x86: document certain command line options as "dangerous"
[external/binutils.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options::                Options
26 * i386-Directives::             X86 specific directives
27 * i386-Syntax::                 Syntactical considerations
28 * i386-Mnemonics::              Instruction Naming
29 * i386-Regs::                   Register Naming
30 * i386-Prefixes::               Instruction Prefixes
31 * i386-Memory::                 Memory References
32 * i386-Jumps::                  Handling of Jump Instructions
33 * i386-Float::                  Floating Point
34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP::                    AMD's Lightweight Profiling Instructions
36 * i386-BMI::                    Bit Manipulation Instruction
37 * i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit::                  Writing 16-bit Code
39 * i386-Arch::                   Specifying an x86 CPU architecture
40 * i386-Bugs::                   AT&T Syntax bugs
41 * i386-Notes::                  Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits.  @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi.  This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions.  The
84 @samp{--divide} option turns @samp{/} into a normal character.  This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor.  The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor.  The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics.  For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}.  The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{lwp},
249 @code{fma4},
250 @code{xop},
251 @code{cx16},
252 @code{syscall},
253 @code{rdtscp},
254 @code{3dnow},
255 @code{3dnowa},
256 @code{sse4a},
257 @code{sse5},
258 @code{svme},
259 @code{abm} and
260 @code{padlock}.
261 Note that rather than extending a basic instruction set, the extension
262 mnemonics starting with @code{no} revoke the respective functionality.
263
264 When the @code{.arch} directive is used with @option{-march}, the
265 @code{.arch} directive will take precedent.
266
267 @cindex @samp{-mtune=} option, i386
268 @cindex @samp{-mtune=} option, x86-64
269 @item -mtune=@var{CPU}
270 This option specifies a processor to optimize for. When used in
271 conjunction with the @option{-march} option, only instructions
272 of the processor specified by the @option{-march} option will be
273 generated.
274
275 Valid @var{CPU} values are identical to the processor list of
276 @option{-march=@var{CPU}}.
277
278 @cindex @samp{-msse2avx} option, i386
279 @cindex @samp{-msse2avx} option, x86-64
280 @item -msse2avx
281 This option specifies that the assembler should encode SSE instructions
282 with VEX prefix.
283
284 @cindex @samp{-msse-check=} option, i386
285 @cindex @samp{-msse-check=} option, x86-64
286 @item -msse-check=@var{none}
287 @itemx -msse-check=@var{warning}
288 @itemx -msse-check=@var{error}
289 These options control if the assembler should check SSE instructions.
290 @option{-msse-check=@var{none}} will make the assembler not to check SSE
291 instructions,  which is the default.  @option{-msse-check=@var{warning}}
292 will make the assembler issue a warning for any SSE instruction.
293 @option{-msse-check=@var{error}} will make the assembler issue an error
294 for any SSE instruction.
295
296 @cindex @samp{-mavxscalar=} option, i386
297 @cindex @samp{-mavxscalar=} option, x86-64
298 @item -mavxscalar=@var{128}
299 @itemx -mavxscalar=@var{256}
300 These options control how the assembler should encode scalar AVX
301 instructions.  @option{-mavxscalar=@var{128}} will encode scalar
302 AVX instructions with 128bit vector length, which is the default.
303 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304 with 256bit vector length.
305
306 WARNING: Don't use this for production code - due to CPU errata the
307 resulting code may not work on certain models.
308
309 @cindex @samp{-mvexwig=} option, i386
310 @cindex @samp{-mvexwig=} option, x86-64
311 @item -mvexwig=@var{0}
312 @itemx -mvexwig=@var{1}
313 These options control how the assembler should encode VEX.W-ignored (WIG)
314 VEX instructions.  @option{-mvexwig=@var{0}} will encode WIG VEX
315 instructions with vex.w = 0, which is the default.
316 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317 vex.w = 1.
318
319 WARNING: Don't use this for production code - due to CPU errata the
320 resulting code may not work on certain models.
321
322 @cindex @samp{-mevexlig=} option, i386
323 @cindex @samp{-mevexlig=} option, x86-64
324 @item -mevexlig=@var{128}
325 @itemx -mevexlig=@var{256}
326 @itemx -mevexlig=@var{512}
327 These options control how the assembler should encode length-ignored
328 (LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
329 EVEX instructions with 128bit vector length, which is the default.
330 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331 encode LIG EVEX instructions with 256bit and 512bit vector length,
332 respectively.
333
334 @cindex @samp{-mevexwig=} option, i386
335 @cindex @samp{-mevexwig=} option, x86-64
336 @item -mevexwig=@var{0}
337 @itemx -mevexwig=@var{1}
338 These options control how the assembler should encode w-ignored (WIG)
339 EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
340 EVEX instructions with evex.w = 0, which is the default.
341 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342 evex.w = 1.
343
344 @cindex @samp{-mmnemonic=} option, i386
345 @cindex @samp{-mmnemonic=} option, x86-64
346 @item -mmnemonic=@var{att}
347 @itemx -mmnemonic=@var{intel}
348 This option specifies instruction mnemonic for matching instructions.
349 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350 take precedent.
351
352 @cindex @samp{-msyntax=} option, i386
353 @cindex @samp{-msyntax=} option, x86-64
354 @item -msyntax=@var{att}
355 @itemx -msyntax=@var{intel}
356 This option specifies instruction syntax when processing instructions.
357 The @code{.att_syntax} and @code{.intel_syntax} directives will
358 take precedent.
359
360 @cindex @samp{-mnaked-reg} option, i386
361 @cindex @samp{-mnaked-reg} option, x86-64
362 @item -mnaked-reg
363 This option specifies that registers don't require a @samp{%} prefix.
364 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
365
366 @cindex @samp{-madd-bnd-prefix} option, i386
367 @cindex @samp{-madd-bnd-prefix} option, x86-64
368 @item -madd-bnd-prefix
369 This option forces the assembler to add BND prefix to all branches, even
370 if such prefix was not explicitly specified in the source code.
371
372 @cindex @samp{-mshared} option, i386
373 @cindex @samp{-mshared} option, x86-64
374 @item -mno-shared
375 On ELF target, the assembler normally optimizes out non-PLT relocations
376 against defined non-weak global branch targets with default visibility.
377 The @samp{-mshared} option tells the assembler to generate code which
378 may go into a shared library where all non-weak global branch targets
379 with default visibility can be preempted.  The resulting code is
380 slightly bigger.  This option only affects the handling of branch
381 instructions.
382
383 @cindex @samp{-mbig-obj} option, x86-64
384 @item -mbig-obj
385 On x86-64 PE/COFF target this option forces the use of big object file
386 format, which allows more than 32768 sections.
387
388 @cindex @samp{-momit-lock-prefix=} option, i386
389 @cindex @samp{-momit-lock-prefix=} option, x86-64
390 @item -momit-lock-prefix=@var{no}
391 @itemx -momit-lock-prefix=@var{yes}
392 These options control how the assembler should encode lock prefix.
393 This option is intended as a workaround for processors, that fail on
394 lock prefix. This option can only be safely used with single-core,
395 single-thread computers
396 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398 which is the default.
399
400 @cindex @samp{-mfence-as-lock-add=} option, i386
401 @cindex @samp{-mfence-as-lock-add=} option, x86-64
402 @item -mfence-as-lock-add=@var{no}
403 @itemx -mfence-as-lock-add=@var{yes}
404 These options control how the assembler should encode lfence, mfence and
405 sfence.
406 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
409 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410 sfence as usual, which is the default.
411
412 @cindex @samp{-mrelax-relocations=} option, i386
413 @cindex @samp{-mrelax-relocations=} option, x86-64
414 @item -mrelax-relocations=@var{no}
415 @itemx -mrelax-relocations=@var{yes}
416 These options control whether the assembler should generate relax
417 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420 @option{-mrelax-relocations=@var{no}} will not generate relax
421 relocations.  The default can be controlled by a configure option
422 @option{--enable-x86-relax-relocations}.
423
424 @cindex @samp{-mx86-used-note=} option, i386
425 @cindex @samp{-mx86-used-note=} option, x86-64
426 @item -mx86-used-note=@var{no}
427 @itemx -mx86-used-note=@var{yes}
428 These options control whether the assembler should generate
429 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430 GNU property notes.  The default can be controlled by the
431 @option{--enable-x86-used-note} configure option.
432
433 @cindex @samp{-mevexrcig=} option, i386
434 @cindex @samp{-mevexrcig=} option, x86-64
435 @item -mevexrcig=@var{rne}
436 @itemx -mevexrcig=@var{rd}
437 @itemx -mevexrcig=@var{ru}
438 @itemx -mevexrcig=@var{rz}
439 These options control how the assembler should encode SAE-only
440 EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
441 of EVEX instruction with 00, which is the default.
442 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444 with 01, 10 and 11 RC bits, respectively.
445
446 @cindex @samp{-mamd64} option, x86-64
447 @cindex @samp{-mintel64} option, x86-64
448 @item -mamd64
449 @itemx -mintel64
450 This option specifies that the assembler should accept only AMD64 or
451 Intel64 ISA in 64-bit mode.  The default is to accept both.
452
453 @cindex @samp{-O0} option, i386
454 @cindex @samp{-O0} option, x86-64
455 @cindex @samp{-O} option, i386
456 @cindex @samp{-O} option, x86-64
457 @cindex @samp{-O1} option, i386
458 @cindex @samp{-O1} option, x86-64
459 @cindex @samp{-O2} option, i386
460 @cindex @samp{-O2} option, x86-64
461 @cindex @samp{-Os} option, i386
462 @cindex @samp{-Os} option, x86-64
463 @item -O0 | -O | -O1 | -O2 | -Os
464 Optimize instruction encoding with smaller instruction size.  @samp{-O}
465 and @samp{-O1} encode 64-bit register load instructions with 64-bit
466 immediate as 32-bit register load instructions with 31-bit or 32-bits
467 immediates, encode 64-bit register clearing instructions with 32-bit
468 register clearing instructions and encode 256-bit/512-bit VEX/EVEX
469 vector register clearing instructions with 128-bit VEX vector register
470 clearing instructions as well as encode 128-bit/256-bit EVEX vector
471 register load/store instructions with VEX vector register load/store
472 instructions.  @samp{-O2} includes @samp{-O1} optimization plus
473 encodes 256-bit/512-bit EVEX vector register clearing instructions with
474 128-bit EVEX vector register clearing instructions.
475 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
476 and 64-bit register tests with immediate as 8-bit register test with
477 immediate.  @samp{-O0} turns off this optimization.
478
479 @end table
480 @c man end
481
482 @node i386-Directives
483 @section x86 specific Directives
484
485 @cindex machine directives, x86
486 @cindex x86 machine directives
487 @table @code
488
489 @cindex @code{lcomm} directive, COFF
490 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
491 Reserve @var{length} (an absolute expression) bytes for a local common
492 denoted by @var{symbol}.  The section and value of @var{symbol} are
493 those of the new local common.  The addresses are allocated in the bss
494 section, so that at run-time the bytes start off zeroed.  Since
495 @var{symbol} is not declared global, it is normally not visible to
496 @code{@value{LD}}.  The optional third parameter, @var{alignment},
497 specifies the desired alignment of the symbol in the bss section.
498
499 This directive is only available for COFF based x86 targets.
500
501 @cindex @code{largecomm} directive, ELF
502 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
503 This directive behaves in the same way as the @code{comm} directive
504 except that the data is placed into the @var{.lbss} section instead of
505 the @var{.bss} section @ref{Comm}.
506
507 The directive is intended to be used for data which requires a large
508 amount of space, and it is only available for ELF based x86_64
509 targets.
510
511 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
512
513 @end table
514
515 @node i386-Syntax
516 @section i386 Syntactical Considerations
517 @menu
518 * i386-Variations::           AT&T Syntax versus Intel Syntax
519 * i386-Chars::                Special Characters
520 @end menu
521
522 @node i386-Variations
523 @subsection AT&T Syntax versus Intel Syntax
524
525 @cindex i386 intel_syntax pseudo op
526 @cindex intel_syntax pseudo op, i386
527 @cindex i386 att_syntax pseudo op
528 @cindex att_syntax pseudo op, i386
529 @cindex i386 syntax compatibility
530 @cindex syntax compatibility, i386
531 @cindex x86-64 intel_syntax pseudo op
532 @cindex intel_syntax pseudo op, x86-64
533 @cindex x86-64 att_syntax pseudo op
534 @cindex att_syntax pseudo op, x86-64
535 @cindex x86-64 syntax compatibility
536 @cindex syntax compatibility, x86-64
537
538 @code{@value{AS}} now supports assembly using Intel assembler syntax.
539 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
540 back to the usual AT&T mode for compatibility with the output of
541 @code{@value{GCC}}.  Either of these directives may have an optional
542 argument, @code{prefix}, or @code{noprefix} specifying whether registers
543 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
544 different from Intel syntax.  We mention these differences because
545 almost all 80386 documents use Intel syntax.  Notable differences
546 between the two syntaxes are:
547
548 @cindex immediate operands, i386
549 @cindex i386 immediate operands
550 @cindex register operands, i386
551 @cindex i386 register operands
552 @cindex jump/call operands, i386
553 @cindex i386 jump/call operands
554 @cindex operand delimiters, i386
555
556 @cindex immediate operands, x86-64
557 @cindex x86-64 immediate operands
558 @cindex register operands, x86-64
559 @cindex x86-64 register operands
560 @cindex jump/call operands, x86-64
561 @cindex x86-64 jump/call operands
562 @cindex operand delimiters, x86-64
563 @itemize @bullet
564 @item
565 AT&T immediate operands are preceded by @samp{$}; Intel immediate
566 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
567 AT&T register operands are preceded by @samp{%}; Intel register operands
568 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
569 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
570
571 @cindex i386 source, destination operands
572 @cindex source, destination operands; i386
573 @cindex x86-64 source, destination operands
574 @cindex source, destination operands; x86-64
575 @item
576 AT&T and Intel syntax use the opposite order for source and destination
577 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
578 @samp{source, dest} convention is maintained for compatibility with
579 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
580 instructions with 2 immediate operands, such as the @samp{enter}
581 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
582
583 @cindex mnemonic suffixes, i386
584 @cindex sizes operands, i386
585 @cindex i386 size suffixes
586 @cindex mnemonic suffixes, x86-64
587 @cindex sizes operands, x86-64
588 @cindex x86-64 size suffixes
589 @item
590 In AT&T syntax the size of memory operands is determined from the last
591 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
592 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
593 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
594 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
595 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
596 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
597 syntax.
598
599 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
600 instruction with the 64-bit displacement or immediate operand.
601
602 @cindex return instructions, i386
603 @cindex i386 jump, call, return
604 @cindex return instructions, x86-64
605 @cindex x86-64 jump, call, return
606 @item
607 Immediate form long jumps and calls are
608 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
609 Intel syntax is
610 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
611 instruction
612 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
613 @samp{ret far @var{stack-adjust}}.
614
615 @cindex sections, i386
616 @cindex i386 sections
617 @cindex sections, x86-64
618 @cindex x86-64 sections
619 @item
620 The AT&T assembler does not provide support for multiple section
621 programs.  Unix style systems expect all programs to be single sections.
622 @end itemize
623
624 @node i386-Chars
625 @subsection Special Characters
626
627 @cindex line comment character, i386
628 @cindex i386 line comment character
629 The presence of a @samp{#} appearing anywhere on a line indicates the
630 start of a comment that extends to the end of that line.
631
632 If a @samp{#} appears as the first character of a line then the whole
633 line is treated as a comment, but in this case the line can also be a
634 logical line number directive (@pxref{Comments}) or a preprocessor
635 control command (@pxref{Preprocessing}).
636
637 If the @option{--divide} command-line option has not been specified
638 then the @samp{/} character appearing anywhere on a line also
639 introduces a line comment.
640
641 @cindex line separator, i386
642 @cindex statement separator, i386
643 @cindex i386 line separator
644 The @samp{;} character can be used to separate statements on the same
645 line.
646
647 @node i386-Mnemonics
648 @section i386-Mnemonics
649 @subsection Instruction Naming
650
651 @cindex i386 instruction naming
652 @cindex instruction naming, i386
653 @cindex x86-64 instruction naming
654 @cindex instruction naming, x86-64
655
656 Instruction mnemonics are suffixed with one character modifiers which
657 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
658 and @samp{q} specify byte, word, long and quadruple word operands.  If
659 no suffix is specified by an instruction then @code{@value{AS}} tries to
660 fill in the missing suffix based on the destination register operand
661 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
662 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
663 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
664 assembler which assumes that a missing mnemonic suffix implies long
665 operand size.  (This incompatibility does not affect compiler output
666 since compilers always explicitly specify the mnemonic suffix.)
667
668 Almost all instructions have the same names in AT&T and Intel format.
669 There are a few exceptions.  The sign extend and zero extend
670 instructions need two sizes to specify them.  They need a size to
671 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
672 is accomplished by using two instruction mnemonic suffixes in AT&T
673 syntax.  Base names for sign extend and zero extend are
674 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
675 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
676 are tacked on to this base name, the @emph{from} suffix before the
677 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
678 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
679 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
680 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
681 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
682 quadruple word).
683
684 @cindex encoding options, i386
685 @cindex encoding options, x86-64
686
687 Different encoding options can be specified via pseudo prefixes:
688
689 @itemize @bullet
690 @item
691 @samp{@{disp8@}} -- prefer 8-bit displacement.
692
693 @item
694 @samp{@{disp32@}} -- prefer 32-bit displacement.
695
696 @item
697 @samp{@{load@}} -- prefer load-form instruction.
698
699 @item
700 @samp{@{store@}} -- prefer store-form instruction.
701
702 @item
703 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
704
705 @item
706 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
707
708 @item
709 @samp{@{evex@}} --  encode with EVEX prefix.
710
711 @item
712 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
713 instructions (x86-64 only).  Note that this differs from the @samp{rex}
714 prefix which generates REX prefix unconditionally.
715
716 @item
717 @samp{@{nooptimize@}} -- disable instruction size optimization.
718 @end itemize
719
720 @cindex conversion instructions, i386
721 @cindex i386 conversion instructions
722 @cindex conversion instructions, x86-64
723 @cindex x86-64 conversion instructions
724 The Intel-syntax conversion instructions
725
726 @itemize @bullet
727 @item
728 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
729
730 @item
731 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
732
733 @item
734 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
735
736 @item
737 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
738
739 @item
740 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
741 (x86-64 only),
742
743 @item
744 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
745 @samp{%rdx:%rax} (x86-64 only),
746 @end itemize
747
748 @noindent
749 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
750 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
751 instructions.
752
753 @cindex jump instructions, i386
754 @cindex call instructions, i386
755 @cindex jump instructions, x86-64
756 @cindex call instructions, x86-64
757 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
758 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
759 convention.
760
761 @subsection AT&T Mnemonic versus Intel Mnemonic
762
763 @cindex i386 mnemonic compatibility
764 @cindex mnemonic compatibility, i386
765
766 @code{@value{AS}} supports assembly using Intel mnemonic.
767 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
768 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
769 syntax for compatibility with the output of @code{@value{GCC}}.
770 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
771 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
772 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
773 assembler with different mnemonics from those in Intel IA32 specification.
774 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
775
776 @node i386-Regs
777 @section Register Naming
778
779 @cindex i386 registers
780 @cindex registers, i386
781 @cindex x86-64 registers
782 @cindex registers, x86-64
783 Register operands are always prefixed with @samp{%}.  The 80386 registers
784 consist of
785
786 @itemize @bullet
787 @item
788 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
789 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
790 frame pointer), and @samp{%esp} (the stack pointer).
791
792 @item
793 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
794 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
795
796 @item
797 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
798 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
799 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
800 @samp{%cx}, and @samp{%dx})
801
802 @item
803 the 6 section registers @samp{%cs} (code section), @samp{%ds}
804 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
805 and @samp{%gs}.
806
807 @item
808 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
809 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
810
811 @item
812 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
813 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
814
815 @item
816 the 2 test registers @samp{%tr6} and @samp{%tr7}.
817
818 @item
819 the 8 floating point register stack @samp{%st} or equivalently
820 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
821 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
822 These registers are overloaded by 8 MMX registers @samp{%mm0},
823 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
824 @samp{%mm6} and @samp{%mm7}.
825
826 @item
827 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
828 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
829 @end itemize
830
831 The AMD x86-64 architecture extends the register set by:
832
833 @itemize @bullet
834 @item
835 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
836 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
837 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
838 pointer)
839
840 @item
841 the 8 extended registers @samp{%r8}--@samp{%r15}.
842
843 @item
844 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
845
846 @item
847 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
848
849 @item
850 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
851
852 @item
853 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
854
855 @item
856 the 8 debug registers: @samp{%db8}--@samp{%db15}.
857
858 @item
859 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
860 @end itemize
861
862 With the AVX extensions more registers were made available:
863
864 @itemize @bullet
865
866 @item
867 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
868 available in 32-bit mode).  The bottom 128 bits are overlaid with the
869 @samp{xmm0}--@samp{xmm15} registers.
870
871 @end itemize
872
873 The AVX2 extensions made in 64-bit mode more registers available:
874
875 @itemize @bullet
876
877 @item
878 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
879 registers @samp{%ymm16}--@samp{%ymm31}.
880
881 @end itemize
882
883 The AVX512 extensions added the following registers:
884
885 @itemize @bullet
886
887 @item
888 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
889 available in 32-bit mode).  The bottom 128 bits are overlaid with the
890 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
891 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
892
893 @item
894 the 8 mask registers @samp{%k0}--@samp{%k7}.
895
896 @end itemize
897
898 @node i386-Prefixes
899 @section Instruction Prefixes
900
901 @cindex i386 instruction prefixes
902 @cindex instruction prefixes, i386
903 @cindex prefixes, i386
904 Instruction prefixes are used to modify the following instruction.  They
905 are used to repeat string instructions, to provide section overrides, to
906 perform bus lock operations, and to change operand and address sizes.
907 (Most instructions that normally operate on 32-bit operands will use
908 16-bit operands if the instruction has an ``operand size'' prefix.)
909 Instruction prefixes are best written on the same line as the instruction
910 they act upon. For example, the @samp{scas} (scan string) instruction is
911 repeated with:
912
913 @smallexample
914         repne scas %es:(%edi),%al
915 @end smallexample
916
917 You may also place prefixes on the lines immediately preceding the
918 instruction, but this circumvents checks that @code{@value{AS}} does
919 with prefixes, and will not work with all prefixes.
920
921 Here is a list of instruction prefixes:
922
923 @cindex section override prefixes, i386
924 @itemize @bullet
925 @item
926 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
927 @samp{fs}, @samp{gs}.  These are automatically added by specifying
928 using the @var{section}:@var{memory-operand} form for memory references.
929
930 @cindex size prefixes, i386
931 @item
932 Operand/Address size prefixes @samp{data16} and @samp{addr16}
933 change 32-bit operands/addresses into 16-bit operands/addresses,
934 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
935 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
936 @emph{must} appear on the same line of code as the instruction they
937 modify. For example, in a 16-bit @code{.code16} section, you might
938 write:
939
940 @smallexample
941         addr32 jmpl *(%ebx)
942 @end smallexample
943
944 @cindex bus lock prefixes, i386
945 @cindex inhibiting interrupts, i386
946 @item
947 The bus lock prefix @samp{lock} inhibits interrupts during execution of
948 the instruction it precedes.  (This is only valid with certain
949 instructions; see a 80386 manual for details).
950
951 @cindex coprocessor wait, i386
952 @item
953 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
954 complete the current instruction.  This should never be needed for the
955 80386/80387 combination.
956
957 @cindex repeat prefixes, i386
958 @item
959 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
960 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
961 times if the current address size is 16-bits).
962 @cindex REX prefixes, i386
963 @item
964 The @samp{rex} family of prefixes is used by x86-64 to encode
965 extensions to i386 instruction set.  The @samp{rex} prefix has four
966 bits --- an operand size overwrite (@code{64}) used to change operand size
967 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
968 register set.
969
970 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
971 instruction emits @samp{rex} prefix with all the bits set.  By omitting
972 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
973 prefixes as well.  Normally, there is no need to write the prefixes
974 explicitly, since gas will automatically generate them based on the
975 instruction operands.
976 @end itemize
977
978 @node i386-Memory
979 @section Memory References
980
981 @cindex i386 memory references
982 @cindex memory references, i386
983 @cindex x86-64 memory references
984 @cindex memory references, x86-64
985 An Intel syntax indirect memory reference of the form
986
987 @smallexample
988 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
989 @end smallexample
990
991 @noindent
992 is translated into the AT&T syntax
993
994 @smallexample
995 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
996 @end smallexample
997
998 @noindent
999 where @var{base} and @var{index} are the optional 32-bit base and
1000 index registers, @var{disp} is the optional displacement, and
1001 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1002 to calculate the address of the operand.  If no @var{scale} is
1003 specified, @var{scale} is taken to be 1.  @var{section} specifies the
1004 optional section register for the memory operand, and may override the
1005 default section register (see a 80386 manual for section register
1006 defaults). Note that section overrides in AT&T syntax @emph{must}
1007 be preceded by a @samp{%}.  If you specify a section override which
1008 coincides with the default section register, @code{@value{AS}} does @emph{not}
1009 output any section register override prefixes to assemble the given
1010 instruction.  Thus, section overrides can be specified to emphasize which
1011 section register is used for a given memory operand.
1012
1013 Here are some examples of Intel and AT&T style memory references:
1014
1015 @table @asis
1016 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
1017 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1018 missing, and the default section is used (@samp{%ss} for addressing with
1019 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
1020
1021 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1022 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1023 @samp{foo}.  All other fields are missing.  The section register here
1024 defaults to @samp{%ds}.
1025
1026 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1027 This uses the value pointed to by @samp{foo} as a memory operand.
1028 Note that @var{base} and @var{index} are both missing, but there is only
1029 @emph{one} @samp{,}.  This is a syntactic exception.
1030
1031 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1032 This selects the contents of the variable @samp{foo} with section
1033 register @var{section} being @samp{%gs}.
1034 @end table
1035
1036 Absolute (as opposed to PC relative) call and jump operands must be
1037 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
1038 always chooses PC relative addressing for jump/call labels.
1039
1040 Any instruction that has a memory operand, but no register operand,
1041 @emph{must} specify its size (byte, word, long, or quadruple) with an
1042 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1043 respectively).
1044
1045 The x86-64 architecture adds an RIP (instruction pointer relative)
1046 addressing.  This addressing mode is specified by using @samp{rip} as a
1047 base register.  Only constant offsets are valid. For example:
1048
1049 @table @asis
1050 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1051 Points to the address 1234 bytes past the end of the current
1052 instruction.
1053
1054 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1055 Points to the @code{symbol} in RIP relative way, this is shorter than
1056 the default absolute addressing.
1057 @end table
1058
1059 Other addressing modes remain unchanged in x86-64 architecture, except
1060 registers used are 64-bit instead of 32-bit.
1061
1062 @node i386-Jumps
1063 @section Handling of Jump Instructions
1064
1065 @cindex jump optimization, i386
1066 @cindex i386 jump optimization
1067 @cindex jump optimization, x86-64
1068 @cindex x86-64 jump optimization
1069 Jump instructions are always optimized to use the smallest possible
1070 displacements.  This is accomplished by using byte (8-bit) displacement
1071 jumps whenever the target is sufficiently close.  If a byte displacement
1072 is insufficient a long displacement is used.  We do not support
1073 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1074 instruction with the @samp{data16} instruction prefix), since the 80386
1075 insists upon masking @samp{%eip} to 16 bits after the word displacement
1076 is added. (See also @pxref{i386-Arch})
1077
1078 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1079 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1080 displacements, so that if you use these instructions (@code{@value{GCC}} does
1081 not use them) you may get an error message (and incorrect code).  The AT&T
1082 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1083 to
1084
1085 @smallexample
1086          jcxz cx_zero
1087          jmp cx_nonzero
1088 cx_zero: jmp foo
1089 cx_nonzero:
1090 @end smallexample
1091
1092 @node i386-Float
1093 @section Floating Point
1094
1095 @cindex i386 floating point
1096 @cindex floating point, i386
1097 @cindex x86-64 floating point
1098 @cindex floating point, x86-64
1099 All 80387 floating point types except packed BCD are supported.
1100 (BCD support may be added without much difficulty).  These data
1101 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1102 double (64-bit), and extended (80-bit) precision floating point.
1103 Each supported type has an instruction mnemonic suffix and a constructor
1104 associated with it.  Instruction mnemonic suffixes specify the operand's
1105 data type.  Constructors build these data types into memory.
1106
1107 @cindex @code{float} directive, i386
1108 @cindex @code{single} directive, i386
1109 @cindex @code{double} directive, i386
1110 @cindex @code{tfloat} directive, i386
1111 @cindex @code{float} directive, x86-64
1112 @cindex @code{single} directive, x86-64
1113 @cindex @code{double} directive, x86-64
1114 @cindex @code{tfloat} directive, x86-64
1115 @itemize @bullet
1116 @item
1117 Floating point constructors are @samp{.float} or @samp{.single},
1118 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1119 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1120 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
1121 only supports this format via the @samp{fldt} (load 80-bit real to stack
1122 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1123
1124 @cindex @code{word} directive, i386
1125 @cindex @code{long} directive, i386
1126 @cindex @code{int} directive, i386
1127 @cindex @code{quad} directive, i386
1128 @cindex @code{word} directive, x86-64
1129 @cindex @code{long} directive, x86-64
1130 @cindex @code{int} directive, x86-64
1131 @cindex @code{quad} directive, x86-64
1132 @item
1133 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1134 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1135 corresponding instruction mnemonic suffixes are @samp{s} (single),
1136 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1137 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1138 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1139 stack) instructions.
1140 @end itemize
1141
1142 Register to register operations should not use instruction mnemonic suffixes.
1143 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1144 wrote @samp{fst %st, %st(1)}, since all register to register operations
1145 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1146 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1147 then stores the result in the 4 byte location @samp{mem})
1148
1149 @node i386-SIMD
1150 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1151
1152 @cindex MMX, i386
1153 @cindex 3DNow!, i386
1154 @cindex SIMD, i386
1155 @cindex MMX, x86-64
1156 @cindex 3DNow!, x86-64
1157 @cindex SIMD, x86-64
1158
1159 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1160 instructions for integer data), available on Intel's Pentium MMX
1161 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1162 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1163 instruction set (SIMD instructions for 32-bit floating point data)
1164 available on AMD's K6-2 processor and possibly others in the future.
1165
1166 Currently, @code{@value{AS}} does not support Intel's floating point
1167 SIMD, Katmai (KNI).
1168
1169 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1170 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
1171 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1172 floating point values.  The MMX registers cannot be used at the same time
1173 as the floating point stack.
1174
1175 See Intel and AMD documentation, keeping in mind that the operand order in
1176 instructions is reversed from the Intel syntax.
1177
1178 @node i386-LWP
1179 @section AMD's Lightweight Profiling Instructions
1180
1181 @cindex LWP, i386
1182 @cindex LWP, x86-64
1183
1184 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1185 instruction set, available on AMD's Family 15h (Orochi) processors.
1186
1187 LWP enables applications to collect and manage performance data, and
1188 react to performance events.  The collection of performance data
1189 requires no context switches.  LWP runs in the context of a thread and
1190 so several counters can be used independently across multiple threads.
1191 LWP can be used in both 64-bit and legacy 32-bit modes.
1192
1193 For detailed information on the LWP instruction set, see the
1194 @cite{AMD Lightweight Profiling Specification} available at
1195 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1196
1197 @node i386-BMI
1198 @section Bit Manipulation Instructions
1199
1200 @cindex BMI, i386
1201 @cindex BMI, x86-64
1202
1203 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1204
1205 BMI instructions provide several instructions implementing individual
1206 bit manipulation operations such as isolation, masking, setting, or
1207 resetting.
1208
1209 @c Need to add a specification citation here when available.
1210
1211 @node i386-TBM
1212 @section AMD's Trailing Bit Manipulation Instructions
1213
1214 @cindex TBM, i386
1215 @cindex TBM, x86-64
1216
1217 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1218 instruction set, available on AMD's BDVER2 processors (Trinity and
1219 Viperfish).
1220
1221 TBM instructions provide instructions implementing individual bit
1222 manipulation operations such as isolating, masking, setting, resetting,
1223 complementing, and operations on trailing zeros and ones.
1224
1225 @c Need to add a specification citation here when available.
1226
1227 @node i386-16bit
1228 @section Writing 16-bit Code
1229
1230 @cindex i386 16-bit code
1231 @cindex 16-bit code, i386
1232 @cindex real-mode code, i386
1233 @cindex @code{code16gcc} directive, i386
1234 @cindex @code{code16} directive, i386
1235 @cindex @code{code32} directive, i386
1236 @cindex @code{code64} directive, i386
1237 @cindex @code{code64} directive, x86-64
1238 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1239 or 64-bit x86-64 code depending on the default configuration,
1240 it also supports writing code to run in real mode or in 16-bit protected
1241 mode code segments.  To do this, put a @samp{.code16} or
1242 @samp{.code16gcc} directive before the assembly language instructions to
1243 be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
1244 32-bit code with the @samp{.code32} directive or 64-bit code with the
1245 @samp{.code64} directive.
1246
1247 @samp{.code16gcc} provides experimental support for generating 16-bit
1248 code from gcc, and differs from @samp{.code16} in that @samp{call},
1249 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1250 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1251 default to 32-bit size.  This is so that the stack pointer is
1252 manipulated in the same way over function calls, allowing access to
1253 function parameters at the same stack offsets as in 32-bit mode.
1254 @samp{.code16gcc} also automatically adds address size prefixes where
1255 necessary to use the 32-bit addressing modes that gcc generates.
1256
1257 The code which @code{@value{AS}} generates in 16-bit mode will not
1258 necessarily run on a 16-bit pre-80386 processor.  To write code that
1259 runs on such a processor, you must refrain from using @emph{any} 32-bit
1260 constructs which require @code{@value{AS}} to output address or operand
1261 size prefixes.
1262
1263 Note that writing 16-bit code instructions by explicitly specifying a
1264 prefix or an instruction mnemonic suffix within a 32-bit code section
1265 generates different machine instructions than those generated for a
1266 16-bit code segment.  In a 32-bit code section, the following code
1267 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1268 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1269
1270 @smallexample
1271         pushw $4
1272 @end smallexample
1273
1274 The same code in a 16-bit code section would generate the machine
1275 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1276 is correct since the processor default operand size is assumed to be 16
1277 bits in a 16-bit code section.
1278
1279 @node i386-Arch
1280 @section Specifying CPU Architecture
1281
1282 @cindex arch directive, i386
1283 @cindex i386 arch directive
1284 @cindex arch directive, x86-64
1285 @cindex x86-64 arch directive
1286
1287 @code{@value{AS}} may be told to assemble for a particular CPU
1288 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1289 directive enables a warning when gas detects an instruction that is not
1290 supported on the CPU specified.  The choices for @var{cpu_type} are:
1291
1292 @multitable @columnfractions .20 .20 .20 .20
1293 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1294 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1295 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1296 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1297 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1298 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1299 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1300 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1301 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1302 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1303 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1304 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1305 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1306 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1307 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1308 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1309 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1310 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1311 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1312 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1313 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1314 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1315 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1316 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1317 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1318 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1319 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1320 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1321 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1322 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1323 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1324 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1325 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1326 @end multitable
1327
1328 Apart from the warning, there are only two other effects on
1329 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1330 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1331 will automatically use a two byte opcode sequence.  The larger three
1332 byte opcode sequence is used on the 486 (and when no architecture is
1333 specified) because it executes faster on the 486.  Note that you can
1334 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1335 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1336 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1337 conditional jumps will be promoted when necessary to a two instruction
1338 sequence consisting of a conditional jump of the opposite sense around
1339 an unconditional jump to the target.
1340
1341 Following the CPU architecture (but not a sub-architecture, which are those
1342 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1343 control automatic promotion of conditional jumps. @samp{jumps} is the
1344 default, and enables jump promotion;  All external jumps will be of the long
1345 variety, and file-local jumps will be promoted as necessary.
1346 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1347 byte offset jumps, and warns about file-local conditional jumps that
1348 @code{@value{AS}} promotes.
1349 Unconditional jumps are treated as for @samp{jumps}.
1350
1351 For example
1352
1353 @smallexample
1354  .arch i8086,nojumps
1355 @end smallexample
1356
1357 @node i386-Bugs
1358 @section AT&T Syntax bugs
1359
1360 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1361 assemblers, generate floating point instructions with reversed source
1362 and destination registers in certain cases.  Unfortunately, gcc and
1363 possibly many other programs use this reversed syntax, so we're stuck
1364 with it.
1365
1366 For example
1367
1368 @smallexample
1369         fsub %st,%st(3)
1370 @end smallexample
1371 @noindent
1372 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1373 than the expected @samp{%st(3) - %st}.  This happens with all the
1374 non-commutative arithmetic floating point operations with two register
1375 operands where the source register is @samp{%st} and the destination
1376 register is @samp{%st(i)}.
1377
1378 @node i386-Notes
1379 @section Notes
1380
1381 @cindex i386 @code{mul}, @code{imul} instructions
1382 @cindex @code{mul} instruction, i386
1383 @cindex @code{imul} instruction, i386
1384 @cindex @code{mul} instruction, x86-64
1385 @cindex @code{imul} instruction, x86-64
1386 There is some trickery concerning the @samp{mul} and @samp{imul}
1387 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1388 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1389 for @samp{imul}) can be output only in the one operand form.  Thus,
1390 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1391 the expanding multiply would clobber the @samp{%edx} register, and this
1392 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1393 64-bit product in @samp{%edx:%eax}.
1394
1395 We have added a two operand form of @samp{imul} when the first operand
1396 is an immediate mode expression and the second operand is a register.
1397 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1398 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1399 $69, %eax, %eax}.
1400