1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
47 @cindex options for i386
48 @cindex options for x86-64
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
79 @cindex @samp{--divide} option, i386
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
203 Note that rather than extending a basic instruction set, the extension
204 mnemonics starting with @code{no} revoke the respective functionality.
206 When the @code{.arch} directive is used with @option{-march}, the
207 @code{.arch} directive will take precedent.
209 @cindex @samp{-mtune=} option, i386
210 @cindex @samp{-mtune=} option, x86-64
211 @item -mtune=@var{CPU}
212 This option specifies a processor to optimize for. When used in
213 conjunction with the @option{-march} option, only instructions
214 of the processor specified by the @option{-march} option will be
217 Valid @var{CPU} values are identical to the processor list of
218 @option{-march=@var{CPU}}.
220 @cindex @samp{-msse2avx} option, i386
221 @cindex @samp{-msse2avx} option, x86-64
223 This option specifies that the assembler should encode SSE instructions
226 @cindex @samp{-msse-check=} option, i386
227 @cindex @samp{-msse-check=} option, x86-64
228 @item -msse-check=@var{none}
229 @itemx -msse-check=@var{warning}
230 @itemx -msse-check=@var{error}
231 These options control if the assembler should check SSE instructions.
232 @option{-msse-check=@var{none}} will make the assembler not to check SSE
233 instructions, which is the default. @option{-msse-check=@var{warning}}
234 will make the assembler issue a warning for any SSE instruction.
235 @option{-msse-check=@var{error}} will make the assembler issue an error
236 for any SSE instruction.
238 @cindex @samp{-mavxscalar=} option, i386
239 @cindex @samp{-mavxscalar=} option, x86-64
240 @item -mavxscalar=@var{128}
241 @itemx -mavxscalar=@var{256}
242 These options control how the assembler should encode scalar AVX
243 instructions. @option{-mavxscalar=@var{128}} will encode scalar
244 AVX instructions with 128bit vector length, which is the default.
245 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
246 with 256bit vector length.
248 @cindex @samp{-mevexlig=} option, i386
249 @cindex @samp{-mevexlig=} option, x86-64
250 @item -mevexlig=@var{128}
251 @itemx -mevexlig=@var{256}
252 @itemx -mevexlig=@var{512}
253 These options control how the assembler should encode length-ignored
254 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
255 EVEX instructions with 128bit vector length, which is the default.
256 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
257 encode LIG EVEX instructions with 256bit and 512bit vector length,
260 @cindex @samp{-mevexwig=} option, i386
261 @cindex @samp{-mevexwig=} option, x86-64
262 @item -mevexwig=@var{0}
263 @itemx -mevexwig=@var{1}
264 These options control how the assembler should encode w-ignored (WIG)
265 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
266 EVEX instructions with evex.w = 0, which is the default.
267 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
270 @cindex @samp{-mmnemonic=} option, i386
271 @cindex @samp{-mmnemonic=} option, x86-64
272 @item -mmnemonic=@var{att}
273 @itemx -mmnemonic=@var{intel}
274 This option specifies instruction mnemonic for matching instructions.
275 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
278 @cindex @samp{-msyntax=} option, i386
279 @cindex @samp{-msyntax=} option, x86-64
280 @item -msyntax=@var{att}
281 @itemx -msyntax=@var{intel}
282 This option specifies instruction syntax when processing instructions.
283 The @code{.att_syntax} and @code{.intel_syntax} directives will
286 @cindex @samp{-mnaked-reg} option, i386
287 @cindex @samp{-mnaked-reg} option, x86-64
289 This opetion specifies that registers don't require a @samp{%} prefix.
290 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
292 @cindex @samp{-madd-bnd-prefix} option, i386
293 @cindex @samp{-madd-bnd-prefix} option, x86-64
294 @item -madd-bnd-prefix
295 This option forces the assembler to add BND prefix to all branches, even
296 if such prefix was not explicitly specified in the source code.
298 @cindex @samp{-mbig-obj} option, x86-64
300 On x86-64 PE/COFF target this option forces the use of big object file
301 format, which allows more than 32768 sections.
303 @cindex @samp{-momit-lock-prefix=} option, i386
304 @cindex @samp{-momit-lock-prefix=} option, x86-64
305 @item -momit-lock-prefix=@var{no}
306 @itemx -momit-lock-prefix=@var{yes}
307 These options control how the assembler should encode lock prefix.
308 This option is intended as a workaround for processors, that fail on
309 lock prefix. This option can only be safely used with single-core,
310 single-thread computers
311 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
312 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
313 which is the default.
315 @cindex @samp{-mevexrcig=} option, i386
316 @cindex @samp{-mevexrcig=} option, x86-64
317 @item -mevexrcig=@var{rne}
318 @itemx -mevexrcig=@var{rd}
319 @itemx -mevexrcig=@var{ru}
320 @itemx -mevexrcig=@var{rz}
321 These options control how the assembler should encode SAE-only
322 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
323 of EVEX instruction with 00, which is the default.
324 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
325 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
326 with 01, 10 and 11 RC bits, respectively.
331 @node i386-Directives
332 @section x86 specific Directives
334 @cindex machine directives, x86
335 @cindex x86 machine directives
338 @cindex @code{lcomm} directive, COFF
339 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
340 Reserve @var{length} (an absolute expression) bytes for a local common
341 denoted by @var{symbol}. The section and value of @var{symbol} are
342 those of the new local common. The addresses are allocated in the bss
343 section, so that at run-time the bytes start off zeroed. Since
344 @var{symbol} is not declared global, it is normally not visible to
345 @code{@value{LD}}. The optional third parameter, @var{alignment},
346 specifies the desired alignment of the symbol in the bss section.
348 This directive is only available for COFF based x86 targets.
350 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
356 @section i386 Syntactical Considerations
358 * i386-Variations:: AT&T Syntax versus Intel Syntax
359 * i386-Chars:: Special Characters
362 @node i386-Variations
363 @subsection AT&T Syntax versus Intel Syntax
365 @cindex i386 intel_syntax pseudo op
366 @cindex intel_syntax pseudo op, i386
367 @cindex i386 att_syntax pseudo op
368 @cindex att_syntax pseudo op, i386
369 @cindex i386 syntax compatibility
370 @cindex syntax compatibility, i386
371 @cindex x86-64 intel_syntax pseudo op
372 @cindex intel_syntax pseudo op, x86-64
373 @cindex x86-64 att_syntax pseudo op
374 @cindex att_syntax pseudo op, x86-64
375 @cindex x86-64 syntax compatibility
376 @cindex syntax compatibility, x86-64
378 @code{@value{AS}} now supports assembly using Intel assembler syntax.
379 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
380 back to the usual AT&T mode for compatibility with the output of
381 @code{@value{GCC}}. Either of these directives may have an optional
382 argument, @code{prefix}, or @code{noprefix} specifying whether registers
383 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
384 different from Intel syntax. We mention these differences because
385 almost all 80386 documents use Intel syntax. Notable differences
386 between the two syntaxes are:
388 @cindex immediate operands, i386
389 @cindex i386 immediate operands
390 @cindex register operands, i386
391 @cindex i386 register operands
392 @cindex jump/call operands, i386
393 @cindex i386 jump/call operands
394 @cindex operand delimiters, i386
396 @cindex immediate operands, x86-64
397 @cindex x86-64 immediate operands
398 @cindex register operands, x86-64
399 @cindex x86-64 register operands
400 @cindex jump/call operands, x86-64
401 @cindex x86-64 jump/call operands
402 @cindex operand delimiters, x86-64
405 AT&T immediate operands are preceded by @samp{$}; Intel immediate
406 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
407 AT&T register operands are preceded by @samp{%}; Intel register operands
408 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
409 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
411 @cindex i386 source, destination operands
412 @cindex source, destination operands; i386
413 @cindex x86-64 source, destination operands
414 @cindex source, destination operands; x86-64
416 AT&T and Intel syntax use the opposite order for source and destination
417 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
418 @samp{source, dest} convention is maintained for compatibility with
419 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
420 instructions with 2 immediate operands, such as the @samp{enter}
421 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
423 @cindex mnemonic suffixes, i386
424 @cindex sizes operands, i386
425 @cindex i386 size suffixes
426 @cindex mnemonic suffixes, x86-64
427 @cindex sizes operands, x86-64
428 @cindex x86-64 size suffixes
430 In AT&T syntax the size of memory operands is determined from the last
431 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
432 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
433 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
434 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
435 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
436 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
439 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
440 instruction with the 64-bit displacement or immediate operand.
442 @cindex return instructions, i386
443 @cindex i386 jump, call, return
444 @cindex return instructions, x86-64
445 @cindex x86-64 jump, call, return
447 Immediate form long jumps and calls are
448 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
450 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
452 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
453 @samp{ret far @var{stack-adjust}}.
455 @cindex sections, i386
456 @cindex i386 sections
457 @cindex sections, x86-64
458 @cindex x86-64 sections
460 The AT&T assembler does not provide support for multiple section
461 programs. Unix style systems expect all programs to be single sections.
465 @subsection Special Characters
467 @cindex line comment character, i386
468 @cindex i386 line comment character
469 The presence of a @samp{#} appearing anywhere on a line indicates the
470 start of a comment that extends to the end of that line.
472 If a @samp{#} appears as the first character of a line then the whole
473 line is treated as a comment, but in this case the line can also be a
474 logical line number directive (@pxref{Comments}) or a preprocessor
475 control command (@pxref{Preprocessing}).
477 If the @option{--divide} command line option has not been specified
478 then the @samp{/} character appearing anywhere on a line also
479 introduces a line comment.
481 @cindex line separator, i386
482 @cindex statement separator, i386
483 @cindex i386 line separator
484 The @samp{;} character can be used to separate statements on the same
488 @section Instruction Naming
490 @cindex i386 instruction naming
491 @cindex instruction naming, i386
492 @cindex x86-64 instruction naming
493 @cindex instruction naming, x86-64
495 Instruction mnemonics are suffixed with one character modifiers which
496 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
497 and @samp{q} specify byte, word, long and quadruple word operands. If
498 no suffix is specified by an instruction then @code{@value{AS}} tries to
499 fill in the missing suffix based on the destination register operand
500 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
501 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
502 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
503 assembler which assumes that a missing mnemonic suffix implies long
504 operand size. (This incompatibility does not affect compiler output
505 since compilers always explicitly specify the mnemonic suffix.)
507 Almost all instructions have the same names in AT&T and Intel format.
508 There are a few exceptions. The sign extend and zero extend
509 instructions need two sizes to specify them. They need a size to
510 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
511 is accomplished by using two instruction mnemonic suffixes in AT&T
512 syntax. Base names for sign extend and zero extend are
513 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
514 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
515 are tacked on to this base name, the @emph{from} suffix before the
516 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
517 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
518 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
519 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
520 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
523 @cindex encoding options, i386
524 @cindex encoding options, x86-64
526 Different encoding options can be specified via optional mnemonic
527 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
528 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
529 prefers 8bit or 32bit displacement in encoding.
531 @cindex conversion instructions, i386
532 @cindex i386 conversion instructions
533 @cindex conversion instructions, x86-64
534 @cindex x86-64 conversion instructions
535 The Intel-syntax conversion instructions
539 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
542 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
545 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
548 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
551 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
555 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
556 @samp{%rdx:%rax} (x86-64 only),
560 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
561 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
564 @cindex jump instructions, i386
565 @cindex call instructions, i386
566 @cindex jump instructions, x86-64
567 @cindex call instructions, x86-64
568 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
569 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
572 @section AT&T Mnemonic versus Intel Mnemonic
574 @cindex i386 mnemonic compatibility
575 @cindex mnemonic compatibility, i386
577 @code{@value{AS}} supports assembly using Intel mnemonic.
578 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
579 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
580 syntax for compatibility with the output of @code{@value{GCC}}.
581 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
582 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
583 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
584 assembler with different mnemonics from those in Intel IA32 specification.
585 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
588 @section Register Naming
590 @cindex i386 registers
591 @cindex registers, i386
592 @cindex x86-64 registers
593 @cindex registers, x86-64
594 Register operands are always prefixed with @samp{%}. The 80386 registers
599 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
600 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
601 frame pointer), and @samp{%esp} (the stack pointer).
604 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
605 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
608 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
609 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
610 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
611 @samp{%cx}, and @samp{%dx})
614 the 6 section registers @samp{%cs} (code section), @samp{%ds}
615 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
619 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
623 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
624 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
627 the 2 test registers @samp{%tr6} and @samp{%tr7}.
630 the 8 floating point register stack @samp{%st} or equivalently
631 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
632 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
633 These registers are overloaded by 8 MMX registers @samp{%mm0},
634 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
635 @samp{%mm6} and @samp{%mm7}.
638 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
639 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
642 The AMD x86-64 architecture extends the register set by:
646 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
647 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
648 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
652 the 8 extended registers @samp{%r8}--@samp{%r15}.
655 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
658 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
661 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
664 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
667 the 8 debug registers: @samp{%db8}--@samp{%db15}.
670 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
674 @section Instruction Prefixes
676 @cindex i386 instruction prefixes
677 @cindex instruction prefixes, i386
678 @cindex prefixes, i386
679 Instruction prefixes are used to modify the following instruction. They
680 are used to repeat string instructions, to provide section overrides, to
681 perform bus lock operations, and to change operand and address sizes.
682 (Most instructions that normally operate on 32-bit operands will use
683 16-bit operands if the instruction has an ``operand size'' prefix.)
684 Instruction prefixes are best written on the same line as the instruction
685 they act upon. For example, the @samp{scas} (scan string) instruction is
689 repne scas %es:(%edi),%al
692 You may also place prefixes on the lines immediately preceding the
693 instruction, but this circumvents checks that @code{@value{AS}} does
694 with prefixes, and will not work with all prefixes.
696 Here is a list of instruction prefixes:
698 @cindex section override prefixes, i386
701 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
702 @samp{fs}, @samp{gs}. These are automatically added by specifying
703 using the @var{section}:@var{memory-operand} form for memory references.
705 @cindex size prefixes, i386
707 Operand/Address size prefixes @samp{data16} and @samp{addr16}
708 change 32-bit operands/addresses into 16-bit operands/addresses,
709 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
710 @code{.code16} section) into 32-bit operands/addresses. These prefixes
711 @emph{must} appear on the same line of code as the instruction they
712 modify. For example, in a 16-bit @code{.code16} section, you might
719 @cindex bus lock prefixes, i386
720 @cindex inhibiting interrupts, i386
722 The bus lock prefix @samp{lock} inhibits interrupts during execution of
723 the instruction it precedes. (This is only valid with certain
724 instructions; see a 80386 manual for details).
726 @cindex coprocessor wait, i386
728 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
729 complete the current instruction. This should never be needed for the
730 80386/80387 combination.
732 @cindex repeat prefixes, i386
734 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
735 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
736 times if the current address size is 16-bits).
737 @cindex REX prefixes, i386
739 The @samp{rex} family of prefixes is used by x86-64 to encode
740 extensions to i386 instruction set. The @samp{rex} prefix has four
741 bits --- an operand size overwrite (@code{64}) used to change operand size
742 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
745 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
746 instruction emits @samp{rex} prefix with all the bits set. By omitting
747 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
748 prefixes as well. Normally, there is no need to write the prefixes
749 explicitly, since gas will automatically generate them based on the
750 instruction operands.
754 @section Memory References
756 @cindex i386 memory references
757 @cindex memory references, i386
758 @cindex x86-64 memory references
759 @cindex memory references, x86-64
760 An Intel syntax indirect memory reference of the form
763 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
767 is translated into the AT&T syntax
770 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
774 where @var{base} and @var{index} are the optional 32-bit base and
775 index registers, @var{disp} is the optional displacement, and
776 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
777 to calculate the address of the operand. If no @var{scale} is
778 specified, @var{scale} is taken to be 1. @var{section} specifies the
779 optional section register for the memory operand, and may override the
780 default section register (see a 80386 manual for section register
781 defaults). Note that section overrides in AT&T syntax @emph{must}
782 be preceded by a @samp{%}. If you specify a section override which
783 coincides with the default section register, @code{@value{AS}} does @emph{not}
784 output any section register override prefixes to assemble the given
785 instruction. Thus, section overrides can be specified to emphasize which
786 section register is used for a given memory operand.
788 Here are some examples of Intel and AT&T style memory references:
791 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
792 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
793 missing, and the default section is used (@samp{%ss} for addressing with
794 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
796 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
797 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
798 @samp{foo}. All other fields are missing. The section register here
799 defaults to @samp{%ds}.
801 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
802 This uses the value pointed to by @samp{foo} as a memory operand.
803 Note that @var{base} and @var{index} are both missing, but there is only
804 @emph{one} @samp{,}. This is a syntactic exception.
806 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
807 This selects the contents of the variable @samp{foo} with section
808 register @var{section} being @samp{%gs}.
811 Absolute (as opposed to PC relative) call and jump operands must be
812 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
813 always chooses PC relative addressing for jump/call labels.
815 Any instruction that has a memory operand, but no register operand,
816 @emph{must} specify its size (byte, word, long, or quadruple) with an
817 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
820 The x86-64 architecture adds an RIP (instruction pointer relative)
821 addressing. This addressing mode is specified by using @samp{rip} as a
822 base register. Only constant offsets are valid. For example:
825 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
826 Points to the address 1234 bytes past the end of the current
829 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
830 Points to the @code{symbol} in RIP relative way, this is shorter than
831 the default absolute addressing.
834 Other addressing modes remain unchanged in x86-64 architecture, except
835 registers used are 64-bit instead of 32-bit.
838 @section Handling of Jump Instructions
840 @cindex jump optimization, i386
841 @cindex i386 jump optimization
842 @cindex jump optimization, x86-64
843 @cindex x86-64 jump optimization
844 Jump instructions are always optimized to use the smallest possible
845 displacements. This is accomplished by using byte (8-bit) displacement
846 jumps whenever the target is sufficiently close. If a byte displacement
847 is insufficient a long displacement is used. We do not support
848 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
849 instruction with the @samp{data16} instruction prefix), since the 80386
850 insists upon masking @samp{%eip} to 16 bits after the word displacement
851 is added. (See also @pxref{i386-Arch})
853 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
854 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
855 displacements, so that if you use these instructions (@code{@value{GCC}} does
856 not use them) you may get an error message (and incorrect code). The AT&T
857 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
868 @section Floating Point
870 @cindex i386 floating point
871 @cindex floating point, i386
872 @cindex x86-64 floating point
873 @cindex floating point, x86-64
874 All 80387 floating point types except packed BCD are supported.
875 (BCD support may be added without much difficulty). These data
876 types are 16-, 32-, and 64- bit integers, and single (32-bit),
877 double (64-bit), and extended (80-bit) precision floating point.
878 Each supported type has an instruction mnemonic suffix and a constructor
879 associated with it. Instruction mnemonic suffixes specify the operand's
880 data type. Constructors build these data types into memory.
882 @cindex @code{float} directive, i386
883 @cindex @code{single} directive, i386
884 @cindex @code{double} directive, i386
885 @cindex @code{tfloat} directive, i386
886 @cindex @code{float} directive, x86-64
887 @cindex @code{single} directive, x86-64
888 @cindex @code{double} directive, x86-64
889 @cindex @code{tfloat} directive, x86-64
892 Floating point constructors are @samp{.float} or @samp{.single},
893 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
894 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
895 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
896 only supports this format via the @samp{fldt} (load 80-bit real to stack
897 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
899 @cindex @code{word} directive, i386
900 @cindex @code{long} directive, i386
901 @cindex @code{int} directive, i386
902 @cindex @code{quad} directive, i386
903 @cindex @code{word} directive, x86-64
904 @cindex @code{long} directive, x86-64
905 @cindex @code{int} directive, x86-64
906 @cindex @code{quad} directive, x86-64
908 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
909 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
910 corresponding instruction mnemonic suffixes are @samp{s} (single),
911 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
912 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
913 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
917 Register to register operations should not use instruction mnemonic suffixes.
918 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
919 wrote @samp{fst %st, %st(1)}, since all register to register operations
920 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
921 which converts @samp{%st} from 80-bit to 64-bit floating point format,
922 then stores the result in the 4 byte location @samp{mem})
925 @section Intel's MMX and AMD's 3DNow! SIMD Operations
931 @cindex 3DNow!, x86-64
934 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
935 instructions for integer data), available on Intel's Pentium MMX
936 processors and Pentium II processors, AMD's K6 and K6-2 processors,
937 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
938 instruction set (SIMD instructions for 32-bit floating point data)
939 available on AMD's K6-2 processor and possibly others in the future.
941 Currently, @code{@value{AS}} does not support Intel's floating point
944 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
945 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
946 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
947 floating point values. The MMX registers cannot be used at the same time
948 as the floating point stack.
950 See Intel and AMD documentation, keeping in mind that the operand order in
951 instructions is reversed from the Intel syntax.
954 @section AMD's Lightweight Profiling Instructions
959 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
960 instruction set, available on AMD's Family 15h (Orochi) processors.
962 LWP enables applications to collect and manage performance data, and
963 react to performance events. The collection of performance data
964 requires no context switches. LWP runs in the context of a thread and
965 so several counters can be used independently across multiple threads.
966 LWP can be used in both 64-bit and legacy 32-bit modes.
968 For detailed information on the LWP instruction set, see the
969 @cite{AMD Lightweight Profiling Specification} available at
970 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
973 @section Bit Manipulation Instructions
978 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
980 BMI instructions provide several instructions implementing individual
981 bit manipulation operations such as isolation, masking, setting, or
984 @c Need to add a specification citation here when available.
987 @section AMD's Trailing Bit Manipulation Instructions
992 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
993 instruction set, available on AMD's BDVER2 processors (Trinity and
996 TBM instructions provide instructions implementing individual bit
997 manipulation operations such as isolating, masking, setting, resetting,
998 complementing, and operations on trailing zeros and ones.
1000 @c Need to add a specification citation here when available.
1003 @section Writing 16-bit Code
1005 @cindex i386 16-bit code
1006 @cindex 16-bit code, i386
1007 @cindex real-mode code, i386
1008 @cindex @code{code16gcc} directive, i386
1009 @cindex @code{code16} directive, i386
1010 @cindex @code{code32} directive, i386
1011 @cindex @code{code64} directive, i386
1012 @cindex @code{code64} directive, x86-64
1013 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1014 or 64-bit x86-64 code depending on the default configuration,
1015 it also supports writing code to run in real mode or in 16-bit protected
1016 mode code segments. To do this, put a @samp{.code16} or
1017 @samp{.code16gcc} directive before the assembly language instructions to
1018 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1019 32-bit code with the @samp{.code32} directive or 64-bit code with the
1020 @samp{.code64} directive.
1022 @samp{.code16gcc} provides experimental support for generating 16-bit
1023 code from gcc, and differs from @samp{.code16} in that @samp{call},
1024 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1025 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1026 default to 32-bit size. This is so that the stack pointer is
1027 manipulated in the same way over function calls, allowing access to
1028 function parameters at the same stack offsets as in 32-bit mode.
1029 @samp{.code16gcc} also automatically adds address size prefixes where
1030 necessary to use the 32-bit addressing modes that gcc generates.
1032 The code which @code{@value{AS}} generates in 16-bit mode will not
1033 necessarily run on a 16-bit pre-80386 processor. To write code that
1034 runs on such a processor, you must refrain from using @emph{any} 32-bit
1035 constructs which require @code{@value{AS}} to output address or operand
1038 Note that writing 16-bit code instructions by explicitly specifying a
1039 prefix or an instruction mnemonic suffix within a 32-bit code section
1040 generates different machine instructions than those generated for a
1041 16-bit code segment. In a 32-bit code section, the following code
1042 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1043 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1049 The same code in a 16-bit code section would generate the machine
1050 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1051 is correct since the processor default operand size is assumed to be 16
1052 bits in a 16-bit code section.
1055 @section AT&T Syntax bugs
1057 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1058 assemblers, generate floating point instructions with reversed source
1059 and destination registers in certain cases. Unfortunately, gcc and
1060 possibly many other programs use this reversed syntax, so we're stuck
1069 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1070 than the expected @samp{%st(3) - %st}. This happens with all the
1071 non-commutative arithmetic floating point operations with two register
1072 operands where the source register is @samp{%st} and the destination
1073 register is @samp{%st(i)}.
1076 @section Specifying CPU Architecture
1078 @cindex arch directive, i386
1079 @cindex i386 arch directive
1080 @cindex arch directive, x86-64
1081 @cindex x86-64 arch directive
1083 @code{@value{AS}} may be told to assemble for a particular CPU
1084 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1085 directive enables a warning when gas detects an instruction that is not
1086 supported on the CPU specified. The choices for @var{cpu_type} are:
1088 @multitable @columnfractions .20 .20 .20 .20
1089 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1090 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1091 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1092 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1093 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1094 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1095 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1096 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1097 @item @samp{generic32} @tab @samp{generic64}
1098 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1099 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1100 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1101 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1102 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1103 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1104 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1105 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1106 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1107 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1108 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1109 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1110 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1111 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1112 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1113 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1114 @item @samp{.padlock}
1117 Apart from the warning, there are only two other effects on
1118 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1119 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1120 will automatically use a two byte opcode sequence. The larger three
1121 byte opcode sequence is used on the 486 (and when no architecture is
1122 specified) because it executes faster on the 486. Note that you can
1123 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1124 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1125 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1126 conditional jumps will be promoted when necessary to a two instruction
1127 sequence consisting of a conditional jump of the opposite sense around
1128 an unconditional jump to the target.
1130 Following the CPU architecture (but not a sub-architecture, which are those
1131 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1132 control automatic promotion of conditional jumps. @samp{jumps} is the
1133 default, and enables jump promotion; All external jumps will be of the long
1134 variety, and file-local jumps will be promoted as necessary.
1135 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1136 byte offset jumps, and warns about file-local conditional jumps that
1137 @code{@value{AS}} promotes.
1138 Unconditional jumps are treated as for @samp{jumps}.
1149 @cindex i386 @code{mul}, @code{imul} instructions
1150 @cindex @code{mul} instruction, i386
1151 @cindex @code{imul} instruction, i386
1152 @cindex @code{mul} instruction, x86-64
1153 @cindex @code{imul} instruction, x86-64
1154 There is some trickery concerning the @samp{mul} and @samp{imul}
1155 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1156 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1157 for @samp{imul}) can be output only in the one operand form. Thus,
1158 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1159 the expanding multiply would clobber the @samp{%edx} register, and this
1160 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1161 64-bit product in @samp{%edx:%eax}.
1163 We have added a two operand form of @samp{imul} when the first operand
1164 is an immediate mode expression and the second operand is a register.
1165 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1166 example, can be done with @samp{imul $69, %eax} rather than @samp{imul