x86: Optimize EVEX vector load/store instructions
[external/binutils.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options::                Options
26 * i386-Directives::             X86 specific directives
27 * i386-Syntax::                 Syntactical considerations
28 * i386-Mnemonics::              Instruction Naming
29 * i386-Regs::                   Register Naming
30 * i386-Prefixes::               Instruction Prefixes
31 * i386-Memory::                 Memory References
32 * i386-Jumps::                  Handling of Jump Instructions
33 * i386-Float::                  Floating Point
34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP::                    AMD's Lightweight Profiling Instructions
36 * i386-BMI::                    Bit Manipulation Instruction
37 * i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit::                  Writing 16-bit Code
39 * i386-Arch::                   Specifying an x86 CPU architecture
40 * i386-Bugs::                   AT&T Syntax bugs
41 * i386-Notes::                  Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits.  @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi.  This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions.  The
84 @samp{--divide} option turns @samp{/} into a normal character.  This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor.  The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor.  The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics.  For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}.  The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{avx512f},
187 @code{avx512cd},
188 @code{avx512er},
189 @code{avx512pf},
190 @code{avx512vl},
191 @code{avx512bw},
192 @code{avx512dq},
193 @code{avx512ifma},
194 @code{avx512vbmi},
195 @code{avx512_4fmaps},
196 @code{avx512_4vnniw},
197 @code{avx512_vpopcntdq},
198 @code{avx512_vbmi2},
199 @code{avx512_vnni},
200 @code{avx512_bitalg},
201 @code{noavx512f},
202 @code{noavx512cd},
203 @code{noavx512er},
204 @code{noavx512pf},
205 @code{noavx512vl},
206 @code{noavx512bw},
207 @code{noavx512dq},
208 @code{noavx512ifma},
209 @code{noavx512vbmi},
210 @code{noavx512_4fmaps},
211 @code{noavx512_4vnniw},
212 @code{noavx512_vpopcntdq},
213 @code{noavx512_vbmi2},
214 @code{noavx512_vnni},
215 @code{noavx512_bitalg},
216 @code{vmx},
217 @code{vmfunc},
218 @code{smx},
219 @code{xsave},
220 @code{xsaveopt},
221 @code{xsavec},
222 @code{xsaves},
223 @code{aes},
224 @code{pclmul},
225 @code{fsgsbase},
226 @code{rdrnd},
227 @code{f16c},
228 @code{bmi2},
229 @code{fma},
230 @code{movbe},
231 @code{ept},
232 @code{lzcnt},
233 @code{hle},
234 @code{rtm},
235 @code{invpcid},
236 @code{clflush},
237 @code{mwaitx},
238 @code{clzero},
239 @code{wbnoinvd},
240 @code{pconfig},
241 @code{waitpkg},
242 @code{cldemote},
243 @code{lwp},
244 @code{fma4},
245 @code{xop},
246 @code{cx16},
247 @code{syscall},
248 @code{rdtscp},
249 @code{3dnow},
250 @code{3dnowa},
251 @code{sse4a},
252 @code{sse5},
253 @code{svme},
254 @code{abm} and
255 @code{padlock}.
256 Note that rather than extending a basic instruction set, the extension
257 mnemonics starting with @code{no} revoke the respective functionality.
258
259 When the @code{.arch} directive is used with @option{-march}, the
260 @code{.arch} directive will take precedent.
261
262 @cindex @samp{-mtune=} option, i386
263 @cindex @samp{-mtune=} option, x86-64
264 @item -mtune=@var{CPU}
265 This option specifies a processor to optimize for. When used in
266 conjunction with the @option{-march} option, only instructions
267 of the processor specified by the @option{-march} option will be
268 generated.
269
270 Valid @var{CPU} values are identical to the processor list of
271 @option{-march=@var{CPU}}.
272
273 @cindex @samp{-msse2avx} option, i386
274 @cindex @samp{-msse2avx} option, x86-64
275 @item -msse2avx
276 This option specifies that the assembler should encode SSE instructions
277 with VEX prefix.
278
279 @cindex @samp{-msse-check=} option, i386
280 @cindex @samp{-msse-check=} option, x86-64
281 @item -msse-check=@var{none}
282 @itemx -msse-check=@var{warning}
283 @itemx -msse-check=@var{error}
284 These options control if the assembler should check SSE instructions.
285 @option{-msse-check=@var{none}} will make the assembler not to check SSE
286 instructions,  which is the default.  @option{-msse-check=@var{warning}}
287 will make the assembler issue a warning for any SSE instruction.
288 @option{-msse-check=@var{error}} will make the assembler issue an error
289 for any SSE instruction.
290
291 @cindex @samp{-mavxscalar=} option, i386
292 @cindex @samp{-mavxscalar=} option, x86-64
293 @item -mavxscalar=@var{128}
294 @itemx -mavxscalar=@var{256}
295 These options control how the assembler should encode scalar AVX
296 instructions.  @option{-mavxscalar=@var{128}} will encode scalar
297 AVX instructions with 128bit vector length, which is the default.
298 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299 with 256bit vector length.
300
301 @cindex @samp{-mvexwig=} option, i386
302 @cindex @samp{-mvexwig=} option, x86-64
303 @item -mvexwig=@var{0}
304 @itemx -mvexwig=@var{1}
305 These options control how the assembler should encode VEX.W-ignored (WIG)
306 VEX instructions.  @option{-mvexwig=@var{0}} will encode WIG VEX
307 instructions with vex.w = 0, which is the default.
308 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
309 vex.w = 1.
310
311 @cindex @samp{-mevexlig=} option, i386
312 @cindex @samp{-mevexlig=} option, x86-64
313 @item -mevexlig=@var{128}
314 @itemx -mevexlig=@var{256}
315 @itemx -mevexlig=@var{512}
316 These options control how the assembler should encode length-ignored
317 (LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
318 EVEX instructions with 128bit vector length, which is the default.
319 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
320 encode LIG EVEX instructions with 256bit and 512bit vector length,
321 respectively.
322
323 @cindex @samp{-mevexwig=} option, i386
324 @cindex @samp{-mevexwig=} option, x86-64
325 @item -mevexwig=@var{0}
326 @itemx -mevexwig=@var{1}
327 These options control how the assembler should encode w-ignored (WIG)
328 EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
329 EVEX instructions with evex.w = 0, which is the default.
330 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
331 evex.w = 1.
332
333 @cindex @samp{-mmnemonic=} option, i386
334 @cindex @samp{-mmnemonic=} option, x86-64
335 @item -mmnemonic=@var{att}
336 @itemx -mmnemonic=@var{intel}
337 This option specifies instruction mnemonic for matching instructions.
338 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
339 take precedent.
340
341 @cindex @samp{-msyntax=} option, i386
342 @cindex @samp{-msyntax=} option, x86-64
343 @item -msyntax=@var{att}
344 @itemx -msyntax=@var{intel}
345 This option specifies instruction syntax when processing instructions.
346 The @code{.att_syntax} and @code{.intel_syntax} directives will
347 take precedent.
348
349 @cindex @samp{-mnaked-reg} option, i386
350 @cindex @samp{-mnaked-reg} option, x86-64
351 @item -mnaked-reg
352 This option specifies that registers don't require a @samp{%} prefix.
353 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
354
355 @cindex @samp{-madd-bnd-prefix} option, i386
356 @cindex @samp{-madd-bnd-prefix} option, x86-64
357 @item -madd-bnd-prefix
358 This option forces the assembler to add BND prefix to all branches, even
359 if such prefix was not explicitly specified in the source code.
360
361 @cindex @samp{-mshared} option, i386
362 @cindex @samp{-mshared} option, x86-64
363 @item -mno-shared
364 On ELF target, the assembler normally optimizes out non-PLT relocations
365 against defined non-weak global branch targets with default visibility.
366 The @samp{-mshared} option tells the assembler to generate code which
367 may go into a shared library where all non-weak global branch targets
368 with default visibility can be preempted.  The resulting code is
369 slightly bigger.  This option only affects the handling of branch
370 instructions.
371
372 @cindex @samp{-mbig-obj} option, x86-64
373 @item -mbig-obj
374 On x86-64 PE/COFF target this option forces the use of big object file
375 format, which allows more than 32768 sections.
376
377 @cindex @samp{-momit-lock-prefix=} option, i386
378 @cindex @samp{-momit-lock-prefix=} option, x86-64
379 @item -momit-lock-prefix=@var{no}
380 @itemx -momit-lock-prefix=@var{yes}
381 These options control how the assembler should encode lock prefix.
382 This option is intended as a workaround for processors, that fail on
383 lock prefix. This option can only be safely used with single-core,
384 single-thread computers
385 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
386 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
387 which is the default.
388
389 @cindex @samp{-mfence-as-lock-add=} option, i386
390 @cindex @samp{-mfence-as-lock-add=} option, x86-64
391 @item -mfence-as-lock-add=@var{no}
392 @itemx -mfence-as-lock-add=@var{yes}
393 These options control how the assembler should encode lfence, mfence and
394 sfence.
395 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
396 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
397 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
398 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
399 sfence as usual, which is the default.
400
401 @cindex @samp{-mrelax-relocations=} option, i386
402 @cindex @samp{-mrelax-relocations=} option, x86-64
403 @item -mrelax-relocations=@var{no}
404 @itemx -mrelax-relocations=@var{yes}
405 These options control whether the assembler should generate relax
406 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
407 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
408 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
409 @option{-mrelax-relocations=@var{no}} will not generate relax
410 relocations.  The default can be controlled by a configure option
411 @option{--enable-x86-relax-relocations}.
412
413 @cindex @samp{-mx86-used-note=} option, i386
414 @cindex @samp{-mx86-used-note=} option, x86-64
415 @item -mx86-used-note=@var{no}
416 @itemx -mx86-used-note=@var{yes}
417 These options control whether the assembler should generate
418 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
419 GNU property notes.  The default can be controlled by the
420 @option{--enable-x86-used-note} configure option.
421
422 @cindex @samp{-mevexrcig=} option, i386
423 @cindex @samp{-mevexrcig=} option, x86-64
424 @item -mevexrcig=@var{rne}
425 @itemx -mevexrcig=@var{rd}
426 @itemx -mevexrcig=@var{ru}
427 @itemx -mevexrcig=@var{rz}
428 These options control how the assembler should encode SAE-only
429 EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
430 of EVEX instruction with 00, which is the default.
431 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
432 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
433 with 01, 10 and 11 RC bits, respectively.
434
435 @cindex @samp{-mamd64} option, x86-64
436 @cindex @samp{-mintel64} option, x86-64
437 @item -mamd64
438 @itemx -mintel64
439 This option specifies that the assembler should accept only AMD64 or
440 Intel64 ISA in 64-bit mode.  The default is to accept both.
441
442 @cindex @samp{-O0} option, i386
443 @cindex @samp{-O0} option, x86-64
444 @cindex @samp{-O} option, i386
445 @cindex @samp{-O} option, x86-64
446 @cindex @samp{-O1} option, i386
447 @cindex @samp{-O1} option, x86-64
448 @cindex @samp{-O2} option, i386
449 @cindex @samp{-O2} option, x86-64
450 @cindex @samp{-Os} option, i386
451 @cindex @samp{-Os} option, x86-64
452 @item -O0 | -O | -O1 | -O2 | -Os
453 Optimize instruction encoding with smaller instruction size.  @samp{-O}
454 and @samp{-O1} encode 64-bit register load instructions with 64-bit
455 immediate as 32-bit register load instructions with 31-bit or 32-bits
456 immediates, encode 64-bit register clearing instructions with 32-bit
457 register clearing instructions and encode 256-bit/512-bit VEX/EVEX
458 vector register clearing instructions with 128-bit VEX vector register
459 clearing instructions as well as encode 128-bit/256-bit EVEX vector
460 register load/store instructions with VEX vector register load/store
461 instructions.  @samp{-O2} includes @samp{-O1} optimization plus
462 encodes 256-bit/512-bit EVEX vector register clearing instructions with
463 128-bit EVEX vector register clearing instructions.
464 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
465 and 64-bit register tests with immediate as 8-bit register test with
466 immediate.  @samp{-O0} turns off this optimization.
467
468 @end table
469 @c man end
470
471 @node i386-Directives
472 @section x86 specific Directives
473
474 @cindex machine directives, x86
475 @cindex x86 machine directives
476 @table @code
477
478 @cindex @code{lcomm} directive, COFF
479 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
480 Reserve @var{length} (an absolute expression) bytes for a local common
481 denoted by @var{symbol}.  The section and value of @var{symbol} are
482 those of the new local common.  The addresses are allocated in the bss
483 section, so that at run-time the bytes start off zeroed.  Since
484 @var{symbol} is not declared global, it is normally not visible to
485 @code{@value{LD}}.  The optional third parameter, @var{alignment},
486 specifies the desired alignment of the symbol in the bss section.
487
488 This directive is only available for COFF based x86 targets.
489
490 @cindex @code{largecomm} directive, ELF
491 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
492 This directive behaves in the same way as the @code{comm} directive
493 except that the data is placed into the @var{.lbss} section instead of
494 the @var{.bss} section @ref{Comm}.
495
496 The directive is intended to be used for data which requires a large
497 amount of space, and it is only available for ELF based x86_64
498 targets.
499
500 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
501
502 @end table
503
504 @node i386-Syntax
505 @section i386 Syntactical Considerations
506 @menu
507 * i386-Variations::           AT&T Syntax versus Intel Syntax
508 * i386-Chars::                Special Characters
509 @end menu
510
511 @node i386-Variations
512 @subsection AT&T Syntax versus Intel Syntax
513
514 @cindex i386 intel_syntax pseudo op
515 @cindex intel_syntax pseudo op, i386
516 @cindex i386 att_syntax pseudo op
517 @cindex att_syntax pseudo op, i386
518 @cindex i386 syntax compatibility
519 @cindex syntax compatibility, i386
520 @cindex x86-64 intel_syntax pseudo op
521 @cindex intel_syntax pseudo op, x86-64
522 @cindex x86-64 att_syntax pseudo op
523 @cindex att_syntax pseudo op, x86-64
524 @cindex x86-64 syntax compatibility
525 @cindex syntax compatibility, x86-64
526
527 @code{@value{AS}} now supports assembly using Intel assembler syntax.
528 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
529 back to the usual AT&T mode for compatibility with the output of
530 @code{@value{GCC}}.  Either of these directives may have an optional
531 argument, @code{prefix}, or @code{noprefix} specifying whether registers
532 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
533 different from Intel syntax.  We mention these differences because
534 almost all 80386 documents use Intel syntax.  Notable differences
535 between the two syntaxes are:
536
537 @cindex immediate operands, i386
538 @cindex i386 immediate operands
539 @cindex register operands, i386
540 @cindex i386 register operands
541 @cindex jump/call operands, i386
542 @cindex i386 jump/call operands
543 @cindex operand delimiters, i386
544
545 @cindex immediate operands, x86-64
546 @cindex x86-64 immediate operands
547 @cindex register operands, x86-64
548 @cindex x86-64 register operands
549 @cindex jump/call operands, x86-64
550 @cindex x86-64 jump/call operands
551 @cindex operand delimiters, x86-64
552 @itemize @bullet
553 @item
554 AT&T immediate operands are preceded by @samp{$}; Intel immediate
555 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
556 AT&T register operands are preceded by @samp{%}; Intel register operands
557 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
558 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
559
560 @cindex i386 source, destination operands
561 @cindex source, destination operands; i386
562 @cindex x86-64 source, destination operands
563 @cindex source, destination operands; x86-64
564 @item
565 AT&T and Intel syntax use the opposite order for source and destination
566 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
567 @samp{source, dest} convention is maintained for compatibility with
568 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
569 instructions with 2 immediate operands, such as the @samp{enter}
570 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
571
572 @cindex mnemonic suffixes, i386
573 @cindex sizes operands, i386
574 @cindex i386 size suffixes
575 @cindex mnemonic suffixes, x86-64
576 @cindex sizes operands, x86-64
577 @cindex x86-64 size suffixes
578 @item
579 In AT&T syntax the size of memory operands is determined from the last
580 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
581 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
582 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
583 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
584 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
585 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
586 syntax.
587
588 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
589 instruction with the 64-bit displacement or immediate operand.
590
591 @cindex return instructions, i386
592 @cindex i386 jump, call, return
593 @cindex return instructions, x86-64
594 @cindex x86-64 jump, call, return
595 @item
596 Immediate form long jumps and calls are
597 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
598 Intel syntax is
599 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
600 instruction
601 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
602 @samp{ret far @var{stack-adjust}}.
603
604 @cindex sections, i386
605 @cindex i386 sections
606 @cindex sections, x86-64
607 @cindex x86-64 sections
608 @item
609 The AT&T assembler does not provide support for multiple section
610 programs.  Unix style systems expect all programs to be single sections.
611 @end itemize
612
613 @node i386-Chars
614 @subsection Special Characters
615
616 @cindex line comment character, i386
617 @cindex i386 line comment character
618 The presence of a @samp{#} appearing anywhere on a line indicates the
619 start of a comment that extends to the end of that line.
620
621 If a @samp{#} appears as the first character of a line then the whole
622 line is treated as a comment, but in this case the line can also be a
623 logical line number directive (@pxref{Comments}) or a preprocessor
624 control command (@pxref{Preprocessing}).
625
626 If the @option{--divide} command-line option has not been specified
627 then the @samp{/} character appearing anywhere on a line also
628 introduces a line comment.
629
630 @cindex line separator, i386
631 @cindex statement separator, i386
632 @cindex i386 line separator
633 The @samp{;} character can be used to separate statements on the same
634 line.
635
636 @node i386-Mnemonics
637 @section i386-Mnemonics
638 @subsection Instruction Naming
639
640 @cindex i386 instruction naming
641 @cindex instruction naming, i386
642 @cindex x86-64 instruction naming
643 @cindex instruction naming, x86-64
644
645 Instruction mnemonics are suffixed with one character modifiers which
646 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
647 and @samp{q} specify byte, word, long and quadruple word operands.  If
648 no suffix is specified by an instruction then @code{@value{AS}} tries to
649 fill in the missing suffix based on the destination register operand
650 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
651 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
652 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
653 assembler which assumes that a missing mnemonic suffix implies long
654 operand size.  (This incompatibility does not affect compiler output
655 since compilers always explicitly specify the mnemonic suffix.)
656
657 Almost all instructions have the same names in AT&T and Intel format.
658 There are a few exceptions.  The sign extend and zero extend
659 instructions need two sizes to specify them.  They need a size to
660 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
661 is accomplished by using two instruction mnemonic suffixes in AT&T
662 syntax.  Base names for sign extend and zero extend are
663 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
664 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
665 are tacked on to this base name, the @emph{from} suffix before the
666 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
667 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
668 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
669 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
670 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
671 quadruple word).
672
673 @cindex encoding options, i386
674 @cindex encoding options, x86-64
675
676 Different encoding options can be specified via pseudo prefixes:
677
678 @itemize @bullet
679 @item
680 @samp{@{disp8@}} -- prefer 8-bit displacement.
681
682 @item
683 @samp{@{disp32@}} -- prefer 32-bit displacement.
684
685 @item
686 @samp{@{load@}} -- prefer load-form instruction.
687
688 @item
689 @samp{@{store@}} -- prefer store-form instruction.
690
691 @item
692 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
693
694 @item
695 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
696
697 @item
698 @samp{@{evex@}} --  encode with EVEX prefix.
699
700 @item
701 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
702 instructions (x86-64 only).  Note that this differs from the @samp{rex}
703 prefix which generates REX prefix unconditionally.
704
705 @item
706 @samp{@{nooptimize@}} -- disable instruction size optimization.
707 @end itemize
708
709 @cindex conversion instructions, i386
710 @cindex i386 conversion instructions
711 @cindex conversion instructions, x86-64
712 @cindex x86-64 conversion instructions
713 The Intel-syntax conversion instructions
714
715 @itemize @bullet
716 @item
717 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
718
719 @item
720 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
721
722 @item
723 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
724
725 @item
726 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
727
728 @item
729 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
730 (x86-64 only),
731
732 @item
733 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
734 @samp{%rdx:%rax} (x86-64 only),
735 @end itemize
736
737 @noindent
738 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
739 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
740 instructions.
741
742 @cindex jump instructions, i386
743 @cindex call instructions, i386
744 @cindex jump instructions, x86-64
745 @cindex call instructions, x86-64
746 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
747 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
748 convention.
749
750 @subsection AT&T Mnemonic versus Intel Mnemonic
751
752 @cindex i386 mnemonic compatibility
753 @cindex mnemonic compatibility, i386
754
755 @code{@value{AS}} supports assembly using Intel mnemonic.
756 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
757 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
758 syntax for compatibility with the output of @code{@value{GCC}}.
759 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
760 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
761 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
762 assembler with different mnemonics from those in Intel IA32 specification.
763 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
764
765 @node i386-Regs
766 @section Register Naming
767
768 @cindex i386 registers
769 @cindex registers, i386
770 @cindex x86-64 registers
771 @cindex registers, x86-64
772 Register operands are always prefixed with @samp{%}.  The 80386 registers
773 consist of
774
775 @itemize @bullet
776 @item
777 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
778 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
779 frame pointer), and @samp{%esp} (the stack pointer).
780
781 @item
782 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
783 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
784
785 @item
786 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
787 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
788 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
789 @samp{%cx}, and @samp{%dx})
790
791 @item
792 the 6 section registers @samp{%cs} (code section), @samp{%ds}
793 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
794 and @samp{%gs}.
795
796 @item
797 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
798 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
799
800 @item
801 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
802 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
803
804 @item
805 the 2 test registers @samp{%tr6} and @samp{%tr7}.
806
807 @item
808 the 8 floating point register stack @samp{%st} or equivalently
809 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
810 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
811 These registers are overloaded by 8 MMX registers @samp{%mm0},
812 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
813 @samp{%mm6} and @samp{%mm7}.
814
815 @item
816 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
817 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
818 @end itemize
819
820 The AMD x86-64 architecture extends the register set by:
821
822 @itemize @bullet
823 @item
824 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
825 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
826 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
827 pointer)
828
829 @item
830 the 8 extended registers @samp{%r8}--@samp{%r15}.
831
832 @item
833 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
834
835 @item
836 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
837
838 @item
839 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
840
841 @item
842 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
843
844 @item
845 the 8 debug registers: @samp{%db8}--@samp{%db15}.
846
847 @item
848 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
849 @end itemize
850
851 With the AVX extensions more registers were made available:
852
853 @itemize @bullet
854
855 @item
856 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
857 available in 32-bit mode).  The bottom 128 bits are overlaid with the
858 @samp{xmm0}--@samp{xmm15} registers.
859
860 @end itemize
861
862 The AVX2 extensions made in 64-bit mode more registers available:
863
864 @itemize @bullet
865
866 @item
867 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
868 registers @samp{%ymm16}--@samp{%ymm31}.
869
870 @end itemize
871
872 The AVX512 extensions added the following registers:
873
874 @itemize @bullet
875
876 @item
877 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
878 available in 32-bit mode).  The bottom 128 bits are overlaid with the
879 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
880 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
881
882 @item
883 the 8 mask registers @samp{%k0}--@samp{%k7}.
884
885 @end itemize
886
887 @node i386-Prefixes
888 @section Instruction Prefixes
889
890 @cindex i386 instruction prefixes
891 @cindex instruction prefixes, i386
892 @cindex prefixes, i386
893 Instruction prefixes are used to modify the following instruction.  They
894 are used to repeat string instructions, to provide section overrides, to
895 perform bus lock operations, and to change operand and address sizes.
896 (Most instructions that normally operate on 32-bit operands will use
897 16-bit operands if the instruction has an ``operand size'' prefix.)
898 Instruction prefixes are best written on the same line as the instruction
899 they act upon. For example, the @samp{scas} (scan string) instruction is
900 repeated with:
901
902 @smallexample
903         repne scas %es:(%edi),%al
904 @end smallexample
905
906 You may also place prefixes on the lines immediately preceding the
907 instruction, but this circumvents checks that @code{@value{AS}} does
908 with prefixes, and will not work with all prefixes.
909
910 Here is a list of instruction prefixes:
911
912 @cindex section override prefixes, i386
913 @itemize @bullet
914 @item
915 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
916 @samp{fs}, @samp{gs}.  These are automatically added by specifying
917 using the @var{section}:@var{memory-operand} form for memory references.
918
919 @cindex size prefixes, i386
920 @item
921 Operand/Address size prefixes @samp{data16} and @samp{addr16}
922 change 32-bit operands/addresses into 16-bit operands/addresses,
923 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
924 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
925 @emph{must} appear on the same line of code as the instruction they
926 modify. For example, in a 16-bit @code{.code16} section, you might
927 write:
928
929 @smallexample
930         addr32 jmpl *(%ebx)
931 @end smallexample
932
933 @cindex bus lock prefixes, i386
934 @cindex inhibiting interrupts, i386
935 @item
936 The bus lock prefix @samp{lock} inhibits interrupts during execution of
937 the instruction it precedes.  (This is only valid with certain
938 instructions; see a 80386 manual for details).
939
940 @cindex coprocessor wait, i386
941 @item
942 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
943 complete the current instruction.  This should never be needed for the
944 80386/80387 combination.
945
946 @cindex repeat prefixes, i386
947 @item
948 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
949 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
950 times if the current address size is 16-bits).
951 @cindex REX prefixes, i386
952 @item
953 The @samp{rex} family of prefixes is used by x86-64 to encode
954 extensions to i386 instruction set.  The @samp{rex} prefix has four
955 bits --- an operand size overwrite (@code{64}) used to change operand size
956 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
957 register set.
958
959 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
960 instruction emits @samp{rex} prefix with all the bits set.  By omitting
961 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
962 prefixes as well.  Normally, there is no need to write the prefixes
963 explicitly, since gas will automatically generate them based on the
964 instruction operands.
965 @end itemize
966
967 @node i386-Memory
968 @section Memory References
969
970 @cindex i386 memory references
971 @cindex memory references, i386
972 @cindex x86-64 memory references
973 @cindex memory references, x86-64
974 An Intel syntax indirect memory reference of the form
975
976 @smallexample
977 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
978 @end smallexample
979
980 @noindent
981 is translated into the AT&T syntax
982
983 @smallexample
984 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
985 @end smallexample
986
987 @noindent
988 where @var{base} and @var{index} are the optional 32-bit base and
989 index registers, @var{disp} is the optional displacement, and
990 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
991 to calculate the address of the operand.  If no @var{scale} is
992 specified, @var{scale} is taken to be 1.  @var{section} specifies the
993 optional section register for the memory operand, and may override the
994 default section register (see a 80386 manual for section register
995 defaults). Note that section overrides in AT&T syntax @emph{must}
996 be preceded by a @samp{%}.  If you specify a section override which
997 coincides with the default section register, @code{@value{AS}} does @emph{not}
998 output any section register override prefixes to assemble the given
999 instruction.  Thus, section overrides can be specified to emphasize which
1000 section register is used for a given memory operand.
1001
1002 Here are some examples of Intel and AT&T style memory references:
1003
1004 @table @asis
1005 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
1006 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1007 missing, and the default section is used (@samp{%ss} for addressing with
1008 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
1009
1010 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1011 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1012 @samp{foo}.  All other fields are missing.  The section register here
1013 defaults to @samp{%ds}.
1014
1015 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1016 This uses the value pointed to by @samp{foo} as a memory operand.
1017 Note that @var{base} and @var{index} are both missing, but there is only
1018 @emph{one} @samp{,}.  This is a syntactic exception.
1019
1020 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1021 This selects the contents of the variable @samp{foo} with section
1022 register @var{section} being @samp{%gs}.
1023 @end table
1024
1025 Absolute (as opposed to PC relative) call and jump operands must be
1026 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
1027 always chooses PC relative addressing for jump/call labels.
1028
1029 Any instruction that has a memory operand, but no register operand,
1030 @emph{must} specify its size (byte, word, long, or quadruple) with an
1031 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1032 respectively).
1033
1034 The x86-64 architecture adds an RIP (instruction pointer relative)
1035 addressing.  This addressing mode is specified by using @samp{rip} as a
1036 base register.  Only constant offsets are valid. For example:
1037
1038 @table @asis
1039 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1040 Points to the address 1234 bytes past the end of the current
1041 instruction.
1042
1043 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1044 Points to the @code{symbol} in RIP relative way, this is shorter than
1045 the default absolute addressing.
1046 @end table
1047
1048 Other addressing modes remain unchanged in x86-64 architecture, except
1049 registers used are 64-bit instead of 32-bit.
1050
1051 @node i386-Jumps
1052 @section Handling of Jump Instructions
1053
1054 @cindex jump optimization, i386
1055 @cindex i386 jump optimization
1056 @cindex jump optimization, x86-64
1057 @cindex x86-64 jump optimization
1058 Jump instructions are always optimized to use the smallest possible
1059 displacements.  This is accomplished by using byte (8-bit) displacement
1060 jumps whenever the target is sufficiently close.  If a byte displacement
1061 is insufficient a long displacement is used.  We do not support
1062 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1063 instruction with the @samp{data16} instruction prefix), since the 80386
1064 insists upon masking @samp{%eip} to 16 bits after the word displacement
1065 is added. (See also @pxref{i386-Arch})
1066
1067 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1068 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1069 displacements, so that if you use these instructions (@code{@value{GCC}} does
1070 not use them) you may get an error message (and incorrect code).  The AT&T
1071 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1072 to
1073
1074 @smallexample
1075          jcxz cx_zero
1076          jmp cx_nonzero
1077 cx_zero: jmp foo
1078 cx_nonzero:
1079 @end smallexample
1080
1081 @node i386-Float
1082 @section Floating Point
1083
1084 @cindex i386 floating point
1085 @cindex floating point, i386
1086 @cindex x86-64 floating point
1087 @cindex floating point, x86-64
1088 All 80387 floating point types except packed BCD are supported.
1089 (BCD support may be added without much difficulty).  These data
1090 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1091 double (64-bit), and extended (80-bit) precision floating point.
1092 Each supported type has an instruction mnemonic suffix and a constructor
1093 associated with it.  Instruction mnemonic suffixes specify the operand's
1094 data type.  Constructors build these data types into memory.
1095
1096 @cindex @code{float} directive, i386
1097 @cindex @code{single} directive, i386
1098 @cindex @code{double} directive, i386
1099 @cindex @code{tfloat} directive, i386
1100 @cindex @code{float} directive, x86-64
1101 @cindex @code{single} directive, x86-64
1102 @cindex @code{double} directive, x86-64
1103 @cindex @code{tfloat} directive, x86-64
1104 @itemize @bullet
1105 @item
1106 Floating point constructors are @samp{.float} or @samp{.single},
1107 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1108 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1109 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
1110 only supports this format via the @samp{fldt} (load 80-bit real to stack
1111 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1112
1113 @cindex @code{word} directive, i386
1114 @cindex @code{long} directive, i386
1115 @cindex @code{int} directive, i386
1116 @cindex @code{quad} directive, i386
1117 @cindex @code{word} directive, x86-64
1118 @cindex @code{long} directive, x86-64
1119 @cindex @code{int} directive, x86-64
1120 @cindex @code{quad} directive, x86-64
1121 @item
1122 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1123 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1124 corresponding instruction mnemonic suffixes are @samp{s} (single),
1125 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1126 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1127 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1128 stack) instructions.
1129 @end itemize
1130
1131 Register to register operations should not use instruction mnemonic suffixes.
1132 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1133 wrote @samp{fst %st, %st(1)}, since all register to register operations
1134 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1135 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1136 then stores the result in the 4 byte location @samp{mem})
1137
1138 @node i386-SIMD
1139 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1140
1141 @cindex MMX, i386
1142 @cindex 3DNow!, i386
1143 @cindex SIMD, i386
1144 @cindex MMX, x86-64
1145 @cindex 3DNow!, x86-64
1146 @cindex SIMD, x86-64
1147
1148 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1149 instructions for integer data), available on Intel's Pentium MMX
1150 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1151 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1152 instruction set (SIMD instructions for 32-bit floating point data)
1153 available on AMD's K6-2 processor and possibly others in the future.
1154
1155 Currently, @code{@value{AS}} does not support Intel's floating point
1156 SIMD, Katmai (KNI).
1157
1158 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1159 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
1160 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1161 floating point values.  The MMX registers cannot be used at the same time
1162 as the floating point stack.
1163
1164 See Intel and AMD documentation, keeping in mind that the operand order in
1165 instructions is reversed from the Intel syntax.
1166
1167 @node i386-LWP
1168 @section AMD's Lightweight Profiling Instructions
1169
1170 @cindex LWP, i386
1171 @cindex LWP, x86-64
1172
1173 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1174 instruction set, available on AMD's Family 15h (Orochi) processors.
1175
1176 LWP enables applications to collect and manage performance data, and
1177 react to performance events.  The collection of performance data
1178 requires no context switches.  LWP runs in the context of a thread and
1179 so several counters can be used independently across multiple threads.
1180 LWP can be used in both 64-bit and legacy 32-bit modes.
1181
1182 For detailed information on the LWP instruction set, see the
1183 @cite{AMD Lightweight Profiling Specification} available at
1184 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1185
1186 @node i386-BMI
1187 @section Bit Manipulation Instructions
1188
1189 @cindex BMI, i386
1190 @cindex BMI, x86-64
1191
1192 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1193
1194 BMI instructions provide several instructions implementing individual
1195 bit manipulation operations such as isolation, masking, setting, or
1196 resetting.
1197
1198 @c Need to add a specification citation here when available.
1199
1200 @node i386-TBM
1201 @section AMD's Trailing Bit Manipulation Instructions
1202
1203 @cindex TBM, i386
1204 @cindex TBM, x86-64
1205
1206 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1207 instruction set, available on AMD's BDVER2 processors (Trinity and
1208 Viperfish).
1209
1210 TBM instructions provide instructions implementing individual bit
1211 manipulation operations such as isolating, masking, setting, resetting,
1212 complementing, and operations on trailing zeros and ones.
1213
1214 @c Need to add a specification citation here when available.
1215
1216 @node i386-16bit
1217 @section Writing 16-bit Code
1218
1219 @cindex i386 16-bit code
1220 @cindex 16-bit code, i386
1221 @cindex real-mode code, i386
1222 @cindex @code{code16gcc} directive, i386
1223 @cindex @code{code16} directive, i386
1224 @cindex @code{code32} directive, i386
1225 @cindex @code{code64} directive, i386
1226 @cindex @code{code64} directive, x86-64
1227 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1228 or 64-bit x86-64 code depending on the default configuration,
1229 it also supports writing code to run in real mode or in 16-bit protected
1230 mode code segments.  To do this, put a @samp{.code16} or
1231 @samp{.code16gcc} directive before the assembly language instructions to
1232 be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
1233 32-bit code with the @samp{.code32} directive or 64-bit code with the
1234 @samp{.code64} directive.
1235
1236 @samp{.code16gcc} provides experimental support for generating 16-bit
1237 code from gcc, and differs from @samp{.code16} in that @samp{call},
1238 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1239 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1240 default to 32-bit size.  This is so that the stack pointer is
1241 manipulated in the same way over function calls, allowing access to
1242 function parameters at the same stack offsets as in 32-bit mode.
1243 @samp{.code16gcc} also automatically adds address size prefixes where
1244 necessary to use the 32-bit addressing modes that gcc generates.
1245
1246 The code which @code{@value{AS}} generates in 16-bit mode will not
1247 necessarily run on a 16-bit pre-80386 processor.  To write code that
1248 runs on such a processor, you must refrain from using @emph{any} 32-bit
1249 constructs which require @code{@value{AS}} to output address or operand
1250 size prefixes.
1251
1252 Note that writing 16-bit code instructions by explicitly specifying a
1253 prefix or an instruction mnemonic suffix within a 32-bit code section
1254 generates different machine instructions than those generated for a
1255 16-bit code segment.  In a 32-bit code section, the following code
1256 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1257 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1258
1259 @smallexample
1260         pushw $4
1261 @end smallexample
1262
1263 The same code in a 16-bit code section would generate the machine
1264 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1265 is correct since the processor default operand size is assumed to be 16
1266 bits in a 16-bit code section.
1267
1268 @node i386-Arch
1269 @section Specifying CPU Architecture
1270
1271 @cindex arch directive, i386
1272 @cindex i386 arch directive
1273 @cindex arch directive, x86-64
1274 @cindex x86-64 arch directive
1275
1276 @code{@value{AS}} may be told to assemble for a particular CPU
1277 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1278 directive enables a warning when gas detects an instruction that is not
1279 supported on the CPU specified.  The choices for @var{cpu_type} are:
1280
1281 @multitable @columnfractions .20 .20 .20 .20
1282 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1283 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1284 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1285 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1286 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1287 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1288 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1289 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1290 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1291 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1292 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1293 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1294 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1295 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1296 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1297 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1298 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1299 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1300 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1301 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1302 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1303 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1304 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1305 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1306 @item @samp{.avx512_bitalg}
1307 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1308 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1309 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1310 @item @samp{.movdiri} @tab @samp{.movdir64b}
1311 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1312 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1313 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1314 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1315 @end multitable
1316
1317 Apart from the warning, there are only two other effects on
1318 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1319 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1320 will automatically use a two byte opcode sequence.  The larger three
1321 byte opcode sequence is used on the 486 (and when no architecture is
1322 specified) because it executes faster on the 486.  Note that you can
1323 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1324 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1325 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1326 conditional jumps will be promoted when necessary to a two instruction
1327 sequence consisting of a conditional jump of the opposite sense around
1328 an unconditional jump to the target.
1329
1330 Following the CPU architecture (but not a sub-architecture, which are those
1331 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1332 control automatic promotion of conditional jumps. @samp{jumps} is the
1333 default, and enables jump promotion;  All external jumps will be of the long
1334 variety, and file-local jumps will be promoted as necessary.
1335 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1336 byte offset jumps, and warns about file-local conditional jumps that
1337 @code{@value{AS}} promotes.
1338 Unconditional jumps are treated as for @samp{jumps}.
1339
1340 For example
1341
1342 @smallexample
1343  .arch i8086,nojumps
1344 @end smallexample
1345
1346 @node i386-Bugs
1347 @section AT&T Syntax bugs
1348
1349 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1350 assemblers, generate floating point instructions with reversed source
1351 and destination registers in certain cases.  Unfortunately, gcc and
1352 possibly many other programs use this reversed syntax, so we're stuck
1353 with it.
1354
1355 For example
1356
1357 @smallexample
1358         fsub %st,%st(3)
1359 @end smallexample
1360 @noindent
1361 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1362 than the expected @samp{%st(3) - %st}.  This happens with all the
1363 non-commutative arithmetic floating point operations with two register
1364 operands where the source register is @samp{%st} and the destination
1365 register is @samp{%st(i)}.
1366
1367 @node i386-Notes
1368 @section Notes
1369
1370 @cindex i386 @code{mul}, @code{imul} instructions
1371 @cindex @code{mul} instruction, i386
1372 @cindex @code{imul} instruction, i386
1373 @cindex @code{mul} instruction, x86-64
1374 @cindex @code{imul} instruction, x86-64
1375 There is some trickery concerning the @samp{mul} and @samp{imul}
1376 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1377 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1378 for @samp{imul}) can be output only in the one operand form.  Thus,
1379 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1380 the expanding multiply would clobber the @samp{%edx} register, and this
1381 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
1382 64-bit product in @samp{%edx:%eax}.
1383
1384 We have added a two operand form of @samp{imul} when the first operand
1385 is an immediate mode expression and the second operand is a register.
1386 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1387 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1388 $69, %eax, %eax}.
1389