1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 1990, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 * This is really a branch office of as-read.c. I split it out to clearly
22 * distinguish the world of expressions from the world of statements.
23 * (It also gives smaller files to re-compile.)
24 * Here, "operand"s are of expressions, not instructions.
35 static void clean_up_expression (expressionS * expressionP);
37 static void clean_up_expression (); /* Internal. */
38 #endif /* not __STDC__ */
39 extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
40 extern const char FLT_CHARS[];
43 * Build any floating-point literal here.
44 * Also build any bignum literal here.
47 /* LITTLENUM_TYPE generic_buffer [6]; *//* JF this is a hack */
48 /* Seems atof_machine can backscan through generic_bignum and hit whatever
49 happens to be loaded before it in memory. And its way too complicated
50 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
51 and never write into the early words, thus they'll always be zero.
52 I hate Dean's floating-point code. Bleh.
54 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
55 FLONUM_TYPE generic_floating_point_number =
57 &generic_bignum[6], /* low (JF: Was 0) */
58 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
63 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
64 int generic_floating_point_magic;
66 floating_constant (expressionP)
67 expressionS *expressionP;
69 /* input_line_pointer->*/
70 /* floating-point constant. */
73 error_code = atof_generic
74 (&input_line_pointer, ".", EXP_CHARS,
75 &generic_floating_point_number);
79 if (error_code == ERROR_EXPONENT_OVERFLOW)
81 as_bad ("bad floating-point constant: exponent overflow, probably assembling junk");
85 as_bad ("bad floating-point constant: unknown error code=%d.", error_code);
88 expressionP->X_seg = SEG_BIG;
89 /* input_line_pointer->just after constant, */
90 /* which may point to whitespace. */
91 expressionP->X_add_number = -1;
96 integer_constant (radix, expressionP)
98 expressionS *expressionP;
100 register char *digit_2; /*->2nd digit of number. */
103 register valueT number; /* offset or (absolute) value */
104 register short int digit; /* value of next digit in current radix */
105 register short int maxdig = 0;/* highest permitted digit value. */
106 register int too_many_digits = 0; /* if we see >= this number of */
107 register char *name; /* points to name of symbol */
108 register symbolS *symbolP; /* points to symbol */
110 int small; /* true if fits in 32 bits. */
111 extern char hex_value[]; /* in hex_value.c */
113 /* may be bignum, or may fit in 32 bits. */
115 * most numbers fit into 32 bits, and we want this case to be fast.
116 * so we pretend it will fit into 32 bits. if, after making up a 32
117 * bit number, we realise that we have scanned more digits than
118 * comfortably fit into 32 bits, we re-scan the digits coding
119 * them into a bignum. for decimal and octal numbers we are conservative: some
120 * numbers may be assumed bignums when in fact they do fit into 32 bits.
121 * numbers of any radix can have excess leading zeros: we strive
122 * to recognise this and cast them back into 32 bits.
123 * we must check that the bignum really is more than 32
124 * bits, and change it back to a 32-bit number if it fits.
125 * the number we are looking for is expected to be positive, but
126 * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
127 * number. the cavalier approach is for speed in ordinary cases.
135 too_many_digits = 33;
139 too_many_digits = 11;
149 too_many_digits = 11;
151 c = *input_line_pointer;
152 input_line_pointer++;
153 digit_2 = input_line_pointer;
154 for (number = 0; (digit = hex_value[c]) < maxdig; c = *input_line_pointer++)
156 number = number * radix + digit;
158 /* c contains character after number. */
159 /* input_line_pointer->char after c. */
160 small = input_line_pointer - digit_2 < too_many_digits;
164 * we saw a lot of digits. manufacture a bignum the hard way.
166 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
167 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
170 leader = generic_bignum;
171 generic_bignum[0] = 0;
172 generic_bignum[1] = 0;
173 /* we could just use digit_2, but lets be mnemonic. */
174 input_line_pointer = --digit_2; /*->1st digit. */
175 c = *input_line_pointer++;
176 for (; (carry = hex_value[c]) < maxdig; c = *input_line_pointer++)
178 for (pointer = generic_bignum;
184 work = carry + radix * *pointer;
185 *pointer = work & LITTLENUM_MASK;
186 carry = work >> LITTLENUM_NUMBER_OF_BITS;
190 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
191 { /* room to grow a longer bignum. */
196 /* again, c is char after number, */
197 /* input_line_pointer->after c. */
198 know (sizeof (int) * 8 == 32);
199 know (LITTLENUM_NUMBER_OF_BITS == 16);
200 /* hence the constant "2" in the next line. */
201 if (leader < generic_bignum + 2)
202 { /* will fit into 32 bits. */
204 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
205 | (generic_bignum[0] & LITTLENUM_MASK);
210 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
216 * here with number, in correct radix. c is the next char.
217 * note that unlike un*x, we allow "011f" "0x9f" to
218 * both mean the same as the (conventional) "9f". this is simply easier
219 * than checking for strict canonical form. syntax sux!
225 #ifdef LOCAL_LABELS_FB
229 * backward ref to local label.
230 * because it is backward, expect it to be defined.
232 /* Construct a local label. */
233 name = fb_label_name ((int) number, 0);
235 /* seen before, or symbol is defined: ok */
236 symbolP = symbol_find (name);
237 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
240 /* local labels are never absolute. don't waste time
241 checking absoluteness. */
242 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
244 expressionP->X_add_symbol = symbolP;
245 expressionP->X_seg = S_GET_SEGMENT (symbolP);
249 { /* either not seen or not defined. */
250 as_bad ("backw. ref to unknown label \"%d:\", 0 assumed.", number);
251 expressionP->X_seg = SEG_ABSOLUTE;
254 expressionP->X_add_number = 0;
261 * forward reference. expect symbol to be undefined or
262 * unknown. undefined: seen it before. unknown: never seen
264 * construct a local label name, then an undefined symbol.
265 * don't create a xseg frag for it: caller may do that.
266 * just return it as never seen before.
268 name = fb_label_name ((int) number, 1);
269 symbolP = symbol_find_or_make (name);
270 /* we have no need to check symbol properties. */
271 #ifndef many_segments
272 /* since "know" puts its arg into a "string", we
273 can't have newlines in the argument. */
274 know (S_GET_SEGMENT (symbolP) == SEG_UNKNOWN || S_GET_SEGMENT (symbolP) == SEG_TEXT || S_GET_SEGMENT (symbolP) == SEG_DATA);
276 expressionP->X_add_symbol = symbolP;
277 expressionP->X_seg = SEG_UNKNOWN;
278 expressionP->X_subtract_symbol = NULL;
279 expressionP->X_add_number = 0;
284 #endif /* LOCAL_LABELS_FB */
286 #ifdef LOCAL_LABELS_DOLLAR
291 /* If the dollar label is *currently* defined, then this is just
292 another reference to it. If it is not *currently* defined,
293 then this is a fresh instantiation of that number, so create
296 if (dollar_label_defined (number))
298 name = dollar_label_name (number, 0);
299 symbolP = symbol_find (name);
300 know (symbolP != NULL);
304 name = dollar_label_name (number, 1);
305 symbolP = symbol_find_or_make (name);
308 expressionP->X_add_symbol = symbolP;
309 expressionP->X_add_number = 0;
310 expressionP->X_seg = S_GET_SEGMENT (symbolP);
315 #endif /* LOCAL_LABELS_DOLLAR */
319 expressionP->X_add_number = number;
320 expressionP->X_seg = SEG_ABSOLUTE;
321 input_line_pointer--; /* restore following character. */
323 } /* really just a number */
325 } /* switch on char following the number */
330 { /* not a small number */
331 expressionP->X_add_number = number;
332 expressionP->X_seg = SEG_BIG;
333 input_line_pointer--; /*->char following number. */
335 } /* integer_constant() */
339 * Summary of operand().
341 * in: Input_line_pointer points to 1st char of operand, which may
344 * out: A expressionS. X_seg determines how to understand the rest of the
346 * The operand may have been empty: in this case X_seg == SEG_ABSENT.
347 * Input_line_pointer->(next non-blank) char after operand.
354 operand (expressionP)
355 register expressionS *expressionP;
358 register symbolS *symbolP; /* points to symbol */
359 register char *name; /* points to name of symbol */
360 /* invented for humans only, hope */
361 /* optimising compiler flushes it! */
362 register short int radix; /* 2, 8, 10 or 16, 0 when floating */
363 /* 0 means we saw start of a floating- */
364 /* point constant. */
366 /* digits, assume it is a bignum. */
371 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
372 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
378 integer_constant (2, expressionP);
381 integer_constant (8, expressionP);
384 integer_constant (16, expressionP);
396 input_line_pointer--;
398 integer_constant (10, expressionP);
402 /* non-decimal radix */
405 c = *input_line_pointer;
410 if (c && strchr (FLT_CHARS, c))
412 input_line_pointer++;
413 floating_constant (expressionP);
417 /* The string was only zero */
418 expressionP->X_add_symbol = 0;
419 expressionP->X_add_number = 0;
420 expressionP->X_seg = SEG_ABSOLUTE;
427 input_line_pointer++;
428 integer_constant (16, expressionP);
432 #ifdef LOCAL_LABELS_FB
433 if (!*input_line_pointer
434 || (!strchr ("+-.0123456789", *input_line_pointer)
435 && !strchr (EXP_CHARS, *input_line_pointer)))
437 input_line_pointer--;
438 integer_constant (10, expressionP);
443 input_line_pointer++;
444 integer_constant (2, expressionP);
455 integer_constant (8, expressionP);
459 #ifdef LOCAL_LABELS_FB
460 /* if it says '0f' and the line ends or it doesn't look like
461 a floating point #, its a local label ref. dtrt */
462 /* likewise for the b's. xoxorich. */
464 && (!*input_line_pointer ||
465 (!strchr ("+-.0123456789", *input_line_pointer) &&
466 !strchr (EXP_CHARS, *input_line_pointer))))
468 input_line_pointer -= 1;
469 integer_constant (10, expressionP);
483 input_line_pointer++;
484 floating_constant (expressionP);
487 #ifdef LOCAL_LABELS_DOLLAR
489 integer_constant (10, expressionP);
496 /* didn't begin with digit & not a name */
498 (void) expression (expressionP);
499 /* Expression() will pass trailing whitespace */
500 if (*input_line_pointer++ != ')')
502 as_bad ("Missing ')' assumed");
503 input_line_pointer--;
505 /* here with input_line_pointer->char after "(...)" */
507 return expressionP->X_seg;
512 * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
513 * for a single quote. The next character, parity errors and all, is taken
514 * as the value of the operand. VERY KINKY.
516 expressionP->X_add_number = *input_line_pointer++;
517 expressionP->X_seg = SEG_ABSOLUTE;
525 /* unary operator: hope for SEG_ABSOLUTE */
526 switch (operand (expressionP))
529 /* input_line_pointer -> char after operand */
532 expressionP->X_add_number = -expressionP->X_add_number;
534 * Notice: '-' may overflow: no warning is given. This is compatible
535 * with other people's assemblers. Sigh.
540 expressionP->X_add_number = ~expressionP->X_add_number;
550 { /* JF I hope this hack works */
551 expressionP->X_subtract_symbol = expressionP->X_add_symbol;
552 expressionP->X_add_symbol = 0;
553 expressionP->X_seg = SEG_DIFFERENCE;
556 default: /* unary on non-absolute is unsuported */
557 as_warn ("Unary operator %c ignored because bad operand follows", c);
559 /* Expression undisturbed from operand(). */
568 if (!is_part_of_name (*input_line_pointer))
570 extern struct obstack frags;
573 JF: '.' is pseudo symbol with value of current location in current
576 symbolP = symbol_new ("L0\001",
578 (valueT) (obstack_next_free (&frags) - frag_now->fr_literal),
581 expressionP->X_add_number = 0;
582 expressionP->X_add_symbol = symbolP;
583 expressionP->X_seg = now_seg;
595 /* can't imagine any other kind of operand */
596 expressionP->X_seg = SEG_ABSENT;
597 input_line_pointer--;
598 md_operand (expressionP);
602 if (is_name_beginner (c)) /* here if did not begin with a digit */
605 * Identifier begins here.
606 * This is kludged for speed, so code is repeated.
609 name = --input_line_pointer;
610 c = get_symbol_end ();
611 symbolP = symbol_find_or_make (name);
613 * If we have an absolute symbol or a reg, then we know its value now.
615 expressionP->X_seg = S_GET_SEGMENT (symbolP);
616 switch (expressionP->X_seg)
620 expressionP->X_add_number = S_GET_VALUE (symbolP);
624 expressionP->X_add_number = 0;
625 expressionP->X_add_symbol = symbolP;
627 *input_line_pointer = c;
628 expressionP->X_subtract_symbol = NULL;
632 as_bad ("Bad expression");
633 expressionP->X_add_number = 0;
634 expressionP->X_seg = SEG_ABSOLUTE;
647 * It is more 'efficient' to clean up the expressionS when they are created.
648 * Doing it here saves lines of code.
650 clean_up_expression (expressionP);
651 SKIP_WHITESPACE (); /*->1st char after operand. */
652 know (*input_line_pointer != ' ');
653 return (expressionP->X_seg);
657 /* Internal. Simplify a struct expression for use by expr() */
660 * In: address of a expressionS.
661 * The X_seg field of the expressionS may only take certain values.
662 * Now, we permit SEG_PASS1 to make code smaller & faster.
663 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
664 * Out: expressionS may have been modified:
665 * 'foo-foo' symbol references cancelled to 0,
666 * which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
667 * Unused fields zeroed to help expr().
671 clean_up_expression (expressionP)
672 register expressionS *expressionP;
674 switch (expressionP->X_seg)
678 expressionP->X_add_symbol = NULL;
679 expressionP->X_subtract_symbol = NULL;
680 expressionP->X_add_number = 0;
685 expressionP->X_subtract_symbol = NULL;
686 expressionP->X_add_symbol = NULL;
690 expressionP->X_subtract_symbol = NULL;
695 * It does not hurt to 'cancel' NULL==NULL
696 * when comparing symbols for 'eq'ness.
697 * It is faster to re-cancel them to NULL
698 * than to check for this special case.
700 if (expressionP->X_subtract_symbol == expressionP->X_add_symbol
701 || (expressionP->X_subtract_symbol
702 && expressionP->X_add_symbol
703 && expressionP->X_subtract_symbol->sy_frag == expressionP->X_add_symbol->sy_frag
704 && S_GET_VALUE (expressionP->X_subtract_symbol) == S_GET_VALUE (expressionP->X_add_symbol)))
706 expressionP->X_subtract_symbol = NULL;
707 expressionP->X_add_symbol = NULL;
708 expressionP->X_seg = SEG_ABSOLUTE;
713 expressionP->X_add_symbol = NULL;
714 expressionP->X_subtract_symbol = NULL;
718 if (SEG_NORMAL (expressionP->X_seg))
720 expressionP->X_subtract_symbol = NULL;
724 BAD_CASE (expressionP->X_seg);
728 } /* clean_up_expression() */
733 * Internal. Made a function because this code is used in 2 places.
734 * Generate error or correct X_?????_symbol of expressionS.
738 * symbol_1 += symbol_2 ... well ... sort of.
742 expr_part (symbol_1_PP, symbol_2_P)
743 symbolS **symbol_1_PP;
747 #ifndef MANY_SEGMENTS
748 know ((*symbol_1_PP) == NULL || (S_GET_SEGMENT (*symbol_1_PP) == SEG_TEXT) || (S_GET_SEGMENT (*symbol_1_PP) == SEG_DATA) || (S_GET_SEGMENT (*symbol_1_PP) == SEG_BSS) || (!S_IS_DEFINED (*symbol_1_PP)));
749 know (symbol_2_P == NULL || (S_GET_SEGMENT (symbol_2_P) == SEG_TEXT) || (S_GET_SEGMENT (symbol_2_P) == SEG_DATA) || (S_GET_SEGMENT (symbol_2_P) == SEG_BSS) || (!S_IS_DEFINED (symbol_2_P)));
753 if (!S_IS_DEFINED (*symbol_1_PP))
757 return_value = SEG_PASS1;
762 know (!S_IS_DEFINED (*symbol_1_PP));
763 return_value = SEG_UNKNOWN;
770 if (!S_IS_DEFINED (symbol_2_P))
773 return_value = SEG_PASS1;
777 /* {seg1} - {seg2} */
778 as_bad ("Expression too complex, 2 symbolS forgotten: \"%s\" \"%s\"",
779 S_GET_NAME (*symbol_1_PP), S_GET_NAME (symbol_2_P));
781 return_value = SEG_ABSOLUTE;
786 return_value = S_GET_SEGMENT (*symbol_1_PP);
791 { /* (* symbol_1_PP) == NULL */
794 *symbol_1_PP = symbol_2_P;
795 return_value = S_GET_SEGMENT (symbol_2_P);
800 return_value = SEG_ABSOLUTE;
803 #ifndef MANY_SEGMENTS
804 know (return_value == SEG_ABSOLUTE || return_value == SEG_TEXT || return_value == SEG_DATA || return_value == SEG_BSS || return_value == SEG_UNKNOWN || return_value == SEG_PASS1);
806 know ((*symbol_1_PP) == NULL || (S_GET_SEGMENT (*symbol_1_PP) == return_value));
807 return (return_value);
810 /* Expression parser. */
813 * We allow an empty expression, and just assume (absolute,0) silently.
814 * Unary operators and parenthetical expressions are treated as operands.
815 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
817 * We used to do a aho/ullman shift-reduce parser, but the logic got so
818 * warped that I flushed it and wrote a recursive-descent parser instead.
819 * Now things are stable, would anybody like to write a fast parser?
820 * Most expressions are either register (which does not even reach here)
821 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
822 * So I guess it doesn't really matter how inefficient more complex expressions
825 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
826 * Also, we have consumed any leading or trailing spaces (operand does that)
827 * and done all intervening operators.
832 O_illegal, /* (0) what we get for illegal op */
834 O_multiply, /* (1) * */
835 O_divide, /* (2) / */
836 O_modulus, /* (3) % */
837 O_left_shift, /* (4) < */
838 O_right_shift, /* (5) > */
839 O_bit_inclusive_or, /* (6) | */
840 O_bit_or_not, /* (7) ! */
841 O_bit_exclusive_or, /* (8) ^ */
842 O_bit_and, /* (9) & */
844 O_subtract /* (11) - */
851 static const operatorT op_encoding[256] =
852 { /* maps ASCII->operators */
854 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
855 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
857 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
858 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
859 __, __, __, __, __, __, __, __,
860 __, __, __, __, O_left_shift, __, O_right_shift, __,
861 __, __, __, __, __, __, __, __,
862 __, __, __, __, __, __, __, __,
863 __, __, __, __, __, __, __, __,
864 __, __, __, __, __, __, O_bit_exclusive_or, __,
865 __, __, __, __, __, __, __, __,
866 __, __, __, __, __, __, __, __,
867 __, __, __, __, __, __, __, __,
868 __, __, __, __, O_bit_inclusive_or, __, __, __,
870 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
871 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
872 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
873 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
874 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
875 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
876 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
877 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
883 * 0 operand, (expression)
888 static const operator_rankT
890 {0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1};
892 /* Return resultP->X_seg. */
895 register operator_rankT rank; /* Larger # is higher rank. */
896 register expressionS *resultP; /* Deliver result here. */
899 register operatorT op_left;
900 register char c_left; /* 1st operator character. */
901 register operatorT op_right;
902 register char c_right;
905 (void) operand (resultP);
906 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
907 c_left = *input_line_pointer; /* Potential operator character. */
908 op_left = op_encoding[c_left];
909 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
911 input_line_pointer++; /*->after 1st character of operator. */
912 /* Operators "<<" and ">>" have 2 characters. */
913 if (*input_line_pointer == c_left && (c_left == '<' || c_left == '>'))
915 input_line_pointer++;
916 } /*->after operator. */
917 if (SEG_ABSENT == expr (op_rank[(int) op_left], &right))
919 as_warn ("Missing operand value assumed absolute 0.");
920 resultP->X_add_number = 0;
921 resultP->X_subtract_symbol = NULL;
922 resultP->X_add_symbol = NULL;
923 resultP->X_seg = SEG_ABSOLUTE;
925 know (*input_line_pointer != ' ');
926 c_right = *input_line_pointer;
927 op_right = op_encoding[c_right];
928 if (*input_line_pointer == c_right && (c_right == '<' || c_right == '>'))
930 input_line_pointer++;
931 } /*->after operator. */
932 know ((int) op_right == 0 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
933 /* input_line_pointer->after right-hand quantity. */
934 /* left-hand quantity in resultP */
935 /* right-hand quantity in right. */
936 /* operator in op_left. */
937 if (resultP->X_seg == SEG_PASS1 || right.X_seg == SEG_PASS1)
939 resultP->X_seg = SEG_PASS1;
943 if (resultP->X_seg == SEG_BIG)
945 as_warn ("Left operand of %c is a %s. Integer 0 assumed.",
946 c_left, resultP->X_add_number > 0 ? "bignum" : "float");
947 resultP->X_seg = SEG_ABSOLUTE;
948 resultP->X_add_symbol = 0;
949 resultP->X_subtract_symbol = 0;
950 resultP->X_add_number = 0;
952 if (right.X_seg == SEG_BIG)
954 as_warn ("Right operand of %c is a %s. Integer 0 assumed.",
955 c_left, right.X_add_number > 0 ? "bignum" : "float");
956 right.X_seg = SEG_ABSOLUTE;
957 right.X_add_symbol = 0;
958 right.X_subtract_symbol = 0;
959 right.X_add_number = 0;
961 if (op_left == O_subtract)
964 * Convert - into + by exchanging symbolS and negating number.
965 * I know -infinity can't be negated in 2's complement:
966 * but then it can't be subtracted either. This trick
967 * does not cause any further inaccuracy.
970 register symbolS *symbolP;
972 right.X_add_number = -right.X_add_number;
973 symbolP = right.X_add_symbol;
974 right.X_add_symbol = right.X_subtract_symbol;
975 right.X_subtract_symbol = symbolP;
978 right.X_seg = SEG_DIFFERENCE;
983 if (op_left == O_add)
987 #ifndef MANY_SEGMENTS
989 know (resultP->X_seg == SEG_DATA || resultP->X_seg == SEG_TEXT || resultP->X_seg == SEG_BSS || resultP->X_seg == SEG_UNKNOWN || resultP->X_seg == SEG_DIFFERENCE || resultP->X_seg == SEG_ABSOLUTE || resultP->X_seg == SEG_PASS1 || resultP->X_seg == SEG_REGISTER);
991 know (right.X_seg == SEG_DATA || right.X_seg == SEG_TEXT || right.X_seg == SEG_BSS || right.X_seg == SEG_UNKNOWN || right.X_seg == SEG_DIFFERENCE || right.X_seg == SEG_ABSOLUTE || right.X_seg == SEG_PASS1);
993 clean_up_expression (&right);
994 clean_up_expression (resultP);
996 seg1 = expr_part (&resultP->X_add_symbol, right.X_add_symbol);
997 seg2 = expr_part (&resultP->X_subtract_symbol, right.X_subtract_symbol);
998 if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1)
1001 resultP->X_seg = SEG_PASS1;
1003 else if (seg2 == SEG_ABSOLUTE)
1004 resultP->X_seg = seg1;
1005 else if (seg1 != SEG_UNKNOWN
1006 && seg1 != SEG_ABSOLUTE
1007 && seg2 != SEG_UNKNOWN
1010 know (seg2 != SEG_ABSOLUTE);
1011 know (resultP->X_subtract_symbol);
1012 #ifndef MANY_SEGMENTS
1013 know (seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1 == SEG_BSS);
1014 know (seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2 == SEG_BSS);
1016 know (resultP->X_add_symbol);
1017 know (resultP->X_subtract_symbol);
1018 as_bad ("Expression too complex: forgetting %s - %s",
1019 S_GET_NAME (resultP->X_add_symbol),
1020 S_GET_NAME (resultP->X_subtract_symbol));
1021 resultP->X_seg = SEG_ABSOLUTE;
1022 /* Clean_up_expression() will do the rest. */
1025 resultP->X_seg = SEG_DIFFERENCE;
1027 resultP->X_add_number += right.X_add_number;
1028 clean_up_expression (resultP);
1032 if (resultP->X_seg == SEG_UNKNOWN || right.X_seg == SEG_UNKNOWN)
1034 resultP->X_seg = SEG_PASS1;
1039 resultP->X_subtract_symbol = NULL;
1040 resultP->X_add_symbol = NULL;
1041 /* Will be SEG_ABSOLUTE. */
1042 if (resultP->X_seg != SEG_ABSOLUTE || right.X_seg != SEG_ABSOLUTE)
1044 as_bad ("Relocation error. Absolute 0 assumed.");
1045 resultP->X_seg = SEG_ABSOLUTE;
1046 resultP->X_add_number = 0;
1052 case O_bit_inclusive_or:
1053 resultP->X_add_number |= right.X_add_number;
1057 if (right.X_add_number)
1059 resultP->X_add_number %= right.X_add_number;
1063 as_warn ("Division by 0. 0 assumed.");
1064 resultP->X_add_number = 0;
1069 resultP->X_add_number &= right.X_add_number;
1073 resultP->X_add_number *= right.X_add_number;
1077 if (right.X_add_number)
1079 resultP->X_add_number /= right.X_add_number;
1083 as_warn ("Division by 0. 0 assumed.");
1084 resultP->X_add_number = 0;
1089 resultP->X_add_number <<= right.X_add_number;
1093 resultP->X_add_number >>= right.X_add_number;
1096 case O_bit_exclusive_or:
1097 resultP->X_add_number ^= right.X_add_number;
1101 resultP->X_add_number |= ~right.X_add_number;
1107 } /* switch(operator) */
1109 } /* If we have to force need_pass_2. */
1110 } /* If operator was +. */
1111 } /* If we didn't set need_pass_2. */
1113 } /* While next operator is >= this rank. */
1114 return (resultP->X_seg);
1120 * This lives here because it belongs equally in expr.c & read.c.
1121 * Expr.c is just a branch office read.c anyway, and putting it
1122 * here lessens the crowd at read.c.
1124 * Assume input_line_pointer is at start of symbol name.
1125 * Advance input_line_pointer past symbol name.
1126 * Turn that character into a '\0', returning its former value.
1127 * This allows a string compare (RMS wants symbol names to be strings)
1128 * of the symbol name.
1129 * There will always be a char following symbol name, because all good
1130 * lines end in end-of-line.
1137 while (is_part_of_name (c = *input_line_pointer++))
1139 *--input_line_pointer = 0;
1145 get_single_number ()
1149 return exp.X_add_number;