Backport from GCC mainline.
[platform/upstream/linaro-gcc.git] / gcc / df-core.c
1 /* Allocation for dataflow support routines.
2    Copyright (C) 1999-2016 Free Software Foundation, Inc.
3    Originally contributed by Michael P. Hayes
4              (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5    Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6              and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23
24 /*
25 OVERVIEW:
26
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems.  The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
30
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains.  However,
34 the interface allows other dataflow problems to be defined as well.
35
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish).  It is quite likely
38 that these boundaries will be expanded in the future.  The only
39 requirement is that there be a correct control flow graph.
40
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available.  The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable.  The LIVE
45 problem finds the intersection of these two areas.
46
47 There are several optional problems.  These can be enabled when they
48 are needed and disabled when they are not needed.
49
50 Dataflow problems are generally solved in three layers.  The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn.  Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also.  There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
57
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution.  The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
62
63 The top layer is the dataflow solution itself.  The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions.  The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
67
68
69 USAGE:
70
71 Here is an example of using the dataflow routines.
72
73       df_[chain,live,note,rd]_add_problem (flags);
74
75       df_set_blocks (blocks);
76
77       df_analyze ();
78
79       df_dump (stderr);
80
81       df_finish_pass (false);
82
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df.  All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
87
88 Problems can be dependent on other problems.  For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem.  Note that it is not necessary to have a problem.  In
94 that case, df will just be used to do the scanning.
95
96
97
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed.  The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution.  The insn level information
103 is always kept up to date.
104
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set.  Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
110
111 DF_ANALYZE causes all of the defined problems to be (re)solved.  When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information.  The DF_*_BB_INFO macros can be used
114 to access these bitvectors.  All deferred rescannings are down before
115 the transfer functions are recomputed.
116
117 DF_DUMP can then be called to dump the information produce to some
118 file.  This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information.  These parts
121 can all be called separately as part of a larger dump function.
122
123
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems.  It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run.  However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
132
133 INCREMENTAL SCANNING
134
135 There are four ways of doing the incremental scanning:
136
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138    df_bb_delete, df_insn_change_bb have been added to most of
139    the low level service functions that maintain the cfg and change
140    rtl.  Calling and of these routines many cause some number of insns
141    to be rescanned.
142
143    For most modern rtl passes, this is certainly the easiest way to
144    manage rescanning the insns.  This technique also has the advantage
145    that the scanning information is always correct and can be relied
146    upon even after changes have been made to the instructions.  This
147    technique is contra indicated in several cases:
148
149    a) If def-use chains OR use-def chains (but not both) are built,
150       using this is SIMPLY WRONG.  The problem is that when a ref is
151       deleted that is the target of an edge, there is not enough
152       information to efficiently find the source of the edge and
153       delete the edge.  This leaves a dangling reference that may
154       cause problems.
155
156    b) If def-use chains AND use-def chains are built, this may
157       produce unexpected results.  The problem is that the incremental
158       scanning of an insn does not know how to repair the chains that
159       point into an insn when the insn changes.  So the incremental
160       scanning just deletes the chains that enter and exit the insn
161       being changed.  The dangling reference issue in (a) is not a
162       problem here, but if the pass is depending on the chains being
163       maintained after insns have been modified, this technique will
164       not do the correct thing.
165
166    c) If the pass modifies insns several times, this incremental
167       updating may be expensive.
168
169    d) If the pass modifies all of the insns, as does register
170       allocation, it is simply better to rescan the entire function.
171
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173    df_insn_delete do not immediately change the insn but instead make
174    a note that the insn needs to be rescanned.  The next call to
175    df_analyze, df_finish_pass, or df_process_deferred_rescans will
176    cause all of the pending rescans to be processed.
177
178    This is the technique of choice if either 1a, 1b, or 1c are issues
179    in the pass.  In the case of 1a or 1b, a call to df_finish_pass
180    (either manually or via TODO_df_finish) should be made before the
181    next call to df_analyze or df_process_deferred_rescans.
182
183    This mode is also used by a few passes that still rely on note_uses,
184    note_stores and rtx iterators instead of using the DF data.  This
185    can be said to fall under case 1c.
186
187    To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188    (This mode can be cleared by calling df_clear_flags
189    (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190    be rescanned.
191
192 3) Total rescanning - In this mode the rescanning is disabled.
193    Only when insns are deleted is the df information associated with
194    it also deleted.  At the end of the pass, a call must be made to
195    df_insn_rescan_all.  This method is used by the register allocator
196    since it generally changes each insn multiple times (once for each ref)
197    and does not need to make use of the updated scanning information.
198
199 4) Do it yourself - In this mechanism, the pass updates the insns
200    itself using the low level df primitives.  Currently no pass does
201    this, but it has the advantage that it is quite efficient given
202    that the pass generally has exact knowledge of what it is changing.
203
204 DATA STRUCTURES
205
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within.  The refs are linked together in
209 chains of uses and defs for each insn and for each register.  Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use.  This is used to create use-def or def-use
212 chains.
213
214 Different optimizations have different needs.  Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
219
220
221 PHILOSOPHY:
222
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable.  The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
227
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical.  The amount of work to recompute the chain any
230 chain after an arbitrary change is large.  However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date.  The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
235
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration.  In general, restarting a
238 dataflow iteration is difficult and expensive.  Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
241
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c.  However, these are not currently connected
244 to the engine that resolves the dataflow equations.
245
246
247 DATA STRUCTURES:
248
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
251
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists.  For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
257
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
260
261 ACCESSING INSNS:
262
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264    The array is indexed by insn uid, and every DF_REF points to the
265    DF_INSN_INFO object of the insn that contains the reference.
266
267 2) Each insn has three sets of refs, which are linked into one of three
268    lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269    DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270    (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271    DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272    DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273    The latter list are the list of references in REG_EQUAL or REG_EQUIV
274    notes.  These macros produce a ref (or NULL), the rest of the list
275    can be obtained by traversal of the NEXT_REF field (accessed by the
276    DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
277    the uses or refs in an instruction.
278
279 3) Each insn has a logical uid field (LUID) which is stored in the
280    DF_INSN_INFO object for the insn.  The LUID field is accessed by
281    the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282    When properly set, the LUID is an integer that numbers each insn in
283    the basic block, in order from the start of the block.
284    The numbers are only correct after a call to df_analyze.  They will
285    rot after insns are added deleted or moved round.
286
287 ACCESSING REFS:
288
289 There are 4 ways to obtain access to refs:
290
291 1) References are divided into two categories, REAL and ARTIFICIAL.
292
293    REAL refs are associated with instructions.
294
295    ARTIFICIAL refs are associated with basic blocks.  The heads of
296    these lists can be accessed by calling df_get_artificial_defs or
297    df_get_artificial_uses for the particular basic block.
298
299    Artificial defs and uses occur both at the beginning and ends of blocks.
300
301      For blocks that area at the destination of eh edges, the
302      artificial uses and defs occur at the beginning.  The defs relate
303      to the registers specified in EH_RETURN_DATA_REGNO and the uses
304      relate to the registers specified in ED_USES.  Logically these
305      defs and uses should really occur along the eh edge, but there is
306      no convenient way to do this.  Artificial edges that occur at the
307      beginning of the block have the DF_REF_AT_TOP flag set.
308
309      Artificial uses occur at the end of all blocks.  These arise from
310      the hard registers that are always live, such as the stack
311      register and are put there to keep the code from forgetting about
312      them.
313
314      Artificial defs occur at the end of the entry block.  These arise
315      from registers that are live at entry to the function.
316
317 2) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
318    uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319
320    All of the eq_uses, uses and defs associated with each pseudo or
321    hard register may be linked in a bidirectional chain.  These are
322    called reg-use or reg_def chains.  If the changeable flag
323    DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324    treated like uses.  If it is not set they are ignored.
325
326    The first use, eq_use or def for a register can be obtained using
327    the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328    macros.  Subsequent uses for the same regno can be obtained by
329    following the next_reg field of the ref.  The number of elements in
330    each of the chains can be found by using the DF_REG_USE_COUNT,
331    DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332
333    In previous versions of this code, these chains were ordered.  It
334    has not been practical to continue this practice.
335
336 3) If def-use or use-def chains are built, these can be traversed to
337    get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
338    include the eq_uses.  Otherwise these are ignored when building the
339    chains.
340
341 4) An array of all of the uses (and an array of all of the defs) can
342    be built.  These arrays are indexed by the value in the id
343    structure.  These arrays are only lazily kept up to date, and that
344    process can be expensive.  To have these arrays built, call
345    df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
346    has been set the array will contain the eq_uses.  Otherwise these
347    are ignored when building the array and assigning the ids.  Note
348    that the values in the id field of a ref may change across calls to
349    df_analyze or df_reorganize_defs or df_reorganize_uses.
350
351    If the only use of this array is to find all of the refs, it is
352    better to traverse all of the registers and then traverse all of
353    reg-use or reg-def chains.
354
355 NOTES:
356
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def.  These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
365
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation.  We generate both a use and a def and again mark them
370 read/write.
371
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
374 */
375
376
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "backend.h"
381 #include "rtl.h"
382 #include "df.h"
383 #include "emit-rtl.h"
384 #include "cfganal.h"
385 #include "tree-pass.h"
386 #include "cfgloop.h"
387
388 static void *df_get_bb_info (struct dataflow *, unsigned int);
389 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
390 static void df_clear_bb_info (struct dataflow *, unsigned int);
391 #ifdef DF_DEBUG_CFG
392 static void df_set_clean_cfg (void);
393 #endif
394
395 /* The obstack on which regsets are allocated.  */
396 struct bitmap_obstack reg_obstack;
397
398 /* An obstack for bitmap not related to specific dataflow problems.
399    This obstack should e.g. be used for bitmaps with a short life time
400    such as temporary bitmaps.  */
401
402 bitmap_obstack df_bitmap_obstack;
403
404
405 /*----------------------------------------------------------------------------
406   Functions to create, destroy and manipulate an instance of df.
407 ----------------------------------------------------------------------------*/
408
409 struct df_d *df;
410
411 /* Add PROBLEM (and any dependent problems) to the DF instance.  */
412
413 void
414 df_add_problem (struct df_problem *problem)
415 {
416   struct dataflow *dflow;
417   int i;
418
419   /* First try to add the dependent problem. */
420   if (problem->dependent_problem)
421     df_add_problem (problem->dependent_problem);
422
423   /* Check to see if this problem has already been defined.  If it
424      has, just return that instance, if not, add it to the end of the
425      vector.  */
426   dflow = df->problems_by_index[problem->id];
427   if (dflow)
428     return;
429
430   /* Make a new one and add it to the end.  */
431   dflow = XCNEW (struct dataflow);
432   dflow->problem = problem;
433   dflow->computed = false;
434   dflow->solutions_dirty = true;
435   df->problems_by_index[dflow->problem->id] = dflow;
436
437   /* Keep the defined problems ordered by index.  This solves the
438      problem that RI will use the information from UREC if UREC has
439      been defined, or from LIVE if LIVE is defined and otherwise LR.
440      However for this to work, the computation of RI must be pushed
441      after which ever of those problems is defined, but we do not
442      require any of those except for LR to have actually been
443      defined.  */
444   df->num_problems_defined++;
445   for (i = df->num_problems_defined - 2; i >= 0; i--)
446     {
447       if (problem->id < df->problems_in_order[i]->problem->id)
448         df->problems_in_order[i+1] = df->problems_in_order[i];
449       else
450         {
451           df->problems_in_order[i+1] = dflow;
452           return;
453         }
454     }
455   df->problems_in_order[0] = dflow;
456 }
457
458
459 /* Set the MASK flags in the DFLOW problem.  The old flags are
460    returned.  If a flag is not allowed to be changed this will fail if
461    checking is enabled.  */
462 int
463 df_set_flags (int changeable_flags)
464 {
465   int old_flags = df->changeable_flags;
466   df->changeable_flags |= changeable_flags;
467   return old_flags;
468 }
469
470
471 /* Clear the MASK flags in the DFLOW problem.  The old flags are
472    returned.  If a flag is not allowed to be changed this will fail if
473    checking is enabled.  */
474 int
475 df_clear_flags (int changeable_flags)
476 {
477   int old_flags = df->changeable_flags;
478   df->changeable_flags &= ~changeable_flags;
479   return old_flags;
480 }
481
482
483 /* Set the blocks that are to be considered for analysis.  If this is
484    not called or is called with null, the entire function in
485    analyzed.  */
486
487 void
488 df_set_blocks (bitmap blocks)
489 {
490   if (blocks)
491     {
492       if (dump_file)
493         bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
494       if (df->blocks_to_analyze)
495         {
496           /* This block is called to change the focus from one subset
497              to another.  */
498           int p;
499           bitmap_head diff;
500           bitmap_initialize (&diff, &df_bitmap_obstack);
501           bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
502           for (p = 0; p < df->num_problems_defined; p++)
503             {
504               struct dataflow *dflow = df->problems_in_order[p];
505               if (dflow->optional_p && dflow->problem->reset_fun)
506                 dflow->problem->reset_fun (df->blocks_to_analyze);
507               else if (dflow->problem->free_blocks_on_set_blocks)
508                 {
509                   bitmap_iterator bi;
510                   unsigned int bb_index;
511
512                   EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
513                     {
514                       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515                       if (bb)
516                         {
517                           void *bb_info = df_get_bb_info (dflow, bb_index);
518                           dflow->problem->free_bb_fun (bb, bb_info);
519                           df_clear_bb_info (dflow, bb_index);
520                         }
521                     }
522                 }
523             }
524
525            bitmap_clear (&diff);
526         }
527       else
528         {
529           /* This block of code is executed to change the focus from
530              the entire function to a subset.  */
531           bitmap_head blocks_to_reset;
532           bool initialized = false;
533           int p;
534           for (p = 0; p < df->num_problems_defined; p++)
535             {
536               struct dataflow *dflow = df->problems_in_order[p];
537               if (dflow->optional_p && dflow->problem->reset_fun)
538                 {
539                   if (!initialized)
540                     {
541                       basic_block bb;
542                       bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
543                       FOR_ALL_BB_FN (bb, cfun)
544                         {
545                           bitmap_set_bit (&blocks_to_reset, bb->index);
546                         }
547                     }
548                   dflow->problem->reset_fun (&blocks_to_reset);
549                 }
550             }
551           if (initialized)
552             bitmap_clear (&blocks_to_reset);
553
554           df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
555         }
556       bitmap_copy (df->blocks_to_analyze, blocks);
557       df->analyze_subset = true;
558     }
559   else
560     {
561       /* This block is executed to reset the focus to the entire
562          function.  */
563       if (dump_file)
564         fprintf (dump_file, "clearing blocks_to_analyze\n");
565       if (df->blocks_to_analyze)
566         {
567           BITMAP_FREE (df->blocks_to_analyze);
568           df->blocks_to_analyze = NULL;
569         }
570       df->analyze_subset = false;
571     }
572
573   /* Setting the blocks causes the refs to be unorganized since only
574      the refs in the blocks are seen.  */
575   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
576   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
577   df_mark_solutions_dirty ();
578 }
579
580
581 /* Delete a DFLOW problem (and any problems that depend on this
582    problem).  */
583
584 void
585 df_remove_problem (struct dataflow *dflow)
586 {
587   struct df_problem *problem;
588   int i;
589
590   if (!dflow)
591     return;
592
593   problem = dflow->problem;
594   gcc_assert (problem->remove_problem_fun);
595
596   /* Delete any problems that depended on this problem first.  */
597   for (i = 0; i < df->num_problems_defined; i++)
598     if (df->problems_in_order[i]->problem->dependent_problem == problem)
599       df_remove_problem (df->problems_in_order[i]);
600
601   /* Now remove this problem.  */
602   for (i = 0; i < df->num_problems_defined; i++)
603     if (df->problems_in_order[i] == dflow)
604       {
605         int j;
606         for (j = i + 1; j < df->num_problems_defined; j++)
607           df->problems_in_order[j-1] = df->problems_in_order[j];
608         df->problems_in_order[j-1] = NULL;
609         df->num_problems_defined--;
610         break;
611       }
612
613   (problem->remove_problem_fun) ();
614   df->problems_by_index[problem->id] = NULL;
615 }
616
617
618 /* Remove all of the problems that are not permanent.  Scanning, LR
619    and (at -O2 or higher) LIVE are permanent, the rest are removable.
620    Also clear all of the changeable_flags.  */
621
622 void
623 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
624 {
625   int i;
626
627 #ifdef ENABLE_DF_CHECKING
628   int saved_flags;
629 #endif
630
631   if (!df)
632     return;
633
634   df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
635   df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
636
637 #ifdef ENABLE_DF_CHECKING
638   saved_flags = df->changeable_flags;
639 #endif
640
641   /* We iterate over problems by index as each problem removed will
642      lead to problems_in_order to be reordered.  */
643   for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
644     {
645       struct dataflow *dflow = df->problems_by_index[i];
646
647       if (dflow && dflow->optional_p)
648         df_remove_problem (dflow);
649     }
650
651   /* Clear all of the flags.  */
652   df->changeable_flags = 0;
653   df_process_deferred_rescans ();
654
655   /* Set the focus back to the whole function.  */
656   if (df->blocks_to_analyze)
657     {
658       BITMAP_FREE (df->blocks_to_analyze);
659       df->blocks_to_analyze = NULL;
660       df_mark_solutions_dirty ();
661       df->analyze_subset = false;
662     }
663
664 #ifdef ENABLE_DF_CHECKING
665   /* Verification will fail in DF_NO_INSN_RESCAN.  */
666   if (!(saved_flags & DF_NO_INSN_RESCAN))
667     {
668       df_lr_verify_transfer_functions ();
669       if (df_live)
670         df_live_verify_transfer_functions ();
671     }
672
673 #ifdef DF_DEBUG_CFG
674   df_set_clean_cfg ();
675 #endif
676 #endif
677
678   if (flag_checking && verify)
679     df->changeable_flags |= DF_VERIFY_SCHEDULED;
680 }
681
682
683 /* Set up the dataflow instance for the entire back end.  */
684
685 static unsigned int
686 rest_of_handle_df_initialize (void)
687 {
688   gcc_assert (!df);
689   df = XCNEW (struct df_d);
690   df->changeable_flags = 0;
691
692   bitmap_obstack_initialize (&df_bitmap_obstack);
693
694   /* Set this to a conservative value.  Stack_ptr_mod will compute it
695      correctly later.  */
696   crtl->sp_is_unchanging = 0;
697
698   df_scan_add_problem ();
699   df_scan_alloc (NULL);
700
701   /* These three problems are permanent.  */
702   df_lr_add_problem ();
703   if (optimize > 1)
704     df_live_add_problem ();
705
706   df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
707   df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
708   df->n_blocks = post_order_compute (df->postorder, true, true);
709   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
710   gcc_assert (df->n_blocks == df->n_blocks_inverted);
711
712   df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
713
714   df_hard_reg_init ();
715   /* After reload, some ports add certain bits to regs_ever_live so
716      this cannot be reset.  */
717   df_compute_regs_ever_live (true);
718   df_scan_blocks ();
719   df_compute_regs_ever_live (false);
720   return 0;
721 }
722
723
724 namespace {
725
726 const pass_data pass_data_df_initialize_opt =
727 {
728   RTL_PASS, /* type */
729   "dfinit", /* name */
730   OPTGROUP_NONE, /* optinfo_flags */
731   TV_DF_SCAN, /* tv_id */
732   0, /* properties_required */
733   0, /* properties_provided */
734   0, /* properties_destroyed */
735   0, /* todo_flags_start */
736   0, /* todo_flags_finish */
737 };
738
739 class pass_df_initialize_opt : public rtl_opt_pass
740 {
741 public:
742   pass_df_initialize_opt (gcc::context *ctxt)
743     : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
744   {}
745
746   /* opt_pass methods: */
747   virtual bool gate (function *) { return optimize > 0; }
748   virtual unsigned int execute (function *)
749     {
750       return rest_of_handle_df_initialize ();
751     }
752
753 }; // class pass_df_initialize_opt
754
755 } // anon namespace
756
757 rtl_opt_pass *
758 make_pass_df_initialize_opt (gcc::context *ctxt)
759 {
760   return new pass_df_initialize_opt (ctxt);
761 }
762
763
764 namespace {
765
766 const pass_data pass_data_df_initialize_no_opt =
767 {
768   RTL_PASS, /* type */
769   "no-opt dfinit", /* name */
770   OPTGROUP_NONE, /* optinfo_flags */
771   TV_DF_SCAN, /* tv_id */
772   0, /* properties_required */
773   0, /* properties_provided */
774   0, /* properties_destroyed */
775   0, /* todo_flags_start */
776   0, /* todo_flags_finish */
777 };
778
779 class pass_df_initialize_no_opt : public rtl_opt_pass
780 {
781 public:
782   pass_df_initialize_no_opt (gcc::context *ctxt)
783     : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
784   {}
785
786   /* opt_pass methods: */
787   virtual bool gate (function *) { return optimize == 0; }
788   virtual unsigned int execute (function *)
789     {
790       return rest_of_handle_df_initialize ();
791     }
792
793 }; // class pass_df_initialize_no_opt
794
795 } // anon namespace
796
797 rtl_opt_pass *
798 make_pass_df_initialize_no_opt (gcc::context *ctxt)
799 {
800   return new pass_df_initialize_no_opt (ctxt);
801 }
802
803
804 /* Free all the dataflow info and the DF structure.  This should be
805    called from the df_finish macro which also NULLs the parm.  */
806
807 static unsigned int
808 rest_of_handle_df_finish (void)
809 {
810   int i;
811
812   gcc_assert (df);
813
814   for (i = 0; i < df->num_problems_defined; i++)
815     {
816       struct dataflow *dflow = df->problems_in_order[i];
817       dflow->problem->free_fun ();
818     }
819
820   free (df->postorder);
821   free (df->postorder_inverted);
822   free (df->hard_regs_live_count);
823   free (df);
824   df = NULL;
825
826   bitmap_obstack_release (&df_bitmap_obstack);
827   return 0;
828 }
829
830
831 namespace {
832
833 const pass_data pass_data_df_finish =
834 {
835   RTL_PASS, /* type */
836   "dfinish", /* name */
837   OPTGROUP_NONE, /* optinfo_flags */
838   TV_NONE, /* tv_id */
839   0, /* properties_required */
840   0, /* properties_provided */
841   0, /* properties_destroyed */
842   0, /* todo_flags_start */
843   0, /* todo_flags_finish */
844 };
845
846 class pass_df_finish : public rtl_opt_pass
847 {
848 public:
849   pass_df_finish (gcc::context *ctxt)
850     : rtl_opt_pass (pass_data_df_finish, ctxt)
851   {}
852
853   /* opt_pass methods: */
854   virtual unsigned int execute (function *)
855     {
856       return rest_of_handle_df_finish ();
857     }
858
859 }; // class pass_df_finish
860
861 } // anon namespace
862
863 rtl_opt_pass *
864 make_pass_df_finish (gcc::context *ctxt)
865 {
866   return new pass_df_finish (ctxt);
867 }
868
869
870
871
872 \f
873 /*----------------------------------------------------------------------------
874    The general data flow analysis engine.
875 ----------------------------------------------------------------------------*/
876
877 /* Return time BB when it was visited for last time.  */
878 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
879
880 /* Helper function for df_worklist_dataflow.
881    Propagate the dataflow forward.
882    Given a BB_INDEX, do the dataflow propagation
883    and set bits on for successors in PENDING
884    if the out set of the dataflow has changed.
885
886    AGE specify time when BB was visited last time.
887    AGE of 0 means we are visiting for first time and need to
888    compute transfer function to initialize datastructures.
889    Otherwise we re-do transfer function only if something change
890    while computing confluence functions.
891    We need to compute confluence only of basic block that are younger
892    then last visit of the BB.
893
894    Return true if BB info has changed.  This is always the case
895    in the first visit.  */
896
897 static bool
898 df_worklist_propagate_forward (struct dataflow *dataflow,
899                                unsigned bb_index,
900                                unsigned *bbindex_to_postorder,
901                                bitmap pending,
902                                sbitmap considered,
903                                ptrdiff_t age)
904 {
905   edge e;
906   edge_iterator ei;
907   basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
908   bool changed = !age;
909
910   /*  Calculate <conf_op> of incoming edges.  */
911   if (EDGE_COUNT (bb->preds) > 0)
912     FOR_EACH_EDGE (e, ei, bb->preds)
913       {
914         if (age <= BB_LAST_CHANGE_AGE (e->src)
915             && bitmap_bit_p (considered, e->src->index))
916           changed |= dataflow->problem->con_fun_n (e);
917       }
918   else if (dataflow->problem->con_fun_0)
919     dataflow->problem->con_fun_0 (bb);
920
921   if (changed
922       && dataflow->problem->trans_fun (bb_index))
923     {
924       /* The out set of this block has changed.
925          Propagate to the outgoing blocks.  */
926       FOR_EACH_EDGE (e, ei, bb->succs)
927         {
928           unsigned ob_index = e->dest->index;
929
930           if (bitmap_bit_p (considered, ob_index))
931             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
932         }
933       return true;
934     }
935   return false;
936 }
937
938
939 /* Helper function for df_worklist_dataflow.
940    Propagate the dataflow backward.  */
941
942 static bool
943 df_worklist_propagate_backward (struct dataflow *dataflow,
944                                 unsigned bb_index,
945                                 unsigned *bbindex_to_postorder,
946                                 bitmap pending,
947                                 sbitmap considered,
948                                 ptrdiff_t age)
949 {
950   edge e;
951   edge_iterator ei;
952   basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
953   bool changed = !age;
954
955   /*  Calculate <conf_op> of incoming edges.  */
956   if (EDGE_COUNT (bb->succs) > 0)
957     FOR_EACH_EDGE (e, ei, bb->succs)
958       {
959         if (age <= BB_LAST_CHANGE_AGE (e->dest)
960             && bitmap_bit_p (considered, e->dest->index))
961           changed |= dataflow->problem->con_fun_n (e);
962       }
963   else if (dataflow->problem->con_fun_0)
964     dataflow->problem->con_fun_0 (bb);
965
966   if (changed
967       && dataflow->problem->trans_fun (bb_index))
968     {
969       /* The out set of this block has changed.
970          Propagate to the outgoing blocks.  */
971       FOR_EACH_EDGE (e, ei, bb->preds)
972         {
973           unsigned ob_index = e->src->index;
974
975           if (bitmap_bit_p (considered, ob_index))
976             bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
977         }
978       return true;
979     }
980   return false;
981 }
982
983 /* Main dataflow solver loop.
984
985    DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
986    need to visit.
987    BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
988    BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
989    PENDING will be freed.
990
991    The worklists are bitmaps indexed by postorder positions.  
992
993    The function implements standard algorithm for dataflow solving with two
994    worklists (we are processing WORKLIST and storing new BBs to visit in
995    PENDING).
996
997    As an optimization we maintain ages when BB was changed (stored in bb->aux)
998    and when it was last visited (stored in last_visit_age).  This avoids need
999    to re-do confluence function for edges to basic blocks whose source
1000    did not change since destination was visited last time.  */
1001
1002 static void
1003 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1004                                   bitmap pending,
1005                                   sbitmap considered,
1006                                   int *blocks_in_postorder,
1007                                   unsigned *bbindex_to_postorder,
1008                                   int n_blocks)
1009 {
1010   enum df_flow_dir dir = dataflow->problem->dir;
1011   int dcount = 0;
1012   bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1013   int age = 0;
1014   bool changed;
1015   vec<int> last_visit_age = vNULL;
1016   int prev_age;
1017   basic_block bb;
1018   int i;
1019
1020   last_visit_age.safe_grow_cleared (n_blocks);
1021
1022   /* Double-queueing. Worklist is for the current iteration,
1023      and pending is for the next. */
1024   while (!bitmap_empty_p (pending))
1025     {
1026       bitmap_iterator bi;
1027       unsigned int index;
1028
1029       std::swap (pending, worklist);
1030
1031       EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1032         {
1033           unsigned bb_index;
1034           dcount++;
1035
1036           bitmap_clear_bit (pending, index);
1037           bb_index = blocks_in_postorder[index];
1038           bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1039           prev_age = last_visit_age[index];
1040           if (dir == DF_FORWARD)
1041             changed = df_worklist_propagate_forward (dataflow, bb_index,
1042                                                      bbindex_to_postorder,
1043                                                      pending, considered,
1044                                                      prev_age);
1045           else
1046             changed = df_worklist_propagate_backward (dataflow, bb_index,
1047                                                       bbindex_to_postorder,
1048                                                       pending, considered,
1049                                                       prev_age);
1050           last_visit_age[index] = ++age;
1051           if (changed)
1052             bb->aux = (void *)(ptrdiff_t)age;
1053         }
1054       bitmap_clear (worklist);
1055     }
1056   for (i = 0; i < n_blocks; i++)
1057     BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
1058
1059   BITMAP_FREE (worklist);
1060   BITMAP_FREE (pending);
1061   last_visit_age.release ();
1062
1063   /* Dump statistics. */
1064   if (dump_file)
1065     fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1066              "n_basic_blocks %d n_edges %d"
1067              " count %d (%5.2g)\n",
1068              n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1069              dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
1070 }
1071
1072 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1073    with "n"-th bit representing the n-th block in the reverse-postorder order.
1074    The solver is a double-queue algorithm similar to the "double stack" solver
1075    from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1076    The only significant difference is that the worklist in this implementation
1077    is always sorted in RPO of the CFG visiting direction.  */
1078
1079 void
1080 df_worklist_dataflow (struct dataflow *dataflow,
1081                       bitmap blocks_to_consider,
1082                       int *blocks_in_postorder,
1083                       int n_blocks)
1084 {
1085   bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1086   sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
1087   bitmap_iterator bi;
1088   unsigned int *bbindex_to_postorder;
1089   int i;
1090   unsigned int index;
1091   enum df_flow_dir dir = dataflow->problem->dir;
1092
1093   gcc_assert (dir != DF_NONE);
1094
1095   /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1096   bbindex_to_postorder = XNEWVEC (unsigned int,
1097                                   last_basic_block_for_fn (cfun));
1098
1099   /* Initialize the array to an out-of-bound value.  */
1100   for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1101     bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1102
1103   /* Initialize the considered map.  */
1104   bitmap_clear (considered);
1105   EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1106     {
1107       bitmap_set_bit (considered, index);
1108     }
1109
1110   /* Initialize the mapping of block index to postorder.  */
1111   for (i = 0; i < n_blocks; i++)
1112     {
1113       bbindex_to_postorder[blocks_in_postorder[i]] = i;
1114       /* Add all blocks to the worklist.  */
1115       bitmap_set_bit (pending, i);
1116     }
1117
1118   /* Initialize the problem. */
1119   if (dataflow->problem->init_fun)
1120     dataflow->problem->init_fun (blocks_to_consider);
1121
1122   /* Solve it.  */
1123   df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1124                                     blocks_in_postorder,
1125                                     bbindex_to_postorder,
1126                                     n_blocks);
1127   sbitmap_free (considered);
1128   free (bbindex_to_postorder);
1129 }
1130
1131
1132 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1133    the order of the remaining entries.  Returns the length of the resulting
1134    list.  */
1135
1136 static unsigned
1137 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1138 {
1139   unsigned act, last;
1140
1141   for (act = 0, last = 0; act < len; act++)
1142     if (bitmap_bit_p (blocks, list[act]))
1143       list[last++] = list[act];
1144
1145   return last;
1146 }
1147
1148
1149 /* Execute dataflow analysis on a single dataflow problem.
1150
1151    BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1152    examined or will be computed.  For calls from DF_ANALYZE, this is
1153    the set of blocks that has been passed to DF_SET_BLOCKS.
1154 */
1155
1156 void
1157 df_analyze_problem (struct dataflow *dflow,
1158                     bitmap blocks_to_consider,
1159                     int *postorder, int n_blocks)
1160 {
1161   timevar_push (dflow->problem->tv_id);
1162
1163   /* (Re)Allocate the datastructures necessary to solve the problem.  */
1164   if (dflow->problem->alloc_fun)
1165     dflow->problem->alloc_fun (blocks_to_consider);
1166
1167 #ifdef ENABLE_DF_CHECKING
1168   if (dflow->problem->verify_start_fun)
1169     dflow->problem->verify_start_fun ();
1170 #endif
1171
1172   /* Set up the problem and compute the local information.  */
1173   if (dflow->problem->local_compute_fun)
1174     dflow->problem->local_compute_fun (blocks_to_consider);
1175
1176   /* Solve the equations.  */
1177   if (dflow->problem->dataflow_fun)
1178     dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1179                                   postorder, n_blocks);
1180
1181   /* Massage the solution.  */
1182   if (dflow->problem->finalize_fun)
1183     dflow->problem->finalize_fun (blocks_to_consider);
1184
1185 #ifdef ENABLE_DF_CHECKING
1186   if (dflow->problem->verify_end_fun)
1187     dflow->problem->verify_end_fun ();
1188 #endif
1189
1190   timevar_pop (dflow->problem->tv_id);
1191
1192   dflow->computed = true;
1193 }
1194
1195
1196 /* Analyze dataflow info.  */
1197
1198 static void
1199 df_analyze_1 (void)
1200 {
1201   int i;
1202
1203   /* These should be the same.  */
1204   gcc_assert (df->n_blocks == df->n_blocks_inverted);
1205
1206   /* We need to do this before the df_verify_all because this is
1207      not kept incrementally up to date.  */
1208   df_compute_regs_ever_live (false);
1209   df_process_deferred_rescans ();
1210
1211   if (dump_file)
1212     fprintf (dump_file, "df_analyze called\n");
1213
1214 #ifndef ENABLE_DF_CHECKING
1215   if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1216 #endif
1217     df_verify ();
1218
1219   /* Skip over the DF_SCAN problem. */
1220   for (i = 1; i < df->num_problems_defined; i++)
1221     {
1222       struct dataflow *dflow = df->problems_in_order[i];
1223       if (dflow->solutions_dirty)
1224         {
1225           if (dflow->problem->dir == DF_FORWARD)
1226             df_analyze_problem (dflow,
1227                                 df->blocks_to_analyze,
1228                                 df->postorder_inverted,
1229                                 df->n_blocks_inverted);
1230           else
1231             df_analyze_problem (dflow,
1232                                 df->blocks_to_analyze,
1233                                 df->postorder,
1234                                 df->n_blocks);
1235         }
1236     }
1237
1238   if (!df->analyze_subset)
1239     {
1240       BITMAP_FREE (df->blocks_to_analyze);
1241       df->blocks_to_analyze = NULL;
1242     }
1243
1244 #ifdef DF_DEBUG_CFG
1245   df_set_clean_cfg ();
1246 #endif
1247 }
1248
1249 /* Analyze dataflow info.  */
1250
1251 void
1252 df_analyze (void)
1253 {
1254   bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1255   int i;
1256
1257   free (df->postorder);
1258   free (df->postorder_inverted);
1259   df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1260   df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1261   df->n_blocks = post_order_compute (df->postorder, true, true);
1262   df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1263
1264   for (i = 0; i < df->n_blocks; i++)
1265     bitmap_set_bit (current_all_blocks, df->postorder[i]);
1266
1267   if (flag_checking)
1268     {
1269       /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1270          the ENTRY block.  */
1271       for (i = 0; i < df->n_blocks_inverted; i++)
1272         gcc_assert (bitmap_bit_p (current_all_blocks,
1273                                   df->postorder_inverted[i]));
1274     }
1275
1276   /* Make sure that we have pruned any unreachable blocks from these
1277      sets.  */
1278   if (df->analyze_subset)
1279     {
1280       bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1281       df->n_blocks = df_prune_to_subcfg (df->postorder,
1282                                          df->n_blocks, df->blocks_to_analyze);
1283       df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1284                                                   df->n_blocks_inverted,
1285                                                   df->blocks_to_analyze);
1286       BITMAP_FREE (current_all_blocks);
1287     }
1288   else
1289     {
1290       df->blocks_to_analyze = current_all_blocks;
1291       current_all_blocks = NULL;
1292     }
1293
1294   df_analyze_1 ();
1295 }
1296
1297 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1298    Returns the number of blocks which is always loop->num_nodes.  */
1299
1300 static int
1301 loop_post_order_compute (int *post_order, struct loop *loop)
1302 {
1303   edge_iterator *stack;
1304   int sp;
1305   int post_order_num = 0;
1306   bitmap visited;
1307
1308   /* Allocate stack for back-tracking up CFG.  */
1309   stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1310   sp = 0;
1311
1312   /* Allocate bitmap to track nodes that have been visited.  */
1313   visited = BITMAP_ALLOC (NULL);
1314
1315   /* Push the first edge on to the stack.  */
1316   stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1317
1318   while (sp)
1319     {
1320       edge_iterator ei;
1321       basic_block src;
1322       basic_block dest;
1323
1324       /* Look at the edge on the top of the stack.  */
1325       ei = stack[sp - 1];
1326       src = ei_edge (ei)->src;
1327       dest = ei_edge (ei)->dest;
1328
1329       /* Check if the edge destination has been visited yet and mark it
1330          if not so.  */
1331       if (flow_bb_inside_loop_p (loop, dest)
1332           && bitmap_set_bit (visited, dest->index))
1333         {
1334           if (EDGE_COUNT (dest->succs) > 0)
1335             /* Since the DEST node has been visited for the first
1336                time, check its successors.  */
1337             stack[sp++] = ei_start (dest->succs);
1338           else
1339             post_order[post_order_num++] = dest->index;
1340         }
1341       else
1342         {
1343           if (ei_one_before_end_p (ei)
1344               && src != loop_preheader_edge (loop)->src)
1345             post_order[post_order_num++] = src->index;
1346
1347           if (!ei_one_before_end_p (ei))
1348             ei_next (&stack[sp - 1]);
1349           else
1350             sp--;
1351         }
1352     }
1353
1354   free (stack);
1355   BITMAP_FREE (visited);
1356
1357   return post_order_num;
1358 }
1359
1360 /* Compute the reverse top sort order of the inverted sub-CFG specified
1361    by LOOP.  Returns the number of blocks which is always loop->num_nodes.  */
1362
1363 static int
1364 loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1365 {
1366   basic_block bb;
1367   edge_iterator *stack;
1368   int sp;
1369   int post_order_num = 0;
1370   bitmap visited;
1371
1372   /* Allocate stack for back-tracking up CFG.  */
1373   stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1374   sp = 0;
1375
1376   /* Allocate bitmap to track nodes that have been visited.  */
1377   visited = BITMAP_ALLOC (NULL);
1378
1379   /* Put all latches into the initial work list.  In theory we'd want
1380      to start from loop exits but then we'd have the special case of
1381      endless loops.  It doesn't really matter for DF iteration order and
1382      handling latches last is probably even better.  */
1383   stack[sp++] = ei_start (loop->header->preds);
1384   bitmap_set_bit (visited, loop->header->index);
1385
1386   /* The inverted traversal loop. */
1387   while (sp)
1388     {
1389       edge_iterator ei;
1390       basic_block pred;
1391
1392       /* Look at the edge on the top of the stack.  */
1393       ei = stack[sp - 1];
1394       bb = ei_edge (ei)->dest;
1395       pred = ei_edge (ei)->src;
1396
1397       /* Check if the predecessor has been visited yet and mark it
1398          if not so.  */
1399       if (flow_bb_inside_loop_p (loop, pred)
1400           && bitmap_set_bit (visited, pred->index))
1401         {
1402           if (EDGE_COUNT (pred->preds) > 0)
1403             /* Since the predecessor node has been visited for the first
1404                time, check its predecessors.  */
1405             stack[sp++] = ei_start (pred->preds);
1406           else
1407             post_order[post_order_num++] = pred->index;
1408         }
1409       else
1410         {
1411           if (flow_bb_inside_loop_p (loop, bb)
1412               && ei_one_before_end_p (ei))
1413             post_order[post_order_num++] = bb->index;
1414
1415           if (!ei_one_before_end_p (ei))
1416             ei_next (&stack[sp - 1]);
1417           else
1418             sp--;
1419         }
1420     }
1421
1422   free (stack);
1423   BITMAP_FREE (visited);
1424   return post_order_num;
1425 }
1426
1427
1428 /* Analyze dataflow info for the basic blocks contained in LOOP.  */
1429
1430 void
1431 df_analyze_loop (struct loop *loop)
1432 {
1433   free (df->postorder);
1434   free (df->postorder_inverted);
1435
1436   df->postorder = XNEWVEC (int, loop->num_nodes);
1437   df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1438   df->n_blocks = loop_post_order_compute (df->postorder, loop);
1439   df->n_blocks_inverted
1440     = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1441   gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1442   gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1443
1444   bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1445   for (int i = 0; i < df->n_blocks; ++i)
1446     bitmap_set_bit (blocks, df->postorder[i]);
1447   df_set_blocks (blocks);
1448   BITMAP_FREE (blocks);
1449
1450   df_analyze_1 ();
1451 }
1452
1453
1454 /* Return the number of basic blocks from the last call to df_analyze.  */
1455
1456 int
1457 df_get_n_blocks (enum df_flow_dir dir)
1458 {
1459   gcc_assert (dir != DF_NONE);
1460
1461   if (dir == DF_FORWARD)
1462     {
1463       gcc_assert (df->postorder_inverted);
1464       return df->n_blocks_inverted;
1465     }
1466
1467   gcc_assert (df->postorder);
1468   return df->n_blocks;
1469 }
1470
1471
1472 /* Return a pointer to the array of basic blocks in the reverse postorder.
1473    Depending on the direction of the dataflow problem,
1474    it returns either the usual reverse postorder array
1475    or the reverse postorder of inverted traversal. */
1476 int *
1477 df_get_postorder (enum df_flow_dir dir)
1478 {
1479   gcc_assert (dir != DF_NONE);
1480
1481   if (dir == DF_FORWARD)
1482     {
1483       gcc_assert (df->postorder_inverted);
1484       return df->postorder_inverted;
1485     }
1486   gcc_assert (df->postorder);
1487   return df->postorder;
1488 }
1489
1490 static struct df_problem user_problem;
1491 static struct dataflow user_dflow;
1492
1493 /* Interface for calling iterative dataflow with user defined
1494    confluence and transfer functions.  All that is necessary is to
1495    supply DIR, a direction, CONF_FUN_0, a confluence function for
1496    blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1497    confluence function, TRANS_FUN, the basic block transfer function,
1498    and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1499    postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1500
1501 void
1502 df_simple_dataflow (enum df_flow_dir dir,
1503                     df_init_function init_fun,
1504                     df_confluence_function_0 con_fun_0,
1505                     df_confluence_function_n con_fun_n,
1506                     df_transfer_function trans_fun,
1507                     bitmap blocks, int * postorder, int n_blocks)
1508 {
1509   memset (&user_problem, 0, sizeof (struct df_problem));
1510   user_problem.dir = dir;
1511   user_problem.init_fun = init_fun;
1512   user_problem.con_fun_0 = con_fun_0;
1513   user_problem.con_fun_n = con_fun_n;
1514   user_problem.trans_fun = trans_fun;
1515   user_dflow.problem = &user_problem;
1516   df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1517 }
1518
1519
1520 \f
1521 /*----------------------------------------------------------------------------
1522    Functions to support limited incremental change.
1523 ----------------------------------------------------------------------------*/
1524
1525
1526 /* Get basic block info.  */
1527
1528 static void *
1529 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1530 {
1531   if (dflow->block_info == NULL)
1532     return NULL;
1533   if (index >= dflow->block_info_size)
1534     return NULL;
1535   return (void *)((char *)dflow->block_info
1536                   + index * dflow->problem->block_info_elt_size);
1537 }
1538
1539
1540 /* Set basic block info.  */
1541
1542 static void
1543 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1544                 void *bb_info)
1545 {
1546   gcc_assert (dflow->block_info);
1547   memcpy ((char *)dflow->block_info
1548           + index * dflow->problem->block_info_elt_size,
1549           bb_info, dflow->problem->block_info_elt_size);
1550 }
1551
1552
1553 /* Clear basic block info.  */
1554
1555 static void
1556 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1557 {
1558   gcc_assert (dflow->block_info);
1559   gcc_assert (dflow->block_info_size > index);
1560   memset ((char *)dflow->block_info
1561           + index * dflow->problem->block_info_elt_size,
1562           0, dflow->problem->block_info_elt_size);
1563 }
1564
1565
1566 /* Mark the solutions as being out of date.  */
1567
1568 void
1569 df_mark_solutions_dirty (void)
1570 {
1571   if (df)
1572     {
1573       int p;
1574       for (p = 1; p < df->num_problems_defined; p++)
1575         df->problems_in_order[p]->solutions_dirty = true;
1576     }
1577 }
1578
1579
1580 /* Return true if BB needs it's transfer functions recomputed.  */
1581
1582 bool
1583 df_get_bb_dirty (basic_block bb)
1584 {
1585   return bitmap_bit_p ((df_live
1586                         ? df_live : df_lr)->out_of_date_transfer_functions,
1587                        bb->index);
1588 }
1589
1590
1591 /* Mark BB as needing it's transfer functions as being out of
1592    date.  */
1593
1594 void
1595 df_set_bb_dirty (basic_block bb)
1596 {
1597   bb->flags |= BB_MODIFIED;
1598   if (df)
1599     {
1600       int p;
1601       for (p = 1; p < df->num_problems_defined; p++)
1602         {
1603           struct dataflow *dflow = df->problems_in_order[p];
1604           if (dflow->out_of_date_transfer_functions)
1605             bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1606         }
1607       df_mark_solutions_dirty ();
1608     }
1609 }
1610
1611
1612 /* Grow the bb_info array.  */
1613
1614 void
1615 df_grow_bb_info (struct dataflow *dflow)
1616 {
1617   unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1618   if (dflow->block_info_size < new_size)
1619     {
1620       new_size += new_size / 4;
1621       dflow->block_info
1622          = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1623                                new_size
1624                                * dflow->problem->block_info_elt_size);
1625       memset ((char *)dflow->block_info
1626               + dflow->block_info_size
1627               * dflow->problem->block_info_elt_size,
1628               0,
1629               (new_size - dflow->block_info_size)
1630               * dflow->problem->block_info_elt_size);
1631       dflow->block_info_size = new_size;
1632     }
1633 }
1634
1635
1636 /* Clear the dirty bits.  This is called from places that delete
1637    blocks.  */
1638 static void
1639 df_clear_bb_dirty (basic_block bb)
1640 {
1641   int p;
1642   for (p = 1; p < df->num_problems_defined; p++)
1643     {
1644       struct dataflow *dflow = df->problems_in_order[p];
1645       if (dflow->out_of_date_transfer_functions)
1646         bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1647     }
1648 }
1649
1650 /* Called from the rtl_compact_blocks to reorganize the problems basic
1651    block info.  */
1652
1653 void
1654 df_compact_blocks (void)
1655 {
1656   int i, p;
1657   basic_block bb;
1658   void *problem_temps;
1659   bitmap_head tmp;
1660
1661   bitmap_initialize (&tmp, &df_bitmap_obstack);
1662   for (p = 0; p < df->num_problems_defined; p++)
1663     {
1664       struct dataflow *dflow = df->problems_in_order[p];
1665
1666       /* Need to reorganize the out_of_date_transfer_functions for the
1667          dflow problem.  */
1668       if (dflow->out_of_date_transfer_functions)
1669         {
1670           bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1671           bitmap_clear (dflow->out_of_date_transfer_functions);
1672           if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1673             bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1674           if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1675             bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1676
1677           i = NUM_FIXED_BLOCKS;
1678           FOR_EACH_BB_FN (bb, cfun)
1679             {
1680               if (bitmap_bit_p (&tmp, bb->index))
1681                 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1682               i++;
1683             }
1684         }
1685
1686       /* Now shuffle the block info for the problem.  */
1687       if (dflow->problem->free_bb_fun)
1688         {
1689           int size = (last_basic_block_for_fn (cfun)
1690                       * dflow->problem->block_info_elt_size);
1691           problem_temps = XNEWVAR (char, size);
1692           df_grow_bb_info (dflow);
1693           memcpy (problem_temps, dflow->block_info, size);
1694
1695           /* Copy the bb info from the problem tmps to the proper
1696              place in the block_info vector.  Null out the copied
1697              item.  The entry and exit blocks never move.  */
1698           i = NUM_FIXED_BLOCKS;
1699           FOR_EACH_BB_FN (bb, cfun)
1700             {
1701               df_set_bb_info (dflow, i,
1702                               (char *)problem_temps
1703                               + bb->index * dflow->problem->block_info_elt_size);
1704               i++;
1705             }
1706           memset ((char *)dflow->block_info
1707                   + i * dflow->problem->block_info_elt_size, 0,
1708                   (last_basic_block_for_fn (cfun) - i)
1709                   * dflow->problem->block_info_elt_size);
1710           free (problem_temps);
1711         }
1712     }
1713
1714   /* Shuffle the bits in the basic_block indexed arrays.  */
1715
1716   if (df->blocks_to_analyze)
1717     {
1718       if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1719         bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1720       if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1721         bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1722       bitmap_copy (&tmp, df->blocks_to_analyze);
1723       bitmap_clear (df->blocks_to_analyze);
1724       i = NUM_FIXED_BLOCKS;
1725       FOR_EACH_BB_FN (bb, cfun)
1726         {
1727           if (bitmap_bit_p (&tmp, bb->index))
1728             bitmap_set_bit (df->blocks_to_analyze, i);
1729           i++;
1730         }
1731     }
1732
1733   bitmap_clear (&tmp);
1734
1735   i = NUM_FIXED_BLOCKS;
1736   FOR_EACH_BB_FN (bb, cfun)
1737     {
1738       SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1739       bb->index = i;
1740       i++;
1741     }
1742
1743   gcc_assert (i == n_basic_blocks_for_fn (cfun));
1744
1745   for (; i < last_basic_block_for_fn (cfun); i++)
1746     SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1747
1748 #ifdef DF_DEBUG_CFG
1749   if (!df_lr->solutions_dirty)
1750     df_set_clean_cfg ();
1751 #endif
1752 }
1753
1754
1755 /* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1756    block.  There is no excuse for people to do this kind of thing.  */
1757
1758 void
1759 df_bb_replace (int old_index, basic_block new_block)
1760 {
1761   int new_block_index = new_block->index;
1762   int p;
1763
1764   if (dump_file)
1765     fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1766
1767   gcc_assert (df);
1768   gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1769
1770   for (p = 0; p < df->num_problems_defined; p++)
1771     {
1772       struct dataflow *dflow = df->problems_in_order[p];
1773       if (dflow->block_info)
1774         {
1775           df_grow_bb_info (dflow);
1776           df_set_bb_info (dflow, old_index,
1777                           df_get_bb_info (dflow, new_block_index));
1778         }
1779     }
1780
1781   df_clear_bb_dirty (new_block);
1782   SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1783   new_block->index = old_index;
1784   df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1785   SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1786 }
1787
1788
1789 /* Free all of the per basic block dataflow from all of the problems.
1790    This is typically called before a basic block is deleted and the
1791    problem will be reanalyzed.  */
1792
1793 void
1794 df_bb_delete (int bb_index)
1795 {
1796   basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1797   int i;
1798
1799   if (!df)
1800     return;
1801
1802   for (i = 0; i < df->num_problems_defined; i++)
1803     {
1804       struct dataflow *dflow = df->problems_in_order[i];
1805       if (dflow->problem->free_bb_fun)
1806         {
1807           void *bb_info = df_get_bb_info (dflow, bb_index);
1808           if (bb_info)
1809             {
1810               dflow->problem->free_bb_fun (bb, bb_info);
1811               df_clear_bb_info (dflow, bb_index);
1812             }
1813         }
1814     }
1815   df_clear_bb_dirty (bb);
1816   df_mark_solutions_dirty ();
1817 }
1818
1819
1820 /* Verify that there is a place for everything and everything is in
1821    its place.  This is too expensive to run after every pass in the
1822    mainline.  However this is an excellent debugging tool if the
1823    dataflow information is not being updated properly.  You can just
1824    sprinkle calls in until you find the place that is changing an
1825    underlying structure without calling the proper updating
1826    routine.  */
1827
1828 void
1829 df_verify (void)
1830 {
1831   df_scan_verify ();
1832 #ifdef ENABLE_DF_CHECKING
1833   df_lr_verify_transfer_functions ();
1834   if (df_live)
1835     df_live_verify_transfer_functions ();
1836 #endif
1837 }
1838
1839 #ifdef DF_DEBUG_CFG
1840
1841 /* Compute an array of ints that describes the cfg.  This can be used
1842    to discover places where the cfg is modified by the appropriate
1843    calls have not been made to the keep df informed.  The internals of
1844    this are unexciting, the key is that two instances of this can be
1845    compared to see if any changes have been made to the cfg.  */
1846
1847 static int *
1848 df_compute_cfg_image (void)
1849 {
1850   basic_block bb;
1851   int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1852   int i;
1853   int * map;
1854
1855   FOR_ALL_BB_FN (bb, cfun)
1856     {
1857       size += EDGE_COUNT (bb->succs);
1858     }
1859
1860   map = XNEWVEC (int, size);
1861   map[0] = size;
1862   i = 1;
1863   FOR_ALL_BB_FN (bb, cfun)
1864     {
1865       edge_iterator ei;
1866       edge e;
1867
1868       map[i++] = bb->index;
1869       FOR_EACH_EDGE (e, ei, bb->succs)
1870         map[i++] = e->dest->index;
1871       map[i++] = -1;
1872     }
1873   map[i] = -1;
1874   return map;
1875 }
1876
1877 static int *saved_cfg = NULL;
1878
1879
1880 /* This function compares the saved version of the cfg with the
1881    current cfg and aborts if the two are identical.  The function
1882    silently returns if the cfg has been marked as dirty or the two are
1883    the same.  */
1884
1885 void
1886 df_check_cfg_clean (void)
1887 {
1888   int *new_map;
1889
1890   if (!df)
1891     return;
1892
1893   if (df_lr->solutions_dirty)
1894     return;
1895
1896   if (saved_cfg == NULL)
1897     return;
1898
1899   new_map = df_compute_cfg_image ();
1900   gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1901   free (new_map);
1902 }
1903
1904
1905 /* This function builds a cfg fingerprint and squirrels it away in
1906    saved_cfg.  */
1907
1908 static void
1909 df_set_clean_cfg (void)
1910 {
1911   free (saved_cfg);
1912   saved_cfg = df_compute_cfg_image ();
1913 }
1914
1915 #endif /* DF_DEBUG_CFG  */
1916 /*----------------------------------------------------------------------------
1917    PUBLIC INTERFACES TO QUERY INFORMATION.
1918 ----------------------------------------------------------------------------*/
1919
1920
1921 /* Return first def of REGNO within BB.  */
1922
1923 df_ref
1924 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1925 {
1926   rtx_insn *insn;
1927   df_ref def;
1928
1929   FOR_BB_INSNS (bb, insn)
1930     {
1931       if (!INSN_P (insn))
1932         continue;
1933
1934       FOR_EACH_INSN_DEF (def, insn)
1935         if (DF_REF_REGNO (def) == regno)
1936           return def;
1937     }
1938   return NULL;
1939 }
1940
1941
1942 /* Return last def of REGNO within BB.  */
1943
1944 df_ref
1945 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1946 {
1947   rtx_insn *insn;
1948   df_ref def;
1949
1950   FOR_BB_INSNS_REVERSE (bb, insn)
1951     {
1952       if (!INSN_P (insn))
1953         continue;
1954
1955       FOR_EACH_INSN_DEF (def, insn)
1956         if (DF_REF_REGNO (def) == regno)
1957           return def;
1958     }
1959
1960   return NULL;
1961 }
1962
1963 /* Finds the reference corresponding to the definition of REG in INSN.
1964    DF is the dataflow object.  */
1965
1966 df_ref
1967 df_find_def (rtx_insn *insn, rtx reg)
1968 {
1969   df_ref def;
1970
1971   if (GET_CODE (reg) == SUBREG)
1972     reg = SUBREG_REG (reg);
1973   gcc_assert (REG_P (reg));
1974
1975   FOR_EACH_INSN_DEF (def, insn)
1976     if (DF_REF_REGNO (def) == REGNO (reg))
1977       return def;
1978
1979   return NULL;
1980 }
1981
1982
1983 /* Return true if REG is defined in INSN, zero otherwise.  */
1984
1985 bool
1986 df_reg_defined (rtx_insn *insn, rtx reg)
1987 {
1988   return df_find_def (insn, reg) != NULL;
1989 }
1990
1991
1992 /* Finds the reference corresponding to the use of REG in INSN.
1993    DF is the dataflow object.  */
1994
1995 df_ref
1996 df_find_use (rtx_insn *insn, rtx reg)
1997 {
1998   df_ref use;
1999
2000   if (GET_CODE (reg) == SUBREG)
2001     reg = SUBREG_REG (reg);
2002   gcc_assert (REG_P (reg));
2003
2004   df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2005   FOR_EACH_INSN_INFO_USE (use, insn_info)
2006     if (DF_REF_REGNO (use) == REGNO (reg))
2007       return use;
2008   if (df->changeable_flags & DF_EQ_NOTES)
2009     FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2010       if (DF_REF_REGNO (use) == REGNO (reg))
2011         return use;
2012   return NULL;
2013 }
2014
2015
2016 /* Return true if REG is referenced in INSN, zero otherwise.  */
2017
2018 bool
2019 df_reg_used (rtx_insn *insn, rtx reg)
2020 {
2021   return df_find_use (insn, reg) != NULL;
2022 }
2023
2024 \f
2025 /*----------------------------------------------------------------------------
2026    Debugging and printing functions.
2027 ----------------------------------------------------------------------------*/
2028
2029 /* Write information about registers and basic blocks into FILE.
2030    This is part of making a debugging dump.  */
2031
2032 void
2033 dump_regset (regset r, FILE *outf)
2034 {
2035   unsigned i;
2036   reg_set_iterator rsi;
2037
2038   if (r == NULL)
2039     {
2040       fputs (" (nil)", outf);
2041       return;
2042     }
2043
2044   EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2045     {
2046       fprintf (outf, " %d", i);
2047       if (i < FIRST_PSEUDO_REGISTER)
2048         fprintf (outf, " [%s]",
2049                  reg_names[i]);
2050     }
2051 }
2052
2053 /* Print a human-readable representation of R on the standard error
2054    stream.  This function is designed to be used from within the
2055    debugger.  */
2056 extern void debug_regset (regset);
2057 DEBUG_FUNCTION void
2058 debug_regset (regset r)
2059 {
2060   dump_regset (r, stderr);
2061   putc ('\n', stderr);
2062 }
2063
2064 /* Write information about registers and basic blocks into FILE.
2065    This is part of making a debugging dump.  */
2066
2067 void
2068 df_print_regset (FILE *file, bitmap r)
2069 {
2070   unsigned int i;
2071   bitmap_iterator bi;
2072
2073   if (r == NULL)
2074     fputs (" (nil)", file);
2075   else
2076     {
2077       EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2078         {
2079           fprintf (file, " %d", i);
2080           if (i < FIRST_PSEUDO_REGISTER)
2081             fprintf (file, " [%s]", reg_names[i]);
2082         }
2083     }
2084   fprintf (file, "\n");
2085 }
2086
2087
2088 /* Write information about registers and basic blocks into FILE.  The
2089    bitmap is in the form used by df_byte_lr.  This is part of making a
2090    debugging dump.  */
2091
2092 void
2093 df_print_word_regset (FILE *file, bitmap r)
2094 {
2095   unsigned int max_reg = max_reg_num ();
2096
2097   if (r == NULL)
2098     fputs (" (nil)", file);
2099   else
2100     {
2101       unsigned int i;
2102       for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2103         {
2104           bool found = (bitmap_bit_p (r, 2 * i)
2105                         || bitmap_bit_p (r, 2 * i + 1));
2106           if (found)
2107             {
2108               int word;
2109               const char * sep = "";
2110               fprintf (file, " %d", i);
2111               fprintf (file, "(");
2112               for (word = 0; word < 2; word++)
2113                 if (bitmap_bit_p (r, 2 * i + word))
2114                   {
2115                     fprintf (file, "%s%d", sep, word);
2116                     sep = ", ";
2117                   }
2118               fprintf (file, ")");
2119             }
2120         }
2121     }
2122   fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump dataflow info.  */
2127
2128 void
2129 df_dump (FILE *file)
2130 {
2131   basic_block bb;
2132   df_dump_start (file);
2133
2134   FOR_ALL_BB_FN (bb, cfun)
2135     {
2136       df_print_bb_index (bb, file);
2137       df_dump_top (bb, file);
2138       df_dump_bottom (bb, file);
2139     }
2140
2141   fprintf (file, "\n");
2142 }
2143
2144
2145 /* Dump dataflow info for df->blocks_to_analyze.  */
2146
2147 void
2148 df_dump_region (FILE *file)
2149 {
2150   if (df->blocks_to_analyze)
2151     {
2152       bitmap_iterator bi;
2153       unsigned int bb_index;
2154
2155       fprintf (file, "\n\nstarting region dump\n");
2156       df_dump_start (file);
2157
2158       EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2159         {
2160           basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2161           dump_bb (file, bb, 0, TDF_DETAILS);
2162         }
2163       fprintf (file, "\n");
2164     }
2165   else
2166     df_dump (file);
2167 }
2168
2169
2170 /* Dump the introductory information for each problem defined.  */
2171
2172 void
2173 df_dump_start (FILE *file)
2174 {
2175   int i;
2176
2177   if (!df || !file)
2178     return;
2179
2180   fprintf (file, "\n\n%s\n", current_function_name ());
2181   fprintf (file, "\nDataflow summary:\n");
2182   if (df->blocks_to_analyze)
2183     fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2184              DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2185
2186   for (i = 0; i < df->num_problems_defined; i++)
2187     {
2188       struct dataflow *dflow = df->problems_in_order[i];
2189       if (dflow->computed)
2190         {
2191           df_dump_problem_function fun = dflow->problem->dump_start_fun;
2192           if (fun)
2193             fun (file);
2194         }
2195     }
2196 }
2197
2198
2199 /* Dump the top or bottom of the block information for BB.  */
2200 static void
2201 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2202 {
2203   int i;
2204
2205   if (!df || !file)
2206     return;
2207
2208   for (i = 0; i < df->num_problems_defined; i++)
2209     {
2210       struct dataflow *dflow = df->problems_in_order[i];
2211       if (dflow->computed)
2212         {
2213           df_dump_bb_problem_function bbfun;
2214
2215           if (top)
2216             bbfun = dflow->problem->dump_top_fun;
2217           else
2218             bbfun = dflow->problem->dump_bottom_fun;
2219
2220           if (bbfun)
2221             bbfun (bb, file);
2222         }
2223     }
2224 }
2225
2226 /* Dump the top of the block information for BB.  */
2227
2228 void
2229 df_dump_top (basic_block bb, FILE *file)
2230 {
2231   df_dump_bb_problem_data (bb, file, /*top=*/true);
2232 }
2233
2234 /* Dump the bottom of the block information for BB.  */
2235
2236 void
2237 df_dump_bottom (basic_block bb, FILE *file)
2238 {
2239   df_dump_bb_problem_data (bb, file, /*top=*/false);
2240 }
2241
2242
2243 /* Dump information about INSN just before or after dumping INSN itself.  */
2244 static void
2245 df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2246 {
2247   int i;
2248
2249   if (!df || !file)
2250     return;
2251
2252   for (i = 0; i < df->num_problems_defined; i++)
2253     {
2254       struct dataflow *dflow = df->problems_in_order[i];
2255       if (dflow->computed)
2256         {
2257           df_dump_insn_problem_function insnfun;
2258
2259           if (top)
2260             insnfun = dflow->problem->dump_insn_top_fun;
2261           else
2262             insnfun = dflow->problem->dump_insn_bottom_fun;
2263
2264           if (insnfun)
2265             insnfun (insn, file);
2266         }
2267     }
2268 }
2269
2270 /* Dump information about INSN before dumping INSN itself.  */
2271
2272 void
2273 df_dump_insn_top (const rtx_insn *insn, FILE *file)
2274 {
2275   df_dump_insn_problem_data (insn,  file, /*top=*/true);
2276 }
2277
2278 /* Dump information about INSN after dumping INSN itself.  */
2279
2280 void
2281 df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2282 {
2283   df_dump_insn_problem_data (insn,  file, /*top=*/false);
2284 }
2285
2286
2287 static void
2288 df_ref_dump (df_ref ref, FILE *file)
2289 {
2290   fprintf (file, "%c%d(%d)",
2291            DF_REF_REG_DEF_P (ref)
2292            ? 'd'
2293            : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2294            DF_REF_ID (ref),
2295            DF_REF_REGNO (ref));
2296 }
2297
2298 void
2299 df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2300 {
2301   fprintf (file, "{ ");
2302   for (; ref; ref = DF_REF_NEXT_LOC (ref))
2303     {
2304       df_ref_dump (ref, file);
2305       if (follow_chain)
2306         df_chain_dump (DF_REF_CHAIN (ref), file);
2307     }
2308   fprintf (file, "}");
2309 }
2310
2311
2312 /* Dump either a ref-def or reg-use chain.  */
2313
2314 void
2315 df_regs_chain_dump (df_ref ref,  FILE *file)
2316 {
2317   fprintf (file, "{ ");
2318   while (ref)
2319     {
2320       df_ref_dump (ref, file);
2321       ref = DF_REF_NEXT_REG (ref);
2322     }
2323   fprintf (file, "}");
2324 }
2325
2326
2327 static void
2328 df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2329 {
2330   for (; mws; mws = DF_MWS_NEXT (mws))
2331     fprintf (file, "mw %c r[%d..%d]\n",
2332              DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2333              mws->start_regno, mws->end_regno);
2334 }
2335
2336
2337 static void
2338 df_insn_uid_debug (unsigned int uid,
2339                    bool follow_chain, FILE *file)
2340 {
2341   fprintf (file, "insn %d luid %d",
2342            uid, DF_INSN_UID_LUID (uid));
2343
2344   if (DF_INSN_UID_DEFS (uid))
2345     {
2346       fprintf (file, " defs ");
2347       df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2348     }
2349
2350   if (DF_INSN_UID_USES (uid))
2351     {
2352       fprintf (file, " uses ");
2353       df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2354     }
2355
2356   if (DF_INSN_UID_EQ_USES (uid))
2357     {
2358       fprintf (file, " eq uses ");
2359       df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2360     }
2361
2362   if (DF_INSN_UID_MWS (uid))
2363     {
2364       fprintf (file, " mws ");
2365       df_mws_dump (DF_INSN_UID_MWS (uid), file);
2366     }
2367   fprintf (file, "\n");
2368 }
2369
2370
2371 DEBUG_FUNCTION void
2372 df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2373 {
2374   df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2375 }
2376
2377 DEBUG_FUNCTION void
2378 df_insn_debug_regno (rtx_insn *insn, FILE *file)
2379 {
2380   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2381
2382   fprintf (file, "insn %d bb %d luid %d defs ",
2383            INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2384            DF_INSN_INFO_LUID (insn_info));
2385   df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2386
2387   fprintf (file, " uses ");
2388   df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2389
2390   fprintf (file, " eq_uses ");
2391   df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2392   fprintf (file, "\n");
2393 }
2394
2395 DEBUG_FUNCTION void
2396 df_regno_debug (unsigned int regno, FILE *file)
2397 {
2398   fprintf (file, "reg %d defs ", regno);
2399   df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2400   fprintf (file, " uses ");
2401   df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2402   fprintf (file, " eq_uses ");
2403   df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2404   fprintf (file, "\n");
2405 }
2406
2407
2408 DEBUG_FUNCTION void
2409 df_ref_debug (df_ref ref, FILE *file)
2410 {
2411   fprintf (file, "%c%d ",
2412            DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2413            DF_REF_ID (ref));
2414   fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2415            DF_REF_REGNO (ref),
2416            DF_REF_BBNO (ref),
2417            DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2418            DF_REF_FLAGS (ref),
2419            DF_REF_TYPE (ref));
2420   if (DF_REF_LOC (ref))
2421     {
2422       if (flag_dump_noaddr)
2423         fprintf (file, "loc #(#) chain ");
2424       else
2425         fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2426                  (void *)*DF_REF_LOC (ref));
2427     }
2428   else
2429     fprintf (file, "chain ");
2430   df_chain_dump (DF_REF_CHAIN (ref), file);
2431   fprintf (file, "\n");
2432 }
2433 \f
2434 /* Functions for debugging from GDB.  */
2435
2436 DEBUG_FUNCTION void
2437 debug_df_insn (rtx_insn *insn)
2438 {
2439   df_insn_debug (insn, true, stderr);
2440   debug_rtx (insn);
2441 }
2442
2443
2444 DEBUG_FUNCTION void
2445 debug_df_reg (rtx reg)
2446 {
2447   df_regno_debug (REGNO (reg), stderr);
2448 }
2449
2450
2451 DEBUG_FUNCTION void
2452 debug_df_regno (unsigned int regno)
2453 {
2454   df_regno_debug (regno, stderr);
2455 }
2456
2457
2458 DEBUG_FUNCTION void
2459 debug_df_ref (df_ref ref)
2460 {
2461   df_ref_debug (ref, stderr);
2462 }
2463
2464
2465 DEBUG_FUNCTION void
2466 debug_df_defno (unsigned int defno)
2467 {
2468   df_ref_debug (DF_DEFS_GET (defno), stderr);
2469 }
2470
2471
2472 DEBUG_FUNCTION void
2473 debug_df_useno (unsigned int defno)
2474 {
2475   df_ref_debug (DF_USES_GET (defno), stderr);
2476 }
2477
2478
2479 DEBUG_FUNCTION void
2480 debug_df_chain (struct df_link *link)
2481 {
2482   df_chain_dump (link, stderr);
2483   fputc ('\n', stderr);
2484 }