1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 * This is really a branch office of as-read.c. I split it out to clearly
22 * distinguish the world of expressions from the world of statements.
23 * (It also gives smaller files to re-compile.)
24 * Here, "operand"s are of expressions, not instructions.
34 static void clean_up_expression PARAMS ((expressionS * expressionP));
35 extern const char EXP_CHARS[], FLT_CHARS[];
38 * Build any floating-point literal here.
39 * Also build any bignum literal here.
42 /* Seems atof_machine can backscan through generic_bignum and hit whatever
43 happens to be loaded before it in memory. And its way too complicated
44 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
45 and never write into the early words, thus they'll always be zero.
46 I hate Dean's floating-point code. Bleh. */
47 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
48 FLONUM_TYPE generic_floating_point_number =
50 &generic_bignum[6], /* low (JF: Was 0) */
51 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
56 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
57 int generic_floating_point_magic;
59 floating_constant (expressionP)
60 expressionS *expressionP;
62 /* input_line_pointer->*/
63 /* floating-point constant. */
66 error_code = atof_generic
67 (&input_line_pointer, ".", EXP_CHARS,
68 &generic_floating_point_number);
72 if (error_code == ERROR_EXPONENT_OVERFLOW)
74 as_bad ("bad floating-point constant: exponent overflow, probably assembling junk");
78 as_bad ("bad floating-point constant: unknown error code=%d.", error_code);
81 expressionP->X_seg = big_section;
82 /* input_line_pointer->just after constant, */
83 /* which may point to whitespace. */
84 expressionP->X_add_number = -1;
89 integer_constant (radix, expressionP)
91 expressionS *expressionP;
93 register char *digit_2; /*->2nd digit of number. */
96 register valueT number; /* offset or (absolute) value */
97 register short int digit; /* value of next digit in current radix */
98 register short int maxdig = 0;/* highest permitted digit value. */
99 register int too_many_digits = 0; /* if we see >= this number of */
100 register char *name; /* points to name of symbol */
101 register symbolS *symbolP; /* points to symbol */
103 int small; /* true if fits in 32 bits. */
104 extern const char hex_value[]; /* in hex_value.c */
106 /* may be bignum, or may fit in 32 bits. */
108 * most numbers fit into 32 bits, and we want this case to be fast.
109 * so we pretend it will fit into 32 bits. if, after making up a 32
110 * bit number, we realise that we have scanned more digits than
111 * comfortably fit into 32 bits, we re-scan the digits coding
112 * them into a bignum. for decimal and octal numbers we are conservative: some
113 * numbers may be assumed bignums when in fact they do fit into 32 bits.
114 * numbers of any radix can have excess leading zeros: we strive
115 * to recognise this and cast them back into 32 bits.
116 * we must check that the bignum really is more than 32
117 * bits, and change it back to a 32-bit number if it fits.
118 * the number we are looking for is expected to be positive, but
119 * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
120 * number. the cavalier approach is for speed in ordinary cases.
128 too_many_digits = 33;
132 too_many_digits = 11;
142 too_many_digits = 11;
144 c = *input_line_pointer;
145 input_line_pointer++;
146 digit_2 = input_line_pointer;
147 for (number = 0; (digit = hex_value[c]) < maxdig; c = *input_line_pointer++)
149 number = number * radix + digit;
151 /* c contains character after number. */
152 /* input_line_pointer->char after c. */
153 small = input_line_pointer - digit_2 < too_many_digits;
157 * we saw a lot of digits. manufacture a bignum the hard way.
159 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
160 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
163 leader = generic_bignum;
164 generic_bignum[0] = 0;
165 generic_bignum[1] = 0;
166 /* we could just use digit_2, but lets be mnemonic. */
167 input_line_pointer = --digit_2; /*->1st digit. */
168 c = *input_line_pointer++;
169 for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
171 for (pointer = generic_bignum;
177 work = carry + radix * *pointer;
178 *pointer = work & LITTLENUM_MASK;
179 carry = work >> LITTLENUM_NUMBER_OF_BITS;
183 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
184 { /* room to grow a longer bignum. */
189 /* again, c is char after number, */
190 /* input_line_pointer->after c. */
191 know (sizeof (int) * 8 == 32);
192 know (LITTLENUM_NUMBER_OF_BITS == 16);
193 /* hence the constant "2" in the next line. */
194 if (leader < generic_bignum + 2)
195 { /* will fit into 32 bits. */
197 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
198 | (generic_bignum[0] & LITTLENUM_MASK);
203 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
209 * here with number, in correct radix. c is the next char.
210 * note that unlike un*x, we allow "011f" "0x9f" to
211 * both mean the same as the (conventional) "9f". this is simply easier
212 * than checking for strict canonical form. syntax sux!
218 #ifdef LOCAL_LABELS_FB
222 * backward ref to local label.
223 * because it is backward, expect it to be defined.
225 /* Construct a local label. */
226 name = fb_label_name ((int) number, 0);
228 /* seen before, or symbol is defined: ok */
229 symbolP = symbol_find (name);
230 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
233 /* local labels are never absolute. don't waste time
234 checking absoluteness. */
235 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
237 expressionP->X_add_symbol = symbolP;
238 expressionP->X_seg = S_GET_SEGMENT (symbolP);
242 { /* either not seen or not defined. */
243 as_bad ("backw. ref to unknown label \"%d:\", 0 assumed.", number);
244 expressionP->X_seg = absolute_section;
247 expressionP->X_add_number = 0;
254 * forward reference. expect symbol to be undefined or
255 * unknown. undefined: seen it before. unknown: never seen
257 * construct a local label name, then an undefined symbol.
258 * don't create a xseg frag for it: caller may do that.
259 * just return it as never seen before.
261 name = fb_label_name ((int) number, 1);
262 symbolP = symbol_find_or_make (name);
263 /* we have no need to check symbol properties. */
264 #ifndef many_segments
265 /* since "know" puts its arg into a "string", we
266 can't have newlines in the argument. */
267 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
269 expressionP->X_add_symbol = symbolP;
270 expressionP->X_seg = undefined_section;
271 expressionP->X_subtract_symbol = NULL;
272 expressionP->X_add_number = 0;
277 #endif /* LOCAL_LABELS_FB */
279 #ifdef LOCAL_LABELS_DOLLAR
284 /* If the dollar label is *currently* defined, then this is just
285 another reference to it. If it is not *currently* defined,
286 then this is a fresh instantiation of that number, so create
289 if (dollar_label_defined (number))
291 name = dollar_label_name (number, 0);
292 symbolP = symbol_find (name);
293 know (symbolP != NULL);
297 name = dollar_label_name (number, 1);
298 symbolP = symbol_find_or_make (name);
301 expressionP->X_add_symbol = symbolP;
302 expressionP->X_add_number = 0;
303 expressionP->X_seg = S_GET_SEGMENT (symbolP);
308 #endif /* LOCAL_LABELS_DOLLAR */
312 expressionP->X_add_number = number;
313 expressionP->X_seg = absolute_section;
314 input_line_pointer--; /* restore following character. */
316 } /* really just a number */
318 } /* switch on char following the number */
323 { /* not a small number */
324 expressionP->X_add_number = number;
325 expressionP->X_seg = big_section;
326 input_line_pointer--; /*->char following number. */
328 } /* integer_constant() */
332 * Summary of operand().
334 * in: Input_line_pointer points to 1st char of operand, which may
337 * out: A expressionS. X_seg determines how to understand the rest of the
339 * The operand may have been empty: in this case X_seg == SEG_ABSENT.
340 * Input_line_pointer->(next non-blank) char after operand.
347 operand (expressionP)
348 register expressionS *expressionP;
351 register symbolS *symbolP; /* points to symbol */
352 register char *name; /* points to name of symbol */
353 /* invented for humans only, hope */
354 /* optimising compiler flushes it! */
355 register short int radix; /* 2, 8, 10 or 16, 0 when floating */
356 /* 0 means we saw start of a floating- */
357 /* point constant. */
359 /* digits, assume it is a bignum. */
361 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
362 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
368 integer_constant (2, expressionP);
371 integer_constant (8, expressionP);
374 integer_constant (16, expressionP);
386 input_line_pointer--;
388 integer_constant (10, expressionP);
392 /* non-decimal radix */
395 c = *input_line_pointer;
400 if (c && strchr (FLT_CHARS, c))
402 input_line_pointer++;
403 floating_constant (expressionP);
407 /* The string was only zero */
408 expressionP->X_add_symbol = 0;
409 expressionP->X_add_number = 0;
410 expressionP->X_seg = absolute_section;
417 input_line_pointer++;
418 integer_constant (16, expressionP);
422 #ifdef LOCAL_LABELS_FB
423 if (!*input_line_pointer
424 || (!strchr ("+-.0123456789", *input_line_pointer)
425 && !strchr (EXP_CHARS, *input_line_pointer)))
427 input_line_pointer--;
428 integer_constant (10, expressionP);
433 input_line_pointer++;
434 integer_constant (2, expressionP);
445 integer_constant (8, expressionP);
449 #ifdef LOCAL_LABELS_FB
450 /* if it says '0f' and the line ends or it doesn't look like
451 a floating point #, its a local label ref. dtrt */
452 /* likewise for the b's. xoxorich. */
454 && (!*input_line_pointer ||
455 (!strchr ("+-.0123456789", *input_line_pointer) &&
456 !strchr (EXP_CHARS, *input_line_pointer))))
458 input_line_pointer -= 1;
459 integer_constant (10, expressionP);
473 input_line_pointer++;
474 floating_constant (expressionP);
475 expressionP->X_add_number = -(isupper (c) ? tolower (c) : c);
478 #ifdef LOCAL_LABELS_DOLLAR
480 integer_constant (10, expressionP);
487 /* didn't begin with digit & not a name */
489 (void) expression (expressionP);
490 /* Expression() will pass trailing whitespace */
491 if (*input_line_pointer++ != ')')
493 as_bad ("Missing ')' assumed");
494 input_line_pointer--;
496 /* here with input_line_pointer->char after "(...)" */
498 return expressionP->X_seg;
502 /* Warning: to conform to other people's assemblers NO ESCAPEMENT is
503 permitted for a single quote. The next character, parity errors and
504 all, is taken as the value of the operand. VERY KINKY. */
505 expressionP->X_add_number = *input_line_pointer++;
506 expressionP->X_seg = absolute_section;
513 /* unary operator: hope for SEG_ABSOLUTE */
514 segT opseg = operand (expressionP);
515 if (opseg == absolute_section)
517 /* input_line_pointer -> char after operand */
520 expressionP->X_add_number = -expressionP->X_add_number;
521 /* Notice: '-' may overflow: no warning is given. This is
522 compatible with other people's assemblers. Sigh. */
526 expressionP->X_add_number = ~expressionP->X_add_number;
529 else if (opseg == text_section
530 || opseg == data_section
531 || opseg == bss_section
532 || opseg == pass1_section
533 || opseg == undefined_section)
537 expressionP->X_subtract_symbol = expressionP->X_add_symbol;
538 expressionP->X_add_symbol = 0;
539 expressionP->X_seg = diff_section;
542 as_warn ("Unary operator %c ignored because bad operand follows",
546 as_warn ("Unary operator %c ignored because bad operand follows", c);
551 if (!is_part_of_name (*input_line_pointer))
554 extern struct obstack frags;
556 /* JF: '.' is pseudo symbol with value of current location
557 in current segment. */
558 #ifdef DOT_LABEL_PREFIX
563 symbolP = symbol_new (fake,
565 (valueT) (obstack_next_free (&frags) - frag_now->fr_literal),
568 expressionP->X_add_number = 0;
569 expressionP->X_add_symbol = symbolP;
570 expressionP->X_seg = now_seg;
584 /* can't imagine any other kind of operand */
585 expressionP->X_seg = absent_section;
586 input_line_pointer--;
587 md_operand (expressionP);
591 if (is_end_of_line[c])
593 if (is_name_beginner (c)) /* here if did not begin with a digit */
596 * Identifier begins here.
597 * This is kludged for speed, so code is repeated.
600 name = --input_line_pointer;
601 c = get_symbol_end ();
602 symbolP = symbol_find_or_make (name);
603 /* If we have an absolute symbol or a reg, then we know its value
605 expressionP->X_seg = S_GET_SEGMENT (symbolP);
606 if (expressionP->X_seg == absolute_section
607 || expressionP->X_seg == reg_section)
608 expressionP->X_add_number = S_GET_VALUE (symbolP);
611 expressionP->X_add_number = 0;
612 expressionP->X_add_symbol = symbolP;
614 *input_line_pointer = c;
615 expressionP->X_subtract_symbol = NULL;
619 as_bad ("Bad expression");
620 expressionP->X_add_number = 0;
621 expressionP->X_seg = absolute_section;
626 * It is more 'efficient' to clean up the expressionS when they are created.
627 * Doing it here saves lines of code.
629 clean_up_expression (expressionP);
630 SKIP_WHITESPACE (); /*->1st char after operand. */
631 know (*input_line_pointer != ' ');
632 return (expressionP->X_seg);
636 /* Internal. Simplify a struct expression for use by expr() */
639 * In: address of a expressionS.
640 * The X_seg field of the expressionS may only take certain values.
641 * Now, we permit SEG_PASS1 to make code smaller & faster.
642 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
643 * Out: expressionS may have been modified:
644 * 'foo-foo' symbol references cancelled to 0,
645 * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
646 * Unused fields zeroed to help expr().
650 clean_up_expression (expressionP)
651 register expressionS *expressionP;
653 segT s = expressionP->X_seg;
654 if (s == absent_section
655 || s == pass1_section)
657 expressionP->X_add_symbol = NULL;
658 expressionP->X_subtract_symbol = NULL;
659 expressionP->X_add_number = 0;
661 else if (s == big_section
662 || s == absolute_section)
664 expressionP->X_subtract_symbol = NULL;
665 expressionP->X_add_symbol = NULL;
667 else if (s == undefined_section)
668 expressionP->X_subtract_symbol = NULL;
669 else if (s == diff_section)
672 * It does not hurt to 'cancel' NULL==NULL
673 * when comparing symbols for 'eq'ness.
674 * It is faster to re-cancel them to NULL
675 * than to check for this special case.
677 if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
678 || (expressionP->X_subtract_symbol
679 && expressionP->X_add_symbol
680 && expressionP->X_subtract_symbol->sy_frag == expressionP->X_add_symbol->sy_frag
681 && S_GET_VALUE (expressionP->X_subtract_symbol) == S_GET_VALUE (expressionP->X_add_symbol)))
683 expressionP->X_subtract_symbol = NULL;
684 expressionP->X_add_symbol = NULL;
685 expressionP->X_seg = absolute_section;
688 else if (s == reg_section)
690 expressionP->X_add_symbol = NULL;
691 expressionP->X_subtract_symbol = NULL;
695 if (SEG_NORMAL (expressionP->X_seg))
697 expressionP->X_subtract_symbol = NULL;
701 BAD_CASE (expressionP->X_seg);
709 * Internal. Made a function because this code is used in 2 places.
710 * Generate error or correct X_?????_symbol of expressionS.
714 * symbol_1 += symbol_2 ... well ... sort of.
718 expr_part (symbol_1_PP, symbol_2_P)
719 symbolS **symbol_1_PP;
723 #ifndef MANY_SEGMENTS
724 assert ((*symbol_1_PP) == NULL \
725 || (S_GET_SEGMENT (*symbol_1_PP) == text_section) \
726 || (S_GET_SEGMENT (*symbol_1_PP) == data_section) \
727 || (S_GET_SEGMENT (*symbol_1_PP) == bss_section) \
728 || (!S_IS_DEFINED (*symbol_1_PP)));
729 assert (symbol_2_P == NULL \
730 || (S_GET_SEGMENT (symbol_2_P) == text_section) \
731 || (S_GET_SEGMENT (symbol_2_P) == data_section) \
732 || (S_GET_SEGMENT (symbol_2_P) == bss_section) \
733 || (!S_IS_DEFINED (symbol_2_P)));
737 if (!S_IS_DEFINED (*symbol_1_PP))
741 return_value = pass1_section;
746 know (!S_IS_DEFINED (*symbol_1_PP));
747 return_value = undefined_section;
754 if (!S_IS_DEFINED (symbol_2_P))
757 return_value = pass1_section;
761 /* {seg1} - {seg2} */
762 as_bad ("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"",
763 S_GET_NAME (*symbol_1_PP), S_GET_NAME (symbol_2_P));
765 return_value = absolute_section;
770 return_value = S_GET_SEGMENT (*symbol_1_PP);
775 { /* (* symbol_1_PP) == NULL */
778 *symbol_1_PP = symbol_2_P;
779 return_value = S_GET_SEGMENT (symbol_2_P);
784 return_value = absolute_section;
787 #ifndef MANY_SEGMENTS
788 assert (return_value == absolute_section \
789 || return_value == text_section \
790 || return_value == data_section \
791 || return_value == bss_section \
792 || return_value == undefined_section \
793 || return_value == pass1_section);
795 know ((*symbol_1_PP) == NULL
796 || (S_GET_SEGMENT (*symbol_1_PP) == return_value));
797 return (return_value);
800 /* Expression parser. */
803 * We allow an empty expression, and just assume (absolute,0) silently.
804 * Unary operators and parenthetical expressions are treated as operands.
805 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
807 * We used to do a aho/ullman shift-reduce parser, but the logic got so
808 * warped that I flushed it and wrote a recursive-descent parser instead.
809 * Now things are stable, would anybody like to write a fast parser?
810 * Most expressions are either register (which does not even reach here)
811 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
812 * So I guess it doesn't really matter how inefficient more complex expressions
815 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
816 * Also, we have consumed any leading or trailing spaces (operand does that)
817 * and done all intervening operators.
822 O_illegal, /* (0) what we get for illegal op */
824 O_multiply, /* (1) * */
825 O_divide, /* (2) / */
826 O_modulus, /* (3) % */
827 O_left_shift, /* (4) < */
828 O_right_shift, /* (5) > */
829 O_bit_inclusive_or, /* (6) | */
830 O_bit_or_not, /* (7) ! */
831 O_bit_exclusive_or, /* (8) ^ */
832 O_bit_and, /* (9) & */
834 O_subtract /* (11) - */
841 static const operatorT op_encoding[256] =
842 { /* maps ASCII->operators */
844 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
845 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
847 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
848 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
849 __, __, __, __, __, __, __, __,
850 __, __, __, __, O_left_shift, __, O_right_shift, __,
851 __, __, __, __, __, __, __, __,
852 __, __, __, __, __, __, __, __,
853 __, __, __, __, __, __, __, __,
854 __, __, __, __, __, __, O_bit_exclusive_or, __,
855 __, __, __, __, __, __, __, __,
856 __, __, __, __, __, __, __, __,
857 __, __, __, __, __, __, __, __,
858 __, __, __, __, O_bit_inclusive_or, __, __, __,
860 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
861 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
862 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
863 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
864 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
865 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
866 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
867 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
873 * 0 operand, (expression)
878 static const operator_rankT
880 {0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1};
882 /* Return resultP->X_seg. */
885 register operator_rankT rank; /* Larger # is higher rank. */
886 register expressionS *resultP; /* Deliver result here. */
889 register operatorT op_left;
890 register char c_left; /* 1st operator character. */
891 register operatorT op_right;
892 register char c_right;
895 (void) operand (resultP);
896 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
897 c_left = *input_line_pointer; /* Potential operator character. */
898 op_left = op_encoding[c_left];
899 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
901 input_line_pointer++; /*->after 1st character of operator. */
902 /* Operators "<<" and ">>" have 2 characters. */
903 if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
905 input_line_pointer++;
906 } /*->after operator. */
907 if (absent_section == expr (op_rank[(int) op_left], &right))
909 as_warn ("Missing operand value assumed absolute 0.");
910 resultP->X_add_number = 0;
911 resultP->X_subtract_symbol = NULL;
912 resultP->X_add_symbol = NULL;
913 resultP->X_seg = absolute_section;
915 know (*input_line_pointer != ' ');
916 c_right = *input_line_pointer;
917 op_right = op_encoding[c_right];
918 if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
920 input_line_pointer++;
921 } /*->after operator. */
922 know ((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
923 /* input_line_pointer->after right-hand quantity. */
924 /* left-hand quantity in resultP */
925 /* right-hand quantity in right. */
926 /* operator in op_left. */
927 if (resultP->X_seg == pass1_section || right.X_seg == pass1_section)
929 resultP->X_seg = pass1_section;
933 if (resultP->X_seg == big_section)
935 as_warn ("Left operand of %c is a %s. Integer 0 assumed.",
936 c_left, resultP->X_add_number > 0 ? "bignum" : "float");
937 resultP->X_seg = absolute_section;
938 resultP->X_add_symbol = 0;
939 resultP->X_subtract_symbol = 0;
940 resultP->X_add_number = 0;
942 if (right.X_seg == big_section)
944 as_warn ("Right operand of %c is a %s. Integer 0 assumed.",
945 c_left, right.X_add_number > 0 ? "bignum" : "float");
946 right.X_seg = absolute_section;
947 right.X_add_symbol = 0;
948 right.X_subtract_symbol = 0;
949 right.X_add_number = 0;
951 if (op_left == O_subtract)
954 * Convert - into + by exchanging symbolS and negating number.
955 * I know -infinity can't be negated in 2's complement:
956 * but then it can't be subtracted either. This trick
957 * does not cause any further inaccuracy.
960 register symbolS *symbolP;
962 right.X_add_number = -right.X_add_number;
963 symbolP = right.X_add_symbol;
964 right.X_add_symbol = right.X_subtract_symbol;
965 right.X_subtract_symbol = symbolP;
968 right.X_seg = diff_section;
973 if (op_left == O_add)
977 #ifndef MANY_SEGMENTS
979 know (resultP->X_seg == data_section || resultP->X_seg == text_section || resultP->X_seg == bss_section || resultP->X_seg == undefined_section || resultP->X_seg == diff_section || resultP->X_seg == absolute_section || resultP->X_seg == pass1_section || resultP->X_seg == reg_section);
981 know (right.X_seg == data_section || right.X_seg == text_section || right.X_seg == bss_section || right.X_seg == undefined_section || right.X_seg == diff_section || right.X_seg == absolute_section || right.X_seg == pass1_section);
983 clean_up_expression (&right);
984 clean_up_expression (resultP);
986 seg1 = expr_part (&resultP->X_add_symbol, right.X_add_symbol);
987 seg2 = expr_part (&resultP->X_subtract_symbol, right.X_subtract_symbol);
988 if (seg1 == pass1_section || seg2 == pass1_section)
991 resultP->X_seg = pass1_section;
993 else if (seg2 == absolute_section)
994 resultP->X_seg = seg1;
995 else if (seg1 != undefined_section
996 && seg1 != absolute_section
997 && seg2 != undefined_section
1000 know (seg2 != absolute_section);
1001 know (resultP->X_subtract_symbol);
1002 #ifndef MANY_SEGMENTS
1003 know (seg1 == text_section || seg1 == data_section || seg1 == bss_section);
1004 know (seg2 == text_section || seg2 == data_section || seg2 == bss_section);
1006 know (resultP->X_add_symbol);
1007 know (resultP->X_subtract_symbol);
1008 as_bad ("Expression too complex: forgetting %s - %s",
1009 S_GET_NAME (resultP->X_add_symbol),
1010 S_GET_NAME (resultP->X_subtract_symbol));
1011 resultP->X_seg = absolute_section;
1012 /* Clean_up_expression() will do the rest. */
1015 resultP->X_seg = diff_section;
1017 resultP->X_add_number += right.X_add_number;
1018 clean_up_expression (resultP);
1022 if (resultP->X_seg == undefined_section || right.X_seg == undefined_section)
1024 resultP->X_seg = pass1_section;
1029 resultP->X_subtract_symbol = NULL;
1030 resultP->X_add_symbol = NULL;
1031 /* Will be absolute_section. */
1032 if (resultP->X_seg != absolute_section || right.X_seg != absolute_section)
1034 as_bad ("Relocation error. Absolute 0 assumed.");
1035 resultP->X_seg = absolute_section;
1036 resultP->X_add_number = 0;
1042 case O_bit_inclusive_or:
1043 resultP->X_add_number |= right.X_add_number;
1047 if (right.X_add_number)
1049 resultP->X_add_number %= right.X_add_number;
1053 as_warn ("Division by 0. 0 assumed.");
1054 resultP->X_add_number = 0;
1059 resultP->X_add_number &= right.X_add_number;
1063 resultP->X_add_number *= right.X_add_number;
1067 if (right.X_add_number)
1069 resultP->X_add_number /= right.X_add_number;
1073 as_warn ("Division by 0. 0 assumed.");
1074 resultP->X_add_number = 0;
1079 resultP->X_add_number <<= right.X_add_number;
1083 resultP->X_add_number >>= right.X_add_number;
1086 case O_bit_exclusive_or:
1087 resultP->X_add_number ^= right.X_add_number;
1091 resultP->X_add_number |= ~right.X_add_number;
1097 } /* switch(operator) */
1099 } /* If we have to force need_pass_2. */
1100 } /* If operator was +. */
1101 } /* If we didn't set need_pass_2. */
1103 } /* While next operator is >= this rank. */
1104 return (resultP->X_seg);
1110 * This lives here because it belongs equally in expr.c & read.c.
1111 * Expr.c is just a branch office read.c anyway, and putting it
1112 * here lessens the crowd at read.c.
1114 * Assume input_line_pointer is at start of symbol name.
1115 * Advance input_line_pointer past symbol name.
1116 * Turn that character into a '\0', returning its former value.
1117 * This allows a string compare (RMS wants symbol names to be strings)
1118 * of the symbol name.
1119 * There will always be a char following symbol name, because all good
1120 * lines end in end-of-line.
1127 while (is_part_of_name (c = *input_line_pointer++))
1129 *--input_line_pointer = 0;
1135 get_single_number ()
1139 return exp.X_add_number;