ebfe87db04688c21a5fe982cc51f8cf08dedf921
[platform/upstream/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22
23 #include "config/vxworks-dummy.h"
24
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29
30 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
31 /* #define SPARC_BI_ARCH */
32
33 /* Macro used later in this file to determine default architecture.  */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37    architectures to compile for.  We allow targets to choose compile time or
38    runtime selection.  */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (! TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (! TARGET_ARCH32)
53
54 /* Code model selection in 64-bit environment.
55
56    The machine mode used for addresses is 32-bit wide:
57
58    TARGET_CM_32:     32-bit address space.
59                      It is the code model used when generating 32-bit code.
60
61    The machine mode used for addresses is 64-bit wide:
62
63    TARGET_CM_MEDLOW: 32-bit address space.
64                      The executable must be in the low 32 bits of memory.
65                      This avoids generating %uhi and %ulo terms.  Programs
66                      can be statically or dynamically linked.
67
68    TARGET_CM_MEDMID: 44-bit address space.
69                      The executable must be in the low 44 bits of memory,
70                      and the %[hml]44 terms are used.  The text and data
71                      segments have a maximum size of 2GB (31-bit span).
72                      The maximum offset from any instruction to the label
73                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74
75    TARGET_CM_MEDANY: 64-bit address space.
76                      The text and data segments have a maximum size of 2GB
77                      (31-bit span) and may be located anywhere in memory.
78                      The maximum offset from any instruction to the label
79                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80
81    TARGET_CM_EMBMEDANY: 64-bit address space.
82                      The text and data segments have a maximum size of 2GB
83                      (31-bit span) and may be located anywhere in memory.
84                      The global register %g4 contains the start address of
85                      the data segment.  Programs are statically linked and
86                      PIC is not supported.
87
88    Different code models are not supported in 32-bit environment.  */
89
90 enum cmodel {
91   CM_32,
92   CM_MEDLOW,
93   CM_MEDMID,
94   CM_MEDANY,
95   CM_EMBMEDANY
96 };
97
98 /* One of CM_FOO.  */
99 extern enum cmodel sparc_cmodel;
100
101 /* V9 code model selection.  */
102 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106
107 #define SPARC_DEFAULT_CMODEL CM_32
108
109 /* Do not use the .note.GNU-stack convention by default.  */
110 #define NEED_INDICATE_EXEC_STACK 0
111
112 /* This is call-clobbered in the normal ABI, but is reserved in the
113    home grown (aka upward compatible) embedded ABI.  */
114 #define EMBMEDANY_BASE_REG "%g4"
115 \f
116 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
117    and specified by the user via --with-cpu=foo.
118    This specifies the cpu implementation, not the architecture size.  */
119 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
120    capable cpu's.  */
121 #define TARGET_CPU_sparc        0
122 #define TARGET_CPU_v7           0       /* alias */
123 #define TARGET_CPU_cypress      0       /* alias */
124 #define TARGET_CPU_v8           1       /* generic v8 implementation */
125 #define TARGET_CPU_supersparc   2
126 #define TARGET_CPU_hypersparc   3
127 #define TARGET_CPU_leon         4
128 #define TARGET_CPU_leon3        5
129 #define TARGET_CPU_leon3v7      6
130 #define TARGET_CPU_sparclite    7
131 #define TARGET_CPU_f930         7       /* alias */
132 #define TARGET_CPU_f934         7       /* alias */
133 #define TARGET_CPU_sparclite86x 8
134 #define TARGET_CPU_sparclet     9
135 #define TARGET_CPU_tsc701       9       /* alias */
136 #define TARGET_CPU_v9           10      /* generic v9 implementation */
137 #define TARGET_CPU_sparcv9      10      /* alias */
138 #define TARGET_CPU_sparc64      10      /* alias */
139 #define TARGET_CPU_ultrasparc   11
140 #define TARGET_CPU_ultrasparc3  12
141 #define TARGET_CPU_niagara      13
142 #define TARGET_CPU_niagara2     14
143 #define TARGET_CPU_niagara3     15
144 #define TARGET_CPU_niagara4     16
145
146 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
147  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
148  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
149  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
150  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
151  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
152  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
153
154 #define CPP_CPU32_DEFAULT_SPEC ""
155 #define ASM_CPU32_DEFAULT_SPEC ""
156
157 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
158 /* ??? What does Sun's CC pass?  */
159 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
160 /* ??? It's not clear how other assemblers will handle this, so by default
161    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
162    is handled in sol2.h.  */
163 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
164 #endif
165 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
166 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
167 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
168 #endif
169 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
172 #endif
173 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
174 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
175 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
176 #endif
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
178 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
179 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
180 #endif
181 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
182 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
183 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
184 #endif
185 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
186 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
187 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
188 #endif
189
190 #else
191
192 #define CPP_CPU64_DEFAULT_SPEC ""
193 #define ASM_CPU64_DEFAULT_SPEC ""
194
195 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
196  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
197 #define CPP_CPU32_DEFAULT_SPEC ""
198 #define ASM_CPU32_DEFAULT_SPEC ""
199 #endif
200
201 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
202 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
203 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
204 #endif
205
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
207 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
208 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
209 #endif
210
211 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
212 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
213 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
214 #endif
215
216 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
217 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
218 #define ASM_CPU32_DEFAULT_SPEC ""
219 #endif
220
221 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
222 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
223 #define ASM_CPU32_DEFAULT_SPEC ""
224 #endif
225
226 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
227  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
228 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
229 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
230 #endif
231
232 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
233 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
234 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
235 #endif
236
237 #endif
238
239 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
240  #error Unrecognized value in TARGET_CPU_DEFAULT.
241 #endif
242
243 #ifdef SPARC_BI_ARCH
244
245 #define CPP_CPU_DEFAULT_SPEC \
246 (DEFAULT_ARCH32_P ? "\
247 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
248 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
249 " : "\
250 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
251 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
252 ")
253 #define ASM_CPU_DEFAULT_SPEC \
254 (DEFAULT_ARCH32_P ? "\
255 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
256 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
257 " : "\
258 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
259 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
260 ")
261
262 #else /* !SPARC_BI_ARCH */
263
264 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
265 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
266
267 #endif /* !SPARC_BI_ARCH */
268
269 /* Define macros to distinguish architectures.  */
270
271 /* Common CPP definitions used by CPP_SPEC amongst the various targets
272    for handling -mcpu=xxx switches.  */
273 #define CPP_CPU_SPEC "\
274 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
275 %{mcpu=sparclite:-D__sparclite__} \
276 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
277 %{mcpu=sparclite86x:-D__sparclite86x__} \
278 %{mcpu=v8:-D__sparc_v8__} \
279 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
280 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
281 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
282 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
283 %{mcpu=leon3v7:-D__leon__} \
284 %{mcpu=v9:-D__sparc_v9__} \
285 %{mcpu=ultrasparc:-D__sparc_v9__} \
286 %{mcpu=ultrasparc3:-D__sparc_v9__} \
287 %{mcpu=niagara:-D__sparc_v9__} \
288 %{mcpu=niagara2:-D__sparc_v9__} \
289 %{mcpu=niagara3:-D__sparc_v9__} \
290 %{mcpu=niagara4:-D__sparc_v9__} \
291 %{!mcpu*:%(cpp_cpu_default)} \
292 "
293 #define CPP_ARCH32_SPEC ""
294 #define CPP_ARCH64_SPEC "-D__arch64__"
295
296 #define CPP_ARCH_DEFAULT_SPEC \
297 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
298
299 #define CPP_ARCH_SPEC "\
300 %{m32:%(cpp_arch32)} \
301 %{m64:%(cpp_arch64)} \
302 %{!m32:%{!m64:%(cpp_arch_default)}} \
303 "
304
305 /* Macros to distinguish the endianness, window model and FP support.  */
306 #define CPP_OTHER_SPEC "\
307 %{mflat:-D_FLAT} \
308 %{msoft-float:-D_SOFT_FLOAT} \
309 "
310
311 /* Macros to distinguish the particular subtarget.  */
312 #define CPP_SUBTARGET_SPEC ""
313
314 #define CPP_SPEC \
315   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
316
317 /* This used to translate -dalign to -malign, but that is no good
318    because it can't turn off the usual meaning of making debugging dumps.  */
319
320 #define CC1_SPEC ""
321
322 /* Override in target specific files.  */
323 #define ASM_CPU_SPEC "\
324 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
325 %{mcpu=sparclite:-Asparclite} \
326 %{mcpu=sparclite86x:-Asparclite} \
327 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
328 %{mcpu=v8:-Av8} \
329 %{mcpu=supersparc:-Av8} \
330 %{mcpu=hypersparc:-Av8} \
331 %{mcpu=leon:" AS_LEON_FLAG "} \
332 %{mcpu=leon3:" AS_LEON_FLAG "} \
333 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
334 %{mv8plus:-Av8plus} \
335 %{mcpu=v9:-Av9} \
336 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
337 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
338 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
339 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
340 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
341 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
342 %{!mcpu*:%(asm_cpu_default)} \
343 "
344
345 /* Word size selection, among other things.
346    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
347
348 #define ASM_ARCH32_SPEC "-32"
349 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
350 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
351 #else
352 #define ASM_ARCH64_SPEC "-64"
353 #endif
354 #define ASM_ARCH_DEFAULT_SPEC \
355 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
356
357 #define ASM_ARCH_SPEC "\
358 %{m32:%(asm_arch32)} \
359 %{m64:%(asm_arch64)} \
360 %{!m32:%{!m64:%(asm_arch_default)}} \
361 "
362
363 #ifdef HAVE_AS_RELAX_OPTION
364 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
365 #else
366 #define ASM_RELAX_SPEC ""
367 #endif
368
369 /* Special flags to the Sun-4 assembler when using pipe for input.  */
370
371 #define ASM_SPEC "\
372 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
373 %(asm_cpu) %(asm_relax)"
374
375 /* This macro defines names of additional specifications to put in the specs
376    that can be used in various specifications like CC1_SPEC.  Its definition
377    is an initializer with a subgrouping for each command option.
378
379    Each subgrouping contains a string constant, that defines the
380    specification name, and a string constant that used by the GCC driver
381    program.
382
383    Do not define this macro if it does not need to do anything.  */
384
385 #define EXTRA_SPECS \
386   { "cpp_cpu",          CPP_CPU_SPEC },         \
387   { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
388   { "cpp_arch32",       CPP_ARCH32_SPEC },      \
389   { "cpp_arch64",       CPP_ARCH64_SPEC },      \
390   { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
391   { "cpp_arch",         CPP_ARCH_SPEC },        \
392   { "cpp_other",        CPP_OTHER_SPEC },       \
393   { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
394   { "asm_cpu",          ASM_CPU_SPEC },         \
395   { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
396   { "asm_arch32",       ASM_ARCH32_SPEC },      \
397   { "asm_arch64",       ASM_ARCH64_SPEC },      \
398   { "asm_relax",        ASM_RELAX_SPEC },       \
399   { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
400   { "asm_arch",         ASM_ARCH_SPEC },        \
401   SUBTARGET_EXTRA_SPECS
402
403 #define SUBTARGET_EXTRA_SPECS
404
405 /* Because libgcc can generate references back to libc (via .umul etc.) we have
406    to list libc again after the second libgcc.  */
407 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
408
409 \f
410 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
411 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
412
413 /* ??? This should be 32 bits for v9 but what can we do?  */
414 #define WCHAR_TYPE "short unsigned int"
415 #define WCHAR_TYPE_SIZE 16
416 \f
417 /* Mask of all CPU selection flags.  */
418 #define MASK_ISA                                        \
419   (MASK_SPARCLITE + MASK_SPARCLET                       \
420    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
421
422 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
423 #define TARGET_HARD_MUL                         \
424   (TARGET_SPARCLITE || TARGET_SPARCLET          \
425    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
426
427 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
428    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
429    a 64-bit result in a register.  */
430 #define TARGET_HARD_MUL32 \
431   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
432
433 /* MASK_APP_REGS must always be the default because that's what
434    FIXED_REGISTERS is set to and -ffixed- is processed before
435    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
436    -mno-app-regs).  */
437 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
438
439 /* Recast the cpu class to be the cpu attribute.
440    Every file includes us, but not every file includes insn-attr.h.  */
441 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
442
443 /* Support for a compile-time default CPU, et cetera.  The rules are:
444    --with-cpu is ignored if -mcpu is specified.
445    --with-tune is ignored if -mtune is specified.
446    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
447      are specified.  */
448 #define OPTION_DEFAULT_SPECS \
449   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
450   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
451   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
452 \f
453 /* target machine storage layout */
454
455 /* Define this if most significant bit is lowest numbered
456    in instructions that operate on numbered bit-fields.  */
457 #define BITS_BIG_ENDIAN 1
458
459 /* Define this if most significant byte of a word is the lowest numbered.  */
460 #define BYTES_BIG_ENDIAN 1
461
462 /* Define this if most significant word of a multiword number is the lowest
463    numbered.  */
464 #define WORDS_BIG_ENDIAN 1
465
466 #define MAX_BITS_PER_WORD       64
467
468 /* Width of a word, in units (bytes).  */
469 #define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
470 #ifdef IN_LIBGCC2
471 #define MIN_UNITS_PER_WORD      UNITS_PER_WORD
472 #else
473 #define MIN_UNITS_PER_WORD      4
474 #endif
475
476 /* Now define the sizes of the C data types.  */
477 #define SHORT_TYPE_SIZE         16
478 #define INT_TYPE_SIZE           32
479 #define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
480 #define LONG_LONG_TYPE_SIZE     64
481 #define FLOAT_TYPE_SIZE         32
482 #define DOUBLE_TYPE_SIZE        64
483
484 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
485    SPARC ABI says that it is 128-bit wide.  */
486 /* #define LONG_DOUBLE_TYPE_SIZE        128 */
487
488 /* The widest floating-point format really supported by the hardware.  */
489 #define WIDEST_HARDWARE_FP_SIZE 64
490
491 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
492 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
493
494 /* This is the machine mode used for addresses.  */
495 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
496
497 /* If we have to extend pointers (only when TARGET_ARCH64 and not
498    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
499    if ptr_mode and Pmode are the same.  */
500 #define POINTERS_EXTEND_UNSIGNED 1
501
502 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
503 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
504
505 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
506 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
507    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
508 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
509
510 /* Temporary hack until the FIXME above is fixed.  */
511 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
512
513 /* ALIGN FRAMES on double word boundaries */
514 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
515
516 /* Allocation boundary (in *bits*) for the code of a function.  */
517 #define FUNCTION_BOUNDARY 32
518
519 /* Alignment of field after `int : 0' in a structure.  */
520 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
521
522 /* Every structure's size must be a multiple of this.  */
523 #define STRUCTURE_SIZE_BOUNDARY 8
524
525 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
526 #define PCC_BITFIELD_TYPE_MATTERS 1
527
528 /* No data type wants to be aligned rounder than this.  */
529 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
530
531 /* The best alignment to use in cases where we have a choice.  */
532 #define FASTEST_ALIGNMENT 64
533
534 /* Define this macro as an expression for the alignment of a structure
535    (given by STRUCT as a tree node) if the alignment computed in the
536    usual way is COMPUTED and the alignment explicitly specified was
537    SPECIFIED.
538
539    The default is to use SPECIFIED if it is larger; otherwise, use
540    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
541 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
542  (TARGET_FASTER_STRUCTS ?                               \
543   ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
544     || TREE_CODE (STRUCT) == UNION_TYPE                 \
545     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
546    && TYPE_FIELDS (STRUCT) != 0                         \
547      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
548      : MAX ((COMPUTED), (SPECIFIED)))                   \
549    :  MAX ((COMPUTED), (SPECIFIED)))
550
551 /* An integer expression for the size in bits of the largest integer machine
552    mode that should actually be used.  We allow pairs of registers.  */
553 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
554
555 /* We need 2 words, so we can save the stack pointer and the return register
556    of the function containing a non-local goto target.  */
557 #define STACK_SAVEAREA_MODE(LEVEL) \
558   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
559
560 /* Make strings word-aligned so strcpy from constants will be faster.  */
561 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
562   ((TREE_CODE (EXP) == STRING_CST       \
563     && (ALIGN) < FASTEST_ALIGNMENT)     \
564    ? FASTEST_ALIGNMENT : (ALIGN))
565
566 /* Make arrays of chars word-aligned for the same reasons.  */
567 #define DATA_ALIGNMENT(TYPE, ALIGN)             \
568   (TREE_CODE (TYPE) == ARRAY_TYPE               \
569    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
570    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
571
572 /* Make local arrays of chars word-aligned for the same reasons.  */
573 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
574
575 /* Set this nonzero if move instructions will actually fail to work
576    when given unaligned data.  */
577 #define STRICT_ALIGNMENT 1
578
579 /* Things that must be doubleword aligned cannot go in the text section,
580    because the linker fails to align the text section enough!
581    Put them in the data section.  This macro is only used in this file.  */
582 #define MAX_TEXT_ALIGN 32
583 \f
584 /* Standard register usage.  */
585
586 /* Number of actual hardware registers.
587    The hardware registers are assigned numbers for the compiler
588    from 0 to just below FIRST_PSEUDO_REGISTER.
589    All registers that the compiler knows about must be given numbers,
590    even those that are not normally considered general registers.
591
592    SPARC has 32 integer registers and 32 floating point registers.
593    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
594    accessible.  We still account for them to simplify register computations
595    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
596    32+32+32+4 == 100.
597    Register 100 is used as the integer condition code register.
598    Register 101 is used as the soft frame pointer register.  */
599
600 #define FIRST_PSEUDO_REGISTER 103
601
602 #define SPARC_FIRST_INT_REG     0
603 #define SPARC_LAST_INT_REG     31
604 #define SPARC_FIRST_FP_REG     32
605 /* Additional V9 fp regs.  */
606 #define SPARC_FIRST_V9_FP_REG  64
607 #define SPARC_LAST_V9_FP_REG   95
608 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
609 #define SPARC_FIRST_V9_FCC_REG 96
610 #define SPARC_LAST_V9_FCC_REG  99
611 /* V8 fcc reg.  */
612 #define SPARC_FCC_REG 96
613 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
614 #define SPARC_ICC_REG 100
615 #define SPARC_GSR_REG 102
616
617 /* Nonzero if REGNO is an fp reg.  */
618 #define SPARC_FP_REG_P(REGNO) \
619 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
620
621 /* Nonzero if REGNO is an int reg.  */
622 #define SPARC_INT_REG_P(REGNO) \
623 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
624
625 /* Argument passing regs.  */
626 #define SPARC_OUTGOING_INT_ARG_FIRST 8
627 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
628 #define SPARC_FP_ARG_FIRST           32
629
630 /* 1 for registers that have pervasive standard uses
631    and are not available for the register allocator.
632
633    On non-v9 systems:
634    g1 is free to use as temporary.
635    g2-g4 are reserved for applications.  Gcc normally uses them as
636    temporaries, but this can be disabled via the -mno-app-regs option.
637    g5 through g7 are reserved for the operating system.
638
639    On v9 systems:
640    g1,g5 are free to use as temporaries, and are free to use between calls
641    if the call is to an external function via the PLT.
642    g4 is free to use as a temporary in the non-embedded case.
643    g4 is reserved in the embedded case.
644    g2-g3 are reserved for applications.  Gcc normally uses them as
645    temporaries, but this can be disabled via the -mno-app-regs option.
646    g6-g7 are reserved for the operating system (or application in
647    embedded case).
648    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
649    currently be a fixed register until this pattern is rewritten.
650    Register 1 is also used when restoring call-preserved registers in large
651    stack frames.
652
653    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
654    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
655 */
656
657 #define FIXED_REGISTERS  \
658  {1, 0, 2, 2, 2, 2, 1, 1,       \
659   0, 0, 0, 0, 0, 0, 1, 0,       \
660   0, 0, 0, 0, 0, 0, 0, 0,       \
661   0, 0, 0, 0, 0, 0, 0, 1,       \
662                                 \
663   0, 0, 0, 0, 0, 0, 0, 0,       \
664   0, 0, 0, 0, 0, 0, 0, 0,       \
665   0, 0, 0, 0, 0, 0, 0, 0,       \
666   0, 0, 0, 0, 0, 0, 0, 0,       \
667                                 \
668   0, 0, 0, 0, 0, 0, 0, 0,       \
669   0, 0, 0, 0, 0, 0, 0, 0,       \
670   0, 0, 0, 0, 0, 0, 0, 0,       \
671   0, 0, 0, 0, 0, 0, 0, 0,       \
672                                 \
673   0, 0, 0, 0, 0, 1, 1}
674
675 /* 1 for registers not available across function calls.
676    These must include the FIXED_REGISTERS and also any
677    registers that can be used without being saved.
678    The latter must include the registers where values are returned
679    and the register where structure-value addresses are passed.
680    Aside from that, you can include as many other registers as you like.  */
681
682 #define CALL_USED_REGISTERS  \
683  {1, 1, 1, 1, 1, 1, 1, 1,       \
684   1, 1, 1, 1, 1, 1, 1, 1,       \
685   0, 0, 0, 0, 0, 0, 0, 0,       \
686   0, 0, 0, 0, 0, 0, 0, 1,       \
687                                 \
688   1, 1, 1, 1, 1, 1, 1, 1,       \
689   1, 1, 1, 1, 1, 1, 1, 1,       \
690   1, 1, 1, 1, 1, 1, 1, 1,       \
691   1, 1, 1, 1, 1, 1, 1, 1,       \
692                                 \
693   1, 1, 1, 1, 1, 1, 1, 1,       \
694   1, 1, 1, 1, 1, 1, 1, 1,       \
695   1, 1, 1, 1, 1, 1, 1, 1,       \
696   1, 1, 1, 1, 1, 1, 1, 1,       \
697                                 \
698   1, 1, 1, 1, 1, 1, 1}
699
700 /* 1 for registers not available across function calls.
701    Unlike the above, this need not include the FIXED_REGISTERS, but any
702    registers that can be used without being saved.
703    The latter must include the registers where values are returned
704    and the register where structure-value addresses are passed.
705    Aside from that, you can include as many other registers as you like.  */
706
707 #define CALL_REALLY_USED_REGISTERS  \
708  {1, 1, 1, 1, 1, 1, 1, 1,       \
709   1, 1, 1, 1, 1, 1, 1, 1,       \
710   0, 0, 0, 0, 0, 0, 0, 0,       \
711   0, 0, 0, 0, 0, 0, 0, 0,       \
712                                 \
713   1, 1, 1, 1, 1, 1, 1, 1,       \
714   1, 1, 1, 1, 1, 1, 1, 1,       \
715   1, 1, 1, 1, 1, 1, 1, 1,       \
716   1, 1, 1, 1, 1, 1, 1, 1,       \
717                                 \
718   1, 1, 1, 1, 1, 1, 1, 1,       \
719   1, 1, 1, 1, 1, 1, 1, 1,       \
720   1, 1, 1, 1, 1, 1, 1, 1,       \
721   1, 1, 1, 1, 1, 1, 1, 1,       \
722                                 \
723   1, 1, 1, 1, 1, 1, 1}
724
725 /* Return number of consecutive hard regs needed starting at reg REGNO
726    to hold something of mode MODE.
727    This is ordinarily the length in words of a value of mode MODE
728    but can be less for certain modes in special long registers.
729
730    On SPARC, ordinary registers hold 32 bits worth;
731    this means both integer and floating point registers.
732    On v9, integer regs hold 64 bits worth; floating point regs hold
733    32 bits worth (this includes the new fp regs as even the odd ones are
734    included in the hard register count).  */
735
736 #define HARD_REGNO_NREGS(REGNO, MODE) \
737   ((REGNO) == SPARC_GSR_REG ? 1 :                                       \
738    (TARGET_ARCH64                                                       \
739     ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM                       \
740        ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD   \
741        : (GET_MODE_SIZE (MODE) + 3) / 4)                                \
742     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
743
744 /* Due to the ARCH64 discrepancy above we must override this next
745    macro too.  */
746 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
747
748 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
749    See sparc.c for how we initialize this.  */
750 extern const int *hard_regno_mode_classes;
751 extern int sparc_mode_class[];
752
753 /* ??? Because of the funny way we pass parameters we should allow certain
754    ??? types of float/complex values to be in integer registers during
755    ??? RTL generation.  This only matters on arch32.  */
756 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
757   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
758
759 /* Value is 1 if it is OK to rename a hard register FROM to another hard
760    register TO.  We cannot rename %g1 as it may be used before the save
761    register window instruction in the prologue.  */
762 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
763
764 #define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
765
766 /* Specify the registers used for certain standard purposes.
767    The values of these macros are register numbers.  */
768
769 /* Register to use for pushing function arguments.  */
770 #define STACK_POINTER_REGNUM 14
771
772 /* The stack bias (amount by which the hardware register is offset by).  */
773 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
774
775 /* Actual top-of-stack address is 92/176 greater than the contents of the
776    stack pointer register for !v9/v9.  That is:
777    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
778      address, and 6*4 bytes for the 6 register parameters.
779    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
780      parameter regs.  */
781 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
782
783 /* Base register for access to local variables of the function.  */
784 #define HARD_FRAME_POINTER_REGNUM 30
785
786 /* The soft frame pointer does not have the stack bias applied.  */
787 #define FRAME_POINTER_REGNUM 101
788
789 /* Given the stack bias, the stack pointer isn't actually aligned.  */
790 #define INIT_EXPANDERS                                                   \
791   do {                                                                   \
792     if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)      \
793       {                                                                  \
794         REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
795         REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
796       }                                                                  \
797   } while (0)
798
799 /* Base register for access to arguments of the function.  */
800 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
801
802 /* Register in which static-chain is passed to a function.  This must
803    not be a register used by the prologue.  */
804 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
805
806 /* Register which holds the global offset table, if any.  */
807
808 #define GLOBAL_OFFSET_TABLE_REGNUM 23
809
810 /* Register which holds offset table for position-independent
811    data references.  */
812
813 #define PIC_OFFSET_TABLE_REGNUM \
814   (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
815
816 /* Pick a default value we can notice from override_options:
817    !v9: Default is on.
818    v9: Default is off.
819    Originally it was -1, but later on the container of options changed to
820    unsigned byte, so we decided to pick 127 as default value, which does
821    reflect an undefined default value in case of 0/1.  */
822
823 #define DEFAULT_PCC_STRUCT_RETURN 127
824
825 /* Functions which return large structures get the address
826    to place the wanted value at offset 64 from the frame.
827    Must reserve 64 bytes for the in and local registers.
828    v9: Functions which return large structures get the address to place the
829    wanted value from an invisible first argument.  */
830 #define STRUCT_VALUE_OFFSET 64
831 \f
832 /* Define the classes of registers for register constraints in the
833    machine description.  Also define ranges of constants.
834
835    One of the classes must always be named ALL_REGS and include all hard regs.
836    If there is more than one class, another class must be named NO_REGS
837    and contain no registers.
838
839    The name GENERAL_REGS must be the name of a class (or an alias for
840    another name such as ALL_REGS).  This is the class of registers
841    that is allowed by "g" or "r" in a register constraint.
842    Also, registers outside this class are allocated only when
843    instructions express preferences for them.
844
845    The classes must be numbered in nondecreasing order; that is,
846    a larger-numbered class must never be contained completely
847    in a smaller-numbered class.
848
849    For any two classes, it is very desirable that there be another
850    class that represents their union.  */
851
852 /* The SPARC has various kinds of registers: general, floating point,
853    and condition codes [well, it has others as well, but none that we
854    care directly about].
855
856    For v9 we must distinguish between the upper and lower floating point
857    registers because the upper ones can't hold SFmode values.
858    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
859    satisfying a group need for a class will also satisfy a single need for
860    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
861    regs.
862
863    It is important that one class contains all the general and all the standard
864    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
865    because reg_class_record() will bias the selection in favor of fp regs,
866    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
867    because FP_REGS > GENERAL_REGS.
868
869    It is also important that one class contain all the general and all
870    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
871    EXTRA_FP_REGS but find_reloads() may use class
872    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
873    because the compiler thinks it doesn't have a spill reg when in
874    fact it does.
875
876    v9 also has 4 floating point condition code registers.  Since we don't
877    have a class that is the union of FPCC_REGS with either of the others,
878    it is important that it appear first.  Otherwise the compiler will die
879    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
880    constraints.
881
882    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
883    may try to use it to hold an SImode value.  See register_operand.
884    ??? Should %fcc[0123] be handled similarly?
885 */
886
887 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
888                  EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
889                  ALL_REGS, LIM_REG_CLASSES };
890
891 #define N_REG_CLASSES (int) LIM_REG_CLASSES
892
893 /* Give names of register classes as strings for dump file.  */
894
895 #define REG_CLASS_NAMES \
896   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
897      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
898      "ALL_REGS" }
899
900 /* Define which registers fit in which classes.
901    This is an initializer for a vector of HARD_REG_SET
902    of length N_REG_CLASSES.  */
903
904 #define REG_CLASS_CONTENTS                              \
905   {{0, 0, 0, 0},        /* NO_REGS */                   \
906    {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
907    {0xffff, 0, 0, 0},   /* I64_REGS */                  \
908    {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
909    {0, -1, 0, 0},       /* FP_REGS */                   \
910    {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
911    {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
912    {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
913    {-1, -1, -1, 0x7f}}  /* ALL_REGS */
914
915 /* The same information, inverted:
916    Return the class number of the smallest class containing
917    reg number REGNO.  This could be a conditional expression
918    or could index an array.  */
919
920 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
921
922 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
923
924 /* Defines invalid mode changes.  Borrowed from the PA port.
925
926    SImode loads to floating-point registers are not zero-extended.
927    The definition for LOAD_EXTEND_OP specifies that integer loads
928    narrower than BITS_PER_WORD will be zero-extended.  As a result,
929    we inhibit changes from SImode unless they are to a mode that is
930    identical in size.
931
932    Likewise for SFmode, since word-mode paradoxical subregs are
933    problematic on big-endian architectures.  */
934
935 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
936   (TARGET_ARCH64                                                \
937    && GET_MODE_SIZE (FROM) == 4                                 \
938    && GET_MODE_SIZE (TO) != 4                                   \
939    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
940
941 /* This is the order in which to allocate registers normally.
942
943    We put %f0-%f7 last among the float registers, so as to make it more
944    likely that a pseudo-register which dies in the float return register
945    area will get allocated to the float return register, thus saving a move
946    instruction at the end of the function.
947
948    Similarly for integer return value registers.
949
950    We know in this case that we will not end up with a leaf function.
951
952    The register allocator is given the global and out registers first
953    because these registers are call clobbered and thus less useful to
954    global register allocation.
955
956    Next we list the local and in registers.  They are not call clobbered
957    and thus very useful for global register allocation.  We list the input
958    registers before the locals so that it is more likely the incoming
959    arguments received in those registers can just stay there and not be
960    reloaded.  */
961
962 #define REG_ALLOC_ORDER \
963 { 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
964   13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
965   15,                                   /* %o7 */       \
966   16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
967   29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
968   40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
969   48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
970   56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
971   64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
972   72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
973   80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
974   88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
975   39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
976   96, 97, 98, 99,                       /* %fcc0-3 */   \
977   100, 0, 14, 30, 101, 102 }            /* %icc, %g0, %o6, %i6, %sfp, %gsr */
978
979 /* This is the order in which to allocate registers for
980    leaf functions.  If all registers can fit in the global and
981    output registers, then we have the possibility of having a leaf
982    function.
983
984    The macro actually mentioned the input registers first,
985    because they get renumbered into the output registers once
986    we know really do have a leaf function.
987
988    To be more precise, this register allocation order is used
989    when %o7 is found to not be clobbered right before register
990    allocation.  Normally, the reason %o7 would be clobbered is
991    due to a call which could not be transformed into a sibling
992    call.
993
994    As a consequence, it is possible to use the leaf register
995    allocation order and not end up with a leaf function.  We will
996    not get suboptimal register allocation in that case because by
997    definition of being potentially leaf, there were no function
998    calls.  Therefore, allocation order within the local register
999    window is not critical like it is when we do have function calls.  */
1000
1001 #define REG_LEAF_ALLOC_ORDER \
1002 { 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
1003   29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
1004   15,                                   /* %o7 */       \
1005   13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
1006   16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
1007   40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
1008   48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
1009   56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
1010   64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
1011   72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
1012   80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
1013   88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
1014   39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
1015   96, 97, 98, 99,                       /* %fcc0-3 */   \
1016   100, 0, 14, 30, 31, 101, 102 }        /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1017
1018 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1019
1020 extern char sparc_leaf_regs[];
1021 #define LEAF_REGISTERS sparc_leaf_regs
1022
1023 extern char leaf_reg_remap[];
1024 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1025
1026 /* The class value for index registers, and the one for base regs.  */
1027 #define INDEX_REG_CLASS GENERAL_REGS
1028 #define BASE_REG_CLASS GENERAL_REGS
1029
1030 /* Local macro to handle the two v9 classes of FP regs.  */
1031 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1032
1033 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1034 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1035 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1036 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1037 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1038
1039 /* 10- and 11-bit immediates are only used for a few specific insns.
1040    SMALL_INT is used throughout the port so we continue to use it.  */
1041 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1042
1043 /* Predicate for constants that can be loaded with a sethi instruction.
1044    This is the general, 64-bit aware, bitwise version that ensures that
1045    only constants whose representation fits in the mask
1046
1047      0x00000000fffffc00
1048
1049    are accepted.  It will reject, for example, negative SImode constants
1050    on 64-bit hosts, so correct handling is to mask the value beforehand
1051    according to the mode of the instruction.  */
1052 #define SPARC_SETHI_P(X) \
1053   (((unsigned HOST_WIDE_INT) (X) \
1054     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1055
1056 /* Version of the above predicate for SImode constants and below.  */
1057 #define SPARC_SETHI32_P(X) \
1058   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1059
1060 /* On SPARC when not VIS3 it is not possible to directly move data
1061    between GENERAL_REGS and FP_REGS.  */
1062 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1063   ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1064    && (! TARGET_VIS3 \
1065        || GET_MODE_SIZE (MODE) > 8 \
1066        || GET_MODE_SIZE (MODE) < 4))
1067
1068 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1069    because the movsi and movsf patterns don't handle r/f moves.
1070    For v8 we copy the default definition.  */
1071 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1072   (TARGET_ARCH64                                                \
1073    ? (GET_MODE_BITSIZE (MODE) < 32                              \
1074       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1075       : MODE)                                                   \
1076    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1077       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1078       : MODE))
1079
1080 /* Return the maximum number of consecutive registers
1081    needed to represent mode MODE in a register of class CLASS.  */
1082 /* On SPARC, this is the size of MODE in words.  */
1083 #define CLASS_MAX_NREGS(CLASS, MODE)    \
1084   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1085    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1086 \f
1087 /* Stack layout; function entry, exit and calling.  */
1088
1089 /* Define this if pushing a word on the stack
1090    makes the stack pointer a smaller address.  */
1091 #define STACK_GROWS_DOWNWARD 1
1092
1093 /* Define this to nonzero if the nominal address of the stack frame
1094    is at the high-address end of the local variables;
1095    that is, each additional local variable allocated
1096    goes at a more negative offset in the frame.  */
1097 #define FRAME_GROWS_DOWNWARD 1
1098
1099 /* Offset within stack frame to start allocating local variables at.
1100    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1101    first local allocated.  Otherwise, it is the offset to the BEGINNING
1102    of the first local allocated.  */
1103 #define STARTING_FRAME_OFFSET 0
1104
1105 /* Offset of first parameter from the argument pointer register value.
1106    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1107    even if this function isn't going to use it.
1108    v9: This is 128 for the ins and locals.  */
1109 #define FIRST_PARM_OFFSET(FNDECL) \
1110   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1111
1112 /* Offset from the argument pointer register value to the CFA.
1113    This is different from FIRST_PARM_OFFSET because the register window
1114    comes between the CFA and the arguments.  */
1115 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1116
1117 /* When a parameter is passed in a register, stack space is still
1118    allocated for it.
1119    !v9: All 6 possible integer registers have backing store allocated.
1120    v9: Only space for the arguments passed is allocated.  */
1121 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1122    meaning to the backend.  Further, we need to be able to detect if a
1123    varargs/unprototyped function is called, as they may want to spill more
1124    registers than we've provided space.  Ugly, ugly.  So for now we retain
1125    all 6 slots even for v9.  */
1126 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1127
1128 /* Definitions for register elimination.  */
1129
1130 #define ELIMINABLE_REGS \
1131   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1132    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1133
1134 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)            \
1135   do                                                            \
1136     {                                                           \
1137       (OFFSET) = sparc_initial_elimination_offset ((TO));       \
1138     }                                                           \
1139   while (0)
1140
1141 /* Keep the stack pointer constant throughout the function.
1142    This is both an optimization and a necessity: longjmp
1143    doesn't behave itself when the stack pointer moves within
1144    the function!  */
1145 #define ACCUMULATE_OUTGOING_ARGS 1
1146
1147 /* Define this macro if the target machine has "register windows".  This
1148    C expression returns the register number as seen by the called function
1149    corresponding to register number OUT as seen by the calling function.
1150    Return OUT if register number OUT is not an outbound register.  */
1151
1152 #define INCOMING_REGNO(OUT) \
1153  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1154
1155 /* Define this macro if the target machine has "register windows".  This
1156    C expression returns the register number as seen by the calling function
1157    corresponding to register number IN as seen by the called function.
1158    Return IN if register number IN is not an inbound register.  */
1159
1160 #define OUTGOING_REGNO(IN) \
1161  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1162
1163 /* Define this macro if the target machine has register windows.  This
1164    C expression returns true if the register is call-saved but is in the
1165    register window.  */
1166
1167 #define LOCAL_REGNO(REGNO) \
1168   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1169
1170 /* Define the size of space to allocate for the return value of an
1171    untyped_call.  */
1172
1173 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1174
1175 /* 1 if N is a possible register number for function argument passing.
1176    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1177
1178 #define FUNCTION_ARG_REGNO_P(N) \
1179   (((N) >= 8 && (N) <= 13)      \
1180    || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1181 \f
1182 /* Define a data type for recording info about an argument list
1183    during the scan of that argument list.  This data type should
1184    hold all necessary information about the function itself
1185    and about the args processed so far, enough to enable macros
1186    such as FUNCTION_ARG to determine where the next arg should go.
1187
1188    On SPARC (!v9), this is a single integer, which is a number of words
1189    of arguments scanned so far (including the invisible argument,
1190    if any, which holds the structure-value-address).
1191    Thus 7 or more means all following args should go on the stack.
1192
1193    For v9, we also need to know whether a prototype is present.  */
1194
1195 struct sparc_args {
1196   int words;       /* number of words passed so far */
1197   int prototype_p; /* nonzero if a prototype is present */
1198   int libcall_p;   /* nonzero if a library call */
1199 };
1200 #define CUMULATIVE_ARGS struct sparc_args
1201
1202 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1203    for a call to a function whose data type is FNTYPE.
1204    For a library call, FNTYPE is 0.  */
1205
1206 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1207 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1208
1209 /* If defined, a C expression which determines whether, and in which direction,
1210    to pad out an argument with extra space.  The value should be of type
1211    `enum direction': either `upward' to pad above the argument,
1212    `downward' to pad below, or `none' to inhibit padding.  */
1213
1214 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1215 function_arg_padding ((MODE), (TYPE))
1216
1217 \f
1218 /* Generate the special assembly code needed to tell the assembler whatever
1219    it might need to know about the return value of a function.
1220
1221    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1222    information to the assembler relating to peephole optimization (done in
1223    the assembler).  */
1224
1225 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1226   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1227
1228 /* Output the special assembly code needed to tell the assembler some
1229    register is used as global register variable.
1230
1231    SPARC 64bit psABI declares registers %g2 and %g3 as application
1232    registers and %g6 and %g7 as OS registers.  Any object using them
1233    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1234    and how they are used (scratch or some global variable).
1235    Linker will then refuse to link together objects which use those
1236    registers incompatibly.
1237
1238    Unless the registers are used for scratch, two different global
1239    registers cannot be declared to the same name, so in the unlikely
1240    case of a global register variable occupying more than one register
1241    we prefix the second and following registers with .gnu.part1. etc.  */
1242
1243 extern GTY(()) char sparc_hard_reg_printed[8];
1244
1245 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1246 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1247 do {                                                                    \
1248   if (TARGET_ARCH64)                                                    \
1249     {                                                                   \
1250       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1251       int reg;                                                          \
1252       for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1253         if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1254           {                                                             \
1255             if (reg == (REGNO))                                         \
1256               fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1257             else                                                        \
1258               fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1259                        reg, reg - (REGNO), (NAME));                     \
1260             sparc_hard_reg_printed[reg] = 1;                            \
1261           }                                                             \
1262     }                                                                   \
1263 } while (0)
1264 #endif
1265
1266 \f
1267 /* Emit rtl for profiling.  */
1268 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1269
1270 /* All the work done in PROFILE_HOOK, but still required.  */
1271 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1272
1273 /* Set the name of the mcount function for the system.  */
1274 #define MCOUNT_FUNCTION "*mcount"
1275 \f
1276 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1277    the stack pointer does not matter.  The value is tested only in
1278    functions that have frame pointers.  */
1279 #define EXIT_IGNORE_STACK 1
1280
1281 /* Length in units of the trampoline for entering a nested function.  */
1282 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1283
1284 /* Alignment required for trampolines, in bits.  */
1285 #define TRAMPOLINE_ALIGNMENT 128
1286 \f
1287 /* Generate RTL to flush the register windows so as to make arbitrary frames
1288    available.  */
1289 #define SETUP_FRAME_ADDRESSES()                 \
1290   do {                                          \
1291     if (!TARGET_FLAT)                           \
1292       emit_insn (gen_flush_register_windows ());\
1293   } while (0)
1294
1295 /* Given an rtx for the address of a frame,
1296    return an rtx for the address of the word in the frame
1297    that holds the dynamic chain--the previous frame's address.  */
1298 #define DYNAMIC_CHAIN_ADDRESS(frame)    \
1299   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1300
1301 /* Given an rtx for the frame pointer,
1302    return an rtx for the address of the frame.  */
1303 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1304
1305 /* The return address isn't on the stack, it is in a register, so we can't
1306    access it from the current frame pointer.  We can access it from the
1307    previous frame pointer though by reading a value from the register window
1308    save area.  */
1309 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1310
1311 /* This is the offset of the return address to the true next instruction to be
1312    executed for the current function.  */
1313 #define RETURN_ADDR_OFFSET \
1314   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1315
1316 /* The current return address is in %i7.  The return address of anything
1317    farther back is in the register window save area at [%fp+60].  */
1318 /* ??? This ignores the fact that the actual return address is +8 for normal
1319    returns, and +12 for structure returns.  */
1320 #define RETURN_ADDR_REGNUM 31
1321 #define RETURN_ADDR_RTX(count, frame)           \
1322   ((count == -1)                                \
1323    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)                    \
1324    : gen_rtx_MEM (Pmode,                        \
1325                   memory_address (Pmode, plus_constant (Pmode, frame, \
1326                                                         15 * UNITS_PER_WORD \
1327                                                         + SPARC_STACK_BIAS))))
1328
1329 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1330    +12, but always using +8 is close enough for frame unwind purposes.
1331    Actually, just using %o7 is close enough for unwinding, but %o7+8
1332    is something you can return to.  */
1333 #define INCOMING_RETURN_ADDR_REGNUM 15
1334 #define INCOMING_RETURN_ADDR_RTX \
1335   plus_constant (word_mode, \
1336                  gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1337 #define DWARF_FRAME_RETURN_COLUMN \
1338   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1339
1340 /* The offset from the incoming value of %sp to the top of the stack frame
1341    for the current function.  On sparc64, we have to account for the stack
1342    bias if present.  */
1343 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1344
1345 /* Describe how we implement __builtin_eh_return.  */
1346 #define EH_RETURN_REGNUM 1
1347 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1348 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1349
1350 /* Define registers used by the epilogue and return instruction.  */
1351 #define EPILOGUE_USES(REGNO)                                    \
1352   ((REGNO) == RETURN_ADDR_REGNUM                                \
1353    || (TARGET_FLAT                                              \
1354        && epilogue_completed                                    \
1355        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)               \
1356    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1357
1358 /* Select a format to encode pointers in exception handling data.  CODE
1359    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1360    true if the symbol may be affected by dynamic relocations.
1361
1362    If assembler and linker properly support .uaword %r_disp32(foo),
1363    then use PC relative 32-bit relocations instead of absolute relocs
1364    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1365    for binaries, to save memory.
1366
1367    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1368    symbol %r_disp32() is against was not local, but .hidden.  In that
1369    case, we have to use DW_EH_PE_absptr for pic personality.  */
1370 #ifdef HAVE_AS_SPARC_UA_PCREL
1371 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1372 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1373   (flag_pic                                                             \
1374    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1375    : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1376       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1377       : DW_EH_PE_absptr))
1378 #else
1379 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1380   (flag_pic                                                             \
1381    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1382    : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1383       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1384       : DW_EH_PE_absptr))
1385 #endif
1386
1387 /* Emit a PC-relative relocation.  */
1388 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1389   do {                                                  \
1390     fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1391     fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1392     assemble_name (FILE, LABEL);                        \
1393     fputc (')', FILE);                                  \
1394   } while (0)
1395 #endif
1396 \f
1397 /* Addressing modes, and classification of registers for them.  */
1398
1399 /* Macros to check register numbers against specific register classes.  */
1400
1401 /* These assume that REGNO is a hard or pseudo reg number.
1402    They give nonzero only if REGNO is a hard reg of the suitable class
1403    or a pseudo reg currently allocated to a suitable hard reg.
1404    Since they use reg_renumber, they are safe only once reg_renumber
1405    has been allocated, which happens in reginfo.c during register
1406    allocation.  */
1407
1408 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1409 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1410  || (REGNO) == FRAME_POINTER_REGNUM                               \
1411  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1412
1413 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1414
1415 #define REGNO_OK_FOR_FP_P(REGNO) \
1416   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1417    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1418
1419 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1420  (TARGET_V9 \
1421   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1422       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1423 \f
1424 /* Maximum number of registers that can appear in a valid memory address.  */
1425
1426 #define MAX_REGS_PER_ADDRESS 2
1427
1428 /* Recognize any constant value that is a valid address.
1429    When PIC, we do not accept an address that would require a scratch reg
1430    to load into a register.  */
1431
1432 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1433
1434 /* Define this, so that when PIC, reload won't try to reload invalid
1435    addresses which require two reload registers.  */
1436
1437 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1438 \f
1439 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1440
1441 #ifdef HAVE_AS_OFFSETABLE_LO10
1442 #define USE_AS_OFFSETABLE_LO10 1
1443 #else
1444 #define USE_AS_OFFSETABLE_LO10 0
1445 #endif
1446 \f
1447 /* Try a machine-dependent way of reloading an illegitimate address
1448    operand.  If we find one, push the reload and jump to WIN.  This
1449    macro is used in only one place: `find_reloads_address' in reload.c.  */
1450 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)        \
1451 do {                                                                       \
1452   int win;                                                                 \
1453   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),             \
1454                                          (int)(TYPE), (IND_LEVELS), &win); \
1455   if (win)                                                                 \
1456     goto WIN;                                                              \
1457 } while (0)
1458 \f
1459 /* Specify the machine mode that this machine uses
1460    for the index in the tablejump instruction.  */
1461 /* If we ever implement any of the full models (such as CM_FULLANY),
1462    this has to be DImode in that case */
1463 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1464 #define CASE_VECTOR_MODE \
1465 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1466 #else
1467 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1468    we have to sign extend which slows things down.  */
1469 #define CASE_VECTOR_MODE \
1470 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1471 #endif
1472
1473 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1474 #define DEFAULT_SIGNED_CHAR 1
1475
1476 /* Max number of bytes we can move from memory to memory
1477    in one reasonably fast instruction.  */
1478 #define MOVE_MAX 8
1479
1480 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1481    move-instruction pairs, we will do a movmem or libcall instead.  */
1482
1483 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1484
1485 /* Define if operations between registers always perform the operation
1486    on the full register even if a narrower mode is specified.  */
1487 #define WORD_REGISTER_OPERATIONS 1
1488
1489 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1490    will either zero-extend or sign-extend.  The value of this macro should
1491    be the code that says which one of the two operations is implicitly
1492    done, UNKNOWN if none.  */
1493 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1494
1495 /* Nonzero if access to memory by bytes is slow and undesirable.
1496    For RISC chips, it means that access to memory by bytes is no
1497    better than access by words when possible, so grab a whole word
1498    and maybe make use of that.  */
1499 #define SLOW_BYTE_ACCESS 1
1500
1501 /* Define this to be nonzero if shift instructions ignore all but the low-order
1502    few bits.  */
1503 #define SHIFT_COUNT_TRUNCATED 1
1504
1505 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1506    is done just by pretending it is already truncated.  */
1507 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1508
1509 /* For SImode, we make sure the top 32-bits of the register are clear and
1510    then we subtract 32 from the lzd instruction result.  */
1511 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1512   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1513
1514 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1515    return the mode to be used for the comparison.  For floating-point,
1516    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1517    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1518    processing is needed.  */
1519 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1520
1521 /* Return nonzero if MODE implies a floating point inequality can be
1522    reversed.  For SPARC this is always true because we have a full
1523    compliment of ordered and unordered comparisons, but until generic
1524    code knows how to reverse it correctly we keep the old definition.  */
1525 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1526
1527 /* A function address in a call instruction for indexing purposes.  */
1528 #define FUNCTION_MODE Pmode
1529
1530 /* Define this if addresses of constant functions
1531    shouldn't be put through pseudo regs where they can be cse'd.
1532    Desirable on machines where ordinary constants are expensive
1533    but a CALL with constant address is cheap.  */
1534 #define NO_FUNCTION_CSE 1
1535
1536 /* The _Q_* comparison libcalls return booleans.  */
1537 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1538
1539 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1540    that the inputs are fully consumed before the output memory is clobbered.  */
1541
1542 #define TARGET_BUGGY_QP_LIB     0
1543
1544 /* Assume by default that we do not have the Solaris-specific conversion
1545    routines nor 64-bit integer multiply and divide routines.  */
1546
1547 #define SUN_CONVERSION_LIBFUNCS         0
1548 #define DITF_CONVERSION_LIBFUNCS        0
1549 #define SUN_INTEGER_MULTIPLY_64         0
1550
1551 /* Provide the cost of a branch.  For pre-v9 processors we use
1552    a value of 3 to take into account the potential annulling of
1553    the delay slot (which ends up being a bubble in the pipeline slot)
1554    plus a cycle to take into consideration the instruction cache
1555    effects.
1556
1557    On v9 and later, which have branch prediction facilities, we set
1558    it to the depth of the pipeline as that is the cost of a
1559    mispredicted branch.
1560
1561    On Niagara, normal branches insert 3 bubbles into the pipe
1562    and annulled branches insert 4 bubbles.
1563
1564    On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1565    a taken branch costs 6 cycles.  */
1566
1567 #define BRANCH_COST(speed_p, predictable_p) \
1568         ((sparc_cpu == PROCESSOR_V9 \
1569           || sparc_cpu == PROCESSOR_ULTRASPARC) \
1570          ? 7 \
1571          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1572             ? 9 \
1573          : (sparc_cpu == PROCESSOR_NIAGARA \
1574             ? 4 \
1575          : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1576              || sparc_cpu == PROCESSOR_NIAGARA3) \
1577             ? 5 \
1578          : 3))))
1579 \f
1580 /* Control the assembler format that we output.  */
1581
1582 /* A C string constant describing how to begin a comment in the target
1583    assembler language.  The compiler assumes that the comment will end at
1584    the end of the line.  */
1585
1586 #define ASM_COMMENT_START "!"
1587
1588 /* Output to assembler file text saying following lines
1589    may contain character constants, extra white space, comments, etc.  */
1590
1591 #define ASM_APP_ON ""
1592
1593 /* Output to assembler file text saying following lines
1594    no longer contain unusual constructs.  */
1595
1596 #define ASM_APP_OFF ""
1597
1598 /* How to refer to registers in assembler output.
1599    This sequence is indexed by compiler's hard-register-number (see above).  */
1600
1601 #define REGISTER_NAMES \
1602 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
1603  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
1604  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
1605  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
1606  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
1607  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
1608  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
1609  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
1610  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
1611  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
1612  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
1613  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
1614  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1615
1616 /* Define additional names for use in asm clobbers and asm declarations.  */
1617
1618 #define ADDITIONAL_REGISTER_NAMES \
1619 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1620
1621 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1622    can run past this up to a continuation point.  Once we used 1500, but
1623    a single entry in C++ can run more than 500 bytes, due to the length of
1624    mangled symbol names.  dbxout.c should really be fixed to do
1625    continuations when they are actually needed instead of trying to
1626    guess...  */
1627 #define DBX_CONTIN_LENGTH 1000
1628
1629 /* This is how to output a command to make the user-level label named NAME
1630    defined for reference from other files.  */
1631
1632 /* Globalizing directive for a label.  */
1633 #define GLOBAL_ASM_OP "\t.global "
1634
1635 /* The prefix to add to user-visible assembler symbols.  */
1636
1637 #define USER_LABEL_PREFIX "_"
1638
1639 /* This is how to store into the string LABEL
1640    the symbol_ref name of an internal numbered label where
1641    PREFIX is the class of label and NUM is the number within the class.
1642    This is suitable for output with `assemble_name'.  */
1643
1644 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1645   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1646
1647 /* This is how we hook in and defer the case-vector until the end of
1648    the function.  */
1649 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1650   sparc_defer_case_vector ((LAB),(VEC), 0)
1651
1652 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1653   sparc_defer_case_vector ((LAB),(VEC), 1)
1654
1655 /* This is how to output an element of a case-vector that is absolute.  */
1656
1657 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1658 do {                                                                    \
1659   char label[30];                                                       \
1660   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
1661   if (CASE_VECTOR_MODE == SImode)                                       \
1662     fprintf (FILE, "\t.word\t");                                        \
1663   else                                                                  \
1664     fprintf (FILE, "\t.xword\t");                                       \
1665   assemble_name (FILE, label);                                          \
1666   fputc ('\n', FILE);                                                   \
1667 } while (0)
1668
1669 /* This is how to output an element of a case-vector that is relative.
1670    (SPARC uses such vectors only when generating PIC.)  */
1671
1672 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
1673 do {                                                                    \
1674   char label[30];                                                       \
1675   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
1676   if (CASE_VECTOR_MODE == SImode)                                       \
1677     fprintf (FILE, "\t.word\t");                                        \
1678   else                                                                  \
1679     fprintf (FILE, "\t.xword\t");                                       \
1680   assemble_name (FILE, label);                                          \
1681   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
1682   fputc ('-', FILE);                                                    \
1683   assemble_name (FILE, label);                                          \
1684   fputc ('\n', FILE);                                                   \
1685 } while (0)
1686
1687 /* This is what to output before and after case-vector (both
1688    relative and absolute).  If .subsection -1 works, we put case-vectors
1689    at the beginning of the current section.  */
1690
1691 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1692
1693 #define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
1694   fprintf(FILE, "\t.subsection\t-1\n")
1695
1696 #define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
1697   fprintf(FILE, "\t.previous\n")
1698
1699 #endif
1700
1701 /* This is how to output an assembler line
1702    that says to advance the location counter
1703    to a multiple of 2**LOG bytes.  */
1704
1705 #define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1706   if ((LOG) != 0)                       \
1707     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1708
1709 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1710   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1711
1712 /* This says how to output an assembler line
1713    to define a global common symbol.  */
1714
1715 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1716 ( fputs ("\t.common ", (FILE)),         \
1717   assemble_name ((FILE), (NAME)),               \
1718   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1719
1720 /* This says how to output an assembler line to define a local common
1721    symbol.  */
1722
1723 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
1724 ( fputs ("\t.reserve ", (FILE)),                                        \
1725   assemble_name ((FILE), (NAME)),                                       \
1726   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",     \
1727            (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1728
1729 /* A C statement (sans semicolon) to output to the stdio stream
1730    FILE the assembler definition of uninitialized global DECL named
1731    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1732    Try to use asm_output_aligned_bss to implement this macro.  */
1733
1734 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
1735   do {                                                          \
1736     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
1737   } while (0)
1738
1739 /* Output #ident as a .ident.  */
1740
1741 #undef TARGET_ASM_OUTPUT_IDENT
1742 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1743
1744 /* Prettify the assembly.  */
1745
1746 extern int sparc_indent_opcode;
1747
1748 #define ASM_OUTPUT_OPCODE(FILE, PTR)    \
1749   do {                                  \
1750     if (sparc_indent_opcode)            \
1751       {                                 \
1752         putc (' ', FILE);               \
1753         sparc_indent_opcode = 0;        \
1754       }                                 \
1755   } while (0)
1756
1757 /* TLS support defaulting to original Sun flavor.  GNU extensions
1758    must be activated in separate configuration files.  */
1759 #ifdef HAVE_AS_TLS
1760 #define TARGET_TLS 1
1761 #else
1762 #define TARGET_TLS 0
1763 #endif
1764
1765 #define TARGET_SUN_TLS TARGET_TLS
1766 #define TARGET_GNU_TLS 0
1767
1768 #ifdef HAVE_AS_FMAF_HPC_VIS3
1769 #define AS_NIAGARA3_FLAG "d"
1770 #else
1771 #define AS_NIAGARA3_FLAG "b"
1772 #endif
1773
1774 #ifdef HAVE_AS_SPARC4
1775 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1776 #else
1777 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1778 #endif
1779
1780 #ifdef HAVE_AS_LEON
1781 #define AS_LEON_FLAG "-Aleon"
1782 #define AS_LEONV7_FLAG "-Aleon"
1783 #else
1784 #define AS_LEON_FLAG "-Av8"
1785 #define AS_LEONV7_FLAG "-Av7"
1786 #endif
1787
1788 /* We use gcc _mcount for profiling.  */
1789 #define NO_PROFILE_COUNTERS 0
1790
1791 /* Debug support */
1792 #define MASK_DEBUG_OPTIONS              0x01    /* debug option handling */
1793 #define MASK_DEBUG_ALL                  MASK_DEBUG_OPTIONS
1794
1795 #define TARGET_DEBUG_OPTIONS            (sparc_debug & MASK_DEBUG_OPTIONS)
1796
1797 /* By default, use the weakest memory model for the cpu.  */
1798 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1799 #define SUBTARGET_DEFAULT_MEMORY_MODEL  SMM_DEFAULT
1800 #endif
1801
1802 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1803 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1804
1805 #define TARGET_SUPPORTS_WIDE_INT 1