reflect previous commit for setting gcc_dir_version to other spec files
[platform/upstream/gcc48.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3    Originally contributed by Michael P. Hayes
4              (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5    Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6              and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23
24 /*
25 OVERVIEW:
26
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems.  The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
30
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains.  However,
34 the interface allows other dataflow problems to be defined as well.
35
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish).  It is quite likely
38 that these boundaries will be expanded in the future.  The only
39 requirement is that there be a correct control flow graph.
40
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available.  The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable.  The LIVE
45 problem finds the intersection of these two areas.
46
47 There are several optional problems.  These can be enabled when they
48 are needed and disabled when they are not needed.
49
50 Dataflow problems are generally solved in three layers.  The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn.  Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also.  There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
57
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution.  The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
62
63 The top layer is the dataflow solution itself.  The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions.  The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
67
68
69 USAGE:
70
71 Here is an example of using the dataflow routines.
72
73       df_[chain,live,note,rd]_add_problem (flags);
74
75       df_set_blocks (blocks);
76
77       df_analyze ();
78
79       df_dump (stderr);
80
81       df_finish_pass (false);
82
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df.  All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
87
88 Problems can be dependent on other problems.  For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem.  Note that it is not necessary to have a problem.  In
94 that case, df will just be used to do the scanning.
95
96
97
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed.  The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution.  The insn level information
103 is always kept up to date.
104
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set.  Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
110
111 DF_ANALYZE causes all of the defined problems to be (re)solved.  When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information.  The DF_*_BB_INFO macros can be used
114 to access these bitvectors.  All deferred rescannings are down before
115 the transfer functions are recomputed.
116
117 DF_DUMP can then be called to dump the information produce to some
118 file.  This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information.  These parts
121 can all be called separately as part of a larger dump function.
122
123
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems.  It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run.  However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
132
133 INCREMENTAL SCANNING
134
135 There are four ways of doing the incremental scanning:
136
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138    df_bb_delete, df_insn_change_bb have been added to most of
139    the low level service functions that maintain the cfg and change
140    rtl.  Calling and of these routines many cause some number of insns
141    to be rescanned.
142
143    For most modern rtl passes, this is certainly the easiest way to
144    manage rescanning the insns.  This technique also has the advantage
145    that the scanning information is always correct and can be relied
146    upon even after changes have been made to the instructions.  This
147    technique is contra indicated in several cases:
148
149    a) If def-use chains OR use-def chains (but not both) are built,
150       using this is SIMPLY WRONG.  The problem is that when a ref is
151       deleted that is the target of an edge, there is not enough
152       information to efficiently find the source of the edge and
153       delete the edge.  This leaves a dangling reference that may
154       cause problems.
155
156    b) If def-use chains AND use-def chains are built, this may
157       produce unexpected results.  The problem is that the incremental
158       scanning of an insn does not know how to repair the chains that
159       point into an insn when the insn changes.  So the incremental
160       scanning just deletes the chains that enter and exit the insn
161       being changed.  The dangling reference issue in (a) is not a
162       problem here, but if the pass is depending on the chains being
163       maintained after insns have been modified, this technique will
164       not do the correct thing.
165
166    c) If the pass modifies insns several times, this incremental
167       updating may be expensive.
168
169    d) If the pass modifies all of the insns, as does register
170       allocation, it is simply better to rescan the entire function.
171
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173    df_insn_delete do not immediately change the insn but instead make
174    a note that the insn needs to be rescanned.  The next call to
175    df_analyze, df_finish_pass, or df_process_deferred_rescans will
176    cause all of the pending rescans to be processed.
177
178    This is the technique of choice if either 1a, 1b, or 1c are issues
179    in the pass.  In the case of 1a or 1b, a call to df_finish_pass
180    (either manually or via TODO_df_finish) should be made before the
181    next call to df_analyze or df_process_deferred_rescans.
182
183    This mode is also used by a few passes that still rely on note_uses,
184    note_stores and for_each_rtx instead of using the DF data.  This
185    can be said to fall under case 1c.
186
187    To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188    (This mode can be cleared by calling df_clear_flags
189    (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190    be rescanned.
191
192 3) Total rescanning - In this mode the rescanning is disabled.
193    Only when insns are deleted is the df information associated with
194    it also deleted.  At the end of the pass, a call must be made to
195    df_insn_rescan_all.  This method is used by the register allocator
196    since it generally changes each insn multiple times (once for each ref)
197    and does not need to make use of the updated scanning information.
198
199 4) Do it yourself - In this mechanism, the pass updates the insns
200    itself using the low level df primitives.  Currently no pass does
201    this, but it has the advantage that it is quite efficient given
202    that the pass generally has exact knowledge of what it is changing.
203
204 DATA STRUCTURES
205
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within.  The refs are linked together in
209 chains of uses and defs for each insn and for each register.  Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use.  This is used to create use-def or def-use
212 chains.
213
214 Different optimizations have different needs.  Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
219
220
221 PHILOSOPHY:
222
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable.  The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
227
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical.  The amount of work to recompute the chain any
230 chain after an arbitrary change is large.  However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date.  The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
235
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration.  In general, restarting a
238 dataflow iteration is difficult and expensive.  Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
241
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c.  However, these are not currently connected
244 to the engine that resolves the dataflow equations.
245
246
247 DATA STRUCTURES:
248
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
251
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists.  For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
257
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
260
261 ACCESSING INSNS:
262
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264    The array is indexed by insn uid, and every DF_REF points to the
265    DF_INSN_INFO object of the insn that contains the reference.
266
267 2) Each insn has three sets of refs, which are linked into one of three
268    lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269    DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270    (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271    DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272    DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273    The latter list are the list of references in REG_EQUAL or REG_EQUIV
274    notes.  These macros produce a ref (or NULL), the rest of the list
275    can be obtained by traversal of the NEXT_REF field (accessed by the
276    DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
277    the uses or refs in an instruction.
278
279 3) Each insn has a logical uid field (LUID) which is stored in the
280    DF_INSN_INFO object for the insn.  The LUID field is accessed by
281    the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282    When properly set, the LUID is an integer that numbers each insn in
283    the basic block, in order from the start of the block.
284    The numbers are only correct after a call to df_analyze.  They will
285    rot after insns are added deleted or moved round.
286
287 ACCESSING REFS:
288
289 There are 4 ways to obtain access to refs:
290
291 1) References are divided into two categories, REAL and ARTIFICIAL.
292
293    REAL refs are associated with instructions.
294
295    ARTIFICIAL refs are associated with basic blocks.  The heads of
296    these lists can be accessed by calling df_get_artificial_defs or
297    df_get_artificial_uses for the particular basic block.
298
299    Artificial defs and uses occur both at the beginning and ends of blocks.
300
301      For blocks that area at the destination of eh edges, the
302      artificial uses and defs occur at the beginning.  The defs relate
303      to the registers specified in EH_RETURN_DATA_REGNO and the uses
304      relate to the registers specified in ED_USES.  Logically these
305      defs and uses should really occur along the eh edge, but there is
306      no convenient way to do this.  Artificial edges that occur at the
307      beginning of the block have the DF_REF_AT_TOP flag set.
308
309      Artificial uses occur at the end of all blocks.  These arise from
310      the hard registers that are always live, such as the stack
311      register and are put there to keep the code from forgetting about
312      them.
313
314      Artificial defs occur at the end of the entry block.  These arise
315      from registers that are live at entry to the function.
316
317 2) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
318    uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320    All of the eq_uses, uses and defs associated with each pseudo or
321    hard register may be linked in a bidirectional chain.  These are
322    called reg-use or reg_def chains.  If the changeable flag
323    DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324    treated like uses.  If it is not set they are ignored.
325
326    The first use, eq_use or def for a register can be obtained using
327    the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328    macros.  Subsequent uses for the same regno can be obtained by
329    following the next_reg field of the ref.  The number of elements in
330    each of the chains can be found by using the DF_REG_USE_COUNT,
331    DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333    In previous versions of this code, these chains were ordered.  It
334    has not been practical to continue this practice.
335
336 3) If def-use or use-def chains are built, these can be traversed to
337    get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
338    include the eq_uses.  Otherwise these are ignored when building the
339    chains.
340
341 4) An array of all of the uses (and an array of all of the defs) can
342    be built.  These arrays are indexed by the value in the id
343    structure.  These arrays are only lazily kept up to date, and that
344    process can be expensive.  To have these arrays built, call
345    df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
346    has been set the array will contain the eq_uses.  Otherwise these
347    are ignored when building the array and assigning the ids.  Note
348    that the values in the id field of a ref may change across calls to
349    df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351    If the only use of this array is to find all of the refs, it is
352    better to traverse all of the registers and then traverse all of
353    reg-use or reg-def chains.
354
355 NOTES:
356
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def.  These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
365
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation.  We generate both a use and a def and again mark them
370 read/write.
371
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
374 */
375
376
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "tm.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "insn-config.h"
384 #include "recog.h"
385 #include "function.h"
386 #include "regs.h"
387 #include "alloc-pool.h"
388 #include "flags.h"
389 #include "hard-reg-set.h"
390 #include "basic-block.h"
391 #include "sbitmap.h"
392 #include "bitmap.h"
393 #include "df.h"
394 #include "tree-pass.h"
395 #include "params.h"
396
397 static void *df_get_bb_info (struct dataflow *, unsigned int);
398 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
399 static void df_clear_bb_info (struct dataflow *, unsigned int);
400 #ifdef DF_DEBUG_CFG
401 static void df_set_clean_cfg (void);
402 #endif
403
404 /* The obstack on which regsets are allocated.  */
405 struct bitmap_obstack reg_obstack;
406
407 /* An obstack for bitmap not related to specific dataflow problems.
408    This obstack should e.g. be used for bitmaps with a short life time
409    such as temporary bitmaps.  */
410
411 bitmap_obstack df_bitmap_obstack;
412
413
414 /*----------------------------------------------------------------------------
415   Functions to create, destroy and manipulate an instance of df.
416 ----------------------------------------------------------------------------*/
417
418 struct df_d *df;
419
420 /* Add PROBLEM (and any dependent problems) to the DF instance.  */
421
422 void
423 df_add_problem (struct df_problem *problem)
424 {
425   struct dataflow *dflow;
426   int i;
427
428   /* First try to add the dependent problem. */
429   if (problem->dependent_problem)
430     df_add_problem (problem->dependent_problem);
431
432   /* Check to see if this problem has already been defined.  If it
433      has, just return that instance, if not, add it to the end of the
434      vector.  */
435   dflow = df->problems_by_index[problem->id];
436   if (dflow)
437     return;
438
439   /* Make a new one and add it to the end.  */
440   dflow = XCNEW (struct dataflow);
441   dflow->problem = problem;
442   dflow->computed = false;
443   dflow->solutions_dirty = true;
444   df->problems_by_index[dflow->problem->id] = dflow;
445
446   /* Keep the defined problems ordered by index.  This solves the
447      problem that RI will use the information from UREC if UREC has
448      been defined, or from LIVE if LIVE is defined and otherwise LR.
449      However for this to work, the computation of RI must be pushed
450      after which ever of those problems is defined, but we do not
451      require any of those except for LR to have actually been
452      defined.  */
453   df->num_problems_defined++;
454   for (i = df->num_problems_defined - 2; i >= 0; i--)
455     {
456       if (problem->id < df->problems_in_order[i]->problem->id)
457         df->problems_in_order[i+1] = df->problems_in_order[i];
458       else
459         {
460           df->problems_in_order[i+1] = dflow;
461           return;
462         }
463     }
464   df->problems_in_order[0] = dflow;
465 }
466
467
468 /* Set the MASK flags in the DFLOW problem.  The old flags are
469    returned.  If a flag is not allowed to be changed this will fail if
470    checking is enabled.  */
471 int
472 df_set_flags (int changeable_flags)
473 {
474   int old_flags = df->changeable_flags;
475   df->changeable_flags |= changeable_flags;
476   return old_flags;
477 }
478
479
480 /* Clear the MASK flags in the DFLOW problem.  The old flags are
481    returned.  If a flag is not allowed to be changed this will fail if
482    checking is enabled.  */
483 int
484 df_clear_flags (int changeable_flags)
485 {
486   int old_flags = df->changeable_flags;
487   df->changeable_flags &= ~changeable_flags;
488   return old_flags;
489 }
490
491
492 /* Set the blocks that are to be considered for analysis.  If this is
493    not called or is called with null, the entire function in
494    analyzed.  */
495
496 void
497 df_set_blocks (bitmap blocks)
498 {
499   if (blocks)
500     {
501       if (dump_file)
502         bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
503       if (df->blocks_to_analyze)
504         {
505           /* This block is called to change the focus from one subset
506              to another.  */
507           int p;
508           bitmap_head diff;
509           bitmap_initialize (&diff, &df_bitmap_obstack);
510           bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
511           for (p = 0; p < df->num_problems_defined; p++)
512             {
513               struct dataflow *dflow = df->problems_in_order[p];
514               if (dflow->optional_p && dflow->problem->reset_fun)
515                 dflow->problem->reset_fun (df->blocks_to_analyze);
516               else if (dflow->problem->free_blocks_on_set_blocks)
517                 {
518                   bitmap_iterator bi;
519                   unsigned int bb_index;
520
521                   EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
522                     {
523                       basic_block bb = BASIC_BLOCK (bb_index);
524                       if (bb)
525                         {
526                           void *bb_info = df_get_bb_info (dflow, bb_index);
527                           dflow->problem->free_bb_fun (bb, bb_info);
528                           df_clear_bb_info (dflow, bb_index);
529                         }
530                     }
531                 }
532             }
533
534            bitmap_clear (&diff);
535         }
536       else
537         {
538           /* This block of code is executed to change the focus from
539              the entire function to a subset.  */
540           bitmap_head blocks_to_reset;
541           bool initialized = false;
542           int p;
543           for (p = 0; p < df->num_problems_defined; p++)
544             {
545               struct dataflow *dflow = df->problems_in_order[p];
546               if (dflow->optional_p && dflow->problem->reset_fun)
547                 {
548                   if (!initialized)
549                     {
550                       basic_block bb;
551                       bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
552                       FOR_ALL_BB(bb)
553                         {
554                           bitmap_set_bit (&blocks_to_reset, bb->index);
555                         }
556                     }
557                   dflow->problem->reset_fun (&blocks_to_reset);
558                 }
559             }
560           if (initialized)
561             bitmap_clear (&blocks_to_reset);
562
563           df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
564         }
565       bitmap_copy (df->blocks_to_analyze, blocks);
566       df->analyze_subset = true;
567     }
568   else
569     {
570       /* This block is executed to reset the focus to the entire
571          function.  */
572       if (dump_file)
573         fprintf (dump_file, "clearing blocks_to_analyze\n");
574       if (df->blocks_to_analyze)
575         {
576           BITMAP_FREE (df->blocks_to_analyze);
577           df->blocks_to_analyze = NULL;
578         }
579       df->analyze_subset = false;
580     }
581
582   /* Setting the blocks causes the refs to be unorganized since only
583      the refs in the blocks are seen.  */
584   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586   df_mark_solutions_dirty ();
587 }
588
589
590 /* Delete a DFLOW problem (and any problems that depend on this
591    problem).  */
592
593 void
594 df_remove_problem (struct dataflow *dflow)
595 {
596   struct df_problem *problem;
597   int i;
598
599   if (!dflow)
600     return;
601
602   problem = dflow->problem;
603   gcc_assert (problem->remove_problem_fun);
604
605   /* Delete any problems that depended on this problem first.  */
606   for (i = 0; i < df->num_problems_defined; i++)
607     if (df->problems_in_order[i]->problem->dependent_problem == problem)
608       df_remove_problem (df->problems_in_order[i]);
609
610   /* Now remove this problem.  */
611   for (i = 0; i < df->num_problems_defined; i++)
612     if (df->problems_in_order[i] == dflow)
613       {
614         int j;
615         for (j = i + 1; j < df->num_problems_defined; j++)
616           df->problems_in_order[j-1] = df->problems_in_order[j];
617         df->problems_in_order[j-1] = NULL;
618         df->num_problems_defined--;
619         break;
620       }
621
622   (problem->remove_problem_fun) ();
623   df->problems_by_index[problem->id] = NULL;
624 }
625
626
627 /* Remove all of the problems that are not permanent.  Scanning, LR
628    and (at -O2 or higher) LIVE are permanent, the rest are removable.
629    Also clear all of the changeable_flags.  */
630
631 void
632 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
633 {
634   int i;
635   int removed = 0;
636
637 #ifdef ENABLE_DF_CHECKING
638   int saved_flags;
639 #endif
640
641   if (!df)
642     return;
643
644   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
646
647 #ifdef ENABLE_DF_CHECKING
648   saved_flags = df->changeable_flags;
649 #endif
650
651   for (i = 0; i < df->num_problems_defined; i++)
652     {
653       struct dataflow *dflow = df->problems_in_order[i];
654       struct df_problem *problem = dflow->problem;
655
656       if (dflow->optional_p)
657         {
658           gcc_assert (problem->remove_problem_fun);
659           (problem->remove_problem_fun) ();
660           df->problems_in_order[i] = NULL;
661           df->problems_by_index[problem->id] = NULL;
662           removed++;
663         }
664     }
665   df->num_problems_defined -= removed;
666
667   /* Clear all of the flags.  */
668   df->changeable_flags = 0;
669   df_process_deferred_rescans ();
670
671   /* Set the focus back to the whole function.  */
672   if (df->blocks_to_analyze)
673     {
674       BITMAP_FREE (df->blocks_to_analyze);
675       df->blocks_to_analyze = NULL;
676       df_mark_solutions_dirty ();
677       df->analyze_subset = false;
678     }
679
680 #ifdef ENABLE_DF_CHECKING
681   /* Verification will fail in DF_NO_INSN_RESCAN.  */
682   if (!(saved_flags & DF_NO_INSN_RESCAN))
683     {
684       df_lr_verify_transfer_functions ();
685       if (df_live)
686         df_live_verify_transfer_functions ();
687     }
688
689 #ifdef DF_DEBUG_CFG
690   df_set_clean_cfg ();
691 #endif
692 #endif
693
694 #ifdef ENABLE_CHECKING
695   if (verify)
696     df->changeable_flags |= DF_VERIFY_SCHEDULED;
697 #endif
698 }
699
700
701 /* Set up the dataflow instance for the entire back end.  */
702
703 static unsigned int
704 rest_of_handle_df_initialize (void)
705 {
706   gcc_assert (!df);
707   df = XCNEW (struct df_d);
708   df->changeable_flags = 0;
709
710   bitmap_obstack_initialize (&df_bitmap_obstack);
711
712   /* Set this to a conservative value.  Stack_ptr_mod will compute it
713      correctly later.  */
714   crtl->sp_is_unchanging = 0;
715
716   df_scan_add_problem ();
717   df_scan_alloc (NULL);
718
719   /* These three problems are permanent.  */
720   df_lr_add_problem ();
721   if (optimize > 1)
722     df_live_add_problem ();
723
724   df->postorder = XNEWVEC (int, last_basic_block);
725   df->postorder_inverted = XNEWVEC (int, last_basic_block);
726   df->n_blocks = post_order_compute (df->postorder, true, true);
727   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728   gcc_assert (df->n_blocks == df->n_blocks_inverted);
729
730   df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
731   memset (df->hard_regs_live_count, 0,
732           sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
733
734   df_hard_reg_init ();
735   /* After reload, some ports add certain bits to regs_ever_live so
736      this cannot be reset.  */
737   df_compute_regs_ever_live (true);
738   df_scan_blocks ();
739   df_compute_regs_ever_live (false);
740   return 0;
741 }
742
743
744 static bool
745 gate_opt (void)
746 {
747   return optimize > 0;
748 }
749
750
751 struct rtl_opt_pass pass_df_initialize_opt =
752 {
753  {
754   RTL_PASS,
755   "dfinit",                             /* name */
756   OPTGROUP_NONE,                        /* optinfo_flags */
757   gate_opt,                             /* gate */
758   rest_of_handle_df_initialize,         /* execute */
759   NULL,                                 /* sub */
760   NULL,                                 /* next */
761   0,                                    /* static_pass_number */
762   TV_DF_SCAN,                           /* tv_id */
763   0,                                    /* properties_required */
764   0,                                    /* properties_provided */
765   0,                                    /* properties_destroyed */
766   0,                                    /* todo_flags_start */
767   0                                     /* todo_flags_finish */
768  }
769 };
770
771
772 static bool
773 gate_no_opt (void)
774 {
775   return optimize == 0;
776 }
777
778
779 struct rtl_opt_pass pass_df_initialize_no_opt =
780 {
781  {
782   RTL_PASS,
783   "no-opt dfinit",                      /* name */
784   OPTGROUP_NONE,                        /* optinfo_flags */
785   gate_no_opt,                          /* gate */
786   rest_of_handle_df_initialize,         /* execute */
787   NULL,                                 /* sub */
788   NULL,                                 /* next */
789   0,                                    /* static_pass_number */
790   TV_DF_SCAN,                           /* tv_id */
791   0,                                    /* properties_required */
792   0,                                    /* properties_provided */
793   0,                                    /* properties_destroyed */
794   0,                                    /* todo_flags_start */
795   0                                     /* todo_flags_finish */
796  }
797 };
798
799
800 /* Free all the dataflow info and the DF structure.  This should be
801    called from the df_finish macro which also NULLs the parm.  */
802
803 static unsigned int
804 rest_of_handle_df_finish (void)
805 {
806   int i;
807
808   gcc_assert (df);
809
810   for (i = 0; i < df->num_problems_defined; i++)
811     {
812       struct dataflow *dflow = df->problems_in_order[i];
813       dflow->problem->free_fun ();
814     }
815
816   free (df->postorder);
817   free (df->postorder_inverted);
818   free (df->hard_regs_live_count);
819   free (df);
820   df = NULL;
821
822   bitmap_obstack_release (&df_bitmap_obstack);
823   return 0;
824 }
825
826
827 struct rtl_opt_pass pass_df_finish =
828 {
829  {
830   RTL_PASS,
831   "dfinish",                            /* name */
832   OPTGROUP_NONE,                        /* optinfo_flags */
833   NULL,                                 /* gate */
834   rest_of_handle_df_finish,             /* execute */
835   NULL,                                 /* sub */
836   NULL,                                 /* next */
837   0,                                    /* static_pass_number */
838   TV_NONE,                              /* tv_id */
839   0,                                    /* properties_required */
840   0,                                    /* properties_provided */
841   0,                                    /* properties_destroyed */
842   0,                                    /* todo_flags_start */
843   0                                     /* todo_flags_finish */
844  }
845 };
846
847
848
849
850 \f
851 /*----------------------------------------------------------------------------
852    The general data flow analysis engine.
853 ----------------------------------------------------------------------------*/
854
855 /* Return time BB when it was visited for last time.  */
856 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
857
858 /* Helper function for df_worklist_dataflow.
859    Propagate the dataflow forward.
860    Given a BB_INDEX, do the dataflow propagation
861    and set bits on for successors in PENDING
862    if the out set of the dataflow has changed.
863
864    AGE specify time when BB was visited last time.
865    AGE of 0 means we are visiting for first time and need to
866    compute transfer function to initialize datastructures.
867    Otherwise we re-do transfer function only if something change
868    while computing confluence functions.
869    We need to compute confluence only of basic block that are younger
870    then last visit of the BB.
871
872    Return true if BB info has changed.  This is always the case
873    in the first visit.  */
874
875 static bool
876 df_worklist_propagate_forward (struct dataflow *dataflow,
877                                unsigned bb_index,
878                                unsigned *bbindex_to_postorder,
879                                bitmap pending,
880                                sbitmap considered,
881                                ptrdiff_t age)
882 {
883   edge e;
884   edge_iterator ei;
885   basic_block bb = BASIC_BLOCK (bb_index);
886   bool changed = !age;
887
888   /*  Calculate <conf_op> of incoming edges.  */
889   if (EDGE_COUNT (bb->preds) > 0)
890     FOR_EACH_EDGE (e, ei, bb->preds)
891       {
892         if (age <= BB_LAST_CHANGE_AGE (e->src)
893             && bitmap_bit_p (considered, e->src->index))
894           changed |= dataflow->problem->con_fun_n (e);
895       }
896   else if (dataflow->problem->con_fun_0)
897     dataflow->problem->con_fun_0 (bb);
898
899   if (changed
900       && dataflow->problem->trans_fun (bb_index))
901     {
902       /* The out set of this block has changed.
903          Propagate to the outgoing blocks.  */
904       FOR_EACH_EDGE (e, ei, bb->succs)
905         {
906           unsigned ob_index = e->dest->index;
907
908           if (bitmap_bit_p (considered, ob_index))
909             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
910         }
911       return true;
912     }
913   return false;
914 }
915
916
917 /* Helper function for df_worklist_dataflow.
918    Propagate the dataflow backward.  */
919
920 static bool
921 df_worklist_propagate_backward (struct dataflow *dataflow,
922                                 unsigned bb_index,
923                                 unsigned *bbindex_to_postorder,
924                                 bitmap pending,
925                                 sbitmap considered,
926                                 ptrdiff_t age)
927 {
928   edge e;
929   edge_iterator ei;
930   basic_block bb = BASIC_BLOCK (bb_index);
931   bool changed = !age;
932
933   /*  Calculate <conf_op> of incoming edges.  */
934   if (EDGE_COUNT (bb->succs) > 0)
935     FOR_EACH_EDGE (e, ei, bb->succs)
936       {
937         if (age <= BB_LAST_CHANGE_AGE (e->dest)
938             && bitmap_bit_p (considered, e->dest->index))
939           changed |= dataflow->problem->con_fun_n (e);
940       }
941   else if (dataflow->problem->con_fun_0)
942     dataflow->problem->con_fun_0 (bb);
943
944   if (changed
945       && dataflow->problem->trans_fun (bb_index))
946     {
947       /* The out set of this block has changed.
948          Propagate to the outgoing blocks.  */
949       FOR_EACH_EDGE (e, ei, bb->preds)
950         {
951           unsigned ob_index = e->src->index;
952
953           if (bitmap_bit_p (considered, ob_index))
954             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
955         }
956       return true;
957     }
958   return false;
959 }
960
961 /* Main dataflow solver loop.
962
963    DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
964    need to visit.
965    BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
966    BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
967    PENDING will be freed.
968
969    The worklists are bitmaps indexed by postorder positions.  
970
971    The function implements standard algorithm for dataflow solving with two
972    worklists (we are processing WORKLIST and storing new BBs to visit in
973    PENDING).
974
975    As an optimization we maintain ages when BB was changed (stored in bb->aux)
976    and when it was last visited (stored in last_visit_age).  This avoids need
977    to re-do confluence function for edges to basic blocks whose source
978    did not change since destination was visited last time.  */
979
980 static void
981 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
982                                   bitmap pending,
983                                   sbitmap considered,
984                                   int *blocks_in_postorder,
985                                   unsigned *bbindex_to_postorder,
986                                   int n_blocks)
987 {
988   enum df_flow_dir dir = dataflow->problem->dir;
989   int dcount = 0;
990   bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
991   int age = 0;
992   bool changed;
993   vec<int> last_visit_age = vNULL;
994   int prev_age;
995   basic_block bb;
996   int i;
997
998   last_visit_age.safe_grow_cleared (n_blocks);
999
1000   /* Double-queueing. Worklist is for the current iteration,
1001      and pending is for the next. */
1002   while (!bitmap_empty_p (pending))
1003     {
1004       bitmap_iterator bi;
1005       unsigned int index;
1006
1007       /* Swap pending and worklist. */
1008       bitmap temp = worklist;
1009       worklist = pending;
1010       pending = temp;
1011
1012       EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1013         {
1014           unsigned bb_index;
1015           dcount++;
1016
1017           bitmap_clear_bit (pending, index);
1018           bb_index = blocks_in_postorder[index];
1019           bb = BASIC_BLOCK (bb_index);
1020           prev_age = last_visit_age[index];
1021           if (dir == DF_FORWARD)
1022             changed = df_worklist_propagate_forward (dataflow, bb_index,
1023                                                      bbindex_to_postorder,
1024                                                      pending, considered,
1025                                                      prev_age);
1026           else
1027             changed = df_worklist_propagate_backward (dataflow, bb_index,
1028                                                       bbindex_to_postorder,
1029                                                       pending, considered,
1030                                                       prev_age);
1031           last_visit_age[index] = ++age;
1032           if (changed)
1033             bb->aux = (void *)(ptrdiff_t)age;
1034         }
1035       bitmap_clear (worklist);
1036     }
1037   for (i = 0; i < n_blocks; i++)
1038     BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1039
1040   BITMAP_FREE (worklist);
1041   BITMAP_FREE (pending);
1042   last_visit_age.release ();
1043
1044   /* Dump statistics. */
1045   if (dump_file)
1046     fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1047              "n_basic_blocks %d n_edges %d"
1048              " count %d (%5.2g)\n",
1049              n_basic_blocks, n_edges,
1050              dcount, dcount / (float)n_basic_blocks);
1051 }
1052
1053 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1054    with "n"-th bit representing the n-th block in the reverse-postorder order.
1055    The solver is a double-queue algorithm similar to the "double stack" solver
1056    from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1057    The only significant difference is that the worklist in this implementation
1058    is always sorted in RPO of the CFG visiting direction.  */
1059
1060 void
1061 df_worklist_dataflow (struct dataflow *dataflow,
1062                       bitmap blocks_to_consider,
1063                       int *blocks_in_postorder,
1064                       int n_blocks)
1065 {
1066   bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1067   sbitmap considered = sbitmap_alloc (last_basic_block);
1068   bitmap_iterator bi;
1069   unsigned int *bbindex_to_postorder;
1070   int i;
1071   unsigned int index;
1072   enum df_flow_dir dir = dataflow->problem->dir;
1073
1074   gcc_assert (dir != DF_NONE);
1075
1076   /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1077   bbindex_to_postorder =
1078     (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1079
1080   /* Initialize the array to an out-of-bound value.  */
1081   for (i = 0; i < last_basic_block; i++)
1082     bbindex_to_postorder[i] = last_basic_block;
1083
1084   /* Initialize the considered map.  */
1085   bitmap_clear (considered);
1086   EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1087     {
1088       bitmap_set_bit (considered, index);
1089     }
1090
1091   /* Initialize the mapping of block index to postorder.  */
1092   for (i = 0; i < n_blocks; i++)
1093     {
1094       bbindex_to_postorder[blocks_in_postorder[i]] = i;
1095       /* Add all blocks to the worklist.  */
1096       bitmap_set_bit (pending, i);
1097     }
1098
1099   /* Initialize the problem. */
1100   if (dataflow->problem->init_fun)
1101     dataflow->problem->init_fun (blocks_to_consider);
1102
1103   /* Solve it.  */
1104   df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1105                                     blocks_in_postorder,
1106                                     bbindex_to_postorder,
1107                                     n_blocks);
1108   sbitmap_free (considered);
1109   free (bbindex_to_postorder);
1110 }
1111
1112
1113 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1114    the order of the remaining entries.  Returns the length of the resulting
1115    list.  */
1116
1117 static unsigned
1118 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1119 {
1120   unsigned act, last;
1121
1122   for (act = 0, last = 0; act < len; act++)
1123     if (bitmap_bit_p (blocks, list[act]))
1124       list[last++] = list[act];
1125
1126   return last;
1127 }
1128
1129
1130 /* Execute dataflow analysis on a single dataflow problem.
1131
1132    BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1133    examined or will be computed.  For calls from DF_ANALYZE, this is
1134    the set of blocks that has been passed to DF_SET_BLOCKS.
1135 */
1136
1137 void
1138 df_analyze_problem (struct dataflow *dflow,
1139                     bitmap blocks_to_consider,
1140                     int *postorder, int n_blocks)
1141 {
1142   timevar_push (dflow->problem->tv_id);
1143
1144   /* (Re)Allocate the datastructures necessary to solve the problem.  */
1145   if (dflow->problem->alloc_fun)
1146     dflow->problem->alloc_fun (blocks_to_consider);
1147
1148 #ifdef ENABLE_DF_CHECKING
1149   if (dflow->problem->verify_start_fun)
1150     dflow->problem->verify_start_fun ();
1151 #endif
1152
1153   /* Set up the problem and compute the local information.  */
1154   if (dflow->problem->local_compute_fun)
1155     dflow->problem->local_compute_fun (blocks_to_consider);
1156
1157   /* Solve the equations.  */
1158   if (dflow->problem->dataflow_fun)
1159     dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1160                                   postorder, n_blocks);
1161
1162   /* Massage the solution.  */
1163   if (dflow->problem->finalize_fun)
1164     dflow->problem->finalize_fun (blocks_to_consider);
1165
1166 #ifdef ENABLE_DF_CHECKING
1167   if (dflow->problem->verify_end_fun)
1168     dflow->problem->verify_end_fun ();
1169 #endif
1170
1171   timevar_pop (dflow->problem->tv_id);
1172
1173   dflow->computed = true;
1174 }
1175
1176
1177 /* Analyze dataflow info for the basic blocks specified by the bitmap
1178    BLOCKS, or for the whole CFG if BLOCKS is zero.  */
1179
1180 void
1181 df_analyze (void)
1182 {
1183   bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1184   bool everything;
1185   int i;
1186
1187   free (df->postorder);
1188   free (df->postorder_inverted);
1189   df->postorder = XNEWVEC (int, last_basic_block);
1190   df->postorder_inverted = XNEWVEC (int, last_basic_block);
1191   df->n_blocks = post_order_compute (df->postorder, true, true);
1192   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1193
1194   /* These should be the same.  */
1195   gcc_assert (df->n_blocks == df->n_blocks_inverted);
1196
1197   /* We need to do this before the df_verify_all because this is
1198      not kept incrementally up to date.  */
1199   df_compute_regs_ever_live (false);
1200   df_process_deferred_rescans ();
1201
1202   if (dump_file)
1203     fprintf (dump_file, "df_analyze called\n");
1204
1205 #ifndef ENABLE_DF_CHECKING
1206   if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1207 #endif
1208     df_verify ();
1209
1210   for (i = 0; i < df->n_blocks; i++)
1211     bitmap_set_bit (current_all_blocks, df->postorder[i]);
1212
1213 #ifdef ENABLE_CHECKING
1214   /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1215      the ENTRY block.  */
1216   for (i = 0; i < df->n_blocks_inverted; i++)
1217     gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1218 #endif
1219
1220   /* Make sure that we have pruned any unreachable blocks from these
1221      sets.  */
1222   if (df->analyze_subset)
1223     {
1224       everything = false;
1225       bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1226       df->n_blocks = df_prune_to_subcfg (df->postorder,
1227                                          df->n_blocks, df->blocks_to_analyze);
1228       df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1229                                                   df->n_blocks_inverted,
1230                                                   df->blocks_to_analyze);
1231       BITMAP_FREE (current_all_blocks);
1232     }
1233   else
1234     {
1235       everything = true;
1236       df->blocks_to_analyze = current_all_blocks;
1237       current_all_blocks = NULL;
1238     }
1239
1240   /* Skip over the DF_SCAN problem. */
1241   for (i = 1; i < df->num_problems_defined; i++)
1242     {
1243       struct dataflow *dflow = df->problems_in_order[i];
1244       if (dflow->solutions_dirty)
1245         {
1246           if (dflow->problem->dir == DF_FORWARD)
1247             df_analyze_problem (dflow,
1248                                 df->blocks_to_analyze,
1249                                 df->postorder_inverted,
1250                                 df->n_blocks_inverted);
1251           else
1252             df_analyze_problem (dflow,
1253                                 df->blocks_to_analyze,
1254                                 df->postorder,
1255                                 df->n_blocks);
1256         }
1257     }
1258
1259   if (everything)
1260     {
1261       BITMAP_FREE (df->blocks_to_analyze);
1262       df->blocks_to_analyze = NULL;
1263     }
1264
1265 #ifdef DF_DEBUG_CFG
1266   df_set_clean_cfg ();
1267 #endif
1268 }
1269
1270
1271 /* Return the number of basic blocks from the last call to df_analyze.  */
1272
1273 int
1274 df_get_n_blocks (enum df_flow_dir dir)
1275 {
1276   gcc_assert (dir != DF_NONE);
1277
1278   if (dir == DF_FORWARD)
1279     {
1280       gcc_assert (df->postorder_inverted);
1281       return df->n_blocks_inverted;
1282     }
1283
1284   gcc_assert (df->postorder);
1285   return df->n_blocks;
1286 }
1287
1288
1289 /* Return a pointer to the array of basic blocks in the reverse postorder.
1290    Depending on the direction of the dataflow problem,
1291    it returns either the usual reverse postorder array
1292    or the reverse postorder of inverted traversal. */
1293 int *
1294 df_get_postorder (enum df_flow_dir dir)
1295 {
1296   gcc_assert (dir != DF_NONE);
1297
1298   if (dir == DF_FORWARD)
1299     {
1300       gcc_assert (df->postorder_inverted);
1301       return df->postorder_inverted;
1302     }
1303   gcc_assert (df->postorder);
1304   return df->postorder;
1305 }
1306
1307 static struct df_problem user_problem;
1308 static struct dataflow user_dflow;
1309
1310 /* Interface for calling iterative dataflow with user defined
1311    confluence and transfer functions.  All that is necessary is to
1312    supply DIR, a direction, CONF_FUN_0, a confluence function for
1313    blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1314    confluence function, TRANS_FUN, the basic block transfer function,
1315    and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1316    postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1317
1318 void
1319 df_simple_dataflow (enum df_flow_dir dir,
1320                     df_init_function init_fun,
1321                     df_confluence_function_0 con_fun_0,
1322                     df_confluence_function_n con_fun_n,
1323                     df_transfer_function trans_fun,
1324                     bitmap blocks, int * postorder, int n_blocks)
1325 {
1326   memset (&user_problem, 0, sizeof (struct df_problem));
1327   user_problem.dir = dir;
1328   user_problem.init_fun = init_fun;
1329   user_problem.con_fun_0 = con_fun_0;
1330   user_problem.con_fun_n = con_fun_n;
1331   user_problem.trans_fun = trans_fun;
1332   user_dflow.problem = &user_problem;
1333   df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1334 }
1335
1336
1337 \f
1338 /*----------------------------------------------------------------------------
1339    Functions to support limited incremental change.
1340 ----------------------------------------------------------------------------*/
1341
1342
1343 /* Get basic block info.  */
1344
1345 static void *
1346 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1347 {
1348   if (dflow->block_info == NULL)
1349     return NULL;
1350   if (index >= dflow->block_info_size)
1351     return NULL;
1352   return (void *)((char *)dflow->block_info
1353                   + index * dflow->problem->block_info_elt_size);
1354 }
1355
1356
1357 /* Set basic block info.  */
1358
1359 static void
1360 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1361                 void *bb_info)
1362 {
1363   gcc_assert (dflow->block_info);
1364   memcpy ((char *)dflow->block_info
1365           + index * dflow->problem->block_info_elt_size,
1366           bb_info, dflow->problem->block_info_elt_size);
1367 }
1368
1369
1370 /* Clear basic block info.  */
1371
1372 static void
1373 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1374 {
1375   gcc_assert (dflow->block_info);
1376   gcc_assert (dflow->block_info_size > index);
1377   memset ((char *)dflow->block_info
1378           + index * dflow->problem->block_info_elt_size,
1379           0, dflow->problem->block_info_elt_size);
1380 }
1381
1382
1383 /* Mark the solutions as being out of date.  */
1384
1385 void
1386 df_mark_solutions_dirty (void)
1387 {
1388   if (df)
1389     {
1390       int p;
1391       for (p = 1; p < df->num_problems_defined; p++)
1392         df->problems_in_order[p]->solutions_dirty = true;
1393     }
1394 }
1395
1396
1397 /* Return true if BB needs it's transfer functions recomputed.  */
1398
1399 bool
1400 df_get_bb_dirty (basic_block bb)
1401 {
1402   return bitmap_bit_p ((df_live
1403                         ? df_live : df_lr)->out_of_date_transfer_functions,
1404                        bb->index);
1405 }
1406
1407
1408 /* Mark BB as needing it's transfer functions as being out of
1409    date.  */
1410
1411 void
1412 df_set_bb_dirty (basic_block bb)
1413 {
1414   bb->flags |= BB_MODIFIED;
1415   if (df)
1416     {
1417       int p;
1418       for (p = 1; p < df->num_problems_defined; p++)
1419         {
1420           struct dataflow *dflow = df->problems_in_order[p];
1421           if (dflow->out_of_date_transfer_functions)
1422             bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1423         }
1424       df_mark_solutions_dirty ();
1425     }
1426 }
1427
1428
1429 /* Grow the bb_info array.  */
1430
1431 void
1432 df_grow_bb_info (struct dataflow *dflow)
1433 {
1434   unsigned int new_size = last_basic_block + 1;
1435   if (dflow->block_info_size < new_size)
1436     {
1437       new_size += new_size / 4;
1438       dflow->block_info
1439          = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1440                                new_size
1441                                * dflow->problem->block_info_elt_size);
1442       memset ((char *)dflow->block_info
1443               + dflow->block_info_size
1444               * dflow->problem->block_info_elt_size,
1445               0,
1446               (new_size - dflow->block_info_size)
1447               * dflow->problem->block_info_elt_size);
1448       dflow->block_info_size = new_size;
1449     }
1450 }
1451
1452
1453 /* Clear the dirty bits.  This is called from places that delete
1454    blocks.  */
1455 static void
1456 df_clear_bb_dirty (basic_block bb)
1457 {
1458   int p;
1459   for (p = 1; p < df->num_problems_defined; p++)
1460     {
1461       struct dataflow *dflow = df->problems_in_order[p];
1462       if (dflow->out_of_date_transfer_functions)
1463         bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1464     }
1465 }
1466
1467 /* Called from the rtl_compact_blocks to reorganize the problems basic
1468    block info.  */
1469
1470 void
1471 df_compact_blocks (void)
1472 {
1473   int i, p;
1474   basic_block bb;
1475   void *problem_temps;
1476   bitmap_head tmp;
1477
1478   bitmap_initialize (&tmp, &df_bitmap_obstack);
1479   for (p = 0; p < df->num_problems_defined; p++)
1480     {
1481       struct dataflow *dflow = df->problems_in_order[p];
1482
1483       /* Need to reorganize the out_of_date_transfer_functions for the
1484          dflow problem.  */
1485       if (dflow->out_of_date_transfer_functions)
1486         {
1487           bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1488           bitmap_clear (dflow->out_of_date_transfer_functions);
1489           if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1490             bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1491           if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1492             bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1493
1494           i = NUM_FIXED_BLOCKS;
1495           FOR_EACH_BB (bb)
1496             {
1497               if (bitmap_bit_p (&tmp, bb->index))
1498                 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1499               i++;
1500             }
1501         }
1502
1503       /* Now shuffle the block info for the problem.  */
1504       if (dflow->problem->free_bb_fun)
1505         {
1506           int size = last_basic_block * dflow->problem->block_info_elt_size;
1507           problem_temps = XNEWVAR (char, size);
1508           df_grow_bb_info (dflow);
1509           memcpy (problem_temps, dflow->block_info, size);
1510
1511           /* Copy the bb info from the problem tmps to the proper
1512              place in the block_info vector.  Null out the copied
1513              item.  The entry and exit blocks never move.  */
1514           i = NUM_FIXED_BLOCKS;
1515           FOR_EACH_BB (bb)
1516             {
1517               df_set_bb_info (dflow, i,
1518                               (char *)problem_temps
1519                               + bb->index * dflow->problem->block_info_elt_size);
1520               i++;
1521             }
1522           memset ((char *)dflow->block_info
1523                   + i * dflow->problem->block_info_elt_size, 0,
1524                   (last_basic_block - i)
1525                   * dflow->problem->block_info_elt_size);
1526           free (problem_temps);
1527         }
1528     }
1529
1530   /* Shuffle the bits in the basic_block indexed arrays.  */
1531
1532   if (df->blocks_to_analyze)
1533     {
1534       if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1535         bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1536       if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1537         bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1538       bitmap_copy (&tmp, df->blocks_to_analyze);
1539       bitmap_clear (df->blocks_to_analyze);
1540       i = NUM_FIXED_BLOCKS;
1541       FOR_EACH_BB (bb)
1542         {
1543           if (bitmap_bit_p (&tmp, bb->index))
1544             bitmap_set_bit (df->blocks_to_analyze, i);
1545           i++;
1546         }
1547     }
1548
1549   bitmap_clear (&tmp);
1550
1551   i = NUM_FIXED_BLOCKS;
1552   FOR_EACH_BB (bb)
1553     {
1554       SET_BASIC_BLOCK (i, bb);
1555       bb->index = i;
1556       i++;
1557     }
1558
1559   gcc_assert (i == n_basic_blocks);
1560
1561   for (; i < last_basic_block; i++)
1562     SET_BASIC_BLOCK (i, NULL);
1563
1564 #ifdef DF_DEBUG_CFG
1565   if (!df_lr->solutions_dirty)
1566     df_set_clean_cfg ();
1567 #endif
1568 }
1569
1570
1571 /* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1572    block.  There is no excuse for people to do this kind of thing.  */
1573
1574 void
1575 df_bb_replace (int old_index, basic_block new_block)
1576 {
1577   int new_block_index = new_block->index;
1578   int p;
1579
1580   if (dump_file)
1581     fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1582
1583   gcc_assert (df);
1584   gcc_assert (BASIC_BLOCK (old_index) == NULL);
1585
1586   for (p = 0; p < df->num_problems_defined; p++)
1587     {
1588       struct dataflow *dflow = df->problems_in_order[p];
1589       if (dflow->block_info)
1590         {
1591           df_grow_bb_info (dflow);
1592           df_set_bb_info (dflow, old_index,
1593                           df_get_bb_info (dflow, new_block_index));
1594         }
1595     }
1596
1597   df_clear_bb_dirty (new_block);
1598   SET_BASIC_BLOCK (old_index, new_block);
1599   new_block->index = old_index;
1600   df_set_bb_dirty (BASIC_BLOCK (old_index));
1601   SET_BASIC_BLOCK (new_block_index, NULL);
1602 }
1603
1604
1605 /* Free all of the per basic block dataflow from all of the problems.
1606    This is typically called before a basic block is deleted and the
1607    problem will be reanalyzed.  */
1608
1609 void
1610 df_bb_delete (int bb_index)
1611 {
1612   basic_block bb = BASIC_BLOCK (bb_index);
1613   int i;
1614
1615   if (!df)
1616     return;
1617
1618   for (i = 0; i < df->num_problems_defined; i++)
1619     {
1620       struct dataflow *dflow = df->problems_in_order[i];
1621       if (dflow->problem->free_bb_fun)
1622         {
1623           void *bb_info = df_get_bb_info (dflow, bb_index);
1624           if (bb_info)
1625             {
1626               dflow->problem->free_bb_fun (bb, bb_info);
1627               df_clear_bb_info (dflow, bb_index);
1628             }
1629         }
1630     }
1631   df_clear_bb_dirty (bb);
1632   df_mark_solutions_dirty ();
1633 }
1634
1635
1636 /* Verify that there is a place for everything and everything is in
1637    its place.  This is too expensive to run after every pass in the
1638    mainline.  However this is an excellent debugging tool if the
1639    dataflow information is not being updated properly.  You can just
1640    sprinkle calls in until you find the place that is changing an
1641    underlying structure without calling the proper updating
1642    routine.  */
1643
1644 void
1645 df_verify (void)
1646 {
1647   df_scan_verify ();
1648 #ifdef ENABLE_DF_CHECKING
1649   df_lr_verify_transfer_functions ();
1650   if (df_live)
1651     df_live_verify_transfer_functions ();
1652 #endif
1653 }
1654
1655 #ifdef DF_DEBUG_CFG
1656
1657 /* Compute an array of ints that describes the cfg.  This can be used
1658    to discover places where the cfg is modified by the appropriate
1659    calls have not been made to the keep df informed.  The internals of
1660    this are unexciting, the key is that two instances of this can be
1661    compared to see if any changes have been made to the cfg.  */
1662
1663 static int *
1664 df_compute_cfg_image (void)
1665 {
1666   basic_block bb;
1667   int size = 2 + (2 * n_basic_blocks);
1668   int i;
1669   int * map;
1670
1671   FOR_ALL_BB (bb)
1672     {
1673       size += EDGE_COUNT (bb->succs);
1674     }
1675
1676   map = XNEWVEC (int, size);
1677   map[0] = size;
1678   i = 1;
1679   FOR_ALL_BB (bb)
1680     {
1681       edge_iterator ei;
1682       edge e;
1683
1684       map[i++] = bb->index;
1685       FOR_EACH_EDGE (e, ei, bb->succs)
1686         map[i++] = e->dest->index;
1687       map[i++] = -1;
1688     }
1689   map[i] = -1;
1690   return map;
1691 }
1692
1693 static int *saved_cfg = NULL;
1694
1695
1696 /* This function compares the saved version of the cfg with the
1697    current cfg and aborts if the two are identical.  The function
1698    silently returns if the cfg has been marked as dirty or the two are
1699    the same.  */
1700
1701 void
1702 df_check_cfg_clean (void)
1703 {
1704   int *new_map;
1705
1706   if (!df)
1707     return;
1708
1709   if (df_lr->solutions_dirty)
1710     return;
1711
1712   if (saved_cfg == NULL)
1713     return;
1714
1715   new_map = df_compute_cfg_image ();
1716   gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1717   free (new_map);
1718 }
1719
1720
1721 /* This function builds a cfg fingerprint and squirrels it away in
1722    saved_cfg.  */
1723
1724 static void
1725 df_set_clean_cfg (void)
1726 {
1727   free (saved_cfg);
1728   saved_cfg = df_compute_cfg_image ();
1729 }
1730
1731 #endif /* DF_DEBUG_CFG  */
1732 /*----------------------------------------------------------------------------
1733    PUBLIC INTERFACES TO QUERY INFORMATION.
1734 ----------------------------------------------------------------------------*/
1735
1736
1737 /* Return first def of REGNO within BB.  */
1738
1739 df_ref
1740 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1741 {
1742   rtx insn;
1743   df_ref *def_rec;
1744   unsigned int uid;
1745
1746   FOR_BB_INSNS (bb, insn)
1747     {
1748       if (!INSN_P (insn))
1749         continue;
1750
1751       uid = INSN_UID (insn);
1752       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1753         {
1754           df_ref def = *def_rec;
1755           if (DF_REF_REGNO (def) == regno)
1756             return def;
1757         }
1758     }
1759   return NULL;
1760 }
1761
1762
1763 /* Return last def of REGNO within BB.  */
1764
1765 df_ref
1766 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1767 {
1768   rtx insn;
1769   df_ref *def_rec;
1770   unsigned int uid;
1771
1772   FOR_BB_INSNS_REVERSE (bb, insn)
1773     {
1774       if (!INSN_P (insn))
1775         continue;
1776
1777       uid = INSN_UID (insn);
1778       for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1779         {
1780           df_ref def = *def_rec;
1781           if (DF_REF_REGNO (def) == regno)
1782             return def;
1783         }
1784     }
1785
1786   return NULL;
1787 }
1788
1789 /* Finds the reference corresponding to the definition of REG in INSN.
1790    DF is the dataflow object.  */
1791
1792 df_ref
1793 df_find_def (rtx insn, rtx reg)
1794 {
1795   unsigned int uid;
1796   df_ref *def_rec;
1797
1798   if (GET_CODE (reg) == SUBREG)
1799     reg = SUBREG_REG (reg);
1800   gcc_assert (REG_P (reg));
1801
1802   uid = INSN_UID (insn);
1803   for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1804     {
1805       df_ref def = *def_rec;
1806       if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1807         return def;
1808     }
1809
1810   return NULL;
1811 }
1812
1813
1814 /* Return true if REG is defined in INSN, zero otherwise.  */
1815
1816 bool
1817 df_reg_defined (rtx insn, rtx reg)
1818 {
1819   return df_find_def (insn, reg) != NULL;
1820 }
1821
1822
1823 /* Finds the reference corresponding to the use of REG in INSN.
1824    DF is the dataflow object.  */
1825
1826 df_ref
1827 df_find_use (rtx insn, rtx reg)
1828 {
1829   unsigned int uid;
1830   df_ref *use_rec;
1831
1832   if (GET_CODE (reg) == SUBREG)
1833     reg = SUBREG_REG (reg);
1834   gcc_assert (REG_P (reg));
1835
1836   uid = INSN_UID (insn);
1837   for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1838     {
1839       df_ref use = *use_rec;
1840       if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1841         return use;
1842     }
1843   if (df->changeable_flags & DF_EQ_NOTES)
1844     for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1845       {
1846         df_ref use = *use_rec;
1847         if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1848           return use;
1849       }
1850   return NULL;
1851 }
1852
1853
1854 /* Return true if REG is referenced in INSN, zero otherwise.  */
1855
1856 bool
1857 df_reg_used (rtx insn, rtx reg)
1858 {
1859   return df_find_use (insn, reg) != NULL;
1860 }
1861
1862 \f
1863 /*----------------------------------------------------------------------------
1864    Debugging and printing functions.
1865 ----------------------------------------------------------------------------*/
1866
1867 /* Write information about registers and basic blocks into FILE.
1868    This is part of making a debugging dump.  */
1869
1870 void
1871 dump_regset (regset r, FILE *outf)
1872 {
1873   unsigned i;
1874   reg_set_iterator rsi;
1875
1876   if (r == NULL)
1877     {
1878       fputs (" (nil)", outf);
1879       return;
1880     }
1881
1882   EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1883     {
1884       fprintf (outf, " %d", i);
1885       if (i < FIRST_PSEUDO_REGISTER)
1886         fprintf (outf, " [%s]",
1887                  reg_names[i]);
1888     }
1889 }
1890
1891 /* Print a human-readable representation of R on the standard error
1892    stream.  This function is designed to be used from within the
1893    debugger.  */
1894 extern void debug_regset (regset);
1895 DEBUG_FUNCTION void
1896 debug_regset (regset r)
1897 {
1898   dump_regset (r, stderr);
1899   putc ('\n', stderr);
1900 }
1901
1902 /* Write information about registers and basic blocks into FILE.
1903    This is part of making a debugging dump.  */
1904
1905 void
1906 df_print_regset (FILE *file, bitmap r)
1907 {
1908   unsigned int i;
1909   bitmap_iterator bi;
1910
1911   if (r == NULL)
1912     fputs (" (nil)", file);
1913   else
1914     {
1915       EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1916         {
1917           fprintf (file, " %d", i);
1918           if (i < FIRST_PSEUDO_REGISTER)
1919             fprintf (file, " [%s]", reg_names[i]);
1920         }
1921     }
1922   fprintf (file, "\n");
1923 }
1924
1925
1926 /* Write information about registers and basic blocks into FILE.  The
1927    bitmap is in the form used by df_byte_lr.  This is part of making a
1928    debugging dump.  */
1929
1930 void
1931 df_print_word_regset (FILE *file, bitmap r)
1932 {
1933   unsigned int max_reg = max_reg_num ();
1934
1935   if (r == NULL)
1936     fputs (" (nil)", file);
1937   else
1938     {
1939       unsigned int i;
1940       for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1941         {
1942           bool found = (bitmap_bit_p (r, 2 * i)
1943                         || bitmap_bit_p (r, 2 * i + 1));
1944           if (found)
1945             {
1946               int word;
1947               const char * sep = "";
1948               fprintf (file, " %d", i);
1949               fprintf (file, "(");
1950               for (word = 0; word < 2; word++)
1951                 if (bitmap_bit_p (r, 2 * i + word))
1952                   {
1953                     fprintf (file, "%s%d", sep, word);
1954                     sep = ", ";
1955                   }
1956               fprintf (file, ")");
1957             }
1958         }
1959     }
1960   fprintf (file, "\n");
1961 }
1962
1963
1964 /* Dump dataflow info.  */
1965
1966 void
1967 df_dump (FILE *file)
1968 {
1969   basic_block bb;
1970   df_dump_start (file);
1971
1972   FOR_ALL_BB (bb)
1973     {
1974       df_print_bb_index (bb, file);
1975       df_dump_top (bb, file);
1976       df_dump_bottom (bb, file);
1977     }
1978
1979   fprintf (file, "\n");
1980 }
1981
1982
1983 /* Dump dataflow info for df->blocks_to_analyze.  */
1984
1985 void
1986 df_dump_region (FILE *file)
1987 {
1988   if (df->blocks_to_analyze)
1989     {
1990       bitmap_iterator bi;
1991       unsigned int bb_index;
1992
1993       fprintf (file, "\n\nstarting region dump\n");
1994       df_dump_start (file);
1995
1996       EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1997         {
1998           basic_block bb = BASIC_BLOCK (bb_index);
1999           dump_bb (file, bb, 0, TDF_DETAILS);
2000         }
2001       fprintf (file, "\n");
2002     }
2003   else
2004     df_dump (file);
2005 }
2006
2007
2008 /* Dump the introductory information for each problem defined.  */
2009
2010 void
2011 df_dump_start (FILE *file)
2012 {
2013   int i;
2014
2015   if (!df || !file)
2016     return;
2017
2018   fprintf (file, "\n\n%s\n", current_function_name ());
2019   fprintf (file, "\nDataflow summary:\n");
2020   if (df->blocks_to_analyze)
2021     fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2022              DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2023
2024   for (i = 0; i < df->num_problems_defined; i++)
2025     {
2026       struct dataflow *dflow = df->problems_in_order[i];
2027       if (dflow->computed)
2028         {
2029           df_dump_problem_function fun = dflow->problem->dump_start_fun;
2030           if (fun)
2031             fun(file);
2032         }
2033     }
2034 }
2035
2036
2037 /* Dump the top or bottom of the block information for BB.  */
2038 static void
2039 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2040 {
2041   int i;
2042
2043   if (!df || !file)
2044     return;
2045
2046   for (i = 0; i < df->num_problems_defined; i++)
2047     {
2048       struct dataflow *dflow = df->problems_in_order[i];
2049       if (dflow->computed)
2050         {
2051           df_dump_bb_problem_function bbfun;
2052
2053           if (top)
2054             bbfun = dflow->problem->dump_top_fun;
2055           else
2056             bbfun = dflow->problem->dump_bottom_fun;
2057
2058           if (bbfun)
2059             bbfun (bb, file);
2060         }
2061     }
2062 }
2063
2064 /* Dump the top of the block information for BB.  */
2065
2066 void
2067 df_dump_top (basic_block bb, FILE *file)
2068 {
2069   df_dump_bb_problem_data (bb, file, /*top=*/true);
2070 }
2071
2072 /* Dump the bottom of the block information for BB.  */
2073
2074 void
2075 df_dump_bottom (basic_block bb, FILE *file)
2076 {
2077   df_dump_bb_problem_data (bb, file, /*top=*/false);
2078 }
2079
2080
2081 /* Dump information about INSN just before or after dumping INSN itself.  */
2082 static void
2083 df_dump_insn_problem_data (const_rtx insn, FILE *file, bool top)
2084 {
2085   int i;
2086
2087   if (!df || !file)
2088     return;
2089
2090   for (i = 0; i < df->num_problems_defined; i++)
2091     {
2092       struct dataflow *dflow = df->problems_in_order[i];
2093       if (dflow->computed)
2094         {
2095           df_dump_insn_problem_function insnfun;
2096
2097           if (top)
2098             insnfun = dflow->problem->dump_insn_top_fun;
2099           else
2100             insnfun = dflow->problem->dump_insn_bottom_fun;
2101
2102           if (insnfun)
2103             insnfun (insn, file);
2104         }
2105     }
2106 }
2107
2108 /* Dump information about INSN before dumping INSN itself.  */
2109
2110 void
2111 df_dump_insn_top (const_rtx insn, FILE *file)
2112 {
2113   df_dump_insn_problem_data (insn,  file, /*top=*/true);
2114 }
2115
2116 /* Dump information about INSN after dumping INSN itself.  */
2117
2118 void
2119 df_dump_insn_bottom (const_rtx insn, FILE *file)
2120 {
2121   df_dump_insn_problem_data (insn,  file, /*top=*/false);
2122 }
2123
2124
2125 static void
2126 df_ref_dump (df_ref ref, FILE *file)
2127 {
2128   fprintf (file, "%c%d(%d)",
2129            DF_REF_REG_DEF_P (ref)
2130            ? 'd'
2131            : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2132            DF_REF_ID (ref),
2133            DF_REF_REGNO (ref));
2134 }
2135
2136 void
2137 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2138 {
2139   fprintf (file, "{ ");
2140   while (*ref_rec)
2141     {
2142       df_ref ref = *ref_rec;
2143       df_ref_dump (ref, file);
2144       if (follow_chain)
2145         df_chain_dump (DF_REF_CHAIN (ref), file);
2146       ref_rec++;
2147     }
2148   fprintf (file, "}");
2149 }
2150
2151
2152 /* Dump either a ref-def or reg-use chain.  */
2153
2154 void
2155 df_regs_chain_dump (df_ref ref,  FILE *file)
2156 {
2157   fprintf (file, "{ ");
2158   while (ref)
2159     {
2160       df_ref_dump (ref, file);
2161       ref = DF_REF_NEXT_REG (ref);
2162     }
2163   fprintf (file, "}");
2164 }
2165
2166
2167 static void
2168 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2169 {
2170   while (*mws)
2171     {
2172       fprintf (file, "mw %c r[%d..%d]\n",
2173                (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2174                (*mws)->start_regno, (*mws)->end_regno);
2175       mws++;
2176     }
2177 }
2178
2179
2180 static void
2181 df_insn_uid_debug (unsigned int uid,
2182                    bool follow_chain, FILE *file)
2183 {
2184   fprintf (file, "insn %d luid %d",
2185            uid, DF_INSN_UID_LUID (uid));
2186
2187   if (DF_INSN_UID_DEFS (uid))
2188     {
2189       fprintf (file, " defs ");
2190       df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2191     }
2192
2193   if (DF_INSN_UID_USES (uid))
2194     {
2195       fprintf (file, " uses ");
2196       df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2197     }
2198
2199   if (DF_INSN_UID_EQ_USES (uid))
2200     {
2201       fprintf (file, " eq uses ");
2202       df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2203     }
2204
2205   if (DF_INSN_UID_MWS (uid))
2206     {
2207       fprintf (file, " mws ");
2208       df_mws_dump (DF_INSN_UID_MWS (uid), file);
2209     }
2210   fprintf (file, "\n");
2211 }
2212
2213
2214 DEBUG_FUNCTION void
2215 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2216 {
2217   df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2218 }
2219
2220 DEBUG_FUNCTION void
2221 df_insn_debug_regno (rtx insn, FILE *file)
2222 {
2223   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2224
2225   fprintf (file, "insn %d bb %d luid %d defs ",
2226            INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2227            DF_INSN_INFO_LUID (insn_info));
2228   df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2229
2230   fprintf (file, " uses ");
2231   df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2232
2233   fprintf (file, " eq_uses ");
2234   df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2235   fprintf (file, "\n");
2236 }
2237
2238 DEBUG_FUNCTION void
2239 df_regno_debug (unsigned int regno, FILE *file)
2240 {
2241   fprintf (file, "reg %d defs ", regno);
2242   df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2243   fprintf (file, " uses ");
2244   df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2245   fprintf (file, " eq_uses ");
2246   df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2247   fprintf (file, "\n");
2248 }
2249
2250
2251 DEBUG_FUNCTION void
2252 df_ref_debug (df_ref ref, FILE *file)
2253 {
2254   fprintf (file, "%c%d ",
2255            DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2256            DF_REF_ID (ref));
2257   fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2258            DF_REF_REGNO (ref),
2259            DF_REF_BBNO (ref),
2260            DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2261            DF_REF_FLAGS (ref),
2262            DF_REF_TYPE (ref));
2263   if (DF_REF_LOC (ref))
2264     {
2265       if (flag_dump_noaddr)
2266         fprintf (file, "loc #(#) chain ");
2267       else
2268         fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2269                  (void *)*DF_REF_LOC (ref));
2270     }
2271   else
2272     fprintf (file, "chain ");
2273   df_chain_dump (DF_REF_CHAIN (ref), file);
2274   fprintf (file, "\n");
2275 }
2276 \f
2277 /* Functions for debugging from GDB.  */
2278
2279 DEBUG_FUNCTION void
2280 debug_df_insn (rtx insn)
2281 {
2282   df_insn_debug (insn, true, stderr);
2283   debug_rtx (insn);
2284 }
2285
2286
2287 DEBUG_FUNCTION void
2288 debug_df_reg (rtx reg)
2289 {
2290   df_regno_debug (REGNO (reg), stderr);
2291 }
2292
2293
2294 DEBUG_FUNCTION void
2295 debug_df_regno (unsigned int regno)
2296 {
2297   df_regno_debug (regno, stderr);
2298 }
2299
2300
2301 DEBUG_FUNCTION void
2302 debug_df_ref (df_ref ref)
2303 {
2304   df_ref_debug (ref, stderr);
2305 }
2306
2307
2308 DEBUG_FUNCTION void
2309 debug_df_defno (unsigned int defno)
2310 {
2311   df_ref_debug (DF_DEFS_GET (defno), stderr);
2312 }
2313
2314
2315 DEBUG_FUNCTION void
2316 debug_df_useno (unsigned int defno)
2317 {
2318   df_ref_debug (DF_USES_GET (defno), stderr);
2319 }
2320
2321
2322 DEBUG_FUNCTION void
2323 debug_df_chain (struct df_link *link)
2324 {
2325   df_chain_dump (link, stderr);
2326   fputc ('\n', stderr);
2327 }