0d49e7772138ddb5a255a5b61f4dbbe44ba1ab92
[platform/upstream/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GNU compiler for Intel 80386.
2    Copyright (C) 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING.  If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
19
20
21 /* The purpose of this file is to define the characteristics of the i386,
22    independent of assembler syntax or operating system.
23
24    Three other files build on this one to describe a specific assembler syntax:
25    bsd386.h, att386.h, and sun386.h.
26
27    The actual tm.h file for a particular system should include
28    this file, and then the file for the appropriate assembler syntax.
29
30    Many macros that specify assembler syntax are omitted entirely from
31    this file because they really belong in the files for particular
32    assemblers.  These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
33    PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
34    PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP.  */
35
36 /* Names to predefine in the preprocessor for this target machine.  */
37
38 #define I386 1
39
40 /* Run-time compilation parameters selecting different hardware subsets.  */
41
42 extern int target_flags;
43
44 /* Macros used in the machine description to test the flags.  */
45
46 /* Compile 80387 insns for floating point (not library calls).  */
47 #define TARGET_80387 (target_flags & 1)
48 /* Compile code for an i486. */
49 #define TARGET_486 (target_flags & 2)
50 /* Compile using ret insn that pops args.
51    This will not work unless you use prototypes at least
52    for all functions that can take varying numbers of args.  */  
53 #define TARGET_RTD (target_flags & 8)
54 /* Compile passing first two args in regs 0 and 1.
55    This exists only to test compiler features that will
56    be needed for RISC chips.  It is not usable
57    and is not intended to be usable on this cpu.  */
58 #define TARGET_REGPARM (target_flags & 020)
59
60 /* Put uninitialized locals into bss, not data.
61    Meaningful only on svr3.  */
62 #define TARGET_SVR3_SHLIB (target_flags & 040)
63
64 /* Macro to define tables used to set the flags.
65    This is a list in braces of pairs in braces,
66    each pair being { "NAME", VALUE }
67    where VALUE is the bits to set or minus the bits to clear.
68    An empty string NAME is used to identify the default VALUE.  */
69
70 #define TARGET_SWITCHES  \
71   { { "80387", 1},                              \
72     { "soft-float", -1},                        \
73     { "486", 2},                                \
74     { "no486", -2},                             \
75     { "386", -2},                               \
76     { "rtd", 8},                                \
77     { "nortd", -8},                             \
78     { "regparm", 020},                          \
79     { "noregparm", -020},                       \
80     { "svr3-shlib", 040},                       \
81     { "nosvr3-shlib", -040},                    \
82     { "", TARGET_DEFAULT}}
83 \f
84 /* target machine storage layout */
85
86 /* Define this if most significant byte of a word is the lowest numbered.  */
87 /* That is true on the 80386.  */
88
89 #define BITS_BIG_ENDIAN 0
90
91 /* Define this if most significant byte of a word is the lowest numbered.  */
92 /* That is not true on the 80386.  */
93 #define BYTES_BIG_ENDIAN 0
94
95 /* Define this if most significant word of a multiword number is the lowest
96    numbered.  */
97 /* Not true for 80386 */
98 #define WORDS_BIG_ENDIAN 0
99
100 /* number of bits in an addressable storage unit */
101 #define BITS_PER_UNIT 8
102
103 /* Width in bits of a "word", which is the contents of a machine register.
104    Note that this is not necessarily the width of data type `int';
105    if using 16-bit ints on a 80386, this would still be 32.
106    But on a machine with 16-bit registers, this would be 16.  */
107 #define BITS_PER_WORD 32
108
109 /* Width of a word, in units (bytes).  */
110 #define UNITS_PER_WORD 4
111
112 /* Width in bits of a pointer.
113    See also the macro `Pmode' defined below.  */
114 #define POINTER_SIZE 32
115
116 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
117 #define PARM_BOUNDARY 32
118
119 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
120 #define STACK_BOUNDARY 32
121
122 /* Allocation boundary (in *bits*) for the code of a function.
123    For i486, we get better performance by aligning to a cache
124    line (i.e. 16 byte) boundary.  */
125 #define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32)
126
127 /* Alignment of field after `int : 0' in a structure. */
128
129 #define EMPTY_FIELD_BOUNDARY 32
130
131 /* Minimum size in bits of the largest boundary to which any
132    and all fundamental data types supported by the hardware
133    might need to be aligned. No data type wants to be aligned
134    rounder than this.  The i386 supports 64-bit floating point
135    quantities, but these can be aligned on any 32-bit boundary.  */
136 #define BIGGEST_ALIGNMENT 32
137
138 /* Set this non-zero if move instructions will actually fail to work
139    when given unaligned data.  */
140 #define STRICT_ALIGNMENT 0
141
142 /* If bit field type is int, don't let it cross an int,
143    and give entire struct the alignment of an int.  */
144 /* Required on the 386 since it doesn't have bitfield insns.  */
145 #define PCC_BITFIELD_TYPE_MATTERS 1
146
147 /* Align loop starts for optimal branching.  */
148 #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
149   ASM_OUTPUT_ALIGN (FILE, 2)
150
151 /* This is how to align an instruction for optimal branching.
152    On i486 we'll get better performance by aligning on a
153    cache line (i.e. 16 byte) boundary.  */
154 #define ASM_OUTPUT_ALIGN_CODE(FILE)     \
155   ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2))
156 \f
157 /* Standard register usage.  */
158
159 /* This processor has special stack-like registers.  See reg-stack.c
160    for details. */
161
162 #define STACK_REGS
163
164 /* Number of actual hardware registers.
165    The hardware registers are assigned numbers for the compiler
166    from 0 to just below FIRST_PSEUDO_REGISTER.
167    All registers that the compiler knows about must be given numbers,
168    even those that are not normally considered general registers.
169
170    In the 80386 we give the 8 general purpose registers the numbers 0-7.
171    We number the floating point registers 8-15.
172    Note that registers 0-7 can be accessed as a  short or int,
173    while only 0-3 may be used with byte `mov' instructions.
174
175    Reg 16 does not correspond to any hardware register, but instead
176    appears in the RTL as an argument pointer prior to reload, and is
177    eliminated during reloading in favor of either the stack or frame
178    pointer. */
179
180 #define FIRST_PSEUDO_REGISTER 17
181
182 /* 1 for registers that have pervasive standard uses
183    and are not available for the register allocator.
184    On the 80386, the stack pointer is such, as is the arg pointer. */
185 #define FIXED_REGISTERS \
186 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/       \
187 {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,  1 }
188
189 /* 1 for registers not available across function calls.
190    These must include the FIXED_REGISTERS and also any
191    registers that can be used without being saved.
192    The latter must include the registers where values are returned
193    and the register where structure-value addresses are passed.
194    Aside from that, you can include as many other registers as you like.  */
195
196 #define CALL_USED_REGISTERS \
197 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
198 {  1, 1, 1, 0, 0, 0, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1 }
199
200 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
201 #define CONDITIONAL_REGISTER_USAGE                      \
202   {                                                     \
203     if (flag_pic)                                       \
204       {                                                 \
205         fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;        \
206         call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;    \
207       }                                                 \
208   }
209
210 /* Return number of consecutive hard regs needed starting at reg REGNO
211    to hold something of mode MODE.
212    This is ordinarily the length in words of a value of mode MODE
213    but can be less for certain modes in special long registers.
214
215    Actually there are no two word move instructions for consecutive 
216    registers.  And only registers 0-3 may have mov byte instructions
217    applied to them.
218    */
219
220 #define HARD_REGNO_NREGS(REGNO, MODE)   \
221   (FP_REGNO_P (REGNO) ? 1 \
222    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
223
224 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
225    On the 80386, the first 4 cpu registers can hold any mode
226    while the floating point registers may hold only floating point.
227    Make it clear that the fp regs could not hold a 16-byte float.  */
228
229 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
230   ((REGNO) < 2 ? 1                                                      \
231    : (REGNO) < 4 ? 1                                                    \
232    : (REGNO) >= 8 ? ((GET_MODE_CLASS (MODE) == MODE_FLOAT               \
233                       || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)   \
234                      && GET_MODE_UNIT_SIZE (MODE) <= 8)                 \
235    : (MODE) != QImode)
236
237 /* Value is 1 if it is a good idea to tie two pseudo registers
238    when one has mode MODE1 and one has mode MODE2.
239    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
240    for any hard reg, then this must be 0 for correct output.  */
241
242 #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
243
244 /* A C expression returning the cost of moving data from a register of class
245    CLASS1 to one of CLASS2.
246
247    On the i386, copying between floating-point and fixed-point
248    registers is expensive.  */
249
250 #define REGISTER_MOVE_COST(CLASS1, CLASS2)              \
251   ((((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS)  \
252     || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS))      \
253    ? 10 : 2)
254
255 /* Specify the registers used for certain standard purposes.
256    The values of these macros are register numbers.  */
257
258 /* on the 386 the pc register is %eip, and is not usable as a general
259    register.  The ordinary mov instructions won't work */
260 /* #define PC_REGNUM  */
261
262 /* Register to use for pushing function arguments.  */
263 #define STACK_POINTER_REGNUM 7
264
265 /* Base register for access to local variables of the function.  */
266 #define FRAME_POINTER_REGNUM 6
267
268 /* First floating point reg */
269 #define FIRST_FLOAT_REG 8
270
271 /* First & last stack-like regs */
272 #define FIRST_STACK_REG FIRST_FLOAT_REG
273 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
274
275 /* Value should be nonzero if functions must have frame pointers.
276    Zero means the frame pointer need not be set up (and parms
277    may be accessed via the stack pointer) in functions that seem suitable.
278    This is computed in `reload', in reload1.c.  */
279 #define FRAME_POINTER_REQUIRED 0
280
281 /* Base register for access to arguments of the function.  */
282 #define ARG_POINTER_REGNUM 16
283
284 /* Register in which static-chain is passed to a function.  */
285 #define STATIC_CHAIN_REGNUM 2
286
287 /* Register to hold the addressing base for position independent
288    code access to data items.  */
289 #define PIC_OFFSET_TABLE_REGNUM 3
290
291 /* Register in which address to store a structure value
292    arrives in the function.  On the 386, the prologue
293    copies this from the stack to register %eax.  */
294 #define STRUCT_VALUE_INCOMING 0
295
296 /* Place in which caller passes the structure value address.
297    0 means push the value on the stack like an argument.  */
298 #define STRUCT_VALUE 0
299 \f
300 /* Define the classes of registers for register constraints in the
301    machine description.  Also define ranges of constants.
302
303    One of the classes must always be named ALL_REGS and include all hard regs.
304    If there is more than one class, another class must be named NO_REGS
305    and contain no registers.
306
307    The name GENERAL_REGS must be the name of a class (or an alias for
308    another name such as ALL_REGS).  This is the class of registers
309    that is allowed by "g" or "r" in a register constraint.
310    Also, registers outside this class are allocated only when
311    instructions express preferences for them.
312
313    The classes must be numbered in nondecreasing order; that is,
314    a larger-numbered class must never be contained completely
315    in a smaller-numbered class.
316
317    For any two classes, it is very desirable that there be another
318    class that represents their union.
319
320    It might seem that class BREG is unnecessary, since no useful 386
321    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
322    and the "b" register constraint is useful in asms for syscalls.  */
323
324 enum reg_class
325 {
326   NO_REGS,
327   AREG, DREG, CREG, BREG,
328   Q_REGS,                       /* %eax %ebx %ecx %edx */
329   SIREG, DIREG,
330   INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
331   GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
332   FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
333   FLOAT_REGS,
334   ALL_REGS, LIM_REG_CLASSES
335 };
336
337 #define N_REG_CLASSES (int) LIM_REG_CLASSES
338
339 /* Give names of register classes as strings for dump file.   */
340
341 #define REG_CLASS_NAMES \
342 {  "NO_REGS",                           \
343    "AREG", "DREG", "CREG", "BREG",      \
344    "Q_REGS",                            \
345    "SIREG", "DIREG",                    \
346    "INDEX_REGS",                        \
347    "GENERAL_REGS",                      \
348    "FP_TOP_REG", "FP_SECOND_REG",       \
349    "FLOAT_REGS",                        \
350    "ALL_REGS" }
351
352 /* Define which registers fit in which classes.
353    This is an initializer for a vector of HARD_REG_SET
354    of length N_REG_CLASSES.  */
355
356 #define REG_CLASS_CONTENTS \
357 {      0,                                                       \
358      0x1,    0x2,  0x4,  0x8,   /* AREG, DREG, CREG, BREG */    \
359      0xf,                       /* Q_REGS */                    \
360     0x10,   0x20,               /* SIREG, DIREG */              \
361  0x1007f,                       /* INDEX_REGS */                \
362  0x100ff,                       /* GENERAL_REGS */              \
363   0x0100, 0x0200,               /* FP_TOP_REG, FP_SECOND_REG */ \
364   0xff00,                       /* FLOAT_REGS */                \
365  0x1ffff }
366
367 /* The same information, inverted:
368    Return the class number of the smallest class containing
369    reg number REGNO.  This could be a conditional expression
370    or could index an array.  */
371
372 extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
373 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
374
375 /* When defined, the compiler allows registers explicitly used in the
376    rtl to be used as spill registers but prevents the compiler from
377    extending the lifetime of these registers. */
378
379 #define SMALL_REGISTER_CLASSES
380
381 #define QI_REG_P(X) \
382   (REG_P (X) && REGNO (X) < 4)
383 #define NON_QI_REG_P(X) \
384   (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
385
386 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
387 #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
388   
389 #define STACK_REG_P(xop) (REG_P (xop) &&                        \
390                           REGNO (xop) >= FIRST_STACK_REG &&     \
391                           REGNO (xop) <= LAST_STACK_REG)
392
393 #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
394
395 #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
396
397 /* Try to maintain the accuracy of the death notes for regs satisfying the
398    following.  Important for stack like regs, to know when to pop. */
399
400 /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
401
402 /* 1 if register REGNO can magically overlap other regs.
403    Note that nonzero values work only in very special circumstances. */
404
405 /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
406
407 /* The class value for index registers, and the one for base regs.  */
408
409 #define INDEX_REG_CLASS INDEX_REGS
410 #define BASE_REG_CLASS GENERAL_REGS
411
412 /* Get reg_class from a letter such as appears in the machine description.  */
413
414 #define REG_CLASS_FROM_LETTER(C)        \
415   ((C) == 'r' ? GENERAL_REGS :          \
416    (C) == 'q' ? Q_REGS :                \
417    (C) == 'f' ? FLOAT_REGS :            \
418    (C) == 't' ? FP_TOP_REG :            \
419    (C) == 'u' ? FP_SECOND_REG :         \
420    (C) == 'a' ? AREG :                  \
421    (C) == 'b' ? BREG :                  \
422    (C) == 'c' ? CREG :                  \
423    (C) == 'd' ? DREG :                  \
424    (C) == 'D' ? DIREG :                 \
425    (C) == 'S' ? SIREG : NO_REGS)
426
427 /* The letters I, J, K, L and M in a register constraint string
428    can be used to stand for particular ranges of immediate operands.
429    This macro defines what the ranges are.
430    C is the letter, and VALUE is a constant value.
431    Return 1 if VALUE is in the range specified by C.
432
433    I is for non-DImode shifts.
434    J is for DImode shifts.
435    K and L are for an `andsi' optimization.
436    M is for shifts that can be executed by the "lea" opcode.
437    */
438
439 #define CONST_OK_FOR_LETTER_P(VALUE, C)  \
440   ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
441    (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
442    (C) == 'K' ? (VALUE) == 0xff :               \
443    (C) == 'L' ? (VALUE) == 0xffff :             \
444    (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 :  \
445    0)
446
447 /* Similar, but for floating constants, and defining letters G and H.
448    Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
449    TARGET_387 isn't set, because the stack register converter may need to
450    load 0.0 into the function value register. */
451
452 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
453   ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
454
455 /* Place additional restrictions on the register class to use when it
456    is necessary to be able to hold a value of mode @var{mode} in a reload
457    register for which class @var{class} would ordinarily be used. */
458
459 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
460   ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
461    ? Q_REGS : (CLASS))
462
463 /* Given an rtx X being reloaded into a reg required to be
464    in class CLASS, return the class of reg to actually use.
465    In general this is just CLASS; but on some machines
466    in some cases it is preferable to use a more restrictive class.
467    On the 80386 series, we prevent floating constants from being
468    reloaded into floating registers (since no move-insn can do that)
469    and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
470
471 /* Don't put CONST_DOUBLE into FLOAT_REGS.
472    QImode must go into class Q_REGS.
473    MODE_INT must not go into FLOAT_REGS. */
474
475 #define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
476   (GET_CODE (X) == CONST_DOUBLE                         \
477    ? (reg_class_subset_p ((CLASS), GENERAL_REGS) || (CLASS) == ALL_REGS \
478       ? (CLASS) : NO_REGS)                              \
479    : GET_MODE (X) == QImode                             \
480    ? (! reg_class_subset_p ((CLASS), Q_REGS) ? Q_REGS : (CLASS))        \
481    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT && (CLASS) == FLOAT_REGS ? \
482       GENERAL_REGS : (CLASS)))
483
484 /* Return the maximum number of consecutive registers
485    needed to represent mode MODE in a register of class CLASS.  */
486 /* On the 80386, this is the size of MODE in words,
487    except in the FP regs, where a single reg is always enough.  */
488 #define CLASS_MAX_NREGS(CLASS, MODE)    \
489  ((CLASS) == FLOAT_REGS ? 1 :           \
490   (CLASS) == FP_TOP_REG ? 1 :           \
491   (CLASS) == FP_SECOND_REG ? 1 :        \
492    ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
493 \f
494 /* Stack layout; function entry, exit and calling.  */
495
496 /* Define this if pushing a word on the stack
497    makes the stack pointer a smaller address.  */
498 #define STACK_GROWS_DOWNWARD
499
500 /* Define this if the nominal address of the stack frame
501    is at the high-address end of the local variables;
502    that is, each additional local variable allocated
503    goes at a more negative offset in the frame.  */
504 #define FRAME_GROWS_DOWNWARD
505
506 /* Offset within stack frame to start allocating local variables at.
507    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
508    first local allocated.  Otherwise, it is the offset to the BEGINNING
509    of the first local allocated.  */
510 #define STARTING_FRAME_OFFSET 0
511
512 /* If we generate an insn to push BYTES bytes,
513    this says how many the stack pointer really advances by.
514    On 386 pushw decrements by exactly 2 no matter what the position was.
515    On the 386 there is no pushb; we use pushw instead, and this
516    has the effect of rounding up to 2.  */
517
518 #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
519
520 /* Offset of first parameter from the argument pointer register value.  */
521 #define FIRST_PARM_OFFSET(FNDECL) 0
522
523 /* Value is the number of bytes of arguments automatically
524    popped when returning from a subroutine call.
525    FUNTYPE is the data type of the function (as a tree),
526    or for a library call it is an identifier node for the subroutine name.
527    SIZE is the number of bytes of arguments passed on the stack.
528
529    On the 80386, the RTD insn may be used to pop them if the number
530      of args is fixed, but if the number is variable then the caller
531      must pop them all.  RTD can't be used for library calls now
532      because the library is compiled with the Unix compiler.
533    Use of RTD is a selectable option, since it is incompatible with
534    standard Unix calling sequences.  If the option is not selected,
535    the caller must always pop the args.  */
536
537 #define RETURN_POPS_ARGS(FUNTYPE,SIZE)   \
538   (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0                   \
539    : (TARGET_RTD                                                \
540       && (TYPE_ARG_TYPES (FUNTYPE) == 0                         \
541           || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
542               == void_type_node))) ? (SIZE)                     \
543    : (aggregate_value_p (FUNTYPE)) ? GET_MODE_SIZE (Pmode) : 0)
544
545 #define FUNCTION_VALUE(VALTYPE, FUNC)  \
546    gen_rtx (REG, TYPE_MODE (VALTYPE), \
547             VALUE_REGNO (TYPE_MODE (VALTYPE)))
548
549 /* Define how to find the value returned by a library function
550    assuming the value has mode MODE.  */
551
552 #define LIBCALL_VALUE(MODE) \
553   gen_rtx (REG, MODE, VALUE_REGNO (MODE))
554
555 /* 1 if N is a possible register number for function argument passing.
556    On the 80386, no registers are used in this way.
557       *NOTE* -mregparm does not work.
558    It exists only to test register calling conventions.  */
559
560 #define FUNCTION_ARG_REGNO_P(N) 0
561
562 /* Define a data type for recording info about an argument list
563    during the scan of that argument list.  This data type should
564    hold all necessary information about the function itself
565    and about the args processed so far, enough to enable macros
566    such as FUNCTION_ARG to determine where the next arg should go.
567
568    On the 80386, this is a single integer, which is a number of bytes
569    of arguments scanned so far.  */
570
571 #define CUMULATIVE_ARGS int
572
573 /* Initialize a variable CUM of type CUMULATIVE_ARGS
574    for a call to a function whose data type is FNTYPE.
575    For a library call, FNTYPE is 0.
576
577    On the 80386, the offset starts at 0.  */
578
579 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME)        \
580  ((CUM) = 0)
581
582 /* Update the data in CUM to advance over an argument
583    of mode MODE and data type TYPE.
584    (TYPE is null for libcalls where that information may not be available.)  */
585
586 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
587  ((CUM) += ((MODE) != BLKmode                   \
588             ? (GET_MODE_SIZE (MODE) + 3) & ~3   \
589             : (int_size_in_bytes (TYPE) + 3) & ~3))
590
591 /* Define where to put the arguments to a function.
592    Value is zero to push the argument on the stack,
593    or a hard register in which to store the argument.
594
595    MODE is the argument's machine mode.
596    TYPE is the data type of the argument (as a tree).
597     This is null for libcalls where that information may
598     not be available.
599    CUM is a variable of type CUMULATIVE_ARGS which gives info about
600     the preceding args and about the function being called.
601    NAMED is nonzero if this argument is a named parameter
602     (otherwise it is an extra parameter matching an ellipsis).  */
603
604
605 /* On the 80386 all args are pushed, except if -mregparm is specified
606    then the first two words of arguments are passed in EAX, EDX.
607    *NOTE* -mregparm does not work.
608    It exists only to test register calling conventions.  */
609
610 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
611 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
612
613 /* For an arg passed partly in registers and partly in memory,
614    this is the number of registers used.
615    For args passed entirely in registers or entirely in memory, zero.  */
616
617
618 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
619 ((TARGET_REGPARM && (CUM) < 8                                   \
620   && 8 < ((CUM) + ((MODE) == BLKmode                            \
621                       ? int_size_in_bytes (TYPE)                \
622                       : GET_MODE_SIZE (MODE))))                 \
623  ? 2 - (CUM) / 4 : 0)
624
625 /* This macro generates the assembly code for function entry.
626    FILE is a stdio stream to output the code to.
627    SIZE is an int: how many units of temporary storage to allocate.
628    Refer to the array `regs_ever_live' to determine which registers
629    to save; `regs_ever_live[I]' is nonzero if register number I
630    is ever used in the function.  This macro is responsible for
631    knowing which registers should not be saved even if used.  */
632
633 #define FUNCTION_PROLOGUE(FILE, SIZE)     \
634   function_prologue (FILE, SIZE)
635
636 /* Output assembler code to FILE to increment profiler label # LABELNO
637    for profiling a function entry.  */
638
639 #define FUNCTION_PROFILER(FILE, LABELNO)  \
640 {                                                                       \
641   if (flag_pic)                                                         \
642     {                                                                   \
643       fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n",              \
644                LPREFIX, (LABELNO));                                     \
645       fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n");                   \
646     }                                                                   \
647   else                                                                  \
648     {                                                                   \
649       fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO));      \
650       fprintf (FILE, "\tcall _mcount\n");                               \
651     }                                                                   \
652 }
653
654 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
655    the stack pointer does not matter.  The value is tested only in
656    functions that have frame pointers.
657    No definition is equivalent to always zero.  */
658 /* Note on the 386 it might be more efficient not to define this since 
659    we have to restore it ourselves from the frame pointer, in order to
660    use pop */
661
662 #define EXIT_IGNORE_STACK 1
663
664 /* This macro generates the assembly code for function exit,
665    on machines that need it.  If FUNCTION_EPILOGUE is not defined
666    then individual return instructions are generated for each
667    return statement.  Args are same as for FUNCTION_PROLOGUE.
668
669    The function epilogue should not depend on the current stack pointer!
670    It should use the frame pointer only.  This is mandatory because
671    of alloca; we also take advantage of it to omit stack adjustments
672    before returning.
673
674    If the last non-note insn in the function is a BARRIER, then there
675    is no need to emit a function prologue, because control does not fall
676    off the end.  This happens if the function ends in an "exit" call, or
677    if a `return' insn is emitted directly into the function. */
678
679 #define FUNCTION_EPILOGUE(FILE, SIZE)           \
680 do {                                            \
681   rtx last = get_last_insn ();                  \
682   if (last && GET_CODE (last) == NOTE)          \
683     last = prev_nonnote_insn (last);            \
684   if (! last || GET_CODE (last) != BARRIER)     \
685     function_epilogue (FILE, SIZE);             \
686 } while (0)
687
688 /* Output assembler code for a block containing the constant parts
689    of a trampoline, leaving space for the variable parts.  */
690
691 /* On the 386, the trampoline contains three instructions:
692      mov #STATIC,ecx
693      mov #FUNCTION,eax
694      jmp @eax  */
695 #define TRAMPOLINE_TEMPLATE(FILE)                                       \
696 {                                                                       \
697   ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xb9));          \
698   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
699   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
700   ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xb8));          \
701   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
702   ASM_OUTPUT_SHORT (FILE, const0_rtx);                                  \
703   ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xff));          \
704   ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0xe0));          \
705 }
706
707 /* Length in units of the trampoline for entering a nested function.  */
708
709 #define TRAMPOLINE_SIZE 12
710
711 /* Emit RTL insns to initialize the variable parts of a trampoline.
712    FNADDR is an RTX for the address of the function's pure code.
713    CXT is an RTX for the static chain value for the function.  */
714
715 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)                       \
716 {                                                                       \
717   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
718   emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
719 }
720 \f
721 /* Definitions for register eliminations.
722
723    This is an array of structures.  Each structure initializes one pair
724    of eliminable registers.  The "from" register number is given first,
725    followed by "to".  Eliminations of the same "from" register are listed
726    in order of preference.
727
728    We have two registers that can be eliminated on the i386.  First, the
729    frame pointer register can often be eliminated in favor of the stack
730    pointer register.  Secondly, the argument pointer register can always be
731    eliminated; it is replaced with either the stack or frame pointer. */
732
733 #define ELIMINABLE_REGS                         \
734 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
735  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
736  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
737
738 /* Given FROM and TO register numbers, say whether this elimination is allowed.
739    Frame pointer elimination is automatically handled.
740
741    For the i386, if frame pointer elimination is being done, we would like to
742    convert ap into sp, not fp.
743
744    All other eliminations are valid.  */
745
746 #define CAN_ELIMINATE(FROM, TO)                                 \
747  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM  \
748   ? ! frame_pointer_needed                                      \
749   : 1)
750
751 /* Define the offset between two registers, one to be eliminated, and the other
752    its replacement, at the start of a routine.  */
753
754 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
755 {                                                                       \
756   if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)     \
757     (OFFSET) = 8;       /* Skip saved PC and previous frame pointer */  \
758   else                                                                  \
759     {                                                                   \
760       int regno;                                                        \
761       int offset = 0;                                                   \
762                                                                         \
763       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)           \
764         if ((regs_ever_live[regno] && ! call_used_regs[regno])          \
765             || (current_function_uses_pic_offset_table                  \
766                 && regno == PIC_OFFSET_TABLE_REGNUM))                   \
767           offset += 4;                                                  \
768                                                                         \
769       (OFFSET) = offset + get_frame_size ();                            \
770                                                                         \
771       if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
772         (OFFSET) += 4;  /* Skip saved PC */                             \
773     }                                                                   \
774 }
775 \f
776 /* Addressing modes, and classification of registers for them.  */
777
778 /* #define HAVE_POST_INCREMENT */
779 /* #define HAVE_POST_DECREMENT */
780
781 /* #define HAVE_PRE_DECREMENT */
782 /* #define HAVE_PRE_INCREMENT */
783
784 /* Macros to check register numbers against specific register classes.  */
785
786 /* These assume that REGNO is a hard or pseudo reg number.
787    They give nonzero only if REGNO is a hard reg of the suitable class
788    or a pseudo reg currently allocated to a suitable hard reg.
789    Since they use reg_renumber, they are safe only once reg_renumber
790    has been allocated, which happens in local-alloc.c.  */
791
792 #define REGNO_OK_FOR_INDEX_P(REGNO) \
793   ((REGNO) < STACK_POINTER_REGNUM \
794    || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
795
796 #define REGNO_OK_FOR_BASE_P(REGNO) \
797   ((REGNO) <= STACK_POINTER_REGNUM \
798    || (REGNO) == ARG_POINTER_REGNUM \
799    || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
800
801 #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
802 #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
803
804 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
805    and check its validity for a certain class.
806    We have two alternate definitions for each of them.
807    The usual definition accepts all pseudo regs; the other rejects
808    them unless they have been allocated suitable hard regs.
809    The symbol REG_OK_STRICT causes the latter definition to be used.
810
811    Most source files want to accept pseudo regs in the hope that
812    they will get allocated to the class that the insn wants them to be in.
813    Source files for reload pass need to be strict.
814    After reload, it makes no difference, since pseudo regs have
815    been eliminated by then.  */
816
817 #ifndef REG_OK_STRICT
818
819 /* Nonzero if X is a hard reg that can be used as an index or if
820    it is a pseudo reg.  */
821
822 #define REG_OK_FOR_INDEX_P(X) \
823   (REGNO (X) < STACK_POINTER_REGNUM \
824    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
825
826 /* Nonzero if X is a hard reg that can be used as a base reg
827    of if it is a pseudo reg.  */
828   /* ?wfs */
829
830 #define REG_OK_FOR_BASE_P(X) \
831   (REGNO (X) <= STACK_POINTER_REGNUM \
832    || REGNO (X) == ARG_POINTER_REGNUM \
833    || REGNO(X) >= FIRST_PSEUDO_REGISTER)
834
835 #define REG_OK_FOR_STRREG_P(X) \
836   (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
837
838 #else
839
840 /* Nonzero if X is a hard reg that can be used as an index.  */
841 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
842 /* Nonzero if X is a hard reg that can be used as a base reg.  */
843 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
844 #define REG_OK_FOR_STRREG_P(X) \
845   (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
846
847 #endif
848
849 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
850    that is a valid memory address for an instruction.
851    The MODE argument is the machine mode for the MEM expression
852    that wants to use this address.
853
854    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
855    except for CONSTANT_ADDRESS_P which is usually machine-independent.
856
857    See legitimize_pic_address in i386.c for details as to what
858    constitutes a legitimate address when -fpic is used.  */
859
860 #define MAX_REGS_PER_ADDRESS 2
861
862 #define CONSTANT_ADDRESS_P(X)   CONSTANT_P (X)
863
864 /* Nonzero if the constant value X is a legitimate general operand.
865    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
866
867 #define LEGITIMATE_CONSTANT_P(X) 1
868
869 #define GO_IF_INDEXABLE_BASE(X, ADDR)   \
870  if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR
871
872 #define LEGITIMATE_INDEX_REG_P(X)   \
873   (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
874
875 /* Return 1 if X is an index or an index times a scale.  */
876
877 #define LEGITIMATE_INDEX_P(X)   \
878    (LEGITIMATE_INDEX_REG_P (X)                          \
879     || (GET_CODE (X) == MULT                            \
880         && LEGITIMATE_INDEX_REG_P (XEXP (X, 0))         \
881         && GET_CODE (XEXP (X, 1)) == CONST_INT          \
882         && (INTVAL (XEXP (X, 1)) == 2                   \
883             || INTVAL (XEXP (X, 1)) == 4                \
884             || INTVAL (XEXP (X, 1)) == 8)))
885
886 /* Go to ADDR if X is an index term, a base reg, or a sum of those.  */
887
888 #define GO_IF_INDEXING(X, ADDR) \
889 { if (LEGITIMATE_INDEX_P (X)) goto ADDR;                                \
890   GO_IF_INDEXABLE_BASE (X, ADDR);                                       \
891   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))         \
892     { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }                       \
893   if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))         \
894     { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
895
896 /* We used to allow this, but it isn't ever used.
897    || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC)           \
898        && REG_P (XEXP (X, 0))                                           \
899        && REG_OK_FOR_STRREG_P (XEXP (X, 0)))                            \
900 */
901
902 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
903 {                                                                       \
904   if (CONSTANT_ADDRESS_P (X)                                            \
905       && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (X)))                  \
906     goto ADDR;                                                          \
907   GO_IF_INDEXING (X, ADDR);                                             \
908   if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1)))         \
909     {                                                                   \
910       rtx x0 = XEXP (X, 0);                                             \
911       if (! flag_pic || ! SYMBOLIC_CONST (XEXP (X, 1)))                 \
912         { GO_IF_INDEXING (x0, ADDR); }                                  \
913       else if (x0 == pic_offset_table_rtx)                              \
914         goto ADDR;                                                      \
915       else if (GET_CODE (x0) == PLUS)                                   \
916         {                                                               \
917           if (XEXP (x0, 0) == pic_offset_table_rtx)                     \
918             { GO_IF_INDEXABLE_BASE (XEXP (x0, 1), ADDR); }              \
919           if (XEXP (x0, 1) == pic_offset_table_rtx)                     \
920             { GO_IF_INDEXABLE_BASE (XEXP (x0, 0), ADDR); }              \
921         }                                                               \
922     }                                                                   \
923 }
924
925 /* Try machine-dependent ways of modifying an illegitimate address
926    to be legitimate.  If we find one, return the new, valid address.
927    This macro is used in only one place: `memory_address' in explow.c.
928
929    OLDX is the address as it was before break_out_memory_refs was called.
930    In some cases it is useful to look at this to decide what needs to be done.
931
932    MODE and WIN are passed so that this macro can use
933    GO_IF_LEGITIMATE_ADDRESS.
934
935    It is always safe for this macro to do nothing.  It exists to recognize
936    opportunities to optimize the output.
937
938    For the 80386, we handle X+REG by loading X into a register R and
939    using R+REG.  R will go in a general reg and indexing will be used.
940    However, if REG is a broken-out memory address or multiplication,
941    nothing needs to be done because REG can certainly go in a general reg.
942
943    When -fpic is used, special handling is needed for symbolic references.
944    See comments by legitimize_pic_address in i386.c for details.  */
945
946 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
947 { extern rtx legitimize_pic_address ();                                 \
948   int ch = (X) != (OLDX);                                               \
949   if (flag_pic && SYMBOLIC_CONST (X))                                   \
950     {                                                                   \
951       (X) = legitimize_pic_address (X, 0);                              \
952       if (memory_address_p (MODE, X))                                   \
953         goto WIN;                                                       \
954     }                                                                   \
955   if (GET_CODE (X) == PLUS)                                             \
956     { if (GET_CODE (XEXP (X, 0)) == MULT)                               \
957         ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0);           \
958       if (GET_CODE (XEXP (X, 1)) == MULT)                               \
959         ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0);           \
960       if (ch && GET_CODE (XEXP (X, 1)) == REG                           \
961           && GET_CODE (XEXP (X, 0)) == REG)                             \
962         goto WIN;                                                       \
963       if (flag_pic && SYMBOLIC_CONST (XEXP (X, 1)))                     \
964         ch = 1, (X) = legitimize_pic_address (X, 0);                    \
965       if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }              \
966       if (GET_CODE (XEXP (X, 0)) == REG)                                \
967         { register rtx temp = gen_reg_rtx (Pmode);                      \
968           register rtx val = force_operand (XEXP (X, 1), temp);         \
969           if (val != temp) emit_move_insn (temp, val, 0);               \
970           XEXP (X, 1) = temp;                                           \
971           goto WIN; }                                                   \
972       else if (GET_CODE (XEXP (X, 1)) == REG)                           \
973         { register rtx temp = gen_reg_rtx (Pmode);                      \
974           register rtx val = force_operand (XEXP (X, 0), temp);         \
975           if (val != temp) emit_move_insn (temp, val, 0);               \
976           XEXP (X, 0) = temp;                                           \
977           goto WIN; }}}
978
979 /* Nonzero if the constant value X is a legitimate general operand
980    when generating PIC code.  It is given that flag_pic is on and 
981    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
982
983 #define LEGITIMATE_PIC_OPERAND_P(X) \
984   (! SYMBOLIC_CONST (X)                                                 \
985    || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
986
987 #define SYMBOLIC_CONST(X)       \
988 (GET_CODE (X) == SYMBOL_REF                                             \
989  || GET_CODE (X) == LABEL_REF                                           \
990  || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
991
992 /* Go to LABEL if ADDR (a legitimate address expression)
993    has an effect that depends on the machine mode it is used for.
994    On the 80386, only postdecrement and postincrement address depend thus
995    (the amount of decrement or increment being the length of the operand).  */
996 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)        \
997  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
998 \f
999 /* Define this macro if references to a symbol must be treated
1000    differently depending on something about the variable or
1001    function named by the symbol (such as what section it is in).
1002
1003    On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
1004    so that we may access it directly in the GOT.  */
1005
1006 #define ENCODE_SECTION_INFO(DECL) \
1007 do                                                                      \
1008   {                                                                     \
1009     if (flag_pic)                                                       \
1010       {                                                                 \
1011         rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'            \
1012                    ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));            \
1013         SYMBOL_REF_FLAG (XEXP (rtl, 0))                                 \
1014           = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'                  \
1015              || ! TREE_PUBLIC (DECL));                                  \
1016       }                                                                 \
1017   }                                                                     \
1018 while (0)
1019 \f
1020 /* Specify the machine mode that this machine uses
1021    for the index in the tablejump instruction.  */
1022 #define CASE_VECTOR_MODE Pmode
1023
1024 /* Define this if the tablejump instruction expects the table
1025    to contain offsets from the address of the table.
1026    Do not define this if the table should contain absolute addresses.  */
1027 /* #define CASE_VECTOR_PC_RELATIVE */
1028
1029 /* Specify the tree operation to be used to convert reals to integers.
1030    This should be changed to take advantage of fist --wfs ??
1031  */
1032 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1033
1034 /* This is the kind of divide that is easiest to do in the general case.  */
1035 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1036
1037 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1038 #define DEFAULT_SIGNED_CHAR 1
1039
1040 /* Max number of bytes we can move from memory to memory
1041    in one reasonably fast instruction.  */
1042 #define MOVE_MAX 4
1043
1044 /* MOVE_RATIO is the number of move instructions that is better than a
1045    block move.  Make this large on i386, since the block move is very
1046    inefficient with small blocks, and the hard register needs of the
1047    block move require much reload work. */
1048 #define MOVE_RATIO 5
1049
1050 /* Define this if zero-extension is slow (more than one real instruction).  */
1051 /* #define SLOW_ZERO_EXTEND */
1052
1053 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1054 #define SLOW_BYTE_ACCESS 0
1055
1056 /* Define if shifts truncate the shift count
1057    which implies one can omit a sign-extension or zero-extension
1058    of a shift count.  */
1059 /* One i386, shifts do truncate the count.  But bit opcodes don't. */
1060
1061 /* #define SHIFT_COUNT_TRUNCATED */
1062
1063 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1064    is done just by pretending it is already truncated.  */
1065 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1066
1067 /* We assume that the store-condition-codes instructions store 0 for false
1068    and some other value for true.  This is the value stored for true.  */
1069
1070 #define STORE_FLAG_VALUE 1
1071
1072 /* When a prototype says `char' or `short', really pass an `int'.
1073    (The 386 can't easily push less than an int.)  */
1074
1075 #define PROMOTE_PROTOTYPES
1076
1077 /* Specify the machine mode that pointers have.
1078    After generation of rtl, the compiler makes no further distinction
1079    between pointers and any other objects of this machine mode.  */
1080 #define Pmode SImode
1081
1082 /* A function address in a call instruction
1083    is a byte address (for indexing purposes)
1084    so give the MEM rtx a byte's mode.  */
1085 #define FUNCTION_MODE QImode
1086
1087 /* Define this if addresses of constant functions
1088    shouldn't be put through pseudo regs where they can be cse'd.
1089    Desirable on the 386 because a CALL with a constant address is
1090    not much slower than one with a register address.  */
1091 #define NO_FUNCTION_CSE
1092
1093 /* Provide the costs of a rtl expression.  This is in the body of a
1094    switch on CODE. */
1095
1096 #define RTX_COSTS(X,CODE)                               \
1097   case MULT:                                            \
1098     return COSTS_N_INSNS (10);                          \
1099   case DIV:                                             \
1100   case UDIV:                                            \
1101   case MOD:                                             \
1102   case UMOD:                                            \
1103     return COSTS_N_INSNS (40);
1104
1105
1106 /* Compute the cost of computing a constant rtl expression RTX
1107    whose rtx-code is CODE.  The body of this macro is a portion
1108    of a switch statement.  If the code is computed here,
1109    return it with a return statement.  Otherwise, break from the switch.  */
1110
1111 #define CONST_COSTS(RTX,CODE) \
1112   case CONST_INT:                                               \
1113   case CONST:                                                   \
1114   case LABEL_REF:                                               \
1115   case SYMBOL_REF:                                              \
1116     return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0;            \
1117   case CONST_DOUBLE:                                            \
1118     {                                                           \
1119       int code = standard_80387_constant_p (RTX);               \
1120       return code == 1 ? 0 :                                    \
1121              code == 2 ? 1 :                                    \
1122                          2;                                     \
1123     }                                                           \
1124   case PLUS:                                                    \
1125     if (GET_CODE (XEXP (RTX, 0)) == REG                         \
1126         && GET_CODE (XEXP (RTX, 1)) == CONST_INT)               \
1127       return 1;
1128
1129 /* Compute the cost of an address.  This is meant to approximate the size
1130    and/or execution delay of an insn using that address.  If the cost is
1131    approximated by the RTL complexity, including CONST_COSTS above, as
1132    is usually the case for CISC machines, this macro should not be defined.
1133    For aggressively RISCy machines, only one insn format is allowed, so
1134    this macro should be a constant.  The value of this macro only matters
1135    for valid addresses.
1136
1137    For i386, it is better to use a complex address than let gcc copy
1138    the address into a reg and make a new pseudo.  But not if the address
1139    requires to two regs - that would mean more pseudos with longer
1140    lifetimes.  */
1141
1142 #define ADDRESS_COST(RTX) \
1143   ((CONSTANT_P (RTX)                                            \
1144     || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1))    \
1145         && REG_P (XEXP (RTX, 0)))) ? 0                          \
1146    : REG_P (RTX) ? 1                                            \
1147    : 2)
1148 \f
1149 /* Tell final.c how to eliminate redundant test instructions.  */
1150
1151 /* Here we define machine-dependent flags and fields in cc_status
1152    (see `conditions.h').  */
1153
1154 /* Set if the cc value is actually in the 80387, so a floating point
1155    conditional branch must be output.  */
1156 #define CC_IN_80387 04000
1157
1158 /* Set if the CC value was stored in a nonstandard way, so that
1159    the state of equality is indicated by zero in the carry bit.  */
1160 #define CC_Z_IN_NOT_C 010000
1161
1162 /* Store in cc_status the expressions
1163    that the condition codes will describe
1164    after execution of an instruction whose pattern is EXP.
1165    Do not alter them if the instruction would not alter the cc's.  */
1166
1167 #define NOTICE_UPDATE_CC(EXP, INSN) \
1168   notice_update_cc((EXP))
1169
1170 /* Output a signed jump insn.  Use template NORMAL ordinarily, or
1171    FLOAT following a floating point comparison.
1172    Use NO_OV following an arithmetic insn that set the cc's
1173    before a test insn that was deleted.
1174    NO_OV may be zero, meaning final should reinsert the test insn
1175    because the jump cannot be handled properly without it.  */
1176
1177 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)                       \
1178 {                                                               \
1179   if (cc_prev_status.flags & CC_IN_80387)                       \
1180     return FLOAT;                                               \
1181   if (cc_prev_status.flags & CC_NO_OVERFLOW)                    \
1182     return NO_OV;                                               \
1183   return NORMAL;                                                \
1184 }
1185 \f
1186 /* Control the assembler format that we output, to the extent
1187    this does not vary between assemblers.  */
1188
1189 /* How to refer to registers in assembler output.
1190    This sequence is indexed by compiler's hard-register-number (see above). */
1191
1192 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
1193    For non floating point regs, the following are the HImode names.
1194
1195    For float regs, the stack top is sometimes referred to as "%st(0)"
1196    instead of just "%st".  PRINT_REG in i386.c handles with with the
1197    "y" code.  */
1198
1199 #define HI_REGISTER_NAMES \
1200 {"ax","dx","cx","bx","si","di","bp","sp",          \
1201  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
1202
1203 #define REGISTER_NAMES HI_REGISTER_NAMES
1204
1205 /* Table of additional register names to use in user input.  */
1206
1207 #define ADDITIONAL_REGISTER_NAMES \
1208 { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3,       \
1209   "esi", 4, "edi", 5, "ebp", 6, "esp", 7,       \
1210   "al", 0, "dl", 1, "cl", 2, "bl", 3,           \
1211   "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
1212
1213 /* Note we are omitting these since currently I don't know how
1214 to get gcc to use these, since they want the same but different
1215 number as al, and ax.
1216 */
1217
1218 /* note the last four are not really qi_registers, but
1219    the md will have to never output movb into one of them
1220    only a movw .  There is no movb into the last four regs */
1221
1222 #define QI_REGISTER_NAMES \
1223 {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
1224
1225 /* These parallel the array above, and can be used to access bits 8:15
1226    of regs 0 through 3. */
1227
1228 #define QI_HIGH_REGISTER_NAMES \
1229 {"ah", "dh", "ch", "bh", }
1230
1231 /* How to renumber registers for dbx and gdb.  */
1232
1233 /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17}  */
1234 #define DBX_REGISTER_NUMBER(n) \
1235 ((n) == 0 ? 0 : \
1236  (n) == 1 ? 2 : \
1237  (n) == 2 ? 1 : \
1238  (n) == 3 ? 3 : \
1239  (n) == 4 ? 6 : \
1240  (n) == 5 ? 7 : \
1241  (n) == 6 ? 4 : \
1242  (n) == 7 ? 5 : \
1243  (n) + 4)
1244
1245 /* This is how to output the definition of a user-level label named NAME,
1246    such as the label on a static function or variable NAME.  */
1247
1248 #define ASM_OUTPUT_LABEL(FILE,NAME)     \
1249   (assemble_name (FILE, NAME), fputs (":\n", FILE))
1250
1251 /* This is how to output an assembler line defining a `double' constant.  */
1252
1253 #define ASM_OUTPUT_DOUBLE(FILE,VALUE)  \
1254   fprintf (FILE, "%s %.22e\n", ASM_DOUBLE, (VALUE))
1255
1256
1257 /* This is how to output an assembler line defining a `float' constant.  */
1258
1259 #define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1260 do { union { float f; long l;} tem;                     \
1261      tem.f = (VALUE);                                   \
1262      fprintf((FILE), "%s 0x%x\n", ASM_LONG, tem.l);     \
1263    } while (0)
1264
1265
1266 /* Store in OUTPUT a string (made with alloca) containing
1267    an assembler-name for a local static variable named NAME.
1268    LABELNO is an integer which is different for each call.  */
1269
1270 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)  \
1271 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),    \
1272   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1273
1274
1275
1276 /* This is how to output an assembler line defining an `int' constant.  */
1277
1278 #define ASM_OUTPUT_INT(FILE,VALUE)  \
1279 ( fprintf (FILE, "%s ", ASM_LONG),              \
1280   output_addr_const (FILE,(VALUE)),             \
1281   putc('\n',FILE))
1282
1283 /* Likewise for `char' and `short' constants.  */
1284 /* is this supposed to do align too?? */
1285
1286 #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1287 ( fprintf (FILE, "%s ", ASM_SHORT),             \
1288   output_addr_const (FILE,(VALUE)),             \
1289   putc('\n',FILE))
1290
1291 /*
1292 #define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1293 ( fprintf (FILE, "%s ", ASM_BYTE_OP),           \
1294   output_addr_const (FILE,(VALUE)),             \
1295   fputs (",", FILE),                            \
1296   output_addr_const (FILE,(VALUE)),             \
1297   fputs (" >> 8\n",FILE))
1298 */
1299
1300
1301 #define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1302 ( fprintf (FILE, "%s ", ASM_BYTE_OP),           \
1303   output_addr_const (FILE, (VALUE)),            \
1304   putc ('\n', FILE))
1305
1306 /* This is how to output an assembler line for a numeric constant byte.  */
1307
1308 #define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1309   fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
1310
1311 /* This is how to output an insn to push a register on the stack.
1312    It need not be very fast code.  */
1313
1314 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1315   fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
1316
1317 /* This is how to output an insn to pop a register from the stack.
1318    It need not be very fast code.  */
1319
1320 #define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1321   fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
1322
1323 /* This is how to output an element of a case-vector that is absolute.
1324      */
1325
1326 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1327   fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
1328
1329 /* This is how to output an element of a case-vector that is relative.
1330    We don't use these on the 386 yet, because the ATT assembler can't do
1331    forward reference the differences.  
1332  */
1333
1334 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1335   fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
1336
1337 /* Define the parentheses used to group arithmetic operations
1338    in assembler code.  */
1339
1340 #define ASM_OPEN_PAREN ""
1341 #define ASM_CLOSE_PAREN ""
1342
1343 /* Define results of standard character escape sequences.  */
1344 #define TARGET_BELL 007
1345 #define TARGET_BS 010
1346 #define TARGET_TAB 011
1347 #define TARGET_NEWLINE 012
1348 #define TARGET_VT 013
1349 #define TARGET_FF 014
1350 #define TARGET_CR 015
1351
1352 /* Print operand X (an rtx) in assembler syntax to file FILE.
1353    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1354    The CODE z takes the size of operand from the following digit, and
1355    outputs b,w,or l respectively.
1356
1357    On the 80386, we use several such letters:
1358    f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
1359    L,W,B,Q,S -- print the opcode suffix for specified size of operand.
1360    R -- print the prefix for register names.
1361    z -- print the opcode suffix for the size of the current operand.
1362    * -- print a star (in certain assembler syntax)
1363    w -- print the operand as if it's a "word" (HImode) even if it isn't.
1364    b -- print the operand as if it's a byte (QImode) even if it isn't.
1365    c -- don't print special prefixes before constant operands.  */
1366
1367 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)                               \
1368   ((CODE) == '*')
1369
1370 #define PRINT_OPERAND(FILE, X, CODE)  \
1371   print_operand (FILE, X, CODE)
1372 \f
1373
1374 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1375   print_operand_address (FILE, ADDR)
1376
1377 /* Output the prefix for an immediate operand, or for an offset operand.  */
1378 #define PRINT_IMMED_PREFIX(FILE)  fputs (IP, (FILE))
1379 #define PRINT_OFFSET_PREFIX(FILE)  fputs (IP, (FILE))
1380
1381 /* Routines in libgcc that return floats must return them in an fp reg,
1382    just as other functions do which return such values.
1383    These macros make that happen.  */
1384
1385 #define FLOAT_VALUE_TYPE float
1386 #define INTIFY(FLOATVAL) FLOATVAL
1387
1388 /* Nonzero if INSN magically clobbers register REGNO.  */
1389
1390 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO)   \
1391     (FP_REGNO_P (REGNO)                         \
1392      && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
1393 */
1394
1395 /* a letter which is not needed by the normal asm syntax, which
1396    we can use for operand syntax in the extended asm */
1397
1398 #define ASM_OPERAND_LETTER '#'
1399 \f
1400 #define RET return ""
1401 #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
1402 \f
1403 /*
1404 Local variables:
1405 version-control: t
1406 End:
1407 */