Update change log
[platform/upstream/gcc48.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 /* This file contains low level functions to manipulate the CFG and
21    analyze it.  All other modules should not transform the data structure
22    directly and use abstraction instead.  The file is supposed to be
23    ordered bottom-up and should not contain any code dependent on a
24    particular intermediate language (RTL or trees).
25
26    Available functionality:
27      - Initialization/deallocation
28          init_flow, clear_edges
29      - Low level basic block manipulation
30          alloc_block, expunge_block
31      - Edge manipulation
32          make_edge, make_single_succ_edge, cached_make_edge, remove_edge
33          - Low level edge redirection (without updating instruction chain)
34              redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
35      - Dumping and debugging
36          dump_flow_info, debug_flow_info, dump_edge_info
37      - Allocation of AUX fields for basic blocks
38          alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
39      - clear_bb_flags
40      - Consistency checking
41          verify_flow_info
42      - Dumping and debugging
43          print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
44
45    TODO: Document these "Available functionality" functions in the files
46    that implement them.
47  */
48 \f
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "obstack.h"
53 #include "ggc.h"
54 #include "hash-table.h"
55 #include "alloc-pool.h"
56 #include "tree.h"
57 #include "basic-block.h"
58 #include "df.h"
59 #include "cfgloop.h" /* FIXME: For struct loop.  */
60 #include "dumpfile.h"
61
62 \f
63 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
64
65 /* Called once at initialization time.  */
66
67 void
68 init_flow (struct function *the_fun)
69 {
70   if (!the_fun->cfg)
71     the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
72   n_edges_for_function (the_fun) = 0;
73   ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
74     = ggc_alloc_cleared_basic_block_def ();
75   ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
76   EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
77     = ggc_alloc_cleared_basic_block_def ();
78   EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
79   ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
80     = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
81   EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
82     = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
83 }
84 \f
85 /* Helper function for remove_edge and clear_edges.  Frees edge structure
86    without actually removing it from the pred/succ arrays.  */
87
88 static void
89 free_edge (edge e)
90 {
91   n_edges--;
92   ggc_free (e);
93 }
94
95 /* Free the memory associated with the edge structures.  */
96
97 void
98 clear_edges (void)
99 {
100   basic_block bb;
101   edge e;
102   edge_iterator ei;
103
104   FOR_EACH_BB (bb)
105     {
106       FOR_EACH_EDGE (e, ei, bb->succs)
107         free_edge (e);
108       vec_safe_truncate (bb->succs, 0);
109       vec_safe_truncate (bb->preds, 0);
110     }
111
112   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
113     free_edge (e);
114   vec_safe_truncate (EXIT_BLOCK_PTR->preds, 0);
115   vec_safe_truncate (ENTRY_BLOCK_PTR->succs, 0);
116
117   gcc_assert (!n_edges);
118 }
119 \f
120 /* Allocate memory for basic_block.  */
121
122 basic_block
123 alloc_block (void)
124 {
125   basic_block bb;
126   bb = ggc_alloc_cleared_basic_block_def ();
127   return bb;
128 }
129
130 /* Link block B to chain after AFTER.  */
131 void
132 link_block (basic_block b, basic_block after)
133 {
134   b->next_bb = after->next_bb;
135   b->prev_bb = after;
136   after->next_bb = b;
137   b->next_bb->prev_bb = b;
138 }
139
140 /* Unlink block B from chain.  */
141 void
142 unlink_block (basic_block b)
143 {
144   b->next_bb->prev_bb = b->prev_bb;
145   b->prev_bb->next_bb = b->next_bb;
146   b->prev_bb = NULL;
147   b->next_bb = NULL;
148 }
149
150 /* Sequentially order blocks and compact the arrays.  */
151 void
152 compact_blocks (void)
153 {
154   int i;
155
156   SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
157   SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
158
159   if (df)
160     df_compact_blocks ();
161   else
162     {
163       basic_block bb;
164
165       i = NUM_FIXED_BLOCKS;
166       FOR_EACH_BB (bb)
167         {
168           SET_BASIC_BLOCK (i, bb);
169           bb->index = i;
170           i++;
171         }
172       gcc_assert (i == n_basic_blocks);
173
174       for (; i < last_basic_block; i++)
175         SET_BASIC_BLOCK (i, NULL);
176     }
177   last_basic_block = n_basic_blocks;
178 }
179
180 /* Remove block B from the basic block array.  */
181
182 void
183 expunge_block (basic_block b)
184 {
185   unlink_block (b);
186   SET_BASIC_BLOCK (b->index, NULL);
187   n_basic_blocks--;
188   /* We should be able to ggc_free here, but we are not.
189      The dead SSA_NAMES are left pointing to dead statements that are pointing
190      to dead basic blocks making garbage collector to die.
191      We should be able to release all dead SSA_NAMES and at the same time we should
192      clear out BB pointer of dead statements consistently.  */
193 }
194 \f
195 /* Connect E to E->src.  */
196
197 static inline void
198 connect_src (edge e)
199 {
200   vec_safe_push (e->src->succs, e);
201   df_mark_solutions_dirty ();
202 }
203
204 /* Connect E to E->dest.  */
205
206 static inline void
207 connect_dest (edge e)
208 {
209   basic_block dest = e->dest;
210   vec_safe_push (dest->preds, e);
211   e->dest_idx = EDGE_COUNT (dest->preds) - 1;
212   df_mark_solutions_dirty ();
213 }
214
215 /* Disconnect edge E from E->src.  */
216
217 static inline void
218 disconnect_src (edge e)
219 {
220   basic_block src = e->src;
221   edge_iterator ei;
222   edge tmp;
223
224   for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
225     {
226       if (tmp == e)
227         {
228           src->succs->unordered_remove (ei.index);
229           df_mark_solutions_dirty ();
230           return;
231         }
232       else
233         ei_next (&ei);
234     }
235
236   gcc_unreachable ();
237 }
238
239 /* Disconnect edge E from E->dest.  */
240
241 static inline void
242 disconnect_dest (edge e)
243 {
244   basic_block dest = e->dest;
245   unsigned int dest_idx = e->dest_idx;
246
247   dest->preds->unordered_remove (dest_idx);
248
249   /* If we removed an edge in the middle of the edge vector, we need
250      to update dest_idx of the edge that moved into the "hole".  */
251   if (dest_idx < EDGE_COUNT (dest->preds))
252     EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
253   df_mark_solutions_dirty ();
254 }
255
256 /* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
257    created edge.  Use this only if you are sure that this edge can't
258    possibly already exist.  */
259
260 edge
261 unchecked_make_edge (basic_block src, basic_block dst, int flags)
262 {
263   edge e;
264   e = ggc_alloc_cleared_edge_def ();
265   n_edges++;
266
267   e->src = src;
268   e->dest = dst;
269   e->flags = flags;
270
271   connect_src (e);
272   connect_dest (e);
273
274   execute_on_growing_pred (e);
275   return e;
276 }
277
278 /* Create an edge connecting SRC and DST with FLAGS optionally using
279    edge cache CACHE.  Return the new edge, NULL if already exist.  */
280
281 edge
282 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
283 {
284   if (edge_cache == NULL
285       || src == ENTRY_BLOCK_PTR
286       || dst == EXIT_BLOCK_PTR)
287     return make_edge (src, dst, flags);
288
289   /* Does the requested edge already exist?  */
290   if (! bitmap_bit_p (edge_cache, dst->index))
291     {
292       /* The edge does not exist.  Create one and update the
293          cache.  */
294       bitmap_set_bit (edge_cache, dst->index);
295       return unchecked_make_edge (src, dst, flags);
296     }
297
298   /* At this point, we know that the requested edge exists.  Adjust
299      flags if necessary.  */
300   if (flags)
301     {
302       edge e = find_edge (src, dst);
303       e->flags |= flags;
304     }
305
306   return NULL;
307 }
308
309 /* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
310    created edge or NULL if already exist.  */
311
312 edge
313 make_edge (basic_block src, basic_block dest, int flags)
314 {
315   edge e = find_edge (src, dest);
316
317   /* Make sure we don't add duplicate edges.  */
318   if (e)
319     {
320       e->flags |= flags;
321       return NULL;
322     }
323
324   return unchecked_make_edge (src, dest, flags);
325 }
326
327 /* Create an edge connecting SRC to DEST and set probability by knowing
328    that it is the single edge leaving SRC.  */
329
330 edge
331 make_single_succ_edge (basic_block src, basic_block dest, int flags)
332 {
333   edge e = make_edge (src, dest, flags);
334
335   e->probability = REG_BR_PROB_BASE;
336   e->count = src->count;
337   return e;
338 }
339
340 /* This function will remove an edge from the flow graph.  */
341
342 void
343 remove_edge_raw (edge e)
344 {
345   remove_predictions_associated_with_edge (e);
346   execute_on_shrinking_pred (e);
347
348   disconnect_src (e);
349   disconnect_dest (e);
350
351   free_edge (e);
352 }
353
354 /* Redirect an edge's successor from one block to another.  */
355
356 void
357 redirect_edge_succ (edge e, basic_block new_succ)
358 {
359   execute_on_shrinking_pred (e);
360
361   disconnect_dest (e);
362
363   e->dest = new_succ;
364
365   /* Reconnect the edge to the new successor block.  */
366   connect_dest (e);
367
368   execute_on_growing_pred (e);
369 }
370
371 /* Redirect an edge's predecessor from one block to another.  */
372
373 void
374 redirect_edge_pred (edge e, basic_block new_pred)
375 {
376   disconnect_src (e);
377
378   e->src = new_pred;
379
380   /* Reconnect the edge to the new predecessor block.  */
381   connect_src (e);
382 }
383
384 /* Clear all basic block flags that do not have to be preserved.  */
385 void
386 clear_bb_flags (void)
387 {
388   basic_block bb;
389
390   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
391     bb->flags &= BB_FLAGS_TO_PRESERVE;
392 }
393 \f
394 /* Check the consistency of profile information.  We can't do that
395    in verify_flow_info, as the counts may get invalid for incompletely
396    solved graphs, later eliminating of conditionals or roundoff errors.
397    It is still practical to have them reported for debugging of simple
398    testcases.  */
399 static void
400 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
401 {
402   edge e;
403   int sum = 0;
404   gcov_type lsum;
405   edge_iterator ei;
406   struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
407   char *s_indent = (char *) alloca ((size_t) indent + 1);
408   memset ((void *) s_indent, ' ', (size_t) indent);
409   s_indent[indent] = '\0';
410
411   if (profile_status_for_function (fun) == PROFILE_ABSENT)
412     return;
413
414   if (bb != EXIT_BLOCK_PTR_FOR_FUNCTION (fun))
415     {
416       FOR_EACH_EDGE (e, ei, bb->succs)
417         sum += e->probability;
418       if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
419         fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
420                  (flags & TDF_COMMENT) ? ";; " : "", s_indent,
421                  sum * 100.0 / REG_BR_PROB_BASE);
422       lsum = 0;
423       FOR_EACH_EDGE (e, ei, bb->succs)
424         lsum += e->count;
425       if (EDGE_COUNT (bb->succs)
426           && (lsum - bb->count > 100 || lsum - bb->count < -100))
427         fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
428                  (flags & TDF_COMMENT) ? ";; " : "", s_indent,
429                  (int) lsum, (int) bb->count);
430     }
431     if (bb != ENTRY_BLOCK_PTR_FOR_FUNCTION (fun))
432     {
433       sum = 0;
434       FOR_EACH_EDGE (e, ei, bb->preds)
435         sum += EDGE_FREQUENCY (e);
436       if (abs (sum - bb->frequency) > 100)
437         fprintf (file,
438                  "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
439                  (flags & TDF_COMMENT) ? ";; " : "", s_indent,
440                  sum, bb->frequency);
441       lsum = 0;
442       FOR_EACH_EDGE (e, ei, bb->preds)
443         lsum += e->count;
444       if (lsum - bb->count > 100 || lsum - bb->count < -100)
445         fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
446                  (flags & TDF_COMMENT) ? ";; " : "", s_indent,
447                  (int) lsum, (int) bb->count);
448     }
449 }
450 \f
451 void
452 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
453 {
454   basic_block side = (do_succ ? e->dest : e->src);
455   bool do_details = false;
456   
457   if ((flags & TDF_DETAILS) != 0
458       && (flags & TDF_SLIM) == 0)
459     do_details = true;
460
461   /* ENTRY_BLOCK_PTR/EXIT_BLOCK_PTR depend on cfun.
462      Compare against ENTRY_BLOCK/EXIT_BLOCK to avoid that dependency.  */
463   if (side->index == ENTRY_BLOCK)
464     fputs (" ENTRY", file);
465   else if (side->index == EXIT_BLOCK)
466     fputs (" EXIT", file);
467   else
468     fprintf (file, " %d", side->index);
469
470   if (e->probability && do_details)
471     fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
472
473   if (e->count && do_details)
474     {
475       fputs (" count:", file);
476       fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
477     }
478
479   if (e->flags && do_details)
480     {
481       static const char * const bitnames[] =
482         {
483 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
484 #include "cfg-flags.def"
485           NULL
486 #undef DEF_EDGE_FLAG
487         };
488       bool comma = false;
489       int i, flags = e->flags;
490
491       gcc_assert (e->flags <= EDGE_ALL_FLAGS);
492       fputs (" (", file);
493       for (i = 0; flags; i++)
494         if (flags & (1 << i))
495           {
496             flags &= ~(1 << i);
497
498             if (comma)
499               fputc (',', file);
500             fputs (bitnames[i], file);
501             comma = true;
502           }
503
504       fputc (')', file);
505     }
506 }
507 \f
508 /* Simple routines to easily allocate AUX fields of basic blocks.  */
509
510 static struct obstack block_aux_obstack;
511 static void *first_block_aux_obj = 0;
512 static struct obstack edge_aux_obstack;
513 static void *first_edge_aux_obj = 0;
514
515 /* Allocate a memory block of SIZE as BB->aux.  The obstack must
516    be first initialized by alloc_aux_for_blocks.  */
517
518 static void
519 alloc_aux_for_block (basic_block bb, int size)
520 {
521   /* Verify that aux field is clear.  */
522   gcc_assert (!bb->aux && first_block_aux_obj);
523   bb->aux = obstack_alloc (&block_aux_obstack, size);
524   memset (bb->aux, 0, size);
525 }
526
527 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
528    alloc_aux_for_block for each basic block.  */
529
530 void
531 alloc_aux_for_blocks (int size)
532 {
533   static int initialized;
534
535   if (!initialized)
536     {
537       gcc_obstack_init (&block_aux_obstack);
538       initialized = 1;
539     }
540   else
541     /* Check whether AUX data are still allocated.  */
542     gcc_assert (!first_block_aux_obj);
543
544   first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
545   if (size)
546     {
547       basic_block bb;
548
549       FOR_ALL_BB (bb)
550         alloc_aux_for_block (bb, size);
551     }
552 }
553
554 /* Clear AUX pointers of all blocks.  */
555
556 void
557 clear_aux_for_blocks (void)
558 {
559   basic_block bb;
560
561   FOR_ALL_BB (bb)
562     bb->aux = NULL;
563 }
564
565 /* Free data allocated in block_aux_obstack and clear AUX pointers
566    of all blocks.  */
567
568 void
569 free_aux_for_blocks (void)
570 {
571   gcc_assert (first_block_aux_obj);
572   obstack_free (&block_aux_obstack, first_block_aux_obj);
573   first_block_aux_obj = NULL;
574
575   clear_aux_for_blocks ();
576 }
577
578 /* Allocate a memory edge of SIZE as E->aux.  The obstack must
579    be first initialized by alloc_aux_for_edges.  */
580
581 void
582 alloc_aux_for_edge (edge e, int size)
583 {
584   /* Verify that aux field is clear.  */
585   gcc_assert (!e->aux && first_edge_aux_obj);
586   e->aux = obstack_alloc (&edge_aux_obstack, size);
587   memset (e->aux, 0, size);
588 }
589
590 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
591    alloc_aux_for_edge for each basic edge.  */
592
593 void
594 alloc_aux_for_edges (int size)
595 {
596   static int initialized;
597
598   if (!initialized)
599     {
600       gcc_obstack_init (&edge_aux_obstack);
601       initialized = 1;
602     }
603   else
604     /* Check whether AUX data are still allocated.  */
605     gcc_assert (!first_edge_aux_obj);
606
607   first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
608   if (size)
609     {
610       basic_block bb;
611
612       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
613         {
614           edge e;
615           edge_iterator ei;
616
617           FOR_EACH_EDGE (e, ei, bb->succs)
618             alloc_aux_for_edge (e, size);
619         }
620     }
621 }
622
623 /* Clear AUX pointers of all edges.  */
624
625 void
626 clear_aux_for_edges (void)
627 {
628   basic_block bb;
629   edge e;
630
631   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
632     {
633       edge_iterator ei;
634       FOR_EACH_EDGE (e, ei, bb->succs)
635         e->aux = NULL;
636     }
637 }
638
639 /* Free data allocated in edge_aux_obstack and clear AUX pointers
640    of all edges.  */
641
642 void
643 free_aux_for_edges (void)
644 {
645   gcc_assert (first_edge_aux_obj);
646   obstack_free (&edge_aux_obstack, first_edge_aux_obj);
647   first_edge_aux_obj = NULL;
648
649   clear_aux_for_edges ();
650 }
651
652 DEBUG_FUNCTION void
653 debug_bb (basic_block bb)
654 {
655   dump_bb (stderr, bb, 0, dump_flags);
656 }
657
658 DEBUG_FUNCTION basic_block
659 debug_bb_n (int n)
660 {
661   basic_block bb = BASIC_BLOCK (n);
662   debug_bb (bb);
663   return bb;
664 }
665
666 /* Dumps cfg related information about basic block BB to OUTF.
667    If HEADER is true, dump things that appear before the instructions
668    contained in BB.  If FOOTER is true, dump things that appear after.
669    Flags are the TDF_* masks as documented in dumpfile.h.
670    NB: With TDF_DETAILS, it is assumed that cfun is available, so
671    that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE.  */
672
673 void
674 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
675               bool do_header, bool do_footer)
676 {
677   edge_iterator ei;
678   edge e;
679   static const char * const bb_bitnames[] =
680     {
681 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
682 #include "cfg-flags.def"
683       NULL
684 #undef DEF_BASIC_BLOCK_FLAG
685     };
686   const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
687   bool first;
688   char *s_indent = (char *) alloca ((size_t) indent + 1);
689   memset ((void *) s_indent, ' ', (size_t) indent);
690   s_indent[indent] = '\0';
691
692   gcc_assert (bb->flags <= BB_ALL_FLAGS);
693
694   if (do_header)
695     {
696       unsigned i;
697
698       if (flags & TDF_COMMENT)
699         fputs (";; ", outf);
700       fprintf (outf, "%sbasic block %d, loop depth %d",
701                s_indent, bb->index, bb_loop_depth (bb));
702       if (flags & TDF_DETAILS)
703         {
704           struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
705           fprintf (outf, ", count " HOST_WIDEST_INT_PRINT_DEC,
706                    (HOST_WIDEST_INT) bb->count);
707           fprintf (outf, ", freq %i", bb->frequency);
708           if (maybe_hot_bb_p (fun, bb))
709             fputs (", maybe hot", outf);
710           if (probably_never_executed_bb_p (fun, bb))
711             fputs (", probably never executed", outf);
712         }
713       fputc ('\n', outf);
714       if (TDF_DETAILS)
715         check_bb_profile (bb, outf, indent, flags);
716
717       if (flags & TDF_DETAILS)
718         {
719           if (flags & TDF_COMMENT)
720             fputs (";; ", outf);
721           fprintf (outf, "%s prev block ", s_indent);
722           if (bb->prev_bb)
723             fprintf (outf, "%d", bb->prev_bb->index);
724           else
725             fprintf (outf, "(nil)");
726           fprintf (outf, ", next block ");
727           if (bb->next_bb)
728             fprintf (outf, "%d", bb->next_bb->index);
729           else
730             fprintf (outf, "(nil)");
731
732           fputs (", flags:", outf);
733           first = true;
734           for (i = 0; i < n_bitnames; i++)
735             if (bb->flags & (1 << i))
736               {
737                 if (first)
738                   fputs (" (", outf);
739                 else
740                   fputs (", ", outf);
741                 first = false;
742                 fputs (bb_bitnames[i], outf);
743               }
744           if (!first)
745             fputc (')', outf);
746           fputc ('\n', outf);
747         }
748
749       if (flags & TDF_COMMENT)
750         fputs (";; ", outf);
751       fprintf (outf, "%s pred:      ", s_indent);
752       first = true;
753       FOR_EACH_EDGE (e, ei, bb->preds)
754         {
755           if (! first)
756             {
757               if (flags & TDF_COMMENT)
758                 fputs (";; ", outf);
759               fprintf (outf, "%s            ", s_indent);
760             }
761           first = false;
762           dump_edge_info (outf, e, flags, 0);
763           fputc ('\n', outf);
764         }
765       if (first)
766         fputc ('\n', outf);
767     }
768
769   if (do_footer)
770     {
771       if (flags & TDF_COMMENT)
772         fputs (";; ", outf);
773       fprintf (outf, "%s succ:      ", s_indent);
774       first = true;
775       FOR_EACH_EDGE (e, ei, bb->succs)
776         {
777           if (! first)
778             {
779               if (flags & TDF_COMMENT)
780                 fputs (";; ", outf);
781               fprintf (outf, "%s            ", s_indent);
782             }
783           first = false;
784           dump_edge_info (outf, e, flags, 1);
785           fputc ('\n', outf);
786         }
787       if (first)
788         fputc ('\n', outf);
789     }
790 }
791
792 /* Dumps a brief description of cfg to FILE.  */
793
794 void
795 brief_dump_cfg (FILE *file, int flags)
796 {
797   basic_block bb;
798
799   FOR_EACH_BB (bb)
800     {
801       dump_bb_info (file, bb, 0,
802                     flags & (TDF_COMMENT | TDF_DETAILS),
803                     true, true);
804     }
805 }
806
807 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
808    leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
809    redirected to destination of TAKEN_EDGE.
810
811    This function may leave the profile inconsistent in the case TAKEN_EDGE
812    frequency or count is believed to be lower than FREQUENCY or COUNT
813    respectively.  */
814 void
815 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
816                                  gcov_type count, edge taken_edge)
817 {
818   edge c;
819   int prob;
820   edge_iterator ei;
821
822   bb->count -= count;
823   if (bb->count < 0)
824     {
825       if (dump_file)
826         fprintf (dump_file, "bb %i count became negative after threading",
827                  bb->index);
828       bb->count = 0;
829     }
830
831   /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
832      Watch for overflows.  */
833   if (bb->frequency)
834     prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
835   else
836     prob = 0;
837   if (prob > taken_edge->probability)
838     {
839       if (dump_file)
840         fprintf (dump_file, "Jump threading proved probability of edge "
841                  "%i->%i too small (it is %i, should be %i).\n",
842                  taken_edge->src->index, taken_edge->dest->index,
843                  taken_edge->probability, prob);
844       prob = taken_edge->probability;
845     }
846
847   /* Now rescale the probabilities.  */
848   taken_edge->probability -= prob;
849   prob = REG_BR_PROB_BASE - prob;
850   bb->frequency -= edge_frequency;
851   if (bb->frequency < 0)
852     bb->frequency = 0;
853   if (prob <= 0)
854     {
855       if (dump_file)
856         fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
857                  "frequency of block should end up being 0, it is %i\n",
858                  bb->index, bb->frequency);
859       EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
860       ei = ei_start (bb->succs);
861       ei_next (&ei);
862       for (; (c = ei_safe_edge (ei)); ei_next (&ei))
863         c->probability = 0;
864     }
865   else if (prob != REG_BR_PROB_BASE)
866     {
867       int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
868
869       FOR_EACH_EDGE (c, ei, bb->succs)
870         {
871           /* Protect from overflow due to additional scaling.  */
872           if (c->probability > prob)
873             c->probability = REG_BR_PROB_BASE;
874           else
875             {
876               c->probability = RDIV (c->probability * scale, 65536);
877               if (c->probability > REG_BR_PROB_BASE)
878                 c->probability = REG_BR_PROB_BASE;
879             }
880         }
881     }
882
883   gcc_assert (bb == taken_edge->src);
884   taken_edge->count -= count;
885   if (taken_edge->count < 0)
886     {
887       if (dump_file)
888         fprintf (dump_file, "edge %i->%i count became negative after threading",
889                  taken_edge->src->index, taken_edge->dest->index);
890       taken_edge->count = 0;
891     }
892 }
893
894 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
895    by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
896 void
897 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
898 {
899   int i;
900   edge e;
901   if (num < 0)
902     num = 0;
903
904   /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
905      10^4, if we make DEN <= 10^3, we can afford to upscale by 100
906      and still safely fit in int during calculations.  */
907   if (den > 1000)
908     {
909       if (num > 1000000)
910         return;
911
912       num = RDIV (1000 * num, den);
913       den = 1000;
914     }
915   if (num > 100 * den)
916     return;
917
918   for (i = 0; i < nbbs; i++)
919     {
920       edge_iterator ei;
921       bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
922       /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
923       if (bbs[i]->frequency > BB_FREQ_MAX)
924         bbs[i]->frequency = BB_FREQ_MAX;
925       bbs[i]->count = RDIV (bbs[i]->count * num, den);
926       FOR_EACH_EDGE (e, ei, bbs[i]->succs)
927         e->count = RDIV (e->count * num, den);
928     }
929 }
930
931 /* numbers smaller than this value are safe to multiply without getting
932    64bit overflow.  */
933 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
934
935 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
936    by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
937    function but considerably slower.  */
938 void
939 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
940                                  gcov_type den)
941 {
942   int i;
943   edge e;
944   gcov_type fraction = RDIV (num * 65536, den);
945
946   gcc_assert (fraction >= 0);
947
948   if (num < MAX_SAFE_MULTIPLIER)
949     for (i = 0; i < nbbs; i++)
950       {
951         edge_iterator ei;
952         bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
953         if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
954           bbs[i]->count = RDIV (bbs[i]->count * num, den);
955         else
956           bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
957         FOR_EACH_EDGE (e, ei, bbs[i]->succs)
958           if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
959             e->count = RDIV (e->count * num, den);
960           else
961             e->count = RDIV (e->count * fraction, 65536);
962       }
963    else
964     for (i = 0; i < nbbs; i++)
965       {
966         edge_iterator ei;
967         if (sizeof (gcov_type) > sizeof (int))
968           bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
969         else
970           bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
971         bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
972         FOR_EACH_EDGE (e, ei, bbs[i]->succs)
973           e->count = RDIV (e->count * fraction, 65536);
974       }
975 }
976
977 /* Helper types for hash tables.  */
978
979 struct htab_bb_copy_original_entry
980 {
981   /* Block we are attaching info to.  */
982   int index1;
983   /* Index of original or copy (depending on the hashtable) */
984   int index2;
985 };
986
987 struct bb_copy_hasher : typed_noop_remove <htab_bb_copy_original_entry>
988 {
989   typedef htab_bb_copy_original_entry value_type;
990   typedef htab_bb_copy_original_entry compare_type;
991   static inline hashval_t hash (const value_type *);
992   static inline bool equal (const value_type *existing,
993                             const compare_type * candidate);
994 };
995
996 inline hashval_t
997 bb_copy_hasher::hash (const value_type *data)
998 {
999   return data->index1;
1000 }
1001
1002 inline bool
1003 bb_copy_hasher::equal (const value_type *data, const compare_type *data2)
1004 {
1005   return data->index1 == data2->index1;
1006 }
1007
1008 /* Data structures used to maintain mapping between basic blocks and
1009    copies.  */
1010 static hash_table <bb_copy_hasher> bb_original;
1011 static hash_table <bb_copy_hasher> bb_copy;
1012
1013 /* And between loops and copies.  */
1014 static hash_table <bb_copy_hasher> loop_copy;
1015 static alloc_pool original_copy_bb_pool;
1016
1017
1018 /* Initialize the data structures to maintain mapping between blocks
1019    and its copies.  */
1020 void
1021 initialize_original_copy_tables (void)
1022 {
1023   gcc_assert (!original_copy_bb_pool);
1024   original_copy_bb_pool
1025     = create_alloc_pool ("original_copy",
1026                          sizeof (struct htab_bb_copy_original_entry), 10);
1027   bb_original.create (10);
1028   bb_copy.create (10);
1029   loop_copy.create (10);
1030 }
1031
1032 /* Free the data structures to maintain mapping between blocks and
1033    its copies.  */
1034 void
1035 free_original_copy_tables (void)
1036 {
1037   gcc_assert (original_copy_bb_pool);
1038   bb_copy.dispose ();
1039   bb_original.dispose ();
1040   loop_copy.dispose ();
1041   free_alloc_pool (original_copy_bb_pool);
1042   original_copy_bb_pool = NULL;
1043 }
1044
1045 /* Removes the value associated with OBJ from table TAB.  */
1046
1047 static void
1048 copy_original_table_clear (hash_table <bb_copy_hasher> tab, unsigned obj)
1049 {
1050   htab_bb_copy_original_entry **slot;
1051   struct htab_bb_copy_original_entry key, *elt;
1052
1053   if (!original_copy_bb_pool)
1054     return;
1055
1056   key.index1 = obj;
1057   slot = tab.find_slot (&key, NO_INSERT);
1058   if (!slot)
1059     return;
1060
1061   elt = *slot;
1062   tab.clear_slot (slot);
1063   pool_free (original_copy_bb_pool, elt);
1064 }
1065
1066 /* Sets the value associated with OBJ in table TAB to VAL.
1067    Do nothing when data structures are not initialized.  */
1068
1069 static void
1070 copy_original_table_set (hash_table <bb_copy_hasher> tab,
1071                          unsigned obj, unsigned val)
1072 {
1073   struct htab_bb_copy_original_entry **slot;
1074   struct htab_bb_copy_original_entry key;
1075
1076   if (!original_copy_bb_pool)
1077     return;
1078
1079   key.index1 = obj;
1080   slot = tab.find_slot (&key, INSERT);
1081   if (!*slot)
1082     {
1083       *slot = (struct htab_bb_copy_original_entry *)
1084                 pool_alloc (original_copy_bb_pool);
1085       (*slot)->index1 = obj;
1086     }
1087   (*slot)->index2 = val;
1088 }
1089
1090 /* Set original for basic block.  Do nothing when data structures are not
1091    initialized so passes not needing this don't need to care.  */
1092 void
1093 set_bb_original (basic_block bb, basic_block original)
1094 {
1095   copy_original_table_set (bb_original, bb->index, original->index);
1096 }
1097
1098 /* Get the original basic block.  */
1099 basic_block
1100 get_bb_original (basic_block bb)
1101 {
1102   struct htab_bb_copy_original_entry *entry;
1103   struct htab_bb_copy_original_entry key;
1104
1105   gcc_assert (original_copy_bb_pool);
1106
1107   key.index1 = bb->index;
1108   entry = bb_original.find (&key);
1109   if (entry)
1110     return BASIC_BLOCK (entry->index2);
1111   else
1112     return NULL;
1113 }
1114
1115 /* Set copy for basic block.  Do nothing when data structures are not
1116    initialized so passes not needing this don't need to care.  */
1117 void
1118 set_bb_copy (basic_block bb, basic_block copy)
1119 {
1120   copy_original_table_set (bb_copy, bb->index, copy->index);
1121 }
1122
1123 /* Get the copy of basic block.  */
1124 basic_block
1125 get_bb_copy (basic_block bb)
1126 {
1127   struct htab_bb_copy_original_entry *entry;
1128   struct htab_bb_copy_original_entry key;
1129
1130   gcc_assert (original_copy_bb_pool);
1131
1132   key.index1 = bb->index;
1133   entry = bb_copy.find (&key);
1134   if (entry)
1135     return BASIC_BLOCK (entry->index2);
1136   else
1137     return NULL;
1138 }
1139
1140 /* Set copy for LOOP to COPY.  Do nothing when data structures are not
1141    initialized so passes not needing this don't need to care.  */
1142
1143 void
1144 set_loop_copy (struct loop *loop, struct loop *copy)
1145 {
1146   if (!copy)
1147     copy_original_table_clear (loop_copy, loop->num);
1148   else
1149     copy_original_table_set (loop_copy, loop->num, copy->num);
1150 }
1151
1152 /* Get the copy of LOOP.  */
1153
1154 struct loop *
1155 get_loop_copy (struct loop *loop)
1156 {
1157   struct htab_bb_copy_original_entry *entry;
1158   struct htab_bb_copy_original_entry key;
1159
1160   gcc_assert (original_copy_bb_pool);
1161
1162   key.index1 = loop->num;
1163   entry = loop_copy.find (&key);
1164   if (entry)
1165     return get_loop (entry->index2);
1166   else
1167     return NULL;
1168 }