22ab269d9bc0c2c13f442b1d00604b763094b82c
[platform/upstream/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below).  A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23      A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27      You have freedom to copy and modify this GNU Manual, like GNU
28      software.  Copies published by the Free Software Foundation raise
29      funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37     [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41     [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking.  The ``overall options'' allow you to stop this
72 process at an intermediate stage.  For example, the @option{-c} option
73 says not to run the linker.  Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing.  Some options
77 control the preprocessor and others the compiler itself.  Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly.  If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands.  Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments.  For the most part, the order
102 you use doesn't matter.  Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified.  Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}.  This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary::      Brief list of all options, without explanations.
120 * Overall Options::     Controlling the kind of output:
121                         an executable, object files, assembler files,
122                         or preprocessed source.
123 * Invoking G++::        Compiling C++ programs.
124 * C Dialect Options::   Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127                         and Objective-C++.
128 * Language Independent Options:: Controlling how diagnostics should be
129                         formatted.
130 * Warning Options::     How picky should the compiler be?
131 * Debugging Options::   Symbol tables, measurements, and debugging dumps.
132 * Optimize Options::    How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134                          Also, getting dependency information for Make.
135 * Assembler Options::   Passing options to the assembler.
136 * Link Options::        Specifying libraries and so on.
137 * Directory Options::   Where to find header files and libraries.
138                         Where to find the compiler executable files.
139 * Spec Files::          How to pass switches to sub-processes.
140 * Target Options::      Running a cross-compiler, or an old version of GCC.
141 * Submodel Options::    Specifying minor hardware or convention variations,
142                         such as 68010 vs 68020.
143 * Code Gen Options::    Specifying conventions for function calls, data layout
144                         and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type.  Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c  -S  -E  -o @var{file}  -no-canonical-prefixes  @gol
161 -pipe  -pass-exit-codes  @gol
162 -x @var{language}  -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg}  @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm  -fno-builtin  -fno-builtin-@var{function} @gol
171 -fhosted  -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision  -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields  -fsigned-char @gol
175 -funsigned-bitfields  -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n}  -fno-access-control  -fcheck-new @gol
180 -fconstexpr-depth=@var{n}  -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines  -fms-extensions @gol
187 -fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
188 -fno-optional-diags  -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo  -fno-rtti -fsized-deallocation @gol
191 -fstats  -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics  -fuse-cxa-atexit @gol
194 -fno-weak  -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor  -Wreorder @gol
203 -Weffc++  -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend  -Wold-style-cast @gol
205 -Woverloaded-virtual  -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime  -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol  -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Language Independent Options
232 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n}  @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
241 -pedantic-errors @gol
242 -w  -Wextra  -Wall  -Waddress  -Waggregate-return  @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align  -Wcast-qual  @gol
248 -Wchar-subscripts -Wclobbered  -Wcomment -Wconditionally-supported  @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp  @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body  -Wenum-compare @gol
254 -Wno-endif-labels -Werror  -Werror=* @gol
255 -Wfatal-errors  -Wfloat-equal  -Wformat  -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security  -Wformat-signedness  -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers  -Wincompatible-pointer-types @gol
260 -Wimplicit  -Wimplicit-function-declaration  -Wimplicit-int @gol
261 -Winit-self  -Winline  -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Winvalid-pch -Wlarger-than=@var{len}  -Wunsafe-loop-optimizations @gol
264 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
266 -Wmisleading-indentation -Wmissing-braces @gol
267 -Wmissing-field-initializers -Wmissing-include-dirs @gol
268 -Wno-multichar  -Wnonnull  -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
269 -Wodr  -Wno-overflow  -Wopenmp-simd @gol
270 -Woverride-init-side-effects @gol
271 -Woverlength-strings  -Wpacked  -Wpacked-bitfield-compat  -Wpadded @gol
272 -Wparentheses  -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
273 -Wpointer-arith  -Wno-pointer-to-int-cast @gol
274 -Wredundant-decls  -Wno-return-local-addr @gol
275 -Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
276 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
277 -Wsign-compare  -Wsign-conversion -Wfloat-conversion @gol
278 -Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
279 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
280 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
281 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
282 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
283 -Wmissing-format-attribute @gol
284 -Wswitch  -Wswitch-default  -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
285 -Wsystem-headers  -Wtrampolines  -Wtrigraphs  -Wtype-limits  -Wundef @gol
286 -Wuninitialized  -Wunknown-pragmas  -Wno-pragmas @gol
287 -Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
288 -Wunused-label  -Wunused-local-typedefs -Wunused-parameter @gol
289 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
290 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
291 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
292 -Wvla -Wvolatile-register-var  -Wwrite-strings @gol
293 -Wzero-as-null-pointer-constant}
294
295 @item C and Objective-C-only Warning Options
296 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
297 -Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
298 -Wold-style-declaration  -Wold-style-definition @gol
299 -Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
300 -Wdeclaration-after-statement -Wpointer-sign}
301
302 @item Debugging Options
303 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
304 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
305 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
306 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
307 -fsanitize-undefined-trap-on-error @gol
308 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
309 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
310 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
311 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
312 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
313 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
314 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
315 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
316 -fchkp-use-wrappers @gol
317 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
318 -fdisable-ipa-@var{pass_name} @gol
319 -fdisable-rtl-@var{pass_name} @gol
320 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
321 -fdisable-tree-@var{pass_name} @gol
322 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
323 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
324 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
325 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
326 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
327 -fdump-passes @gol
328 -fdump-statistics @gol
329 -fdump-tree-all @gol
330 -fdump-tree-original@r{[}-@var{n}@r{]}  @gol
331 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
332 -fdump-tree-cfg -fdump-tree-alias @gol
333 -fdump-tree-ch @gol
334 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
335 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-gimple@r{[}-raw@r{]} @gol
337 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
342 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-nrv -fdump-tree-vect @gol
344 -fdump-tree-sink @gol
345 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
348 -fdump-tree-vtable-verify @gol
349 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
351 -fdump-final-insns=@var{file} @gol
352 -fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
353 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
354 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
355 -fenable-@var{kind}-@var{pass} @gol
356 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
357 -fdebug-types-section -fmem-report-wpa @gol
358 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
359 -fopt-info @gol
360 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
361 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
362 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
363 -fstack-usage  -ftest-coverage  -ftime-report -fvar-tracking @gol
364 -fvar-tracking-assignments  -fvar-tracking-assignments-toggle @gol
365 -g  -g@var{level}  -gtoggle  -gcoff  -gdwarf-@var{version} @gol
366 -ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
367 -gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
368 -gvms  -gxcoff  -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
369 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
370 -fdebug-prefix-map=@var{old}=@var{new} @gol
371 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
372 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
373 -p  -pg  -print-file-name=@var{library}  -print-libgcc-file-name @gol
374 -print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
375 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
376 -print-sysroot -print-sysroot-headers-suffix @gol
377 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
378
379 @item Optimization Options
380 @xref{Optimize Options,,Options that Control Optimization}.
381 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
382 -falign-jumps[=@var{n}] @gol
383 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
384 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
385 -fauto-inc-dec -fbranch-probabilities @gol
386 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
387 -fbtr-bb-exclusive -fcaller-saves @gol
388 -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
389 -fcompare-elim -fcprop-registers -fcrossjumping @gol
390 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
391 -fcx-limited-range @gol
392 -fdata-sections -fdce -fdelayed-branch @gol
393 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
394 -fdevirtualize-at-ltrans -fdse @gol
395 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
396 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
397 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
398 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
399 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
400 -fif-conversion2 -findirect-inlining @gol
401 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
402 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
403 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
404 -fira-algorithm=@var{algorithm} @gol
405 -fira-region=@var{region} -fira-hoist-pressure @gol
406 -fira-loop-pressure -fno-ira-share-save-slots @gol
407 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
408 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
409 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
410 -flive-range-shrinkage @gol
411 -floop-block -floop-interchange -floop-strip-mine @gol
412 -floop-unroll-and-jam -floop-nest-optimize @gol
413 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
414 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
415 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
416 -fmove-loop-invariants -fno-branch-count-reg @gol
417 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
418 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
419 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
420 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
421 -fomit-frame-pointer -foptimize-sibling-calls @gol
422 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
423 -fprefetch-loop-arrays -fprofile-report @gol
424 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
425 -fprofile-generate=@var{path} @gol
426 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
427 -fprofile-reorder-functions @gol
428 -freciprocal-math -free -frename-registers -freorder-blocks @gol
429 -freorder-blocks-and-partition -freorder-functions @gol
430 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
431 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
432 -fsched-spec-load -fsched-spec-load-dangerous @gol
433 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
434 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
435 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
436 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
437 -fschedule-fusion @gol
438 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
439 -fselective-scheduling -fselective-scheduling2 @gol
440 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
441 -fsemantic-interposition @gol
442 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
443 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
444 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
445 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
446 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
447 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
448 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
449 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
450 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
451 -ftree-loop-if-convert-stores -ftree-loop-im @gol
452 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
453 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
454 -ftree-loop-vectorize @gol
455 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
456 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
457 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
458 -ftree-vectorize -ftree-vrp @gol
459 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
460 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
461 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
462 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
463 --param @var{name}=@var{value}
464 -O  -O0  -O1  -O2  -O3  -Os -Ofast -Og}
465
466 @item Preprocessor Options
467 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
468 @gccoptlist{-A@var{question}=@var{answer} @gol
469 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
470 -C  -dD  -dI  -dM  -dN @gol
471 -D@var{macro}@r{[}=@var{defn}@r{]}  -E  -H @gol
472 -idirafter @var{dir} @gol
473 -include @var{file}  -imacros @var{file} @gol
474 -iprefix @var{file}  -iwithprefix @var{dir} @gol
475 -iwithprefixbefore @var{dir}  -isystem @var{dir} @gol
476 -imultilib @var{dir} -isysroot @var{dir} @gol
477 -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  @gol
478 -P  -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
479 -remap -trigraphs  -undef  -U@var{macro}  @gol
480 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
481
482 @item Assembler Option
483 @xref{Assembler Options,,Passing Options to the Assembler}.
484 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
485
486 @item Linker Options
487 @xref{Link Options,,Options for Linking}.
488 @gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker} -l@var{library} @gol
489 -nostartfiles  -nodefaultlibs  -nostdlib -pie -rdynamic @gol
490 -s  -static -static-libgcc -static-libstdc++ @gol
491 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
492 -static-libmpx -static-libmpxwrappers @gol
493 -shared -shared-libgcc  -symbolic @gol
494 -T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
495 -u @var{symbol} -z @var{keyword}}
496
497 @item Directory Options
498 @xref{Directory Options,,Options for Directory Search}.
499 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
500 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
501 --sysroot=@var{dir} --no-sysroot-suffix}
502
503 @item Machine Dependent Options
504 @xref{Submodel Options,,Hardware Models and Configurations}.
505 @c This list is ordered alphanumerically by subsection name.
506 @c Try and put the significant identifier (CPU or system) first,
507 @c so users have a clue at guessing where the ones they want will be.
508
509 @emph{AArch64 Options}
510 @gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
511 -mgeneral-regs-only @gol
512 -mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
513 -mstrict-align @gol
514 -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
515 -mtls-dialect=desc  -mtls-dialect=traditional @gol
516 -mfix-cortex-a53-835769  -mno-fix-cortex-a53-835769 @gol
517 -mfix-cortex-a53-843419  -mno-fix-cortex-a53-843419 @gol
518 -march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}}
519
520 @emph{Adapteva Epiphany Options}
521 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
522 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
523 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
524 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
525 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
526 -msplit-vecmove-early -m1reg-@var{reg}}
527
528 @emph{ARC Options}
529 @gccoptlist{-mbarrel-shifter @gol
530 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
531 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
532 -mea -mno-mpy -mmul32x16 -mmul64 @gol
533 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
534 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
535 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
536 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
537 -mucb-mcount -mvolatile-cache @gol
538 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
539 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
540 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
541 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
542 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
543 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
544
545 @emph{ARM Options}
546 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
547 -mabi=@var{name} @gol
548 -mapcs-stack-check  -mno-apcs-stack-check @gol
549 -mapcs-float  -mno-apcs-float @gol
550 -mapcs-reentrant  -mno-apcs-reentrant @gol
551 -msched-prolog  -mno-sched-prolog @gol
552 -mlittle-endian  -mbig-endian @gol
553 -mfloat-abi=@var{name} @gol
554 -mfp16-format=@var{name}
555 -mthumb-interwork  -mno-thumb-interwork @gol
556 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
557 -mtune=@var{name} -mprint-tune-info @gol
558 -mstructure-size-boundary=@var{n} @gol
559 -mabort-on-noreturn @gol
560 -mlong-calls  -mno-long-calls @gol
561 -msingle-pic-base  -mno-single-pic-base @gol
562 -mpic-register=@var{reg} @gol
563 -mnop-fun-dllimport @gol
564 -mpoke-function-name @gol
565 -mthumb  -marm @gol
566 -mtpcs-frame  -mtpcs-leaf-frame @gol
567 -mcaller-super-interworking  -mcallee-super-interworking @gol
568 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
569 -mword-relocations @gol
570 -mfix-cortex-m3-ldrd @gol
571 -munaligned-access @gol
572 -mneon-for-64bits @gol
573 -mslow-flash-data @gol
574 -masm-syntax-unified @gol
575 -mrestrict-it}
576
577 @emph{AVR Options}
578 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
579 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
580 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
581
582 @emph{Blackfin Options}
583 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
584 -msim -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
585 -mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
586 -mlow-64k -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
587 -mno-id-shared-library  -mshared-library-id=@var{n} @gol
588 -mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
589 -msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
590 -mfast-fp -minline-plt -mmulticore  -mcorea  -mcoreb  -msdram @gol
591 -micplb}
592
593 @emph{C6X Options}
594 @gccoptlist{-mbig-endian  -mlittle-endian -march=@var{cpu} @gol
595 -msim -msdata=@var{sdata-type}}
596
597 @emph{CRIS Options}
598 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
599 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
600 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
601 -mstack-align  -mdata-align  -mconst-align @gol
602 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
603 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
604 -mmul-bug-workaround  -mno-mul-bug-workaround}
605
606 @emph{CR16 Options}
607 @gccoptlist{-mmac @gol
608 -mcr16cplus -mcr16c @gol
609 -msim -mint32 -mbit-ops
610 -mdata-model=@var{model}}
611
612 @emph{Darwin Options}
613 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
614 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
615 -client_name  -compatibility_version  -current_version @gol
616 -dead_strip @gol
617 -dependency-file  -dylib_file  -dylinker_install_name @gol
618 -dynamic  -dynamiclib  -exported_symbols_list @gol
619 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
620 -force_flat_namespace  -headerpad_max_install_names @gol
621 -iframework @gol
622 -image_base  -init  -install_name  -keep_private_externs @gol
623 -multi_module  -multiply_defined  -multiply_defined_unused @gol
624 -noall_load   -no_dead_strip_inits_and_terms @gol
625 -nofixprebinding -nomultidefs  -noprebind  -noseglinkedit @gol
626 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
627 -private_bundle  -read_only_relocs  -sectalign @gol
628 -sectobjectsymbols  -whyload  -seg1addr @gol
629 -sectcreate  -sectobjectsymbols  -sectorder @gol
630 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
631 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
632 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
633 -single_module  -static  -sub_library  -sub_umbrella @gol
634 -twolevel_namespace  -umbrella  -undefined @gol
635 -unexported_symbols_list  -weak_reference_mismatches @gol
636 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
637 -mkernel -mone-byte-bool}
638
639 @emph{DEC Alpha Options}
640 @gccoptlist{-mno-fp-regs  -msoft-float @gol
641 -mieee  -mieee-with-inexact  -mieee-conformant @gol
642 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
643 -mtrap-precision=@var{mode}  -mbuild-constants @gol
644 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
645 -mbwx  -mmax  -mfix  -mcix @gol
646 -mfloat-vax  -mfloat-ieee @gol
647 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
648 -msmall-text  -mlarge-text @gol
649 -mmemory-latency=@var{time}}
650
651 @emph{FR30 Options}
652 @gccoptlist{-msmall-model -mno-lsim}
653
654 @emph{FT32 Options}
655 @gccoptlist{-msim -mlra}
656
657 @emph{FRV Options}
658 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
659 -mhard-float  -msoft-float @gol
660 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
661 -mdouble  -mno-double @gol
662 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
663 -mfdpic  -minline-plt -mgprel-ro  -multilib-library-pic @gol
664 -mlinked-fp  -mlong-calls  -malign-labels @gol
665 -mlibrary-pic  -macc-4  -macc-8 @gol
666 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
667 -moptimize-membar -mno-optimize-membar @gol
668 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
669 -mvliw-branch  -mno-vliw-branch @gol
670 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
671 -mno-nested-cond-exec  -mtomcat-stats @gol
672 -mTLS -mtls @gol
673 -mcpu=@var{cpu}}
674
675 @emph{GNU/Linux Options}
676 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
677 -tno-android-cc -tno-android-ld}
678
679 @emph{H8/300 Options}
680 @gccoptlist{-mrelax  -mh  -ms  -mn  -mexr -mno-exr  -mint32  -malign-300}
681
682 @emph{HPPA Options}
683 @gccoptlist{-march=@var{architecture-type} @gol
684 -mdisable-fpregs  -mdisable-indexing @gol
685 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
686 -mfixed-range=@var{register-range} @gol
687 -mjump-in-delay -mlinker-opt -mlong-calls @gol
688 -mlong-load-store  -mno-disable-fpregs @gol
689 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
690 -mno-jump-in-delay  -mno-long-load-store @gol
691 -mno-portable-runtime  -mno-soft-float @gol
692 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
693 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
694 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
695 -munix=@var{unix-std}  -nolibdld  -static  -threads}
696
697 @emph{IA-64 Options}
698 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
699 -mvolatile-asm-stop  -mregister-names  -msdata -mno-sdata @gol
700 -mconstant-gp  -mauto-pic  -mfused-madd @gol
701 -minline-float-divide-min-latency @gol
702 -minline-float-divide-max-throughput @gol
703 -mno-inline-float-divide @gol
704 -minline-int-divide-min-latency @gol
705 -minline-int-divide-max-throughput  @gol
706 -mno-inline-int-divide @gol
707 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
708 -mno-inline-sqrt @gol
709 -mdwarf2-asm -mearly-stop-bits @gol
710 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
711 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
712 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
713 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
714 -msched-spec-ldc -msched-spec-control-ldc @gol
715 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
716 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
717 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
718 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
719
720 @emph{LM32 Options}
721 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
722 -msign-extend-enabled -muser-enabled}
723
724 @emph{M32R/D Options}
725 @gccoptlist{-m32r2 -m32rx -m32r @gol
726 -mdebug @gol
727 -malign-loops -mno-align-loops @gol
728 -missue-rate=@var{number} @gol
729 -mbranch-cost=@var{number} @gol
730 -mmodel=@var{code-size-model-type} @gol
731 -msdata=@var{sdata-type} @gol
732 -mno-flush-func -mflush-func=@var{name} @gol
733 -mno-flush-trap -mflush-trap=@var{number} @gol
734 -G @var{num}}
735
736 @emph{M32C Options}
737 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
738
739 @emph{M680x0 Options}
740 @gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
741 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
742 -m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
743 -mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
744 -mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
745 -mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
746 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
747 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
748 -mxgot -mno-xgot}
749
750 @emph{MCore Options}
751 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
752 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
753 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
754 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
755 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
756
757 @emph{MeP Options}
758 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
759 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
760 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
761 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
762 -mtiny=@var{n}}
763
764 @emph{MicroBlaze Options}
765 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
766 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
767 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
768 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
769 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
770
771 @emph{MIPS Options}
772 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
773 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
774 -mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
775 -mips16  -mno-mips16  -mflip-mips16 @gol
776 -minterlink-compressed -mno-interlink-compressed @gol
777 -minterlink-mips16  -mno-interlink-mips16 @gol
778 -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
779 -mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
780 -mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
781 -mno-float  -msingle-float  -mdouble-float @gol
782 -modd-spreg -mno-odd-spreg @gol
783 -mabs=@var{mode}  -mnan=@var{encoding} @gol
784 -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
785 -mmcu -mmno-mcu @gol
786 -meva -mno-eva @gol
787 -mvirt -mno-virt @gol
788 -mxpa -mno-xpa @gol
789 -mmicromips -mno-micromips @gol
790 -mfpu=@var{fpu-type} @gol
791 -msmartmips  -mno-smartmips @gol
792 -mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
793 -mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
794 -mlong64  -mlong32  -msym32  -mno-sym32 @gol
795 -G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
796 -mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
797 -membedded-data  -mno-embedded-data @gol
798 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
799 -mcode-readable=@var{setting} @gol
800 -msplit-addresses  -mno-split-addresses @gol
801 -mexplicit-relocs  -mno-explicit-relocs @gol
802 -mcheck-zero-division  -mno-check-zero-division @gol
803 -mdivide-traps  -mdivide-breaks @gol
804 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
805 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd  -mno-fused-madd  -nocpp @gol
806 -mfix-24k -mno-fix-24k @gol
807 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
808 -mfix-r10000 -mno-fix-r10000  -mfix-rm7000 -mno-fix-rm7000 @gol
809 -mfix-vr4120  -mno-fix-vr4120 @gol
810 -mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
811 -mflush-func=@var{func}  -mno-flush-func @gol
812 -mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
813 -mfp-exceptions -mno-fp-exceptions @gol
814 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
815 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
816
817 @emph{MMIX Options}
818 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
819 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
820 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
821 -mno-base-addresses  -msingle-exit  -mno-single-exit}
822
823 @emph{MN10300 Options}
824 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
825 -mno-am33 -mam33 -mam33-2 -mam34 @gol
826 -mtune=@var{cpu-type} @gol
827 -mreturn-pointer-on-d0 @gol
828 -mno-crt0  -mrelax -mliw -msetlb}
829
830 @emph{Moxie Options}
831 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
832
833 @emph{MSP430 Options}
834 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
835 -mcode-region= -mdata-region= @gol
836 -mhwmult= -minrt}
837
838 @emph{NDS32 Options}
839 @gccoptlist{-mbig-endian -mlittle-endian @gol
840 -mreduced-regs -mfull-regs @gol
841 -mcmov -mno-cmov @gol
842 -mperf-ext -mno-perf-ext @gol
843 -mv3push -mno-v3push @gol
844 -m16bit -mno-16bit @gol
845 -misr-vector-size=@var{num} @gol
846 -mcache-block-size=@var{num} @gol
847 -march=@var{arch} @gol
848 -mcmodel=@var{code-model} @gol
849 -mctor-dtor -mrelax}
850
851 @emph{Nios II Options}
852 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
853 -mel -meb @gol
854 -mno-bypass-cache -mbypass-cache @gol
855 -mno-cache-volatile -mcache-volatile @gol
856 -mno-fast-sw-div -mfast-sw-div @gol
857 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
858 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
859 -mcustom-fpu-cfg=@var{name} @gol
860 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
861
862 @emph{Nvidia PTX Options}
863 @gccoptlist{-m32 -m64 -mmainkernel}
864
865 @emph{PDP-11 Options}
866 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
867 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
868 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
869 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
870 -mbranch-expensive  -mbranch-cheap @gol
871 -munix-asm  -mdec-asm}
872
873 @emph{picoChip Options}
874 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
875 -msymbol-as-address -mno-inefficient-warnings}
876
877 @emph{PowerPC Options}
878 See RS/6000 and PowerPC Options.
879
880 @emph{RL78 Options}
881 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
882 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
883 -m64bit-doubles -m32bit-doubles}
884
885 @emph{RS/6000 and PowerPC Options}
886 @gccoptlist{-mcpu=@var{cpu-type} @gol
887 -mtune=@var{cpu-type} @gol
888 -mcmodel=@var{code-model} @gol
889 -mpowerpc64 @gol
890 -maltivec  -mno-altivec @gol
891 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
892 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
893 -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb -mpopcntd -mno-popcntd @gol
894 -mfprnd  -mno-fprnd @gol
895 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
896 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
897 -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
898 -malign-power  -malign-natural @gol
899 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
900 -msingle-float -mdouble-float -msimple-fpu @gol
901 -mstring  -mno-string  -mupdate  -mno-update @gol
902 -mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
903 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
904 -mstrict-align  -mno-strict-align  -mrelocatable @gol
905 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
906 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
907 -mdynamic-no-pic  -maltivec -mswdiv  -msingle-pic-base @gol
908 -mprioritize-restricted-insns=@var{priority} @gol
909 -msched-costly-dep=@var{dependence_type} @gol
910 -minsert-sched-nops=@var{scheme} @gol
911 -mcall-sysv  -mcall-netbsd @gol
912 -maix-struct-return  -msvr4-struct-return @gol
913 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
914 -mblock-move-inline-limit=@var{num} @gol
915 -misel -mno-isel @gol
916 -misel=yes  -misel=no @gol
917 -mspe -mno-spe @gol
918 -mspe=yes  -mspe=no @gol
919 -mpaired @gol
920 -mgen-cell-microcode -mwarn-cell-microcode @gol
921 -mvrsave -mno-vrsave @gol
922 -mmulhw -mno-mulhw @gol
923 -mdlmzb -mno-dlmzb @gol
924 -mfloat-gprs=yes  -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
925 -mprototype  -mno-prototype @gol
926 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
927 -msdata=@var{opt}  -mvxworks  -G @var{num}  -pthread @gol
928 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
929 -mno-recip-precision @gol
930 -mveclibabi=@var{type} -mfriz -mno-friz @gol
931 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
932 -msave-toc-indirect -mno-save-toc-indirect @gol
933 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
934 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
935 -mquad-memory -mno-quad-memory @gol
936 -mquad-memory-atomic -mno-quad-memory-atomic @gol
937 -mcompat-align-parm -mno-compat-align-parm @gol
938 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
939 -mupper-regs -mno-upper-regs}
940
941 @emph{RX Options}
942 @gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
943 -mcpu=@gol
944 -mbig-endian-data -mlittle-endian-data @gol
945 -msmall-data @gol
946 -msim  -mno-sim@gol
947 -mas100-syntax -mno-as100-syntax@gol
948 -mrelax@gol
949 -mmax-constant-size=@gol
950 -mint-register=@gol
951 -mpid@gol
952 -mallow-string-insns -mno-allow-string-insns@gol
953 -mno-warn-multiple-fast-interrupts@gol
954 -msave-acc-in-interrupts}
955
956 @emph{S/390 and zSeries Options}
957 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
958 -mhard-float  -msoft-float  -mhard-dfp -mno-hard-dfp @gol
959 -mlong-double-64 -mlong-double-128 @gol
960 -mbackchain  -mno-backchain -mpacked-stack  -mno-packed-stack @gol
961 -msmall-exec  -mno-small-exec  -mmvcle -mno-mvcle @gol
962 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
963 -mtpf-trace -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
964 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size -mstack-guard @gol
965 -mhotpatch=@var{halfwords},@var{halfwords}}
966
967 @emph{Score Options}
968 @gccoptlist{-meb -mel @gol
969 -mnhwloop @gol
970 -muls @gol
971 -mmac @gol
972 -mscore5 -mscore5u -mscore7 -mscore7d}
973
974 @emph{SH Options}
975 @gccoptlist{-m1  -m2  -m2e @gol
976 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
977 -m3  -m3e @gol
978 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
979 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
980 -m5-64media  -m5-64media-nofpu @gol
981 -m5-32media  -m5-32media-nofpu @gol
982 -m5-compact  -m5-compact-nofpu @gol
983 -mb  -ml  -mdalign  -mrelax @gol
984 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
985 -mieee -mno-ieee -mbitops  -misize  -minline-ic_invalidate -mpadstruct @gol
986 -mspace -mprefergot  -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
987 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
988 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
989 -maccumulate-outgoing-args -minvalid-symbols @gol
990 -matomic-model=@var{atomic-model} @gol
991 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
992 -mcbranch-force-delay-slot @gol
993 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
994 -mpretend-cmove -mtas}
995
996 @emph{Solaris 2 Options}
997 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text  -mno-impure-text @gol
998 -pthreads -pthread}
999
1000 @emph{SPARC Options}
1001 @gccoptlist{-mcpu=@var{cpu-type} @gol
1002 -mtune=@var{cpu-type} @gol
1003 -mcmodel=@var{code-model} @gol
1004 -mmemory-model=@var{mem-model} @gol
1005 -m32  -m64  -mapp-regs  -mno-app-regs @gol
1006 -mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1007 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1008 -mhard-quad-float  -msoft-quad-float @gol
1009 -mstack-bias  -mno-stack-bias @gol
1010 -munaligned-doubles  -mno-unaligned-doubles @gol
1011 -muser-mode  -mno-user-mode @gol
1012 -mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1013 -mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1014 -mcbcond -mno-cbcond @gol
1015 -mfmaf  -mno-fmaf  -mpopc  -mno-popc @gol
1016 -mfix-at697f -mfix-ut699}
1017
1018 @emph{SPU Options}
1019 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1020 -msafe-dma -munsafe-dma @gol
1021 -mbranch-hints @gol
1022 -msmall-mem -mlarge-mem -mstdmain @gol
1023 -mfixed-range=@var{register-range} @gol
1024 -mea32 -mea64 @gol
1025 -maddress-space-conversion -mno-address-space-conversion @gol
1026 -mcache-size=@var{cache-size} @gol
1027 -matomic-updates -mno-atomic-updates}
1028
1029 @emph{System V Options}
1030 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1031
1032 @emph{TILE-Gx Options}
1033 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1034 -mcmodel=@var{code-model}}
1035
1036 @emph{TILEPro Options}
1037 @gccoptlist{-mcpu=@var{cpu} -m32}
1038
1039 @emph{V850 Options}
1040 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1041 -mprolog-function  -mno-prolog-function  -mspace @gol
1042 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1043 -mapp-regs  -mno-app-regs @gol
1044 -mdisable-callt  -mno-disable-callt @gol
1045 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1046 -mv850e -mv850 -mv850e3v5 @gol
1047 -mloop @gol
1048 -mrelax @gol
1049 -mlong-jumps @gol
1050 -msoft-float @gol
1051 -mhard-float @gol
1052 -mgcc-abi @gol
1053 -mrh850-abi @gol
1054 -mbig-switch}
1055
1056 @emph{VAX Options}
1057 @gccoptlist{-mg  -mgnu  -munix}
1058
1059 @emph{Visium Options}
1060 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1061 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1062
1063 @emph{VMS Options}
1064 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1065 -mpointer-size=@var{size}}
1066
1067 @emph{VxWorks Options}
1068 @gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1069 -Xbind-lazy  -Xbind-now}
1070
1071 @emph{x86 Options}
1072 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1073 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1074 -mfpmath=@var{unit} @gol
1075 -masm=@var{dialect}  -mno-fancy-math-387 @gol
1076 -mno-fp-ret-in-387  -msoft-float @gol
1077 -mno-wide-multiply  -mrtd  -malign-double @gol
1078 -mpreferred-stack-boundary=@var{num} @gol
1079 -mincoming-stack-boundary=@var{num} @gol
1080 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1081 -mrecip -mrecip=@var{opt} @gol
1082 -mvzeroupper -mprefer-avx128 @gol
1083 -mmmx  -msse  -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1084 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1085 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1086 -mclflushopt -mxsavec -mxsaves @gol
1087 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1088 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1089 -mno-align-stringops  -minline-all-stringops @gol
1090 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1091 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1092 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1093 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1094 -mregparm=@var{num}  -msseregparm @gol
1095 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1096 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1097 -momit-leaf-frame-pointer  -mno-red-zone -mno-tls-direct-seg-refs @gol
1098 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1099 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1100 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1101 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1102 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1103
1104 @emph{x86 Windows Options}
1105 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1106 -mnop-fun-dllimport -mthread @gol
1107 -municode -mwin32 -mwindows -fno-set-stack-executable}
1108
1109 @emph{Xstormy16 Options}
1110 @gccoptlist{-msim}
1111
1112 @emph{Xtensa Options}
1113 @gccoptlist{-mconst16 -mno-const16 @gol
1114 -mfused-madd  -mno-fused-madd @gol
1115 -mforce-no-pic @gol
1116 -mserialize-volatile  -mno-serialize-volatile @gol
1117 -mtext-section-literals  -mno-text-section-literals @gol
1118 -mtarget-align  -mno-target-align @gol
1119 -mlongcalls  -mno-longcalls}
1120
1121 @emph{zSeries Options}
1122 See S/390 and zSeries Options.
1123
1124 @item Code Generation Options
1125 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1126 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
1127 -ffixed-@var{reg}  -fexceptions @gol
1128 -fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
1129 -fasynchronous-unwind-tables @gol
1130 -fno-gnu-unique @gol
1131 -finhibit-size-directive  -finstrument-functions @gol
1132 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1133 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1134 -fno-common  -fno-ident @gol
1135 -fpcc-struct-return  -fpic  -fPIC -fpie -fPIE -fno-plt @gol
1136 -fno-jump-tables @gol
1137 -frecord-gcc-switches @gol
1138 -freg-struct-return  -fshort-enums @gol
1139 -fshort-double  -fshort-wchar @gol
1140 -fverbose-asm  -fpack-struct[=@var{n}]  -fstack-check @gol
1141 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
1142 -fno-stack-limit -fsplit-stack @gol
1143 -fleading-underscore  -ftls-model=@var{model} @gol
1144 -fstack-reuse=@var{reuse_level} @gol
1145 -ftrapv  -fwrapv  -fbounds-check @gol
1146 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1147 -fstrict-volatile-bitfields -fsync-libcalls}
1148 @end table
1149
1150
1151 @node Overall Options
1152 @section Options Controlling the Kind of Output
1153
1154 Compilation can involve up to four stages: preprocessing, compilation
1155 proper, assembly and linking, always in that order.  GCC is capable of
1156 preprocessing and compiling several files either into several
1157 assembler input files, or into one assembler input file; then each
1158 assembler input file produces an object file, and linking combines all
1159 the object files (those newly compiled, and those specified as input)
1160 into an executable file.
1161
1162 @cindex file name suffix
1163 For any given input file, the file name suffix determines what kind of
1164 compilation is done:
1165
1166 @table @gcctabopt
1167 @item @var{file}.c
1168 C source code that must be preprocessed.
1169
1170 @item @var{file}.i
1171 C source code that should not be preprocessed.
1172
1173 @item @var{file}.ii
1174 C++ source code that should not be preprocessed.
1175
1176 @item @var{file}.m
1177 Objective-C source code.  Note that you must link with the @file{libobjc}
1178 library to make an Objective-C program work.
1179
1180 @item @var{file}.mi
1181 Objective-C source code that should not be preprocessed.
1182
1183 @item @var{file}.mm
1184 @itemx @var{file}.M
1185 Objective-C++ source code.  Note that you must link with the @file{libobjc}
1186 library to make an Objective-C++ program work.  Note that @samp{.M} refers
1187 to a literal capital M@.
1188
1189 @item @var{file}.mii
1190 Objective-C++ source code that should not be preprocessed.
1191
1192 @item @var{file}.h
1193 C, C++, Objective-C or Objective-C++ header file to be turned into a
1194 precompiled header (default), or C, C++ header file to be turned into an
1195 Ada spec (via the @option{-fdump-ada-spec} switch).
1196
1197 @item @var{file}.cc
1198 @itemx @var{file}.cp
1199 @itemx @var{file}.cxx
1200 @itemx @var{file}.cpp
1201 @itemx @var{file}.CPP
1202 @itemx @var{file}.c++
1203 @itemx @var{file}.C
1204 C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1205 the last two letters must both be literally @samp{x}.  Likewise,
1206 @samp{.C} refers to a literal capital C@.
1207
1208 @item @var{file}.mm
1209 @itemx @var{file}.M
1210 Objective-C++ source code that must be preprocessed.
1211
1212 @item @var{file}.mii
1213 Objective-C++ source code that should not be preprocessed.
1214
1215 @item @var{file}.hh
1216 @itemx @var{file}.H
1217 @itemx @var{file}.hp
1218 @itemx @var{file}.hxx
1219 @itemx @var{file}.hpp
1220 @itemx @var{file}.HPP
1221 @itemx @var{file}.h++
1222 @itemx @var{file}.tcc
1223 C++ header file to be turned into a precompiled header or Ada spec.
1224
1225 @item @var{file}.f
1226 @itemx @var{file}.for
1227 @itemx @var{file}.ftn
1228 Fixed form Fortran source code that should not be preprocessed.
1229
1230 @item @var{file}.F
1231 @itemx @var{file}.FOR
1232 @itemx @var{file}.fpp
1233 @itemx @var{file}.FPP
1234 @itemx @var{file}.FTN
1235 Fixed form Fortran source code that must be preprocessed (with the traditional
1236 preprocessor).
1237
1238 @item @var{file}.f90
1239 @itemx @var{file}.f95
1240 @itemx @var{file}.f03
1241 @itemx @var{file}.f08
1242 Free form Fortran source code that should not be preprocessed.
1243
1244 @item @var{file}.F90
1245 @itemx @var{file}.F95
1246 @itemx @var{file}.F03
1247 @itemx @var{file}.F08
1248 Free form Fortran source code that must be preprocessed (with the
1249 traditional preprocessor).
1250
1251 @item @var{file}.go
1252 Go source code.
1253
1254 @c FIXME: Descriptions of Java file types.
1255 @c @var{file}.java
1256 @c @var{file}.class
1257 @c @var{file}.zip
1258 @c @var{file}.jar
1259
1260 @item @var{file}.ads
1261 Ada source code file that contains a library unit declaration (a
1262 declaration of a package, subprogram, or generic, or a generic
1263 instantiation), or a library unit renaming declaration (a package,
1264 generic, or subprogram renaming declaration).  Such files are also
1265 called @dfn{specs}.
1266
1267 @item @var{file}.adb
1268 Ada source code file containing a library unit body (a subprogram or
1269 package body).  Such files are also called @dfn{bodies}.
1270
1271 @c GCC also knows about some suffixes for languages not yet included:
1272 @c Pascal:
1273 @c @var{file}.p
1274 @c @var{file}.pas
1275 @c Ratfor:
1276 @c @var{file}.r
1277
1278 @item @var{file}.s
1279 Assembler code.
1280
1281 @item @var{file}.S
1282 @itemx @var{file}.sx
1283 Assembler code that must be preprocessed.
1284
1285 @item @var{other}
1286 An object file to be fed straight into linking.
1287 Any file name with no recognized suffix is treated this way.
1288 @end table
1289
1290 @opindex x
1291 You can specify the input language explicitly with the @option{-x} option:
1292
1293 @table @gcctabopt
1294 @item -x @var{language}
1295 Specify explicitly the @var{language} for the following input files
1296 (rather than letting the compiler choose a default based on the file
1297 name suffix).  This option applies to all following input files until
1298 the next @option{-x} option.  Possible values for @var{language} are:
1299 @smallexample
1300 c  c-header  cpp-output
1301 c++  c++-header  c++-cpp-output
1302 objective-c  objective-c-header  objective-c-cpp-output
1303 objective-c++ objective-c++-header objective-c++-cpp-output
1304 assembler  assembler-with-cpp
1305 ada
1306 f77  f77-cpp-input f95  f95-cpp-input
1307 go
1308 java
1309 @end smallexample
1310
1311 @item -x none
1312 Turn off any specification of a language, so that subsequent files are
1313 handled according to their file name suffixes (as they are if @option{-x}
1314 has not been used at all).
1315
1316 @item -pass-exit-codes
1317 @opindex pass-exit-codes
1318 Normally the @command{gcc} program exits with the code of 1 if any
1319 phase of the compiler returns a non-success return code.  If you specify
1320 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1321 the numerically highest error produced by any phase returning an error
1322 indication.  The C, C++, and Fortran front ends return 4 if an internal
1323 compiler error is encountered.
1324 @end table
1325
1326 If you only want some of the stages of compilation, you can use
1327 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1328 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1329 @command{gcc} is to stop.  Note that some combinations (for example,
1330 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1331
1332 @table @gcctabopt
1333 @item -c
1334 @opindex c
1335 Compile or assemble the source files, but do not link.  The linking
1336 stage simply is not done.  The ultimate output is in the form of an
1337 object file for each source file.
1338
1339 By default, the object file name for a source file is made by replacing
1340 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1341
1342 Unrecognized input files, not requiring compilation or assembly, are
1343 ignored.
1344
1345 @item -S
1346 @opindex S
1347 Stop after the stage of compilation proper; do not assemble.  The output
1348 is in the form of an assembler code file for each non-assembler input
1349 file specified.
1350
1351 By default, the assembler file name for a source file is made by
1352 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1353
1354 Input files that don't require compilation are ignored.
1355
1356 @item -E
1357 @opindex E
1358 Stop after the preprocessing stage; do not run the compiler proper.  The
1359 output is in the form of preprocessed source code, which is sent to the
1360 standard output.
1361
1362 Input files that don't require preprocessing are ignored.
1363
1364 @cindex output file option
1365 @item -o @var{file}
1366 @opindex o
1367 Place output in file @var{file}.  This applies to whatever
1368 sort of output is being produced, whether it be an executable file,
1369 an object file, an assembler file or preprocessed C code.
1370
1371 If @option{-o} is not specified, the default is to put an executable
1372 file in @file{a.out}, the object file for
1373 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1374 assembler file in @file{@var{source}.s}, a precompiled header file in
1375 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1376 standard output.
1377
1378 @item -v
1379 @opindex v
1380 Print (on standard error output) the commands executed to run the stages
1381 of compilation.  Also print the version number of the compiler driver
1382 program and of the preprocessor and the compiler proper.
1383
1384 @item -###
1385 @opindex ###
1386 Like @option{-v} except the commands are not executed and arguments
1387 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1388 This is useful for shell scripts to capture the driver-generated command lines.
1389
1390 @item -pipe
1391 @opindex pipe
1392 Use pipes rather than temporary files for communication between the
1393 various stages of compilation.  This fails to work on some systems where
1394 the assembler is unable to read from a pipe; but the GNU assembler has
1395 no trouble.
1396
1397 @item --help
1398 @opindex help
1399 Print (on the standard output) a description of the command-line options
1400 understood by @command{gcc}.  If the @option{-v} option is also specified
1401 then @option{--help} is also passed on to the various processes
1402 invoked by @command{gcc}, so that they can display the command-line options
1403 they accept.  If the @option{-Wextra} option has also been specified
1404 (prior to the @option{--help} option), then command-line options that
1405 have no documentation associated with them are also displayed.
1406
1407 @item --target-help
1408 @opindex target-help
1409 Print (on the standard output) a description of target-specific command-line
1410 options for each tool.  For some targets extra target-specific
1411 information may also be printed.
1412
1413 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1414 Print (on the standard output) a description of the command-line
1415 options understood by the compiler that fit into all specified classes
1416 and qualifiers.  These are the supported classes:
1417
1418 @table @asis
1419 @item @samp{optimizers}
1420 Display all of the optimization options supported by the
1421 compiler.
1422
1423 @item @samp{warnings}
1424 Display all of the options controlling warning messages
1425 produced by the compiler.
1426
1427 @item @samp{target}
1428 Display target-specific options.  Unlike the
1429 @option{--target-help} option however, target-specific options of the
1430 linker and assembler are not displayed.  This is because those
1431 tools do not currently support the extended @option{--help=} syntax.
1432
1433 @item @samp{params}
1434 Display the values recognized by the @option{--param}
1435 option.
1436
1437 @item @var{language}
1438 Display the options supported for @var{language}, where
1439 @var{language} is the name of one of the languages supported in this
1440 version of GCC@.
1441
1442 @item @samp{common}
1443 Display the options that are common to all languages.
1444 @end table
1445
1446 These are the supported qualifiers:
1447
1448 @table @asis
1449 @item @samp{undocumented}
1450 Display only those options that are undocumented.
1451
1452 @item @samp{joined}
1453 Display options taking an argument that appears after an equal
1454 sign in the same continuous piece of text, such as:
1455 @samp{--help=target}.
1456
1457 @item @samp{separate}
1458 Display options taking an argument that appears as a separate word
1459 following the original option, such as: @samp{-o output-file}.
1460 @end table
1461
1462 Thus for example to display all the undocumented target-specific
1463 switches supported by the compiler, use:
1464
1465 @smallexample
1466 --help=target,undocumented
1467 @end smallexample
1468
1469 The sense of a qualifier can be inverted by prefixing it with the
1470 @samp{^} character, so for example to display all binary warning
1471 options (i.e., ones that are either on or off and that do not take an
1472 argument) that have a description, use:
1473
1474 @smallexample
1475 --help=warnings,^joined,^undocumented
1476 @end smallexample
1477
1478 The argument to @option{--help=} should not consist solely of inverted
1479 qualifiers.
1480
1481 Combining several classes is possible, although this usually
1482 restricts the output so much that there is nothing to display.  One
1483 case where it does work, however, is when one of the classes is
1484 @var{target}.  For example, to display all the target-specific
1485 optimization options, use:
1486
1487 @smallexample
1488 --help=target,optimizers
1489 @end smallexample
1490
1491 The @option{--help=} option can be repeated on the command line.  Each
1492 successive use displays its requested class of options, skipping
1493 those that have already been displayed.
1494
1495 If the @option{-Q} option appears on the command line before the
1496 @option{--help=} option, then the descriptive text displayed by
1497 @option{--help=} is changed.  Instead of describing the displayed
1498 options, an indication is given as to whether the option is enabled,
1499 disabled or set to a specific value (assuming that the compiler
1500 knows this at the point where the @option{--help=} option is used).
1501
1502 Here is a truncated example from the ARM port of @command{gcc}:
1503
1504 @smallexample
1505   % gcc -Q -mabi=2 --help=target -c
1506   The following options are target specific:
1507   -mabi=                                2
1508   -mabort-on-noreturn                   [disabled]
1509   -mapcs                                [disabled]
1510 @end smallexample
1511
1512 The output is sensitive to the effects of previous command-line
1513 options, so for example it is possible to find out which optimizations
1514 are enabled at @option{-O2} by using:
1515
1516 @smallexample
1517 -Q -O2 --help=optimizers
1518 @end smallexample
1519
1520 Alternatively you can discover which binary optimizations are enabled
1521 by @option{-O3} by using:
1522
1523 @smallexample
1524 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1525 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1526 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1527 @end smallexample
1528
1529 @item -no-canonical-prefixes
1530 @opindex no-canonical-prefixes
1531 Do not expand any symbolic links, resolve references to @samp{/../}
1532 or @samp{/./}, or make the path absolute when generating a relative
1533 prefix.
1534
1535 @item --version
1536 @opindex version
1537 Display the version number and copyrights of the invoked GCC@.
1538
1539 @item -wrapper
1540 @opindex wrapper
1541 Invoke all subcommands under a wrapper program.  The name of the
1542 wrapper program and its parameters are passed as a comma separated
1543 list.
1544
1545 @smallexample
1546 gcc -c t.c -wrapper gdb,--args
1547 @end smallexample
1548
1549 @noindent
1550 This invokes all subprograms of @command{gcc} under
1551 @samp{gdb --args}, thus the invocation of @command{cc1} is
1552 @samp{gdb --args cc1 @dots{}}.
1553
1554 @item -fplugin=@var{name}.so
1555 @opindex fplugin
1556 Load the plugin code in file @var{name}.so, assumed to be a
1557 shared object to be dlopen'd by the compiler.  The base name of
1558 the shared object file is used to identify the plugin for the
1559 purposes of argument parsing (See
1560 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1561 Each plugin should define the callback functions specified in the
1562 Plugins API.
1563
1564 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1565 @opindex fplugin-arg
1566 Define an argument called @var{key} with a value of @var{value}
1567 for the plugin called @var{name}.
1568
1569 @item -fdump-ada-spec@r{[}-slim@r{]}
1570 @opindex fdump-ada-spec
1571 For C and C++ source and include files, generate corresponding Ada specs.
1572 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1573 GNAT User's Guide}, which provides detailed documentation on this feature.
1574
1575 @item -fada-spec-parent=@var{unit}
1576 @opindex fada-spec-parent
1577 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1578 Ada specs as child units of parent @var{unit}.
1579
1580 @item -fdump-go-spec=@var{file}
1581 @opindex fdump-go-spec
1582 For input files in any language, generate corresponding Go
1583 declarations in @var{file}.  This generates Go @code{const},
1584 @code{type}, @code{var}, and @code{func} declarations which may be a
1585 useful way to start writing a Go interface to code written in some
1586 other language.
1587
1588 @include @value{srcdir}/../libiberty/at-file.texi
1589 @end table
1590
1591 @node Invoking G++
1592 @section Compiling C++ Programs
1593
1594 @cindex suffixes for C++ source
1595 @cindex C++ source file suffixes
1596 C++ source files conventionally use one of the suffixes @samp{.C},
1597 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1598 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1599 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1600 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1601 files with these names and compiles them as C++ programs even if you
1602 call the compiler the same way as for compiling C programs (usually
1603 with the name @command{gcc}).
1604
1605 @findex g++
1606 @findex c++
1607 However, the use of @command{gcc} does not add the C++ library.
1608 @command{g++} is a program that calls GCC and automatically specifies linking
1609 against the C++ library.  It treats @samp{.c},
1610 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1611 files unless @option{-x} is used.  This program is also useful when
1612 precompiling a C header file with a @samp{.h} extension for use in C++
1613 compilations.  On many systems, @command{g++} is also installed with
1614 the name @command{c++}.
1615
1616 @cindex invoking @command{g++}
1617 When you compile C++ programs, you may specify many of the same
1618 command-line options that you use for compiling programs in any
1619 language; or command-line options meaningful for C and related
1620 languages; or options that are meaningful only for C++ programs.
1621 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1622 explanations of options for languages related to C@.
1623 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1624 explanations of options that are meaningful only for C++ programs.
1625
1626 @node C Dialect Options
1627 @section Options Controlling C Dialect
1628 @cindex dialect options
1629 @cindex language dialect options
1630 @cindex options, dialect
1631
1632 The following options control the dialect of C (or languages derived
1633 from C, such as C++, Objective-C and Objective-C++) that the compiler
1634 accepts:
1635
1636 @table @gcctabopt
1637 @cindex ANSI support
1638 @cindex ISO support
1639 @item -ansi
1640 @opindex ansi
1641 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1642 equivalent to @option{-std=c++98}.
1643
1644 This turns off certain features of GCC that are incompatible with ISO
1645 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1646 such as the @code{asm} and @code{typeof} keywords, and
1647 predefined macros such as @code{unix} and @code{vax} that identify the
1648 type of system you are using.  It also enables the undesirable and
1649 rarely used ISO trigraph feature.  For the C compiler,
1650 it disables recognition of C++ style @samp{//} comments as well as
1651 the @code{inline} keyword.
1652
1653 The alternate keywords @code{__asm__}, @code{__extension__},
1654 @code{__inline__} and @code{__typeof__} continue to work despite
1655 @option{-ansi}.  You would not want to use them in an ISO C program, of
1656 course, but it is useful to put them in header files that might be included
1657 in compilations done with @option{-ansi}.  Alternate predefined macros
1658 such as @code{__unix__} and @code{__vax__} are also available, with or
1659 without @option{-ansi}.
1660
1661 The @option{-ansi} option does not cause non-ISO programs to be
1662 rejected gratuitously.  For that, @option{-Wpedantic} is required in
1663 addition to @option{-ansi}.  @xref{Warning Options}.
1664
1665 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1666 option is used.  Some header files may notice this macro and refrain
1667 from declaring certain functions or defining certain macros that the
1668 ISO standard doesn't call for; this is to avoid interfering with any
1669 programs that might use these names for other things.
1670
1671 Functions that are normally built in but do not have semantics
1672 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1673 functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1674 built-in functions provided by GCC}, for details of the functions
1675 affected.
1676
1677 @item -std=
1678 @opindex std
1679 Determine the language standard. @xref{Standards,,Language Standards
1680 Supported by GCC}, for details of these standard versions.  This option
1681 is currently only supported when compiling C or C++.
1682
1683 The compiler can accept several base standards, such as @samp{c90} or
1684 @samp{c++98}, and GNU dialects of those standards, such as
1685 @samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1686 compiler accepts all programs following that standard plus those
1687 using GNU extensions that do not contradict it.  For example,
1688 @option{-std=c90} turns off certain features of GCC that are
1689 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1690 keywords, but not other GNU extensions that do not have a meaning in
1691 ISO C90, such as omitting the middle term of a @code{?:}
1692 expression. On the other hand, when a GNU dialect of a standard is
1693 specified, all features supported by the compiler are enabled, even when
1694 those features change the meaning of the base standard.  As a result, some
1695 strict-conforming programs may be rejected.  The particular standard
1696 is used by @option{-Wpedantic} to identify which features are GNU
1697 extensions given that version of the standard. For example
1698 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1699 comments, while @option{-std=gnu99 -Wpedantic} does not.
1700
1701 A value for this option must be provided; possible values are
1702
1703 @table @samp
1704 @item c90
1705 @itemx c89
1706 @itemx iso9899:1990
1707 Support all ISO C90 programs (certain GNU extensions that conflict
1708 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1709
1710 @item iso9899:199409
1711 ISO C90 as modified in amendment 1.
1712
1713 @item c99
1714 @itemx c9x
1715 @itemx iso9899:1999
1716 @itemx iso9899:199x
1717 ISO C99.  This standard is substantially completely supported, modulo
1718 bugs and floating-point issues
1719 (mainly but not entirely relating to optional C99 features from
1720 Annexes F and G).  See
1721 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1722 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1723
1724 @item c11
1725 @itemx c1x
1726 @itemx iso9899:2011
1727 ISO C11, the 2011 revision of the ISO C standard.  This standard is
1728 substantially completely supported, modulo bugs, floating-point issues
1729 (mainly but not entirely relating to optional C11 features from
1730 Annexes F and G) and the optional Annexes K (Bounds-checking
1731 interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1732
1733 @item gnu90
1734 @itemx gnu89
1735 GNU dialect of ISO C90 (including some C99 features).
1736
1737 @item gnu99
1738 @itemx gnu9x
1739 GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1740
1741 @item gnu11
1742 @itemx gnu1x
1743 GNU dialect of ISO C11.  This is the default for C code.
1744 The name @samp{gnu1x} is deprecated.
1745
1746 @item c++98
1747 @itemx c++03
1748 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1749 additional defect reports. Same as @option{-ansi} for C++ code.
1750
1751 @item gnu++98
1752 @itemx gnu++03
1753 GNU dialect of @option{-std=c++98}.  This is the default for
1754 C++ code.
1755
1756 @item c++11
1757 @itemx c++0x
1758 The 2011 ISO C++ standard plus amendments.
1759 The name @samp{c++0x} is deprecated.
1760
1761 @item gnu++11
1762 @itemx gnu++0x
1763 GNU dialect of @option{-std=c++11}.
1764 The name @samp{gnu++0x} is deprecated.
1765
1766 @item c++14
1767 @itemx c++1y
1768 The 2014 ISO C++ standard plus amendments.
1769 The name @samp{c++1y} is deprecated.
1770
1771 @item gnu++14
1772 @itemx gnu++1y
1773 GNU dialect of @option{-std=c++14}.
1774 The name @samp{gnu++1y} is deprecated.
1775
1776 @item c++1z
1777 The next revision of the ISO C++ standard, tentatively planned for
1778 2017.  Support is highly experimental, and will almost certainly
1779 change in incompatible ways in future releases.
1780
1781 @item gnu++1z
1782 GNU dialect of @option{-std=c++1z}.  Support is highly experimental,
1783 and will almost certainly change in incompatible ways in future
1784 releases.
1785 @end table
1786
1787 @item -fgnu89-inline
1788 @opindex fgnu89-inline
1789 The option @option{-fgnu89-inline} tells GCC to use the traditional
1790 GNU semantics for @code{inline} functions when in C99 mode.
1791 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1792 Using this option is roughly equivalent to adding the
1793 @code{gnu_inline} function attribute to all inline functions
1794 (@pxref{Function Attributes}).
1795
1796 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1797 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1798 specifies the default behavior).
1799 This option is not supported in @option{-std=c90} or
1800 @option{-std=gnu90} mode.
1801
1802 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1803 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1804 in effect for @code{inline} functions.  @xref{Common Predefined
1805 Macros,,,cpp,The C Preprocessor}.
1806
1807 @item -aux-info @var{filename}
1808 @opindex aux-info
1809 Output to the given filename prototyped declarations for all functions
1810 declared and/or defined in a translation unit, including those in header
1811 files.  This option is silently ignored in any language other than C@.
1812
1813 Besides declarations, the file indicates, in comments, the origin of
1814 each declaration (source file and line), whether the declaration was
1815 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1816 @samp{O} for old, respectively, in the first character after the line
1817 number and the colon), and whether it came from a declaration or a
1818 definition (@samp{C} or @samp{F}, respectively, in the following
1819 character).  In the case of function definitions, a K&R-style list of
1820 arguments followed by their declarations is also provided, inside
1821 comments, after the declaration.
1822
1823 @item -fallow-parameterless-variadic-functions
1824 @opindex fallow-parameterless-variadic-functions
1825 Accept variadic functions without named parameters.
1826
1827 Although it is possible to define such a function, this is not very
1828 useful as it is not possible to read the arguments.  This is only
1829 supported for C as this construct is allowed by C++.
1830
1831 @item -fno-asm
1832 @opindex fno-asm
1833 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1834 keyword, so that code can use these words as identifiers.  You can use
1835 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1836 instead.  @option{-ansi} implies @option{-fno-asm}.
1837
1838 In C++, this switch only affects the @code{typeof} keyword, since
1839 @code{asm} and @code{inline} are standard keywords.  You may want to
1840 use the @option{-fno-gnu-keywords} flag instead, which has the same
1841 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1842 switch only affects the @code{asm} and @code{typeof} keywords, since
1843 @code{inline} is a standard keyword in ISO C99.
1844
1845 @item -fno-builtin
1846 @itemx -fno-builtin-@var{function}
1847 @opindex fno-builtin
1848 @cindex built-in functions
1849 Don't recognize built-in functions that do not begin with
1850 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1851 functions provided by GCC}, for details of the functions affected,
1852 including those which are not built-in functions when @option{-ansi} or
1853 @option{-std} options for strict ISO C conformance are used because they
1854 do not have an ISO standard meaning.
1855
1856 GCC normally generates special code to handle certain built-in functions
1857 more efficiently; for instance, calls to @code{alloca} may become single
1858 instructions which adjust the stack directly, and calls to @code{memcpy}
1859 may become inline copy loops.  The resulting code is often both smaller
1860 and faster, but since the function calls no longer appear as such, you
1861 cannot set a breakpoint on those calls, nor can you change the behavior
1862 of the functions by linking with a different library.  In addition,
1863 when a function is recognized as a built-in function, GCC may use
1864 information about that function to warn about problems with calls to
1865 that function, or to generate more efficient code, even if the
1866 resulting code still contains calls to that function.  For example,
1867 warnings are given with @option{-Wformat} for bad calls to
1868 @code{printf} when @code{printf} is built in and @code{strlen} is
1869 known not to modify global memory.
1870
1871 With the @option{-fno-builtin-@var{function}} option
1872 only the built-in function @var{function} is
1873 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
1874 function is named that is not built-in in this version of GCC, this
1875 option is ignored.  There is no corresponding
1876 @option{-fbuiltin-@var{function}} option; if you wish to enable
1877 built-in functions selectively when using @option{-fno-builtin} or
1878 @option{-ffreestanding}, you may define macros such as:
1879
1880 @smallexample
1881 #define abs(n)          __builtin_abs ((n))
1882 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
1883 @end smallexample
1884
1885 @item -fhosted
1886 @opindex fhosted
1887 @cindex hosted environment
1888
1889 Assert that compilation targets a hosted environment.  This implies
1890 @option{-fbuiltin}.  A hosted environment is one in which the
1891 entire standard library is available, and in which @code{main} has a return
1892 type of @code{int}.  Examples are nearly everything except a kernel.
1893 This is equivalent to @option{-fno-freestanding}.
1894
1895 @item -ffreestanding
1896 @opindex ffreestanding
1897 @cindex hosted environment
1898
1899 Assert that compilation targets a freestanding environment.  This
1900 implies @option{-fno-builtin}.  A freestanding environment
1901 is one in which the standard library may not exist, and program startup may
1902 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
1903 This is equivalent to @option{-fno-hosted}.
1904
1905 @xref{Standards,,Language Standards Supported by GCC}, for details of
1906 freestanding and hosted environments.
1907
1908 @item -fopenacc
1909 @opindex fopenacc
1910 @cindex OpenACC accelerator programming
1911 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1912 @code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
1913 compiler generates accelerated code according to the OpenACC Application
1914 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}.  This option
1915 implies @option{-pthread}, and thus is only supported on targets that
1916 have support for @option{-pthread}.
1917
1918 Note that this is an experimental feature, incomplete, and subject to
1919 change in future versions of GCC.  See
1920 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1921
1922 @item -fopenmp
1923 @opindex fopenmp
1924 @cindex OpenMP parallel
1925 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1926 @code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
1927 compiler generates parallel code according to the OpenMP Application
1928 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}.  This option
1929 implies @option{-pthread}, and thus is only supported on targets that
1930 have support for @option{-pthread}. @option{-fopenmp} implies
1931 @option{-fopenmp-simd}.
1932
1933 @item -fopenmp-simd
1934 @opindex fopenmp-simd
1935 @cindex OpenMP SIMD
1936 @cindex SIMD
1937 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1938 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1939 are ignored.
1940
1941 @item -fcilkplus
1942 @opindex fcilkplus
1943 @cindex Enable Cilk Plus
1944 Enable the usage of Cilk Plus language extension features for C/C++.
1945 When the option @option{-fcilkplus} is specified, enable the usage of
1946 the Cilk Plus Language extension features for C/C++.  The present
1947 implementation follows ABI version 1.2.  This is an experimental
1948 feature that is only partially complete, and whose interface may
1949 change in future versions of GCC as the official specification
1950 changes.  Currently, all features but @code{_Cilk_for} have been
1951 implemented.
1952
1953 @item -fgnu-tm
1954 @opindex fgnu-tm
1955 When the option @option{-fgnu-tm} is specified, the compiler
1956 generates code for the Linux variant of Intel's current Transactional
1957 Memory ABI specification document (Revision 1.1, May 6 2009).  This is
1958 an experimental feature whose interface may change in future versions
1959 of GCC, as the official specification changes.  Please note that not
1960 all architectures are supported for this feature.
1961
1962 For more information on GCC's support for transactional memory,
1963 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1964 Transactional Memory Library}.
1965
1966 Note that the transactional memory feature is not supported with
1967 non-call exceptions (@option{-fnon-call-exceptions}).
1968
1969 @item -fms-extensions
1970 @opindex fms-extensions
1971 Accept some non-standard constructs used in Microsoft header files.
1972
1973 In C++ code, this allows member names in structures to be similar
1974 to previous types declarations.
1975
1976 @smallexample
1977 typedef int UOW;
1978 struct ABC @{
1979   UOW UOW;
1980 @};
1981 @end smallexample
1982
1983 Some cases of unnamed fields in structures and unions are only
1984 accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
1985 fields within structs/unions}, for details.
1986
1987 Note that this option is off for all targets but x86 
1988 targets using ms-abi.
1989
1990 @item -fplan9-extensions
1991 @opindex fplan9-extensions
1992 Accept some non-standard constructs used in Plan 9 code.
1993
1994 This enables @option{-fms-extensions}, permits passing pointers to
1995 structures with anonymous fields to functions that expect pointers to
1996 elements of the type of the field, and permits referring to anonymous
1997 fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
1998 struct/union fields within structs/unions}, for details.  This is only
1999 supported for C, not C++.
2000
2001 @item -trigraphs
2002 @opindex trigraphs
2003 Support ISO C trigraphs.  The @option{-ansi} option (and @option{-std}
2004 options for strict ISO C conformance) implies @option{-trigraphs}.
2005
2006 @cindex traditional C language
2007 @cindex C language, traditional
2008 @item -traditional
2009 @itemx -traditional-cpp
2010 @opindex traditional-cpp
2011 @opindex traditional
2012 Formerly, these options caused GCC to attempt to emulate a pre-standard
2013 C compiler.  They are now only supported with the @option{-E} switch.
2014 The preprocessor continues to support a pre-standard mode.  See the GNU
2015 CPP manual for details.
2016
2017 @item -fcond-mismatch
2018 @opindex fcond-mismatch
2019 Allow conditional expressions with mismatched types in the second and
2020 third arguments.  The value of such an expression is void.  This option
2021 is not supported for C++.
2022
2023 @item -flax-vector-conversions
2024 @opindex flax-vector-conversions
2025 Allow implicit conversions between vectors with differing numbers of
2026 elements and/or incompatible element types.  This option should not be
2027 used for new code.
2028
2029 @item -funsigned-char
2030 @opindex funsigned-char
2031 Let the type @code{char} be unsigned, like @code{unsigned char}.
2032
2033 Each kind of machine has a default for what @code{char} should
2034 be.  It is either like @code{unsigned char} by default or like
2035 @code{signed char} by default.
2036
2037 Ideally, a portable program should always use @code{signed char} or
2038 @code{unsigned char} when it depends on the signedness of an object.
2039 But many programs have been written to use plain @code{char} and
2040 expect it to be signed, or expect it to be unsigned, depending on the
2041 machines they were written for.  This option, and its inverse, let you
2042 make such a program work with the opposite default.
2043
2044 The type @code{char} is always a distinct type from each of
2045 @code{signed char} or @code{unsigned char}, even though its behavior
2046 is always just like one of those two.
2047
2048 @item -fsigned-char
2049 @opindex fsigned-char
2050 Let the type @code{char} be signed, like @code{signed char}.
2051
2052 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2053 the negative form of @option{-funsigned-char}.  Likewise, the option
2054 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2055
2056 @item -fsigned-bitfields
2057 @itemx -funsigned-bitfields
2058 @itemx -fno-signed-bitfields
2059 @itemx -fno-unsigned-bitfields
2060 @opindex fsigned-bitfields
2061 @opindex funsigned-bitfields
2062 @opindex fno-signed-bitfields
2063 @opindex fno-unsigned-bitfields
2064 These options control whether a bit-field is signed or unsigned, when the
2065 declaration does not use either @code{signed} or @code{unsigned}.  By
2066 default, such a bit-field is signed, because this is consistent: the
2067 basic integer types such as @code{int} are signed types.
2068 @end table
2069
2070 @node C++ Dialect Options
2071 @section Options Controlling C++ Dialect
2072
2073 @cindex compiler options, C++
2074 @cindex C++ options, command-line
2075 @cindex options, C++
2076 This section describes the command-line options that are only meaningful
2077 for C++ programs.  You can also use most of the GNU compiler options
2078 regardless of what language your program is in.  For example, you
2079 might compile a file @file{firstClass.C} like this:
2080
2081 @smallexample
2082 g++ -g -frepo -O -c firstClass.C
2083 @end smallexample
2084
2085 @noindent
2086 In this example, only @option{-frepo} is an option meant
2087 only for C++ programs; you can use the other options with any
2088 language supported by GCC@.
2089
2090 Here is a list of options that are @emph{only} for compiling C++ programs:
2091
2092 @table @gcctabopt
2093
2094 @item -fabi-version=@var{n}
2095 @opindex fabi-version
2096 Use version @var{n} of the C++ ABI@.  The default is version 0.
2097
2098 Version 0 refers to the version conforming most closely to
2099 the C++ ABI specification.  Therefore, the ABI obtained using version 0
2100 will change in different versions of G++ as ABI bugs are fixed.
2101
2102 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2103
2104 Version 2 is the version of the C++ ABI that first appeared in G++
2105 3.4, and was the default through G++ 4.9.
2106
2107 Version 3 corrects an error in mangling a constant address as a
2108 template argument.
2109
2110 Version 4, which first appeared in G++ 4.5, implements a standard
2111 mangling for vector types.
2112
2113 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2114 attribute const/volatile on function pointer types, decltype of a
2115 plain decl, and use of a function parameter in the declaration of
2116 another parameter.
2117
2118 Version 6, which first appeared in G++ 4.7, corrects the promotion
2119 behavior of C++11 scoped enums and the mangling of template argument
2120 packs, const/static_cast, prefix ++ and --, and a class scope function
2121 used as a template argument.
2122
2123 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2124 builtin type and corrects the mangling of lambdas in default argument
2125 scope.
2126
2127 Version 8, which first appeared in G++ 4.9, corrects the substitution
2128 behavior of function types with function-cv-qualifiers.
2129
2130 See also @option{-Wabi}.
2131
2132 @item -fabi-compat-version=@var{n}
2133 @opindex fabi-compat-version
2134 On targets that support strong aliases, G++
2135 works around mangling changes by creating an alias with the correct
2136 mangled name when defining a symbol with an incorrect mangled name.
2137 This switch specifies which ABI version to use for the alias.
2138
2139 With @option{-fabi-version=0} (the default), this defaults to 2.  If
2140 another ABI version is explicitly selected, this defaults to 0.
2141
2142 The compatibility version is also set by @option{-Wabi=@var{n}}.
2143
2144 @item -fno-access-control
2145 @opindex fno-access-control
2146 Turn off all access checking.  This switch is mainly useful for working
2147 around bugs in the access control code.
2148
2149 @item -fcheck-new
2150 @opindex fcheck-new
2151 Check that the pointer returned by @code{operator new} is non-null
2152 before attempting to modify the storage allocated.  This check is
2153 normally unnecessary because the C++ standard specifies that
2154 @code{operator new} only returns @code{0} if it is declared
2155 @code{throw()}, in which case the compiler always checks the
2156 return value even without this option.  In all other cases, when
2157 @code{operator new} has a non-empty exception specification, memory
2158 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2159 @samp{new (nothrow)}.
2160
2161 @item -fconstexpr-depth=@var{n}
2162 @opindex fconstexpr-depth
2163 Set the maximum nested evaluation depth for C++11 constexpr functions
2164 to @var{n}.  A limit is needed to detect endless recursion during
2165 constant expression evaluation.  The minimum specified by the standard
2166 is 512.
2167
2168 @item -fdeduce-init-list
2169 @opindex fdeduce-init-list
2170 Enable deduction of a template type parameter as
2171 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2172
2173 @smallexample
2174 template <class T> auto forward(T t) -> decltype (realfn (t))
2175 @{
2176   return realfn (t);
2177 @}
2178
2179 void f()
2180 @{
2181   forward(@{1,2@}); // call forward<std::initializer_list<int>>
2182 @}
2183 @end smallexample
2184
2185 This deduction was implemented as a possible extension to the
2186 originally proposed semantics for the C++11 standard, but was not part
2187 of the final standard, so it is disabled by default.  This option is
2188 deprecated, and may be removed in a future version of G++.
2189
2190 @item -ffriend-injection
2191 @opindex ffriend-injection
2192 Inject friend functions into the enclosing namespace, so that they are
2193 visible outside the scope of the class in which they are declared.
2194 Friend functions were documented to work this way in the old Annotated
2195 C++ Reference Manual.  
2196 However, in ISO C++ a friend function that is not declared
2197 in an enclosing scope can only be found using argument dependent
2198 lookup.  GCC defaults to the standard behavior.
2199
2200 This option is for compatibility, and may be removed in a future
2201 release of G++.
2202
2203 @item -fno-elide-constructors
2204 @opindex fno-elide-constructors
2205 The C++ standard allows an implementation to omit creating a temporary
2206 that is only used to initialize another object of the same type.
2207 Specifying this option disables that optimization, and forces G++ to
2208 call the copy constructor in all cases.
2209
2210 @item -fno-enforce-eh-specs
2211 @opindex fno-enforce-eh-specs
2212 Don't generate code to check for violation of exception specifications
2213 at run time.  This option violates the C++ standard, but may be useful
2214 for reducing code size in production builds, much like defining
2215 @code{NDEBUG}.  This does not give user code permission to throw
2216 exceptions in violation of the exception specifications; the compiler
2217 still optimizes based on the specifications, so throwing an
2218 unexpected exception results in undefined behavior at run time.
2219
2220 @item -fextern-tls-init
2221 @itemx -fno-extern-tls-init
2222 @opindex fextern-tls-init
2223 @opindex fno-extern-tls-init
2224 The C++11 and OpenMP standards allow @code{thread_local} and
2225 @code{threadprivate} variables to have dynamic (runtime)
2226 initialization.  To support this, any use of such a variable goes
2227 through a wrapper function that performs any necessary initialization.
2228 When the use and definition of the variable are in the same
2229 translation unit, this overhead can be optimized away, but when the
2230 use is in a different translation unit there is significant overhead
2231 even if the variable doesn't actually need dynamic initialization.  If
2232 the programmer can be sure that no use of the variable in a
2233 non-defining TU needs to trigger dynamic initialization (either
2234 because the variable is statically initialized, or a use of the
2235 variable in the defining TU will be executed before any uses in
2236 another TU), they can avoid this overhead with the
2237 @option{-fno-extern-tls-init} option.
2238
2239 On targets that support symbol aliases, the default is
2240 @option{-fextern-tls-init}.  On targets that do not support symbol
2241 aliases, the default is @option{-fno-extern-tls-init}.
2242
2243 @item -ffor-scope
2244 @itemx -fno-for-scope
2245 @opindex ffor-scope
2246 @opindex fno-for-scope
2247 If @option{-ffor-scope} is specified, the scope of variables declared in
2248 a @i{for-init-statement} is limited to the @code{for} loop itself,
2249 as specified by the C++ standard.
2250 If @option{-fno-for-scope} is specified, the scope of variables declared in
2251 a @i{for-init-statement} extends to the end of the enclosing scope,
2252 as was the case in old versions of G++, and other (traditional)
2253 implementations of C++.
2254
2255 If neither flag is given, the default is to follow the standard,
2256 but to allow and give a warning for old-style code that would
2257 otherwise be invalid, or have different behavior.
2258
2259 @item -fno-gnu-keywords
2260 @opindex fno-gnu-keywords
2261 Do not recognize @code{typeof} as a keyword, so that code can use this
2262 word as an identifier.  You can use the keyword @code{__typeof__} instead.
2263 @option{-ansi} implies @option{-fno-gnu-keywords}.
2264
2265 @item -fno-implicit-templates
2266 @opindex fno-implicit-templates
2267 Never emit code for non-inline templates that are instantiated
2268 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2269 @xref{Template Instantiation}, for more information.
2270
2271 @item -fno-implicit-inline-templates
2272 @opindex fno-implicit-inline-templates
2273 Don't emit code for implicit instantiations of inline templates, either.
2274 The default is to handle inlines differently so that compiles with and
2275 without optimization need the same set of explicit instantiations.
2276
2277 @item -fno-implement-inlines
2278 @opindex fno-implement-inlines
2279 To save space, do not emit out-of-line copies of inline functions
2280 controlled by @code{#pragma implementation}.  This causes linker
2281 errors if these functions are not inlined everywhere they are called.
2282
2283 @item -fms-extensions
2284 @opindex fms-extensions
2285 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2286 int and getting a pointer to member function via non-standard syntax.
2287
2288 @item -fno-nonansi-builtins
2289 @opindex fno-nonansi-builtins
2290 Disable built-in declarations of functions that are not mandated by
2291 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2292 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2293
2294 @item -fnothrow-opt
2295 @opindex fnothrow-opt
2296 Treat a @code{throw()} exception specification as if it were a
2297 @code{noexcept} specification to reduce or eliminate the text size
2298 overhead relative to a function with no exception specification.  If
2299 the function has local variables of types with non-trivial
2300 destructors, the exception specification actually makes the
2301 function smaller because the EH cleanups for those variables can be
2302 optimized away.  The semantic effect is that an exception thrown out of
2303 a function with such an exception specification results in a call
2304 to @code{terminate} rather than @code{unexpected}.
2305
2306 @item -fno-operator-names
2307 @opindex fno-operator-names
2308 Do not treat the operator name keywords @code{and}, @code{bitand},
2309 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2310 synonyms as keywords.
2311
2312 @item -fno-optional-diags
2313 @opindex fno-optional-diags
2314 Disable diagnostics that the standard says a compiler does not need to
2315 issue.  Currently, the only such diagnostic issued by G++ is the one for
2316 a name having multiple meanings within a class.
2317
2318 @item -fpermissive
2319 @opindex fpermissive
2320 Downgrade some diagnostics about nonconformant code from errors to
2321 warnings.  Thus, using @option{-fpermissive} allows some
2322 nonconforming code to compile.
2323
2324 @item -fno-pretty-templates
2325 @opindex fno-pretty-templates
2326 When an error message refers to a specialization of a function
2327 template, the compiler normally prints the signature of the
2328 template followed by the template arguments and any typedefs or
2329 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2330 rather than @code{void f(int)}) so that it's clear which template is
2331 involved.  When an error message refers to a specialization of a class
2332 template, the compiler omits any template arguments that match
2333 the default template arguments for that template.  If either of these
2334 behaviors make it harder to understand the error message rather than
2335 easier, you can use @option{-fno-pretty-templates} to disable them.
2336
2337 @item -frepo
2338 @opindex frepo
2339 Enable automatic template instantiation at link time.  This option also
2340 implies @option{-fno-implicit-templates}.  @xref{Template
2341 Instantiation}, for more information.
2342
2343 @item -fno-rtti
2344 @opindex fno-rtti
2345 Disable generation of information about every class with virtual
2346 functions for use by the C++ run-time type identification features
2347 (@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2348 of the language, you can save some space by using this flag.  Note that
2349 exception handling uses the same information, but G++ generates it as
2350 needed. The @code{dynamic_cast} operator can still be used for casts that
2351 do not require run-time type information, i.e.@: casts to @code{void *} or to
2352 unambiguous base classes.
2353
2354 @item -fsized-deallocation
2355 @opindex fsized-deallocation
2356 Enable the built-in global declarations
2357 @smallexample
2358 void operator delete (void *, std::size_t) noexcept;
2359 void operator delete[] (void *, std::size_t) noexcept;
2360 @end smallexample
2361 as introduced in C++14.  This is useful for user-defined replacement
2362 deallocation functions that, for example, use the size of the object
2363 to make deallocation faster.  Enabled by default under
2364 @option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2365 warns about places that might want to add a definition.
2366
2367 @item -fstats
2368 @opindex fstats
2369 Emit statistics about front-end processing at the end of the compilation.
2370 This information is generally only useful to the G++ development team.
2371
2372 @item -fstrict-enums
2373 @opindex fstrict-enums
2374 Allow the compiler to optimize using the assumption that a value of
2375 enumerated type can only be one of the values of the enumeration (as
2376 defined in the C++ standard; basically, a value that can be
2377 represented in the minimum number of bits needed to represent all the
2378 enumerators).  This assumption may not be valid if the program uses a
2379 cast to convert an arbitrary integer value to the enumerated type.
2380
2381 @item -ftemplate-backtrace-limit=@var{n}
2382 @opindex ftemplate-backtrace-limit
2383 Set the maximum number of template instantiation notes for a single
2384 warning or error to @var{n}.  The default value is 10.
2385
2386 @item -ftemplate-depth=@var{n}
2387 @opindex ftemplate-depth
2388 Set the maximum instantiation depth for template classes to @var{n}.
2389 A limit on the template instantiation depth is needed to detect
2390 endless recursions during template class instantiation.  ANSI/ISO C++
2391 conforming programs must not rely on a maximum depth greater than 17
2392 (changed to 1024 in C++11).  The default value is 900, as the compiler
2393 can run out of stack space before hitting 1024 in some situations.
2394
2395 @item -fno-threadsafe-statics
2396 @opindex fno-threadsafe-statics
2397 Do not emit the extra code to use the routines specified in the C++
2398 ABI for thread-safe initialization of local statics.  You can use this
2399 option to reduce code size slightly in code that doesn't need to be
2400 thread-safe.
2401
2402 @item -fuse-cxa-atexit
2403 @opindex fuse-cxa-atexit
2404 Register destructors for objects with static storage duration with the
2405 @code{__cxa_atexit} function rather than the @code{atexit} function.
2406 This option is required for fully standards-compliant handling of static
2407 destructors, but only works if your C library supports
2408 @code{__cxa_atexit}.
2409
2410 @item -fno-use-cxa-get-exception-ptr
2411 @opindex fno-use-cxa-get-exception-ptr
2412 Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2413 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2414 if the runtime routine is not available.
2415
2416 @item -fvisibility-inlines-hidden
2417 @opindex fvisibility-inlines-hidden
2418 This switch declares that the user does not attempt to compare
2419 pointers to inline functions or methods where the addresses of the two functions
2420 are taken in different shared objects.
2421
2422 The effect of this is that GCC may, effectively, mark inline methods with
2423 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2424 appear in the export table of a DSO and do not require a PLT indirection
2425 when used within the DSO@.  Enabling this option can have a dramatic effect
2426 on load and link times of a DSO as it massively reduces the size of the
2427 dynamic export table when the library makes heavy use of templates.
2428
2429 The behavior of this switch is not quite the same as marking the
2430 methods as hidden directly, because it does not affect static variables
2431 local to the function or cause the compiler to deduce that
2432 the function is defined in only one shared object.
2433
2434 You may mark a method as having a visibility explicitly to negate the
2435 effect of the switch for that method.  For example, if you do want to
2436 compare pointers to a particular inline method, you might mark it as
2437 having default visibility.  Marking the enclosing class with explicit
2438 visibility has no effect.
2439
2440 Explicitly instantiated inline methods are unaffected by this option
2441 as their linkage might otherwise cross a shared library boundary.
2442 @xref{Template Instantiation}.
2443
2444 @item -fvisibility-ms-compat
2445 @opindex fvisibility-ms-compat
2446 This flag attempts to use visibility settings to make GCC's C++
2447 linkage model compatible with that of Microsoft Visual Studio.
2448
2449 The flag makes these changes to GCC's linkage model:
2450
2451 @enumerate
2452 @item
2453 It sets the default visibility to @code{hidden}, like
2454 @option{-fvisibility=hidden}.
2455
2456 @item
2457 Types, but not their members, are not hidden by default.
2458
2459 @item
2460 The One Definition Rule is relaxed for types without explicit
2461 visibility specifications that are defined in more than one
2462 shared object: those declarations are permitted if they are
2463 permitted when this option is not used.
2464 @end enumerate
2465
2466 In new code it is better to use @option{-fvisibility=hidden} and
2467 export those classes that are intended to be externally visible.
2468 Unfortunately it is possible for code to rely, perhaps accidentally,
2469 on the Visual Studio behavior.
2470
2471 Among the consequences of these changes are that static data members
2472 of the same type with the same name but defined in different shared
2473 objects are different, so changing one does not change the other;
2474 and that pointers to function members defined in different shared
2475 objects may not compare equal.  When this flag is given, it is a
2476 violation of the ODR to define types with the same name differently.
2477
2478 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2479 @opindex fvtable-verify
2480 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2481 feature that verifies at run time, for every virtual call, that
2482 the vtable pointer through which the call is made is valid for the type of
2483 the object, and has not been corrupted or overwritten.  If an invalid vtable
2484 pointer is detected at run time, an error is reported and execution of the
2485 program is immediately halted.
2486
2487 This option causes run-time data structures to be built at program startup,
2488 which are used for verifying the vtable pointers.  
2489 The options @samp{std} and @samp{preinit}
2490 control the timing of when these data structures are built.  In both cases the
2491 data structures are built before execution reaches @code{main}.  Using
2492 @option{-fvtable-verify=std} causes the data structures to be built after
2493 shared libraries have been loaded and initialized.
2494 @option{-fvtable-verify=preinit} causes them to be built before shared
2495 libraries have been loaded and initialized.
2496
2497 If this option appears multiple times in the command line with different
2498 values specified, @samp{none} takes highest priority over both @samp{std} and
2499 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2500
2501 @item -fvtv-debug
2502 @opindex fvtv-debug
2503 When used in conjunction with @option{-fvtable-verify=std} or 
2504 @option{-fvtable-verify=preinit}, causes debug versions of the 
2505 runtime functions for the vtable verification feature to be called.  
2506 This flag also causes the compiler to log information about which 
2507 vtable pointers it finds for each class.
2508 This information is written to a file named @file{vtv_set_ptr_data.log} 
2509 in the directory named by the environment variable @env{VTV_LOGS_DIR} 
2510 if that is defined or the current working directory otherwise.
2511
2512 Note:  This feature @emph{appends} data to the log file. If you want a fresh log
2513 file, be sure to delete any existing one.
2514
2515 @item -fvtv-counts
2516 @opindex fvtv-counts
2517 This is a debugging flag.  When used in conjunction with
2518 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2519 causes the compiler to keep track of the total number of virtual calls
2520 it encounters and the number of verifications it inserts.  It also
2521 counts the number of calls to certain run-time library functions
2522 that it inserts and logs this information for each compilation unit.
2523 The compiler writes this information to a file named
2524 @file{vtv_count_data.log} in the directory named by the environment
2525 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2526 directory otherwise.  It also counts the size of the vtable pointer sets
2527 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2528 in the same directory.
2529
2530 Note:  This feature @emph{appends} data to the log files.  To get fresh log
2531 files, be sure to delete any existing ones.
2532
2533 @item -fno-weak
2534 @opindex fno-weak
2535 Do not use weak symbol support, even if it is provided by the linker.
2536 By default, G++ uses weak symbols if they are available.  This
2537 option exists only for testing, and should not be used by end-users;
2538 it results in inferior code and has no benefits.  This option may
2539 be removed in a future release of G++.
2540
2541 @item -nostdinc++
2542 @opindex nostdinc++
2543 Do not search for header files in the standard directories specific to
2544 C++, but do still search the other standard directories.  (This option
2545 is used when building the C++ library.)
2546 @end table
2547
2548 In addition, these optimization, warning, and code generation options
2549 have meanings only for C++ programs:
2550
2551 @table @gcctabopt
2552 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2553 @opindex Wabi
2554 @opindex Wno-abi
2555 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2556 G++ to warn when it generates code that is probably not compatible with the
2557 vendor-neutral C++ ABI@.  Since G++ now defaults to
2558 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2559 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2560 or an older compatibility version is selected (with
2561 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2562
2563 Although an effort has been made to warn about
2564 all such cases, there are probably some cases that are not warned about,
2565 even though G++ is generating incompatible code.  There may also be
2566 cases where warnings are emitted even though the code that is generated
2567 is compatible.
2568
2569 You should rewrite your code to avoid these warnings if you are
2570 concerned about the fact that code generated by G++ may not be binary
2571 compatible with code generated by other compilers.
2572
2573 @option{-Wabi} can also be used with an explicit version number to
2574 warn about compatibility with a particular @option{-fabi-version}
2575 level, e.g. @option{-Wabi=2} to warn about changes relative to
2576 @option{-fabi-version=2}.  Specifying a version number also sets
2577 @option{-fabi-compat-version=@var{n}}.
2578
2579 The known incompatibilities in @option{-fabi-version=2} (which was the
2580 default from GCC 3.4 to 4.9) include:
2581
2582 @itemize @bullet
2583
2584 @item
2585 A template with a non-type template parameter of reference type was
2586 mangled incorrectly:
2587 @smallexample
2588 extern int N;
2589 template <int &> struct S @{@};
2590 void n (S<N>) @{2@}
2591 @end smallexample
2592
2593 This was fixed in @option{-fabi-version=3}.
2594
2595 @item
2596 SIMD vector types declared using @code{__attribute ((vector_size))} were
2597 mangled in a non-standard way that does not allow for overloading of
2598 functions taking vectors of different sizes.
2599
2600 The mangling was changed in @option{-fabi-version=4}.
2601
2602 @item
2603 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2604 qualifiers, and @code{decltype} of a plain declaration was folded away.
2605
2606 These mangling issues were fixed in @option{-fabi-version=5}.
2607
2608 @item
2609 Scoped enumerators passed as arguments to a variadic function are
2610 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2611 On most targets this does not actually affect the parameter passing
2612 ABI, as there is no way to pass an argument smaller than @code{int}.
2613
2614 Also, the ABI changed the mangling of template argument packs,
2615 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2616 a class scope function used as a template argument.
2617
2618 These issues were corrected in @option{-fabi-version=6}.
2619
2620 @item
2621 Lambdas in default argument scope were mangled incorrectly, and the
2622 ABI changed the mangling of @code{nullptr_t}.
2623
2624 These issues were corrected in @option{-fabi-version=7}.
2625
2626 @item
2627 When mangling a function type with function-cv-qualifiers, the
2628 un-qualified function type was incorrectly treated as a substitution
2629 candidate.
2630
2631 This was fixed in @option{-fabi-version=8}.
2632 @end itemize
2633
2634 It also warns about psABI-related changes.  The known psABI changes at this
2635 point include:
2636
2637 @itemize @bullet
2638
2639 @item
2640 For SysV/x86-64, unions with @code{long double} members are 
2641 passed in memory as specified in psABI.  For example:
2642
2643 @smallexample
2644 union U @{
2645   long double ld;
2646   int i;
2647 @};
2648 @end smallexample
2649
2650 @noindent
2651 @code{union U} is always passed in memory.
2652
2653 @end itemize
2654
2655 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2656 @opindex Wabi-tag
2657 @opindex -Wabi-tag
2658 Warn when a type with an ABI tag is used in a context that does not
2659 have that ABI tag.  See @ref{C++ Attributes} for more information
2660 about ABI tags.
2661
2662 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2663 @opindex Wctor-dtor-privacy
2664 @opindex Wno-ctor-dtor-privacy
2665 Warn when a class seems unusable because all the constructors or
2666 destructors in that class are private, and it has neither friends nor
2667 public static member functions.  Also warn if there are no non-private
2668 methods, and there's at least one private member function that isn't
2669 a constructor or destructor.
2670
2671 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2672 @opindex Wdelete-non-virtual-dtor
2673 @opindex Wno-delete-non-virtual-dtor
2674 Warn when @code{delete} is used to destroy an instance of a class that
2675 has virtual functions and non-virtual destructor. It is unsafe to delete
2676 an instance of a derived class through a pointer to a base class if the
2677 base class does not have a virtual destructor.  This warning is enabled
2678 by @option{-Wall}.
2679
2680 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2681 @opindex Wliteral-suffix
2682 @opindex Wno-literal-suffix
2683 Warn when a string or character literal is followed by a ud-suffix which does
2684 not begin with an underscore.  As a conforming extension, GCC treats such
2685 suffixes as separate preprocessing tokens in order to maintain backwards
2686 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2687 For example:
2688
2689 @smallexample
2690 #define __STDC_FORMAT_MACROS
2691 #include <inttypes.h>
2692 #include <stdio.h>
2693
2694 int main() @{
2695   int64_t i64 = 123;
2696   printf("My int64: %" PRId64"\n", i64);
2697 @}
2698 @end smallexample
2699
2700 In this case, @code{PRId64} is treated as a separate preprocessing token.
2701
2702 This warning is enabled by default.
2703
2704 @item -Wlto-type-mismatch
2705 @opindex Wlto-type-mismatch
2706 @opindex Wno-lto-type-mistmach
2707
2708 During the link-time optimization warn about type mismatches in between
2709 global declarations from different compilation units.
2710 Requires @option{-flto} to be enabled.  Enabled by default.
2711
2712 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2713 @opindex Wnarrowing
2714 @opindex Wno-narrowing
2715 Warn when a narrowing conversion prohibited by C++11 occurs within
2716 @samp{@{ @}}, e.g.
2717
2718 @smallexample
2719 int i = @{ 2.2 @}; // error: narrowing from double to int
2720 @end smallexample
2721
2722 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2723
2724 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2725 required by the standard.  Note that this does not affect the meaning
2726 of well-formed code; narrowing conversions are still considered
2727 ill-formed in SFINAE context.
2728
2729 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2730 @opindex Wnoexcept
2731 @opindex Wno-noexcept
2732 Warn when a noexcept-expression evaluates to false because of a call
2733 to a function that does not have a non-throwing exception
2734 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2735 the compiler to never throw an exception.
2736
2737 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2738 @opindex Wnon-virtual-dtor
2739 @opindex Wno-non-virtual-dtor
2740 Warn when a class has virtual functions and an accessible non-virtual
2741 destructor itself or in an accessible polymorphic base class, in which
2742 case it is possible but unsafe to delete an instance of a derived
2743 class through a pointer to the class itself or base class.  This
2744 warning is automatically enabled if @option{-Weffc++} is specified.
2745
2746 @item -Wreorder @r{(C++ and Objective-C++ only)}
2747 @opindex Wreorder
2748 @opindex Wno-reorder
2749 @cindex reordering, warning
2750 @cindex warning for reordering of member initializers
2751 Warn when the order of member initializers given in the code does not
2752 match the order in which they must be executed.  For instance:
2753
2754 @smallexample
2755 struct A @{
2756   int i;
2757   int j;
2758   A(): j (0), i (1) @{ @}
2759 @};
2760 @end smallexample
2761
2762 @noindent
2763 The compiler rearranges the member initializers for @code{i}
2764 and @code{j} to match the declaration order of the members, emitting
2765 a warning to that effect.  This warning is enabled by @option{-Wall}.
2766
2767 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2768 @opindex fext-numeric-literals
2769 @opindex fno-ext-numeric-literals
2770 Accept imaginary, fixed-point, or machine-defined
2771 literal number suffixes as GNU extensions.
2772 When this option is turned off these suffixes are treated
2773 as C++11 user-defined literal numeric suffixes.
2774 This is on by default for all pre-C++11 dialects and all GNU dialects:
2775 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2776 @option{-std=gnu++14}.
2777 This option is off by default
2778 for ISO C++11 onwards (@option{-std=c++11}, ...).
2779 @end table
2780
2781 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2782
2783 @table @gcctabopt
2784 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2785 @opindex Weffc++
2786 @opindex Wno-effc++
2787 Warn about violations of the following style guidelines from Scott Meyers'
2788 @cite{Effective C++} series of books:
2789
2790 @itemize @bullet
2791 @item
2792 Define a copy constructor and an assignment operator for classes
2793 with dynamically-allocated memory.
2794
2795 @item
2796 Prefer initialization to assignment in constructors.
2797
2798 @item
2799 Have @code{operator=} return a reference to @code{*this}.
2800
2801 @item
2802 Don't try to return a reference when you must return an object.
2803
2804 @item
2805 Distinguish between prefix and postfix forms of increment and
2806 decrement operators.
2807
2808 @item
2809 Never overload @code{&&}, @code{||}, or @code{,}.
2810
2811 @end itemize
2812
2813 This option also enables @option{-Wnon-virtual-dtor}, which is also
2814 one of the effective C++ recommendations.  However, the check is
2815 extended to warn about the lack of virtual destructor in accessible
2816 non-polymorphic bases classes too.
2817
2818 When selecting this option, be aware that the standard library
2819 headers do not obey all of these guidelines; use @samp{grep -v}
2820 to filter out those warnings.
2821
2822 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2823 @opindex Wstrict-null-sentinel
2824 @opindex Wno-strict-null-sentinel
2825 Warn about the use of an uncasted @code{NULL} as sentinel.  When
2826 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2827 to @code{__null}.  Although it is a null pointer constant rather than a
2828 null pointer, it is guaranteed to be of the same size as a pointer.
2829 But this use is not portable across different compilers.
2830
2831 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2832 @opindex Wno-non-template-friend
2833 @opindex Wnon-template-friend
2834 Disable warnings when non-templatized friend functions are declared
2835 within a template.  Since the advent of explicit template specification
2836 support in G++, if the name of the friend is an unqualified-id (i.e.,
2837 @samp{friend foo(int)}), the C++ language specification demands that the
2838 friend declare or define an ordinary, nontemplate function.  (Section
2839 14.5.3).  Before G++ implemented explicit specification, unqualified-ids
2840 could be interpreted as a particular specialization of a templatized
2841 function.  Because this non-conforming behavior is no longer the default
2842 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2843 check existing code for potential trouble spots and is on by default.
2844 This new compiler behavior can be turned off with
2845 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2846 but disables the helpful warning.
2847
2848 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2849 @opindex Wold-style-cast
2850 @opindex Wno-old-style-cast
2851 Warn if an old-style (C-style) cast to a non-void type is used within
2852 a C++ program.  The new-style casts (@code{dynamic_cast},
2853 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2854 less vulnerable to unintended effects and much easier to search for.
2855
2856 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2857 @opindex Woverloaded-virtual
2858 @opindex Wno-overloaded-virtual
2859 @cindex overloaded virtual function, warning
2860 @cindex warning for overloaded virtual function
2861 Warn when a function declaration hides virtual functions from a
2862 base class.  For example, in:
2863
2864 @smallexample
2865 struct A @{
2866   virtual void f();
2867 @};
2868
2869 struct B: public A @{
2870   void f(int);
2871 @};
2872 @end smallexample
2873
2874 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2875 like:
2876
2877 @smallexample
2878 B* b;
2879 b->f();
2880 @end smallexample
2881
2882 @noindent
2883 fails to compile.
2884
2885 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2886 @opindex Wno-pmf-conversions
2887 @opindex Wpmf-conversions
2888 Disable the diagnostic for converting a bound pointer to member function
2889 to a plain pointer.
2890
2891 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2892 @opindex Wsign-promo
2893 @opindex Wno-sign-promo
2894 Warn when overload resolution chooses a promotion from unsigned or
2895 enumerated type to a signed type, over a conversion to an unsigned type of
2896 the same size.  Previous versions of G++ tried to preserve
2897 unsignedness, but the standard mandates the current behavior.
2898
2899 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2900 @opindex Wterminate
2901 @opindex Wno-terminate
2902 Disable the warning about a throw-expression that will immediately
2903 result in a call to @code{terminate}.
2904 @end table
2905
2906 @node Objective-C and Objective-C++ Dialect Options
2907 @section Options Controlling Objective-C and Objective-C++ Dialects
2908
2909 @cindex compiler options, Objective-C and Objective-C++
2910 @cindex Objective-C and Objective-C++ options, command-line
2911 @cindex options, Objective-C and Objective-C++
2912 (NOTE: This manual does not describe the Objective-C and Objective-C++
2913 languages themselves.  @xref{Standards,,Language Standards
2914 Supported by GCC}, for references.)
2915
2916 This section describes the command-line options that are only meaningful
2917 for Objective-C and Objective-C++ programs.  You can also use most of
2918 the language-independent GNU compiler options.
2919 For example, you might compile a file @file{some_class.m} like this:
2920
2921 @smallexample
2922 gcc -g -fgnu-runtime -O -c some_class.m
2923 @end smallexample
2924
2925 @noindent
2926 In this example, @option{-fgnu-runtime} is an option meant only for
2927 Objective-C and Objective-C++ programs; you can use the other options with
2928 any language supported by GCC@.
2929
2930 Note that since Objective-C is an extension of the C language, Objective-C
2931 compilations may also use options specific to the C front-end (e.g.,
2932 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
2933 C++-specific options (e.g., @option{-Wabi}).
2934
2935 Here is a list of options that are @emph{only} for compiling Objective-C
2936 and Objective-C++ programs:
2937
2938 @table @gcctabopt
2939 @item -fconstant-string-class=@var{class-name}
2940 @opindex fconstant-string-class
2941 Use @var{class-name} as the name of the class to instantiate for each
2942 literal string specified with the syntax @code{@@"@dots{}"}.  The default
2943 class name is @code{NXConstantString} if the GNU runtime is being used, and
2944 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
2945 @option{-fconstant-cfstrings} option, if also present, overrides the
2946 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2947 to be laid out as constant CoreFoundation strings.
2948
2949 @item -fgnu-runtime
2950 @opindex fgnu-runtime
2951 Generate object code compatible with the standard GNU Objective-C
2952 runtime.  This is the default for most types of systems.
2953
2954 @item -fnext-runtime
2955 @opindex fnext-runtime
2956 Generate output compatible with the NeXT runtime.  This is the default
2957 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
2958 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2959 used.
2960
2961 @item -fno-nil-receivers
2962 @opindex fno-nil-receivers
2963 Assume that all Objective-C message dispatches (@code{[receiver
2964 message:arg]}) in this translation unit ensure that the receiver is
2965 not @code{nil}.  This allows for more efficient entry points in the
2966 runtime to be used.  This option is only available in conjunction with
2967 the NeXT runtime and ABI version 0 or 1.
2968
2969 @item -fobjc-abi-version=@var{n}
2970 @opindex fobjc-abi-version
2971 Use version @var{n} of the Objective-C ABI for the selected runtime.
2972 This option is currently supported only for the NeXT runtime.  In that
2973 case, Version 0 is the traditional (32-bit) ABI without support for
2974 properties and other Objective-C 2.0 additions.  Version 1 is the
2975 traditional (32-bit) ABI with support for properties and other
2976 Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
2977 nothing is specified, the default is Version 0 on 32-bit target
2978 machines, and Version 2 on 64-bit target machines.
2979
2980 @item -fobjc-call-cxx-cdtors
2981 @opindex fobjc-call-cxx-cdtors
2982 For each Objective-C class, check if any of its instance variables is a
2983 C++ object with a non-trivial default constructor.  If so, synthesize a
2984 special @code{- (id) .cxx_construct} instance method which runs
2985 non-trivial default constructors on any such instance variables, in order,
2986 and then return @code{self}.  Similarly, check if any instance variable
2987 is a C++ object with a non-trivial destructor, and if so, synthesize a
2988 special @code{- (void) .cxx_destruct} method which runs
2989 all such default destructors, in reverse order.
2990
2991 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2992 methods thusly generated only operate on instance variables
2993 declared in the current Objective-C class, and not those inherited
2994 from superclasses.  It is the responsibility of the Objective-C
2995 runtime to invoke all such methods in an object's inheritance
2996 hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
2997 by the runtime immediately after a new object instance is allocated;
2998 the @code{- (void) .cxx_destruct} methods are invoked immediately
2999 before the runtime deallocates an object instance.
3000
3001 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3002 support for invoking the @code{- (id) .cxx_construct} and
3003 @code{- (void) .cxx_destruct} methods.
3004
3005 @item -fobjc-direct-dispatch
3006 @opindex fobjc-direct-dispatch
3007 Allow fast jumps to the message dispatcher.  On Darwin this is
3008 accomplished via the comm page.
3009
3010 @item -fobjc-exceptions
3011 @opindex fobjc-exceptions
3012 Enable syntactic support for structured exception handling in
3013 Objective-C, similar to what is offered by C++ and Java.  This option
3014 is required to use the Objective-C keywords @code{@@try},
3015 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3016 @code{@@synchronized}.  This option is available with both the GNU
3017 runtime and the NeXT runtime (but not available in conjunction with
3018 the NeXT runtime on Mac OS X 10.2 and earlier).
3019
3020 @item -fobjc-gc
3021 @opindex fobjc-gc
3022 Enable garbage collection (GC) in Objective-C and Objective-C++
3023 programs.  This option is only available with the NeXT runtime; the
3024 GNU runtime has a different garbage collection implementation that
3025 does not require special compiler flags.
3026
3027 @item -fobjc-nilcheck
3028 @opindex fobjc-nilcheck
3029 For the NeXT runtime with version 2 of the ABI, check for a nil
3030 receiver in method invocations before doing the actual method call.
3031 This is the default and can be disabled using
3032 @option{-fno-objc-nilcheck}.  Class methods and super calls are never
3033 checked for nil in this way no matter what this flag is set to.
3034 Currently this flag does nothing when the GNU runtime, or an older
3035 version of the NeXT runtime ABI, is used.
3036
3037 @item -fobjc-std=objc1
3038 @opindex fobjc-std
3039 Conform to the language syntax of Objective-C 1.0, the language
3040 recognized by GCC 4.0.  This only affects the Objective-C additions to
3041 the C/C++ language; it does not affect conformance to C/C++ standards,
3042 which is controlled by the separate C/C++ dialect option flags.  When
3043 this option is used with the Objective-C or Objective-C++ compiler,
3044 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3045 This is useful if you need to make sure that your Objective-C code can
3046 be compiled with older versions of GCC@.
3047
3048 @item -freplace-objc-classes
3049 @opindex freplace-objc-classes
3050 Emit a special marker instructing @command{ld(1)} not to statically link in
3051 the resulting object file, and allow @command{dyld(1)} to load it in at
3052 run time instead.  This is used in conjunction with the Fix-and-Continue
3053 debugging mode, where the object file in question may be recompiled and
3054 dynamically reloaded in the course of program execution, without the need
3055 to restart the program itself.  Currently, Fix-and-Continue functionality
3056 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3057 and later.
3058
3059 @item -fzero-link
3060 @opindex fzero-link
3061 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3062 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3063 compile time) with static class references that get initialized at load time,
3064 which improves run-time performance.  Specifying the @option{-fzero-link} flag
3065 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3066 to be retained.  This is useful in Zero-Link debugging mode, since it allows
3067 for individual class implementations to be modified during program execution.
3068 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3069 regardless of command-line options.
3070
3071 @item -fno-local-ivars
3072 @opindex fno-local-ivars
3073 @opindex flocal-ivars
3074 By default instance variables in Objective-C can be accessed as if
3075 they were local variables from within the methods of the class they're
3076 declared in.  This can lead to shadowing between instance variables
3077 and other variables declared either locally inside a class method or
3078 globally with the same name.  Specifying the @option{-fno-local-ivars}
3079 flag disables this behavior thus avoiding variable shadowing issues.
3080
3081 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3082 @opindex fivar-visibility
3083 Set the default instance variable visibility to the specified option
3084 so that instance variables declared outside the scope of any access
3085 modifier directives default to the specified visibility.
3086
3087 @item -gen-decls
3088 @opindex gen-decls
3089 Dump interface declarations for all classes seen in the source file to a
3090 file named @file{@var{sourcename}.decl}.
3091
3092 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3093 @opindex Wassign-intercept
3094 @opindex Wno-assign-intercept
3095 Warn whenever an Objective-C assignment is being intercepted by the
3096 garbage collector.
3097
3098 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3099 @opindex Wno-protocol
3100 @opindex Wprotocol
3101 If a class is declared to implement a protocol, a warning is issued for
3102 every method in the protocol that is not implemented by the class.  The
3103 default behavior is to issue a warning for every method not explicitly
3104 implemented in the class, even if a method implementation is inherited
3105 from the superclass.  If you use the @option{-Wno-protocol} option, then
3106 methods inherited from the superclass are considered to be implemented,
3107 and no warning is issued for them.
3108
3109 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3110 @opindex Wselector
3111 @opindex Wno-selector
3112 Warn if multiple methods of different types for the same selector are
3113 found during compilation.  The check is performed on the list of methods
3114 in the final stage of compilation.  Additionally, a check is performed
3115 for each selector appearing in a @code{@@selector(@dots{})}
3116 expression, and a corresponding method for that selector has been found
3117 during compilation.  Because these checks scan the method table only at
3118 the end of compilation, these warnings are not produced if the final
3119 stage of compilation is not reached, for example because an error is
3120 found during compilation, or because the @option{-fsyntax-only} option is
3121 being used.
3122
3123 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3124 @opindex Wstrict-selector-match
3125 @opindex Wno-strict-selector-match
3126 Warn if multiple methods with differing argument and/or return types are
3127 found for a given selector when attempting to send a message using this
3128 selector to a receiver of type @code{id} or @code{Class}.  When this flag
3129 is off (which is the default behavior), the compiler omits such warnings
3130 if any differences found are confined to types that share the same size
3131 and alignment.
3132
3133 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3134 @opindex Wundeclared-selector
3135 @opindex Wno-undeclared-selector
3136 Warn if a @code{@@selector(@dots{})} expression referring to an
3137 undeclared selector is found.  A selector is considered undeclared if no
3138 method with that name has been declared before the
3139 @code{@@selector(@dots{})} expression, either explicitly in an
3140 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3141 an @code{@@implementation} section.  This option always performs its
3142 checks as soon as a @code{@@selector(@dots{})} expression is found,
3143 while @option{-Wselector} only performs its checks in the final stage of
3144 compilation.  This also enforces the coding style convention
3145 that methods and selectors must be declared before being used.
3146
3147 @item -print-objc-runtime-info
3148 @opindex print-objc-runtime-info
3149 Generate C header describing the largest structure that is passed by
3150 value, if any.
3151
3152 @end table
3153
3154 @node Language Independent Options
3155 @section Options to Control Diagnostic Messages Formatting
3156 @cindex options to control diagnostics formatting
3157 @cindex diagnostic messages
3158 @cindex message formatting
3159
3160 Traditionally, diagnostic messages have been formatted irrespective of
3161 the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3162 options described below
3163 to control the formatting algorithm for diagnostic messages, 
3164 e.g.@: how many characters per line, how often source location
3165 information should be reported.  Note that some language front ends may not
3166 honor these options.
3167
3168 @table @gcctabopt
3169 @item -fmessage-length=@var{n}
3170 @opindex fmessage-length
3171 Try to format error messages so that they fit on lines of about
3172 @var{n} characters.  If @var{n} is zero, then no line-wrapping is
3173 done; each error message appears on a single line.  This is the
3174 default for all front ends.
3175
3176 @item -fdiagnostics-show-location=once
3177 @opindex fdiagnostics-show-location
3178 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3179 reporter to emit source location information @emph{once}; that is, in
3180 case the message is too long to fit on a single physical line and has to
3181 be wrapped, the source location won't be emitted (as prefix) again,
3182 over and over, in subsequent continuation lines.  This is the default
3183 behavior.
3184
3185 @item -fdiagnostics-show-location=every-line
3186 Only meaningful in line-wrapping mode.  Instructs the diagnostic
3187 messages reporter to emit the same source location information (as
3188 prefix) for physical lines that result from the process of breaking
3189 a message which is too long to fit on a single line.
3190
3191 @item -fdiagnostics-color[=@var{WHEN}]
3192 @itemx -fno-diagnostics-color
3193 @opindex fdiagnostics-color
3194 @cindex highlight, color, colour
3195 @vindex GCC_COLORS @r{environment variable}
3196 Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3197 or @samp{auto}.  The default depends on how the compiler has been configured,
3198 it can be any of the above @var{WHEN} options or also @samp{never}
3199 if @env{GCC_COLORS} environment variable isn't present in the environment,
3200 and @samp{auto} otherwise.
3201 @samp{auto} means to use color only when the standard error is a terminal.
3202 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3203 aliases for @option{-fdiagnostics-color=always} and
3204 @option{-fdiagnostics-color=never}, respectively.
3205
3206 The colors are defined by the environment variable @env{GCC_COLORS}.
3207 Its value is a colon-separated list of capabilities and Select Graphic
3208 Rendition (SGR) substrings. SGR commands are interpreted by the
3209 terminal or terminal emulator.  (See the section in the documentation
3210 of your text terminal for permitted values and their meanings as
3211 character attributes.)  These substring values are integers in decimal
3212 representation and can be concatenated with semicolons.
3213 Common values to concatenate include
3214 @samp{1} for bold,
3215 @samp{4} for underline,
3216 @samp{5} for blink,
3217 @samp{7} for inverse,
3218 @samp{39} for default foreground color,
3219 @samp{30} to @samp{37} for foreground colors,
3220 @samp{90} to @samp{97} for 16-color mode foreground colors,
3221 @samp{38;5;0} to @samp{38;5;255}
3222 for 88-color and 256-color modes foreground colors,
3223 @samp{49} for default background color,
3224 @samp{40} to @samp{47} for background colors,
3225 @samp{100} to @samp{107} for 16-color mode background colors,
3226 and @samp{48;5;0} to @samp{48;5;255}
3227 for 88-color and 256-color modes background colors.
3228
3229 The default @env{GCC_COLORS} is
3230 @smallexample
3231 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3232 @end smallexample
3233 @noindent
3234 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3235 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3236 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3237 string disables colors.
3238 Supported capabilities are as follows.
3239
3240 @table @code
3241 @item error=
3242 @vindex error GCC_COLORS @r{capability}
3243 SGR substring for error: markers.
3244
3245 @item warning=
3246 @vindex warning GCC_COLORS @r{capability}
3247 SGR substring for warning: markers.
3248
3249 @item note=
3250 @vindex note GCC_COLORS @r{capability}
3251 SGR substring for note: markers.
3252
3253 @item caret=
3254 @vindex caret GCC_COLORS @r{capability}
3255 SGR substring for caret line.
3256
3257 @item locus=
3258 @vindex locus GCC_COLORS @r{capability}
3259 SGR substring for location information, @samp{file:line} or
3260 @samp{file:line:column} etc.
3261
3262 @item quote=
3263 @vindex quote GCC_COLORS @r{capability}
3264 SGR substring for information printed within quotes.
3265 @end table
3266
3267 @item -fno-diagnostics-show-option
3268 @opindex fno-diagnostics-show-option
3269 @opindex fdiagnostics-show-option
3270 By default, each diagnostic emitted includes text indicating the
3271 command-line option that directly controls the diagnostic (if such an
3272 option is known to the diagnostic machinery).  Specifying the
3273 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3274
3275 @item -fno-diagnostics-show-caret
3276 @opindex fno-diagnostics-show-caret
3277 @opindex fdiagnostics-show-caret
3278 By default, each diagnostic emitted includes the original source line
3279 and a caret '^' indicating the column.  This option suppresses this
3280 information.  The source line is truncated to @var{n} characters, if
3281 the @option{-fmessage-length=n} option is given.  When the output is done
3282 to the terminal, the width is limited to the width given by the
3283 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3284
3285 @end table
3286
3287 @node Warning Options
3288 @section Options to Request or Suppress Warnings
3289 @cindex options to control warnings
3290 @cindex warning messages
3291 @cindex messages, warning
3292 @cindex suppressing warnings
3293
3294 Warnings are diagnostic messages that report constructions that
3295 are not inherently erroneous but that are risky or suggest there
3296 may have been an error.
3297
3298 The following language-independent options do not enable specific
3299 warnings but control the kinds of diagnostics produced by GCC@.
3300
3301 @table @gcctabopt
3302 @cindex syntax checking
3303 @item -fsyntax-only
3304 @opindex fsyntax-only
3305 Check the code for syntax errors, but don't do anything beyond that.
3306
3307 @item -fmax-errors=@var{n}
3308 @opindex fmax-errors
3309 Limits the maximum number of error messages to @var{n}, at which point
3310 GCC bails out rather than attempting to continue processing the source
3311 code.  If @var{n} is 0 (the default), there is no limit on the number
3312 of error messages produced.  If @option{-Wfatal-errors} is also
3313 specified, then @option{-Wfatal-errors} takes precedence over this
3314 option.
3315
3316 @item -w
3317 @opindex w
3318 Inhibit all warning messages.
3319
3320 @item -Werror
3321 @opindex Werror
3322 @opindex Wno-error
3323 Make all warnings into errors.
3324
3325 @item -Werror=
3326 @opindex Werror=
3327 @opindex Wno-error=
3328 Make the specified warning into an error.  The specifier for a warning
3329 is appended; for example @option{-Werror=switch} turns the warnings
3330 controlled by @option{-Wswitch} into errors.  This switch takes a
3331 negative form, to be used to negate @option{-Werror} for specific
3332 warnings; for example @option{-Wno-error=switch} makes
3333 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3334 is in effect.
3335
3336 The warning message for each controllable warning includes the
3337 option that controls the warning.  That option can then be used with
3338 @option{-Werror=} and @option{-Wno-error=} as described above.
3339 (Printing of the option in the warning message can be disabled using the
3340 @option{-fno-diagnostics-show-option} flag.)
3341
3342 Note that specifying @option{-Werror=}@var{foo} automatically implies
3343 @option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3344 imply anything.
3345
3346 @item -Wfatal-errors
3347 @opindex Wfatal-errors
3348 @opindex Wno-fatal-errors
3349 This option causes the compiler to abort compilation on the first error
3350 occurred rather than trying to keep going and printing further error
3351 messages.
3352
3353 @end table
3354
3355 You can request many specific warnings with options beginning with
3356 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3357 implicit declarations.  Each of these specific warning options also
3358 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3359 example, @option{-Wno-implicit}.  This manual lists only one of the
3360 two forms, whichever is not the default.  For further
3361 language-specific options also refer to @ref{C++ Dialect Options} and
3362 @ref{Objective-C and Objective-C++ Dialect Options}.
3363
3364 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3365 options, such as @option{-Wunused}, which may turn on further options,
3366 such as @option{-Wunused-value}. The combined effect of positive and
3367 negative forms is that more specific options have priority over less
3368 specific ones, independently of their position in the command-line. For
3369 options of the same specificity, the last one takes effect. Options
3370 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3371 as if they appeared at the end of the command-line.
3372
3373 When an unrecognized warning option is requested (e.g.,
3374 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3375 that the option is not recognized.  However, if the @option{-Wno-} form
3376 is used, the behavior is slightly different: no diagnostic is
3377 produced for @option{-Wno-unknown-warning} unless other diagnostics
3378 are being produced.  This allows the use of new @option{-Wno-} options
3379 with old compilers, but if something goes wrong, the compiler
3380 warns that an unrecognized option is present.
3381
3382 @table @gcctabopt
3383 @item -Wpedantic
3384 @itemx -pedantic
3385 @opindex pedantic
3386 @opindex Wpedantic
3387 Issue all the warnings demanded by strict ISO C and ISO C++;
3388 reject all programs that use forbidden extensions, and some other
3389 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3390 version of the ISO C standard specified by any @option{-std} option used.
3391
3392 Valid ISO C and ISO C++ programs should compile properly with or without
3393 this option (though a rare few require @option{-ansi} or a
3394 @option{-std} option specifying the required version of ISO C)@.  However,
3395 without this option, certain GNU extensions and traditional C and C++
3396 features are supported as well.  With this option, they are rejected.
3397
3398 @option{-Wpedantic} does not cause warning messages for use of the
3399 alternate keywords whose names begin and end with @samp{__}.  Pedantic
3400 warnings are also disabled in the expression that follows
3401 @code{__extension__}.  However, only system header files should use
3402 these escape routes; application programs should avoid them.
3403 @xref{Alternate Keywords}.
3404
3405 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3406 C conformance.  They soon find that it does not do quite what they want:
3407 it finds some non-ISO practices, but not all---only those for which
3408 ISO C @emph{requires} a diagnostic, and some others for which
3409 diagnostics have been added.
3410
3411 A feature to report any failure to conform to ISO C might be useful in
3412 some instances, but would require considerable additional work and would
3413 be quite different from @option{-Wpedantic}.  We don't have plans to
3414 support such a feature in the near future.
3415
3416 Where the standard specified with @option{-std} represents a GNU
3417 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3418 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3419 extended dialect is based.  Warnings from @option{-Wpedantic} are given
3420 where they are required by the base standard.  (It does not make sense
3421 for such warnings to be given only for features not in the specified GNU
3422 C dialect, since by definition the GNU dialects of C include all
3423 features the compiler supports with the given option, and there would be
3424 nothing to warn about.)
3425
3426 @item -pedantic-errors
3427 @opindex pedantic-errors
3428 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3429 requires a diagnostic, in some cases where there is undefined behavior
3430 at compile-time and in some other cases that do not prevent compilation
3431 of programs that are valid according to the standard. This is not
3432 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3433 by this option and not enabled by the latter and vice versa.
3434
3435 @item -Wall
3436 @opindex Wall
3437 @opindex Wno-all
3438 This enables all the warnings about constructions that some users
3439 consider questionable, and that are easy to avoid (or modify to
3440 prevent the warning), even in conjunction with macros.  This also
3441 enables some language-specific warnings described in @ref{C++ Dialect
3442 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3443
3444 @option{-Wall} turns on the following warning flags:
3445
3446 @gccoptlist{-Waddress   @gol
3447 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3448 -Wc++11-compat  -Wc++14-compat@gol
3449 -Wchar-subscripts  @gol
3450 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3451 -Wimplicit-int @r{(C and Objective-C only)} @gol
3452 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3453 -Wcomment  @gol
3454 -Wformat   @gol
3455 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3456 -Wmaybe-uninitialized @gol
3457 -Wmissing-braces @r{(only for C/ObjC)} @gol
3458 -Wnonnull  @gol
3459 -Wopenmp-simd @gol
3460 -Wparentheses  @gol
3461 -Wpointer-sign  @gol
3462 -Wreorder   @gol
3463 -Wreturn-type  @gol
3464 -Wsequence-point  @gol
3465 -Wsign-compare @r{(only in C++)}  @gol
3466 -Wstrict-aliasing  @gol
3467 -Wstrict-overflow=1  @gol
3468 -Wswitch  @gol
3469 -Wtrigraphs  @gol
3470 -Wuninitialized  @gol
3471 -Wunknown-pragmas  @gol
3472 -Wunused-function  @gol
3473 -Wunused-label     @gol
3474 -Wunused-value     @gol
3475 -Wunused-variable  @gol
3476 -Wvolatile-register-var @gol
3477 }
3478
3479 Note that some warning flags are not implied by @option{-Wall}.  Some of
3480 them warn about constructions that users generally do not consider
3481 questionable, but which occasionally you might wish to check for;
3482 others warn about constructions that are necessary or hard to avoid in
3483 some cases, and there is no simple way to modify the code to suppress
3484 the warning. Some of them are enabled by @option{-Wextra} but many of
3485 them must be enabled individually.
3486
3487 @item -Wextra
3488 @opindex W
3489 @opindex Wextra
3490 @opindex Wno-extra
3491 This enables some extra warning flags that are not enabled by
3492 @option{-Wall}. (This option used to be called @option{-W}.  The older
3493 name is still supported, but the newer name is more descriptive.)
3494
3495 @gccoptlist{-Wclobbered  @gol
3496 -Wempty-body  @gol
3497 -Wignored-qualifiers @gol
3498 -Wmissing-field-initializers  @gol
3499 -Wmissing-parameter-type @r{(C only)}  @gol
3500 -Wold-style-declaration @r{(C only)}  @gol
3501 -Woverride-init  @gol
3502 -Wsign-compare  @gol
3503 -Wtype-limits  @gol
3504 -Wuninitialized  @gol
3505 -Wshift-negative-value  @gol
3506 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3507 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
3508 }
3509
3510 The option @option{-Wextra} also prints warning messages for the
3511 following cases:
3512
3513 @itemize @bullet
3514
3515 @item
3516 A pointer is compared against integer zero with @code{<}, @code{<=},
3517 @code{>}, or @code{>=}.
3518
3519 @item
3520 (C++ only) An enumerator and a non-enumerator both appear in a
3521 conditional expression.
3522
3523 @item
3524 (C++ only) Ambiguous virtual bases.
3525
3526 @item
3527 (C++ only) Subscripting an array that has been declared @code{register}.
3528
3529 @item
3530 (C++ only) Taking the address of a variable that has been declared
3531 @code{register}.
3532
3533 @item
3534 (C++ only) A base class is not initialized in a derived class's copy
3535 constructor.
3536
3537 @end itemize
3538
3539 @item -Wchar-subscripts
3540 @opindex Wchar-subscripts
3541 @opindex Wno-char-subscripts
3542 Warn if an array subscript has type @code{char}.  This is a common cause
3543 of error, as programmers often forget that this type is signed on some
3544 machines.
3545 This warning is enabled by @option{-Wall}.
3546
3547 @item -Wcomment
3548 @opindex Wcomment
3549 @opindex Wno-comment
3550 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3551 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3552 This warning is enabled by @option{-Wall}.
3553
3554 @item -Wno-coverage-mismatch
3555 @opindex Wno-coverage-mismatch
3556 Warn if feedback profiles do not match when using the
3557 @option{-fprofile-use} option.
3558 If a source file is changed between compiling with @option{-fprofile-gen} and
3559 with @option{-fprofile-use}, the files with the profile feedback can fail
3560 to match the source file and GCC cannot use the profile feedback
3561 information.  By default, this warning is enabled and is treated as an
3562 error.  @option{-Wno-coverage-mismatch} can be used to disable the
3563 warning or @option{-Wno-error=coverage-mismatch} can be used to
3564 disable the error.  Disabling the error for this warning can result in
3565 poorly optimized code and is useful only in the
3566 case of very minor changes such as bug fixes to an existing code-base.
3567 Completely disabling the warning is not recommended.
3568
3569 @item -Wno-cpp
3570 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3571
3572 Suppress warning messages emitted by @code{#warning} directives.
3573
3574 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3575 @opindex Wdouble-promotion
3576 @opindex Wno-double-promotion
3577 Give a warning when a value of type @code{float} is implicitly
3578 promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
3579 floating-point unit implement @code{float} in hardware, but emulate
3580 @code{double} in software.  On such a machine, doing computations
3581 using @code{double} values is much more expensive because of the
3582 overhead required for software emulation.
3583
3584 It is easy to accidentally do computations with @code{double} because
3585 floating-point literals are implicitly of type @code{double}.  For
3586 example, in:
3587 @smallexample
3588 @group
3589 float area(float radius)
3590 @{
3591    return 3.14159 * radius * radius;
3592 @}
3593 @end group
3594 @end smallexample
3595 the compiler performs the entire computation with @code{double}
3596 because the floating-point literal is a @code{double}.
3597
3598 @item -Wformat
3599 @itemx -Wformat=@var{n}
3600 @opindex Wformat
3601 @opindex Wno-format
3602 @opindex ffreestanding
3603 @opindex fno-builtin
3604 @opindex Wformat=
3605 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3606 the arguments supplied have types appropriate to the format string
3607 specified, and that the conversions specified in the format string make
3608 sense.  This includes standard functions, and others specified by format
3609 attributes (@pxref{Function Attributes}), in the @code{printf},
3610 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3611 not in the C standard) families (or other target-specific families).
3612 Which functions are checked without format attributes having been
3613 specified depends on the standard version selected, and such checks of
3614 functions without the attribute specified are disabled by
3615 @option{-ffreestanding} or @option{-fno-builtin}.
3616
3617 The formats are checked against the format features supported by GNU
3618 libc version 2.2.  These include all ISO C90 and C99 features, as well
3619 as features from the Single Unix Specification and some BSD and GNU
3620 extensions.  Other library implementations may not support all these
3621 features; GCC does not support warning about features that go beyond a
3622 particular library's limitations.  However, if @option{-Wpedantic} is used
3623 with @option{-Wformat}, warnings are given about format features not
3624 in the selected standard version (but not for @code{strfmon} formats,
3625 since those are not in any version of the C standard).  @xref{C Dialect
3626 Options,,Options Controlling C Dialect}.
3627
3628 @table @gcctabopt
3629 @item -Wformat=1
3630 @itemx -Wformat
3631 @opindex Wformat
3632 @opindex Wformat=1
3633 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3634 @option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
3635 @option{-Wformat} also checks for null format arguments for several
3636 functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
3637 aspects of this level of format checking can be disabled by the
3638 options: @option{-Wno-format-contains-nul},
3639 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3640 @option{-Wformat} is enabled by @option{-Wall}.
3641
3642 @item -Wno-format-contains-nul
3643 @opindex Wno-format-contains-nul
3644 @opindex Wformat-contains-nul
3645 If @option{-Wformat} is specified, do not warn about format strings that
3646 contain NUL bytes.
3647
3648 @item -Wno-format-extra-args
3649 @opindex Wno-format-extra-args
3650 @opindex Wformat-extra-args
3651 If @option{-Wformat} is specified, do not warn about excess arguments to a
3652 @code{printf} or @code{scanf} format function.  The C standard specifies
3653 that such arguments are ignored.
3654
3655 Where the unused arguments lie between used arguments that are
3656 specified with @samp{$} operand number specifications, normally
3657 warnings are still given, since the implementation could not know what
3658 type to pass to @code{va_arg} to skip the unused arguments.  However,
3659 in the case of @code{scanf} formats, this option suppresses the
3660 warning if the unused arguments are all pointers, since the Single
3661 Unix Specification says that such unused arguments are allowed.
3662
3663 @item -Wno-format-zero-length
3664 @opindex Wno-format-zero-length
3665 @opindex Wformat-zero-length
3666 If @option{-Wformat} is specified, do not warn about zero-length formats.
3667 The C standard specifies that zero-length formats are allowed.
3668
3669
3670 @item -Wformat=2
3671 @opindex Wformat=2
3672 Enable @option{-Wformat} plus additional format checks.  Currently
3673 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3674 -Wformat-y2k}.
3675
3676 @item -Wformat-nonliteral
3677 @opindex Wformat-nonliteral
3678 @opindex Wno-format-nonliteral
3679 If @option{-Wformat} is specified, also warn if the format string is not a
3680 string literal and so cannot be checked, unless the format function
3681 takes its format arguments as a @code{va_list}.
3682
3683 @item -Wformat-security
3684 @opindex Wformat-security
3685 @opindex Wno-format-security
3686 If @option{-Wformat} is specified, also warn about uses of format
3687 functions that represent possible security problems.  At present, this
3688 warns about calls to @code{printf} and @code{scanf} functions where the
3689 format string is not a string literal and there are no format arguments,
3690 as in @code{printf (foo);}.  This may be a security hole if the format
3691 string came from untrusted input and contains @samp{%n}.  (This is
3692 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3693 in future warnings may be added to @option{-Wformat-security} that are not
3694 included in @option{-Wformat-nonliteral}.)
3695
3696 @item -Wformat-signedness
3697 @opindex Wformat-signedness
3698 @opindex Wno-format-signedness
3699 If @option{-Wformat} is specified, also warn if the format string
3700 requires an unsigned argument and the argument is signed and vice versa.
3701
3702 @item -Wformat-y2k
3703 @opindex Wformat-y2k
3704 @opindex Wno-format-y2k
3705 If @option{-Wformat} is specified, also warn about @code{strftime}
3706 formats that may yield only a two-digit year.
3707 @end table
3708
3709 @item -Wnonnull
3710 @opindex Wnonnull
3711 @opindex Wno-nonnull
3712 Warn about passing a null pointer for arguments marked as
3713 requiring a non-null value by the @code{nonnull} function attribute.
3714
3715 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
3716 can be disabled with the @option{-Wno-nonnull} option.
3717
3718 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3719 @opindex Winit-self
3720 @opindex Wno-init-self
3721 Warn about uninitialized variables that are initialized with themselves.
3722 Note this option can only be used with the @option{-Wuninitialized} option.
3723
3724 For example, GCC warns about @code{i} being uninitialized in the
3725 following snippet only when @option{-Winit-self} has been specified:
3726 @smallexample
3727 @group
3728 int f()
3729 @{
3730   int i = i;
3731   return i;
3732 @}
3733 @end group
3734 @end smallexample
3735
3736 This warning is enabled by @option{-Wall} in C++.
3737
3738 @item -Wimplicit-int @r{(C and Objective-C only)}
3739 @opindex Wimplicit-int
3740 @opindex Wno-implicit-int
3741 Warn when a declaration does not specify a type.
3742 This warning is enabled by @option{-Wall}.
3743
3744 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3745 @opindex Wimplicit-function-declaration
3746 @opindex Wno-implicit-function-declaration
3747 Give a warning whenever a function is used before being declared. In
3748 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3749 enabled by default and it is made into an error by
3750 @option{-pedantic-errors}. This warning is also enabled by
3751 @option{-Wall}.
3752
3753 @item -Wimplicit @r{(C and Objective-C only)}
3754 @opindex Wimplicit
3755 @opindex Wno-implicit
3756 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3757 This warning is enabled by @option{-Wall}.
3758
3759 @item -Wignored-qualifiers @r{(C and C++ only)}
3760 @opindex Wignored-qualifiers
3761 @opindex Wno-ignored-qualifiers
3762 Warn if the return type of a function has a type qualifier
3763 such as @code{const}.  For ISO C such a type qualifier has no effect,
3764 since the value returned by a function is not an lvalue.
3765 For C++, the warning is only emitted for scalar types or @code{void}.
3766 ISO C prohibits qualified @code{void} return types on function
3767 definitions, so such return types always receive a warning
3768 even without this option.
3769
3770 This warning is also enabled by @option{-Wextra}.
3771
3772 @item -Wmain
3773 @opindex Wmain
3774 @opindex Wno-main
3775 Warn if the type of @code{main} is suspicious.  @code{main} should be
3776 a function with external linkage, returning int, taking either zero
3777 arguments, two, or three arguments of appropriate types.  This warning
3778 is enabled by default in C++ and is enabled by either @option{-Wall}
3779 or @option{-Wpedantic}.
3780
3781 @item -Wmisleading-indentation @r{(C and C++ only)}
3782 @opindex Wmisleading-indentation
3783 @opindex Wno-misleading-indentation
3784 Warn when the indentation of the code does not reflect the block structure.
3785 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3786 @code{for} clauses with a guarded statement that does not use braces,
3787 followed by an unguarded statement with the same indentation.
3788
3789 This warning is disabled by default.
3790
3791 In the following example, the call to ``bar'' is misleadingly indented as
3792 if it were guarded by the ``if'' conditional.
3793
3794 @smallexample
3795   if (some_condition ())
3796     foo ();
3797     bar ();  /* Gotcha: this is not guarded by the "if".  */
3798 @end smallexample
3799
3800 In the case of mixed tabs and spaces, the warning uses the
3801 @option{-ftabstop=} option to determine if the statements line up
3802 (defaulting to 8).
3803
3804 The warning is not issued for code involving multiline preprocessor logic
3805 such as the following example.
3806
3807 @smallexample
3808   if (flagA)
3809     foo (0);
3810 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3811   if (flagB)
3812 #endif
3813     foo (1);
3814 @end smallexample
3815
3816 The warning is not issued after a @code{#line} directive, since this
3817 typically indicates autogenerated code, and no assumptions can be made
3818 about the layout of the file that the directive references.
3819
3820 @item -Wmissing-braces
3821 @opindex Wmissing-braces
3822 @opindex Wno-missing-braces
3823 Warn if an aggregate or union initializer is not fully bracketed.  In
3824 the following example, the initializer for @code{a} is not fully
3825 bracketed, but that for @code{b} is fully bracketed.  This warning is
3826 enabled by @option{-Wall} in C.
3827
3828 @smallexample
3829 int a[2][2] = @{ 0, 1, 2, 3 @};
3830 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3831 @end smallexample
3832
3833 This warning is enabled by @option{-Wall}.
3834
3835 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3836 @opindex Wmissing-include-dirs
3837 @opindex Wno-missing-include-dirs
3838 Warn if a user-supplied include directory does not exist.
3839
3840 @item -Wparentheses
3841 @opindex Wparentheses
3842 @opindex Wno-parentheses
3843 Warn if parentheses are omitted in certain contexts, such
3844 as when there is an assignment in a context where a truth value
3845 is expected, or when operators are nested whose precedence people
3846 often get confused about.
3847
3848 Also warn if a comparison like @code{x<=y<=z} appears; this is
3849 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3850 interpretation from that of ordinary mathematical notation.
3851
3852 Also warn about constructions where there may be confusion to which
3853 @code{if} statement an @code{else} branch belongs.  Here is an example of
3854 such a case:
3855
3856 @smallexample
3857 @group
3858 @{
3859   if (a)
3860     if (b)
3861       foo ();
3862   else
3863     bar ();
3864 @}
3865 @end group
3866 @end smallexample
3867
3868 In C/C++, every @code{else} branch belongs to the innermost possible
3869 @code{if} statement, which in this example is @code{if (b)}.  This is
3870 often not what the programmer expected, as illustrated in the above
3871 example by indentation the programmer chose.  When there is the
3872 potential for this confusion, GCC issues a warning when this flag
3873 is specified.  To eliminate the warning, add explicit braces around
3874 the innermost @code{if} statement so there is no way the @code{else}
3875 can belong to the enclosing @code{if}.  The resulting code
3876 looks like this:
3877
3878 @smallexample
3879 @group
3880 @{
3881   if (a)
3882     @{
3883       if (b)
3884         foo ();
3885       else
3886         bar ();
3887     @}
3888 @}
3889 @end group
3890 @end smallexample
3891
3892 Also warn for dangerous uses of the GNU extension to
3893 @code{?:} with omitted middle operand. When the condition
3894 in the @code{?}: operator is a boolean expression, the omitted value is
3895 always 1.  Often programmers expect it to be a value computed
3896 inside the conditional expression instead.
3897
3898 This warning is enabled by @option{-Wall}.
3899
3900 @item -Wsequence-point
3901 @opindex Wsequence-point
3902 @opindex Wno-sequence-point
3903 Warn about code that may have undefined semantics because of violations
3904 of sequence point rules in the C and C++ standards.
3905
3906 The C and C++ standards define the order in which expressions in a C/C++
3907 program are evaluated in terms of @dfn{sequence points}, which represent
3908 a partial ordering between the execution of parts of the program: those
3909 executed before the sequence point, and those executed after it.  These
3910 occur after the evaluation of a full expression (one which is not part
3911 of a larger expression), after the evaluation of the first operand of a
3912 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3913 function is called (but after the evaluation of its arguments and the
3914 expression denoting the called function), and in certain other places.
3915 Other than as expressed by the sequence point rules, the order of
3916 evaluation of subexpressions of an expression is not specified.  All
3917 these rules describe only a partial order rather than a total order,
3918 since, for example, if two functions are called within one expression
3919 with no sequence point between them, the order in which the functions
3920 are called is not specified.  However, the standards committee have
3921 ruled that function calls do not overlap.
3922
3923 It is not specified when between sequence points modifications to the
3924 values of objects take effect.  Programs whose behavior depends on this
3925 have undefined behavior; the C and C++ standards specify that ``Between
3926 the previous and next sequence point an object shall have its stored
3927 value modified at most once by the evaluation of an expression.
3928 Furthermore, the prior value shall be read only to determine the value
3929 to be stored.''.  If a program breaks these rules, the results on any
3930 particular implementation are entirely unpredictable.
3931
3932 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3933 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
3934 diagnosed by this option, and it may give an occasional false positive
3935 result, but in general it has been found fairly effective at detecting
3936 this sort of problem in programs.
3937
3938 The standard is worded confusingly, therefore there is some debate
3939 over the precise meaning of the sequence point rules in subtle cases.
3940 Links to discussions of the problem, including proposed formal
3941 definitions, may be found on the GCC readings page, at
3942 @uref{http://gcc.gnu.org/@/readings.html}.
3943
3944 This warning is enabled by @option{-Wall} for C and C++.
3945
3946 @item -Wno-return-local-addr
3947 @opindex Wno-return-local-addr
3948 @opindex Wreturn-local-addr
3949 Do not warn about returning a pointer (or in C++, a reference) to a
3950 variable that goes out of scope after the function returns.
3951
3952 @item -Wreturn-type
3953 @opindex Wreturn-type
3954 @opindex Wno-return-type
3955 Warn whenever a function is defined with a return type that defaults
3956 to @code{int}.  Also warn about any @code{return} statement with no
3957 return value in a function whose return type is not @code{void}
3958 (falling off the end of the function body is considered returning
3959 without a value), and about a @code{return} statement with an
3960 expression in a function whose return type is @code{void}.
3961
3962 For C++, a function without return type always produces a diagnostic
3963 message, even when @option{-Wno-return-type} is specified.  The only
3964 exceptions are @code{main} and functions defined in system headers.
3965
3966 This warning is enabled by @option{-Wall}.
3967
3968 @item -Wshift-count-negative
3969 @opindex Wshift-count-negative
3970 @opindex Wno-shift-count-negative
3971 Warn if shift count is negative. This warning is enabled by default.
3972
3973 @item -Wshift-count-overflow
3974 @opindex Wshift-count-overflow
3975 @opindex Wno-shift-count-overflow
3976 Warn if shift count >= width of type. This warning is enabled by default.
3977
3978 @item -Wshift-negative-value
3979 @opindex Wshift-negative-value
3980 @opindex Wno-shift-negative-value
3981 Warn if left shifting a negative value.  This warning is enabled by
3982 @option{-Wextra} in C99 and C++11 modes (and newer).
3983
3984 @item -Wswitch
3985 @opindex Wswitch
3986 @opindex Wno-switch
3987 Warn whenever a @code{switch} statement has an index of enumerated type
3988 and lacks a @code{case} for one or more of the named codes of that
3989 enumeration.  (The presence of a @code{default} label prevents this
3990 warning.)  @code{case} labels outside the enumeration range also
3991 provoke warnings when this option is used (even if there is a
3992 @code{default} label).
3993 This warning is enabled by @option{-Wall}.
3994
3995 @item -Wswitch-default
3996 @opindex Wswitch-default
3997 @opindex Wno-switch-default
3998 Warn whenever a @code{switch} statement does not have a @code{default}
3999 case.
4000
4001 @item -Wswitch-enum
4002 @opindex Wswitch-enum
4003 @opindex Wno-switch-enum
4004 Warn whenever a @code{switch} statement has an index of enumerated type
4005 and lacks a @code{case} for one or more of the named codes of that
4006 enumeration.  @code{case} labels outside the enumeration range also
4007 provoke warnings when this option is used.  The only difference
4008 between @option{-Wswitch} and this option is that this option gives a
4009 warning about an omitted enumeration code even if there is a
4010 @code{default} label.
4011
4012 @item -Wswitch-bool
4013 @opindex Wswitch-bool
4014 @opindex Wno-switch-bool
4015 Warn whenever a @code{switch} statement has an index of boolean type
4016 and the case values are outside the range of a boolean type.
4017 It is possible to suppress this warning by casting the controlling
4018 expression to a type other than @code{bool}.  For example:
4019 @smallexample
4020 @group
4021 switch ((int) (a == 4))
4022   @{
4023   @dots{}
4024   @}
4025 @end group
4026 @end smallexample
4027 This warning is enabled by default for C and C++ programs.
4028
4029 @item -Wsync-nand @r{(C and C++ only)}
4030 @opindex Wsync-nand
4031 @opindex Wno-sync-nand
4032 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4033 built-in functions are used.  These functions changed semantics in GCC 4.4.
4034
4035 @item -Wtrigraphs
4036 @opindex Wtrigraphs
4037 @opindex Wno-trigraphs
4038 Warn if any trigraphs are encountered that might change the meaning of
4039 the program (trigraphs within comments are not warned about).
4040 This warning is enabled by @option{-Wall}.
4041
4042 @item -Wunused-but-set-parameter
4043 @opindex Wunused-but-set-parameter
4044 @opindex Wno-unused-but-set-parameter
4045 Warn whenever a function parameter is assigned to, but otherwise unused
4046 (aside from its declaration).
4047
4048 To suppress this warning use the @code{unused} attribute
4049 (@pxref{Variable Attributes}).
4050
4051 This warning is also enabled by @option{-Wunused} together with
4052 @option{-Wextra}.
4053
4054 @item -Wunused-but-set-variable
4055 @opindex Wunused-but-set-variable
4056 @opindex Wno-unused-but-set-variable
4057 Warn whenever a local variable is assigned to, but otherwise unused
4058 (aside from its declaration).
4059 This warning is enabled by @option{-Wall}.
4060
4061 To suppress this warning use the @code{unused} attribute
4062 (@pxref{Variable Attributes}).
4063
4064 This warning is also enabled by @option{-Wunused}, which is enabled
4065 by @option{-Wall}.
4066
4067 @item -Wunused-function
4068 @opindex Wunused-function
4069 @opindex Wno-unused-function
4070 Warn whenever a static function is declared but not defined or a
4071 non-inline static function is unused.
4072 This warning is enabled by @option{-Wall}.
4073
4074 @item -Wunused-label
4075 @opindex Wunused-label
4076 @opindex Wno-unused-label
4077 Warn whenever a label is declared but not used.
4078 This warning is enabled by @option{-Wall}.
4079
4080 To suppress this warning use the @code{unused} attribute
4081 (@pxref{Variable Attributes}).
4082
4083 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4084 @opindex Wunused-local-typedefs
4085 Warn when a typedef locally defined in a function is not used.
4086 This warning is enabled by @option{-Wall}.
4087
4088 @item -Wunused-parameter
4089 @opindex Wunused-parameter
4090 @opindex Wno-unused-parameter
4091 Warn whenever a function parameter is unused aside from its declaration.
4092
4093 To suppress this warning use the @code{unused} attribute
4094 (@pxref{Variable Attributes}).
4095
4096 @item -Wno-unused-result
4097 @opindex Wunused-result
4098 @opindex Wno-unused-result
4099 Do not warn if a caller of a function marked with attribute
4100 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4101 its return value. The default is @option{-Wunused-result}.
4102
4103 @item -Wunused-variable
4104 @opindex Wunused-variable
4105 @opindex Wno-unused-variable
4106 Warn whenever a local variable or non-constant static variable is unused
4107 aside from its declaration.
4108 This warning is enabled by @option{-Wall}.
4109
4110 To suppress this warning use the @code{unused} attribute
4111 (@pxref{Variable Attributes}).
4112
4113 @item -Wunused-value
4114 @opindex Wunused-value
4115 @opindex Wno-unused-value
4116 Warn whenever a statement computes a result that is explicitly not
4117 used. To suppress this warning cast the unused expression to
4118 @code{void}. This includes an expression-statement or the left-hand
4119 side of a comma expression that contains no side effects. For example,
4120 an expression such as @code{x[i,j]} causes a warning, while
4121 @code{x[(void)i,j]} does not.
4122
4123 This warning is enabled by @option{-Wall}.
4124
4125 @item -Wunused
4126 @opindex Wunused
4127 @opindex Wno-unused
4128 All the above @option{-Wunused} options combined.
4129
4130 In order to get a warning about an unused function parameter, you must
4131 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4132 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4133
4134 @item -Wuninitialized
4135 @opindex Wuninitialized
4136 @opindex Wno-uninitialized
4137 Warn if an automatic variable is used without first being initialized
4138 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4139 warn if a non-static reference or non-static @code{const} member
4140 appears in a class without constructors.
4141
4142 If you want to warn about code that uses the uninitialized value of the
4143 variable in its own initializer, use the @option{-Winit-self} option.
4144
4145 These warnings occur for individual uninitialized or clobbered
4146 elements of structure, union or array variables as well as for
4147 variables that are uninitialized or clobbered as a whole.  They do
4148 not occur for variables or elements declared @code{volatile}.  Because
4149 these warnings depend on optimization, the exact variables or elements
4150 for which there are warnings depends on the precise optimization
4151 options and version of GCC used.
4152
4153 Note that there may be no warning about a variable that is used only
4154 to compute a value that itself is never used, because such
4155 computations may be deleted by data flow analysis before the warnings
4156 are printed.
4157
4158 @item -Wmaybe-uninitialized
4159 @opindex Wmaybe-uninitialized
4160 @opindex Wno-maybe-uninitialized
4161 For an automatic variable, if there exists a path from the function
4162 entry to a use of the variable that is initialized, but there exist
4163 some other paths for which the variable is not initialized, the compiler
4164 emits a warning if it cannot prove the uninitialized paths are not
4165 executed at run time. These warnings are made optional because GCC is
4166 not smart enough to see all the reasons why the code might be correct
4167 in spite of appearing to have an error.  Here is one example of how
4168 this can happen:
4169
4170 @smallexample
4171 @group
4172 @{
4173   int x;
4174   switch (y)
4175     @{
4176     case 1: x = 1;
4177       break;
4178     case 2: x = 4;
4179       break;
4180     case 3: x = 5;
4181     @}
4182   foo (x);
4183 @}
4184 @end group
4185 @end smallexample
4186
4187 @noindent
4188 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4189 always initialized, but GCC doesn't know this. To suppress the
4190 warning, you need to provide a default case with assert(0) or
4191 similar code.
4192
4193 @cindex @code{longjmp} warnings
4194 This option also warns when a non-volatile automatic variable might be
4195 changed by a call to @code{longjmp}.  These warnings as well are possible
4196 only in optimizing compilation.
4197
4198 The compiler sees only the calls to @code{setjmp}.  It cannot know
4199 where @code{longjmp} will be called; in fact, a signal handler could
4200 call it at any point in the code.  As a result, you may get a warning
4201 even when there is in fact no problem because @code{longjmp} cannot
4202 in fact be called at the place that would cause a problem.
4203
4204 Some spurious warnings can be avoided if you declare all the functions
4205 you use that never return as @code{noreturn}.  @xref{Function
4206 Attributes}.
4207
4208 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4209
4210 @item -Wunknown-pragmas
4211 @opindex Wunknown-pragmas
4212 @opindex Wno-unknown-pragmas
4213 @cindex warning for unknown pragmas
4214 @cindex unknown pragmas, warning
4215 @cindex pragmas, warning of unknown
4216 Warn when a @code{#pragma} directive is encountered that is not understood by 
4217 GCC@.  If this command-line option is used, warnings are even issued
4218 for unknown pragmas in system header files.  This is not the case if
4219 the warnings are only enabled by the @option{-Wall} command-line option.
4220
4221 @item -Wno-pragmas
4222 @opindex Wno-pragmas
4223 @opindex Wpragmas
4224 Do not warn about misuses of pragmas, such as incorrect parameters,
4225 invalid syntax, or conflicts between pragmas.  See also
4226 @option{-Wunknown-pragmas}.
4227
4228 @item -Wstrict-aliasing
4229 @opindex Wstrict-aliasing
4230 @opindex Wno-strict-aliasing
4231 This option is only active when @option{-fstrict-aliasing} is active.
4232 It warns about code that might break the strict aliasing rules that the
4233 compiler is using for optimization.  The warning does not catch all
4234 cases, but does attempt to catch the more common pitfalls.  It is
4235 included in @option{-Wall}.
4236 It is equivalent to @option{-Wstrict-aliasing=3}
4237
4238 @item -Wstrict-aliasing=n
4239 @opindex Wstrict-aliasing=n
4240 This option is only active when @option{-fstrict-aliasing} is active.
4241 It warns about code that might break the strict aliasing rules that the
4242 compiler is using for optimization.
4243 Higher levels correspond to higher accuracy (fewer false positives).
4244 Higher levels also correspond to more effort, similar to the way @option{-O} 
4245 works.
4246 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4247
4248 Level 1: Most aggressive, quick, least accurate.
4249 Possibly useful when higher levels
4250 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4251 false negatives.  However, it has many false positives.
4252 Warns for all pointer conversions between possibly incompatible types,
4253 even if never dereferenced.  Runs in the front end only.
4254
4255 Level 2: Aggressive, quick, not too precise.
4256 May still have many false positives (not as many as level 1 though),
4257 and few false negatives (but possibly more than level 1).
4258 Unlike level 1, it only warns when an address is taken.  Warns about
4259 incomplete types.  Runs in the front end only.
4260
4261 Level 3 (default for @option{-Wstrict-aliasing}):
4262 Should have very few false positives and few false
4263 negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
4264 Takes care of the common pun+dereference pattern in the front end:
4265 @code{*(int*)&some_float}.
4266 If optimization is enabled, it also runs in the back end, where it deals
4267 with multiple statement cases using flow-sensitive points-to information.
4268 Only warns when the converted pointer is dereferenced.
4269 Does not warn about incomplete types.
4270
4271 @item -Wstrict-overflow
4272 @itemx -Wstrict-overflow=@var{n}
4273 @opindex Wstrict-overflow
4274 @opindex Wno-strict-overflow
4275 This option is only active when @option{-fstrict-overflow} is active.
4276 It warns about cases where the compiler optimizes based on the
4277 assumption that signed overflow does not occur.  Note that it does not
4278 warn about all cases where the code might overflow: it only warns
4279 about cases where the compiler implements some optimization.  Thus
4280 this warning depends on the optimization level.
4281
4282 An optimization that assumes that signed overflow does not occur is
4283 perfectly safe if the values of the variables involved are such that
4284 overflow never does, in fact, occur.  Therefore this warning can
4285 easily give a false positive: a warning about code that is not
4286 actually a problem.  To help focus on important issues, several
4287 warning levels are defined.  No warnings are issued for the use of
4288 undefined signed overflow when estimating how many iterations a loop
4289 requires, in particular when determining whether a loop will be
4290 executed at all.
4291
4292 @table @gcctabopt
4293 @item -Wstrict-overflow=1
4294 Warn about cases that are both questionable and easy to avoid.  For
4295 example,  with @option{-fstrict-overflow}, the compiler simplifies
4296 @code{x + 1 > x} to @code{1}.  This level of
4297 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4298 are not, and must be explicitly requested.
4299
4300 @item -Wstrict-overflow=2
4301 Also warn about other cases where a comparison is simplified to a
4302 constant.  For example: @code{abs (x) >= 0}.  This can only be
4303 simplified when @option{-fstrict-overflow} is in effect, because
4304 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4305 zero.  @option{-Wstrict-overflow} (with no level) is the same as
4306 @option{-Wstrict-overflow=2}.
4307
4308 @item -Wstrict-overflow=3
4309 Also warn about other cases where a comparison is simplified.  For
4310 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4311
4312 @item -Wstrict-overflow=4
4313 Also warn about other simplifications not covered by the above cases.
4314 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4315
4316 @item -Wstrict-overflow=5
4317 Also warn about cases where the compiler reduces the magnitude of a
4318 constant involved in a comparison.  For example: @code{x + 2 > y} is
4319 simplified to @code{x + 1 >= y}.  This is reported only at the
4320 highest warning level because this simplification applies to many
4321 comparisons, so this warning level gives a very large number of
4322 false positives.
4323 @end table
4324
4325 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4326 @opindex Wsuggest-attribute=
4327 @opindex Wno-suggest-attribute=
4328 Warn for cases where adding an attribute may be beneficial. The
4329 attributes currently supported are listed below.
4330
4331 @table @gcctabopt
4332 @item -Wsuggest-attribute=pure
4333 @itemx -Wsuggest-attribute=const
4334 @itemx -Wsuggest-attribute=noreturn
4335 @opindex Wsuggest-attribute=pure
4336 @opindex Wno-suggest-attribute=pure
4337 @opindex Wsuggest-attribute=const
4338 @opindex Wno-suggest-attribute=const
4339 @opindex Wsuggest-attribute=noreturn
4340 @opindex Wno-suggest-attribute=noreturn
4341
4342 Warn about functions that might be candidates for attributes
4343 @code{pure}, @code{const} or @code{noreturn}.  The compiler only warns for
4344 functions visible in other compilation units or (in the case of @code{pure} and
4345 @code{const}) if it cannot prove that the function returns normally. A function
4346 returns normally if it doesn't contain an infinite loop or return abnormally
4347 by throwing, calling @code{abort} or trapping.  This analysis requires option
4348 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4349 higher.  Higher optimization levels improve the accuracy of the analysis.
4350
4351 @item -Wsuggest-attribute=format
4352 @itemx -Wmissing-format-attribute
4353 @opindex Wsuggest-attribute=format
4354 @opindex Wmissing-format-attribute
4355 @opindex Wno-suggest-attribute=format
4356 @opindex Wno-missing-format-attribute
4357 @opindex Wformat
4358 @opindex Wno-format
4359
4360 Warn about function pointers that might be candidates for @code{format}
4361 attributes.  Note these are only possible candidates, not absolute ones.
4362 GCC guesses that function pointers with @code{format} attributes that
4363 are used in assignment, initialization, parameter passing or return
4364 statements should have a corresponding @code{format} attribute in the
4365 resulting type.  I.e.@: the left-hand side of the assignment or
4366 initialization, the type of the parameter variable, or the return type
4367 of the containing function respectively should also have a @code{format}
4368 attribute to avoid the warning.
4369
4370 GCC also warns about function definitions that might be
4371 candidates for @code{format} attributes.  Again, these are only
4372 possible candidates.  GCC guesses that @code{format} attributes
4373 might be appropriate for any function that calls a function like
4374 @code{vprintf} or @code{vscanf}, but this might not always be the
4375 case, and some functions for which @code{format} attributes are
4376 appropriate may not be detected.
4377 @end table
4378
4379 @item -Wsuggest-final-types
4380 @opindex Wno-suggest-final-types
4381 @opindex Wsuggest-final-types
4382 Warn about types with virtual methods where code quality would be improved
4383 if the type were declared with the C++11 @code{final} specifier, 
4384 or, if possible,
4385 declared in an anonymous namespace. This allows GCC to more aggressively
4386 devirtualize the polymorphic calls. This warning is more effective with link
4387 time optimization, where the information about the class hierarchy graph is
4388 more complete.
4389
4390 @item -Wsuggest-final-methods
4391 @opindex Wno-suggest-final-methods
4392 @opindex Wsuggest-final-methods
4393 Warn about virtual methods where code quality would be improved if the method
4394 were declared with the C++11 @code{final} specifier, 
4395 or, if possible, its type were
4396 declared in an anonymous namespace or with the @code{final} specifier.
4397 This warning is
4398 more effective with link time optimization, where the information about the
4399 class hierarchy graph is more complete. It is recommended to first consider
4400 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4401 annotations.
4402
4403 @item -Wsuggest-override
4404 Warn about overriding virtual functions that are not marked with the override
4405 keyword.
4406
4407 @item -Warray-bounds
4408 @itemx -Warray-bounds=@var{n}
4409 @opindex Wno-array-bounds
4410 @opindex Warray-bounds
4411 This option is only active when @option{-ftree-vrp} is active
4412 (default for @option{-O2} and above). It warns about subscripts to arrays
4413 that are always out of bounds. This warning is enabled by @option{-Wall}.
4414
4415 @table @gcctabopt
4416 @item -Warray-bounds=1
4417 This is the warning level of @option{-Warray-bounds} and is enabled
4418 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4419
4420 @item -Warray-bounds=2
4421 This warning level also warns about out of bounds access for
4422 arrays at the end of a struct and for arrays accessed through
4423 pointers. This warning level may give a larger number of
4424 false positives and is deactivated by default.
4425 @end table
4426
4427 @item -Wbool-compare
4428 @opindex Wno-bool-compare
4429 @opindex Wbool-compare
4430 Warn about boolean expression compared with an integer value different from
4431 @code{true}/@code{false}.  For instance, the following comparison is
4432 always false:
4433 @smallexample
4434 int n = 5;
4435 @dots{}
4436 if ((n > 1) == 2) @{ @dots{} @}
4437 @end smallexample
4438 This warning is enabled by @option{-Wall}.
4439
4440 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4441 @opindex Wno-discarded-qualifiers
4442 @opindex Wdiscarded-qualifiers
4443 Do not warn if type qualifiers on pointers are being discarded.
4444 Typically, the compiler warns if a @code{const char *} variable is
4445 passed to a function that takes a @code{char *} parameter.  This option
4446 can be used to suppress such a warning.
4447
4448 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4449 @opindex Wno-discarded-array-qualifiers
4450 @opindex Wdiscarded-array-qualifiers
4451 Do not warn if type qualifiers on arrays which are pointer targets
4452 are being discarded. Typically, the compiler warns if a
4453 @code{const int (*)[]} variable is passed to a function that
4454 takes a @code{int (*)[]} parameter.  This option can be used to
4455 suppress such a warning.
4456
4457 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4458 @opindex Wno-incompatible-pointer-types
4459 @opindex Wincompatible-pointer-types
4460 Do not warn when there is a conversion between pointers that have incompatible
4461 types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
4462 which warns for pointer argument passing or assignment with different
4463 signedness.
4464
4465 @item -Wno-int-conversion @r{(C and Objective-C only)}
4466 @opindex Wno-int-conversion
4467 @opindex Wint-conversion
4468 Do not warn about incompatible integer to pointer and pointer to integer
4469 conversions.  This warning is about implicit conversions; for explicit
4470 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4471 @option{-Wno-pointer-to-int-cast} may be used.
4472
4473 @item -Wno-div-by-zero
4474 @opindex Wno-div-by-zero
4475 @opindex Wdiv-by-zero
4476 Do not warn about compile-time integer division by zero.  Floating-point
4477 division by zero is not warned about, as it can be a legitimate way of
4478 obtaining infinities and NaNs.
4479
4480 @item -Wsystem-headers
4481 @opindex Wsystem-headers
4482 @opindex Wno-system-headers
4483 @cindex warnings from system headers
4484 @cindex system headers, warnings from
4485 Print warning messages for constructs found in system header files.
4486 Warnings from system headers are normally suppressed, on the assumption
4487 that they usually do not indicate real problems and would only make the
4488 compiler output harder to read.  Using this command-line option tells
4489 GCC to emit warnings from system headers as if they occurred in user
4490 code.  However, note that using @option{-Wall} in conjunction with this
4491 option does @emph{not} warn about unknown pragmas in system
4492 headers---for that, @option{-Wunknown-pragmas} must also be used.
4493
4494 @item -Wtrampolines
4495 @opindex Wtrampolines
4496 @opindex Wno-trampolines
4497 Warn about trampolines generated for pointers to nested functions.
4498 A trampoline is a small piece of data or code that is created at run
4499 time on the stack when the address of a nested function is taken, and is
4500 used to call the nested function indirectly.  For some targets, it is
4501 made up of data only and thus requires no special treatment.  But, for
4502 most targets, it is made up of code and thus requires the stack to be
4503 made executable in order for the program to work properly.
4504
4505 @item -Wfloat-equal
4506 @opindex Wfloat-equal
4507 @opindex Wno-float-equal
4508 Warn if floating-point values are used in equality comparisons.
4509
4510 The idea behind this is that sometimes it is convenient (for the
4511 programmer) to consider floating-point values as approximations to
4512 infinitely precise real numbers.  If you are doing this, then you need
4513 to compute (by analyzing the code, or in some other way) the maximum or
4514 likely maximum error that the computation introduces, and allow for it
4515 when performing comparisons (and when producing output, but that's a
4516 different problem).  In particular, instead of testing for equality, you
4517 should check to see whether the two values have ranges that overlap; and
4518 this is done with the relational operators, so equality comparisons are
4519 probably mistaken.
4520
4521 @item -Wtraditional @r{(C and Objective-C only)}
4522 @opindex Wtraditional
4523 @opindex Wno-traditional
4524 Warn about certain constructs that behave differently in traditional and
4525 ISO C@.  Also warn about ISO C constructs that have no traditional C
4526 equivalent, and/or problematic constructs that should be avoided.
4527
4528 @itemize @bullet
4529 @item
4530 Macro parameters that appear within string literals in the macro body.
4531 In traditional C macro replacement takes place within string literals,
4532 but in ISO C it does not.
4533
4534 @item
4535 In traditional C, some preprocessor directives did not exist.
4536 Traditional preprocessors only considered a line to be a directive
4537 if the @samp{#} appeared in column 1 on the line.  Therefore
4538 @option{-Wtraditional} warns about directives that traditional C
4539 understands but ignores because the @samp{#} does not appear as the
4540 first character on the line.  It also suggests you hide directives like
4541 @code{#pragma} not understood by traditional C by indenting them.  Some
4542 traditional implementations do not recognize @code{#elif}, so this option
4543 suggests avoiding it altogether.
4544
4545 @item
4546 A function-like macro that appears without arguments.
4547
4548 @item
4549 The unary plus operator.
4550
4551 @item
4552 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4553 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
4554 constants.)  Note, these suffixes appear in macros defined in the system
4555 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4556 Use of these macros in user code might normally lead to spurious
4557 warnings, however GCC's integrated preprocessor has enough context to
4558 avoid warning in these cases.
4559
4560 @item
4561 A function declared external in one block and then used after the end of
4562 the block.
4563
4564 @item
4565 A @code{switch} statement has an operand of type @code{long}.
4566
4567 @item
4568 A non-@code{static} function declaration follows a @code{static} one.
4569 This construct is not accepted by some traditional C compilers.
4570
4571 @item
4572 The ISO type of an integer constant has a different width or
4573 signedness from its traditional type.  This warning is only issued if
4574 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
4575 typically represent bit patterns, are not warned about.
4576
4577 @item
4578 Usage of ISO string concatenation is detected.
4579
4580 @item
4581 Initialization of automatic aggregates.
4582
4583 @item
4584 Identifier conflicts with labels.  Traditional C lacks a separate
4585 namespace for labels.
4586
4587 @item
4588 Initialization of unions.  If the initializer is zero, the warning is
4589 omitted.  This is done under the assumption that the zero initializer in
4590 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4591 initializer warnings and relies on default initialization to zero in the
4592 traditional C case.
4593
4594 @item
4595 Conversions by prototypes between fixed/floating-point values and vice
4596 versa.  The absence of these prototypes when compiling with traditional
4597 C causes serious problems.  This is a subset of the possible
4598 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4599
4600 @item
4601 Use of ISO C style function definitions.  This warning intentionally is
4602 @emph{not} issued for prototype declarations or variadic functions
4603 because these ISO C features appear in your code when using
4604 libiberty's traditional C compatibility macros, @code{PARAMS} and
4605 @code{VPARAMS}.  This warning is also bypassed for nested functions
4606 because that feature is already a GCC extension and thus not relevant to
4607 traditional C compatibility.
4608 @end itemize
4609
4610 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4611 @opindex Wtraditional-conversion
4612 @opindex Wno-traditional-conversion
4613 Warn if a prototype causes a type conversion that is different from what
4614 would happen to the same argument in the absence of a prototype.  This
4615 includes conversions of fixed point to floating and vice versa, and
4616 conversions changing the width or signedness of a fixed-point argument
4617 except when the same as the default promotion.
4618
4619 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4620 @opindex Wdeclaration-after-statement
4621 @opindex Wno-declaration-after-statement
4622 Warn when a declaration is found after a statement in a block.  This
4623 construct, known from C++, was introduced with ISO C99 and is by default
4624 allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
4625
4626 @item -Wundef
4627 @opindex Wundef
4628 @opindex Wno-undef
4629 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4630
4631 @item -Wno-endif-labels
4632 @opindex Wno-endif-labels
4633 @opindex Wendif-labels
4634 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4635
4636 @item -Wshadow
4637 @opindex Wshadow
4638 @opindex Wno-shadow
4639 Warn whenever a local variable or type declaration shadows another
4640 variable, parameter, type, class member (in C++), or instance variable
4641 (in Objective-C) or whenever a built-in function is shadowed. Note
4642 that in C++, the compiler warns if a local variable shadows an
4643 explicit typedef, but not if it shadows a struct/class/enum.
4644
4645 @item -Wno-shadow-ivar @r{(Objective-C only)}
4646 @opindex Wno-shadow-ivar
4647 @opindex Wshadow-ivar
4648 Do not warn whenever a local variable shadows an instance variable in an
4649 Objective-C method.
4650
4651 @item -Wlarger-than=@var{len}
4652 @opindex Wlarger-than=@var{len}
4653 @opindex Wlarger-than-@var{len}
4654 Warn whenever an object of larger than @var{len} bytes is defined.
4655
4656 @item -Wframe-larger-than=@var{len}
4657 @opindex Wframe-larger-than
4658 Warn if the size of a function frame is larger than @var{len} bytes.
4659 The computation done to determine the stack frame size is approximate
4660 and not conservative.
4661 The actual requirements may be somewhat greater than @var{len}
4662 even if you do not get a warning.  In addition, any space allocated
4663 via @code{alloca}, variable-length arrays, or related constructs
4664 is not included by the compiler when determining
4665 whether or not to issue a warning.
4666
4667 @item -Wno-free-nonheap-object
4668 @opindex Wno-free-nonheap-object
4669 @opindex Wfree-nonheap-object
4670 Do not warn when attempting to free an object that was not allocated
4671 on the heap.
4672
4673 @item -Wstack-usage=@var{len}
4674 @opindex Wstack-usage
4675 Warn if the stack usage of a function might be larger than @var{len} bytes.
4676 The computation done to determine the stack usage is conservative.
4677 Any space allocated via @code{alloca}, variable-length arrays, or related
4678 constructs is included by the compiler when determining whether or not to
4679 issue a warning.
4680
4681 The message is in keeping with the output of @option{-fstack-usage}.
4682
4683 @itemize
4684 @item
4685 If the stack usage is fully static but exceeds the specified amount, it's:
4686
4687 @smallexample
4688   warning: stack usage is 1120 bytes
4689 @end smallexample
4690 @item
4691 If the stack usage is (partly) dynamic but bounded, it's:
4692
4693 @smallexample
4694   warning: stack usage might be 1648 bytes
4695 @end smallexample
4696 @item
4697 If the stack usage is (partly) dynamic and not bounded, it's:
4698
4699 @smallexample
4700   warning: stack usage might be unbounded
4701 @end smallexample
4702 @end itemize
4703
4704 @item -Wunsafe-loop-optimizations
4705 @opindex Wunsafe-loop-optimizations
4706 @opindex Wno-unsafe-loop-optimizations
4707 Warn if the loop cannot be optimized because the compiler cannot
4708 assume anything on the bounds of the loop indices.  With
4709 @option{-funsafe-loop-optimizations} warn if the compiler makes
4710 such assumptions.
4711
4712 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4713 @opindex Wno-pedantic-ms-format
4714 @opindex Wpedantic-ms-format
4715 When used in combination with @option{-Wformat}
4716 and @option{-pedantic} without GNU extensions, this option
4717 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4718 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4719 which depend on the MS runtime.
4720
4721 @item -Wpointer-arith
4722 @opindex Wpointer-arith
4723 @opindex Wno-pointer-arith
4724 Warn about anything that depends on the ``size of'' a function type or
4725 of @code{void}.  GNU C assigns these types a size of 1, for
4726 convenience in calculations with @code{void *} pointers and pointers
4727 to functions.  In C++, warn also when an arithmetic operation involves
4728 @code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
4729
4730 @item -Wtype-limits
4731 @opindex Wtype-limits
4732 @opindex Wno-type-limits
4733 Warn if a comparison is always true or always false due to the limited
4734 range of the data type, but do not warn for constant expressions.  For
4735 example, warn if an unsigned variable is compared against zero with
4736 @code{<} or @code{>=}.  This warning is also enabled by
4737 @option{-Wextra}.
4738
4739 @item -Wbad-function-cast @r{(C and Objective-C only)}
4740 @opindex Wbad-function-cast
4741 @opindex Wno-bad-function-cast
4742 Warn when a function call is cast to a non-matching type.
4743 For example, warn if a call to a function returning an integer type 
4744 is cast to a pointer type.
4745
4746 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4747 @opindex Wc90-c99-compat
4748 @opindex Wno-c90-c99-compat
4749 Warn about features not present in ISO C90, but present in ISO C99.
4750 For instance, warn about use of variable length arrays, @code{long long}
4751 type, @code{bool} type, compound literals, designated initializers, and so
4752 on.  This option is independent of the standards mode.  Warnings are disabled
4753 in the expression that follows @code{__extension__}.
4754
4755 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4756 @opindex Wc99-c11-compat
4757 @opindex Wno-c99-c11-compat
4758 Warn about features not present in ISO C99, but present in ISO C11.
4759 For instance, warn about use of anonymous structures and unions,
4760 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4761 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4762 and so on.  This option is independent of the standards mode.  Warnings are
4763 disabled in the expression that follows @code{__extension__}.
4764
4765 @item -Wc++-compat @r{(C and Objective-C only)}
4766 @opindex Wc++-compat
4767 Warn about ISO C constructs that are outside of the common subset of
4768 ISO C and ISO C++, e.g.@: request for implicit conversion from
4769 @code{void *} to a pointer to non-@code{void} type.
4770
4771 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4772 @opindex Wc++11-compat
4773 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4774 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4775 in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
4776 enabled by @option{-Wall}.
4777
4778 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4779 @opindex Wc++14-compat
4780 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4781 and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
4782
4783 @item -Wcast-qual
4784 @opindex Wcast-qual
4785 @opindex Wno-cast-qual
4786 Warn whenever a pointer is cast so as to remove a type qualifier from
4787 the target type.  For example, warn if a @code{const char *} is cast
4788 to an ordinary @code{char *}.
4789
4790 Also warn when making a cast that introduces a type qualifier in an
4791 unsafe way.  For example, casting @code{char **} to @code{const char **}
4792 is unsafe, as in this example:
4793
4794 @smallexample
4795   /* p is char ** value.  */
4796   const char **q = (const char **) p;
4797   /* Assignment of readonly string to const char * is OK.  */
4798   *q = "string";
4799   /* Now char** pointer points to read-only memory.  */
4800   **p = 'b';
4801 @end smallexample
4802
4803 @item -Wcast-align
4804 @opindex Wcast-align
4805 @opindex Wno-cast-align
4806 Warn whenever a pointer is cast such that the required alignment of the
4807 target is increased.  For example, warn if a @code{char *} is cast to
4808 an @code{int *} on machines where integers can only be accessed at
4809 two- or four-byte boundaries.
4810
4811 @item -Wwrite-strings
4812 @opindex Wwrite-strings
4813 @opindex Wno-write-strings
4814 When compiling C, give string constants the type @code{const
4815 char[@var{length}]} so that copying the address of one into a
4816 non-@code{const} @code{char *} pointer produces a warning.  These
4817 warnings help you find at compile time code that can try to write
4818 into a string constant, but only if you have been very careful about
4819 using @code{const} in declarations and prototypes.  Otherwise, it is
4820 just a nuisance. This is why we did not make @option{-Wall} request
4821 these warnings.
4822
4823 When compiling C++, warn about the deprecated conversion from string
4824 literals to @code{char *}.  This warning is enabled by default for C++
4825 programs.
4826
4827 @item -Wclobbered
4828 @opindex Wclobbered
4829 @opindex Wno-clobbered
4830 Warn for variables that might be changed by @code{longjmp} or
4831 @code{vfork}.  This warning is also enabled by @option{-Wextra}.
4832
4833 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4834 @opindex Wconditionally-supported
4835 @opindex Wno-conditionally-supported
4836 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4837
4838 @item -Wconversion
4839 @opindex Wconversion
4840 @opindex Wno-conversion
4841 Warn for implicit conversions that may alter a value. This includes
4842 conversions between real and integer, like @code{abs (x)} when
4843 @code{x} is @code{double}; conversions between signed and unsigned,
4844 like @code{unsigned ui = -1}; and conversions to smaller types, like
4845 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4846 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4847 changed by the conversion like in @code{abs (2.0)}.  Warnings about
4848 conversions between signed and unsigned integers can be disabled by
4849 using @option{-Wno-sign-conversion}.
4850
4851 For C++, also warn for confusing overload resolution for user-defined
4852 conversions; and conversions that never use a type conversion
4853 operator: conversions to @code{void}, the same type, a base class or a
4854 reference to them. Warnings about conversions between signed and
4855 unsigned integers are disabled by default in C++ unless
4856 @option{-Wsign-conversion} is explicitly enabled.
4857
4858 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4859 @opindex Wconversion-null
4860 @opindex Wno-conversion-null
4861 Do not warn for conversions between @code{NULL} and non-pointer
4862 types. @option{-Wconversion-null} is enabled by default.
4863
4864 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4865 @opindex Wzero-as-null-pointer-constant
4866 @opindex Wno-zero-as-null-pointer-constant
4867 Warn when a literal '0' is used as null pointer constant.  This can
4868 be useful to facilitate the conversion to @code{nullptr} in C++11.
4869
4870 @item -Wdate-time
4871 @opindex Wdate-time
4872 @opindex Wno-date-time
4873 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4874 are encountered as they might prevent bit-wise-identical reproducible
4875 compilations.
4876
4877 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4878 @opindex Wdelete-incomplete
4879 @opindex Wno-delete-incomplete
4880 Warn when deleting a pointer to incomplete type, which may cause
4881 undefined behavior at runtime.  This warning is enabled by default.
4882
4883 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4884 @opindex Wuseless-cast
4885 @opindex Wno-useless-cast
4886 Warn when an expression is casted to its own type.
4887
4888 @item -Wempty-body
4889 @opindex Wempty-body
4890 @opindex Wno-empty-body
4891 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4892 while} statement.  This warning is also enabled by @option{-Wextra}.
4893
4894 @item -Wenum-compare
4895 @opindex Wenum-compare
4896 @opindex Wno-enum-compare
4897 Warn about a comparison between values of different enumerated types.
4898 In C++ enumeral mismatches in conditional expressions are also
4899 diagnosed and the warning is enabled by default.  In C this warning is 
4900 enabled by @option{-Wall}.
4901
4902 @item -Wjump-misses-init @r{(C, Objective-C only)}
4903 @opindex Wjump-misses-init
4904 @opindex Wno-jump-misses-init
4905 Warn if a @code{goto} statement or a @code{switch} statement jumps
4906 forward across the initialization of a variable, or jumps backward to a
4907 label after the variable has been initialized.  This only warns about
4908 variables that are initialized when they are declared.  This warning is
4909 only supported for C and Objective-C; in C++ this sort of branch is an
4910 error in any case.
4911
4912 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
4913 can be disabled with the @option{-Wno-jump-misses-init} option.
4914
4915 @item -Wsign-compare
4916 @opindex Wsign-compare
4917 @opindex Wno-sign-compare
4918 @cindex warning for comparison of signed and unsigned values
4919 @cindex comparison of signed and unsigned values, warning
4920 @cindex signed and unsigned values, comparison warning
4921 Warn when a comparison between signed and unsigned values could produce
4922 an incorrect result when the signed value is converted to unsigned.
4923 This warning is also enabled by @option{-Wextra}; to get the other warnings
4924 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4925
4926 @item -Wsign-conversion
4927 @opindex Wsign-conversion
4928 @opindex Wno-sign-conversion
4929 Warn for implicit conversions that may change the sign of an integer
4930 value, like assigning a signed integer expression to an unsigned
4931 integer variable. An explicit cast silences the warning. In C, this
4932 option is enabled also by @option{-Wconversion}.
4933
4934 @item -Wfloat-conversion
4935 @opindex Wfloat-conversion
4936 @opindex Wno-float-conversion
4937 Warn for implicit conversions that reduce the precision of a real value.
4938 This includes conversions from real to integer, and from higher precision
4939 real to lower precision real values.  This option is also enabled by
4940 @option{-Wconversion}.
4941
4942 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4943 @opindex Wsized-deallocation
4944 @opindex Wno-sized-deallocation
4945 Warn about a definition of an unsized deallocation function
4946 @smallexample
4947 void operator delete (void *) noexcept;
4948 void operator delete[] (void *) noexcept;
4949 @end smallexample
4950 without a definition of the corresponding sized deallocation function
4951 @smallexample
4952 void operator delete (void *, std::size_t) noexcept;
4953 void operator delete[] (void *, std::size_t) noexcept;
4954 @end smallexample
4955 or vice versa.  Enabled by @option{-Wextra} along with
4956 @option{-fsized-deallocation}.
4957
4958 @item -Wsizeof-pointer-memaccess
4959 @opindex Wsizeof-pointer-memaccess
4960 @opindex Wno-sizeof-pointer-memaccess
4961 Warn for suspicious length parameters to certain string and memory built-in
4962 functions if the argument uses @code{sizeof}.  This warning warns e.g.@:
4963 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4964 but a pointer, and suggests a possible fix, or about
4965 @code{memcpy (&foo, ptr, sizeof (&foo));}.  This warning is enabled by
4966 @option{-Wall}.
4967
4968 @item -Wsizeof-array-argument
4969 @opindex Wsizeof-array-argument
4970 @opindex Wno-sizeof-array-argument
4971 Warn when the @code{sizeof} operator is applied to a parameter that is
4972 declared as an array in a function definition.  This warning is enabled by
4973 default for C and C++ programs.
4974
4975 @item -Wmemset-transposed-args
4976 @opindex Wmemset-transposed-args
4977 @opindex Wno-memset-transposed-args
4978 Warn for suspicious calls to the @code{memset} built-in function, if the
4979 second argument is not zero and the third argument is zero.  This warns e.g.@
4980 about @code{memset (buf, sizeof buf, 0)} where most probably
4981 @code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
4982 is only emitted if the third argument is literal zero.  If it is some
4983 expression that is folded to zero, a cast of zero to some type, etc., 
4984 it is far less likely that the user has mistakenly exchanged the arguments 
4985 and no warning is emitted.  This warning is enabled by @option{-Wall}.
4986
4987 @item -Waddress
4988 @opindex Waddress
4989 @opindex Wno-address
4990 Warn about suspicious uses of memory addresses. These include using
4991 the address of a function in a conditional expression, such as
4992 @code{void func(void); if (func)}, and comparisons against the memory
4993 address of a string literal, such as @code{if (x == "abc")}.  Such
4994 uses typically indicate a programmer error: the address of a function
4995 always evaluates to true, so their use in a conditional usually
4996 indicate that the programmer forgot the parentheses in a function
4997 call; and comparisons against string literals result in unspecified
4998 behavior and are not portable in C, so they usually indicate that the
4999 programmer intended to use @code{strcmp}.  This warning is enabled by
5000 @option{-Wall}.
5001
5002 @item -Wlogical-op
5003 @opindex Wlogical-op
5004 @opindex Wno-logical-op
5005 Warn about suspicious uses of logical operators in expressions.
5006 This includes using logical operators in contexts where a
5007 bit-wise operator is likely to be expected.  Also warns when
5008 the operands of a logical operator are the same:
5009 @smallexample
5010 extern int a;
5011 if (a < 0 && a < 0) @{ @dots{} @}
5012 @end smallexample
5013
5014 @item -Wlogical-not-parentheses
5015 @opindex Wlogical-not-parentheses
5016 @opindex Wno-logical-not-parentheses
5017 Warn about logical not used on the left hand side operand of a comparison.
5018 This option does not warn if the RHS operand is of a boolean type.  Its
5019 purpose is to detect suspicious code like the following:
5020 @smallexample
5021 int a;
5022 @dots{}
5023 if (!a > 1) @{ @dots{} @}
5024 @end smallexample
5025
5026 It is possible to suppress the warning by wrapping the LHS into
5027 parentheses:
5028 @smallexample
5029 if ((!a) > 1) @{ @dots{} @}
5030 @end smallexample
5031
5032 This warning is enabled by @option{-Wall}.
5033
5034 @item -Waggregate-return
5035 @opindex Waggregate-return
5036 @opindex Wno-aggregate-return
5037 Warn if any functions that return structures or unions are defined or
5038 called.  (In languages where you can return an array, this also elicits
5039 a warning.)
5040
5041 @item -Wno-aggressive-loop-optimizations
5042 @opindex Wno-aggressive-loop-optimizations
5043 @opindex Waggressive-loop-optimizations
5044 Warn if in a loop with constant number of iterations the compiler detects
5045 undefined behavior in some statement during one or more of the iterations.
5046
5047 @item -Wno-attributes
5048 @opindex Wno-attributes
5049 @opindex Wattributes
5050 Do not warn if an unexpected @code{__attribute__} is used, such as
5051 unrecognized attributes, function attributes applied to variables,
5052 etc.  This does not stop errors for incorrect use of supported
5053 attributes.
5054
5055 @item -Wno-builtin-macro-redefined
5056 @opindex Wno-builtin-macro-redefined
5057 @opindex Wbuiltin-macro-redefined
5058 Do not warn if certain built-in macros are redefined.  This suppresses
5059 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5060 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5061
5062 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5063 @opindex Wstrict-prototypes
5064 @opindex Wno-strict-prototypes
5065 Warn if a function is declared or defined without specifying the
5066 argument types.  (An old-style function definition is permitted without
5067 a warning if preceded by a declaration that specifies the argument
5068 types.)
5069
5070 @item -Wold-style-declaration @r{(C and Objective-C only)}
5071 @opindex Wold-style-declaration
5072 @opindex Wno-old-style-declaration
5073 Warn for obsolescent usages, according to the C Standard, in a
5074 declaration. For example, warn if storage-class specifiers like
5075 @code{static} are not the first things in a declaration.  This warning
5076 is also enabled by @option{-Wextra}.
5077
5078 @item -Wold-style-definition @r{(C and Objective-C only)}
5079 @opindex Wold-style-definition
5080 @opindex Wno-old-style-definition
5081 Warn if an old-style function definition is used.  A warning is given
5082 even if there is a previous prototype.
5083
5084 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5085 @opindex Wmissing-parameter-type
5086 @opindex Wno-missing-parameter-type
5087 A function parameter is declared without a type specifier in K&R-style
5088 functions:
5089
5090 @smallexample
5091 void foo(bar) @{ @}
5092 @end smallexample
5093
5094 This warning is also enabled by @option{-Wextra}.
5095
5096 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5097 @opindex Wmissing-prototypes
5098 @opindex Wno-missing-prototypes
5099 Warn if a global function is defined without a previous prototype
5100 declaration.  This warning is issued even if the definition itself
5101 provides a prototype.  Use this option to detect global functions
5102 that do not have a matching prototype declaration in a header file.
5103 This option is not valid for C++ because all function declarations
5104 provide prototypes and a non-matching declaration declares an
5105 overload rather than conflict with an earlier declaration.
5106 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5107
5108 @item -Wmissing-declarations
5109 @opindex Wmissing-declarations
5110 @opindex Wno-missing-declarations
5111 Warn if a global function is defined without a previous declaration.
5112 Do so even if the definition itself provides a prototype.
5113 Use this option to detect global functions that are not declared in
5114 header files.  In C, no warnings are issued for functions with previous
5115 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5116 missing prototypes.  In C++, no warnings are issued for function templates,
5117 or for inline functions, or for functions in anonymous namespaces.
5118
5119 @item -Wmissing-field-initializers
5120 @opindex Wmissing-field-initializers
5121 @opindex Wno-missing-field-initializers
5122 @opindex W
5123 @opindex Wextra
5124 @opindex Wno-extra
5125 Warn if a structure's initializer has some fields missing.  For
5126 example, the following code causes such a warning, because
5127 @code{x.h} is implicitly zero:
5128
5129 @smallexample
5130 struct s @{ int f, g, h; @};
5131 struct s x = @{ 3, 4 @};
5132 @end smallexample
5133
5134 This option does not warn about designated initializers, so the following
5135 modification does not trigger a warning:
5136
5137 @smallexample
5138 struct s @{ int f, g, h; @};
5139 struct s x = @{ .f = 3, .g = 4 @};
5140 @end smallexample
5141
5142 In C++ this option does not warn either about the empty @{ @}
5143 initializer, for example:
5144
5145 @smallexample
5146 struct s @{ int f, g, h; @};
5147 s x = @{ @};
5148 @end smallexample
5149
5150 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
5151 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5152
5153 @item -Wno-multichar
5154 @opindex Wno-multichar
5155 @opindex Wmultichar
5156 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5157 Usually they indicate a typo in the user's code, as they have
5158 implementation-defined values, and should not be used in portable code.
5159
5160 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5161 @opindex Wnormalized=
5162 @opindex Wnormalized
5163 @opindex Wno-normalized
5164 @cindex NFC
5165 @cindex NFKC
5166 @cindex character set, input normalization
5167 In ISO C and ISO C++, two identifiers are different if they are
5168 different sequences of characters.  However, sometimes when characters
5169 outside the basic ASCII character set are used, you can have two
5170 different character sequences that look the same.  To avoid confusion,
5171 the ISO 10646 standard sets out some @dfn{normalization rules} which
5172 when applied ensure that two sequences that look the same are turned into
5173 the same sequence.  GCC can warn you if you are using identifiers that
5174 have not been normalized; this option controls that warning.
5175
5176 There are four levels of warning supported by GCC@.  The default is
5177 @option{-Wnormalized=nfc}, which warns about any identifier that is
5178 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
5179 recommended form for most uses.  It is equivalent to
5180 @option{-Wnormalized}.
5181
5182 Unfortunately, there are some characters allowed in identifiers by
5183 ISO C and ISO C++ that, when turned into NFC, are not allowed in 
5184 identifiers.  That is, there's no way to use these symbols in portable
5185 ISO C or C++ and have all your identifiers in NFC@.
5186 @option{-Wnormalized=id} suppresses the warning for these characters.
5187 It is hoped that future versions of the standards involved will correct
5188 this, which is why this option is not the default.
5189
5190 You can switch the warning off for all characters by writing
5191 @option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
5192 only do this if you are using some other normalization scheme (like
5193 ``D''), because otherwise you can easily create bugs that are
5194 literally impossible to see.
5195
5196 Some characters in ISO 10646 have distinct meanings but look identical
5197 in some fonts or display methodologies, especially once formatting has
5198 been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5199 LETTER N'', displays just like a regular @code{n} that has been
5200 placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
5201 normalization scheme to convert all these into a standard form as
5202 well, and GCC warns if your code is not in NFKC if you use
5203 @option{-Wnormalized=nfkc}.  This warning is comparable to warning
5204 about every identifier that contains the letter O because it might be
5205 confused with the digit 0, and so is not the default, but may be
5206 useful as a local coding convention if the programming environment 
5207 cannot be fixed to display these characters distinctly.
5208
5209 @item -Wno-deprecated
5210 @opindex Wno-deprecated
5211 @opindex Wdeprecated
5212 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
5213
5214 @item -Wno-deprecated-declarations
5215 @opindex Wno-deprecated-declarations
5216 @opindex Wdeprecated-declarations
5217 Do not warn about uses of functions (@pxref{Function Attributes}),
5218 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5219 Attributes}) marked as deprecated by using the @code{deprecated}
5220 attribute.
5221
5222 @item -Wno-overflow
5223 @opindex Wno-overflow
5224 @opindex Woverflow
5225 Do not warn about compile-time overflow in constant expressions.
5226
5227 @item -Wno-odr
5228 @opindex Wno-odr
5229 @opindex Wodr
5230 Warn about One Definition Rule violations during link-time optimization.
5231 Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
5232
5233 @item -Wopenmp-simd
5234 @opindex Wopenm-simd
5235 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5236 simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
5237 option can be used to relax the cost model.
5238
5239 @item -Woverride-init @r{(C and Objective-C only)}
5240 @opindex Woverride-init
5241 @opindex Wno-override-init
5242 @opindex W
5243 @opindex Wextra
5244 @opindex Wno-extra
5245 Warn if an initialized field without side effects is overridden when
5246 using designated initializers (@pxref{Designated Inits, , Designated
5247 Initializers}).
5248
5249 This warning is included in @option{-Wextra}.  To get other
5250 @option{-Wextra} warnings without this one, use @option{-Wextra
5251 -Wno-override-init}.
5252
5253 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5254 @opindex Woverride-init-side-effects
5255 @opindex Wno-override-init-side-effects
5256 Warn if an initialized field with side effects is overridden when
5257 using designated initializers (@pxref{Designated Inits, , Designated
5258 Initializers}).  This warning is enabled by default.
5259
5260 @item -Wpacked
5261 @opindex Wpacked
5262 @opindex Wno-packed
5263 Warn if a structure is given the packed attribute, but the packed
5264 attribute has no effect on the layout or size of the structure.
5265 Such structures may be mis-aligned for little benefit.  For
5266 instance, in this code, the variable @code{f.x} in @code{struct bar}
5267 is misaligned even though @code{struct bar} does not itself
5268 have the packed attribute:
5269
5270 @smallexample
5271 @group
5272 struct foo @{
5273   int x;
5274   char a, b, c, d;
5275 @} __attribute__((packed));
5276 struct bar @{
5277   char z;
5278   struct foo f;
5279 @};
5280 @end group
5281 @end smallexample
5282
5283 @item -Wpacked-bitfield-compat
5284 @opindex Wpacked-bitfield-compat
5285 @opindex Wno-packed-bitfield-compat
5286 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5287 on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
5288 the change can lead to differences in the structure layout.  GCC
5289 informs you when the offset of such a field has changed in GCC 4.4.
5290 For example there is no longer a 4-bit padding between field @code{a}
5291 and @code{b} in this structure:
5292
5293 @smallexample
5294 struct foo
5295 @{
5296   char a:4;
5297   char b:8;
5298 @} __attribute__ ((packed));
5299 @end smallexample
5300
5301 This warning is enabled by default.  Use
5302 @option{-Wno-packed-bitfield-compat} to disable this warning.
5303
5304 @item -Wpadded
5305 @opindex Wpadded
5306 @opindex Wno-padded
5307 Warn if padding is included in a structure, either to align an element
5308 of the structure or to align the whole structure.  Sometimes when this
5309 happens it is possible to rearrange the fields of the structure to
5310 reduce the padding and so make the structure smaller.
5311
5312 @item -Wredundant-decls
5313 @opindex Wredundant-decls
5314 @opindex Wno-redundant-decls
5315 Warn if anything is declared more than once in the same scope, even in
5316 cases where multiple declaration is valid and changes nothing.
5317
5318 @item -Wnested-externs @r{(C and Objective-C only)}
5319 @opindex Wnested-externs
5320 @opindex Wno-nested-externs
5321 Warn if an @code{extern} declaration is encountered within a function.
5322
5323 @item -Wno-inherited-variadic-ctor
5324 @opindex Winherited-variadic-ctor
5325 @opindex Wno-inherited-variadic-ctor
5326 Suppress warnings about use of C++11 inheriting constructors when the
5327 base class inherited from has a C variadic constructor; the warning is
5328 on by default because the ellipsis is not inherited.
5329
5330 @item -Winline
5331 @opindex Winline
5332 @opindex Wno-inline
5333 Warn if a function that is declared as inline cannot be inlined.
5334 Even with this option, the compiler does not warn about failures to
5335 inline functions declared in system headers.
5336
5337 The compiler uses a variety of heuristics to determine whether or not
5338 to inline a function.  For example, the compiler takes into account
5339 the size of the function being inlined and the amount of inlining
5340 that has already been done in the current function.  Therefore,
5341 seemingly insignificant changes in the source program can cause the
5342 warnings produced by @option{-Winline} to appear or disappear.
5343
5344 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5345 @opindex Wno-invalid-offsetof
5346 @opindex Winvalid-offsetof
5347 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5348 type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
5349 to a non-standard-layout type is undefined.  In existing C++ implementations,
5350 however, @code{offsetof} typically gives meaningful results.
5351 This flag is for users who are aware that they are
5352 writing nonportable code and who have deliberately chosen to ignore the
5353 warning about it.
5354
5355 The restrictions on @code{offsetof} may be relaxed in a future version
5356 of the C++ standard.
5357
5358 @item -Wno-int-to-pointer-cast
5359 @opindex Wno-int-to-pointer-cast
5360 @opindex Wint-to-pointer-cast
5361 Suppress warnings from casts to pointer type of an integer of a
5362 different size. In C++, casting to a pointer type of smaller size is
5363 an error. @option{Wint-to-pointer-cast} is enabled by default.
5364
5365
5366 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5367 @opindex Wno-pointer-to-int-cast
5368 @opindex Wpointer-to-int-cast
5369 Suppress warnings from casts from a pointer to an integer type of a
5370 different size.
5371
5372 @item -Winvalid-pch
5373 @opindex Winvalid-pch
5374 @opindex Wno-invalid-pch
5375 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5376 the search path but can't be used.
5377
5378 @item -Wlong-long
5379 @opindex Wlong-long
5380 @opindex Wno-long-long
5381 Warn if @code{long long} type is used.  This is enabled by either
5382 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5383 modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
5384
5385 @item -Wvariadic-macros
5386 @opindex Wvariadic-macros
5387 @opindex Wno-variadic-macros
5388 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5389 alternate syntax is used in ISO C99 mode.  This is enabled by either
5390 @option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
5391 messages, use @option{-Wno-variadic-macros}.
5392
5393 @item -Wvarargs
5394 @opindex Wvarargs
5395 @opindex Wno-varargs
5396 Warn upon questionable usage of the macros used to handle variable
5397 arguments like @code{va_start}.  This is default.  To inhibit the
5398 warning messages, use @option{-Wno-varargs}.
5399
5400 @item -Wvector-operation-performance
5401 @opindex Wvector-operation-performance
5402 @opindex Wno-vector-operation-performance
5403 Warn if vector operation is not implemented via SIMD capabilities of the
5404 architecture.  Mainly useful for the performance tuning.
5405 Vector operation can be implemented @code{piecewise}, which means that the
5406 scalar operation is performed on every vector element; 
5407 @code{in parallel}, which means that the vector operation is implemented
5408 using scalars of wider type, which normally is more performance efficient;
5409 and @code{as a single scalar}, which means that vector fits into a
5410 scalar type.
5411
5412 @item -Wno-virtual-move-assign
5413 @opindex Wvirtual-move-assign
5414 @opindex Wno-virtual-move-assign
5415 Suppress warnings about inheriting from a virtual base with a
5416 non-trivial C++11 move assignment operator.  This is dangerous because
5417 if the virtual base is reachable along more than one path, it is
5418 moved multiple times, which can mean both objects end up in the
5419 moved-from state.  If the move assignment operator is written to avoid
5420 moving from a moved-from object, this warning can be disabled.
5421
5422 @item -Wvla
5423 @opindex Wvla
5424 @opindex Wno-vla
5425 Warn if variable length array is used in the code.
5426 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5427 the variable length array.
5428
5429 @item -Wvolatile-register-var
5430 @opindex Wvolatile-register-var
5431 @opindex Wno-volatile-register-var
5432 Warn if a register variable is declared volatile.  The volatile
5433 modifier does not inhibit all optimizations that may eliminate reads
5434 and/or writes to register variables.  This warning is enabled by
5435 @option{-Wall}.
5436
5437 @item -Wdisabled-optimization
5438 @opindex Wdisabled-optimization
5439 @opindex Wno-disabled-optimization
5440 Warn if a requested optimization pass is disabled.  This warning does
5441 not generally indicate that there is anything wrong with your code; it
5442 merely indicates that GCC's optimizers are unable to handle the code
5443 effectively.  Often, the problem is that your code is too big or too
5444 complex; GCC refuses to optimize programs when the optimization
5445 itself is likely to take inordinate amounts of time.
5446
5447 @item -Wpointer-sign @r{(C and Objective-C only)}
5448 @opindex Wpointer-sign
5449 @opindex Wno-pointer-sign
5450 Warn for pointer argument passing or assignment with different signedness.
5451 This option is only supported for C and Objective-C@.  It is implied by
5452 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5453 @option{-Wno-pointer-sign}.
5454
5455 @item -Wstack-protector
5456 @opindex Wstack-protector
5457 @opindex Wno-stack-protector
5458 This option is only active when @option{-fstack-protector} is active.  It
5459 warns about functions that are not protected against stack smashing.
5460
5461 @item -Woverlength-strings
5462 @opindex Woverlength-strings
5463 @opindex Wno-overlength-strings
5464 Warn about string constants that are longer than the ``minimum
5465 maximum'' length specified in the C standard.  Modern compilers
5466 generally allow string constants that are much longer than the
5467 standard's minimum limit, but very portable programs should avoid
5468 using longer strings.
5469
5470 The limit applies @emph{after} string constant concatenation, and does
5471 not count the trailing NUL@.  In C90, the limit was 509 characters; in
5472 C99, it was raised to 4095.  C++98 does not specify a normative
5473 minimum maximum, so we do not diagnose overlength strings in C++@.
5474
5475 This option is implied by @option{-Wpedantic}, and can be disabled with
5476 @option{-Wno-overlength-strings}.
5477
5478 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5479 @opindex Wunsuffixed-float-constants
5480
5481 Issue a warning for any floating constant that does not have
5482 a suffix.  When used together with @option{-Wsystem-headers} it
5483 warns about such constants in system header files.  This can be useful
5484 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5485 from the decimal floating-point extension to C99.
5486
5487 @item -Wno-designated-init @r{(C and Objective-C only)}
5488 Suppress warnings when a positional initializer is used to initialize
5489 a structure that has been marked with the @code{designated_init}
5490 attribute.
5491
5492 @end table
5493
5494 @node Debugging Options
5495 @section Options for Debugging Your Program or GCC
5496 @cindex options, debugging
5497 @cindex debugging information options
5498
5499 GCC has various special options that are used for debugging
5500 either your program or GCC:
5501
5502 @table @gcctabopt
5503 @item -g
5504 @opindex g
5505 Produce debugging information in the operating system's native format
5506 (stabs, COFF, XCOFF, or DWARF 2)@.  GDB can work with this debugging
5507 information.
5508
5509 On most systems that use stabs format, @option{-g} enables use of extra
5510 debugging information that only GDB can use; this extra information
5511 makes debugging work better in GDB but probably makes other debuggers
5512 crash or
5513 refuse to read the program.  If you want to control for certain whether
5514 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5515 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5516
5517 GCC allows you to use @option{-g} with
5518 @option{-O}.  The shortcuts taken by optimized code may occasionally
5519 produce surprising results: some variables you declared may not exist
5520 at all; flow of control may briefly move where you did not expect it;
5521 some statements may not be executed because they compute constant
5522 results or their values are already at hand; some statements may
5523 execute in different places because they have been moved out of loops.
5524
5525 Nevertheless it proves possible to debug optimized output.  This makes
5526 it reasonable to use the optimizer for programs that might have bugs.
5527
5528 The following options are useful when GCC is generated with the
5529 capability for more than one debugging format.
5530
5531 @item -gsplit-dwarf
5532 @opindex gsplit-dwarf
5533 Separate as much dwarf debugging information as possible into a
5534 separate output file with the extension .dwo.  This option allows
5535 the build system to avoid linking files with debug information.  To
5536 be useful, this option requires a debugger capable of reading .dwo
5537 files.
5538
5539 @item -ggdb
5540 @opindex ggdb
5541 Produce debugging information for use by GDB@.  This means to use the
5542 most expressive format available (DWARF 2, stabs, or the native format
5543 if neither of those are supported), including GDB extensions if at all
5544 possible.
5545
5546 @item -gpubnames
5547 @opindex gpubnames
5548 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5549
5550 @item -ggnu-pubnames
5551 @opindex ggnu-pubnames
5552 Generate .debug_pubnames and .debug_pubtypes sections in a format
5553 suitable for conversion into a GDB@ index.  This option is only useful
5554 with a linker that can produce GDB@ index version 7.
5555
5556 @item -gstabs
5557 @opindex gstabs
5558 Produce debugging information in stabs format (if that is supported),
5559 without GDB extensions.  This is the format used by DBX on most BSD
5560 systems.  On MIPS, Alpha and System V Release 4 systems this option
5561 produces stabs debugging output that is not understood by DBX or SDB@.
5562 On System V Release 4 systems this option requires the GNU assembler.
5563
5564 @item -feliminate-unused-debug-symbols
5565 @opindex feliminate-unused-debug-symbols
5566 Produce debugging information in stabs format (if that is supported),
5567 for only symbols that are actually used.
5568
5569 @item -femit-class-debug-always
5570 @opindex femit-class-debug-always
5571 Instead of emitting debugging information for a C++ class in only one
5572 object file, emit it in all object files using the class.  This option
5573 should be used only with debuggers that are unable to handle the way GCC
5574 normally emits debugging information for classes because using this
5575 option increases the size of debugging information by as much as a
5576 factor of two.
5577
5578 @item -fdebug-types-section
5579 @opindex fdebug-types-section
5580 @opindex fno-debug-types-section
5581 When using DWARF Version 4 or higher, type DIEs can be put into
5582 their own @code{.debug_types} section instead of making them part of the
5583 @code{.debug_info} section.  It is more efficient to put them in a separate
5584 comdat sections since the linker can then remove duplicates.
5585 But not all DWARF consumers support @code{.debug_types} sections yet
5586 and on some objects @code{.debug_types} produces larger instead of smaller
5587 debugging information.
5588
5589 @item -gstabs+
5590 @opindex gstabs+
5591 Produce debugging information in stabs format (if that is supported),
5592 using GNU extensions understood only by the GNU debugger (GDB)@.  The
5593 use of these extensions is likely to make other debuggers crash or
5594 refuse to read the program.
5595
5596 @item -gcoff
5597 @opindex gcoff
5598 Produce debugging information in COFF format (if that is supported).
5599 This is the format used by SDB on most System V systems prior to
5600 System V Release 4.
5601
5602 @item -gxcoff
5603 @opindex gxcoff
5604 Produce debugging information in XCOFF format (if that is supported).
5605 This is the format used by the DBX debugger on IBM RS/6000 systems.
5606
5607 @item -gxcoff+
5608 @opindex gxcoff+
5609 Produce debugging information in XCOFF format (if that is supported),
5610 using GNU extensions understood only by the GNU debugger (GDB)@.  The
5611 use of these extensions is likely to make other debuggers crash or
5612 refuse to read the program, and may cause assemblers other than the GNU
5613 assembler (GAS) to fail with an error.
5614
5615 @item -gdwarf-@var{version}
5616 @opindex gdwarf-@var{version}
5617 Produce debugging information in DWARF format (if that is supported).
5618 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5619 for most targets is 4.  DWARF Version 5 is only experimental.
5620
5621 Note that with DWARF Version 2, some ports require and always
5622 use some non-conflicting DWARF 3 extensions in the unwind tables.
5623
5624 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5625 for maximum benefit.
5626
5627 @item -grecord-gcc-switches
5628 @opindex grecord-gcc-switches
5629 This switch causes the command-line options used to invoke the
5630 compiler that may affect code generation to be appended to the
5631 DW_AT_producer attribute in DWARF debugging information.  The options
5632 are concatenated with spaces separating them from each other and from
5633 the compiler version.  See also @option{-frecord-gcc-switches} for another
5634 way of storing compiler options into the object file.  This is the default.
5635
5636 @item -gno-record-gcc-switches
5637 @opindex gno-record-gcc-switches
5638 Disallow appending command-line options to the DW_AT_producer attribute
5639 in DWARF debugging information.
5640
5641 @item -gstrict-dwarf
5642 @opindex gstrict-dwarf
5643 Disallow using extensions of later DWARF standard version than selected
5644 with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
5645 DWARF extensions from later standard versions is allowed.
5646
5647 @item -gno-strict-dwarf
5648 @opindex gno-strict-dwarf
5649 Allow using extensions of later DWARF standard version than selected with
5650 @option{-gdwarf-@var{version}}.
5651
5652 @item -gz@r{[}=@var{type}@r{]}
5653 @opindex gz
5654 Produce compressed debug sections in DWARF format, if that is supported.
5655 If @var{type} is not given, the default type depends on the capabilities
5656 of the assembler and linker used.  @var{type} may be one of
5657 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5658 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5659 compression in traditional GNU format).  If the linker doesn't support
5660 writing compressed debug sections, the option is rejected.  Otherwise,
5661 if the assembler does not support them, @option{-gz} is silently ignored
5662 when producing object files.
5663
5664 @item -gvms
5665 @opindex gvms
5666 Produce debugging information in Alpha/VMS debug format (if that is
5667 supported).  This is the format used by DEBUG on Alpha/VMS systems.
5668
5669 @item -g@var{level}
5670 @itemx -ggdb@var{level}
5671 @itemx -gstabs@var{level}
5672 @itemx -gcoff@var{level}
5673 @itemx -gxcoff@var{level}
5674 @itemx -gvms@var{level}
5675 Request debugging information and also use @var{level} to specify how
5676 much information.  The default level is 2.
5677
5678 Level 0 produces no debug information at all.  Thus, @option{-g0} negates
5679 @option{-g}.
5680
5681 Level 1 produces minimal information, enough for making backtraces in
5682 parts of the program that you don't plan to debug.  This includes
5683 descriptions of functions and external variables, and line number
5684 tables, but no information about local variables.
5685
5686 Level 3 includes extra information, such as all the macro definitions
5687 present in the program.  Some debuggers support macro expansion when
5688 you use @option{-g3}.
5689
5690 @option{-gdwarf-2} does not accept a concatenated debug level, because
5691 GCC used to support an option @option{-gdwarf} that meant to generate
5692 debug information in version 1 of the DWARF format (which is very
5693 different from version 2), and it would have been too confusing.  That
5694 debug format is long obsolete, but the option cannot be changed now.
5695 Instead use an additional @option{-g@var{level}} option to change the
5696 debug level for DWARF.
5697
5698 @item -gtoggle
5699 @opindex gtoggle
5700 Turn off generation of debug info, if leaving out this option
5701 generates it, or turn it on at level 2 otherwise.  The position of this
5702 argument in the command line does not matter; it takes effect after all
5703 other options are processed, and it does so only once, no matter how
5704 many times it is given.  This is mainly intended to be used with
5705 @option{-fcompare-debug}.
5706
5707 @item -fsanitize=address
5708 @opindex fsanitize=address
5709 Enable AddressSanitizer, a fast memory error detector.
5710 Memory access instructions are instrumented to detect
5711 out-of-bounds and use-after-free bugs.
5712 See @uref{http://code.google.com/p/address-sanitizer/} for
5713 more details.  The run-time behavior can be influenced using the
5714 @env{ASAN_OPTIONS} environment variable; see
5715 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5716 a list of supported options.
5717
5718 @item -fsanitize=kernel-address
5719 @opindex fsanitize=kernel-address
5720 Enable AddressSanitizer for Linux kernel.
5721 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5722
5723 @item -fsanitize=thread
5724 @opindex fsanitize=thread
5725 Enable ThreadSanitizer, a fast data race detector.
5726 Memory access instructions are instrumented to detect
5727 data race bugs.  See @uref{http://code.google.com/p/thread-sanitizer/} for more
5728 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5729 environment variable; see
5730 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5731 supported options.
5732
5733 @item -fsanitize=leak
5734 @opindex fsanitize=leak
5735 Enable LeakSanitizer, a memory leak detector.
5736 This option only matters for linking of executables and if neither
5737 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used.  In that
5738 case the executable is linked against a library that overrides @code{malloc}
5739 and other allocator functions.  See
5740 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5741 details.  The run-time behavior can be influenced using the
5742 @env{LSAN_OPTIONS} environment variable.
5743
5744 @item -fsanitize=undefined
5745 @opindex fsanitize=undefined
5746 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5747 Various computations are instrumented to detect undefined behavior
5748 at runtime.  Current suboptions are:
5749
5750 @table @gcctabopt
5751
5752 @item -fsanitize=shift
5753 @opindex fsanitize=shift
5754 This option enables checking that the result of a shift operation is
5755 not undefined.  Note that what exactly is considered undefined differs
5756 slightly between C and C++, as well as between ISO C90 and C99, etc.
5757
5758 @item -fsanitize=integer-divide-by-zero
5759 @opindex fsanitize=integer-divide-by-zero
5760 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5761
5762 @item -fsanitize=unreachable
5763 @opindex fsanitize=unreachable
5764 With this option, the compiler turns the @code{__builtin_unreachable}
5765 call into a diagnostics message call instead.  When reaching the
5766 @code{__builtin_unreachable} call, the behavior is undefined.
5767
5768 @item -fsanitize=vla-bound
5769 @opindex fsanitize=vla-bound
5770 This option instructs the compiler to check that the size of a variable
5771 length array is positive.
5772
5773 @item -fsanitize=null
5774 @opindex fsanitize=null
5775 This option enables pointer checking.  Particularly, the application
5776 built with this option turned on will issue an error message when it
5777 tries to dereference a NULL pointer, or if a reference (possibly an
5778 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5779 on an object pointed by a NULL pointer.
5780
5781 @item -fsanitize=return
5782 @opindex fsanitize=return
5783 This option enables return statement checking.  Programs
5784 built with this option turned on will issue an error message
5785 when the end of a non-void function is reached without actually
5786 returning a value.  This option works in C++ only.
5787
5788 @item -fsanitize=signed-integer-overflow
5789 @opindex fsanitize=signed-integer-overflow
5790 This option enables signed integer overflow checking.  We check that
5791 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5792 does not overflow in the signed arithmetics.  Note, integer promotion
5793 rules must be taken into account.  That is, the following is not an
5794 overflow:
5795 @smallexample
5796 signed char a = SCHAR_MAX;
5797 a++;
5798 @end smallexample
5799
5800 @item -fsanitize=bounds
5801 @opindex fsanitize=bounds
5802 This option enables instrumentation of array bounds.  Various out of bounds
5803 accesses are detected.  Flexible array members, flexible array member-like
5804 arrays, and initializers of variables with static storage are not instrumented.
5805
5806 @item -fsanitize=bounds-strict
5807 @opindex fsanitize=bounds-strict
5808 This option enables strict instrumentation of array bounds.  Most out of bounds
5809 accesses are detected, including flexible array members and flexible array
5810 member-like arrays.  Initializers of variables with static storage are not
5811 instrumented.
5812
5813 @item -fsanitize=alignment
5814 @opindex fsanitize=alignment
5815
5816 This option enables checking of alignment of pointers when they are
5817 dereferenced, or when a reference is bound to insufficiently aligned target,
5818 or when a method or constructor is invoked on insufficiently aligned object.
5819
5820 @item -fsanitize=object-size
5821 @opindex fsanitize=object-size
5822 This option enables instrumentation of memory references using the
5823 @code{__builtin_object_size} function.  Various out of bounds pointer
5824 accesses are detected.
5825
5826 @item -fsanitize=float-divide-by-zero
5827 @opindex fsanitize=float-divide-by-zero
5828 Detect floating-point division by zero.  Unlike other similar options,
5829 @option{-fsanitize=float-divide-by-zero} is not enabled by
5830 @option{-fsanitize=undefined}, since floating-point division by zero can
5831 be a legitimate way of obtaining infinities and NaNs.
5832
5833 @item -fsanitize=float-cast-overflow
5834 @opindex fsanitize=float-cast-overflow
5835 This option enables floating-point type to integer conversion checking.
5836 We check that the result of the conversion does not overflow.
5837 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5838 not enabled by @option{-fsanitize=undefined}.
5839 This option does not work well with @code{FE_INVALID} exceptions enabled.
5840
5841 @item -fsanitize=nonnull-attribute
5842 @opindex fsanitize=nonnull-attribute
5843
5844 This option enables instrumentation of calls, checking whether null values
5845 are not passed to arguments marked as requiring a non-null value by the
5846 @code{nonnull} function attribute.
5847
5848 @item -fsanitize=returns-nonnull-attribute
5849 @opindex fsanitize=returns-nonnull-attribute
5850
5851 This option enables instrumentation of return statements in functions
5852 marked with @code{returns_nonnull} function attribute, to detect returning
5853 of null values from such functions.
5854
5855 @item -fsanitize=bool
5856 @opindex fsanitize=bool
5857
5858 This option enables instrumentation of loads from bool.  If a value other
5859 than 0/1 is loaded, a run-time error is issued.
5860
5861 @item -fsanitize=enum
5862 @opindex fsanitize=enum
5863
5864 This option enables instrumentation of loads from an enum type.  If
5865 a value outside the range of values for the enum type is loaded,
5866 a run-time error is issued.
5867
5868 @item -fsanitize=vptr
5869 @opindex fsanitize=vptr
5870
5871 This option enables instrumentation of C++ member function calls, member
5872 accesses and some conversions between pointers to base and derived classes,
5873 to verify the referenced object has the correct dynamic type.
5874
5875 @end table
5876
5877 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5878 @option{-fsanitize=undefined} gives a diagnostic message.
5879 This currently works only for the C family of languages.
5880
5881 @item -fno-sanitize=all
5882 @opindex fno-sanitize=all
5883
5884 This option disables all previously enabled sanitizers.
5885 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5886 together.
5887
5888 @item -fasan-shadow-offset=@var{number}
5889 @opindex fasan-shadow-offset
5890 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5891 It is useful for experimenting with different shadow memory layouts in
5892 Kernel AddressSanitizer.
5893
5894 @item -fsanitize-sections=@var{s1},@var{s2},...
5895 @opindex fsanitize-sections
5896 Sanitize global variables in selected user-defined sections.  @var{si} may
5897 contain wildcards.
5898
5899 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5900 @opindex fsanitize-recover
5901 @opindex fno-sanitize-recover
5902 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5903 mentioned in comma-separated list of @var{opts}.  Enabling this option
5904 for a sanitizer component causes it to attempt to continue
5905 running the program as if no error happened.  This means multiple
5906 runtime errors can be reported in a single program run, and the exit
5907 code of the program may indicate success even when errors
5908 have been reported.  The @option{-fno-sanitize-recover=} option
5909 can be used to alter
5910 this behavior: only the first detected error is reported
5911 and program then exits with a non-zero exit code.
5912
5913 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5914 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5915 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5916 @option{-fsanitize=kernel-address}.  For these sanitizers error recovery is turned on by default.
5917 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5918 accepted, the former enables recovery for all sanitizers that support it,
5919 the latter disables recovery for all sanitizers that support it.
5920
5921 Syntax without explicit @var{opts} parameter is deprecated.  It is equivalent to
5922 @smallexample
5923 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5924 @end smallexample
5925 @noindent
5926 Similarly @option{-fno-sanitize-recover} is equivalent to
5927 @smallexample
5928 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5929 @end smallexample
5930
5931 @item -fsanitize-undefined-trap-on-error
5932 @opindex fsanitize-undefined-trap-on-error
5933 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5934 report undefined behavior using @code{__builtin_trap} rather than
5935 a @code{libubsan} library routine.  The advantage of this is that the
5936 @code{libubsan} library is not needed and is not linked in, so this
5937 is usable even in freestanding environments.
5938
5939 @item -fcheck-pointer-bounds
5940 @opindex fcheck-pointer-bounds
5941 @opindex fno-check-pointer-bounds
5942 @cindex Pointer Bounds Checker options
5943 Enable Pointer Bounds Checker instrumentation.  Each memory reference
5944 is instrumented with checks of the pointer used for memory access against
5945 bounds associated with that pointer.  
5946
5947 Currently there
5948 is only an implementation for Intel MPX available, thus x86 target
5949 and @option{-mmpx} are required to enable this feature.  
5950 MPX-based instrumentation requires
5951 a runtime library to enable MPX in hardware and handle bounds
5952 violation signals.  By default when @option{-fcheck-pointer-bounds}
5953 and @option{-mmpx} options are used to link a program, the GCC driver
5954 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5955 library.  It also passes '-z bndplt' to a linker in case it supports this
5956 option (which is checked on libmpx configuration).  Note that old versions
5957 of linker may ignore option.  Gold linker doesn't support '-z bndplt'
5958 option.  With no '-z bndplt' support in linker all calls to dynamic libraries
5959 lose passed bounds reducing overall protection level.  It's highly
5960 recommended to use linker with '-z bndplt' support.  In case such linker
5961 is not available it is adviced to always use @option{-static-libmpxwrappers}
5962 for better protection level or use @option{-static} to completely avoid
5963 external calls to dynamic libraries.  MPX-based instrumentation
5964 may be used for debugging and also may be included in production code
5965 to increase program security.  Depending on usage, you may
5966 have different requirements for the runtime library.  The current version
5967 of the MPX runtime library is more oriented for use as a debugging
5968 tool.  MPX runtime library usage implies @option{-lpthread}.  See
5969 also @option{-static-libmpx}.  The runtime library  behavior can be
5970 influenced using various @env{CHKP_RT_*} environment variables.  See
5971 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5972 for more details.
5973
5974 Generated instrumentation may be controlled by various
5975 @option{-fchkp-*} options and by the @code{bnd_variable_size}
5976 structure field attribute (@pxref{Type Attributes}) and
5977 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
5978 (@pxref{Function Attributes}).  GCC also provides a number of built-in
5979 functions for controlling the Pointer Bounds Checker.  @xref{Pointer
5980 Bounds Checker builtins}, for more information.
5981
5982 @item -fchkp-check-incomplete-type
5983 @opindex fchkp-check-incomplete-type
5984 @opindex fno-chkp-check-incomplete-type
5985 Generate pointer bounds checks for variables with incomplete type.
5986 Enabled by default.
5987
5988 @item -fchkp-narrow-bounds
5989 @opindex fchkp-narrow-bounds
5990 @opindex fno-chkp-narrow-bounds
5991 Controls bounds used by Pointer Bounds Checker for pointers to object
5992 fields.  If narrowing is enabled then field bounds are used.  Otherwise
5993 object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
5994 and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
5995
5996 @item -fchkp-first-field-has-own-bounds
5997 @opindex fchkp-first-field-has-own-bounds
5998 @opindex fno-chkp-first-field-has-own-bounds
5999 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6000 first field in the structure.  By default a pointer to the first field has
6001 the same bounds as a pointer to the whole structure.
6002
6003 @item -fchkp-narrow-to-innermost-array
6004 @opindex fchkp-narrow-to-innermost-array
6005 @opindex fno-chkp-narrow-to-innermost-array
6006 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6007 case of nested static array access.  By default this option is disabled and
6008 bounds of the outermost array are used.
6009
6010 @item -fchkp-optimize
6011 @opindex fchkp-optimize
6012 @opindex fno-chkp-optimize
6013 Enables Pointer Bounds Checker optimizations.  Enabled by default at
6014 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6015
6016 @item -fchkp-use-fast-string-functions
6017 @opindex fchkp-use-fast-string-functions
6018 @opindex fno-chkp-use-fast-string-functions
6019 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6020 by Pointer Bounds Checker.  Disabled by default.
6021
6022 @item -fchkp-use-nochk-string-functions
6023 @opindex fchkp-use-nochk-string-functions
6024 @opindex fno-chkp-use-nochk-string-functions
6025 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6026 by Pointer Bounds Checker.  Disabled by default.
6027
6028 @item -fchkp-use-static-bounds
6029 @opindex fchkp-use-static-bounds
6030 @opindex fno-chkp-use-static-bounds
6031 Allow Pointer Bounds Checker to generate static bounds holding
6032 bounds of static variables.  Enabled by default.
6033
6034 @item -fchkp-use-static-const-bounds
6035 @opindex fchkp-use-static-const-bounds
6036 @opindex fno-chkp-use-static-const-bounds
6037 Use statically-initialized bounds for constant bounds instead of
6038 generating them each time they are required.  By default enabled when
6039 @option{-fchkp-use-static-bounds} is enabled.
6040
6041 @item -fchkp-treat-zero-dynamic-size-as-infinite
6042 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6043 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6044 With this option, objects with incomplete type whose
6045 dynamically-obtained size is zero are treated as having infinite size
6046 instead by Pointer Bounds
6047 Checker.  This option may be helpful if a program is linked with a library
6048 missing size information for some symbols.  Disabled by default.
6049
6050 @item -fchkp-check-read
6051 @opindex fchkp-check-read
6052 @opindex fno-chkp-check-read
6053 Instructs Pointer Bounds Checker to generate checks for all read
6054 accesses to memory.  Enabled by default.
6055
6056 @item -fchkp-check-write
6057 @opindex fchkp-check-write
6058 @opindex fno-chkp-check-write
6059 Instructs Pointer Bounds Checker to generate checks for all write
6060 accesses to memory.  Enabled by default.
6061
6062 @item -fchkp-store-bounds
6063 @opindex fchkp-store-bounds
6064 @opindex fno-chkp-store-bounds
6065 Instructs Pointer Bounds Checker to generate bounds stores for
6066 pointer writes.  Enabled by default.
6067
6068 @item -fchkp-instrument-calls
6069 @opindex fchkp-instrument-calls
6070 @opindex fno-chkp-instrument-calls
6071 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6072 Enabled by default.
6073
6074 @item -fchkp-instrument-marked-only
6075 @opindex fchkp-instrument-marked-only
6076 @opindex fno-chkp-instrument-marked-only
6077 Instructs Pointer Bounds Checker to instrument only functions
6078 marked with the @code{bnd_instrument} attribute
6079 (@pxref{Function Attributes}).  Disabled by default.
6080
6081 @item -fchkp-use-wrappers
6082 @opindex fchkp-use-wrappers
6083 @opindex fno-chkp-use-wrappers
6084 Allows Pointer Bounds Checker to replace calls to built-in functions
6085 with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
6086 is used to link a program, the GCC driver automatically links
6087 against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
6088 Enabled by default.
6089
6090 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6091 @opindex fdump-final-insns
6092 Dump the final internal representation (RTL) to @var{file}.  If the
6093 optional argument is omitted (or if @var{file} is @code{.}), the name
6094 of the dump file is determined by appending @code{.gkd} to the
6095 compilation output file name.
6096
6097 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6098 @opindex fcompare-debug
6099 @opindex fno-compare-debug
6100 If no error occurs during compilation, run the compiler a second time,
6101 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6102 passed to the second compilation.  Dump the final internal
6103 representation in both compilations, and print an error if they differ.
6104
6105 If the equal sign is omitted, the default @option{-gtoggle} is used.
6106
6107 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6108 and nonzero, implicitly enables @option{-fcompare-debug}.  If
6109 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6110 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6111 is used.
6112
6113 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6114 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6115 of the final representation and the second compilation, preventing even
6116 @env{GCC_COMPARE_DEBUG} from taking effect.
6117
6118 To verify full coverage during @option{-fcompare-debug} testing, set
6119 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6120 which GCC rejects as an invalid option in any actual compilation
6121 (rather than preprocessing, assembly or linking).  To get just a
6122 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6123 not overridden} will do.
6124
6125 @item -fcompare-debug-second
6126 @opindex fcompare-debug-second
6127 This option is implicitly passed to the compiler for the second
6128 compilation requested by @option{-fcompare-debug}, along with options to
6129 silence warnings, and omitting other options that would cause
6130 side-effect compiler outputs to files or to the standard output.  Dump
6131 files and preserved temporary files are renamed so as to contain the
6132 @code{.gk} additional extension during the second compilation, to avoid
6133 overwriting those generated by the first.
6134
6135 When this option is passed to the compiler driver, it causes the
6136 @emph{first} compilation to be skipped, which makes it useful for little
6137 other than debugging the compiler proper.
6138
6139 @item -feliminate-dwarf2-dups
6140 @opindex feliminate-dwarf2-dups
6141 Compress DWARF 2 debugging information by eliminating duplicated
6142 information about each symbol.  This option only makes sense when
6143 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6144
6145 @item -femit-struct-debug-baseonly
6146 @opindex femit-struct-debug-baseonly
6147 Emit debug information for struct-like types
6148 only when the base name of the compilation source file
6149 matches the base name of file in which the struct is defined.
6150
6151 This option substantially reduces the size of debugging information,
6152 but at significant potential loss in type information to the debugger.
6153 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6154 See @option{-femit-struct-debug-detailed} for more detailed control.
6155
6156 This option works only with DWARF 2.
6157
6158 @item -femit-struct-debug-reduced
6159 @opindex femit-struct-debug-reduced
6160 Emit debug information for struct-like types
6161 only when the base name of the compilation source file
6162 matches the base name of file in which the type is defined,
6163 unless the struct is a template or defined in a system header.
6164
6165 This option significantly reduces the size of debugging information,
6166 with some potential loss in type information to the debugger.
6167 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6168 See @option{-femit-struct-debug-detailed} for more detailed control.
6169
6170 This option works only with DWARF 2.
6171
6172 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6173 @opindex femit-struct-debug-detailed
6174 Specify the struct-like types
6175 for which the compiler generates debug information.
6176 The intent is to reduce duplicate struct debug information
6177 between different object files within the same program.
6178
6179 This option is a detailed version of
6180 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6181 which serves for most needs.
6182
6183 A specification has the syntax@*
6184 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6185
6186 The optional first word limits the specification to
6187 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6188 A struct type is used directly when it is the type of a variable, member.
6189 Indirect uses arise through pointers to structs.
6190 That is, when use of an incomplete struct is valid, the use is indirect.
6191 An example is
6192 @samp{struct one direct; struct two * indirect;}.
6193
6194 The optional second word limits the specification to
6195 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6196 Generic structs are a bit complicated to explain.
6197 For C++, these are non-explicit specializations of template classes,
6198 or non-template classes within the above.
6199 Other programming languages have generics,
6200 but @option{-femit-struct-debug-detailed} does not yet implement them.
6201
6202 The third word specifies the source files for those
6203 structs for which the compiler should emit debug information.
6204 The values @samp{none} and @samp{any} have the normal meaning.
6205 The value @samp{base} means that
6206 the base of name of the file in which the type declaration appears
6207 must match the base of the name of the main compilation file.
6208 In practice, this means that when compiling @file{foo.c}, debug information
6209 is generated for types declared in that file and @file{foo.h},
6210 but not other header files.
6211 The value @samp{sys} means those types satisfying @samp{base}
6212 or declared in system or compiler headers.
6213
6214 You may need to experiment to determine the best settings for your application.
6215
6216 The default is @option{-femit-struct-debug-detailed=all}.
6217
6218 This option works only with DWARF 2.
6219
6220 @item -fno-merge-debug-strings
6221 @opindex fmerge-debug-strings
6222 @opindex fno-merge-debug-strings
6223 Direct the linker to not merge together strings in the debugging
6224 information that are identical in different object files.  Merging is
6225 not supported by all assemblers or linkers.  Merging decreases the size
6226 of the debug information in the output file at the cost of increasing
6227 link processing time.  Merging is enabled by default.
6228
6229 @item -fdebug-prefix-map=@var{old}=@var{new}
6230 @opindex fdebug-prefix-map
6231 When compiling files in directory @file{@var{old}}, record debugging
6232 information describing them as in @file{@var{new}} instead.
6233
6234 @item -fno-dwarf2-cfi-asm
6235 @opindex fdwarf2-cfi-asm
6236 @opindex fno-dwarf2-cfi-asm
6237 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6238 instead of using GAS @code{.cfi_*} directives.
6239
6240 @cindex @command{prof}
6241 @item -p
6242 @opindex p
6243 Generate extra code to write profile information suitable for the
6244 analysis program @command{prof}.  You must use this option when compiling
6245 the source files you want data about, and you must also use it when
6246 linking.
6247
6248 @cindex @command{gprof}
6249 @item -pg
6250 @opindex pg
6251 Generate extra code to write profile information suitable for the
6252 analysis program @command{gprof}.  You must use this option when compiling
6253 the source files you want data about, and you must also use it when
6254 linking.
6255
6256 @item -Q
6257 @opindex Q
6258 Makes the compiler print out each function name as it is compiled, and
6259 print some statistics about each pass when it finishes.
6260
6261 @item -ftime-report
6262 @opindex ftime-report
6263 Makes the compiler print some statistics about the time consumed by each
6264 pass when it finishes.
6265
6266 @item -fmem-report
6267 @opindex fmem-report
6268 Makes the compiler print some statistics about permanent memory
6269 allocation when it finishes.
6270
6271 @item -fmem-report-wpa
6272 @opindex fmem-report-wpa
6273 Makes the compiler print some statistics about permanent memory
6274 allocation for the WPA phase only.
6275
6276 @item -fpre-ipa-mem-report
6277 @opindex fpre-ipa-mem-report
6278 @item -fpost-ipa-mem-report
6279 @opindex fpost-ipa-mem-report
6280 Makes the compiler print some statistics about permanent memory
6281 allocation before or after interprocedural optimization.
6282
6283 @item -fprofile-report
6284 @opindex fprofile-report
6285 Makes the compiler print some statistics about consistency of the
6286 (estimated) profile and effect of individual passes.
6287
6288 @item -fstack-usage
6289 @opindex fstack-usage
6290 Makes the compiler output stack usage information for the program, on a
6291 per-function basis.  The filename for the dump is made by appending
6292 @file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
6293 the output file, if explicitly specified and it is not an executable,
6294 otherwise it is the basename of the source file.  An entry is made up
6295 of three fields:
6296
6297 @itemize
6298 @item
6299 The name of the function.
6300 @item
6301 A number of bytes.
6302 @item
6303 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6304 @end itemize
6305
6306 The qualifier @code{static} means that the function manipulates the stack
6307 statically: a fixed number of bytes are allocated for the frame on function
6308 entry and released on function exit; no stack adjustments are otherwise made
6309 in the function.  The second field is this fixed number of bytes.
6310
6311 The qualifier @code{dynamic} means that the function manipulates the stack
6312 dynamically: in addition to the static allocation described above, stack
6313 adjustments are made in the body of the function, for example to push/pop
6314 arguments around function calls.  If the qualifier @code{bounded} is also
6315 present, the amount of these adjustments is bounded at compile time and
6316 the second field is an upper bound of the total amount of stack used by
6317 the function.  If it is not present, the amount of these adjustments is
6318 not bounded at compile time and the second field only represents the
6319 bounded part.
6320
6321 @item -fprofile-arcs
6322 @opindex fprofile-arcs
6323 Add code so that program flow @dfn{arcs} are instrumented.  During
6324 execution the program records how many times each branch and call is
6325 executed and how many times it is taken or returns.  When the compiled
6326 program exits it saves this data to a file called
6327 @file{@var{auxname}.gcda} for each source file.  The data may be used for
6328 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6329 test coverage analysis (@option{-ftest-coverage}).  Each object file's
6330 @var{auxname} is generated from the name of the output file, if
6331 explicitly specified and it is not the final executable, otherwise it is
6332 the basename of the source file.  In both cases any suffix is removed
6333 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6334 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6335 @xref{Cross-profiling}.
6336
6337 @cindex @command{gcov}
6338 @item --coverage
6339 @opindex coverage
6340
6341 This option is used to compile and link code instrumented for coverage
6342 analysis.  The option is a synonym for @option{-fprofile-arcs}
6343 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6344 linking).  See the documentation for those options for more details.
6345
6346 @itemize
6347
6348 @item
6349 Compile the source files with @option{-fprofile-arcs} plus optimization
6350 and code generation options.  For test coverage analysis, use the
6351 additional @option{-ftest-coverage} option.  You do not need to profile
6352 every source file in a program.
6353
6354 @item
6355 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6356 (the latter implies the former).
6357
6358 @item
6359 Run the program on a representative workload to generate the arc profile
6360 information.  This may be repeated any number of times.  You can run
6361 concurrent instances of your program, and provided that the file system
6362 supports locking, the data files will be correctly updated.  Also
6363 @code{fork} calls are detected and correctly handled (double counting
6364 will not happen).
6365
6366 @item
6367 For profile-directed optimizations, compile the source files again with
6368 the same optimization and code generation options plus
6369 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6370 Control Optimization}).
6371
6372 @item
6373 For test coverage analysis, use @command{gcov} to produce human readable
6374 information from the @file{.gcno} and @file{.gcda} files.  Refer to the
6375 @command{gcov} documentation for further information.
6376
6377 @end itemize
6378
6379 With @option{-fprofile-arcs}, for each function of your program GCC
6380 creates a program flow graph, then finds a spanning tree for the graph.
6381 Only arcs that are not on the spanning tree have to be instrumented: the
6382 compiler adds code to count the number of times that these arcs are
6383 executed.  When an arc is the only exit or only entrance to a block, the
6384 instrumentation code can be added to the block; otherwise, a new basic
6385 block must be created to hold the instrumentation code.
6386
6387 @need 2000
6388 @item -ftest-coverage
6389 @opindex ftest-coverage
6390 Produce a notes file that the @command{gcov} code-coverage utility
6391 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6392 show program coverage.  Each source file's note file is called
6393 @file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
6394 above for a description of @var{auxname} and instructions on how to
6395 generate test coverage data.  Coverage data matches the source files
6396 more closely if you do not optimize.
6397
6398 @item -fdbg-cnt-list
6399 @opindex fdbg-cnt-list
6400 Print the name and the counter upper bound for all debug counters.
6401
6402
6403 @item -fdbg-cnt=@var{counter-value-list}
6404 @opindex fdbg-cnt
6405 Set the internal debug counter upper bound.  @var{counter-value-list}
6406 is a comma-separated list of @var{name}:@var{value} pairs
6407 which sets the upper bound of each debug counter @var{name} to @var{value}.
6408 All debug counters have the initial upper bound of @code{UINT_MAX};
6409 thus @code{dbg_cnt} returns true always unless the upper bound
6410 is set by this option.
6411 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6412 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6413
6414 @item -fenable-@var{kind}-@var{pass}
6415 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6416 @opindex fdisable-
6417 @opindex fenable-
6418
6419 This is a set of options that are used to explicitly disable/enable
6420 optimization passes.  These options are intended for use for debugging GCC.
6421 Compiler users should use regular options for enabling/disabling
6422 passes instead.
6423
6424 @table @gcctabopt
6425
6426 @item -fdisable-ipa-@var{pass}
6427 Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
6428 statically invoked in the compiler multiple times, the pass name should be
6429 appended with a sequential number starting from 1.
6430
6431 @item -fdisable-rtl-@var{pass}
6432 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6433 Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6434 statically invoked in the compiler multiple times, the pass name should be
6435 appended with a sequential number starting from 1.  @var{range-list} is a 
6436 comma-separated list of function ranges or assembler names.  Each range is a number
6437 pair separated by a colon.  The range is inclusive in both ends.  If the range
6438 is trivial, the number pair can be simplified as a single number.  If the
6439 function's call graph node's @var{uid} falls within one of the specified ranges,
6440 the @var{pass} is disabled for that function.  The @var{uid} is shown in the
6441 function header of a dump file, and the pass names can be dumped by using
6442 option @option{-fdump-passes}.
6443
6444 @item -fdisable-tree-@var{pass}
6445 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6446 Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
6447 option arguments.
6448
6449 @item -fenable-ipa-@var{pass}
6450 Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
6451 statically invoked in the compiler multiple times, the pass name should be
6452 appended with a sequential number starting from 1.
6453
6454 @item -fenable-rtl-@var{pass}
6455 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6456 Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
6457 description and examples.
6458
6459 @item -fenable-tree-@var{pass}
6460 @itemx -fenable-tree-@var{pass}=@var{range-list}
6461 Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
6462 of option arguments.
6463
6464 @end table
6465
6466 Here are some examples showing uses of these options.
6467
6468 @smallexample
6469
6470 # disable ccp1 for all functions
6471    -fdisable-tree-ccp1
6472 # disable complete unroll for function whose cgraph node uid is 1
6473    -fenable-tree-cunroll=1
6474 # disable gcse2 for functions at the following ranges [1,1],
6475 # [300,400], and [400,1000]
6476 # disable gcse2 for functions foo and foo2
6477    -fdisable-rtl-gcse2=foo,foo2
6478 # disable early inlining
6479    -fdisable-tree-einline
6480 # disable ipa inlining
6481    -fdisable-ipa-inline
6482 # enable tree full unroll
6483    -fenable-tree-unroll
6484
6485 @end smallexample
6486
6487 @item -d@var{letters}
6488 @itemx -fdump-rtl-@var{pass}
6489 @itemx -fdump-rtl-@var{pass}=@var{filename}
6490 @opindex d
6491 @opindex fdump-rtl-@var{pass}
6492 Says to make debugging dumps during compilation at times specified by
6493 @var{letters}.  This is used for debugging the RTL-based passes of the
6494 compiler.  The file names for most of the dumps are made by appending
6495 a pass number and a word to the @var{dumpname}, and the files are
6496 created in the directory of the output file. In case of
6497 @option{=@var{filename}} option, the dump is output on the given file
6498 instead of the pass numbered dump files. Note that the pass number is
6499 computed statically as passes get registered into the pass manager.
6500 Thus the numbering is not related to the dynamic order of execution of
6501 passes.  In particular, a pass installed by a plugin could have a
6502 number over 200 even if it executed quite early.  @var{dumpname} is
6503 generated from the name of the output file, if explicitly specified
6504 and it is not an executable, otherwise it is the basename of the
6505 source file. These switches may have different effects when
6506 @option{-E} is used for preprocessing.
6507
6508 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6509 @option{-d} option @var{letters}.  Here are the possible
6510 letters for use in @var{pass} and @var{letters}, and their meanings:
6511
6512 @table @gcctabopt
6513
6514 @item -fdump-rtl-alignments
6515 @opindex fdump-rtl-alignments
6516 Dump after branch alignments have been computed.
6517
6518 @item -fdump-rtl-asmcons
6519 @opindex fdump-rtl-asmcons
6520 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6521
6522 @item -fdump-rtl-auto_inc_dec
6523 @opindex fdump-rtl-auto_inc_dec
6524 Dump after auto-inc-dec discovery.  This pass is only run on
6525 architectures that have auto inc or auto dec instructions.
6526
6527 @item -fdump-rtl-barriers
6528 @opindex fdump-rtl-barriers
6529 Dump after cleaning up the barrier instructions.
6530
6531 @item -fdump-rtl-bbpart
6532 @opindex fdump-rtl-bbpart
6533 Dump after partitioning hot and cold basic blocks.
6534
6535 @item -fdump-rtl-bbro
6536 @opindex fdump-rtl-bbro
6537 Dump after block reordering.
6538
6539 @item -fdump-rtl-btl1
6540 @itemx -fdump-rtl-btl2
6541 @opindex fdump-rtl-btl2
6542 @opindex fdump-rtl-btl2
6543 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6544 after the two branch
6545 target load optimization passes.
6546
6547 @item -fdump-rtl-bypass
6548 @opindex fdump-rtl-bypass
6549 Dump after jump bypassing and control flow optimizations.
6550
6551 @item -fdump-rtl-combine
6552 @opindex fdump-rtl-combine
6553 Dump after the RTL instruction combination pass.
6554
6555 @item -fdump-rtl-compgotos
6556 @opindex fdump-rtl-compgotos
6557 Dump after duplicating the computed gotos.
6558
6559 @item -fdump-rtl-ce1
6560 @itemx -fdump-rtl-ce2
6561 @itemx -fdump-rtl-ce3
6562 @opindex fdump-rtl-ce1
6563 @opindex fdump-rtl-ce2
6564 @opindex fdump-rtl-ce3
6565 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6566 @option{-fdump-rtl-ce3} enable dumping after the three
6567 if conversion passes.
6568
6569 @item -fdump-rtl-cprop_hardreg
6570 @opindex fdump-rtl-cprop_hardreg
6571 Dump after hard register copy propagation.
6572
6573 @item -fdump-rtl-csa
6574 @opindex fdump-rtl-csa
6575 Dump after combining stack adjustments.
6576
6577 @item -fdump-rtl-cse1
6578 @itemx -fdump-rtl-cse2
6579 @opindex fdump-rtl-cse1
6580 @opindex fdump-rtl-cse2
6581 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6582 the two common subexpression elimination passes.
6583
6584 @item -fdump-rtl-dce
6585 @opindex fdump-rtl-dce
6586 Dump after the standalone dead code elimination passes.
6587
6588 @item -fdump-rtl-dbr
6589 @opindex fdump-rtl-dbr
6590 Dump after delayed branch scheduling.
6591
6592 @item -fdump-rtl-dce1
6593 @itemx -fdump-rtl-dce2
6594 @opindex fdump-rtl-dce1
6595 @opindex fdump-rtl-dce2
6596 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6597 the two dead store elimination passes.
6598
6599 @item -fdump-rtl-eh
6600 @opindex fdump-rtl-eh
6601 Dump after finalization of EH handling code.
6602
6603 @item -fdump-rtl-eh_ranges
6604 @opindex fdump-rtl-eh_ranges
6605 Dump after conversion of EH handling range regions.
6606
6607 @item -fdump-rtl-expand
6608 @opindex fdump-rtl-expand
6609 Dump after RTL generation.
6610
6611 @item -fdump-rtl-fwprop1
6612 @itemx -fdump-rtl-fwprop2
6613 @opindex fdump-rtl-fwprop1
6614 @opindex fdump-rtl-fwprop2
6615 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6616 dumping after the two forward propagation passes.
6617
6618 @item -fdump-rtl-gcse1
6619 @itemx -fdump-rtl-gcse2
6620 @opindex fdump-rtl-gcse1
6621 @opindex fdump-rtl-gcse2
6622 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6623 after global common subexpression elimination.
6624
6625 @item -fdump-rtl-init-regs
6626 @opindex fdump-rtl-init-regs
6627 Dump after the initialization of the registers.
6628
6629 @item -fdump-rtl-initvals
6630 @opindex fdump-rtl-initvals
6631 Dump after the computation of the initial value sets.
6632
6633 @item -fdump-rtl-into_cfglayout
6634 @opindex fdump-rtl-into_cfglayout
6635 Dump after converting to cfglayout mode.
6636
6637 @item -fdump-rtl-ira
6638 @opindex fdump-rtl-ira
6639 Dump after iterated register allocation.
6640
6641 @item -fdump-rtl-jump
6642 @opindex fdump-rtl-jump
6643 Dump after the second jump optimization.
6644
6645 @item -fdump-rtl-loop2
6646 @opindex fdump-rtl-loop2
6647 @option{-fdump-rtl-loop2} enables dumping after the rtl
6648 loop optimization passes.
6649
6650 @item -fdump-rtl-mach
6651 @opindex fdump-rtl-mach
6652 Dump after performing the machine dependent reorganization pass, if that
6653 pass exists.
6654
6655 @item -fdump-rtl-mode_sw
6656 @opindex fdump-rtl-mode_sw
6657 Dump after removing redundant mode switches.
6658
6659 @item -fdump-rtl-rnreg
6660 @opindex fdump-rtl-rnreg
6661 Dump after register renumbering.
6662
6663 @item -fdump-rtl-outof_cfglayout
6664 @opindex fdump-rtl-outof_cfglayout
6665 Dump after converting from cfglayout mode.
6666
6667 @item -fdump-rtl-peephole2
6668 @opindex fdump-rtl-peephole2
6669 Dump after the peephole pass.
6670
6671 @item -fdump-rtl-postreload
6672 @opindex fdump-rtl-postreload
6673 Dump after post-reload optimizations.
6674
6675 @item -fdump-rtl-pro_and_epilogue
6676 @opindex fdump-rtl-pro_and_epilogue
6677 Dump after generating the function prologues and epilogues.
6678
6679 @item -fdump-rtl-sched1
6680 @itemx -fdump-rtl-sched2
6681 @opindex fdump-rtl-sched1
6682 @opindex fdump-rtl-sched2
6683 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6684 after the basic block scheduling passes.
6685
6686 @item -fdump-rtl-ree
6687 @opindex fdump-rtl-ree
6688 Dump after sign/zero extension elimination.
6689
6690 @item -fdump-rtl-seqabstr
6691 @opindex fdump-rtl-seqabstr
6692 Dump after common sequence discovery.
6693
6694 @item -fdump-rtl-shorten
6695 @opindex fdump-rtl-shorten
6696 Dump after shortening branches.
6697
6698 @item -fdump-rtl-sibling
6699 @opindex fdump-rtl-sibling
6700 Dump after sibling call optimizations.
6701
6702 @item -fdump-rtl-split1
6703 @itemx -fdump-rtl-split2
6704 @itemx -fdump-rtl-split3
6705 @itemx -fdump-rtl-split4
6706 @itemx -fdump-rtl-split5
6707 @opindex fdump-rtl-split1
6708 @opindex fdump-rtl-split2
6709 @opindex fdump-rtl-split3
6710 @opindex fdump-rtl-split4
6711 @opindex fdump-rtl-split5
6712 These options enable dumping after five rounds of
6713 instruction splitting.
6714
6715 @item -fdump-rtl-sms
6716 @opindex fdump-rtl-sms
6717 Dump after modulo scheduling.  This pass is only run on some
6718 architectures.
6719
6720 @item -fdump-rtl-stack
6721 @opindex fdump-rtl-stack
6722 Dump after conversion from GCC's ``flat register file'' registers to the
6723 x87's stack-like registers.  This pass is only run on x86 variants.
6724
6725 @item -fdump-rtl-subreg1
6726 @itemx -fdump-rtl-subreg2
6727 @opindex fdump-rtl-subreg1
6728 @opindex fdump-rtl-subreg2
6729 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6730 the two subreg expansion passes.
6731
6732 @item -fdump-rtl-unshare
6733 @opindex fdump-rtl-unshare
6734 Dump after all rtl has been unshared.
6735
6736 @item -fdump-rtl-vartrack
6737 @opindex fdump-rtl-vartrack
6738 Dump after variable tracking.
6739
6740 @item -fdump-rtl-vregs
6741 @opindex fdump-rtl-vregs
6742 Dump after converting virtual registers to hard registers.
6743
6744 @item -fdump-rtl-web
6745 @opindex fdump-rtl-web
6746 Dump after live range splitting.
6747
6748 @item -fdump-rtl-regclass
6749 @itemx -fdump-rtl-subregs_of_mode_init
6750 @itemx -fdump-rtl-subregs_of_mode_finish
6751 @itemx -fdump-rtl-dfinit
6752 @itemx -fdump-rtl-dfinish
6753 @opindex fdump-rtl-regclass
6754 @opindex fdump-rtl-subregs_of_mode_init
6755 @opindex fdump-rtl-subregs_of_mode_finish
6756 @opindex fdump-rtl-dfinit
6757 @opindex fdump-rtl-dfinish
6758 These dumps are defined but always produce empty files.
6759
6760 @item -da
6761 @itemx -fdump-rtl-all
6762 @opindex da
6763 @opindex fdump-rtl-all
6764 Produce all the dumps listed above.
6765
6766 @item -dA
6767 @opindex dA
6768 Annotate the assembler output with miscellaneous debugging information.
6769
6770 @item -dD
6771 @opindex dD
6772 Dump all macro definitions, at the end of preprocessing, in addition to
6773 normal output.
6774
6775 @item -dH
6776 @opindex dH
6777 Produce a core dump whenever an error occurs.
6778
6779 @item -dp
6780 @opindex dp
6781 Annotate the assembler output with a comment indicating which
6782 pattern and alternative is used.  The length of each instruction is
6783 also printed.
6784
6785 @item -dP
6786 @opindex dP
6787 Dump the RTL in the assembler output as a comment before each instruction.
6788 Also turns on @option{-dp} annotation.
6789
6790 @item -dx
6791 @opindex dx
6792 Just generate RTL for a function instead of compiling it.  Usually used
6793 with @option{-fdump-rtl-expand}.
6794 @end table
6795
6796 @item -fdump-noaddr
6797 @opindex fdump-noaddr
6798 When doing debugging dumps, suppress address output.  This makes it more
6799 feasible to use diff on debugging dumps for compiler invocations with
6800 different compiler binaries and/or different
6801 text / bss / data / heap / stack / dso start locations.
6802
6803 @item -freport-bug
6804 @opindex freport-bug
6805 Collect and dump debug information into temporary file if ICE in C/C++
6806 compiler occured.
6807
6808 @item -fdump-unnumbered
6809 @opindex fdump-unnumbered
6810 When doing debugging dumps, suppress instruction numbers and address output.
6811 This makes it more feasible to use diff on debugging dumps for compiler
6812 invocations with different options, in particular with and without
6813 @option{-g}.
6814
6815 @item -fdump-unnumbered-links
6816 @opindex fdump-unnumbered-links
6817 When doing debugging dumps (see @option{-d} option above), suppress
6818 instruction numbers for the links to the previous and next instructions
6819 in a sequence.
6820
6821 @item -fdump-translation-unit @r{(C++ only)}
6822 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6823 @opindex fdump-translation-unit
6824 Dump a representation of the tree structure for the entire translation
6825 unit to a file.  The file name is made by appending @file{.tu} to the
6826 source file name, and the file is created in the same directory as the
6827 output file.  If the @samp{-@var{options}} form is used, @var{options}
6828 controls the details of the dump as described for the
6829 @option{-fdump-tree} options.
6830
6831 @item -fdump-class-hierarchy @r{(C++ only)}
6832 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6833 @opindex fdump-class-hierarchy
6834 Dump a representation of each class's hierarchy and virtual function
6835 table layout to a file.  The file name is made by appending
6836 @file{.class} to the source file name, and the file is created in the
6837 same directory as the output file.  If the @samp{-@var{options}} form
6838 is used, @var{options} controls the details of the dump as described
6839 for the @option{-fdump-tree} options.
6840
6841 @item -fdump-ipa-@var{switch}
6842 @opindex fdump-ipa
6843 Control the dumping at various stages of inter-procedural analysis
6844 language tree to a file.  The file name is generated by appending a
6845 switch specific suffix to the source file name, and the file is created
6846 in the same directory as the output file.  The following dumps are
6847 possible:
6848
6849 @table @samp
6850 @item all
6851 Enables all inter-procedural analysis dumps.
6852
6853 @item cgraph
6854 Dumps information about call-graph optimization, unused function removal,
6855 and inlining decisions.
6856
6857 @item inline
6858 Dump after function inlining.
6859
6860 @end table
6861
6862 @item -fdump-passes
6863 @opindex fdump-passes
6864 Dump the list of optimization passes that are turned on and off by
6865 the current command-line options.
6866
6867 @item -fdump-statistics-@var{option}
6868 @opindex fdump-statistics
6869 Enable and control dumping of pass statistics in a separate file.  The
6870 file name is generated by appending a suffix ending in
6871 @samp{.statistics} to the source file name, and the file is created in
6872 the same directory as the output file.  If the @samp{-@var{option}}
6873 form is used, @samp{-stats} causes counters to be summed over the
6874 whole compilation unit while @samp{-details} dumps every event as
6875 the passes generate them.  The default with no option is to sum
6876 counters for each function compiled.
6877
6878 @item -fdump-tree-@var{switch}
6879 @itemx -fdump-tree-@var{switch}-@var{options}
6880 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6881 @opindex fdump-tree
6882 Control the dumping at various stages of processing the intermediate
6883 language tree to a file.  The file name is generated by appending a
6884 switch-specific suffix to the source file name, and the file is
6885 created in the same directory as the output file. In case of
6886 @option{=@var{filename}} option, the dump is output on the given file
6887 instead of the auto named dump files.  If the @samp{-@var{options}}
6888 form is used, @var{options} is a list of @samp{-} separated options
6889 which control the details of the dump.  Not all options are applicable
6890 to all dumps; those that are not meaningful are ignored.  The
6891 following options are available
6892
6893 @table @samp
6894 @item address
6895 Print the address of each node.  Usually this is not meaningful as it
6896 changes according to the environment and source file.  Its primary use
6897 is for tying up a dump file with a debug environment.
6898 @item asmname
6899 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6900 in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
6901 use working backward from mangled names in the assembly file.
6902 @item slim
6903 When dumping front-end intermediate representations, inhibit dumping
6904 of members of a scope or body of a function merely because that scope
6905 has been reached.  Only dump such items when they are directly reachable
6906 by some other path.
6907
6908 When dumping pretty-printed trees, this option inhibits dumping the
6909 bodies of control structures.
6910
6911 When dumping RTL, print the RTL in slim (condensed) form instead of
6912 the default LISP-like representation.
6913 @item raw
6914 Print a raw representation of the tree.  By default, trees are
6915 pretty-printed into a C-like representation.
6916 @item details
6917 Enable more detailed dumps (not honored by every dump option). Also
6918 include information from the optimization passes.
6919 @item stats
6920 Enable dumping various statistics about the pass (not honored by every dump
6921 option).
6922 @item blocks
6923 Enable showing basic block boundaries (disabled in raw dumps).
6924 @item graph
6925 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6926 dump a representation of the control flow graph suitable for viewing with
6927 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
6928 the file is pretty-printed as a subgraph, so that GraphViz can render them
6929 all in a single plot.
6930
6931 This option currently only works for RTL dumps, and the RTL is always
6932 dumped in slim form.
6933 @item vops
6934 Enable showing virtual operands for every statement.
6935 @item lineno
6936 Enable showing line numbers for statements.
6937 @item uid
6938 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6939 @item verbose
6940 Enable showing the tree dump for each statement.
6941 @item eh
6942 Enable showing the EH region number holding each statement.
6943 @item scev
6944 Enable showing scalar evolution analysis details.
6945 @item optimized
6946 Enable showing optimization information (only available in certain
6947 passes).
6948 @item missed
6949 Enable showing missed optimization information (only available in certain
6950 passes).
6951 @item note
6952 Enable other detailed optimization information (only available in
6953 certain passes).
6954 @item =@var{filename}
6955 Instead of an auto named dump file, output into the given file
6956 name. The file names @file{stdout} and @file{stderr} are treated
6957 specially and are considered already open standard streams. For
6958 example,
6959
6960 @smallexample
6961 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6962      -fdump-tree-pre=stderr file.c
6963 @end smallexample
6964
6965 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6966 output on to @file{stderr}. If two conflicting dump filenames are
6967 given for the same pass, then the latter option overrides the earlier
6968 one.
6969
6970 @item all
6971 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6972 and @option{lineno}.
6973
6974 @item optall
6975 Turn on all optimization options, i.e., @option{optimized},
6976 @option{missed}, and @option{note}.
6977 @end table
6978
6979 The following tree dumps are possible:
6980 @table @samp
6981
6982 @item original
6983 @opindex fdump-tree-original
6984 Dump before any tree based optimization, to @file{@var{file}.original}.
6985
6986 @item optimized
6987 @opindex fdump-tree-optimized
6988 Dump after all tree based optimization, to @file{@var{file}.optimized}.
6989
6990 @item gimple
6991 @opindex fdump-tree-gimple
6992 Dump each function before and after the gimplification pass to a file.  The
6993 file name is made by appending @file{.gimple} to the source file name.
6994
6995 @item cfg
6996 @opindex fdump-tree-cfg
6997 Dump the control flow graph of each function to a file.  The file name is
6998 made by appending @file{.cfg} to the source file name.
6999
7000 @item ch
7001 @opindex fdump-tree-ch
7002 Dump each function after copying loop headers.  The file name is made by
7003 appending @file{.ch} to the source file name.
7004
7005 @item ssa
7006 @opindex fdump-tree-ssa
7007 Dump SSA related information to a file.  The file name is made by appending
7008 @file{.ssa} to the source file name.
7009
7010 @item alias
7011 @opindex fdump-tree-alias
7012 Dump aliasing information for each function.  The file name is made by
7013 appending @file{.alias} to the source file name.
7014
7015 @item ccp
7016 @opindex fdump-tree-ccp
7017 Dump each function after CCP@.  The file name is made by appending
7018 @file{.ccp} to the source file name.
7019
7020 @item storeccp
7021 @opindex fdump-tree-storeccp
7022 Dump each function after STORE-CCP@.  The file name is made by appending
7023 @file{.storeccp} to the source file name.
7024
7025 @item pre
7026 @opindex fdump-tree-pre
7027 Dump trees after partial redundancy elimination.  The file name is made
7028 by appending @file{.pre} to the source file name.
7029
7030 @item fre
7031 @opindex fdump-tree-fre
7032 Dump trees after full redundancy elimination.  The file name is made
7033 by appending @file{.fre} to the source file name.
7034
7035 @item copyprop
7036 @opindex fdump-tree-copyprop
7037 Dump trees after copy propagation.  The file name is made
7038 by appending @file{.copyprop} to the source file name.
7039
7040 @item store_copyprop
7041 @opindex fdump-tree-store_copyprop
7042 Dump trees after store copy-propagation.  The file name is made
7043 by appending @file{.store_copyprop} to the source file name.
7044
7045 @item dce
7046 @opindex fdump-tree-dce
7047 Dump each function after dead code elimination.  The file name is made by
7048 appending @file{.dce} to the source file name.
7049
7050 @item sra
7051 @opindex fdump-tree-sra
7052 Dump each function after performing scalar replacement of aggregates.  The
7053 file name is made by appending @file{.sra} to the source file name.
7054
7055 @item sink
7056 @opindex fdump-tree-sink
7057 Dump each function after performing code sinking.  The file name is made
7058 by appending @file{.sink} to the source file name.
7059
7060 @item dom
7061 @opindex fdump-tree-dom
7062 Dump each function after applying dominator tree optimizations.  The file
7063 name is made by appending @file{.dom} to the source file name.
7064
7065 @item dse
7066 @opindex fdump-tree-dse
7067 Dump each function after applying dead store elimination.  The file
7068 name is made by appending @file{.dse} to the source file name.
7069
7070 @item phiopt
7071 @opindex fdump-tree-phiopt
7072 Dump each function after optimizing PHI nodes into straightline code.  The file
7073 name is made by appending @file{.phiopt} to the source file name.
7074
7075 @item forwprop
7076 @opindex fdump-tree-forwprop
7077 Dump each function after forward propagating single use variables.  The file
7078 name is made by appending @file{.forwprop} to the source file name.
7079
7080 @item copyrename
7081 @opindex fdump-tree-copyrename
7082 Dump each function after applying the copy rename optimization.  The file
7083 name is made by appending @file{.copyrename} to the source file name.
7084
7085 @item nrv
7086 @opindex fdump-tree-nrv
7087 Dump each function after applying the named return value optimization on
7088 generic trees.  The file name is made by appending @file{.nrv} to the source
7089 file name.
7090
7091 @item vect
7092 @opindex fdump-tree-vect
7093 Dump each function after applying vectorization of loops.  The file name is
7094 made by appending @file{.vect} to the source file name.
7095
7096 @item slp
7097 @opindex fdump-tree-slp
7098 Dump each function after applying vectorization of basic blocks.  The file name
7099 is made by appending @file{.slp} to the source file name.
7100
7101 @item vrp
7102 @opindex fdump-tree-vrp
7103 Dump each function after Value Range Propagation (VRP).  The file name
7104 is made by appending @file{.vrp} to the source file name.
7105
7106 @item all
7107 @opindex fdump-tree-all
7108 Enable all the available tree dumps with the flags provided in this option.
7109 @end table
7110
7111 @item -fopt-info
7112 @itemx -fopt-info-@var{options}
7113 @itemx -fopt-info-@var{options}=@var{filename}
7114 @opindex fopt-info
7115 Controls optimization dumps from various optimization passes. If the
7116 @samp{-@var{options}} form is used, @var{options} is a list of
7117 @samp{-} separated option keywords to select the dump details and
7118 optimizations.  
7119
7120 The @var{options} can be divided into two groups: options describing the
7121 verbosity of the dump, and options describing which optimizations
7122 should be included. The options from both the groups can be freely
7123 mixed as they are non-overlapping. However, in case of any conflicts,
7124 the later options override the earlier options on the command
7125 line. 
7126
7127 The following options control the dump verbosity:
7128
7129 @table @samp
7130 @item optimized
7131 Print information when an optimization is successfully applied. It is
7132 up to a pass to decide which information is relevant. For example, the
7133 vectorizer passes print the source location of loops which are
7134 successfully vectorized.
7135 @item missed
7136 Print information about missed optimizations. Individual passes
7137 control which information to include in the output. 
7138 @item note
7139 Print verbose information about optimizations, such as certain
7140 transformations, more detailed messages about decisions etc.
7141 @item all
7142 Print detailed optimization information. This includes
7143 @samp{optimized}, @samp{missed}, and @samp{note}.
7144 @end table
7145
7146 One or more of the following option keywords can be used to describe a
7147 group of optimizations:
7148
7149 @table @samp
7150 @item ipa
7151 Enable dumps from all interprocedural optimizations.
7152 @item loop
7153 Enable dumps from all loop optimizations.
7154 @item inline
7155 Enable dumps from all inlining optimizations.
7156 @item vec
7157 Enable dumps from all vectorization optimizations.
7158 @item optall
7159 Enable dumps from all optimizations. This is a superset of
7160 the optimization groups listed above.
7161 @end table
7162
7163 If @var{options} is
7164 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7165 info about successful optimizations from all the passes.  
7166
7167 If the @var{filename} is provided, then the dumps from all the
7168 applicable optimizations are concatenated into the @var{filename}.
7169 Otherwise the dump is output onto @file{stderr}. Though multiple
7170 @option{-fopt-info} options are accepted, only one of them can include
7171 a @var{filename}. If other filenames are provided then all but the
7172 first such option are ignored.
7173
7174 Note that the output @var{filename} is overwritten
7175 in case of multiple translation units. If a combined output from
7176 multiple translation units is desired, @file{stderr} should be used
7177 instead.
7178
7179 In the following example, the optimization info is output to
7180 @file{stderr}:
7181
7182 @smallexample
7183 gcc -O3 -fopt-info
7184 @end smallexample
7185
7186 This example:
7187 @smallexample
7188 gcc -O3 -fopt-info-missed=missed.all
7189 @end smallexample
7190
7191 @noindent
7192 outputs missed optimization report from all the passes into
7193 @file{missed.all}, and this one:
7194
7195 @smallexample
7196 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7197 @end smallexample
7198
7199 @noindent
7200 prints information about missed optimization opportunities from
7201 vectorization passes on @file{stderr}.  
7202 Note that @option{-fopt-info-vec-missed} is equivalent to 
7203 @option{-fopt-info-missed-vec}.
7204
7205 As another example,
7206 @smallexample
7207 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7208 @end smallexample
7209
7210 @noindent
7211 outputs information about missed optimizations as well as
7212 optimized locations from all the inlining passes into
7213 @file{inline.txt}.
7214
7215 Finally, consider:
7216
7217 @smallexample
7218 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7219 @end smallexample
7220
7221 @noindent
7222 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7223 in conflict since only one output file is allowed. In this case, only
7224 the first option takes effect and the subsequent options are
7225 ignored. Thus only @file{vec.miss} is produced which contains
7226 dumps from the vectorizer about missed opportunities.
7227
7228 @item -frandom-seed=@var{number}
7229 @opindex frandom-seed
7230 This option provides a seed that GCC uses in place of
7231 random numbers in generating certain symbol names
7232 that have to be different in every compiled file.  It is also used to
7233 place unique stamps in coverage data files and the object files that
7234 produce them.  You can use the @option{-frandom-seed} option to produce
7235 reproducibly identical object files.
7236
7237 The @var{number} should be different for every file you compile.
7238
7239 @item -fsched-verbose=@var{n}
7240 @opindex fsched-verbose
7241 On targets that use instruction scheduling, this option controls the
7242 amount of debugging output the scheduler prints.  This information is
7243 written to standard error, unless @option{-fdump-rtl-sched1} or
7244 @option{-fdump-rtl-sched2} is specified, in which case it is output
7245 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7246 respectively.  However for @var{n} greater than nine, the output is
7247 always printed to standard error.
7248
7249 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7250 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7251 For @var{n} greater than one, it also output basic block probabilities,
7252 detailed ready list information and unit/insn info.  For @var{n} greater
7253 than two, it includes RTL at abort point, control-flow and regions info.
7254 And for @var{n} over four, @option{-fsched-verbose} also includes
7255 dependence info.
7256
7257 @item -save-temps
7258 @itemx -save-temps=cwd
7259 @opindex save-temps
7260 Store the usual ``temporary'' intermediate files permanently; place them
7261 in the current directory and name them based on the source file.  Thus,
7262 compiling @file{foo.c} with @option{-c -save-temps} produces files
7263 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
7264 preprocessed @file{foo.i} output file even though the compiler now
7265 normally uses an integrated preprocessor.
7266
7267 When used in combination with the @option{-x} command-line option,
7268 @option{-save-temps} is sensible enough to avoid over writing an
7269 input source file with the same extension as an intermediate file.
7270 The corresponding intermediate file may be obtained by renaming the
7271 source file before using @option{-save-temps}.
7272
7273 If you invoke GCC in parallel, compiling several different source
7274 files that share a common base name in different subdirectories or the
7275 same source file compiled for multiple output destinations, it is
7276 likely that the different parallel compilers will interfere with each
7277 other, and overwrite the temporary files.  For instance:
7278
7279 @smallexample
7280 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7281 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7282 @end smallexample
7283
7284 may result in @file{foo.i} and @file{foo.o} being written to
7285 simultaneously by both compilers.
7286
7287 @item -save-temps=obj
7288 @opindex save-temps=obj
7289 Store the usual ``temporary'' intermediate files permanently.  If the
7290 @option{-o} option is used, the temporary files are based on the
7291 object file.  If the @option{-o} option is not used, the
7292 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7293
7294 For example:
7295
7296 @smallexample
7297 gcc -save-temps=obj -c foo.c
7298 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7299 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7300 @end smallexample
7301
7302 @noindent
7303 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7304 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7305 @file{dir2/yfoobar.o}.
7306
7307 @item -time@r{[}=@var{file}@r{]}
7308 @opindex time
7309 Report the CPU time taken by each subprocess in the compilation
7310 sequence.  For C source files, this is the compiler proper and assembler
7311 (plus the linker if linking is done).
7312
7313 Without the specification of an output file, the output looks like this:
7314
7315 @smallexample
7316 # cc1 0.12 0.01
7317 # as 0.00 0.01
7318 @end smallexample
7319
7320 The first number on each line is the ``user time'', that is time spent
7321 executing the program itself.  The second number is ``system time'',
7322 time spent executing operating system routines on behalf of the program.
7323 Both numbers are in seconds.
7324
7325 With the specification of an output file, the output is appended to the
7326 named file, and it looks like this:
7327
7328 @smallexample
7329 0.12 0.01 cc1 @var{options}
7330 0.00 0.01 as @var{options}
7331 @end smallexample
7332
7333 The ``user time'' and the ``system time'' are moved before the program
7334 name, and the options passed to the program are displayed, so that one
7335 can later tell what file was being compiled, and with which options.
7336
7337 @item -fvar-tracking
7338 @opindex fvar-tracking
7339 Run variable tracking pass.  It computes where variables are stored at each
7340 position in code.  Better debugging information is then generated
7341 (if the debugging information format supports this information).
7342
7343 It is enabled by default when compiling with optimization (@option{-Os},
7344 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7345 the debug info format supports it.
7346
7347 @item -fvar-tracking-assignments
7348 @opindex fvar-tracking-assignments
7349 @opindex fno-var-tracking-assignments
7350 Annotate assignments to user variables early in the compilation and
7351 attempt to carry the annotations over throughout the compilation all the
7352 way to the end, in an attempt to improve debug information while
7353 optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7354
7355 It can be enabled even if var-tracking is disabled, in which case
7356 annotations are created and maintained, but discarded at the end.
7357 By default, this flag is enabled together with @option{-fvar-tracking},
7358 except when selective scheduling is enabled.
7359
7360 @item -fvar-tracking-assignments-toggle
7361 @opindex fvar-tracking-assignments-toggle
7362 @opindex fno-var-tracking-assignments-toggle
7363 Toggle @option{-fvar-tracking-assignments}, in the same way that
7364 @option{-gtoggle} toggles @option{-g}.
7365
7366 @item -print-file-name=@var{library}
7367 @opindex print-file-name
7368 Print the full absolute name of the library file @var{library} that
7369 would be used when linking---and don't do anything else.  With this
7370 option, GCC does not compile or link anything; it just prints the
7371 file name.
7372
7373 @item -print-multi-directory
7374 @opindex print-multi-directory
7375 Print the directory name corresponding to the multilib selected by any
7376 other switches present in the command line.  This directory is supposed
7377 to exist in @env{GCC_EXEC_PREFIX}.
7378
7379 @item -print-multi-lib
7380 @opindex print-multi-lib
7381 Print the mapping from multilib directory names to compiler switches
7382 that enable them.  The directory name is separated from the switches by
7383 @samp{;}, and each switch starts with an @samp{@@} instead of the
7384 @samp{-}, without spaces between multiple switches.  This is supposed to
7385 ease shell processing.
7386
7387 @item -print-multi-os-directory
7388 @opindex print-multi-os-directory
7389 Print the path to OS libraries for the selected
7390 multilib, relative to some @file{lib} subdirectory.  If OS libraries are
7391 present in the @file{lib} subdirectory and no multilibs are used, this is
7392 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7393 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7394 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7395 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7396
7397 @item -print-multiarch
7398 @opindex print-multiarch
7399 Print the path to OS libraries for the selected multiarch,
7400 relative to some @file{lib} subdirectory.
7401
7402 @item -print-prog-name=@var{program}
7403 @opindex print-prog-name
7404 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7405
7406 @item -print-libgcc-file-name
7407 @opindex print-libgcc-file-name
7408 Same as @option{-print-file-name=libgcc.a}.
7409
7410 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7411 but you do want to link with @file{libgcc.a}.  You can do:
7412
7413 @smallexample
7414 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7415 @end smallexample
7416
7417 @item -print-search-dirs
7418 @opindex print-search-dirs
7419 Print the name of the configured installation directory and a list of
7420 program and library directories @command{gcc} searches---and don't do anything else.
7421
7422 This is useful when @command{gcc} prints the error message
7423 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7424 To resolve this you either need to put @file{cpp0} and the other compiler
7425 components where @command{gcc} expects to find them, or you can set the environment
7426 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7427 Don't forget the trailing @samp{/}.
7428 @xref{Environment Variables}.
7429
7430 @item -print-sysroot
7431 @opindex print-sysroot
7432 Print the target sysroot directory that is used during
7433 compilation.  This is the target sysroot specified either at configure
7434 time or using the @option{--sysroot} option, possibly with an extra
7435 suffix that depends on compilation options.  If no target sysroot is
7436 specified, the option prints nothing.
7437
7438 @item -print-sysroot-headers-suffix
7439 @opindex print-sysroot-headers-suffix
7440 Print the suffix added to the target sysroot when searching for
7441 headers, or give an error if the compiler is not configured with such
7442 a suffix---and don't do anything else.
7443
7444 @item -dumpmachine
7445 @opindex dumpmachine
7446 Print the compiler's target machine (for example,
7447 @samp{i686-pc-linux-gnu})---and don't do anything else.
7448
7449 @item -dumpversion
7450 @opindex dumpversion
7451 Print the compiler version (for example, @code{3.0})---and don't do
7452 anything else.
7453
7454 @item -dumpspecs
7455 @opindex dumpspecs
7456 Print the compiler's built-in specs---and don't do anything else.  (This
7457 is used when GCC itself is being built.)  @xref{Spec Files}.
7458
7459 @item -fno-eliminate-unused-debug-types
7460 @opindex feliminate-unused-debug-types
7461 @opindex fno-eliminate-unused-debug-types
7462 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol 
7463 output for types that are nowhere used in the source file being compiled.
7464 Sometimes it is useful to have GCC emit debugging
7465 information for all types declared in a compilation
7466 unit, regardless of whether or not they are actually used
7467 in that compilation unit, for example 
7468 if, in the debugger, you want to cast a value to a type that is
7469 not actually used in your program (but is declared).  More often,
7470 however, this results in a significant amount of wasted space.
7471 @end table
7472
7473 @node Optimize Options
7474 @section Options That Control Optimization
7475 @cindex optimize options
7476 @cindex options, optimization
7477
7478 These options control various sorts of optimizations.
7479
7480 Without any optimization option, the compiler's goal is to reduce the
7481 cost of compilation and to make debugging produce the expected
7482 results.  Statements are independent: if you stop the program with a
7483 breakpoint between statements, you can then assign a new value to any
7484 variable or change the program counter to any other statement in the
7485 function and get exactly the results you expect from the source
7486 code.
7487
7488 Turning on optimization flags makes the compiler attempt to improve
7489 the performance and/or code size at the expense of compilation time
7490 and possibly the ability to debug the program.
7491
7492 The compiler performs optimization based on the knowledge it has of the
7493 program.  Compiling multiple files at once to a single output file mode allows
7494 the compiler to use information gained from all of the files when compiling
7495 each of them.
7496
7497 Not all optimizations are controlled directly by a flag.  Only
7498 optimizations that have a flag are listed in this section.
7499
7500 Most optimizations are only enabled if an @option{-O} level is set on
7501 the command line.  Otherwise they are disabled, even if individual
7502 optimization flags are specified.
7503
7504 Depending on the target and how GCC was configured, a slightly different
7505 set of optimizations may be enabled at each @option{-O} level than
7506 those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7507 to find out the exact set of optimizations that are enabled at each level.
7508 @xref{Overall Options}, for examples.
7509
7510 @table @gcctabopt
7511 @item -O
7512 @itemx -O1
7513 @opindex O
7514 @opindex O1
7515 Optimize.  Optimizing compilation takes somewhat more time, and a lot
7516 more memory for a large function.
7517
7518 With @option{-O}, the compiler tries to reduce code size and execution
7519 time, without performing any optimizations that take a great deal of
7520 compilation time.
7521
7522 @option{-O} turns on the following optimization flags:
7523 @gccoptlist{
7524 -fauto-inc-dec @gol
7525 -fbranch-count-reg @gol
7526 -fcombine-stack-adjustments @gol
7527 -fcompare-elim @gol
7528 -fcprop-registers @gol
7529 -fdce @gol
7530 -fdefer-pop @gol
7531 -fdelayed-branch @gol
7532 -fdse @gol
7533 -fforward-propagate @gol
7534 -fguess-branch-probability @gol
7535 -fif-conversion2 @gol
7536 -fif-conversion @gol
7537 -finline-functions-called-once @gol
7538 -fipa-pure-const @gol
7539 -fipa-profile @gol
7540 -fipa-reference @gol
7541 -fmerge-constants @gol
7542 -fmove-loop-invariants @gol
7543 -fshrink-wrap @gol
7544 -fsplit-wide-types @gol
7545 -ftree-bit-ccp @gol
7546 -ftree-ccp @gol
7547 -fssa-phiopt @gol
7548 -ftree-ch @gol
7549 -ftree-copy-prop @gol
7550 -ftree-copyrename @gol
7551 -ftree-dce @gol
7552 -ftree-dominator-opts @gol
7553 -ftree-dse @gol
7554 -ftree-forwprop @gol
7555 -ftree-fre @gol
7556 -ftree-phiprop @gol
7557 -ftree-sink @gol
7558 -ftree-slsr @gol
7559 -ftree-sra @gol
7560 -ftree-pta @gol
7561 -ftree-ter @gol
7562 -funit-at-a-time}
7563
7564 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7565 where doing so does not interfere with debugging.
7566
7567 @item -O2
7568 @opindex O2
7569 Optimize even more.  GCC performs nearly all supported optimizations
7570 that do not involve a space-speed tradeoff.
7571 As compared to @option{-O}, this option increases both compilation time
7572 and the performance of the generated code.
7573
7574 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
7575 also turns on the following optimization flags:
7576 @gccoptlist{-fthread-jumps @gol
7577 -falign-functions  -falign-jumps @gol
7578 -falign-loops  -falign-labels @gol
7579 -fcaller-saves @gol
7580 -fcrossjumping @gol
7581 -fcse-follow-jumps  -fcse-skip-blocks @gol
7582 -fdelete-null-pointer-checks @gol
7583 -fdevirtualize -fdevirtualize-speculatively @gol
7584 -fexpensive-optimizations @gol
7585 -fgcse  -fgcse-lm  @gol
7586 -fhoist-adjacent-loads @gol
7587 -finline-small-functions @gol
7588 -findirect-inlining @gol
7589 -fipa-cp @gol
7590 -fipa-cp-alignment @gol
7591 -fipa-sra @gol
7592 -fipa-icf @gol
7593 -fisolate-erroneous-paths-dereference @gol
7594 -flra-remat @gol
7595 -foptimize-sibling-calls @gol
7596 -foptimize-strlen @gol
7597 -fpartial-inlining @gol
7598 -fpeephole2 @gol
7599 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7600 -frerun-cse-after-loop  @gol
7601 -fsched-interblock  -fsched-spec @gol
7602 -fschedule-insns  -fschedule-insns2 @gol
7603 -fstrict-aliasing -fstrict-overflow @gol
7604 -ftree-builtin-call-dce @gol
7605 -ftree-switch-conversion -ftree-tail-merge @gol
7606 -ftree-pre @gol
7607 -ftree-vrp @gol
7608 -fipa-ra}
7609
7610 Please note the warning under @option{-fgcse} about
7611 invoking @option{-O2} on programs that use computed gotos.
7612
7613 @item -O3
7614 @opindex O3
7615 Optimize yet more.  @option{-O3} turns on all optimizations specified
7616 by @option{-O2} and also turns on the @option{-finline-functions},
7617 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7618 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7619 @option{-ftree-loop-distribute-patterns},
7620 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7621 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7622
7623 @item -O0
7624 @opindex O0
7625 Reduce compilation time and make debugging produce the expected
7626 results.  This is the default.
7627
7628 @item -Os
7629 @opindex Os
7630 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7631 do not typically increase code size.  It also performs further
7632 optimizations designed to reduce code size.
7633
7634 @option{-Os} disables the following optimization flags:
7635 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7636 -falign-labels  -freorder-blocks  -freorder-blocks-and-partition @gol
7637 -fprefetch-loop-arrays}
7638
7639 @item -Ofast
7640 @opindex Ofast
7641 Disregard strict standards compliance.  @option{-Ofast} enables all
7642 @option{-O3} optimizations.  It also enables optimizations that are not
7643 valid for all standard-compliant programs.
7644 It turns on @option{-ffast-math} and the Fortran-specific
7645 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7646
7647 @item -Og
7648 @opindex Og
7649 Optimize debugging experience.  @option{-Og} enables optimizations
7650 that do not interfere with debugging. It should be the optimization
7651 level of choice for the standard edit-compile-debug cycle, offering
7652 a reasonable level of optimization while maintaining fast compilation
7653 and a good debugging experience.
7654
7655 If you use multiple @option{-O} options, with or without level numbers,
7656 the last such option is the one that is effective.
7657 @end table
7658
7659 Options of the form @option{-f@var{flag}} specify machine-independent
7660 flags.  Most flags have both positive and negative forms; the negative
7661 form of @option{-ffoo} is @option{-fno-foo}.  In the table
7662 below, only one of the forms is listed---the one you typically 
7663 use.  You can figure out the other form by either removing @samp{no-}
7664 or adding it.
7665
7666 The following options control specific optimizations.  They are either
7667 activated by @option{-O} options or are related to ones that are.  You
7668 can use the following flags in the rare cases when ``fine-tuning'' of
7669 optimizations to be performed is desired.
7670
7671 @table @gcctabopt
7672 @item -fno-defer-pop
7673 @opindex fno-defer-pop
7674 Always pop the arguments to each function call as soon as that function
7675 returns.  For machines that must pop arguments after a function call,
7676 the compiler normally lets arguments accumulate on the stack for several
7677 function calls and pops them all at once.
7678
7679 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7680
7681 @item -fforward-propagate
7682 @opindex fforward-propagate
7683 Perform a forward propagation pass on RTL@.  The pass tries to combine two
7684 instructions and checks if the result can be simplified.  If loop unrolling
7685 is active, two passes are performed and the second is scheduled after
7686 loop unrolling.
7687
7688 This option is enabled by default at optimization levels @option{-O},
7689 @option{-O2}, @option{-O3}, @option{-Os}.
7690
7691 @item -ffp-contract=@var{style}
7692 @opindex ffp-contract
7693 @option{-ffp-contract=off} disables floating-point expression contraction.
7694 @option{-ffp-contract=fast} enables floating-point expression contraction
7695 such as forming of fused multiply-add operations if the target has
7696 native support for them.
7697 @option{-ffp-contract=on} enables floating-point expression contraction
7698 if allowed by the language standard.  This is currently not implemented
7699 and treated equal to @option{-ffp-contract=off}.
7700
7701 The default is @option{-ffp-contract=fast}.
7702
7703 @item -fomit-frame-pointer
7704 @opindex fomit-frame-pointer
7705 Don't keep the frame pointer in a register for functions that
7706 don't need one.  This avoids the instructions to save, set up and
7707 restore frame pointers; it also makes an extra register available
7708 in many functions.  @strong{It also makes debugging impossible on
7709 some machines.}
7710
7711 On some machines, such as the VAX, this flag has no effect, because
7712 the standard calling sequence automatically handles the frame pointer
7713 and nothing is saved by pretending it doesn't exist.  The
7714 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7715 whether a target machine supports this flag.  @xref{Registers,,Register
7716 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7717
7718 The default setting (when not optimizing for
7719 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7720 @option{-fomit-frame-pointer}.  You can configure GCC with the
7721 @option{--enable-frame-pointer} configure option to change the default.
7722
7723 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7724
7725 @item -foptimize-sibling-calls
7726 @opindex foptimize-sibling-calls
7727 Optimize sibling and tail recursive calls.
7728
7729 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7730
7731 @item -foptimize-strlen
7732 @opindex foptimize-strlen
7733 Optimize various standard C string functions (e.g. @code{strlen},
7734 @code{strchr} or @code{strcpy}) and
7735 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7736
7737 Enabled at levels @option{-O2}, @option{-O3}.
7738
7739 @item -fno-inline
7740 @opindex fno-inline
7741 Do not expand any functions inline apart from those marked with
7742 the @code{always_inline} attribute.  This is the default when not
7743 optimizing.
7744
7745 Single functions can be exempted from inlining by marking them
7746 with the @code{noinline} attribute.
7747
7748 @item -finline-small-functions
7749 @opindex finline-small-functions
7750 Integrate functions into their callers when their body is smaller than expected
7751 function call code (so overall size of program gets smaller).  The compiler
7752 heuristically decides which functions are simple enough to be worth integrating
7753 in this way.  This inlining applies to all functions, even those not declared
7754 inline.
7755
7756 Enabled at level @option{-O2}.
7757
7758 @item -findirect-inlining
7759 @opindex findirect-inlining
7760 Inline also indirect calls that are discovered to be known at compile
7761 time thanks to previous inlining.  This option has any effect only
7762 when inlining itself is turned on by the @option{-finline-functions}
7763 or @option{-finline-small-functions} options.
7764
7765 Enabled at level @option{-O2}.
7766
7767 @item -finline-functions
7768 @opindex finline-functions
7769 Consider all functions for inlining, even if they are not declared inline.
7770 The compiler heuristically decides which functions are worth integrating
7771 in this way.
7772
7773 If all calls to a given function are integrated, and the function is
7774 declared @code{static}, then the function is normally not output as
7775 assembler code in its own right.
7776
7777 Enabled at level @option{-O3}.
7778
7779 @item -finline-functions-called-once
7780 @opindex finline-functions-called-once
7781 Consider all @code{static} functions called once for inlining into their
7782 caller even if they are not marked @code{inline}.  If a call to a given
7783 function is integrated, then the function is not output as assembler code
7784 in its own right.
7785
7786 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7787
7788 @item -fearly-inlining
7789 @opindex fearly-inlining
7790 Inline functions marked by @code{always_inline} and functions whose body seems
7791 smaller than the function call overhead early before doing
7792 @option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7793 makes profiling significantly cheaper and usually inlining faster on programs
7794 having large chains of nested wrapper functions.
7795
7796 Enabled by default.
7797
7798 @item -fipa-sra
7799 @opindex fipa-sra
7800 Perform interprocedural scalar replacement of aggregates, removal of
7801 unused parameters and replacement of parameters passed by reference
7802 by parameters passed by value.
7803
7804 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7805
7806 @item -finline-limit=@var{n}
7807 @opindex finline-limit
7808 By default, GCC limits the size of functions that can be inlined.  This flag
7809 allows coarse control of this limit.  @var{n} is the size of functions that
7810 can be inlined in number of pseudo instructions.
7811
7812 Inlining is actually controlled by a number of parameters, which may be
7813 specified individually by using @option{--param @var{name}=@var{value}}.
7814 The @option{-finline-limit=@var{n}} option sets some of these parameters
7815 as follows:
7816
7817 @table @gcctabopt
7818 @item max-inline-insns-single
7819 is set to @var{n}/2.
7820 @item max-inline-insns-auto
7821 is set to @var{n}/2.
7822 @end table
7823
7824 See below for a documentation of the individual
7825 parameters controlling inlining and for the defaults of these parameters.
7826
7827 @emph{Note:} there may be no value to @option{-finline-limit} that results
7828 in default behavior.
7829
7830 @emph{Note:} pseudo instruction represents, in this particular context, an
7831 abstract measurement of function's size.  In no way does it represent a count
7832 of assembly instructions and as such its exact meaning might change from one
7833 release to an another.
7834
7835 @item -fno-keep-inline-dllexport
7836 @opindex fno-keep-inline-dllexport
7837 This is a more fine-grained version of @option{-fkeep-inline-functions},
7838 which applies only to functions that are declared using the @code{dllexport}
7839 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7840 Functions}.)
7841
7842 @item -fkeep-inline-functions
7843 @opindex fkeep-inline-functions
7844 In C, emit @code{static} functions that are declared @code{inline}
7845 into the object file, even if the function has been inlined into all
7846 of its callers.  This switch does not affect functions using the
7847 @code{extern inline} extension in GNU C90@.  In C++, emit any and all
7848 inline functions into the object file.
7849
7850 @item -fkeep-static-consts
7851 @opindex fkeep-static-consts
7852 Emit variables declared @code{static const} when optimization isn't turned
7853 on, even if the variables aren't referenced.
7854
7855 GCC enables this option by default.  If you want to force the compiler to
7856 check if a variable is referenced, regardless of whether or not
7857 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7858
7859 @item -fmerge-constants
7860 @opindex fmerge-constants
7861 Attempt to merge identical constants (string constants and floating-point
7862 constants) across compilation units.
7863
7864 This option is the default for optimized compilation if the assembler and
7865 linker support it.  Use @option{-fno-merge-constants} to inhibit this
7866 behavior.
7867
7868 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7869
7870 @item -fmerge-all-constants
7871 @opindex fmerge-all-constants
7872 Attempt to merge identical constants and identical variables.
7873
7874 This option implies @option{-fmerge-constants}.  In addition to
7875 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7876 arrays or initialized constant variables with integral or floating-point
7877 types.  Languages like C or C++ require each variable, including multiple
7878 instances of the same variable in recursive calls, to have distinct locations,
7879 so using this option results in non-conforming
7880 behavior.
7881
7882 @item -fmodulo-sched
7883 @opindex fmodulo-sched
7884 Perform swing modulo scheduling immediately before the first scheduling
7885 pass.  This pass looks at innermost loops and reorders their
7886 instructions by overlapping different iterations.
7887
7888 @item -fmodulo-sched-allow-regmoves
7889 @opindex fmodulo-sched-allow-regmoves
7890 Perform more aggressive SMS-based modulo scheduling with register moves
7891 allowed.  By setting this flag certain anti-dependences edges are
7892 deleted, which triggers the generation of reg-moves based on the
7893 life-range analysis.  This option is effective only with
7894 @option{-fmodulo-sched} enabled.
7895
7896 @item -fno-branch-count-reg
7897 @opindex fno-branch-count-reg
7898 Do not use ``decrement and branch'' instructions on a count register,
7899 but instead generate a sequence of instructions that decrement a
7900 register, compare it against zero, then branch based upon the result.
7901 This option is only meaningful on architectures that support such
7902 instructions, which include x86, PowerPC, IA-64 and S/390.
7903
7904 Enabled by default at @option{-O1} and higher.
7905
7906 The default is @option{-fbranch-count-reg}.
7907
7908 @item -fno-function-cse
7909 @opindex fno-function-cse
7910 Do not put function addresses in registers; make each instruction that
7911 calls a constant function contain the function's address explicitly.
7912
7913 This option results in less efficient code, but some strange hacks
7914 that alter the assembler output may be confused by the optimizations
7915 performed when this option is not used.
7916
7917 The default is @option{-ffunction-cse}
7918
7919 @item -fno-zero-initialized-in-bss
7920 @opindex fno-zero-initialized-in-bss
7921 If the target supports a BSS section, GCC by default puts variables that
7922 are initialized to zero into BSS@.  This can save space in the resulting
7923 code.
7924
7925 This option turns off this behavior because some programs explicitly
7926 rely on variables going to the data section---e.g., so that the
7927 resulting executable can find the beginning of that section and/or make
7928 assumptions based on that.
7929
7930 The default is @option{-fzero-initialized-in-bss}.
7931
7932 @item -fthread-jumps
7933 @opindex fthread-jumps
7934 Perform optimizations that check to see if a jump branches to a
7935 location where another comparison subsumed by the first is found.  If
7936 so, the first branch is redirected to either the destination of the
7937 second branch or a point immediately following it, depending on whether
7938 the condition is known to be true or false.
7939
7940 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7941
7942 @item -fsplit-wide-types
7943 @opindex fsplit-wide-types
7944 When using a type that occupies multiple registers, such as @code{long
7945 long} on a 32-bit system, split the registers apart and allocate them
7946 independently.  This normally generates better code for those types,
7947 but may make debugging more difficult.
7948
7949 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7950 @option{-Os}.
7951
7952 @item -fcse-follow-jumps
7953 @opindex fcse-follow-jumps
7954 In common subexpression elimination (CSE), scan through jump instructions
7955 when the target of the jump is not reached by any other path.  For
7956 example, when CSE encounters an @code{if} statement with an
7957 @code{else} clause, CSE follows the jump when the condition
7958 tested is false.
7959
7960 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7961
7962 @item -fcse-skip-blocks
7963 @opindex fcse-skip-blocks
7964 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7965 follow jumps that conditionally skip over blocks.  When CSE
7966 encounters a simple @code{if} statement with no else clause,
7967 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7968 body of the @code{if}.
7969
7970 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7971
7972 @item -frerun-cse-after-loop
7973 @opindex frerun-cse-after-loop
7974 Re-run common subexpression elimination after loop optimizations are
7975 performed.
7976
7977 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7978
7979 @item -fgcse
7980 @opindex fgcse
7981 Perform a global common subexpression elimination pass.
7982 This pass also performs global constant and copy propagation.
7983
7984 @emph{Note:} When compiling a program using computed gotos, a GCC
7985 extension, you may get better run-time performance if you disable
7986 the global common subexpression elimination pass by adding
7987 @option{-fno-gcse} to the command line.
7988
7989 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7990
7991 @item -fgcse-lm
7992 @opindex fgcse-lm
7993 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7994 attempts to move loads that are only killed by stores into themselves.  This
7995 allows a loop containing a load/store sequence to be changed to a load outside
7996 the loop, and a copy/store within the loop.
7997
7998 Enabled by default when @option{-fgcse} is enabled.
7999
8000 @item -fgcse-sm
8001 @opindex fgcse-sm
8002 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8003 global common subexpression elimination.  This pass attempts to move
8004 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
8005 loops containing a load/store sequence can be changed to a load before
8006 the loop and a store after the loop.
8007
8008 Not enabled at any optimization level.
8009
8010 @item -fgcse-las
8011 @opindex fgcse-las
8012 When @option{-fgcse-las} is enabled, the global common subexpression
8013 elimination pass eliminates redundant loads that come after stores to the
8014 same memory location (both partial and full redundancies).
8015
8016 Not enabled at any optimization level.
8017
8018 @item -fgcse-after-reload
8019 @opindex fgcse-after-reload
8020 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8021 pass is performed after reload.  The purpose of this pass is to clean up
8022 redundant spilling.
8023
8024 @item -faggressive-loop-optimizations
8025 @opindex faggressive-loop-optimizations
8026 This option tells the loop optimizer to use language constraints to
8027 derive bounds for the number of iterations of a loop.  This assumes that
8028 loop code does not invoke undefined behavior by for example causing signed
8029 integer overflows or out-of-bound array accesses.  The bounds for the
8030 number of iterations of a loop are used to guide loop unrolling and peeling
8031 and loop exit test optimizations.
8032 This option is enabled by default.
8033
8034 @item -funsafe-loop-optimizations
8035 @opindex funsafe-loop-optimizations
8036 This option tells the loop optimizer to assume that loop indices do not
8037 overflow, and that loops with nontrivial exit condition are not
8038 infinite.  This enables a wider range of loop optimizations even if
8039 the loop optimizer itself cannot prove that these assumptions are valid.
8040 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8041 if it finds this kind of loop.
8042
8043 @item -fcrossjumping
8044 @opindex fcrossjumping
8045 Perform cross-jumping transformation.
8046 This transformation unifies equivalent code and saves code size.  The
8047 resulting code may or may not perform better than without cross-jumping.
8048
8049 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8050
8051 @item -fauto-inc-dec
8052 @opindex fauto-inc-dec
8053 Combine increments or decrements of addresses with memory accesses.
8054 This pass is always skipped on architectures that do not have
8055 instructions to support this.  Enabled by default at @option{-O} and
8056 higher on architectures that support this.
8057
8058 @item -fdce
8059 @opindex fdce
8060 Perform dead code elimination (DCE) on RTL@.
8061 Enabled by default at @option{-O} and higher.
8062
8063 @item -fdse
8064 @opindex fdse
8065 Perform dead store elimination (DSE) on RTL@.
8066 Enabled by default at @option{-O} and higher.
8067
8068 @item -fif-conversion
8069 @opindex fif-conversion
8070 Attempt to transform conditional jumps into branch-less equivalents.  This
8071 includes use of conditional moves, min, max, set flags and abs instructions, and
8072 some tricks doable by standard arithmetics.  The use of conditional execution
8073 on chips where it is available is controlled by @option{-fif-conversion2}.
8074
8075 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8076
8077 @item -fif-conversion2
8078 @opindex fif-conversion2
8079 Use conditional execution (where available) to transform conditional jumps into
8080 branch-less equivalents.
8081
8082 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8083
8084 @item -fdeclone-ctor-dtor
8085 @opindex fdeclone-ctor-dtor
8086 The C++ ABI requires multiple entry points for constructors and
8087 destructors: one for a base subobject, one for a complete object, and
8088 one for a virtual destructor that calls operator delete afterwards.
8089 For a hierarchy with virtual bases, the base and complete variants are
8090 clones, which means two copies of the function.  With this option, the
8091 base and complete variants are changed to be thunks that call a common
8092 implementation.
8093
8094 Enabled by @option{-Os}.
8095
8096 @item -fdelete-null-pointer-checks
8097 @opindex fdelete-null-pointer-checks
8098 Assume that programs cannot safely dereference null pointers, and that
8099 no code or data element resides at address zero.
8100 This option enables simple constant
8101 folding optimizations at all optimization levels.  In addition, other
8102 optimization passes in GCC use this flag to control global dataflow
8103 analyses that eliminate useless checks for null pointers; these assume
8104 that a memory access to address zero always results in a trap, so
8105 that if a pointer is checked after it has already been dereferenced,
8106 it cannot be null.
8107
8108 Note however that in some environments this assumption is not true.
8109 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8110 for programs that depend on that behavior.
8111
8112 This option is enabled by default on most targets.  On Nios II ELF, it
8113 defaults to off.  On AVR and CR16, this option is completely disabled.  
8114
8115 Passes that use the dataflow information
8116 are enabled independently at different optimization levels.
8117
8118 @item -fdevirtualize
8119 @opindex fdevirtualize
8120 Attempt to convert calls to virtual functions to direct calls.  This
8121 is done both within a procedure and interprocedurally as part of
8122 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8123 propagation (@option{-fipa-cp}).
8124 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8125
8126 @item -fdevirtualize-speculatively
8127 @opindex fdevirtualize-speculatively
8128 Attempt to convert calls to virtual functions to speculative direct calls.
8129 Based on the analysis of the type inheritance graph, determine for a given call
8130 the set of likely targets. If the set is small, preferably of size 1, change
8131 the call into a conditional deciding between direct and indirect calls.  The
8132 speculative calls enable more optimizations, such as inlining.  When they seem
8133 useless after further optimization, they are converted back into original form.
8134
8135 @item -fdevirtualize-at-ltrans
8136 @opindex fdevirtualize-at-ltrans
8137 Stream extra information needed for aggressive devirtualization when running
8138 the link-time optimizer in local transformation mode.  
8139 This option enables more devirtualization but
8140 significantly increases the size of streamed data. For this reason it is
8141 disabled by default.
8142
8143 @item -fexpensive-optimizations
8144 @opindex fexpensive-optimizations
8145 Perform a number of minor optimizations that are relatively expensive.
8146
8147 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8148
8149 @item -free
8150 @opindex free
8151 Attempt to remove redundant extension instructions.  This is especially
8152 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8153 registers after writing to their lower 32-bit half.
8154
8155 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8156 @option{-O3}, @option{-Os}.
8157
8158 @item -fno-lifetime-dse
8159 @opindex fno-lifetime-dse
8160 In C++ the value of an object is only affected by changes within its
8161 lifetime: when the constructor begins, the object has an indeterminate
8162 value, and any changes during the lifetime of the object are dead when
8163 the object is destroyed.  Normally dead store elimination will take
8164 advantage of this; if your code relies on the value of the object
8165 storage persisting beyond the lifetime of the object, you can use this
8166 flag to disable this optimization.
8167
8168 @item -flive-range-shrinkage
8169 @opindex flive-range-shrinkage
8170 Attempt to decrease register pressure through register live range
8171 shrinkage.  This is helpful for fast processors with small or moderate
8172 size register sets.
8173
8174 @item -fira-algorithm=@var{algorithm}
8175 @opindex fira-algorithm
8176 Use the specified coloring algorithm for the integrated register
8177 allocator.  The @var{algorithm} argument can be @samp{priority}, which
8178 specifies Chow's priority coloring, or @samp{CB}, which specifies
8179 Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8180 for all architectures, but for those targets that do support it, it is
8181 the default because it generates better code.
8182
8183 @item -fira-region=@var{region}
8184 @opindex fira-region
8185 Use specified regions for the integrated register allocator.  The
8186 @var{region} argument should be one of the following:
8187
8188 @table @samp
8189
8190 @item all
8191 Use all loops as register allocation regions.
8192 This can give the best results for machines with a small and/or
8193 irregular register set.
8194
8195 @item mixed
8196 Use all loops except for loops with small register pressure 
8197 as the regions.  This value usually gives
8198 the best results in most cases and for most architectures,
8199 and is enabled by default when compiling with optimization for speed
8200 (@option{-O}, @option{-O2}, @dots{}).
8201
8202 @item one
8203 Use all functions as a single region.  
8204 This typically results in the smallest code size, and is enabled by default for
8205 @option{-Os} or @option{-O0}.
8206
8207 @end table
8208
8209 @item -fira-hoist-pressure
8210 @opindex fira-hoist-pressure
8211 Use IRA to evaluate register pressure in the code hoisting pass for
8212 decisions to hoist expressions.  This option usually results in smaller
8213 code, but it can slow the compiler down.
8214
8215 This option is enabled at level @option{-Os} for all targets.
8216
8217 @item -fira-loop-pressure
8218 @opindex fira-loop-pressure
8219 Use IRA to evaluate register pressure in loops for decisions to move
8220 loop invariants.  This option usually results in generation
8221 of faster and smaller code on machines with large register files (>= 32
8222 registers), but it can slow the compiler down.
8223
8224 This option is enabled at level @option{-O3} for some targets.
8225
8226 @item -fno-ira-share-save-slots
8227 @opindex fno-ira-share-save-slots
8228 Disable sharing of stack slots used for saving call-used hard
8229 registers living through a call.  Each hard register gets a
8230 separate stack slot, and as a result function stack frames are
8231 larger.
8232
8233 @item -fno-ira-share-spill-slots
8234 @opindex fno-ira-share-spill-slots
8235 Disable sharing of stack slots allocated for pseudo-registers.  Each
8236 pseudo-register that does not get a hard register gets a separate
8237 stack slot, and as a result function stack frames are larger.
8238
8239 @item -fira-verbose=@var{n}
8240 @opindex fira-verbose
8241 Control the verbosity of the dump file for the integrated register allocator.
8242 The default value is 5.  If the value @var{n} is greater or equal to 10,
8243 the dump output is sent to stderr using the same format as @var{n} minus 10.
8244
8245 @item -flra-remat
8246 @opindex flra-remat
8247 Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8248 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8249 values if it is profitable.
8250
8251 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8252
8253 @item -fdelayed-branch
8254 @opindex fdelayed-branch
8255 If supported for the target machine, attempt to reorder instructions
8256 to exploit instruction slots available after delayed branch
8257 instructions.
8258
8259 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8260
8261 @item -fschedule-insns
8262 @opindex fschedule-insns
8263 If supported for the target machine, attempt to reorder instructions to
8264 eliminate execution stalls due to required data being unavailable.  This
8265 helps machines that have slow floating point or memory load instructions
8266 by allowing other instructions to be issued until the result of the load
8267 or floating-point instruction is required.
8268
8269 Enabled at levels @option{-O2}, @option{-O3}.
8270
8271 @item -fschedule-insns2
8272 @opindex fschedule-insns2
8273 Similar to @option{-fschedule-insns}, but requests an additional pass of
8274 instruction scheduling after register allocation has been done.  This is
8275 especially useful on machines with a relatively small number of
8276 registers and where memory load instructions take more than one cycle.
8277
8278 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8279
8280 @item -fno-sched-interblock
8281 @opindex fno-sched-interblock
8282 Don't schedule instructions across basic blocks.  This is normally
8283 enabled by default when scheduling before register allocation, i.e.@:
8284 with @option{-fschedule-insns} or at @option{-O2} or higher.
8285
8286 @item -fno-sched-spec
8287 @opindex fno-sched-spec
8288 Don't allow speculative motion of non-load instructions.  This is normally
8289 enabled by default when scheduling before register allocation, i.e.@:
8290 with @option{-fschedule-insns} or at @option{-O2} or higher.
8291
8292 @item -fsched-pressure
8293 @opindex fsched-pressure
8294 Enable register pressure sensitive insn scheduling before register
8295 allocation.  This only makes sense when scheduling before register
8296 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8297 @option{-O2} or higher.  Usage of this option can improve the
8298 generated code and decrease its size by preventing register pressure
8299 increase above the number of available hard registers and subsequent
8300 spills in register allocation.
8301
8302 @item -fsched-spec-load
8303 @opindex fsched-spec-load
8304 Allow speculative motion of some load instructions.  This only makes
8305 sense when scheduling before register allocation, i.e.@: with
8306 @option{-fschedule-insns} or at @option{-O2} or higher.
8307
8308 @item -fsched-spec-load-dangerous
8309 @opindex fsched-spec-load-dangerous
8310 Allow speculative motion of more load instructions.  This only makes
8311 sense when scheduling before register allocation, i.e.@: with
8312 @option{-fschedule-insns} or at @option{-O2} or higher.
8313
8314 @item -fsched-stalled-insns
8315 @itemx -fsched-stalled-insns=@var{n}
8316 @opindex fsched-stalled-insns
8317 Define how many insns (if any) can be moved prematurely from the queue
8318 of stalled insns into the ready list during the second scheduling pass.
8319 @option{-fno-sched-stalled-insns} means that no insns are moved
8320 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8321 on how many queued insns can be moved prematurely.
8322 @option{-fsched-stalled-insns} without a value is equivalent to
8323 @option{-fsched-stalled-insns=1}.
8324
8325 @item -fsched-stalled-insns-dep
8326 @itemx -fsched-stalled-insns-dep=@var{n}
8327 @opindex fsched-stalled-insns-dep
8328 Define how many insn groups (cycles) are examined for a dependency
8329 on a stalled insn that is a candidate for premature removal from the queue
8330 of stalled insns.  This has an effect only during the second scheduling pass,
8331 and only if @option{-fsched-stalled-insns} is used.
8332 @option{-fno-sched-stalled-insns-dep} is equivalent to
8333 @option{-fsched-stalled-insns-dep=0}.
8334 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8335 @option{-fsched-stalled-insns-dep=1}.
8336
8337 @item -fsched2-use-superblocks
8338 @opindex fsched2-use-superblocks
8339 When scheduling after register allocation, use superblock scheduling.
8340 This allows motion across basic block boundaries,
8341 resulting in faster schedules.  This option is experimental, as not all machine
8342 descriptions used by GCC model the CPU closely enough to avoid unreliable
8343 results from the algorithm.
8344
8345 This only makes sense when scheduling after register allocation, i.e.@: with
8346 @option{-fschedule-insns2} or at @option{-O2} or higher.
8347
8348 @item -fsched-group-heuristic
8349 @opindex fsched-group-heuristic
8350 Enable the group heuristic in the scheduler.  This heuristic favors
8351 the instruction that belongs to a schedule group.  This is enabled
8352 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8353 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8354
8355 @item -fsched-critical-path-heuristic
8356 @opindex fsched-critical-path-heuristic
8357 Enable the critical-path heuristic in the scheduler.  This heuristic favors
8358 instructions on the critical path.  This is enabled by default when
8359 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8360 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8361
8362 @item -fsched-spec-insn-heuristic
8363 @opindex fsched-spec-insn-heuristic
8364 Enable the speculative instruction heuristic in the scheduler.  This
8365 heuristic favors speculative instructions with greater dependency weakness.
8366 This is enabled by default when scheduling is enabled, i.e.@:
8367 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8368 or at @option{-O2} or higher.
8369
8370 @item -fsched-rank-heuristic
8371 @opindex fsched-rank-heuristic
8372 Enable the rank heuristic in the scheduler.  This heuristic favors
8373 the instruction belonging to a basic block with greater size or frequency.
8374 This is enabled by default when scheduling is enabled, i.e.@:
8375 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8376 at @option{-O2} or higher.
8377
8378 @item -fsched-last-insn-heuristic
8379 @opindex fsched-last-insn-heuristic
8380 Enable the last-instruction heuristic in the scheduler.  This heuristic
8381 favors the instruction that is less dependent on the last instruction
8382 scheduled.  This is enabled by default when scheduling is enabled,
8383 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8384 at @option{-O2} or higher.
8385
8386 @item -fsched-dep-count-heuristic
8387 @opindex fsched-dep-count-heuristic
8388 Enable the dependent-count heuristic in the scheduler.  This heuristic
8389 favors the instruction that has more instructions depending on it.
8390 This is enabled by default when scheduling is enabled, i.e.@:
8391 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8392 at @option{-O2} or higher.
8393
8394 @item -freschedule-modulo-scheduled-loops
8395 @opindex freschedule-modulo-scheduled-loops
8396 Modulo scheduling is performed before traditional scheduling.  If a loop
8397 is modulo scheduled, later scheduling passes may change its schedule.  
8398 Use this option to control that behavior.
8399
8400 @item -fselective-scheduling
8401 @opindex fselective-scheduling
8402 Schedule instructions using selective scheduling algorithm.  Selective
8403 scheduling runs instead of the first scheduler pass.
8404
8405 @item -fselective-scheduling2
8406 @opindex fselective-scheduling2
8407 Schedule instructions using selective scheduling algorithm.  Selective
8408 scheduling runs instead of the second scheduler pass.
8409
8410 @item -fsel-sched-pipelining
8411 @opindex fsel-sched-pipelining
8412 Enable software pipelining of innermost loops during selective scheduling.
8413 This option has no effect unless one of @option{-fselective-scheduling} or
8414 @option{-fselective-scheduling2} is turned on.
8415
8416 @item -fsel-sched-pipelining-outer-loops
8417 @opindex fsel-sched-pipelining-outer-loops
8418 When pipelining loops during selective scheduling, also pipeline outer loops.
8419 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8420
8421 @item -fsemantic-interposition
8422 @opindex fsemantic-interposition
8423 Some object formats, like ELF, allow interposing of symbols by the 
8424 dynamic linker.
8425 This means that for symbols exported from the DSO, the compiler cannot perform
8426 interprocedural propagation, inlining and other optimizations in anticipation
8427 that the function or variable in question may change. While this feature is
8428 useful, for example, to rewrite memory allocation functions by a debugging
8429 implementation, it is expensive in the terms of code quality.
8430 With @option{-fno-semantic-interposition} the compiler assumes that 
8431 if interposition happens for functions the overwriting function will have 
8432 precisely the same semantics (and side effects). 
8433 Similarly if interposition happens
8434 for variables, the constructor of the variable will be the same. The flag
8435 has no effect for functions explicitly declared inline 
8436 (where it is never allowed for interposition to change semantics) 
8437 and for symbols explicitly declared weak.
8438
8439 @item -fshrink-wrap
8440 @opindex fshrink-wrap
8441 Emit function prologues only before parts of the function that need it,
8442 rather than at the top of the function.  This flag is enabled by default at
8443 @option{-O} and higher.
8444
8445 @item -fcaller-saves
8446 @opindex fcaller-saves
8447 Enable allocation of values to registers that are clobbered by
8448 function calls, by emitting extra instructions to save and restore the
8449 registers around such calls.  Such allocation is done only when it
8450 seems to result in better code.
8451
8452 This option is always enabled by default on certain machines, usually
8453 those which have no call-preserved registers to use instead.
8454
8455 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8456
8457 @item -fcombine-stack-adjustments
8458 @opindex fcombine-stack-adjustments
8459 Tracks stack adjustments (pushes and pops) and stack memory references
8460 and then tries to find ways to combine them.
8461
8462 Enabled by default at @option{-O1} and higher.
8463
8464 @item -fipa-ra
8465 @opindex fipa-ra
8466 Use caller save registers for allocation if those registers are not used by
8467 any called function.  In that case it is not necessary to save and restore
8468 them around calls.  This is only possible if called functions are part of
8469 same compilation unit as current function and they are compiled before it.
8470
8471 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8472
8473 @item -fconserve-stack
8474 @opindex fconserve-stack
8475 Attempt to minimize stack usage.  The compiler attempts to use less
8476 stack space, even if that makes the program slower.  This option
8477 implies setting the @option{large-stack-frame} parameter to 100
8478 and the @option{large-stack-frame-growth} parameter to 400.
8479
8480 @item -ftree-reassoc
8481 @opindex ftree-reassoc
8482 Perform reassociation on trees.  This flag is enabled by default
8483 at @option{-O} and higher.
8484
8485 @item -ftree-pre
8486 @opindex ftree-pre
8487 Perform partial redundancy elimination (PRE) on trees.  This flag is
8488 enabled by default at @option{-O2} and @option{-O3}.
8489
8490 @item -ftree-partial-pre
8491 @opindex ftree-partial-pre
8492 Make partial redundancy elimination (PRE) more aggressive.  This flag is
8493 enabled by default at @option{-O3}.
8494
8495 @item -ftree-forwprop
8496 @opindex ftree-forwprop
8497 Perform forward propagation on trees.  This flag is enabled by default
8498 at @option{-O} and higher.
8499
8500 @item -ftree-fre
8501 @opindex ftree-fre
8502 Perform full redundancy elimination (FRE) on trees.  The difference
8503 between FRE and PRE is that FRE only considers expressions
8504 that are computed on all paths leading to the redundant computation.
8505 This analysis is faster than PRE, though it exposes fewer redundancies.
8506 This flag is enabled by default at @option{-O} and higher.
8507
8508 @item -ftree-phiprop
8509 @opindex ftree-phiprop
8510 Perform hoisting of loads from conditional pointers on trees.  This
8511 pass is enabled by default at @option{-O} and higher.
8512
8513 @item -fhoist-adjacent-loads
8514 @opindex fhoist-adjacent-loads
8515 Speculatively hoist loads from both branches of an if-then-else if the
8516 loads are from adjacent locations in the same structure and the target
8517 architecture has a conditional move instruction.  This flag is enabled
8518 by default at @option{-O2} and higher.
8519
8520 @item -ftree-copy-prop
8521 @opindex ftree-copy-prop
8522 Perform copy propagation on trees.  This pass eliminates unnecessary
8523 copy operations.  This flag is enabled by default at @option{-O} and
8524 higher.
8525
8526 @item -fipa-pure-const
8527 @opindex fipa-pure-const
8528 Discover which functions are pure or constant.
8529 Enabled by default at @option{-O} and higher.
8530
8531 @item -fipa-reference
8532 @opindex fipa-reference
8533 Discover which static variables do not escape the
8534 compilation unit.
8535 Enabled by default at @option{-O} and higher.
8536
8537 @item -fipa-pta
8538 @opindex fipa-pta
8539 Perform interprocedural pointer analysis and interprocedural modification
8540 and reference analysis.  This option can cause excessive memory and
8541 compile-time usage on large compilation units.  It is not enabled by
8542 default at any optimization level.
8543
8544 @item -fipa-profile
8545 @opindex fipa-profile
8546 Perform interprocedural profile propagation.  The functions called only from
8547 cold functions are marked as cold. Also functions executed once (such as
8548 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8549 functions and loop less parts of functions executed once are then optimized for
8550 size.
8551 Enabled by default at @option{-O} and higher.
8552
8553 @item -fipa-cp
8554 @opindex fipa-cp
8555 Perform interprocedural constant propagation.
8556 This optimization analyzes the program to determine when values passed
8557 to functions are constants and then optimizes accordingly.
8558 This optimization can substantially increase performance
8559 if the application has constants passed to functions.
8560 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8561
8562 @item -fipa-cp-clone
8563 @opindex fipa-cp-clone
8564 Perform function cloning to make interprocedural constant propagation stronger.
8565 When enabled, interprocedural constant propagation performs function cloning
8566 when externally visible function can be called with constant arguments.
8567 Because this optimization can create multiple copies of functions,
8568 it may significantly increase code size
8569 (see @option{--param ipcp-unit-growth=@var{value}}).
8570 This flag is enabled by default at @option{-O3}.
8571
8572 @item -fipa-cp-alignment
8573 @opindex -fipa-cp-alignment
8574 When enabled, this optimization propagates alignment of function
8575 parameters to support better vectorization and string operations.
8576
8577 This flag is enabled by default at @option{-O2} and @option{-Os}.  It
8578 requires that @option{-fipa-cp} is enabled.
8579
8580 @item -fipa-icf
8581 @opindex fipa-icf
8582 Perform Identical Code Folding for functions and read-only variables.
8583 The optimization reduces code size and may disturb unwind stacks by replacing
8584 a function by equivalent one with a different name. The optimization works
8585 more effectively with link time optimization enabled.
8586
8587 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8588 works on different levels and thus the optimizations are not same - there are
8589 equivalences that are found only by GCC and equivalences found only by Gold.
8590
8591 This flag is enabled by default at @option{-O2} and @option{-Os}.
8592
8593 @item -fisolate-erroneous-paths-dereference
8594 @opindex fisolate-erroneous-paths-dereference
8595 Detect paths that trigger erroneous or undefined behavior due to
8596 dereferencing a null pointer.  Isolate those paths from the main control
8597 flow and turn the statement with erroneous or undefined behavior into a trap.
8598 This flag is enabled by default at @option{-O2} and higher and depends on
8599 @option{-fdelete-null-pointer-checks} also being enabled.
8600
8601 @item -fisolate-erroneous-paths-attribute
8602 @opindex fisolate-erroneous-paths-attribute
8603 Detect paths that trigger erroneous or undefined behavior due a null value
8604 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8605 attribute.  Isolate those paths from the main control flow and turn the
8606 statement with erroneous or undefined behavior into a trap.  This is not
8607 currently enabled, but may be enabled by @option{-O2} in the future.
8608
8609 @item -ftree-sink
8610 @opindex ftree-sink
8611 Perform forward store motion  on trees.  This flag is
8612 enabled by default at @option{-O} and higher.
8613
8614 @item -ftree-bit-ccp
8615 @opindex ftree-bit-ccp
8616 Perform sparse conditional bit constant propagation on trees and propagate
8617 pointer alignment information.
8618 This pass only operates on local scalar variables and is enabled by default
8619 at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8620
8621 @item -ftree-ccp
8622 @opindex ftree-ccp
8623 Perform sparse conditional constant propagation (CCP) on trees.  This
8624 pass only operates on local scalar variables and is enabled by default
8625 at @option{-O} and higher.
8626
8627 @item -fssa-phiopt
8628 @opindex fssa-phiopt
8629 Perform pattern matching on SSA PHI nodes to optimize conditional
8630 code.  This pass is enabled by default at @option{-O} and higher.
8631
8632 @item -ftree-switch-conversion
8633 @opindex ftree-switch-conversion
8634 Perform conversion of simple initializations in a switch to
8635 initializations from a scalar array.  This flag is enabled by default
8636 at @option{-O2} and higher.
8637
8638 @item -ftree-tail-merge
8639 @opindex ftree-tail-merge
8640 Look for identical code sequences.  When found, replace one with a jump to the
8641 other.  This optimization is known as tail merging or cross jumping.  This flag
8642 is enabled by default at @option{-O2} and higher.  The compilation time
8643 in this pass can
8644 be limited using @option{max-tail-merge-comparisons} parameter and
8645 @option{max-tail-merge-iterations} parameter.
8646
8647 @item -ftree-dce
8648 @opindex ftree-dce
8649 Perform dead code elimination (DCE) on trees.  This flag is enabled by
8650 default at @option{-O} and higher.
8651
8652 @item -ftree-builtin-call-dce
8653 @opindex ftree-builtin-call-dce
8654 Perform conditional dead code elimination (DCE) for calls to built-in functions
8655 that may set @code{errno} but are otherwise side-effect free.  This flag is
8656 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8657 specified.
8658
8659 @item -ftree-dominator-opts
8660 @opindex ftree-dominator-opts
8661 Perform a variety of simple scalar cleanups (constant/copy
8662 propagation, redundancy elimination, range propagation and expression
8663 simplification) based on a dominator tree traversal.  This also
8664 performs jump threading (to reduce jumps to jumps). This flag is
8665 enabled by default at @option{-O} and higher.
8666
8667 @item -ftree-dse
8668 @opindex ftree-dse
8669 Perform dead store elimination (DSE) on trees.  A dead store is a store into
8670 a memory location that is later overwritten by another store without
8671 any intervening loads.  In this case the earlier store can be deleted.  This
8672 flag is enabled by default at @option{-O} and higher.
8673
8674 @item -ftree-ch
8675 @opindex ftree-ch
8676 Perform loop header copying on trees.  This is beneficial since it increases
8677 effectiveness of code motion optimizations.  It also saves one jump.  This flag
8678 is enabled by default at @option{-O} and higher.  It is not enabled
8679 for @option{-Os}, since it usually increases code size.
8680
8681 @item -ftree-loop-optimize
8682 @opindex ftree-loop-optimize
8683 Perform loop optimizations on trees.  This flag is enabled by default
8684 at @option{-O} and higher.
8685
8686 @item -ftree-loop-linear
8687 @opindex ftree-loop-linear
8688 Perform loop interchange transformations on tree.  Same as
8689 @option{-floop-interchange}.  To use this code transformation, GCC has
8690 to be configured with @option{--with-isl} to enable the Graphite loop
8691 transformation infrastructure.
8692
8693 @item -floop-interchange
8694 @opindex floop-interchange
8695 Perform loop interchange transformations on loops.  Interchanging two
8696 nested loops switches the inner and outer loops.  For example, given a
8697 loop like:
8698 @smallexample
8699 DO J = 1, M
8700   DO I = 1, N
8701     A(J, I) = A(J, I) * C
8702   ENDDO
8703 ENDDO
8704 @end smallexample
8705 @noindent
8706 loop interchange transforms the loop as if it were written:
8707 @smallexample
8708 DO I = 1, N
8709   DO J = 1, M
8710     A(J, I) = A(J, I) * C
8711   ENDDO
8712 ENDDO
8713 @end smallexample
8714 which can be beneficial when @code{N} is larger than the caches,
8715 because in Fortran, the elements of an array are stored in memory
8716 contiguously by column, and the original loop iterates over rows,
8717 potentially creating at each access a cache miss.  This optimization
8718 applies to all the languages supported by GCC and is not limited to
8719 Fortran.  To use this code transformation, GCC has to be configured
8720 with @option{--with-isl} to enable the Graphite loop transformation
8721 infrastructure.
8722
8723 @item -floop-strip-mine
8724 @opindex floop-strip-mine
8725 Perform loop strip mining transformations on loops.  Strip mining
8726 splits a loop into two nested loops.  The outer loop has strides
8727 equal to the strip size and the inner loop has strides of the
8728 original loop within a strip.  The strip length can be changed
8729 using the @option{loop-block-tile-size} parameter.  For example,
8730 given a loop like:
8731 @smallexample
8732 DO I = 1, N
8733   A(I) = A(I) + C
8734 ENDDO
8735 @end smallexample
8736 @noindent
8737 loop strip mining transforms the loop as if it were written:
8738 @smallexample
8739 DO II = 1, N, 51
8740   DO I = II, min (II + 50, N)
8741     A(I) = A(I) + C
8742   ENDDO
8743 ENDDO
8744 @end smallexample
8745 This optimization applies to all the languages supported by GCC and is
8746 not limited to Fortran.  To use this code transformation, GCC has to
8747 be configured with @option{--with-isl} to enable the Graphite loop
8748 transformation infrastructure.
8749
8750 @item -floop-block
8751 @opindex floop-block
8752 Perform loop blocking transformations on loops.  Blocking strip mines
8753 each loop in the loop nest such that the memory accesses of the
8754 element loops fit inside caches.  The strip length can be changed
8755 using the @option{loop-block-tile-size} parameter.  For example, given
8756 a loop like:
8757 @smallexample
8758 DO I = 1, N
8759   DO J = 1, M
8760     A(J, I) = B(I) + C(J)
8761   ENDDO
8762 ENDDO
8763 @end smallexample
8764 @noindent
8765 loop blocking transforms the loop as if it were written:
8766 @smallexample
8767 DO II = 1, N, 51
8768   DO JJ = 1, M, 51
8769     DO I = II, min (II + 50, N)
8770       DO J = JJ, min (JJ + 50, M)
8771         A(J, I) = B(I) + C(J)
8772       ENDDO
8773     ENDDO
8774   ENDDO
8775 ENDDO
8776 @end smallexample
8777 which can be beneficial when @code{M} is larger than the caches,
8778 because the innermost loop iterates over a smaller amount of data
8779 which can be kept in the caches.  This optimization applies to all the
8780 languages supported by GCC and is not limited to Fortran.  To use this
8781 code transformation, GCC has to be configured with @option{--with-isl}
8782 to enable the Graphite loop transformation infrastructure.
8783
8784 @item -fgraphite-identity
8785 @opindex fgraphite-identity
8786 Enable the identity transformation for graphite.  For every SCoP we generate
8787 the polyhedral representation and transform it back to gimple.  Using
8788 @option{-fgraphite-identity} we can check the costs or benefits of the
8789 GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8790 are also performed by the code generator ISL, like index splitting and
8791 dead code elimination in loops.
8792
8793 @item -floop-nest-optimize
8794 @opindex floop-nest-optimize
8795 Enable the ISL based loop nest optimizer.  This is a generic loop nest
8796 optimizer based on the Pluto optimization algorithms.  It calculates a loop
8797 structure optimized for data-locality and parallelism.  This option
8798 is experimental.
8799
8800 @item -floop-unroll-and-jam
8801 @opindex floop-unroll-and-jam
8802 Enable unroll and jam for the ISL based loop nest optimizer.  The unroll 
8803 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8804 The unrolled dimension (counting from the most inner one) can be changed 
8805 using the @option{loop-unroll-jam-depth} parameter.                 .
8806
8807 @item -floop-parallelize-all
8808 @opindex floop-parallelize-all
8809 Use the Graphite data dependence analysis to identify loops that can
8810 be parallelized.  Parallelize all the loops that can be analyzed to
8811 not contain loop carried dependences without checking that it is
8812 profitable to parallelize the loops.
8813
8814 @item -fcheck-data-deps
8815 @opindex fcheck-data-deps
8816 Compare the results of several data dependence analyzers.  This option
8817 is used for debugging the data dependence analyzers.
8818
8819 @item -ftree-loop-if-convert
8820 @opindex ftree-loop-if-convert
8821 Attempt to transform conditional jumps in the innermost loops to
8822 branch-less equivalents.  The intent is to remove control-flow from
8823 the innermost loops in order to improve the ability of the
8824 vectorization pass to handle these loops.  This is enabled by default
8825 if vectorization is enabled.
8826
8827 @item -ftree-loop-if-convert-stores
8828 @opindex ftree-loop-if-convert-stores
8829 Attempt to also if-convert conditional jumps containing memory writes.
8830 This transformation can be unsafe for multi-threaded programs as it
8831 transforms conditional memory writes into unconditional memory writes.
8832 For example,
8833 @smallexample
8834 for (i = 0; i < N; i++)
8835   if (cond)
8836     A[i] = expr;
8837 @end smallexample
8838 is transformed to
8839 @smallexample
8840 for (i = 0; i < N; i++)
8841   A[i] = cond ? expr : A[i];
8842 @end smallexample
8843 potentially producing data races.
8844
8845 @item -ftree-loop-distribution
8846 @opindex ftree-loop-distribution
8847 Perform loop distribution.  This flag can improve cache performance on
8848 big loop bodies and allow further loop optimizations, like
8849 parallelization or vectorization, to take place.  For example, the loop
8850 @smallexample
8851 DO I = 1, N
8852   A(I) = B(I) + C
8853   D(I) = E(I) * F
8854 ENDDO
8855 @end smallexample
8856 is transformed to
8857 @smallexample
8858 DO I = 1, N
8859    A(I) = B(I) + C
8860 ENDDO
8861 DO I = 1, N
8862    D(I) = E(I) * F
8863 ENDDO
8864 @end smallexample
8865
8866 @item -ftree-loop-distribute-patterns
8867 @opindex ftree-loop-distribute-patterns
8868 Perform loop distribution of patterns that can be code generated with
8869 calls to a library.  This flag is enabled by default at @option{-O3}.
8870
8871 This pass distributes the initialization loops and generates a call to
8872 memset zero.  For example, the loop
8873 @smallexample
8874 DO I = 1, N
8875   A(I) = 0
8876   B(I) = A(I) + I
8877 ENDDO
8878 @end smallexample
8879 is transformed to
8880 @smallexample
8881 DO I = 1, N
8882    A(I) = 0
8883 ENDDO
8884 DO I = 1, N
8885    B(I) = A(I) + I
8886 ENDDO
8887 @end smallexample
8888 and the initialization loop is transformed into a call to memset zero.
8889
8890 @item -ftree-loop-im
8891 @opindex ftree-loop-im
8892 Perform loop invariant motion on trees.  This pass moves only invariants that
8893 are hard to handle at RTL level (function calls, operations that expand to
8894 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8895 operands of conditions that are invariant out of the loop, so that we can use
8896 just trivial invariantness analysis in loop unswitching.  The pass also includes
8897 store motion.
8898
8899 @item -ftree-loop-ivcanon
8900 @opindex ftree-loop-ivcanon
8901 Create a canonical counter for number of iterations in loops for which
8902 determining number of iterations requires complicated analysis.  Later
8903 optimizations then may determine the number easily.  Useful especially
8904 in connection with unrolling.
8905
8906 @item -fivopts
8907 @opindex fivopts
8908 Perform induction variable optimizations (strength reduction, induction
8909 variable merging and induction variable elimination) on trees.
8910
8911 @item -ftree-parallelize-loops=n
8912 @opindex ftree-parallelize-loops
8913 Parallelize loops, i.e., split their iteration space to run in n threads.
8914 This is only possible for loops whose iterations are independent
8915 and can be arbitrarily reordered.  The optimization is only
8916 profitable on multiprocessor machines, for loops that are CPU-intensive,
8917 rather than constrained e.g.@: by memory bandwidth.  This option
8918 implies @option{-pthread}, and thus is only supported on targets
8919 that have support for @option{-pthread}.
8920
8921 @item -ftree-pta
8922 @opindex ftree-pta
8923 Perform function-local points-to analysis on trees.  This flag is
8924 enabled by default at @option{-O} and higher.
8925
8926 @item -ftree-sra
8927 @opindex ftree-sra
8928 Perform scalar replacement of aggregates.  This pass replaces structure
8929 references with scalars to prevent committing structures to memory too
8930 early.  This flag is enabled by default at @option{-O} and higher.
8931
8932 @item -ftree-copyrename
8933 @opindex ftree-copyrename
8934 Perform copy renaming on trees.  This pass attempts to rename compiler
8935 temporaries to other variables at copy locations, usually resulting in
8936 variable names which more closely resemble the original variables.  This flag
8937 is enabled by default at @option{-O} and higher.
8938
8939 @item -ftree-coalesce-inlined-vars
8940 @opindex ftree-coalesce-inlined-vars
8941 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8942 combine small user-defined variables too, but only if they are inlined
8943 from other functions.  It is a more limited form of
8944 @option{-ftree-coalesce-vars}.  This may harm debug information of such
8945 inlined variables, but it keeps variables of the inlined-into
8946 function apart from each other, such that they are more likely to
8947 contain the expected values in a debugging session.
8948
8949 @item -ftree-coalesce-vars
8950 @opindex ftree-coalesce-vars
8951 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8952 combine small user-defined variables too, instead of just compiler
8953 temporaries.  This may severely limit the ability to debug an optimized
8954 program compiled with @option{-fno-var-tracking-assignments}.  In the
8955 negated form, this flag prevents SSA coalescing of user variables,
8956 including inlined ones.  This option is enabled by default.
8957
8958 @item -ftree-ter
8959 @opindex ftree-ter
8960 Perform temporary expression replacement during the SSA->normal phase.  Single
8961 use/single def temporaries are replaced at their use location with their
8962 defining expression.  This results in non-GIMPLE code, but gives the expanders
8963 much more complex trees to work on resulting in better RTL generation.  This is
8964 enabled by default at @option{-O} and higher.
8965
8966 @item -ftree-slsr
8967 @opindex ftree-slsr
8968 Perform straight-line strength reduction on trees.  This recognizes related
8969 expressions involving multiplications and replaces them by less expensive
8970 calculations when possible.  This is enabled by default at @option{-O} and
8971 higher.
8972
8973 @item -ftree-vectorize
8974 @opindex ftree-vectorize
8975 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8976 and @option{-ftree-slp-vectorize} if not explicitly specified.
8977
8978 @item -ftree-loop-vectorize
8979 @opindex ftree-loop-vectorize
8980 Perform loop vectorization on trees. This flag is enabled by default at
8981 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8982
8983 @item -ftree-slp-vectorize
8984 @opindex ftree-slp-vectorize
8985 Perform basic block vectorization on trees. This flag is enabled by default at
8986 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8987
8988 @item -fvect-cost-model=@var{model}
8989 @opindex fvect-cost-model
8990 Alter the cost model used for vectorization.  The @var{model} argument
8991 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8992 With the @samp{unlimited} model the vectorized code-path is assumed
8993 to be profitable while with the @samp{dynamic} model a runtime check
8994 guards the vectorized code-path to enable it only for iteration
8995 counts that will likely execute faster than when executing the original
8996 scalar loop.  The @samp{cheap} model disables vectorization of
8997 loops where doing so would be cost prohibitive for example due to
8998 required runtime checks for data dependence or alignment but otherwise
8999 is equal to the @samp{dynamic} model.
9000 The default cost model depends on other optimization flags and is
9001 either @samp{dynamic} or @samp{cheap}.
9002
9003 @item -fsimd-cost-model=@var{model}
9004 @opindex fsimd-cost-model
9005 Alter the cost model used for vectorization of loops marked with the OpenMP
9006 or Cilk Plus simd directive.  The @var{model} argument should be one of
9007 @samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
9008 have the same meaning as described in @option{-fvect-cost-model} and by
9009 default a cost model defined with @option{-fvect-cost-model} is used.
9010
9011 @item -ftree-vrp
9012 @opindex ftree-vrp
9013 Perform Value Range Propagation on trees.  This is similar to the
9014 constant propagation pass, but instead of values, ranges of values are
9015 propagated.  This allows the optimizers to remove unnecessary range
9016 checks like array bound checks and null pointer checks.  This is
9017 enabled by default at @option{-O2} and higher.  Null pointer check
9018 elimination is only done if @option{-fdelete-null-pointer-checks} is
9019 enabled.
9020
9021 @item -fsplit-ivs-in-unroller
9022 @opindex fsplit-ivs-in-unroller
9023 Enables expression of values of induction variables in later iterations
9024 of the unrolled loop using the value in the first iteration.  This breaks
9025 long dependency chains, thus improving efficiency of the scheduling passes.
9026
9027 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9028 same effect.  However, that is not reliable in cases where the loop body
9029 is more complicated than a single basic block.  It also does not work at all
9030 on some architectures due to restrictions in the CSE pass.
9031
9032 This optimization is enabled by default.
9033
9034 @item -fvariable-expansion-in-unroller
9035 @opindex fvariable-expansion-in-unroller
9036 With this option, the compiler creates multiple copies of some
9037 local variables when unrolling a loop, which can result in superior code.
9038
9039 @item -fpartial-inlining
9040 @opindex fpartial-inlining
9041 Inline parts of functions.  This option has any effect only
9042 when inlining itself is turned on by the @option{-finline-functions}
9043 or @option{-finline-small-functions} options.
9044
9045 Enabled at level @option{-O2}.
9046
9047 @item -fpredictive-commoning
9048 @opindex fpredictive-commoning
9049 Perform predictive commoning optimization, i.e., reusing computations
9050 (especially memory loads and stores) performed in previous
9051 iterations of loops.
9052
9053 This option is enabled at level @option{-O3}.
9054
9055 @item -fprefetch-loop-arrays
9056 @opindex fprefetch-loop-arrays
9057 If supported by the target machine, generate instructions to prefetch
9058 memory to improve the performance of loops that access large arrays.
9059
9060 This option may generate better or worse code; results are highly
9061 dependent on the structure of loops within the source code.
9062
9063 Disabled at level @option{-Os}.
9064
9065 @item -fno-peephole
9066 @itemx -fno-peephole2
9067 @opindex fno-peephole
9068 @opindex fno-peephole2
9069 Disable any machine-specific peephole optimizations.  The difference
9070 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9071 are implemented in the compiler; some targets use one, some use the
9072 other, a few use both.
9073
9074 @option{-fpeephole} is enabled by default.
9075 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9076
9077 @item -fno-guess-branch-probability
9078 @opindex fno-guess-branch-probability
9079 Do not guess branch probabilities using heuristics.
9080
9081 GCC uses heuristics to guess branch probabilities if they are
9082 not provided by profiling feedback (@option{-fprofile-arcs}).  These
9083 heuristics are based on the control flow graph.  If some branch probabilities
9084 are specified by @code{__builtin_expect}, then the heuristics are
9085 used to guess branch probabilities for the rest of the control flow graph,
9086 taking the @code{__builtin_expect} info into account.  The interactions
9087 between the heuristics and @code{__builtin_expect} can be complex, and in
9088 some cases, it may be useful to disable the heuristics so that the effects
9089 of @code{__builtin_expect} are easier to understand.
9090
9091 The default is @option{-fguess-branch-probability} at levels
9092 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9093
9094 @item -freorder-blocks
9095 @opindex freorder-blocks
9096 Reorder basic blocks in the compiled function in order to reduce number of
9097 taken branches and improve code locality.
9098
9099 Enabled at levels @option{-O2}, @option{-O3}.
9100
9101 @item -freorder-blocks-and-partition
9102 @opindex freorder-blocks-and-partition
9103 In addition to reordering basic blocks in the compiled function, in order
9104 to reduce number of taken branches, partitions hot and cold basic blocks
9105 into separate sections of the assembly and .o files, to improve
9106 paging and cache locality performance.
9107
9108 This optimization is automatically turned off in the presence of
9109 exception handling, for linkonce sections, for functions with a user-defined
9110 section attribute and on any architecture that does not support named
9111 sections.
9112
9113 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9114
9115 @item -freorder-functions
9116 @opindex freorder-functions
9117 Reorder functions in the object file in order to
9118 improve code locality.  This is implemented by using special
9119 subsections @code{.text.hot} for most frequently executed functions and
9120 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9121 the linker so object file format must support named sections and linker must
9122 place them in a reasonable way.
9123
9124 Also profile feedback must be available to make this option effective.  See
9125 @option{-fprofile-arcs} for details.
9126
9127 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9128
9129 @item -fstrict-aliasing
9130 @opindex fstrict-aliasing
9131 Allow the compiler to assume the strictest aliasing rules applicable to
9132 the language being compiled.  For C (and C++), this activates
9133 optimizations based on the type of expressions.  In particular, an
9134 object of one type is assumed never to reside at the same address as an
9135 object of a different type, unless the types are almost the same.  For
9136 example, an @code{unsigned int} can alias an @code{int}, but not a
9137 @code{void*} or a @code{double}.  A character type may alias any other
9138 type.
9139
9140 @anchor{Type-punning}Pay special attention to code like this:
9141 @smallexample
9142 union a_union @{
9143   int i;
9144   double d;
9145 @};
9146
9147 int f() @{
9148   union a_union t;
9149   t.d = 3.0;
9150   return t.i;
9151 @}
9152 @end smallexample
9153 The practice of reading from a different union member than the one most
9154 recently written to (called ``type-punning'') is common.  Even with
9155 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9156 is accessed through the union type.  So, the code above works as
9157 expected.  @xref{Structures unions enumerations and bit-fields
9158 implementation}.  However, this code might not:
9159 @smallexample
9160 int f() @{
9161   union a_union t;
9162   int* ip;
9163   t.d = 3.0;
9164   ip = &t.i;
9165   return *ip;
9166 @}
9167 @end smallexample
9168
9169 Similarly, access by taking the address, casting the resulting pointer
9170 and dereferencing the result has undefined behavior, even if the cast
9171 uses a union type, e.g.:
9172 @smallexample
9173 int f() @{
9174   double d = 3.0;
9175   return ((union a_union *) &d)->i;
9176 @}
9177 @end smallexample
9178
9179 The @option{-fstrict-aliasing} option is enabled at levels
9180 @option{-O2}, @option{-O3}, @option{-Os}.
9181
9182 @item -fstrict-overflow
9183 @opindex fstrict-overflow
9184 Allow the compiler to assume strict signed overflow rules, depending
9185 on the language being compiled.  For C (and C++) this means that
9186 overflow when doing arithmetic with signed numbers is undefined, which
9187 means that the compiler may assume that it does not happen.  This
9188 permits various optimizations.  For example, the compiler assumes
9189 that an expression like @code{i + 10 > i} is always true for
9190 signed @code{i}.  This assumption is only valid if signed overflow is
9191 undefined, as the expression is false if @code{i + 10} overflows when
9192 using twos complement arithmetic.  When this option is in effect any
9193 attempt to determine whether an operation on signed numbers 
9194 overflows must be written carefully to not actually involve overflow.
9195
9196 This option also allows the compiler to assume strict pointer
9197 semantics: given a pointer to an object, if adding an offset to that
9198 pointer does not produce a pointer to the same object, the addition is
9199 undefined.  This permits the compiler to conclude that @code{p + u >
9200 p} is always true for a pointer @code{p} and unsigned integer
9201 @code{u}.  This assumption is only valid because pointer wraparound is
9202 undefined, as the expression is false if @code{p + u} overflows using
9203 twos complement arithmetic.
9204
9205 See also the @option{-fwrapv} option.  Using @option{-fwrapv} means
9206 that integer signed overflow is fully defined: it wraps.  When
9207 @option{-fwrapv} is used, there is no difference between
9208 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9209 integers.  With @option{-fwrapv} certain types of overflow are
9210 permitted.  For example, if the compiler gets an overflow when doing
9211 arithmetic on constants, the overflowed value can still be used with
9212 @option{-fwrapv}, but not otherwise.
9213
9214 The @option{-fstrict-overflow} option is enabled at levels
9215 @option{-O2}, @option{-O3}, @option{-Os}.
9216
9217 @item -falign-functions
9218 @itemx -falign-functions=@var{n}
9219 @opindex falign-functions
9220 Align the start of functions to the next power-of-two greater than
9221 @var{n}, skipping up to @var{n} bytes.  For instance,
9222 @option{-falign-functions=32} aligns functions to the next 32-byte
9223 boundary, but @option{-falign-functions=24} aligns to the next
9224 32-byte boundary only if this can be done by skipping 23 bytes or less.
9225
9226 @option{-fno-align-functions} and @option{-falign-functions=1} are
9227 equivalent and mean that functions are not aligned.
9228
9229 Some assemblers only support this flag when @var{n} is a power of two;
9230 in that case, it is rounded up.
9231
9232 If @var{n} is not specified or is zero, use a machine-dependent default.
9233
9234 Enabled at levels @option{-O2}, @option{-O3}.
9235
9236 @item -falign-labels
9237 @itemx -falign-labels=@var{n}
9238 @opindex falign-labels
9239 Align all branch targets to a power-of-two boundary, skipping up to
9240 @var{n} bytes like @option{-falign-functions}.  This option can easily
9241 make code slower, because it must insert dummy operations for when the
9242 branch target is reached in the usual flow of the code.
9243
9244 @option{-fno-align-labels} and @option{-falign-labels=1} are
9245 equivalent and mean that labels are not aligned.
9246
9247 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9248 are greater than this value, then their values are used instead.
9249
9250 If @var{n} is not specified or is zero, use a machine-dependent default
9251 which is very likely to be @samp{1}, meaning no alignment.
9252
9253 Enabled at levels @option{-O2}, @option{-O3}.
9254
9255 @item -falign-loops
9256 @itemx -falign-loops=@var{n}
9257 @opindex falign-loops
9258 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9259 like @option{-falign-functions}.  If the loops are
9260 executed many times, this makes up for any execution of the dummy
9261 operations.
9262
9263 @option{-fno-align-loops} and @option{-falign-loops=1} are
9264 equivalent and mean that loops are not aligned.
9265
9266 If @var{n} is not specified or is zero, use a machine-dependent default.
9267
9268 Enabled at levels @option{-O2}, @option{-O3}.
9269
9270 @item -falign-jumps
9271 @itemx -falign-jumps=@var{n}
9272 @opindex falign-jumps
9273 Align branch targets to a power-of-two boundary, for branch targets
9274 where the targets can only be reached by jumping, skipping up to @var{n}
9275 bytes like @option{-falign-functions}.  In this case, no dummy operations
9276 need be executed.
9277
9278 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9279 equivalent and mean that loops are not aligned.
9280
9281 If @var{n} is not specified or is zero, use a machine-dependent default.
9282
9283 Enabled at levels @option{-O2}, @option{-O3}.
9284
9285 @item -funit-at-a-time
9286 @opindex funit-at-a-time
9287 This option is left for compatibility reasons. @option{-funit-at-a-time}
9288 has no effect, while @option{-fno-unit-at-a-time} implies
9289 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9290
9291 Enabled by default.
9292
9293 @item -fno-toplevel-reorder
9294 @opindex fno-toplevel-reorder
9295 Do not reorder top-level functions, variables, and @code{asm}
9296 statements.  Output them in the same order that they appear in the
9297 input file.  When this option is used, unreferenced static variables
9298 are not removed.  This option is intended to support existing code
9299 that relies on a particular ordering.  For new code, it is better to
9300 use attributes when possible.
9301
9302 Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9303 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9304 targets.
9305
9306 @item -fweb
9307 @opindex fweb
9308 Constructs webs as commonly used for register allocation purposes and assign
9309 each web individual pseudo register.  This allows the register allocation pass
9310 to operate on pseudos directly, but also strengthens several other optimization
9311 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9312 however, make debugging impossible, since variables no longer stay in a
9313 ``home register''.
9314
9315 Enabled by default with @option{-funroll-loops}.
9316
9317 @item -fwhole-program
9318 @opindex fwhole-program
9319 Assume that the current compilation unit represents the whole program being
9320 compiled.  All public functions and variables with the exception of @code{main}
9321 and those merged by attribute @code{externally_visible} become static functions
9322 and in effect are optimized more aggressively by interprocedural optimizers.
9323
9324 This option should not be used in combination with @option{-flto}.
9325 Instead relying on a linker plugin should provide safer and more precise
9326 information.
9327
9328 @item -flto[=@var{n}]
9329 @opindex flto
9330 This option runs the standard link-time optimizer.  When invoked
9331 with source code, it generates GIMPLE (one of GCC's internal
9332 representations) and writes it to special ELF sections in the object
9333 file.  When the object files are linked together, all the function
9334 bodies are read from these ELF sections and instantiated as if they
9335 had been part of the same translation unit.
9336
9337 To use the link-time optimizer, @option{-flto} and optimization
9338 options should be specified at compile time and during the final link.
9339 For example:
9340
9341 @smallexample
9342 gcc -c -O2 -flto foo.c
9343 gcc -c -O2 -flto bar.c
9344 gcc -o myprog -flto -O2 foo.o bar.o
9345 @end smallexample
9346
9347 The first two invocations to GCC save a bytecode representation
9348 of GIMPLE into special ELF sections inside @file{foo.o} and
9349 @file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9350 @file{foo.o} and @file{bar.o}, merges the two files into a single
9351 internal image, and compiles the result as usual.  Since both
9352 @file{foo.o} and @file{bar.o} are merged into a single image, this
9353 causes all the interprocedural analyses and optimizations in GCC to
9354 work across the two files as if they were a single one.  This means,
9355 for example, that the inliner is able to inline functions in
9356 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9357
9358 Another (simpler) way to enable link-time optimization is:
9359
9360 @smallexample
9361 gcc -o myprog -flto -O2 foo.c bar.c
9362 @end smallexample
9363
9364 The above generates bytecode for @file{foo.c} and @file{bar.c},
9365 merges them together into a single GIMPLE representation and optimizes
9366 them as usual to produce @file{myprog}.
9367
9368 The only important thing to keep in mind is that to enable link-time
9369 optimizations you need to use the GCC driver to perform the link-step.
9370 GCC then automatically performs link-time optimization if any of the
9371 objects involved were compiled with the @option{-flto} command-line option.  
9372 You generally
9373 should specify the optimization options to be used for link-time
9374 optimization though GCC tries to be clever at guessing an
9375 optimization level to use from the options used at compile-time
9376 if you fail to specify one at link-time.  You can always override
9377 the automatic decision to do link-time optimization at link-time
9378 by passing @option{-fno-lto} to the link command.
9379
9380 To make whole program optimization effective, it is necessary to make
9381 certain whole program assumptions.  The compiler needs to know
9382 what functions and variables can be accessed by libraries and runtime
9383 outside of the link-time optimized unit.  When supported by the linker,
9384 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9385 to the compiler about used and externally visible symbols.  When
9386 the linker plugin is not available, @option{-fwhole-program} should be
9387 used to allow the compiler to make these assumptions, which leads
9388 to more aggressive optimization decisions.
9389
9390 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9391 compiled with @option{-flto}, the generated object file is larger than
9392 a regular object file because it contains GIMPLE bytecodes and the usual
9393 final code (see @option{-ffat-lto-objects}.  This means that
9394 object files with LTO information can be linked as normal object
9395 files; if @option{-fno-lto} is passed to the linker, no
9396 interprocedural optimizations are applied.  Note that when
9397 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9398 but you cannot perform a regular, non-LTO link on them.
9399
9400 Additionally, the optimization flags used to compile individual files
9401 are not necessarily related to those used at link time.  For instance,
9402
9403 @smallexample
9404 gcc -c -O0 -ffat-lto-objects -flto foo.c
9405 gcc -c -O0 -ffat-lto-objects -flto bar.c
9406 gcc -o myprog -O3 foo.o bar.o
9407 @end smallexample
9408
9409 This produces individual object files with unoptimized assembler
9410 code, but the resulting binary @file{myprog} is optimized at
9411 @option{-O3}.  If, instead, the final binary is generated with
9412 @option{-fno-lto}, then @file{myprog} is not optimized.
9413
9414 When producing the final binary, GCC only
9415 applies link-time optimizations to those files that contain bytecode.
9416 Therefore, you can mix and match object files and libraries with
9417 GIMPLE bytecodes and final object code.  GCC automatically selects
9418 which files to optimize in LTO mode and which files to link without
9419 further processing.
9420
9421 There are some code generation flags preserved by GCC when
9422 generating bytecodes, as they need to be used during the final link
9423 stage.  Generally options specified at link-time override those
9424 specified at compile-time.
9425
9426 If you do not specify an optimization level option @option{-O} at
9427 link-time then GCC computes one based on the optimization levels
9428 used when compiling the object files.  The highest optimization
9429 level wins here.
9430
9431 Currently, the following options and their setting are take from
9432 the first object file that explicitely specified it: 
9433 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9434 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9435 and all the @option{-m} target flags.
9436
9437 Certain ABI changing flags are required to match in all compilation-units
9438 and trying to override this at link-time with a conflicting value
9439 is ignored.  This includes options such as @option{-freg-struct-return}
9440 and @option{-fpcc-struct-return}. 
9441
9442 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9443 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9444 are passed through to the link stage and merged conservatively for
9445 conflicting translation units.  Specifically
9446 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9447 precedence and for example @option{-ffp-contract=off} takes precedence
9448 over @option{-ffp-contract=fast}.  You can override them at linke-time.
9449
9450 It is recommended that you compile all the files participating in the
9451 same link with the same options and also specify those options at
9452 link time.
9453
9454 If LTO encounters objects with C linkage declared with incompatible
9455 types in separate translation units to be linked together (undefined
9456 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9457 issued.  The behavior is still undefined at run time.  Similar
9458 diagnostics may be raised for other languages.
9459
9460 Another feature of LTO is that it is possible to apply interprocedural
9461 optimizations on files written in different languages:
9462
9463 @smallexample
9464 gcc -c -flto foo.c
9465 g++ -c -flto bar.cc
9466 gfortran -c -flto baz.f90
9467 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9468 @end smallexample
9469
9470 Notice that the final link is done with @command{g++} to get the C++
9471 runtime libraries and @option{-lgfortran} is added to get the Fortran
9472 runtime libraries.  In general, when mixing languages in LTO mode, you
9473 should use the same link command options as when mixing languages in a
9474 regular (non-LTO) compilation.
9475
9476 If object files containing GIMPLE bytecode are stored in a library archive, say
9477 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9478 are using a linker with plugin support.  To create static libraries suitable
9479 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9480 and @command{ranlib}; 
9481 to show the symbols of object files with GIMPLE bytecode, use
9482 @command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9483 and @command{nm} have been compiled with plugin support.  At link time, use the the
9484 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9485 the LTO optimization process:
9486
9487 @smallexample
9488 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9489 @end smallexample
9490
9491 With the linker plugin enabled, the linker extracts the needed
9492 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9493 to make them part of the aggregated GIMPLE image to be optimized.
9494
9495 If you are not using a linker with plugin support and/or do not
9496 enable the linker plugin, then the objects inside @file{libfoo.a}
9497 are extracted and linked as usual, but they do not participate
9498 in the LTO optimization process.  In order to make a static library suitable
9499 for both LTO optimization and usual linkage, compile its object files with
9500 @option{-flto} @option{-ffat-lto-objects}.
9501
9502 Link-time optimizations do not require the presence of the whole program to
9503 operate.  If the program does not require any symbols to be exported, it is
9504 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9505 the interprocedural optimizers to use more aggressive assumptions which may
9506 lead to improved optimization opportunities.
9507 Use of @option{-fwhole-program} is not needed when linker plugin is
9508 active (see @option{-fuse-linker-plugin}).
9509
9510 The current implementation of LTO makes no
9511 attempt to generate bytecode that is portable between different
9512 types of hosts.  The bytecode files are versioned and there is a
9513 strict version check, so bytecode files generated in one version of
9514 GCC do not work with an older or newer version of GCC.
9515
9516 Link-time optimization does not work well with generation of debugging
9517 information.  Combining @option{-flto} with
9518 @option{-g} is currently experimental and expected to produce unexpected
9519 results.
9520
9521 If you specify the optional @var{n}, the optimization and code
9522 generation done at link time is executed in parallel using @var{n}
9523 parallel jobs by utilizing an installed @command{make} program.  The
9524 environment variable @env{MAKE} may be used to override the program
9525 used.  The default value for @var{n} is 1.
9526
9527 You can also specify @option{-flto=jobserver} to use GNU make's
9528 job server mode to determine the number of parallel jobs. This
9529 is useful when the Makefile calling GCC is already executing in parallel.
9530 You must prepend a @samp{+} to the command recipe in the parent Makefile
9531 for this to work.  This option likely only works if @env{MAKE} is
9532 GNU make.
9533
9534 @item -flto-partition=@var{alg}
9535 @opindex flto-partition
9536 Specify the partitioning algorithm used by the link-time optimizer.
9537 The value is either @samp{1to1} to specify a partitioning mirroring
9538 the original source files or @samp{balanced} to specify partitioning
9539 into equally sized chunks (whenever possible) or @samp{max} to create
9540 new partition for every symbol where possible.  Specifying @samp{none}
9541 as an algorithm disables partitioning and streaming completely. 
9542 The default value is @samp{balanced}. While @samp{1to1} can be used
9543 as an workaround for various code ordering issues, the @samp{max}
9544 partitioning is intended for internal testing only.
9545 The value @samp{one} specifies that exactly one partition should be
9546 used while the value @samp{none} bypasses partitioning and executes
9547 the link-time optimization step directly from the WPA phase.
9548
9549 @item -flto-odr-type-merging
9550 @opindex flto-odr-type-merging
9551 Enable streaming of mangled types names of C++ types and their unification
9552 at linktime.  This increases size of LTO object files, but enable
9553 diagnostics about One Definition Rule violations.
9554
9555 @item -flto-compression-level=@var{n}
9556 @opindex flto-compression-level
9557 This option specifies the level of compression used for intermediate
9558 language written to LTO object files, and is only meaningful in
9559 conjunction with LTO mode (@option{-flto}).  Valid
9560 values are 0 (no compression) to 9 (maximum compression).  Values
9561 outside this range are clamped to either 0 or 9.  If the option is not
9562 given, a default balanced compression setting is used.
9563
9564 @item -flto-report
9565 @opindex flto-report
9566 Prints a report with internal details on the workings of the link-time
9567 optimizer.  The contents of this report vary from version to version.
9568 It is meant to be useful to GCC developers when processing object
9569 files in LTO mode (via @option{-flto}).
9570
9571 Disabled by default.
9572
9573 @item -flto-report-wpa
9574 @opindex flto-report-wpa
9575 Like @option{-flto-report}, but only print for the WPA phase of Link
9576 Time Optimization.
9577
9578 @item -fuse-linker-plugin
9579 @opindex fuse-linker-plugin
9580 Enables the use of a linker plugin during link-time optimization.  This
9581 option relies on plugin support in the linker, which is available in gold
9582 or in GNU ld 2.21 or newer.
9583
9584 This option enables the extraction of object files with GIMPLE bytecode out
9585 of library archives. This improves the quality of optimization by exposing
9586 more code to the link-time optimizer.  This information specifies what
9587 symbols can be accessed externally (by non-LTO object or during dynamic
9588 linking).  Resulting code quality improvements on binaries (and shared
9589 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9590 See @option{-flto} for a description of the effect of this flag and how to
9591 use it.
9592
9593 This option is enabled by default when LTO support in GCC is enabled
9594 and GCC was configured for use with
9595 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9596
9597 @item -ffat-lto-objects
9598 @opindex ffat-lto-objects
9599 Fat LTO objects are object files that contain both the intermediate language
9600 and the object code. This makes them usable for both LTO linking and normal
9601 linking. This option is effective only when compiling with @option{-flto}
9602 and is ignored at link time.
9603
9604 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9605 requires the complete toolchain to be aware of LTO. It requires a linker with
9606 linker plugin support for basic functionality.  Additionally,
9607 @command{nm}, @command{ar} and @command{ranlib}
9608 need to support linker plugins to allow a full-featured build environment
9609 (capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9610 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9611 to these tools. With non fat LTO makefiles need to be modified to use them.
9612
9613 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9614 support.
9615
9616 @item -fcompare-elim
9617 @opindex fcompare-elim
9618 After register allocation and post-register allocation instruction splitting,
9619 identify arithmetic instructions that compute processor flags similar to a
9620 comparison operation based on that arithmetic.  If possible, eliminate the
9621 explicit comparison operation.
9622
9623 This pass only applies to certain targets that cannot explicitly represent
9624 the comparison operation before register allocation is complete.
9625
9626 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9627
9628 @item -fcprop-registers
9629 @opindex fcprop-registers
9630 After register allocation and post-register allocation instruction splitting,
9631 perform a copy-propagation pass to try to reduce scheduling dependencies
9632 and occasionally eliminate the copy.
9633
9634 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9635
9636 @item -fprofile-correction
9637 @opindex fprofile-correction
9638 Profiles collected using an instrumented binary for multi-threaded programs may
9639 be inconsistent due to missed counter updates. When this option is specified,
9640 GCC uses heuristics to correct or smooth out such inconsistencies. By
9641 default, GCC emits an error message when an inconsistent profile is detected.
9642
9643 @item -fprofile-dir=@var{path}
9644 @opindex fprofile-dir
9645
9646 Set the directory to search for the profile data files in to @var{path}.
9647 This option affects only the profile data generated by
9648 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9649 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9650 and its related options.  Both absolute and relative paths can be used.
9651 By default, GCC uses the current directory as @var{path}, thus the
9652 profile data file appears in the same directory as the object file.
9653
9654 @item -fprofile-generate
9655 @itemx -fprofile-generate=@var{path}
9656 @opindex fprofile-generate
9657
9658 Enable options usually used for instrumenting application to produce
9659 profile useful for later recompilation with profile feedback based
9660 optimization.  You must use @option{-fprofile-generate} both when
9661 compiling and when linking your program.
9662
9663 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9664
9665 If @var{path} is specified, GCC looks at the @var{path} to find
9666 the profile feedback data files. See @option{-fprofile-dir}.
9667
9668 @item -fprofile-use
9669 @itemx -fprofile-use=@var{path}
9670 @opindex fprofile-use
9671 Enable profile feedback-directed optimizations, 
9672 and the following optimizations
9673 which are generally profitable only with profile feedback available:
9674 @option{-fbranch-probabilities}, @option{-fvpt},
9675 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9676 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9677
9678 By default, GCC emits an error message if the feedback profiles do not
9679 match the source code.  This error can be turned into a warning by using
9680 @option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9681 code.
9682
9683 If @var{path} is specified, GCC looks at the @var{path} to find
9684 the profile feedback data files. See @option{-fprofile-dir}.
9685
9686 @item -fauto-profile
9687 @itemx -fauto-profile=@var{path}
9688 @opindex fauto-profile
9689 Enable sampling-based feedback-directed optimizations, 
9690 and the following optimizations
9691 which are generally profitable only with profile feedback available:
9692 @option{-fbranch-probabilities}, @option{-fvpt},
9693 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9694 @option{-ftree-vectorize},
9695 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9696 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9697 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9698
9699 @var{path} is the name of a file containing AutoFDO profile information.
9700 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9701
9702 Producing an AutoFDO profile data file requires running your program
9703 with the @command{perf} utility on a supported GNU/Linux target system.
9704 For more information, see @uref{https://perf.wiki.kernel.org/}.
9705
9706 E.g.
9707 @smallexample
9708 perf record -e br_inst_retired:near_taken -b -o perf.data \
9709     -- your_program
9710 @end smallexample
9711
9712 Then use the @command{create_gcov} tool to convert the raw profile data
9713 to a format that can be used by GCC.@  You must also supply the 
9714 unstripped binary for your program to this tool.  
9715 See @uref{https://github.com/google/autofdo}.
9716
9717 E.g.
9718 @smallexample
9719 create_gcov --binary=your_program.unstripped --profile=perf.data \
9720     --gcov=profile.afdo
9721 @end smallexample
9722 @end table
9723
9724 The following options control compiler behavior regarding floating-point 
9725 arithmetic.  These options trade off between speed and
9726 correctness.  All must be specifically enabled.
9727
9728 @table @gcctabopt
9729 @item -ffloat-store
9730 @opindex ffloat-store
9731 Do not store floating-point variables in registers, and inhibit other
9732 options that might change whether a floating-point value is taken from a
9733 register or memory.
9734
9735 @cindex floating-point precision
9736 This option prevents undesirable excess precision on machines such as
9737 the 68000 where the floating registers (of the 68881) keep more
9738 precision than a @code{double} is supposed to have.  Similarly for the
9739 x86 architecture.  For most programs, the excess precision does only
9740 good, but a few programs rely on the precise definition of IEEE floating
9741 point.  Use @option{-ffloat-store} for such programs, after modifying
9742 them to store all pertinent intermediate computations into variables.
9743
9744 @item -fexcess-precision=@var{style}
9745 @opindex fexcess-precision
9746 This option allows further control over excess precision on machines
9747 where floating-point registers have more precision than the IEEE
9748 @code{float} and @code{double} types and the processor does not
9749 support operations rounding to those types.  By default,
9750 @option{-fexcess-precision=fast} is in effect; this means that
9751 operations are carried out in the precision of the registers and that
9752 it is unpredictable when rounding to the types specified in the source
9753 code takes place.  When compiling C, if
9754 @option{-fexcess-precision=standard} is specified then excess
9755 precision follows the rules specified in ISO C99; in particular,
9756 both casts and assignments cause values to be rounded to their
9757 semantic types (whereas @option{-ffloat-store} only affects
9758 assignments).  This option is enabled by default for C if a strict
9759 conformance option such as @option{-std=c99} is used.
9760
9761 @opindex mfpmath
9762 @option{-fexcess-precision=standard} is not implemented for languages
9763 other than C, and has no effect if
9764 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9765 specified.  On the x86, it also has no effect if @option{-mfpmath=sse}
9766 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9767 semantics apply without excess precision, and in the latter, rounding
9768 is unpredictable.
9769
9770 @item -ffast-math
9771 @opindex ffast-math
9772 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9773 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9774 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9775
9776 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9777
9778 This option is not turned on by any @option{-O} option besides
9779 @option{-Ofast} since it can result in incorrect output for programs
9780 that depend on an exact implementation of IEEE or ISO rules/specifications
9781 for math functions. It may, however, yield faster code for programs
9782 that do not require the guarantees of these specifications.
9783
9784 @item -fno-math-errno
9785 @opindex fno-math-errno
9786 Do not set @code{errno} after calling math functions that are executed
9787 with a single instruction, e.g., @code{sqrt}.  A program that relies on
9788 IEEE exceptions for math error handling may want to use this flag
9789 for speed while maintaining IEEE arithmetic compatibility.
9790
9791 This option is not turned on by any @option{-O} option since
9792 it can result in incorrect output for programs that depend on
9793 an exact implementation of IEEE or ISO rules/specifications for
9794 math functions. It may, however, yield faster code for programs
9795 that do not require the guarantees of these specifications.
9796
9797 The default is @option{-fmath-errno}.
9798
9799 On Darwin systems, the math library never sets @code{errno}.  There is
9800 therefore no reason for the compiler to consider the possibility that
9801 it might, and @option{-fno-math-errno} is the default.
9802
9803 @item -funsafe-math-optimizations
9804 @opindex funsafe-math-optimizations
9805
9806 Allow optimizations for floating-point arithmetic that (a) assume
9807 that arguments and results are valid and (b) may violate IEEE or
9808 ANSI standards.  When used at link-time, it may include libraries
9809 or startup files that change the default FPU control word or other
9810 similar optimizations.
9811
9812 This option is not turned on by any @option{-O} option since
9813 it can result in incorrect output for programs that depend on
9814 an exact implementation of IEEE or ISO rules/specifications for
9815 math functions. It may, however, yield faster code for programs
9816 that do not require the guarantees of these specifications.
9817 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9818 @option{-fassociative-math} and @option{-freciprocal-math}.
9819
9820 The default is @option{-fno-unsafe-math-optimizations}.
9821
9822 @item -fassociative-math
9823 @opindex fassociative-math
9824
9825 Allow re-association of operands in series of floating-point operations.
9826 This violates the ISO C and C++ language standard by possibly changing
9827 computation result.  NOTE: re-ordering may change the sign of zero as
9828 well as ignore NaNs and inhibit or create underflow or overflow (and
9829 thus cannot be used on code that relies on rounding behavior like
9830 @code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9831 and thus may not be used when ordered comparisons are required.
9832 This option requires that both @option{-fno-signed-zeros} and
9833 @option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9834 much sense with @option{-frounding-math}. For Fortran the option
9835 is automatically enabled when both @option{-fno-signed-zeros} and
9836 @option{-fno-trapping-math} are in effect.
9837
9838 The default is @option{-fno-associative-math}.
9839
9840 @item -freciprocal-math
9841 @opindex freciprocal-math
9842
9843 Allow the reciprocal of a value to be used instead of dividing by
9844 the value if this enables optimizations.  For example @code{x / y}
9845 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9846 is subject to common subexpression elimination.  Note that this loses
9847 precision and increases the number of flops operating on the value.
9848
9849 The default is @option{-fno-reciprocal-math}.
9850
9851 @item -ffinite-math-only
9852 @opindex ffinite-math-only
9853 Allow optimizations for floating-point arithmetic that assume
9854 that arguments and results are not NaNs or +-Infs.
9855
9856 This option is not turned on by any @option{-O} option since
9857 it can result in incorrect output for programs that depend on
9858 an exact implementation of IEEE or ISO rules/specifications for
9859 math functions. It may, however, yield faster code for programs
9860 that do not require the guarantees of these specifications.
9861
9862 The default is @option{-fno-finite-math-only}.
9863
9864 @item -fno-signed-zeros
9865 @opindex fno-signed-zeros
9866 Allow optimizations for floating-point arithmetic that ignore the
9867 signedness of zero.  IEEE arithmetic specifies the behavior of
9868 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9869 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9870 This option implies that the sign of a zero result isn't significant.
9871
9872 The default is @option{-fsigned-zeros}.
9873
9874 @item -fno-trapping-math
9875 @opindex fno-trapping-math
9876 Compile code assuming that floating-point operations cannot generate
9877 user-visible traps.  These traps include division by zero, overflow,
9878 underflow, inexact result and invalid operation.  This option requires
9879 that @option{-fno-signaling-nans} be in effect.  Setting this option may
9880 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9881
9882 This option should never be turned on by any @option{-O} option since
9883 it can result in incorrect output for programs that depend on
9884 an exact implementation of IEEE or ISO rules/specifications for
9885 math functions.
9886
9887 The default is @option{-ftrapping-math}.
9888
9889 @item -frounding-math
9890 @opindex frounding-math
9891 Disable transformations and optimizations that assume default floating-point
9892 rounding behavior.  This is round-to-zero for all floating point
9893 to integer conversions, and round-to-nearest for all other arithmetic
9894 truncations.  This option should be specified for programs that change
9895 the FP rounding mode dynamically, or that may be executed with a
9896 non-default rounding mode.  This option disables constant folding of
9897 floating-point expressions at compile time (which may be affected by
9898 rounding mode) and arithmetic transformations that are unsafe in the
9899 presence of sign-dependent rounding modes.
9900
9901 The default is @option{-fno-rounding-math}.
9902
9903 This option is experimental and does not currently guarantee to
9904 disable all GCC optimizations that are affected by rounding mode.
9905 Future versions of GCC may provide finer control of this setting
9906 using C99's @code{FENV_ACCESS} pragma.  This command-line option
9907 will be used to specify the default state for @code{FENV_ACCESS}.
9908
9909 @item -fsignaling-nans
9910 @opindex fsignaling-nans
9911 Compile code assuming that IEEE signaling NaNs may generate user-visible
9912 traps during floating-point operations.  Setting this option disables
9913 optimizations that may change the number of exceptions visible with
9914 signaling NaNs.  This option implies @option{-ftrapping-math}.
9915
9916 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9917 be defined.
9918
9919 The default is @option{-fno-signaling-nans}.
9920
9921 This option is experimental and does not currently guarantee to
9922 disable all GCC optimizations that affect signaling NaN behavior.
9923
9924 @item -fsingle-precision-constant
9925 @opindex fsingle-precision-constant
9926 Treat floating-point constants as single precision instead of
9927 implicitly converting them to double-precision constants.
9928
9929 @item -fcx-limited-range
9930 @opindex fcx-limited-range
9931 When enabled, this option states that a range reduction step is not
9932 needed when performing complex division.  Also, there is no checking
9933 whether the result of a complex multiplication or division is @code{NaN
9934 + I*NaN}, with an attempt to rescue the situation in that case.  The
9935 default is @option{-fno-cx-limited-range}, but is enabled by
9936 @option{-ffast-math}.
9937
9938 This option controls the default setting of the ISO C99
9939 @code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
9940 all languages.
9941
9942 @item -fcx-fortran-rules
9943 @opindex fcx-fortran-rules
9944 Complex multiplication and division follow Fortran rules.  Range
9945 reduction is done as part of complex division, but there is no checking
9946 whether the result of a complex multiplication or division is @code{NaN
9947 + I*NaN}, with an attempt to rescue the situation in that case.
9948
9949 The default is @option{-fno-cx-fortran-rules}.
9950
9951 @end table
9952
9953 The following options control optimizations that may improve
9954 performance, but are not enabled by any @option{-O} options.  This
9955 section includes experimental options that may produce broken code.
9956
9957 @table @gcctabopt
9958 @item -fbranch-probabilities
9959 @opindex fbranch-probabilities
9960 After running a program compiled with @option{-fprofile-arcs}
9961 (@pxref{Debugging Options,, Options for Debugging Your Program or
9962 @command{gcc}}), you can compile it a second time using
9963 @option{-fbranch-probabilities}, to improve optimizations based on
9964 the number of times each branch was taken.  When a program
9965 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9966 counts to a file called @file{@var{sourcename}.gcda} for each source
9967 file.  The information in this data file is very dependent on the
9968 structure of the generated code, so you must use the same source code
9969 and the same optimization options for both compilations.
9970
9971 With @option{-fbranch-probabilities}, GCC puts a
9972 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9973 These can be used to improve optimization.  Currently, they are only
9974 used in one place: in @file{reorg.c}, instead of guessing which path a
9975 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9976 exactly determine which path is taken more often.
9977
9978 @item -fprofile-values
9979 @opindex fprofile-values
9980 If combined with @option{-fprofile-arcs}, it adds code so that some
9981 data about values of expressions in the program is gathered.
9982
9983 With @option{-fbranch-probabilities}, it reads back the data gathered
9984 from profiling values of expressions for usage in optimizations.
9985
9986 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9987
9988 @item -fprofile-reorder-functions
9989 @opindex fprofile-reorder-functions
9990 Function reordering based on profile instrumentation collects
9991 first time of execution of a function and orders these functions
9992 in ascending order.
9993
9994 Enabled with @option{-fprofile-use}.
9995
9996 @item -fvpt
9997 @opindex fvpt
9998 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9999 to add code to gather information about values of expressions.
10000
10001 With @option{-fbranch-probabilities}, it reads back the data gathered
10002 and actually performs the optimizations based on them.
10003 Currently the optimizations include specialization of division operations
10004 using the knowledge about the value of the denominator.
10005
10006 @item -frename-registers
10007 @opindex frename-registers
10008 Attempt to avoid false dependencies in scheduled code by making use
10009 of registers left over after register allocation.  This optimization
10010 most benefits processors with lots of registers.  Depending on the
10011 debug information format adopted by the target, however, it can
10012 make debugging impossible, since variables no longer stay in
10013 a ``home register''.
10014
10015 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10016
10017 @item -fschedule-fusion
10018 @opindex fschedule-fusion
10019 Performs a target dependent pass over the instruction stream to schedule
10020 instructions of same type together because target machine can execute them
10021 more efficiently if they are adjacent to each other in the instruction flow.
10022
10023 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10024
10025 @item -ftracer
10026 @opindex ftracer
10027 Perform tail duplication to enlarge superblock size.  This transformation
10028 simplifies the control flow of the function allowing other optimizations to do
10029 a better job.
10030
10031 Enabled with @option{-fprofile-use}.
10032
10033 @item -funroll-loops
10034 @opindex funroll-loops
10035 Unroll loops whose number of iterations can be determined at compile time or
10036 upon entry to the loop.  @option{-funroll-loops} implies
10037 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10038 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10039 a small constant number of iterations).  This option makes code larger, and may
10040 or may not make it run faster.
10041
10042 Enabled with @option{-fprofile-use}.
10043
10044 @item -funroll-all-loops
10045 @opindex funroll-all-loops
10046 Unroll all loops, even if their number of iterations is uncertain when
10047 the loop is entered.  This usually makes programs run more slowly.
10048 @option{-funroll-all-loops} implies the same options as
10049 @option{-funroll-loops}.
10050
10051 @item -fpeel-loops
10052 @opindex fpeel-loops
10053 Peels loops for which there is enough information that they do not
10054 roll much (from profile feedback).  It also turns on complete loop peeling
10055 (i.e.@: complete removal of loops with small constant number of iterations).
10056
10057 Enabled with @option{-fprofile-use}.
10058
10059 @item -fmove-loop-invariants
10060 @opindex fmove-loop-invariants
10061 Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
10062 at level @option{-O1}
10063
10064 @item -funswitch-loops
10065 @opindex funswitch-loops
10066 Move branches with loop invariant conditions out of the loop, with duplicates
10067 of the loop on both branches (modified according to result of the condition).
10068
10069 @item -ffunction-sections
10070 @itemx -fdata-sections
10071 @opindex ffunction-sections
10072 @opindex fdata-sections
10073 Place each function or data item into its own section in the output
10074 file if the target supports arbitrary sections.  The name of the
10075 function or the name of the data item determines the section's name
10076 in the output file.
10077
10078 Use these options on systems where the linker can perform optimizations
10079 to improve locality of reference in the instruction space.  Most systems
10080 using the ELF object format and SPARC processors running Solaris 2 have
10081 linkers with such optimizations.  AIX may have these optimizations in
10082 the future.
10083
10084 Only use these options when there are significant benefits from doing
10085 so.  When you specify these options, the assembler and linker
10086 create larger object and executable files and are also slower.
10087 You cannot use @command{gprof} on all systems if you
10088 specify this option, and you may have problems with debugging if
10089 you specify both this option and @option{-g}.
10090
10091 @item -fbranch-target-load-optimize
10092 @opindex fbranch-target-load-optimize
10093 Perform branch target register load optimization before prologue / epilogue
10094 threading.
10095 The use of target registers can typically be exposed only during reload,
10096 thus hoisting loads out of loops and doing inter-block scheduling needs
10097 a separate optimization pass.
10098
10099 @item -fbranch-target-load-optimize2
10100 @opindex fbranch-target-load-optimize2
10101 Perform branch target register load optimization after prologue / epilogue
10102 threading.
10103
10104 @item -fbtr-bb-exclusive
10105 @opindex fbtr-bb-exclusive
10106 When performing branch target register load optimization, don't reuse
10107 branch target registers within any basic block.
10108
10109 @item -fstack-protector
10110 @opindex fstack-protector
10111 Emit extra code to check for buffer overflows, such as stack smashing
10112 attacks.  This is done by adding a guard variable to functions with
10113 vulnerable objects.  This includes functions that call @code{alloca}, and
10114 functions with buffers larger than 8 bytes.  The guards are initialized
10115 when a function is entered and then checked when the function exits.
10116 If a guard check fails, an error message is printed and the program exits.
10117
10118 @item -fstack-protector-all
10119 @opindex fstack-protector-all
10120 Like @option{-fstack-protector} except that all functions are protected.
10121
10122 @item -fstack-protector-strong
10123 @opindex fstack-protector-strong
10124 Like @option{-fstack-protector} but includes additional functions to
10125 be protected --- those that have local array definitions, or have
10126 references to local frame addresses.
10127
10128 @item -fstack-protector-explicit
10129 @opindex fstack-protector-explicit
10130 Like @option{-fstack-protector} but only protects those functions which
10131 have the @code{stack_protect} attribute
10132
10133 @item -fstdarg-opt
10134 @opindex fstdarg-opt
10135 Optimize the prologue of variadic argument functions with respect to usage of
10136 those arguments.
10137
10138 @item -fsection-anchors
10139 @opindex fsection-anchors
10140 Try to reduce the number of symbolic address calculations by using
10141 shared ``anchor'' symbols to address nearby objects.  This transformation
10142 can help to reduce the number of GOT entries and GOT accesses on some
10143 targets.
10144
10145 For example, the implementation of the following function @code{foo}:
10146
10147 @smallexample
10148 static int a, b, c;
10149 int foo (void) @{ return a + b + c; @}
10150 @end smallexample
10151
10152 @noindent
10153 usually calculates the addresses of all three variables, but if you
10154 compile it with @option{-fsection-anchors}, it accesses the variables
10155 from a common anchor point instead.  The effect is similar to the
10156 following pseudocode (which isn't valid C):
10157
10158 @smallexample
10159 int foo (void)
10160 @{
10161   register int *xr = &x;
10162   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10163 @}
10164 @end smallexample
10165
10166 Not all targets support this option.
10167
10168 @item --param @var{name}=@var{value}
10169 @opindex param
10170 In some places, GCC uses various constants to control the amount of
10171 optimization that is done.  For example, GCC does not inline functions
10172 that contain more than a certain number of instructions.  You can
10173 control some of these constants on the command line using the
10174 @option{--param} option.
10175
10176 The names of specific parameters, and the meaning of the values, are
10177 tied to the internals of the compiler, and are subject to change
10178 without notice in future releases.
10179
10180 In each case, the @var{value} is an integer.  The allowable choices for
10181 @var{name} are:
10182
10183 @table @gcctabopt
10184 @item predictable-branch-outcome
10185 When branch is predicted to be taken with probability lower than this threshold
10186 (in percent), then it is considered well predictable. The default is 10.
10187
10188 @item max-crossjump-edges
10189 The maximum number of incoming edges to consider for cross-jumping.
10190 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10191 the number of edges incoming to each block.  Increasing values mean
10192 more aggressive optimization, making the compilation time increase with
10193 probably small improvement in executable size.
10194
10195 @item min-crossjump-insns
10196 The minimum number of instructions that must be matched at the end
10197 of two blocks before cross-jumping is performed on them.  This
10198 value is ignored in the case where all instructions in the block being
10199 cross-jumped from are matched.  The default value is 5.
10200
10201 @item max-grow-copy-bb-insns
10202 The maximum code size expansion factor when copying basic blocks
10203 instead of jumping.  The expansion is relative to a jump instruction.
10204 The default value is 8.
10205
10206 @item max-goto-duplication-insns
10207 The maximum number of instructions to duplicate to a block that jumps
10208 to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
10209 passes, GCC factors computed gotos early in the compilation process,
10210 and unfactors them as late as possible.  Only computed jumps at the
10211 end of a basic blocks with no more than max-goto-duplication-insns are
10212 unfactored.  The default value is 8.
10213
10214 @item max-delay-slot-insn-search
10215 The maximum number of instructions to consider when looking for an
10216 instruction to fill a delay slot.  If more than this arbitrary number of
10217 instructions are searched, the time savings from filling the delay slot
10218 are minimal, so stop searching.  Increasing values mean more
10219 aggressive optimization, making the compilation time increase with probably
10220 small improvement in execution time.
10221
10222 @item max-delay-slot-live-search
10223 When trying to fill delay slots, the maximum number of instructions to
10224 consider when searching for a block with valid live register
10225 information.  Increasing this arbitrarily chosen value means more
10226 aggressive optimization, increasing the compilation time.  This parameter
10227 should be removed when the delay slot code is rewritten to maintain the
10228 control-flow graph.
10229
10230 @item max-gcse-memory
10231 The approximate maximum amount of memory that can be allocated in
10232 order to perform the global common subexpression elimination
10233 optimization.  If more memory than specified is required, the
10234 optimization is not done.
10235
10236 @item max-gcse-insertion-ratio
10237 If the ratio of expression insertions to deletions is larger than this value
10238 for any expression, then RTL PRE inserts or removes the expression and thus
10239 leaves partially redundant computations in the instruction stream.  The default value is 20.
10240
10241 @item max-pending-list-length
10242 The maximum number of pending dependencies scheduling allows
10243 before flushing the current state and starting over.  Large functions
10244 with few branches or calls can create excessively large lists which
10245 needlessly consume memory and resources.
10246
10247 @item max-modulo-backtrack-attempts
10248 The maximum number of backtrack attempts the scheduler should make
10249 when modulo scheduling a loop.  Larger values can exponentially increase
10250 compilation time.
10251
10252 @item max-inline-insns-single
10253 Several parameters control the tree inliner used in GCC@.
10254 This number sets the maximum number of instructions (counted in GCC's
10255 internal representation) in a single function that the tree inliner
10256 considers for inlining.  This only affects functions declared
10257 inline and methods implemented in a class declaration (C++).
10258 The default value is 400.
10259
10260 @item max-inline-insns-auto
10261 When you use @option{-finline-functions} (included in @option{-O3}),
10262 a lot of functions that would otherwise not be considered for inlining
10263 by the compiler are investigated.  To those functions, a different
10264 (more restrictive) limit compared to functions declared inline can
10265 be applied.
10266 The default value is 40.
10267
10268 @item inline-min-speedup
10269 When estimated performance improvement of caller + callee runtime exceeds this
10270 threshold (in precent), the function can be inlined regardless the limit on
10271 @option{--param max-inline-insns-single} and @option{--param
10272 max-inline-insns-auto}.
10273
10274 @item large-function-insns
10275 The limit specifying really large functions.  For functions larger than this
10276 limit after inlining, inlining is constrained by
10277 @option{--param large-function-growth}.  This parameter is useful primarily
10278 to avoid extreme compilation time caused by non-linear algorithms used by the
10279 back end.
10280 The default value is 2700.
10281
10282 @item large-function-growth
10283 Specifies maximal growth of large function caused by inlining in percents.
10284 The default value is 100 which limits large function growth to 2.0 times
10285 the original size.
10286
10287 @item large-unit-insns
10288 The limit specifying large translation unit.  Growth caused by inlining of
10289 units larger than this limit is limited by @option{--param inline-unit-growth}.
10290 For small units this might be too tight.
10291 For example, consider a unit consisting of function A
10292 that is inline and B that just calls A three times.  If B is small relative to
10293 A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10294 large units consisting of small inlineable functions, however, the overall unit
10295 growth limit is needed to avoid exponential explosion of code size.  Thus for
10296 smaller units, the size is increased to @option{--param large-unit-insns}
10297 before applying @option{--param inline-unit-growth}.  The default is 10000.
10298
10299 @item inline-unit-growth
10300 Specifies maximal overall growth of the compilation unit caused by inlining.
10301 The default value is 20 which limits unit growth to 1.2 times the original
10302 size. Cold functions (either marked cold via an attribute or by profile
10303 feedback) are not accounted into the unit size.
10304
10305 @item ipcp-unit-growth
10306 Specifies maximal overall growth of the compilation unit caused by
10307 interprocedural constant propagation.  The default value is 10 which limits
10308 unit growth to 1.1 times the original size.
10309
10310 @item large-stack-frame
10311 The limit specifying large stack frames.  While inlining the algorithm is trying
10312 to not grow past this limit too much.  The default value is 256 bytes.
10313
10314 @item large-stack-frame-growth
10315 Specifies maximal growth of large stack frames caused by inlining in percents.
10316 The default value is 1000 which limits large stack frame growth to 11 times
10317 the original size.
10318
10319 @item max-inline-insns-recursive
10320 @itemx max-inline-insns-recursive-auto
10321 Specifies the maximum number of instructions an out-of-line copy of a
10322 self-recursive inline
10323 function can grow into by performing recursive inlining.
10324
10325 @option{--param max-inline-insns-recursive} applies to functions
10326 declared inline.
10327 For functions not declared inline, recursive inlining
10328 happens only when @option{-finline-functions} (included in @option{-O3}) is
10329 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10330 default value is 450.
10331
10332 @item max-inline-recursive-depth
10333 @itemx max-inline-recursive-depth-auto
10334 Specifies the maximum recursion depth used for recursive inlining.
10335
10336 @option{--param max-inline-recursive-depth} applies to functions
10337 declared inline.  For functions not declared inline, recursive inlining
10338 happens only when @option{-finline-functions} (included in @option{-O3}) is
10339 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10340 default value is 8.
10341
10342 @item min-inline-recursive-probability
10343 Recursive inlining is profitable only for function having deep recursion
10344 in average and can hurt for function having little recursion depth by
10345 increasing the prologue size or complexity of function body to other
10346 optimizers.
10347
10348 When profile feedback is available (see @option{-fprofile-generate}) the actual
10349 recursion depth can be guessed from probability that function recurses via a
10350 given call expression.  This parameter limits inlining only to call expressions
10351 whose probability exceeds the given threshold (in percents).
10352 The default value is 10.
10353
10354 @item early-inlining-insns
10355 Specify growth that the early inliner can make.  In effect it increases
10356 the amount of inlining for code having a large abstraction penalty.
10357 The default value is 14.
10358
10359 @item max-early-inliner-iterations
10360 Limit of iterations of the early inliner.  This basically bounds
10361 the number of nested indirect calls the early inliner can resolve.
10362 Deeper chains are still handled by late inlining.
10363
10364 @item comdat-sharing-probability
10365 Probability (in percent) that C++ inline function with comdat visibility
10366 are shared across multiple compilation units.  The default value is 20.
10367
10368 @item profile-func-internal-id
10369 A parameter to control whether to use function internal id in profile
10370 database lookup. If the value is 0, the compiler uses an id that
10371 is based on function assembler name and filename, which makes old profile
10372 data more tolerant to source changes such as function reordering etc.
10373 The default value is 0.
10374
10375 @item min-vect-loop-bound
10376 The minimum number of iterations under which loops are not vectorized
10377 when @option{-ftree-vectorize} is used.  The number of iterations after
10378 vectorization needs to be greater than the value specified by this option
10379 to allow vectorization.  The default value is 0.
10380
10381 @item gcse-cost-distance-ratio
10382 Scaling factor in calculation of maximum distance an expression
10383 can be moved by GCSE optimizations.  This is currently supported only in the
10384 code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10385 is with simple expressions, i.e., the expressions that have cost
10386 less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10387 hoisting of simple expressions.  The default value is 10.
10388
10389 @item gcse-unrestricted-cost
10390 Cost, roughly measured as the cost of a single typical machine
10391 instruction, at which GCSE optimizations do not constrain
10392 the distance an expression can travel.  This is currently
10393 supported only in the code hoisting pass.  The lesser the cost,
10394 the more aggressive code hoisting is.  Specifying 0 
10395 allows all expressions to travel unrestricted distances.
10396 The default value is 3.
10397
10398 @item max-hoist-depth
10399 The depth of search in the dominator tree for expressions to hoist.
10400 This is used to avoid quadratic behavior in hoisting algorithm.
10401 The value of 0 does not limit on the search, but may slow down compilation
10402 of huge functions.  The default value is 30.
10403
10404 @item max-tail-merge-comparisons
10405 The maximum amount of similar bbs to compare a bb with.  This is used to
10406 avoid quadratic behavior in tree tail merging.  The default value is 10.
10407
10408 @item max-tail-merge-iterations
10409 The maximum amount of iterations of the pass over the function.  This is used to
10410 limit compilation time in tree tail merging.  The default value is 2.
10411
10412 @item max-unrolled-insns
10413 The maximum number of instructions that a loop may have to be unrolled.
10414 If a loop is unrolled, this parameter also determines how many times
10415 the loop code is unrolled.
10416
10417 @item max-average-unrolled-insns
10418 The maximum number of instructions biased by probabilities of their execution
10419 that a loop may have to be unrolled.  If a loop is unrolled,
10420 this parameter also determines how many times the loop code is unrolled.
10421
10422 @item max-unroll-times
10423 The maximum number of unrollings of a single loop.
10424
10425 @item max-peeled-insns
10426 The maximum number of instructions that a loop may have to be peeled.
10427 If a loop is peeled, this parameter also determines how many times
10428 the loop code is peeled.
10429
10430 @item max-peel-times
10431 The maximum number of peelings of a single loop.
10432
10433 @item max-peel-branches
10434 The maximum number of branches on the hot path through the peeled sequence.
10435
10436 @item max-completely-peeled-insns
10437 The maximum number of insns of a completely peeled loop.
10438
10439 @item max-completely-peel-times
10440 The maximum number of iterations of a loop to be suitable for complete peeling.
10441
10442 @item max-completely-peel-loop-nest-depth
10443 The maximum depth of a loop nest suitable for complete peeling.
10444
10445 @item max-unswitch-insns
10446 The maximum number of insns of an unswitched loop.
10447
10448 @item max-unswitch-level
10449 The maximum number of branches unswitched in a single loop.
10450
10451 @item lim-expensive
10452 The minimum cost of an expensive expression in the loop invariant motion.
10453
10454 @item iv-consider-all-candidates-bound
10455 Bound on number of candidates for induction variables, below which
10456 all candidates are considered for each use in induction variable
10457 optimizations.  If there are more candidates than this,
10458 only the most relevant ones are considered to avoid quadratic time complexity.
10459
10460 @item iv-max-considered-uses
10461 The induction variable optimizations give up on loops that contain more
10462 induction variable uses.
10463
10464 @item iv-always-prune-cand-set-bound
10465 If the number of candidates in the set is smaller than this value,
10466 always try to remove unnecessary ivs from the set
10467 when adding a new one.
10468
10469 @item scev-max-expr-size
10470 Bound on size of expressions used in the scalar evolutions analyzer.
10471 Large expressions slow the analyzer.
10472
10473 @item scev-max-expr-complexity
10474 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10475 Complex expressions slow the analyzer.
10476
10477 @item omega-max-vars
10478 The maximum number of variables in an Omega constraint system.
10479 The default value is 128.
10480
10481 @item omega-max-geqs
10482 The maximum number of inequalities in an Omega constraint system.
10483 The default value is 256.
10484
10485 @item omega-max-eqs
10486 The maximum number of equalities in an Omega constraint system.
10487 The default value is 128.
10488
10489 @item omega-max-wild-cards
10490 The maximum number of wildcard variables that the Omega solver is
10491 able to insert.  The default value is 18.
10492
10493 @item omega-hash-table-size
10494 The size of the hash table in the Omega solver.  The default value is
10495 550.
10496
10497 @item omega-max-keys
10498 The maximal number of keys used by the Omega solver.  The default
10499 value is 500.
10500
10501 @item omega-eliminate-redundant-constraints
10502 When set to 1, use expensive methods to eliminate all redundant
10503 constraints.  The default value is 0.
10504
10505 @item vect-max-version-for-alignment-checks
10506 The maximum number of run-time checks that can be performed when
10507 doing loop versioning for alignment in the vectorizer.
10508
10509 @item vect-max-version-for-alias-checks
10510 The maximum number of run-time checks that can be performed when
10511 doing loop versioning for alias in the vectorizer.
10512
10513 @item vect-max-peeling-for-alignment
10514 The maximum number of loop peels to enhance access alignment
10515 for vectorizer. Value -1 means 'no limit'.
10516
10517 @item max-iterations-to-track
10518 The maximum number of iterations of a loop the brute-force algorithm
10519 for analysis of the number of iterations of the loop tries to evaluate.
10520
10521 @item hot-bb-count-ws-permille
10522 A basic block profile count is considered hot if it contributes to 
10523 the given permillage (i.e. 0...1000) of the entire profiled execution.
10524
10525 @item hot-bb-frequency-fraction
10526 Select fraction of the entry block frequency of executions of basic block in
10527 function given basic block needs to have to be considered hot.
10528
10529 @item max-predicted-iterations
10530 The maximum number of loop iterations we predict statically.  This is useful
10531 in cases where a function contains a single loop with known bound and
10532 another loop with unknown bound.
10533 The known number of iterations is predicted correctly, while
10534 the unknown number of iterations average to roughly 10.  This means that the
10535 loop without bounds appears artificially cold relative to the other one.
10536
10537 @item builtin-expect-probability
10538 Control the probability of the expression having the specified value. This
10539 parameter takes a percentage (i.e. 0 ... 100) as input.
10540 The default probability of 90 is obtained empirically.
10541
10542 @item align-threshold
10543
10544 Select fraction of the maximal frequency of executions of a basic block in
10545 a function to align the basic block.
10546
10547 @item align-loop-iterations
10548
10549 A loop expected to iterate at least the selected number of iterations is
10550 aligned.
10551
10552 @item tracer-dynamic-coverage
10553 @itemx tracer-dynamic-coverage-feedback
10554
10555 This value is used to limit superblock formation once the given percentage of
10556 executed instructions is covered.  This limits unnecessary code size
10557 expansion.
10558
10559 The @option{tracer-dynamic-coverage-feedback} parameter
10560 is used only when profile
10561 feedback is available.  The real profiles (as opposed to statically estimated
10562 ones) are much less balanced allowing the threshold to be larger value.
10563
10564 @item tracer-max-code-growth
10565 Stop tail duplication once code growth has reached given percentage.  This is
10566 a rather artificial limit, as most of the duplicates are eliminated later in
10567 cross jumping, so it may be set to much higher values than is the desired code
10568 growth.
10569
10570 @item tracer-min-branch-ratio
10571
10572 Stop reverse growth when the reverse probability of best edge is less than this
10573 threshold (in percent).
10574
10575 @item tracer-min-branch-ratio
10576 @itemx tracer-min-branch-ratio-feedback
10577
10578 Stop forward growth if the best edge has probability lower than this
10579 threshold.
10580
10581 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10582 compilation for profile feedback and one for compilation without.  The value
10583 for compilation with profile feedback needs to be more conservative (higher) in
10584 order to make tracer effective.
10585
10586 @item max-cse-path-length
10587
10588 The maximum number of basic blocks on path that CSE considers.
10589 The default is 10.
10590
10591 @item max-cse-insns
10592 The maximum number of instructions CSE processes before flushing.
10593 The default is 1000.
10594
10595 @item ggc-min-expand
10596
10597 GCC uses a garbage collector to manage its own memory allocation.  This
10598 parameter specifies the minimum percentage by which the garbage
10599 collector's heap should be allowed to expand between collections.
10600 Tuning this may improve compilation speed; it has no effect on code
10601 generation.
10602
10603 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10604 RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10605 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10606 GCC is not able to calculate RAM on a particular platform, the lower
10607 bound of 30% is used.  Setting this parameter and
10608 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10609 every opportunity.  This is extremely slow, but can be useful for
10610 debugging.
10611
10612 @item ggc-min-heapsize
10613
10614 Minimum size of the garbage collector's heap before it begins bothering
10615 to collect garbage.  The first collection occurs after the heap expands
10616 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10617 tuning this may improve compilation speed, and has no effect on code
10618 generation.
10619
10620 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10621 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10622 with a lower bound of 4096 (four megabytes) and an upper bound of
10623 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10624 particular platform, the lower bound is used.  Setting this parameter
10625 very large effectively disables garbage collection.  Setting this
10626 parameter and @option{ggc-min-expand} to zero causes a full collection
10627 to occur at every opportunity.
10628
10629 @item max-reload-search-insns
10630 The maximum number of instruction reload should look backward for equivalent
10631 register.  Increasing values mean more aggressive optimization, making the
10632 compilation time increase with probably slightly better performance.
10633 The default value is 100.
10634
10635 @item max-cselib-memory-locations
10636 The maximum number of memory locations cselib should take into account.
10637 Increasing values mean more aggressive optimization, making the compilation time
10638 increase with probably slightly better performance.  The default value is 500.
10639
10640 @item reorder-blocks-duplicate
10641 @itemx reorder-blocks-duplicate-feedback
10642
10643 Used by the basic block reordering pass to decide whether to use unconditional
10644 branch or duplicate the code on its destination.  Code is duplicated when its
10645 estimated size is smaller than this value multiplied by the estimated size of
10646 unconditional jump in the hot spots of the program.
10647
10648 The @option{reorder-block-duplicate-feedback} parameter
10649 is used only when profile
10650 feedback is available.  It may be set to higher values than
10651 @option{reorder-block-duplicate} since information about the hot spots is more
10652 accurate.
10653
10654 @item max-sched-ready-insns
10655 The maximum number of instructions ready to be issued the scheduler should
10656 consider at any given time during the first scheduling pass.  Increasing
10657 values mean more thorough searches, making the compilation time increase
10658 with probably little benefit.  The default value is 100.
10659
10660 @item max-sched-region-blocks
10661 The maximum number of blocks in a region to be considered for
10662 interblock scheduling.  The default value is 10.
10663
10664 @item max-pipeline-region-blocks
10665 The maximum number of blocks in a region to be considered for
10666 pipelining in the selective scheduler.  The default value is 15.
10667
10668 @item max-sched-region-insns
10669 The maximum number of insns in a region to be considered for
10670 interblock scheduling.  The default value is 100.
10671
10672 @item max-pipeline-region-insns
10673 The maximum number of insns in a region to be considered for
10674 pipelining in the selective scheduler.  The default value is 200.
10675
10676 @item min-spec-prob
10677 The minimum probability (in percents) of reaching a source block
10678 for interblock speculative scheduling.  The default value is 40.
10679
10680 @item max-sched-extend-regions-iters
10681 The maximum number of iterations through CFG to extend regions.
10682 A value of 0 (the default) disables region extensions.
10683
10684 @item max-sched-insn-conflict-delay
10685 The maximum conflict delay for an insn to be considered for speculative motion.
10686 The default value is 3.
10687
10688 @item sched-spec-prob-cutoff
10689 The minimal probability of speculation success (in percents), so that
10690 speculative insns are scheduled.
10691 The default value is 40.
10692
10693 @item sched-spec-state-edge-prob-cutoff
10694 The minimum probability an edge must have for the scheduler to save its
10695 state across it.
10696 The default value is 10.
10697
10698 @item sched-mem-true-dep-cost
10699 Minimal distance (in CPU cycles) between store and load targeting same
10700 memory locations.  The default value is 1.
10701
10702 @item selsched-max-lookahead
10703 The maximum size of the lookahead window of selective scheduling.  It is a
10704 depth of search for available instructions.
10705 The default value is 50.
10706
10707 @item selsched-max-sched-times
10708 The maximum number of times that an instruction is scheduled during
10709 selective scheduling.  This is the limit on the number of iterations
10710 through which the instruction may be pipelined.  The default value is 2.
10711
10712 @item selsched-max-insns-to-rename
10713 The maximum number of best instructions in the ready list that are considered
10714 for renaming in the selective scheduler.  The default value is 2.
10715
10716 @item sms-min-sc
10717 The minimum value of stage count that swing modulo scheduler
10718 generates.  The default value is 2.
10719
10720 @item max-last-value-rtl
10721 The maximum size measured as number of RTLs that can be recorded in an expression
10722 in combiner for a pseudo register as last known value of that register.  The default
10723 is 10000.
10724
10725 @item max-combine-insns
10726 The maximum number of instructions the RTL combiner tries to combine.
10727 The default value is 2 at @option{-Og} and 4 otherwise.
10728
10729 @item integer-share-limit
10730 Small integer constants can use a shared data structure, reducing the
10731 compiler's memory usage and increasing its speed.  This sets the maximum
10732 value of a shared integer constant.  The default value is 256.
10733
10734 @item ssp-buffer-size
10735 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10736 protection when @option{-fstack-protection} is used.
10737
10738 @item min-size-for-stack-sharing
10739 The minimum size of variables taking part in stack slot sharing when not
10740 optimizing. The default value is 32.
10741
10742 @item max-jump-thread-duplication-stmts
10743 Maximum number of statements allowed in a block that needs to be
10744 duplicated when threading jumps.
10745
10746 @item max-fields-for-field-sensitive
10747 Maximum number of fields in a structure treated in
10748 a field sensitive manner during pointer analysis.  The default is zero
10749 for @option{-O0} and @option{-O1},
10750 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10751
10752 @item prefetch-latency
10753 Estimate on average number of instructions that are executed before
10754 prefetch finishes.  The distance prefetched ahead is proportional
10755 to this constant.  Increasing this number may also lead to less
10756 streams being prefetched (see @option{simultaneous-prefetches}).
10757
10758 @item simultaneous-prefetches
10759 Maximum number of prefetches that can run at the same time.
10760
10761 @item l1-cache-line-size
10762 The size of cache line in L1 cache, in bytes.
10763
10764 @item l1-cache-size
10765 The size of L1 cache, in kilobytes.
10766
10767 @item l2-cache-size
10768 The size of L2 cache, in kilobytes.
10769
10770 @item min-insn-to-prefetch-ratio
10771 The minimum ratio between the number of instructions and the
10772 number of prefetches to enable prefetching in a loop.
10773
10774 @item prefetch-min-insn-to-mem-ratio
10775 The minimum ratio between the number of instructions and the
10776 number of memory references to enable prefetching in a loop.
10777
10778 @item use-canonical-types
10779 Whether the compiler should use the ``canonical'' type system.  By
10780 default, this should always be 1, which uses a more efficient internal
10781 mechanism for comparing types in C++ and Objective-C++.  However, if
10782 bugs in the canonical type system are causing compilation failures,
10783 set this value to 0 to disable canonical types.
10784
10785 @item switch-conversion-max-branch-ratio
10786 Switch initialization conversion refuses to create arrays that are
10787 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10788 branches in the switch.
10789
10790 @item max-partial-antic-length
10791 Maximum length of the partial antic set computed during the tree
10792 partial redundancy elimination optimization (@option{-ftree-pre}) when
10793 optimizing at @option{-O3} and above.  For some sorts of source code
10794 the enhanced partial redundancy elimination optimization can run away,
10795 consuming all of the memory available on the host machine.  This
10796 parameter sets a limit on the length of the sets that are computed,
10797 which prevents the runaway behavior.  Setting a value of 0 for
10798 this parameter allows an unlimited set length.
10799
10800 @item sccvn-max-scc-size
10801 Maximum size of a strongly connected component (SCC) during SCCVN
10802 processing.  If this limit is hit, SCCVN processing for the whole
10803 function is not done and optimizations depending on it are
10804 disabled.  The default maximum SCC size is 10000.
10805
10806 @item sccvn-max-alias-queries-per-access
10807 Maximum number of alias-oracle queries we perform when looking for
10808 redundancies for loads and stores.  If this limit is hit the search
10809 is aborted and the load or store is not considered redundant.  The
10810 number of queries is algorithmically limited to the number of
10811 stores on all paths from the load to the function entry.
10812 The default maxmimum number of queries is 1000.
10813
10814 @item ira-max-loops-num
10815 IRA uses regional register allocation by default.  If a function
10816 contains more loops than the number given by this parameter, only at most
10817 the given number of the most frequently-executed loops form regions
10818 for regional register allocation.  The default value of the
10819 parameter is 100.
10820
10821 @item ira-max-conflict-table-size 
10822 Although IRA uses a sophisticated algorithm to compress the conflict
10823 table, the table can still require excessive amounts of memory for
10824 huge functions.  If the conflict table for a function could be more
10825 than the size in MB given by this parameter, the register allocator
10826 instead uses a faster, simpler, and lower-quality
10827 algorithm that does not require building a pseudo-register conflict table.  
10828 The default value of the parameter is 2000.
10829
10830 @item ira-loop-reserved-regs
10831 IRA can be used to evaluate more accurate register pressure in loops
10832 for decisions to move loop invariants (see @option{-O3}).  The number
10833 of available registers reserved for some other purposes is given
10834 by this parameter.  The default value of the parameter is 2, which is
10835 the minimal number of registers needed by typical instructions.
10836 This value is the best found from numerous experiments.
10837
10838 @item lra-inheritance-ebb-probability-cutoff
10839 LRA tries to reuse values reloaded in registers in subsequent insns.
10840 This optimization is called inheritance.  EBB is used as a region to
10841 do this optimization.  The parameter defines a minimal fall-through
10842 edge probability in percentage used to add BB to inheritance EBB in
10843 LRA.  The default value of the parameter is 40.  The value was chosen
10844 from numerous runs of SPEC2000 on x86-64.
10845
10846 @item loop-invariant-max-bbs-in-loop
10847 Loop invariant motion can be very expensive, both in compilation time and
10848 in amount of needed compile-time memory, with very large loops.  Loops
10849 with more basic blocks than this parameter won't have loop invariant
10850 motion optimization performed on them.  The default value of the
10851 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10852
10853 @item loop-max-datarefs-for-datadeps
10854 Building data dapendencies is expensive for very large loops.  This
10855 parameter limits the number of data references in loops that are
10856 considered for data dependence analysis.  These large loops are no
10857 handled by the optimizations using loop data dependencies.
10858 The default value is 1000.
10859
10860 @item max-vartrack-size
10861 Sets a maximum number of hash table slots to use during variable
10862 tracking dataflow analysis of any function.  If this limit is exceeded
10863 with variable tracking at assignments enabled, analysis for that
10864 function is retried without it, after removing all debug insns from
10865 the function.  If the limit is exceeded even without debug insns, var
10866 tracking analysis is completely disabled for the function.  Setting
10867 the parameter to zero makes it unlimited.
10868
10869 @item max-vartrack-expr-depth
10870 Sets a maximum number of recursion levels when attempting to map
10871 variable names or debug temporaries to value expressions.  This trades
10872 compilation time for more complete debug information.  If this is set too
10873 low, value expressions that are available and could be represented in
10874 debug information may end up not being used; setting this higher may
10875 enable the compiler to find more complex debug expressions, but compile
10876 time and memory use may grow.  The default is 12.
10877
10878 @item min-nondebug-insn-uid
10879 Use uids starting at this parameter for nondebug insns.  The range below
10880 the parameter is reserved exclusively for debug insns created by
10881 @option{-fvar-tracking-assignments}, but debug insns may get
10882 (non-overlapping) uids above it if the reserved range is exhausted.
10883
10884 @item ipa-sra-ptr-growth-factor
10885 IPA-SRA replaces a pointer to an aggregate with one or more new
10886 parameters only when their cumulative size is less or equal to
10887 @option{ipa-sra-ptr-growth-factor} times the size of the original
10888 pointer parameter.
10889
10890 @item sra-max-scalarization-size-Ospeed
10891 @item sra-max-scalarization-size-Osize
10892 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10893 replace scalar parts of aggregates with uses of independent scalar
10894 variables.  These parameters control the maximum size, in storage units,
10895 of aggregate which is considered for replacement when compiling for
10896 speed
10897 (@option{sra-max-scalarization-size-Ospeed}) or size
10898 (@option{sra-max-scalarization-size-Osize}) respectively.
10899
10900 @item tm-max-aggregate-size
10901 When making copies of thread-local variables in a transaction, this
10902 parameter specifies the size in bytes after which variables are
10903 saved with the logging functions as opposed to save/restore code
10904 sequence pairs.  This option only applies when using
10905 @option{-fgnu-tm}.
10906
10907 @item graphite-max-nb-scop-params
10908 To avoid exponential effects in the Graphite loop transforms, the
10909 number of parameters in a Static Control Part (SCoP) is bounded.  The
10910 default value is 10 parameters.  A variable whose value is unknown at
10911 compilation time and defined outside a SCoP is a parameter of the SCoP.
10912
10913 @item graphite-max-bbs-per-function
10914 To avoid exponential effects in the detection of SCoPs, the size of
10915 the functions analyzed by Graphite is bounded.  The default value is
10916 100 basic blocks.
10917
10918 @item loop-block-tile-size
10919 Loop blocking or strip mining transforms, enabled with
10920 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10921 loop in the loop nest by a given number of iterations.  The strip
10922 length can be changed using the @option{loop-block-tile-size}
10923 parameter.  The default value is 51 iterations.
10924
10925 @item loop-unroll-jam-size
10926 Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The 
10927 default value is 4.
10928
10929 @item loop-unroll-jam-depth
10930 Specify the dimension to be unrolled (counting from the most inner loop)
10931 for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10932
10933 @item ipa-cp-value-list-size
10934 IPA-CP attempts to track all possible values and types passed to a function's
10935 parameter in order to propagate them and perform devirtualization.
10936 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10937 stores per one formal parameter of a function.
10938
10939 @item ipa-cp-eval-threshold
10940 IPA-CP calculates its own score of cloning profitability heuristics
10941 and performs those cloning opportunities with scores that exceed
10942 @option{ipa-cp-eval-threshold}.
10943
10944 @item ipa-cp-recursion-penalty
10945 Percentage penalty the recursive functions will receive when they
10946 are evaluated for cloning.
10947
10948 @item ipa-cp-single-call-penalty
10949 Percentage penalty functions containg a single call to another
10950 function will receive when they are evaluated for cloning.
10951
10952
10953 @item ipa-max-agg-items
10954 IPA-CP is also capable to propagate a number of scalar values passed
10955 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10956 number of such values per one parameter.
10957
10958 @item ipa-cp-loop-hint-bonus
10959 When IPA-CP determines that a cloning candidate would make the number
10960 of iterations of a loop known, it adds a bonus of
10961 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10962 the candidate.
10963
10964 @item ipa-cp-array-index-hint-bonus
10965 When IPA-CP determines that a cloning candidate would make the index of
10966 an array access known, it adds a bonus of
10967 @option{ipa-cp-array-index-hint-bonus} to the profitability
10968 score of the candidate.
10969
10970 @item ipa-max-aa-steps
10971 During its analysis of function bodies, IPA-CP employs alias analysis
10972 in order to track values pointed to by function parameters.  In order
10973 not spend too much time analyzing huge functions, it gives up and
10974 consider all memory clobbered after examining
10975 @option{ipa-max-aa-steps} statements modifying memory.
10976
10977 @item lto-partitions
10978 Specify desired number of partitions produced during WHOPR compilation.
10979 The number of partitions should exceed the number of CPUs used for compilation.
10980 The default value is 32.
10981
10982 @item lto-minpartition
10983 Size of minimal partition for WHOPR (in estimated instructions).
10984 This prevents expenses of splitting very small programs into too many
10985 partitions.
10986
10987 @item cxx-max-namespaces-for-diagnostic-help
10988 The maximum number of namespaces to consult for suggestions when C++
10989 name lookup fails for an identifier.  The default is 1000.
10990
10991 @item sink-frequency-threshold
10992 The maximum relative execution frequency (in percents) of the target block
10993 relative to a statement's original block to allow statement sinking of a
10994 statement.  Larger numbers result in more aggressive statement sinking.
10995 The default value is 75.  A small positive adjustment is applied for
10996 statements with memory operands as those are even more profitable so sink.
10997
10998 @item max-stores-to-sink
10999 The maximum number of conditional stores paires that can be sunk.  Set to 0
11000 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11001 (@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
11002
11003 @item allow-store-data-races
11004 Allow optimizers to introduce new data races on stores.
11005 Set to 1 to allow, otherwise to 0.  This option is enabled by default
11006 at optimization level @option{-Ofast}.
11007
11008 @item case-values-threshold
11009 The smallest number of different values for which it is best to use a
11010 jump-table instead of a tree of conditional branches.  If the value is
11011 0, use the default for the machine.  The default is 0.
11012
11013 @item tree-reassoc-width
11014 Set the maximum number of instructions executed in parallel in
11015 reassociated tree. This parameter overrides target dependent
11016 heuristics used by default if has non zero value.
11017
11018 @item sched-pressure-algorithm
11019 Choose between the two available implementations of
11020 @option{-fsched-pressure}.  Algorithm 1 is the original implementation
11021 and is the more likely to prevent instructions from being reordered.
11022 Algorithm 2 was designed to be a compromise between the relatively
11023 conservative approach taken by algorithm 1 and the rather aggressive
11024 approach taken by the default scheduler.  It relies more heavily on
11025 having a regular register file and accurate register pressure classes.
11026 See @file{haifa-sched.c} in the GCC sources for more details.
11027
11028 The default choice depends on the target.
11029
11030 @item max-slsr-cand-scan
11031 Set the maximum number of existing candidates that are considered when
11032 seeking a basis for a new straight-line strength reduction candidate.
11033
11034 @item asan-globals
11035 Enable buffer overflow detection for global objects.  This kind
11036 of protection is enabled by default if you are using
11037 @option{-fsanitize=address} option.
11038 To disable global objects protection use @option{--param asan-globals=0}.
11039
11040 @item asan-stack
11041 Enable buffer overflow detection for stack objects.  This kind of
11042 protection is enabled by default when using@option{-fsanitize=address}.
11043 To disable stack protection use @option{--param asan-stack=0} option.
11044
11045 @item asan-instrument-reads
11046 Enable buffer overflow detection for memory reads.  This kind of
11047 protection is enabled by default when using @option{-fsanitize=address}.
11048 To disable memory reads protection use
11049 @option{--param asan-instrument-reads=0}.
11050
11051 @item asan-instrument-writes
11052 Enable buffer overflow detection for memory writes.  This kind of
11053 protection is enabled by default when using @option{-fsanitize=address}.
11054 To disable memory writes protection use
11055 @option{--param asan-instrument-writes=0} option.
11056
11057 @item asan-memintrin
11058 Enable detection for built-in functions.  This kind of protection
11059 is enabled by default when using @option{-fsanitize=address}.
11060 To disable built-in functions protection use
11061 @option{--param asan-memintrin=0}.
11062
11063 @item asan-use-after-return
11064 Enable detection of use-after-return.  This kind of protection
11065 is enabled by default when using @option{-fsanitize=address} option.
11066 To disable use-after-return detection use 
11067 @option{--param asan-use-after-return=0}.
11068
11069 @item asan-instrumentation-with-call-threshold
11070 If number of memory accesses in function being instrumented
11071 is greater or equal to this number, use callbacks instead of inline checks.
11072 E.g. to disable inline code use
11073 @option{--param asan-instrumentation-with-call-threshold=0}.
11074
11075 @item chkp-max-ctor-size
11076 Static constructors generated by Pointer Bounds Checker may become very
11077 large and significantly increase compile time at optimization level
11078 @option{-O1} and higher.  This parameter is a maximum nubmer of statements
11079 in a single generated constructor.  Default value is 5000.
11080
11081 @item max-fsm-thread-path-insns
11082 Maximum number of instructions to copy when duplicating blocks on a
11083 finite state automaton jump thread path.  The default is 100.
11084
11085 @item max-fsm-thread-length
11086 Maximum number of basic blocks on a finite state automaton jump thread
11087 path.  The default is 10.
11088
11089 @item max-fsm-thread-paths
11090 Maximum number of new jump thread paths to create for a finite state
11091 automaton.  The default is 50.
11092
11093 @end table
11094 @end table
11095
11096 @node Preprocessor Options
11097 @section Options Controlling the Preprocessor
11098 @cindex preprocessor options
11099 @cindex options, preprocessor
11100
11101 These options control the C preprocessor, which is run on each C source
11102 file before actual compilation.
11103
11104 If you use the @option{-E} option, nothing is done except preprocessing.
11105 Some of these options make sense only together with @option{-E} because
11106 they cause the preprocessor output to be unsuitable for actual
11107 compilation.
11108
11109 @table @gcctabopt
11110 @item -Wp,@var{option}
11111 @opindex Wp
11112 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11113 and pass @var{option} directly through to the preprocessor.  If
11114 @var{option} contains commas, it is split into multiple options at the
11115 commas.  However, many options are modified, translated or interpreted
11116 by the compiler driver before being passed to the preprocessor, and
11117 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
11118 interface is undocumented and subject to change, so whenever possible
11119 you should avoid using @option{-Wp} and let the driver handle the
11120 options instead.
11121
11122 @item -Xpreprocessor @var{option}
11123 @opindex Xpreprocessor
11124 Pass @var{option} as an option to the preprocessor.  You can use this to
11125 supply system-specific preprocessor options that GCC does not 
11126 recognize.
11127
11128 If you want to pass an option that takes an argument, you must use
11129 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11130
11131 @item -no-integrated-cpp
11132 @opindex no-integrated-cpp
11133 Perform preprocessing as a separate pass before compilation.
11134 By default, GCC performs preprocessing as an integrated part of
11135 input tokenization and parsing.
11136 If this option is provided, the appropriate language front end
11137 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11138 and Objective-C, respectively) is instead invoked twice,
11139 once for preprocessing only and once for actual compilation
11140 of the preprocessed input.
11141 This option may be useful in conjunction with the @option{-B} or
11142 @option{-wrapper} options to specify an alternate preprocessor or
11143 perform additional processing of the program source between
11144 normal preprocessing and compilation.
11145 @end table
11146
11147 @include cppopts.texi
11148
11149 @node Assembler Options
11150 @section Passing Options to the Assembler
11151
11152 @c prevent bad page break with this line
11153 You can pass options to the assembler.
11154
11155 @table @gcctabopt
11156 @item -Wa,@var{option}
11157 @opindex Wa
11158 Pass @var{option} as an option to the assembler.  If @var{option}
11159 contains commas, it is split into multiple options at the commas.
11160
11161 @item -Xassembler @var{option}
11162 @opindex Xassembler
11163 Pass @var{option} as an option to the assembler.  You can use this to
11164 supply system-specific assembler options that GCC does not
11165 recognize.
11166
11167 If you want to pass an option that takes an argument, you must use
11168 @option{-Xassembler} twice, once for the option and once for the argument.
11169
11170 @end table
11171
11172 @node Link Options
11173 @section Options for Linking
11174 @cindex link options
11175 @cindex options, linking
11176
11177 These options come into play when the compiler links object files into
11178 an executable output file.  They are meaningless if the compiler is
11179 not doing a link step.
11180
11181 @table @gcctabopt
11182 @cindex file names
11183 @item @var{object-file-name}
11184 A file name that does not end in a special recognized suffix is
11185 considered to name an object file or library.  (Object files are
11186 distinguished from libraries by the linker according to the file
11187 contents.)  If linking is done, these object files are used as input
11188 to the linker.
11189
11190 @item -c
11191 @itemx -S
11192 @itemx -E
11193 @opindex c
11194 @opindex S
11195 @opindex E
11196 If any of these options is used, then the linker is not run, and
11197 object file names should not be used as arguments.  @xref{Overall
11198 Options}.
11199
11200 @item -fuse-ld=bfd
11201 @opindex fuse-ld=bfd
11202 Use the @command{bfd} linker instead of the default linker.
11203
11204 @item -fuse-ld=gold
11205 @opindex fuse-ld=gold
11206 Use the @command{gold} linker instead of the default linker.
11207
11208 @cindex Libraries
11209 @item -l@var{library}
11210 @itemx -l @var{library}
11211 @opindex l
11212 Search the library named @var{library} when linking.  (The second
11213 alternative with the library as a separate argument is only for
11214 POSIX compliance and is not recommended.)
11215
11216 It makes a difference where in the command you write this option; the
11217 linker searches and processes libraries and object files in the order they
11218 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11219 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
11220 to functions in @samp{z}, those functions may not be loaded.
11221
11222 The linker searches a standard list of directories for the library,
11223 which is actually a file named @file{lib@var{library}.a}.  The linker
11224 then uses this file as if it had been specified precisely by name.
11225
11226 The directories searched include several standard system directories
11227 plus any that you specify with @option{-L}.
11228
11229 Normally the files found this way are library files---archive files
11230 whose members are object files.  The linker handles an archive file by
11231 scanning through it for members which define symbols that have so far
11232 been referenced but not defined.  But if the file that is found is an
11233 ordinary object file, it is linked in the usual fashion.  The only
11234 difference between using an @option{-l} option and specifying a file name
11235 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11236 and searches several directories.
11237
11238 @item -lobjc
11239 @opindex lobjc
11240 You need this special case of the @option{-l} option in order to
11241 link an Objective-C or Objective-C++ program.
11242
11243 @item -nostartfiles
11244 @opindex nostartfiles
11245 Do not use the standard system startup files when linking.
11246 The standard system libraries are used normally, unless @option{-nostdlib}
11247 or @option{-nodefaultlibs} is used.
11248
11249 @item -nodefaultlibs
11250 @opindex nodefaultlibs
11251 Do not use the standard system libraries when linking.
11252 Only the libraries you specify are passed to the linker, and options
11253 specifying linkage of the system libraries, such as @option{-static-libgcc}
11254 or @option{-shared-libgcc}, are ignored.  
11255 The standard startup files are used normally, unless @option{-nostartfiles}
11256 is used.  
11257
11258 The compiler may generate calls to @code{memcmp},
11259 @code{memset}, @code{memcpy} and @code{memmove}.
11260 These entries are usually resolved by entries in
11261 libc.  These entry points should be supplied through some other
11262 mechanism when this option is specified.
11263
11264 @item -nostdlib
11265 @opindex nostdlib
11266 Do not use the standard system startup files or libraries when linking.
11267 No startup files and only the libraries you specify are passed to
11268 the linker, and options specifying linkage of the system libraries, such as
11269 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11270
11271 The compiler may generate calls to @code{memcmp}, @code{memset},
11272 @code{memcpy} and @code{memmove}.
11273 These entries are usually resolved by entries in
11274 libc.  These entry points should be supplied through some other
11275 mechanism when this option is specified.
11276
11277 @cindex @option{-lgcc}, use with @option{-nostdlib}
11278 @cindex @option{-nostdlib} and unresolved references
11279 @cindex unresolved references and @option{-nostdlib}
11280 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11281 @cindex @option{-nodefaultlibs} and unresolved references
11282 @cindex unresolved references and @option{-nodefaultlibs}
11283 One of the standard libraries bypassed by @option{-nostdlib} and
11284 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11285 which GCC uses to overcome shortcomings of particular machines, or special
11286 needs for some languages.
11287 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11288 Collection (GCC) Internals},
11289 for more discussion of @file{libgcc.a}.)
11290 In most cases, you need @file{libgcc.a} even when you want to avoid
11291 other standard libraries.  In other words, when you specify @option{-nostdlib}
11292 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11293 This ensures that you have no unresolved references to internal GCC
11294 library subroutines.
11295 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11296 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11297 GNU Compiler Collection (GCC) Internals}.)
11298
11299 @item -pie
11300 @opindex pie
11301 Produce a position independent executable on targets that support it.
11302 For predictable results, you must also specify the same set of options
11303 used for compilation (@option{-fpie}, @option{-fPIE},
11304 or model suboptions) when you specify this linker option.
11305
11306 @item -no-pie
11307 @opindex no-pie
11308 Don't produce a position independent executable.
11309
11310 @item -rdynamic
11311 @opindex rdynamic
11312 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11313 that support it. This instructs the linker to add all symbols, not
11314 only used ones, to the dynamic symbol table. This option is needed
11315 for some uses of @code{dlopen} or to allow obtaining backtraces
11316 from within a program.
11317
11318 @item -s
11319 @opindex s
11320 Remove all symbol table and relocation information from the executable.
11321
11322 @item -static
11323 @opindex static
11324 On systems that support dynamic linking, this prevents linking with the shared
11325 libraries.  On other systems, this option has no effect.
11326
11327 @item -shared
11328 @opindex shared
11329 Produce a shared object which can then be linked with other objects to
11330 form an executable.  Not all systems support this option.  For predictable
11331 results, you must also specify the same set of options used for compilation
11332 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11333 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11334 needs to build supplementary stub code for constructors to work.  On
11335 multi-libbed systems, @samp{gcc -shared} must select the correct support
11336 libraries to link against.  Failing to supply the correct flags may lead
11337 to subtle defects.  Supplying them in cases where they are not necessary
11338 is innocuous.}
11339
11340 @item -shared-libgcc
11341 @itemx -static-libgcc
11342 @opindex shared-libgcc
11343 @opindex static-libgcc
11344 On systems that provide @file{libgcc} as a shared library, these options
11345 force the use of either the shared or static version, respectively.
11346 If no shared version of @file{libgcc} was built when the compiler was
11347 configured, these options have no effect.
11348
11349 There are several situations in which an application should use the
11350 shared @file{libgcc} instead of the static version.  The most common
11351 of these is when the application wishes to throw and catch exceptions
11352 across different shared libraries.  In that case, each of the libraries
11353 as well as the application itself should use the shared @file{libgcc}.
11354
11355 Therefore, the G++ and GCJ drivers automatically add
11356 @option{-shared-libgcc} whenever you build a shared library or a main
11357 executable, because C++ and Java programs typically use exceptions, so
11358 this is the right thing to do.
11359
11360 If, instead, you use the GCC driver to create shared libraries, you may
11361 find that they are not always linked with the shared @file{libgcc}.
11362 If GCC finds, at its configuration time, that you have a non-GNU linker
11363 or a GNU linker that does not support option @option{--eh-frame-hdr},
11364 it links the shared version of @file{libgcc} into shared libraries
11365 by default.  Otherwise, it takes advantage of the linker and optimizes
11366 away the linking with the shared version of @file{libgcc}, linking with
11367 the static version of libgcc by default.  This allows exceptions to
11368 propagate through such shared libraries, without incurring relocation
11369 costs at library load time.
11370
11371 However, if a library or main executable is supposed to throw or catch
11372 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11373 for the languages used in the program, or using the option
11374 @option{-shared-libgcc}, such that it is linked with the shared
11375 @file{libgcc}.
11376
11377 @item -static-libasan
11378 @opindex static-libasan
11379 When the @option{-fsanitize=address} option is used to link a program,
11380 the GCC driver automatically links against @option{libasan}.  If
11381 @file{libasan} is available as a shared library, and the @option{-static}
11382 option is not used, then this links against the shared version of
11383 @file{libasan}.  The @option{-static-libasan} option directs the GCC
11384 driver to link @file{libasan} statically, without necessarily linking
11385 other libraries statically.
11386
11387 @item -static-libtsan
11388 @opindex static-libtsan
11389 When the @option{-fsanitize=thread} option is used to link a program,
11390 the GCC driver automatically links against @option{libtsan}.  If
11391 @file{libtsan} is available as a shared library, and the @option{-static}
11392 option is not used, then this links against the shared version of
11393 @file{libtsan}.  The @option{-static-libtsan} option directs the GCC
11394 driver to link @file{libtsan} statically, without necessarily linking
11395 other libraries statically.
11396
11397 @item -static-liblsan
11398 @opindex static-liblsan
11399 When the @option{-fsanitize=leak} option is used to link a program,
11400 the GCC driver automatically links against @option{liblsan}.  If
11401 @file{liblsan} is available as a shared library, and the @option{-static}
11402 option is not used, then this links against the shared version of
11403 @file{liblsan}.  The @option{-static-liblsan} option directs the GCC
11404 driver to link @file{liblsan} statically, without necessarily linking
11405 other libraries statically.
11406
11407 @item -static-libubsan
11408 @opindex static-libubsan
11409 When the @option{-fsanitize=undefined} option is used to link a program,
11410 the GCC driver automatically links against @option{libubsan}.  If
11411 @file{libubsan} is available as a shared library, and the @option{-static}
11412 option is not used, then this links against the shared version of
11413 @file{libubsan}.  The @option{-static-libubsan} option directs the GCC
11414 driver to link @file{libubsan} statically, without necessarily linking
11415 other libraries statically.
11416
11417 @item -static-libmpx
11418 @opindex static-libmpx
11419 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11420 used to link a program, the GCC driver automatically links against
11421 @file{libmpx}.  If @file{libmpx} is available as a shared library,
11422 and the @option{-static} option is not used, then this links against
11423 the shared version of @file{libmpx}.  The @option{-static-libmpx}
11424 option directs the GCC driver to link @file{libmpx} statically,
11425 without necessarily linking other libraries statically.
11426
11427 @item -static-libmpxwrappers
11428 @opindex static-libmpxwrappers
11429 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11430 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11431 GCC driver automatically links against @file{libmpxwrappers}.  If
11432 @file{libmpxwrappers} is available as a shared library, and the
11433 @option{-static} option is not used, then this links against the shared
11434 version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
11435 option directs the GCC driver to link @file{libmpxwrappers} statically,
11436 without necessarily linking other libraries statically.
11437
11438 @item -static-libstdc++
11439 @opindex static-libstdc++
11440 When the @command{g++} program is used to link a C++ program, it
11441 normally automatically links against @option{libstdc++}.  If
11442 @file{libstdc++} is available as a shared library, and the
11443 @option{-static} option is not used, then this links against the
11444 shared version of @file{libstdc++}.  That is normally fine.  However, it
11445 is sometimes useful to freeze the version of @file{libstdc++} used by
11446 the program without going all the way to a fully static link.  The
11447 @option{-static-libstdc++} option directs the @command{g++} driver to
11448 link @file{libstdc++} statically, without necessarily linking other
11449 libraries statically.
11450
11451 @item -symbolic
11452 @opindex symbolic
11453 Bind references to global symbols when building a shared object.  Warn
11454 about any unresolved references (unless overridden by the link editor
11455 option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
11456 this option.
11457
11458 @item -T @var{script}
11459 @opindex T
11460 @cindex linker script
11461 Use @var{script} as the linker script.  This option is supported by most
11462 systems using the GNU linker.  On some targets, such as bare-board
11463 targets without an operating system, the @option{-T} option may be required
11464 when linking to avoid references to undefined symbols.
11465
11466 @item -Xlinker @var{option}
11467 @opindex Xlinker
11468 Pass @var{option} as an option to the linker.  You can use this to
11469 supply system-specific linker options that GCC does not recognize.
11470
11471 If you want to pass an option that takes a separate argument, you must use
11472 @option{-Xlinker} twice, once for the option and once for the argument.
11473 For example, to pass @option{-assert definitions}, you must write
11474 @option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
11475 @option{-Xlinker "-assert definitions"}, because this passes the entire
11476 string as a single argument, which is not what the linker expects.
11477
11478 When using the GNU linker, it is usually more convenient to pass
11479 arguments to linker options using the @option{@var{option}=@var{value}}
11480 syntax than as separate arguments.  For example, you can specify
11481 @option{-Xlinker -Map=output.map} rather than
11482 @option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
11483 this syntax for command-line options.
11484
11485 @item -Wl,@var{option}
11486 @opindex Wl
11487 Pass @var{option} as an option to the linker.  If @var{option} contains
11488 commas, it is split into multiple options at the commas.  You can use this
11489 syntax to pass an argument to the option.
11490 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11491 linker.  When using the GNU linker, you can also get the same effect with
11492 @option{-Wl,-Map=output.map}.
11493
11494 @item -u @var{symbol}
11495 @opindex u
11496 Pretend the symbol @var{symbol} is undefined, to force linking of
11497 library modules to define it.  You can use @option{-u} multiple times with
11498 different symbols to force loading of additional library modules.
11499
11500 @item -z @var{keyword}
11501 @opindex z
11502 @option{-z} is passed directly on to the linker along with the keyword
11503 @var{keyword}. See the section in the documentation of your linker for
11504 permitted values and their meanings.
11505 @end table
11506
11507 @node Directory Options
11508 @section Options for Directory Search
11509 @cindex directory options
11510 @cindex options, directory search
11511 @cindex search path
11512
11513 These options specify directories to search for header files, for
11514 libraries and for parts of the compiler:
11515
11516 @table @gcctabopt
11517 @item -I@var{dir}
11518 @opindex I
11519 Add the directory @var{dir} to the head of the list of directories to be
11520 searched for header files.  This can be used to override a system header
11521 file, substituting your own version, since these directories are
11522 searched before the system header file directories.  However, you should
11523 not use this option to add directories that contain vendor-supplied
11524 system header files (use @option{-isystem} for that).  If you use more than
11525 one @option{-I} option, the directories are scanned in left-to-right
11526 order; the standard system directories come after.
11527
11528 If a standard system include directory, or a directory specified with
11529 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11530 option is ignored.  The directory is still searched but as a
11531 system directory at its normal position in the system include chain.
11532 This is to ensure that GCC's procedure to fix buggy system headers and
11533 the ordering for the @code{include_next} directive are not inadvertently changed.
11534 If you really need to change the search order for system directories,
11535 use the @option{-nostdinc} and/or @option{-isystem} options.
11536
11537 @item -iplugindir=@var{dir}
11538 @opindex iplugindir=
11539 Set the directory to search for plugins that are passed
11540 by @option{-fplugin=@var{name}} instead of
11541 @option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
11542 to be used by the user, but only passed by the driver.
11543
11544 @item -iquote@var{dir}
11545 @opindex iquote
11546 Add the directory @var{dir} to the head of the list of directories to
11547 be searched for header files only for the case of @code{#include
11548 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11549 otherwise just like @option{-I}.
11550
11551 @item -L@var{dir}
11552 @opindex L
11553 Add directory @var{dir} to the list of directories to be searched
11554 for @option{-l}.
11555
11556 @item -B@var{prefix}
11557 @opindex B
11558 This option specifies where to find the executables, libraries,
11559 include files, and data files of the compiler itself.
11560
11561 The compiler driver program runs one or more of the subprograms
11562 @command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
11563 @var{prefix} as a prefix for each program it tries to run, both with and
11564 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11565
11566 For each subprogram to be run, the compiler driver first tries the
11567 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
11568 is not specified, the driver tries two standard prefixes, 
11569 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
11570 those results in a file name that is found, the unmodified program
11571 name is searched for using the directories specified in your
11572 @env{PATH} environment variable.
11573
11574 The compiler checks to see if the path provided by @option{-B}
11575 refers to a directory, and if necessary it adds a directory
11576 separator character at the end of the path.
11577
11578 @option{-B} prefixes that effectively specify directory names also apply
11579 to libraries in the linker, because the compiler translates these
11580 options into @option{-L} options for the linker.  They also apply to
11581 include files in the preprocessor, because the compiler translates these
11582 options into @option{-isystem} options for the preprocessor.  In this case,
11583 the compiler appends @samp{include} to the prefix.
11584
11585 The runtime support file @file{libgcc.a} can also be searched for using
11586 the @option{-B} prefix, if needed.  If it is not found there, the two
11587 standard prefixes above are tried, and that is all.  The file is left
11588 out of the link if it is not found by those means.
11589
11590 Another way to specify a prefix much like the @option{-B} prefix is to use
11591 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
11592 Variables}.
11593
11594 As a special kludge, if the path provided by @option{-B} is
11595 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11596 9, then it is replaced by @file{[dir/]include}.  This is to help
11597 with boot-strapping the compiler.
11598
11599 @item -specs=@var{file}
11600 @opindex specs
11601 Process @var{file} after the compiler reads in the standard @file{specs}
11602 file, in order to override the defaults which the @command{gcc} driver
11603 program uses when determining what switches to pass to @command{cc1},
11604 @command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
11605 @option{-specs=@var{file}} can be specified on the command line, and they
11606 are processed in order, from left to right.
11607
11608 @item --sysroot=@var{dir}
11609 @opindex sysroot
11610 Use @var{dir} as the logical root directory for headers and libraries.
11611 For example, if the compiler normally searches for headers in
11612 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11613 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11614
11615 If you use both this option and the @option{-isysroot} option, then
11616 the @option{--sysroot} option applies to libraries, but the
11617 @option{-isysroot} option applies to header files.
11618
11619 The GNU linker (beginning with version 2.16) has the necessary support
11620 for this option.  If your linker does not support this option, the
11621 header file aspect of @option{--sysroot} still works, but the
11622 library aspect does not.
11623
11624 @item --no-sysroot-suffix
11625 @opindex no-sysroot-suffix
11626 For some targets, a suffix is added to the root directory specified
11627 with @option{--sysroot}, depending on the other options used, so that
11628 headers may for example be found in
11629 @file{@var{dir}/@var{suffix}/usr/include} instead of
11630 @file{@var{dir}/usr/include}.  This option disables the addition of
11631 such a suffix.
11632
11633 @item -I-
11634 @opindex I-
11635 This option has been deprecated.  Please use @option{-iquote} instead for
11636 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11637 option.
11638 Any directories you specify with @option{-I} options before the @option{-I-}
11639 option are searched only for the case of @code{#include "@var{file}"};
11640 they are not searched for @code{#include <@var{file}>}.
11641
11642 If additional directories are specified with @option{-I} options after
11643 the @option{-I-} option, these directories are searched for all @code{#include}
11644 directives.  (Ordinarily @emph{all} @option{-I} directories are used
11645 this way.)
11646
11647 In addition, the @option{-I-} option inhibits the use of the current
11648 directory (where the current input file came from) as the first search
11649 directory for @code{#include "@var{file}"}.  There is no way to
11650 override this effect of @option{-I-}.  With @option{-I.} you can specify
11651 searching the directory that is current when the compiler is
11652 invoked.  That is not exactly the same as what the preprocessor does
11653 by default, but it is often satisfactory.
11654
11655 @option{-I-} does not inhibit the use of the standard system directories
11656 for header files.  Thus, @option{-I-} and @option{-nostdinc} are
11657 independent.
11658 @end table
11659
11660 @c man end
11661
11662 @node Spec Files
11663 @section Specifying Subprocesses and the Switches to Pass to Them
11664 @cindex Spec Files
11665
11666 @command{gcc} is a driver program.  It performs its job by invoking a
11667 sequence of other programs to do the work of compiling, assembling and
11668 linking.  GCC interprets its command-line parameters and uses these to
11669 deduce which programs it should invoke, and which command-line options
11670 it ought to place on their command lines.  This behavior is controlled
11671 by @dfn{spec strings}.  In most cases there is one spec string for each
11672 program that GCC can invoke, but a few programs have multiple spec
11673 strings to control their behavior.  The spec strings built into GCC can
11674 be overridden by using the @option{-specs=} command-line switch to specify
11675 a spec file.
11676
11677 @dfn{Spec files} are plaintext files that are used to construct spec
11678 strings.  They consist of a sequence of directives separated by blank
11679 lines.  The type of directive is determined by the first non-whitespace
11680 character on the line, which can be one of the following:
11681
11682 @table @code
11683 @item %@var{command}
11684 Issues a @var{command} to the spec file processor.  The commands that can
11685 appear here are:
11686
11687 @table @code
11688 @item %include <@var{file}>
11689 @cindex @code{%include}
11690 Search for @var{file} and insert its text at the current point in the
11691 specs file.
11692
11693 @item %include_noerr <@var{file}>
11694 @cindex @code{%include_noerr}
11695 Just like @samp{%include}, but do not generate an error message if the include
11696 file cannot be found.
11697
11698 @item %rename @var{old_name} @var{new_name}
11699 @cindex @code{%rename}
11700 Rename the spec string @var{old_name} to @var{new_name}.
11701
11702 @end table
11703
11704 @item *[@var{spec_name}]:
11705 This tells the compiler to create, override or delete the named spec
11706 string.  All lines after this directive up to the next directive or
11707 blank line are considered to be the text for the spec string.  If this
11708 results in an empty string then the spec is deleted.  (Or, if the
11709 spec did not exist, then nothing happens.)  Otherwise, if the spec
11710 does not currently exist a new spec is created.  If the spec does
11711 exist then its contents are overridden by the text of this
11712 directive, unless the first character of that text is the @samp{+}
11713 character, in which case the text is appended to the spec.
11714
11715 @item [@var{suffix}]:
11716 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
11717 and up to the next directive or blank line are considered to make up the
11718 spec string for the indicated suffix.  When the compiler encounters an
11719 input file with the named suffix, it processes the spec string in
11720 order to work out how to compile that file.  For example:
11721
11722 @smallexample
11723 .ZZ:
11724 z-compile -input %i
11725 @end smallexample
11726
11727 This says that any input file whose name ends in @samp{.ZZ} should be
11728 passed to the program @samp{z-compile}, which should be invoked with the
11729 command-line switch @option{-input} and with the result of performing the
11730 @samp{%i} substitution.  (See below.)
11731
11732 As an alternative to providing a spec string, the text following a
11733 suffix directive can be one of the following:
11734
11735 @table @code
11736 @item @@@var{language}
11737 This says that the suffix is an alias for a known @var{language}.  This is
11738 similar to using the @option{-x} command-line switch to GCC to specify a
11739 language explicitly.  For example:
11740
11741 @smallexample
11742 .ZZ:
11743 @@c++
11744 @end smallexample
11745
11746 Says that .ZZ files are, in fact, C++ source files.
11747
11748 @item #@var{name}
11749 This causes an error messages saying:
11750
11751 @smallexample
11752 @var{name} compiler not installed on this system.
11753 @end smallexample
11754 @end table
11755
11756 GCC already has an extensive list of suffixes built into it.
11757 This directive adds an entry to the end of the list of suffixes, but
11758 since the list is searched from the end backwards, it is effectively
11759 possible to override earlier entries using this technique.
11760
11761 @end table
11762
11763 GCC has the following spec strings built into it.  Spec files can
11764 override these strings or create their own.  Note that individual
11765 targets can also add their own spec strings to this list.
11766
11767 @smallexample
11768 asm          Options to pass to the assembler
11769 asm_final    Options to pass to the assembler post-processor
11770 cpp          Options to pass to the C preprocessor
11771 cc1          Options to pass to the C compiler
11772 cc1plus      Options to pass to the C++ compiler
11773 endfile      Object files to include at the end of the link
11774 link         Options to pass to the linker
11775 lib          Libraries to include on the command line to the linker
11776 libgcc       Decides which GCC support library to pass to the linker
11777 linker       Sets the name of the linker
11778 predefines   Defines to be passed to the C preprocessor
11779 signed_char  Defines to pass to CPP to say whether @code{char} is signed
11780              by default
11781 startfile    Object files to include at the start of the link
11782 @end smallexample
11783
11784 Here is a small example of a spec file:
11785
11786 @smallexample
11787 %rename lib                 old_lib
11788
11789 *lib:
11790 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11791 @end smallexample
11792
11793 This example renames the spec called @samp{lib} to @samp{old_lib} and
11794 then overrides the previous definition of @samp{lib} with a new one.
11795 The new definition adds in some extra command-line options before
11796 including the text of the old definition.
11797
11798 @dfn{Spec strings} are a list of command-line options to be passed to their
11799 corresponding program.  In addition, the spec strings can contain
11800 @samp{%}-prefixed sequences to substitute variable text or to
11801 conditionally insert text into the command line.  Using these constructs
11802 it is possible to generate quite complex command lines.
11803
11804 Here is a table of all defined @samp{%}-sequences for spec
11805 strings.  Note that spaces are not generated automatically around the
11806 results of expanding these sequences.  Therefore you can concatenate them
11807 together or combine them with constant text in a single argument.
11808
11809 @table @code
11810 @item %%
11811 Substitute one @samp{%} into the program name or argument.
11812
11813 @item %i
11814 Substitute the name of the input file being processed.
11815
11816 @item %b
11817 Substitute the basename of the input file being processed.
11818 This is the substring up to (and not including) the last period
11819 and not including the directory.
11820
11821 @item %B
11822 This is the same as @samp{%b}, but include the file suffix (text after
11823 the last period).
11824
11825 @item %d
11826 Marks the argument containing or following the @samp{%d} as a
11827 temporary file name, so that that file is deleted if GCC exits
11828 successfully.  Unlike @samp{%g}, this contributes no text to the
11829 argument.
11830
11831 @item %g@var{suffix}
11832 Substitute a file name that has suffix @var{suffix} and is chosen
11833 once per compilation, and mark the argument in the same way as
11834 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
11835 name is now chosen in a way that is hard to predict even when previously
11836 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11837 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
11838 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11839 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
11840 was simply substituted with a file name chosen once per compilation,
11841 without regard to any appended suffix (which was therefore treated
11842 just like ordinary text), making such attacks more likely to succeed.
11843
11844 @item %u@var{suffix}
11845 Like @samp{%g}, but generates a new temporary file name
11846 each time it appears instead of once per compilation.
11847
11848 @item %U@var{suffix}
11849 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11850 new one if there is no such last file name.  In the absence of any
11851 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11852 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11853 involves the generation of two distinct file names, one
11854 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
11855 simply substituted with a file name chosen for the previous @samp{%u},
11856 without regard to any appended suffix.
11857
11858 @item %j@var{suffix}
11859 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11860 writable, and if @option{-save-temps} is not used; 
11861 otherwise, substitute the name
11862 of a temporary file, just like @samp{%u}.  This temporary file is not
11863 meant for communication between processes, but rather as a junk
11864 disposal mechanism.
11865
11866 @item %|@var{suffix}
11867 @itemx %m@var{suffix}
11868 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
11869 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11870 all.  These are the two most common ways to instruct a program that it
11871 should read from standard input or write to standard output.  If you
11872 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11873 construct: see for example @file{f/lang-specs.h}.
11874
11875 @item %.@var{SUFFIX}
11876 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11877 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
11878 terminated by the next space or %.
11879
11880 @item %w
11881 Marks the argument containing or following the @samp{%w} as the
11882 designated output file of this compilation.  This puts the argument
11883 into the sequence of arguments that @samp{%o} substitutes.
11884
11885 @item %o
11886 Substitutes the names of all the output files, with spaces
11887 automatically placed around them.  You should write spaces
11888 around the @samp{%o} as well or the results are undefined.
11889 @samp{%o} is for use in the specs for running the linker.
11890 Input files whose names have no recognized suffix are not compiled
11891 at all, but they are included among the output files, so they are
11892 linked.
11893
11894 @item %O
11895 Substitutes the suffix for object files.  Note that this is
11896 handled specially when it immediately follows @samp{%g, %u, or %U},
11897 because of the need for those to form complete file names.  The
11898 handling is such that @samp{%O} is treated exactly as if it had already
11899 been substituted, except that @samp{%g, %u, and %U} do not currently
11900 support additional @var{suffix} characters following @samp{%O} as they do
11901 following, for example, @samp{.o}.
11902
11903 @item %p
11904 Substitutes the standard macro predefinitions for the
11905 current target machine.  Use this when running @command{cpp}.
11906
11907 @item %P
11908 Like @samp{%p}, but puts @samp{__} before and after the name of each
11909 predefined macro, except for macros that start with @samp{__} or with
11910 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
11911 C@.
11912
11913 @item %I
11914 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11915 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11916 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11917 and @option{-imultilib} as necessary.
11918
11919 @item %s
11920 Current argument is the name of a library or startup file of some sort.
11921 Search for that file in a standard list of directories and substitute
11922 the full name found.  The current working directory is included in the
11923 list of directories scanned.
11924
11925 @item %T
11926 Current argument is the name of a linker script.  Search for that file
11927 in the current list of directories to scan for libraries. If the file
11928 is located insert a @option{--script} option into the command line
11929 followed by the full path name found.  If the file is not found then
11930 generate an error message.  Note: the current working directory is not
11931 searched.
11932
11933 @item %e@var{str}
11934 Print @var{str} as an error message.  @var{str} is terminated by a newline.
11935 Use this when inconsistent options are detected.
11936
11937 @item %(@var{name})
11938 Substitute the contents of spec string @var{name} at this point.
11939
11940 @item %x@{@var{option}@}
11941 Accumulate an option for @samp{%X}.
11942
11943 @item %X
11944 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11945 spec string.
11946
11947 @item %Y
11948 Output the accumulated assembler options specified by @option{-Wa}.
11949
11950 @item %Z
11951 Output the accumulated preprocessor options specified by @option{-Wp}.
11952
11953 @item %a
11954 Process the @code{asm} spec.  This is used to compute the
11955 switches to be passed to the assembler.
11956
11957 @item %A
11958 Process the @code{asm_final} spec.  This is a spec string for
11959 passing switches to an assembler post-processor, if such a program is
11960 needed.
11961
11962 @item %l
11963 Process the @code{link} spec.  This is the spec for computing the
11964 command line passed to the linker.  Typically it makes use of the
11965 @samp{%L %G %S %D and %E} sequences.
11966
11967 @item %D
11968 Dump out a @option{-L} option for each directory that GCC believes might
11969 contain startup files.  If the target supports multilibs then the
11970 current multilib directory is prepended to each of these paths.
11971
11972 @item %L
11973 Process the @code{lib} spec.  This is a spec string for deciding which
11974 libraries are included on the command line to the linker.
11975
11976 @item %G
11977 Process the @code{libgcc} spec.  This is a spec string for deciding
11978 which GCC support library is included on the command line to the linker.
11979
11980 @item %S
11981 Process the @code{startfile} spec.  This is a spec for deciding which
11982 object files are the first ones passed to the linker.  Typically
11983 this might be a file named @file{crt0.o}.
11984
11985 @item %E
11986 Process the @code{endfile} spec.  This is a spec string that specifies
11987 the last object files that are passed to the linker.
11988
11989 @item %C
11990 Process the @code{cpp} spec.  This is used to construct the arguments
11991 to be passed to the C preprocessor.
11992
11993 @item %1
11994 Process the @code{cc1} spec.  This is used to construct the options to be
11995 passed to the actual C compiler (@command{cc1}).
11996
11997 @item %2
11998 Process the @code{cc1plus} spec.  This is used to construct the options to be
11999 passed to the actual C++ compiler (@command{cc1plus}).
12000
12001 @item %*
12002 Substitute the variable part of a matched option.  See below.
12003 Note that each comma in the substituted string is replaced by
12004 a single space.
12005
12006 @item %<@code{S}
12007 Remove all occurrences of @code{-S} from the command line.  Note---this
12008 command is position dependent.  @samp{%} commands in the spec string
12009 before this one see @code{-S}, @samp{%} commands in the spec string
12010 after this one do not.
12011
12012 @item %:@var{function}(@var{args})
12013 Call the named function @var{function}, passing it @var{args}.
12014 @var{args} is first processed as a nested spec string, then split
12015 into an argument vector in the usual fashion.  The function returns
12016 a string which is processed as if it had appeared literally as part
12017 of the current spec.
12018
12019 The following built-in spec functions are provided:
12020
12021 @table @code
12022 @item @code{getenv}
12023 The @code{getenv} spec function takes two arguments: an environment
12024 variable name and a string.  If the environment variable is not
12025 defined, a fatal error is issued.  Otherwise, the return value is the
12026 value of the environment variable concatenated with the string.  For
12027 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12028
12029 @smallexample
12030 %:getenv(TOPDIR /include)
12031 @end smallexample
12032
12033 expands to @file{/path/to/top/include}.
12034
12035 @item @code{if-exists}
12036 The @code{if-exists} spec function takes one argument, an absolute
12037 pathname to a file.  If the file exists, @code{if-exists} returns the
12038 pathname.  Here is a small example of its usage:
12039
12040 @smallexample
12041 *startfile:
12042 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12043 @end smallexample
12044
12045 @item @code{if-exists-else}
12046 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12047 spec function, except that it takes two arguments.  The first argument is
12048 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
12049 returns the pathname.  If it does not exist, it returns the second argument.
12050 This way, @code{if-exists-else} can be used to select one file or another,
12051 based on the existence of the first.  Here is a small example of its usage:
12052
12053 @smallexample
12054 *startfile:
12055 crt0%O%s %:if-exists(crti%O%s) \
12056 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12057 @end smallexample
12058
12059 @item @code{replace-outfile}
12060 The @code{replace-outfile} spec function takes two arguments.  It looks for the
12061 first argument in the outfiles array and replaces it with the second argument.  Here
12062 is a small example of its usage:
12063
12064 @smallexample
12065 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12066 @end smallexample
12067
12068 @item @code{remove-outfile}
12069 The @code{remove-outfile} spec function takes one argument.  It looks for the
12070 first argument in the outfiles array and removes it.  Here is a small example
12071 its usage:
12072
12073 @smallexample
12074 %:remove-outfile(-lm)
12075 @end smallexample
12076
12077 @item @code{pass-through-libs}
12078 The @code{pass-through-libs} spec function takes any number of arguments.  It
12079 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12080 assumes are the names of linker input library archive files) and returns a
12081 result containing all the found arguments each prepended by
12082 @option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
12083 intended to be passed to the LTO linker plugin.
12084
12085 @smallexample
12086 %:pass-through-libs(%G %L %G)
12087 @end smallexample
12088
12089 @item @code{print-asm-header}
12090 The @code{print-asm-header} function takes no arguments and simply
12091 prints a banner like:
12092
12093 @smallexample
12094 Assembler options
12095 =================
12096
12097 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12098 @end smallexample
12099
12100 It is used to separate compiler options from assembler options
12101 in the @option{--target-help} output.
12102 @end table
12103
12104 @item %@{@code{S}@}
12105 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12106 If that switch is not specified, this substitutes nothing.  Note that
12107 the leading dash is omitted when specifying this option, and it is
12108 automatically inserted if the substitution is performed.  Thus the spec
12109 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12110 and outputs the command-line option @option{-foo}.
12111
12112 @item %W@{@code{S}@}
12113 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12114 deleted on failure.
12115
12116 @item %@{@code{S}*@}
12117 Substitutes all the switches specified to GCC whose names start
12118 with @code{-S}, but which also take an argument.  This is used for
12119 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12120 GCC considers @option{-o foo} as being
12121 one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
12122 text, including the space.  Thus two arguments are generated.
12123
12124 @item %@{@code{S}*&@code{T}*@}
12125 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12126 (the order of @code{S} and @code{T} in the spec is not significant).
12127 There can be any number of ampersand-separated variables; for each the
12128 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
12129
12130 @item %@{@code{S}:@code{X}@}
12131 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12132
12133 @item %@{!@code{S}:@code{X}@}
12134 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12135
12136 @item %@{@code{S}*:@code{X}@}
12137 Substitutes @code{X} if one or more switches whose names start with
12138 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
12139 once, no matter how many such switches appeared.  However, if @code{%*}
12140 appears somewhere in @code{X}, then @code{X} is substituted once
12141 for each matching switch, with the @code{%*} replaced by the part of
12142 that switch matching the @code{*}.
12143
12144 If @code{%*} appears as the last part of a spec sequence then a space
12145 is added after the end of the last substitution.  If there is more
12146 text in the sequence, however, then a space is not generated.  This
12147 allows the @code{%*} substitution to be used as part of a larger
12148 string.  For example, a spec string like this:
12149
12150 @smallexample
12151 %@{mcu=*:--script=%*/memory.ld@}
12152 @end smallexample
12153
12154 @noindent
12155 when matching an option like @option{-mcu=newchip} produces:
12156
12157 @smallexample
12158 --script=newchip/memory.ld
12159 @end smallexample
12160
12161 @item %@{.@code{S}:@code{X}@}
12162 Substitutes @code{X}, if processing a file with suffix @code{S}.
12163
12164 @item %@{!.@code{S}:@code{X}@}
12165 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12166
12167 @item %@{,@code{S}:@code{X}@}
12168 Substitutes @code{X}, if processing a file for language @code{S}.
12169
12170 @item %@{!,@code{S}:@code{X}@}
12171 Substitutes @code{X}, if not processing a file for language @code{S}.
12172
12173 @item %@{@code{S}|@code{P}:@code{X}@}
12174 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12175 GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12176 @code{*} sequences as well, although they have a stronger binding than
12177 the @samp{|}.  If @code{%*} appears in @code{X}, all of the
12178 alternatives must be starred, and only the first matching alternative
12179 is substituted.
12180
12181 For example, a spec string like this:
12182
12183 @smallexample
12184 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12185 @end smallexample
12186
12187 @noindent
12188 outputs the following command-line options from the following input
12189 command-line options:
12190
12191 @smallexample
12192 fred.c        -foo -baz
12193 jim.d         -bar -boggle
12194 -d fred.c     -foo -baz -boggle
12195 -d jim.d      -bar -baz -boggle
12196 @end smallexample
12197
12198 @item %@{S:X; T:Y; :D@}
12199
12200 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12201 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
12202 be as many clauses as you need.  This may be combined with @code{.},
12203 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12204
12205
12206 @end table
12207
12208 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12209 construct may contain other nested @samp{%} constructs or spaces, or
12210 even newlines.  They are processed as usual, as described above.
12211 Trailing white space in @code{X} is ignored.  White space may also
12212 appear anywhere on the left side of the colon in these constructs,
12213 except between @code{.} or @code{*} and the corresponding word.
12214
12215 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12216 handled specifically in these constructs.  If another value of
12217 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12218 @option{-W} switch is found later in the command line, the earlier
12219 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12220 just one letter, which passes all matching options.
12221
12222 The character @samp{|} at the beginning of the predicate text is used to
12223 indicate that a command should be piped to the following command, but
12224 only if @option{-pipe} is specified.
12225
12226 It is built into GCC which switches take arguments and which do not.
12227 (You might think it would be useful to generalize this to allow each
12228 compiler's spec to say which switches take arguments.  But this cannot
12229 be done in a consistent fashion.  GCC cannot even decide which input
12230 files have been specified without knowing which switches take arguments,
12231 and it must know which input files to compile in order to tell which
12232 compilers to run).
12233
12234 GCC also knows implicitly that arguments starting in @option{-l} are to be
12235 treated as compiler output files, and passed to the linker in their
12236 proper position among the other output files.
12237
12238 @c man begin OPTIONS
12239
12240 @node Target Options
12241 @section Specifying Target Machine and Compiler Version
12242 @cindex target options
12243 @cindex cross compiling
12244 @cindex specifying machine version
12245 @cindex specifying compiler version and target machine
12246 @cindex compiler version, specifying
12247 @cindex target machine, specifying
12248
12249 The usual way to run GCC is to run the executable called @command{gcc}, or
12250 @command{@var{machine}-gcc} when cross-compiling, or
12251 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12252 one that was installed last.
12253
12254 @node Submodel Options
12255 @section Hardware Models and Configurations
12256 @cindex submodel options
12257 @cindex specifying hardware config
12258 @cindex hardware models and configurations, specifying
12259 @cindex machine dependent options
12260
12261 Each target machine types can have its own
12262 special options, starting with @samp{-m}, to choose among various
12263 hardware models or configurations---for example, 68010 vs 68020,
12264 floating coprocessor or none.  A single installed version of the
12265 compiler can compile for any model or configuration, according to the
12266 options specified.
12267
12268 Some configurations of the compiler also support additional special
12269 options, usually for compatibility with other compilers on the same
12270 platform.
12271
12272 @c This list is ordered alphanumerically by subsection name.
12273 @c It should be the same order and spelling as these options are listed
12274 @c in Machine Dependent Options
12275
12276 @menu
12277 * AArch64 Options::
12278 * Adapteva Epiphany Options::
12279 * ARC Options::
12280 * ARM Options::
12281 * AVR Options::
12282 * Blackfin Options::
12283 * C6X Options::
12284 * CRIS Options::
12285 * CR16 Options::
12286 * Darwin Options::
12287 * DEC Alpha Options::
12288 * FR30 Options::
12289 * FT32 Options::
12290 * FRV Options::
12291 * GNU/Linux Options::
12292 * H8/300 Options::
12293 * HPPA Options::
12294 * IA-64 Options::
12295 * LM32 Options::
12296 * M32C Options::
12297 * M32R/D Options::
12298 * M680x0 Options::
12299 * MCore Options::
12300 * MeP Options::
12301 * MicroBlaze Options::
12302 * MIPS Options::
12303 * MMIX Options::
12304 * MN10300 Options::
12305 * Moxie Options::
12306 * MSP430 Options::
12307 * NDS32 Options::
12308 * Nios II Options::
12309 * Nvidia PTX Options::
12310 * PDP-11 Options::
12311 * picoChip Options::
12312 * PowerPC Options::
12313 * RL78 Options::
12314 * RS/6000 and PowerPC Options::
12315 * RX Options::
12316 * S/390 and zSeries Options::
12317 * Score Options::
12318 * SH Options::
12319 * Solaris 2 Options::
12320 * SPARC Options::
12321 * SPU Options::
12322 * System V Options::
12323 * TILE-Gx Options::
12324 * TILEPro Options::
12325 * V850 Options::
12326 * VAX Options::
12327 * Visium Options::
12328 * VMS Options::
12329 * VxWorks Options::
12330 * x86 Options::
12331 * x86 Windows Options::
12332 * Xstormy16 Options::
12333 * Xtensa Options::
12334 * zSeries Options::
12335 @end menu
12336
12337 @node AArch64 Options
12338 @subsection AArch64 Options
12339 @cindex AArch64 Options
12340
12341 These options are defined for AArch64 implementations:
12342
12343 @table @gcctabopt
12344
12345 @item -mabi=@var{name}
12346 @opindex mabi
12347 Generate code for the specified data model.  Permissible values
12348 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12349 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12350 but long int and pointer are 64-bit.
12351
12352 The default depends on the specific target configuration.  Note that
12353 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12354 entire program with the same ABI, and link with a compatible set of libraries.
12355
12356 @item -mbig-endian
12357 @opindex mbig-endian
12358 Generate big-endian code.  This is the default when GCC is configured for an
12359 @samp{aarch64_be-*-*} target.
12360
12361 @item -mgeneral-regs-only
12362 @opindex mgeneral-regs-only
12363 Generate code which uses only the general-purpose registers.  This is equivalent
12364 to feature modifier @option{nofp} of @option{-march} or @option{-mcpu}, except
12365 that @option{-mgeneral-regs-only} takes precedence over any conflicting feature
12366 modifier regardless of sequence.
12367
12368 @item -mlittle-endian
12369 @opindex mlittle-endian
12370 Generate little-endian code.  This is the default when GCC is configured for an
12371 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12372
12373 @item -mcmodel=tiny
12374 @opindex mcmodel=tiny
12375 Generate code for the tiny code model.  The program and its statically defined
12376 symbols must be within 1GB of each other.  Pointers are 64 bits.  Programs can
12377 be statically or dynamically linked.  This model is not fully implemented and
12378 mostly treated as @samp{small}.
12379
12380 @item -mcmodel=small
12381 @opindex mcmodel=small
12382 Generate code for the small code model.  The program and its statically defined
12383 symbols must be within 4GB of each other.  Pointers are 64 bits.  Programs can
12384 be statically or dynamically linked.  This is the default code model.
12385
12386 @item -mcmodel=large
12387 @opindex mcmodel=large
12388 Generate code for the large code model.  This makes no assumptions about
12389 addresses and sizes of sections.  Pointers are 64 bits.  Programs can be
12390 statically linked only.
12391
12392 @item -mstrict-align
12393 @opindex mstrict-align
12394 Do not assume that unaligned memory references are handled by the system.
12395
12396 @item -momit-leaf-frame-pointer
12397 @itemx -mno-omit-leaf-frame-pointer
12398 @opindex momit-leaf-frame-pointer
12399 @opindex mno-omit-leaf-frame-pointer
12400 Omit or keep the frame pointer in leaf functions.  The former behaviour is the
12401 default.
12402
12403 @item -mtls-dialect=desc
12404 @opindex mtls-dialect=desc
12405 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12406 of TLS variables.  This is the default.
12407
12408 @item -mtls-dialect=traditional
12409 @opindex mtls-dialect=traditional
12410 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12411 of TLS variables.
12412
12413 @item -mfix-cortex-a53-835769
12414 @itemx -mno-fix-cortex-a53-835769
12415 @opindex mfix-cortex-a53-835769
12416 @opindex mno-fix-cortex-a53-835769
12417 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12418 This involves inserting a NOP instruction between memory instructions and
12419 64-bit integer multiply-accumulate instructions.
12420
12421 @item -mfix-cortex-a53-843419
12422 @itemx -mno-fix-cortex-a53-843419
12423 @opindex mfix-cortex-a53-843419
12424 @opindex mno-fix-cortex-a53-843419
12425 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12426 This erratum workaround is made at link time and this will only pass the
12427 corresponding flag to the linker.
12428
12429 @item -march=@var{name}
12430 @opindex march
12431 Specify the name of the target architecture, optionally suffixed by one or
12432 more feature modifiers.  This option has the form
12433 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12434
12435 The permissible values for @var{arch} are @samp{armv8-a} or
12436 @samp{armv8.1-a}.
12437
12438 For the permissible values for @var{feature}, see the sub-section on
12439 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12440 Feature Modifiers}.  Where conflicting feature modifiers are
12441 specified, the right-most feature is used.
12442
12443 Additionally on native AArch64 GNU/Linux systems the value
12444 @samp{native} is available.  This option causes the compiler to pick the
12445 architecture of the host system.  If the compiler is unable to recognize the
12446 architecture of the host system this option has no effect.
12447
12448 GCC uses @var{name} to determine what kind of instructions it can emit
12449 when generating assembly code.  If @option{-march} is specified
12450 without either of @option{-mtune} or @option{-mcpu} also being
12451 specified, the code is tuned to perform well across a range of target
12452 processors implementing the target architecture.
12453
12454 @item -mtune=@var{name}
12455 @opindex mtune
12456 Specify the name of the target processor for which GCC should tune the
12457 performance of the code.  Permissible values for this option are:
12458 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12459 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12460
12461 Additionally, this option can specify that GCC should tune the performance
12462 of the code for a big.LITTLE system.  Permissible values for this
12463 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12464
12465 Additionally on native AArch64 GNU/Linux systems the value
12466 @samp{native} is available.  This option causes the compiler to pick
12467 the architecture of and tune the performance of the code for the
12468 processor of the host system.  If the compiler is unable to recognize
12469 the processor of the host system this option has no effect.
12470
12471 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12472 are specified, the code is tuned to perform well across a range
12473 of target processors.
12474
12475 This option cannot be suffixed by feature modifiers.
12476
12477 @item -mcpu=@var{name}
12478 @opindex mcpu
12479 Specify the name of the target processor, optionally suffixed by one
12480 or more feature modifiers.  This option has the form
12481 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12482 the permissible values for @var{cpu} are the same as those available
12483 for @option{-mtune}.  The permissible values for @var{feature} are
12484 documented in the sub-section on
12485 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12486 Feature Modifiers}.  Where conflicting feature modifiers are
12487 specified, the right-most feature is used.
12488
12489 Additionally on native AArch64 GNU/Linux systems the value
12490 @samp{native} is available.  This option causes the compiler to tune
12491 the performance of the code for the processor of the host system.  If
12492 the compiler is unable to recognize the processor of the host system
12493 this option has no effect.
12494
12495 GCC uses @var{name} to determine what kind of instructions it can emit when
12496 generating assembly code (as if by @option{-march}) and to determine
12497 the target processor for which to tune for performance (as if
12498 by @option{-mtune}).  Where this option is used in conjunction
12499 with @option{-march} or @option{-mtune}, those options take precedence
12500 over the appropriate part of this option.
12501
12502 @item -moverride=@var{string}
12503 @opindex moverride
12504 Override tuning decisions made by the back-end in response to a
12505 @option{-mtune=} switch.  The syntax, semantics, and accepted values
12506 for @var{string} in this option are not guaranteed to be consistent
12507 across releases.
12508
12509 This option is only intended to be useful when developing GCC.
12510 @end table
12511
12512 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12513 @anchor{aarch64-feature-modifiers}
12514 @cindex @option{-march} feature modifiers
12515 @cindex @option{-mcpu} feature modifiers
12516 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12517 the following and their inverses @option{no@var{feature}}:
12518
12519 @table @samp
12520 @item crc
12521 Enable CRC extension.
12522 @item crypto
12523 Enable Crypto extension.  This also enables Advanced SIMD and floating-point
12524 instructions.
12525 @item fp
12526 Enable floating-point instructions.  This is on by default for all possible
12527 values for options @option{-march} and @option{-mcpu}.
12528 @item simd
12529 Enable Advanced SIMD instructions.  This also enables floating-point
12530 instructions.  This is on by default for all possible values for options
12531 @option{-march} and @option{-mcpu}.
12532 @item lse
12533 Enable Large System Extension instructions.
12534 @item pan
12535 Enable Privileged Access Never support.
12536 @item lor
12537 Enable Limited Ordering Regions support.
12538 @item rdma
12539 Enable ARMv8.1 Advanced SIMD instructions.  This implies Advanced SIMD
12540 is enabled.
12541
12542 @end table
12543
12544 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12545 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12546 implies @option{nosimd} implies @option{nocrypto}.
12547
12548 @node Adapteva Epiphany Options
12549 @subsection Adapteva Epiphany Options
12550
12551 These @samp{-m} options are defined for Adapteva Epiphany:
12552
12553 @table @gcctabopt
12554 @item -mhalf-reg-file
12555 @opindex mhalf-reg-file
12556 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12557 That allows code to run on hardware variants that lack these registers.
12558
12559 @item -mprefer-short-insn-regs
12560 @opindex mprefer-short-insn-regs
12561 Preferrentially allocate registers that allow short instruction generation.
12562 This can result in increased instruction count, so this may either reduce or
12563 increase overall code size.
12564
12565 @item -mbranch-cost=@var{num}
12566 @opindex mbranch-cost
12567 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12568 This cost is only a heuristic and is not guaranteed to produce
12569 consistent results across releases.
12570
12571 @item -mcmove
12572 @opindex mcmove
12573 Enable the generation of conditional moves.
12574
12575 @item -mnops=@var{num}
12576 @opindex mnops
12577 Emit @var{num} NOPs before every other generated instruction.
12578
12579 @item -mno-soft-cmpsf
12580 @opindex mno-soft-cmpsf
12581 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12582 and test the flags.  This is faster than a software comparison, but can
12583 get incorrect results in the presence of NaNs, or when two different small
12584 numbers are compared such that their difference is calculated as zero.
12585 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12586 software comparisons.
12587
12588 @item -mstack-offset=@var{num}
12589 @opindex mstack-offset
12590 Set the offset between the top of the stack and the stack pointer.
12591 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12592 can be used by leaf functions without stack allocation.
12593 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12594 Note also that this option changes the ABI; compiling a program with a
12595 different stack offset than the libraries have been compiled with
12596 generally does not work.
12597 This option can be useful if you want to evaluate if a different stack
12598 offset would give you better code, but to actually use a different stack
12599 offset to build working programs, it is recommended to configure the
12600 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12601
12602 @item -mno-round-nearest
12603 @opindex mno-round-nearest
12604 Make the scheduler assume that the rounding mode has been set to
12605 truncating.  The default is @option{-mround-nearest}.
12606
12607 @item -mlong-calls
12608 @opindex mlong-calls
12609 If not otherwise specified by an attribute, assume all calls might be beyond
12610 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12611 function address into a register before performing a (otherwise direct) call.
12612 This is the default.
12613
12614 @item -mshort-calls
12615 @opindex short-calls
12616 If not otherwise specified by an attribute, assume all direct calls are
12617 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12618 for direct calls.  The default is @option{-mlong-calls}.
12619
12620 @item -msmall16
12621 @opindex msmall16
12622 Assume addresses can be loaded as 16-bit unsigned values.  This does not
12623 apply to function addresses for which @option{-mlong-calls} semantics
12624 are in effect.
12625
12626 @item -mfp-mode=@var{mode}
12627 @opindex mfp-mode
12628 Set the prevailing mode of the floating-point unit.
12629 This determines the floating-point mode that is provided and expected
12630 at function call and return time.  Making this mode match the mode you
12631 predominantly need at function start can make your programs smaller and
12632 faster by avoiding unnecessary mode switches.
12633
12634 @var{mode} can be set to one the following values:
12635
12636 @table @samp
12637 @item caller
12638 Any mode at function entry is valid, and retained or restored when
12639 the function returns, and when it calls other functions.
12640 This mode is useful for compiling libraries or other compilation units
12641 you might want to incorporate into different programs with different
12642 prevailing FPU modes, and the convenience of being able to use a single
12643 object file outweighs the size and speed overhead for any extra
12644 mode switching that might be needed, compared with what would be needed
12645 with a more specific choice of prevailing FPU mode.
12646
12647 @item truncate
12648 This is the mode used for floating-point calculations with
12649 truncating (i.e.@: round towards zero) rounding mode.  That includes
12650 conversion from floating point to integer.
12651
12652 @item round-nearest
12653 This is the mode used for floating-point calculations with
12654 round-to-nearest-or-even rounding mode.
12655
12656 @item int
12657 This is the mode used to perform integer calculations in the FPU, e.g.@:
12658 integer multiply, or integer multiply-and-accumulate.
12659 @end table
12660
12661 The default is @option{-mfp-mode=caller}
12662
12663 @item -mnosplit-lohi
12664 @itemx -mno-postinc
12665 @itemx -mno-postmodify
12666 @opindex mnosplit-lohi
12667 @opindex mno-postinc
12668 @opindex mno-postmodify
12669 Code generation tweaks that disable, respectively, splitting of 32-bit
12670 loads, generation of post-increment addresses, and generation of
12671 post-modify addresses.  The defaults are @option{msplit-lohi},
12672 @option{-mpost-inc}, and @option{-mpost-modify}.
12673
12674 @item -mnovect-double
12675 @opindex mno-vect-double
12676 Change the preferred SIMD mode to SImode.  The default is
12677 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12678
12679 @item -max-vect-align=@var{num}
12680 @opindex max-vect-align
12681 The maximum alignment for SIMD vector mode types.
12682 @var{num} may be 4 or 8.  The default is 8.
12683 Note that this is an ABI change, even though many library function
12684 interfaces are unaffected if they don't use SIMD vector modes
12685 in places that affect size and/or alignment of relevant types.
12686
12687 @item -msplit-vecmove-early
12688 @opindex msplit-vecmove-early
12689 Split vector moves into single word moves before reload.  In theory this
12690 can give better register allocation, but so far the reverse seems to be
12691 generally the case.
12692
12693 @item -m1reg-@var{reg}
12694 @opindex m1reg-
12695 Specify a register to hold the constant @minus{}1, which makes loading small negative
12696 constants and certain bitmasks faster.
12697 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12698 which specify use of that register as a fixed register,
12699 and @samp{none}, which means that no register is used for this
12700 purpose.  The default is @option{-m1reg-none}.
12701
12702 @end table
12703
12704 @node ARC Options
12705 @subsection ARC Options
12706 @cindex ARC options
12707
12708 The following options control the architecture variant for which code
12709 is being compiled:
12710
12711 @c architecture variants
12712 @table @gcctabopt
12713
12714 @item -mbarrel-shifter
12715 @opindex mbarrel-shifter
12716 Generate instructions supported by barrel shifter.  This is the default
12717 unless @option{-mcpu=ARC601} is in effect.
12718
12719 @item -mcpu=@var{cpu}
12720 @opindex mcpu
12721 Set architecture type, register usage, and instruction scheduling
12722 parameters for @var{cpu}.  There are also shortcut alias options
12723 available for backward compatibility and convenience.  Supported
12724 values for @var{cpu} are
12725
12726 @table @samp
12727 @opindex mA6
12728 @opindex mARC600
12729 @item ARC600
12730 Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
12731
12732 @item ARC601
12733 @opindex mARC601
12734 Compile for ARC601.  Alias: @option{-mARC601}.
12735
12736 @item ARC700
12737 @opindex mA7
12738 @opindex mARC700
12739 Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
12740 This is the default when configured with @option{--with-cpu=arc700}@.
12741 @end table
12742
12743 @item -mdpfp
12744 @opindex mdpfp
12745 @itemx -mdpfp-compact
12746 @opindex mdpfp-compact
12747 FPX: Generate Double Precision FPX instructions, tuned for the compact
12748 implementation.
12749
12750 @item -mdpfp-fast
12751 @opindex mdpfp-fast
12752 FPX: Generate Double Precision FPX instructions, tuned for the fast
12753 implementation.
12754
12755 @item -mno-dpfp-lrsr
12756 @opindex mno-dpfp-lrsr
12757 Disable LR and SR instructions from using FPX extension aux registers.
12758
12759 @item -mea
12760 @opindex mea
12761 Generate Extended arithmetic instructions.  Currently only
12762 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12763 supported.  This is always enabled for @option{-mcpu=ARC700}.
12764
12765 @item -mno-mpy
12766 @opindex mno-mpy
12767 Do not generate mpy instructions for ARC700.
12768
12769 @item -mmul32x16
12770 @opindex mmul32x16
12771 Generate 32x16 bit multiply and mac instructions.
12772
12773 @item -mmul64
12774 @opindex mmul64
12775 Generate mul64 and mulu64 instructions.  Only valid for @option{-mcpu=ARC600}.
12776
12777 @item -mnorm
12778 @opindex mnorm
12779 Generate norm instruction.  This is the default if @option{-mcpu=ARC700}
12780 is in effect.
12781
12782 @item -mspfp
12783 @opindex mspfp
12784 @itemx -mspfp-compact
12785 @opindex mspfp-compact
12786 FPX: Generate Single Precision FPX instructions, tuned for the compact
12787 implementation.
12788
12789 @item -mspfp-fast
12790 @opindex mspfp-fast
12791 FPX: Generate Single Precision FPX instructions, tuned for the fast
12792 implementation.
12793
12794 @item -msimd
12795 @opindex msimd
12796 Enable generation of ARC SIMD instructions via target-specific
12797 builtins.  Only valid for @option{-mcpu=ARC700}.
12798
12799 @item -msoft-float
12800 @opindex msoft-float
12801 This option ignored; it is provided for compatibility purposes only.
12802 Software floating point code is emitted by default, and this default
12803 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12804 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12805 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12806
12807 @item -mswap
12808 @opindex mswap
12809 Generate swap instructions.
12810
12811 @end table
12812
12813 The following options are passed through to the assembler, and also
12814 define preprocessor macro symbols.
12815
12816 @c Flags used by the assembler, but for which we define preprocessor
12817 @c macro symbols as well.
12818 @table @gcctabopt
12819 @item -mdsp-packa
12820 @opindex mdsp-packa
12821 Passed down to the assembler to enable the DSP Pack A extensions.
12822 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12823
12824 @item -mdvbf
12825 @opindex mdvbf
12826 Passed down to the assembler to enable the dual viterbi butterfly
12827 extension.  Also sets the preprocessor symbol @code{__Xdvbf}.
12828
12829 @c ARC700 4.10 extension instruction
12830 @item -mlock
12831 @opindex mlock
12832 Passed down to the assembler to enable the Locked Load/Store
12833 Conditional extension.  Also sets the preprocessor symbol
12834 @code{__Xlock}.
12835
12836 @item -mmac-d16
12837 @opindex mmac-d16
12838 Passed down to the assembler.  Also sets the preprocessor symbol
12839 @code{__Xxmac_d16}.
12840
12841 @item -mmac-24
12842 @opindex mmac-24
12843 Passed down to the assembler.  Also sets the preprocessor symbol
12844 @code{__Xxmac_24}.
12845
12846 @c ARC700 4.10 extension instruction
12847 @item -mrtsc
12848 @opindex mrtsc
12849 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12850 extension instruction.  Also sets the preprocessor symbol
12851 @code{__Xrtsc}.
12852
12853 @c ARC700 4.10 extension instruction
12854 @item -mswape
12855 @opindex mswape
12856 Passed down to the assembler to enable the swap byte ordering
12857 extension instruction.  Also sets the preprocessor symbol
12858 @code{__Xswape}.
12859
12860 @item -mtelephony
12861 @opindex mtelephony
12862 Passed down to the assembler to enable dual and single operand
12863 instructions for telephony.  Also sets the preprocessor symbol
12864 @code{__Xtelephony}.
12865
12866 @item -mxy
12867 @opindex mxy
12868 Passed down to the assembler to enable the XY Memory extension.  Also
12869 sets the preprocessor symbol @code{__Xxy}.
12870
12871 @end table
12872
12873 The following options control how the assembly code is annotated:
12874
12875 @c Assembly annotation options
12876 @table @gcctabopt
12877 @item -misize
12878 @opindex misize
12879 Annotate assembler instructions with estimated addresses.
12880
12881 @item -mannotate-align
12882 @opindex mannotate-align
12883 Explain what alignment considerations lead to the decision to make an
12884 instruction short or long.
12885
12886 @end table
12887
12888 The following options are passed through to the linker:
12889
12890 @c options passed through to the linker
12891 @table @gcctabopt
12892 @item -marclinux
12893 @opindex marclinux
12894 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12895 This option is enabled by default in tool chains built for
12896 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12897 when profiling is not requested.
12898
12899 @item -marclinux_prof
12900 @opindex marclinux_prof
12901 Passed through to the linker, to specify use of the
12902 @code{arclinux_prof} emulation.  This option is enabled by default in
12903 tool chains built for @w{@code{arc-linux-uclibc}} and
12904 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12905
12906 @end table
12907
12908 The following options control the semantics of generated code:
12909
12910 @c semantically relevant code generation options
12911 @table @gcctabopt
12912 @item -mepilogue-cfi
12913 @opindex mepilogue-cfi
12914 Enable generation of call frame information for epilogues.
12915
12916 @item -mno-epilogue-cfi
12917 @opindex mno-epilogue-cfi
12918 Disable generation of call frame information for epilogues.
12919
12920 @item -mlong-calls
12921 @opindex mlong-calls
12922 Generate call insns as register indirect calls, thus providing access
12923 to the full 32-bit address range.
12924
12925 @item -mmedium-calls
12926 @opindex mmedium-calls
12927 Don't use less than 25 bit addressing range for calls, which is the
12928 offset available for an unconditional branch-and-link
12929 instruction.  Conditional execution of function calls is suppressed, to
12930 allow use of the 25-bit range, rather than the 21-bit range with
12931 conditional branch-and-link.  This is the default for tool chains built
12932 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12933
12934 @item -mno-sdata
12935 @opindex mno-sdata
12936 Do not generate sdata references.  This is the default for tool chains
12937 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12938 targets.
12939
12940 @item -mucb-mcount
12941 @opindex mucb-mcount
12942 Instrument with mcount calls as used in UCB code.  I.e. do the
12943 counting in the callee, not the caller.  By default ARC instrumentation
12944 counts in the caller.
12945
12946 @item -mvolatile-cache
12947 @opindex mvolatile-cache
12948 Use ordinarily cached memory accesses for volatile references.  This is the
12949 default.
12950
12951 @item -mno-volatile-cache
12952 @opindex mno-volatile-cache
12953 Enable cache bypass for volatile references.
12954
12955 @end table
12956
12957 The following options fine tune code generation:
12958 @c code generation tuning options
12959 @table @gcctabopt
12960 @item -malign-call
12961 @opindex malign-call
12962 Do alignment optimizations for call instructions.
12963
12964 @item -mauto-modify-reg
12965 @opindex mauto-modify-reg
12966 Enable the use of pre/post modify with register displacement.
12967
12968 @item -mbbit-peephole
12969 @opindex mbbit-peephole
12970 Enable bbit peephole2.
12971
12972 @item -mno-brcc
12973 @opindex mno-brcc
12974 This option disables a target-specific pass in @file{arc_reorg} to
12975 generate @code{BRcc} instructions.  It has no effect on @code{BRcc}
12976 generation driven by the combiner pass.
12977
12978 @item -mcase-vector-pcrel
12979 @opindex mcase-vector-pcrel
12980 Use pc-relative switch case tables - this enables case table shortening.
12981 This is the default for @option{-Os}.
12982
12983 @item -mcompact-casesi
12984 @opindex mcompact-casesi
12985 Enable compact casesi pattern.
12986 This is the default for @option{-Os}.
12987
12988 @item -mno-cond-exec
12989 @opindex mno-cond-exec
12990 Disable ARCompact specific pass to generate conditional execution instructions.
12991 Due to delay slot scheduling and interactions between operand numbers,
12992 literal sizes, instruction lengths, and the support for conditional execution,
12993 the target-independent pass to generate conditional execution is often lacking,
12994 so the ARC port has kept a special pass around that tries to find more
12995 conditional execution generating opportunities after register allocation,
12996 branch shortening, and delay slot scheduling have been done.  This pass
12997 generally, but not always, improves performance and code size, at the cost of
12998 extra compilation time, which is why there is an option to switch it off.
12999 If you have a problem with call instructions exceeding their allowable
13000 offset range because they are conditionalized, you should consider using
13001 @option{-mmedium-calls} instead.
13002
13003 @item -mearly-cbranchsi
13004 @opindex mearly-cbranchsi
13005 Enable pre-reload use of the cbranchsi pattern.
13006
13007 @item -mexpand-adddi
13008 @opindex mexpand-adddi
13009 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13010 @code{add.f}, @code{adc} etc.
13011
13012 @item -mindexed-loads
13013 @opindex mindexed-loads
13014 Enable the use of indexed loads.  This can be problematic because some
13015 optimizers then assume that indexed stores exist, which is not
13016 the case.
13017
13018 @item -mlra
13019 @opindex mlra
13020 Enable Local Register Allocation.  This is still experimental for ARC,
13021 so by default the compiler uses standard reload
13022 (i.e. @option{-mno-lra}).
13023
13024 @item -mlra-priority-none
13025 @opindex mlra-priority-none
13026 Don't indicate any priority for target registers.
13027
13028 @item -mlra-priority-compact
13029 @opindex mlra-priority-compact
13030 Indicate target register priority for r0..r3 / r12..r15.
13031
13032 @item -mlra-priority-noncompact
13033 @opindex mlra-priority-noncompact
13034 Reduce target regsiter priority for r0..r3 / r12..r15.
13035
13036 @item -mno-millicode
13037 @opindex mno-millicode
13038 When optimizing for size (using @option{-Os}), prologues and epilogues
13039 that have to save or restore a large number of registers are often
13040 shortened by using call to a special function in libgcc; this is
13041 referred to as a @emph{millicode} call.  As these calls can pose
13042 performance issues, and/or cause linking issues when linking in a
13043 nonstandard way, this option is provided to turn off millicode call
13044 generation.
13045
13046 @item -mmixed-code
13047 @opindex mmixed-code
13048 Tweak register allocation to help 16-bit instruction generation.
13049 This generally has the effect of decreasing the average instruction size
13050 while increasing the instruction count.
13051
13052 @item -mq-class
13053 @opindex mq-class
13054 Enable 'q' instruction alternatives.
13055 This is the default for @option{-Os}.
13056
13057 @item -mRcq
13058 @opindex mRcq
13059 Enable Rcq constraint handling - most short code generation depends on this.
13060 This is the default.
13061
13062 @item -mRcw
13063 @opindex mRcw
13064 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13065 This is the default.
13066
13067 @item -msize-level=@var{level}
13068 @opindex msize-level
13069 Fine-tune size optimization with regards to instruction lengths and alignment.
13070 The recognized values for @var{level} are:
13071 @table @samp
13072 @item 0
13073 No size optimization.  This level is deprecated and treated like @samp{1}.
13074
13075 @item 1
13076 Short instructions are used opportunistically.
13077
13078 @item 2
13079 In addition, alignment of loops and of code after barriers are dropped.
13080
13081 @item 3
13082 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13083
13084 @end table
13085
13086 This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
13087 the behavior when this is not set is equivalent to level @samp{1}.
13088
13089 @item -mtune=@var{cpu}
13090 @opindex mtune
13091 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13092 by @option{-mcpu=}.
13093
13094 Supported values for @var{cpu} are
13095
13096 @table @samp
13097 @item ARC600
13098 Tune for ARC600 cpu.
13099
13100 @item ARC601
13101 Tune for ARC601 cpu.
13102
13103 @item ARC700
13104 Tune for ARC700 cpu with standard multiplier block.
13105
13106 @item ARC700-xmac
13107 Tune for ARC700 cpu with XMAC block.
13108
13109 @item ARC725D
13110 Tune for ARC725D cpu.
13111
13112 @item ARC750D
13113 Tune for ARC750D cpu.
13114
13115 @end table
13116
13117 @item -mmultcost=@var{num}
13118 @opindex mmultcost
13119 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13120 normal instruction.
13121
13122 @item -munalign-prob-threshold=@var{probability}
13123 @opindex munalign-prob-threshold
13124 Set probability threshold for unaligning branches.
13125 When tuning for @samp{ARC700} and optimizing for speed, branches without
13126 filled delay slot are preferably emitted unaligned and long, unless
13127 profiling indicates that the probability for the branch to be taken
13128 is below @var{probability}.  @xref{Cross-profiling}.
13129 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13130
13131 @end table
13132
13133 The following options are maintained for backward compatibility, but
13134 are now deprecated and will be removed in a future release:
13135
13136 @c Deprecated options
13137 @table @gcctabopt
13138
13139 @item -margonaut
13140 @opindex margonaut
13141 Obsolete FPX.
13142
13143 @item -mbig-endian
13144 @opindex mbig-endian
13145 @itemx -EB
13146 @opindex EB
13147 Compile code for big endian targets.  Use of these options is now
13148 deprecated.  Users wanting big-endian code, should use the
13149 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13150 building the tool chain, for which big-endian is the default.
13151
13152 @item -mlittle-endian
13153 @opindex mlittle-endian
13154 @itemx -EL
13155 @opindex EL
13156 Compile code for little endian targets.  Use of these options is now
13157 deprecated.  Users wanting little-endian code should use the
13158 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13159 building the tool chain, for which little-endian is the default.
13160
13161 @item -mbarrel_shifter
13162 @opindex mbarrel_shifter
13163 Replaced by @option{-mbarrel-shifter}.
13164
13165 @item -mdpfp_compact
13166 @opindex mdpfp_compact
13167 Replaced by @option{-mdpfp-compact}.
13168
13169 @item -mdpfp_fast
13170 @opindex mdpfp_fast
13171 Replaced by @option{-mdpfp-fast}.
13172
13173 @item -mdsp_packa
13174 @opindex mdsp_packa
13175 Replaced by @option{-mdsp-packa}.
13176
13177 @item -mEA
13178 @opindex mEA
13179 Replaced by @option{-mea}.
13180
13181 @item -mmac_24
13182 @opindex mmac_24
13183 Replaced by @option{-mmac-24}.
13184
13185 @item -mmac_d16
13186 @opindex mmac_d16
13187 Replaced by @option{-mmac-d16}.
13188
13189 @item -mspfp_compact
13190 @opindex mspfp_compact
13191 Replaced by @option{-mspfp-compact}.
13192
13193 @item -mspfp_fast
13194 @opindex mspfp_fast
13195 Replaced by @option{-mspfp-fast}.
13196
13197 @item -mtune=@var{cpu}
13198 @opindex mtune
13199 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13200 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13201 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13202
13203 @item -multcost=@var{num}
13204 @opindex multcost
13205 Replaced by @option{-mmultcost}.
13206
13207 @end table
13208
13209 @node ARM Options
13210 @subsection ARM Options
13211 @cindex ARM options
13212
13213 These @samp{-m} options are defined for the ARM port:
13214
13215 @table @gcctabopt
13216 @item -mabi=@var{name}
13217 @opindex mabi
13218 Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
13219 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13220
13221 @item -mapcs-frame
13222 @opindex mapcs-frame
13223 Generate a stack frame that is compliant with the ARM Procedure Call
13224 Standard for all functions, even if this is not strictly necessary for
13225 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
13226 with this option causes the stack frames not to be generated for
13227 leaf functions.  The default is @option{-mno-apcs-frame}.
13228 This option is deprecated.
13229
13230 @item -mapcs
13231 @opindex mapcs
13232 This is a synonym for @option{-mapcs-frame} and is deprecated.
13233
13234 @ignore
13235 @c not currently implemented
13236 @item -mapcs-stack-check
13237 @opindex mapcs-stack-check
13238 Generate code to check the amount of stack space available upon entry to
13239 every function (that actually uses some stack space).  If there is
13240 insufficient space available then either the function
13241 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13242 called, depending upon the amount of stack space required.  The runtime
13243 system is required to provide these functions.  The default is
13244 @option{-mno-apcs-stack-check}, since this produces smaller code.
13245
13246 @c not currently implemented
13247 @item -mapcs-float
13248 @opindex mapcs-float
13249 Pass floating-point arguments using the floating-point registers.  This is
13250 one of the variants of the APCS@.  This option is recommended if the
13251 target hardware has a floating-point unit or if a lot of floating-point
13252 arithmetic is going to be performed by the code.  The default is
13253 @option{-mno-apcs-float}, since the size of integer-only code is 
13254 slightly increased if @option{-mapcs-float} is used.
13255
13256 @c not currently implemented
13257 @item -mapcs-reentrant
13258 @opindex mapcs-reentrant
13259 Generate reentrant, position-independent code.  The default is
13260 @option{-mno-apcs-reentrant}.
13261 @end ignore
13262
13263 @item -mthumb-interwork
13264 @opindex mthumb-interwork
13265 Generate code that supports calling between the ARM and Thumb
13266 instruction sets.  Without this option, on pre-v5 architectures, the
13267 two instruction sets cannot be reliably used inside one program.  The
13268 default is @option{-mno-thumb-interwork}, since slightly larger code
13269 is generated when @option{-mthumb-interwork} is specified.  In AAPCS
13270 configurations this option is meaningless.
13271
13272 @item -mno-sched-prolog
13273 @opindex mno-sched-prolog
13274 Prevent the reordering of instructions in the function prologue, or the
13275 merging of those instruction with the instructions in the function's
13276 body.  This means that all functions start with a recognizable set
13277 of instructions (or in fact one of a choice from a small set of
13278 different function prologues), and this information can be used to
13279 locate the start of functions inside an executable piece of code.  The
13280 default is @option{-msched-prolog}.
13281
13282 @item -mfloat-abi=@var{name}
13283 @opindex mfloat-abi
13284 Specifies which floating-point ABI to use.  Permissible values
13285 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13286
13287 Specifying @samp{soft} causes GCC to generate output containing
13288 library calls for floating-point operations.
13289 @samp{softfp} allows the generation of code using hardware floating-point
13290 instructions, but still uses the soft-float calling conventions.
13291 @samp{hard} allows generation of floating-point instructions
13292 and uses FPU-specific calling conventions.
13293
13294 The default depends on the specific target configuration.  Note that
13295 the hard-float and soft-float ABIs are not link-compatible; you must
13296 compile your entire program with the same ABI, and link with a
13297 compatible set of libraries.
13298
13299 @item -mlittle-endian
13300 @opindex mlittle-endian
13301 Generate code for a processor running in little-endian mode.  This is
13302 the default for all standard configurations.
13303
13304 @item -mbig-endian
13305 @opindex mbig-endian
13306 Generate code for a processor running in big-endian mode; the default is
13307 to compile code for a little-endian processor.
13308
13309 @item -march=@var{name}
13310 @opindex march
13311 This specifies the name of the target ARM architecture.  GCC uses this
13312 name to determine what kind of instructions it can emit when generating
13313 assembly code.  This option can be used in conjunction with or instead
13314 of the @option{-mcpu=} option.  Permissible names are: @samp{armv2},
13315 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13316 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13317 @samp{armv6}, @samp{armv6j},
13318 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13319 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13320 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13321 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13322
13323 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13324 extensions.
13325
13326 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13327 architecture together with the optional CRC32 extensions.
13328
13329 @option{-march=native} causes the compiler to auto-detect the architecture
13330 of the build computer.  At present, this feature is only supported on
13331 GNU/Linux, and not all architectures are recognized.  If the auto-detect
13332 is unsuccessful the option has no effect.
13333
13334 @item -mtune=@var{name}
13335 @opindex mtune
13336 This option specifies the name of the target ARM processor for
13337 which GCC should tune the performance of the code.
13338 For some ARM implementations better performance can be obtained by using
13339 this option.
13340 Permissible names are: @samp{arm2}, @samp{arm250},
13341 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13342 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13343 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13344 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13345 @samp{arm720},
13346 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13347 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13348 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13349 @samp{strongarm1110},
13350 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13351 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13352 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13353 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13354 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13355 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13356 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13357 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13358 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13359 @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13360 @samp{cortex-r4},
13361 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13362 @samp{cortex-m4},
13363 @samp{cortex-m3},
13364 @samp{cortex-m1},
13365 @samp{cortex-m0},
13366 @samp{cortex-m0plus},
13367 @samp{cortex-m1.small-multiply},
13368 @samp{cortex-m0.small-multiply},
13369 @samp{cortex-m0plus.small-multiply},
13370 @samp{exynos-m1},
13371 @samp{marvell-pj4},
13372 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13373 @samp{fa526}, @samp{fa626},
13374 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13375 @samp{xgene1}.
13376
13377 Additionally, this option can specify that GCC should tune the performance
13378 of the code for a big.LITTLE system.  Permissible names are:
13379 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13380 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13381
13382 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13383 performance for a blend of processors within architecture @var{arch}.
13384 The aim is to generate code that run well on the current most popular
13385 processors, balancing between optimizations that benefit some CPUs in the
13386 range, and avoiding performance pitfalls of other CPUs.  The effects of
13387 this option may change in future GCC versions as CPU models come and go.
13388
13389 @option{-mtune=native} causes the compiler to auto-detect the CPU
13390 of the build computer.  At present, this feature is only supported on
13391 GNU/Linux, and not all architectures are recognized.  If the auto-detect is
13392 unsuccessful the option has no effect.
13393
13394 @item -mcpu=@var{name}
13395 @opindex mcpu
13396 This specifies the name of the target ARM processor.  GCC uses this name
13397 to derive the name of the target ARM architecture (as if specified
13398 by @option{-march}) and the ARM processor type for which to tune for
13399 performance (as if specified by @option{-mtune}).  Where this option
13400 is used in conjunction with @option{-march} or @option{-mtune},
13401 those options take precedence over the appropriate part of this option.
13402
13403 Permissible names for this option are the same as those for
13404 @option{-mtune}.
13405
13406 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13407 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13408 See @option{-mtune} for more information.
13409
13410 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13411 of the build computer.  At present, this feature is only supported on
13412 GNU/Linux, and not all architectures are recognized.  If the auto-detect
13413 is unsuccessful the option has no effect.
13414
13415 @item -mfpu=@var{name}
13416 @opindex mfpu
13417 This specifies what floating-point hardware (or hardware emulation) is
13418 available on the target.  Permissible names are: @samp{vfp}, @samp{vfpv3},
13419 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13420 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13421 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13422 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13423 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13424
13425 If @option{-msoft-float} is specified this specifies the format of
13426 floating-point values.
13427
13428 If the selected floating-point hardware includes the NEON extension
13429 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13430 operations are not generated by GCC's auto-vectorization pass unless
13431 @option{-funsafe-math-optimizations} is also specified.  This is
13432 because NEON hardware does not fully implement the IEEE 754 standard for
13433 floating-point arithmetic (in particular denormal values are treated as
13434 zero), so the use of NEON instructions may lead to a loss of precision.
13435
13436 @item -mfp16-format=@var{name}
13437 @opindex mfp16-format
13438 Specify the format of the @code{__fp16} half-precision floating-point type.
13439 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13440 the default is @samp{none}, in which case the @code{__fp16} type is not
13441 defined.  @xref{Half-Precision}, for more information.
13442
13443 @item -mstructure-size-boundary=@var{n}
13444 @opindex mstructure-size-boundary
13445 The sizes of all structures and unions are rounded up to a multiple
13446 of the number of bits set by this option.  Permissible values are 8, 32
13447 and 64.  The default value varies for different toolchains.  For the COFF
13448 targeted toolchain the default value is 8.  A value of 64 is only allowed
13449 if the underlying ABI supports it.
13450
13451 Specifying a larger number can produce faster, more efficient code, but
13452 can also increase the size of the program.  Different values are potentially
13453 incompatible.  Code compiled with one value cannot necessarily expect to
13454 work with code or libraries compiled with another value, if they exchange
13455 information using structures or unions.
13456
13457 @item -mabort-on-noreturn
13458 @opindex mabort-on-noreturn
13459 Generate a call to the function @code{abort} at the end of a
13460 @code{noreturn} function.  It is executed if the function tries to
13461 return.
13462
13463 @item -mlong-calls
13464 @itemx -mno-long-calls
13465 @opindex mlong-calls
13466 @opindex mno-long-calls
13467 Tells the compiler to perform function calls by first loading the
13468 address of the function into a register and then performing a subroutine
13469 call on this register.  This switch is needed if the target function
13470 lies outside of the 64-megabyte addressing range of the offset-based
13471 version of subroutine call instruction.
13472
13473 Even if this switch is enabled, not all function calls are turned
13474 into long calls.  The heuristic is that static functions, functions
13475 that have the @code{short_call} attribute, functions that are inside
13476 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13477 definitions have already been compiled within the current compilation
13478 unit are not turned into long calls.  The exceptions to this rule are
13479 that weak function definitions, functions with the @code{long_call}
13480 attribute or the @code{section} attribute, and functions that are within
13481 the scope of a @code{#pragma long_calls} directive are always
13482 turned into long calls.
13483
13484 This feature is not enabled by default.  Specifying
13485 @option{-mno-long-calls} restores the default behavior, as does
13486 placing the function calls within the scope of a @code{#pragma
13487 long_calls_off} directive.  Note these switches have no effect on how
13488 the compiler generates code to handle function calls via function
13489 pointers.
13490
13491 @item -msingle-pic-base
13492 @opindex msingle-pic-base
13493 Treat the register used for PIC addressing as read-only, rather than
13494 loading it in the prologue for each function.  The runtime system is
13495 responsible for initializing this register with an appropriate value
13496 before execution begins.
13497
13498 @item -mpic-register=@var{reg}
13499 @opindex mpic-register
13500 Specify the register to be used for PIC addressing.
13501 For standard PIC base case, the default is any suitable register
13502 determined by compiler.  For single PIC base case, the default is
13503 @samp{R9} if target is EABI based or stack-checking is enabled,
13504 otherwise the default is @samp{R10}.
13505
13506 @item -mpic-data-is-text-relative
13507 @opindex mpic-data-is-text-relative
13508 Assume that each data segments are relative to text segment at load time.
13509 Therefore, it permits addressing data using PC-relative operations.
13510 This option is on by default for targets other than VxWorks RTP.
13511
13512 @item -mpoke-function-name
13513 @opindex mpoke-function-name
13514 Write the name of each function into the text section, directly
13515 preceding the function prologue.  The generated code is similar to this:
13516
13517 @smallexample
13518      t0
13519          .ascii "arm_poke_function_name", 0
13520          .align
13521      t1
13522          .word 0xff000000 + (t1 - t0)
13523      arm_poke_function_name
13524          mov     ip, sp
13525          stmfd   sp!, @{fp, ip, lr, pc@}
13526          sub     fp, ip, #4
13527 @end smallexample
13528
13529 When performing a stack backtrace, code can inspect the value of
13530 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
13531 location @code{pc - 12} and the top 8 bits are set, then we know that
13532 there is a function name embedded immediately preceding this location
13533 and has length @code{((pc[-3]) & 0xff000000)}.
13534
13535 @item -mthumb
13536 @itemx -marm
13537 @opindex marm
13538 @opindex mthumb
13539
13540 Select between generating code that executes in ARM and Thumb
13541 states.  The default for most configurations is to generate code
13542 that executes in ARM state, but the default can be changed by
13543 configuring GCC with the @option{--with-mode=}@var{state}
13544 configure option.
13545
13546 You can also override the ARM and Thumb mode for each function
13547 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13548 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13549
13550 @item -mtpcs-frame
13551 @opindex mtpcs-frame
13552 Generate a stack frame that is compliant with the Thumb Procedure Call
13553 Standard for all non-leaf functions.  (A leaf function is one that does
13554 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
13555
13556 @item -mtpcs-leaf-frame
13557 @opindex mtpcs-leaf-frame
13558 Generate a stack frame that is compliant with the Thumb Procedure Call
13559 Standard for all leaf functions.  (A leaf function is one that does
13560 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
13561
13562 @item -mcallee-super-interworking
13563 @opindex mcallee-super-interworking
13564 Gives all externally visible functions in the file being compiled an ARM
13565 instruction set header which switches to Thumb mode before executing the
13566 rest of the function.  This allows these functions to be called from
13567 non-interworking code.  This option is not valid in AAPCS configurations
13568 because interworking is enabled by default.
13569
13570 @item -mcaller-super-interworking
13571 @opindex mcaller-super-interworking
13572 Allows calls via function pointers (including virtual functions) to
13573 execute correctly regardless of whether the target code has been
13574 compiled for interworking or not.  There is a small overhead in the cost
13575 of executing a function pointer if this option is enabled.  This option
13576 is not valid in AAPCS configurations because interworking is enabled
13577 by default.
13578
13579 @item -mtp=@var{name}
13580 @opindex mtp
13581 Specify the access model for the thread local storage pointer.  The valid
13582 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13583 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13584 (supported in the arm6k architecture), and @samp{auto}, which uses the
13585 best available method for the selected processor.  The default setting is
13586 @samp{auto}.
13587
13588 @item -mtls-dialect=@var{dialect}
13589 @opindex mtls-dialect
13590 Specify the dialect to use for accessing thread local storage.  Two
13591 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
13592 @samp{gnu} dialect selects the original GNU scheme for supporting
13593 local and global dynamic TLS models.  The @samp{gnu2} dialect
13594 selects the GNU descriptor scheme, which provides better performance
13595 for shared libraries.  The GNU descriptor scheme is compatible with
13596 the original scheme, but does require new assembler, linker and
13597 library support.  Initial and local exec TLS models are unaffected by
13598 this option and always use the original scheme.
13599
13600 @item -mword-relocations
13601 @opindex mword-relocations
13602 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13603 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13604 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13605 is specified.
13606
13607 @item -mfix-cortex-m3-ldrd
13608 @opindex mfix-cortex-m3-ldrd
13609 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13610 with overlapping destination and base registers are used.  This option avoids
13611 generating these instructions.  This option is enabled by default when
13612 @option{-mcpu=cortex-m3} is specified.
13613
13614 @item -munaligned-access
13615 @itemx -mno-unaligned-access
13616 @opindex munaligned-access
13617 @opindex mno-unaligned-access
13618 Enables (or disables) reading and writing of 16- and 32- bit values
13619 from addresses that are not 16- or 32- bit aligned.  By default
13620 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13621 architectures, and enabled for all other architectures.  If unaligned
13622 access is not enabled then words in packed data structures are
13623 accessed a byte at a time.
13624
13625 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13626 generated object file to either true or false, depending upon the
13627 setting of this option.  If unaligned access is enabled then the
13628 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13629 defined.
13630
13631 @item -mneon-for-64bits
13632 @opindex mneon-for-64bits
13633 Enables using Neon to handle scalar 64-bits operations. This is
13634 disabled by default since the cost of moving data from core registers
13635 to Neon is high.
13636
13637 @item -mslow-flash-data
13638 @opindex mslow-flash-data
13639 Assume loading data from flash is slower than fetching instruction.
13640 Therefore literal load is minimized for better performance.
13641 This option is only supported when compiling for ARMv7 M-profile and
13642 off by default.
13643
13644 @item -masm-syntax-unified
13645 @opindex masm-syntax-unified
13646 Assume inline assembler is using unified asm syntax.  The default is
13647 currently off which implies divided syntax.  Currently this option is
13648 available only for Thumb1 and has no effect on ARM state and Thumb2.
13649 However, this may change in future releases of GCC.  Divided syntax
13650 should be considered deprecated.
13651
13652 @item -mrestrict-it
13653 @opindex mrestrict-it
13654 Restricts generation of IT blocks to conform to the rules of ARMv8.
13655 IT blocks can only contain a single 16-bit instruction from a select
13656 set of instructions. This option is on by default for ARMv8 Thumb mode.
13657
13658 @item -mprint-tune-info
13659 @opindex mprint-tune-info
13660 Print CPU tuning information as comment in assembler file.  This is
13661 an option used only for regression testing of the compiler and not
13662 intended for ordinary use in compiling code.  This option is disabled
13663 by default.
13664 @end table
13665
13666 @node AVR Options
13667 @subsection AVR Options
13668 @cindex AVR Options
13669
13670 These options are defined for AVR implementations:
13671
13672 @table @gcctabopt
13673 @item -mmcu=@var{mcu}
13674 @opindex mmcu
13675 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13676
13677 The default for this option is@tie{}@samp{avr2}.
13678
13679 GCC supports the following AVR devices and ISAs:
13680
13681 @include avr-mmcu.texi
13682
13683 @item -maccumulate-args
13684 @opindex maccumulate-args
13685 Accumulate outgoing function arguments and acquire/release the needed
13686 stack space for outgoing function arguments once in function
13687 prologue/epilogue.  Without this option, outgoing arguments are pushed
13688 before calling a function and popped afterwards.
13689
13690 Popping the arguments after the function call can be expensive on
13691 AVR so that accumulating the stack space might lead to smaller
13692 executables because arguments need not to be removed from the
13693 stack after such a function call.
13694
13695 This option can lead to reduced code size for functions that perform
13696 several calls to functions that get their arguments on the stack like
13697 calls to printf-like functions.
13698
13699 @item -mbranch-cost=@var{cost}
13700 @opindex mbranch-cost
13701 Set the branch costs for conditional branch instructions to
13702 @var{cost}.  Reasonable values for @var{cost} are small, non-negative
13703 integers. The default branch cost is 0.
13704
13705 @item -mcall-prologues
13706 @opindex mcall-prologues
13707 Functions prologues/epilogues are expanded as calls to appropriate
13708 subroutines.  Code size is smaller.
13709
13710 @item -mint8
13711 @opindex mint8
13712 Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
13713 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13714 and @code{long long} is 4 bytes.  Please note that this option does not
13715 conform to the C standards, but it results in smaller code
13716 size.
13717
13718 @item -mn-flash=@var{num}
13719 @opindex mn-flash
13720 Assume that the flash memory has a size of 
13721 @var{num} times 64@tie{}KiB.
13722
13723 @item -mno-interrupts
13724 @opindex mno-interrupts
13725 Generated code is not compatible with hardware interrupts.
13726 Code size is smaller.
13727
13728 @item -mrelax
13729 @opindex mrelax
13730 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13731 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13732 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13733 the assembler's command line and the @option{--relax} option to the
13734 linker's command line.
13735
13736 Jump relaxing is performed by the linker because jump offsets are not
13737 known before code is located. Therefore, the assembler code generated by the
13738 compiler is the same, but the instructions in the executable may
13739 differ from instructions in the assembler code.
13740
13741 Relaxing must be turned on if linker stubs are needed, see the
13742 section on @code{EIND} and linker stubs below.
13743
13744 @item -mrmw
13745 @opindex mrmw
13746 Assume that the device supports the Read-Modify-Write
13747 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13748
13749 @item -msp8
13750 @opindex msp8
13751 Treat the stack pointer register as an 8-bit register,
13752 i.e.@: assume the high byte of the stack pointer is zero.
13753 In general, you don't need to set this option by hand.
13754
13755 This option is used internally by the compiler to select and
13756 build multilibs for architectures @code{avr2} and @code{avr25}.
13757 These architectures mix devices with and without @code{SPH}.
13758 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13759 the compiler driver adds or removes this option from the compiler
13760 proper's command line, because the compiler then knows if the device
13761 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13762 register or not.
13763
13764 @item -mstrict-X
13765 @opindex mstrict-X
13766 Use address register @code{X} in a way proposed by the hardware.  This means
13767 that @code{X} is only used in indirect, post-increment or
13768 pre-decrement addressing.
13769
13770 Without this option, the @code{X} register may be used in the same way
13771 as @code{Y} or @code{Z} which then is emulated by additional
13772 instructions.  
13773 For example, loading a value with @code{X+const} addressing with a
13774 small non-negative @code{const < 64} to a register @var{Rn} is
13775 performed as
13776
13777 @example
13778 adiw r26, const   ; X += const
13779 ld   @var{Rn}, X        ; @var{Rn} = *X
13780 sbiw r26, const   ; X -= const
13781 @end example
13782
13783 @item -mtiny-stack
13784 @opindex mtiny-stack
13785 Only change the lower 8@tie{}bits of the stack pointer.
13786
13787 @item -nodevicelib
13788 @opindex nodevicelib
13789 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13790
13791 @item -Waddr-space-convert
13792 @opindex Waddr-space-convert
13793 Warn about conversions between address spaces in the case where the
13794 resulting address space is not contained in the incoming address space.
13795 @end table
13796
13797 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13798 @cindex @code{EIND}
13799 Pointers in the implementation are 16@tie{}bits wide.
13800 The address of a function or label is represented as word address so
13801 that indirect jumps and calls can target any code address in the
13802 range of 64@tie{}Ki words.
13803
13804 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13805 bytes of program memory space, there is a special function register called
13806 @code{EIND} that serves as most significant part of the target address
13807 when @code{EICALL} or @code{EIJMP} instructions are used.
13808
13809 Indirect jumps and calls on these devices are handled as follows by
13810 the compiler and are subject to some limitations:
13811
13812 @itemize @bullet
13813
13814 @item
13815 The compiler never sets @code{EIND}.
13816
13817 @item
13818 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13819 instructions or might read @code{EIND} directly in order to emulate an
13820 indirect call/jump by means of a @code{RET} instruction.
13821
13822 @item
13823 The compiler assumes that @code{EIND} never changes during the startup
13824 code or during the application. In particular, @code{EIND} is not
13825 saved/restored in function or interrupt service routine
13826 prologue/epilogue.
13827
13828 @item
13829 For indirect calls to functions and computed goto, the linker
13830 generates @emph{stubs}. Stubs are jump pads sometimes also called
13831 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13832 The stub contains a direct jump to the desired address.
13833
13834 @item
13835 Linker relaxation must be turned on so that the linker generates
13836 the stubs correctly in all situations. See the compiler option
13837 @option{-mrelax} and the linker option @option{--relax}.
13838 There are corner cases where the linker is supposed to generate stubs
13839 but aborts without relaxation and without a helpful error message.
13840
13841 @item
13842 The default linker script is arranged for code with @code{EIND = 0}.
13843 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13844 linker script has to be used in order to place the sections whose
13845 name start with @code{.trampolines} into the segment where @code{EIND}
13846 points to.
13847
13848 @item
13849 The startup code from libgcc never sets @code{EIND}.
13850 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13851 For the impact of AVR-LibC on @code{EIND}, see the
13852 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13853
13854 @item
13855 It is legitimate for user-specific startup code to set up @code{EIND}
13856 early, for example by means of initialization code located in
13857 section @code{.init3}. Such code runs prior to general startup code
13858 that initializes RAM and calls constructors, but after the bit
13859 of startup code from AVR-LibC that sets @code{EIND} to the segment
13860 where the vector table is located.
13861 @example
13862 #include <avr/io.h>
13863
13864 static void
13865 __attribute__((section(".init3"),naked,used,no_instrument_function))
13866 init3_set_eind (void)
13867 @{
13868   __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13869                   "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13870 @}
13871 @end example
13872
13873 @noindent
13874 The @code{__trampolines_start} symbol is defined in the linker script.
13875
13876 @item
13877 Stubs are generated automatically by the linker if
13878 the following two conditions are met:
13879 @itemize @minus
13880
13881 @item The address of a label is taken by means of the @code{gs} modifier
13882 (short for @emph{generate stubs}) like so:
13883 @example
13884 LDI r24, lo8(gs(@var{func}))
13885 LDI r25, hi8(gs(@var{func}))
13886 @end example
13887 @item The final location of that label is in a code segment
13888 @emph{outside} the segment where the stubs are located.
13889 @end itemize
13890
13891 @item
13892 The compiler emits such @code{gs} modifiers for code labels in the
13893 following situations:
13894 @itemize @minus
13895 @item Taking address of a function or code label.
13896 @item Computed goto.
13897 @item If prologue-save function is used, see @option{-mcall-prologues}
13898 command-line option.
13899 @item Switch/case dispatch tables. If you do not want such dispatch
13900 tables you can specify the @option{-fno-jump-tables} command-line option.
13901 @item C and C++ constructors/destructors called during startup/shutdown.
13902 @item If the tools hit a @code{gs()} modifier explained above.
13903 @end itemize
13904
13905 @item
13906 Jumping to non-symbolic addresses like so is @emph{not} supported:
13907
13908 @example
13909 int main (void)
13910 @{
13911     /* Call function at word address 0x2 */
13912     return ((int(*)(void)) 0x2)();
13913 @}
13914 @end example
13915
13916 Instead, a stub has to be set up, i.e.@: the function has to be called
13917 through a symbol (@code{func_4} in the example):
13918
13919 @example
13920 int main (void)
13921 @{
13922     extern int func_4 (void);
13923
13924     /* Call function at byte address 0x4 */
13925     return func_4();
13926 @}
13927 @end example
13928
13929 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13930 Alternatively, @code{func_4} can be defined in the linker script.
13931 @end itemize
13932
13933 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13934 @cindex @code{RAMPD}
13935 @cindex @code{RAMPX}
13936 @cindex @code{RAMPY}
13937 @cindex @code{RAMPZ}
13938 Some AVR devices support memories larger than the 64@tie{}KiB range
13939 that can be accessed with 16-bit pointers.  To access memory locations
13940 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13941 register is used as high part of the address:
13942 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13943 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13944 register, respectively, to get a wide address. Similarly,
13945 @code{RAMPD} is used together with direct addressing.
13946
13947 @itemize
13948 @item
13949 The startup code initializes the @code{RAMP} special function
13950 registers with zero.
13951
13952 @item
13953 If a @ref{AVR Named Address Spaces,named address space} other than
13954 generic or @code{__flash} is used, then @code{RAMPZ} is set
13955 as needed before the operation.
13956
13957 @item
13958 If the device supports RAM larger than 64@tie{}KiB and the compiler
13959 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13960 is reset to zero after the operation.
13961
13962 @item
13963 If the device comes with a specific @code{RAMP} register, the ISR
13964 prologue/epilogue saves/restores that SFR and initializes it with
13965 zero in case the ISR code might (implicitly) use it.
13966
13967 @item
13968 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13969 If you use inline assembler to read from locations outside the
13970 16-bit address range and change one of the @code{RAMP} registers,
13971 you must reset it to zero after the access.
13972
13973 @end itemize
13974
13975 @subsubsection AVR Built-in Macros
13976
13977 GCC defines several built-in macros so that the user code can test
13978 for the presence or absence of features.  Almost any of the following
13979 built-in macros are deduced from device capabilities and thus
13980 triggered by the @option{-mmcu=} command-line option.
13981
13982 For even more AVR-specific built-in macros see
13983 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13984
13985 @table @code
13986
13987 @item __AVR_ARCH__
13988 Build-in macro that resolves to a decimal number that identifies the
13989 architecture and depends on the @option{-mmcu=@var{mcu}} option.
13990 Possible values are:
13991
13992 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13993 @code{4}, @code{5}, @code{51}, @code{6}
13994
13995 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13996 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13997
13998 respectively and
13999
14000 @code{100}, @code{102}, @code{104},
14001 @code{105}, @code{106}, @code{107}
14002
14003 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14004 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14005 If @var{mcu} specifies a device, this built-in macro is set
14006 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14007 defined to @code{4}.
14008
14009 @item __AVR_@var{Device}__
14010 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14011 the device's name. For example, @option{-mmcu=atmega8} defines the
14012 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14013 @code{__AVR_ATtiny261A__}, etc.
14014
14015 The built-in macros' names follow
14016 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14017 the device name as from the AVR user manual. The difference between
14018 @var{Device} in the built-in macro and @var{device} in
14019 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14020
14021 If @var{device} is not a device but only a core architecture like
14022 @samp{avr51}, this macro is not defined.
14023
14024 @item __AVR_DEVICE_NAME__
14025 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14026 the device's name. For example, with @option{-mmcu=atmega8} the macro
14027 is defined to @code{atmega8}.
14028
14029 If @var{device} is not a device but only a core architecture like
14030 @samp{avr51}, this macro is not defined.
14031
14032 @item __AVR_XMEGA__
14033 The device / architecture belongs to the XMEGA family of devices.
14034
14035 @item __AVR_HAVE_ELPM__
14036 The device has the @code{ELPM} instruction.
14037
14038 @item __AVR_HAVE_ELPMX__
14039 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14040 R@var{n},Z+} instructions.
14041
14042 @item __AVR_HAVE_MOVW__
14043 The device has the @code{MOVW} instruction to perform 16-bit
14044 register-register moves.
14045
14046 @item __AVR_HAVE_LPMX__
14047 The device has the @code{LPM R@var{n},Z} and
14048 @code{LPM R@var{n},Z+} instructions.
14049
14050 @item __AVR_HAVE_MUL__
14051 The device has a hardware multiplier. 
14052
14053 @item __AVR_HAVE_JMP_CALL__
14054 The device has the @code{JMP} and @code{CALL} instructions.
14055 This is the case for devices with at least 16@tie{}KiB of program
14056 memory.
14057
14058 @item __AVR_HAVE_EIJMP_EICALL__
14059 @itemx __AVR_3_BYTE_PC__
14060 The device has the @code{EIJMP} and @code{EICALL} instructions.
14061 This is the case for devices with more than 128@tie{}KiB of program memory.
14062 This also means that the program counter
14063 (PC) is 3@tie{}bytes wide.
14064
14065 @item __AVR_2_BYTE_PC__
14066 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14067 with up to 128@tie{}KiB of program memory.
14068
14069 @item __AVR_HAVE_8BIT_SP__
14070 @itemx __AVR_HAVE_16BIT_SP__
14071 The stack pointer (SP) register is treated as 8-bit respectively
14072 16-bit register by the compiler.
14073 The definition of these macros is affected by @option{-mtiny-stack}.
14074
14075 @item __AVR_HAVE_SPH__
14076 @itemx __AVR_SP8__
14077 The device has the SPH (high part of stack pointer) special function
14078 register or has an 8-bit stack pointer, respectively.
14079 The definition of these macros is affected by @option{-mmcu=} and
14080 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14081 by @option{-msp8}.
14082
14083 @item __AVR_HAVE_RAMPD__
14084 @itemx __AVR_HAVE_RAMPX__
14085 @itemx __AVR_HAVE_RAMPY__
14086 @itemx __AVR_HAVE_RAMPZ__
14087 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14088 @code{RAMPZ} special function register, respectively.
14089
14090 @item __NO_INTERRUPTS__
14091 This macro reflects the @option{-mno-interrupts} command-line option.
14092
14093 @item __AVR_ERRATA_SKIP__
14094 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14095 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14096 instructions because of a hardware erratum.  Skip instructions are
14097 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14098 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14099 set.
14100
14101 @item __AVR_ISA_RMW__
14102 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14103
14104 @item __AVR_SFR_OFFSET__=@var{offset}
14105 Instructions that can address I/O special function registers directly
14106 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14107 address as if addressed by an instruction to access RAM like @code{LD}
14108 or @code{STS}. This offset depends on the device architecture and has
14109 to be subtracted from the RAM address in order to get the
14110 respective I/O@tie{}address.
14111
14112 @item __WITH_AVRLIBC__
14113 The compiler is configured to be used together with AVR-Libc.
14114 See the @option{--with-avrlibc} configure option.
14115
14116 @end table
14117
14118 @node Blackfin Options
14119 @subsection Blackfin Options
14120 @cindex Blackfin Options
14121
14122 @table @gcctabopt
14123 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14124 @opindex mcpu=
14125 Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
14126 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14127 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14128 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14129 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14130 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14131 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14132 @samp{bf561}, @samp{bf592}.
14133
14134 The optional @var{sirevision} specifies the silicon revision of the target
14135 Blackfin processor.  Any workarounds available for the targeted silicon revision
14136 are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
14137 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14138 are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
14139 hexadecimal digits representing the major and minor numbers in the silicon
14140 revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14141 is not defined.  If @var{sirevision} is @samp{any}, the
14142 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14143 If this optional @var{sirevision} is not used, GCC assumes the latest known
14144 silicon revision of the targeted Blackfin processor.
14145
14146 GCC defines a preprocessor macro for the specified @var{cpu}.
14147 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14148 provided by libgloss to be linked in if @option{-msim} is not given.
14149
14150 Without this option, @samp{bf532} is used as the processor by default.
14151
14152 Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
14153 only the preprocessor macro is defined.
14154
14155 @item -msim
14156 @opindex msim
14157 Specifies that the program will be run on the simulator.  This causes
14158 the simulator BSP provided by libgloss to be linked in.  This option
14159 has effect only for @samp{bfin-elf} toolchain.
14160 Certain other options, such as @option{-mid-shared-library} and
14161 @option{-mfdpic}, imply @option{-msim}.
14162
14163 @item -momit-leaf-frame-pointer
14164 @opindex momit-leaf-frame-pointer
14165 Don't keep the frame pointer in a register for leaf functions.  This
14166 avoids the instructions to save, set up and restore frame pointers and
14167 makes an extra register available in leaf functions.  The option
14168 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14169 which might make debugging harder.
14170
14171 @item -mspecld-anomaly
14172 @opindex mspecld-anomaly
14173 When enabled, the compiler ensures that the generated code does not
14174 contain speculative loads after jump instructions. If this option is used,
14175 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14176
14177 @item -mno-specld-anomaly
14178 @opindex mno-specld-anomaly
14179 Don't generate extra code to prevent speculative loads from occurring.
14180
14181 @item -mcsync-anomaly
14182 @opindex mcsync-anomaly
14183 When enabled, the compiler ensures that the generated code does not
14184 contain CSYNC or SSYNC instructions too soon after conditional branches.
14185 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14186
14187 @item -mno-csync-anomaly
14188 @opindex mno-csync-anomaly
14189 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14190 occurring too soon after a conditional branch.
14191
14192 @item -mlow-64k
14193 @opindex mlow-64k
14194 When enabled, the compiler is free to take advantage of the knowledge that
14195 the entire program fits into the low 64k of memory.
14196
14197 @item -mno-low-64k
14198 @opindex mno-low-64k
14199 Assume that the program is arbitrarily large.  This is the default.
14200
14201 @item -mstack-check-l1
14202 @opindex mstack-check-l1
14203 Do stack checking using information placed into L1 scratchpad memory by the
14204 uClinux kernel.
14205
14206 @item -mid-shared-library
14207 @opindex mid-shared-library
14208 Generate code that supports shared libraries via the library ID method.
14209 This allows for execute in place and shared libraries in an environment
14210 without virtual memory management.  This option implies @option{-fPIC}.
14211 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14212
14213 @item -mno-id-shared-library
14214 @opindex mno-id-shared-library
14215 Generate code that doesn't assume ID-based shared libraries are being used.
14216 This is the default.
14217
14218 @item -mleaf-id-shared-library
14219 @opindex mleaf-id-shared-library
14220 Generate code that supports shared libraries via the library ID method,
14221 but assumes that this library or executable won't link against any other
14222 ID shared libraries.  That allows the compiler to use faster code for jumps
14223 and calls.
14224
14225 @item -mno-leaf-id-shared-library
14226 @opindex mno-leaf-id-shared-library
14227 Do not assume that the code being compiled won't link against any ID shared
14228 libraries.  Slower code is generated for jump and call insns.
14229
14230 @item -mshared-library-id=n
14231 @opindex mshared-library-id
14232 Specifies the identification number of the ID-based shared library being
14233 compiled.  Specifying a value of 0 generates more compact code; specifying
14234 other values forces the allocation of that number to the current
14235 library but is no more space- or time-efficient than omitting this option.
14236
14237 @item -msep-data
14238 @opindex msep-data
14239 Generate code that allows the data segment to be located in a different
14240 area of memory from the text segment.  This allows for execute in place in
14241 an environment without virtual memory management by eliminating relocations
14242 against the text section.
14243
14244 @item -mno-sep-data
14245 @opindex mno-sep-data
14246 Generate code that assumes that the data segment follows the text segment.
14247 This is the default.
14248
14249 @item -mlong-calls
14250 @itemx -mno-long-calls
14251 @opindex mlong-calls
14252 @opindex mno-long-calls
14253 Tells the compiler to perform function calls by first loading the
14254 address of the function into a register and then performing a subroutine
14255 call on this register.  This switch is needed if the target function
14256 lies outside of the 24-bit addressing range of the offset-based
14257 version of subroutine call instruction.
14258
14259 This feature is not enabled by default.  Specifying
14260 @option{-mno-long-calls} restores the default behavior.  Note these
14261 switches have no effect on how the compiler generates code to handle
14262 function calls via function pointers.
14263
14264 @item -mfast-fp
14265 @opindex mfast-fp
14266 Link with the fast floating-point library. This library relaxes some of
14267 the IEEE floating-point standard's rules for checking inputs against
14268 Not-a-Number (NAN), in the interest of performance.
14269
14270 @item -minline-plt
14271 @opindex minline-plt
14272 Enable inlining of PLT entries in function calls to functions that are
14273 not known to bind locally.  It has no effect without @option{-mfdpic}.
14274
14275 @item -mmulticore
14276 @opindex mmulticore
14277 Build a standalone application for multicore Blackfin processors. 
14278 This option causes proper start files and link scripts supporting 
14279 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
14280 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
14281
14282 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14283 selects the one-application-per-core programming model.  Without
14284 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14285 programming model is used. In this model, the main function of Core B
14286 should be named as @code{coreb_main}.
14287
14288 If this option is not used, the single-core application programming
14289 model is used.
14290
14291 @item -mcorea
14292 @opindex mcorea
14293 Build a standalone application for Core A of BF561 when using
14294 the one-application-per-core programming model. Proper start files
14295 and link scripts are used to support Core A, and the macro
14296 @code{__BFIN_COREA} is defined.
14297 This option can only be used in conjunction with @option{-mmulticore}.
14298
14299 @item -mcoreb
14300 @opindex mcoreb
14301 Build a standalone application for Core B of BF561 when using
14302 the one-application-per-core programming model. Proper start files
14303 and link scripts are used to support Core B, and the macro
14304 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14305 should be used instead of @code{main}. 
14306 This option can only be used in conjunction with @option{-mmulticore}.
14307
14308 @item -msdram
14309 @opindex msdram
14310 Build a standalone application for SDRAM. Proper start files and
14311 link scripts are used to put the application into SDRAM, and the macro
14312 @code{__BFIN_SDRAM} is defined.
14313 The loader should initialize SDRAM before loading the application.
14314
14315 @item -micplb
14316 @opindex micplb
14317 Assume that ICPLBs are enabled at run time.  This has an effect on certain
14318 anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
14319 are enabled; for standalone applications the default is off.
14320 @end table
14321
14322 @node C6X Options
14323 @subsection C6X Options
14324 @cindex C6X Options
14325
14326 @table @gcctabopt
14327 @item -march=@var{name}
14328 @opindex march
14329 This specifies the name of the target architecture.  GCC uses this
14330 name to determine what kind of instructions it can emit when generating
14331 assembly code.  Permissible names are: @samp{c62x},
14332 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14333
14334 @item -mbig-endian
14335 @opindex mbig-endian
14336 Generate code for a big-endian target.
14337
14338 @item -mlittle-endian
14339 @opindex mlittle-endian
14340 Generate code for a little-endian target.  This is the default.
14341
14342 @item -msim
14343 @opindex msim
14344 Choose startup files and linker script suitable for the simulator.
14345
14346 @item -msdata=default
14347 @opindex msdata=default
14348 Put small global and static data in the @code{.neardata} section,
14349 which is pointed to by register @code{B14}.  Put small uninitialized
14350 global and static data in the @code{.bss} section, which is adjacent
14351 to the @code{.neardata} section.  Put small read-only data into the
14352 @code{.rodata} section.  The corresponding sections used for large
14353 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14354
14355 @item -msdata=all
14356 @opindex msdata=all
14357 Put all data, not just small objects, into the sections reserved for
14358 small data, and use addressing relative to the @code{B14} register to
14359 access them.
14360
14361 @item -msdata=none
14362 @opindex msdata=none
14363 Make no use of the sections reserved for small data, and use absolute
14364 addresses to access all data.  Put all initialized global and static
14365 data in the @code{.fardata} section, and all uninitialized data in the
14366 @code{.far} section.  Put all constant data into the @code{.const}
14367 section.
14368 @end table
14369
14370 @node CRIS Options
14371 @subsection CRIS Options
14372 @cindex CRIS Options
14373
14374 These options are defined specifically for the CRIS ports.
14375
14376 @table @gcctabopt
14377 @item -march=@var{architecture-type}
14378 @itemx -mcpu=@var{architecture-type}
14379 @opindex march
14380 @opindex mcpu
14381 Generate code for the specified architecture.  The choices for
14382 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14383 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14384 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14385 @samp{v10}.
14386
14387 @item -mtune=@var{architecture-type}
14388 @opindex mtune
14389 Tune to @var{architecture-type} everything applicable about the generated
14390 code, except for the ABI and the set of available instructions.  The
14391 choices for @var{architecture-type} are the same as for
14392 @option{-march=@var{architecture-type}}.
14393
14394 @item -mmax-stack-frame=@var{n}
14395 @opindex mmax-stack-frame
14396 Warn when the stack frame of a function exceeds @var{n} bytes.
14397
14398 @item -metrax4
14399 @itemx -metrax100
14400 @opindex metrax4
14401 @opindex metrax100
14402 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14403 @option{-march=v3} and @option{-march=v8} respectively.
14404
14405 @item -mmul-bug-workaround
14406 @itemx -mno-mul-bug-workaround
14407 @opindex mmul-bug-workaround
14408 @opindex mno-mul-bug-workaround
14409 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14410 models where it applies.  This option is active by default.
14411
14412 @item -mpdebug
14413 @opindex mpdebug
14414 Enable CRIS-specific verbose debug-related information in the assembly
14415 code.  This option also has the effect of turning off the @samp{#NO_APP}
14416 formatted-code indicator to the assembler at the beginning of the
14417 assembly file.
14418
14419 @item -mcc-init
14420 @opindex mcc-init
14421 Do not use condition-code results from previous instruction; always emit
14422 compare and test instructions before use of condition codes.
14423
14424 @item -mno-side-effects
14425 @opindex mno-side-effects
14426 Do not emit instructions with side effects in addressing modes other than
14427 post-increment.
14428
14429 @item -mstack-align
14430 @itemx -mno-stack-align
14431 @itemx -mdata-align
14432 @itemx -mno-data-align
14433 @itemx -mconst-align
14434 @itemx -mno-const-align
14435 @opindex mstack-align
14436 @opindex mno-stack-align
14437 @opindex mdata-align
14438 @opindex mno-data-align
14439 @opindex mconst-align
14440 @opindex mno-const-align
14441 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14442 stack frame, individual data and constants to be aligned for the maximum
14443 single data access size for the chosen CPU model.  The default is to
14444 arrange for 32-bit alignment.  ABI details such as structure layout are
14445 not affected by these options.
14446
14447 @item -m32-bit
14448 @itemx -m16-bit
14449 @itemx -m8-bit
14450 @opindex m32-bit
14451 @opindex m16-bit
14452 @opindex m8-bit
14453 Similar to the stack- data- and const-align options above, these options
14454 arrange for stack frame, writable data and constants to all be 32-bit,
14455 16-bit or 8-bit aligned.  The default is 32-bit alignment.
14456
14457 @item -mno-prologue-epilogue
14458 @itemx -mprologue-epilogue
14459 @opindex mno-prologue-epilogue
14460 @opindex mprologue-epilogue
14461 With @option{-mno-prologue-epilogue}, the normal function prologue and
14462 epilogue which set up the stack frame are omitted and no return
14463 instructions or return sequences are generated in the code.  Use this
14464 option only together with visual inspection of the compiled code: no
14465 warnings or errors are generated when call-saved registers must be saved,
14466 or storage for local variables needs to be allocated.
14467
14468 @item -mno-gotplt
14469 @itemx -mgotplt
14470 @opindex mno-gotplt
14471 @opindex mgotplt
14472 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14473 instruction sequences that load addresses for functions from the PLT part
14474 of the GOT rather than (traditional on other architectures) calls to the
14475 PLT@.  The default is @option{-mgotplt}.
14476
14477 @item -melf
14478 @opindex melf
14479 Legacy no-op option only recognized with the cris-axis-elf and
14480 cris-axis-linux-gnu targets.
14481
14482 @item -mlinux
14483 @opindex mlinux
14484 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14485
14486 @item -sim
14487 @opindex sim
14488 This option, recognized for the cris-axis-elf, arranges
14489 to link with input-output functions from a simulator library.  Code,
14490 initialized data and zero-initialized data are allocated consecutively.
14491
14492 @item -sim2
14493 @opindex sim2
14494 Like @option{-sim}, but pass linker options to locate initialized data at
14495 0x40000000 and zero-initialized data at 0x80000000.
14496 @end table
14497
14498 @node CR16 Options
14499 @subsection CR16 Options
14500 @cindex CR16 Options
14501
14502 These options are defined specifically for the CR16 ports.
14503
14504 @table @gcctabopt
14505
14506 @item -mmac
14507 @opindex mmac
14508 Enable the use of multiply-accumulate instructions. Disabled by default.
14509
14510 @item -mcr16cplus
14511 @itemx -mcr16c
14512 @opindex mcr16cplus
14513 @opindex mcr16c
14514 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
14515 is default.
14516
14517 @item -msim
14518 @opindex msim
14519 Links the library libsim.a which is in compatible with simulator. Applicable
14520 to ELF compiler only.
14521
14522 @item -mint32
14523 @opindex mint32
14524 Choose integer type as 32-bit wide.
14525
14526 @item -mbit-ops
14527 @opindex mbit-ops
14528 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14529
14530 @item -mdata-model=@var{model}
14531 @opindex mdata-model
14532 Choose a data model. The choices for @var{model} are @samp{near},
14533 @samp{far} or @samp{medium}. @samp{medium} is default.
14534 However, @samp{far} is not valid with @option{-mcr16c}, as the
14535 CR16C architecture does not support the far data model.
14536 @end table
14537
14538 @node Darwin Options
14539 @subsection Darwin Options
14540 @cindex Darwin options
14541
14542 These options are defined for all architectures running the Darwin operating
14543 system.
14544
14545 FSF GCC on Darwin does not create ``fat'' object files; it creates
14546 an object file for the single architecture that GCC was built to
14547 target.  Apple's GCC on Darwin does create ``fat'' files if multiple
14548 @option{-arch} options are used; it does so by running the compiler or
14549 linker multiple times and joining the results together with
14550 @file{lipo}.
14551
14552 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14553 @samp{i686}) is determined by the flags that specify the ISA
14554 that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
14555 @option{-force_cpusubtype_ALL} option can be used to override this.
14556
14557 The Darwin tools vary in their behavior when presented with an ISA
14558 mismatch.  The assembler, @file{as}, only permits instructions to
14559 be used that are valid for the subtype of the file it is generating,
14560 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14561 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14562 and prints an error if asked to create a shared library with a less
14563 restrictive subtype than its input files (for instance, trying to put
14564 a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
14565 for executables, @command{ld}, quietly gives the executable the most
14566 restrictive subtype of any of its input files.
14567
14568 @table @gcctabopt
14569 @item -F@var{dir}
14570 @opindex F
14571 Add the framework directory @var{dir} to the head of the list of
14572 directories to be searched for header files.  These directories are
14573 interleaved with those specified by @option{-I} options and are
14574 scanned in a left-to-right order.
14575
14576 A framework directory is a directory with frameworks in it.  A
14577 framework is a directory with a @file{Headers} and/or
14578 @file{PrivateHeaders} directory contained directly in it that ends
14579 in @file{.framework}.  The name of a framework is the name of this
14580 directory excluding the @file{.framework}.  Headers associated with
14581 the framework are found in one of those two directories, with
14582 @file{Headers} being searched first.  A subframework is a framework
14583 directory that is in a framework's @file{Frameworks} directory.
14584 Includes of subframework headers can only appear in a header of a
14585 framework that contains the subframework, or in a sibling subframework
14586 header.  Two subframeworks are siblings if they occur in the same
14587 framework.  A subframework should not have the same name as a
14588 framework; a warning is issued if this is violated.  Currently a
14589 subframework cannot have subframeworks; in the future, the mechanism
14590 may be extended to support this.  The standard frameworks can be found
14591 in @file{/System/Library/Frameworks} and
14592 @file{/Library/Frameworks}.  An example include looks like
14593 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14594 the name of the framework and @file{header.h} is found in the
14595 @file{PrivateHeaders} or @file{Headers} directory.
14596
14597 @item -iframework@var{dir}
14598 @opindex iframework
14599 Like @option{-F} except the directory is a treated as a system
14600 directory.  The main difference between this @option{-iframework} and
14601 @option{-F} is that with @option{-iframework} the compiler does not
14602 warn about constructs contained within header files found via
14603 @var{dir}.  This option is valid only for the C family of languages.
14604
14605 @item -gused
14606 @opindex gused
14607 Emit debugging information for symbols that are used.  For stabs
14608 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14609 This is by default ON@.
14610
14611 @item -gfull
14612 @opindex gfull
14613 Emit debugging information for all symbols and types.
14614
14615 @item -mmacosx-version-min=@var{version}
14616 The earliest version of MacOS X that this executable will run on
14617 is @var{version}.  Typical values of @var{version} include @code{10.1},
14618 @code{10.2}, and @code{10.3.9}.
14619
14620 If the compiler was built to use the system's headers by default,
14621 then the default for this option is the system version on which the
14622 compiler is running, otherwise the default is to make choices that
14623 are compatible with as many systems and code bases as possible.
14624
14625 @item -mkernel
14626 @opindex mkernel
14627 Enable kernel development mode.  The @option{-mkernel} option sets
14628 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14629 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14630 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14631 applicable.  This mode also sets @option{-mno-altivec},
14632 @option{-msoft-float}, @option{-fno-builtin} and
14633 @option{-mlong-branch} for PowerPC targets.
14634
14635 @item -mone-byte-bool
14636 @opindex mone-byte-bool
14637 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14638 By default @code{sizeof(bool)} is @code{4} when compiling for
14639 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14640 option has no effect on x86.
14641
14642 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14643 to generate code that is not binary compatible with code generated
14644 without that switch.  Using this switch may require recompiling all
14645 other modules in a program, including system libraries.  Use this
14646 switch to conform to a non-default data model.
14647
14648 @item -mfix-and-continue
14649 @itemx -ffix-and-continue
14650 @itemx -findirect-data
14651 @opindex mfix-and-continue
14652 @opindex ffix-and-continue
14653 @opindex findirect-data
14654 Generate code suitable for fast turnaround development, such as to
14655 allow GDB to dynamically load @file{.o} files into already-running
14656 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
14657 are provided for backwards compatibility.
14658
14659 @item -all_load
14660 @opindex all_load
14661 Loads all members of static archive libraries.
14662 See man ld(1) for more information.
14663
14664 @item -arch_errors_fatal
14665 @opindex arch_errors_fatal
14666 Cause the errors having to do with files that have the wrong architecture
14667 to be fatal.
14668
14669 @item -bind_at_load
14670 @opindex bind_at_load
14671 Causes the output file to be marked such that the dynamic linker will
14672 bind all undefined references when the file is loaded or launched.
14673
14674 @item -bundle
14675 @opindex bundle
14676 Produce a Mach-o bundle format file.
14677 See man ld(1) for more information.
14678
14679 @item -bundle_loader @var{executable}
14680 @opindex bundle_loader
14681 This option specifies the @var{executable} that will load the build
14682 output file being linked.  See man ld(1) for more information.
14683
14684 @item -dynamiclib
14685 @opindex dynamiclib
14686 When passed this option, GCC produces a dynamic library instead of
14687 an executable when linking, using the Darwin @file{libtool} command.
14688
14689 @item -force_cpusubtype_ALL
14690 @opindex force_cpusubtype_ALL
14691 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14692 one controlled by the @option{-mcpu} or @option{-march} option.
14693
14694 @item -allowable_client  @var{client_name}
14695 @itemx -client_name
14696 @itemx -compatibility_version
14697 @itemx -current_version
14698 @itemx -dead_strip
14699 @itemx -dependency-file
14700 @itemx -dylib_file
14701 @itemx -dylinker_install_name
14702 @itemx -dynamic
14703 @itemx -exported_symbols_list
14704 @itemx -filelist
14705 @need 800
14706 @itemx -flat_namespace
14707 @itemx -force_flat_namespace
14708 @itemx -headerpad_max_install_names
14709 @itemx -image_base
14710 @itemx -init
14711 @itemx -install_name
14712 @itemx -keep_private_externs
14713 @itemx -multi_module
14714 @itemx -multiply_defined
14715 @itemx -multiply_defined_unused
14716 @need 800
14717 @itemx -noall_load
14718 @itemx -no_dead_strip_inits_and_terms
14719 @itemx -nofixprebinding
14720 @itemx -nomultidefs
14721 @itemx -noprebind
14722 @itemx -noseglinkedit
14723 @itemx -pagezero_size
14724 @itemx -prebind
14725 @itemx -prebind_all_twolevel_modules
14726 @itemx -private_bundle
14727 @need 800
14728 @itemx -read_only_relocs
14729 @itemx -sectalign
14730 @itemx -sectobjectsymbols
14731 @itemx -whyload
14732 @itemx -seg1addr
14733 @itemx -sectcreate
14734 @itemx -sectobjectsymbols
14735 @itemx -sectorder
14736 @itemx -segaddr
14737 @itemx -segs_read_only_addr
14738 @need 800
14739 @itemx -segs_read_write_addr
14740 @itemx -seg_addr_table
14741 @itemx -seg_addr_table_filename
14742 @itemx -seglinkedit
14743 @itemx -segprot
14744 @itemx -segs_read_only_addr
14745 @itemx -segs_read_write_addr
14746 @itemx -single_module
14747 @itemx -static
14748 @itemx -sub_library
14749 @need 800
14750 @itemx -sub_umbrella
14751 @itemx -twolevel_namespace
14752 @itemx -umbrella
14753 @itemx -undefined
14754 @itemx -unexported_symbols_list
14755 @itemx -weak_reference_mismatches
14756 @itemx -whatsloaded
14757 @opindex allowable_client
14758 @opindex client_name
14759 @opindex compatibility_version
14760 @opindex current_version
14761 @opindex dead_strip
14762 @opindex dependency-file
14763 @opindex dylib_file
14764 @opindex dylinker_install_name
14765 @opindex dynamic
14766 @opindex exported_symbols_list
14767 @opindex filelist
14768 @opindex flat_namespace
14769 @opindex force_flat_namespace
14770 @opindex headerpad_max_install_names
14771 @opindex image_base
14772 @opindex init
14773 @opindex install_name
14774 @opindex keep_private_externs
14775 @opindex multi_module
14776 @opindex multiply_defined
14777 @opindex multiply_defined_unused
14778 @opindex noall_load
14779 @opindex no_dead_strip_inits_and_terms
14780 @opindex nofixprebinding
14781 @opindex nomultidefs
14782 @opindex noprebind
14783 @opindex noseglinkedit
14784 @opindex pagezero_size
14785 @opindex prebind
14786 @opindex prebind_all_twolevel_modules
14787 @opindex private_bundle
14788 @opindex read_only_relocs
14789 @opindex sectalign
14790 @opindex sectobjectsymbols
14791 @opindex whyload
14792 @opindex seg1addr
14793 @opindex sectcreate
14794 @opindex sectobjectsymbols
14795 @opindex sectorder
14796 @opindex segaddr
14797 @opindex segs_read_only_addr
14798 @opindex segs_read_write_addr
14799 @opindex seg_addr_table
14800 @opindex seg_addr_table_filename
14801 @opindex seglinkedit
14802 @opindex segprot
14803 @opindex segs_read_only_addr
14804 @opindex segs_read_write_addr
14805 @opindex single_module
14806 @opindex static
14807 @opindex sub_library
14808 @opindex sub_umbrella
14809 @opindex twolevel_namespace
14810 @opindex umbrella
14811 @opindex undefined
14812 @opindex unexported_symbols_list
14813 @opindex weak_reference_mismatches
14814 @opindex whatsloaded
14815 These options are passed to the Darwin linker.  The Darwin linker man page
14816 describes them in detail.
14817 @end table
14818
14819 @node DEC Alpha Options
14820 @subsection DEC Alpha Options
14821
14822 These @samp{-m} options are defined for the DEC Alpha implementations:
14823
14824 @table @gcctabopt
14825 @item -mno-soft-float
14826 @itemx -msoft-float
14827 @opindex mno-soft-float
14828 @opindex msoft-float
14829 Use (do not use) the hardware floating-point instructions for
14830 floating-point operations.  When @option{-msoft-float} is specified,
14831 functions in @file{libgcc.a} are used to perform floating-point
14832 operations.  Unless they are replaced by routines that emulate the
14833 floating-point operations, or compiled in such a way as to call such
14834 emulations routines, these routines issue floating-point
14835 operations.   If you are compiling for an Alpha without floating-point
14836 operations, you must ensure that the library is built so as not to call
14837 them.
14838
14839 Note that Alpha implementations without floating-point operations are
14840 required to have floating-point registers.
14841
14842 @item -mfp-reg
14843 @itemx -mno-fp-regs
14844 @opindex mfp-reg
14845 @opindex mno-fp-regs
14846 Generate code that uses (does not use) the floating-point register set.
14847 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
14848 register set is not used, floating-point operands are passed in integer
14849 registers as if they were integers and floating-point results are passed
14850 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
14851 so any function with a floating-point argument or return value called by code
14852 compiled with @option{-mno-fp-regs} must also be compiled with that
14853 option.
14854
14855 A typical use of this option is building a kernel that does not use,
14856 and hence need not save and restore, any floating-point registers.
14857
14858 @item -mieee
14859 @opindex mieee
14860 The Alpha architecture implements floating-point hardware optimized for
14861 maximum performance.  It is mostly compliant with the IEEE floating-point
14862 standard.  However, for full compliance, software assistance is
14863 required.  This option generates code fully IEEE-compliant code
14864 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14865 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14866 defined during compilation.  The resulting code is less efficient but is
14867 able to correctly support denormalized numbers and exceptional IEEE
14868 values such as not-a-number and plus/minus infinity.  Other Alpha
14869 compilers call this option @option{-ieee_with_no_inexact}.
14870
14871 @item -mieee-with-inexact
14872 @opindex mieee-with-inexact
14873 This is like @option{-mieee} except the generated code also maintains
14874 the IEEE @var{inexact-flag}.  Turning on this option causes the
14875 generated code to implement fully-compliant IEEE math.  In addition to
14876 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14877 macro.  On some Alpha implementations the resulting code may execute
14878 significantly slower than the code generated by default.  Since there is
14879 very little code that depends on the @var{inexact-flag}, you should
14880 normally not specify this option.  Other Alpha compilers call this
14881 option @option{-ieee_with_inexact}.
14882
14883 @item -mfp-trap-mode=@var{trap-mode}
14884 @opindex mfp-trap-mode
14885 This option controls what floating-point related traps are enabled.
14886 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14887 The trap mode can be set to one of four values:
14888
14889 @table @samp
14890 @item n
14891 This is the default (normal) setting.  The only traps that are enabled
14892 are the ones that cannot be disabled in software (e.g., division by zero
14893 trap).
14894
14895 @item u
14896 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14897 as well.
14898
14899 @item su
14900 Like @samp{u}, but the instructions are marked to be safe for software
14901 completion (see Alpha architecture manual for details).
14902
14903 @item sui
14904 Like @samp{su}, but inexact traps are enabled as well.
14905 @end table
14906
14907 @item -mfp-rounding-mode=@var{rounding-mode}
14908 @opindex mfp-rounding-mode
14909 Selects the IEEE rounding mode.  Other Alpha compilers call this option
14910 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
14911 of:
14912
14913 @table @samp
14914 @item n
14915 Normal IEEE rounding mode.  Floating-point numbers are rounded towards
14916 the nearest machine number or towards the even machine number in case
14917 of a tie.
14918
14919 @item m
14920 Round towards minus infinity.
14921
14922 @item c
14923 Chopped rounding mode.  Floating-point numbers are rounded towards zero.
14924
14925 @item d
14926 Dynamic rounding mode.  A field in the floating-point control register
14927 (@var{fpcr}, see Alpha architecture reference manual) controls the
14928 rounding mode in effect.  The C library initializes this register for
14929 rounding towards plus infinity.  Thus, unless your program modifies the
14930 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14931 @end table
14932
14933 @item -mtrap-precision=@var{trap-precision}
14934 @opindex mtrap-precision
14935 In the Alpha architecture, floating-point traps are imprecise.  This
14936 means without software assistance it is impossible to recover from a
14937 floating trap and program execution normally needs to be terminated.
14938 GCC can generate code that can assist operating system trap handlers
14939 in determining the exact location that caused a floating-point trap.
14940 Depending on the requirements of an application, different levels of
14941 precisions can be selected:
14942
14943 @table @samp
14944 @item p
14945 Program precision.  This option is the default and means a trap handler
14946 can only identify which program caused a floating-point exception.
14947
14948 @item f
14949 Function precision.  The trap handler can determine the function that
14950 caused a floating-point exception.
14951
14952 @item i
14953 Instruction precision.  The trap handler can determine the exact
14954 instruction that caused a floating-point exception.
14955 @end table
14956
14957 Other Alpha compilers provide the equivalent options called
14958 @option{-scope_safe} and @option{-resumption_safe}.
14959
14960 @item -mieee-conformant
14961 @opindex mieee-conformant
14962 This option marks the generated code as IEEE conformant.  You must not
14963 use this option unless you also specify @option{-mtrap-precision=i} and either
14964 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
14965 is to emit the line @samp{.eflag 48} in the function prologue of the
14966 generated assembly file.
14967
14968 @item -mbuild-constants
14969 @opindex mbuild-constants
14970 Normally GCC examines a 32- or 64-bit integer constant to
14971 see if it can construct it from smaller constants in two or three
14972 instructions.  If it cannot, it outputs the constant as a literal and
14973 generates code to load it from the data segment at run time.
14974
14975 Use this option to require GCC to construct @emph{all} integer constants
14976 using code, even if it takes more instructions (the maximum is six).
14977
14978 You typically use this option to build a shared library dynamic
14979 loader.  Itself a shared library, it must relocate itself in memory
14980 before it can find the variables and constants in its own data segment.
14981
14982 @item -mbwx
14983 @itemx -mno-bwx
14984 @itemx -mcix
14985 @itemx -mno-cix
14986 @itemx -mfix
14987 @itemx -mno-fix
14988 @itemx -mmax
14989 @itemx -mno-max
14990 @opindex mbwx
14991 @opindex mno-bwx
14992 @opindex mcix
14993 @opindex mno-cix
14994 @opindex mfix
14995 @opindex mno-fix
14996 @opindex mmax
14997 @opindex mno-max
14998 Indicate whether GCC should generate code to use the optional BWX,
14999 CIX, FIX and MAX instruction sets.  The default is to use the instruction
15000 sets supported by the CPU type specified via @option{-mcpu=} option or that
15001 of the CPU on which GCC was built if none is specified.
15002
15003 @item -mfloat-vax
15004 @itemx -mfloat-ieee
15005 @opindex mfloat-vax
15006 @opindex mfloat-ieee
15007 Generate code that uses (does not use) VAX F and G floating-point
15008 arithmetic instead of IEEE single and double precision.
15009
15010 @item -mexplicit-relocs
15011 @itemx -mno-explicit-relocs
15012 @opindex mexplicit-relocs
15013 @opindex mno-explicit-relocs
15014 Older Alpha assemblers provided no way to generate symbol relocations
15015 except via assembler macros.  Use of these macros does not allow
15016 optimal instruction scheduling.  GNU binutils as of version 2.12
15017 supports a new syntax that allows the compiler to explicitly mark
15018 which relocations should apply to which instructions.  This option
15019 is mostly useful for debugging, as GCC detects the capabilities of
15020 the assembler when it is built and sets the default accordingly.
15021
15022 @item -msmall-data
15023 @itemx -mlarge-data
15024 @opindex msmall-data
15025 @opindex mlarge-data
15026 When @option{-mexplicit-relocs} is in effect, static data is
15027 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
15028 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15029 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15030 16-bit relocations off of the @code{$gp} register.  This limits the
15031 size of the small data area to 64KB, but allows the variables to be
15032 directly accessed via a single instruction.
15033
15034 The default is @option{-mlarge-data}.  With this option the data area
15035 is limited to just below 2GB@.  Programs that require more than 2GB of
15036 data must use @code{malloc} or @code{mmap} to allocate the data in the
15037 heap instead of in the program's data segment.
15038
15039 When generating code for shared libraries, @option{-fpic} implies
15040 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15041
15042 @item -msmall-text
15043 @itemx -mlarge-text
15044 @opindex msmall-text
15045 @opindex mlarge-text
15046 When @option{-msmall-text} is used, the compiler assumes that the
15047 code of the entire program (or shared library) fits in 4MB, and is
15048 thus reachable with a branch instruction.  When @option{-msmall-data}
15049 is used, the compiler can assume that all local symbols share the
15050 same @code{$gp} value, and thus reduce the number of instructions
15051 required for a function call from 4 to 1.
15052
15053 The default is @option{-mlarge-text}.
15054
15055 @item -mcpu=@var{cpu_type}
15056 @opindex mcpu
15057 Set the instruction set and instruction scheduling parameters for
15058 machine type @var{cpu_type}.  You can specify either the @samp{EV}
15059 style name or the corresponding chip number.  GCC supports scheduling
15060 parameters for the EV4, EV5 and EV6 family of processors and
15061 chooses the default values for the instruction set from the processor
15062 you specify.  If you do not specify a processor type, GCC defaults
15063 to the processor on which the compiler was built.
15064
15065 Supported values for @var{cpu_type} are
15066
15067 @table @samp
15068 @item ev4
15069 @itemx ev45
15070 @itemx 21064
15071 Schedules as an EV4 and has no instruction set extensions.
15072
15073 @item ev5
15074 @itemx 21164
15075 Schedules as an EV5 and has no instruction set extensions.
15076
15077 @item ev56
15078 @itemx 21164a
15079 Schedules as an EV5 and supports the BWX extension.
15080
15081 @item pca56
15082 @itemx 21164pc
15083 @itemx 21164PC
15084 Schedules as an EV5 and supports the BWX and MAX extensions.
15085
15086 @item ev6
15087 @itemx 21264
15088 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15089
15090 @item ev67
15091 @itemx 21264a
15092 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15093 @end table
15094
15095 Native toolchains also support the value @samp{native},
15096 which selects the best architecture option for the host processor.
15097 @option{-mcpu=native} has no effect if GCC does not recognize
15098 the processor.
15099
15100 @item -mtune=@var{cpu_type}
15101 @opindex mtune
15102 Set only the instruction scheduling parameters for machine type
15103 @var{cpu_type}.  The instruction set is not changed.
15104
15105 Native toolchains also support the value @samp{native},
15106 which selects the best architecture option for the host processor.
15107 @option{-mtune=native} has no effect if GCC does not recognize
15108 the processor.
15109
15110 @item -mmemory-latency=@var{time}
15111 @opindex mmemory-latency
15112 Sets the latency the scheduler should assume for typical memory
15113 references as seen by the application.  This number is highly
15114 dependent on the memory access patterns used by the application
15115 and the size of the external cache on the machine.
15116
15117 Valid options for @var{time} are
15118
15119 @table @samp
15120 @item @var{number}
15121 A decimal number representing clock cycles.
15122
15123 @item L1
15124 @itemx L2
15125 @itemx L3
15126 @itemx main
15127 The compiler contains estimates of the number of clock cycles for
15128 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15129 (also called Dcache, Scache, and Bcache), as well as to main memory.
15130 Note that L3 is only valid for EV5.
15131
15132 @end table
15133 @end table
15134
15135 @node FR30 Options
15136 @subsection FR30 Options
15137 @cindex FR30 Options
15138
15139 These options are defined specifically for the FR30 port.
15140
15141 @table @gcctabopt
15142
15143 @item -msmall-model
15144 @opindex msmall-model
15145 Use the small address space model.  This can produce smaller code, but
15146 it does assume that all symbolic values and addresses fit into a
15147 20-bit range.
15148
15149 @item -mno-lsim
15150 @opindex mno-lsim
15151 Assume that runtime support has been provided and so there is no need
15152 to include the simulator library (@file{libsim.a}) on the linker
15153 command line.
15154
15155 @end table
15156
15157 @node FT32 Options
15158 @subsection FT32 Options
15159 @cindex FT32 Options
15160
15161 These options are defined specifically for the FT32 port.
15162
15163 @table @gcctabopt
15164
15165 @item -msim
15166 @opindex msim
15167 Specifies that the program will be run on the simulator.  This causes
15168 an alternate runtime startup and library to be linked.
15169 You must not use this option when generating programs that will run on
15170 real hardware; you must provide your own runtime library for whatever
15171 I/O functions are needed.
15172
15173 @item -mlra
15174 @opindex mlra
15175 Enable Local Register Allocation.  This is still experimental for FT32,
15176 so by default the compiler uses standard reload.
15177
15178 @end table
15179
15180 @node FRV Options
15181 @subsection FRV Options
15182 @cindex FRV Options
15183
15184 @table @gcctabopt
15185 @item -mgpr-32
15186 @opindex mgpr-32
15187
15188 Only use the first 32 general-purpose registers.
15189
15190 @item -mgpr-64
15191 @opindex mgpr-64
15192
15193 Use all 64 general-purpose registers.
15194
15195 @item -mfpr-32
15196 @opindex mfpr-32
15197
15198 Use only the first 32 floating-point registers.
15199
15200 @item -mfpr-64
15201 @opindex mfpr-64
15202
15203 Use all 64 floating-point registers.
15204
15205 @item -mhard-float
15206 @opindex mhard-float
15207
15208 Use hardware instructions for floating-point operations.
15209
15210 @item -msoft-float
15211 @opindex msoft-float
15212
15213 Use library routines for floating-point operations.
15214
15215 @item -malloc-cc
15216 @opindex malloc-cc
15217
15218 Dynamically allocate condition code registers.
15219
15220 @item -mfixed-cc
15221 @opindex mfixed-cc
15222
15223 Do not try to dynamically allocate condition code registers, only
15224 use @code{icc0} and @code{fcc0}.
15225
15226 @item -mdword
15227 @opindex mdword
15228
15229 Change ABI to use double word insns.
15230
15231 @item -mno-dword
15232 @opindex mno-dword
15233
15234 Do not use double word instructions.
15235
15236 @item -mdouble
15237 @opindex mdouble
15238
15239 Use floating-point double instructions.
15240
15241 @item -mno-double
15242 @opindex mno-double
15243
15244 Do not use floating-point double instructions.
15245
15246 @item -mmedia
15247 @opindex mmedia
15248
15249 Use media instructions.
15250
15251 @item -mno-media
15252 @opindex mno-media
15253
15254 Do not use media instructions.
15255
15256 @item -mmuladd
15257 @opindex mmuladd
15258
15259 Use multiply and add/subtract instructions.
15260
15261 @item -mno-muladd
15262 @opindex mno-muladd
15263
15264 Do not use multiply and add/subtract instructions.
15265
15266 @item -mfdpic
15267 @opindex mfdpic
15268
15269 Select the FDPIC ABI, which uses function descriptors to represent
15270 pointers to functions.  Without any PIC/PIE-related options, it
15271 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
15272 assumes GOT entries and small data are within a 12-bit range from the
15273 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15274 are computed with 32 bits.
15275 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15276
15277 @item -minline-plt
15278 @opindex minline-plt
15279
15280 Enable inlining of PLT entries in function calls to functions that are
15281 not known to bind locally.  It has no effect without @option{-mfdpic}.
15282 It's enabled by default if optimizing for speed and compiling for
15283 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15284 optimization option such as @option{-O3} or above is present in the
15285 command line.
15286
15287 @item -mTLS
15288 @opindex mTLS
15289
15290 Assume a large TLS segment when generating thread-local code.
15291
15292 @item -mtls
15293 @opindex mtls
15294
15295 Do not assume a large TLS segment when generating thread-local code.
15296
15297 @item -mgprel-ro
15298 @opindex mgprel-ro
15299
15300 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15301 that is known to be in read-only sections.  It's enabled by default,
15302 except for @option{-fpic} or @option{-fpie}: even though it may help
15303 make the global offset table smaller, it trades 1 instruction for 4.
15304 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15305 one of which may be shared by multiple symbols, and it avoids the need
15306 for a GOT entry for the referenced symbol, so it's more likely to be a
15307 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
15308
15309 @item -multilib-library-pic
15310 @opindex multilib-library-pic
15311
15312 Link with the (library, not FD) pic libraries.  It's implied by
15313 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15314 @option{-fpic} without @option{-mfdpic}.  You should never have to use
15315 it explicitly.
15316
15317 @item -mlinked-fp
15318 @opindex mlinked-fp
15319
15320 Follow the EABI requirement of always creating a frame pointer whenever
15321 a stack frame is allocated.  This option is enabled by default and can
15322 be disabled with @option{-mno-linked-fp}.
15323
15324 @item -mlong-calls
15325 @opindex mlong-calls
15326
15327 Use indirect addressing to call functions outside the current
15328 compilation unit.  This allows the functions to be placed anywhere
15329 within the 32-bit address space.
15330
15331 @item -malign-labels
15332 @opindex malign-labels
15333
15334 Try to align labels to an 8-byte boundary by inserting NOPs into the
15335 previous packet.  This option only has an effect when VLIW packing
15336 is enabled.  It doesn't create new packets; it merely adds NOPs to
15337 existing ones.
15338
15339 @item -mlibrary-pic
15340 @opindex mlibrary-pic
15341
15342 Generate position-independent EABI code.
15343
15344 @item -macc-4
15345 @opindex macc-4
15346
15347 Use only the first four media accumulator registers.
15348
15349 @item -macc-8
15350 @opindex macc-8
15351
15352 Use all eight media accumulator registers.
15353
15354 @item -mpack
15355 @opindex mpack
15356
15357 Pack VLIW instructions.
15358
15359 @item -mno-pack
15360 @opindex mno-pack
15361
15362 Do not pack VLIW instructions.
15363
15364 @item -mno-eflags
15365 @opindex mno-eflags
15366
15367 Do not mark ABI switches in e_flags.
15368
15369 @item -mcond-move
15370 @opindex mcond-move
15371
15372 Enable the use of conditional-move instructions (default).
15373
15374 This switch is mainly for debugging the compiler and will likely be removed
15375 in a future version.
15376
15377 @item -mno-cond-move
15378 @opindex mno-cond-move
15379
15380 Disable the use of conditional-move instructions.
15381
15382 This switch is mainly for debugging the compiler and will likely be removed
15383 in a future version.
15384
15385 @item -mscc
15386 @opindex mscc
15387
15388 Enable the use of conditional set instructions (default).
15389
15390 This switch is mainly for debugging the compiler and will likely be removed
15391 in a future version.
15392
15393 @item -mno-scc
15394 @opindex mno-scc
15395
15396 Disable the use of conditional set instructions.
15397
15398 This switch is mainly for debugging the compiler and will likely be removed
15399 in a future version.
15400
15401 @item -mcond-exec
15402 @opindex mcond-exec
15403
15404 Enable the use of conditional execution (default).
15405
15406 This switch is mainly for debugging the compiler and will likely be removed
15407 in a future version.
15408
15409 @item -mno-cond-exec
15410 @opindex mno-cond-exec
15411
15412 Disable the use of conditional execution.
15413
15414 This switch is mainly for debugging the compiler and will likely be removed
15415 in a future version.
15416
15417 @item -mvliw-branch
15418 @opindex mvliw-branch
15419
15420 Run a pass to pack branches into VLIW instructions (default).
15421
15422 This switch is mainly for debugging the compiler and will likely be removed
15423 in a future version.
15424
15425 @item -mno-vliw-branch
15426 @opindex mno-vliw-branch
15427
15428 Do not run a pass to pack branches into VLIW instructions.
15429
15430 This switch is mainly for debugging the compiler and will likely be removed
15431 in a future version.
15432
15433 @item -mmulti-cond-exec
15434 @opindex mmulti-cond-exec
15435
15436 Enable optimization of @code{&&} and @code{||} in conditional execution
15437 (default).
15438
15439 This switch is mainly for debugging the compiler and will likely be removed
15440 in a future version.
15441
15442 @item -mno-multi-cond-exec
15443 @opindex mno-multi-cond-exec
15444
15445 Disable optimization of @code{&&} and @code{||} in conditional execution.
15446
15447 This switch is mainly for debugging the compiler and will likely be removed
15448 in a future version.
15449
15450 @item -mnested-cond-exec
15451 @opindex mnested-cond-exec
15452
15453 Enable nested conditional execution optimizations (default).
15454
15455 This switch is mainly for debugging the compiler and will likely be removed
15456 in a future version.
15457
15458 @item -mno-nested-cond-exec
15459 @opindex mno-nested-cond-exec
15460
15461 Disable nested conditional execution optimizations.
15462
15463 This switch is mainly for debugging the compiler and will likely be removed
15464 in a future version.
15465
15466 @item -moptimize-membar
15467 @opindex moptimize-membar
15468
15469 This switch removes redundant @code{membar} instructions from the
15470 compiler-generated code.  It is enabled by default.
15471
15472 @item -mno-optimize-membar
15473 @opindex mno-optimize-membar
15474
15475 This switch disables the automatic removal of redundant @code{membar}
15476 instructions from the generated code.
15477
15478 @item -mtomcat-stats
15479 @opindex mtomcat-stats
15480
15481 Cause gas to print out tomcat statistics.
15482
15483 @item -mcpu=@var{cpu}
15484 @opindex mcpu
15485
15486 Select the processor type for which to generate code.  Possible values are
15487 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15488 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15489
15490 @end table
15491
15492 @node GNU/Linux Options
15493 @subsection GNU/Linux Options
15494
15495 These @samp{-m} options are defined for GNU/Linux targets:
15496
15497 @table @gcctabopt
15498 @item -mglibc
15499 @opindex mglibc
15500 Use the GNU C library.  This is the default except
15501 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15502 @samp{*-*-linux-*android*} targets.
15503
15504 @item -muclibc
15505 @opindex muclibc
15506 Use uClibc C library.  This is the default on
15507 @samp{*-*-linux-*uclibc*} targets.
15508
15509 @item -mmusl
15510 @opindex mmusl
15511 Use the musl C library.  This is the default on
15512 @samp{*-*-linux-*musl*} targets.
15513
15514 @item -mbionic
15515 @opindex mbionic
15516 Use Bionic C library.  This is the default on
15517 @samp{*-*-linux-*android*} targets.
15518
15519 @item -mandroid
15520 @opindex mandroid
15521 Compile code compatible with Android platform.  This is the default on
15522 @samp{*-*-linux-*android*} targets.
15523
15524 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15525 @option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
15526 this option makes the GCC driver pass Android-specific options to the linker.
15527 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15528 to be defined.
15529
15530 @item -tno-android-cc
15531 @opindex tno-android-cc
15532 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15533 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15534 @option{-fno-rtti} by default.
15535
15536 @item -tno-android-ld
15537 @opindex tno-android-ld
15538 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15539 linking options to the linker.
15540
15541 @end table
15542
15543 @node H8/300 Options
15544 @subsection H8/300 Options
15545
15546 These @samp{-m} options are defined for the H8/300 implementations:
15547
15548 @table @gcctabopt
15549 @item -mrelax
15550 @opindex mrelax
15551 Shorten some address references at link time, when possible; uses the
15552 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
15553 ld, Using ld}, for a fuller description.
15554
15555 @item -mh
15556 @opindex mh
15557 Generate code for the H8/300H@.
15558
15559 @item -ms
15560 @opindex ms
15561 Generate code for the H8S@.
15562
15563 @item -mn
15564 @opindex mn
15565 Generate code for the H8S and H8/300H in the normal mode.  This switch
15566 must be used either with @option{-mh} or @option{-ms}.
15567
15568 @item -ms2600
15569 @opindex ms2600
15570 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
15571
15572 @item -mexr
15573 @opindex mexr
15574 Extended registers are stored on stack before execution of function
15575 with monitor attribute. Default option is @option{-mexr}.
15576 This option is valid only for H8S targets.
15577
15578 @item -mno-exr
15579 @opindex mno-exr
15580 Extended registers are not stored on stack before execution of function 
15581 with monitor attribute. Default option is @option{-mno-exr}. 
15582 This option is valid only for H8S targets.
15583
15584 @item -mint32
15585 @opindex mint32
15586 Make @code{int} data 32 bits by default.
15587
15588 @item -malign-300
15589 @opindex malign-300
15590 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15591 The default for the H8/300H and H8S is to align longs and floats on
15592 4-byte boundaries.
15593 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15594 This option has no effect on the H8/300.
15595 @end table
15596
15597 @node HPPA Options
15598 @subsection HPPA Options
15599 @cindex HPPA Options
15600
15601 These @samp{-m} options are defined for the HPPA family of computers:
15602
15603 @table @gcctabopt
15604 @item -march=@var{architecture-type}
15605 @opindex march
15606 Generate code for the specified architecture.  The choices for
15607 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15608 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
15609 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15610 architecture option for your machine.  Code compiled for lower numbered
15611 architectures runs on higher numbered architectures, but not the
15612 other way around.
15613
15614 @item -mpa-risc-1-0
15615 @itemx -mpa-risc-1-1
15616 @itemx -mpa-risc-2-0
15617 @opindex mpa-risc-1-0
15618 @opindex mpa-risc-1-1
15619 @opindex mpa-risc-2-0
15620 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15621
15622 @item -mjump-in-delay
15623 @opindex mjump-in-delay
15624 This option is ignored and provided for compatibility purposes only.
15625
15626 @item -mdisable-fpregs
15627 @opindex mdisable-fpregs
15628 Prevent floating-point registers from being used in any manner.  This is
15629 necessary for compiling kernels that perform lazy context switching of
15630 floating-point registers.  If you use this option and attempt to perform
15631 floating-point operations, the compiler aborts.
15632
15633 @item -mdisable-indexing
15634 @opindex mdisable-indexing
15635 Prevent the compiler from using indexing address modes.  This avoids some
15636 rather obscure problems when compiling MIG generated code under MACH@.
15637
15638 @item -mno-space-regs
15639 @opindex mno-space-regs
15640 Generate code that assumes the target has no space registers.  This allows
15641 GCC to generate faster indirect calls and use unscaled index address modes.
15642
15643 Such code is suitable for level 0 PA systems and kernels.
15644
15645 @item -mfast-indirect-calls
15646 @opindex mfast-indirect-calls
15647 Generate code that assumes calls never cross space boundaries.  This
15648 allows GCC to emit code that performs faster indirect calls.
15649
15650 This option does not work in the presence of shared libraries or nested
15651 functions.
15652
15653 @item -mfixed-range=@var{register-range}
15654 @opindex mfixed-range
15655 Generate code treating the given register range as fixed registers.
15656 A fixed register is one that the register allocator cannot use.  This is
15657 useful when compiling kernel code.  A register range is specified as
15658 two registers separated by a dash.  Multiple register ranges can be
15659 specified separated by a comma.
15660
15661 @item -mlong-load-store
15662 @opindex mlong-load-store
15663 Generate 3-instruction load and store sequences as sometimes required by
15664 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
15665 the HP compilers.
15666
15667 @item -mportable-runtime
15668 @opindex mportable-runtime
15669 Use the portable calling conventions proposed by HP for ELF systems.
15670
15671 @item -mgas
15672 @opindex mgas
15673 Enable the use of assembler directives only GAS understands.
15674
15675 @item -mschedule=@var{cpu-type}
15676 @opindex mschedule
15677 Schedule code according to the constraints for the machine type
15678 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
15679 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
15680 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15681 proper scheduling option for your machine.  The default scheduling is
15682 @samp{8000}.
15683
15684 @item -mlinker-opt
15685 @opindex mlinker-opt
15686 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
15687 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
15688 linkers in which they give bogus error messages when linking some programs.
15689
15690 @item -msoft-float
15691 @opindex msoft-float
15692 Generate output containing library calls for floating point.
15693 @strong{Warning:} the requisite libraries are not available for all HPPA
15694 targets.  Normally the facilities of the machine's usual C compiler are
15695 used, but this cannot be done directly in cross-compilation.  You must make
15696 your own arrangements to provide suitable library functions for
15697 cross-compilation.
15698
15699 @option{-msoft-float} changes the calling convention in the output file;
15700 therefore, it is only useful if you compile @emph{all} of a program with
15701 this option.  In particular, you need to compile @file{libgcc.a}, the
15702 library that comes with GCC, with @option{-msoft-float} in order for
15703 this to work.
15704
15705 @item -msio
15706 @opindex msio
15707 Generate the predefine, @code{_SIO}, for server IO@.  The default is
15708 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
15709 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
15710 options are available under HP-UX and HI-UX@.
15711
15712 @item -mgnu-ld
15713 @opindex mgnu-ld
15714 Use options specific to GNU @command{ld}.
15715 This passes @option{-shared} to @command{ld} when
15716 building a shared library.  It is the default when GCC is configured,
15717 explicitly or implicitly, with the GNU linker.  This option does not
15718 affect which @command{ld} is called; it only changes what parameters
15719 are passed to that @command{ld}.
15720 The @command{ld} that is called is determined by the
15721 @option{--with-ld} configure option, GCC's program search path, and
15722 finally by the user's @env{PATH}.  The linker used by GCC can be printed
15723 using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
15724 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15725
15726 @item -mhp-ld
15727 @opindex mhp-ld
15728 Use options specific to HP @command{ld}.
15729 This passes @option{-b} to @command{ld} when building
15730 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15731 links.  It is the default when GCC is configured, explicitly or
15732 implicitly, with the HP linker.  This option does not affect
15733 which @command{ld} is called; it only changes what parameters are passed to that
15734 @command{ld}.
15735 The @command{ld} that is called is determined by the @option{--with-ld}
15736 configure option, GCC's program search path, and finally by the user's
15737 @env{PATH}.  The linker used by GCC can be printed using @samp{which
15738 `gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
15739 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15740
15741 @item -mlong-calls
15742 @opindex mno-long-calls
15743 Generate code that uses long call sequences.  This ensures that a call
15744 is always able to reach linker generated stubs.  The default is to generate
15745 long calls only when the distance from the call site to the beginning
15746 of the function or translation unit, as the case may be, exceeds a
15747 predefined limit set by the branch type being used.  The limits for
15748 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15749 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
15750 240,000 bytes.
15751
15752 Distances are measured from the beginning of functions when using the
15753 @option{-ffunction-sections} option, or when using the @option{-mgas}
15754 and @option{-mno-portable-runtime} options together under HP-UX with
15755 the SOM linker.
15756
15757 It is normally not desirable to use this option as it degrades
15758 performance.  However, it may be useful in large applications,
15759 particularly when partial linking is used to build the application.
15760
15761 The types of long calls used depends on the capabilities of the
15762 assembler and linker, and the type of code being generated.  The
15763 impact on systems that support long absolute calls, and long pic
15764 symbol-difference or pc-relative calls should be relatively small.
15765 However, an indirect call is used on 32-bit ELF systems in pic code
15766 and it is quite long.
15767
15768 @item -munix=@var{unix-std}
15769 @opindex march
15770 Generate compiler predefines and select a startfile for the specified
15771 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
15772 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
15773 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
15774 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
15775 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15776 and later.
15777
15778 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15779 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15780 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15781 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15782 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15783 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15784
15785 It is @emph{important} to note that this option changes the interfaces
15786 for various library routines.  It also affects the operational behavior
15787 of the C library.  Thus, @emph{extreme} care is needed in using this
15788 option.
15789
15790 Library code that is intended to operate with more than one UNIX
15791 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15792 as appropriate.  Most GNU software doesn't provide this capability.
15793
15794 @item -nolibdld
15795 @opindex nolibdld
15796 Suppress the generation of link options to search libdld.sl when the
15797 @option{-static} option is specified on HP-UX 10 and later.
15798
15799 @item -static
15800 @opindex static
15801 The HP-UX implementation of setlocale in libc has a dependency on
15802 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
15803 when the @option{-static} option is specified, special link options
15804 are needed to resolve this dependency.
15805
15806 On HP-UX 10 and later, the GCC driver adds the necessary options to
15807 link with libdld.sl when the @option{-static} option is specified.
15808 This causes the resulting binary to be dynamic.  On the 64-bit port,
15809 the linkers generate dynamic binaries by default in any case.  The
15810 @option{-nolibdld} option can be used to prevent the GCC driver from
15811 adding these link options.
15812
15813 @item -threads
15814 @opindex threads
15815 Add support for multithreading with the @dfn{dce thread} library
15816 under HP-UX@.  This option sets flags for both the preprocessor and
15817 linker.
15818 @end table
15819
15820 @node IA-64 Options
15821 @subsection IA-64 Options
15822 @cindex IA-64 Options
15823
15824 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15825
15826 @table @gcctabopt
15827 @item -mbig-endian
15828 @opindex mbig-endian
15829 Generate code for a big-endian target.  This is the default for HP-UX@.
15830
15831 @item -mlittle-endian
15832 @opindex mlittle-endian
15833 Generate code for a little-endian target.  This is the default for AIX5
15834 and GNU/Linux.
15835
15836 @item -mgnu-as
15837 @itemx -mno-gnu-as
15838 @opindex mgnu-as
15839 @opindex mno-gnu-as
15840 Generate (or don't) code for the GNU assembler.  This is the default.
15841 @c Also, this is the default if the configure option @option{--with-gnu-as}
15842 @c is used.
15843
15844 @item -mgnu-ld
15845 @itemx -mno-gnu-ld
15846 @opindex mgnu-ld
15847 @opindex mno-gnu-ld
15848 Generate (or don't) code for the GNU linker.  This is the default.
15849 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15850 @c is used.
15851
15852 @item -mno-pic
15853 @opindex mno-pic
15854 Generate code that does not use a global pointer register.  The result
15855 is not position independent code, and violates the IA-64 ABI@.
15856
15857 @item -mvolatile-asm-stop
15858 @itemx -mno-volatile-asm-stop
15859 @opindex mvolatile-asm-stop
15860 @opindex mno-volatile-asm-stop
15861 Generate (or don't) a stop bit immediately before and after volatile asm
15862 statements.
15863
15864 @item -mregister-names
15865 @itemx -mno-register-names
15866 @opindex mregister-names
15867 @opindex mno-register-names
15868 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15869 the stacked registers.  This may make assembler output more readable.
15870
15871 @item -mno-sdata
15872 @itemx -msdata
15873 @opindex mno-sdata
15874 @opindex msdata
15875 Disable (or enable) optimizations that use the small data section.  This may
15876 be useful for working around optimizer bugs.
15877
15878 @item -mconstant-gp
15879 @opindex mconstant-gp
15880 Generate code that uses a single constant global pointer value.  This is
15881 useful when compiling kernel code.
15882
15883 @item -mauto-pic
15884 @opindex mauto-pic
15885 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
15886 This is useful when compiling firmware code.
15887
15888 @item -minline-float-divide-min-latency
15889 @opindex minline-float-divide-min-latency
15890 Generate code for inline divides of floating-point values
15891 using the minimum latency algorithm.
15892
15893 @item -minline-float-divide-max-throughput
15894 @opindex minline-float-divide-max-throughput
15895 Generate code for inline divides of floating-point values
15896 using the maximum throughput algorithm.
15897
15898 @item -mno-inline-float-divide
15899 @opindex mno-inline-float-divide
15900 Do not generate inline code for divides of floating-point values.
15901
15902 @item -minline-int-divide-min-latency
15903 @opindex minline-int-divide-min-latency
15904 Generate code for inline divides of integer values
15905 using the minimum latency algorithm.
15906
15907 @item -minline-int-divide-max-throughput
15908 @opindex minline-int-divide-max-throughput
15909 Generate code for inline divides of integer values
15910 using the maximum throughput algorithm.
15911
15912 @item -mno-inline-int-divide
15913 @opindex mno-inline-int-divide
15914 Do not generate inline code for divides of integer values.
15915
15916 @item -minline-sqrt-min-latency
15917 @opindex minline-sqrt-min-latency
15918 Generate code for inline square roots
15919 using the minimum latency algorithm.
15920
15921 @item -minline-sqrt-max-throughput
15922 @opindex minline-sqrt-max-throughput
15923 Generate code for inline square roots
15924 using the maximum throughput algorithm.
15925
15926 @item -mno-inline-sqrt
15927 @opindex mno-inline-sqrt
15928 Do not generate inline code for @code{sqrt}.
15929
15930 @item -mfused-madd
15931 @itemx -mno-fused-madd
15932 @opindex mfused-madd
15933 @opindex mno-fused-madd
15934 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15935 instructions.  The default is to use these instructions.
15936
15937 @item -mno-dwarf2-asm
15938 @itemx -mdwarf2-asm
15939 @opindex mno-dwarf2-asm
15940 @opindex mdwarf2-asm
15941 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15942 info.  This may be useful when not using the GNU assembler.
15943
15944 @item -mearly-stop-bits
15945 @itemx -mno-early-stop-bits
15946 @opindex mearly-stop-bits
15947 @opindex mno-early-stop-bits
15948 Allow stop bits to be placed earlier than immediately preceding the
15949 instruction that triggered the stop bit.  This can improve instruction
15950 scheduling, but does not always do so.
15951
15952 @item -mfixed-range=@var{register-range}
15953 @opindex mfixed-range
15954 Generate code treating the given register range as fixed registers.
15955 A fixed register is one that the register allocator cannot use.  This is
15956 useful when compiling kernel code.  A register range is specified as
15957 two registers separated by a dash.  Multiple register ranges can be
15958 specified separated by a comma.
15959
15960 @item -mtls-size=@var{tls-size}
15961 @opindex mtls-size
15962 Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
15963 64.
15964
15965 @item -mtune=@var{cpu-type}
15966 @opindex mtune
15967 Tune the instruction scheduling for a particular CPU, Valid values are
15968 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15969 and @samp{mckinley}.
15970
15971 @item -milp32
15972 @itemx -mlp64
15973 @opindex milp32
15974 @opindex mlp64
15975 Generate code for a 32-bit or 64-bit environment.
15976 The 32-bit environment sets int, long and pointer to 32 bits.
15977 The 64-bit environment sets int to 32 bits and long and pointer
15978 to 64 bits.  These are HP-UX specific flags.
15979
15980 @item -mno-sched-br-data-spec
15981 @itemx -msched-br-data-spec
15982 @opindex mno-sched-br-data-spec
15983 @opindex msched-br-data-spec
15984 (Dis/En)able data speculative scheduling before reload.
15985 This results in generation of @code{ld.a} instructions and
15986 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15987 The default is 'disable'.
15988
15989 @item -msched-ar-data-spec
15990 @itemx -mno-sched-ar-data-spec
15991 @opindex msched-ar-data-spec
15992 @opindex mno-sched-ar-data-spec
15993 (En/Dis)able data speculative scheduling after reload.
15994 This results in generation of @code{ld.a} instructions and
15995 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15996 The default is 'enable'.
15997
15998 @item -mno-sched-control-spec
15999 @itemx -msched-control-spec
16000 @opindex mno-sched-control-spec
16001 @opindex msched-control-spec
16002 (Dis/En)able control speculative scheduling.  This feature is
16003 available only during region scheduling (i.e.@: before reload).
16004 This results in generation of the @code{ld.s} instructions and
16005 the corresponding check instructions @code{chk.s}.
16006 The default is 'disable'.
16007
16008 @item -msched-br-in-data-spec
16009 @itemx -mno-sched-br-in-data-spec
16010 @opindex msched-br-in-data-spec
16011 @opindex mno-sched-br-in-data-spec
16012 (En/Dis)able speculative scheduling of the instructions that
16013 are dependent on the data speculative loads before reload.
16014 This is effective only with @option{-msched-br-data-spec} enabled.
16015 The default is 'enable'.
16016
16017 @item -msched-ar-in-data-spec
16018 @itemx -mno-sched-ar-in-data-spec
16019 @opindex msched-ar-in-data-spec
16020 @opindex mno-sched-ar-in-data-spec
16021 (En/Dis)able speculative scheduling of the instructions that
16022 are dependent on the data speculative loads after reload.
16023 This is effective only with @option{-msched-ar-data-spec} enabled.
16024 The default is 'enable'.
16025
16026 @item -msched-in-control-spec
16027 @itemx -mno-sched-in-control-spec
16028 @opindex msched-in-control-spec
16029 @opindex mno-sched-in-control-spec
16030 (En/Dis)able speculative scheduling of the instructions that
16031 are dependent on the control speculative loads.
16032 This is effective only with @option{-msched-control-spec} enabled.
16033 The default is 'enable'.
16034
16035 @item -mno-sched-prefer-non-data-spec-insns
16036 @itemx -msched-prefer-non-data-spec-insns
16037 @opindex mno-sched-prefer-non-data-spec-insns
16038 @opindex msched-prefer-non-data-spec-insns
16039 If enabled, data-speculative instructions are chosen for schedule
16040 only if there are no other choices at the moment.  This makes
16041 the use of the data speculation much more conservative.
16042 The default is 'disable'.
16043
16044 @item -mno-sched-prefer-non-control-spec-insns
16045 @itemx -msched-prefer-non-control-spec-insns
16046 @opindex mno-sched-prefer-non-control-spec-insns
16047 @opindex msched-prefer-non-control-spec-insns
16048 If enabled, control-speculative instructions are chosen for schedule
16049 only if there are no other choices at the moment.  This makes
16050 the use of the control speculation much more conservative.
16051 The default is 'disable'.
16052
16053 @item -mno-sched-count-spec-in-critical-path
16054 @itemx -msched-count-spec-in-critical-path
16055 @opindex mno-sched-count-spec-in-critical-path
16056 @opindex msched-count-spec-in-critical-path
16057 If enabled, speculative dependencies are considered during
16058 computation of the instructions priorities.  This makes the use of the
16059 speculation a bit more conservative.
16060 The default is 'disable'.
16061
16062 @item -msched-spec-ldc
16063 @opindex msched-spec-ldc
16064 Use a simple data speculation check.  This option is on by default.
16065
16066 @item -msched-control-spec-ldc
16067 @opindex msched-spec-ldc
16068 Use a simple check for control speculation.  This option is on by default.
16069
16070 @item -msched-stop-bits-after-every-cycle
16071 @opindex msched-stop-bits-after-every-cycle
16072 Place a stop bit after every cycle when scheduling.  This option is on
16073 by default.
16074
16075 @item -msched-fp-mem-deps-zero-cost
16076 @opindex msched-fp-mem-deps-zero-cost
16077 Assume that floating-point stores and loads are not likely to cause a conflict
16078 when placed into the same instruction group.  This option is disabled by
16079 default.
16080
16081 @item -msel-sched-dont-check-control-spec
16082 @opindex msel-sched-dont-check-control-spec
16083 Generate checks for control speculation in selective scheduling.
16084 This flag is disabled by default.
16085
16086 @item -msched-max-memory-insns=@var{max-insns}
16087 @opindex msched-max-memory-insns
16088 Limit on the number of memory insns per instruction group, giving lower
16089 priority to subsequent memory insns attempting to schedule in the same
16090 instruction group. Frequently useful to prevent cache bank conflicts.
16091 The default value is 1.
16092
16093 @item -msched-max-memory-insns-hard-limit
16094 @opindex msched-max-memory-insns-hard-limit
16095 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16096 disallowing more than that number in an instruction group.
16097 Otherwise, the limit is ``soft'', meaning that non-memory operations
16098 are preferred when the limit is reached, but memory operations may still
16099 be scheduled.
16100
16101 @end table
16102
16103 @node LM32 Options
16104 @subsection LM32 Options
16105 @cindex LM32 options
16106
16107 These @option{-m} options are defined for the LatticeMico32 architecture:
16108
16109 @table @gcctabopt
16110 @item -mbarrel-shift-enabled
16111 @opindex mbarrel-shift-enabled
16112 Enable barrel-shift instructions.
16113
16114 @item -mdivide-enabled
16115 @opindex mdivide-enabled
16116 Enable divide and modulus instructions.
16117
16118 @item -mmultiply-enabled
16119 @opindex multiply-enabled
16120 Enable multiply instructions.
16121
16122 @item -msign-extend-enabled
16123 @opindex msign-extend-enabled
16124 Enable sign extend instructions.
16125
16126 @item -muser-enabled
16127 @opindex muser-enabled
16128 Enable user-defined instructions.
16129
16130 @end table
16131
16132 @node M32C Options
16133 @subsection M32C Options
16134 @cindex M32C options
16135
16136 @table @gcctabopt
16137 @item -mcpu=@var{name}
16138 @opindex mcpu=
16139 Select the CPU for which code is generated.  @var{name} may be one of
16140 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16141 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16142 the M32C/80 series.
16143
16144 @item -msim
16145 @opindex msim
16146 Specifies that the program will be run on the simulator.  This causes
16147 an alternate runtime library to be linked in which supports, for
16148 example, file I/O@.  You must not use this option when generating
16149 programs that will run on real hardware; you must provide your own
16150 runtime library for whatever I/O functions are needed.
16151
16152 @item -memregs=@var{number}
16153 @opindex memregs=
16154 Specifies the number of memory-based pseudo-registers GCC uses
16155 during code generation.  These pseudo-registers are used like real
16156 registers, so there is a tradeoff between GCC's ability to fit the
16157 code into available registers, and the performance penalty of using
16158 memory instead of registers.  Note that all modules in a program must
16159 be compiled with the same value for this option.  Because of that, you
16160 must not use this option with GCC's default runtime libraries.
16161
16162 @end table
16163
16164 @node M32R/D Options
16165 @subsection M32R/D Options
16166 @cindex M32R/D options
16167
16168 These @option{-m} options are defined for Renesas M32R/D architectures:
16169
16170 @table @gcctabopt
16171 @item -m32r2
16172 @opindex m32r2
16173 Generate code for the M32R/2@.
16174
16175 @item -m32rx
16176 @opindex m32rx
16177 Generate code for the M32R/X@.
16178
16179 @item -m32r
16180 @opindex m32r
16181 Generate code for the M32R@.  This is the default.
16182
16183 @item -mmodel=small
16184 @opindex mmodel=small
16185 Assume all objects live in the lower 16MB of memory (so that their addresses
16186 can be loaded with the @code{ld24} instruction), and assume all subroutines
16187 are reachable with the @code{bl} instruction.
16188 This is the default.
16189
16190 The addressability of a particular object can be set with the
16191 @code{model} attribute.
16192
16193 @item -mmodel=medium
16194 @opindex mmodel=medium
16195 Assume objects may be anywhere in the 32-bit address space (the compiler
16196 generates @code{seth/add3} instructions to load their addresses), and
16197 assume all subroutines are reachable with the @code{bl} instruction.
16198
16199 @item -mmodel=large
16200 @opindex mmodel=large
16201 Assume objects may be anywhere in the 32-bit address space (the compiler
16202 generates @code{seth/add3} instructions to load their addresses), and
16203 assume subroutines may not be reachable with the @code{bl} instruction
16204 (the compiler generates the much slower @code{seth/add3/jl}
16205 instruction sequence).
16206
16207 @item -msdata=none
16208 @opindex msdata=none
16209 Disable use of the small data area.  Variables are put into
16210 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16211 @code{section} attribute has been specified).
16212 This is the default.
16213
16214 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16215 Objects may be explicitly put in the small data area with the
16216 @code{section} attribute using one of these sections.
16217
16218 @item -msdata=sdata
16219 @opindex msdata=sdata
16220 Put small global and static data in the small data area, but do not
16221 generate special code to reference them.
16222
16223 @item -msdata=use
16224 @opindex msdata=use
16225 Put small global and static data in the small data area, and generate
16226 special instructions to reference them.
16227
16228 @item -G @var{num}
16229 @opindex G
16230 @cindex smaller data references
16231 Put global and static objects less than or equal to @var{num} bytes
16232 into the small data or BSS sections instead of the normal data or BSS
16233 sections.  The default value of @var{num} is 8.
16234 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16235 for this option to have any effect.
16236
16237 All modules should be compiled with the same @option{-G @var{num}} value.
16238 Compiling with different values of @var{num} may or may not work; if it
16239 doesn't the linker gives an error message---incorrect code is not
16240 generated.
16241
16242 @item -mdebug
16243 @opindex mdebug
16244 Makes the M32R-specific code in the compiler display some statistics
16245 that might help in debugging programs.
16246
16247 @item -malign-loops
16248 @opindex malign-loops
16249 Align all loops to a 32-byte boundary.
16250
16251 @item -mno-align-loops
16252 @opindex mno-align-loops
16253 Do not enforce a 32-byte alignment for loops.  This is the default.
16254
16255 @item -missue-rate=@var{number}
16256 @opindex missue-rate=@var{number}
16257 Issue @var{number} instructions per cycle.  @var{number} can only be 1
16258 or 2.
16259
16260 @item -mbranch-cost=@var{number}
16261 @opindex mbranch-cost=@var{number}
16262 @var{number} can only be 1 or 2.  If it is 1 then branches are
16263 preferred over conditional code, if it is 2, then the opposite applies.
16264
16265 @item -mflush-trap=@var{number}
16266 @opindex mflush-trap=@var{number}
16267 Specifies the trap number to use to flush the cache.  The default is
16268 12.  Valid numbers are between 0 and 15 inclusive.
16269
16270 @item -mno-flush-trap
16271 @opindex mno-flush-trap
16272 Specifies that the cache cannot be flushed by using a trap.
16273
16274 @item -mflush-func=@var{name}
16275 @opindex mflush-func=@var{name}
16276 Specifies the name of the operating system function to call to flush
16277 the cache.  The default is @samp{_flush_cache}, but a function call
16278 is only used if a trap is not available.
16279
16280 @item -mno-flush-func
16281 @opindex mno-flush-func
16282 Indicates that there is no OS function for flushing the cache.
16283
16284 @end table
16285
16286 @node M680x0 Options
16287 @subsection M680x0 Options
16288 @cindex M680x0 options
16289
16290 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16291 The default settings depend on which architecture was selected when
16292 the compiler was configured; the defaults for the most common choices
16293 are given below.
16294
16295 @table @gcctabopt
16296 @item -march=@var{arch}
16297 @opindex march
16298 Generate code for a specific M680x0 or ColdFire instruction set
16299 architecture.  Permissible values of @var{arch} for M680x0
16300 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16301 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
16302 architectures are selected according to Freescale's ISA classification
16303 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16304 @samp{isab} and @samp{isac}.
16305
16306 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16307 code for a ColdFire target.  The @var{arch} in this macro is one of the
16308 @option{-march} arguments given above.
16309
16310 When used together, @option{-march} and @option{-mtune} select code
16311 that runs on a family of similar processors but that is optimized
16312 for a particular microarchitecture.
16313
16314 @item -mcpu=@var{cpu}
16315 @opindex mcpu
16316 Generate code for a specific M680x0 or ColdFire processor.
16317 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16318 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16319 and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
16320 below, which also classifies the CPUs into families:
16321
16322 @multitable @columnfractions 0.20 0.80
16323 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16324 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16325 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16326 @item @samp{5206e} @tab @samp{5206e}
16327 @item @samp{5208} @tab @samp{5207} @samp{5208}
16328 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16329 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16330 @item @samp{5216} @tab @samp{5214} @samp{5216}
16331 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16332 @item @samp{5225} @tab @samp{5224} @samp{5225}
16333 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16334 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16335 @item @samp{5249} @tab @samp{5249}
16336 @item @samp{5250} @tab @samp{5250}
16337 @item @samp{5271} @tab @samp{5270} @samp{5271}
16338 @item @samp{5272} @tab @samp{5272}
16339 @item @samp{5275} @tab @samp{5274} @samp{5275}
16340 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16341 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16342 @item @samp{5307} @tab @samp{5307}
16343 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16344 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16345 @item @samp{5407} @tab @samp{5407}
16346 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16347 @end multitable
16348
16349 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16350 @var{arch} is compatible with @var{cpu}.  Other combinations of
16351 @option{-mcpu} and @option{-march} are rejected.
16352
16353 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16354 @var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
16355 where the value of @var{family} is given by the table above.
16356
16357 @item -mtune=@var{tune}
16358 @opindex mtune
16359 Tune the code for a particular microarchitecture within the
16360 constraints set by @option{-march} and @option{-mcpu}.
16361 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16362 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16363 and @samp{cpu32}.  The ColdFire microarchitectures
16364 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16365
16366 You can also use @option{-mtune=68020-40} for code that needs
16367 to run relatively well on 68020, 68030 and 68040 targets.
16368 @option{-mtune=68020-60} is similar but includes 68060 targets
16369 as well.  These two options select the same tuning decisions as
16370 @option{-m68020-40} and @option{-m68020-60} respectively.
16371
16372 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16373 when tuning for 680x0 architecture @var{arch}.  It also defines
16374 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16375 option is used.  If GCC is tuning for a range of architectures,
16376 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16377 it defines the macros for every architecture in the range.
16378
16379 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16380 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16381 of the arguments given above.
16382
16383 @item -m68000
16384 @itemx -mc68000
16385 @opindex m68000
16386 @opindex mc68000
16387 Generate output for a 68000.  This is the default
16388 when the compiler is configured for 68000-based systems.
16389 It is equivalent to @option{-march=68000}.
16390
16391 Use this option for microcontrollers with a 68000 or EC000 core,
16392 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16393
16394 @item -m68010
16395 @opindex m68010
16396 Generate output for a 68010.  This is the default
16397 when the compiler is configured for 68010-based systems.
16398 It is equivalent to @option{-march=68010}.
16399
16400 @item -m68020
16401 @itemx -mc68020
16402 @opindex m68020
16403 @opindex mc68020
16404 Generate output for a 68020.  This is the default
16405 when the compiler is configured for 68020-based systems.
16406 It is equivalent to @option{-march=68020}.
16407
16408 @item -m68030
16409 @opindex m68030
16410 Generate output for a 68030.  This is the default when the compiler is
16411 configured for 68030-based systems.  It is equivalent to
16412 @option{-march=68030}.
16413
16414 @item -m68040
16415 @opindex m68040
16416 Generate output for a 68040.  This is the default when the compiler is
16417 configured for 68040-based systems.  It is equivalent to
16418 @option{-march=68040}.
16419
16420 This option inhibits the use of 68881/68882 instructions that have to be
16421 emulated by software on the 68040.  Use this option if your 68040 does not
16422 have code to emulate those instructions.
16423
16424 @item -m68060
16425 @opindex m68060
16426 Generate output for a 68060.  This is the default when the compiler is
16427 configured for 68060-based systems.  It is equivalent to
16428 @option{-march=68060}.
16429
16430 This option inhibits the use of 68020 and 68881/68882 instructions that
16431 have to be emulated by software on the 68060.  Use this option if your 68060
16432 does not have code to emulate those instructions.
16433
16434 @item -mcpu32
16435 @opindex mcpu32
16436 Generate output for a CPU32.  This is the default
16437 when the compiler is configured for CPU32-based systems.
16438 It is equivalent to @option{-march=cpu32}.
16439
16440 Use this option for microcontrollers with a
16441 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16442 68336, 68340, 68341, 68349 and 68360.
16443
16444 @item -m5200
16445 @opindex m5200
16446 Generate output for a 520X ColdFire CPU@.  This is the default
16447 when the compiler is configured for 520X-based systems.
16448 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16449 in favor of that option.
16450
16451 Use this option for microcontroller with a 5200 core, including
16452 the MCF5202, MCF5203, MCF5204 and MCF5206.
16453
16454 @item -m5206e
16455 @opindex m5206e
16456 Generate output for a 5206e ColdFire CPU@.  The option is now
16457 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16458
16459 @item -m528x
16460 @opindex m528x
16461 Generate output for a member of the ColdFire 528X family.
16462 The option is now deprecated in favor of the equivalent
16463 @option{-mcpu=528x}.
16464
16465 @item -m5307
16466 @opindex m5307
16467 Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
16468 in favor of the equivalent @option{-mcpu=5307}.
16469
16470 @item -m5407
16471 @opindex m5407
16472 Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
16473 in favor of the equivalent @option{-mcpu=5407}.
16474
16475 @item -mcfv4e
16476 @opindex mcfv4e
16477 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16478 This includes use of hardware floating-point instructions.
16479 The option is equivalent to @option{-mcpu=547x}, and is now
16480 deprecated in favor of that option.
16481
16482 @item -m68020-40
16483 @opindex m68020-40
16484 Generate output for a 68040, without using any of the new instructions.
16485 This results in code that can run relatively efficiently on either a
16486 68020/68881 or a 68030 or a 68040.  The generated code does use the
16487 68881 instructions that are emulated on the 68040.
16488
16489 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16490
16491 @item -m68020-60
16492 @opindex m68020-60
16493 Generate output for a 68060, without using any of the new instructions.
16494 This results in code that can run relatively efficiently on either a
16495 68020/68881 or a 68030 or a 68040.  The generated code does use the
16496 68881 instructions that are emulated on the 68060.
16497
16498 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16499
16500 @item -mhard-float
16501 @itemx -m68881
16502 @opindex mhard-float
16503 @opindex m68881
16504 Generate floating-point instructions.  This is the default for 68020
16505 and above, and for ColdFire devices that have an FPU@.  It defines the
16506 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16507 on ColdFire targets.
16508
16509 @item -msoft-float
16510 @opindex msoft-float
16511 Do not generate floating-point instructions; use library calls instead.
16512 This is the default for 68000, 68010, and 68832 targets.  It is also
16513 the default for ColdFire devices that have no FPU.
16514
16515 @item -mdiv
16516 @itemx -mno-div
16517 @opindex mdiv
16518 @opindex mno-div
16519 Generate (do not generate) ColdFire hardware divide and remainder
16520 instructions.  If @option{-march} is used without @option{-mcpu},
16521 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16522 architectures.  Otherwise, the default is taken from the target CPU
16523 (either the default CPU, or the one specified by @option{-mcpu}).  For
16524 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16525 @option{-mcpu=5206e}.
16526
16527 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16528
16529 @item -mshort
16530 @opindex mshort
16531 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16532 Additionally, parameters passed on the stack are also aligned to a
16533 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16534
16535 @item -mno-short
16536 @opindex mno-short
16537 Do not consider type @code{int} to be 16 bits wide.  This is the default.
16538
16539 @item -mnobitfield
16540 @itemx -mno-bitfield
16541 @opindex mnobitfield
16542 @opindex mno-bitfield
16543 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
16544 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16545
16546 @item -mbitfield
16547 @opindex mbitfield
16548 Do use the bit-field instructions.  The @option{-m68020} option implies
16549 @option{-mbitfield}.  This is the default if you use a configuration
16550 designed for a 68020.
16551
16552 @item -mrtd
16553 @opindex mrtd
16554 Use a different function-calling convention, in which functions
16555 that take a fixed number of arguments return with the @code{rtd}
16556 instruction, which pops their arguments while returning.  This
16557 saves one instruction in the caller since there is no need to pop
16558 the arguments there.
16559
16560 This calling convention is incompatible with the one normally
16561 used on Unix, so you cannot use it if you need to call libraries
16562 compiled with the Unix compiler.
16563
16564 Also, you must provide function prototypes for all functions that
16565 take variable numbers of arguments (including @code{printf});
16566 otherwise incorrect code is generated for calls to those
16567 functions.
16568
16569 In addition, seriously incorrect code results if you call a
16570 function with too many arguments.  (Normally, extra arguments are
16571 harmlessly ignored.)
16572
16573 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16574 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16575
16576 @item -mno-rtd
16577 @opindex mno-rtd
16578 Do not use the calling conventions selected by @option{-mrtd}.
16579 This is the default.
16580
16581 @item -malign-int
16582 @itemx -mno-align-int
16583 @opindex malign-int
16584 @opindex mno-align-int
16585 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16586 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16587 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16588 Aligning variables on 32-bit boundaries produces code that runs somewhat
16589 faster on processors with 32-bit busses at the expense of more memory.
16590
16591 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16592 aligns structures containing the above types differently than
16593 most published application binary interface specifications for the m68k.
16594
16595 @item -mpcrel
16596 @opindex mpcrel
16597 Use the pc-relative addressing mode of the 68000 directly, instead of
16598 using a global offset table.  At present, this option implies @option{-fpic},
16599 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
16600 not presently supported with @option{-mpcrel}, though this could be supported for
16601 68020 and higher processors.
16602
16603 @item -mno-strict-align
16604 @itemx -mstrict-align
16605 @opindex mno-strict-align
16606 @opindex mstrict-align
16607 Do not (do) assume that unaligned memory references are handled by
16608 the system.
16609
16610 @item -msep-data
16611 Generate code that allows the data segment to be located in a different
16612 area of memory from the text segment.  This allows for execute-in-place in
16613 an environment without virtual memory management.  This option implies
16614 @option{-fPIC}.
16615
16616 @item -mno-sep-data
16617 Generate code that assumes that the data segment follows the text segment.
16618 This is the default.
16619
16620 @item -mid-shared-library
16621 Generate code that supports shared libraries via the library ID method.
16622 This allows for execute-in-place and shared libraries in an environment
16623 without virtual memory management.  This option implies @option{-fPIC}.
16624
16625 @item -mno-id-shared-library
16626 Generate code that doesn't assume ID-based shared libraries are being used.
16627 This is the default.
16628
16629 @item -mshared-library-id=n
16630 Specifies the identification number of the ID-based shared library being
16631 compiled.  Specifying a value of 0 generates more compact code; specifying
16632 other values forces the allocation of that number to the current
16633 library, but is no more space- or time-efficient than omitting this option.
16634
16635 @item -mxgot
16636 @itemx -mno-xgot
16637 @opindex mxgot
16638 @opindex mno-xgot
16639 When generating position-independent code for ColdFire, generate code
16640 that works if the GOT has more than 8192 entries.  This code is
16641 larger and slower than code generated without this option.  On M680x0
16642 processors, this option is not needed; @option{-fPIC} suffices.
16643
16644 GCC normally uses a single instruction to load values from the GOT@.
16645 While this is relatively efficient, it only works if the GOT
16646 is smaller than about 64k.  Anything larger causes the linker
16647 to report an error such as:
16648
16649 @cindex relocation truncated to fit (ColdFire)
16650 @smallexample
16651 relocation truncated to fit: R_68K_GOT16O foobar
16652 @end smallexample
16653
16654 If this happens, you should recompile your code with @option{-mxgot}.
16655 It should then work with very large GOTs.  However, code generated with
16656 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16657 the value of a global symbol.
16658
16659 Note that some linkers, including newer versions of the GNU linker,
16660 can create multiple GOTs and sort GOT entries.  If you have such a linker,
16661 you should only need to use @option{-mxgot} when compiling a single
16662 object file that accesses more than 8192 GOT entries.  Very few do.
16663
16664 These options have no effect unless GCC is generating
16665 position-independent code.
16666
16667 @end table
16668
16669 @node MCore Options
16670 @subsection MCore Options
16671 @cindex MCore options
16672
16673 These are the @samp{-m} options defined for the Motorola M*Core
16674 processors.
16675
16676 @table @gcctabopt
16677
16678 @item -mhardlit
16679 @itemx -mno-hardlit
16680 @opindex mhardlit
16681 @opindex mno-hardlit
16682 Inline constants into the code stream if it can be done in two
16683 instructions or less.
16684
16685 @item -mdiv
16686 @itemx -mno-div
16687 @opindex mdiv
16688 @opindex mno-div
16689 Use the divide instruction.  (Enabled by default).
16690
16691 @item -mrelax-immediate
16692 @itemx -mno-relax-immediate
16693 @opindex mrelax-immediate
16694 @opindex mno-relax-immediate
16695 Allow arbitrary-sized immediates in bit operations.
16696
16697 @item -mwide-bitfields
16698 @itemx -mno-wide-bitfields
16699 @opindex mwide-bitfields
16700 @opindex mno-wide-bitfields
16701 Always treat bit-fields as @code{int}-sized.
16702
16703 @item -m4byte-functions
16704 @itemx -mno-4byte-functions
16705 @opindex m4byte-functions
16706 @opindex mno-4byte-functions
16707 Force all functions to be aligned to a 4-byte boundary.
16708
16709 @item -mcallgraph-data
16710 @itemx -mno-callgraph-data
16711 @opindex mcallgraph-data
16712 @opindex mno-callgraph-data
16713 Emit callgraph information.
16714
16715 @item -mslow-bytes
16716 @itemx -mno-slow-bytes
16717 @opindex mslow-bytes
16718 @opindex mno-slow-bytes
16719 Prefer word access when reading byte quantities.
16720
16721 @item -mlittle-endian
16722 @itemx -mbig-endian
16723 @opindex mlittle-endian
16724 @opindex mbig-endian
16725 Generate code for a little-endian target.
16726
16727 @item -m210
16728 @itemx -m340
16729 @opindex m210
16730 @opindex m340
16731 Generate code for the 210 processor.
16732
16733 @item -mno-lsim
16734 @opindex mno-lsim
16735 Assume that runtime support has been provided and so omit the
16736 simulator library (@file{libsim.a)} from the linker command line.
16737
16738 @item -mstack-increment=@var{size}
16739 @opindex mstack-increment
16740 Set the maximum amount for a single stack increment operation.  Large
16741 values can increase the speed of programs that contain functions
16742 that need a large amount of stack space, but they can also trigger a
16743 segmentation fault if the stack is extended too much.  The default
16744 value is 0x1000.
16745
16746 @end table
16747
16748 @node MeP Options
16749 @subsection MeP Options
16750 @cindex MeP options
16751
16752 @table @gcctabopt
16753
16754 @item -mabsdiff
16755 @opindex mabsdiff
16756 Enables the @code{abs} instruction, which is the absolute difference
16757 between two registers.
16758
16759 @item -mall-opts
16760 @opindex mall-opts
16761 Enables all the optional instructions---average, multiply, divide, bit
16762 operations, leading zero, absolute difference, min/max, clip, and
16763 saturation.
16764
16765
16766 @item -maverage
16767 @opindex maverage
16768 Enables the @code{ave} instruction, which computes the average of two
16769 registers.
16770
16771 @item -mbased=@var{n}
16772 @opindex mbased=
16773 Variables of size @var{n} bytes or smaller are placed in the
16774 @code{.based} section by default.  Based variables use the @code{$tp}
16775 register as a base register, and there is a 128-byte limit to the
16776 @code{.based} section.
16777
16778 @item -mbitops
16779 @opindex mbitops
16780 Enables the bit operation instructions---bit test (@code{btstm}), set
16781 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16782 test-and-set (@code{tas}).
16783
16784 @item -mc=@var{name}
16785 @opindex mc=
16786 Selects which section constant data is placed in.  @var{name} may
16787 be @samp{tiny}, @samp{near}, or @samp{far}.
16788
16789 @item -mclip
16790 @opindex mclip
16791 Enables the @code{clip} instruction.  Note that @option{-mclip} is not
16792 useful unless you also provide @option{-mminmax}.
16793
16794 @item -mconfig=@var{name}
16795 @opindex mconfig=
16796 Selects one of the built-in core configurations.  Each MeP chip has
16797 one or more modules in it; each module has a core CPU and a variety of
16798 coprocessors, optional instructions, and peripherals.  The
16799 @code{MeP-Integrator} tool, not part of GCC, provides these
16800 configurations through this option; using this option is the same as
16801 using all the corresponding command-line options.  The default
16802 configuration is @samp{default}.
16803
16804 @item -mcop
16805 @opindex mcop
16806 Enables the coprocessor instructions.  By default, this is a 32-bit
16807 coprocessor.  Note that the coprocessor is normally enabled via the
16808 @option{-mconfig=} option.
16809
16810 @item -mcop32
16811 @opindex mcop32
16812 Enables the 32-bit coprocessor's instructions.
16813
16814 @item -mcop64
16815 @opindex mcop64
16816 Enables the 64-bit coprocessor's instructions.
16817
16818 @item -mivc2
16819 @opindex mivc2
16820 Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
16821
16822 @item -mdc
16823 @opindex mdc
16824 Causes constant variables to be placed in the @code{.near} section.
16825
16826 @item -mdiv
16827 @opindex mdiv
16828 Enables the @code{div} and @code{divu} instructions.
16829
16830 @item -meb
16831 @opindex meb
16832 Generate big-endian code.
16833
16834 @item -mel
16835 @opindex mel
16836 Generate little-endian code.
16837
16838 @item -mio-volatile
16839 @opindex mio-volatile
16840 Tells the compiler that any variable marked with the @code{io}
16841 attribute is to be considered volatile.
16842
16843 @item -ml
16844 @opindex ml
16845 Causes variables to be assigned to the @code{.far} section by default.
16846
16847 @item -mleadz
16848 @opindex mleadz
16849 Enables the @code{leadz} (leading zero) instruction.
16850
16851 @item -mm
16852 @opindex mm
16853 Causes variables to be assigned to the @code{.near} section by default.
16854
16855 @item -mminmax
16856 @opindex mminmax
16857 Enables the @code{min} and @code{max} instructions.
16858
16859 @item -mmult
16860 @opindex mmult
16861 Enables the multiplication and multiply-accumulate instructions.
16862
16863 @item -mno-opts
16864 @opindex mno-opts
16865 Disables all the optional instructions enabled by @option{-mall-opts}.
16866
16867 @item -mrepeat
16868 @opindex mrepeat
16869 Enables the @code{repeat} and @code{erepeat} instructions, used for
16870 low-overhead looping.
16871
16872 @item -ms
16873 @opindex ms
16874 Causes all variables to default to the @code{.tiny} section.  Note
16875 that there is a 65536-byte limit to this section.  Accesses to these
16876 variables use the @code{%gp} base register.
16877
16878 @item -msatur
16879 @opindex msatur
16880 Enables the saturation instructions.  Note that the compiler does not
16881 currently generate these itself, but this option is included for
16882 compatibility with other tools, like @code{as}.
16883
16884 @item -msdram
16885 @opindex msdram
16886 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16887
16888 @item -msim
16889 @opindex msim
16890 Link the simulator run-time libraries.
16891
16892 @item -msimnovec
16893 @opindex msimnovec
16894 Link the simulator runtime libraries, excluding built-in support
16895 for reset and exception vectors and tables.
16896
16897 @item -mtf
16898 @opindex mtf
16899 Causes all functions to default to the @code{.far} section.  Without
16900 this option, functions default to the @code{.near} section.
16901
16902 @item -mtiny=@var{n}
16903 @opindex mtiny=
16904 Variables that are @var{n} bytes or smaller are allocated to the
16905 @code{.tiny} section.  These variables use the @code{$gp} base
16906 register.  The default for this option is 4, but note that there's a
16907 65536-byte limit to the @code{.tiny} section.
16908
16909 @end table
16910
16911 @node MicroBlaze Options
16912 @subsection MicroBlaze Options
16913 @cindex MicroBlaze Options
16914
16915 @table @gcctabopt
16916
16917 @item -msoft-float
16918 @opindex msoft-float
16919 Use software emulation for floating point (default).
16920
16921 @item -mhard-float
16922 @opindex mhard-float
16923 Use hardware floating-point instructions.
16924
16925 @item -mmemcpy
16926 @opindex mmemcpy
16927 Do not optimize block moves, use @code{memcpy}.
16928
16929 @item -mno-clearbss
16930 @opindex mno-clearbss
16931 This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
16932
16933 @item -mcpu=@var{cpu-type}
16934 @opindex mcpu=
16935 Use features of, and schedule code for, the given CPU.
16936 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16937 where @var{X} is a major version, @var{YY} is the minor version, and
16938 @var{Z} is compatibility code.  Example values are @samp{v3.00.a},
16939 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16940
16941 @item -mxl-soft-mul
16942 @opindex mxl-soft-mul
16943 Use software multiply emulation (default).
16944
16945 @item -mxl-soft-div
16946 @opindex mxl-soft-div
16947 Use software emulation for divides (default).
16948
16949 @item -mxl-barrel-shift
16950 @opindex mxl-barrel-shift
16951 Use the hardware barrel shifter.
16952
16953 @item -mxl-pattern-compare
16954 @opindex mxl-pattern-compare
16955 Use pattern compare instructions.
16956
16957 @item -msmall-divides
16958 @opindex msmall-divides
16959 Use table lookup optimization for small signed integer divisions.
16960
16961 @item -mxl-stack-check
16962 @opindex mxl-stack-check
16963 This option is deprecated.  Use @option{-fstack-check} instead.
16964
16965 @item -mxl-gp-opt
16966 @opindex mxl-gp-opt
16967 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16968
16969 @item -mxl-multiply-high
16970 @opindex mxl-multiply-high
16971 Use multiply high instructions for high part of 32x32 multiply.
16972
16973 @item -mxl-float-convert
16974 @opindex mxl-float-convert
16975 Use hardware floating-point conversion instructions.
16976
16977 @item -mxl-float-sqrt
16978 @opindex mxl-float-sqrt
16979 Use hardware floating-point square root instruction.
16980
16981 @item -mbig-endian
16982 @opindex mbig-endian
16983 Generate code for a big-endian target.
16984
16985 @item -mlittle-endian
16986 @opindex mlittle-endian
16987 Generate code for a little-endian target.
16988
16989 @item -mxl-reorder
16990 @opindex mxl-reorder
16991 Use reorder instructions (swap and byte reversed load/store).
16992
16993 @item -mxl-mode-@var{app-model}
16994 Select application model @var{app-model}.  Valid models are
16995 @table @samp
16996 @item executable
16997 normal executable (default), uses startup code @file{crt0.o}.
16998
16999 @item xmdstub
17000 for use with Xilinx Microprocessor Debugger (XMD) based
17001 software intrusive debug agent called xmdstub. This uses startup file
17002 @file{crt1.o} and sets the start address of the program to 0x800.
17003
17004 @item bootstrap
17005 for applications that are loaded using a bootloader.
17006 This model uses startup file @file{crt2.o} which does not contain a processor
17007 reset vector handler. This is suitable for transferring control on a
17008 processor reset to the bootloader rather than the application.
17009
17010 @item novectors
17011 for applications that do not require any of the
17012 MicroBlaze vectors. This option may be useful for applications running
17013 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17014 @end table
17015
17016 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17017 @option{-mxl-mode-@var{app-model}}.
17018
17019 @end table
17020
17021 @node MIPS Options
17022 @subsection MIPS Options
17023 @cindex MIPS options
17024
17025 @table @gcctabopt
17026
17027 @item -EB
17028 @opindex EB
17029 Generate big-endian code.
17030
17031 @item -EL
17032 @opindex EL
17033 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
17034 configurations.
17035
17036 @item -march=@var{arch}
17037 @opindex march
17038 Generate code that runs on @var{arch}, which can be the name of a
17039 generic MIPS ISA, or the name of a particular processor.
17040 The ISA names are:
17041 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17042 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17043 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17044 @samp{mips64r5} and @samp{mips64r6}.
17045 The processor names are:
17046 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17047 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17048 @samp{5kc}, @samp{5kf},
17049 @samp{20kc},
17050 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17051 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17052 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17053 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17054 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17055 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17056 @samp{m4k},
17057 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17058 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17059 @samp{orion},
17060 @samp{p5600},
17061 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17062 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17063 @samp{rm7000}, @samp{rm9000},
17064 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17065 @samp{sb1},
17066 @samp{sr71000},
17067 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17068 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17069 @samp{xlr} and @samp{xlp}.
17070 The special value @samp{from-abi} selects the
17071 most compatible architecture for the selected ABI (that is,
17072 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17073
17074 The native Linux/GNU toolchain also supports the value @samp{native},
17075 which selects the best architecture option for the host processor.
17076 @option{-march=native} has no effect if GCC does not recognize
17077 the processor.
17078
17079 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17080 (for example, @option{-march=r2k}).  Prefixes are optional, and
17081 @samp{vr} may be written @samp{r}.
17082
17083 Names of the form @samp{@var{n}f2_1} refer to processors with
17084 FPUs clocked at half the rate of the core, names of the form
17085 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17086 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17087 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17088 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17089 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17090 accepted as synonyms for @samp{@var{n}f1_1}.
17091
17092 GCC defines two macros based on the value of this option.  The first
17093 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17094 a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
17095 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17096 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17097 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17098
17099 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17100 above.  In other words, it has the full prefix and does not
17101 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
17102 the macro names the resolved architecture (either @code{"mips1"} or
17103 @code{"mips3"}).  It names the default architecture when no
17104 @option{-march} option is given.
17105
17106 @item -mtune=@var{arch}
17107 @opindex mtune
17108 Optimize for @var{arch}.  Among other things, this option controls
17109 the way instructions are scheduled, and the perceived cost of arithmetic
17110 operations.  The list of @var{arch} values is the same as for
17111 @option{-march}.
17112
17113 When this option is not used, GCC optimizes for the processor
17114 specified by @option{-march}.  By using @option{-march} and
17115 @option{-mtune} together, it is possible to generate code that
17116 runs on a family of processors, but optimize the code for one
17117 particular member of that family.
17118
17119 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17120 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17121 @option{-march} ones described above.
17122
17123 @item -mips1
17124 @opindex mips1
17125 Equivalent to @option{-march=mips1}.
17126
17127 @item -mips2
17128 @opindex mips2
17129 Equivalent to @option{-march=mips2}.
17130
17131 @item -mips3
17132 @opindex mips3
17133 Equivalent to @option{-march=mips3}.
17134
17135 @item -mips4
17136 @opindex mips4
17137 Equivalent to @option{-march=mips4}.
17138
17139 @item -mips32
17140 @opindex mips32
17141 Equivalent to @option{-march=mips32}.
17142
17143 @item -mips32r3
17144 @opindex mips32r3
17145 Equivalent to @option{-march=mips32r3}.
17146
17147 @item -mips32r5
17148 @opindex mips32r5
17149 Equivalent to @option{-march=mips32r5}.
17150
17151 @item -mips32r6
17152 @opindex mips32r6
17153 Equivalent to @option{-march=mips32r6}.
17154
17155 @item -mips64
17156 @opindex mips64
17157 Equivalent to @option{-march=mips64}.
17158
17159 @item -mips64r2
17160 @opindex mips64r2
17161 Equivalent to @option{-march=mips64r2}.
17162
17163 @item -mips64r3
17164 @opindex mips64r3
17165 Equivalent to @option{-march=mips64r3}.
17166
17167 @item -mips64r5
17168 @opindex mips64r5
17169 Equivalent to @option{-march=mips64r5}.
17170
17171 @item -mips64r6
17172 @opindex mips64r6
17173 Equivalent to @option{-march=mips64r6}.
17174
17175 @item -mips16
17176 @itemx -mno-mips16
17177 @opindex mips16
17178 @opindex mno-mips16
17179 Generate (do not generate) MIPS16 code.  If GCC is targeting a
17180 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17181
17182 MIPS16 code generation can also be controlled on a per-function basis
17183 by means of @code{mips16} and @code{nomips16} attributes.
17184 @xref{Function Attributes}, for more information.
17185
17186 @item -mflip-mips16
17187 @opindex mflip-mips16
17188 Generate MIPS16 code on alternating functions.  This option is provided
17189 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17190 not intended for ordinary use in compiling user code.
17191
17192 @item -minterlink-compressed
17193 @item -mno-interlink-compressed
17194 @opindex minterlink-compressed
17195 @opindex mno-interlink-compressed
17196 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17197 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17198
17199 For example, code using the standard ISA encoding cannot jump directly
17200 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17201 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17202 knows that the target of the jump is not compressed.
17203
17204 @item -minterlink-mips16
17205 @itemx -mno-interlink-mips16
17206 @opindex minterlink-mips16
17207 @opindex mno-interlink-mips16
17208 Aliases of @option{-minterlink-compressed} and
17209 @option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
17210 and are retained for backwards compatibility.
17211
17212 @item -mabi=32
17213 @itemx -mabi=o64
17214 @itemx -mabi=n32
17215 @itemx -mabi=64
17216 @itemx -mabi=eabi
17217 @opindex mabi=32
17218 @opindex mabi=o64
17219 @opindex mabi=n32
17220 @opindex mabi=64
17221 @opindex mabi=eabi
17222 Generate code for the given ABI@.
17223
17224 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
17225 generates 64-bit code when you select a 64-bit architecture, but you
17226 can use @option{-mgp32} to get 32-bit code instead.
17227
17228 For information about the O64 ABI, see
17229 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17230
17231 GCC supports a variant of the o32 ABI in which floating-point registers
17232 are 64 rather than 32 bits wide.  You can select this combination with
17233 @option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
17234 and @code{mfhc1} instructions and is therefore only supported for
17235 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17236
17237 The register assignments for arguments and return values remain the
17238 same, but each scalar value is passed in a single 64-bit register
17239 rather than a pair of 32-bit registers.  For example, scalar
17240 floating-point values are returned in @samp{$f0} only, not a
17241 @samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
17242 remains the same in that the even-numbered double-precision registers
17243 are saved.
17244
17245 Two additional variants of the o32 ABI are supported to enable
17246 a transition from 32-bit to 64-bit registers.  These are FPXX
17247 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17248 The FPXX extension mandates that all code must execute correctly
17249 when run using 32-bit or 64-bit registers.  The code can be interlinked
17250 with either FP32 or FP64, but not both.
17251 The FP64A extension is similar to the FP64 extension but forbids the
17252 use of odd-numbered single-precision registers.  This can be used
17253 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17254 processors and allows both FP32 and FP64A code to interlink and
17255 run in the same process without changing FPU modes.
17256
17257 @item -mabicalls
17258 @itemx -mno-abicalls
17259 @opindex mabicalls
17260 @opindex mno-abicalls
17261 Generate (do not generate) code that is suitable for SVR4-style
17262 dynamic objects.  @option{-mabicalls} is the default for SVR4-based
17263 systems.
17264
17265 @item -mshared
17266 @itemx -mno-shared
17267 Generate (do not generate) code that is fully position-independent,
17268 and that can therefore be linked into shared libraries.  This option
17269 only affects @option{-mabicalls}.
17270
17271 All @option{-mabicalls} code has traditionally been position-independent,
17272 regardless of options like @option{-fPIC} and @option{-fpic}.  However,
17273 as an extension, the GNU toolchain allows executables to use absolute
17274 accesses for locally-binding symbols.  It can also use shorter GP
17275 initialization sequences and generate direct calls to locally-defined
17276 functions.  This mode is selected by @option{-mno-shared}.
17277
17278 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17279 objects that can only be linked by the GNU linker.  However, the option
17280 does not affect the ABI of the final executable; it only affects the ABI
17281 of relocatable objects.  Using @option{-mno-shared} generally makes
17282 executables both smaller and quicker.
17283
17284 @option{-mshared} is the default.
17285
17286 @item -mplt
17287 @itemx -mno-plt
17288 @opindex mplt
17289 @opindex mno-plt
17290 Assume (do not assume) that the static and dynamic linkers
17291 support PLTs and copy relocations.  This option only affects
17292 @option{-mno-shared -mabicalls}.  For the n64 ABI, this option
17293 has no effect without @option{-msym32}.
17294
17295 You can make @option{-mplt} the default by configuring
17296 GCC with @option{--with-mips-plt}.  The default is
17297 @option{-mno-plt} otherwise.
17298
17299 @item -mxgot
17300 @itemx -mno-xgot
17301 @opindex mxgot
17302 @opindex mno-xgot
17303 Lift (do not lift) the usual restrictions on the size of the global
17304 offset table.
17305
17306 GCC normally uses a single instruction to load values from the GOT@.
17307 While this is relatively efficient, it only works if the GOT
17308 is smaller than about 64k.  Anything larger causes the linker
17309 to report an error such as:
17310
17311 @cindex relocation truncated to fit (MIPS)
17312 @smallexample
17313 relocation truncated to fit: R_MIPS_GOT16 foobar
17314 @end smallexample
17315
17316 If this happens, you should recompile your code with @option{-mxgot}.
17317 This works with very large GOTs, although the code is also
17318 less efficient, since it takes three instructions to fetch the
17319 value of a global symbol.
17320
17321 Note that some linkers can create multiple GOTs.  If you have such a
17322 linker, you should only need to use @option{-mxgot} when a single object
17323 file accesses more than 64k's worth of GOT entries.  Very few do.
17324
17325 These options have no effect unless GCC is generating position
17326 independent code.
17327
17328 @item -mgp32
17329 @opindex mgp32
17330 Assume that general-purpose registers are 32 bits wide.
17331
17332 @item -mgp64
17333 @opindex mgp64
17334 Assume that general-purpose registers are 64 bits wide.
17335
17336 @item -mfp32
17337 @opindex mfp32
17338 Assume that floating-point registers are 32 bits wide.
17339
17340 @item -mfp64
17341 @opindex mfp64
17342 Assume that floating-point registers are 64 bits wide.
17343
17344 @item -mfpxx
17345 @opindex mfpxx
17346 Do not assume the width of floating-point registers.
17347
17348 @item -mhard-float
17349 @opindex mhard-float
17350 Use floating-point coprocessor instructions.
17351
17352 @item -msoft-float
17353 @opindex msoft-float
17354 Do not use floating-point coprocessor instructions.  Implement
17355 floating-point calculations using library calls instead.
17356
17357 @item -mno-float
17358 @opindex mno-float
17359 Equivalent to @option{-msoft-float}, but additionally asserts that the
17360 program being compiled does not perform any floating-point operations.
17361 This option is presently supported only by some bare-metal MIPS
17362 configurations, where it may select a special set of libraries
17363 that lack all floating-point support (including, for example, the
17364 floating-point @code{printf} formats).  
17365 If code compiled with @option{-mno-float} accidentally contains
17366 floating-point operations, it is likely to suffer a link-time
17367 or run-time failure.
17368
17369 @item -msingle-float
17370 @opindex msingle-float
17371 Assume that the floating-point coprocessor only supports single-precision
17372 operations.
17373
17374 @item -mdouble-float
17375 @opindex mdouble-float
17376 Assume that the floating-point coprocessor supports double-precision
17377 operations.  This is the default.
17378
17379 @item -modd-spreg
17380 @itemx -mno-odd-spreg
17381 @opindex modd-spreg
17382 @opindex mno-odd-spreg
17383 Enable the use of odd-numbered single-precision floating-point registers
17384 for the o32 ABI.  This is the default for processors that are known to
17385 support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17386 is set by default.
17387
17388 @item -mabs=2008
17389 @itemx -mabs=legacy
17390 @opindex mabs=2008
17391 @opindex mabs=legacy
17392 These options control the treatment of the special not-a-number (NaN)
17393 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17394 @code{neg.@i{fmt}} machine instructions.
17395
17396 By default or when @option{-mabs=legacy} is used the legacy
17397 treatment is selected.  In this case these instructions are considered
17398 arithmetic and avoided where correct operation is required and the
17399 input operand might be a NaN.  A longer sequence of instructions that
17400 manipulate the sign bit of floating-point datum manually is used
17401 instead unless the @option{-ffinite-math-only} option has also been
17402 specified.
17403
17404 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
17405 this case these instructions are considered non-arithmetic and therefore
17406 operating correctly in all cases, including in particular where the
17407 input operand is a NaN.  These instructions are therefore always used
17408 for the respective operations.
17409
17410 @item -mnan=2008
17411 @itemx -mnan=legacy
17412 @opindex mnan=2008
17413 @opindex mnan=legacy
17414 These options control the encoding of the special not-a-number (NaN)
17415 IEEE 754 floating-point data.
17416
17417 The @option{-mnan=legacy} option selects the legacy encoding.  In this
17418 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17419 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17420 by the first bit of their trailing significand field being 1.
17421
17422 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
17423 this case qNaNs are denoted by the first bit of their trailing
17424 significand field being 1, whereas sNaNs are denoted by the first bit of
17425 their trailing significand field being 0.
17426
17427 The default is @option{-mnan=legacy} unless GCC has been configured with
17428 @option{--with-nan=2008}.
17429
17430 @item -mllsc
17431 @itemx -mno-llsc
17432 @opindex mllsc
17433 @opindex mno-llsc
17434 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17435 implement atomic memory built-in functions.  When neither option is
17436 specified, GCC uses the instructions if the target architecture
17437 supports them.
17438
17439 @option{-mllsc} is useful if the runtime environment can emulate the
17440 instructions and @option{-mno-llsc} can be useful when compiling for
17441 nonstandard ISAs.  You can make either option the default by
17442 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17443 respectively.  @option{--with-llsc} is the default for some
17444 configurations; see the installation documentation for details.
17445
17446 @item -mdsp
17447 @itemx -mno-dsp
17448 @opindex mdsp
17449 @opindex mno-dsp
17450 Use (do not use) revision 1 of the MIPS DSP ASE@.
17451 @xref{MIPS DSP Built-in Functions}.  This option defines the
17452 preprocessor macro @code{__mips_dsp}.  It also defines
17453 @code{__mips_dsp_rev} to 1.
17454
17455 @item -mdspr2
17456 @itemx -mno-dspr2
17457 @opindex mdspr2
17458 @opindex mno-dspr2
17459 Use (do not use) revision 2 of the MIPS DSP ASE@.
17460 @xref{MIPS DSP Built-in Functions}.  This option defines the
17461 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17462 It also defines @code{__mips_dsp_rev} to 2.
17463
17464 @item -msmartmips
17465 @itemx -mno-smartmips
17466 @opindex msmartmips
17467 @opindex mno-smartmips
17468 Use (do not use) the MIPS SmartMIPS ASE.
17469
17470 @item -mpaired-single
17471 @itemx -mno-paired-single
17472 @opindex mpaired-single
17473 @opindex mno-paired-single
17474 Use (do not use) paired-single floating-point instructions.
17475 @xref{MIPS Paired-Single Support}.  This option requires
17476 hardware floating-point support to be enabled.
17477
17478 @item -mdmx
17479 @itemx -mno-mdmx
17480 @opindex mdmx
17481 @opindex mno-mdmx
17482 Use (do not use) MIPS Digital Media Extension instructions.
17483 This option can only be used when generating 64-bit code and requires
17484 hardware floating-point support to be enabled.
17485
17486 @item -mips3d
17487 @itemx -mno-mips3d
17488 @opindex mips3d
17489 @opindex mno-mips3d
17490 Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
17491 The option @option{-mips3d} implies @option{-mpaired-single}.
17492
17493 @item -mmicromips
17494 @itemx -mno-micromips
17495 @opindex mmicromips
17496 @opindex mno-mmicromips
17497 Generate (do not generate) microMIPS code.
17498
17499 MicroMIPS code generation can also be controlled on a per-function basis
17500 by means of @code{micromips} and @code{nomicromips} attributes.
17501 @xref{Function Attributes}, for more information.
17502
17503 @item -mmt
17504 @itemx -mno-mt
17505 @opindex mmt
17506 @opindex mno-mt
17507 Use (do not use) MT Multithreading instructions.
17508
17509 @item -mmcu
17510 @itemx -mno-mcu
17511 @opindex mmcu
17512 @opindex mno-mcu
17513 Use (do not use) the MIPS MCU ASE instructions.
17514
17515 @item -meva
17516 @itemx -mno-eva
17517 @opindex meva
17518 @opindex mno-eva
17519 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17520
17521 @item -mvirt
17522 @itemx -mno-virt
17523 @opindex mvirt
17524 @opindex mno-virt
17525 Use (do not use) the MIPS Virtualization Application Specific instructions.
17526
17527 @item -mxpa
17528 @itemx -mno-xpa
17529 @opindex mxpa
17530 @opindex mno-xpa
17531 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17532
17533 @item -mlong64
17534 @opindex mlong64
17535 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
17536 an explanation of the default and the way that the pointer size is
17537 determined.
17538
17539 @item -mlong32
17540 @opindex mlong32
17541 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17542
17543 The default size of @code{int}s, @code{long}s and pointers depends on
17544 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
17545 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17546 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
17547 or the same size as integer registers, whichever is smaller.
17548
17549 @item -msym32
17550 @itemx -mno-sym32
17551 @opindex msym32
17552 @opindex mno-sym32
17553 Assume (do not assume) that all symbols have 32-bit values, regardless
17554 of the selected ABI@.  This option is useful in combination with
17555 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17556 to generate shorter and faster references to symbolic addresses.
17557
17558 @item -G @var{num}
17559 @opindex G
17560 Put definitions of externally-visible data in a small data section
17561 if that data is no bigger than @var{num} bytes.  GCC can then generate
17562 more efficient accesses to the data; see @option{-mgpopt} for details.
17563
17564 The default @option{-G} option depends on the configuration.
17565
17566 @item -mlocal-sdata
17567 @itemx -mno-local-sdata
17568 @opindex mlocal-sdata
17569 @opindex mno-local-sdata
17570 Extend (do not extend) the @option{-G} behavior to local data too,
17571 such as to static variables in C@.  @option{-mlocal-sdata} is the
17572 default for all configurations.
17573
17574 If the linker complains that an application is using too much small data,
17575 you might want to try rebuilding the less performance-critical parts with
17576 @option{-mno-local-sdata}.  You might also want to build large
17577 libraries with @option{-mno-local-sdata}, so that the libraries leave
17578 more room for the main program.
17579
17580 @item -mextern-sdata
17581 @itemx -mno-extern-sdata
17582 @opindex mextern-sdata
17583 @opindex mno-extern-sdata
17584 Assume (do not assume) that externally-defined data is in
17585 a small data section if the size of that data is within the @option{-G} limit.
17586 @option{-mextern-sdata} is the default for all configurations.
17587
17588 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17589 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17590 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17591 is placed in a small data section.  If @var{Var} is defined by another
17592 module, you must either compile that module with a high-enough
17593 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17594 definition.  If @var{Var} is common, you must link the application
17595 with a high-enough @option{-G} setting.
17596
17597 The easiest way of satisfying these restrictions is to compile
17598 and link every module with the same @option{-G} option.  However,
17599 you may wish to build a library that supports several different
17600 small data limits.  You can do this by compiling the library with
17601 the highest supported @option{-G} setting and additionally using
17602 @option{-mno-extern-sdata} to stop the library from making assumptions
17603 about externally-defined data.
17604
17605 @item -mgpopt
17606 @itemx -mno-gpopt
17607 @opindex mgpopt
17608 @opindex mno-gpopt
17609 Use (do not use) GP-relative accesses for symbols that are known to be
17610 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17611 @option{-mextern-sdata}.  @option{-mgpopt} is the default for all
17612 configurations.
17613
17614 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17615 might not hold the value of @code{_gp}.  For example, if the code is
17616 part of a library that might be used in a boot monitor, programs that
17617 call boot monitor routines pass an unknown value in @code{$gp}.
17618 (In such situations, the boot monitor itself is usually compiled
17619 with @option{-G0}.)
17620
17621 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17622 @option{-mno-extern-sdata}.
17623
17624 @item -membedded-data
17625 @itemx -mno-embedded-data
17626 @opindex membedded-data
17627 @opindex mno-embedded-data
17628 Allocate variables to the read-only data section first if possible, then
17629 next in the small data section if possible, otherwise in data.  This gives
17630 slightly slower code than the default, but reduces the amount of RAM required
17631 when executing, and thus may be preferred for some embedded systems.
17632
17633 @item -muninit-const-in-rodata
17634 @itemx -mno-uninit-const-in-rodata
17635 @opindex muninit-const-in-rodata
17636 @opindex mno-uninit-const-in-rodata
17637 Put uninitialized @code{const} variables in the read-only data section.
17638 This option is only meaningful in conjunction with @option{-membedded-data}.
17639
17640 @item -mcode-readable=@var{setting}
17641 @opindex mcode-readable
17642 Specify whether GCC may generate code that reads from executable sections.
17643 There are three possible settings:
17644
17645 @table @gcctabopt
17646 @item -mcode-readable=yes
17647 Instructions may freely access executable sections.  This is the
17648 default setting.
17649
17650 @item -mcode-readable=pcrel
17651 MIPS16 PC-relative load instructions can access executable sections,
17652 but other instructions must not do so.  This option is useful on 4KSc
17653 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17654 It is also useful on processors that can be configured to have a dual
17655 instruction/data SRAM interface and that, like the M4K, automatically
17656 redirect PC-relative loads to the instruction RAM.
17657
17658 @item -mcode-readable=no
17659 Instructions must not access executable sections.  This option can be
17660 useful on targets that are configured to have a dual instruction/data
17661 SRAM interface but that (unlike the M4K) do not automatically redirect
17662 PC-relative loads to the instruction RAM.
17663 @end table
17664
17665 @item -msplit-addresses
17666 @itemx -mno-split-addresses
17667 @opindex msplit-addresses
17668 @opindex mno-split-addresses
17669 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17670 relocation operators.  This option has been superseded by
17671 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17672
17673 @item -mexplicit-relocs
17674 @itemx -mno-explicit-relocs
17675 @opindex mexplicit-relocs
17676 @opindex mno-explicit-relocs
17677 Use (do not use) assembler relocation operators when dealing with symbolic
17678 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
17679 is to use assembler macros instead.
17680
17681 @option{-mexplicit-relocs} is the default if GCC was configured
17682 to use an assembler that supports relocation operators.
17683
17684 @item -mcheck-zero-division
17685 @itemx -mno-check-zero-division
17686 @opindex mcheck-zero-division
17687 @opindex mno-check-zero-division
17688 Trap (do not trap) on integer division by zero.
17689
17690 The default is @option{-mcheck-zero-division}.
17691
17692 @item -mdivide-traps
17693 @itemx -mdivide-breaks
17694 @opindex mdivide-traps
17695 @opindex mdivide-breaks
17696 MIPS systems check for division by zero by generating either a
17697 conditional trap or a break instruction.  Using traps results in
17698 smaller code, but is only supported on MIPS II and later.  Also, some
17699 versions of the Linux kernel have a bug that prevents trap from
17700 generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
17701 allow conditional traps on architectures that support them and
17702 @option{-mdivide-breaks} to force the use of breaks.
17703
17704 The default is usually @option{-mdivide-traps}, but this can be
17705 overridden at configure time using @option{--with-divide=breaks}.
17706 Divide-by-zero checks can be completely disabled using
17707 @option{-mno-check-zero-division}.
17708
17709 @item -mmemcpy
17710 @itemx -mno-memcpy
17711 @opindex mmemcpy
17712 @opindex mno-memcpy
17713 Force (do not force) the use of @code{memcpy} for non-trivial block
17714 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
17715 most constant-sized copies.
17716
17717 @item -mlong-calls
17718 @itemx -mno-long-calls
17719 @opindex mlong-calls
17720 @opindex mno-long-calls
17721 Disable (do not disable) use of the @code{jal} instruction.  Calling
17722 functions using @code{jal} is more efficient but requires the caller
17723 and callee to be in the same 256 megabyte segment.
17724
17725 This option has no effect on abicalls code.  The default is
17726 @option{-mno-long-calls}.
17727
17728 @item -mmad
17729 @itemx -mno-mad
17730 @opindex mmad
17731 @opindex mno-mad
17732 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17733 instructions, as provided by the R4650 ISA@.
17734
17735 @item -mimadd
17736 @itemx -mno-imadd
17737 @opindex mimadd
17738 @opindex mno-imadd
17739 Enable (disable) use of the @code{madd} and @code{msub} integer
17740 instructions.  The default is @option{-mimadd} on architectures
17741 that support @code{madd} and @code{msub} except for the 74k 
17742 architecture where it was found to generate slower code.
17743
17744 @item -mfused-madd
17745 @itemx -mno-fused-madd
17746 @opindex mfused-madd
17747 @opindex mno-fused-madd
17748 Enable (disable) use of the floating-point multiply-accumulate
17749 instructions, when they are available.  The default is
17750 @option{-mfused-madd}.
17751
17752 On the R8000 CPU when multiply-accumulate instructions are used,
17753 the intermediate product is calculated to infinite precision
17754 and is not subject to the FCSR Flush to Zero bit.  This may be
17755 undesirable in some circumstances.  On other processors the result
17756 is numerically identical to the equivalent computation using
17757 separate multiply, add, subtract and negate instructions.
17758
17759 @item -nocpp
17760 @opindex nocpp
17761 Tell the MIPS assembler to not run its preprocessor over user
17762 assembler files (with a @samp{.s} suffix) when assembling them.
17763
17764 @item -mfix-24k
17765 @item -mno-fix-24k
17766 @opindex mfix-24k
17767 @opindex mno-fix-24k
17768 Work around the 24K E48 (lost data on stores during refill) errata.
17769 The workarounds are implemented by the assembler rather than by GCC@.
17770
17771 @item -mfix-r4000
17772 @itemx -mno-fix-r4000
17773 @opindex mfix-r4000
17774 @opindex mno-fix-r4000
17775 Work around certain R4000 CPU errata:
17776 @itemize @minus
17777 @item
17778 A double-word or a variable shift may give an incorrect result if executed
17779 immediately after starting an integer division.
17780 @item
17781 A double-word or a variable shift may give an incorrect result if executed
17782 while an integer multiplication is in progress.
17783 @item
17784 An integer division may give an incorrect result if started in a delay slot
17785 of a taken branch or a jump.
17786 @end itemize
17787
17788 @item -mfix-r4400
17789 @itemx -mno-fix-r4400
17790 @opindex mfix-r4400
17791 @opindex mno-fix-r4400
17792 Work around certain R4400 CPU errata:
17793 @itemize @minus
17794 @item
17795 A double-word or a variable shift may give an incorrect result if executed
17796 immediately after starting an integer division.
17797 @end itemize
17798
17799 @item -mfix-r10000
17800 @itemx -mno-fix-r10000
17801 @opindex mfix-r10000
17802 @opindex mno-fix-r10000
17803 Work around certain R10000 errata:
17804 @itemize @minus
17805 @item
17806 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17807 prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
17808 @end itemize
17809
17810 This option can only be used if the target architecture supports
17811 branch-likely instructions.  @option{-mfix-r10000} is the default when
17812 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17813 otherwise.
17814
17815 @item -mfix-rm7000
17816 @itemx -mno-fix-rm7000
17817 @opindex mfix-rm7000
17818 Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
17819 workarounds are implemented by the assembler rather than by GCC@.
17820
17821 @item -mfix-vr4120
17822 @itemx -mno-fix-vr4120
17823 @opindex mfix-vr4120
17824 Work around certain VR4120 errata:
17825 @itemize @minus
17826 @item
17827 @code{dmultu} does not always produce the correct result.
17828 @item
17829 @code{div} and @code{ddiv} do not always produce the correct result if one
17830 of the operands is negative.
17831 @end itemize
17832 The workarounds for the division errata rely on special functions in
17833 @file{libgcc.a}.  At present, these functions are only provided by
17834 the @code{mips64vr*-elf} configurations.
17835
17836 Other VR4120 errata require a NOP to be inserted between certain pairs of
17837 instructions.  These errata are handled by the assembler, not by GCC itself.
17838
17839 @item -mfix-vr4130
17840 @opindex mfix-vr4130
17841 Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
17842 workarounds are implemented by the assembler rather than by GCC,
17843 although GCC avoids using @code{mflo} and @code{mfhi} if the
17844 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17845 instructions are available instead.
17846
17847 @item -mfix-sb1
17848 @itemx -mno-fix-sb1
17849 @opindex mfix-sb1
17850 Work around certain SB-1 CPU core errata.
17851 (This flag currently works around the SB-1 revision 2
17852 ``F1'' and ``F2'' floating-point errata.)
17853
17854 @item -mr10k-cache-barrier=@var{setting}
17855 @opindex mr10k-cache-barrier
17856 Specify whether GCC should insert cache barriers to avoid the
17857 side-effects of speculation on R10K processors.
17858
17859 In common with many processors, the R10K tries to predict the outcome
17860 of a conditional branch and speculatively executes instructions from
17861 the ``taken'' branch.  It later aborts these instructions if the
17862 predicted outcome is wrong.  However, on the R10K, even aborted
17863 instructions can have side effects.
17864
17865 This problem only affects kernel stores and, depending on the system,
17866 kernel loads.  As an example, a speculatively-executed store may load
17867 the target memory into cache and mark the cache line as dirty, even if
17868 the store itself is later aborted.  If a DMA operation writes to the
17869 same area of memory before the ``dirty'' line is flushed, the cached
17870 data overwrites the DMA-ed data.  See the R10K processor manual
17871 for a full description, including other potential problems.
17872
17873 One workaround is to insert cache barrier instructions before every memory
17874 access that might be speculatively executed and that might have side
17875 effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
17876 controls GCC's implementation of this workaround.  It assumes that
17877 aborted accesses to any byte in the following regions does not have
17878 side effects:
17879
17880 @enumerate
17881 @item
17882 the memory occupied by the current function's stack frame;
17883
17884 @item
17885 the memory occupied by an incoming stack argument;
17886
17887 @item
17888 the memory occupied by an object with a link-time-constant address.
17889 @end enumerate
17890
17891 It is the kernel's responsibility to ensure that speculative
17892 accesses to these regions are indeed safe.
17893
17894 If the input program contains a function declaration such as:
17895
17896 @smallexample
17897 void foo (void);
17898 @end smallexample
17899
17900 then the implementation of @code{foo} must allow @code{j foo} and
17901 @code{jal foo} to be executed speculatively.  GCC honors this
17902 restriction for functions it compiles itself.  It expects non-GCC
17903 functions (such as hand-written assembly code) to do the same.
17904
17905 The option has three forms:
17906
17907 @table @gcctabopt
17908 @item -mr10k-cache-barrier=load-store
17909 Insert a cache barrier before a load or store that might be
17910 speculatively executed and that might have side effects even
17911 if aborted.
17912
17913 @item -mr10k-cache-barrier=store
17914 Insert a cache barrier before a store that might be speculatively
17915 executed and that might have side effects even if aborted.
17916
17917 @item -mr10k-cache-barrier=none
17918 Disable the insertion of cache barriers.  This is the default setting.
17919 @end table
17920
17921 @item -mflush-func=@var{func}
17922 @itemx -mno-flush-func
17923 @opindex mflush-func
17924 Specifies the function to call to flush the I and D caches, or to not
17925 call any such function.  If called, the function must take the same
17926 arguments as the common @code{_flush_func}, that is, the address of the
17927 memory range for which the cache is being flushed, the size of the
17928 memory range, and the number 3 (to flush both caches).  The default
17929 depends on the target GCC was configured for, but commonly is either
17930 @code{_flush_func} or @code{__cpu_flush}.
17931
17932 @item mbranch-cost=@var{num}
17933 @opindex mbranch-cost
17934 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17935 This cost is only a heuristic and is not guaranteed to produce
17936 consistent results across releases.  A zero cost redundantly selects
17937 the default, which is based on the @option{-mtune} setting.
17938
17939 @item -mbranch-likely
17940 @itemx -mno-branch-likely
17941 @opindex mbranch-likely
17942 @opindex mno-branch-likely
17943 Enable or disable use of Branch Likely instructions, regardless of the
17944 default for the selected architecture.  By default, Branch Likely
17945 instructions may be generated if they are supported by the selected
17946 architecture.  An exception is for the MIPS32 and MIPS64 architectures
17947 and processors that implement those architectures; for those, Branch
17948 Likely instructions are not be generated by default because the MIPS32
17949 and MIPS64 architectures specifically deprecate their use.
17950
17951 @item -mfp-exceptions
17952 @itemx -mno-fp-exceptions
17953 @opindex mfp-exceptions
17954 Specifies whether FP exceptions are enabled.  This affects how
17955 FP instructions are scheduled for some processors.
17956 The default is that FP exceptions are
17957 enabled.
17958
17959 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17960 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
17961 FP pipe.
17962
17963 @item -mvr4130-align
17964 @itemx -mno-vr4130-align
17965 @opindex mvr4130-align
17966 The VR4130 pipeline is two-way superscalar, but can only issue two
17967 instructions together if the first one is 8-byte aligned.  When this
17968 option is enabled, GCC aligns pairs of instructions that it
17969 thinks should execute in parallel.
17970
17971 This option only has an effect when optimizing for the VR4130.
17972 It normally makes code faster, but at the expense of making it bigger.
17973 It is enabled by default at optimization level @option{-O3}.
17974
17975 @item -msynci
17976 @itemx -mno-synci
17977 @opindex msynci
17978 Enable (disable) generation of @code{synci} instructions on
17979 architectures that support it.  The @code{synci} instructions (if
17980 enabled) are generated when @code{__builtin___clear_cache} is
17981 compiled.
17982
17983 This option defaults to @option{-mno-synci}, but the default can be
17984 overridden by configuring GCC with @option{--with-synci}.
17985
17986 When compiling code for single processor systems, it is generally safe
17987 to use @code{synci}.  However, on many multi-core (SMP) systems, it
17988 does not invalidate the instruction caches on all cores and may lead
17989 to undefined behavior.
17990
17991 @item -mrelax-pic-calls
17992 @itemx -mno-relax-pic-calls
17993 @opindex mrelax-pic-calls
17994 Try to turn PIC calls that are normally dispatched via register
17995 @code{$25} into direct calls.  This is only possible if the linker can
17996 resolve the destination at link-time and if the destination is within
17997 range for a direct call.
17998
17999 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18000 an assembler and a linker that support the @code{.reloc} assembly
18001 directive and @option{-mexplicit-relocs} is in effect.  With
18002 @option{-mno-explicit-relocs}, this optimization can be performed by the
18003 assembler and the linker alone without help from the compiler.
18004
18005 @item -mmcount-ra-address
18006 @itemx -mno-mcount-ra-address
18007 @opindex mmcount-ra-address
18008 @opindex mno-mcount-ra-address
18009 Emit (do not emit) code that allows @code{_mcount} to modify the
18010 calling function's return address.  When enabled, this option extends
18011 the usual @code{_mcount} interface with a new @var{ra-address}
18012 parameter, which has type @code{intptr_t *} and is passed in register
18013 @code{$12}.  @code{_mcount} can then modify the return address by
18014 doing both of the following:
18015 @itemize
18016 @item
18017 Returning the new address in register @code{$31}.
18018 @item
18019 Storing the new address in @code{*@var{ra-address}},
18020 if @var{ra-address} is nonnull.
18021 @end itemize
18022
18023 The default is @option{-mno-mcount-ra-address}.
18024
18025 @end table
18026
18027 @node MMIX Options
18028 @subsection MMIX Options
18029 @cindex MMIX Options
18030
18031 These options are defined for the MMIX:
18032
18033 @table @gcctabopt
18034 @item -mlibfuncs
18035 @itemx -mno-libfuncs
18036 @opindex mlibfuncs
18037 @opindex mno-libfuncs
18038 Specify that intrinsic library functions are being compiled, passing all
18039 values in registers, no matter the size.
18040
18041 @item -mepsilon
18042 @itemx -mno-epsilon
18043 @opindex mepsilon
18044 @opindex mno-epsilon
18045 Generate floating-point comparison instructions that compare with respect
18046 to the @code{rE} epsilon register.
18047
18048 @item -mabi=mmixware
18049 @itemx -mabi=gnu
18050 @opindex mabi=mmixware
18051 @opindex mabi=gnu
18052 Generate code that passes function parameters and return values that (in
18053 the called function) are seen as registers @code{$0} and up, as opposed to
18054 the GNU ABI which uses global registers @code{$231} and up.
18055
18056 @item -mzero-extend
18057 @itemx -mno-zero-extend
18058 @opindex mzero-extend
18059 @opindex mno-zero-extend
18060 When reading data from memory in sizes shorter than 64 bits, use (do not
18061 use) zero-extending load instructions by default, rather than
18062 sign-extending ones.
18063
18064 @item -mknuthdiv
18065 @itemx -mno-knuthdiv
18066 @opindex mknuthdiv
18067 @opindex mno-knuthdiv
18068 Make the result of a division yielding a remainder have the same sign as
18069 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
18070 remainder follows the sign of the dividend.  Both methods are
18071 arithmetically valid, the latter being almost exclusively used.
18072
18073 @item -mtoplevel-symbols
18074 @itemx -mno-toplevel-symbols
18075 @opindex mtoplevel-symbols
18076 @opindex mno-toplevel-symbols
18077 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18078 code can be used with the @code{PREFIX} assembly directive.
18079
18080 @item -melf
18081 @opindex melf
18082 Generate an executable in the ELF format, rather than the default
18083 @samp{mmo} format used by the @command{mmix} simulator.
18084
18085 @item -mbranch-predict
18086 @itemx -mno-branch-predict
18087 @opindex mbranch-predict
18088 @opindex mno-branch-predict
18089 Use (do not use) the probable-branch instructions, when static branch
18090 prediction indicates a probable branch.
18091
18092 @item -mbase-addresses
18093 @itemx -mno-base-addresses
18094 @opindex mbase-addresses
18095 @opindex mno-base-addresses
18096 Generate (do not generate) code that uses @emph{base addresses}.  Using a
18097 base address automatically generates a request (handled by the assembler
18098 and the linker) for a constant to be set up in a global register.  The
18099 register is used for one or more base address requests within the range 0
18100 to 255 from the value held in the register.  The generally leads to short
18101 and fast code, but the number of different data items that can be
18102 addressed is limited.  This means that a program that uses lots of static
18103 data may require @option{-mno-base-addresses}.
18104
18105 @item -msingle-exit
18106 @itemx -mno-single-exit
18107 @opindex msingle-exit
18108 @opindex mno-single-exit
18109 Force (do not force) generated code to have a single exit point in each
18110 function.
18111 @end table
18112
18113 @node MN10300 Options
18114 @subsection MN10300 Options
18115 @cindex MN10300 options
18116
18117 These @option{-m} options are defined for Matsushita MN10300 architectures:
18118
18119 @table @gcctabopt
18120 @item -mmult-bug
18121 @opindex mmult-bug
18122 Generate code to avoid bugs in the multiply instructions for the MN10300
18123 processors.  This is the default.
18124
18125 @item -mno-mult-bug
18126 @opindex mno-mult-bug
18127 Do not generate code to avoid bugs in the multiply instructions for the
18128 MN10300 processors.
18129
18130 @item -mam33
18131 @opindex mam33
18132 Generate code using features specific to the AM33 processor.
18133
18134 @item -mno-am33
18135 @opindex mno-am33
18136 Do not generate code using features specific to the AM33 processor.  This
18137 is the default.
18138
18139 @item -mam33-2
18140 @opindex mam33-2
18141 Generate code using features specific to the AM33/2.0 processor.
18142
18143 @item -mam34
18144 @opindex mam34
18145 Generate code using features specific to the AM34 processor.
18146
18147 @item -mtune=@var{cpu-type}
18148 @opindex mtune
18149 Use the timing characteristics of the indicated CPU type when
18150 scheduling instructions.  This does not change the targeted processor
18151 type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
18152 @samp{am33-2} or @samp{am34}.
18153
18154 @item -mreturn-pointer-on-d0
18155 @opindex mreturn-pointer-on-d0
18156 When generating a function that returns a pointer, return the pointer
18157 in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
18158 only in @code{a0}, and attempts to call such functions without a prototype
18159 result in errors.  Note that this option is on by default; use
18160 @option{-mno-return-pointer-on-d0} to disable it.
18161
18162 @item -mno-crt0
18163 @opindex mno-crt0
18164 Do not link in the C run-time initialization object file.
18165
18166 @item -mrelax
18167 @opindex mrelax
18168 Indicate to the linker that it should perform a relaxation optimization pass
18169 to shorten branches, calls and absolute memory addresses.  This option only
18170 has an effect when used on the command line for the final link step.
18171
18172 This option makes symbolic debugging impossible.
18173
18174 @item -mliw
18175 @opindex mliw
18176 Allow the compiler to generate @emph{Long Instruction Word}
18177 instructions if the target is the @samp{AM33} or later.  This is the
18178 default.  This option defines the preprocessor macro @code{__LIW__}.
18179
18180 @item -mnoliw
18181 @opindex mnoliw
18182 Do not allow the compiler to generate @emph{Long Instruction Word}
18183 instructions.  This option defines the preprocessor macro
18184 @code{__NO_LIW__}.
18185
18186 @item -msetlb
18187 @opindex msetlb
18188 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18189 instructions if the target is the @samp{AM33} or later.  This is the
18190 default.  This option defines the preprocessor macro @code{__SETLB__}.
18191
18192 @item -mnosetlb
18193 @opindex mnosetlb
18194 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18195 instructions.  This option defines the preprocessor macro
18196 @code{__NO_SETLB__}.
18197
18198 @end table
18199
18200 @node Moxie Options
18201 @subsection Moxie Options
18202 @cindex Moxie Options
18203
18204 @table @gcctabopt
18205
18206 @item -meb
18207 @opindex meb
18208 Generate big-endian code.  This is the default for @samp{moxie-*-*}
18209 configurations.
18210
18211 @item -mel
18212 @opindex mel
18213 Generate little-endian code.
18214
18215 @item -mmul.x
18216 @opindex mmul.x
18217 Generate mul.x and umul.x instructions.  This is the default for
18218 @samp{moxiebox-*-*} configurations.
18219
18220 @item -mno-crt0
18221 @opindex mno-crt0
18222 Do not link in the C run-time initialization object file.
18223
18224 @end table
18225
18226 @node MSP430 Options
18227 @subsection MSP430 Options
18228 @cindex MSP430 Options
18229
18230 These options are defined for the MSP430:
18231
18232 @table @gcctabopt
18233
18234 @item -masm-hex
18235 @opindex masm-hex
18236 Force assembly output to always use hex constants.  Normally such
18237 constants are signed decimals, but this option is available for
18238 testsuite and/or aesthetic purposes.
18239
18240 @item -mmcu=
18241 @opindex mmcu=
18242 Select the MCU to target.  This is used to create a C preprocessor
18243 symbol based upon the MCU name, converted to upper case and pre- and
18244 post-fixed with @samp{__}.  This in turn is used by the
18245 @file{msp430.h} header file to select an MCU-specific supplementary
18246 header file.
18247
18248 The option also sets the ISA to use.  If the MCU name is one that is
18249 known to only support the 430 ISA then that is selected, otherwise the
18250 430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
18251 used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
18252 name selects the 430X ISA.
18253
18254 In addition an MCU-specific linker script is added to the linker
18255 command line.  The script's name is the name of the MCU with
18256 @file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18257 command line defines the C preprocessor symbol @code{__XXX__} and
18258 cause the linker to search for a script called @file{xxx.ld}.
18259
18260 This option is also passed on to the assembler.
18261
18262 @item -mcpu=
18263 @opindex mcpu=
18264 Specifies the ISA to use.  Accepted values are @samp{msp430},
18265 @samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
18266 @option{-mmcu=} option should be used to select the ISA.
18267
18268 @item -msim
18269 @opindex msim
18270 Link to the simulator runtime libraries and linker script.  Overrides
18271 any scripts that would be selected by the @option{-mmcu=} option.
18272
18273 @item -mlarge
18274 @opindex mlarge
18275 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18276
18277 @item -msmall
18278 @opindex msmall
18279 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18280
18281 @item -mrelax
18282 @opindex mrelax
18283 This option is passed to the assembler and linker, and allows the
18284 linker to perform certain optimizations that cannot be done until
18285 the final link.
18286
18287 @item mhwmult=
18288 @opindex mhwmult=
18289 Describes the type of hardware multiply supported by the target.
18290 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18291 for the original 16-bit-only multiply supported by early MCUs.
18292 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18293 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18294 A value of @samp{auto} can also be given.  This tells GCC to deduce
18295 the hardware multiply support based upon the MCU name provided by the
18296 @option{-mmcu} option.  If no @option{-mmcu} option is specified then
18297 @samp{32bit} hardware multiply support is assumed.  @samp{auto} is the
18298 default setting.
18299
18300 Hardware multiplies are normally performed by calling a library
18301 routine.  This saves space in the generated code.  When compiling at
18302 @option{-O3} or higher however the hardware multiplier is invoked
18303 inline.  This makes for bigger, but faster code.
18304
18305 The hardware multiply routines disable interrupts whilst running and
18306 restore the previous interrupt state when they finish.  This makes
18307 them safe to use inside interrupt handlers as well as in normal code.
18308
18309 @item -minrt
18310 @opindex minrt
18311 Enable the use of a minimum runtime environment - no static
18312 initializers or constructors.  This is intended for memory-constrained
18313 devices.  The compiler includes special symbols in some objects
18314 that tell the linker and runtime which code fragments are required.
18315
18316 @item -mcode-region=
18317 @itemx -mdata-region=
18318 @opindex mcode-region
18319 @opindex mdata-region
18320 These options tell the compiler where to place functions and data that
18321 do not have one of the @code{lower}, @code{upper}, @code{either} or
18322 @code{section} attributes.  Possible values are @code{lower},
18323 @code{upper}, @code{either} or @code{any}.  The first three behave
18324 like the corresponding attribute.  The fourth possible value -
18325 @code{any} - is the default.  It leaves placement entirely up to the
18326 linker script and how it assigns the standard sections (.text, .data
18327 etc) to the memory regions.
18328
18329 @end table
18330
18331 @node NDS32 Options
18332 @subsection NDS32 Options
18333 @cindex NDS32 Options
18334
18335 These options are defined for NDS32 implementations:
18336
18337 @table @gcctabopt
18338
18339 @item -mbig-endian
18340 @opindex mbig-endian
18341 Generate code in big-endian mode.
18342
18343 @item -mlittle-endian
18344 @opindex mlittle-endian
18345 Generate code in little-endian mode.
18346
18347 @item -mreduced-regs
18348 @opindex mreduced-regs
18349 Use reduced-set registers for register allocation.
18350
18351 @item -mfull-regs
18352 @opindex mfull-regs
18353 Use full-set registers for register allocation.
18354
18355 @item -mcmov
18356 @opindex mcmov
18357 Generate conditional move instructions.
18358
18359 @item -mno-cmov
18360 @opindex mno-cmov
18361 Do not generate conditional move instructions.
18362
18363 @item -mperf-ext
18364 @opindex mperf-ext
18365 Generate performance extension instructions.
18366
18367 @item -mno-perf-ext
18368 @opindex mno-perf-ext
18369 Do not generate performance extension instructions.
18370
18371 @item -mv3push
18372 @opindex mv3push
18373 Generate v3 push25/pop25 instructions.
18374
18375 @item -mno-v3push
18376 @opindex mno-v3push
18377 Do not generate v3 push25/pop25 instructions.
18378
18379 @item -m16-bit
18380 @opindex m16-bit
18381 Generate 16-bit instructions.
18382
18383 @item -mno-16-bit
18384 @opindex mno-16-bit
18385 Do not generate 16-bit instructions.
18386
18387 @item -misr-vector-size=@var{num}
18388 @opindex misr-vector-size
18389 Specify the size of each interrupt vector, which must be 4 or 16.
18390
18391 @item -mcache-block-size=@var{num}
18392 @opindex mcache-block-size
18393 Specify the size of each cache block,
18394 which must be a power of 2 between 4 and 512.
18395
18396 @item -march=@var{arch}
18397 @opindex march
18398 Specify the name of the target architecture.
18399
18400 @item -mcmodel=@var{code-model}
18401 @opindex mcmodel
18402 Set the code model to one of
18403 @table @asis
18404 @item @samp{small}
18405 All the data and read-only data segments must be within 512KB addressing space.
18406 The text segment must be within 16MB addressing space.
18407 @item @samp{medium}
18408 The data segment must be within 512KB while the read-only data segment can be
18409 within 4GB addressing space.  The text segment should be still within 16MB
18410 addressing space.
18411 @item @samp{large}
18412 All the text and data segments can be within 4GB addressing space.
18413 @end table
18414
18415 @item -mctor-dtor
18416 @opindex mctor-dtor
18417 Enable constructor/destructor feature.
18418
18419 @item -mrelax
18420 @opindex mrelax
18421 Guide linker to relax instructions.
18422
18423 @end table
18424
18425 @node Nios II Options
18426 @subsection Nios II Options
18427 @cindex Nios II options
18428 @cindex Altera Nios II options
18429
18430 These are the options defined for the Altera Nios II processor.
18431
18432 @table @gcctabopt
18433
18434 @item -G @var{num}
18435 @opindex G
18436 @cindex smaller data references
18437 Put global and static objects less than or equal to @var{num} bytes
18438 into the small data or BSS sections instead of the normal data or BSS
18439 sections.  The default value of @var{num} is 8.
18440
18441 @item -mgpopt=@var{option}
18442 @item -mgpopt
18443 @itemx -mno-gpopt
18444 @opindex mgpopt
18445 @opindex mno-gpopt
18446 Generate (do not generate) GP-relative accesses.  The following 
18447 @var{option} names are recognized:
18448
18449 @table @samp
18450
18451 @item none
18452 Do not generate GP-relative accesses.
18453
18454 @item local
18455 Generate GP-relative accesses for small data objects that are not 
18456 external or weak.  Also use GP-relative addressing for objects that
18457 have been explicitly placed in a small data section via a @code{section}
18458 attribute.
18459
18460 @item global
18461 As for @samp{local}, but also generate GP-relative accesses for
18462 small data objects that are external or weak.  If you use this option,
18463 you must ensure that all parts of your program (including libraries) are
18464 compiled with the same @option{-G} setting.
18465
18466 @item data
18467 Generate GP-relative accesses for all data objects in the program.  If you
18468 use this option, the entire data and BSS segments
18469 of your program must fit in 64K of memory and you must use an appropriate
18470 linker script to allocate them within the addressible range of the
18471 global pointer.
18472
18473 @item all
18474 Generate GP-relative addresses for function pointers as well as data
18475 pointers.  If you use this option, the entire text, data, and BSS segments
18476 of your program must fit in 64K of memory and you must use an appropriate
18477 linker script to allocate them within the addressible range of the
18478 global pointer.
18479
18480 @end table
18481
18482 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18483 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18484
18485 The default is @option{-mgpopt} except when @option{-fpic} or
18486 @option{-fPIC} is specified to generate position-independent code.
18487 Note that the Nios II ABI does not permit GP-relative accesses from
18488 shared libraries.
18489
18490 You may need to specify @option{-mno-gpopt} explicitly when building
18491 programs that include large amounts of small data, including large
18492 GOT data sections.  In this case, the 16-bit offset for GP-relative
18493 addressing may not be large enough to allow access to the entire 
18494 small data section.
18495
18496 @item -mel
18497 @itemx -meb
18498 @opindex mel
18499 @opindex meb
18500 Generate little-endian (default) or big-endian (experimental) code,
18501 respectively.
18502
18503 @item -mbypass-cache
18504 @itemx -mno-bypass-cache
18505 @opindex mno-bypass-cache
18506 @opindex mbypass-cache
18507 Force all load and store instructions to always bypass cache by 
18508 using I/O variants of the instructions. The default is not to
18509 bypass the cache.
18510
18511 @item -mno-cache-volatile 
18512 @itemx -mcache-volatile       
18513 @opindex mcache-volatile 
18514 @opindex mno-cache-volatile
18515 Volatile memory access bypass the cache using the I/O variants of 
18516 the load and store instructions. The default is not to bypass the cache.
18517
18518 @item -mno-fast-sw-div
18519 @itemx -mfast-sw-div
18520 @opindex mno-fast-sw-div
18521 @opindex mfast-sw-div
18522 Do not use table-based fast divide for small numbers. The default 
18523 is to use the fast divide at @option{-O3} and above.
18524
18525 @item -mno-hw-mul
18526 @itemx -mhw-mul
18527 @itemx -mno-hw-mulx
18528 @itemx -mhw-mulx
18529 @itemx -mno-hw-div
18530 @itemx -mhw-div
18531 @opindex mno-hw-mul
18532 @opindex mhw-mul
18533 @opindex mno-hw-mulx
18534 @opindex mhw-mulx
18535 @opindex mno-hw-div
18536 @opindex mhw-div
18537 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
18538 instructions by the compiler. The default is to emit @code{mul}
18539 and not emit @code{div} and @code{mulx}.
18540
18541 @item -mcustom-@var{insn}=@var{N}
18542 @itemx -mno-custom-@var{insn}
18543 @opindex mcustom-@var{insn}
18544 @opindex mno-custom-@var{insn}
18545 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18546 custom instruction with encoding @var{N} when generating code that uses 
18547 @var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
18548 instruction 253 for single-precision floating-point add operations instead
18549 of the default behavior of using a library call.
18550
18551 The following values of @var{insn} are supported.  Except as otherwise
18552 noted, floating-point operations are expected to be implemented with
18553 normal IEEE 754 semantics and correspond directly to the C operators or the
18554 equivalent GCC built-in functions (@pxref{Other Builtins}).
18555
18556 Single-precision floating point:
18557 @table @asis
18558
18559 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18560 Binary arithmetic operations.
18561
18562 @item @samp{fnegs}
18563 Unary negation.
18564
18565 @item @samp{fabss}
18566 Unary absolute value.
18567
18568 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18569 Comparison operations.
18570
18571 @item @samp{fmins}, @samp{fmaxs}
18572 Floating-point minimum and maximum.  These instructions are only
18573 generated if @option{-ffinite-math-only} is specified.
18574
18575 @item @samp{fsqrts}
18576 Unary square root operation.
18577
18578 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18579 Floating-point trigonometric and exponential functions.  These instructions
18580 are only generated if @option{-funsafe-math-optimizations} is also specified.
18581
18582 @end table
18583
18584 Double-precision floating point:
18585 @table @asis
18586
18587 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18588 Binary arithmetic operations.
18589
18590 @item @samp{fnegd}
18591 Unary negation.
18592
18593 @item @samp{fabsd}
18594 Unary absolute value.
18595
18596 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18597 Comparison operations.
18598
18599 @item @samp{fmind}, @samp{fmaxd}
18600 Double-precision minimum and maximum.  These instructions are only
18601 generated if @option{-ffinite-math-only} is specified.
18602
18603 @item @samp{fsqrtd}
18604 Unary square root operation.
18605
18606 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18607 Double-precision trigonometric and exponential functions.  These instructions
18608 are only generated if @option{-funsafe-math-optimizations} is also specified.
18609
18610 @end table
18611
18612 Conversions:
18613 @table @asis
18614 @item @samp{fextsd}
18615 Conversion from single precision to double precision.
18616
18617 @item @samp{ftruncds}
18618 Conversion from double precision to single precision.
18619
18620 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18621 Conversion from floating point to signed or unsigned integer types, with
18622 truncation towards zero.
18623
18624 @item @samp{round}
18625 Conversion from single-precision floating point to signed integer,
18626 rounding to the nearest integer and ties away from zero.
18627 This corresponds to the @code{__builtin_lroundf} function when
18628 @option{-fno-math-errno} is used.
18629
18630 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18631 Conversion from signed or unsigned integer types to floating-point types.
18632
18633 @end table
18634
18635 In addition, all of the following transfer instructions for internal
18636 registers X and Y must be provided to use any of the double-precision
18637 floating-point instructions.  Custom instructions taking two
18638 double-precision source operands expect the first operand in the
18639 64-bit register X.  The other operand (or only operand of a unary
18640 operation) is given to the custom arithmetic instruction with the
18641 least significant half in source register @var{src1} and the most
18642 significant half in @var{src2}.  A custom instruction that returns a
18643 double-precision result returns the most significant 32 bits in the
18644 destination register and the other half in 32-bit register Y.  
18645 GCC automatically generates the necessary code sequences to write
18646 register X and/or read register Y when double-precision floating-point
18647 instructions are used.
18648
18649 @table @asis
18650
18651 @item @samp{fwrx}
18652 Write @var{src1} into the least significant half of X and @var{src2} into
18653 the most significant half of X.
18654
18655 @item @samp{fwry}
18656 Write @var{src1} into Y.
18657
18658 @item @samp{frdxhi}, @samp{frdxlo}
18659 Read the most or least (respectively) significant half of X and store it in
18660 @var{dest}.
18661
18662 @item @samp{frdy}
18663 Read the value of Y and store it into @var{dest}.
18664 @end table
18665
18666 Note that you can gain more local control over generation of Nios II custom
18667 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18668 and @code{target("no-custom-@var{insn}")} function attributes
18669 (@pxref{Function Attributes})
18670 or pragmas (@pxref{Function Specific Option Pragmas}).
18671
18672 @item -mcustom-fpu-cfg=@var{name}
18673 @opindex mcustom-fpu-cfg
18674
18675 This option enables a predefined, named set of custom instruction encodings
18676 (see @option{-mcustom-@var{insn}} above).  
18677 Currently, the following sets are defined:
18678
18679 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18680 @gccoptlist{-mcustom-fmuls=252 @gol
18681 -mcustom-fadds=253 @gol
18682 -mcustom-fsubs=254 @gol
18683 -fsingle-precision-constant}
18684
18685 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18686 @gccoptlist{-mcustom-fmuls=252 @gol
18687 -mcustom-fadds=253 @gol
18688 -mcustom-fsubs=254 @gol
18689 -mcustom-fdivs=255 @gol
18690 -fsingle-precision-constant}
18691
18692 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18693 @gccoptlist{-mcustom-floatus=243 @gol
18694 -mcustom-fixsi=244 @gol
18695 -mcustom-floatis=245 @gol
18696 -mcustom-fcmpgts=246 @gol
18697 -mcustom-fcmples=249 @gol
18698 -mcustom-fcmpeqs=250 @gol
18699 -mcustom-fcmpnes=251 @gol
18700 -mcustom-fmuls=252 @gol
18701 -mcustom-fadds=253 @gol
18702 -mcustom-fsubs=254 @gol
18703 -mcustom-fdivs=255 @gol
18704 -fsingle-precision-constant}
18705
18706 Custom instruction assignments given by individual
18707 @option{-mcustom-@var{insn}=} options override those given by
18708 @option{-mcustom-fpu-cfg=}, regardless of the
18709 order of the options on the command line.
18710
18711 Note that you can gain more local control over selection of a FPU
18712 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18713 function attribute (@pxref{Function Attributes})
18714 or pragma (@pxref{Function Specific Option Pragmas}).
18715
18716 @end table
18717
18718 These additional @samp{-m} options are available for the Altera Nios II
18719 ELF (bare-metal) target:
18720
18721 @table @gcctabopt
18722
18723 @item -mhal
18724 @opindex mhal
18725 Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
18726 startup and termination code, and is typically used in conjunction with
18727 @option{-msys-crt0=} to specify the location of the alternate startup code
18728 provided by the HAL BSP.
18729
18730 @item -msmallc
18731 @opindex msmallc
18732 Link with a limited version of the C library, @option{-lsmallc}, rather than
18733 Newlib.
18734
18735 @item -msys-crt0=@var{startfile}
18736 @opindex msys-crt0
18737 @var{startfile} is the file name of the startfile (crt0) to use 
18738 when linking.  This option is only useful in conjunction with @option{-mhal}.
18739
18740 @item -msys-lib=@var{systemlib}
18741 @opindex msys-lib
18742 @var{systemlib} is the library name of the library that provides
18743 low-level system calls required by the C library,
18744 e.g. @code{read} and @code{write}.
18745 This option is typically used to link with a library provided by a HAL BSP.
18746
18747 @end table
18748
18749 @node Nvidia PTX Options
18750 @subsection Nvidia PTX Options
18751 @cindex Nvidia PTX options
18752 @cindex nvptx options
18753
18754 These options are defined for Nvidia PTX:
18755
18756 @table @gcctabopt
18757
18758 @item -m32
18759 @itemx -m64
18760 @opindex m32
18761 @opindex m64
18762 Generate code for 32-bit or 64-bit ABI.
18763
18764 @item -mmainkernel
18765 @opindex mmainkernel
18766 Link in code for a __main kernel.  This is for stand-alone instead of
18767 offloading execution.
18768
18769 @end table
18770
18771 @node PDP-11 Options
18772 @subsection PDP-11 Options
18773 @cindex PDP-11 Options
18774
18775 These options are defined for the PDP-11:
18776
18777 @table @gcctabopt
18778 @item -mfpu
18779 @opindex mfpu
18780 Use hardware FPP floating point.  This is the default.  (FIS floating
18781 point on the PDP-11/40 is not supported.)
18782
18783 @item -msoft-float
18784 @opindex msoft-float
18785 Do not use hardware floating point.
18786
18787 @item -mac0
18788 @opindex mac0
18789 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18790
18791 @item -mno-ac0
18792 @opindex mno-ac0
18793 Return floating-point results in memory.  This is the default.
18794
18795 @item -m40
18796 @opindex m40
18797 Generate code for a PDP-11/40.
18798
18799 @item -m45
18800 @opindex m45
18801 Generate code for a PDP-11/45.  This is the default.
18802
18803 @item -m10
18804 @opindex m10
18805 Generate code for a PDP-11/10.
18806
18807 @item -mbcopy-builtin
18808 @opindex mbcopy-builtin
18809 Use inline @code{movmemhi} patterns for copying memory.  This is the
18810 default.
18811
18812 @item -mbcopy
18813 @opindex mbcopy
18814 Do not use inline @code{movmemhi} patterns for copying memory.
18815
18816 @item -mint16
18817 @itemx -mno-int32
18818 @opindex mint16
18819 @opindex mno-int32
18820 Use 16-bit @code{int}.  This is the default.
18821
18822 @item -mint32
18823 @itemx -mno-int16
18824 @opindex mint32
18825 @opindex mno-int16
18826 Use 32-bit @code{int}.
18827
18828 @item -mfloat64
18829 @itemx -mno-float32
18830 @opindex mfloat64
18831 @opindex mno-float32
18832 Use 64-bit @code{float}.  This is the default.
18833
18834 @item -mfloat32
18835 @itemx -mno-float64
18836 @opindex mfloat32
18837 @opindex mno-float64
18838 Use 32-bit @code{float}.
18839
18840 @item -mabshi
18841 @opindex mabshi
18842 Use @code{abshi2} pattern.  This is the default.
18843
18844 @item -mno-abshi
18845 @opindex mno-abshi
18846 Do not use @code{abshi2} pattern.
18847
18848 @item -mbranch-expensive
18849 @opindex mbranch-expensive
18850 Pretend that branches are expensive.  This is for experimenting with
18851 code generation only.
18852
18853 @item -mbranch-cheap
18854 @opindex mbranch-cheap
18855 Do not pretend that branches are expensive.  This is the default.
18856
18857 @item -munix-asm
18858 @opindex munix-asm
18859 Use Unix assembler syntax.  This is the default when configured for
18860 @samp{pdp11-*-bsd}.
18861
18862 @item -mdec-asm
18863 @opindex mdec-asm
18864 Use DEC assembler syntax.  This is the default when configured for any
18865 PDP-11 target other than @samp{pdp11-*-bsd}.
18866 @end table
18867
18868 @node picoChip Options
18869 @subsection picoChip Options
18870 @cindex picoChip options
18871
18872 These @samp{-m} options are defined for picoChip implementations:
18873
18874 @table @gcctabopt
18875
18876 @item -mae=@var{ae_type}
18877 @opindex mcpu
18878 Set the instruction set, register set, and instruction scheduling
18879 parameters for array element type @var{ae_type}.  Supported values
18880 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18881
18882 @option{-mae=ANY} selects a completely generic AE type.  Code
18883 generated with this option runs on any of the other AE types.  The
18884 code is not as efficient as it would be if compiled for a specific
18885 AE type, and some types of operation (e.g., multiplication) do not
18886 work properly on all types of AE.
18887
18888 @option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
18889 for compiled code, and is the default.
18890
18891 @option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
18892 option may suffer from poor performance of byte (char) manipulation,
18893 since the DSP AE does not provide hardware support for byte load/stores.
18894
18895 @item -msymbol-as-address
18896 Enable the compiler to directly use a symbol name as an address in a
18897 load/store instruction, without first loading it into a
18898 register.  Typically, the use of this option generates larger
18899 programs, which run faster than when the option isn't used.  However, the
18900 results vary from program to program, so it is left as a user option,
18901 rather than being permanently enabled.
18902
18903 @item -mno-inefficient-warnings
18904 Disables warnings about the generation of inefficient code.  These
18905 warnings can be generated, for example, when compiling code that
18906 performs byte-level memory operations on the MAC AE type.  The MAC AE has
18907 no hardware support for byte-level memory operations, so all byte
18908 load/stores must be synthesized from word load/store operations.  This is
18909 inefficient and a warning is generated to indicate
18910 that you should rewrite the code to avoid byte operations, or to target
18911 an AE type that has the necessary hardware support.  This option disables
18912 these warnings.
18913
18914 @end table
18915
18916 @node PowerPC Options
18917 @subsection PowerPC Options
18918 @cindex PowerPC options
18919
18920 These are listed under @xref{RS/6000 and PowerPC Options}.
18921
18922 @node RL78 Options
18923 @subsection RL78 Options
18924 @cindex RL78 Options
18925
18926 @table @gcctabopt
18927
18928 @item -msim
18929 @opindex msim
18930 Links in additional target libraries to support operation within a
18931 simulator.
18932
18933 @item -mmul=none
18934 @itemx -mmul=g10
18935 @itemx -mmul=g13
18936 @itemx -mmul=g14
18937 @itemx -mmul=rl78
18938 @opindex mmul
18939 Specifies the type of hardware multiplication and division support to
18940 be used.  The simplest is @code{none}, which uses software for both
18941 multiplication and division.  This is the default.  The @code{g13}
18942 value is for the hardware multiply/divide peripheral found on the
18943 RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
18944 the multiplication and division instructions supported by the RL78/G14
18945 (S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
18946 the value @code{mg10} is an alias for @code{none}.
18947
18948 In addition a C preprocessor macro is defined, based upon the setting
18949 of this option.  Possible values are: @code{__RL78_MUL_NONE__},
18950 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18951
18952 @item -mcpu=g10
18953 @itemx -mcpu=g13
18954 @itemx -mcpu=g14
18955 @itemx -mcpu=rl78
18956 @opindex mcpu
18957 Specifies the RL78 core to target.  The default is the G14 core, also
18958 known as an S3 core or just RL78.  The G13 or S2 core does not have
18959 multiply or divide instructions, instead it uses a hardware peripheral
18960 for these operations.  The G10 or S1 core does not have register
18961 banks, so it uses a different calling convention.
18962
18963 If this option is set it also selects the type of hardware multiply
18964 support to use, unless this is overridden by an explicit
18965 @option{-mmul=none} option on the command line.  Thus specifying
18966 @option{-mcpu=g13} enables the use of the G13 hardware multiply
18967 peripheral and specifying @option{-mcpu=g10} disables the use of
18968 hardware multipications altogether.
18969
18970 Note, although the RL78/G14 core is the default target, specifying
18971 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
18972 change the behaviour of the toolchain since it also enables G14
18973 hardware multiply support.  If these options are not specified on the
18974 command line then software multiplication routines will be used even
18975 though the code targets the RL78 core.  This is for backwards
18976 compatibility with older toolchains which did not have hardware
18977 multiply and divide support.
18978
18979 In addition a C preprocessor macro is defined, based upon the setting
18980 of this option.  Possible values are: @code{__RL78_G10__},
18981 @code{__RL78_G13__} or @code{__RL78_G14__}.
18982
18983 @item -mg10
18984 @itemx -mg13
18985 @itemx -mg14
18986 @itemx -mrl78
18987 @opindex mg10
18988 @opindex mg13
18989 @opindex mg14
18990 @opindex mrl78
18991 These are aliases for the corresponding @option{-mcpu=} option.  They
18992 are provided for backwards compatibility.
18993
18994 @item -mallregs
18995 @opindex mallregs
18996 Allow the compiler to use all of the available registers.  By default
18997 registers @code{r24..r31} are reserved for use in interrupt handlers.
18998 With this option enabled these registers can be used in ordinary
18999 functions as well.
19000
19001 @item -m64bit-doubles
19002 @itemx -m32bit-doubles
19003 @opindex m64bit-doubles
19004 @opindex m32bit-doubles
19005 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19006 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
19007 @option{-m32bit-doubles}.
19008
19009 @end table
19010
19011 @node RS/6000 and PowerPC Options
19012 @subsection IBM RS/6000 and PowerPC Options
19013 @cindex RS/6000 and PowerPC Options
19014 @cindex IBM RS/6000 and PowerPC Options
19015
19016 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19017 @table @gcctabopt
19018 @item -mpowerpc-gpopt
19019 @itemx -mno-powerpc-gpopt
19020 @itemx -mpowerpc-gfxopt
19021 @itemx -mno-powerpc-gfxopt
19022 @need 800
19023 @itemx -mpowerpc64
19024 @itemx -mno-powerpc64
19025 @itemx -mmfcrf
19026 @itemx -mno-mfcrf
19027 @itemx -mpopcntb
19028 @itemx -mno-popcntb
19029 @itemx -mpopcntd
19030 @itemx -mno-popcntd
19031 @itemx -mfprnd
19032 @itemx -mno-fprnd
19033 @need 800
19034 @itemx -mcmpb
19035 @itemx -mno-cmpb
19036 @itemx -mmfpgpr
19037 @itemx -mno-mfpgpr
19038 @itemx -mhard-dfp
19039 @itemx -mno-hard-dfp
19040 @opindex mpowerpc-gpopt
19041 @opindex mno-powerpc-gpopt
19042 @opindex mpowerpc-gfxopt
19043 @opindex mno-powerpc-gfxopt
19044 @opindex mpowerpc64
19045 @opindex mno-powerpc64
19046 @opindex mmfcrf
19047 @opindex mno-mfcrf
19048 @opindex mpopcntb
19049 @opindex mno-popcntb
19050 @opindex mpopcntd
19051 @opindex mno-popcntd
19052 @opindex mfprnd
19053 @opindex mno-fprnd
19054 @opindex mcmpb
19055 @opindex mno-cmpb
19056 @opindex mmfpgpr
19057 @opindex mno-mfpgpr
19058 @opindex mhard-dfp
19059 @opindex mno-hard-dfp
19060 You use these options to specify which instructions are available on the
19061 processor you are using.  The default value of these options is
19062 determined when configuring GCC@.  Specifying the
19063 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19064 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
19065 rather than the options listed above.
19066
19067 Specifying @option{-mpowerpc-gpopt} allows
19068 GCC to use the optional PowerPC architecture instructions in the
19069 General Purpose group, including floating-point square root.  Specifying
19070 @option{-mpowerpc-gfxopt} allows GCC to
19071 use the optional PowerPC architecture instructions in the Graphics
19072 group, including floating-point select.
19073
19074 The @option{-mmfcrf} option allows GCC to generate the move from
19075 condition register field instruction implemented on the POWER4
19076 processor and other processors that support the PowerPC V2.01
19077 architecture.
19078 The @option{-mpopcntb} option allows GCC to generate the popcount and
19079 double-precision FP reciprocal estimate instruction implemented on the
19080 POWER5 processor and other processors that support the PowerPC V2.02
19081 architecture.
19082 The @option{-mpopcntd} option allows GCC to generate the popcount
19083 instruction implemented on the POWER7 processor and other processors
19084 that support the PowerPC V2.06 architecture.
19085 The @option{-mfprnd} option allows GCC to generate the FP round to
19086 integer instructions implemented on the POWER5+ processor and other
19087 processors that support the PowerPC V2.03 architecture.
19088 The @option{-mcmpb} option allows GCC to generate the compare bytes
19089 instruction implemented on the POWER6 processor and other processors
19090 that support the PowerPC V2.05 architecture.
19091 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19092 general-purpose register instructions implemented on the POWER6X
19093 processor and other processors that support the extended PowerPC V2.05
19094 architecture.
19095 The @option{-mhard-dfp} option allows GCC to generate the decimal
19096 floating-point instructions implemented on some POWER processors.
19097
19098 The @option{-mpowerpc64} option allows GCC to generate the additional
19099 64-bit instructions that are found in the full PowerPC64 architecture
19100 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
19101 @option{-mno-powerpc64}.
19102
19103 @item -mcpu=@var{cpu_type}
19104 @opindex mcpu
19105 Set architecture type, register usage, and
19106 instruction scheduling parameters for machine type @var{cpu_type}.
19107 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19108 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19109 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19110 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19111 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19112 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19113 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19114 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19115 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19116 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19117 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19118
19119 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19120 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19121 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19122 architecture machine types, with an appropriate, generic processor
19123 model assumed for scheduling purposes.
19124
19125 The other options specify a specific processor.  Code generated under
19126 those options runs best on that processor, and may not run at all on
19127 others.
19128
19129 The @option{-mcpu} options automatically enable or disable the
19130 following options:
19131
19132 @gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
19133 -mpopcntb -mpopcntd  -mpowerpc64 @gol
19134 -mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
19135 -msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
19136 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19137 -mquad-memory -mquad-memory-atomic}
19138
19139 The particular options set for any particular CPU varies between
19140 compiler versions, depending on what setting seems to produce optimal
19141 code for that CPU; it doesn't necessarily reflect the actual hardware's
19142 capabilities.  If you wish to set an individual option to a particular
19143 value, you may specify it after the @option{-mcpu} option, like
19144 @option{-mcpu=970 -mno-altivec}.
19145
19146 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19147 not enabled or disabled by the @option{-mcpu} option at present because
19148 AIX does not have full support for these options.  You may still
19149 enable or disable them individually if you're sure it'll work in your
19150 environment.
19151
19152 @item -mtune=@var{cpu_type}
19153 @opindex mtune
19154 Set the instruction scheduling parameters for machine type
19155 @var{cpu_type}, but do not set the architecture type or register usage,
19156 as @option{-mcpu=@var{cpu_type}} does.  The same
19157 values for @var{cpu_type} are used for @option{-mtune} as for
19158 @option{-mcpu}.  If both are specified, the code generated uses the
19159 architecture and registers set by @option{-mcpu}, but the
19160 scheduling parameters set by @option{-mtune}.
19161
19162 @item -mcmodel=small
19163 @opindex mcmodel=small
19164 Generate PowerPC64 code for the small model: The TOC is limited to
19165 64k.
19166
19167 @item -mcmodel=medium
19168 @opindex mcmodel=medium
19169 Generate PowerPC64 code for the medium model: The TOC and other static
19170 data may be up to a total of 4G in size.
19171
19172 @item -mcmodel=large
19173 @opindex mcmodel=large
19174 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19175 in size.  Other data and code is only limited by the 64-bit address
19176 space.
19177
19178 @item -maltivec
19179 @itemx -mno-altivec
19180 @opindex maltivec
19181 @opindex mno-altivec
19182 Generate code that uses (does not use) AltiVec instructions, and also
19183 enable the use of built-in functions that allow more direct access to
19184 the AltiVec instruction set.  You may also need to set
19185 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19186 enhancements.
19187
19188 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19189 @option{-maltivec=be}, the element order for Altivec intrinsics such
19190 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
19191 match array element order corresponding to the endianness of the
19192 target.  That is, element zero identifies the leftmost element in a
19193 vector register when targeting a big-endian platform, and identifies
19194 the rightmost element in a vector register when targeting a
19195 little-endian platform.
19196
19197 @item -maltivec=be
19198 @opindex maltivec=be
19199 Generate Altivec instructions using big-endian element order,
19200 regardless of whether the target is big- or little-endian.  This is
19201 the default when targeting a big-endian platform.
19202
19203 The element order is used to interpret element numbers in Altivec
19204 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19205 @code{vec_insert}.  By default, these match array element order
19206 corresponding to the endianness for the target.
19207
19208 @item -maltivec=le
19209 @opindex maltivec=le
19210 Generate Altivec instructions using little-endian element order,
19211 regardless of whether the target is big- or little-endian.  This is
19212 the default when targeting a little-endian platform.  This option is
19213 currently ignored when targeting a big-endian platform.
19214
19215 The element order is used to interpret element numbers in Altivec
19216 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19217 @code{vec_insert}.  By default, these match array element order
19218 corresponding to the endianness for the target.
19219
19220 @item -mvrsave
19221 @itemx -mno-vrsave
19222 @opindex mvrsave
19223 @opindex mno-vrsave
19224 Generate VRSAVE instructions when generating AltiVec code.
19225
19226 @item -mgen-cell-microcode
19227 @opindex mgen-cell-microcode
19228 Generate Cell microcode instructions.
19229
19230 @item -mwarn-cell-microcode
19231 @opindex mwarn-cell-microcode
19232 Warn when a Cell microcode instruction is emitted.  An example
19233 of a Cell microcode instruction is a variable shift.
19234
19235 @item -msecure-plt
19236 @opindex msecure-plt
19237 Generate code that allows @command{ld} and @command{ld.so}
19238 to build executables and shared
19239 libraries with non-executable @code{.plt} and @code{.got} sections.
19240 This is a PowerPC
19241 32-bit SYSV ABI option.
19242
19243 @item -mbss-plt
19244 @opindex mbss-plt
19245 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19246 fills in, and
19247 requires @code{.plt} and @code{.got}
19248 sections that are both writable and executable.
19249 This is a PowerPC 32-bit SYSV ABI option.
19250
19251 @item -misel
19252 @itemx -mno-isel
19253 @opindex misel
19254 @opindex mno-isel
19255 This switch enables or disables the generation of ISEL instructions.
19256
19257 @item -misel=@var{yes/no}
19258 This switch has been deprecated.  Use @option{-misel} and
19259 @option{-mno-isel} instead.
19260
19261 @item -mspe
19262 @itemx -mno-spe
19263 @opindex mspe
19264 @opindex mno-spe
19265 This switch enables or disables the generation of SPE simd
19266 instructions.
19267
19268 @item -mpaired
19269 @itemx -mno-paired
19270 @opindex mpaired
19271 @opindex mno-paired
19272 This switch enables or disables the generation of PAIRED simd
19273 instructions.
19274
19275 @item -mspe=@var{yes/no}
19276 This option has been deprecated.  Use @option{-mspe} and
19277 @option{-mno-spe} instead.
19278
19279 @item -mvsx
19280 @itemx -mno-vsx
19281 @opindex mvsx
19282 @opindex mno-vsx
19283 Generate code that uses (does not use) vector/scalar (VSX)
19284 instructions, and also enable the use of built-in functions that allow
19285 more direct access to the VSX instruction set.
19286
19287 @item -mcrypto
19288 @itemx -mno-crypto
19289 @opindex mcrypto
19290 @opindex mno-crypto
19291 Enable the use (disable) of the built-in functions that allow direct
19292 access to the cryptographic instructions that were added in version
19293 2.07 of the PowerPC ISA.
19294
19295 @item -mdirect-move
19296 @itemx -mno-direct-move
19297 @opindex mdirect-move
19298 @opindex mno-direct-move
19299 Generate code that uses (does not use) the instructions to move data
19300 between the general purpose registers and the vector/scalar (VSX)
19301 registers that were added in version 2.07 of the PowerPC ISA.
19302
19303 @item -mpower8-fusion
19304 @itemx -mno-power8-fusion
19305 @opindex mpower8-fusion
19306 @opindex mno-power8-fusion
19307 Generate code that keeps (does not keeps) some integer operations
19308 adjacent so that the instructions can be fused together on power8 and
19309 later processors.
19310
19311 @item -mpower8-vector
19312 @itemx -mno-power8-vector
19313 @opindex mpower8-vector
19314 @opindex mno-power8-vector
19315 Generate code that uses (does not use) the vector and scalar
19316 instructions that were added in version 2.07 of the PowerPC ISA.  Also
19317 enable the use of built-in functions that allow more direct access to
19318 the vector instructions.
19319
19320 @item -mquad-memory
19321 @itemx -mno-quad-memory
19322 @opindex mquad-memory
19323 @opindex mno-quad-memory
19324 Generate code that uses (does not use) the non-atomic quad word memory
19325 instructions.  The @option{-mquad-memory} option requires use of
19326 64-bit mode.
19327
19328 @item -mquad-memory-atomic
19329 @itemx -mno-quad-memory-atomic
19330 @opindex mquad-memory-atomic
19331 @opindex mno-quad-memory-atomic
19332 Generate code that uses (does not use) the atomic quad word memory
19333 instructions.  The @option{-mquad-memory-atomic} option requires use of
19334 64-bit mode.
19335
19336 @item -mupper-regs-df
19337 @itemx -mno-upper-regs-df
19338 @opindex mupper-regs-df
19339 @opindex mno-upper-regs-df
19340 Generate code that uses (does not use) the scalar double precision
19341 instructions that target all 64 registers in the vector/scalar
19342 floating point register set that were added in version 2.06 of the
19343 PowerPC ISA.  @option{-mupper-regs-df} is turned on by default if you
19344 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19345 @option{-mvsx} options.
19346
19347 @item -mupper-regs-sf
19348 @itemx -mno-upper-regs-sf
19349 @opindex mupper-regs-sf
19350 @opindex mno-upper-regs-sf
19351 Generate code that uses (does not use) the scalar single precision
19352 instructions that target all 64 registers in the vector/scalar
19353 floating point register set that were added in version 2.07 of the
19354 PowerPC ISA.  @option{-mupper-regs-sf} is turned on by default if you
19355 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19356 options.
19357
19358 @item -mupper-regs
19359 @itemx -mno-upper-regs
19360 @opindex mupper-regs
19361 @opindex mno-upper-regs
19362 Generate code that uses (does not use) the scalar
19363 instructions that target all 64 registers in the vector/scalar
19364 floating point register set, depending on the model of the machine.
19365
19366 If the @option{-mno-upper-regs} option is used, it turns off both
19367 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19368
19369 @item -mfloat-gprs=@var{yes/single/double/no}
19370 @itemx -mfloat-gprs
19371 @opindex mfloat-gprs
19372 This switch enables or disables the generation of floating-point
19373 operations on the general-purpose registers for architectures that
19374 support it.
19375
19376 The argument @samp{yes} or @samp{single} enables the use of
19377 single-precision floating-point operations.
19378
19379 The argument @samp{double} enables the use of single and
19380 double-precision floating-point operations.
19381
19382 The argument @samp{no} disables floating-point operations on the
19383 general-purpose registers.
19384
19385 This option is currently only available on the MPC854x.
19386
19387 @item -m32
19388 @itemx -m64
19389 @opindex m32
19390 @opindex m64
19391 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19392 targets (including GNU/Linux).  The 32-bit environment sets int, long
19393 and pointer to 32 bits and generates code that runs on any PowerPC
19394 variant.  The 64-bit environment sets int to 32 bits and long and
19395 pointer to 64 bits, and generates code for PowerPC64, as for
19396 @option{-mpowerpc64}.
19397
19398 @item -mfull-toc
19399 @itemx -mno-fp-in-toc
19400 @itemx -mno-sum-in-toc
19401 @itemx -mminimal-toc
19402 @opindex mfull-toc
19403 @opindex mno-fp-in-toc
19404 @opindex mno-sum-in-toc
19405 @opindex mminimal-toc
19406 Modify generation of the TOC (Table Of Contents), which is created for
19407 every executable file.  The @option{-mfull-toc} option is selected by
19408 default.  In that case, GCC allocates at least one TOC entry for
19409 each unique non-automatic variable reference in your program.  GCC
19410 also places floating-point constants in the TOC@.  However, only
19411 16,384 entries are available in the TOC@.
19412
19413 If you receive a linker error message that saying you have overflowed
19414 the available TOC space, you can reduce the amount of TOC space used
19415 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19416 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19417 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19418 generate code to calculate the sum of an address and a constant at
19419 run time instead of putting that sum into the TOC@.  You may specify one
19420 or both of these options.  Each causes GCC to produce very slightly
19421 slower and larger code at the expense of conserving TOC space.
19422
19423 If you still run out of space in the TOC even when you specify both of
19424 these options, specify @option{-mminimal-toc} instead.  This option causes
19425 GCC to make only one TOC entry for every file.  When you specify this
19426 option, GCC produces code that is slower and larger but which
19427 uses extremely little TOC space.  You may wish to use this option
19428 only on files that contain less frequently-executed code.
19429
19430 @item -maix64
19431 @itemx -maix32
19432 @opindex maix64
19433 @opindex maix32
19434 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19435 @code{long} type, and the infrastructure needed to support them.
19436 Specifying @option{-maix64} implies @option{-mpowerpc64},
19437 while @option{-maix32} disables the 64-bit ABI and
19438 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
19439
19440 @item -mxl-compat
19441 @itemx -mno-xl-compat
19442 @opindex mxl-compat
19443 @opindex mno-xl-compat
19444 Produce code that conforms more closely to IBM XL compiler semantics
19445 when using AIX-compatible ABI@.  Pass floating-point arguments to
19446 prototyped functions beyond the register save area (RSA) on the stack
19447 in addition to argument FPRs.  Do not assume that most significant
19448 double in 128-bit long double value is properly rounded when comparing
19449 values and converting to double.  Use XL symbol names for long double
19450 support routines.
19451
19452 The AIX calling convention was extended but not initially documented to
19453 handle an obscure K&R C case of calling a function that takes the
19454 address of its arguments with fewer arguments than declared.  IBM XL
19455 compilers access floating-point arguments that do not fit in the
19456 RSA from the stack when a subroutine is compiled without
19457 optimization.  Because always storing floating-point arguments on the
19458 stack is inefficient and rarely needed, this option is not enabled by
19459 default and only is necessary when calling subroutines compiled by IBM
19460 XL compilers without optimization.
19461
19462 @item -mpe
19463 @opindex mpe
19464 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
19465 application written to use message passing with special startup code to
19466 enable the application to run.  The system must have PE installed in the
19467 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19468 must be overridden with the @option{-specs=} option to specify the
19469 appropriate directory location.  The Parallel Environment does not
19470 support threads, so the @option{-mpe} option and the @option{-pthread}
19471 option are incompatible.
19472
19473 @item -malign-natural
19474 @itemx -malign-power
19475 @opindex malign-natural
19476 @opindex malign-power
19477 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19478 @option{-malign-natural} overrides the ABI-defined alignment of larger
19479 types, such as floating-point doubles, on their natural size-based boundary.
19480 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19481 alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
19482
19483 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19484 is not supported.
19485
19486 @item -msoft-float
19487 @itemx -mhard-float
19488 @opindex msoft-float
19489 @opindex mhard-float
19490 Generate code that does not use (uses) the floating-point register set.
19491 Software floating-point emulation is provided if you use the
19492 @option{-msoft-float} option, and pass the option to GCC when linking.
19493
19494 @item -msingle-float
19495 @itemx -mdouble-float
19496 @opindex msingle-float
19497 @opindex mdouble-float
19498 Generate code for single- or double-precision floating-point operations.
19499 @option{-mdouble-float} implies @option{-msingle-float}.
19500
19501 @item -msimple-fpu
19502 @opindex msimple-fpu
19503 Do not generate @code{sqrt} and @code{div} instructions for hardware
19504 floating-point unit.
19505
19506 @item -mfpu=@var{name}
19507 @opindex mfpu
19508 Specify type of floating-point unit.  Valid values for @var{name} are
19509 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19510 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19511 @samp{sp_full} (equivalent to @option{-msingle-float}),
19512 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19513
19514 @item -mxilinx-fpu
19515 @opindex mxilinx-fpu
19516 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19517
19518 @item -mmultiple
19519 @itemx -mno-multiple
19520 @opindex mmultiple
19521 @opindex mno-multiple
19522 Generate code that uses (does not use) the load multiple word
19523 instructions and the store multiple word instructions.  These
19524 instructions are generated by default on POWER systems, and not
19525 generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
19526 PowerPC systems, since those instructions do not work when the
19527 processor is in little-endian mode.  The exceptions are PPC740 and
19528 PPC750 which permit these instructions in little-endian mode.
19529
19530 @item -mstring
19531 @itemx -mno-string
19532 @opindex mstring
19533 @opindex mno-string
19534 Generate code that uses (does not use) the load string instructions
19535 and the store string word instructions to save multiple registers and
19536 do small block moves.  These instructions are generated by default on
19537 POWER systems, and not generated on PowerPC systems.  Do not use
19538 @option{-mstring} on little-endian PowerPC systems, since those
19539 instructions do not work when the processor is in little-endian mode.
19540 The exceptions are PPC740 and PPC750 which permit these instructions
19541 in little-endian mode.
19542
19543 @item -mupdate
19544 @itemx -mno-update
19545 @opindex mupdate
19546 @opindex mno-update
19547 Generate code that uses (does not use) the load or store instructions
19548 that update the base register to the address of the calculated memory
19549 location.  These instructions are generated by default.  If you use
19550 @option{-mno-update}, there is a small window between the time that the
19551 stack pointer is updated and the address of the previous frame is
19552 stored, which means code that walks the stack frame across interrupts or
19553 signals may get corrupted data.
19554
19555 @item -mavoid-indexed-addresses
19556 @itemx -mno-avoid-indexed-addresses
19557 @opindex mavoid-indexed-addresses
19558 @opindex mno-avoid-indexed-addresses
19559 Generate code that tries to avoid (not avoid) the use of indexed load
19560 or store instructions. These instructions can incur a performance
19561 penalty on Power6 processors in certain situations, such as when
19562 stepping through large arrays that cross a 16M boundary.  This option
19563 is enabled by default when targeting Power6 and disabled otherwise.
19564
19565 @item -mfused-madd
19566 @itemx -mno-fused-madd
19567 @opindex mfused-madd
19568 @opindex mno-fused-madd
19569 Generate code that uses (does not use) the floating-point multiply and
19570 accumulate instructions.  These instructions are generated by default
19571 if hardware floating point is used.  The machine-dependent
19572 @option{-mfused-madd} option is now mapped to the machine-independent
19573 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19574 mapped to @option{-ffp-contract=off}.
19575
19576 @item -mmulhw
19577 @itemx -mno-mulhw
19578 @opindex mmulhw
19579 @opindex mno-mulhw
19580 Generate code that uses (does not use) the half-word multiply and
19581 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19582 These instructions are generated by default when targeting those
19583 processors.
19584
19585 @item -mdlmzb
19586 @itemx -mno-dlmzb
19587 @opindex mdlmzb
19588 @opindex mno-dlmzb
19589 Generate code that uses (does not use) the string-search @samp{dlmzb}
19590 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
19591 generated by default when targeting those processors.
19592
19593 @item -mno-bit-align
19594 @itemx -mbit-align
19595 @opindex mno-bit-align
19596 @opindex mbit-align
19597 On System V.4 and embedded PowerPC systems do not (do) force structures
19598 and unions that contain bit-fields to be aligned to the base type of the
19599 bit-field.
19600
19601 For example, by default a structure containing nothing but 8
19602 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19603 boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
19604 the structure is aligned to a 1-byte boundary and is 1 byte in
19605 size.
19606
19607 @item -mno-strict-align
19608 @itemx -mstrict-align
19609 @opindex mno-strict-align
19610 @opindex mstrict-align
19611 On System V.4 and embedded PowerPC systems do not (do) assume that
19612 unaligned memory references are handled by the system.
19613
19614 @item -mrelocatable
19615 @itemx -mno-relocatable
19616 @opindex mrelocatable
19617 @opindex mno-relocatable
19618 Generate code that allows (does not allow) a static executable to be
19619 relocated to a different address at run time.  A simple embedded
19620 PowerPC system loader should relocate the entire contents of
19621 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19622 a table of 32-bit addresses generated by this option.  For this to
19623 work, all objects linked together must be compiled with
19624 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19625 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19626
19627 @item -mrelocatable-lib
19628 @itemx -mno-relocatable-lib
19629 @opindex mrelocatable-lib
19630 @opindex mno-relocatable-lib
19631 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19632 @code{.fixup} section to allow static executables to be relocated at
19633 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19634 alignment of @option{-mrelocatable}.  Objects compiled with
19635 @option{-mrelocatable-lib} may be linked with objects compiled with
19636 any combination of the @option{-mrelocatable} options.
19637
19638 @item -mno-toc
19639 @itemx -mtoc
19640 @opindex mno-toc
19641 @opindex mtoc
19642 On System V.4 and embedded PowerPC systems do not (do) assume that
19643 register 2 contains a pointer to a global area pointing to the addresses
19644 used in the program.
19645
19646 @item -mlittle
19647 @itemx -mlittle-endian
19648 @opindex mlittle
19649 @opindex mlittle-endian
19650 On System V.4 and embedded PowerPC systems compile code for the
19651 processor in little-endian mode.  The @option{-mlittle-endian} option is
19652 the same as @option{-mlittle}.
19653
19654 @item -mbig
19655 @itemx -mbig-endian
19656 @opindex mbig
19657 @opindex mbig-endian
19658 On System V.4 and embedded PowerPC systems compile code for the
19659 processor in big-endian mode.  The @option{-mbig-endian} option is
19660 the same as @option{-mbig}.
19661
19662 @item -mdynamic-no-pic
19663 @opindex mdynamic-no-pic
19664 On Darwin and Mac OS X systems, compile code so that it is not
19665 relocatable, but that its external references are relocatable.  The
19666 resulting code is suitable for applications, but not shared
19667 libraries.
19668
19669 @item -msingle-pic-base
19670 @opindex msingle-pic-base
19671 Treat the register used for PIC addressing as read-only, rather than
19672 loading it in the prologue for each function.  The runtime system is
19673 responsible for initializing this register with an appropriate value
19674 before execution begins.
19675
19676 @item -mprioritize-restricted-insns=@var{priority}
19677 @opindex mprioritize-restricted-insns
19678 This option controls the priority that is assigned to
19679 dispatch-slot restricted instructions during the second scheduling
19680 pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
19681 or @samp{2} to assign no, highest, or second-highest (respectively) 
19682 priority to dispatch-slot restricted
19683 instructions.
19684
19685 @item -msched-costly-dep=@var{dependence_type}
19686 @opindex msched-costly-dep
19687 This option controls which dependences are considered costly
19688 by the target during instruction scheduling.  The argument
19689 @var{dependence_type} takes one of the following values:
19690
19691 @table @asis
19692 @item @samp{no}
19693 No dependence is costly.
19694
19695 @item @samp{all}
19696 All dependences are costly.
19697
19698 @item @samp{true_store_to_load}
19699 A true dependence from store to load is costly.
19700
19701 @item @samp{store_to_load}
19702 Any dependence from store to load is costly.
19703
19704 @item @var{number}
19705 Any dependence for which the latency is greater than or equal to 
19706 @var{number} is costly.
19707 @end table
19708
19709 @item -minsert-sched-nops=@var{scheme}
19710 @opindex minsert-sched-nops
19711 This option controls which NOP insertion scheme is used during
19712 the second scheduling pass.  The argument @var{scheme} takes one of the
19713 following values:
19714
19715 @table @asis
19716 @item @samp{no}
19717 Don't insert NOPs.
19718
19719 @item @samp{pad}
19720 Pad with NOPs any dispatch group that has vacant issue slots,
19721 according to the scheduler's grouping.
19722
19723 @item @samp{regroup_exact}
19724 Insert NOPs to force costly dependent insns into
19725 separate groups.  Insert exactly as many NOPs as needed to force an insn
19726 to a new group, according to the estimated processor grouping.
19727
19728 @item @var{number}
19729 Insert NOPs to force costly dependent insns into
19730 separate groups.  Insert @var{number} NOPs to force an insn to a new group.
19731 @end table
19732
19733 @item -mcall-sysv
19734 @opindex mcall-sysv
19735 On System V.4 and embedded PowerPC systems compile code using calling
19736 conventions that adhere to the March 1995 draft of the System V
19737 Application Binary Interface, PowerPC processor supplement.  This is the
19738 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19739
19740 @item -mcall-sysv-eabi
19741 @itemx -mcall-eabi
19742 @opindex mcall-sysv-eabi
19743 @opindex mcall-eabi
19744 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19745
19746 @item -mcall-sysv-noeabi
19747 @opindex mcall-sysv-noeabi
19748 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19749
19750 @item -mcall-aixdesc
19751 @opindex m
19752 On System V.4 and embedded PowerPC systems compile code for the AIX
19753 operating system.
19754
19755 @item -mcall-linux
19756 @opindex mcall-linux
19757 On System V.4 and embedded PowerPC systems compile code for the
19758 Linux-based GNU system.
19759
19760 @item -mcall-freebsd
19761 @opindex mcall-freebsd
19762 On System V.4 and embedded PowerPC systems compile code for the
19763 FreeBSD operating system.
19764
19765 @item -mcall-netbsd
19766 @opindex mcall-netbsd
19767 On System V.4 and embedded PowerPC systems compile code for the
19768 NetBSD operating system.
19769
19770 @item -mcall-openbsd
19771 @opindex mcall-netbsd
19772 On System V.4 and embedded PowerPC systems compile code for the
19773 OpenBSD operating system.
19774
19775 @item -maix-struct-return
19776 @opindex maix-struct-return
19777 Return all structures in memory (as specified by the AIX ABI)@.
19778
19779 @item -msvr4-struct-return
19780 @opindex msvr4-struct-return
19781 Return structures smaller than 8 bytes in registers (as specified by the
19782 SVR4 ABI)@.
19783
19784 @item -mabi=@var{abi-type}
19785 @opindex mabi
19786 Extend the current ABI with a particular extension, or remove such extension.
19787 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19788 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19789 @samp{elfv1}, @samp{elfv2}@.
19790
19791 @item -mabi=spe
19792 @opindex mabi=spe
19793 Extend the current ABI with SPE ABI extensions.  This does not change
19794 the default ABI, instead it adds the SPE ABI extensions to the current
19795 ABI@.
19796
19797 @item -mabi=no-spe
19798 @opindex mabi=no-spe
19799 Disable Book-E SPE ABI extensions for the current ABI@.
19800
19801 @item -mabi=ibmlongdouble
19802 @opindex mabi=ibmlongdouble
19803 Change the current ABI to use IBM extended-precision long double.
19804 This is a PowerPC 32-bit SYSV ABI option.
19805
19806 @item -mabi=ieeelongdouble
19807 @opindex mabi=ieeelongdouble
19808 Change the current ABI to use IEEE extended-precision long double.
19809 This is a PowerPC 32-bit Linux ABI option.
19810
19811 @item -mabi=elfv1
19812 @opindex mabi=elfv1
19813 Change the current ABI to use the ELFv1 ABI.
19814 This is the default ABI for big-endian PowerPC 64-bit Linux.
19815 Overriding the default ABI requires special system support and is
19816 likely to fail in spectacular ways.
19817
19818 @item -mabi=elfv2
19819 @opindex mabi=elfv2
19820 Change the current ABI to use the ELFv2 ABI.
19821 This is the default ABI for little-endian PowerPC 64-bit Linux.
19822 Overriding the default ABI requires special system support and is
19823 likely to fail in spectacular ways.
19824
19825 @item -mprototype
19826 @itemx -mno-prototype
19827 @opindex mprototype
19828 @opindex mno-prototype
19829 On System V.4 and embedded PowerPC systems assume that all calls to
19830 variable argument functions are properly prototyped.  Otherwise, the
19831 compiler must insert an instruction before every non-prototyped call to
19832 set or clear bit 6 of the condition code register (@code{CR}) to
19833 indicate whether floating-point values are passed in the floating-point
19834 registers in case the function takes variable arguments.  With
19835 @option{-mprototype}, only calls to prototyped variable argument functions
19836 set or clear the bit.
19837
19838 @item -msim
19839 @opindex msim
19840 On embedded PowerPC systems, assume that the startup module is called
19841 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19842 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
19843 configurations.
19844
19845 @item -mmvme
19846 @opindex mmvme
19847 On embedded PowerPC systems, assume that the startup module is called
19848 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19849 @file{libc.a}.
19850
19851 @item -mads
19852 @opindex mads
19853 On embedded PowerPC systems, assume that the startup module is called
19854 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19855 @file{libc.a}.
19856
19857 @item -myellowknife
19858 @opindex myellowknife
19859 On embedded PowerPC systems, assume that the startup module is called
19860 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19861 @file{libc.a}.
19862
19863 @item -mvxworks
19864 @opindex mvxworks
19865 On System V.4 and embedded PowerPC systems, specify that you are
19866 compiling for a VxWorks system.
19867
19868 @item -memb
19869 @opindex memb
19870 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19871 header to indicate that @samp{eabi} extended relocations are used.
19872
19873 @item -meabi
19874 @itemx -mno-eabi
19875 @opindex meabi
19876 @opindex mno-eabi
19877 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19878 Embedded Applications Binary Interface (EABI), which is a set of
19879 modifications to the System V.4 specifications.  Selecting @option{-meabi}
19880 means that the stack is aligned to an 8-byte boundary, a function
19881 @code{__eabi} is called from @code{main} to set up the EABI
19882 environment, and the @option{-msdata} option can use both @code{r2} and
19883 @code{r13} to point to two separate small data areas.  Selecting
19884 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19885 no EABI initialization function is called from @code{main}, and the
19886 @option{-msdata} option only uses @code{r13} to point to a single
19887 small data area.  The @option{-meabi} option is on by default if you
19888 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19889
19890 @item -msdata=eabi
19891 @opindex msdata=eabi
19892 On System V.4 and embedded PowerPC systems, put small initialized
19893 @code{const} global and static data in the @code{.sdata2} section, which
19894 is pointed to by register @code{r2}.  Put small initialized
19895 non-@code{const} global and static data in the @code{.sdata} section,
19896 which is pointed to by register @code{r13}.  Put small uninitialized
19897 global and static data in the @code{.sbss} section, which is adjacent to
19898 the @code{.sdata} section.  The @option{-msdata=eabi} option is
19899 incompatible with the @option{-mrelocatable} option.  The
19900 @option{-msdata=eabi} option also sets the @option{-memb} option.
19901
19902 @item -msdata=sysv
19903 @opindex msdata=sysv
19904 On System V.4 and embedded PowerPC systems, put small global and static
19905 data in the @code{.sdata} section, which is pointed to by register
19906 @code{r13}.  Put small uninitialized global and static data in the
19907 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19908 The @option{-msdata=sysv} option is incompatible with the
19909 @option{-mrelocatable} option.
19910
19911 @item -msdata=default
19912 @itemx -msdata
19913 @opindex msdata=default
19914 @opindex msdata
19915 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19916 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19917 same as @option{-msdata=sysv}.
19918
19919 @item -msdata=data
19920 @opindex msdata=data
19921 On System V.4 and embedded PowerPC systems, put small global
19922 data in the @code{.sdata} section.  Put small uninitialized global
19923 data in the @code{.sbss} section.  Do not use register @code{r13}
19924 to address small data however.  This is the default behavior unless
19925 other @option{-msdata} options are used.
19926
19927 @item -msdata=none
19928 @itemx -mno-sdata
19929 @opindex msdata=none
19930 @opindex mno-sdata
19931 On embedded PowerPC systems, put all initialized global and static data
19932 in the @code{.data} section, and all uninitialized data in the
19933 @code{.bss} section.
19934
19935 @item -mblock-move-inline-limit=@var{num}
19936 @opindex mblock-move-inline-limit
19937 Inline all block moves (such as calls to @code{memcpy} or structure
19938 copies) less than or equal to @var{num} bytes.  The minimum value for
19939 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19940 targets.  The default value is target-specific.
19941
19942 @item -G @var{num}
19943 @opindex G
19944 @cindex smaller data references (PowerPC)
19945 @cindex .sdata/.sdata2 references (PowerPC)
19946 On embedded PowerPC systems, put global and static items less than or
19947 equal to @var{num} bytes into the small data or BSS sections instead of
19948 the normal data or BSS section.  By default, @var{num} is 8.  The
19949 @option{-G @var{num}} switch is also passed to the linker.
19950 All modules should be compiled with the same @option{-G @var{num}} value.
19951
19952 @item -mregnames
19953 @itemx -mno-regnames
19954 @opindex mregnames
19955 @opindex mno-regnames
19956 On System V.4 and embedded PowerPC systems do (do not) emit register
19957 names in the assembly language output using symbolic forms.
19958
19959 @item -mlongcall
19960 @itemx -mno-longcall
19961 @opindex mlongcall
19962 @opindex mno-longcall
19963 By default assume that all calls are far away so that a longer and more
19964 expensive calling sequence is required.  This is required for calls
19965 farther than 32 megabytes (33,554,432 bytes) from the current location.
19966 A short call is generated if the compiler knows
19967 the call cannot be that far away.  This setting can be overridden by
19968 the @code{shortcall} function attribute, or by @code{#pragma
19969 longcall(0)}.
19970
19971 Some linkers are capable of detecting out-of-range calls and generating
19972 glue code on the fly.  On these systems, long calls are unnecessary and
19973 generate slower code.  As of this writing, the AIX linker can do this,
19974 as can the GNU linker for PowerPC/64.  It is planned to add this feature
19975 to the GNU linker for 32-bit PowerPC systems as well.
19976
19977 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19978 callee, L42}, plus a @dfn{branch island} (glue code).  The two target
19979 addresses represent the callee and the branch island.  The
19980 Darwin/PPC linker prefers the first address and generates a @code{bl
19981 callee} if the PPC @code{bl} instruction reaches the callee directly;
19982 otherwise, the linker generates @code{bl L42} to call the branch
19983 island.  The branch island is appended to the body of the
19984 calling function; it computes the full 32-bit address of the callee
19985 and jumps to it.
19986
19987 On Mach-O (Darwin) systems, this option directs the compiler emit to
19988 the glue for every direct call, and the Darwin linker decides whether
19989 to use or discard it.
19990
19991 In the future, GCC may ignore all longcall specifications
19992 when the linker is known to generate glue.
19993
19994 @item -mtls-markers
19995 @itemx -mno-tls-markers
19996 @opindex mtls-markers
19997 @opindex mno-tls-markers
19998 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19999 specifying the function argument.  The relocation allows the linker to
20000 reliably associate function call with argument setup instructions for
20001 TLS optimization, which in turn allows GCC to better schedule the
20002 sequence.
20003
20004 @item -pthread
20005 @opindex pthread
20006 Adds support for multithreading with the @dfn{pthreads} library.
20007 This option sets flags for both the preprocessor and linker.
20008
20009 @item -mrecip
20010 @itemx -mno-recip
20011 @opindex mrecip
20012 This option enables use of the reciprocal estimate and
20013 reciprocal square root estimate instructions with additional
20014 Newton-Raphson steps to increase precision instead of doing a divide or
20015 square root and divide for floating-point arguments.  You should use
20016 the @option{-ffast-math} option when using @option{-mrecip} (or at
20017 least @option{-funsafe-math-optimizations},
20018 @option{-finite-math-only}, @option{-freciprocal-math} and
20019 @option{-fno-trapping-math}).  Note that while the throughput of the
20020 sequence is generally higher than the throughput of the non-reciprocal
20021 instruction, the precision of the sequence can be decreased by up to 2
20022 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20023 roots.
20024
20025 @item -mrecip=@var{opt}
20026 @opindex mrecip=opt
20027 This option controls which reciprocal estimate instructions
20028 may be used.  @var{opt} is a comma-separated list of options, which may
20029 be preceded by a @code{!} to invert the option:
20030
20031 @table @samp
20032
20033 @item all
20034 Enable all estimate instructions.
20035
20036 @item default 
20037 Enable the default instructions, equivalent to @option{-mrecip}.
20038
20039 @item none 
20040 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20041
20042 @item div 
20043 Enable the reciprocal approximation instructions for both 
20044 single and double precision.
20045
20046 @item divf 
20047 Enable the single-precision reciprocal approximation instructions.
20048
20049 @item divd 
20050 Enable the double-precision reciprocal approximation instructions.
20051
20052 @item rsqrt 
20053 Enable the reciprocal square root approximation instructions for both
20054 single and double precision.
20055
20056 @item rsqrtf 
20057 Enable the single-precision reciprocal square root approximation instructions.
20058
20059 @item rsqrtd 
20060 Enable the double-precision reciprocal square root approximation instructions.
20061
20062 @end table
20063
20064 So, for example, @option{-mrecip=all,!rsqrtd} enables
20065 all of the reciprocal estimate instructions, except for the
20066 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20067 which handle the double-precision reciprocal square root calculations.
20068
20069 @item -mrecip-precision
20070 @itemx -mno-recip-precision
20071 @opindex mrecip-precision
20072 Assume (do not assume) that the reciprocal estimate instructions
20073 provide higher-precision estimates than is mandated by the PowerPC
20074 ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20075 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20076 The double-precision square root estimate instructions are not generated by
20077 default on low-precision machines, since they do not provide an
20078 estimate that converges after three steps.
20079
20080 @item -mveclibabi=@var{type}
20081 @opindex mveclibabi
20082 Specifies the ABI type to use for vectorizing intrinsics using an
20083 external library.  The only type supported at present is @samp{mass},
20084 which specifies to use IBM's Mathematical Acceleration Subsystem
20085 (MASS) libraries for vectorizing intrinsics using external libraries.
20086 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20087 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20088 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20089 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20090 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20091 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20092 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20093 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20094 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20095 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20096 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20097 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20098 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20099 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20100 for power7.  Both @option{-ftree-vectorize} and
20101 @option{-funsafe-math-optimizations} must also be enabled.  The MASS
20102 libraries must be specified at link time.
20103
20104 @item -mfriz
20105 @itemx -mno-friz
20106 @opindex mfriz
20107 Generate (do not generate) the @code{friz} instruction when the
20108 @option{-funsafe-math-optimizations} option is used to optimize
20109 rounding of floating-point values to 64-bit integer and back to floating
20110 point.  The @code{friz} instruction does not return the same value if
20111 the floating-point number is too large to fit in an integer.
20112
20113 @item -mpointers-to-nested-functions
20114 @itemx -mno-pointers-to-nested-functions
20115 @opindex mpointers-to-nested-functions
20116 Generate (do not generate) code to load up the static chain register
20117 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20118 systems where a function pointer points to a 3-word descriptor giving
20119 the function address, TOC value to be loaded in register @code{r2}, and
20120 static chain value to be loaded in register @code{r11}.  The
20121 @option{-mpointers-to-nested-functions} is on by default.  You cannot
20122 call through pointers to nested functions or pointers
20123 to functions compiled in other languages that use the static chain if
20124 you use @option{-mno-pointers-to-nested-functions}.
20125
20126 @item -msave-toc-indirect
20127 @itemx -mno-save-toc-indirect
20128 @opindex msave-toc-indirect
20129 Generate (do not generate) code to save the TOC value in the reserved
20130 stack location in the function prologue if the function calls through
20131 a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
20132 saved in the prologue, it is saved just before the call through the
20133 pointer.  The @option{-mno-save-toc-indirect} option is the default.
20134
20135 @item -mcompat-align-parm
20136 @itemx -mno-compat-align-parm
20137 @opindex mcompat-align-parm
20138 Generate (do not generate) code to pass structure parameters with a
20139 maximum alignment of 64 bits, for compatibility with older versions
20140 of GCC.
20141
20142 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20143 structure parameter on a 128-bit boundary when that structure contained
20144 a member requiring 128-bit alignment.  This is corrected in more
20145 recent versions of GCC.  This option may be used to generate code
20146 that is compatible with functions compiled with older versions of
20147 GCC.
20148
20149 The @option{-mno-compat-align-parm} option is the default.
20150 @end table
20151
20152 @node RX Options
20153 @subsection RX Options
20154 @cindex RX Options
20155
20156 These command-line options are defined for RX targets:
20157
20158 @table @gcctabopt
20159 @item -m64bit-doubles
20160 @itemx -m32bit-doubles
20161 @opindex m64bit-doubles
20162 @opindex m32bit-doubles
20163 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20164 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
20165 @option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
20166 works on 32-bit values, which is why the default is
20167 @option{-m32bit-doubles}.
20168
20169 @item -fpu
20170 @itemx -nofpu
20171 @opindex fpu
20172 @opindex nofpu
20173 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20174 floating-point hardware.  The default is enabled for the RX600
20175 series and disabled for the RX200 series.
20176
20177 Floating-point instructions are only generated for 32-bit floating-point 
20178 values, however, so the FPU hardware is not used for doubles if the
20179 @option{-m64bit-doubles} option is used.
20180
20181 @emph{Note} If the @option{-fpu} option is enabled then
20182 @option{-funsafe-math-optimizations} is also enabled automatically.
20183 This is because the RX FPU instructions are themselves unsafe.
20184
20185 @item -mcpu=@var{name}
20186 @opindex mcpu
20187 Selects the type of RX CPU to be targeted.  Currently three types are
20188 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20189 the specific @samp{RX610} CPU.  The default is @samp{RX600}.
20190
20191 The only difference between @samp{RX600} and @samp{RX610} is that the
20192 @samp{RX610} does not support the @code{MVTIPL} instruction.
20193
20194 The @samp{RX200} series does not have a hardware floating-point unit
20195 and so @option{-nofpu} is enabled by default when this type is
20196 selected.
20197
20198 @item -mbig-endian-data
20199 @itemx -mlittle-endian-data
20200 @opindex mbig-endian-data
20201 @opindex mlittle-endian-data
20202 Store data (but not code) in the big-endian format.  The default is
20203 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20204 format.
20205
20206 @item -msmall-data-limit=@var{N}
20207 @opindex msmall-data-limit
20208 Specifies the maximum size in bytes of global and static variables
20209 which can be placed into the small data area.  Using the small data
20210 area can lead to smaller and faster code, but the size of area is
20211 limited and it is up to the programmer to ensure that the area does
20212 not overflow.  Also when the small data area is used one of the RX's
20213 registers (usually @code{r13}) is reserved for use pointing to this
20214 area, so it is no longer available for use by the compiler.  This
20215 could result in slower and/or larger code if variables are pushed onto
20216 the stack instead of being held in this register.
20217
20218 Note, common variables (variables that have not been initialized) and
20219 constants are not placed into the small data area as they are assigned
20220 to other sections in the output executable.
20221
20222 The default value is zero, which disables this feature.  Note, this
20223 feature is not enabled by default with higher optimization levels
20224 (@option{-O2} etc) because of the potentially detrimental effects of
20225 reserving a register.  It is up to the programmer to experiment and
20226 discover whether this feature is of benefit to their program.  See the
20227 description of the @option{-mpid} option for a description of how the
20228 actual register to hold the small data area pointer is chosen.
20229
20230 @item -msim
20231 @itemx -mno-sim
20232 @opindex msim
20233 @opindex mno-sim
20234 Use the simulator runtime.  The default is to use the libgloss
20235 board-specific runtime.
20236
20237 @item -mas100-syntax
20238 @itemx -mno-as100-syntax
20239 @opindex mas100-syntax
20240 @opindex mno-as100-syntax
20241 When generating assembler output use a syntax that is compatible with
20242 Renesas's AS100 assembler.  This syntax can also be handled by the GAS
20243 assembler, but it has some restrictions so it is not generated by default.
20244
20245 @item -mmax-constant-size=@var{N}
20246 @opindex mmax-constant-size
20247 Specifies the maximum size, in bytes, of a constant that can be used as
20248 an operand in a RX instruction.  Although the RX instruction set does
20249 allow constants of up to 4 bytes in length to be used in instructions,
20250 a longer value equates to a longer instruction.  Thus in some
20251 circumstances it can be beneficial to restrict the size of constants
20252 that are used in instructions.  Constants that are too big are instead
20253 placed into a constant pool and referenced via register indirection.
20254
20255 The value @var{N} can be between 0 and 4.  A value of 0 (the default)
20256 or 4 means that constants of any size are allowed.
20257
20258 @item -mrelax
20259 @opindex mrelax
20260 Enable linker relaxation.  Linker relaxation is a process whereby the
20261 linker attempts to reduce the size of a program by finding shorter
20262 versions of various instructions.  Disabled by default.
20263
20264 @item -mint-register=@var{N}
20265 @opindex mint-register
20266 Specify the number of registers to reserve for fast interrupt handler
20267 functions.  The value @var{N} can be between 0 and 4.  A value of 1
20268 means that register @code{r13} is reserved for the exclusive use
20269 of fast interrupt handlers.  A value of 2 reserves @code{r13} and
20270 @code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
20271 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20272 A value of 0, the default, does not reserve any registers.
20273
20274 @item -msave-acc-in-interrupts
20275 @opindex msave-acc-in-interrupts
20276 Specifies that interrupt handler functions should preserve the
20277 accumulator register.  This is only necessary if normal code might use
20278 the accumulator register, for example because it performs 64-bit
20279 multiplications.  The default is to ignore the accumulator as this
20280 makes the interrupt handlers faster.
20281
20282 @item -mpid
20283 @itemx -mno-pid
20284 @opindex mpid
20285 @opindex mno-pid
20286 Enables the generation of position independent data.  When enabled any
20287 access to constant data is done via an offset from a base address
20288 held in a register.  This allows the location of constant data to be
20289 determined at run time without requiring the executable to be
20290 relocated, which is a benefit to embedded applications with tight
20291 memory constraints.  Data that can be modified is not affected by this
20292 option.
20293
20294 Note, using this feature reserves a register, usually @code{r13}, for
20295 the constant data base address.  This can result in slower and/or
20296 larger code, especially in complicated functions.
20297
20298 The actual register chosen to hold the constant data base address
20299 depends upon whether the @option{-msmall-data-limit} and/or the
20300 @option{-mint-register} command-line options are enabled.  Starting
20301 with register @code{r13} and proceeding downwards, registers are
20302 allocated first to satisfy the requirements of @option{-mint-register},
20303 then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
20304 is possible for the small data area register to be @code{r8} if both
20305 @option{-mint-register=4} and @option{-mpid} are specified on the
20306 command line.
20307
20308 By default this feature is not enabled.  The default can be restored
20309 via the @option{-mno-pid} command-line option.
20310
20311 @item -mno-warn-multiple-fast-interrupts
20312 @itemx -mwarn-multiple-fast-interrupts
20313 @opindex mno-warn-multiple-fast-interrupts
20314 @opindex mwarn-multiple-fast-interrupts
20315 Prevents GCC from issuing a warning message if it finds more than one
20316 fast interrupt handler when it is compiling a file.  The default is to
20317 issue a warning for each extra fast interrupt handler found, as the RX
20318 only supports one such interrupt.
20319
20320 @item -mallow-string-insns
20321 @itemx -mno-allow-string-insns
20322 @opindex mallow-string-insns
20323 @opindex mno-allow-string-insns
20324 Enables or disables the use of the string manipulation instructions
20325 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20326 @code{SWHILE} and also the @code{RMPA} instruction.  These
20327 instructions may prefetch data, which is not safe to do if accessing
20328 an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
20329 for more information).
20330
20331 The default is to allow these instructions, but it is not possible for
20332 GCC to reliably detect all circumstances where a string instruction
20333 might be used to access an I/O register, so their use cannot be
20334 disabled automatically.  Instead it is reliant upon the programmer to
20335 use the @option{-mno-allow-string-insns} option if their program
20336 accesses I/O space.
20337
20338 When the instructions are enabled GCC defines the C preprocessor
20339 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20340 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20341 @end table
20342
20343 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20344 has special significance to the RX port when used with the
20345 @code{interrupt} function attribute.  This attribute indicates a
20346 function intended to process fast interrupts.  GCC ensures
20347 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20348 and/or @code{r13} and only provided that the normal use of the
20349 corresponding registers have been restricted via the
20350 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20351 options.
20352
20353 @node S/390 and zSeries Options
20354 @subsection S/390 and zSeries Options
20355 @cindex S/390 and zSeries Options
20356
20357 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20358
20359 @table @gcctabopt
20360 @item -mhard-float
20361 @itemx -msoft-float
20362 @opindex mhard-float
20363 @opindex msoft-float
20364 Use (do not use) the hardware floating-point instructions and registers
20365 for floating-point operations.  When @option{-msoft-float} is specified,
20366 functions in @file{libgcc.a} are used to perform floating-point
20367 operations.  When @option{-mhard-float} is specified, the compiler
20368 generates IEEE floating-point instructions.  This is the default.
20369
20370 @item -mhard-dfp
20371 @itemx -mno-hard-dfp
20372 @opindex mhard-dfp
20373 @opindex mno-hard-dfp
20374 Use (do not use) the hardware decimal-floating-point instructions for
20375 decimal-floating-point operations.  When @option{-mno-hard-dfp} is
20376 specified, functions in @file{libgcc.a} are used to perform
20377 decimal-floating-point operations.  When @option{-mhard-dfp} is
20378 specified, the compiler generates decimal-floating-point hardware
20379 instructions.  This is the default for @option{-march=z9-ec} or higher.
20380
20381 @item -mlong-double-64
20382 @itemx -mlong-double-128
20383 @opindex mlong-double-64
20384 @opindex mlong-double-128
20385 These switches control the size of @code{long double} type. A size
20386 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20387 type. This is the default.
20388
20389 @item -mbackchain
20390 @itemx -mno-backchain
20391 @opindex mbackchain
20392 @opindex mno-backchain
20393 Store (do not store) the address of the caller's frame as backchain pointer
20394 into the callee's stack frame.
20395 A backchain may be needed to allow debugging using tools that do not understand
20396 DWARF 2 call frame information.
20397 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20398 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20399 the backchain is placed into the topmost word of the 96/160 byte register
20400 save area.
20401
20402 In general, code compiled with @option{-mbackchain} is call-compatible with
20403 code compiled with @option{-mmo-backchain}; however, use of the backchain
20404 for debugging purposes usually requires that the whole binary is built with
20405 @option{-mbackchain}.  Note that the combination of @option{-mbackchain},
20406 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20407 to build a linux kernel use @option{-msoft-float}.
20408
20409 The default is to not maintain the backchain.
20410
20411 @item -mpacked-stack
20412 @itemx -mno-packed-stack
20413 @opindex mpacked-stack
20414 @opindex mno-packed-stack
20415 Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
20416 specified, the compiler uses the all fields of the 96/160 byte register save
20417 area only for their default purpose; unused fields still take up stack space.
20418 When @option{-mpacked-stack} is specified, register save slots are densely
20419 packed at the top of the register save area; unused space is reused for other
20420 purposes, allowing for more efficient use of the available stack space.
20421 However, when @option{-mbackchain} is also in effect, the topmost word of
20422 the save area is always used to store the backchain, and the return address
20423 register is always saved two words below the backchain.
20424
20425 As long as the stack frame backchain is not used, code generated with
20426 @option{-mpacked-stack} is call-compatible with code generated with
20427 @option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
20428 S/390 or zSeries generated code that uses the stack frame backchain at run
20429 time, not just for debugging purposes.  Such code is not call-compatible
20430 with code compiled with @option{-mpacked-stack}.  Also, note that the
20431 combination of @option{-mbackchain},
20432 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
20433 to build a linux kernel use @option{-msoft-float}.
20434
20435 The default is to not use the packed stack layout.
20436
20437 @item -msmall-exec
20438 @itemx -mno-small-exec
20439 @opindex msmall-exec
20440 @opindex mno-small-exec
20441 Generate (or do not generate) code using the @code{bras} instruction
20442 to do subroutine calls.
20443 This only works reliably if the total executable size does not
20444 exceed 64k.  The default is to use the @code{basr} instruction instead,
20445 which does not have this limitation.
20446
20447 @item -m64
20448 @itemx -m31
20449 @opindex m64
20450 @opindex m31
20451 When @option{-m31} is specified, generate code compliant to the
20452 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
20453 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
20454 particular to generate 64-bit instructions.  For the @samp{s390}
20455 targets, the default is @option{-m31}, while the @samp{s390x}
20456 targets default to @option{-m64}.
20457
20458 @item -mzarch
20459 @itemx -mesa
20460 @opindex mzarch
20461 @opindex mesa
20462 When @option{-mzarch} is specified, generate code using the
20463 instructions available on z/Architecture.
20464 When @option{-mesa} is specified, generate code using the
20465 instructions available on ESA/390.  Note that @option{-mesa} is
20466 not possible with @option{-m64}.
20467 When generating code compliant to the GNU/Linux for S/390 ABI,
20468 the default is @option{-mesa}.  When generating code compliant
20469 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20470
20471 @item -mmvcle
20472 @itemx -mno-mvcle
20473 @opindex mmvcle
20474 @opindex mno-mvcle
20475 Generate (or do not generate) code using the @code{mvcle} instruction
20476 to perform block moves.  When @option{-mno-mvcle} is specified,
20477 use a @code{mvc} loop instead.  This is the default unless optimizing for
20478 size.
20479
20480 @item -mdebug
20481 @itemx -mno-debug
20482 @opindex mdebug
20483 @opindex mno-debug
20484 Print (or do not print) additional debug information when compiling.
20485 The default is to not print debug information.
20486
20487 @item -march=@var{cpu-type}
20488 @opindex march
20489 Generate code that runs on @var{cpu-type}, which is the name of a system
20490 representing a certain processor type.  Possible values for
20491 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20492 @samp{z9-109}, @samp{z9-ec}, @samp{z10},  @samp{z196}, @samp{zEC12},
20493 and @samp{z13}.
20494 When generating code using the instructions available on z/Architecture,
20495 the default is @option{-march=z900}.  Otherwise, the default is
20496 @option{-march=g5}.
20497
20498 @item -mtune=@var{cpu-type}
20499 @opindex mtune
20500 Tune to @var{cpu-type} everything applicable about the generated code,
20501 except for the ABI and the set of available instructions.
20502 The list of @var{cpu-type} values is the same as for @option{-march}.
20503 The default is the value used for @option{-march}.
20504
20505 @item -mtpf-trace
20506 @itemx -mno-tpf-trace
20507 @opindex mtpf-trace
20508 @opindex mno-tpf-trace
20509 Generate code that adds (does not add) in TPF OS specific branches to trace
20510 routines in the operating system.  This option is off by default, even
20511 when compiling for the TPF OS@.
20512
20513 @item -mfused-madd
20514 @itemx -mno-fused-madd
20515 @opindex mfused-madd
20516 @opindex mno-fused-madd
20517 Generate code that uses (does not use) the floating-point multiply and
20518 accumulate instructions.  These instructions are generated by default if
20519 hardware floating point is used.
20520
20521 @item -mwarn-framesize=@var{framesize}
20522 @opindex mwarn-framesize
20523 Emit a warning if the current function exceeds the given frame size.  Because
20524 this is a compile-time check it doesn't need to be a real problem when the program
20525 runs.  It is intended to identify functions that most probably cause
20526 a stack overflow.  It is useful to be used in an environment with limited stack
20527 size e.g.@: the linux kernel.
20528
20529 @item -mwarn-dynamicstack
20530 @opindex mwarn-dynamicstack
20531 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20532 arrays.  This is generally a bad idea with a limited stack size.
20533
20534 @item -mstack-guard=@var{stack-guard}
20535 @itemx -mstack-size=@var{stack-size}
20536 @opindex mstack-guard
20537 @opindex mstack-size
20538 If these options are provided the S/390 back end emits additional instructions in
20539 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20540 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20541 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20542 the frame size of the compiled function is chosen.
20543 These options are intended to be used to help debugging stack overflow problems.
20544 The additionally emitted code causes only little overhead and hence can also be
20545 used in production-like systems without greater performance degradation.  The given
20546 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20547 @var{stack-guard} without exceeding 64k.
20548 In order to be efficient the extra code makes the assumption that the stack starts
20549 at an address aligned to the value given by @var{stack-size}.
20550 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20551
20552 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20553 @opindex mhotpatch
20554 If the hotpatch option is enabled, a ``hot-patching'' function
20555 prologue is generated for all functions in the compilation unit.
20556 The funtion label is prepended with the given number of two-byte
20557 NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
20558 the label, 2 * @var{post-halfwords} bytes are appended, using the
20559 largest NOP like instructions the architecture allows (maximum
20560 1000000).
20561
20562 If both arguments are zero, hotpatching is disabled.
20563
20564 This option can be overridden for individual functions with the
20565 @code{hotpatch} attribute.
20566 @end table
20567
20568 @node Score Options
20569 @subsection Score Options
20570 @cindex Score Options
20571
20572 These options are defined for Score implementations:
20573
20574 @table @gcctabopt
20575 @item -meb
20576 @opindex meb
20577 Compile code for big-endian mode.  This is the default.
20578
20579 @item -mel
20580 @opindex mel
20581 Compile code for little-endian mode.
20582
20583 @item -mnhwloop
20584 @opindex mnhwloop
20585 Disable generation of @code{bcnz} instructions.
20586
20587 @item -muls
20588 @opindex muls
20589 Enable generation of unaligned load and store instructions.
20590
20591 @item -mmac
20592 @opindex mmac
20593 Enable the use of multiply-accumulate instructions. Disabled by default.
20594
20595 @item -mscore5
20596 @opindex mscore5
20597 Specify the SCORE5 as the target architecture.
20598
20599 @item -mscore5u
20600 @opindex mscore5u
20601 Specify the SCORE5U of the target architecture.
20602
20603 @item -mscore7
20604 @opindex mscore7
20605 Specify the SCORE7 as the target architecture. This is the default.
20606
20607 @item -mscore7d
20608 @opindex mscore7d
20609 Specify the SCORE7D as the target architecture.
20610 @end table
20611
20612 @node SH Options
20613 @subsection SH Options
20614
20615 These @samp{-m} options are defined for the SH implementations:
20616
20617 @table @gcctabopt
20618 @item -m1
20619 @opindex m1
20620 Generate code for the SH1.
20621
20622 @item -m2
20623 @opindex m2
20624 Generate code for the SH2.
20625
20626 @item -m2e
20627 Generate code for the SH2e.
20628
20629 @item -m2a-nofpu
20630 @opindex m2a-nofpu
20631 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20632 that the floating-point unit is not used.
20633
20634 @item -m2a-single-only
20635 @opindex m2a-single-only
20636 Generate code for the SH2a-FPU, in such a way that no double-precision
20637 floating-point operations are used.
20638
20639 @item -m2a-single
20640 @opindex m2a-single
20641 Generate code for the SH2a-FPU assuming the floating-point unit is in
20642 single-precision mode by default.
20643
20644 @item -m2a
20645 @opindex m2a
20646 Generate code for the SH2a-FPU assuming the floating-point unit is in
20647 double-precision mode by default.
20648
20649 @item -m3
20650 @opindex m3
20651 Generate code for the SH3.
20652
20653 @item -m3e
20654 @opindex m3e
20655 Generate code for the SH3e.
20656
20657 @item -m4-nofpu
20658 @opindex m4-nofpu
20659 Generate code for the SH4 without a floating-point unit.
20660
20661 @item -m4-single-only
20662 @opindex m4-single-only
20663 Generate code for the SH4 with a floating-point unit that only
20664 supports single-precision arithmetic.
20665
20666 @item -m4-single
20667 @opindex m4-single
20668 Generate code for the SH4 assuming the floating-point unit is in
20669 single-precision mode by default.
20670
20671 @item -m4
20672 @opindex m4
20673 Generate code for the SH4.
20674
20675 @item -m4-100
20676 @opindex m4-100
20677 Generate code for SH4-100.
20678
20679 @item -m4-100-nofpu
20680 @opindex m4-100-nofpu
20681 Generate code for SH4-100 in such a way that the
20682 floating-point unit is not used.
20683
20684 @item -m4-100-single
20685 @opindex m4-100-single
20686 Generate code for SH4-100 assuming the floating-point unit is in
20687 single-precision mode by default.
20688
20689 @item -m4-100-single-only
20690 @opindex m4-100-single-only
20691 Generate code for SH4-100 in such a way that no double-precision
20692 floating-point operations are used.
20693
20694 @item -m4-200
20695 @opindex m4-200
20696 Generate code for SH4-200.
20697
20698 @item -m4-200-nofpu
20699 @opindex m4-200-nofpu
20700 Generate code for SH4-200 without in such a way that the
20701 floating-point unit is not used.
20702
20703 @item -m4-200-single
20704 @opindex m4-200-single
20705 Generate code for SH4-200 assuming the floating-point unit is in
20706 single-precision mode by default.
20707
20708 @item -m4-200-single-only
20709 @opindex m4-200-single-only
20710 Generate code for SH4-200 in such a way that no double-precision
20711 floating-point operations are used.
20712
20713 @item -m4-300
20714 @opindex m4-300
20715 Generate code for SH4-300.
20716
20717 @item -m4-300-nofpu
20718 @opindex m4-300-nofpu
20719 Generate code for SH4-300 without in such a way that the
20720 floating-point unit is not used.
20721
20722 @item -m4-300-single
20723 @opindex m4-300-single
20724 Generate code for SH4-300 in such a way that no double-precision
20725 floating-point operations are used.
20726
20727 @item -m4-300-single-only
20728 @opindex m4-300-single-only
20729 Generate code for SH4-300 in such a way that no double-precision
20730 floating-point operations are used.
20731
20732 @item -m4-340
20733 @opindex m4-340
20734 Generate code for SH4-340 (no MMU, no FPU).
20735
20736 @item -m4-500
20737 @opindex m4-500
20738 Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
20739 assembler.
20740
20741 @item -m4a-nofpu
20742 @opindex m4a-nofpu
20743 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20744 floating-point unit is not used.
20745
20746 @item -m4a-single-only
20747 @opindex m4a-single-only
20748 Generate code for the SH4a, in such a way that no double-precision
20749 floating-point operations are used.
20750
20751 @item -m4a-single
20752 @opindex m4a-single
20753 Generate code for the SH4a assuming the floating-point unit is in
20754 single-precision mode by default.
20755
20756 @item -m4a
20757 @opindex m4a
20758 Generate code for the SH4a.
20759
20760 @item -m4al
20761 @opindex m4al
20762 Same as @option{-m4a-nofpu}, except that it implicitly passes
20763 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
20764 instructions at the moment.
20765
20766 @item -m5-32media
20767 @opindex m5-32media
20768 Generate 32-bit code for SHmedia.
20769
20770 @item -m5-32media-nofpu
20771 @opindex m5-32media-nofpu
20772 Generate 32-bit code for SHmedia in such a way that the
20773 floating-point unit is not used.
20774
20775 @item -m5-64media
20776 @opindex m5-64media
20777 Generate 64-bit code for SHmedia.
20778
20779 @item -m5-64media-nofpu
20780 @opindex m5-64media-nofpu
20781 Generate 64-bit code for SHmedia in such a way that the
20782 floating-point unit is not used.
20783
20784 @item -m5-compact
20785 @opindex m5-compact
20786 Generate code for SHcompact.
20787
20788 @item -m5-compact-nofpu
20789 @opindex m5-compact-nofpu
20790 Generate code for SHcompact in such a way that the
20791 floating-point unit is not used.
20792
20793 @item -mb
20794 @opindex mb
20795 Compile code for the processor in big-endian mode.
20796
20797 @item -ml
20798 @opindex ml
20799 Compile code for the processor in little-endian mode.
20800
20801 @item -mdalign
20802 @opindex mdalign
20803 Align doubles at 64-bit boundaries.  Note that this changes the calling
20804 conventions, and thus some functions from the standard C library do
20805 not work unless you recompile it first with @option{-mdalign}.
20806
20807 @item -mrelax
20808 @opindex mrelax
20809 Shorten some address references at link time, when possible; uses the
20810 linker option @option{-relax}.
20811
20812 @item -mbigtable
20813 @opindex mbigtable
20814 Use 32-bit offsets in @code{switch} tables.  The default is to use
20815 16-bit offsets.
20816
20817 @item -mbitops
20818 @opindex mbitops
20819 Enable the use of bit manipulation instructions on SH2A.
20820
20821 @item -mfmovd
20822 @opindex mfmovd
20823 Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
20824 alignment constraints.
20825
20826 @item -mrenesas
20827 @opindex mrenesas
20828 Comply with the calling conventions defined by Renesas.
20829
20830 @item -mno-renesas
20831 @opindex mno-renesas
20832 Comply with the calling conventions defined for GCC before the Renesas
20833 conventions were available.  This option is the default for all
20834 targets of the SH toolchain.
20835
20836 @item -mnomacsave
20837 @opindex mnomacsave
20838 Mark the @code{MAC} register as call-clobbered, even if
20839 @option{-mrenesas} is given.
20840
20841 @item -mieee
20842 @itemx -mno-ieee
20843 @opindex mieee
20844 @opindex mno-ieee
20845 Control the IEEE compliance of floating-point comparisons, which affects the
20846 handling of cases where the result of a comparison is unordered.  By default
20847 @option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
20848 enabled @option{-mno-ieee} is implicitly set, which results in faster
20849 floating-point greater-equal and less-equal comparisons.  The implcit settings
20850 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20851
20852 @item -minline-ic_invalidate
20853 @opindex minline-ic_invalidate
20854 Inline code to invalidate instruction cache entries after setting up
20855 nested function trampolines.
20856 This option has no effect if @option{-musermode} is in effect and the selected
20857 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20858 instruction.
20859 If the selected code generation option does not allow the use of the @code{icbi}
20860 instruction, and @option{-musermode} is not in effect, the inlined code
20861 manipulates the instruction cache address array directly with an associative
20862 write.  This not only requires privileged mode at run time, but it also
20863 fails if the cache line had been mapped via the TLB and has become unmapped.
20864
20865 @item -misize
20866 @opindex misize
20867 Dump instruction size and location in the assembly code.
20868
20869 @item -mpadstruct
20870 @opindex mpadstruct
20871 This option is deprecated.  It pads structures to multiple of 4 bytes,
20872 which is incompatible with the SH ABI@.
20873
20874 @item -matomic-model=@var{model}
20875 @opindex matomic-model=@var{model}
20876 Sets the model of atomic operations and additional parameters as a comma
20877 separated list.  For details on the atomic built-in functions see
20878 @ref{__atomic Builtins}.  The following models and parameters are supported:
20879
20880 @table @samp
20881
20882 @item none
20883 Disable compiler generated atomic sequences and emit library calls for atomic
20884 operations.  This is the default if the target is not @code{sh*-*-linux*}.
20885
20886 @item soft-gusa
20887 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20888 built-in functions.  The generated atomic sequences require additional support
20889 from the interrupt/exception handling code of the system and are only suitable
20890 for SH3* and SH4* single-core systems.  This option is enabled by default when
20891 the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
20892 this option also partially utilizes the hardware atomic instructions
20893 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20894 @samp{strict} is specified.  
20895
20896 @item soft-tcb
20897 Generate software atomic sequences that use a variable in the thread control
20898 block.  This is a variation of the gUSA sequences which can also be used on
20899 SH1* and SH2* targets.  The generated atomic sequences require additional
20900 support from the interrupt/exception handling code of the system and are only
20901 suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
20902 parameter has to be specified as well.
20903
20904 @item soft-imask
20905 Generate software atomic sequences that temporarily disable interrupts by
20906 setting @code{SR.IMASK = 1111}.  This model works only when the program runs
20907 in privileged mode and is only suitable for single-core systems.  Additional
20908 support from the interrupt/exception handling code of the system is not
20909 required.  This model is enabled by default when the target is
20910 @code{sh*-*-linux*} and SH1* or SH2*.
20911
20912 @item hard-llcs
20913 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20914 instructions only.  This is only available on SH4A and is suitable for
20915 multi-core systems.  Since the hardware instructions support only 32 bit atomic
20916 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20917 Code compiled with this option is also compatible with other software
20918 atomic model interrupt/exception handling systems if executed on an SH4A
20919 system.  Additional support from the interrupt/exception handling code of the
20920 system is not required for this model.
20921
20922 @item gbr-offset=
20923 This parameter specifies the offset in bytes of the variable in the thread
20924 control block structure that should be used by the generated atomic sequences
20925 when the @samp{soft-tcb} model has been selected.  For other models this
20926 parameter is ignored.  The specified value must be an integer multiple of four
20927 and in the range 0-1020.
20928
20929 @item strict
20930 This parameter prevents mixed usage of multiple atomic models, even if they
20931 are compatible, and makes the compiler generate atomic sequences of the
20932 specified model only.
20933
20934 @end table
20935
20936 @item -mtas
20937 @opindex mtas
20938 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20939 Notice that depending on the particular hardware and software configuration
20940 this can degrade overall performance due to the operand cache line flushes
20941 that are implied by the @code{tas.b} instruction.  On multi-core SH4A
20942 processors the @code{tas.b} instruction must be used with caution since it
20943 can result in data corruption for certain cache configurations.
20944
20945 @item -mprefergot
20946 @opindex mprefergot
20947 When generating position-independent code, emit function calls using
20948 the Global Offset Table instead of the Procedure Linkage Table.
20949
20950 @item -musermode
20951 @itemx -mno-usermode
20952 @opindex musermode
20953 @opindex mno-usermode
20954 Don't allow (allow) the compiler generating privileged mode code.  Specifying
20955 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20956 inlined code would not work in user mode.  @option{-musermode} is the default
20957 when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
20958 @option{-musermode} has no effect, since there is no user mode.
20959
20960 @item -multcost=@var{number}
20961 @opindex multcost=@var{number}
20962 Set the cost to assume for a multiply insn.
20963
20964 @item -mdiv=@var{strategy}
20965 @opindex mdiv=@var{strategy}
20966 Set the division strategy to be used for integer division operations.
20967 For SHmedia @var{strategy} can be one of: 
20968
20969 @table @samp
20970
20971 @item fp 
20972 Performs the operation in floating point.  This has a very high latency,
20973 but needs only a few instructions, so it might be a good choice if
20974 your code has enough easily-exploitable ILP to allow the compiler to
20975 schedule the floating-point instructions together with other instructions.
20976 Division by zero causes a floating-point exception.
20977
20978 @item inv
20979 Uses integer operations to calculate the inverse of the divisor,
20980 and then multiplies the dividend with the inverse.  This strategy allows
20981 CSE and hoisting of the inverse calculation.  Division by zero calculates
20982 an unspecified result, but does not trap.
20983
20984 @item inv:minlat
20985 A variant of @samp{inv} where, if no CSE or hoisting opportunities
20986 have been found, or if the entire operation has been hoisted to the same
20987 place, the last stages of the inverse calculation are intertwined with the
20988 final multiply to reduce the overall latency, at the expense of using a few
20989 more instructions, and thus offering fewer scheduling opportunities with
20990 other code.
20991
20992 @item call
20993 Calls a library function that usually implements the @samp{inv:minlat}
20994 strategy.
20995 This gives high code density for @code{m5-*media-nofpu} compilations.
20996
20997 @item call2
20998 Uses a different entry point of the same library function, where it
20999 assumes that a pointer to a lookup table has already been set up, which
21000 exposes the pointer load to CSE and code hoisting optimizations.
21001
21002 @item inv:call
21003 @itemx inv:call2
21004 @itemx inv:fp
21005 Use the @samp{inv} algorithm for initial
21006 code generation, but if the code stays unoptimized, revert to the @samp{call},
21007 @samp{call2}, or @samp{fp} strategies, respectively.  Note that the
21008 potentially-trapping side effect of division by zero is carried by a
21009 separate instruction, so it is possible that all the integer instructions
21010 are hoisted out, but the marker for the side effect stays where it is.
21011 A recombination to floating-point operations or a call is not possible
21012 in that case.
21013
21014 @item inv20u
21015 @itemx inv20l
21016 Variants of the @samp{inv:minlat} strategy.  In the case
21017 that the inverse calculation is not separated from the multiply, they speed
21018 up division where the dividend fits into 20 bits (plus sign where applicable)
21019 by inserting a test to skip a number of operations in this case; this test
21020 slows down the case of larger dividends.  @samp{inv20u} assumes the case of a such
21021 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
21022
21023 @end table
21024
21025 For targets other than SHmedia @var{strategy} can be one of:
21026
21027 @table @samp
21028
21029 @item call-div1
21030 Calls a library function that uses the single-step division instruction
21031 @code{div1} to perform the operation.  Division by zero calculates an
21032 unspecified result and does not trap.  This is the default except for SH4,
21033 SH2A and SHcompact.
21034
21035 @item call-fp
21036 Calls a library function that performs the operation in double precision
21037 floating point.  Division by zero causes a floating-point exception.  This is
21038 the default for SHcompact with FPU.  Specifying this for targets that do not
21039 have a double precision FPU defaults to @code{call-div1}.
21040
21041 @item call-table
21042 Calls a library function that uses a lookup table for small divisors and
21043 the @code{div1} instruction with case distinction for larger divisors.  Division
21044 by zero calculates an unspecified result and does not trap.  This is the default
21045 for SH4.  Specifying this for targets that do not have dynamic shift
21046 instructions defaults to @code{call-div1}.
21047
21048 @end table
21049
21050 When a division strategy has not been specified the default strategy is
21051 selected based on the current target.  For SH2A the default strategy is to
21052 use the @code{divs} and @code{divu} instructions instead of library function
21053 calls.
21054
21055 @item -maccumulate-outgoing-args
21056 @opindex maccumulate-outgoing-args
21057 Reserve space once for outgoing arguments in the function prologue rather
21058 than around each call.  Generally beneficial for performance and size.  Also
21059 needed for unwinding to avoid changing the stack frame around conditional code.
21060
21061 @item -mdivsi3_libfunc=@var{name}
21062 @opindex mdivsi3_libfunc=@var{name}
21063 Set the name of the library function used for 32-bit signed division to
21064 @var{name}.
21065 This only affects the name used in the @samp{call} and @samp{inv:call}
21066 division strategies, and the compiler still expects the same
21067 sets of input/output/clobbered registers as if this option were not present.
21068
21069 @item -mfixed-range=@var{register-range}
21070 @opindex mfixed-range
21071 Generate code treating the given register range as fixed registers.
21072 A fixed register is one that the register allocator can not use.  This is
21073 useful when compiling kernel code.  A register range is specified as
21074 two registers separated by a dash.  Multiple register ranges can be
21075 specified separated by a comma.
21076
21077 @item -mindexed-addressing
21078 @opindex mindexed-addressing
21079 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
21080 This is only safe if the hardware and/or OS implement 32-bit wrap-around
21081 semantics for the indexed addressing mode.  The architecture allows the
21082 implementation of processors with 64-bit MMU, which the OS could use to
21083 get 32-bit addressing, but since no current hardware implementation supports
21084 this or any other way to make the indexed addressing mode safe to use in
21085 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
21086
21087 @item -mgettrcost=@var{number}
21088 @opindex mgettrcost=@var{number}
21089 Set the cost assumed for the @code{gettr} instruction to @var{number}.
21090 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
21091
21092 @item -mpt-fixed
21093 @opindex mpt-fixed
21094 Assume @code{pt*} instructions won't trap.  This generally generates
21095 better-scheduled code, but is unsafe on current hardware.
21096 The current architecture
21097 definition says that @code{ptabs} and @code{ptrel} trap when the target 
21098 anded with 3 is 3.
21099 This has the unintentional effect of making it unsafe to schedule these
21100 instructions before a branch, or hoist them out of a loop.  For example,
21101 @code{__do_global_ctors}, a part of @file{libgcc}
21102 that runs constructors at program
21103 startup, calls functions in a list which is delimited by @minus{}1.  With the
21104 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
21105 That means that all the constructors run a bit more quickly, but when
21106 the loop comes to the end of the list, the program crashes because @code{ptabs}
21107 loads @minus{}1 into a target register.  
21108
21109 Since this option is unsafe for any
21110 hardware implementing the current architecture specification, the default
21111 is @option{-mno-pt-fixed}.  Unless specified explicitly with 
21112 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
21113 this deters register allocation from using target registers for storing
21114 ordinary integers.
21115
21116 @item -minvalid-symbols
21117 @opindex minvalid-symbols
21118 Assume symbols might be invalid.  Ordinary function symbols generated by
21119 the compiler are always valid to load with
21120 @code{movi}/@code{shori}/@code{ptabs} or
21121 @code{movi}/@code{shori}/@code{ptrel},
21122 but with assembler and/or linker tricks it is possible
21123 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
21124 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
21125 It prevents cross-basic-block CSE, hoisting and most scheduling
21126 of symbol loads.  The default is @option{-mno-invalid-symbols}.
21127
21128 @item -mbranch-cost=@var{num}
21129 @opindex mbranch-cost=@var{num}
21130 Assume @var{num} to be the cost for a branch instruction.  Higher numbers
21131 make the compiler try to generate more branch-free code if possible.  
21132 If not specified the value is selected depending on the processor type that
21133 is being compiled for.
21134
21135 @item -mzdcbranch
21136 @itemx -mno-zdcbranch
21137 @opindex mzdcbranch
21138 @opindex mno-zdcbranch
21139 Assume (do not assume) that zero displacement conditional branch instructions
21140 @code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
21141 compiler prefers zero displacement branch code sequences.  This is
21142 enabled by default when generating code for SH4 and SH4A.  It can be explicitly
21143 disabled by specifying @option{-mno-zdcbranch}.
21144
21145 @item -mcbranch-force-delay-slot
21146 @opindex mcbranch-force-delay-slot
21147 Force the usage of delay slots for conditional branches, which stuffs the delay
21148 slot with a @code{nop} if a suitable instruction can't be found.  By default
21149 this option is disabled.  It can be enabled to work around hardware bugs as
21150 found in the original SH7055.
21151
21152 @item -mfused-madd
21153 @itemx -mno-fused-madd
21154 @opindex mfused-madd
21155 @opindex mno-fused-madd
21156 Generate code that uses (does not use) the floating-point multiply and
21157 accumulate instructions.  These instructions are generated by default
21158 if hardware floating point is used.  The machine-dependent
21159 @option{-mfused-madd} option is now mapped to the machine-independent
21160 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21161 mapped to @option{-ffp-contract=off}.
21162
21163 @item -mfsca
21164 @itemx -mno-fsca
21165 @opindex mfsca
21166 @opindex mno-fsca
21167 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21168 and cosine approximations.  The option @option{-mfsca} must be used in
21169 combination with @option{-funsafe-math-optimizations}.  It is enabled by default
21170 when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
21171 approximations even if @option{-funsafe-math-optimizations} is in effect.
21172
21173 @item -mfsrra
21174 @itemx -mno-fsrra
21175 @opindex mfsrra
21176 @opindex mno-fsrra
21177 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21178 reciprocal square root approximations.  The option @option{-mfsrra} must be used
21179 in combination with @option{-funsafe-math-optimizations} and
21180 @option{-ffinite-math-only}.  It is enabled by default when generating code for
21181 SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
21182 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21183 in effect.
21184
21185 @item -mpretend-cmove
21186 @opindex mpretend-cmove
21187 Prefer zero-displacement conditional branches for conditional move instruction
21188 patterns.  This can result in faster code on the SH4 processor.
21189
21190 @end table
21191
21192 @node Solaris 2 Options
21193 @subsection Solaris 2 Options
21194 @cindex Solaris 2 options
21195
21196 These @samp{-m} options are supported on Solaris 2:
21197
21198 @table @gcctabopt
21199 @item -mclear-hwcap
21200 @opindex mclear-hwcap
21201 @option{-mclear-hwcap} tells the compiler to remove the hardware
21202 capabilities generated by the Solaris assembler.  This is only necessary
21203 when object files use ISA extensions not supported by the current
21204 machine, but check at runtime whether or not to use them.
21205
21206 @item -mimpure-text
21207 @opindex mimpure-text
21208 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21209 the compiler to not pass @option{-z text} to the linker when linking a
21210 shared object.  Using this option, you can link position-dependent
21211 code into a shared object.
21212
21213 @option{-mimpure-text} suppresses the ``relocations remain against
21214 allocatable but non-writable sections'' linker error message.
21215 However, the necessary relocations trigger copy-on-write, and the
21216 shared object is not actually shared across processes.  Instead of
21217 using @option{-mimpure-text}, you should compile all source code with
21218 @option{-fpic} or @option{-fPIC}.
21219
21220 @end table
21221
21222 These switches are supported in addition to the above on Solaris 2:
21223
21224 @table @gcctabopt
21225 @item -pthreads
21226 @opindex pthreads
21227 Add support for multithreading using the POSIX threads library.  This
21228 option sets flags for both the preprocessor and linker.  This option does
21229 not affect the thread safety of object code produced  by the compiler or
21230 that of libraries supplied with it.
21231
21232 @item -pthread
21233 @opindex pthread
21234 This is a synonym for @option{-pthreads}.
21235 @end table
21236
21237 @node SPARC Options
21238 @subsection SPARC Options
21239 @cindex SPARC options
21240
21241 These @samp{-m} options are supported on the SPARC:
21242
21243 @table @gcctabopt
21244 @item -mno-app-regs
21245 @itemx -mapp-regs
21246 @opindex mno-app-regs
21247 @opindex mapp-regs
21248 Specify @option{-mapp-regs} to generate output using the global registers
21249 2 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
21250 global register 1, each global register 2 through 4 is then treated as an
21251 allocable register that is clobbered by function calls.  This is the default.
21252
21253 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21254 specify @option{-mno-app-regs}.  You should compile libraries and system
21255 software with this option.
21256
21257 @item -mflat
21258 @itemx -mno-flat
21259 @opindex mflat
21260 @opindex mno-flat
21261 With @option{-mflat}, the compiler does not generate save/restore instructions
21262 and uses a ``flat'' or single register window model.  This model is compatible
21263 with the regular register window model.  The local registers and the input
21264 registers (0--5) are still treated as ``call-saved'' registers and are
21265 saved on the stack as needed.
21266
21267 With @option{-mno-flat} (the default), the compiler generates save/restore
21268 instructions (except for leaf functions).  This is the normal operating mode.
21269
21270 @item -mfpu
21271 @itemx -mhard-float
21272 @opindex mfpu
21273 @opindex mhard-float
21274 Generate output containing floating-point instructions.  This is the
21275 default.
21276
21277 @item -mno-fpu
21278 @itemx -msoft-float
21279 @opindex mno-fpu
21280 @opindex msoft-float
21281 Generate output containing library calls for floating point.
21282 @strong{Warning:} the requisite libraries are not available for all SPARC
21283 targets.  Normally the facilities of the machine's usual C compiler are
21284 used, but this cannot be done directly in cross-compilation.  You must make
21285 your own arrangements to provide suitable library functions for
21286 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
21287 @samp{sparclite-*-*} do provide software floating-point support.
21288
21289 @option{-msoft-float} changes the calling convention in the output file;
21290 therefore, it is only useful if you compile @emph{all} of a program with
21291 this option.  In particular, you need to compile @file{libgcc.a}, the
21292 library that comes with GCC, with @option{-msoft-float} in order for
21293 this to work.
21294
21295 @item -mhard-quad-float
21296 @opindex mhard-quad-float
21297 Generate output containing quad-word (long double) floating-point
21298 instructions.
21299
21300 @item -msoft-quad-float
21301 @opindex msoft-quad-float
21302 Generate output containing library calls for quad-word (long double)
21303 floating-point instructions.  The functions called are those specified
21304 in the SPARC ABI@.  This is the default.
21305
21306 As of this writing, there are no SPARC implementations that have hardware
21307 support for the quad-word floating-point instructions.  They all invoke
21308 a trap handler for one of these instructions, and then the trap handler
21309 emulates the effect of the instruction.  Because of the trap handler overhead,
21310 this is much slower than calling the ABI library routines.  Thus the
21311 @option{-msoft-quad-float} option is the default.
21312
21313 @item -mno-unaligned-doubles
21314 @itemx -munaligned-doubles
21315 @opindex mno-unaligned-doubles
21316 @opindex munaligned-doubles
21317 Assume that doubles have 8-byte alignment.  This is the default.
21318
21319 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21320 alignment only if they are contained in another type, or if they have an
21321 absolute address.  Otherwise, it assumes they have 4-byte alignment.
21322 Specifying this option avoids some rare compatibility problems with code
21323 generated by other compilers.  It is not the default because it results
21324 in a performance loss, especially for floating-point code.
21325
21326 @item -muser-mode
21327 @itemx -mno-user-mode
21328 @opindex muser-mode
21329 @opindex mno-user-mode
21330 Do not generate code that can only run in supervisor mode.  This is relevant
21331 only for the @code{casa} instruction emitted for the LEON3 processor.  The
21332 default is @option{-mno-user-mode}.
21333
21334 @item -mno-faster-structs
21335 @itemx -mfaster-structs
21336 @opindex mno-faster-structs
21337 @opindex mfaster-structs
21338 With @option{-mfaster-structs}, the compiler assumes that structures
21339 should have 8-byte alignment.  This enables the use of pairs of
21340 @code{ldd} and @code{std} instructions for copies in structure
21341 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21342 However, the use of this changed alignment directly violates the SPARC
21343 ABI@.  Thus, it's intended only for use on targets where the developer
21344 acknowledges that their resulting code is not directly in line with
21345 the rules of the ABI@.
21346
21347 @item -mcpu=@var{cpu_type}
21348 @opindex mcpu
21349 Set the instruction set, register set, and instruction scheduling parameters
21350 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
21351 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21352 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21353 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21354 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21355 @samp{niagara3} and @samp{niagara4}.
21356
21357 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21358 which selects the best architecture option for the host processor.
21359 @option{-mcpu=native} has no effect if GCC does not recognize
21360 the processor.
21361
21362 Default instruction scheduling parameters are used for values that select
21363 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
21364 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21365
21366 Here is a list of each supported architecture and their supported
21367 implementations.
21368
21369 @table @asis
21370 @item v7
21371 cypress, leon3v7
21372
21373 @item v8
21374 supersparc, hypersparc, leon, leon3
21375
21376 @item sparclite
21377 f930, f934, sparclite86x
21378
21379 @item sparclet
21380 tsc701
21381
21382 @item v9
21383 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21384 @end table
21385
21386 By default (unless configured otherwise), GCC generates code for the V7
21387 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
21388 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21389 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
21390 SPARCStation 1, 2, IPX etc.
21391
21392 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21393 architecture.  The only difference from V7 code is that the compiler emits
21394 the integer multiply and integer divide instructions which exist in SPARC-V8
21395 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
21396 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21397 2000 series.
21398
21399 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21400 the SPARC architecture.  This adds the integer multiply, integer divide step
21401 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21402 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21403 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
21404 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21405 MB86934 chip, which is the more recent SPARClite with FPU@.
21406
21407 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21408 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
21409 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21410 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
21411 optimizes it for the TEMIC SPARClet chip.
21412
21413 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21414 architecture.  This adds 64-bit integer and floating-point move instructions,
21415 3 additional floating-point condition code registers and conditional move
21416 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
21417 optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
21418 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21419 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
21420 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21421 Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
21422 additionally optimizes it for Sun UltraSPARC T2 chips. With
21423 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21424 UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
21425 additionally optimizes it for Sun UltraSPARC T4 chips.
21426
21427 @item -mtune=@var{cpu_type}
21428 @opindex mtune
21429 Set the instruction scheduling parameters for machine type
21430 @var{cpu_type}, but do not set the instruction set or register set that the
21431 option @option{-mcpu=@var{cpu_type}} does.
21432
21433 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21434 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21435 that select a particular CPU implementation.  Those are @samp{cypress},
21436 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21437 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21438 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21439 @samp{niagara3} and @samp{niagara4}.  With native Solaris and GNU/Linux
21440 toolchains, @samp{native} can also be used.
21441
21442 @item -mv8plus
21443 @itemx -mno-v8plus
21444 @opindex mv8plus
21445 @opindex mno-v8plus
21446 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
21447 difference from the V8 ABI is that the global and out registers are
21448 considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
21449 mode for all SPARC-V9 processors.
21450
21451 @item -mvis
21452 @itemx -mno-vis
21453 @opindex mvis
21454 @opindex mno-vis
21455 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21456 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
21457
21458 @item -mvis2
21459 @itemx -mno-vis2
21460 @opindex mvis2
21461 @opindex mno-vis2
21462 With @option{-mvis2}, GCC generates code that takes advantage of
21463 version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
21464 default is @option{-mvis2} when targeting a cpu that supports such
21465 instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
21466 also sets @option{-mvis}.
21467
21468 @item -mvis3
21469 @itemx -mno-vis3
21470 @opindex mvis3
21471 @opindex mno-vis3
21472 With @option{-mvis3}, GCC generates code that takes advantage of
21473 version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
21474 default is @option{-mvis3} when targeting a cpu that supports such
21475 instructions, such as niagara-3 and later.  Setting @option{-mvis3}
21476 also sets @option{-mvis2} and @option{-mvis}.
21477
21478 @item -mcbcond
21479 @itemx -mno-cbcond
21480 @opindex mcbcond
21481 @opindex mno-cbcond
21482 With @option{-mcbcond}, GCC generates code that takes advantage of
21483 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21484 The default is @option{-mcbcond} when targeting a cpu that supports such
21485 instructions, such as niagara-4 and later.
21486
21487 @item -mpopc
21488 @itemx -mno-popc
21489 @opindex mpopc
21490 @opindex mno-popc
21491 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21492 population count instruction.  The default is @option{-mpopc}
21493 when targeting a cpu that supports such instructions, such as Niagara-2 and
21494 later.
21495
21496 @item -mfmaf
21497 @itemx -mno-fmaf
21498 @opindex mfmaf
21499 @opindex mno-fmaf
21500 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21501 Fused Multiply-Add Floating-point extensions.  The default is @option{-mfmaf}
21502 when targeting a cpu that supports such instructions, such as Niagara-3 and
21503 later.
21504
21505 @item -mfix-at697f
21506 @opindex mfix-at697f
21507 Enable the documented workaround for the single erratum of the Atmel AT697F
21508 processor (which corresponds to erratum #13 of the AT697E processor).
21509
21510 @item -mfix-ut699
21511 @opindex mfix-ut699
21512 Enable the documented workarounds for the floating-point errata and the data
21513 cache nullify errata of the UT699 processor.
21514 @end table
21515
21516 These @samp{-m} options are supported in addition to the above
21517 on SPARC-V9 processors in 64-bit environments:
21518
21519 @table @gcctabopt
21520 @item -m32
21521 @itemx -m64
21522 @opindex m32
21523 @opindex m64
21524 Generate code for a 32-bit or 64-bit environment.
21525 The 32-bit environment sets int, long and pointer to 32 bits.
21526 The 64-bit environment sets int to 32 bits and long and pointer
21527 to 64 bits.
21528
21529 @item -mcmodel=@var{which}
21530 @opindex mcmodel
21531 Set the code model to one of
21532
21533 @table @samp
21534 @item medlow
21535 The Medium/Low code model: 64-bit addresses, programs
21536 must be linked in the low 32 bits of memory.  Programs can be statically
21537 or dynamically linked.
21538
21539 @item medmid
21540 The Medium/Middle code model: 64-bit addresses, programs
21541 must be linked in the low 44 bits of memory, the text and data segments must
21542 be less than 2GB in size and the data segment must be located within 2GB of
21543 the text segment.
21544
21545 @item medany
21546 The Medium/Anywhere code model: 64-bit addresses, programs
21547 may be linked anywhere in memory, the text and data segments must be less
21548 than 2GB in size and the data segment must be located within 2GB of the
21549 text segment.
21550
21551 @item embmedany
21552 The Medium/Anywhere code model for embedded systems:
21553 64-bit addresses, the text and data segments must be less than 2GB in
21554 size, both starting anywhere in memory (determined at link time).  The
21555 global register %g4 points to the base of the data segment.  Programs
21556 are statically linked and PIC is not supported.
21557 @end table
21558
21559 @item -mmemory-model=@var{mem-model}
21560 @opindex mmemory-model
21561 Set the memory model in force on the processor to one of
21562
21563 @table @samp
21564 @item default
21565 The default memory model for the processor and operating system.
21566
21567 @item rmo
21568 Relaxed Memory Order
21569
21570 @item pso
21571 Partial Store Order
21572
21573 @item tso
21574 Total Store Order
21575
21576 @item sc
21577 Sequential Consistency
21578 @end table
21579
21580 These memory models are formally defined in Appendix D of the Sparc V9
21581 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21582
21583 @item -mstack-bias
21584 @itemx -mno-stack-bias
21585 @opindex mstack-bias
21586 @opindex mno-stack-bias
21587 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21588 frame pointer if present, are offset by @minus{}2047 which must be added back
21589 when making stack frame references.  This is the default in 64-bit mode.
21590 Otherwise, assume no such offset is present.
21591 @end table
21592
21593 @node SPU Options
21594 @subsection SPU Options
21595 @cindex SPU options
21596
21597 These @samp{-m} options are supported on the SPU:
21598
21599 @table @gcctabopt
21600 @item -mwarn-reloc
21601 @itemx -merror-reloc
21602 @opindex mwarn-reloc
21603 @opindex merror-reloc
21604
21605 The loader for SPU does not handle dynamic relocations.  By default, GCC
21606 gives an error when it generates code that requires a dynamic
21607 relocation.  @option{-mno-error-reloc} disables the error,
21608 @option{-mwarn-reloc} generates a warning instead.
21609
21610 @item -msafe-dma
21611 @itemx -munsafe-dma
21612 @opindex msafe-dma
21613 @opindex munsafe-dma
21614
21615 Instructions that initiate or test completion of DMA must not be
21616 reordered with respect to loads and stores of the memory that is being
21617 accessed.
21618 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21619 memory accesses, but that can lead to inefficient code in places where the
21620 memory is known to not change.  Rather than mark the memory as volatile,
21621 you can use @option{-msafe-dma} to tell the compiler to treat
21622 the DMA instructions as potentially affecting all memory.  
21623
21624 @item -mbranch-hints
21625 @opindex mbranch-hints
21626
21627 By default, GCC generates a branch hint instruction to avoid
21628 pipeline stalls for always-taken or probably-taken branches.  A hint
21629 is not generated closer than 8 instructions away from its branch.
21630 There is little reason to disable them, except for debugging purposes,
21631 or to make an object a little bit smaller.
21632
21633 @item -msmall-mem
21634 @itemx -mlarge-mem
21635 @opindex msmall-mem
21636 @opindex mlarge-mem
21637
21638 By default, GCC generates code assuming that addresses are never larger
21639 than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
21640 a full 32-bit address.
21641
21642 @item -mstdmain
21643 @opindex mstdmain
21644
21645 By default, GCC links against startup code that assumes the SPU-style
21646 main function interface (which has an unconventional parameter list).
21647 With @option{-mstdmain}, GCC links your program against startup
21648 code that assumes a C99-style interface to @code{main}, including a
21649 local copy of @code{argv} strings.
21650
21651 @item -mfixed-range=@var{register-range}
21652 @opindex mfixed-range
21653 Generate code treating the given register range as fixed registers.
21654 A fixed register is one that the register allocator cannot use.  This is
21655 useful when compiling kernel code.  A register range is specified as
21656 two registers separated by a dash.  Multiple register ranges can be
21657 specified separated by a comma.
21658
21659 @item -mea32
21660 @itemx -mea64
21661 @opindex mea32
21662 @opindex mea64
21663 Compile code assuming that pointers to the PPU address space accessed
21664 via the @code{__ea} named address space qualifier are either 32 or 64
21665 bits wide.  The default is 32 bits.  As this is an ABI-changing option,
21666 all object code in an executable must be compiled with the same setting.
21667
21668 @item -maddress-space-conversion
21669 @itemx -mno-address-space-conversion
21670 @opindex maddress-space-conversion
21671 @opindex mno-address-space-conversion
21672 Allow/disallow treating the @code{__ea} address space as superset
21673 of the generic address space.  This enables explicit type casts
21674 between @code{__ea} and generic pointer as well as implicit
21675 conversions of generic pointers to @code{__ea} pointers.  The
21676 default is to allow address space pointer conversions.
21677
21678 @item -mcache-size=@var{cache-size}
21679 @opindex mcache-size
21680 This option controls the version of libgcc that the compiler links to an
21681 executable and selects a software-managed cache for accessing variables
21682 in the @code{__ea} address space with a particular cache size.  Possible
21683 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21684 and @samp{128}.  The default cache size is 64KB.
21685
21686 @item -matomic-updates
21687 @itemx -mno-atomic-updates
21688 @opindex matomic-updates
21689 @opindex mno-atomic-updates
21690 This option controls the version of libgcc that the compiler links to an
21691 executable and selects whether atomic updates to the software-managed
21692 cache of PPU-side variables are used.  If you use atomic updates, changes
21693 to a PPU variable from SPU code using the @code{__ea} named address space
21694 qualifier do not interfere with changes to other PPU variables residing
21695 in the same cache line from PPU code.  If you do not use atomic updates,
21696 such interference may occur; however, writing back cache lines is
21697 more efficient.  The default behavior is to use atomic updates.
21698
21699 @item -mdual-nops
21700 @itemx -mdual-nops=@var{n}
21701 @opindex mdual-nops
21702 By default, GCC inserts nops to increase dual issue when it expects
21703 it to increase performance.  @var{n} can be a value from 0 to 10.  A
21704 smaller @var{n} inserts fewer nops.  10 is the default, 0 is the
21705 same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
21706
21707 @item -mhint-max-nops=@var{n}
21708 @opindex mhint-max-nops
21709 Maximum number of nops to insert for a branch hint.  A branch hint must
21710 be at least 8 instructions away from the branch it is affecting.  GCC
21711 inserts up to @var{n} nops to enforce this, otherwise it does not
21712 generate the branch hint.
21713
21714 @item -mhint-max-distance=@var{n}
21715 @opindex mhint-max-distance
21716 The encoding of the branch hint instruction limits the hint to be within
21717 256 instructions of the branch it is affecting.  By default, GCC makes
21718 sure it is within 125.
21719
21720 @item -msafe-hints
21721 @opindex msafe-hints
21722 Work around a hardware bug that causes the SPU to stall indefinitely.
21723 By default, GCC inserts the @code{hbrp} instruction to make sure
21724 this stall won't happen.
21725
21726 @end table
21727
21728 @node System V Options
21729 @subsection Options for System V
21730
21731 These additional options are available on System V Release 4 for
21732 compatibility with other compilers on those systems:
21733
21734 @table @gcctabopt
21735 @item -G
21736 @opindex G
21737 Create a shared object.
21738 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21739
21740 @item -Qy
21741 @opindex Qy
21742 Identify the versions of each tool used by the compiler, in a
21743 @code{.ident} assembler directive in the output.
21744
21745 @item -Qn
21746 @opindex Qn
21747 Refrain from adding @code{.ident} directives to the output file (this is
21748 the default).
21749
21750 @item -YP,@var{dirs}
21751 @opindex YP
21752 Search the directories @var{dirs}, and no others, for libraries
21753 specified with @option{-l}.
21754
21755 @item -Ym,@var{dir}
21756 @opindex Ym
21757 Look in the directory @var{dir} to find the M4 preprocessor.
21758 The assembler uses this option.
21759 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21760 @c the generic assembler that comes with Solaris takes just -Ym.
21761 @end table
21762
21763 @node TILE-Gx Options
21764 @subsection TILE-Gx Options
21765 @cindex TILE-Gx options
21766
21767 These @samp{-m} options are supported on the TILE-Gx:
21768
21769 @table @gcctabopt
21770 @item -mcmodel=small
21771 @opindex mcmodel=small
21772 Generate code for the small model.  The distance for direct calls is
21773 limited to 500M in either direction.  PC-relative addresses are 32
21774 bits.  Absolute addresses support the full address range.
21775
21776 @item -mcmodel=large
21777 @opindex mcmodel=large
21778 Generate code for the large model.  There is no limitation on call
21779 distance, pc-relative addresses, or absolute addresses.
21780
21781 @item -mcpu=@var{name}
21782 @opindex mcpu
21783 Selects the type of CPU to be targeted.  Currently the only supported
21784 type is @samp{tilegx}.
21785
21786 @item -m32
21787 @itemx -m64
21788 @opindex m32
21789 @opindex m64
21790 Generate code for a 32-bit or 64-bit environment.  The 32-bit
21791 environment sets int, long, and pointer to 32 bits.  The 64-bit
21792 environment sets int to 32 bits and long and pointer to 64 bits.
21793
21794 @item -mbig-endian
21795 @itemx -mlittle-endian
21796 @opindex mbig-endian
21797 @opindex mlittle-endian
21798 Generate code in big/little endian mode, respectively.
21799 @end table
21800
21801 @node TILEPro Options
21802 @subsection TILEPro Options
21803 @cindex TILEPro options
21804
21805 These @samp{-m} options are supported on the TILEPro:
21806
21807 @table @gcctabopt
21808 @item -mcpu=@var{name}
21809 @opindex mcpu
21810 Selects the type of CPU to be targeted.  Currently the only supported
21811 type is @samp{tilepro}.
21812
21813 @item -m32
21814 @opindex m32
21815 Generate code for a 32-bit environment, which sets int, long, and
21816 pointer to 32 bits.  This is the only supported behavior so the flag
21817 is essentially ignored.
21818 @end table
21819
21820 @node V850 Options
21821 @subsection V850 Options
21822 @cindex V850 Options
21823
21824 These @samp{-m} options are defined for V850 implementations:
21825
21826 @table @gcctabopt
21827 @item -mlong-calls
21828 @itemx -mno-long-calls
21829 @opindex mlong-calls
21830 @opindex mno-long-calls
21831 Treat all calls as being far away (near).  If calls are assumed to be
21832 far away, the compiler always loads the function's address into a
21833 register, and calls indirect through the pointer.
21834
21835 @item -mno-ep
21836 @itemx -mep
21837 @opindex mno-ep
21838 @opindex mep
21839 Do not optimize (do optimize) basic blocks that use the same index
21840 pointer 4 or more times to copy pointer into the @code{ep} register, and
21841 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
21842 option is on by default if you optimize.
21843
21844 @item -mno-prolog-function
21845 @itemx -mprolog-function
21846 @opindex mno-prolog-function
21847 @opindex mprolog-function
21848 Do not use (do use) external functions to save and restore registers
21849 at the prologue and epilogue of a function.  The external functions
21850 are slower, but use less code space if more than one function saves
21851 the same number of registers.  The @option{-mprolog-function} option
21852 is on by default if you optimize.
21853
21854 @item -mspace
21855 @opindex mspace
21856 Try to make the code as small as possible.  At present, this just turns
21857 on the @option{-mep} and @option{-mprolog-function} options.
21858
21859 @item -mtda=@var{n}
21860 @opindex mtda
21861 Put static or global variables whose size is @var{n} bytes or less into
21862 the tiny data area that register @code{ep} points to.  The tiny data
21863 area can hold up to 256 bytes in total (128 bytes for byte references).
21864
21865 @item -msda=@var{n}
21866 @opindex msda
21867 Put static or global variables whose size is @var{n} bytes or less into
21868 the small data area that register @code{gp} points to.  The small data
21869 area can hold up to 64 kilobytes.
21870
21871 @item -mzda=@var{n}
21872 @opindex mzda
21873 Put static or global variables whose size is @var{n} bytes or less into
21874 the first 32 kilobytes of memory.
21875
21876 @item -mv850
21877 @opindex mv850
21878 Specify that the target processor is the V850.
21879
21880 @item -mv850e3v5
21881 @opindex mv850e3v5
21882 Specify that the target processor is the V850E3V5.  The preprocessor
21883 constant @code{__v850e3v5__} is defined if this option is used.
21884
21885 @item -mv850e2v4
21886 @opindex mv850e2v4
21887 Specify that the target processor is the V850E3V5.  This is an alias for
21888 the @option{-mv850e3v5} option.
21889
21890 @item -mv850e2v3
21891 @opindex mv850e2v3
21892 Specify that the target processor is the V850E2V3.  The preprocessor
21893 constant @code{__v850e2v3__} is defined if this option is used.
21894
21895 @item -mv850e2
21896 @opindex mv850e2
21897 Specify that the target processor is the V850E2.  The preprocessor
21898 constant @code{__v850e2__} is defined if this option is used.
21899
21900 @item -mv850e1
21901 @opindex mv850e1
21902 Specify that the target processor is the V850E1.  The preprocessor
21903 constants @code{__v850e1__} and @code{__v850e__} are defined if
21904 this option is used.
21905
21906 @item -mv850es
21907 @opindex mv850es
21908 Specify that the target processor is the V850ES.  This is an alias for
21909 the @option{-mv850e1} option.
21910
21911 @item -mv850e
21912 @opindex mv850e
21913 Specify that the target processor is the V850E@.  The preprocessor
21914 constant @code{__v850e__} is defined if this option is used.
21915
21916 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21917 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21918 are defined then a default target processor is chosen and the
21919 relevant @samp{__v850*__} preprocessor constant is defined.
21920
21921 The preprocessor constants @code{__v850} and @code{__v851__} are always
21922 defined, regardless of which processor variant is the target.
21923
21924 @item -mdisable-callt
21925 @itemx -mno-disable-callt
21926 @opindex mdisable-callt
21927 @opindex mno-disable-callt
21928 This option suppresses generation of the @code{CALLT} instruction for the
21929 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21930 architecture.
21931
21932 This option is enabled by default when the RH850 ABI is
21933 in use (see @option{-mrh850-abi}), and disabled by default when the
21934 GCC ABI is in use.  If @code{CALLT} instructions are being generated
21935 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21936
21937 @item -mrelax
21938 @itemx -mno-relax
21939 @opindex mrelax
21940 @opindex mno-relax
21941 Pass on (or do not pass on) the @option{-mrelax} command-line option
21942 to the assembler.
21943
21944 @item -mlong-jumps
21945 @itemx -mno-long-jumps
21946 @opindex mlong-jumps
21947 @opindex mno-long-jumps
21948 Disable (or re-enable) the generation of PC-relative jump instructions.
21949
21950 @item -msoft-float
21951 @itemx -mhard-float
21952 @opindex msoft-float
21953 @opindex mhard-float
21954 Disable (or re-enable) the generation of hardware floating point
21955 instructions.  This option is only significant when the target
21956 architecture is @samp{V850E2V3} or higher.  If hardware floating point
21957 instructions are being generated then the C preprocessor symbol
21958 @code{__FPU_OK__} is defined, otherwise the symbol
21959 @code{__NO_FPU__} is defined.
21960
21961 @item -mloop
21962 @opindex mloop
21963 Enables the use of the e3v5 LOOP instruction.  The use of this
21964 instruction is not enabled by default when the e3v5 architecture is
21965 selected because its use is still experimental.
21966
21967 @item -mrh850-abi
21968 @itemx -mghs
21969 @opindex mrh850-abi
21970 @opindex mghs
21971 Enables support for the RH850 version of the V850 ABI.  This is the
21972 default.  With this version of the ABI the following rules apply:
21973
21974 @itemize
21975 @item
21976 Integer sized structures and unions are returned via a memory pointer
21977 rather than a register.
21978
21979 @item
21980 Large structures and unions (more than 8 bytes in size) are passed by
21981 value.
21982
21983 @item
21984 Functions are aligned to 16-bit boundaries.
21985
21986 @item
21987 The @option{-m8byte-align} command-line option is supported.
21988
21989 @item
21990 The @option{-mdisable-callt} command-line option is enabled by
21991 default.  The @option{-mno-disable-callt} command-line option is not
21992 supported.
21993 @end itemize
21994
21995 When this version of the ABI is enabled the C preprocessor symbol
21996 @code{__V850_RH850_ABI__} is defined.
21997
21998 @item -mgcc-abi
21999 @opindex mgcc-abi
22000 Enables support for the old GCC version of the V850 ABI.  With this
22001 version of the ABI the following rules apply:
22002
22003 @itemize
22004 @item
22005 Integer sized structures and unions are returned in register @code{r10}.
22006
22007 @item
22008 Large structures and unions (more than 8 bytes in size) are passed by
22009 reference.
22010
22011 @item
22012 Functions are aligned to 32-bit boundaries, unless optimizing for
22013 size.
22014
22015 @item
22016 The @option{-m8byte-align} command-line option is not supported.
22017
22018 @item
22019 The @option{-mdisable-callt} command-line option is supported but not
22020 enabled by default.
22021 @end itemize
22022
22023 When this version of the ABI is enabled the C preprocessor symbol
22024 @code{__V850_GCC_ABI__} is defined.
22025
22026 @item -m8byte-align
22027 @itemx -mno-8byte-align
22028 @opindex m8byte-align
22029 @opindex mno-8byte-align
22030 Enables support for @code{double} and @code{long long} types to be
22031 aligned on 8-byte boundaries.  The default is to restrict the
22032 alignment of all objects to at most 4-bytes.  When
22033 @option{-m8byte-align} is in effect the C preprocessor symbol
22034 @code{__V850_8BYTE_ALIGN__} is defined.
22035
22036 @item -mbig-switch
22037 @opindex mbig-switch
22038 Generate code suitable for big switch tables.  Use this option only if
22039 the assembler/linker complain about out of range branches within a switch
22040 table.
22041
22042 @item -mapp-regs
22043 @opindex mapp-regs
22044 This option causes r2 and r5 to be used in the code generated by
22045 the compiler.  This setting is the default.
22046
22047 @item -mno-app-regs
22048 @opindex mno-app-regs
22049 This option causes r2 and r5 to be treated as fixed registers.
22050
22051 @end table
22052
22053 @node VAX Options
22054 @subsection VAX Options
22055 @cindex VAX options
22056
22057 These @samp{-m} options are defined for the VAX:
22058
22059 @table @gcctabopt
22060 @item -munix
22061 @opindex munix
22062 Do not output certain jump instructions (@code{aobleq} and so on)
22063 that the Unix assembler for the VAX cannot handle across long
22064 ranges.
22065
22066 @item -mgnu
22067 @opindex mgnu
22068 Do output those jump instructions, on the assumption that the
22069 GNU assembler is being used.
22070
22071 @item -mg
22072 @opindex mg
22073 Output code for G-format floating-point numbers instead of D-format.
22074 @end table
22075
22076 @node Visium Options
22077 @subsection Visium Options
22078 @cindex Visium options
22079
22080 @table @gcctabopt
22081
22082 @item -mdebug
22083 @opindex mdebug
22084 A program which performs file I/O and is destined to run on an MCM target
22085 should be linked with this option.  It causes the libraries libc.a and
22086 libdebug.a to be linked.  The program should be run on the target under
22087 the control of the GDB remote debugging stub.
22088
22089 @item -msim
22090 @opindex msim
22091 A program which performs file I/O and is destined to run on the simulator
22092 should be linked with option.  This causes libraries libc.a and libsim.a to
22093 be linked.
22094
22095 @item -mfpu
22096 @itemx -mhard-float
22097 @opindex mfpu
22098 @opindex mhard-float
22099 Generate code containing floating-point instructions.  This is the
22100 default.
22101
22102 @item -mno-fpu
22103 @itemx -msoft-float
22104 @opindex mno-fpu
22105 @opindex msoft-float
22106 Generate code containing library calls for floating-point.
22107
22108 @option{-msoft-float} changes the calling convention in the output file;
22109 therefore, it is only useful if you compile @emph{all} of a program with
22110 this option.  In particular, you need to compile @file{libgcc.a}, the
22111 library that comes with GCC, with @option{-msoft-float} in order for
22112 this to work.
22113
22114 @item -mcpu=@var{cpu_type}
22115 @opindex mcpu
22116 Set the instruction set, register set, and instruction scheduling parameters
22117 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
22118 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22119
22120 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22121
22122 By default (unless configured otherwise), GCC generates code for the GR5
22123 variant of the Visium architecture.  
22124
22125 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22126 architecture.  The only difference from GR5 code is that the compiler will
22127 generate block move instructions.
22128
22129 @item -mtune=@var{cpu_type}
22130 @opindex mtune
22131 Set the instruction scheduling parameters for machine type @var{cpu_type},
22132 but do not set the instruction set or register set that the option
22133 @option{-mcpu=@var{cpu_type}} would.
22134
22135 @item -msv-mode
22136 @opindex msv-mode
22137 Generate code for the supervisor mode, where there are no restrictions on
22138 the access to general registers.  This is the default.
22139
22140 @item -muser-mode
22141 @opindex muser-mode
22142 Generate code for the user mode, where the access to some general registers
22143 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22144 mode; on the GR6, only registers r29 to r31 are affected.
22145 @end table
22146
22147 @node VMS Options
22148 @subsection VMS Options
22149
22150 These @samp{-m} options are defined for the VMS implementations:
22151
22152 @table @gcctabopt
22153 @item -mvms-return-codes
22154 @opindex mvms-return-codes
22155 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22156 condition (e.g.@ error) codes.
22157
22158 @item -mdebug-main=@var{prefix}
22159 @opindex mdebug-main=@var{prefix}
22160 Flag the first routine whose name starts with @var{prefix} as the main
22161 routine for the debugger.
22162
22163 @item -mmalloc64
22164 @opindex mmalloc64
22165 Default to 64-bit memory allocation routines.
22166
22167 @item -mpointer-size=@var{size}
22168 @opindex mpointer-size=@var{size}
22169 Set the default size of pointers. Possible options for @var{size} are
22170 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22171 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22172 The later option disables @code{pragma pointer_size}.
22173 @end table
22174
22175 @node VxWorks Options
22176 @subsection VxWorks Options
22177 @cindex VxWorks Options
22178
22179 The options in this section are defined for all VxWorks targets.
22180 Options specific to the target hardware are listed with the other
22181 options for that target.
22182
22183 @table @gcctabopt
22184 @item -mrtp
22185 @opindex mrtp
22186 GCC can generate code for both VxWorks kernels and real time processes
22187 (RTPs).  This option switches from the former to the latter.  It also
22188 defines the preprocessor macro @code{__RTP__}.
22189
22190 @item -non-static
22191 @opindex non-static
22192 Link an RTP executable against shared libraries rather than static
22193 libraries.  The options @option{-static} and @option{-shared} can
22194 also be used for RTPs (@pxref{Link Options}); @option{-static}
22195 is the default.
22196
22197 @item -Bstatic
22198 @itemx -Bdynamic
22199 @opindex Bstatic
22200 @opindex Bdynamic
22201 These options are passed down to the linker.  They are defined for
22202 compatibility with Diab.
22203
22204 @item -Xbind-lazy
22205 @opindex Xbind-lazy
22206 Enable lazy binding of function calls.  This option is equivalent to
22207 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22208
22209 @item -Xbind-now
22210 @opindex Xbind-now
22211 Disable lazy binding of function calls.  This option is the default and
22212 is defined for compatibility with Diab.
22213 @end table
22214
22215 @node x86 Options
22216 @subsection x86 Options
22217 @cindex x86 Options
22218
22219 These @samp{-m} options are defined for the x86 family of computers.
22220
22221 @table @gcctabopt
22222
22223 @item -march=@var{cpu-type}
22224 @opindex march
22225 Generate instructions for the machine type @var{cpu-type}.  In contrast to
22226 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
22227 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22228 to generate code that may not run at all on processors other than the one
22229 indicated.  Specifying @option{-march=@var{cpu-type}} implies 
22230 @option{-mtune=@var{cpu-type}}.
22231
22232 The choices for @var{cpu-type} are:
22233
22234 @table @samp
22235 @item native
22236 This selects the CPU to generate code for at compilation time by determining
22237 the processor type of the compiling machine.  Using @option{-march=native}
22238 enables all instruction subsets supported by the local machine (hence
22239 the result might not run on different machines).  Using @option{-mtune=native}
22240 produces code optimized for the local machine under the constraints
22241 of the selected instruction set.  
22242
22243 @item i386
22244 Original Intel i386 CPU@.
22245
22246 @item i486
22247 Intel i486 CPU@.  (No scheduling is implemented for this chip.)
22248
22249 @item i586
22250 @itemx pentium
22251 Intel Pentium CPU with no MMX support.
22252
22253 @item iamcu
22254 Intel MCU, based on Intel Pentium CPU.
22255
22256 @item pentium-mmx
22257 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22258
22259 @item pentiumpro
22260 Intel Pentium Pro CPU@.
22261
22262 @item i686
22263 When used with @option{-march}, the Pentium Pro
22264 instruction set is used, so the code runs on all i686 family chips.
22265 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22266
22267 @item pentium2
22268 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22269 support.
22270
22271 @item pentium3
22272 @itemx pentium3m
22273 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22274 set support.
22275
22276 @item pentium-m
22277 Intel Pentium M; low-power version of Intel Pentium III CPU
22278 with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
22279
22280 @item pentium4
22281 @itemx pentium4m
22282 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22283
22284 @item prescott
22285 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22286 set support.
22287
22288 @item nocona
22289 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22290 SSE2 and SSE3 instruction set support.
22291
22292 @item core2
22293 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22294 instruction set support.
22295
22296 @item nehalem
22297 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22298 SSE4.1, SSE4.2 and POPCNT instruction set support.
22299
22300 @item westmere
22301 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22302 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22303
22304 @item sandybridge
22305 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22306 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22307
22308 @item ivybridge
22309 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22310 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22311 instruction set support.
22312
22313 @item haswell
22314 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22315 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22316 BMI, BMI2 and F16C instruction set support.
22317
22318 @item broadwell
22319 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22320 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22321 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22322
22323 @item bonnell
22324 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22325 instruction set support.
22326
22327 @item silvermont
22328 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22329 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22330
22331 @item knl
22332 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22333 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22334 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22335 AVX512CD instruction set support.
22336
22337 @item k6
22338 AMD K6 CPU with MMX instruction set support.
22339
22340 @item k6-2
22341 @itemx k6-3
22342 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22343
22344 @item athlon
22345 @itemx athlon-tbird
22346 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22347 support.
22348
22349 @item athlon-4
22350 @itemx athlon-xp
22351 @itemx athlon-mp
22352 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22353 instruction set support.
22354
22355 @item k8
22356 @itemx opteron
22357 @itemx athlon64
22358 @itemx athlon-fx
22359 Processors based on the AMD K8 core with x86-64 instruction set support,
22360 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22361 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22362 instruction set extensions.)
22363
22364 @item k8-sse3
22365 @itemx opteron-sse3
22366 @itemx athlon64-sse3
22367 Improved versions of AMD K8 cores with SSE3 instruction set support.
22368
22369 @item amdfam10
22370 @itemx barcelona
22371 CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
22372 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22373 instruction set extensions.)
22374
22375 @item bdver1
22376 CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
22377 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22378 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22379 @item bdver2
22380 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22381 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22382 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
22383 extensions.)
22384 @item bdver3
22385 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22386 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
22387 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 
22388 64-bit instruction set extensions.
22389 @item bdver4
22390 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
22391 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
22392 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, 
22393 SSE4.2, ABM and 64-bit instruction set extensions.
22394
22395 @item btver1
22396 CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
22397 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22398 instruction set extensions.)
22399
22400 @item btver2
22401 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22402 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22403 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22404
22405 @item winchip-c6
22406 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22407 set support.
22408
22409 @item winchip2
22410 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22411 instruction set support.
22412
22413 @item c3
22414 VIA C3 CPU with MMX and 3DNow!@: instruction set support.  (No scheduling is
22415 implemented for this chip.)
22416
22417 @item c3-2
22418 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22419 (No scheduling is
22420 implemented for this chip.)
22421
22422 @item geode
22423 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22424 @end table
22425
22426 @item -mtune=@var{cpu-type}
22427 @opindex mtune
22428 Tune to @var{cpu-type} everything applicable about the generated code, except
22429 for the ABI and the set of available instructions.  
22430 While picking a specific @var{cpu-type} schedules things appropriately
22431 for that particular chip, the compiler does not generate any code that
22432 cannot run on the default machine type unless you use a
22433 @option{-march=@var{cpu-type}} option.
22434 For example, if GCC is configured for i686-pc-linux-gnu
22435 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22436 but still runs on i686 machines.
22437
22438 The choices for @var{cpu-type} are the same as for @option{-march}.
22439 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22440
22441 @table @samp
22442 @item generic
22443 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22444 If you know the CPU on which your code will run, then you should use
22445 the corresponding @option{-mtune} or @option{-march} option instead of
22446 @option{-mtune=generic}.  But, if you do not know exactly what CPU users
22447 of your application will have, then you should use this option.
22448
22449 As new processors are deployed in the marketplace, the behavior of this
22450 option will change.  Therefore, if you upgrade to a newer version of
22451 GCC, code generation controlled by this option will change to reflect
22452 the processors
22453 that are most common at the time that version of GCC is released.
22454
22455 There is no @option{-march=generic} option because @option{-march}
22456 indicates the instruction set the compiler can use, and there is no
22457 generic instruction set applicable to all processors.  In contrast,
22458 @option{-mtune} indicates the processor (or, in this case, collection of
22459 processors) for which the code is optimized.
22460
22461 @item intel
22462 Produce code optimized for the most current Intel processors, which are
22463 Haswell and Silvermont for this version of GCC.  If you know the CPU
22464 on which your code will run, then you should use the corresponding
22465 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22466 But, if you want your application performs better on both Haswell and
22467 Silvermont, then you should use this option.
22468
22469 As new Intel processors are deployed in the marketplace, the behavior of
22470 this option will change.  Therefore, if you upgrade to a newer version of
22471 GCC, code generation controlled by this option will change to reflect
22472 the most current Intel processors at the time that version of GCC is
22473 released.
22474
22475 There is no @option{-march=intel} option because @option{-march} indicates
22476 the instruction set the compiler can use, and there is no common
22477 instruction set applicable to all processors.  In contrast,
22478 @option{-mtune} indicates the processor (or, in this case, collection of
22479 processors) for which the code is optimized.
22480 @end table
22481
22482 @item -mcpu=@var{cpu-type}
22483 @opindex mcpu
22484 A deprecated synonym for @option{-mtune}.
22485
22486 @item -mfpmath=@var{unit}
22487 @opindex mfpmath
22488 Generate floating-point arithmetic for selected unit @var{unit}.  The choices
22489 for @var{unit} are:
22490
22491 @table @samp
22492 @item 387
22493 Use the standard 387 floating-point coprocessor present on the majority of chips and
22494 emulated otherwise.  Code compiled with this option runs almost everywhere.
22495 The temporary results are computed in 80-bit precision instead of the precision
22496 specified by the type, resulting in slightly different results compared to most
22497 of other chips.  See @option{-ffloat-store} for more detailed description.
22498
22499 This is the default choice for x86-32 targets.
22500
22501 @item sse
22502 Use scalar floating-point instructions present in the SSE instruction set.
22503 This instruction set is supported by Pentium III and newer chips,
22504 and in the AMD line
22505 by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
22506 instruction set supports only single-precision arithmetic, thus the double and
22507 extended-precision arithmetic are still done using 387.  A later version, present
22508 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22509 arithmetic too.
22510
22511 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22512 or @option{-msse2} switches to enable SSE extensions and make this option
22513 effective.  For the x86-64 compiler, these extensions are enabled by default.
22514
22515 The resulting code should be considerably faster in the majority of cases and avoid
22516 the numerical instability problems of 387 code, but may break some existing
22517 code that expects temporaries to be 80 bits.
22518
22519 This is the default choice for the x86-64 compiler.
22520
22521 @item sse,387
22522 @itemx sse+387
22523 @itemx both
22524 Attempt to utilize both instruction sets at once.  This effectively doubles the
22525 amount of available registers, and on chips with separate execution units for
22526 387 and SSE the execution resources too.  Use this option with care, as it is
22527 still experimental, because the GCC register allocator does not model separate
22528 functional units well, resulting in unstable performance.
22529 @end table
22530
22531 @item -masm=@var{dialect}
22532 @opindex masm=@var{dialect}
22533 Output assembly instructions using selected @var{dialect}.  Also affects
22534 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22535 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22536 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22537 not support @samp{intel}.
22538
22539 @item -mieee-fp
22540 @itemx -mno-ieee-fp
22541 @opindex mieee-fp
22542 @opindex mno-ieee-fp
22543 Control whether or not the compiler uses IEEE floating-point
22544 comparisons.  These correctly handle the case where the result of a
22545 comparison is unordered.
22546
22547 @item -msoft-float
22548 @opindex msoft-float
22549 Generate output containing library calls for floating point.
22550
22551 @strong{Warning:} the requisite libraries are not part of GCC@.
22552 Normally the facilities of the machine's usual C compiler are used, but
22553 this can't be done directly in cross-compilation.  You must make your
22554 own arrangements to provide suitable library functions for
22555 cross-compilation.
22556
22557 On machines where a function returns floating-point results in the 80387
22558 register stack, some floating-point opcodes may be emitted even if
22559 @option{-msoft-float} is used.
22560
22561 @item -mno-fp-ret-in-387
22562 @opindex mno-fp-ret-in-387
22563 Do not use the FPU registers for return values of functions.
22564
22565 The usual calling convention has functions return values of types
22566 @code{float} and @code{double} in an FPU register, even if there
22567 is no FPU@.  The idea is that the operating system should emulate
22568 an FPU@.
22569
22570 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22571 in ordinary CPU registers instead.
22572
22573 @item -mno-fancy-math-387
22574 @opindex mno-fancy-math-387
22575 Some 387 emulators do not support the @code{sin}, @code{cos} and
22576 @code{sqrt} instructions for the 387.  Specify this option to avoid
22577 generating those instructions.  This option is the default on
22578 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
22579 indicates that the target CPU always has an FPU and so the
22580 instruction does not need emulation.  These
22581 instructions are not generated unless you also use the
22582 @option{-funsafe-math-optimizations} switch.
22583
22584 @item -malign-double
22585 @itemx -mno-align-double
22586 @opindex malign-double
22587 @opindex mno-align-double
22588 Control whether GCC aligns @code{double}, @code{long double}, and
22589 @code{long long} variables on a two-word boundary or a one-word
22590 boundary.  Aligning @code{double} variables on a two-word boundary
22591 produces code that runs somewhat faster on a Pentium at the
22592 expense of more memory.
22593
22594 On x86-64, @option{-malign-double} is enabled by default.
22595
22596 @strong{Warning:} if you use the @option{-malign-double} switch,
22597 structures containing the above types are aligned differently than
22598 the published application binary interface specifications for the x86-32
22599 and are not binary compatible with structures in code compiled
22600 without that switch.
22601
22602 @item -m96bit-long-double
22603 @itemx -m128bit-long-double
22604 @opindex m96bit-long-double
22605 @opindex m128bit-long-double
22606 These switches control the size of @code{long double} type.  The x86-32
22607 application binary interface specifies the size to be 96 bits,
22608 so @option{-m96bit-long-double} is the default in 32-bit mode.
22609
22610 Modern architectures (Pentium and newer) prefer @code{long double}
22611 to be aligned to an 8- or 16-byte boundary.  In arrays or structures
22612 conforming to the ABI, this is not possible.  So specifying
22613 @option{-m128bit-long-double} aligns @code{long double}
22614 to a 16-byte boundary by padding the @code{long double} with an additional
22615 32-bit zero.
22616
22617 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22618 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22619
22620 Notice that neither of these options enable any extra precision over the x87
22621 standard of 80 bits for a @code{long double}.
22622
22623 @strong{Warning:} if you override the default value for your target ABI, this
22624 changes the size of 
22625 structures and arrays containing @code{long double} variables,
22626 as well as modifying the function calling convention for functions taking
22627 @code{long double}.  Hence they are not binary-compatible
22628 with code compiled without that switch.
22629
22630 @item -mlong-double-64
22631 @itemx -mlong-double-80
22632 @itemx -mlong-double-128
22633 @opindex mlong-double-64
22634 @opindex mlong-double-80
22635 @opindex mlong-double-128
22636 These switches control the size of @code{long double} type. A size
22637 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22638 type. This is the default for 32-bit Bionic C library.  A size
22639 of 128 bits makes the @code{long double} type equivalent to the
22640 @code{__float128} type. This is the default for 64-bit Bionic C library.
22641
22642 @strong{Warning:} if you override the default value for your target ABI, this
22643 changes the size of
22644 structures and arrays containing @code{long double} variables,
22645 as well as modifying the function calling convention for functions taking
22646 @code{long double}.  Hence they are not binary-compatible
22647 with code compiled without that switch.
22648
22649 @item -malign-data=@var{type}
22650 @opindex malign-data
22651 Control how GCC aligns variables.  Supported values for @var{type} are
22652 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22653 and earlier, @samp{abi} uses alignment value as specified by the
22654 psABI, and @samp{cacheline} uses increased alignment value to match
22655 the cache line size.  @samp{compat} is the default.
22656
22657 @item -mlarge-data-threshold=@var{threshold}
22658 @opindex mlarge-data-threshold
22659 When @option{-mcmodel=medium} is specified, data objects larger than
22660 @var{threshold} are placed in the large data section.  This value must be the
22661 same across all objects linked into the binary, and defaults to 65535.
22662
22663 @item -mrtd
22664 @opindex mrtd
22665 Use a different function-calling convention, in which functions that
22666 take a fixed number of arguments return with the @code{ret @var{num}}
22667 instruction, which pops their arguments while returning.  This saves one
22668 instruction in the caller since there is no need to pop the arguments
22669 there.
22670
22671 You can specify that an individual function is called with this calling
22672 sequence with the function attribute @code{stdcall}.  You can also
22673 override the @option{-mrtd} option by using the function attribute
22674 @code{cdecl}.  @xref{Function Attributes}.
22675
22676 @strong{Warning:} this calling convention is incompatible with the one
22677 normally used on Unix, so you cannot use it if you need to call
22678 libraries compiled with the Unix compiler.
22679
22680 Also, you must provide function prototypes for all functions that
22681 take variable numbers of arguments (including @code{printf});
22682 otherwise incorrect code is generated for calls to those
22683 functions.
22684
22685 In addition, seriously incorrect code results if you call a
22686 function with too many arguments.  (Normally, extra arguments are
22687 harmlessly ignored.)
22688
22689 @item -mregparm=@var{num}
22690 @opindex mregparm
22691 Control how many registers are used to pass integer arguments.  By
22692 default, no registers are used to pass arguments, and at most 3
22693 registers can be used.  You can control this behavior for a specific
22694 function by using the function attribute @code{regparm}.
22695 @xref{Function Attributes}.
22696
22697 @strong{Warning:} if you use this switch, and
22698 @var{num} is nonzero, then you must build all modules with the same
22699 value, including any libraries.  This includes the system libraries and
22700 startup modules.
22701
22702 @item -msseregparm
22703 @opindex msseregparm
22704 Use SSE register passing conventions for float and double arguments
22705 and return values.  You can control this behavior for a specific
22706 function by using the function attribute @code{sseregparm}.
22707 @xref{Function Attributes}.
22708
22709 @strong{Warning:} if you use this switch then you must build all
22710 modules with the same value, including any libraries.  This includes
22711 the system libraries and startup modules.
22712
22713 @item -mvect8-ret-in-mem
22714 @opindex mvect8-ret-in-mem
22715 Return 8-byte vectors in memory instead of MMX registers.  This is the
22716 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22717 Studio compilers until version 12.  Later compiler versions (starting
22718 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22719 is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
22720 you need to remain compatible with existing code produced by those
22721 previous compiler versions or older versions of GCC@.
22722
22723 @item -mpc32
22724 @itemx -mpc64
22725 @itemx -mpc80
22726 @opindex mpc32
22727 @opindex mpc64
22728 @opindex mpc80
22729
22730 Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
22731 is specified, the significands of results of floating-point operations are
22732 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22733 significands of results of floating-point operations to 53 bits (double
22734 precision) and @option{-mpc80} rounds the significands of results of
22735 floating-point operations to 64 bits (extended double precision), which is
22736 the default.  When this option is used, floating-point operations in higher
22737 precisions are not available to the programmer without setting the FPU
22738 control word explicitly.
22739
22740 Setting the rounding of floating-point operations to less than the default
22741 80 bits can speed some programs by 2% or more.  Note that some mathematical
22742 libraries assume that extended-precision (80-bit) floating-point operations
22743 are enabled by default; routines in such libraries could suffer significant
22744 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22745 when this option is used to set the precision to less than extended precision.
22746
22747 @item -mstackrealign
22748 @opindex mstackrealign
22749 Realign the stack at entry.  On the x86, the @option{-mstackrealign}
22750 option generates an alternate prologue and epilogue that realigns the
22751 run-time stack if necessary.  This supports mixing legacy codes that keep
22752 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22753 SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
22754 applicable to individual functions.
22755
22756 @item -mpreferred-stack-boundary=@var{num}
22757 @opindex mpreferred-stack-boundary
22758 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22759 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
22760 the default is 4 (16 bytes or 128 bits).
22761
22762 @strong{Warning:} When generating code for the x86-64 architecture with
22763 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22764 used to keep the stack boundary aligned to 8 byte boundary.  Since
22765 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22766 intended to be used in controlled environment where stack space is
22767 important limitation.  This option leads to wrong code when functions
22768 compiled with 16 byte stack alignment (such as functions from a standard
22769 library) are called with misaligned stack.  In this case, SSE
22770 instructions may lead to misaligned memory access traps.  In addition,
22771 variable arguments are handled incorrectly for 16 byte aligned
22772 objects (including x87 long double and __int128), leading to wrong
22773 results.  You must build all modules with
22774 @option{-mpreferred-stack-boundary=3}, including any libraries.  This
22775 includes the system libraries and startup modules.
22776
22777 @item -mincoming-stack-boundary=@var{num}
22778 @opindex mincoming-stack-boundary
22779 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22780 boundary.  If @option{-mincoming-stack-boundary} is not specified,
22781 the one specified by @option{-mpreferred-stack-boundary} is used.
22782
22783 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22784 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22785 suffer significant run time performance penalties.  On Pentium III, the
22786 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22787 properly if it is not 16-byte aligned.
22788
22789 To ensure proper alignment of this values on the stack, the stack boundary
22790 must be as aligned as that required by any value stored on the stack.
22791 Further, every function must be generated such that it keeps the stack
22792 aligned.  Thus calling a function compiled with a higher preferred
22793 stack boundary from a function compiled with a lower preferred stack
22794 boundary most likely misaligns the stack.  It is recommended that
22795 libraries that use callbacks always use the default setting.
22796
22797 This extra alignment does consume extra stack space, and generally
22798 increases code size.  Code that is sensitive to stack space usage, such
22799 as embedded systems and operating system kernels, may want to reduce the
22800 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22801
22802 @need 200
22803 @item -mmmx
22804 @opindex mmmx
22805 @need 200
22806 @itemx -msse
22807 @opindex msse
22808 @need 200
22809 @itemx -msse2
22810 @need 200
22811 @itemx -msse3
22812 @need 200
22813 @itemx -mssse3
22814 @need 200
22815 @itemx -msse4
22816 @need 200
22817 @itemx -msse4a
22818 @need 200
22819 @itemx -msse4.1
22820 @need 200
22821 @itemx -msse4.2
22822 @need 200
22823 @itemx -mavx
22824 @opindex mavx
22825 @need 200
22826 @itemx -mavx2
22827 @need 200
22828 @itemx -mavx512f
22829 @need 200
22830 @itemx -mavx512pf
22831 @need 200
22832 @itemx -mavx512er
22833 @need 200
22834 @itemx -mavx512cd
22835 @need 200
22836 @itemx -msha
22837 @opindex msha
22838 @need 200
22839 @itemx -maes
22840 @opindex maes
22841 @need 200
22842 @itemx -mpclmul
22843 @opindex mpclmul
22844 @need 200
22845 @itemx -mclfushopt
22846 @opindex mclfushopt
22847 @need 200
22848 @itemx -mfsgsbase
22849 @opindex mfsgsbase
22850 @need 200
22851 @itemx -mrdrnd
22852 @opindex mrdrnd
22853 @need 200
22854 @itemx -mf16c
22855 @opindex mf16c
22856 @need 200
22857 @itemx -mfma
22858 @opindex mfma
22859 @need 200
22860 @itemx -mfma4
22861 @need 200
22862 @itemx -mno-fma4
22863 @need 200
22864 @itemx -mprefetchwt1
22865 @opindex mprefetchwt1
22866 @need 200
22867 @itemx -mxop
22868 @opindex mxop
22869 @need 200
22870 @itemx -mlwp
22871 @opindex mlwp
22872 @need 200
22873 @itemx -m3dnow
22874 @opindex m3dnow
22875 @need 200
22876 @itemx -mpopcnt
22877 @opindex mpopcnt
22878 @need 200
22879 @itemx -mabm
22880 @opindex mabm
22881 @need 200
22882 @itemx -mbmi
22883 @opindex mbmi
22884 @need 200
22885 @itemx -mbmi2
22886 @need 200
22887 @itemx -mlzcnt
22888 @opindex mlzcnt
22889 @need 200
22890 @itemx -mfxsr
22891 @opindex mfxsr
22892 @need 200
22893 @itemx -mxsave
22894 @opindex mxsave
22895 @need 200
22896 @itemx -mxsaveopt
22897 @opindex mxsaveopt
22898 @need 200
22899 @itemx -mxsavec
22900 @opindex mxsavec
22901 @need 200
22902 @itemx -mxsaves
22903 @opindex mxsaves
22904 @need 200
22905 @itemx -mrtm
22906 @opindex mrtm
22907 @need 200
22908 @itemx -mtbm
22909 @opindex mtbm
22910 @need 200
22911 @itemx -mmpx
22912 @opindex mmpx
22913 @need 200
22914 @itemx -mmwaitx
22915 @opindex mmwaitx
22916 These switches enable the use of instructions in the MMX, SSE,
22917 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22918 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22919 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22920 extended instruction sets.  Each has a corresponding @option{-mno-} option
22921 to disable use of these instructions.
22922
22923 These extensions are also available as built-in functions: see
22924 @ref{x86 Built-in Functions}, for details of the functions enabled and
22925 disabled by these switches.
22926
22927 To generate SSE/SSE2 instructions automatically from floating-point
22928 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22929
22930 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22931 generates new AVX instructions or AVX equivalence for all SSEx instructions
22932 when needed.
22933
22934 These options enable GCC to use these extended instructions in
22935 generated code, even without @option{-mfpmath=sse}.  Applications that
22936 perform run-time CPU detection must compile separate files for each
22937 supported architecture, using the appropriate flags.  In particular,
22938 the file containing the CPU detection code should be compiled without
22939 these options.
22940
22941 @item -mdump-tune-features
22942 @opindex mdump-tune-features
22943 This option instructs GCC to dump the names of the x86 performance 
22944 tuning features and default settings. The names can be used in 
22945 @option{-mtune-ctrl=@var{feature-list}}.
22946
22947 @item -mtune-ctrl=@var{feature-list}
22948 @opindex mtune-ctrl=@var{feature-list}
22949 This option is used to do fine grain control of x86 code generation features.
22950 @var{feature-list} is a comma separated list of @var{feature} names. See also
22951 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22952 on if it is not preceded with @samp{^}, otherwise, it is turned off. 
22953 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22954 developers. Using it may lead to code paths not covered by testing and can
22955 potentially result in compiler ICEs or runtime errors.
22956
22957 @item -mno-default
22958 @opindex mno-default
22959 This option instructs GCC to turn off all tunable features. See also 
22960 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22961
22962 @item -mcld
22963 @opindex mcld
22964 This option instructs GCC to emit a @code{cld} instruction in the prologue
22965 of functions that use string instructions.  String instructions depend on
22966 the DF flag to select between autoincrement or autodecrement mode.  While the
22967 ABI specifies the DF flag to be cleared on function entry, some operating
22968 systems violate this specification by not clearing the DF flag in their
22969 exception dispatchers.  The exception handler can be invoked with the DF flag
22970 set, which leads to wrong direction mode when string instructions are used.
22971 This option can be enabled by default on 32-bit x86 targets by configuring
22972 GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
22973 instructions can be suppressed with the @option{-mno-cld} compiler option
22974 in this case.
22975
22976 @item -mvzeroupper
22977 @opindex mvzeroupper
22978 This option instructs GCC to emit a @code{vzeroupper} instruction
22979 before a transfer of control flow out of the function to minimize
22980 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22981 intrinsics.
22982
22983 @item -mprefer-avx128
22984 @opindex mprefer-avx128
22985 This option instructs GCC to use 128-bit AVX instructions instead of
22986 256-bit AVX instructions in the auto-vectorizer.
22987
22988 @item -mcx16
22989 @opindex mcx16
22990 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22991 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22992 (or oword) data types.  
22993 This is useful for high-resolution counters that can be updated
22994 by multiple processors (or cores).  This instruction is generated as part of
22995 atomic built-in functions: see @ref{__sync Builtins} or
22996 @ref{__atomic Builtins} for details.
22997
22998 @item -msahf
22999 @opindex msahf
23000 This option enables generation of @code{SAHF} instructions in 64-bit code.
23001 Early Intel Pentium 4 CPUs with Intel 64 support,
23002 prior to the introduction of Pentium 4 G1 step in December 2005,
23003 lacked the @code{LAHF} and @code{SAHF} instructions
23004 which are supported by AMD64.
23005 These are load and store instructions, respectively, for certain status flags.
23006 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
23007 @code{drem}, and @code{remainder} built-in functions;
23008 see @ref{Other Builtins} for details.
23009
23010 @item -mmovbe
23011 @opindex mmovbe
23012 This option enables use of the @code{movbe} instruction to implement
23013 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
23014
23015 @item -mcrc32
23016 @opindex mcrc32
23017 This option enables built-in functions @code{__builtin_ia32_crc32qi},
23018 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23019 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23020
23021 @item -mrecip
23022 @opindex mrecip
23023 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23024 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23025 with an additional Newton-Raphson step
23026 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23027 (and their vectorized
23028 variants) for single-precision floating-point arguments.  These instructions
23029 are generated only when @option{-funsafe-math-optimizations} is enabled
23030 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
23031 Note that while the throughput of the sequence is higher than the throughput
23032 of the non-reciprocal instruction, the precision of the sequence can be
23033 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23034
23035 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23036 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23037 combination), and doesn't need @option{-mrecip}.
23038
23039 Also note that GCC emits the above sequence with additional Newton-Raphson step
23040 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23041 already with @option{-ffast-math} (or the above option combination), and
23042 doesn't need @option{-mrecip}.
23043
23044 @item -mrecip=@var{opt}
23045 @opindex mrecip=opt
23046 This option controls which reciprocal estimate instructions
23047 may be used.  @var{opt} is a comma-separated list of options, which may
23048 be preceded by a @samp{!} to invert the option:
23049
23050 @table @samp
23051 @item all
23052 Enable all estimate instructions.
23053
23054 @item default
23055 Enable the default instructions, equivalent to @option{-mrecip}.
23056
23057 @item none
23058 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23059
23060 @item div
23061 Enable the approximation for scalar division.
23062
23063 @item vec-div
23064 Enable the approximation for vectorized division.
23065
23066 @item sqrt
23067 Enable the approximation for scalar square root.
23068
23069 @item vec-sqrt
23070 Enable the approximation for vectorized square root.
23071 @end table
23072
23073 So, for example, @option{-mrecip=all,!sqrt} enables
23074 all of the reciprocal approximations, except for square root.
23075
23076 @item -mveclibabi=@var{type}
23077 @opindex mveclibabi
23078 Specifies the ABI type to use for vectorizing intrinsics using an
23079 external library.  Supported values for @var{type} are @samp{svml} 
23080 for the Intel short
23081 vector math library and @samp{acml} for the AMD math core library.
23082 To use this option, both @option{-ftree-vectorize} and
23083 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
23084 ABI-compatible library must be specified at link time.
23085
23086 GCC currently emits calls to @code{vmldExp2},
23087 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23088 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23089 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23090 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23091 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23092 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23093 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23094 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23095 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23096 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23097 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23098 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23099 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23100 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23101 when @option{-mveclibabi=acml} is used.  
23102
23103 @item -mabi=@var{name}
23104 @opindex mabi
23105 Generate code for the specified calling convention.  Permissible values
23106 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23107 @samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
23108 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23109 You can control this behavior for specific functions by
23110 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23111 @xref{Function Attributes}.
23112
23113 @item -mtls-dialect=@var{type}
23114 @opindex mtls-dialect
23115 Generate code to access thread-local storage using the @samp{gnu} or
23116 @samp{gnu2} conventions.  @samp{gnu} is the conservative default;
23117 @samp{gnu2} is more efficient, but it may add compile- and run-time
23118 requirements that cannot be satisfied on all systems.
23119
23120 @item -mpush-args
23121 @itemx -mno-push-args
23122 @opindex mpush-args
23123 @opindex mno-push-args
23124 Use PUSH operations to store outgoing parameters.  This method is shorter
23125 and usually equally fast as method using SUB/MOV operations and is enabled
23126 by default.  In some cases disabling it may improve performance because of
23127 improved scheduling and reduced dependencies.
23128
23129 @item -maccumulate-outgoing-args
23130 @opindex maccumulate-outgoing-args
23131 If enabled, the maximum amount of space required for outgoing arguments is
23132 computed in the function prologue.  This is faster on most modern CPUs
23133 because of reduced dependencies, improved scheduling and reduced stack usage
23134 when the preferred stack boundary is not equal to 2.  The drawback is a notable
23135 increase in code size.  This switch implies @option{-mno-push-args}.
23136
23137 @item -mthreads
23138 @opindex mthreads
23139 Support thread-safe exception handling on MinGW.  Programs that rely
23140 on thread-safe exception handling must compile and link all code with the
23141 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
23142 @option{-D_MT}; when linking, it links in a special thread helper library
23143 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23144
23145 @item -mno-align-stringops
23146 @opindex mno-align-stringops
23147 Do not align the destination of inlined string operations.  This switch reduces
23148 code size and improves performance in case the destination is already aligned,
23149 but GCC doesn't know about it.
23150
23151 @item -minline-all-stringops
23152 @opindex minline-all-stringops
23153 By default GCC inlines string operations only when the destination is 
23154 known to be aligned to least a 4-byte boundary.  
23155 This enables more inlining and increases code
23156 size, but may improve performance of code that depends on fast
23157 @code{memcpy}, @code{strlen},
23158 and @code{memset} for short lengths.
23159
23160 @item -minline-stringops-dynamically
23161 @opindex minline-stringops-dynamically
23162 For string operations of unknown size, use run-time checks with
23163 inline code for small blocks and a library call for large blocks.
23164
23165 @item -mstringop-strategy=@var{alg}
23166 @opindex mstringop-strategy=@var{alg}
23167 Override the internal decision heuristic for the particular algorithm to use
23168 for inlining string operations.  The allowed values for @var{alg} are:
23169
23170 @table @samp
23171 @item rep_byte
23172 @itemx rep_4byte
23173 @itemx rep_8byte
23174 Expand using i386 @code{rep} prefix of the specified size.
23175
23176 @item byte_loop
23177 @itemx loop
23178 @itemx unrolled_loop
23179 Expand into an inline loop.
23180
23181 @item libcall
23182 Always use a library call.
23183 @end table
23184
23185 @item -mmemcpy-strategy=@var{strategy}
23186 @opindex mmemcpy-strategy=@var{strategy}
23187 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23188 should be inlined and what inline algorithm to use when the expected size
23189 of the copy operation is known. @var{strategy} 
23190 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
23191 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23192 the max byte size with which inline algorithm @var{alg} is allowed.  For the last
23193 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23194 in the list must be specified in increasing order.  The minimal byte size for 
23195 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
23196 preceding range.
23197
23198 @item -mmemset-strategy=@var{strategy}
23199 @opindex mmemset-strategy=@var{strategy}
23200 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23201 @code{__builtin_memset} expansion.
23202
23203 @item -momit-leaf-frame-pointer
23204 @opindex momit-leaf-frame-pointer
23205 Don't keep the frame pointer in a register for leaf functions.  This
23206 avoids the instructions to save, set up, and restore frame pointers and
23207 makes an extra register available in leaf functions.  The option
23208 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23209 which might make debugging harder.
23210
23211 @item -mtls-direct-seg-refs
23212 @itemx -mno-tls-direct-seg-refs
23213 @opindex mtls-direct-seg-refs
23214 Controls whether TLS variables may be accessed with offsets from the
23215 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23216 or whether the thread base pointer must be added.  Whether or not this
23217 is valid depends on the operating system, and whether it maps the
23218 segment to cover the entire TLS area.
23219
23220 For systems that use the GNU C Library, the default is on.
23221
23222 @item -msse2avx
23223 @itemx -mno-sse2avx
23224 @opindex msse2avx
23225 Specify that the assembler should encode SSE instructions with VEX
23226 prefix.  The option @option{-mavx} turns this on by default.
23227
23228 @item -mfentry
23229 @itemx -mno-fentry
23230 @opindex mfentry
23231 If profiling is active (@option{-pg}), put the profiling
23232 counter call before the prologue.
23233 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23234 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23235
23236 @item -mrecord-mcount
23237 @itemx -mno-record-mcount
23238 @opindex mrecord-mcount
23239 If profiling is active (@option{-pg}), generate a __mcount_loc section
23240 that contains pointers to each profiling call. This is useful for
23241 automatically patching and out calls.
23242
23243 @item -mnop-mcount
23244 @itemx -mno-nop-mcount
23245 @opindex mnop-mcount
23246 If profiling is active (@option{-pg}), generate the calls to
23247 the profiling functions as nops. This is useful when they
23248 should be patched in later dynamically. This is likely only
23249 useful together with @option{-mrecord-mcount}.
23250
23251 @item -mskip-rax-setup
23252 @itemx -mno-skip-rax-setup
23253 @opindex mskip-rax-setup
23254 When generating code for the x86-64 architecture with SSE extensions
23255 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23256 register when there are no variable arguments passed in vector registers.
23257
23258 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23259 saving vector registers on stack when passing variable arguments, the
23260 impacts of this option are callees may waste some stack space,
23261 misbehave or jump to a random location.  GCC 4.4 or newer don't have
23262 those issues, regardless the RAX register value.
23263
23264 @item -m8bit-idiv
23265 @itemx -mno-8bit-idiv
23266 @opindex m8bit-idiv
23267 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23268 much faster than 32-bit/64-bit integer divide.  This option generates a
23269 run-time check.  If both dividend and divisor are within range of 0
23270 to 255, 8-bit unsigned integer divide is used instead of
23271 32-bit/64-bit integer divide.
23272
23273 @item -mavx256-split-unaligned-load
23274 @itemx -mavx256-split-unaligned-store
23275 @opindex mavx256-split-unaligned-load
23276 @opindex mavx256-split-unaligned-store
23277 Split 32-byte AVX unaligned load and store.
23278
23279 @item -mstack-protector-guard=@var{guard}
23280 @opindex mstack-protector-guard=@var{guard}
23281 Generate stack protection code using canary at @var{guard}.  Supported
23282 locations are @samp{global} for global canary or @samp{tls} for per-thread
23283 canary in the TLS block (the default).  This option has effect only when
23284 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23285
23286 @end table
23287
23288 These @samp{-m} switches are supported in addition to the above
23289 on x86-64 processors in 64-bit environments.
23290
23291 @table @gcctabopt
23292 @item -m32
23293 @itemx -m64
23294 @itemx -mx32
23295 @itemx -m16
23296 @itemx -miamcu
23297 @opindex m32
23298 @opindex m64
23299 @opindex mx32
23300 @opindex m16
23301 @opindex miamcu
23302 Generate code for a 16-bit, 32-bit or 64-bit environment.
23303 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23304 to 32 bits, and
23305 generates code that runs on any i386 system.
23306
23307 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23308 types to 64 bits, and generates code for the x86-64 architecture.
23309 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23310 and @option{-mdynamic-no-pic} options.
23311
23312 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23313 to 32 bits, and
23314 generates code for the x86-64 architecture.
23315
23316 The @option{-m16} option is the same as @option{-m32}, except for that
23317 it outputs the @code{.code16gcc} assembly directive at the beginning of
23318 the assembly output so that the binary can run in 16-bit mode.
23319
23320 The @option{-miamcu} option generates code which conforms to Intel MCU
23321 psABI.  It requires the @option{-m32} option to be turned on.
23322
23323 @item -mno-red-zone
23324 @opindex mno-red-zone
23325 Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
23326 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23327 stack pointer that is not modified by signal or interrupt handlers
23328 and therefore can be used for temporary data without adjusting the stack
23329 pointer.  The flag @option{-mno-red-zone} disables this red zone.
23330
23331 @item -mcmodel=small
23332 @opindex mcmodel=small
23333 Generate code for the small code model: the program and its symbols must
23334 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
23335 Programs can be statically or dynamically linked.  This is the default
23336 code model.
23337
23338 @item -mcmodel=kernel
23339 @opindex mcmodel=kernel
23340 Generate code for the kernel code model.  The kernel runs in the
23341 negative 2 GB of the address space.
23342 This model has to be used for Linux kernel code.
23343
23344 @item -mcmodel=medium
23345 @opindex mcmodel=medium
23346 Generate code for the medium model: the program is linked in the lower 2
23347 GB of the address space.  Small symbols are also placed there.  Symbols
23348 with sizes larger than @option{-mlarge-data-threshold} are put into
23349 large data or BSS sections and can be located above 2GB.  Programs can
23350 be statically or dynamically linked.
23351
23352 @item -mcmodel=large
23353 @opindex mcmodel=large
23354 Generate code for the large model.  This model makes no assumptions
23355 about addresses and sizes of sections.
23356
23357 @item -maddress-mode=long
23358 @opindex maddress-mode=long
23359 Generate code for long address mode.  This is only supported for 64-bit
23360 and x32 environments.  It is the default address mode for 64-bit
23361 environments.
23362
23363 @item -maddress-mode=short
23364 @opindex maddress-mode=short
23365 Generate code for short address mode.  This is only supported for 32-bit
23366 and x32 environments.  It is the default address mode for 32-bit and
23367 x32 environments.
23368 @end table
23369
23370 @node x86 Windows Options
23371 @subsection x86 Windows Options
23372 @cindex x86 Windows Options
23373 @cindex Windows Options for x86
23374
23375 These additional options are available for Microsoft Windows targets:
23376
23377 @table @gcctabopt
23378 @item -mconsole
23379 @opindex mconsole
23380 This option
23381 specifies that a console application is to be generated, by
23382 instructing the linker to set the PE header subsystem type
23383 required for console applications.
23384 This option is available for Cygwin and MinGW targets and is
23385 enabled by default on those targets.
23386
23387 @item -mdll
23388 @opindex mdll
23389 This option is available for Cygwin and MinGW targets.  It
23390 specifies that a DLL---a dynamic link library---is to be
23391 generated, enabling the selection of the required runtime
23392 startup object and entry point.
23393
23394 @item -mnop-fun-dllimport
23395 @opindex mnop-fun-dllimport
23396 This option is available for Cygwin and MinGW targets.  It
23397 specifies that the @code{dllimport} attribute should be ignored.
23398
23399 @item -mthread
23400 @opindex mthread
23401 This option is available for MinGW targets. It specifies
23402 that MinGW-specific thread support is to be used.
23403
23404 @item -municode
23405 @opindex municode
23406 This option is available for MinGW-w64 targets.  It causes
23407 the @code{UNICODE} preprocessor macro to be predefined, and
23408 chooses Unicode-capable runtime startup code.
23409
23410 @item -mwin32
23411 @opindex mwin32
23412 This option is available for Cygwin and MinGW targets.  It
23413 specifies that the typical Microsoft Windows predefined macros are to
23414 be set in the pre-processor, but does not influence the choice
23415 of runtime library/startup code.
23416
23417 @item -mwindows
23418 @opindex mwindows
23419 This option is available for Cygwin and MinGW targets.  It
23420 specifies that a GUI application is to be generated by
23421 instructing the linker to set the PE header subsystem type
23422 appropriately.
23423
23424 @item -fno-set-stack-executable
23425 @opindex fno-set-stack-executable
23426 This option is available for MinGW targets. It specifies that
23427 the executable flag for the stack used by nested functions isn't
23428 set. This is necessary for binaries running in kernel mode of
23429 Microsoft Windows, as there the User32 API, which is used to set executable
23430 privileges, isn't available.
23431
23432 @item -fwritable-relocated-rdata
23433 @opindex fno-writable-relocated-rdata
23434 This option is available for MinGW and Cygwin targets.  It specifies
23435 that relocated-data in read-only section is put into .data
23436 section.  This is a necessary for older runtimes not supporting
23437 modification of .rdata sections for pseudo-relocation.
23438
23439 @item -mpe-aligned-commons
23440 @opindex mpe-aligned-commons
23441 This option is available for Cygwin and MinGW targets.  It
23442 specifies that the GNU extension to the PE file format that
23443 permits the correct alignment of COMMON variables should be
23444 used when generating code.  It is enabled by default if
23445 GCC detects that the target assembler found during configuration
23446 supports the feature.
23447 @end table
23448
23449 See also under @ref{x86 Options} for standard options.
23450
23451 @node Xstormy16 Options
23452 @subsection Xstormy16 Options
23453 @cindex Xstormy16 Options
23454
23455 These options are defined for Xstormy16:
23456
23457 @table @gcctabopt
23458 @item -msim
23459 @opindex msim
23460 Choose startup files and linker script suitable for the simulator.
23461 @end table
23462
23463 @node Xtensa Options
23464 @subsection Xtensa Options
23465 @cindex Xtensa Options
23466
23467 These options are supported for Xtensa targets:
23468
23469 @table @gcctabopt
23470 @item -mconst16
23471 @itemx -mno-const16
23472 @opindex mconst16
23473 @opindex mno-const16
23474 Enable or disable use of @code{CONST16} instructions for loading
23475 constant values.  The @code{CONST16} instruction is currently not a
23476 standard option from Tensilica.  When enabled, @code{CONST16}
23477 instructions are always used in place of the standard @code{L32R}
23478 instructions.  The use of @code{CONST16} is enabled by default only if
23479 the @code{L32R} instruction is not available.
23480
23481 @item -mfused-madd
23482 @itemx -mno-fused-madd
23483 @opindex mfused-madd
23484 @opindex mno-fused-madd
23485 Enable or disable use of fused multiply/add and multiply/subtract
23486 instructions in the floating-point option.  This has no effect if the
23487 floating-point option is not also enabled.  Disabling fused multiply/add
23488 and multiply/subtract instructions forces the compiler to use separate
23489 instructions for the multiply and add/subtract operations.  This may be
23490 desirable in some cases where strict IEEE 754-compliant results are
23491 required: the fused multiply add/subtract instructions do not round the
23492 intermediate result, thereby producing results with @emph{more} bits of
23493 precision than specified by the IEEE standard.  Disabling fused multiply
23494 add/subtract instructions also ensures that the program output is not
23495 sensitive to the compiler's ability to combine multiply and add/subtract
23496 operations.
23497
23498 @item -mserialize-volatile
23499 @itemx -mno-serialize-volatile
23500 @opindex mserialize-volatile
23501 @opindex mno-serialize-volatile
23502 When this option is enabled, GCC inserts @code{MEMW} instructions before
23503 @code{volatile} memory references to guarantee sequential consistency.
23504 The default is @option{-mserialize-volatile}.  Use
23505 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23506
23507 @item -mforce-no-pic
23508 @opindex mforce-no-pic
23509 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23510 position-independent code (PIC), this option disables PIC for compiling
23511 kernel code.
23512
23513 @item -mtext-section-literals
23514 @itemx -mno-text-section-literals
23515 @opindex mtext-section-literals
23516 @opindex mno-text-section-literals
23517 These options control the treatment of literal pools.  The default is
23518 @option{-mno-text-section-literals}, which places literals in a separate
23519 section in the output file.  This allows the literal pool to be placed
23520 in a data RAM/ROM, and it also allows the linker to combine literal
23521 pools from separate object files to remove redundant literals and
23522 improve code size.  With @option{-mtext-section-literals}, the literals
23523 are interspersed in the text section in order to keep them as close as
23524 possible to their references.  This may be necessary for large assembly
23525 files.
23526
23527 @item -mtarget-align
23528 @itemx -mno-target-align
23529 @opindex mtarget-align
23530 @opindex mno-target-align
23531 When this option is enabled, GCC instructs the assembler to
23532 automatically align instructions to reduce branch penalties at the
23533 expense of some code density.  The assembler attempts to widen density
23534 instructions to align branch targets and the instructions following call
23535 instructions.  If there are not enough preceding safe density
23536 instructions to align a target, no widening is performed.  The
23537 default is @option{-mtarget-align}.  These options do not affect the
23538 treatment of auto-aligned instructions like @code{LOOP}, which the
23539 assembler always aligns, either by widening density instructions or
23540 by inserting NOP instructions.
23541
23542 @item -mlongcalls
23543 @itemx -mno-longcalls
23544 @opindex mlongcalls
23545 @opindex mno-longcalls
23546 When this option is enabled, GCC instructs the assembler to translate
23547 direct calls to indirect calls unless it can determine that the target
23548 of a direct call is in the range allowed by the call instruction.  This
23549 translation typically occurs for calls to functions in other source
23550 files.  Specifically, the assembler translates a direct @code{CALL}
23551 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23552 The default is @option{-mno-longcalls}.  This option should be used in
23553 programs where the call target can potentially be out of range.  This
23554 option is implemented in the assembler, not the compiler, so the
23555 assembly code generated by GCC still shows direct call
23556 instructions---look at the disassembled object code to see the actual
23557 instructions.  Note that the assembler uses an indirect call for
23558 every cross-file call, not just those that really are out of range.
23559 @end table
23560
23561 @node zSeries Options
23562 @subsection zSeries Options
23563 @cindex zSeries options
23564
23565 These are listed under @xref{S/390 and zSeries Options}.
23566
23567 @node Code Gen Options
23568 @section Options for Code Generation Conventions
23569 @cindex code generation conventions
23570 @cindex options, code generation
23571 @cindex run-time options
23572
23573 These machine-independent options control the interface conventions
23574 used in code generation.
23575
23576 Most of them have both positive and negative forms; the negative form
23577 of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
23578 one of the forms is listed---the one that is not the default.  You
23579 can figure out the other form by either removing @samp{no-} or adding
23580 it.
23581
23582 @table @gcctabopt
23583 @item -fbounds-check
23584 @opindex fbounds-check
23585 For front ends that support it, generate additional code to check that
23586 indices used to access arrays are within the declared range.  This is
23587 currently only supported by the Java and Fortran front ends, where
23588 this option defaults to true and false respectively.
23589
23590 @item -fstack-reuse=@var{reuse-level}
23591 @opindex fstack_reuse
23592 This option controls stack space reuse for user declared local/auto variables
23593 and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
23594 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23595 local variables and temporaries, @samp{named_vars} enables the reuse only for
23596 user defined local variables with names, and @samp{none} disables stack reuse
23597 completely. The default value is @samp{all}. The option is needed when the
23598 program extends the lifetime of a scoped local variable or a compiler generated
23599 temporary beyond the end point defined by the language.  When a lifetime of
23600 a variable ends, and if the variable lives in memory, the optimizing compiler
23601 has the freedom to reuse its stack space with other temporaries or scoped
23602 local variables whose live range does not overlap with it. Legacy code extending
23603 local lifetime is likely to break with the stack reuse optimization.
23604
23605 For example,
23606
23607 @smallexample
23608    int *p;
23609    @{
23610      int local1;
23611
23612      p = &local1;
23613      local1 = 10;
23614      ....
23615    @}
23616    @{
23617       int local2;
23618       local2 = 20;
23619       ...
23620    @}
23621
23622    if (*p == 10)  // out of scope use of local1
23623      @{
23624
23625      @}
23626 @end smallexample
23627
23628 Another example:
23629 @smallexample
23630
23631    struct A
23632    @{
23633        A(int k) : i(k), j(k) @{ @}
23634        int i;
23635        int j;
23636    @};
23637
23638    A *ap;
23639
23640    void foo(const A& ar)
23641    @{
23642       ap = &ar;
23643    @}
23644
23645    void bar()
23646    @{
23647       foo(A(10)); // temp object's lifetime ends when foo returns
23648
23649       @{
23650         A a(20);
23651         ....
23652       @}
23653       ap->i+= 10;  // ap references out of scope temp whose space
23654                    // is reused with a. What is the value of ap->i?
23655    @}
23656
23657 @end smallexample
23658
23659 The lifetime of a compiler generated temporary is well defined by the C++
23660 standard. When a lifetime of a temporary ends, and if the temporary lives
23661 in memory, the optimizing compiler has the freedom to reuse its stack
23662 space with other temporaries or scoped local variables whose live range
23663 does not overlap with it. However some of the legacy code relies on
23664 the behavior of older compilers in which temporaries' stack space is
23665 not reused, the aggressive stack reuse can lead to runtime errors. This
23666 option is used to control the temporary stack reuse optimization.
23667
23668 @item -ftrapv
23669 @opindex ftrapv
23670 This option generates traps for signed overflow on addition, subtraction,
23671 multiplication operations.
23672
23673 @item -fwrapv
23674 @opindex fwrapv
23675 This option instructs the compiler to assume that signed arithmetic
23676 overflow of addition, subtraction and multiplication wraps around
23677 using twos-complement representation.  This flag enables some optimizations
23678 and disables others.  This option is enabled by default for the Java
23679 front end, as required by the Java language specification.
23680
23681 @item -fexceptions
23682 @opindex fexceptions
23683 Enable exception handling.  Generates extra code needed to propagate
23684 exceptions.  For some targets, this implies GCC generates frame
23685 unwind information for all functions, which can produce significant data
23686 size overhead, although it does not affect execution.  If you do not
23687 specify this option, GCC enables it by default for languages like
23688 C++ that normally require exception handling, and disables it for
23689 languages like C that do not normally require it.  However, you may need
23690 to enable this option when compiling C code that needs to interoperate
23691 properly with exception handlers written in C++.  You may also wish to
23692 disable this option if you are compiling older C++ programs that don't
23693 use exception handling.
23694
23695 @item -fnon-call-exceptions
23696 @opindex fnon-call-exceptions
23697 Generate code that allows trapping instructions to throw exceptions.
23698 Note that this requires platform-specific runtime support that does
23699 not exist everywhere.  Moreover, it only allows @emph{trapping}
23700 instructions to throw exceptions, i.e.@: memory references or floating-point
23701 instructions.  It does not allow exceptions to be thrown from
23702 arbitrary signal handlers such as @code{SIGALRM}.
23703
23704 @item -fdelete-dead-exceptions
23705 @opindex fdelete-dead-exceptions
23706 Consider that instructions that may throw exceptions but don't otherwise
23707 contribute to the execution of the program can be optimized away.
23708 This option is enabled by default for the Ada front end, as permitted by
23709 the Ada language specification.
23710 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23711
23712 @item -funwind-tables
23713 @opindex funwind-tables
23714 Similar to @option{-fexceptions}, except that it just generates any needed
23715 static data, but does not affect the generated code in any other way.
23716 You normally do not need to enable this option; instead, a language processor
23717 that needs this handling enables it on your behalf.
23718
23719 @item -fasynchronous-unwind-tables
23720 @opindex fasynchronous-unwind-tables
23721 Generate unwind table in DWARF 2 format, if supported by target machine.  The
23722 table is exact at each instruction boundary, so it can be used for stack
23723 unwinding from asynchronous events (such as debugger or garbage collector).
23724
23725 @item -fno-gnu-unique
23726 @opindex fno-gnu-unique
23727 On systems with recent GNU assembler and C library, the C++ compiler
23728 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23729 of template static data members and static local variables in inline
23730 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23731 is necessary to avoid problems with a library used by two different
23732 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23733 therefore disagreeing with the other one about the binding of the
23734 symbol.  But this causes @code{dlclose} to be ignored for affected
23735 DSOs; if your program relies on reinitialization of a DSO via
23736 @code{dlclose} and @code{dlopen}, you can use
23737 @option{-fno-gnu-unique}.
23738
23739 @item -fpcc-struct-return
23740 @opindex fpcc-struct-return
23741 Return ``short'' @code{struct} and @code{union} values in memory like
23742 longer ones, rather than in registers.  This convention is less
23743 efficient, but it has the advantage of allowing intercallability between
23744 GCC-compiled files and files compiled with other compilers, particularly
23745 the Portable C Compiler (pcc).
23746
23747 The precise convention for returning structures in memory depends
23748 on the target configuration macros.
23749
23750 Short structures and unions are those whose size and alignment match
23751 that of some integer type.
23752
23753 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23754 switch is not binary compatible with code compiled with the
23755 @option{-freg-struct-return} switch.
23756 Use it to conform to a non-default application binary interface.
23757
23758 @item -freg-struct-return
23759 @opindex freg-struct-return
23760 Return @code{struct} and @code{union} values in registers when possible.
23761 This is more efficient for small structures than
23762 @option{-fpcc-struct-return}.
23763
23764 If you specify neither @option{-fpcc-struct-return} nor
23765 @option{-freg-struct-return}, GCC defaults to whichever convention is
23766 standard for the target.  If there is no standard convention, GCC
23767 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23768 the principal compiler.  In those cases, we can choose the standard, and
23769 we chose the more efficient register return alternative.
23770
23771 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23772 switch is not binary compatible with code compiled with the
23773 @option{-fpcc-struct-return} switch.
23774 Use it to conform to a non-default application binary interface.
23775
23776 @item -fshort-enums
23777 @opindex fshort-enums
23778 Allocate to an @code{enum} type only as many bytes as it needs for the
23779 declared range of possible values.  Specifically, the @code{enum} type
23780 is equivalent to the smallest integer type that has enough room.
23781
23782 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23783 code that is not binary compatible with code generated without that switch.
23784 Use it to conform to a non-default application binary interface.
23785
23786 @item -fshort-double
23787 @opindex fshort-double
23788 Use the same size for @code{double} as for @code{float}.
23789
23790 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23791 code that is not binary compatible with code generated without that switch.
23792 Use it to conform to a non-default application binary interface.
23793
23794 @item -fshort-wchar
23795 @opindex fshort-wchar
23796 Override the underlying type for @code{wchar_t} to be @code{short
23797 unsigned int} instead of the default for the target.  This option is
23798 useful for building programs to run under WINE@.
23799
23800 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23801 code that is not binary compatible with code generated without that switch.
23802 Use it to conform to a non-default application binary interface.
23803
23804 @item -fno-common
23805 @opindex fno-common
23806 In C code, controls the placement of uninitialized global variables.
23807 Unix C compilers have traditionally permitted multiple definitions of
23808 such variables in different compilation units by placing the variables
23809 in a common block.
23810 This is the behavior specified by @option{-fcommon}, and is the default
23811 for GCC on most targets.
23812 On the other hand, this behavior is not required by ISO C, and on some
23813 targets may carry a speed or code size penalty on variable references.
23814 The @option{-fno-common} option specifies that the compiler should place
23815 uninitialized global variables in the data section of the object file,
23816 rather than generating them as common blocks.
23817 This has the effect that if the same variable is declared
23818 (without @code{extern}) in two different compilations,
23819 you get a multiple-definition error when you link them.
23820 In this case, you must compile with @option{-fcommon} instead.
23821 Compiling with @option{-fno-common} is useful on targets for which
23822 it provides better performance, or if you wish to verify that the
23823 program will work on other systems that always treat uninitialized
23824 variable declarations this way.
23825
23826 @item -fno-ident
23827 @opindex fno-ident
23828 Ignore the @code{#ident} directive.
23829
23830 @item -finhibit-size-directive
23831 @opindex finhibit-size-directive
23832 Don't output a @code{.size} assembler directive, or anything else that
23833 would cause trouble if the function is split in the middle, and the
23834 two halves are placed at locations far apart in memory.  This option is
23835 used when compiling @file{crtstuff.c}; you should not need to use it
23836 for anything else.
23837
23838 @item -fverbose-asm
23839 @opindex fverbose-asm
23840 Put extra commentary information in the generated assembly code to
23841 make it more readable.  This option is generally only of use to those
23842 who actually need to read the generated assembly code (perhaps while
23843 debugging the compiler itself).
23844
23845 @option{-fno-verbose-asm}, the default, causes the
23846 extra information to be omitted and is useful when comparing two assembler
23847 files.
23848
23849 @item -frecord-gcc-switches
23850 @opindex frecord-gcc-switches
23851 This switch causes the command line used to invoke the
23852 compiler to be recorded into the object file that is being created.
23853 This switch is only implemented on some targets and the exact format
23854 of the recording is target and binary file format dependent, but it
23855 usually takes the form of a section containing ASCII text.  This
23856 switch is related to the @option{-fverbose-asm} switch, but that
23857 switch only records information in the assembler output file as
23858 comments, so it never reaches the object file.
23859 See also @option{-grecord-gcc-switches} for another
23860 way of storing compiler options into the object file.
23861
23862 @item -fpic
23863 @opindex fpic
23864 @cindex global offset table
23865 @cindex PIC
23866 Generate position-independent code (PIC) suitable for use in a shared
23867 library, if supported for the target machine.  Such code accesses all
23868 constant addresses through a global offset table (GOT)@.  The dynamic
23869 loader resolves the GOT entries when the program starts (the dynamic
23870 loader is not part of GCC; it is part of the operating system).  If
23871 the GOT size for the linked executable exceeds a machine-specific
23872 maximum size, you get an error message from the linker indicating that
23873 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23874 instead.  (These maximums are 8k on the SPARC and 32k
23875 on the m68k and RS/6000.  The x86 has no such limit.)
23876
23877 Position-independent code requires special support, and therefore works
23878 only on certain machines.  For the x86, GCC supports PIC for System V
23879 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
23880 position-independent.
23881
23882 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23883 are defined to 1.
23884
23885 @item -fPIC
23886 @opindex fPIC
23887 If supported for the target machine, emit position-independent code,
23888 suitable for dynamic linking and avoiding any limit on the size of the
23889 global offset table.  This option makes a difference on the m68k,
23890 PowerPC and SPARC@.
23891
23892 Position-independent code requires special support, and therefore works
23893 only on certain machines.
23894
23895 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23896 are defined to 2.
23897
23898 @item -fpie
23899 @itemx -fPIE
23900 @opindex fpie
23901 @opindex fPIE
23902 These options are similar to @option{-fpic} and @option{-fPIC}, but
23903 generated position independent code can be only linked into executables.
23904 Usually these options are used when @option{-pie} GCC option is
23905 used during linking.
23906
23907 @option{-fpie} and @option{-fPIE} both define the macros
23908 @code{__pie__} and @code{__PIE__}.  The macros have the value 1
23909 for @option{-fpie} and 2 for @option{-fPIE}.
23910
23911 @item -fno-plt
23912 @opindex fno-plt
23913 Do not use PLT for external function calls in position-independent code.
23914 Instead, load callee address at call site from GOT and branch to it.
23915 This leads to more efficient code by eliminating PLT stubs and exposing
23916 GOT load to optimizations.  On architectures such as 32-bit x86 where
23917 PLT stubs expect GOT pointer in a specific register, this gives more
23918 register allocation freedom to the compiler.  Lazy binding requires PLT:
23919 with @option{-fno-plt} all external symbols are resolved at load time.
23920
23921 Alternatively, function attribute @code{noplt} can be used to avoid PLT
23922 for calls to specific external functions by marking those functions with
23923 this attribute.
23924
23925 Additionally, a few targets also convert calls to those functions that are
23926 marked to not use the PLT to use the GOT instead for non-position independent
23927 code.
23928
23929 @item -fno-jump-tables
23930 @opindex fno-jump-tables
23931 Do not use jump tables for switch statements even where it would be
23932 more efficient than other code generation strategies.  This option is
23933 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23934 building code that forms part of a dynamic linker and cannot
23935 reference the address of a jump table.  On some targets, jump tables
23936 do not require a GOT and this option is not needed.
23937
23938 @item -ffixed-@var{reg}
23939 @opindex ffixed
23940 Treat the register named @var{reg} as a fixed register; generated code
23941 should never refer to it (except perhaps as a stack pointer, frame
23942 pointer or in some other fixed role).
23943
23944 @var{reg} must be the name of a register.  The register names accepted
23945 are machine-specific and are defined in the @code{REGISTER_NAMES}
23946 macro in the machine description macro file.
23947
23948 This flag does not have a negative form, because it specifies a
23949 three-way choice.
23950
23951 @item -fcall-used-@var{reg}
23952 @opindex fcall-used
23953 Treat the register named @var{reg} as an allocable register that is
23954 clobbered by function calls.  It may be allocated for temporaries or
23955 variables that do not live across a call.  Functions compiled this way
23956 do not save and restore the register @var{reg}.
23957
23958 It is an error to use this flag with the frame pointer or stack pointer.
23959 Use of this flag for other registers that have fixed pervasive roles in
23960 the machine's execution model produces disastrous results.
23961
23962 This flag does not have a negative form, because it specifies a
23963 three-way choice.
23964
23965 @item -fcall-saved-@var{reg}
23966 @opindex fcall-saved
23967 Treat the register named @var{reg} as an allocable register saved by
23968 functions.  It may be allocated even for temporaries or variables that
23969 live across a call.  Functions compiled this way save and restore
23970 the register @var{reg} if they use it.
23971
23972 It is an error to use this flag with the frame pointer or stack pointer.
23973 Use of this flag for other registers that have fixed pervasive roles in
23974 the machine's execution model produces disastrous results.
23975
23976 A different sort of disaster results from the use of this flag for
23977 a register in which function values may be returned.
23978
23979 This flag does not have a negative form, because it specifies a
23980 three-way choice.
23981
23982 @item -fpack-struct[=@var{n}]
23983 @opindex fpack-struct
23984 Without a value specified, pack all structure members together without
23985 holes.  When a value is specified (which must be a small power of two), pack
23986 structure members according to this value, representing the maximum
23987 alignment (that is, objects with default alignment requirements larger than
23988 this are output potentially unaligned at the next fitting location.
23989
23990 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23991 code that is not binary compatible with code generated without that switch.
23992 Additionally, it makes the code suboptimal.
23993 Use it to conform to a non-default application binary interface.
23994
23995 @item -finstrument-functions
23996 @opindex finstrument-functions
23997 Generate instrumentation calls for entry and exit to functions.  Just
23998 after function entry and just before function exit, the following
23999 profiling functions are called with the address of the current
24000 function and its call site.  (On some platforms,
24001 @code{__builtin_return_address} does not work beyond the current
24002 function, so the call site information may not be available to the
24003 profiling functions otherwise.)
24004
24005 @smallexample
24006 void __cyg_profile_func_enter (void *this_fn,
24007                                void *call_site);
24008 void __cyg_profile_func_exit  (void *this_fn,
24009                                void *call_site);
24010 @end smallexample
24011
24012 The first argument is the address of the start of the current function,
24013 which may be looked up exactly in the symbol table.
24014
24015 This instrumentation is also done for functions expanded inline in other
24016 functions.  The profiling calls indicate where, conceptually, the
24017 inline function is entered and exited.  This means that addressable
24018 versions of such functions must be available.  If all your uses of a
24019 function are expanded inline, this may mean an additional expansion of
24020 code size.  If you use @code{extern inline} in your C code, an
24021 addressable version of such functions must be provided.  (This is
24022 normally the case anyway, but if you get lucky and the optimizer always
24023 expands the functions inline, you might have gotten away without
24024 providing static copies.)
24025
24026 A function may be given the attribute @code{no_instrument_function}, in
24027 which case this instrumentation is not done.  This can be used, for
24028 example, for the profiling functions listed above, high-priority
24029 interrupt routines, and any functions from which the profiling functions
24030 cannot safely be called (perhaps signal handlers, if the profiling
24031 routines generate output or allocate memory).
24032
24033 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24034 @opindex finstrument-functions-exclude-file-list
24035
24036 Set the list of functions that are excluded from instrumentation (see
24037 the description of @option{-finstrument-functions}).  If the file that
24038 contains a function definition matches with one of @var{file}, then
24039 that function is not instrumented.  The match is done on substrings:
24040 if the @var{file} parameter is a substring of the file name, it is
24041 considered to be a match.
24042
24043 For example:
24044
24045 @smallexample
24046 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24047 @end smallexample
24048
24049 @noindent
24050 excludes any inline function defined in files whose pathnames
24051 contain @file{/bits/stl} or @file{include/sys}.
24052
24053 If, for some reason, you want to include letter @samp{,} in one of
24054 @var{sym}, write @samp{\,}. For example,
24055 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24056 (note the single quote surrounding the option).
24057
24058 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24059 @opindex finstrument-functions-exclude-function-list
24060
24061 This is similar to @option{-finstrument-functions-exclude-file-list},
24062 but this option sets the list of function names to be excluded from
24063 instrumentation.  The function name to be matched is its user-visible
24064 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24065 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
24066 match is done on substrings: if the @var{sym} parameter is a substring
24067 of the function name, it is considered to be a match.  For C99 and C++
24068 extended identifiers, the function name must be given in UTF-8, not
24069 using universal character names.
24070
24071 @item -fstack-check
24072 @opindex fstack-check
24073 Generate code to verify that you do not go beyond the boundary of the
24074 stack.  You should specify this flag if you are running in an
24075 environment with multiple threads, but you only rarely need to specify it in
24076 a single-threaded environment since stack overflow is automatically
24077 detected on nearly all systems if there is only one stack.
24078
24079 Note that this switch does not actually cause checking to be done; the
24080 operating system or the language runtime must do that.  The switch causes
24081 generation of code to ensure that they see the stack being extended.
24082
24083 You can additionally specify a string parameter: @samp{no} means no
24084 checking, @samp{generic} means force the use of old-style checking,
24085 @samp{specific} means use the best checking method and is equivalent
24086 to bare @option{-fstack-check}.
24087
24088 Old-style checking is a generic mechanism that requires no specific
24089 target support in the compiler but comes with the following drawbacks:
24090
24091 @enumerate
24092 @item
24093 Modified allocation strategy for large objects: they are always
24094 allocated dynamically if their size exceeds a fixed threshold.
24095
24096 @item
24097 Fixed limit on the size of the static frame of functions: when it is
24098 topped by a particular function, stack checking is not reliable and
24099 a warning is issued by the compiler.
24100
24101 @item
24102 Inefficiency: because of both the modified allocation strategy and the
24103 generic implementation, code performance is hampered.
24104 @end enumerate
24105
24106 Note that old-style stack checking is also the fallback method for
24107 @samp{specific} if no target support has been added in the compiler.
24108
24109 @item -fstack-limit-register=@var{reg}
24110 @itemx -fstack-limit-symbol=@var{sym}
24111 @itemx -fno-stack-limit
24112 @opindex fstack-limit-register
24113 @opindex fstack-limit-symbol
24114 @opindex fno-stack-limit
24115 Generate code to ensure that the stack does not grow beyond a certain value,
24116 either the value of a register or the address of a symbol.  If a larger
24117 stack is required, a signal is raised at run time.  For most targets,
24118 the signal is raised before the stack overruns the boundary, so
24119 it is possible to catch the signal without taking special precautions.
24120
24121 For instance, if the stack starts at absolute address @samp{0x80000000}
24122 and grows downwards, you can use the flags
24123 @option{-fstack-limit-symbol=__stack_limit} and
24124 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24125 of 128KB@.  Note that this may only work with the GNU linker.
24126
24127 @item -fsplit-stack
24128 @opindex fsplit-stack
24129 Generate code to automatically split the stack before it overflows.
24130 The resulting program has a discontiguous stack which can only
24131 overflow if the program is unable to allocate any more memory.  This
24132 is most useful when running threaded programs, as it is no longer
24133 necessary to calculate a good stack size to use for each thread.  This
24134 is currently only implemented for the x86 targets running
24135 GNU/Linux.
24136
24137 When code compiled with @option{-fsplit-stack} calls code compiled
24138 without @option{-fsplit-stack}, there may not be much stack space
24139 available for the latter code to run.  If compiling all code,
24140 including library code, with @option{-fsplit-stack} is not an option,
24141 then the linker can fix up these calls so that the code compiled
24142 without @option{-fsplit-stack} always has a large stack.  Support for
24143 this is implemented in the gold linker in GNU binutils release 2.21
24144 and later.
24145
24146 @item -fleading-underscore
24147 @opindex fleading-underscore
24148 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24149 change the way C symbols are represented in the object file.  One use
24150 is to help link with legacy assembly code.
24151
24152 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24153 generate code that is not binary compatible with code generated without that
24154 switch.  Use it to conform to a non-default application binary interface.
24155 Not all targets provide complete support for this switch.
24156
24157 @item -ftls-model=@var{model}
24158 @opindex ftls-model
24159 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24160 The @var{model} argument should be one of @samp{global-dynamic},
24161 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24162 Note that the choice is subject to optimization: the compiler may use
24163 a more efficient model for symbols not visible outside of the translation
24164 unit, or if @option{-fpic} is not given on the command line.
24165
24166 The default without @option{-fpic} is @samp{initial-exec}; with
24167 @option{-fpic} the default is @samp{global-dynamic}.
24168
24169 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24170 @opindex fvisibility
24171 Set the default ELF image symbol visibility to the specified option---all
24172 symbols are marked with this unless overridden within the code.
24173 Using this feature can very substantially improve linking and
24174 load times of shared object libraries, produce more optimized
24175 code, provide near-perfect API export and prevent symbol clashes.
24176 It is @strong{strongly} recommended that you use this in any shared objects
24177 you distribute.
24178
24179 Despite the nomenclature, @samp{default} always means public; i.e.,
24180 available to be linked against from outside the shared object.
24181 @samp{protected} and @samp{internal} are pretty useless in real-world
24182 usage so the only other commonly used option is @samp{hidden}.
24183 The default if @option{-fvisibility} isn't specified is
24184 @samp{default}, i.e., make every symbol public.
24185
24186 A good explanation of the benefits offered by ensuring ELF
24187 symbols have the correct visibility is given by ``How To Write
24188 Shared Libraries'' by Ulrich Drepper (which can be found at
24189 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24190 solution made possible by this option to marking things hidden when
24191 the default is public is to make the default hidden and mark things
24192 public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24193 and @code{__attribute__ ((visibility("default")))} instead of
24194 @code{__declspec(dllexport)} you get almost identical semantics with
24195 identical syntax.  This is a great boon to those working with
24196 cross-platform projects.
24197
24198 For those adding visibility support to existing code, you may find
24199 @code{#pragma GCC visibility} of use.  This works by you enclosing
24200 the declarations you wish to set visibility for with (for example)
24201 @code{#pragma GCC visibility push(hidden)} and
24202 @code{#pragma GCC visibility pop}.
24203 Bear in mind that symbol visibility should be viewed @strong{as
24204 part of the API interface contract} and thus all new code should
24205 always specify visibility when it is not the default; i.e., declarations
24206 only for use within the local DSO should @strong{always} be marked explicitly
24207 as hidden as so to avoid PLT indirection overheads---making this
24208 abundantly clear also aids readability and self-documentation of the code.
24209 Note that due to ISO C++ specification requirements, @code{operator new} and
24210 @code{operator delete} must always be of default visibility.
24211
24212 Be aware that headers from outside your project, in particular system
24213 headers and headers from any other library you use, may not be
24214 expecting to be compiled with visibility other than the default.  You
24215 may need to explicitly say @code{#pragma GCC visibility push(default)}
24216 before including any such headers.
24217
24218 @code{extern} declarations are not affected by @option{-fvisibility}, so
24219 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24220 no modifications.  However, this means that calls to @code{extern}
24221 functions with no explicit visibility use the PLT, so it is more
24222 effective to use @code{__attribute ((visibility))} and/or
24223 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24224 declarations should be treated as hidden.
24225
24226 Note that @option{-fvisibility} does affect C++ vague linkage
24227 entities. This means that, for instance, an exception class that is
24228 be thrown between DSOs must be explicitly marked with default
24229 visibility so that the @samp{type_info} nodes are unified between
24230 the DSOs.
24231
24232 An overview of these techniques, their benefits and how to use them
24233 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24234
24235 @item -fstrict-volatile-bitfields
24236 @opindex fstrict-volatile-bitfields
24237 This option should be used if accesses to volatile bit-fields (or other
24238 structure fields, although the compiler usually honors those types
24239 anyway) should use a single access of the width of the
24240 field's type, aligned to a natural alignment if possible.  For
24241 example, targets with memory-mapped peripheral registers might require
24242 all such accesses to be 16 bits wide; with this flag you can
24243 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24244 is 16 bits on these targets) to force GCC to use 16-bit accesses
24245 instead of, perhaps, a more efficient 32-bit access.
24246
24247 If this option is disabled, the compiler uses the most efficient
24248 instruction.  In the previous example, that might be a 32-bit load
24249 instruction, even though that accesses bytes that do not contain
24250 any portion of the bit-field, or memory-mapped registers unrelated to
24251 the one being updated.
24252
24253 In some cases, such as when the @code{packed} attribute is applied to a 
24254 structure field, it may not be possible to access the field with a single
24255 read or write that is correctly aligned for the target machine.  In this
24256 case GCC falls back to generating multiple accesses rather than code that 
24257 will fault or truncate the result at run time.
24258
24259 Note:  Due to restrictions of the C/C++11 memory model, write accesses are
24260 not allowed to touch non bit-field members.  It is therefore recommended
24261 to define all bits of the field's type as bit-field members.
24262
24263 The default value of this option is determined by the application binary
24264 interface for the target processor.
24265
24266 @item -fsync-libcalls
24267 @opindex fsync-libcalls
24268 This option controls whether any out-of-line instance of the @code{__sync}
24269 family of functions may be used to implement the C++11 @code{__atomic}
24270 family of functions.
24271
24272 The default value of this option is enabled, thus the only useful form
24273 of the option is @option{-fno-sync-libcalls}.  This option is used in
24274 the implementation of the @file{libatomic} runtime library.
24275
24276 @end table
24277
24278 @c man end
24279
24280 @node Environment Variables
24281 @section Environment Variables Affecting GCC
24282 @cindex environment variables
24283
24284 @c man begin ENVIRONMENT
24285 This section describes several environment variables that affect how GCC
24286 operates.  Some of them work by specifying directories or prefixes to use
24287 when searching for various kinds of files.  Some are used to specify other
24288 aspects of the compilation environment.
24289
24290 Note that you can also specify places to search using options such as
24291 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
24292 take precedence over places specified using environment variables, which
24293 in turn take precedence over those specified by the configuration of GCC@.
24294 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24295 GNU Compiler Collection (GCC) Internals}.
24296
24297 @table @env
24298 @item LANG
24299 @itemx LC_CTYPE
24300 @c @itemx LC_COLLATE
24301 @itemx LC_MESSAGES
24302 @c @itemx LC_MONETARY
24303 @c @itemx LC_NUMERIC
24304 @c @itemx LC_TIME
24305 @itemx LC_ALL
24306 @findex LANG
24307 @findex LC_CTYPE
24308 @c @findex LC_COLLATE
24309 @findex LC_MESSAGES
24310 @c @findex LC_MONETARY
24311 @c @findex LC_NUMERIC
24312 @c @findex LC_TIME
24313 @findex LC_ALL
24314 @cindex locale
24315 These environment variables control the way that GCC uses
24316 localization information which allows GCC to work with different
24317 national conventions.  GCC inspects the locale categories
24318 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24319 so.  These locale categories can be set to any value supported by your
24320 installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
24321 Kingdom encoded in UTF-8.
24322
24323 The @env{LC_CTYPE} environment variable specifies character
24324 classification.  GCC uses it to determine the character boundaries in
24325 a string; this is needed for some multibyte encodings that contain quote
24326 and escape characters that are otherwise interpreted as a string
24327 end or escape.
24328
24329 The @env{LC_MESSAGES} environment variable specifies the language to
24330 use in diagnostic messages.
24331
24332 If the @env{LC_ALL} environment variable is set, it overrides the value
24333 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24334 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24335 environment variable.  If none of these variables are set, GCC
24336 defaults to traditional C English behavior.
24337
24338 @item TMPDIR
24339 @findex TMPDIR
24340 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24341 files.  GCC uses temporary files to hold the output of one stage of
24342 compilation which is to be used as input to the next stage: for example,
24343 the output of the preprocessor, which is the input to the compiler
24344 proper.
24345
24346 @item GCC_COMPARE_DEBUG
24347 @findex GCC_COMPARE_DEBUG
24348 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24349 @option{-fcompare-debug} to the compiler driver.  See the documentation
24350 of this option for more details.
24351
24352 @item GCC_EXEC_PREFIX
24353 @findex GCC_EXEC_PREFIX
24354 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24355 names of the subprograms executed by the compiler.  No slash is added
24356 when this prefix is combined with the name of a subprogram, but you can
24357 specify a prefix that ends with a slash if you wish.
24358
24359 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24360 an appropriate prefix to use based on the pathname it is invoked with.
24361
24362 If GCC cannot find the subprogram using the specified prefix, it
24363 tries looking in the usual places for the subprogram.
24364
24365 The default value of @env{GCC_EXEC_PREFIX} is
24366 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24367 the installed compiler. In many cases @var{prefix} is the value
24368 of @code{prefix} when you ran the @file{configure} script.
24369
24370 Other prefixes specified with @option{-B} take precedence over this prefix.
24371
24372 This prefix is also used for finding files such as @file{crt0.o} that are
24373 used for linking.
24374
24375 In addition, the prefix is used in an unusual way in finding the
24376 directories to search for header files.  For each of the standard
24377 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24378 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24379 replacing that beginning with the specified prefix to produce an
24380 alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
24381 @file{foo/bar} just before it searches the standard directory 
24382 @file{/usr/local/lib/bar}.
24383 If a standard directory begins with the configured
24384 @var{prefix} then the value of @var{prefix} is replaced by
24385 @env{GCC_EXEC_PREFIX} when looking for header files.
24386
24387 @item COMPILER_PATH
24388 @findex COMPILER_PATH
24389 The value of @env{COMPILER_PATH} is a colon-separated list of
24390 directories, much like @env{PATH}.  GCC tries the directories thus
24391 specified when searching for subprograms, if it can't find the
24392 subprograms using @env{GCC_EXEC_PREFIX}.
24393
24394 @item LIBRARY_PATH
24395 @findex LIBRARY_PATH
24396 The value of @env{LIBRARY_PATH} is a colon-separated list of
24397 directories, much like @env{PATH}.  When configured as a native compiler,
24398 GCC tries the directories thus specified when searching for special
24399 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}.  Linking
24400 using GCC also uses these directories when searching for ordinary
24401 libraries for the @option{-l} option (but directories specified with
24402 @option{-L} come first).
24403
24404 @item LANG
24405 @findex LANG
24406 @cindex locale definition
24407 This variable is used to pass locale information to the compiler.  One way in
24408 which this information is used is to determine the character set to be used
24409 when character literals, string literals and comments are parsed in C and C++.
24410 When the compiler is configured to allow multibyte characters,
24411 the following values for @env{LANG} are recognized:
24412
24413 @table @samp
24414 @item C-JIS
24415 Recognize JIS characters.
24416 @item C-SJIS
24417 Recognize SJIS characters.
24418 @item C-EUCJP
24419 Recognize EUCJP characters.
24420 @end table
24421
24422 If @env{LANG} is not defined, or if it has some other value, then the
24423 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24424 recognize and translate multibyte characters.
24425 @end table
24426
24427 @noindent
24428 Some additional environment variables affect the behavior of the
24429 preprocessor.
24430
24431 @include cppenv.texi
24432
24433 @c man end
24434
24435 @node Precompiled Headers
24436 @section Using Precompiled Headers
24437 @cindex precompiled headers
24438 @cindex speed of compilation
24439
24440 Often large projects have many header files that are included in every
24441 source file.  The time the compiler takes to process these header files
24442 over and over again can account for nearly all of the time required to
24443 build the project.  To make builds faster, GCC allows you to
24444 @dfn{precompile} a header file.
24445
24446 To create a precompiled header file, simply compile it as you would any
24447 other file, if necessary using the @option{-x} option to make the driver
24448 treat it as a C or C++ header file.  You may want to use a
24449 tool like @command{make} to keep the precompiled header up-to-date when
24450 the headers it contains change.
24451
24452 A precompiled header file is searched for when @code{#include} is
24453 seen in the compilation.  As it searches for the included file
24454 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24455 compiler looks for a precompiled header in each directory just before it
24456 looks for the include file in that directory.  The name searched for is
24457 the name specified in the @code{#include} with @samp{.gch} appended.  If
24458 the precompiled header file can't be used, it is ignored.
24459
24460 For instance, if you have @code{#include "all.h"}, and you have
24461 @file{all.h.gch} in the same directory as @file{all.h}, then the
24462 precompiled header file is used if possible, and the original
24463 header is used otherwise.
24464
24465 Alternatively, you might decide to put the precompiled header file in a
24466 directory and use @option{-I} to ensure that directory is searched
24467 before (or instead of) the directory containing the original header.
24468 Then, if you want to check that the precompiled header file is always
24469 used, you can put a file of the same name as the original header in this
24470 directory containing an @code{#error} command.
24471
24472 This also works with @option{-include}.  So yet another way to use
24473 precompiled headers, good for projects not designed with precompiled
24474 header files in mind, is to simply take most of the header files used by
24475 a project, include them from another header file, precompile that header
24476 file, and @option{-include} the precompiled header.  If the header files
24477 have guards against multiple inclusion, they are skipped because
24478 they've already been included (in the precompiled header).
24479
24480 If you need to precompile the same header file for different
24481 languages, targets, or compiler options, you can instead make a
24482 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24483 header in the directory, perhaps using @option{-o}.  It doesn't matter
24484 what you call the files in the directory; every precompiled header in
24485 the directory is considered.  The first precompiled header
24486 encountered in the directory that is valid for this compilation is
24487 used; they're searched in no particular order.
24488
24489 There are many other possibilities, limited only by your imagination,
24490 good sense, and the constraints of your build system.
24491
24492 A precompiled header file can be used only when these conditions apply:
24493
24494 @itemize
24495 @item
24496 Only one precompiled header can be used in a particular compilation.
24497
24498 @item
24499 A precompiled header can't be used once the first C token is seen.  You
24500 can have preprocessor directives before a precompiled header; you cannot
24501 include a precompiled header from inside another header.
24502
24503 @item
24504 The precompiled header file must be produced for the same language as
24505 the current compilation.  You can't use a C precompiled header for a C++
24506 compilation.
24507
24508 @item
24509 The precompiled header file must have been produced by the same compiler
24510 binary as the current compilation is using.
24511
24512 @item
24513 Any macros defined before the precompiled header is included must
24514 either be defined in the same way as when the precompiled header was
24515 generated, or must not affect the precompiled header, which usually
24516 means that they don't appear in the precompiled header at all.
24517
24518 The @option{-D} option is one way to define a macro before a
24519 precompiled header is included; using a @code{#define} can also do it.
24520 There are also some options that define macros implicitly, like
24521 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24522 defined this way.
24523
24524 @item If debugging information is output when using the precompiled
24525 header, using @option{-g} or similar, the same kind of debugging information
24526 must have been output when building the precompiled header.  However,
24527 a precompiled header built using @option{-g} can be used in a compilation
24528 when no debugging information is being output.
24529
24530 @item The same @option{-m} options must generally be used when building
24531 and using the precompiled header.  @xref{Submodel Options},
24532 for any cases where this rule is relaxed.
24533
24534 @item Each of the following options must be the same when building and using
24535 the precompiled header:
24536
24537 @gccoptlist{-fexceptions}
24538
24539 @item
24540 Some other command-line options starting with @option{-f},
24541 @option{-p}, or @option{-O} must be defined in the same way as when
24542 the precompiled header was generated.  At present, it's not clear
24543 which options are safe to change and which are not; the safest choice
24544 is to use exactly the same options when generating and using the
24545 precompiled header.  The following are known to be safe:
24546
24547 @gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
24548 -fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
24549 -fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
24550 -pedantic-errors}
24551
24552 @end itemize
24553
24554 For all of these except the last, the compiler automatically
24555 ignores the precompiled header if the conditions aren't met.  If you
24556 find an option combination that doesn't work and doesn't cause the
24557 precompiled header to be ignored, please consider filing a bug report,
24558 see @ref{Bugs}.
24559
24560 If you do use differing options when generating and using the
24561 precompiled header, the actual behavior is a mixture of the
24562 behavior for the options.  For instance, if you use @option{-g} to
24563 generate the precompiled header but not when using it, you may or may
24564 not get debugging information for routines in the precompiled header.