Add -march=interaptiv
[external/binutils.git] / gas / doc / c-mips.texi
1 @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @ifset GENERIC
5 @page
6 @node MIPS-Dependent
7 @chapter MIPS Dependent Features
8 @end ifset
9 @ifclear GENERIC
10 @node Machine Dependencies
11 @chapter MIPS Dependent Features
12 @end ifclear
13
14 @cindex MIPS processor
15 @sc{gnu} @code{@value{AS}} for MIPS architectures supports several
16 different MIPS processors, and MIPS ISA levels I through V, MIPS32,
17 and MIPS64.  For information about the MIPS instruction set, see
18 @cite{MIPS RISC Architecture}, by Kane and Heindrich (Prentice-Hall).
19 For an overview of MIPS assembly conventions, see ``Appendix D:
20 Assembly Language Programming'' in the same work.
21
22 @menu
23 * MIPS Options::        Assembler options
24 * MIPS Macros::         High-level assembly macros
25 * MIPS Symbol Sizes::   Directives to override the size of symbols
26 * MIPS Small Data::     Controlling the use of small data accesses
27 * MIPS ISA::            Directives to override the ISA level
28 * MIPS assembly options:: Directives to control code generation
29 * MIPS autoextend::     Directives for extending MIPS 16 bit instructions
30 * MIPS insn::           Directive to mark data as an instruction
31 * MIPS FP ABIs::        Marking which FP ABI is in use
32 * MIPS NaN Encodings::  Directives to record which NaN encoding is being used
33 * MIPS Option Stack::   Directives to save and restore options
34 * MIPS ASE Instruction Generation Overrides:: Directives to control
35                         generation of MIPS ASE instructions
36 * MIPS Floating-Point:: Directives to override floating-point options
37 * MIPS Syntax::         MIPS specific syntactical considerations
38 @end menu
39
40 @node MIPS Options
41 @section Assembler options
42
43 The MIPS configurations of @sc{gnu} @code{@value{AS}} support these
44 special options:
45
46 @table @code
47 @cindex @code{-G} option (MIPS)
48 @item -G @var{num}
49 Set the ``small data'' limit to @var{n} bytes.  The default limit is 8 bytes.
50 @xref{MIPS Small Data,, Controlling the use of small data accesses}.
51
52 @cindex @code{-EB} option (MIPS)
53 @cindex @code{-EL} option (MIPS)
54 @cindex MIPS big-endian output
55 @cindex MIPS little-endian output
56 @cindex big-endian output, MIPS
57 @cindex little-endian output, MIPS
58 @item -EB
59 @itemx -EL
60 Any MIPS configuration of @code{@value{AS}} can select big-endian or
61 little-endian output at run time (unlike the other @sc{gnu} development
62 tools, which must be configured for one or the other).  Use @samp{-EB}
63 to select big-endian output, and @samp{-EL} for little-endian.
64
65 @item -KPIC
66 @cindex PIC selection, MIPS
67 @cindex @option{-KPIC} option, MIPS
68 Generate SVR4-style PIC.  This option tells the assembler to generate
69 SVR4-style position-independent macro expansions.  It also tells the
70 assembler to mark the output file as PIC.
71
72 @item -mvxworks-pic
73 @cindex @option{-mvxworks-pic} option, MIPS
74 Generate VxWorks PIC.  This option tells the assembler to generate
75 VxWorks-style position-independent macro expansions.
76
77 @cindex MIPS architecture options
78 @item -mips1
79 @itemx -mips2
80 @itemx -mips3
81 @itemx -mips4
82 @itemx -mips5
83 @itemx -mips32
84 @itemx -mips32r2
85 @itemx -mips32r3
86 @itemx -mips32r5
87 @itemx -mips32r6
88 @itemx -mips64
89 @itemx -mips64r2
90 @itemx -mips64r3
91 @itemx -mips64r5
92 @itemx -mips64r6
93 Generate code for a particular MIPS Instruction Set Architecture level.
94 @samp{-mips1} corresponds to the R2000 and R3000 processors,
95 @samp{-mips2} to the R6000 processor, @samp{-mips3} to the
96 R4000 processor, and @samp{-mips4} to the R8000 and R10000 processors.
97 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
98 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
99 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to
100 generic MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32
101 Release 5, MIPS32 Release 6, MIPS64, and MIPS64 Release 2, MIPS64
102 Release 3, MIPS64 Release 5, and MIPS64 Release 6 ISA processors,
103 respectively.  You can also switch instruction sets during the assembly;
104 see @ref{MIPS ISA, Directives to override the ISA level}.
105
106 @item -mgp32
107 @itemx -mfp32
108 Some macros have different expansions for 32-bit and 64-bit registers.
109 The register sizes are normally inferred from the ISA and ABI, but these
110 flags force a certain group of registers to be treated as 32 bits wide at
111 all times.  @samp{-mgp32} controls the size of general-purpose registers
112 and @samp{-mfp32} controls the size of floating-point registers.
113
114 The @code{.set gp=32} and @code{.set fp=32} directives allow the size
115 of registers to be changed for parts of an object. The default value is
116 restored by @code{.set gp=default} and @code{.set fp=default}.
117
118 On some MIPS variants there is a 32-bit mode flag; when this flag is
119 set, 64-bit instructions generate a trap.  Also, some 32-bit OSes only
120 save the 32-bit registers on a context switch, so it is essential never
121 to use the 64-bit registers.
122
123 @item -mgp64
124 @itemx -mfp64
125 Assume that 64-bit registers are available.  This is provided in the
126 interests of symmetry with @samp{-mgp32} and @samp{-mfp32}.
127
128 The @code{.set gp=64} and @code{.set fp=64} directives allow the size
129 of registers to be changed for parts of an object. The default value is
130 restored by @code{.set gp=default} and @code{.set fp=default}.
131
132 @item -mfpxx
133 Make no assumptions about whether 32-bit or 64-bit floating-point
134 registers are available. This is provided to support having modules
135 compatible with either @samp{-mfp32} or @samp{-mfp64}. This option can
136 only be used with MIPS II and above.
137
138 The @code{.set fp=xx} directive allows a part of an object to be marked
139 as not making assumptions about 32-bit or 64-bit FP registers.  The
140 default value is restored by @code{.set fp=default}.
141
142 @item -modd-spreg
143 @itemx -mno-odd-spreg
144 Enable use of floating-point operations on odd-numbered single-precision
145 registers when supported by the ISA.  @samp{-mfpxx} implies
146 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}
147
148 @item -mips16
149 @itemx -no-mips16
150 Generate code for the MIPS 16 processor.  This is equivalent to putting
151 @code{.set mips16} at the start of the assembly file.  @samp{-no-mips16}
152 turns off this option.
153
154 @item -mmicromips
155 @itemx -mno-micromips
156 Generate code for the microMIPS processor.  This is equivalent to putting
157 @code{.set micromips} at the start of the assembly file.  @samp{-mno-micromips}
158 turns off this option.  This is equivalent to putting @code{.set nomicromips}
159 at the start of the assembly file.
160
161 @item -msmartmips
162 @itemx -mno-smartmips
163 Enables the SmartMIPS extensions to the MIPS32 instruction set, which
164 provides a number of new instructions which target smartcard and
165 cryptographic applications.  This is equivalent to putting
166 @code{.set smartmips} at the start of the assembly file.
167 @samp{-mno-smartmips} turns off this option.
168
169 @item -mips3d
170 @itemx -no-mips3d
171 Generate code for the MIPS-3D Application Specific Extension.
172 This tells the assembler to accept MIPS-3D instructions.
173 @samp{-no-mips3d} turns off this option.
174
175 @item -mdmx
176 @itemx -no-mdmx
177 Generate code for the MDMX Application Specific Extension.
178 This tells the assembler to accept MDMX instructions.
179 @samp{-no-mdmx} turns off this option.
180
181 @item -mdsp
182 @itemx -mno-dsp
183 Generate code for the DSP Release 1 Application Specific Extension.
184 This tells the assembler to accept DSP Release 1 instructions.
185 @samp{-mno-dsp} turns off this option.
186
187 @item -mdspr2
188 @itemx -mno-dspr2
189 Generate code for the DSP Release 2 Application Specific Extension.
190 This option implies -mdsp.
191 This tells the assembler to accept DSP Release 2 instructions.
192 @samp{-mno-dspr2} turns off this option.
193
194 @item -mmt
195 @itemx -mno-mt
196 Generate code for the MT Application Specific Extension.
197 This tells the assembler to accept MT instructions.
198 @samp{-mno-mt} turns off this option.
199
200 @item -mmcu
201 @itemx -mno-mcu
202 Generate code for the MCU Application Specific Extension.
203 This tells the assembler to accept MCU instructions.
204 @samp{-mno-mcu} turns off this option.
205
206 @item -mmsa
207 @itemx -mno-msa
208 Generate code for the MIPS SIMD Architecture Extension.
209 This tells the assembler to accept MSA instructions.
210 @samp{-mno-msa} turns off this option.
211
212 @item -mxpa
213 @itemx -mno-xpa
214 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
215 This tells the assembler to accept XPA instructions.
216 @samp{-mno-xpa} turns off this option.
217
218 @item -mvirt
219 @itemx -mno-virt
220 Generate code for the Virtualization Application Specific Extension.
221 This tells the assembler to accept Virtualization instructions.
222 @samp{-mno-virt} turns off this option.
223
224 @item -minsn32
225 @itemx -mno-insn32
226 Only use 32-bit instruction encodings when generating code for the
227 microMIPS processor.  This option inhibits the use of any 16-bit
228 instructions.  This is equivalent to putting @code{.set insn32} at
229 the start of the assembly file.  @samp{-mno-insn32} turns off this
230 option.  This is equivalent to putting @code{.set noinsn32} at the
231 start of the assembly file.  By default @samp{-mno-insn32} is
232 selected, allowing all instructions to be used.
233
234 @item -mfix7000
235 @itemx -mno-fix7000
236 Cause nops to be inserted if the read of the destination register
237 of an mfhi or mflo instruction occurs in the following two instructions.
238
239 @item -mfix-rm7000
240 @itemx -mno-fix-rm7000
241 Cause nops to be inserted if a dmult or dmultu instruction is
242 followed by a load instruction.
243
244 @item -mfix-loongson2f-jump
245 @itemx -mno-fix-loongson2f-jump
246 Eliminate instruction fetch from outside 256M region to work around the
247 Loongson2F @samp{jump} instructions.  Without it, under extreme cases,
248 the kernel may crash.  The issue has been solved in latest processor
249 batches, but this fix has no side effect to them.
250
251 @item -mfix-loongson2f-nop
252 @itemx -mno-fix-loongson2f-nop
253 Replace nops by @code{or at,at,zero} to work around the Loongson2F
254 @samp{nop} errata.  Without it, under extreme cases, the CPU might
255 deadlock.  The issue has been solved in later Loongson2F batches, but
256 this fix has no side effect to them.
257
258 @item -mfix-vr4120
259 @itemx -mno-fix-vr4120
260 Insert nops to work around certain VR4120 errata.  This option is
261 intended to be used on GCC-generated code: it is not designed to catch
262 all problems in hand-written assembler code.
263
264 @item -mfix-vr4130
265 @itemx -mno-fix-vr4130
266 Insert nops to work around the VR4130 @samp{mflo}/@samp{mfhi} errata.
267
268 @item -mfix-24k
269 @itemx -mno-fix-24k
270 Insert nops to work around the 24K @samp{eret}/@samp{deret} errata.
271
272 @item -mfix-cn63xxp1
273 @itemx -mno-fix-cn63xxp1
274 Replace @code{pref} hints 0 - 4 and 6 - 24 with hint 28 to work around
275 certain CN63XXP1 errata.
276
277 @item -m4010
278 @itemx -no-m4010
279 Generate code for the LSI R4010 chip.  This tells the assembler to
280 accept the R4010-specific instructions (@samp{addciu}, @samp{ffc},
281 etc.), and to not schedule @samp{nop} instructions around accesses to
282 the @samp{HI} and @samp{LO} registers.  @samp{-no-m4010} turns off this
283 option.
284
285 @item -m4650
286 @itemx -no-m4650
287 Generate code for the MIPS R4650 chip.  This tells the assembler to accept
288 the @samp{mad} and @samp{madu} instruction, and to not schedule @samp{nop}
289 instructions around accesses to the @samp{HI} and @samp{LO} registers.
290 @samp{-no-m4650} turns off this option.
291
292 @item -m3900
293 @itemx -no-m3900
294 @itemx -m4100
295 @itemx -no-m4100
296 For each option @samp{-m@var{nnnn}}, generate code for the MIPS
297 R@var{nnnn} chip.  This tells the assembler to accept instructions
298 specific to that chip, and to schedule for that chip's hazards.
299
300 @item -march=@var{cpu}
301 Generate code for a particular MIPS CPU.  It is exactly equivalent to
302 @samp{-m@var{cpu}}, except that there are more value of @var{cpu}
303 understood.  Valid @var{cpu} value are:
304
305 @quotation
306 2000,
307 3000,
308 3900,
309 4000,
310 4010,
311 4100,
312 4111,
313 vr4120,
314 vr4130,
315 vr4181,
316 4300,
317 4400,
318 4600,
319 4650,
320 5000,
321 rm5200,
322 rm5230,
323 rm5231,
324 rm5261,
325 rm5721,
326 vr5400,
327 vr5500,
328 6000,
329 rm7000,
330 8000,
331 rm9000,
332 10000,
333 12000,
334 14000,
335 16000,
336 4kc,
337 4km,
338 4kp,
339 4ksc,
340 4kec,
341 4kem,
342 4kep,
343 4ksd,
344 m4k,
345 m4kp,
346 m14k,
347 m14kc,
348 m14ke,
349 m14kec,
350 24kc,
351 24kf2_1,
352 24kf,
353 24kf1_1,
354 24kec,
355 24kef2_1,
356 24kef,
357 24kef1_1,
358 34kc,
359 34kf2_1,
360 34kf,
361 34kf1_1,
362 34kn,
363 74kc,
364 74kf2_1,
365 74kf,
366 74kf1_1,
367 74kf3_2,
368 1004kc,
369 1004kf2_1,
370 1004kf,
371 1004kf1_1,
372 interaptiv,
373 p5600,
374 5kc,
375 5kf,
376 20kc,
377 25kf,
378 sb1,
379 sb1a,
380 i6400,
381 loongson2e,
382 loongson2f,
383 loongson3a,
384 octeon,
385 octeon+,
386 octeon2,
387 octeon3,
388 xlr,
389 xlp
390 @end quotation
391
392 For compatibility reasons, @samp{@var{n}x} and @samp{@var{b}fx} are
393 accepted as synonyms for @samp{@var{n}f1_1}.  These values are
394 deprecated.
395
396 @item -mtune=@var{cpu}
397 Schedule and tune for a particular MIPS CPU.  Valid @var{cpu} values are
398 identical to @samp{-march=@var{cpu}}.
399
400 @item -mabi=@var{abi}
401 Record which ABI the source code uses.  The recognized arguments
402 are: @samp{32}, @samp{n32}, @samp{o64}, @samp{64} and @samp{eabi}.
403
404 @item -msym32
405 @itemx -mno-sym32
406 @cindex -msym32
407 @cindex -mno-sym32
408 Equivalent to adding @code{.set sym32} or @code{.set nosym32} to
409 the beginning of the assembler input.  @xref{MIPS Symbol Sizes}.
410
411 @cindex @code{-nocpp} ignored (MIPS)
412 @item -nocpp
413 This option is ignored.  It is accepted for command-line compatibility with
414 other assemblers, which use it to turn off C style preprocessing.  With
415 @sc{gnu} @code{@value{AS}}, there is no need for @samp{-nocpp}, because the
416 @sc{gnu} assembler itself never runs the C preprocessor.
417
418 @item -msoft-float
419 @itemx -mhard-float
420 Disable or enable floating-point instructions.  Note that by default
421 floating-point instructions are always allowed even with CPU targets
422 that don't have support for these instructions.
423
424 @item -msingle-float
425 @itemx -mdouble-float
426 Disable or enable double-precision floating-point operations.  Note
427 that by default double-precision floating-point operations are always
428 allowed even with CPU targets that don't have support for these
429 operations.
430
431 @item --construct-floats
432 @itemx --no-construct-floats
433 The @code{--no-construct-floats} option disables the construction of
434 double width floating point constants by loading the two halves of the
435 value into the two single width floating point registers that make up
436 the double width register.  This feature is useful if the processor
437 support the FR bit in its status  register, and this bit is known (by
438 the programmer) to be set.  This bit prevents the aliasing of the double
439 width register by the single width registers.
440
441 By default @code{--construct-floats} is selected, allowing construction
442 of these floating point constants.
443
444 @item --relax-branch
445 @itemx --no-relax-branch
446 The @samp{--relax-branch} option enables the relaxation of out-of-range
447 branches.  Any branches whose target cannot be reached directly are
448 converted to a small instruction sequence including an inverse-condition
449 branch to the physically next instruction, and a jump to the original
450 target is inserted between the two instructions.  In PIC code the jump
451 will involve further instructions for address calculation.
452
453 The @code{BC1ANY2F}, @code{BC1ANY2T}, @code{BC1ANY4F}, @code{BC1ANY4T},
454 @code{BPOSGE32} and @code{BPOSGE64} instructions are excluded from
455 relaxation, because they have no complementing counterparts.  They could
456 be relaxed with the use of a longer sequence involving another branch,
457 however this has not been implemented and if their target turns out of
458 reach, they produce an error even if branch relaxation is enabled.
459
460 Also no MIPS16 branches are ever relaxed.
461
462 By default @samp{--no-relax-branch} is selected, causing any out-of-range
463 branches to produce an error.
464
465 @cindex @option{-mnan=} command line option, MIPS
466 @item -mnan=@var{encoding}
467 This option indicates whether the source code uses the IEEE 2008
468 NaN encoding (@option{-mnan=2008}) or the original MIPS encoding
469 (@option{-mnan=legacy}).  It is equivalent to adding a @code{.nan}
470 directive to the beginning of the source file.  @xref{MIPS NaN Encodings}.
471
472 @option{-mnan=legacy} is the default if no @option{-mnan} option or
473 @code{.nan} directive is used.
474
475 @item --trap
476 @itemx --no-break
477 @c FIXME!  (1) reflect these options (next item too) in option summaries;
478 @c         (2) stop teasing, say _which_ instructions expanded _how_.
479 @code{@value{AS}} automatically macro expands certain division and
480 multiplication instructions to check for overflow and division by zero.  This
481 option causes @code{@value{AS}} to generate code to take a trap exception
482 rather than a break exception when an error is detected.  The trap instructions
483 are only supported at Instruction Set Architecture level 2 and higher.
484
485 @item --break
486 @itemx --no-trap
487 Generate code to take a break exception rather than a trap exception when an
488 error is detected.  This is the default.
489
490 @item -mpdr
491 @itemx -mno-pdr
492 Control generation of @code{.pdr} sections.  Off by default on IRIX, on
493 elsewhere.
494
495 @item -mshared
496 @itemx -mno-shared
497 When generating code using the Unix calling conventions (selected by
498 @samp{-KPIC} or @samp{-mcall_shared}), gas will normally generate code
499 which can go into a shared library.  The @samp{-mno-shared} option
500 tells gas to generate code which uses the calling convention, but can
501 not go into a shared library.  The resulting code is slightly more
502 efficient.  This option only affects the handling of the
503 @samp{.cpload} and @samp{.cpsetup} pseudo-ops.
504 @end table
505
506 @node MIPS Macros
507 @section High-level assembly macros
508
509 MIPS assemblers have traditionally provided a wider range of
510 instructions than the MIPS architecture itself.  These extra
511 instructions are usually referred to as ``macro'' instructions
512 @footnote{The term ``macro'' is somewhat overloaded here, since
513 these macros have no relation to those defined by @code{.macro},
514 @pxref{Macro,, @code{.macro}}.}.
515
516 Some MIPS macro instructions extend an underlying architectural instruction
517 while others are entirely new.  An example of the former type is @code{and},
518 which allows the third operand to be either a register or an arbitrary
519 immediate value.  Examples of the latter type include @code{bgt}, which
520 branches to the third operand when the first operand is greater than
521 the second operand, and @code{ulh}, which implements an unaligned
522 2-byte load.
523
524 One of the most common extensions provided by macros is to expand
525 memory offsets to the full address range (32 or 64 bits) and to allow
526 symbolic offsets such as @samp{my_data + 4} to be used in place of
527 integer constants.  For example, the architectural instruction
528 @code{lbu} allows only a signed 16-bit offset, whereas the macro
529 @code{lbu} allows code such as @samp{lbu $4,array+32769($5)}.
530 The implementation of these symbolic offsets depends on several factors,
531 such as whether the assembler is generating SVR4-style PIC (selected by
532 @option{-KPIC}, @pxref{MIPS Options,, Assembler options}), the size of symbols
533 (@pxref{MIPS Symbol Sizes,, Directives to override the size of symbols}),
534 and the small data limit (@pxref{MIPS Small Data,, Controlling the use
535 of small data accesses}).
536
537 @kindex @code{.set macro}
538 @kindex @code{.set nomacro}
539 Sometimes it is undesirable to have one assembly instruction expand
540 to several machine instructions.  The directive @code{.set nomacro}
541 tells the assembler to warn when this happens.  @code{.set macro}
542 restores the default behavior.
543
544 @cindex @code{at} register, MIPS
545 @kindex @code{.set at=@var{reg}}
546 Some macro instructions need a temporary register to store intermediate
547 results.  This register is usually @code{$1}, also known as @code{$at},
548 but it can be changed to any core register @var{reg} using
549 @code{.set at=@var{reg}}.  Note that @code{$at} always refers
550 to @code{$1} regardless of which register is being used as the
551 temporary register.
552
553 @kindex @code{.set at}
554 @kindex @code{.set noat}
555 Implicit uses of the temporary register in macros could interfere with
556 explicit uses in the assembly code.  The assembler therefore warns
557 whenever it sees an explicit use of the temporary register.  The directive
558 @code{.set noat} silences this warning while @code{.set at} restores
559 the default behavior.  It is safe to use @code{.set noat} while
560 @code{.set nomacro} is in effect since single-instruction macros
561 never need a temporary register.
562
563 Note that while the @sc{gnu} assembler provides these macros for compatibility,
564 it does not make any attempt to optimize them with the surrounding code.
565
566 @node MIPS Symbol Sizes
567 @section Directives to override the size of symbols
568
569 @kindex @code{.set sym32}
570 @kindex @code{.set nosym32}
571 The n64 ABI allows symbols to have any 64-bit value.  Although this
572 provides a great deal of flexibility, it means that some macros have
573 much longer expansions than their 32-bit counterparts.  For example,
574 the non-PIC expansion of @samp{dla $4,sym} is usually:
575
576 @smallexample
577 lui     $4,%highest(sym)
578 lui     $1,%hi(sym)
579 daddiu  $4,$4,%higher(sym)
580 daddiu  $1,$1,%lo(sym)
581 dsll32  $4,$4,0
582 daddu   $4,$4,$1
583 @end smallexample
584
585 whereas the 32-bit expansion is simply:
586
587 @smallexample
588 lui     $4,%hi(sym)
589 daddiu  $4,$4,%lo(sym)
590 @end smallexample
591
592 n64 code is sometimes constructed in such a way that all symbolic
593 constants are known to have 32-bit values, and in such cases, it's
594 preferable to use the 32-bit expansion instead of the 64-bit
595 expansion.
596
597 You can use the @code{.set sym32} directive to tell the assembler
598 that, from this point on, all expressions of the form
599 @samp{@var{symbol}} or @samp{@var{symbol} + @var{offset}}
600 have 32-bit values.  For example:
601
602 @smallexample
603 .set sym32
604 dla     $4,sym
605 lw      $4,sym+16
606 sw      $4,sym+0x8000($4)
607 @end smallexample
608
609 will cause the assembler to treat @samp{sym}, @code{sym+16} and
610 @code{sym+0x8000} as 32-bit values.  The handling of non-symbolic
611 addresses is not affected.
612
613 The directive @code{.set nosym32} ends a @code{.set sym32} block and
614 reverts to the normal behavior.  It is also possible to change the
615 symbol size using the command-line options @option{-msym32} and
616 @option{-mno-sym32}.
617
618 These options and directives are always accepted, but at present,
619 they have no effect for anything other than n64.
620
621 @node MIPS Small Data
622 @section Controlling the use of small data accesses
623
624 @c This section deliberately glosses over the possibility of using -G
625 @c in SVR4-style PIC, as could be done on IRIX.  We don't support that.
626 @cindex small data, MIPS
627 @cindex @code{gp} register, MIPS
628 It often takes several instructions to load the address of a symbol.
629 For example, when @samp{addr} is a 32-bit symbol, the non-PIC expansion
630 of @samp{dla $4,addr} is usually:
631
632 @smallexample
633 lui     $4,%hi(addr)
634 daddiu  $4,$4,%lo(addr)
635 @end smallexample
636
637 The sequence is much longer when @samp{addr} is a 64-bit symbol.
638 @xref{MIPS Symbol Sizes,, Directives to override the size of symbols}.
639
640 In order to cut down on this overhead, most embedded MIPS systems
641 set aside a 64-kilobyte ``small data'' area and guarantee that all
642 data of size @var{n} and smaller will be placed in that area.
643 The limit @var{n} is passed to both the assembler and the linker
644 using the command-line option @option{-G @var{n}}, @pxref{MIPS Options,,
645 Assembler options}.  Note that the same value of @var{n} must be used
646 when linking and when assembling all input files to the link; any
647 inconsistency could cause a relocation overflow error.
648
649 The size of an object in the @code{.bss} section is set by the
650 @code{.comm} or @code{.lcomm} directive that defines it.  The size of
651 an external object may be set with the @code{.extern} directive.  For
652 example, @samp{.extern sym,4} declares that the object at @code{sym}
653 is 4 bytes in length, while leaving @code{sym} otherwise undefined.
654
655 When no @option{-G} option is given, the default limit is 8 bytes.
656 The option @option{-G 0} prevents any data from being automatically
657 classified as small.
658
659 It is also possible to mark specific objects as small by putting them
660 in the special sections @code{.sdata} and @code{.sbss}, which are
661 ``small'' counterparts of @code{.data} and @code{.bss} respectively.
662 The toolchain will treat such data as small regardless of the
663 @option{-G} setting.
664
665 On startup, systems that support a small data area are expected to
666 initialize register @code{$28}, also known as @code{$gp}, in such a
667 way that small data can be accessed using a 16-bit offset from that
668 register.  For example, when @samp{addr} is small data,
669 the @samp{dla $4,addr} instruction above is equivalent to:
670
671 @smallexample
672 daddiu  $4,$28,%gp_rel(addr)
673 @end smallexample
674
675 Small data is not supported for SVR4-style PIC.
676
677 @node MIPS ISA
678 @section Directives to override the ISA level
679
680 @cindex MIPS ISA override
681 @kindex @code{.set mips@var{n}}
682 @sc{gnu} @code{@value{AS}} supports an additional directive to change
683 the MIPS Instruction Set Architecture level on the fly: @code{.set
684 mips@var{n}}.  @var{n} should be a number from 0 to 5, or 32, 32r2, 32r3,
685 32r5, 32r6, 64, 64r2, 64r3, 64r5 or 64r6.
686 The values other than 0 make the assembler accept instructions
687 for the corresponding ISA level, from that point on in the
688 assembly.  @code{.set mips@var{n}} affects not only which instructions
689 are permitted, but also how certain macros are expanded.  @code{.set
690 mips0} restores the ISA level to its original level: either the
691 level you selected with command line options, or the default for your
692 configuration.  You can use this feature to permit specific MIPS III
693 instructions while assembling in 32 bit mode.  Use this directive with
694 care!
695
696 @cindex MIPS CPU override
697 @kindex @code{.set arch=@var{cpu}}
698 The @code{.set arch=@var{cpu}} directive provides even finer control.
699 It changes the effective CPU target and allows the assembler to use
700 instructions specific to a particular CPU.  All CPUs supported by the
701 @samp{-march} command line option are also selectable by this directive.
702 The original value is restored by @code{.set arch=default}.
703
704 The directive @code{.set mips16} puts the assembler into MIPS 16 mode,
705 in which it will assemble instructions for the MIPS 16 processor.  Use
706 @code{.set nomips16} to return to normal 32 bit mode.
707
708 Traditional MIPS assemblers do not support this directive.
709
710 The directive @code{.set micromips} puts the assembler into microMIPS mode,
711 in which it will assemble instructions for the microMIPS processor.  Use
712 @code{.set nomicromips} to return to normal 32 bit mode.
713
714 Traditional MIPS assemblers do not support this directive.
715
716 @node MIPS assembly options
717 @section Directives to control code generation
718
719 @cindex MIPS directives to override command line options
720 @kindex @code{.module}
721 The @code{.module} directive allows command line options to be set directly
722 from assembly.  The format of the directive matches the @code{.set}
723 directive but only those options which are relevant to a whole module are
724 supported.  The effect of a @code{.module} directive is the same as the
725 corresponding command line option.  Where @code{.set} directives support
726 returning to a default then the @code{.module} directives do not as they
727 define the defaults.
728
729 These module-level directives must appear first in assembly.
730
731 Traditional MIPS assemblers do not support this directive.
732
733 @cindex MIPS 32-bit microMIPS instruction generation override
734 @kindex @code{.set insn32}
735 @kindex @code{.set noinsn32}
736 The directive @code{.set insn32} makes the assembler only use 32-bit
737 instruction encodings when generating code for the microMIPS processor.
738 This directive inhibits the use of any 16-bit instructions from that
739 point on in the assembly.  The @code{.set noinsn32} directive allows
740 16-bit instructions to be accepted.
741
742 Traditional MIPS assemblers do not support this directive.
743
744 @node MIPS autoextend
745 @section Directives for extending MIPS 16 bit instructions
746
747 @kindex @code{.set autoextend}
748 @kindex @code{.set noautoextend}
749 By default, MIPS 16 instructions are automatically extended to 32 bits
750 when necessary.  The directive @code{.set noautoextend} will turn this
751 off.  When @code{.set noautoextend} is in effect, any 32 bit instruction
752 must be explicitly extended with the @code{.e} modifier (e.g.,
753 @code{li.e $4,1000}).  The directive @code{.set autoextend} may be used
754 to once again automatically extend instructions when necessary.
755
756 This directive is only meaningful when in MIPS 16 mode.  Traditional
757 MIPS assemblers do not support this directive.
758
759 @node MIPS insn
760 @section Directive to mark data as an instruction
761
762 @kindex @code{.insn}
763 The @code{.insn} directive tells @code{@value{AS}} that the following
764 data is actually instructions.  This makes a difference in MIPS 16 and
765 microMIPS modes: when loading the address of a label which precedes
766 instructions, @code{@value{AS}} automatically adds 1 to the value, so
767 that jumping to the loaded address will do the right thing.
768
769 @kindex @code{.global}
770 The @code{.global} and @code{.globl} directives supported by
771 @code{@value{AS}} will by default mark the symbol as pointing to a
772 region of data not code.  This means that, for example, any
773 instructions following such a symbol will not be disassembled by
774 @code{objdump} as it will regard them as data.  To change this
775 behavior an optional section name can be placed after the symbol name
776 in the @code{.global} directive.  If this section exists and is known
777 to be a code section, then the symbol will be marked as pointing at
778 code not data.  Ie the syntax for the directive is:
779
780   @code{.global @var{symbol}[ @var{section}][, @var{symbol}[ @var{section}]] ...},
781
782 Here is a short example:
783
784 @example
785         .global foo .text, bar, baz .data
786 foo:
787         nop
788 bar:
789         .word 0x0
790 baz:
791         .word 0x1
792
793 @end example
794
795 @node MIPS FP ABIs
796 @section Directives to control the FP ABI
797 @menu
798 * MIPS FP ABI History::                History of FP ABIs
799 * MIPS FP ABI Variants::               Supported FP ABIs
800 * MIPS FP ABI Selection::              Automatic selection of FP ABI
801 * MIPS FP ABI Compatibility::          Linking different FP ABI variants
802 @end menu
803
804 @node MIPS FP ABI History
805 @subsection History of FP ABIs
806 @cindex @code{.gnu_attribute 4, @var{n}} directive, MIPS
807 @cindex @code{.gnu_attribute Tag_GNU_MIPS_ABI_FP, @var{n}} directive, MIPS
808 The MIPS ABIs support a variety of different floating-point extensions
809 where calling-convention and register sizes vary for floating-point data.
810 The extensions exist to support a wide variety of optional architecture
811 features.  The resulting ABI variants are generally incompatible with each
812 other and must be tracked carefully.
813
814 Traditionally the use of an explicit @code{.gnu_attribute 4, @var{n}}
815 directive is used to indicate which ABI is in use by a specific module.
816 It was then left to the user to ensure that command line options and the
817 selected ABI were compatible with some potential for inconsistencies.
818
819 @node MIPS FP ABI Variants
820 @subsection Supported FP ABIs
821 The supported floating-point ABI variants are:
822
823 @table @code
824 @item 0 - No floating-point
825 This variant is used to indicate that floating-point is not used within
826 the module at all and therefore has no impact on the ABI.  This is the
827 default.
828
829 @item 1 - Double-precision
830 This variant indicates that double-precision support is used.  For 64-bit
831 ABIs this means that 64-bit wide floating-point registers are required.
832 For 32-bit ABIs this means that 32-bit wide floating-point registers are
833 required and double-precision operations use pairs of registers.
834
835 @item 2 - Single-precision
836 This variant indicates that single-precision support is used.  Double
837 precision operations will be supported via soft-float routines.
838
839 @item 3 - Soft-float
840 This variant indicates that although floating-point support is used all
841 operations are emulated in software.  This means the ABI is modified to
842 pass all floating-point data in general-purpose registers.
843
844 @item 4 - Deprecated
845 This variant existed as an initial attempt at supporting 64-bit wide
846 floating-point registers for O32 ABI on a MIPS32r2 CPU.  This has been
847 superseded by 5, 6 and 7.
848
849 @item 5 - Double-precision 32-bit CPU, 32-bit or 64-bit FPU
850 This variant is used by 32-bit ABIs to indicate that the floating-point
851 code in the module has been designed to operate correctly with either
852 32-bit wide or 64-bit wide floating-point registers.  Double-precision
853 support is used.  Only O32 currently supports this variant and requires
854 a minimum architecture of MIPS II.
855
856 @item 6 - Double-precision 32-bit FPU, 64-bit FPU
857 This variant is used by 32-bit ABIs to indicate that the floating-point
858 code in the module requires 64-bit wide floating-point registers.
859 Double-precision support is used.  Only O32 currently supports this
860 variant and requires a minimum architecture of MIPS32r2.
861
862 @item 7 - Double-precision compat 32-bit FPU, 64-bit FPU
863 This variant is used by 32-bit ABIs to indicate that the floating-point
864 code in the module requires 64-bit wide floating-point registers.
865 Double-precision support is used.  This differs from the previous ABI
866 as it restricts use of odd-numbered single-precision registers.  Only
867 O32 currently supports this variant and requires a minimum architecture
868 of MIPS32r2.
869 @end table
870
871 @node MIPS FP ABI Selection
872 @subsection Automatic selection of FP ABI
873 @cindex @code{.module fp=@var{nn}} directive, MIPS
874 In order to simplify and add safety to the process of selecting the
875 correct floating-point ABI, the assembler will automatically infer the
876 correct @code{.gnu_attribute 4, @var{n}} directive based on command line
877 options and @code{.module} overrides.  Where an explicit
878 @code{.gnu_attribute 4, @var{n}} directive has been seen then a warning
879 will be raised if it does not match an inferred setting.
880
881 The floating-point ABI is inferred as follows.  If @samp{-msoft-float}
882 has been used the module will be marked as soft-float.  If
883 @samp{-msingle-float} has been used then the module will be marked as
884 single-precision.  The remaining ABIs are then selected based
885 on the FP register width.  Double-precision is selected if the width
886 of GP and FP registers match and the special double-precision variants
887 for 32-bit ABIs are then selected depending on @samp{-mfpxx},
888 @samp{-mfp64} and @samp{-mno-odd-spreg}.
889
890 @node MIPS FP ABI Compatibility
891 @subsection Linking different FP ABI variants
892 Modules using the default FP ABI (no floating-point) can be linked with
893 any other (singular) FP ABI variant.
894
895 Special compatibility support exists for O32 with the four
896 double-precision FP ABI variants.  The @samp{-mfpxx} FP ABI is specifically
897 designed to be compatible with the standard double-precision ABI and the
898 @samp{-mfp64} FP ABIs.  This makes it desirable for O32 modules to be
899 built as @samp{-mfpxx} to ensure the maximum compatibility with other
900 modules produced for more specific needs.  The only FP ABIs which cannot
901 be linked together are the standard double-precision ABI and the full
902 @samp{-mfp64} ABI with @samp{-modd-spreg}.
903
904 @node MIPS NaN Encodings
905 @section Directives to record which NaN encoding is being used
906
907 @cindex MIPS IEEE 754 NaN data encoding selection
908 @cindex @code{.nan} directive, MIPS
909 The IEEE 754 floating-point standard defines two types of not-a-number
910 (NaN) data: ``signalling'' NaNs and ``quiet'' NaNs.  The original version
911 of the standard did not specify how these two types should be
912 distinguished.  Most implementations followed the i387 model, in which
913 the first bit of the significand is set for quiet NaNs and clear for
914 signalling NaNs.  However, the original MIPS implementation assigned the
915 opposite meaning to the bit, so that it was set for signalling NaNs and
916 clear for quiet NaNs.
917
918 The 2008 revision of the standard formally suggested the i387 choice
919 and as from Sep 2012 the current release of the MIPS architecture
920 therefore optionally supports that form.  Code that uses one NaN encoding
921 would usually be incompatible with code that uses the other NaN encoding,
922 so MIPS ELF objects have a flag (@code{EF_MIPS_NAN2008}) to record which
923 encoding is being used.
924
925 Assembly files can use the @code{.nan} directive to select between the
926 two encodings.  @samp{.nan 2008} says that the assembly file uses the
927 IEEE 754-2008 encoding while @samp{.nan legacy} says that the file uses
928 the original MIPS encoding.  If several @code{.nan} directives are given,
929 the final setting is the one that is used.
930
931 The command-line options @option{-mnan=legacy} and @option{-mnan=2008}
932 can be used instead of @samp{.nan legacy} and @samp{.nan 2008}
933 respectively.  However, any @code{.nan} directive overrides the
934 command-line setting.
935
936 @samp{.nan legacy} is the default if no @code{.nan} directive or
937 @option{-mnan} option is given.
938
939 Note that @sc{gnu} @code{@value{AS}} does not produce NaNs itself and
940 therefore these directives do not affect code generation.  They simply
941 control the setting of the @code{EF_MIPS_NAN2008} flag.
942
943 Traditional MIPS assemblers do not support these directives.
944
945 @node MIPS Option Stack
946 @section Directives to save and restore options
947
948 @cindex MIPS option stack
949 @kindex @code{.set push}
950 @kindex @code{.set pop}
951 The directives @code{.set push} and @code{.set pop} may be used to save
952 and restore the current settings for all the options which are
953 controlled by @code{.set}.  The @code{.set push} directive saves the
954 current settings on a stack.  The @code{.set pop} directive pops the
955 stack and restores the settings.
956
957 These directives can be useful inside an macro which must change an
958 option such as the ISA level or instruction reordering but does not want
959 to change the state of the code which invoked the macro.
960
961 Traditional MIPS assemblers do not support these directives.
962
963 @node MIPS ASE Instruction Generation Overrides
964 @section Directives to control generation of MIPS ASE instructions
965
966 @cindex MIPS MIPS-3D instruction generation override
967 @kindex @code{.set mips3d}
968 @kindex @code{.set nomips3d}
969 The directive @code{.set mips3d} makes the assembler accept instructions
970 from the MIPS-3D Application Specific Extension from that point on
971 in the assembly.  The @code{.set nomips3d} directive prevents MIPS-3D
972 instructions from being accepted.
973
974 @cindex SmartMIPS instruction generation override
975 @kindex @code{.set smartmips}
976 @kindex @code{.set nosmartmips}
977 The directive @code{.set smartmips} makes the assembler accept
978 instructions from the SmartMIPS Application Specific Extension to the
979 MIPS32 ISA from that point on in the assembly.  The
980 @code{.set nosmartmips} directive prevents SmartMIPS instructions from
981 being accepted.
982
983 @cindex MIPS MDMX instruction generation override
984 @kindex @code{.set mdmx}
985 @kindex @code{.set nomdmx}
986 The directive @code{.set mdmx} makes the assembler accept instructions
987 from the MDMX Application Specific Extension from that point on
988 in the assembly.  The @code{.set nomdmx} directive prevents MDMX
989 instructions from being accepted.
990
991 @cindex MIPS DSP Release 1 instruction generation override
992 @kindex @code{.set dsp}
993 @kindex @code{.set nodsp}
994 The directive @code{.set dsp} makes the assembler accept instructions
995 from the DSP Release 1 Application Specific Extension from that point
996 on in the assembly.  The @code{.set nodsp} directive prevents DSP
997 Release 1 instructions from being accepted.
998
999 @cindex MIPS DSP Release 2 instruction generation override
1000 @kindex @code{.set dspr2}
1001 @kindex @code{.set nodspr2}
1002 The directive @code{.set dspr2} makes the assembler accept instructions
1003 from the DSP Release 2 Application Specific Extension from that point
1004 on in the assembly.  This directive implies @code{.set dsp}.  The
1005 @code{.set nodspr2} directive prevents DSP Release 2 instructions from
1006 being accepted.
1007
1008 @cindex MIPS MT instruction generation override
1009 @kindex @code{.set mt}
1010 @kindex @code{.set nomt}
1011 The directive @code{.set mt} makes the assembler accept instructions
1012 from the MT Application Specific Extension from that point on
1013 in the assembly.  The @code{.set nomt} directive prevents MT
1014 instructions from being accepted.
1015
1016 @cindex MIPS MCU instruction generation override
1017 @kindex @code{.set mcu}
1018 @kindex @code{.set nomcu}
1019 The directive @code{.set mcu} makes the assembler accept instructions
1020 from the MCU Application Specific Extension from that point on
1021 in the assembly.  The @code{.set nomcu} directive prevents MCU
1022 instructions from being accepted.
1023
1024 @cindex MIPS SIMD Architecture instruction generation override
1025 @kindex @code{.set msa}
1026 @kindex @code{.set nomsa}
1027 The directive @code{.set msa} makes the assembler accept instructions
1028 from the MIPS SIMD Architecture Extension from that point on
1029 in the assembly.  The @code{.set nomsa} directive prevents MSA
1030 instructions from being accepted.
1031
1032 @cindex Virtualization instruction generation override
1033 @kindex @code{.set virt}
1034 @kindex @code{.set novirt}
1035 The directive @code{.set virt} makes the assembler accept instructions
1036 from the Virtualization Application Specific Extension from that point
1037 on in the assembly.  The @code{.set novirt} directive prevents Virtualization
1038 instructions from being accepted.
1039
1040 @cindex MIPS eXtended Physical Address (XPA) instruction generation override
1041 @kindex @code{.set xpa}
1042 @kindex @code{.set noxpa}
1043 The directive @code{.set xpa} makes the assembler accept instructions
1044 from the XPA Extension from that point on in the assembly.  The 
1045 @code{.set noxpa} directive prevents XPA instructions from being accepted.
1046
1047 Traditional MIPS assemblers do not support these directives.
1048
1049 @node MIPS Floating-Point
1050 @section Directives to override floating-point options
1051
1052 @cindex Disable floating-point instructions
1053 @kindex @code{.set softfloat}
1054 @kindex @code{.set hardfloat}
1055 The directives @code{.set softfloat} and @code{.set hardfloat} provide
1056 finer control of disabling and enabling float-point instructions.
1057 These directives always override the default (that hard-float
1058 instructions are accepted) or the command-line options
1059 (@samp{-msoft-float} and @samp{-mhard-float}).
1060
1061 @cindex Disable single-precision floating-point operations
1062 @kindex @code{.set singlefloat}
1063 @kindex @code{.set doublefloat}
1064 The directives @code{.set singlefloat} and @code{.set doublefloat}
1065 provide finer control of disabling and enabling double-precision
1066 float-point operations.  These directives always override the default
1067 (that double-precision operations are accepted) or the command-line
1068 options (@samp{-msingle-float} and @samp{-mdouble-float}).
1069
1070 Traditional MIPS assemblers do not support these directives.
1071
1072 @node MIPS Syntax
1073 @section Syntactical considerations for the MIPS assembler
1074 @menu
1075 * MIPS-Chars::                Special Characters
1076 @end menu
1077
1078 @node MIPS-Chars
1079 @subsection Special Characters
1080
1081 @cindex line comment character, MIPS
1082 @cindex MIPS line comment character
1083 The presence of a @samp{#} on a line indicates the start of a comment
1084 that extends to the end of the current line.
1085
1086 If a @samp{#} appears as the first character of a line, the whole line
1087 is treated as a comment, but in this case the line can also be a
1088 logical line number directive (@pxref{Comments}) or a
1089 preprocessor control command (@pxref{Preprocessing}).
1090
1091 @cindex line separator, MIPS
1092 @cindex statement separator, MIPS
1093 @cindex MIPS line separator
1094 The @samp{;} character can be used to separate statements on the same
1095 line.