked with the DF flag
23040 set, which leads to wrong direction mode when string instructions are used.
23041 This option can be enabled by default on 32-bit x86 targets by configuring
23042 GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
23043 instructions can be suppressed with the @option{-mno-cld} compiler option
23044 in this case.
23045
23046 @item -mvzeroupper
23047 @opindex mvzeroupper
23048 This option instructs GCC to emit a @code{vzeroupper} instruction
23049 before a transfer of control flow out of the function to minimize
23050 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
23051 intrinsics.
23052
23053 @item -mprefer-avx128
23054 @opindex mprefer-avx128
23055 This option instructs GCC to use 128-bit AVX instructions instead of
23056 256-bit AVX instructions in the auto-vectorizer.
23057
23058 @item -mcx16
23059 @opindex mcx16
23060 This option enables GCC to generate @code{CMPXCHG16B} instructions.
23061 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
23062 (or oword) data types.  
23063 This is useful for high-resolution counters that can be updated
23064 by multiple processors (or cores).  This instruction is generated as part of
23065 atomic built-in functions: see @ref{__sync Builtins} or
23066 @ref{__atomic Builtins} for details.
23067
23068 @item -msahf
23069 @opindex msahf
23070 This option enables generation of @code{SAHF} instructions in 64-bit code.
23071 Early Intel Pentium 4 CPUs with Intel 64 support,
23072 prior to the introduction of Pentium 4 G1 step in December 2005,
23073 lacked the @code{LAHF} and @code{SAHF} instructions
23074 which are supported by AMD64.
23075 These are load and store instructions, respectively, for certain status flags.
23076 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
23077 @code{drem}, and @code{remainder} built-in functions;
23078 see @ref{Other Builtins} for details.
23079
23080 @item -mmovbe
23081 @opindex mmovbe
23082 This option enables use of the @code{movbe} instruction to implement
23083 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
23084
23085 @item -mcrc32
23086 @opindex mcrc32
23087 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23088 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23089 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23090
23091 @item -mrecip
23092 @opindex mrecip
23093 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23094 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23095 with an additional Newton-Raphson step
23096 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23097 (and their vectorized
23098 variants) for single-precision floating-point arguments.  These instructions
23099 are generated only when @option{-funsafe-math-optimizations} is enabled
23100 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
23101 Note that while the throughput of the sequence is higher than the throughput
23102 of the non-reciprocal instruction, the precision of the sequence can be
23103 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23104
23105 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23106 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23107 combination), and doesn't need @option{-mrecip}.
23108
23109 Also note that GCC emits the above sequence with additional Newton-Raphson step
23110 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23111 already with @option{-ffast-math} (or the above option combination), and
23112 doesn't need @option{-mrecip}.
23113
23114 @item -mrecip=@var{opt}
23115 @opindex mrecip=opt
23116 This option controls which reciprocal estimate instructions
23117 may be used.  @var{opt} is a comma-separated list of options, which may
23118 be preceded by a @samp{!} to invert the option:
23119
23120 @table @samp
23121 @item all
23122 Enable all estimate instructions.
23123
23124 @item default
23125 Enable the default instructions, equivalent to @option{-mrecip}.
23126
23127 @item none
23128 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23129
23130 @item div
23131 Enable the approximation for scalar division.
23132
23133 @item vec-div
23134 Enable the approximation for vectorized division.
23135
23136 @item sqrt
23137 Enable the approximation for scalar square root.
23138
23139 @item vec-sqrt
23140 Enable the approximation for vectorized square root.
23141 @end table
23142
23143 So, for example, @option{-mrecip=all,!sqrt} enables
23144 all of the reciprocal approximations, except for square root.
23145
23146 @item -mveclibabi=@var{type}
23147 @opindex mveclibabi
23148 Specifies the ABI type to use for vectorizing intrinsics using an
23149 external library.  Supported values for @var{type} are @samp{svml} 
23150 for the Intel short
23151 vector math library and @samp{acml} for the AMD math core library.
23152 To use this option, both @option{-ftree-vectorize} and
23153 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
23154 ABI-compatible library must be specified at link time.
23155
23156 GCC currently emits calls to @code{vmldExp2},
23157 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23158 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23159 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23160 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23161 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23162 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23163 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23164 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23165 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23166 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23167 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23168 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23169 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23170 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23171 when @option{-mveclibabi=acml} is used.  
23172
23173 @item -mabi=@var{name}
23174 @opindex mabi
23175 Generate code for the specified calling convention.  Permissible values
23176 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23177 @samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
23178 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23179 You can control this behavior for specific functions by
23180 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23181 @xref{Function Attributes}.
23182
23183 @item -mtls-dialect=@var{type}
23184 @opindex mtls-dialect
23185 Generate code to access thread-local storage using the @samp{gnu} or
23186 @samp{gnu2} conventions.  @samp{gnu} is the conservative default;
23187 @samp{gnu2} is more efficient, but it may add compile- and run-time
23188 requirements that cannot be satisfied on all systems.
23189
23190 @item -mpush-args
23191 @itemx -mno-push-args
23192 @opindex mpush-args
23193 @opindex mno-push-args
23194 Use PUSH operations to store outgoing parameters.  This method is shorter
23195 and usually equally fast as method using SUB/MOV operations and is enabled
23196 by default.  In some cases disabling it may improve performance because of
23197 improved scheduling and reduced dependencies.
23198
23199 @item -maccumulate-outgoing-args
23200 @opindex maccumulate-outgoing-args
23201 If enabled, the maximum amount of space required for outgoing arguments is
23202 computed in the function prologue.  This is faster on most modern CPUs
23203 because of reduced dependencies, improved scheduling and reduced stack usage
23204 when the preferred stack boundary is not equal to 2.  The drawback is a notable
23205 increase in code size.  This switch implies @option{-mno-push-args}.
23206
23207 @item -mthreads
23208 @opindex mthreads
23209 Support thread-safe exception handling on MinGW.  Programs that rely
23210 on thread-safe exception handling must compile and link all code with the
23211 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
23212 @option{-D_MT}; when linking, it links in a special thread helper library
23213 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23214
23215 @item -mno-align-stringops
23216 @opindex mno-align-stringops
23217 Do not align the destination of inlined string operations.  This switch reduces
23218 code size and improves performance in case the destination is already aligned,
23219 but GCC doesn't know about it.
23220
23221 @item -minline-all-stringops
23222 @opindex minline-all-stringops
23223 By default GCC inlines string operations only when the destination is 
23224 known to be aligned to least a 4-byte boundary.  
23225 This enables more inlining and increases code
23226 size, but may improve performance of code that depends on fast
23227 @code{memcpy}, @code{strlen},
23228 and @code{memset} for short lengths.
23229
23230 @item -minline-stringops-dynamically
23231 @opindex minline-stringops-dynamically
23232 For string operations of unknown size, use run-time checks with
23233 inline code for small blocks and a library call for large blocks.
23234
23235 @item -mstringop-strategy=@var{alg}
23236 @opindex mstringop-strategy=@var{alg}
23237 Override the internal decision heuristic for the particular algorithm to use
23238 for inlining string operations.  The allowed values for @var{alg} are:
23239
23240 @table @samp
23241 @item rep_byte
23242 @itemx rep_4byte
23243 @itemx rep_8byte
23244 Expand using i386 @code{rep} prefix of the specified size.
23245
23246 @item byte_loop
23247 @itemx loop
23248 @itemx unrolled_loop
23249 Expand into an inline loop.
23250
23251 @item libcall
23252 Always use a library call.
23253 @end table
23254
23255 @item -mmemcpy-strategy=@var{strategy}
23256 @opindex mmemcpy-strategy=@var{strategy}
23257 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23258 should be inlined and what inline algorithm to use when the expected size
23259 of the copy operation is known. @var{strategy} 
23260 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
23261 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23262 the max byte size with which inline algorithm @var{alg} is allowed.  For the last
23263 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23264 in the list must be specified in increasing order.  The minimal byte size for 
23265 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
23266 preceding range.
23267
23268 @item -mmemset-strategy=@var{strategy}
23269 @opindex mmemset-strategy=@var{strategy}
23270 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23271 @code{__builtin_memset} expansion.
23272
23273 @item -momit-leaf-frame-pointer
23274 @opindex momit-leaf-frame-pointer
23275 Don't keep the frame pointer in a register for leaf functions.  This
23276 avoids the instructions to save, set up, and restore frame pointers and
23277 makes an extra register available in leaf functions.  The option
23278 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23279 which might make debugging harder.
23280
23281 @item -mtls-direct-seg-refs
23282 @itemx -mno-tls-direct-seg-refs
23283 @opindex mtls-direct-seg-refs
23284 Controls whether TLS variables may be accessed with offsets from the
23285 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23286 or whether the thread base pointer must be added.  Whether or not this
23287 is valid depends on the operating system, and whether it maps the
23288 segment to cover the entire TLS area.
23289
23290 For systems that use the GNU C Library, the default is on.
23291
23292 @item -msse2avx
23293 @itemx -mno-sse2avx
23294 @opindex msse2avx
23295 Specify that the assembler should encode SSE instructions with VEX
23296 prefix.  The option @option{-mavx} turns this on by default.
23297
23298 @item -mfentry
23299 @itemx -mno-fentry
23300 @opindex mfentry
23301 If profiling is active (@option{-pg}), put the profiling
23302 counter call before the prologue.
23303 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23304 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23305
23306 @item -mrecord-mcount
23307 @itemx -mno-record-mcount
23308 @opindex mrecord-mcount
23309 If profiling is active (@option{-pg}), generate a __mcount_loc section
23310 that contains pointers to each profiling call. This is useful for
23311 automatically patching and out calls.
23312
23313 @item -mnop-mcount
23314 @itemx -mno-nop-mcount
23315 @opindex mnop-mcount
23316 If profiling is active (@option{-pg}), generate the calls to
23317 the profiling functions as nops. This is useful when they
23318 should be patched in later dynamically. This is likely only
23319 useful together with @option{-mrecord-mcount}.
23320
23321 @item -mskip-rax-setup
23322 @itemx -mno-skip-rax-setup
23323 @opindex mskip-rax-setup
23324 When generating code for the x86-64 architecture with SSE extensions
23325 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23326 register when there are no variable arguments passed in vector registers.
23327
23328 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23329 saving vector registers on stack when passing variable arguments, the
23330 impacts of this option are callees may waste some stack space,
23331 misbehave or jump to a random location.  GCC 4.4 or newer don't have
23332 those issues, regardless the RAX register value.
23333
23334 @item -m8bit-idiv
23335 @itemx -mno-8bit-idiv
23336 @opindex m8bit-idiv
23337 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23338 much faster than 32-bit/64-bit integer divide.  This option generates a
23339 run-time check.  If both dividend and divisor are within range of 0
23340 to 255, 8-bit unsigned integer divide is used instead of
23341 32-bit/64-bit integer divide.
23342
23343 @item -mavx256-split-unaligned-load
23344 @itemx -mavx256-split-unaligned-store
23345 @opindex mavx256-split-unaligned-load
23346 @opindex mavx256-split-unaligned-store
23347 Split 32-byte AVX unaligned load and store.
23348
23349 @item -mstack-protector-guard=@var{guard}
23350 @opindex mstack-protector-guard=@var{guard}
23351 Generate stack protection code using canary at @var{guard}.  Supported
23352 locations are @samp{global} for global canary or @samp{tls} for per-thread
23353 canary in the TLS block (the default).  This option has effect only when
23354 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23355
23356 @end table
23357
23358 These @samp{-m} switches are supported in addition to the above
23359 on x86-64 processors in 64-bit environments.
23360
23361 @table @gcctabopt
23362 @item -m32
23363 @itemx -m64
23364 @itemx -mx32
23365 @itemx -m16
23366 @itemx -miamcu
23367 @opindex m32
23368 @opindex m64
23369 @opindex mx32
23370 @opindex m16
23371 @opindex miamcu
23372 Generate code for a 16-bit, 32-bit or 64-bit environment.
23373 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23374 to 32 bits, and
23375 generates code that runs on any i386 system.
23376
23377 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23378 types to 64 bits, and generates code for the x86-64 architecture.
23379 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23380 and @option{-mdynamic-no-pic} options.
23381
23382 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23383 to 32 bits, and
23384 generates code for the x86-64 architecture.
23385
23386 The @option{-m16} option is the same as @option{-m32}, except for that
23387 it outputs the @code{.code16gcc} assembly directive at the beginning of
23388 the assembly output so that the binary can run in 16-bit mode.
23389
23390 The @option{-miamcu} option generates code which conforms to Intel MCU
23391 psABI.  It requires the @option{-m32} option to be turned on.
23392
23393 @item -mno-red-zone
23394 @opindex mno-red-zone
23395 Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
23396 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23397 stack pointer that is not modified by signal or interrupt handlers
23398 and therefore can be used for temporary data without adjusting the stack
23399 pointer.  The flag @option{-mno-red-zone} disables this red zone.
23400
23401 @item -mcmodel=small
23402 @opindex mcmodel=small
23403 Generate code for the small code model: the program and its symbols must
23404 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
23405 Programs can be statically or dynamically linked.  This is the default
23406 code model.
23407
23408 @item -mcmodel=kernel
23409 @opindex mcmodel=kernel
23410 Generate code for the kernel code model.  The kernel runs in the
23411 negative 2 GB of the address space.
23412 This model has to be used for Linux kernel code.
23413
23414 @item -mcmodel=medium
23415 @opindex mcmodel=medium
23416 Generate code for the medium model: the program is linked in the lower 2
23417 GB of the address space.  Small symbols are also placed there.  Symbols
23418 with sizes larger than @option{-mlarge-data-threshold} are put into
23419 large data or BSS sections and can be located above 2GB.  Programs can
23420 be statically or dynamically linked.
23421
23422 @item -mcmodel=large
23423 @opindex mcmodel=large
23424 Generate code for the large model.  This model makes no assumptions
23425 about addresses and sizes of sections.
23426
23427 @item -maddress-mode=long
23428 @opindex maddress-mode=long
23429 Generate code for long address mode.  This is only supported for 64-bit
23430 and x32 environments.  It is the default address mode for 64-bit
23431 environments.
23432
23433 @item -maddress-mode=short
23434 @opindex maddress-mode=short
23435 Generate code for short address mode.  This is only supported for 32-bit
23436 and x32 environments.  It is the default address mode for 32-bit and
23437 x32 environments.
23438 @end table
23439
23440 @node x86 Windows Options
23441 @subsection x86 Windows Options
23442 @cindex x86 Windows Options
23443 @cindex Windows Options for x86
23444
23445 These additional options are available for Microsoft Windows targets:
23446
23447 @table @gcctabopt
23448 @item -mconsole
23449 @opindex mconsole
23450 This option
23451 specifies that a console application is to be generated, by
23452 instructing the linker to set the PE header subsystem type
23453 required for console applications.
23454 This option is available for Cygwin and MinGW targets and is
23455 enabled by default on those targets.
23456
23457 @item -mdll
23458 @opindex mdll
23459 This option is available for Cygwin and MinGW targets.  It
23460 specifies that a DLL---a dynamic link library---is to be
23461 generated, enabling the selection of the required runtime
23462 startup object and entry point.
23463
23464 @item -mnop-fun-dllimport
23465 @opindex mnop-fun-dllimport
23466 This option is available for Cygwin and MinGW targets.  It
23467 specifies that the @code{dllimport} attribute should be ignored.
23468
23469 @item -mthread
23470 @opindex mthread
23471 This option is available for MinGW targets. It specifies
23472 that MinGW-specific thread support is to be used.
23473
23474 @item -municode
23475 @opindex municode
23476 This option is available for MinGW-w64 targets.  It causes
23477 the @code{UNICODE} preprocessor macro to be predefined, and
23478 chooses Unicode-capable runtime startup code.
23479
23480 @item -mwin32
23481 @opindex mwin32
23482 This option is available for Cygwin and MinGW targets.  It
23483 specifies that the typical Microsoft Windows predefined macros are to
23484 be set in the pre-processor, but does not influence the choice
23485 of runtime library/startup code.
23486
23487 @item -mwindows
23488 @opindex mwindows
23489 This option is available for Cygwin and MinGW targets.  It
23490 specifies that a GUI application is to be generated by
23491 instructing the linker to set the PE header subsystem type
23492 appropriately.
23493
23494 @item -fno-set-stack-executable
23495 @opindex fno-set-stack-executable
23496 This option is available for MinGW targets. It specifies that
23497 the executable flag for the stack used by nested functions isn't
23498 set. This is necessary for binaries running in kernel mode of
23499 Microsoft Windows, as there the User32 API, which is used to set executable
23500 privileges, isn't available.
23501
23502 @item -fwritable-relocated-rdata
23503 @opindex fno-writable-relocated-rdata
23504 This option is available for MinGW and Cygwin targets.  It specifies
23505 that relocated-data in read-only section is put into .data
23506 section.  This is a necessary for older runtimes not supporting
23507 modification of .rdata sections for pseudo-relocation.
23508
23509 @item -mpe-aligned-commons
23510 @opindex mpe-aligned-commons
23511 This option is available for Cygwin and MinGW targets.  It
23512 specifies that the GNU extension to the PE file format that
23513 permits the correct alignment of COMMON variables should be
23514 used when generating code.  It is enabled by default if
23515 GCC detects that the target assembler found during configuration
23516 supports the feature.
23517 @end table
23518
23519 See also under @ref{x86 Options} for standard options.
23520
23521 @node Xstormy16 Options
23522 @subsection Xstormy16 Options
23523 @cindex Xstormy16 Options
23524
23525 These options are defined for Xstormy16:
23526
23527 @table @gcctabopt
23528 @item -msim
23529 @opindex msim
23530 Choose startup files and linker script suitable for the simulator.
23531 @end table
23532
23533 @node Xtensa Options
23534 @subsection Xtensa Options
23535 @cindex Xtensa Options
23536
23537 These options are supported for Xtensa targets:
23538
23539 @table @gcctabopt
23540 @item -mconst16
23541 @itemx -mno-const16
23542 @opindex mconst16
23543 @opindex mno-const16
23544 Enable or disable use of @code{CONST16} instructions for loading
23545 constant values.  The @code{CONST16} instruction is currently not a
23546 standard option from Tensilica.  When enabled, @code{CONST16}
23547 instructions are always used in place of the standard @code{L32R}
23548 instructions.  The use of @code{CONST16} is enabled by default only if
23549 the @code{L32R} instruction is not available.
23550
23551 @item -mfused-madd
23552 @itemx -mno-fused-madd
23553 @opindex mfused-madd
23554 @opindex mno-fused-madd
23555 Enable or disable use of fused multiply/add and multiply/subtract
23556 instructions in the floating-point option.  This has no effect if the
23557 floating-point option is not also enabled.  Disabling fused multiply/add
23558 and multiply/subtract instructions forces the compiler to use separate
23559 instructions for the multiply and add/subtract operations.  This may be
23560 desirable in some cases where strict IEEE 754-compliant results are
23561 required: the fused multiply add/subtract instructions do not round the
23562 intermediate result, thereby producing results with @emph{more} bits of
23563 precision than specified by the IEEE standard.  Disabling fused multiply
23564 add/subtract instructions also ensures that the program output is not
23565 sensitive to the compiler's ability to combine multiply and add/subtract
23566 operations.
23567
23568 @item -mserialize-volatile
23569 @itemx -mno-serialize-volatile
23570 @opindex mserialize-volatile
23571 @opindex mno-serialize-volatile
23572 When this option is enabled, GCC inserts @code{MEMW} instructions before
23573 @code{volatile} memory references to guarantee sequential consistency.
23574 The default is @option{-mserialize-volatile}.  Use
23575 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23576
23577 @item -mforce-no-pic
23578 @opindex mforce-no-pic
23579 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23580 position-independent code (PIC), this option disables PIC for compiling
23581 kernel code.
23582
23583 @item -mtext-section-literals
23584 @itemx -mno-text-section-literals
23585 @opindex mtext-section-literals
23586 @opindex mno-text-section-literals
23587 These options control the treatment of literal pools.  The default is
23588 @option{-mno-text-section-literals}, which places literals in a separate
23589 section in the output file.  This allows the literal pool to be placed
23590 in a data RAM/ROM, and it also allows the linker to combine literal
23591 pools from separate object files to remove redundant literals and
23592 improve code size.  With @option{-mtext-section-literals}, the literals
23593 are interspersed in the text section in order to keep them as close as
23594 possible to their references.  This may be necessary for large assembly
23595 files.  Literals for each function are placed right before that function.
23596
23597 @item -mauto-litpools
23598 @itemx -mno-auto-litpools
23599 @opindex mauto-litpools
23600 @opindex mno-auto-litpools
23601 These options control the treatment of literal pools.  The default is
23602 @option{-mno-auto-litpools}, which places literals in a separate
23603 section in the output file unless @option{-mtext-section-literals} is
23604 used.  With @option{-mauto-litpools} the literals are interspersed in
23605 the text section by the assembler.  Compiler does not produce explicit
23606 @code{.literal} directives and loads literals into registers with
23607 @code{MOVI} instructions instead of @code{L32R} to let the assembler
23608 do relaxation and place literals as necessary.  This option allows
23609 assembler to create several literal pools per function and assemble
23610 very big functions, which may not be possible with
23611 @option{-mtext-section-literals}.
23612
23613 @item -mtarget-align
23614 @itemx -mno-target-align
23615 @opindex mtarget-align
23616 @opindex mno-target-align
23617 When this option is enabled, GCC instructs the assembler to
23618 automatically align instructions to reduce branch penalties at the
23619 expense of some code density.  The assembler attempts to widen density
23620 instructions to align branch targets and the instructions following call
23621 instructions.  If there are not enough preceding safe density
23622 instructions to align a target, no widening is performed.  The
23623 default is @option{-mtarget-align}.  These options do not affect the
23624 treatment of auto-aligned instructions like @code{LOOP}, which the
23625 assembler always aligns, either by widening density instructions or
23626 by inserting NOP instructions.
23627
23628 @item -mlongcalls
23629 @itemx -mno-longcalls
23630 @opindex mlongcalls
23631 @opindex mno-longcalls
23632 When this option is enabled, GCC instructs the assembler to translate
23633 direct calls to indirect calls unless it can determine that the target
23634 of a direct call is in the range allowed by the call instruction.  This
23635 translation typically occurs for calls to functions in other source
23636 files.  Specifically, the assembler translates a direct @code{CALL}
23637 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23638 The default is @option{-mno-longcalls}.  This option should be used in
23639 programs where the call target can potentially be out of range.  This
23640 option is implemented in the assembler, not the compiler, so the
23641 assembly code generated by GCC still shows direct call
23642 instructions---look at the disassembled object code to see the actual
23643 instructions.  Note that the assembler uses an indirect call for
23644 every cross-file call, not just those that really are out of range.
23645 @end table
23646
23647 @node zSeries Options
23648 @subsection zSeries Options
23649 @cindex zSeries options
23650
23651 These are listed under @xref{S/390 and zSeries Options}.
23652
23653 @node Code Gen Options
23654 @section Options for Code Generation Conventions
23655 @cindex code generation conventions
23656 @cindex options, code generation
23657 @cindex run-time options
23658
23659 These machine-independent options control the interface conventions
23660 used in code generation.
23661
23662 Most of them have both positive and negative forms; the negative form
23663 of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
23664 one of the forms is listed---the one that is not the default.  You
23665 can figure out the other form by either removing @samp{no-} or adding
23666 it.
23667
23668 @table @gcctabopt
23669 @item -fbounds-check
23670 @opindex fbounds-check
23671 For front ends that support it, generate additional code to check that
23672 indices used to access arrays are within the declared range.  This is
23673 currently only supported by the Java and Fortran front ends, where
23674 this option defaults to true and false respectively.
23675
23676 @item -fstack-reuse=@var{reuse-level}
23677 @opindex fstack_reuse
23678 This option controls stack space reuse for user declared local/auto variables
23679 and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
23680 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23681 local variables and temporaries, @samp{named_vars} enables the reuse only for
23682 user defined local variables with names, and @samp{none} disables stack reuse
23683 completely. The default value is @samp{all}. The option is needed when the
23684 program extends the lifetime of a scoped local variable or a compiler generated
23685 temporary beyond the end point defined by the language.  When a lifetime of
23686 a variable ends, and if the variable lives in memory, the optimizing compiler
23687 has the freedom to reuse its stack space with other temporaries or scoped
23688 local variables whose live range does not overlap with it. Legacy code extending
23689 local lifetime is likely to break with the stack reuse optimization.
23690
23691 For example,
23692
23693 @smallexample
23694    int *p;
23695    @{
23696      int local1;
23697
23698      p = &local1;
23699      local1 = 10;
23700      ....
23701    @}
23702    @{
23703       int local2;
23704       local2 = 20;
23705       ...
23706    @}
23707
23708    if (*p == 10)  // out of scope use of local1
23709      @{
23710
23711      @}
23712 @end smallexample
23713
23714 Another example:
23715 @smallexample
23716
23717    struct A
23718    @{
23719        A(int k) : i(k), j(k) @{ @}
23720        int i;
23721        int j;
23722    @};
23723
23724    A *ap;
23725
23726    void foo(const A& ar)
23727    @{
23728       ap = &ar;
23729    @}
23730
23731    void bar()
23732    @{
23733       foo(A(10)); // temp object's lifetime ends when foo returns
23734
23735       @{
23736         A a(20);
23737         ....
23738       @}
23739       ap->i+= 10;  // ap references out of scope temp whose space
23740                    // is reused with a. What is the value of ap->i?
23741    @}
23742
23743 @end smallexample
23744
23745 The lifetime of a compiler generated temporary is well defined by the C++
23746 standard. When a lifetime of a temporary ends, and if the temporary lives
23747 in memory, the optimizing compiler has the freedom to reuse its stack
23748 space with other temporaries or scoped local variables whose live range
23749 does not overlap with it. However some of the legacy code relies on
23750 the behavior of older compilers in which temporaries' stack space is
23751 not reused, the aggressive stack reuse can lead to runtime errors. This
23752 option is used to control the temporary stack reuse optimization.
23753
23754 @item -ftrapv
23755 @opindex ftrapv
23756 This option generates traps for signed overflow on addition, subtraction,
23757 multiplication operations.
23758 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
23759 @option{-ftrapv} @option{-fwrapv} on the command-line results in
23760 @option{-fwrapv} being effective.  Note that only active options override, so
23761 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
23762 results in @option{-ftrapv} being effective.
23763
23764 @item -fwrapv
23765 @opindex fwrapv
23766 This option instructs the compiler to assume that signed arithmetic
23767 overflow of addition, subtraction and multiplication wraps around
23768 using twos-complement representation.  This flag enables some optimizations
23769 and disables others.  This option is enabled by default for the Java
23770 front end, as required by the Java language specification.
23771 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
23772 @option{-ftrapv} @option{-fwrapv} on the command-line results in
23773 @option{-fwrapv} being effective.  Note that only active options override, so
23774 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
23775 results in @option{-ftrapv} being effective.
23776
23777 @item -fexceptions
23778 @opindex fexceptions
23779 Enable exception handling.  Generates extra code needed to propagate
23780 exceptions.  For some targets, this implies GCC generates frame
23781 unwind information for all functions, which can produce significant data
23782 size overhead, although it does not affect execution.  If you do not
23783 specify this option, GCC enables it by default for languages like
23784 C++ that normally require exception handling, and disables it for
23785 languages like C that do not normally require it.  However, you may need
23786 to enable this option when compiling C code that needs to interoperate
23787 properly with exception handlers written in C++.  You may also wish to
23788 disable this option if you are compiling older C++ programs that don't
23789 use exception handling.
23790
23791 @item -fnon-call-exceptions
23792 @opindex fnon-call-exceptions
23793 Generate code that allows trapping instructions to throw exceptions.
23794 Note that this requires platform-specific runtime support that does
23795 not exist everywhere.  Moreover, it only allows @emph{trapping}
23796 instructions to throw exceptions, i.e.@: memory references or floating-point
23797 instructions.  It does not allow exceptions to be thrown from
23798 arbitrary signal handlers such as @code{SIGALRM}.
23799
23800 @item -fdelete-dead-exceptions
23801 @opindex fdelete-dead-exceptions
23802 Consider that instructions that may throw exceptions but don't otherwise
23803 contribute to the execution of the program can be optimized away.
23804 This option is enabled by default for the Ada front end, as permitted by
23805 the Ada language specification.
23806 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23807
23808 @item -funwind-tables
23809 @opindex funwind-tables
23810 Similar to @option{-fexceptions}, except that it just generates any needed
23811 static data, but does not affect the generated code in any other way.
23812 You normally do not need to enable this option; instead, a language processor
23813 that needs this handling enables it on your behalf.
23814
23815 @item -fasynchronous-unwind-tables
23816 @opindex fasynchronous-unwind-tables
23817 Generate unwind table in DWARF 2 format, if supported by target machine.  The
23818 table is exact at each instruction boundary, so it can be used for stack
23819 unwinding from asynchronous events (such as debugger or garbage collector).
23820
23821 @item -fno-gnu-unique
23822 @opindex fno-gnu-unique
23823 On systems with recent GNU assembler and C library, the C++ compiler
23824 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23825 of template static data members and static local variables in inline
23826 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23827 is necessary to avoid problems with a library used by two different
23828 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23829 therefore disagreeing with the other one about the binding of the
23830 symbol.  But this causes @code{dlclose} to be ignored for affected
23831 DSOs; if your program relies on reinitialization of a DSO via
23832 @code{dlclose} and @code{dlopen}, you can use
23833 @option{-fno-gnu-unique}.
23834
23835 @item -fpcc-struct-return
23836 @opindex fpcc-struct-return
23837 Return ``short'' @code{struct} and @code{union} values in memory like
23838 longer ones, rather than in registers.  This convention is less
23839 efficient, but it has the advantage of allowing intercallability between
23840 GCC-compiled files and files compiled with other compilers, particularly
23841 the Portable C Compiler (pcc).
23842
23843 The precise convention for returning structures in memory depends
23844 on the target configuration macros.
23845
23846 Short structures and unions are those whose size and alignment match
23847 that of some integer type.
23848
23849 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23850 switch is not binary compatible with code compiled with the
23851 @option{-freg-struct-return} switch.
23852 Use it to conform to a non-default application binary interface.
23853
23854 @item -freg-struct-return
23855 @opindex freg-struct-return
23856 Return @code{struct} and @code{union} values in registers when possible.
23857 This is more efficient for small structures than
23858 @option{-fpcc-struct-return}.
23859
23860 If you specify neither @option{-fpcc-struct-return} nor
23861 @option{-freg-struct-return}, GCC defaults to whichever convention is
23862 standard for the target.  If there is no standard convention, GCC
23863 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23864 the principal compiler.  In those cases, we can choose the standard, and
23865 we chose the more efficient register return alternative.
23866
23867 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23868 switch is not binary compatible with code compiled with the
23869 @option{-fpcc-struct-return} switch.
23870 Use it to conform to a non-default application binary interface.
23871
23872 @item -fshort-enums
23873 @opindex fshort-enums
23874 Allocate to an @code{enum} type only as many bytes as it needs for the
23875 declared range of possible values.  Specifically, the @code{enum} type
23876 is equivalent to the smallest integer type that has enough room.
23877
23878 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23879 code that is not binary compatible with code generated without that switch.
23880 Use it to conform to a non-default application binary interface.
23881
23882 @item -fshort-double
23883 @opindex fshort-double
23884 Use the same size for @code{double} as for @code{float}.
23885
23886 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23887 code that is not binary compatible with code generated without that switch.
23888 Use it to conform to a non-default application binary interface.
23889
23890 @item -fshort-wchar
23891 @opindex fshort-wchar
23892 Override the underlying type for @code{wchar_t} to be @code{short
23893 unsigned int} instead of the default for the target.  This option is
23894 useful for building programs to run under WINE@.
23895
23896 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23897 code that is not binary compatible with code generated without that switch.
23898 Use it to conform to a non-default application binary interface.
23899
23900 @item -fno-common
23901 @opindex fno-common
23902 In C code, controls the placement of uninitialized global variables.
23903 Unix C compilers have traditionally permitted multiple definitions of
23904 such variables in different compilation units by placing the variables
23905 in a common block.
23906 This is the behavior specified by @option{-fcommon}, and is the default
23907 for GCC on most targets.
23908 On the other hand, this behavior is not required by ISO C, and on some
23909 targets may carry a speed or code size penalty on variable references.
23910 The @option{-fno-common} option specifies that the compiler should place
23911 uninitialized global variables in the data section of the object file,
23912 rather than generating them as common blocks.
23913 This has the effect that if the same variable is declared
23914 (without @code{extern}) in two different compilations,
23915 you get a multiple-definition error when you link them.
23916 In this case, you must compile with @option{-fcommon} instead.
23917 Compiling with @option{-fno-common} is useful on targets for which
23918 it provides better performance, or if you wish to verify that the
23919 program will work on other systems that always treat uninitialized
23920 variable declarations this way.
23921
23922 @item -fno-ident
23923 @opindex fno-ident
23924 Ignore the @code{#ident} directive.
23925
23926 @item -finhibit-size-directive
23927 @opindex finhibit-size-directive
23928 Don't output a @code{.size} assembler directive, or anything else that
23929 would cause trouble if the function is split in the middle, and the
23930 two halves are placed at locations far apart in memory.  This option is
23931 used when compiling @file{crtstuff.c}; you should not need to use it
23932 for anything else.
23933
23934 @item -fverbose-asm
23935 @opindex fverbose-asm
23936 Put extra commentary information in the generated assembly code to
23937 make it more readable.  This option is generally only of use to those
23938 who actually need to read the generated assembly code (perhaps while
23939 debugging the compiler itself).
23940
23941 @option{-fno-verbose-asm}, the default, causes the
23942 extra information to be omitted and is useful when comparing two assembler
23943 files.
23944
23945 @item -frecord-gcc-switches
23946 @opindex frecord-gcc-switches
23947 This switch causes the command line used to invoke the
23948 compiler to be recorded into the object file that is being created.
23949 This switch is only implemented on some targets and the exact format
23950 of the recording is target and binary file format dependent, but it
23951 usually takes the form of a section containing ASCII text.  This
23952 switch is related to the @option{-fverbose-asm} switch, but that
23953 switch only records information in the assembler output file as
23954 comments, so it never reaches the object file.
23955 See also @option{-grecord-gcc-switches} for another
23956 way of storing compiler options into the object file.
23957
23958 @item -fpic
23959 @opindex fpic
23960 @cindex global offset table
23961 @cindex PIC
23962 Generate position-independent code (PIC) suitable for use in a shared
23963 library, if supported for the target machine.  Such code accesses all
23964 constant addresses through a global offset table (GOT)@.  The dynamic
23965 loader resolves the GOT entries when the program starts (the dynamic
23966 loader is not part of GCC; it is part of the operating system).  If
23967 the GOT size for the linked executable exceeds a machine-specific
23968 maximum size, you get an error message from the linker indicating that
23969 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23970 instead.  (These maximums are 8k on the SPARC and 32k
23971 on the m68k and RS/6000.  The x86 has no such limit.)
23972
23973 Position-independent code requires special support, and therefore works
23974 only on certain machines.  For the x86, GCC supports PIC for System V
23975 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
23976 position-independent.
23977
23978 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23979 are defined to 1.
23980
23981 @item -fPIC
23982 @opindex fPIC
23983 If supported for the target machine, emit position-independent code,
23984 suitable for dynamic linking and avoiding any limit on the size of the
23985 global offset table.  This option makes a difference on the m68k,
23986 PowerPC and SPARC@.
23987
23988 Position-independent code requires special support, and therefore works
23989 only on certain machines.
23990
23991 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23992 are defined to 2.
23993
23994 @item -fpie
23995 @itemx -fPIE
23996 @opindex fpie
23997 @opindex fPIE
23998 These options are similar to @option{-fpic} and @option{-fPIC}, but
23999 generated position independent code can be only linked into executables.
24000 Usually these options are used when @option{-pie} GCC option is
24001 used during linking.
24002
24003 @option{-fpie} and @option{-fPIE} both define the macros
24004 @code{__pie__} and @code{__PIE__}.  The macros have the value 1
24005 for @option{-fpie} and 2 for @option{-fPIE}.
24006
24007 @item -fno-plt
24008 @opindex fno-plt
24009 Do not use PLT for external function calls in position-independent code.
24010 Instead, load callee address at call site from GOT and branch to it.
24011 This leads to more efficient code by eliminating PLT stubs and exposing
24012 GOT load to optimizations.  On architectures such as 32-bit x86 where
24013 PLT stubs expect GOT pointer in a specific register, this gives more
24014 register allocation freedom to the compiler.  Lazy binding requires PLT:
24015 with @option{-fno-plt} all external symbols are resolved at load time.
24016
24017 Alternatively, function attribute @code{noplt} can be used to avoid PLT
24018 for calls to specific external functions by marking those functions with
24019 this attribute.
24020
24021 Additionally, a few targets also convert calls to those functions that are
24022 marked to not use the PLT to use the GOT instead for non-position independent
24023 code.
24024
24025 @item -fno-jump-tables
24026 @opindex fno-jump-tables
24027 Do not use jump tables for switch statements even where it would be
24028 more efficient than other code generation strategies.  This option is
24029 of use in conjunction with @option{-fpic} or @option{-fPIC} for
24030 building code that forms part of a dynamic linker and cannot
24031 reference the address of a jump table.  On some targets, jump tables
24032 do not require a GOT and this option is not needed.
24033
24034 @item -ffixed-@var{reg}
24035 @opindex ffixed
24036 Treat the register named @var{reg} as a fixed register; generated code
24037 should never refer to it (except perhaps as a stack pointer, frame
24038 pointer or in some other fixed role).
24039
24040 @var{reg} must be the name of a register.  The register names accepted
24041 are machine-specific and are defined in the @code{REGISTER_NAMES}
24042 macro in the machine description macro file.
24043
24044 This flag does not have a negative form, because it specifies a
24045 three-way choice.
24046
24047 @item -fcall-used-@var{reg}
24048 @opindex fcall-used
24049 Treat the register named @var{reg} as an allocable register that is
24050 clobbered by function calls.  It may be allocated for temporaries or
24051 variables that do not live across a call.  Functions compiled this way
24052 do not save and restore the register @var{reg}.
24053
24054 It is an error to use this flag with the frame pointer or stack pointer.
24055 Use of this flag for other registers that have fixed pervasive roles in
24056 the machine's execution model produces disastrous results.
24057
24058 This flag does not have a negative form, because it specifies a
24059 three-way choice.
24060
24061 @item -fcall-saved-@var{reg}
24062 @opindex fcall-saved
24063 Treat the register named @var{reg} as an allocable register saved by
24064 functions.  It may be allocated even for temporaries or variables that
24065 live across a call.  Functions compiled this way save and restore
24066 the register @var{reg} if they use it.
24067
24068 It is an error to use this flag with the frame pointer or stack pointer.
24069 Use of this flag for other registers that have fixed pervasive roles in
24070 the machine's execution model produces disastrous results.
24071
24072 A different sort of disaster results from the use of this flag for
24073 a register in which function values may be returned.
24074
24075 This flag does not have a negative form, because it specifies a
24076 three-way choice.
24077
24078 @item -fpack-struct[=@var{n}]
24079 @opindex fpack-struct
24080 Without a value specified, pack all structure members together without
24081 holes.  When a value is specified (which must be a small power of two), pack
24082 structure members according to this value, representing the maximum
24083 alignment (that is, objects with default alignment requirements larger than
24084 this are output potentially unaligned at the next fitting location.
24085
24086 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
24087 code that is not binary compatible with code generated without that switch.
24088 Additionally, it makes the code suboptimal.
24089 Use it to conform to a non-default application binary interface.
24090
24091 @item -finstrument-functions
24092 @opindex finstrument-functions
24093 Generate instrumentation calls for entry and exit to functions.  Just
24094 after function entry and just before function exit, the following
24095 profiling functions are called with the address of the current
24096 function and its call site.  (On some platforms,
24097 @code{__builtin_return_address} does not work beyond the current
24098 function, so the call site information may not be available to the
24099 profiling functions otherwise.)
24100
24101 @smallexample
24102 void __cyg_profile_func_enter (void *this_fn,
24103                                void *call_site);
24104 void __cyg_profile_func_exit  (void *this_fn,
24105                                void *call_site);
24106 @end smallexample
24107
24108 The first argument is the address of the start of the current function,
24109 which may be looked up exactly in the symbol table.
24110
24111 This instrumentation is also done for functions expanded inline in other
24112 functions.  The profiling calls indicate where, conceptually, the
24113 inline function is entered and exited.  This means that addressable
24114 versions of such functions must be available.  If all your uses of a
24115 function are expanded inline, this may mean an additional expansion of
24116 code size.  If you use @code{extern inline} in your C code, an
24117 addressable version of such functions must be provided.  (This is
24118 normally the case anyway, but if you get lucky and the optimizer always
24119 expands the functions inline, you might have gotten away without
24120 providing static copies.)
24121
24122 A function may be given the attribute @code{no_instrument_function}, in
24123 which case this instrumentation is not done.  This can be used, for
24124 example, for the profiling functions listed above, high-priority
24125 interrupt routines, and any functions from which the profiling functions
24126 cannot safely be called (perhaps signal handlers, if the profiling
24127 routines generate output or allocate memory).
24128
24129 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24130 @opindex finstrument-functions-exclude-file-list
24131
24132 Set the list of functions that are excluded from instrumentation (see
24133 the description of @option{-finstrument-functions}).  If the file that
24134 contains a function definition matches with one of @var{file}, then
24135 that function is not instrumented.  The match is done on substrings:
24136 if the @var{file} parameter is a substring of the file name, it is
24137 considered to be a match.
24138
24139 For example:
24140
24141 @smallexample
24142 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24143 @end smallexample
24144
24145 @noindent
24146 excludes any inline function defined in files whose pathnames
24147 contain @file{/bits/stl} or @file{include/sys}.
24148
24149 If, for some reason, you want to include letter @samp{,} in one of
24150 @var{sym}, write @samp{\,}. For example,
24151 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24152 (note the single quote surrounding the option).
24153
24154 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24155 @opindex finstrument-functions-exclude-function-list
24156
24157 This is similar to @option{-finstrument-functions-exclude-file-list},
24158 but this option sets the list of function names to be excluded from
24159 instrumentation.  The function name to be matched is its user-visible
24160 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24161 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
24162 match is done on substrings: if the @var{sym} parameter is a substring
24163 of the function name, it is considered to be a match.  For C99 and C++
24164 extended identifiers, the function name must be given in UTF-8, not
24165 using universal character names.
24166
24167 @item -fstack-check
24168 @opindex fstack-check
24169 Generate code to verify that you do not go beyond the boundary of the
24170 stack.  You should specify this flag if you are running in an
24171 environment with multiple threads, but you only rarely need to specify it in
24172 a single-threaded environment since stack overflow is automatically
24173 detected on nearly all systems if there is only one stack.
24174
24175 Note that this switch does not actually cause checking to be done; the
24176 operating system or the language runtime must do that.  The switch causes
24177 generation of code to ensure that they see the stack being extended.
24178
24179 You can additionally specify a string parameter: @samp{no} means no
24180 checking, @samp{generic} means force the use of old-style checking,
24181 @samp{specific} means use the best checking method and is equivalent
24182 to bare @option{-fstack-check}.
24183
24184 Old-style checking is a generic mechanism that requires no specific
24185 target support in the compiler but comes with the following drawbacks:
24186
24187 @enumerate
24188 @item
24189 Modified allocation strategy for large objects: they are always
24190 allocated dynamically if their size exceeds a fixed threshold.
24191
24192 @item
24193 Fixed limit on the size of the static frame of functions: when it is
24194 topped by a particular function, stack checking is not reliable and
24195 a warning is issued by the compiler.
24196
24197 @item
24198 Inefficiency: because of both the modified allocation strategy and the
24199 generic implementation, code performance is hampered.
24200 @end enumerate
24201
24202 Note that old-style stack checking is also the fallback method for
24203 @samp{specific} if no target support has been added in the compiler.
24204
24205 @item -fstack-limit-register=@var{reg}
24206 @itemx -fstack-limit-symbol=@var{sym}
24207 @itemx -fno-stack-limit
24208 @opindex fstack-limit-register
24209 @opindex fstack-limit-symbol
24210 @opindex fno-stack-limit
24211 Generate code to ensure that the stack does not grow beyond a certain value,
24212 either the value of a register or the address of a symbol.  If a larger
24213 stack is required, a signal is raised at run time.  For most targets,
24214 the signal is raised before the stack overruns the boundary, so
24215 it is possible to catch the signal without taking special precautions.
24216
24217 For instance, if the stack starts at absolute address @samp{0x80000000}
24218 and grows downwards, you can use the flags
24219 @option{-fstack-limit-symbol=__stack_limit} and
24220 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24221 of 128KB@.  Note that this may only work with the GNU linker.
24222
24223 @item -fsplit-stack
24224 @opindex fsplit-stack
24225 Generate code to automatically split the stack before it overflows.
24226 The resulting program has a discontiguous stack which can only
24227 overflow if the program is unable to allocate any more memory.  This
24228 is most useful when running threaded programs, as it is no longer
24229 necessary to calculate a good stack size to use for each thread.  This
24230 is currently only implemented for the x86 targets running
24231 GNU/Linux.
24232
24233 When code compiled with @option{-fsplit-stack} calls code compiled
24234 without @option{-fsplit-stack}, there may not be much stack space
24235 available for the latter code to run.  If compiling all code,
24236 including library code, with @option{-fsplit-stack} is not an option,
24237 then the linker can fix up these calls so that the code compiled
24238 without @option{-fsplit-stack} always has a large stack.  Support for
24239 this is implemented in the gold linker in GNU binutils release 2.21
24240 and later.
24241
24242 @item -fleading-underscore
24243 @opindex fleading-underscore
24244 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24245 change the way C symbols are represented in the object file.  One use
24246 is to help link with legacy assembly code.
24247
24248 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24249 generate code that is not binary compatible with code generated without that
24250 switch.  Use it to conform to a non-default application binary interface.
24251 Not all targets provide complete support for this switch.
24252
24253 @item -ftls-model=@var{model}
24254 @opindex ftls-model
24255 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24256 The @var{model} argument should be one of @samp{global-dynamic},
24257 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24258 Note that the choice is subject to optimization: the compiler may use
24259 a more efficient model for symbols not visible outside of the translation
24260 unit, or if @option{-fpic} is not given on the command line.
24261
24262 The default without @option{-fpic} is @samp{initial-exec}; with
24263 @option{-fpic} the default is @samp{global-dynamic}.
24264
24265 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24266 @opindex fvisibility
24267 Set the default ELF image symbol visibility to the specified option---all
24268 symbols are marked with this unless overridden within the code.
24269 Using this feature can very substantially improve linking and
24270 load times of shared object libraries, produce more optimized
24271 code, provide near-perfect API export and prevent symbol clashes.
24272 It is @strong{strongly} recommended that you use this in any shared objects
24273 you distribute.
24274
24275 Despite the nomenclature, @samp{default} always means public; i.e.,
24276 available to be linked against from outside the shared object.
24277 @samp{protected} and @samp{internal} are pretty useless in real-world
24278 usage so the only other commonly used option is @samp{hidden}.
24279 The default if @option{-fvisibility} isn't specified is
24280 @samp{default}, i.e., make every symbol public.
24281
24282 A good explanation of the benefits offered by ensuring ELF
24283 symbols have the correct visibility is given by ``How To Write
24284 Shared Libraries'' by Ulrich Drepper (which can be found at
24285 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24286 solution made possible by this option to marking things hidden when
24287 the default is public is to make the default hidden and mark things
24288 public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24289 and @code{__attribute__ ((visibility("default")))} instead of
24290 @code{__declspec(dllexport)} you get almost identical semantics with
24291 identical syntax.  This is a great boon to those working with
24292 cross-platform projects.
24293
24294 For those adding visibility support to existing code, you may find
24295 @code{#pragma GCC visibility} of use.  This works by you enclosing
24296 the declarations you wish to set visibility for with (for example)
24297 @code{#pragma GCC visibility push(hidden)} and
24298 @code{#pragma GCC visibility pop}.
24299 Bear in mind that symbol visibility should be viewed @strong{as
24300 part of the API interface contract} and thus all new code should
24301 always specify visibility when it is not the default; i.e., declarations
24302 only for use within the local DSO should @strong{always} be marked explicitly
24303 as hidden as so to avoid PLT indirection overheads---making this
24304 abundantly clear also aids readability and self-documentation of the code.
24305 Note that due to ISO C++ specification requirements, @code{operator new} and
24306 @code{operator delete} must always be of default visibility.
24307
24308 Be aware that headers from outside your project, in particular system
24309 headers and headers from any other library you use, may not be
24310 expecting to be compiled with visibility other than the default.  You
24311 may need to explicitly say @code{#pragma GCC visibility push(default)}
24312 before including any such headers.
24313
24314 @code{extern} declarations are not affected by @option{-fvisibility}, so
24315 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24316 no modifications.  However, this means that calls to @code{extern}
24317 functions with no explicit visibility use the PLT, so it is more
24318 effective to use @code{__attribute ((visibility))} and/or
24319 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24320 declarations should be treated as hidden.
24321
24322 Note that @option{-fvisibility} does affect C++ vague linkage
24323 entities. This means that, for instance, an exception class that is
24324 be thrown between DSOs must be explicitly marked with default
24325 visibility so that the @samp{type_info} nodes are unified between
24326 the DSOs.
24327
24328 An overview of these techniques, their benefits and how to use them
24329 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24330
24331 @item -fstrict-volatile-bitfields
24332 @opindex fstrict-volatile-bitfields
24333 This option should be used if accesses to volatile bit-fields (or other
24334 structure fields, although the compiler usually honors those types
24335 anyway) should use a single access of the width of the
24336 field's type, aligned to a natural alignment if possible.  For
24337 example, targets with memory-mapped peripheral registers might require
24338 all such accesses to be 16 bits wide; with this flag you can
24339 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24340 is 16 bits on these targets) to force GCC to use 16-bit accesses
24341 instead of, perhaps, a more efficient 32-bit access.
24342
24343 If this option is disabled, the compiler uses the most efficient
24344 instruction.  In the previous example, that might be a 32-bit load
24345 instruction, even though that accesses bytes that do not contain
24346 any portion of the bit-field, or memory-mapped registers unrelated to
24347 the one being updated.
24348
24349 In some cases, such as when the @code{packed} attribute is applied to a 
24350 structure field, it may not be possible to access the field with a single
24351 read or write that is correctly aligned for the target machine.  In this
24352 case GCC falls back to generating multiple accesses rather than code that 
24353 will fault or truncate the result at run time.
24354
24355 Note:  Due to restrictions of the C/C++11 memory model, write accesses are
24356 not allowed to touch non bit-field members.  It is therefore recommended
24357 to define all bits of the field's type as bit-field members.
24358
24359 The default value of this option is determined by the application binary
24360 interface for the target processor.
24361
24362 @item -fsync-libcalls
24363 @opindex fsync-libcalls
24364 This option controls whether any out-of-line instance of the @code{__sync}
24365 family of functions may be used to implement the C++11 @code{__atomic}
24366 family of functions.
24367
24368 The default value of this option is enabled, thus the only useful form
24369 of the option is @option{-fno-sync-libcalls}.  This option is used in
24370 the implementation of the @file{libatomic} runtime library.
24371
24372 @end table
24373
24374 @c man end
24375
24376 @node Environment Variables
24377 @section Environment Variables Affecting GCC
24378 @cindex environment variables
24379
24380 @c man begin ENVIRONMENT
24381 This section describes several environment variables that affect how GCC
24382 operates.  Some of them work by specifying directories or prefixes to use
24383 when searching for various kinds of files.  Some are used to specify other
24384 aspects of the compilation environment.
24385
24386 Note that you can also specify places to search using options such as
24387 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
24388 take precedence over places specified using environment variables, which
24389 in turn take precedence over those specified by the configuration of GCC@.
24390 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24391 GNU Compiler Collection (GCC) Internals}.
24392
24393 @table @env
24394 @item LANG
24395 @itemx LC_CTYPE
24396 @c @itemx LC_COLLATE
24397 @itemx LC_MESSAGES
24398 @c @itemx LC_MONETARY
24399 @c @itemx LC_NUMERIC
24400 @c @itemx LC_TIME
24401 @itemx LC_ALL
24402 @findex LANG
24403 @findex LC_CTYPE
24404 @c @findex LC_COLLATE
24405 @findex LC_MESSAGES
24406 @c @findex LC_MONETARY
24407 @c @findex LC_NUMERIC
24408 @c @findex LC_TIME
24409 @findex LC_ALL
24410 @cindex locale
24411 These environment variables control the way that GCC uses
24412 localization information which allows GCC to work with different
24413 national conventions.  GCC inspects the locale categories
24414 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24415 so.  These locale categories can be set to any value supported by your
24416 installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
24417 Kingdom encoded in UTF-8.
24418
24419 The @env{LC_CTYPE} environment variable specifies character
24420 classification.  GCC uses it to determine the character boundaries in
24421 a string; this is needed for some multibyte encodings that contain quote
24422 and escape characters that are otherwise interpreted as a string
24423 end or escape.
24424
24425 The @env{LC_MESSAGES} environment variable specifies the language to
24426 use in diagnostic messages.
24427
24428 If the @env{LC_ALL} environment variable is set, it overrides the value
24429 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24430 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24431 environment variable.  If none of these variables are set, GCC
24432 defaults to traditional C English behavior.
24433
24434 @item TMPDIR
24435 @findex TMPDIR
24436 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24437 files.  GCC uses temporary files to hold the output of one stage of
24438 compilation which is to be used as input to the next stage: for example,
24439 the output of the preprocessor, which is the input to the compiler
24440 proper.
24441
24442 @item GCC_COMPARE_DEBUG
24443 @findex GCC_COMPARE_DEBUG
24444 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24445 @option{-fcompare-debug} to the compiler driver.  See the documentation
24446 of this option for more details.
24447
24448 @item GCC_EXEC_PREFIX
24449 @findex GCC_EXEC_PREFIX
24450 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24451 names of the subprograms executed by the compiler.  No slash is added
24452 when this prefix is combined with the name of a subprogram, but you can
24453 specify a prefix that ends with a slash if you wish.
24454
24455 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24456 an appropriate prefix to use based on the pathname it is invoked with.
24457
24458 If GCC cannot find the subprogram using the specified prefix, it
24459 tries looking in the usual places for the subprogram.
24460
24461 The default value of @env{GCC_EXEC_PREFIX} is
24462 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24463 the installed compiler. In many cases @var{prefix} is the value
24464 of @code{prefix} when you ran the @file{configure} script.
24465
24466 Other prefixes specified with @option{-B} take precedence over this prefix.
24467
24468 This prefix is also used for finding files such as @file{crt0.o} that are
24469 used for linking.
24470
24471 In addition, the prefix is used in an unusual way in finding the
24472 directories to search for header files.  For each of the standard
24473 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24474 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24475 replacing that beginning with the specified prefix to produce an
24476 alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
24477 @file{foo/bar} just before it searches the standard directory 
24478 @file{/usr/local/lib/bar}.
24479 If a standard directory begins with the configured
24480 @var{prefix} then the value of @var{prefix} is replaced by
24481 @env{GCC_EXEC_PREFIX} when looking for header files.
24482
24483 @item COMPILER_PATH
24484 @findex COMPILER_PATH
24485 The value of @env{COMPILER_PATH} is a colon-separated list of
24486 directories, much like @env{PATH}.  GCC tries the directories thus
24487 specified when searching for subprograms, if it can't find the
24488 subprograms using @env{GCC_EXEC_PREFIX}.
24489
24490 @item LIBRARY_PATH
24491 @findex LIBRARY_PATH
24492 The value of @env{LIBRARY_PATH} is a colon-separated list of
24493 directories, much like @env{PATH}.  When configured as a native compiler,
24494 GCC tries the directories thus specified when searching for special
24495 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
24496 using GCC also uses these directories when searching for ordinary
24497 libraries for the @option{-l} option (but directories specified with
24498 @option{-L} come first).
24499
24500 @item LANG
24501 @findex LANG
24502 @cindex locale definition
24503 This variable is used to pass locale information to the compiler.  One way in
24504 which this information is used is to determine the character set to be used
24505 when character literals, string literals and comments are parsed in C and C++.
24506 When the compiler is configured to allow multibyte characters,
24507 the following values for @env{LANG} are recognized:
24508
24509 @table @samp
24510 @item C-JIS
24511 Recognize JIS characters.
24512 @item C-SJIS
24513 Recognize SJIS characters.
24514 @item C-EUCJP
24515 Recognize EUCJP characters.
24516 @end table
24517
24518 If @env{LANG} is not defined, or if it has some other value, then the
24519 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24520 recognize and translate multibyte characters.
24521 @end table
24522
24523 @noindent
24524 Some additional environment variables affect the behavior of the
24525 preprocessor.
24526
24527 @include cppenv.texi
24528
24529 @c man end
24530
24531 @node Precompiled Headers
24532 @section Using Precompiled Headers
24533 @cindex precompiled headers
24534 @cindex speed of compilation
24535
24536 Often large projects have many header files that are included in every
24537 source file.  The time the compiler takes to process these header files
24538 over and over again can account for nearly all of the time required to
24539 build the project.  To make builds faster, GCC allows you to
24540 @dfn{precompile} a header file.
24541
24542 To create a precompiled header file, simply compile it as you would any
24543 other file, if necessary using the @option{-x} option to make the driver
24544 treat it as a C or C++ header file.  You may want to use a
24545 tool like @command{make} to keep the precompiled header up-to-date when
24546 the headers it contains change.
24547
24548 A precompiled header file is searched for when @code{#include} is
24549 seen in the compilation.  As it searches for the included file
24550 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24551 compiler looks for a precompiled header in each directory just before it
24552 looks for the include file in that directory.  The name searched for is
24553 the name specified in the @code{#include} with @samp{.gch} appended.  If
24554 the precompiled header file can't be used, it is ignored.
24555
24556 For instance, if you have @code{#include "all.h"}, and you have
24557 @file{all.h.gch} in the same directory as @file{all.h}, then the
24558 precompiled header file is used if possible, and the original
24559 header is used otherwise.
24560
24561 Alternatively, you might decide to put the precompiled header file in a
24562 directory and use @option{-I} to ensure that directory is searched
24563 before (or instead of) the directory containing the original header.
24564 Then, if you want to check that the precompiled header file is always
24565 used, you can put a file of the same name as the original header in this
24566 directory containing an @code{#error} command.
24567
24568 This also works with @option{-include}.  So yet another way to use
24569 precompiled headers, good for projects not designed with precompiled
24570 header files in mind, is to simply take most of the header files used by
24571 a project, include them from another header file, precompile that header
24572 file, and @option{-include} the precompiled header.  If the header files
24573 have guards against multiple inclusion, they are skipped because
24574 they've already been included (in the precompiled header).
24575
24576 If you need to precompile the same header file for different
24577 languages, targets, or compiler options, you can instead make a
24578 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24579 header in the directory, perhaps using @option{-o}.  It doesn't matter
24580 what you call the files in the directory; every precompiled header in
24581 the directory is considered.  The first precompiled header
24582 encountered in the directory that is valid for this compilation is
24583 used; they're searched in no particular order.
24584
24585 There are many other possibilities, limited only by your imagination,
24586 good sense, and the constraints of your build system.
24587
24588 A precompiled header file can be used only when these conditions apply:
24589
24590 @itemize
24591 @item
24592 Only one precompiled header can be used in a particular compilation.
24593
24594 @item
24595 A precompiled header can't be used once the first C token is seen.  You
24596 can have preprocessor directives before a precompiled header; you cannot
24597 include a precompiled header from inside another header.
24598
24599 @item
24600 The precompiled header file must be produced for the same language as
24601 the current compilation.  You can't use a C precompiled header for a C++
24602 compilation.
24603
24604 @item
24605 The precompiled header file must have been produced by the same compiler
24606 binary as the current compilation is using.
24607
24608 @item
24609 Any macros defined before the precompiled header is included must
24610 either be defined in the same way as when the precompiled header was
24611 generated, or must not affect the precompiled header, which usually
24612 means that they don't appear in the precompiled header at all.
24613
24614 The @option{-D} option is one way to define a macro before a
24615 precompiled header is included; using a @code{#define} can also do it.
24616 There are also some options that define macros implicitly, like
24617 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24618 defined this way.
24619
24620 @item If debugging information is output when using the precompiled
24621 header, using @option{-g} or similar, the same kind of debugging information
24622 must have been output when building the precompiled header.  However,
24623 a precompiled header built using @option{-g} can be used in a compilation
24624 when no debugging information is being output.
24625
24626 @item The same @option{-m} options must generally be used when building
24627 and using the precompiled header.  @xref{Submodel Options},
24628 for any cases where this rule is relaxed.
24629
24630 @item Each of the following options must be the same when building and using
24631 the precompiled header:
24632
24633 @gccoptlist{-fexceptions}
24634
24635 @item
24636 Some other command-line options starting with @option{-f},
24637 @option{-p}, or @option{-O} must be defined in the same way as when
24638 the precompiled header was generated.  At present, it's not clear
24639 which options are safe to change and which are not; the safest choice
24640 is to use exactly the same options when generating and using the
24641 precompiled header.  The following are known to be safe:
24642
24643 @gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
24644 -fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
24645 -fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
24646 -pedantic-errors}
24647
24648 @end itemize
24649
24650 For all of these except the last, the compiler automatically
24651 ignores the precompiled header if the conditions aren't met.  If you
24652 find an option combination that doesn't work and doesn't cause the
24653 precompiled header to be ignored, please consider filing a bug report,
24654 see @ref{Bugs}.
24655
24656 If you do use differing options when generating and using the
24657 precompiled header, the actual behavior is a mixture of the
24658 behavior for the options.  For instance, if you use @option{-g} to
24659 generate the precompiled header but not when using it, you may or may
24660 not get debugging information for routines in the precompiled header.