aarch64 - Set the mode for the unspec in speculation_tracker insn.
[platform/upstream/linaro-gcc.git] / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2    Copyright (C) 1997-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25    This sparse set representation is suitable for sparse sets with an
26    unknown (a priori) universe.  The set is represented as a double-linked
27    list of container nodes (struct bitmap_element).  Each node consists
28    of an index for the first member that could be held in the container,
29    a small array of integers that represent the members in the container,
30    and pointers to the next and previous element in the linked list.  The
31    elements in the list are sorted in ascending order, i.e. the head of
32    the list holds the element with the smallest member of the set.
33
34    For a given member I in the set:
35      - the element for I will have index is I / (bits per element)
36      - the position for I within element is I % (bits per element)
37
38    This representation is very space-efficient for large sparse sets, and
39    the size of the set can be changed dynamically without much overhead.
40    An important parameter is the number of bits per element.  In this
41    implementation, there are 128 bits per element.  This results in a
42    high storage overhead *per element*, but a small overall overhead if
43    the set is very sparse.
44
45    The downside is that many operations are relatively slow because the
46    linked list has to be traversed to test membership (i.e. member_p/
47    add_member/remove_member).  To improve the performance of this set
48    representation, the last accessed element and its index are cached.
49    For membership tests on members close to recently accessed members,
50    the cached last element improves membership test to a constant-time
51    operation.
52
53    The following operations can always be performed in O(1) time:
54
55      * clear                    : bitmap_clear
56      * choose_one               : (not implemented, but could be
57                                    implemented in constant time)
58
59    The following operations can be performed in O(E) time worst-case (with
60    E the number of elements in the linked list), but in O(1) time with a
61    suitable access patterns:
62
63      * member_p                 : bitmap_bit_p
64      * add_member               : bitmap_set_bit
65      * remove_member            : bitmap_clear_bit
66
67    The following operations can be performed in O(E) time:
68
69      * cardinality              : bitmap_count_bits
70      * set_size                 : bitmap_last_set_bit (but this could
71                                   in constant time with a pointer to
72                                   the last element in the chain)
73
74    Additionally, the linked-list sparse set representation supports
75    enumeration of the members in O(E) time:
76
77      * forall                   : EXECUTE_IF_SET_IN_BITMAP
78      * set_copy                 : bitmap_copy
79      * set_intersection         : bitmap_intersect_p /
80                                   bitmap_and / bitmap_and_into /
81                                   EXECUTE_IF_AND_IN_BITMAP
82      * set_union                : bitmap_ior / bitmap_ior_into
83      * set_difference           : bitmap_intersect_compl_p /
84                                   bitmap_and_comp / bitmap_and_comp_into /
85                                   EXECUTE_IF_AND_COMPL_IN_BITMAP
86      * set_disjuction           : bitmap_xor_comp / bitmap_xor_comp_into
87      * set_compare              : bitmap_equal_p
88
89    Some operations on 3 sets that occur frequently in data flow problems
90    are also implemented:
91
92      * A | (B & C)              : bitmap_ior_and_into
93      * A | (B & ~C)             : bitmap_ior_and_compl /
94                                   bitmap_ior_and_compl_into
95
96    The storage requirements for linked-list sparse sets are O(E), with E->N
97    in the worst case (a sparse set with large distances between the values
98    of the set members).
99
100    The linked-list set representation works well for problems involving very
101    sparse sets.  The canonical example in GCC is, of course, the "set of
102    sets" for some CFG-based data flow problems (liveness analysis, dominance
103    frontiers, etc.).
104    
105    This representation also works well for data flow problems where the size
106    of the set may grow dynamically, but care must be taken that the member_p,
107    add_member, and remove_member operations occur with a suitable access
108    pattern.
109    
110    For random-access sets with a known, relatively small universe size, the
111    SparseSet or simple bitmap representations may be more efficient than a
112    linked-list set.  For random-access sets of unknown universe, a hash table
113    or a balanced binary tree representation is likely to be a more suitable
114    choice.
115
116    Traversing linked lists is usually cache-unfriendly, even with the last
117    accessed element cached.
118    
119    Cache performance can be improved by keeping the elements in the set
120    grouped together in memory, using a dedicated obstack for a set (or group
121    of related sets).  Elements allocated on obstacks are released to a
122    free-list and taken off the free list.  If multiple sets are allocated on
123    the same obstack, elements freed from one set may be re-used for one of
124    the other sets.  This usually helps avoid cache misses.
125
126    A single free-list is used for all sets allocated in GGC space.  This is
127    bad for persistent sets, so persistent sets should be allocated on an
128    obstack whenever possible.  */
129
130 #include "obstack.h"
131
132 /* Bitmap memory usage.  */
133 struct bitmap_usage: public mem_usage
134 {
135   /* Default contructor.  */
136   bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
137   /* Constructor.  */
138   bitmap_usage (size_t allocated, size_t times, size_t peak,
139              uint64_t nsearches, uint64_t search_iter)
140     : mem_usage (allocated, times, peak),
141     m_nsearches (nsearches), m_search_iter (search_iter) {}
142
143   /* Sum the usage with SECOND usage.  */
144   bitmap_usage
145   operator+ (const bitmap_usage &second)
146   {
147     return bitmap_usage (m_allocated + second.m_allocated,
148                              m_times + second.m_times,
149                              m_peak + second.m_peak,
150                              m_nsearches + second.m_nsearches,
151                              m_search_iter + second.m_search_iter);
152   }
153
154   /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
155   inline void
156   dump (mem_location *loc, mem_usage &total) const
157   {
158     char *location_string = loc->to_string ();
159
160     fprintf (stderr, "%-48s %10" PRIu64 ":%5.1f%%"
161              "%10" PRIu64 "%10" PRIu64 ":%5.1f%%"
162              "%12" PRIu64 "%12" PRIu64 "%10s\n",
163              location_string, (uint64_t)m_allocated,
164              get_percent (m_allocated, total.m_allocated),
165              (uint64_t)m_peak, (uint64_t)m_times,
166              get_percent (m_times, total.m_times),
167              m_nsearches, m_search_iter,
168              loc->m_ggc ? "ggc" : "heap");
169
170     free (location_string);
171   }
172
173   /* Dump header with NAME.  */
174   static inline void
175   dump_header (const char *name)
176   {
177     fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
178              "Times", "N searches", "Search iter", "Type");
179     print_dash_line ();
180   }
181
182   /* Number search operations.  */
183   uint64_t m_nsearches;
184   /* Number of search iterations.  */
185   uint64_t m_search_iter;
186 };
187
188 /* Bitmap memory description.  */
189 extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
190
191 /* Fundamental storage type for bitmap.  */
192
193 typedef unsigned long BITMAP_WORD;
194 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
195    it is used in preprocessor directives -- hence the 1u.  */
196 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
197
198 /* Number of words to use for each element in the linked list.  */
199
200 #ifndef BITMAP_ELEMENT_WORDS
201 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
202 #endif
203
204 /* Number of bits in each actual element of a bitmap.  */
205
206 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
207
208 /* Obstack for allocating bitmaps and elements from.  */
209 struct GTY (()) bitmap_obstack {
210   struct bitmap_element *elements;
211   struct bitmap_head *heads;
212   struct obstack GTY ((skip)) obstack;
213 };
214
215 /* Bitmap set element.  We use a linked list to hold only the bits that
216    are set.  This allows for use to grow the bitset dynamically without
217    having to realloc and copy a giant bit array.
218
219    The free list is implemented as a list of lists.  There is one
220    outer list connected together by prev fields.  Each element of that
221    outer is an inner list (that may consist only of the outer list
222    element) that are connected by the next fields.  The prev pointer
223    is undefined for interior elements.  This allows
224    bitmap_elt_clear_from to be implemented in unit time rather than
225    linear in the number of elements to be freed.  */
226
227 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
228   struct bitmap_element *next;  /* Next element.  */
229   struct bitmap_element *prev;  /* Previous element.  */
230   unsigned int indx;                    /* regno/BITMAP_ELEMENT_ALL_BITS.  */
231   BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set.  */
232 };
233
234 /* Head of bitmap linked list.  The 'current' member points to something
235    already pointed to by the chain started by first, so GTY((skip)) it.  */
236
237 struct GTY(()) bitmap_head {
238   unsigned int indx;                    /* Index of last element looked at.  */
239   unsigned int descriptor_id;           /* Unique identifier for the allocation
240                                            site of this bitmap, for detailed
241                                            statistics gathering.  */
242   bitmap_element *first;                /* First element in linked list.  */
243   bitmap_element * GTY((skip(""))) current; /* Last element looked at.  */
244   bitmap_obstack *obstack;              /* Obstack to allocate elements from.
245                                            If NULL, then use GGC allocation.  */
246 };
247
248 /* Global data */
249 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
250 extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
251
252 /* Clear a bitmap by freeing up the linked list.  */
253 extern void bitmap_clear (bitmap);
254
255 /* Copy a bitmap to another bitmap.  */
256 extern void bitmap_copy (bitmap, const_bitmap);
257
258 /* Move a bitmap to another bitmap.  */
259 extern void bitmap_move (bitmap, bitmap);
260
261 /* True if two bitmaps are identical.  */
262 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
263
264 /* True if the bitmaps intersect (their AND is non-empty).  */
265 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
266
267 /* True if the complement of the second intersects the first (their
268    AND_COMPL is non-empty).  */
269 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
270
271 /* True if MAP is an empty bitmap.  */
272 inline bool bitmap_empty_p (const_bitmap map)
273 {
274   return !map->first;
275 }
276
277 /* True if the bitmap has only a single bit set.  */
278 extern bool bitmap_single_bit_set_p (const_bitmap);
279
280 /* Count the number of bits set in the bitmap.  */
281 extern unsigned long bitmap_count_bits (const_bitmap);
282
283 /* Count the number of unique bits set across the two bitmaps.  */
284 extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
285
286 /* Boolean operations on bitmaps.  The _into variants are two operand
287    versions that modify the first source operand.  The other variants
288    are three operand versions that to not destroy the source bitmaps.
289    The operations supported are &, & ~, |, ^.  */
290 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
291 extern bool bitmap_and_into (bitmap, const_bitmap);
292 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
293 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
294 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
295 extern void bitmap_compl_and_into (bitmap, const_bitmap);
296 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
297 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
298 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
299 extern bool bitmap_ior_into (bitmap, const_bitmap);
300 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
301 extern void bitmap_xor_into (bitmap, const_bitmap);
302
303 /* DST = A | (B & C).  Return true if DST changes.  */
304 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
305 /* DST = A | (B & ~C).  Return true if DST changes.  */
306 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
307                                   const_bitmap B, const_bitmap C);
308 /* A |= (B & ~C).  Return true if A changes.  */
309 extern bool bitmap_ior_and_compl_into (bitmap A,
310                                        const_bitmap B, const_bitmap C);
311
312 /* Clear a single bit in a bitmap.  Return true if the bit changed.  */
313 extern bool bitmap_clear_bit (bitmap, int);
314
315 /* Set a single bit in a bitmap.  Return true if the bit changed.  */
316 extern bool bitmap_set_bit (bitmap, int);
317
318 /* Return true if a register is set in a register set.  */
319 extern int bitmap_bit_p (bitmap, int);
320
321 /* Debug functions to print a bitmap linked list.  */
322 extern void debug_bitmap (const_bitmap);
323 extern void debug_bitmap_file (FILE *, const_bitmap);
324
325 /* Print a bitmap.  */
326 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
327
328 /* Initialize and release a bitmap obstack.  */
329 extern void bitmap_obstack_initialize (bitmap_obstack *);
330 extern void bitmap_obstack_release (bitmap_obstack *);
331 extern void bitmap_register (bitmap MEM_STAT_DECL);
332 extern void dump_bitmap_statistics (void);
333
334 /* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
335    to allocate from, NULL for GC'd bitmap.  */
336
337 static inline void
338 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
339 {
340   head->first = head->current = NULL;
341   head->obstack = obstack;
342   if (GATHER_STATISTICS)
343     bitmap_register (head PASS_MEM_STAT);
344 }
345 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
346
347 /* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
348 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
349 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
350 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
351 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
352 extern void bitmap_obstack_free (bitmap);
353
354 /* A few compatibility/functions macros for compatibility with sbitmaps */
355 inline void dump_bitmap (FILE *file, const_bitmap map)
356 {
357   bitmap_print (file, map, "", "\n");
358 }
359 extern void debug (const bitmap_head &ref);
360 extern void debug (const bitmap_head *ptr);
361
362 extern unsigned bitmap_first_set_bit (const_bitmap);
363 extern unsigned bitmap_last_set_bit (const_bitmap);
364
365 /* Compute bitmap hash (for purposes of hashing etc.)  */
366 extern hashval_t bitmap_hash (const_bitmap);
367
368 /* Allocate a bitmap from a bit obstack.  */
369 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
370
371 /* Allocate a gc'd bitmap.  */
372 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
373
374 /* Do any cleanup needed on a bitmap when it is no longer used.  */
375 #define BITMAP_FREE(BITMAP) \
376        ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
377
378 /* Iterator for bitmaps.  */
379
380 struct bitmap_iterator
381 {
382   /* Pointer to the current bitmap element.  */
383   bitmap_element *elt1;
384
385   /* Pointer to 2nd bitmap element when two are involved.  */
386   bitmap_element *elt2;
387
388   /* Word within the current element.  */
389   unsigned word_no;
390
391   /* Contents of the actually processed word.  When finding next bit
392      it is shifted right, so that the actual bit is always the least
393      significant bit of ACTUAL.  */
394   BITMAP_WORD bits;
395 };
396
397 /* Initialize a single bitmap iterator.  START_BIT is the first bit to
398    iterate from.  */
399
400 static inline void
401 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
402                    unsigned start_bit, unsigned *bit_no)
403 {
404   bi->elt1 = map->first;
405   bi->elt2 = NULL;
406
407   /* Advance elt1 until it is not before the block containing start_bit.  */
408   while (1)
409     {
410       if (!bi->elt1)
411         {
412           bi->elt1 = &bitmap_zero_bits;
413           break;
414         }
415
416       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
417         break;
418       bi->elt1 = bi->elt1->next;
419     }
420
421   /* We might have gone past the start bit, so reinitialize it.  */
422   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
423     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
424
425   /* Initialize for what is now start_bit.  */
426   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
427   bi->bits = bi->elt1->bits[bi->word_no];
428   bi->bits >>= start_bit % BITMAP_WORD_BITS;
429
430   /* If this word is zero, we must make sure we're not pointing at the
431      first bit, otherwise our incrementing to the next word boundary
432      will fail.  It won't matter if this increment moves us into the
433      next word.  */
434   start_bit += !bi->bits;
435
436   *bit_no = start_bit;
437 }
438
439 /* Initialize an iterator to iterate over the intersection of two
440    bitmaps.  START_BIT is the bit to commence from.  */
441
442 static inline void
443 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
444                    unsigned start_bit, unsigned *bit_no)
445 {
446   bi->elt1 = map1->first;
447   bi->elt2 = map2->first;
448
449   /* Advance elt1 until it is not before the block containing
450      start_bit.  */
451   while (1)
452     {
453       if (!bi->elt1)
454         {
455           bi->elt2 = NULL;
456           break;
457         }
458
459       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
460         break;
461       bi->elt1 = bi->elt1->next;
462     }
463
464   /* Advance elt2 until it is not before elt1.  */
465   while (1)
466     {
467       if (!bi->elt2)
468         {
469           bi->elt1 = bi->elt2 = &bitmap_zero_bits;
470           break;
471         }
472
473       if (bi->elt2->indx >= bi->elt1->indx)
474         break;
475       bi->elt2 = bi->elt2->next;
476     }
477
478   /* If we're at the same index, then we have some intersecting bits.  */
479   if (bi->elt1->indx == bi->elt2->indx)
480     {
481       /* We might have advanced beyond the start_bit, so reinitialize
482          for that.  */
483       if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
484         start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
485
486       bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
487       bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
488       bi->bits >>= start_bit % BITMAP_WORD_BITS;
489     }
490   else
491     {
492       /* Otherwise we must immediately advance elt1, so initialize for
493          that.  */
494       bi->word_no = BITMAP_ELEMENT_WORDS - 1;
495       bi->bits = 0;
496     }
497
498   /* If this word is zero, we must make sure we're not pointing at the
499      first bit, otherwise our incrementing to the next word boundary
500      will fail.  It won't matter if this increment moves us into the
501      next word.  */
502   start_bit += !bi->bits;
503
504   *bit_no = start_bit;
505 }
506
507 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
508    */
509
510 static inline void
511 bmp_iter_and_compl_init (bitmap_iterator *bi,
512                          const_bitmap map1, const_bitmap map2,
513                          unsigned start_bit, unsigned *bit_no)
514 {
515   bi->elt1 = map1->first;
516   bi->elt2 = map2->first;
517
518   /* Advance elt1 until it is not before the block containing start_bit.  */
519   while (1)
520     {
521       if (!bi->elt1)
522         {
523           bi->elt1 = &bitmap_zero_bits;
524           break;
525         }
526
527       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
528         break;
529       bi->elt1 = bi->elt1->next;
530     }
531
532   /* Advance elt2 until it is not before elt1.  */
533   while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
534     bi->elt2 = bi->elt2->next;
535
536   /* We might have advanced beyond the start_bit, so reinitialize for
537      that.  */
538   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
539     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
540
541   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
542   bi->bits = bi->elt1->bits[bi->word_no];
543   if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
544     bi->bits &= ~bi->elt2->bits[bi->word_no];
545   bi->bits >>= start_bit % BITMAP_WORD_BITS;
546
547   /* If this word is zero, we must make sure we're not pointing at the
548      first bit, otherwise our incrementing to the next word boundary
549      will fail.  It won't matter if this increment moves us into the
550      next word.  */
551   start_bit += !bi->bits;
552
553   *bit_no = start_bit;
554 }
555
556 /* Advance to the next bit in BI.  We don't advance to the next
557    nonzero bit yet.  */
558
559 static inline void
560 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
561 {
562   bi->bits >>= 1;
563   *bit_no += 1;
564 }
565
566 /* Advance to first set bit in BI.  */
567
568 static inline void
569 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
570 {
571 #if (GCC_VERSION >= 3004)
572   {
573     unsigned int n = __builtin_ctzl (bi->bits);
574     gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
575     bi->bits >>= n;
576     *bit_no += n;
577   }
578 #else
579   while (!(bi->bits & 1))
580     {
581       bi->bits >>= 1;
582       *bit_no += 1;
583     }
584 #endif
585 }
586
587 /* Advance to the next nonzero bit of a single bitmap, we will have
588    already advanced past the just iterated bit.  Return true if there
589    is a bit to iterate.  */
590
591 static inline bool
592 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
593 {
594   /* If our current word is nonzero, it contains the bit we want.  */
595   if (bi->bits)
596     {
597     next_bit:
598       bmp_iter_next_bit (bi, bit_no);
599       return true;
600     }
601
602   /* Round up to the word boundary.  We might have just iterated past
603      the end of the last word, hence the -1.  It is not possible for
604      bit_no to point at the beginning of the now last word.  */
605   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
606              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
607   bi->word_no++;
608
609   while (1)
610     {
611       /* Find the next nonzero word in this elt.  */
612       while (bi->word_no != BITMAP_ELEMENT_WORDS)
613         {
614           bi->bits = bi->elt1->bits[bi->word_no];
615           if (bi->bits)
616             goto next_bit;
617           *bit_no += BITMAP_WORD_BITS;
618           bi->word_no++;
619         }
620
621       /* Advance to the next element.  */
622       bi->elt1 = bi->elt1->next;
623       if (!bi->elt1)
624         return false;
625       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626       bi->word_no = 0;
627     }
628 }
629
630 /* Advance to the next nonzero bit of an intersecting pair of
631    bitmaps.  We will have already advanced past the just iterated bit.
632    Return true if there is a bit to iterate.  */
633
634 static inline bool
635 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
636 {
637   /* If our current word is nonzero, it contains the bit we want.  */
638   if (bi->bits)
639     {
640     next_bit:
641       bmp_iter_next_bit (bi, bit_no);
642       return true;
643     }
644
645   /* Round up to the word boundary.  We might have just iterated past
646      the end of the last word, hence the -1.  It is not possible for
647      bit_no to point at the beginning of the now last word.  */
648   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650   bi->word_no++;
651
652   while (1)
653     {
654       /* Find the next nonzero word in this elt.  */
655       while (bi->word_no != BITMAP_ELEMENT_WORDS)
656         {
657           bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
658           if (bi->bits)
659             goto next_bit;
660           *bit_no += BITMAP_WORD_BITS;
661           bi->word_no++;
662         }
663
664       /* Advance to the next identical element.  */
665       do
666         {
667           /* Advance elt1 while it is less than elt2.  We always want
668              to advance one elt.  */
669           do
670             {
671               bi->elt1 = bi->elt1->next;
672               if (!bi->elt1)
673                 return false;
674             }
675           while (bi->elt1->indx < bi->elt2->indx);
676
677           /* Advance elt2 to be no less than elt1.  This might not
678              advance.  */
679           while (bi->elt2->indx < bi->elt1->indx)
680             {
681               bi->elt2 = bi->elt2->next;
682               if (!bi->elt2)
683                 return false;
684             }
685         }
686       while (bi->elt1->indx != bi->elt2->indx);
687
688       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
689       bi->word_no = 0;
690     }
691 }
692
693 /* Advance to the next nonzero bit in the intersection of
694    complemented bitmaps.  We will have already advanced past the just
695    iterated bit.  */
696
697 static inline bool
698 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
699 {
700   /* If our current word is nonzero, it contains the bit we want.  */
701   if (bi->bits)
702     {
703     next_bit:
704       bmp_iter_next_bit (bi, bit_no);
705       return true;
706     }
707
708   /* Round up to the word boundary.  We might have just iterated past
709      the end of the last word, hence the -1.  It is not possible for
710      bit_no to point at the beginning of the now last word.  */
711   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
712              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
713   bi->word_no++;
714
715   while (1)
716     {
717       /* Find the next nonzero word in this elt.  */
718       while (bi->word_no != BITMAP_ELEMENT_WORDS)
719         {
720           bi->bits = bi->elt1->bits[bi->word_no];
721           if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
722             bi->bits &= ~bi->elt2->bits[bi->word_no];
723           if (bi->bits)
724             goto next_bit;
725           *bit_no += BITMAP_WORD_BITS;
726           bi->word_no++;
727         }
728
729       /* Advance to the next element of elt1.  */
730       bi->elt1 = bi->elt1->next;
731       if (!bi->elt1)
732         return false;
733
734       /* Advance elt2 until it is no less than elt1.  */
735       while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
736         bi->elt2 = bi->elt2->next;
737
738       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
739       bi->word_no = 0;
740     }
741 }
742
743 /* Loop over all bits set in BITMAP, starting with MIN and setting
744    BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
745    should be treated as a read-only variable as it contains loop
746    state.  */
747
748 #ifndef EXECUTE_IF_SET_IN_BITMAP
749 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
750 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)             \
751   for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));         \
752        bmp_iter_set (&(ITER), &(BITNUM));                               \
753        bmp_iter_next (&(ITER), &(BITNUM)))
754 #endif
755
756 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
757    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
758    BITNUM should be treated as a read-only variable as it contains
759    loop state.  */
760
761 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)   \
762   for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),         \
763                           &(BITNUM));                                   \
764        bmp_iter_and (&(ITER), &(BITNUM));                               \
765        bmp_iter_next (&(ITER), &(BITNUM)))
766
767 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
768    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
769    BITNUM should be treated as a read-only variable as it contains
770    loop state.  */
771
772 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
773   for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),   \
774                                 &(BITNUM));                             \
775        bmp_iter_and_compl (&(ITER), &(BITNUM));                         \
776        bmp_iter_next (&(ITER), &(BITNUM)))
777
778 #endif /* GCC_BITMAP_H */