1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug = -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr = FALSE;
86 int mips_flag_pdr = TRUE;
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
99 #define PIC_CALL_REG 25
107 #define ILLEGAL_REG (32)
109 #define AT mips_opts.at
111 extern int target_big_endian;
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
116 /* Ways in which an instruction can be "appended" to the output. */
118 /* Just add it normally. */
121 /* Add it normally and then add a nop. */
124 /* Turn an instruction with a delay slot into a "compact" version. */
127 /* Insert the instruction before the last one. */
131 /* Information about an instruction, including its format, operands
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
142 unsigned long insn_opcode;
144 /* The frag that contains the instruction. */
147 /* The offset into FRAG of the first instruction byte. */
150 /* The relocs associated with the instruction, if any. */
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
165 /* True if this instruction is cleared from history by unconditional
167 unsigned int cleared_p : 1;
170 /* The ABI to use. */
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
187 /* Whether or not we have code which can be put into a shared
189 static bfd_boolean mips_in_shared = TRUE;
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
195 struct mips_set_options
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
250 /* True if ".set sym32" is in effect. */
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
262 /* 1 if single-precision operations on odd-numbered registers are
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
280 static struct mips_set_options file_mips_opts =
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
289 /* This is similar to file_mips_opts, but for the current set of options. */
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
339 /* The argument of the -mtune= flag. The architecture for which we
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
353 || (ABI) == N64_ABI \
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
611 /* MIPS PIC level. */
613 enum mips_pic_level mips_pic;
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
619 /* 1 if trap instructions should used for overflow rather than break
621 static int mips_trap = 0;
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
631 /* Non-zero if any .set noreorder directives were used. */
633 static int mips_any_noreorder;
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
689 /* Chars that mean this number is a floating point constant */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
707 /* Information about an error that was found while assembling the current
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
737 static int auto_align = 1;
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
743 static offsetT mips_cprestore_offset = -1;
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
772 static int mips_optimize = 2;
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
784 /* The maximum number of NOPs needed for any purpose. */
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
827 static fragS *prev_nop_frag;
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
832 /* The number of nop instructions that we know we need in
834 static int prev_nop_frag_required;
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
853 struct mips_hi_fixup *next;
856 /* The section this fixup is in. */
860 /* The list of unmatched HI relocs. */
862 static struct mips_hi_fixup *mips_hi_fixup_list;
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
867 static fragS *prev_reloc_op_frag;
869 /* Map mips16 register numbers to normal MIPS register numbers. */
871 static const unsigned int mips16_to_32_reg_map[] =
873 16, 17, 2, 3, 4, 5, 6, 7
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
883 5, 5, 6, 4, 4, 4, 4, 4
885 static const unsigned int micromips_to_32_reg_h_map2[] =
887 6, 7, 7, 21, 22, 5, 6, 7
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
893 0, 17, 2, 3, 16, 18, 19, 20
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
908 NUM_FIX_VR4120_CLASSES
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
945 static int mips_relax_branch;
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
971 Set if it has been decided that we should use the second
972 sequence instead of the first.
975 Set in the first variant frag if the macro's second implementation
976 is longer than its first. This refers to the macro as a whole,
977 not an individual relaxation.
980 Set in the first variant frag if the macro appeared in a .set nomacro
981 block and if one alternative requires a warning but the other does not.
984 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
987 RELAX_DELAY_SLOT_16BIT
988 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
991 RELAX_DELAY_SLOT_SIZE_FIRST
992 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
993 the macro is of the wrong size for the branch delay slot.
995 RELAX_DELAY_SLOT_SIZE_SECOND
996 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
997 the macro is of the wrong size for the branch delay slot.
999 The frag's "opcode" points to the first fixup for relaxable code.
1001 Relaxable macros are generated using a sequence such as:
1003 relax_start (SYMBOL);
1004 ... generate first expansion ...
1006 ... generate second expansion ...
1009 The code and fixups for the unwanted alternative are discarded
1010 by md_convert_frag. */
1011 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1013 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1014 #define RELAX_SECOND(X) ((X) & 0xff)
1015 #define RELAX_USE_SECOND 0x10000
1016 #define RELAX_SECOND_LONGER 0x20000
1017 #define RELAX_NOMACRO 0x40000
1018 #define RELAX_DELAY_SLOT 0x80000
1019 #define RELAX_DELAY_SLOT_16BIT 0x100000
1020 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1021 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1023 /* Branch without likely bit. If label is out of range, we turn:
1025 beq reg1, reg2, label
1035 with the following opcode replacements:
1042 bltzal <-> bgezal (with jal label instead of j label)
1044 Even though keeping the delay slot instruction in the delay slot of
1045 the branch would be more efficient, it would be very tricky to do
1046 correctly, because we'd have to introduce a variable frag *after*
1047 the delay slot instruction, and expand that instead. Let's do it
1048 the easy way for now, even if the branch-not-taken case now costs
1049 one additional instruction. Out-of-range branches are not supposed
1050 to be common, anyway.
1052 Branch likely. If label is out of range, we turn:
1054 beql reg1, reg2, label
1055 delay slot (annulled if branch not taken)
1064 delay slot (executed only if branch taken)
1067 It would be possible to generate a shorter sequence by losing the
1068 likely bit, generating something like:
1073 delay slot (executed only if branch taken)
1085 bltzall -> bgezal (with jal label instead of j label)
1086 bgezall -> bltzal (ditto)
1089 but it's not clear that it would actually improve performance. */
1090 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1091 ((relax_substateT) \
1094 | ((toofar) ? 0x20 : 0) \
1095 | ((link) ? 0x40 : 0) \
1096 | ((likely) ? 0x80 : 0) \
1097 | ((uncond) ? 0x100 : 0)))
1098 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1099 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1100 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1101 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1102 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1103 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1105 /* For mips16 code, we use an entirely different form of relaxation.
1106 mips16 supports two versions of most instructions which take
1107 immediate values: a small one which takes some small value, and a
1108 larger one which takes a 16 bit value. Since branches also follow
1109 this pattern, relaxing these values is required.
1111 We can assemble both mips16 and normal MIPS code in a single
1112 object. Therefore, we need to support this type of relaxation at
1113 the same time that we support the relaxation described above. We
1114 use the high bit of the subtype field to distinguish these cases.
1116 The information we store for this type of relaxation is the
1117 argument code found in the opcode file for this relocation, whether
1118 the user explicitly requested a small or extended form, and whether
1119 the relocation is in a jump or jal delay slot. That tells us the
1120 size of the value, and how it should be stored. We also store
1121 whether the fragment is considered to be extended or not. We also
1122 store whether this is known to be a branch to a different section,
1123 whether we have tried to relax this frag yet, and whether we have
1124 ever extended a PC relative fragment because of a shift count. */
1125 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1128 | ((small) ? 0x100 : 0) \
1129 | ((ext) ? 0x200 : 0) \
1130 | ((dslot) ? 0x400 : 0) \
1131 | ((jal_dslot) ? 0x800 : 0))
1132 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1133 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1134 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1135 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1136 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1137 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1138 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1139 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1140 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1141 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1142 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1143 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1145 /* For microMIPS code, we use relaxation similar to one we use for
1146 MIPS16 code. Some instructions that take immediate values support
1147 two encodings: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. As some branches also follow
1149 this pattern, relaxing these values is required.
1151 We can assemble both microMIPS and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use one of the high bits of the subtype field to distinguish these
1157 The information we store for this type of relaxation is the argument
1158 code found in the opcode file for this relocation, the register
1159 selected as the assembler temporary, whether in the 32-bit
1160 instruction mode, whether the branch is unconditional, whether it is
1161 compact, whether there is no delay-slot instruction available to fill
1162 in, whether it stores the link address implicitly in $ra, whether
1163 relaxation of out-of-range 32-bit branches to a sequence of
1164 instructions is enabled, and whether the displacement of a branch is
1165 too large to fit as an immediate argument of a 16-bit and a 32-bit
1166 branch, respectively. */
1167 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1168 uncond, compact, link, nods, \
1169 relax32, toofar16, toofar32) \
1172 | (((at) & 0x1f) << 8) \
1173 | ((insn32) ? 0x2000 : 0) \
1174 | ((uncond) ? 0x4000 : 0) \
1175 | ((compact) ? 0x8000 : 0) \
1176 | ((link) ? 0x10000 : 0) \
1177 | ((nods) ? 0x20000 : 0) \
1178 | ((relax32) ? 0x40000 : 0) \
1179 | ((toofar16) ? 0x80000 : 0) \
1180 | ((toofar32) ? 0x100000 : 0))
1181 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1182 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1183 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1184 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1185 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1186 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1187 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1188 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1189 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1191 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1192 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1193 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1194 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1195 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1196 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1198 /* Sign-extend 16-bit value X. */
1199 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1201 /* Is the given value a sign-extended 32-bit value? */
1202 #define IS_SEXT_32BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1206 /* Is the given value a sign-extended 16-bit value? */
1207 #define IS_SEXT_16BIT_NUM(x) \
1208 (((x) &~ (offsetT) 0x7fff) == 0 \
1209 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1211 /* Is the given value a sign-extended 12-bit value? */
1212 #define IS_SEXT_12BIT_NUM(x) \
1213 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1215 /* Is the given value a sign-extended 9-bit value? */
1216 #define IS_SEXT_9BIT_NUM(x) \
1217 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1219 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1220 #define IS_ZEXT_32BIT_NUM(x) \
1221 (((x) &~ (offsetT) 0xffffffff) == 0 \
1222 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1224 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1226 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1227 (((STRUCT) >> (SHIFT)) & (MASK))
1229 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1230 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1232 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1233 : EXTRACT_BITS ((INSN).insn_opcode, \
1234 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1235 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1236 EXTRACT_BITS ((INSN).insn_opcode, \
1237 MIPS16OP_MASK_##FIELD, \
1238 MIPS16OP_SH_##FIELD)
1240 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1241 #define MIPS16_EXTEND (0xf000U << 16)
1243 /* Whether or not we are emitting a branch-likely macro. */
1244 static bfd_boolean emit_branch_likely_macro = FALSE;
1246 /* Global variables used when generating relaxable macros. See the
1247 comment above RELAX_ENCODE for more details about how relaxation
1250 /* 0 if we're not emitting a relaxable macro.
1251 1 if we're emitting the first of the two relaxation alternatives.
1252 2 if we're emitting the second alternative. */
1255 /* The first relaxable fixup in the current frag. (In other words,
1256 the first fixup that refers to relaxable code.) */
1259 /* sizes[0] says how many bytes of the first alternative are stored in
1260 the current frag. Likewise sizes[1] for the second alternative. */
1261 unsigned int sizes[2];
1263 /* The symbol on which the choice of sequence depends. */
1267 /* Global variables used to decide whether a macro needs a warning. */
1269 /* True if the macro is in a branch delay slot. */
1270 bfd_boolean delay_slot_p;
1272 /* Set to the length in bytes required if the macro is in a delay slot
1273 that requires a specific length of instruction, otherwise zero. */
1274 unsigned int delay_slot_length;
1276 /* For relaxable macros, sizes[0] is the length of the first alternative
1277 in bytes and sizes[1] is the length of the second alternative.
1278 For non-relaxable macros, both elements give the length of the
1280 unsigned int sizes[2];
1282 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1283 instruction of the first alternative in bytes and first_insn_sizes[1]
1284 is the length of the first instruction of the second alternative.
1285 For non-relaxable macros, both elements give the length of the first
1286 instruction in bytes.
1288 Set to zero if we haven't yet seen the first instruction. */
1289 unsigned int first_insn_sizes[2];
1291 /* For relaxable macros, insns[0] is the number of instructions for the
1292 first alternative and insns[1] is the number of instructions for the
1295 For non-relaxable macros, both elements give the number of
1296 instructions for the macro. */
1297 unsigned int insns[2];
1299 /* The first variant frag for this macro. */
1301 } mips_macro_warning;
1303 /* Prototypes for static functions. */
1305 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1307 static void append_insn
1308 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1309 bfd_boolean expansionp);
1310 static void mips_no_prev_insn (void);
1311 static void macro_build (expressionS *, const char *, const char *, ...);
1312 static void mips16_macro_build
1313 (expressionS *, const char *, const char *, va_list *);
1314 static void load_register (int, expressionS *, int);
1315 static void macro_start (void);
1316 static void macro_end (void);
1317 static void macro (struct mips_cl_insn *ip, char *str);
1318 static void mips16_macro (struct mips_cl_insn * ip);
1319 static void mips_ip (char *str, struct mips_cl_insn * ip);
1320 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1321 static void mips16_immed
1322 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1323 unsigned int, unsigned long *);
1324 static size_t my_getSmallExpression
1325 (expressionS *, bfd_reloc_code_real_type *, char *);
1326 static void my_getExpression (expressionS *, char *);
1327 static void s_align (int);
1328 static void s_change_sec (int);
1329 static void s_change_section (int);
1330 static void s_cons (int);
1331 static void s_float_cons (int);
1332 static void s_mips_globl (int);
1333 static void s_option (int);
1334 static void s_mipsset (int);
1335 static void s_abicalls (int);
1336 static void s_cpload (int);
1337 static void s_cpsetup (int);
1338 static void s_cplocal (int);
1339 static void s_cprestore (int);
1340 static void s_cpreturn (int);
1341 static void s_dtprelword (int);
1342 static void s_dtpreldword (int);
1343 static void s_tprelword (int);
1344 static void s_tpreldword (int);
1345 static void s_gpvalue (int);
1346 static void s_gpword (int);
1347 static void s_gpdword (int);
1348 static void s_ehword (int);
1349 static void s_cpadd (int);
1350 static void s_insn (int);
1351 static void s_nan (int);
1352 static void s_module (int);
1353 static void s_mips_ent (int);
1354 static void s_mips_end (int);
1355 static void s_mips_frame (int);
1356 static void s_mips_mask (int reg_type);
1357 static void s_mips_stab (int);
1358 static void s_mips_weakext (int);
1359 static void s_mips_file (int);
1360 static void s_mips_loc (int);
1361 static bfd_boolean pic_need_relax (symbolS *);
1362 static int relaxed_branch_length (fragS *, asection *, int);
1363 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1364 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1365 static void file_mips_check_options (void);
1367 /* Table and functions used to map between CPU/ISA names, and
1368 ISA levels, and CPU numbers. */
1370 struct mips_cpu_info
1372 const char *name; /* CPU or ISA name. */
1373 int flags; /* MIPS_CPU_* flags. */
1374 int ase; /* Set of ASEs implemented by the CPU. */
1375 int isa; /* ISA level. */
1376 int cpu; /* CPU number (default CPU if ISA). */
1379 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1381 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1382 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1383 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1385 /* Command-line options. */
1386 const char *md_shortopts = "O::g::G:";
1390 OPTION_MARCH = OPTION_MD_BASE,
1422 OPTION_NO_SMARTMIPS,
1432 OPTION_NO_MICROMIPS,
1435 OPTION_COMPAT_ARCH_BASE,
1444 OPTION_M7000_HILO_FIX,
1445 OPTION_MNO_7000_HILO_FIX,
1449 OPTION_NO_FIX_RM7000,
1450 OPTION_FIX_LOONGSON2F_JUMP,
1451 OPTION_NO_FIX_LOONGSON2F_JUMP,
1452 OPTION_FIX_LOONGSON2F_NOP,
1453 OPTION_NO_FIX_LOONGSON2F_NOP,
1455 OPTION_NO_FIX_VR4120,
1457 OPTION_NO_FIX_VR4130,
1458 OPTION_FIX_CN63XXP1,
1459 OPTION_NO_FIX_CN63XXP1,
1466 OPTION_CONSTRUCT_FLOATS,
1467 OPTION_NO_CONSTRUCT_FLOATS,
1471 OPTION_RELAX_BRANCH,
1472 OPTION_NO_RELAX_BRANCH,
1473 OPTION_IGNORE_BRANCH_ISA,
1474 OPTION_NO_IGNORE_BRANCH_ISA,
1483 OPTION_SINGLE_FLOAT,
1484 OPTION_DOUBLE_FLOAT,
1497 OPTION_MVXWORKS_PIC,
1500 OPTION_NO_ODD_SPREG,
1504 struct option md_longopts[] =
1506 /* Options which specify architecture. */
1507 {"march", required_argument, NULL, OPTION_MARCH},
1508 {"mtune", required_argument, NULL, OPTION_MTUNE},
1509 {"mips0", no_argument, NULL, OPTION_MIPS1},
1510 {"mips1", no_argument, NULL, OPTION_MIPS1},
1511 {"mips2", no_argument, NULL, OPTION_MIPS2},
1512 {"mips3", no_argument, NULL, OPTION_MIPS3},
1513 {"mips4", no_argument, NULL, OPTION_MIPS4},
1514 {"mips5", no_argument, NULL, OPTION_MIPS5},
1515 {"mips32", no_argument, NULL, OPTION_MIPS32},
1516 {"mips64", no_argument, NULL, OPTION_MIPS64},
1517 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1518 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1519 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1520 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1521 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1522 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1523 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1524 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1526 /* Options which specify Application Specific Extensions (ASEs). */
1527 {"mips16", no_argument, NULL, OPTION_MIPS16},
1528 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1529 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1530 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1531 {"mdmx", no_argument, NULL, OPTION_MDMX},
1532 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1533 {"mdsp", no_argument, NULL, OPTION_DSP},
1534 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1535 {"mmt", no_argument, NULL, OPTION_MT},
1536 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1537 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1538 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1539 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1540 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1541 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1542 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1543 {"meva", no_argument, NULL, OPTION_EVA},
1544 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1545 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1546 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1547 {"mmcu", no_argument, NULL, OPTION_MCU},
1548 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1549 {"mvirt", no_argument, NULL, OPTION_VIRT},
1550 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1551 {"mmsa", no_argument, NULL, OPTION_MSA},
1552 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1553 {"mxpa", no_argument, NULL, OPTION_XPA},
1554 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1556 /* Old-style architecture options. Don't add more of these. */
1557 {"m4650", no_argument, NULL, OPTION_M4650},
1558 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1559 {"m4010", no_argument, NULL, OPTION_M4010},
1560 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1561 {"m4100", no_argument, NULL, OPTION_M4100},
1562 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1563 {"m3900", no_argument, NULL, OPTION_M3900},
1564 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1566 /* Options which enable bug fixes. */
1567 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1568 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1569 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1570 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1571 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1572 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1573 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1574 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1575 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1576 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1577 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1578 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1579 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1580 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1581 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1582 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1583 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1585 /* Miscellaneous options. */
1586 {"trap", no_argument, NULL, OPTION_TRAP},
1587 {"no-break", no_argument, NULL, OPTION_TRAP},
1588 {"break", no_argument, NULL, OPTION_BREAK},
1589 {"no-trap", no_argument, NULL, OPTION_BREAK},
1590 {"EB", no_argument, NULL, OPTION_EB},
1591 {"EL", no_argument, NULL, OPTION_EL},
1592 {"mfp32", no_argument, NULL, OPTION_FP32},
1593 {"mgp32", no_argument, NULL, OPTION_GP32},
1594 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1595 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1596 {"mfp64", no_argument, NULL, OPTION_FP64},
1597 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1598 {"mgp64", no_argument, NULL, OPTION_GP64},
1599 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1600 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1601 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1602 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1603 {"minsn32", no_argument, NULL, OPTION_INSN32},
1604 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1605 {"mshared", no_argument, NULL, OPTION_MSHARED},
1606 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1607 {"msym32", no_argument, NULL, OPTION_MSYM32},
1608 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1609 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1610 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1611 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1612 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1613 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1614 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1616 /* Strictly speaking this next option is ELF specific,
1617 but we allow it for other ports as well in order to
1618 make testing easier. */
1619 {"32", no_argument, NULL, OPTION_32},
1621 /* ELF-specific options. */
1622 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1623 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1624 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1625 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1626 {"xgot", no_argument, NULL, OPTION_XGOT},
1627 {"mabi", required_argument, NULL, OPTION_MABI},
1628 {"n32", no_argument, NULL, OPTION_N32},
1629 {"64", no_argument, NULL, OPTION_64},
1630 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1631 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1632 {"mpdr", no_argument, NULL, OPTION_PDR},
1633 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1634 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1635 {"mnan", required_argument, NULL, OPTION_NAN},
1637 {NULL, no_argument, NULL, 0}
1639 size_t md_longopts_size = sizeof (md_longopts);
1641 /* Information about either an Application Specific Extension or an
1642 optional architecture feature that, for simplicity, we treat in the
1643 same way as an ASE. */
1646 /* The name of the ASE, used in both the command-line and .set options. */
1649 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1650 and 64-bit architectures, the flags here refer to the subset that
1651 is available on both. */
1654 /* The ASE_* flag used for instructions that are available on 64-bit
1655 architectures but that are not included in FLAGS. */
1656 unsigned int flags64;
1658 /* The command-line options that turn the ASE on and off. */
1662 /* The minimum required architecture revisions for MIPS32, MIPS64,
1663 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1666 int micromips32_rev;
1667 int micromips64_rev;
1669 /* The architecture where the ASE was removed or -1 if the extension has not
1674 /* A table of all supported ASEs. */
1675 static const struct mips_ase mips_ases[] = {
1676 { "dsp", ASE_DSP, ASE_DSP64,
1677 OPTION_DSP, OPTION_NO_DSP,
1681 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1682 OPTION_DSPR2, OPTION_NO_DSPR2,
1686 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1687 OPTION_DSPR3, OPTION_NO_DSPR3,
1691 { "eva", ASE_EVA, 0,
1692 OPTION_EVA, OPTION_NO_EVA,
1696 { "mcu", ASE_MCU, 0,
1697 OPTION_MCU, OPTION_NO_MCU,
1701 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1702 { "mdmx", ASE_MDMX, 0,
1703 OPTION_MDMX, OPTION_NO_MDMX,
1707 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1708 { "mips3d", ASE_MIPS3D, 0,
1709 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1714 OPTION_MT, OPTION_NO_MT,
1718 { "smartmips", ASE_SMARTMIPS, 0,
1719 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1723 { "virt", ASE_VIRT, ASE_VIRT64,
1724 OPTION_VIRT, OPTION_NO_VIRT,
1728 { "msa", ASE_MSA, ASE_MSA64,
1729 OPTION_MSA, OPTION_NO_MSA,
1733 { "xpa", ASE_XPA, 0,
1734 OPTION_XPA, OPTION_NO_XPA,
1739 /* The set of ASEs that require -mfp64. */
1740 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1742 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1743 static const unsigned int mips_ase_groups[] = {
1744 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1749 The following pseudo-ops from the Kane and Heinrich MIPS book
1750 should be defined here, but are currently unsupported: .alias,
1751 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1753 The following pseudo-ops from the Kane and Heinrich MIPS book are
1754 specific to the type of debugging information being generated, and
1755 should be defined by the object format: .aent, .begin, .bend,
1756 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1759 The following pseudo-ops from the Kane and Heinrich MIPS book are
1760 not MIPS CPU specific, but are also not specific to the object file
1761 format. This file is probably the best place to define them, but
1762 they are not currently supported: .asm0, .endr, .lab, .struct. */
1764 static const pseudo_typeS mips_pseudo_table[] =
1766 /* MIPS specific pseudo-ops. */
1767 {"option", s_option, 0},
1768 {"set", s_mipsset, 0},
1769 {"rdata", s_change_sec, 'r'},
1770 {"sdata", s_change_sec, 's'},
1771 {"livereg", s_ignore, 0},
1772 {"abicalls", s_abicalls, 0},
1773 {"cpload", s_cpload, 0},
1774 {"cpsetup", s_cpsetup, 0},
1775 {"cplocal", s_cplocal, 0},
1776 {"cprestore", s_cprestore, 0},
1777 {"cpreturn", s_cpreturn, 0},
1778 {"dtprelword", s_dtprelword, 0},
1779 {"dtpreldword", s_dtpreldword, 0},
1780 {"tprelword", s_tprelword, 0},
1781 {"tpreldword", s_tpreldword, 0},
1782 {"gpvalue", s_gpvalue, 0},
1783 {"gpword", s_gpword, 0},
1784 {"gpdword", s_gpdword, 0},
1785 {"ehword", s_ehword, 0},
1786 {"cpadd", s_cpadd, 0},
1787 {"insn", s_insn, 0},
1789 {"module", s_module, 0},
1791 /* Relatively generic pseudo-ops that happen to be used on MIPS
1793 {"asciiz", stringer, 8 + 1},
1794 {"bss", s_change_sec, 'b'},
1796 {"half", s_cons, 1},
1797 {"dword", s_cons, 3},
1798 {"weakext", s_mips_weakext, 0},
1799 {"origin", s_org, 0},
1800 {"repeat", s_rept, 0},
1802 /* For MIPS this is non-standard, but we define it for consistency. */
1803 {"sbss", s_change_sec, 'B'},
1805 /* These pseudo-ops are defined in read.c, but must be overridden
1806 here for one reason or another. */
1807 {"align", s_align, 0},
1808 {"byte", s_cons, 0},
1809 {"data", s_change_sec, 'd'},
1810 {"double", s_float_cons, 'd'},
1811 {"float", s_float_cons, 'f'},
1812 {"globl", s_mips_globl, 0},
1813 {"global", s_mips_globl, 0},
1814 {"hword", s_cons, 1},
1816 {"long", s_cons, 2},
1817 {"octa", s_cons, 4},
1818 {"quad", s_cons, 3},
1819 {"section", s_change_section, 0},
1820 {"short", s_cons, 1},
1821 {"single", s_float_cons, 'f'},
1822 {"stabd", s_mips_stab, 'd'},
1823 {"stabn", s_mips_stab, 'n'},
1824 {"stabs", s_mips_stab, 's'},
1825 {"text", s_change_sec, 't'},
1826 {"word", s_cons, 2},
1828 { "extern", ecoff_directive_extern, 0},
1833 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1835 /* These pseudo-ops should be defined by the object file format.
1836 However, a.out doesn't support them, so we have versions here. */
1837 {"aent", s_mips_ent, 1},
1838 {"bgnb", s_ignore, 0},
1839 {"end", s_mips_end, 0},
1840 {"endb", s_ignore, 0},
1841 {"ent", s_mips_ent, 0},
1842 {"file", s_mips_file, 0},
1843 {"fmask", s_mips_mask, 'F'},
1844 {"frame", s_mips_frame, 0},
1845 {"loc", s_mips_loc, 0},
1846 {"mask", s_mips_mask, 'R'},
1847 {"verstamp", s_ignore, 0},
1851 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1852 purpose of the `.dc.a' internal pseudo-op. */
1855 mips_address_bytes (void)
1857 file_mips_check_options ();
1858 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1861 extern void pop_insert (const pseudo_typeS *);
1864 mips_pop_insert (void)
1866 pop_insert (mips_pseudo_table);
1867 if (! ECOFF_DEBUGGING)
1868 pop_insert (mips_nonecoff_pseudo_table);
1871 /* Symbols labelling the current insn. */
1873 struct insn_label_list
1875 struct insn_label_list *next;
1879 static struct insn_label_list *free_insn_labels;
1880 #define label_list tc_segment_info_data.labels
1882 static void mips_clear_insn_labels (void);
1883 static void mips_mark_labels (void);
1884 static void mips_compressed_mark_labels (void);
1887 mips_clear_insn_labels (void)
1889 struct insn_label_list **pl;
1890 segment_info_type *si;
1894 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1897 si = seg_info (now_seg);
1898 *pl = si->label_list;
1899 si->label_list = NULL;
1903 /* Mark instruction labels in MIPS16/microMIPS mode. */
1906 mips_mark_labels (void)
1908 if (HAVE_CODE_COMPRESSION)
1909 mips_compressed_mark_labels ();
1912 static char *expr_end;
1914 /* An expression in a macro instruction. This is set by mips_ip and
1915 mips16_ip and when populated is always an O_constant. */
1917 static expressionS imm_expr;
1919 /* The relocatable field in an instruction and the relocs associated
1920 with it. These variables are used for instructions like LUI and
1921 JAL as well as true offsets. They are also used for address
1922 operands in macros. */
1924 static expressionS offset_expr;
1925 static bfd_reloc_code_real_type offset_reloc[3]
1926 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1928 /* This is set to the resulting size of the instruction to be produced
1929 by mips16_ip if an explicit extension is used or by mips_ip if an
1930 explicit size is supplied. */
1932 static unsigned int forced_insn_length;
1934 /* True if we are assembling an instruction. All dot symbols defined during
1935 this time should be treated as code labels. */
1937 static bfd_boolean mips_assembling_insn;
1939 /* The pdr segment for per procedure frame/regmask info. Not used for
1942 static segT pdr_seg;
1944 /* The default target format to use. */
1946 #if defined (TE_FreeBSD)
1947 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1948 #elif defined (TE_TMIPS)
1949 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1951 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1955 mips_target_format (void)
1957 switch (OUTPUT_FLAVOR)
1959 case bfd_target_elf_flavour:
1961 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1962 return (target_big_endian
1963 ? "elf32-bigmips-vxworks"
1964 : "elf32-littlemips-vxworks");
1966 return (target_big_endian
1967 ? (HAVE_64BIT_OBJECTS
1968 ? ELF_TARGET ("elf64-", "big")
1970 ? ELF_TARGET ("elf32-n", "big")
1971 : ELF_TARGET ("elf32-", "big")))
1972 : (HAVE_64BIT_OBJECTS
1973 ? ELF_TARGET ("elf64-", "little")
1975 ? ELF_TARGET ("elf32-n", "little")
1976 : ELF_TARGET ("elf32-", "little"))));
1983 /* Return the ISA revision that is currently in use, or 0 if we are
1984 generating code for MIPS V or below. */
1989 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1992 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1995 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1998 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2001 /* microMIPS implies revision 2 or above. */
2002 if (mips_opts.micromips)
2005 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2011 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2014 mips_ase_mask (unsigned int flags)
2018 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2019 if (flags & mips_ase_groups[i])
2020 flags |= mips_ase_groups[i];
2024 /* Check whether the current ISA supports ASE. Issue a warning if
2028 mips_check_isa_supports_ase (const struct mips_ase *ase)
2032 static unsigned int warned_isa;
2033 static unsigned int warned_fp32;
2035 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2036 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2038 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2039 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2040 && (warned_isa & ase->flags) != ase->flags)
2042 warned_isa |= ase->flags;
2043 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2044 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2046 as_warn (_("the %d-bit %s architecture does not support the"
2047 " `%s' extension"), size, base, ase->name);
2049 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2050 ase->name, base, size, min_rev);
2052 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2053 && (warned_isa & ase->flags) != ase->flags)
2055 warned_isa |= ase->flags;
2056 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2057 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2058 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2059 ase->name, base, size, ase->rem_rev);
2062 if ((ase->flags & FP64_ASES)
2063 && mips_opts.fp != 64
2064 && (warned_fp32 & ase->flags) != ase->flags)
2066 warned_fp32 |= ase->flags;
2067 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2071 /* Check all enabled ASEs to see whether they are supported by the
2072 chosen architecture. */
2075 mips_check_isa_supports_ases (void)
2077 unsigned int i, mask;
2079 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2081 mask = mips_ase_mask (mips_ases[i].flags);
2082 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2083 mips_check_isa_supports_ase (&mips_ases[i]);
2087 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2088 that were affected. */
2091 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2092 bfd_boolean enabled_p)
2096 mask = mips_ase_mask (ase->flags);
2099 opts->ase |= ase->flags;
2103 /* Return the ASE called NAME, or null if none. */
2105 static const struct mips_ase *
2106 mips_lookup_ase (const char *name)
2110 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2111 if (strcmp (name, mips_ases[i].name) == 0)
2112 return &mips_ases[i];
2116 /* Return the length of a microMIPS instruction in bytes. If bits of
2117 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2118 otherwise it is a 32-bit instruction. */
2120 static inline unsigned int
2121 micromips_insn_length (const struct mips_opcode *mo)
2123 return mips_opcode_32bit_p (mo) ? 4 : 2;
2126 /* Return the length of MIPS16 instruction OPCODE. */
2128 static inline unsigned int
2129 mips16_opcode_length (unsigned long opcode)
2131 return (opcode >> 16) == 0 ? 2 : 4;
2134 /* Return the length of instruction INSN. */
2136 static inline unsigned int
2137 insn_length (const struct mips_cl_insn *insn)
2139 if (mips_opts.micromips)
2140 return micromips_insn_length (insn->insn_mo);
2141 else if (mips_opts.mips16)
2142 return mips16_opcode_length (insn->insn_opcode);
2147 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2150 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2155 insn->insn_opcode = mo->match;
2158 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2159 insn->fixp[i] = NULL;
2160 insn->fixed_p = (mips_opts.noreorder > 0);
2161 insn->noreorder_p = (mips_opts.noreorder > 0);
2162 insn->mips16_absolute_jump_p = 0;
2163 insn->complete_p = 0;
2164 insn->cleared_p = 0;
2167 /* Get a list of all the operands in INSN. */
2169 static const struct mips_operand_array *
2170 insn_operands (const struct mips_cl_insn *insn)
2172 if (insn->insn_mo >= &mips_opcodes[0]
2173 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2174 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2176 if (insn->insn_mo >= &mips16_opcodes[0]
2177 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2178 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2180 if (insn->insn_mo >= µmips_opcodes[0]
2181 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2182 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2187 /* Get a description of operand OPNO of INSN. */
2189 static const struct mips_operand *
2190 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2192 const struct mips_operand_array *operands;
2194 operands = insn_operands (insn);
2195 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2197 return operands->operand[opno];
2200 /* Install UVAL as the value of OPERAND in INSN. */
2203 insn_insert_operand (struct mips_cl_insn *insn,
2204 const struct mips_operand *operand, unsigned int uval)
2206 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2209 /* Extract the value of OPERAND from INSN. */
2211 static inline unsigned
2212 insn_extract_operand (const struct mips_cl_insn *insn,
2213 const struct mips_operand *operand)
2215 return mips_extract_operand (operand, insn->insn_opcode);
2218 /* Record the current MIPS16/microMIPS mode in now_seg. */
2221 mips_record_compressed_mode (void)
2223 segment_info_type *si;
2225 si = seg_info (now_seg);
2226 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2227 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2228 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2229 si->tc_segment_info_data.micromips = mips_opts.micromips;
2232 /* Read a standard MIPS instruction from BUF. */
2234 static unsigned long
2235 read_insn (char *buf)
2237 if (target_big_endian)
2238 return bfd_getb32 ((bfd_byte *) buf);
2240 return bfd_getl32 ((bfd_byte *) buf);
2243 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2247 write_insn (char *buf, unsigned int insn)
2249 md_number_to_chars (buf, insn, 4);
2253 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2254 has length LENGTH. */
2256 static unsigned long
2257 read_compressed_insn (char *buf, unsigned int length)
2263 for (i = 0; i < length; i += 2)
2266 if (target_big_endian)
2267 insn |= bfd_getb16 ((char *) buf);
2269 insn |= bfd_getl16 ((char *) buf);
2275 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2276 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2279 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2283 for (i = 0; i < length; i += 2)
2284 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2285 return buf + length;
2288 /* Install INSN at the location specified by its "frag" and "where" fields. */
2291 install_insn (const struct mips_cl_insn *insn)
2293 char *f = insn->frag->fr_literal + insn->where;
2294 if (HAVE_CODE_COMPRESSION)
2295 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2297 write_insn (f, insn->insn_opcode);
2298 mips_record_compressed_mode ();
2301 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2302 and install the opcode in the new location. */
2305 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2310 insn->where = where;
2311 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2312 if (insn->fixp[i] != NULL)
2314 insn->fixp[i]->fx_frag = frag;
2315 insn->fixp[i]->fx_where = where;
2317 install_insn (insn);
2320 /* Add INSN to the end of the output. */
2323 add_fixed_insn (struct mips_cl_insn *insn)
2325 char *f = frag_more (insn_length (insn));
2326 move_insn (insn, frag_now, f - frag_now->fr_literal);
2329 /* Start a variant frag and move INSN to the start of the variant part,
2330 marking it as fixed. The other arguments are as for frag_var. */
2333 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2334 relax_substateT subtype, symbolS *symbol, offsetT offset)
2336 frag_grow (max_chars);
2337 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2339 frag_var (rs_machine_dependent, max_chars, var,
2340 subtype, symbol, offset, NULL);
2343 /* Insert N copies of INSN into the history buffer, starting at
2344 position FIRST. Neither FIRST nor N need to be clipped. */
2347 insert_into_history (unsigned int first, unsigned int n,
2348 const struct mips_cl_insn *insn)
2350 if (mips_relax.sequence != 2)
2354 for (i = ARRAY_SIZE (history); i-- > first;)
2356 history[i] = history[i - n];
2362 /* Clear the error in insn_error. */
2365 clear_insn_error (void)
2367 memset (&insn_error, 0, sizeof (insn_error));
2370 /* Possibly record error message MSG for the current instruction.
2371 If the error is about a particular argument, ARGNUM is the 1-based
2372 number of that argument, otherwise it is 0. FORMAT is the format
2373 of MSG. Return true if MSG was used, false if the current message
2377 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2382 /* Give priority to errors against specific arguments, and to
2383 the first whole-instruction message. */
2389 /* Keep insn_error if it is against a later argument. */
2390 if (argnum < insn_error.min_argnum)
2393 /* If both errors are against the same argument but are different,
2394 give up on reporting a specific error for this argument.
2395 See the comment about mips_insn_error for details. */
2396 if (argnum == insn_error.min_argnum
2398 && strcmp (insn_error.msg, msg) != 0)
2401 insn_error.min_argnum += 1;
2405 insn_error.min_argnum = argnum;
2406 insn_error.format = format;
2407 insn_error.msg = msg;
2411 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2415 set_insn_error (int argnum, const char *msg)
2417 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2420 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2421 as for set_insn_error_format. */
2424 set_insn_error_i (int argnum, const char *msg, int i)
2426 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2430 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2431 are as for set_insn_error_format. */
2434 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2436 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2438 insn_error.u.ss[0] = s1;
2439 insn_error.u.ss[1] = s2;
2443 /* Report the error in insn_error, which is against assembly code STR. */
2446 report_insn_error (const char *str)
2448 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2450 switch (insn_error.format)
2457 as_bad (msg, insn_error.u.i, str);
2461 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2465 free ((char *) msg);
2468 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2469 the idea is to make it obvious at a glance that each errata is
2473 init_vr4120_conflicts (void)
2475 #define CONFLICT(FIRST, SECOND) \
2476 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2478 /* Errata 21 - [D]DIV[U] after [D]MACC */
2479 CONFLICT (MACC, DIV);
2480 CONFLICT (DMACC, DIV);
2482 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2483 CONFLICT (DMULT, DMULT);
2484 CONFLICT (DMULT, DMACC);
2485 CONFLICT (DMACC, DMULT);
2486 CONFLICT (DMACC, DMACC);
2488 /* Errata 24 - MT{LO,HI} after [D]MACC */
2489 CONFLICT (MACC, MTHILO);
2490 CONFLICT (DMACC, MTHILO);
2492 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2493 instruction is executed immediately after a MACC or DMACC
2494 instruction, the result of [either instruction] is incorrect." */
2495 CONFLICT (MACC, MULT);
2496 CONFLICT (MACC, DMULT);
2497 CONFLICT (DMACC, MULT);
2498 CONFLICT (DMACC, DMULT);
2500 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2501 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2502 DDIV or DDIVU instruction, the result of the MACC or
2503 DMACC instruction is incorrect.". */
2504 CONFLICT (DMULT, MACC);
2505 CONFLICT (DMULT, DMACC);
2506 CONFLICT (DIV, MACC);
2507 CONFLICT (DIV, DMACC);
2517 #define RNUM_MASK 0x00000ff
2518 #define RTYPE_MASK 0x0ffff00
2519 #define RTYPE_NUM 0x0000100
2520 #define RTYPE_FPU 0x0000200
2521 #define RTYPE_FCC 0x0000400
2522 #define RTYPE_VEC 0x0000800
2523 #define RTYPE_GP 0x0001000
2524 #define RTYPE_CP0 0x0002000
2525 #define RTYPE_PC 0x0004000
2526 #define RTYPE_ACC 0x0008000
2527 #define RTYPE_CCC 0x0010000
2528 #define RTYPE_VI 0x0020000
2529 #define RTYPE_VF 0x0040000
2530 #define RTYPE_R5900_I 0x0080000
2531 #define RTYPE_R5900_Q 0x0100000
2532 #define RTYPE_R5900_R 0x0200000
2533 #define RTYPE_R5900_ACC 0x0400000
2534 #define RTYPE_MSA 0x0800000
2535 #define RWARN 0x8000000
2537 #define GENERIC_REGISTER_NUMBERS \
2538 {"$0", RTYPE_NUM | 0}, \
2539 {"$1", RTYPE_NUM | 1}, \
2540 {"$2", RTYPE_NUM | 2}, \
2541 {"$3", RTYPE_NUM | 3}, \
2542 {"$4", RTYPE_NUM | 4}, \
2543 {"$5", RTYPE_NUM | 5}, \
2544 {"$6", RTYPE_NUM | 6}, \
2545 {"$7", RTYPE_NUM | 7}, \
2546 {"$8", RTYPE_NUM | 8}, \
2547 {"$9", RTYPE_NUM | 9}, \
2548 {"$10", RTYPE_NUM | 10}, \
2549 {"$11", RTYPE_NUM | 11}, \
2550 {"$12", RTYPE_NUM | 12}, \
2551 {"$13", RTYPE_NUM | 13}, \
2552 {"$14", RTYPE_NUM | 14}, \
2553 {"$15", RTYPE_NUM | 15}, \
2554 {"$16", RTYPE_NUM | 16}, \
2555 {"$17", RTYPE_NUM | 17}, \
2556 {"$18", RTYPE_NUM | 18}, \
2557 {"$19", RTYPE_NUM | 19}, \
2558 {"$20", RTYPE_NUM | 20}, \
2559 {"$21", RTYPE_NUM | 21}, \
2560 {"$22", RTYPE_NUM | 22}, \
2561 {"$23", RTYPE_NUM | 23}, \
2562 {"$24", RTYPE_NUM | 24}, \
2563 {"$25", RTYPE_NUM | 25}, \
2564 {"$26", RTYPE_NUM | 26}, \
2565 {"$27", RTYPE_NUM | 27}, \
2566 {"$28", RTYPE_NUM | 28}, \
2567 {"$29", RTYPE_NUM | 29}, \
2568 {"$30", RTYPE_NUM | 30}, \
2569 {"$31", RTYPE_NUM | 31}
2571 #define FPU_REGISTER_NAMES \
2572 {"$f0", RTYPE_FPU | 0}, \
2573 {"$f1", RTYPE_FPU | 1}, \
2574 {"$f2", RTYPE_FPU | 2}, \
2575 {"$f3", RTYPE_FPU | 3}, \
2576 {"$f4", RTYPE_FPU | 4}, \
2577 {"$f5", RTYPE_FPU | 5}, \
2578 {"$f6", RTYPE_FPU | 6}, \
2579 {"$f7", RTYPE_FPU | 7}, \
2580 {"$f8", RTYPE_FPU | 8}, \
2581 {"$f9", RTYPE_FPU | 9}, \
2582 {"$f10", RTYPE_FPU | 10}, \
2583 {"$f11", RTYPE_FPU | 11}, \
2584 {"$f12", RTYPE_FPU | 12}, \
2585 {"$f13", RTYPE_FPU | 13}, \
2586 {"$f14", RTYPE_FPU | 14}, \
2587 {"$f15", RTYPE_FPU | 15}, \
2588 {"$f16", RTYPE_FPU | 16}, \
2589 {"$f17", RTYPE_FPU | 17}, \
2590 {"$f18", RTYPE_FPU | 18}, \
2591 {"$f19", RTYPE_FPU | 19}, \
2592 {"$f20", RTYPE_FPU | 20}, \
2593 {"$f21", RTYPE_FPU | 21}, \
2594 {"$f22", RTYPE_FPU | 22}, \
2595 {"$f23", RTYPE_FPU | 23}, \
2596 {"$f24", RTYPE_FPU | 24}, \
2597 {"$f25", RTYPE_FPU | 25}, \
2598 {"$f26", RTYPE_FPU | 26}, \
2599 {"$f27", RTYPE_FPU | 27}, \
2600 {"$f28", RTYPE_FPU | 28}, \
2601 {"$f29", RTYPE_FPU | 29}, \
2602 {"$f30", RTYPE_FPU | 30}, \
2603 {"$f31", RTYPE_FPU | 31}
2605 #define FPU_CONDITION_CODE_NAMES \
2606 {"$fcc0", RTYPE_FCC | 0}, \
2607 {"$fcc1", RTYPE_FCC | 1}, \
2608 {"$fcc2", RTYPE_FCC | 2}, \
2609 {"$fcc3", RTYPE_FCC | 3}, \
2610 {"$fcc4", RTYPE_FCC | 4}, \
2611 {"$fcc5", RTYPE_FCC | 5}, \
2612 {"$fcc6", RTYPE_FCC | 6}, \
2613 {"$fcc7", RTYPE_FCC | 7}
2615 #define COPROC_CONDITION_CODE_NAMES \
2616 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2617 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2618 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2619 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2620 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2621 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2622 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2623 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2625 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2626 {"$a4", RTYPE_GP | 8}, \
2627 {"$a5", RTYPE_GP | 9}, \
2628 {"$a6", RTYPE_GP | 10}, \
2629 {"$a7", RTYPE_GP | 11}, \
2630 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2631 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2632 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2633 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2634 {"$t0", RTYPE_GP | 12}, \
2635 {"$t1", RTYPE_GP | 13}, \
2636 {"$t2", RTYPE_GP | 14}, \
2637 {"$t3", RTYPE_GP | 15}
2639 #define O32_SYMBOLIC_REGISTER_NAMES \
2640 {"$t0", RTYPE_GP | 8}, \
2641 {"$t1", RTYPE_GP | 9}, \
2642 {"$t2", RTYPE_GP | 10}, \
2643 {"$t3", RTYPE_GP | 11}, \
2644 {"$t4", RTYPE_GP | 12}, \
2645 {"$t5", RTYPE_GP | 13}, \
2646 {"$t6", RTYPE_GP | 14}, \
2647 {"$t7", RTYPE_GP | 15}, \
2648 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2649 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2650 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2651 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2653 /* Remaining symbolic register names */
2654 #define SYMBOLIC_REGISTER_NAMES \
2655 {"$zero", RTYPE_GP | 0}, \
2656 {"$at", RTYPE_GP | 1}, \
2657 {"$AT", RTYPE_GP | 1}, \
2658 {"$v0", RTYPE_GP | 2}, \
2659 {"$v1", RTYPE_GP | 3}, \
2660 {"$a0", RTYPE_GP | 4}, \
2661 {"$a1", RTYPE_GP | 5}, \
2662 {"$a2", RTYPE_GP | 6}, \
2663 {"$a3", RTYPE_GP | 7}, \
2664 {"$s0", RTYPE_GP | 16}, \
2665 {"$s1", RTYPE_GP | 17}, \
2666 {"$s2", RTYPE_GP | 18}, \
2667 {"$s3", RTYPE_GP | 19}, \
2668 {"$s4", RTYPE_GP | 20}, \
2669 {"$s5", RTYPE_GP | 21}, \
2670 {"$s6", RTYPE_GP | 22}, \
2671 {"$s7", RTYPE_GP | 23}, \
2672 {"$t8", RTYPE_GP | 24}, \
2673 {"$t9", RTYPE_GP | 25}, \
2674 {"$k0", RTYPE_GP | 26}, \
2675 {"$kt0", RTYPE_GP | 26}, \
2676 {"$k1", RTYPE_GP | 27}, \
2677 {"$kt1", RTYPE_GP | 27}, \
2678 {"$gp", RTYPE_GP | 28}, \
2679 {"$sp", RTYPE_GP | 29}, \
2680 {"$s8", RTYPE_GP | 30}, \
2681 {"$fp", RTYPE_GP | 30}, \
2682 {"$ra", RTYPE_GP | 31}
2684 #define MIPS16_SPECIAL_REGISTER_NAMES \
2685 {"$pc", RTYPE_PC | 0}
2687 #define MDMX_VECTOR_REGISTER_NAMES \
2688 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2689 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2690 {"$v2", RTYPE_VEC | 2}, \
2691 {"$v3", RTYPE_VEC | 3}, \
2692 {"$v4", RTYPE_VEC | 4}, \
2693 {"$v5", RTYPE_VEC | 5}, \
2694 {"$v6", RTYPE_VEC | 6}, \
2695 {"$v7", RTYPE_VEC | 7}, \
2696 {"$v8", RTYPE_VEC | 8}, \
2697 {"$v9", RTYPE_VEC | 9}, \
2698 {"$v10", RTYPE_VEC | 10}, \
2699 {"$v11", RTYPE_VEC | 11}, \
2700 {"$v12", RTYPE_VEC | 12}, \
2701 {"$v13", RTYPE_VEC | 13}, \
2702 {"$v14", RTYPE_VEC | 14}, \
2703 {"$v15", RTYPE_VEC | 15}, \
2704 {"$v16", RTYPE_VEC | 16}, \
2705 {"$v17", RTYPE_VEC | 17}, \
2706 {"$v18", RTYPE_VEC | 18}, \
2707 {"$v19", RTYPE_VEC | 19}, \
2708 {"$v20", RTYPE_VEC | 20}, \
2709 {"$v21", RTYPE_VEC | 21}, \
2710 {"$v22", RTYPE_VEC | 22}, \
2711 {"$v23", RTYPE_VEC | 23}, \
2712 {"$v24", RTYPE_VEC | 24}, \
2713 {"$v25", RTYPE_VEC | 25}, \
2714 {"$v26", RTYPE_VEC | 26}, \
2715 {"$v27", RTYPE_VEC | 27}, \
2716 {"$v28", RTYPE_VEC | 28}, \
2717 {"$v29", RTYPE_VEC | 29}, \
2718 {"$v30", RTYPE_VEC | 30}, \
2719 {"$v31", RTYPE_VEC | 31}
2721 #define R5900_I_NAMES \
2722 {"$I", RTYPE_R5900_I | 0}
2724 #define R5900_Q_NAMES \
2725 {"$Q", RTYPE_R5900_Q | 0}
2727 #define R5900_R_NAMES \
2728 {"$R", RTYPE_R5900_R | 0}
2730 #define R5900_ACC_NAMES \
2731 {"$ACC", RTYPE_R5900_ACC | 0 }
2733 #define MIPS_DSP_ACCUMULATOR_NAMES \
2734 {"$ac0", RTYPE_ACC | 0}, \
2735 {"$ac1", RTYPE_ACC | 1}, \
2736 {"$ac2", RTYPE_ACC | 2}, \
2737 {"$ac3", RTYPE_ACC | 3}
2739 static const struct regname reg_names[] = {
2740 GENERIC_REGISTER_NUMBERS,
2742 FPU_CONDITION_CODE_NAMES,
2743 COPROC_CONDITION_CODE_NAMES,
2745 /* The $txx registers depends on the abi,
2746 these will be added later into the symbol table from
2747 one of the tables below once mips_abi is set after
2748 parsing of arguments from the command line. */
2749 SYMBOLIC_REGISTER_NAMES,
2751 MIPS16_SPECIAL_REGISTER_NAMES,
2752 MDMX_VECTOR_REGISTER_NAMES,
2757 MIPS_DSP_ACCUMULATOR_NAMES,
2761 static const struct regname reg_names_o32[] = {
2762 O32_SYMBOLIC_REGISTER_NAMES,
2766 static const struct regname reg_names_n32n64[] = {
2767 N32N64_SYMBOLIC_REGISTER_NAMES,
2771 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2772 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2773 of these register symbols, return the associated vector register,
2774 otherwise return SYMVAL itself. */
2777 mips_prefer_vec_regno (unsigned int symval)
2779 if ((symval & -2) == (RTYPE_GP | 2))
2780 return RTYPE_VEC | (symval & 1);
2784 /* Return true if string [S, E) is a valid register name, storing its
2785 symbol value in *SYMVAL_PTR if so. */
2788 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2793 /* Terminate name. */
2797 /* Look up the name. */
2798 symbol = symbol_find (s);
2801 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2804 *symval_ptr = S_GET_VALUE (symbol);
2808 /* Return true if the string at *SPTR is a valid register name. Allow it
2809 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2812 When returning true, move *SPTR past the register, store the
2813 register's symbol value in *SYMVAL_PTR and the channel mask in
2814 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2815 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2816 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2819 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2820 unsigned int *channels_ptr)
2824 unsigned int channels, symval, bit;
2826 /* Find end of name. */
2828 if (is_name_beginner (*e))
2830 while (is_part_of_name (*e))
2834 if (!mips_parse_register_1 (s, e, &symval))
2839 /* Eat characters from the end of the string that are valid
2840 channel suffixes. The preceding register must be $ACC or
2841 end with a digit, so there is no ambiguity. */
2844 for (q = "wzyx"; *q; q++, bit <<= 1)
2845 if (m > s && m[-1] == *q)
2852 || !mips_parse_register_1 (s, m, &symval)
2853 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2858 *symval_ptr = symval;
2860 *channels_ptr = channels;
2864 /* Check if SPTR points at a valid register specifier according to TYPES.
2865 If so, then return 1, advance S to consume the specifier and store
2866 the register's number in REGNOP, otherwise return 0. */
2869 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2873 if (mips_parse_register (s, ®no, NULL))
2875 if (types & RTYPE_VEC)
2876 regno = mips_prefer_vec_regno (regno);
2885 as_warn (_("unrecognized register name `%s'"), *s);
2890 return regno <= RNUM_MASK;
2893 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2894 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2897 mips_parse_vu0_channels (char *s, unsigned int *channels)
2902 for (i = 0; i < 4; i++)
2903 if (*s == "xyzw"[i])
2905 *channels |= 1 << (3 - i);
2911 /* Token types for parsed operand lists. */
2912 enum mips_operand_token_type {
2913 /* A plain register, e.g. $f2. */
2916 /* A 4-bit XYZW channel mask. */
2919 /* A constant vector index, e.g. [1]. */
2922 /* A register vector index, e.g. [$2]. */
2925 /* A continuous range of registers, e.g. $s0-$s4. */
2928 /* A (possibly relocated) expression. */
2931 /* A floating-point value. */
2934 /* A single character. This can be '(', ')' or ',', but '(' only appears
2938 /* A doubled character, either "--" or "++". */
2941 /* The end of the operand list. */
2945 /* A parsed operand token. */
2946 struct mips_operand_token
2948 /* The type of token. */
2949 enum mips_operand_token_type type;
2952 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2955 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2956 unsigned int channels;
2958 /* The integer value of an OT_INTEGER_INDEX. */
2961 /* The two register symbol values involved in an OT_REG_RANGE. */
2963 unsigned int regno1;
2964 unsigned int regno2;
2967 /* The value of an OT_INTEGER. The value is represented as an
2968 expression and the relocation operators that were applied to
2969 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2970 relocation operators were used. */
2973 bfd_reloc_code_real_type relocs[3];
2976 /* The binary data for an OT_FLOAT constant, and the number of bytes
2979 unsigned char data[8];
2983 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2988 /* An obstack used to construct lists of mips_operand_tokens. */
2989 static struct obstack mips_operand_tokens;
2991 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2994 mips_add_token (struct mips_operand_token *token,
2995 enum mips_operand_token_type type)
2998 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3001 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3002 and OT_REG tokens for them if so, and return a pointer to the first
3003 unconsumed character. Return null otherwise. */
3006 mips_parse_base_start (char *s)
3008 struct mips_operand_token token;
3009 unsigned int regno, channels;
3010 bfd_boolean decrement_p;
3016 SKIP_SPACE_TABS (s);
3018 /* Only match "--" as part of a base expression. In other contexts "--X"
3019 is a double negative. */
3020 decrement_p = (s[0] == '-' && s[1] == '-');
3024 SKIP_SPACE_TABS (s);
3027 /* Allow a channel specifier because that leads to better error messages
3028 than treating something like "$vf0x++" as an expression. */
3029 if (!mips_parse_register (&s, ®no, &channels))
3033 mips_add_token (&token, OT_CHAR);
3038 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 token.u.regno = regno;
3042 mips_add_token (&token, OT_REG);
3046 token.u.channels = channels;
3047 mips_add_token (&token, OT_CHANNELS);
3050 /* For consistency, only match "++" as part of base expressions too. */
3051 SKIP_SPACE_TABS (s);
3052 if (s[0] == '+' && s[1] == '+')
3056 mips_add_token (&token, OT_DOUBLE_CHAR);
3062 /* Parse one or more tokens from S. Return a pointer to the first
3063 unconsumed character on success. Return null if an error was found
3064 and store the error text in insn_error. FLOAT_FORMAT is as for
3065 mips_parse_arguments. */
3068 mips_parse_argument_token (char *s, char float_format)
3070 char *end, *save_in;
3072 unsigned int regno1, regno2, channels;
3073 struct mips_operand_token token;
3075 /* First look for "($reg", since we want to treat that as an
3076 OT_CHAR and OT_REG rather than an expression. */
3077 end = mips_parse_base_start (s);
3081 /* Handle other characters that end up as OT_CHARs. */
3082 if (*s == ')' || *s == ',')
3085 mips_add_token (&token, OT_CHAR);
3090 /* Handle tokens that start with a register. */
3091 if (mips_parse_register (&s, ®no1, &channels))
3095 /* A register and a VU0 channel suffix. */
3096 token.u.regno = regno1;
3097 mips_add_token (&token, OT_REG);
3099 token.u.channels = channels;
3100 mips_add_token (&token, OT_CHANNELS);
3104 SKIP_SPACE_TABS (s);
3107 /* A register range. */
3109 SKIP_SPACE_TABS (s);
3110 if (!mips_parse_register (&s, ®no2, NULL))
3112 set_insn_error (0, _("invalid register range"));
3116 token.u.reg_range.regno1 = regno1;
3117 token.u.reg_range.regno2 = regno2;
3118 mips_add_token (&token, OT_REG_RANGE);
3122 /* Add the register itself. */
3123 token.u.regno = regno1;
3124 mips_add_token (&token, OT_REG);
3126 /* Check for a vector index. */
3130 SKIP_SPACE_TABS (s);
3131 if (mips_parse_register (&s, &token.u.regno, NULL))
3132 mips_add_token (&token, OT_REG_INDEX);
3135 expressionS element;
3137 my_getExpression (&element, s);
3138 if (element.X_op != O_constant)
3140 set_insn_error (0, _("vector element must be constant"));
3144 token.u.index = element.X_add_number;
3145 mips_add_token (&token, OT_INTEGER_INDEX);
3147 SKIP_SPACE_TABS (s);
3150 set_insn_error (0, _("missing `]'"));
3160 /* First try to treat expressions as floats. */
3161 save_in = input_line_pointer;
3162 input_line_pointer = s;
3163 err = md_atof (float_format, (char *) token.u.flt.data,
3164 &token.u.flt.length);
3165 end = input_line_pointer;
3166 input_line_pointer = save_in;
3169 set_insn_error (0, err);
3174 mips_add_token (&token, OT_FLOAT);
3179 /* Treat everything else as an integer expression. */
3180 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3181 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3182 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3183 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3185 mips_add_token (&token, OT_INTEGER);
3189 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3190 if expressions should be treated as 32-bit floating-point constants,
3191 'd' if they should be treated as 64-bit floating-point constants,
3192 or 0 if they should be treated as integer expressions (the usual case).
3194 Return a list of tokens on success, otherwise return 0. The caller
3195 must obstack_free the list after use. */
3197 static struct mips_operand_token *
3198 mips_parse_arguments (char *s, char float_format)
3200 struct mips_operand_token token;
3202 SKIP_SPACE_TABS (s);
3205 s = mips_parse_argument_token (s, float_format);
3208 obstack_free (&mips_operand_tokens,
3209 obstack_finish (&mips_operand_tokens));
3212 SKIP_SPACE_TABS (s);
3214 mips_add_token (&token, OT_END);
3215 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3218 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3219 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3222 is_opcode_valid (const struct mips_opcode *mo)
3224 int isa = mips_opts.isa;
3225 int ase = mips_opts.ase;
3229 if (ISA_HAS_64BIT_REGS (isa))
3230 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3231 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3232 ase |= mips_ases[i].flags64;
3234 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3237 /* Check whether the instruction or macro requires single-precision or
3238 double-precision floating-point support. Note that this information is
3239 stored differently in the opcode table for insns and macros. */
3240 if (mo->pinfo == INSN_MACRO)
3242 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3243 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3247 fp_s = mo->pinfo & FP_S;
3248 fp_d = mo->pinfo & FP_D;
3251 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3254 if (fp_s && mips_opts.soft_float)
3260 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3261 selected ISA and architecture. */
3264 is_opcode_valid_16 (const struct mips_opcode *mo)
3266 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3269 /* Return TRUE if the size of the microMIPS opcode MO matches one
3270 explicitly requested. Always TRUE in the standard MIPS mode.
3271 Use is_size_valid_16 for MIPS16 opcodes. */
3274 is_size_valid (const struct mips_opcode *mo)
3276 if (!mips_opts.micromips)
3279 if (mips_opts.insn32)
3281 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3283 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3286 if (!forced_insn_length)
3288 if (mo->pinfo == INSN_MACRO)
3290 return forced_insn_length == micromips_insn_length (mo);
3293 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3294 explicitly requested. */
3297 is_size_valid_16 (const struct mips_opcode *mo)
3299 if (!forced_insn_length)
3301 if (mo->pinfo == INSN_MACRO)
3303 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3305 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3310 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3311 of the preceding instruction. Always TRUE in the standard MIPS mode.
3313 We don't accept macros in 16-bit delay slots to avoid a case where
3314 a macro expansion fails because it relies on a preceding 32-bit real
3315 instruction to have matched and does not handle the operands correctly.
3316 The only macros that may expand to 16-bit instructions are JAL that
3317 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3318 and BGT (that likewise cannot be placed in a delay slot) that decay to
3319 a NOP. In all these cases the macros precede any corresponding real
3320 instruction definitions in the opcode table, so they will match in the
3321 second pass where the size of the delay slot is ignored and therefore
3322 produce correct code. */
3325 is_delay_slot_valid (const struct mips_opcode *mo)
3327 if (!mips_opts.micromips)
3330 if (mo->pinfo == INSN_MACRO)
3331 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3332 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3333 && micromips_insn_length (mo) != 4)
3335 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3336 && micromips_insn_length (mo) != 2)
3342 /* For consistency checking, verify that all bits of OPCODE are specified
3343 either by the match/mask part of the instruction definition, or by the
3344 operand list. Also build up a list of operands in OPERANDS.
3346 INSN_BITS says which bits of the instruction are significant.
3347 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3348 provides the mips_operand description of each operand. DECODE_OPERAND
3349 is null for MIPS16 instructions. */
3352 validate_mips_insn (const struct mips_opcode *opcode,
3353 unsigned long insn_bits,
3354 const struct mips_operand *(*decode_operand) (const char *),
3355 struct mips_operand_array *operands)
3358 unsigned long used_bits, doubled, undefined, opno, mask;
3359 const struct mips_operand *operand;
3361 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3362 if ((mask & opcode->match) != opcode->match)
3364 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3365 opcode->name, opcode->args);
3370 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3371 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3372 for (s = opcode->args; *s; ++s)
3385 if (!decode_operand)
3386 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3388 operand = decode_operand (s);
3389 if (!operand && opcode->pinfo != INSN_MACRO)
3391 as_bad (_("internal: unknown operand type: %s %s"),
3392 opcode->name, opcode->args);
3395 gas_assert (opno < MAX_OPERANDS);
3396 operands->operand[opno] = operand;
3397 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3399 used_bits = mips_insert_operand (operand, used_bits, -1);
3400 if (operand->type == OP_MDMX_IMM_REG)
3401 /* Bit 5 is the format selector (OB vs QH). The opcode table
3402 has separate entries for each format. */
3403 used_bits &= ~(1 << (operand->lsb + 5));
3404 if (operand->type == OP_ENTRY_EXIT_LIST)
3405 used_bits &= ~(mask & 0x700);
3407 /* Skip prefix characters. */
3408 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3413 doubled = used_bits & mask & insn_bits;
3416 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3417 " %s %s"), doubled, opcode->name, opcode->args);
3421 undefined = ~used_bits & insn_bits;
3422 if (opcode->pinfo != INSN_MACRO && undefined)
3424 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3425 undefined, opcode->name, opcode->args);
3428 used_bits &= ~insn_bits;
3431 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3432 used_bits, opcode->name, opcode->args);
3438 /* The MIPS16 version of validate_mips_insn. */
3441 validate_mips16_insn (const struct mips_opcode *opcode,
3442 struct mips_operand_array *operands)
3444 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3446 return validate_mips_insn (opcode, insn_bits, 0, operands);
3449 /* The microMIPS version of validate_mips_insn. */
3452 validate_micromips_insn (const struct mips_opcode *opc,
3453 struct mips_operand_array *operands)
3455 unsigned long insn_bits;
3456 unsigned long major;
3457 unsigned int length;
3459 if (opc->pinfo == INSN_MACRO)
3460 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3463 length = micromips_insn_length (opc);
3464 if (length != 2 && length != 4)
3466 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3467 "%s %s"), length, opc->name, opc->args);
3470 major = opc->match >> (10 + 8 * (length - 2));
3471 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3472 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3474 as_bad (_("internal error: bad microMIPS opcode "
3475 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3479 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3480 insn_bits = 1 << 4 * length;
3481 insn_bits <<= 4 * length;
3483 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3487 /* This function is called once, at assembler startup time. It should set up
3488 all the tables, etc. that the MD part of the assembler will need. */
3493 const char *retval = NULL;
3497 if (mips_pic != NO_PIC)
3499 if (g_switch_seen && g_switch_value != 0)
3500 as_bad (_("-G may not be used in position-independent code"));
3503 else if (mips_abicalls)
3505 if (g_switch_seen && g_switch_value != 0)
3506 as_bad (_("-G may not be used with abicalls"));
3510 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3511 as_warn (_("could not set architecture and machine"));
3513 op_hash = hash_new ();
3515 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3516 for (i = 0; i < NUMOPCODES;)
3518 const char *name = mips_opcodes[i].name;
3520 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3523 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3524 mips_opcodes[i].name, retval);
3525 /* Probably a memory allocation problem? Give up now. */
3526 as_fatal (_("broken assembler, no assembly attempted"));
3530 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3531 decode_mips_operand, &mips_operands[i]))
3533 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3535 create_insn (&nop_insn, mips_opcodes + i);
3536 if (mips_fix_loongson2f_nop)
3537 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3538 nop_insn.fixed_p = 1;
3542 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3545 mips16_op_hash = hash_new ();
3546 mips16_operands = XCNEWVEC (struct mips_operand_array,
3547 bfd_mips16_num_opcodes);
3550 while (i < bfd_mips16_num_opcodes)
3552 const char *name = mips16_opcodes[i].name;
3554 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3556 as_fatal (_("internal: can't hash `%s': %s"),
3557 mips16_opcodes[i].name, retval);
3560 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3562 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3564 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3565 mips16_nop_insn.fixed_p = 1;
3569 while (i < bfd_mips16_num_opcodes
3570 && strcmp (mips16_opcodes[i].name, name) == 0);
3573 micromips_op_hash = hash_new ();
3574 micromips_operands = XCNEWVEC (struct mips_operand_array,
3575 bfd_micromips_num_opcodes);
3578 while (i < bfd_micromips_num_opcodes)
3580 const char *name = micromips_opcodes[i].name;
3582 retval = hash_insert (micromips_op_hash, name,
3583 (void *) µmips_opcodes[i]);
3585 as_fatal (_("internal: can't hash `%s': %s"),
3586 micromips_opcodes[i].name, retval);
3589 struct mips_cl_insn *micromips_nop_insn;
3591 if (!validate_micromips_insn (µmips_opcodes[i],
3592 µmips_operands[i]))
3595 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3597 if (micromips_insn_length (micromips_opcodes + i) == 2)
3598 micromips_nop_insn = µmips_nop16_insn;
3599 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3600 micromips_nop_insn = µmips_nop32_insn;
3604 if (micromips_nop_insn->insn_mo == NULL
3605 && strcmp (name, "nop") == 0)
3607 create_insn (micromips_nop_insn, micromips_opcodes + i);
3608 micromips_nop_insn->fixed_p = 1;
3612 while (++i < bfd_micromips_num_opcodes
3613 && strcmp (micromips_opcodes[i].name, name) == 0);
3617 as_fatal (_("broken assembler, no assembly attempted"));
3619 /* We add all the general register names to the symbol table. This
3620 helps us detect invalid uses of them. */
3621 for (i = 0; reg_names[i].name; i++)
3622 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3623 reg_names[i].num, /* & RNUM_MASK, */
3624 &zero_address_frag));
3626 for (i = 0; reg_names_n32n64[i].name; i++)
3627 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3628 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3629 &zero_address_frag));
3631 for (i = 0; reg_names_o32[i].name; i++)
3632 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3633 reg_names_o32[i].num, /* & RNUM_MASK, */
3634 &zero_address_frag));
3636 for (i = 0; i < 32; i++)
3640 /* R5900 VU0 floating-point register. */
3641 sprintf (regname, "$vf%d", i);
3642 symbol_table_insert (symbol_new (regname, reg_section,
3643 RTYPE_VF | i, &zero_address_frag));
3645 /* R5900 VU0 integer register. */
3646 sprintf (regname, "$vi%d", i);
3647 symbol_table_insert (symbol_new (regname, reg_section,
3648 RTYPE_VI | i, &zero_address_frag));
3651 sprintf (regname, "$w%d", i);
3652 symbol_table_insert (symbol_new (regname, reg_section,
3653 RTYPE_MSA | i, &zero_address_frag));
3656 obstack_init (&mips_operand_tokens);
3658 mips_no_prev_insn ();
3661 mips_cprmask[0] = 0;
3662 mips_cprmask[1] = 0;
3663 mips_cprmask[2] = 0;
3664 mips_cprmask[3] = 0;
3666 /* set the default alignment for the text section (2**2) */
3667 record_alignment (text_section, 2);
3669 bfd_set_gp_size (stdoutput, g_switch_value);
3671 /* On a native system other than VxWorks, sections must be aligned
3672 to 16 byte boundaries. When configured for an embedded ELF
3673 target, we don't bother. */
3674 if (strncmp (TARGET_OS, "elf", 3) != 0
3675 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3677 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3678 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3679 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3682 /* Create a .reginfo section for register masks and a .mdebug
3683 section for debugging information. */
3691 subseg = now_subseg;
3693 /* The ABI says this section should be loaded so that the
3694 running program can access it. However, we don't load it
3695 if we are configured for an embedded target */
3696 flags = SEC_READONLY | SEC_DATA;
3697 if (strncmp (TARGET_OS, "elf", 3) != 0)
3698 flags |= SEC_ALLOC | SEC_LOAD;
3700 if (mips_abi != N64_ABI)
3702 sec = subseg_new (".reginfo", (subsegT) 0);
3704 bfd_set_section_flags (stdoutput, sec, flags);
3705 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3707 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3711 /* The 64-bit ABI uses a .MIPS.options section rather than
3712 .reginfo section. */
3713 sec = subseg_new (".MIPS.options", (subsegT) 0);
3714 bfd_set_section_flags (stdoutput, sec, flags);
3715 bfd_set_section_alignment (stdoutput, sec, 3);
3717 /* Set up the option header. */
3719 Elf_Internal_Options opthdr;
3722 opthdr.kind = ODK_REGINFO;
3723 opthdr.size = (sizeof (Elf_External_Options)
3724 + sizeof (Elf64_External_RegInfo));
3727 f = frag_more (sizeof (Elf_External_Options));
3728 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3729 (Elf_External_Options *) f);
3731 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3735 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3736 bfd_set_section_flags (stdoutput, sec,
3737 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3738 bfd_set_section_alignment (stdoutput, sec, 3);
3739 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3741 if (ECOFF_DEBUGGING)
3743 sec = subseg_new (".mdebug", (subsegT) 0);
3744 (void) bfd_set_section_flags (stdoutput, sec,
3745 SEC_HAS_CONTENTS | SEC_READONLY);
3746 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3748 else if (mips_flag_pdr)
3750 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3751 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3752 SEC_READONLY | SEC_RELOC
3754 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3757 subseg_set (seg, subseg);
3760 if (mips_fix_vr4120)
3761 init_vr4120_conflicts ();
3765 fpabi_incompatible_with (int fpabi, const char *what)
3767 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3768 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3772 fpabi_requires (int fpabi, const char *what)
3774 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3775 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3778 /* Check -mabi and register sizes against the specified FP ABI. */
3780 check_fpabi (int fpabi)
3784 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3785 if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3790 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3791 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3792 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3795 case Val_GNU_MIPS_ABI_FP_XX:
3796 if (mips_abi != O32_ABI)
3797 fpabi_requires (fpabi, "-mabi=32");
3798 else if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (file_mips_opts.single_float)
3801 fpabi_incompatible_with (fpabi, "singlefloat");
3802 else if (file_mips_opts.fp != 0)
3803 fpabi_requires (fpabi, "fp=xx");
3806 case Val_GNU_MIPS_ABI_FP_64A:
3807 case Val_GNU_MIPS_ABI_FP_64:
3808 if (mips_abi != O32_ABI)
3809 fpabi_requires (fpabi, "-mabi=32");
3810 else if (file_mips_opts.soft_float)
3811 fpabi_incompatible_with (fpabi, "softfloat");
3812 else if (file_mips_opts.single_float)
3813 fpabi_incompatible_with (fpabi, "singlefloat");
3814 else if (file_mips_opts.fp != 64)
3815 fpabi_requires (fpabi, "fp=64");
3816 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3817 fpabi_incompatible_with (fpabi, "nooddspreg");
3818 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3819 fpabi_requires (fpabi, "nooddspreg");
3822 case Val_GNU_MIPS_ABI_FP_SINGLE:
3823 if (file_mips_opts.soft_float)
3824 fpabi_incompatible_with (fpabi, "softfloat");
3825 else if (!file_mips_opts.single_float)
3826 fpabi_requires (fpabi, "singlefloat");
3829 case Val_GNU_MIPS_ABI_FP_SOFT:
3830 if (!file_mips_opts.soft_float)
3831 fpabi_requires (fpabi, "softfloat");
3834 case Val_GNU_MIPS_ABI_FP_OLD_64:
3835 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3836 Tag_GNU_MIPS_ABI_FP, fpabi);
3839 case Val_GNU_MIPS_ABI_FP_NAN2008:
3840 /* Silently ignore compatibility value. */
3844 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3845 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3850 /* Perform consistency checks on the current options. */
3853 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3855 /* Check the size of integer registers agrees with the ABI and ISA. */
3856 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3857 as_bad (_("`gp=64' used with a 32-bit processor"));
3859 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_bad (_("`gp=32' used with a 64-bit ABI"));
3862 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3863 as_bad (_("`gp=64' used with a 32-bit ABI"));
3865 /* Check the size of the float registers agrees with the ABI and ISA. */
3869 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3870 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3871 else if (opts->single_float == 1)
3872 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3875 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3876 as_bad (_("`fp=64' used with a 32-bit fpu"));
3878 && ABI_NEEDS_32BIT_REGS (mips_abi)
3879 && !ISA_HAS_MXHC1 (opts->isa))
3880 as_warn (_("`fp=64' used with a 32-bit ABI"));
3884 && ABI_NEEDS_64BIT_REGS (mips_abi))
3885 as_warn (_("`fp=32' used with a 64-bit ABI"));
3886 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3887 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3890 as_bad (_("Unknown size of floating point registers"));
3894 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3895 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3897 if (opts->micromips == 1 && opts->mips16 == 1)
3898 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3899 else if (ISA_IS_R6 (opts->isa)
3900 && (opts->micromips == 1
3901 || opts->mips16 == 1))
3902 as_fatal (_("`%s' cannot be used with `%s'"),
3903 opts->micromips ? "micromips" : "mips16",
3904 mips_cpu_info_from_isa (opts->isa)->name);
3906 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3907 as_fatal (_("branch relaxation is not supported in `%s'"),
3908 mips_cpu_info_from_isa (opts->isa)->name);
3911 /* Perform consistency checks on the module level options exactly once.
3912 This is a deferred check that happens:
3913 at the first .set directive
3914 or, at the first pseudo op that generates code (inc .dc.a)
3915 or, at the first instruction
3919 file_mips_check_options (void)
3921 const struct mips_cpu_info *arch_info = 0;
3923 if (file_mips_opts_checked)
3926 /* The following code determines the register size.
3927 Similar code was added to GCC 3.3 (see override_options() in
3928 config/mips/mips.c). The GAS and GCC code should be kept in sync
3929 as much as possible. */
3931 if (file_mips_opts.gp < 0)
3933 /* Infer the integer register size from the ABI and processor.
3934 Restrict ourselves to 32-bit registers if that's all the
3935 processor has, or if the ABI cannot handle 64-bit registers. */
3936 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3937 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3941 if (file_mips_opts.fp < 0)
3943 /* No user specified float register size.
3944 ??? GAS treats single-float processors as though they had 64-bit
3945 float registers (although it complains when double-precision
3946 instructions are used). As things stand, saying they have 32-bit
3947 registers would lead to spurious "register must be even" messages.
3948 So here we assume float registers are never smaller than the
3950 if (file_mips_opts.gp == 64)
3951 /* 64-bit integer registers implies 64-bit float registers. */
3952 file_mips_opts.fp = 64;
3953 else if ((file_mips_opts.ase & FP64_ASES)
3954 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3955 /* Handle ASEs that require 64-bit float registers, if possible. */
3956 file_mips_opts.fp = 64;
3957 else if (ISA_IS_R6 (mips_opts.isa))
3958 /* R6 implies 64-bit float registers. */
3959 file_mips_opts.fp = 64;
3961 /* 32-bit float registers. */
3962 file_mips_opts.fp = 32;
3965 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3967 /* Disable operations on odd-numbered floating-point registers by default
3968 when using the FPXX ABI. */
3969 if (file_mips_opts.oddspreg < 0)
3971 if (file_mips_opts.fp == 0)
3972 file_mips_opts.oddspreg = 0;
3974 file_mips_opts.oddspreg = 1;
3977 /* End of GCC-shared inference code. */
3979 /* This flag is set when we have a 64-bit capable CPU but use only
3980 32-bit wide registers. Note that EABI does not use it. */
3981 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3982 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3983 || mips_abi == O32_ABI))
3986 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3987 as_bad (_("trap exception not supported at ISA 1"));
3989 /* If the selected architecture includes support for ASEs, enable
3990 generation of code for them. */
3991 if (file_mips_opts.mips16 == -1)
3992 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3993 if (file_mips_opts.micromips == -1)
3994 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3997 if (mips_nan2008 == -1)
3998 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3999 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4000 as_fatal (_("`%s' does not support legacy NaN"),
4001 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4003 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4004 being selected implicitly. */
4005 if (file_mips_opts.fp != 64)
4006 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4008 /* If the user didn't explicitly select or deselect a particular ASE,
4009 use the default setting for the CPU. */
4010 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4012 /* Set up the current options. These may change throughout assembly. */
4013 mips_opts = file_mips_opts;
4015 mips_check_isa_supports_ases ();
4016 mips_check_options (&file_mips_opts, TRUE);
4017 file_mips_opts_checked = TRUE;
4019 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4020 as_warn (_("could not set architecture and machine"));
4024 md_assemble (char *str)
4026 struct mips_cl_insn insn;
4027 bfd_reloc_code_real_type unused_reloc[3]
4028 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4030 file_mips_check_options ();
4032 imm_expr.X_op = O_absent;
4033 offset_expr.X_op = O_absent;
4034 offset_reloc[0] = BFD_RELOC_UNUSED;
4035 offset_reloc[1] = BFD_RELOC_UNUSED;
4036 offset_reloc[2] = BFD_RELOC_UNUSED;
4038 mips_mark_labels ();
4039 mips_assembling_insn = TRUE;
4040 clear_insn_error ();
4042 if (mips_opts.mips16)
4043 mips16_ip (str, &insn);
4046 mips_ip (str, &insn);
4047 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4048 str, insn.insn_opcode));
4052 report_insn_error (str);
4053 else if (insn.insn_mo->pinfo == INSN_MACRO)
4056 if (mips_opts.mips16)
4057 mips16_macro (&insn);
4064 if (offset_expr.X_op != O_absent)
4065 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4067 append_insn (&insn, NULL, unused_reloc, FALSE);
4070 mips_assembling_insn = FALSE;
4073 /* Convenience functions for abstracting away the differences between
4074 MIPS16 and non-MIPS16 relocations. */
4076 static inline bfd_boolean
4077 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4081 case BFD_RELOC_MIPS16_JMP:
4082 case BFD_RELOC_MIPS16_GPREL:
4083 case BFD_RELOC_MIPS16_GOT16:
4084 case BFD_RELOC_MIPS16_CALL16:
4085 case BFD_RELOC_MIPS16_HI16_S:
4086 case BFD_RELOC_MIPS16_HI16:
4087 case BFD_RELOC_MIPS16_LO16:
4088 case BFD_RELOC_MIPS16_16_PCREL_S1:
4096 static inline bfd_boolean
4097 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4101 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4102 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4103 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4104 case BFD_RELOC_MICROMIPS_GPREL16:
4105 case BFD_RELOC_MICROMIPS_JMP:
4106 case BFD_RELOC_MICROMIPS_HI16:
4107 case BFD_RELOC_MICROMIPS_HI16_S:
4108 case BFD_RELOC_MICROMIPS_LO16:
4109 case BFD_RELOC_MICROMIPS_LITERAL:
4110 case BFD_RELOC_MICROMIPS_GOT16:
4111 case BFD_RELOC_MICROMIPS_CALL16:
4112 case BFD_RELOC_MICROMIPS_GOT_HI16:
4113 case BFD_RELOC_MICROMIPS_GOT_LO16:
4114 case BFD_RELOC_MICROMIPS_CALL_HI16:
4115 case BFD_RELOC_MICROMIPS_CALL_LO16:
4116 case BFD_RELOC_MICROMIPS_SUB:
4117 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4118 case BFD_RELOC_MICROMIPS_GOT_OFST:
4119 case BFD_RELOC_MICROMIPS_GOT_DISP:
4120 case BFD_RELOC_MICROMIPS_HIGHEST:
4121 case BFD_RELOC_MICROMIPS_HIGHER:
4122 case BFD_RELOC_MICROMIPS_SCN_DISP:
4123 case BFD_RELOC_MICROMIPS_JALR:
4131 static inline bfd_boolean
4132 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4134 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4137 static inline bfd_boolean
4138 b_reloc_p (bfd_reloc_code_real_type reloc)
4140 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4141 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4142 || reloc == BFD_RELOC_16_PCREL_S2
4143 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4144 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4145 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4146 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4149 static inline bfd_boolean
4150 got16_reloc_p (bfd_reloc_code_real_type reloc)
4152 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4153 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4156 static inline bfd_boolean
4157 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4159 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4160 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4163 static inline bfd_boolean
4164 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4166 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4167 || reloc == BFD_RELOC_MICROMIPS_LO16);
4170 static inline bfd_boolean
4171 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4173 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4176 static inline bfd_boolean
4177 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4179 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4180 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4183 /* Return true if RELOC is a PC-relative relocation that does not have
4184 full address range. */
4186 static inline bfd_boolean
4187 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4191 case BFD_RELOC_16_PCREL_S2:
4192 case BFD_RELOC_MIPS16_16_PCREL_S1:
4193 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4194 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4195 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4196 case BFD_RELOC_MIPS_21_PCREL_S2:
4197 case BFD_RELOC_MIPS_26_PCREL_S2:
4198 case BFD_RELOC_MIPS_18_PCREL_S3:
4199 case BFD_RELOC_MIPS_19_PCREL_S2:
4202 case BFD_RELOC_32_PCREL:
4203 case BFD_RELOC_HI16_S_PCREL:
4204 case BFD_RELOC_LO16_PCREL:
4205 return HAVE_64BIT_ADDRESSES;
4212 /* Return true if the given relocation might need a matching %lo().
4213 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4214 need a matching %lo() when applied to local symbols. */
4216 static inline bfd_boolean
4217 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4219 return (HAVE_IN_PLACE_ADDENDS
4220 && (hi16_reloc_p (reloc)
4221 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4222 all GOT16 relocations evaluate to "G". */
4223 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4226 /* Return the type of %lo() reloc needed by RELOC, given that
4227 reloc_needs_lo_p. */
4229 static inline bfd_reloc_code_real_type
4230 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4232 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4233 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4237 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4240 static inline bfd_boolean
4241 fixup_has_matching_lo_p (fixS *fixp)
4243 return (fixp->fx_next != NULL
4244 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4245 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4246 && fixp->fx_offset == fixp->fx_next->fx_offset);
4249 /* Move all labels in LABELS to the current insertion point. TEXT_P
4250 says whether the labels refer to text or data. */
4253 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4255 struct insn_label_list *l;
4258 for (l = labels; l != NULL; l = l->next)
4260 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4261 symbol_set_frag (l->label, frag_now);
4262 val = (valueT) frag_now_fix ();
4263 /* MIPS16/microMIPS text labels are stored as odd. */
4264 if (text_p && HAVE_CODE_COMPRESSION)
4266 S_SET_VALUE (l->label, val);
4270 /* Move all labels in insn_labels to the current insertion point
4271 and treat them as text labels. */
4274 mips_move_text_labels (void)
4276 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4279 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4282 s_is_linkonce (symbolS *sym, segT from_seg)
4284 bfd_boolean linkonce = FALSE;
4285 segT symseg = S_GET_SEGMENT (sym);
4287 if (symseg != from_seg && !S_IS_LOCAL (sym))
4289 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4291 /* The GNU toolchain uses an extension for ELF: a section
4292 beginning with the magic string .gnu.linkonce is a
4293 linkonce section. */
4294 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4295 sizeof ".gnu.linkonce" - 1) == 0)
4301 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4302 linker to handle them specially, such as generating jalx instructions
4303 when needed. We also make them odd for the duration of the assembly,
4304 in order to generate the right sort of code. We will make them even
4305 in the adjust_symtab routine, while leaving them marked. This is
4306 convenient for the debugger and the disassembler. The linker knows
4307 to make them odd again. */
4310 mips_compressed_mark_label (symbolS *label)
4312 gas_assert (HAVE_CODE_COMPRESSION);
4314 if (mips_opts.mips16)
4315 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4317 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4318 if ((S_GET_VALUE (label) & 1) == 0
4319 /* Don't adjust the address if the label is global or weak, or
4320 in a link-once section, since we'll be emitting symbol reloc
4321 references to it which will be patched up by the linker, and
4322 the final value of the symbol may or may not be MIPS16/microMIPS. */
4323 && !S_IS_WEAK (label)
4324 && !S_IS_EXTERNAL (label)
4325 && !s_is_linkonce (label, now_seg))
4326 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4329 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4332 mips_compressed_mark_labels (void)
4334 struct insn_label_list *l;
4336 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4337 mips_compressed_mark_label (l->label);
4340 /* End the current frag. Make it a variant frag and record the
4344 relax_close_frag (void)
4346 mips_macro_warning.first_frag = frag_now;
4347 frag_var (rs_machine_dependent, 0, 0,
4348 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4349 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4351 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4352 mips_relax.first_fixup = 0;
4355 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4356 See the comment above RELAX_ENCODE for more details. */
4359 relax_start (symbolS *symbol)
4361 gas_assert (mips_relax.sequence == 0);
4362 mips_relax.sequence = 1;
4363 mips_relax.symbol = symbol;
4366 /* Start generating the second version of a relaxable sequence.
4367 See the comment above RELAX_ENCODE for more details. */
4372 gas_assert (mips_relax.sequence == 1);
4373 mips_relax.sequence = 2;
4376 /* End the current relaxable sequence. */
4381 gas_assert (mips_relax.sequence == 2);
4382 relax_close_frag ();
4383 mips_relax.sequence = 0;
4386 /* Return true if IP is a delayed branch or jump. */
4388 static inline bfd_boolean
4389 delayed_branch_p (const struct mips_cl_insn *ip)
4391 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4392 | INSN_COND_BRANCH_DELAY
4393 | INSN_COND_BRANCH_LIKELY)) != 0;
4396 /* Return true if IP is a compact branch or jump. */
4398 static inline bfd_boolean
4399 compact_branch_p (const struct mips_cl_insn *ip)
4401 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4402 | INSN2_COND_BRANCH)) != 0;
4405 /* Return true if IP is an unconditional branch or jump. */
4407 static inline bfd_boolean
4408 uncond_branch_p (const struct mips_cl_insn *ip)
4410 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4411 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4414 /* Return true if IP is a branch-likely instruction. */
4416 static inline bfd_boolean
4417 branch_likely_p (const struct mips_cl_insn *ip)
4419 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4422 /* Return the type of nop that should be used to fill the delay slot
4423 of delayed branch IP. */
4425 static struct mips_cl_insn *
4426 get_delay_slot_nop (const struct mips_cl_insn *ip)
4428 if (mips_opts.micromips
4429 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4430 return µmips_nop32_insn;
4434 /* Return a mask that has bit N set if OPCODE reads the register(s)
4438 insn_read_mask (const struct mips_opcode *opcode)
4440 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4443 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4447 insn_write_mask (const struct mips_opcode *opcode)
4449 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4452 /* Return a mask of the registers specified by operand OPERAND of INSN.
4453 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4457 operand_reg_mask (const struct mips_cl_insn *insn,
4458 const struct mips_operand *operand,
4459 unsigned int type_mask)
4461 unsigned int uval, vsel;
4463 switch (operand->type)
4470 case OP_ADDIUSP_INT:
4471 case OP_ENTRY_EXIT_LIST:
4472 case OP_REPEAT_DEST_REG:
4473 case OP_REPEAT_PREV_REG:
4476 case OP_VU0_MATCH_SUFFIX:
4481 case OP_OPTIONAL_REG:
4483 const struct mips_reg_operand *reg_op;
4485 reg_op = (const struct mips_reg_operand *) operand;
4486 if (!(type_mask & (1 << reg_op->reg_type)))
4488 uval = insn_extract_operand (insn, operand);
4489 return 1 << mips_decode_reg_operand (reg_op, uval);
4494 const struct mips_reg_pair_operand *pair_op;
4496 pair_op = (const struct mips_reg_pair_operand *) operand;
4497 if (!(type_mask & (1 << pair_op->reg_type)))
4499 uval = insn_extract_operand (insn, operand);
4500 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4503 case OP_CLO_CLZ_DEST:
4504 if (!(type_mask & (1 << OP_REG_GP)))
4506 uval = insn_extract_operand (insn, operand);
4507 return (1 << (uval & 31)) | (1 << (uval >> 5));
4510 if (!(type_mask & (1 << OP_REG_GP)))
4512 uval = insn_extract_operand (insn, operand);
4513 gas_assert ((uval & 31) == (uval >> 5));
4514 return 1 << (uval & 31);
4517 case OP_NON_ZERO_REG:
4518 if (!(type_mask & (1 << OP_REG_GP)))
4520 uval = insn_extract_operand (insn, operand);
4521 return 1 << (uval & 31);
4523 case OP_LWM_SWM_LIST:
4526 case OP_SAVE_RESTORE_LIST:
4529 case OP_MDMX_IMM_REG:
4530 if (!(type_mask & (1 << OP_REG_VEC)))
4532 uval = insn_extract_operand (insn, operand);
4534 if ((vsel & 0x18) == 0x18)
4536 return 1 << (uval & 31);
4539 if (!(type_mask & (1 << OP_REG_GP)))
4541 return 1 << insn_extract_operand (insn, operand);
4546 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4547 where bit N of OPNO_MASK is set if operand N should be included.
4548 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4552 insn_reg_mask (const struct mips_cl_insn *insn,
4553 unsigned int type_mask, unsigned int opno_mask)
4555 unsigned int opno, reg_mask;
4559 while (opno_mask != 0)
4562 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4569 /* Return the mask of core registers that IP reads. */
4572 gpr_read_mask (const struct mips_cl_insn *ip)
4574 unsigned long pinfo, pinfo2;
4577 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4578 pinfo = ip->insn_mo->pinfo;
4579 pinfo2 = ip->insn_mo->pinfo2;
4580 if (pinfo & INSN_UDI)
4582 /* UDI instructions have traditionally been assumed to read RS
4584 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4585 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4587 if (pinfo & INSN_READ_GPR_24)
4589 if (pinfo2 & INSN2_READ_GPR_16)
4591 if (pinfo2 & INSN2_READ_SP)
4593 if (pinfo2 & INSN2_READ_GPR_31)
4595 /* Don't include register 0. */
4599 /* Return the mask of core registers that IP writes. */
4602 gpr_write_mask (const struct mips_cl_insn *ip)
4604 unsigned long pinfo, pinfo2;
4607 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4608 pinfo = ip->insn_mo->pinfo;
4609 pinfo2 = ip->insn_mo->pinfo2;
4610 if (pinfo & INSN_WRITE_GPR_24)
4612 if (pinfo & INSN_WRITE_GPR_31)
4614 if (pinfo & INSN_UDI)
4615 /* UDI instructions have traditionally been assumed to write to RD. */
4616 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4617 if (pinfo2 & INSN2_WRITE_SP)
4619 /* Don't include register 0. */
4623 /* Return the mask of floating-point registers that IP reads. */
4626 fpr_read_mask (const struct mips_cl_insn *ip)
4628 unsigned long pinfo;
4631 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4632 | (1 << OP_REG_MSA)),
4633 insn_read_mask (ip->insn_mo));
4634 pinfo = ip->insn_mo->pinfo;
4635 /* Conservatively treat all operands to an FP_D instruction are doubles.
4636 (This is overly pessimistic for things like cvt.d.s.) */
4637 if (FPR_SIZE != 64 && (pinfo & FP_D))
4642 /* Return the mask of floating-point registers that IP writes. */
4645 fpr_write_mask (const struct mips_cl_insn *ip)
4647 unsigned long pinfo;
4650 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4651 | (1 << OP_REG_MSA)),
4652 insn_write_mask (ip->insn_mo));
4653 pinfo = ip->insn_mo->pinfo;
4654 /* Conservatively treat all operands to an FP_D instruction are doubles.
4655 (This is overly pessimistic for things like cvt.s.d.) */
4656 if (FPR_SIZE != 64 && (pinfo & FP_D))
4661 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4662 Check whether that is allowed. */
4665 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4667 const char *s = insn->name;
4668 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4670 && mips_opts.oddspreg;
4672 if (insn->pinfo == INSN_MACRO)
4673 /* Let a macro pass, we'll catch it later when it is expanded. */
4676 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4677 otherwise it depends on oddspreg. */
4678 if ((insn->pinfo & FP_S)
4679 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4680 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4681 return FPR_SIZE == 32 || oddspreg;
4683 /* Allow odd registers for single-precision ops and double-precision if the
4684 floating-point registers are 64-bit wide. */
4685 switch (insn->pinfo & (FP_S | FP_D))
4691 return FPR_SIZE == 64;
4696 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4697 s = strchr (insn->name, '.');
4698 if (s != NULL && opnum == 2)
4699 s = strchr (s + 1, '.');
4700 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4703 return FPR_SIZE == 64;
4706 /* Information about an instruction argument that we're trying to match. */
4707 struct mips_arg_info
4709 /* The instruction so far. */
4710 struct mips_cl_insn *insn;
4712 /* The first unconsumed operand token. */
4713 struct mips_operand_token *token;
4715 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4718 /* The 1-based argument number, for error reporting. This does not
4719 count elided optional registers, etc.. */
4722 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4723 unsigned int last_regno;
4725 /* If the first operand was an OP_REG, this is the register that it
4726 specified, otherwise it is ILLEGAL_REG. */
4727 unsigned int dest_regno;
4729 /* The value of the last OP_INT operand. Only used for OP_MSB,
4730 where it gives the lsb position. */
4731 unsigned int last_op_int;
4733 /* If true, match routines should assume that no later instruction
4734 alternative matches and should therefore be as accommodating as
4735 possible. Match routines should not report errors if something
4736 is only invalid for !LAX_MATCH. */
4737 bfd_boolean lax_match;
4739 /* True if a reference to the current AT register was seen. */
4740 bfd_boolean seen_at;
4743 /* Record that the argument is out of range. */
4746 match_out_of_range (struct mips_arg_info *arg)
4748 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4751 /* Record that the argument isn't constant but needs to be. */
4754 match_not_constant (struct mips_arg_info *arg)
4756 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4760 /* Try to match an OT_CHAR token for character CH. Consume the token
4761 and return true on success, otherwise return false. */
4764 match_char (struct mips_arg_info *arg, char ch)
4766 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4776 /* Try to get an expression from the next tokens in ARG. Consume the
4777 tokens and return true on success, storing the expression value in
4778 VALUE and relocation types in R. */
4781 match_expression (struct mips_arg_info *arg, expressionS *value,
4782 bfd_reloc_code_real_type *r)
4784 /* If the next token is a '(' that was parsed as being part of a base
4785 expression, assume we have an elided offset. The later match will fail
4786 if this turns out to be wrong. */
4787 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4789 value->X_op = O_constant;
4790 value->X_add_number = 0;
4791 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4795 /* Reject register-based expressions such as "0+$2" and "(($2))".
4796 For plain registers the default error seems more appropriate. */
4797 if (arg->token->type == OT_INTEGER
4798 && arg->token->u.integer.value.X_op == O_register)
4800 set_insn_error (arg->argnum, _("register value used as expression"));
4804 if (arg->token->type == OT_INTEGER)
4806 *value = arg->token->u.integer.value;
4807 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4813 (arg->argnum, _("operand %d must be an immediate expression"),
4818 /* Try to get a constant expression from the next tokens in ARG. Consume
4819 the tokens and return return true on success, storing the constant value
4820 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4824 match_const_int (struct mips_arg_info *arg, offsetT *value)
4827 bfd_reloc_code_real_type r[3];
4829 if (!match_expression (arg, &ex, r))
4832 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4833 *value = ex.X_add_number;
4836 match_not_constant (arg);
4842 /* Return the RTYPE_* flags for a register operand of type TYPE that
4843 appears in instruction OPCODE. */
4846 convert_reg_type (const struct mips_opcode *opcode,
4847 enum mips_reg_operand_type type)
4852 return RTYPE_NUM | RTYPE_GP;
4855 /* Allow vector register names for MDMX if the instruction is a 64-bit
4856 FPR load, store or move (including moves to and from GPRs). */
4857 if ((mips_opts.ase & ASE_MDMX)
4858 && (opcode->pinfo & FP_D)
4859 && (opcode->pinfo & (INSN_COPROC_MOVE
4860 | INSN_COPROC_MEMORY_DELAY
4863 | INSN_STORE_MEMORY)))
4864 return RTYPE_FPU | RTYPE_VEC;
4868 if (opcode->pinfo & (FP_D | FP_S))
4869 return RTYPE_CCC | RTYPE_FCC;
4873 if (opcode->membership & INSN_5400)
4875 return RTYPE_FPU | RTYPE_VEC;
4881 if (opcode->name[strlen (opcode->name) - 1] == '0')
4882 return RTYPE_NUM | RTYPE_CP0;
4889 return RTYPE_NUM | RTYPE_VI;
4892 return RTYPE_NUM | RTYPE_VF;
4894 case OP_REG_R5900_I:
4895 return RTYPE_R5900_I;
4897 case OP_REG_R5900_Q:
4898 return RTYPE_R5900_Q;
4900 case OP_REG_R5900_R:
4901 return RTYPE_R5900_R;
4903 case OP_REG_R5900_ACC:
4904 return RTYPE_R5900_ACC;
4909 case OP_REG_MSA_CTRL:
4915 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4918 check_regno (struct mips_arg_info *arg,
4919 enum mips_reg_operand_type type, unsigned int regno)
4921 if (AT && type == OP_REG_GP && regno == AT)
4922 arg->seen_at = TRUE;
4924 if (type == OP_REG_FP
4926 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4928 /* This was a warning prior to introducing O32 FPXX and FP64 support
4929 so maintain a warning for FP32 but raise an error for the new
4932 as_warn (_("float register should be even, was %d"), regno);
4934 as_bad (_("float register should be even, was %d"), regno);
4937 if (type == OP_REG_CCC)
4942 name = arg->insn->insn_mo->name;
4943 length = strlen (name);
4944 if ((regno & 1) != 0
4945 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4946 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4947 as_warn (_("condition code register should be even for %s, was %d"),
4950 if ((regno & 3) != 0
4951 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4952 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4957 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4958 a register of type TYPE. Return true on success, storing the register
4959 number in *REGNO and warning about any dubious uses. */
4962 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4963 unsigned int symval, unsigned int *regno)
4965 if (type == OP_REG_VEC)
4966 symval = mips_prefer_vec_regno (symval);
4967 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4970 *regno = symval & RNUM_MASK;
4971 check_regno (arg, type, *regno);
4975 /* Try to interpret the next token in ARG as a register of type TYPE.
4976 Consume the token and return true on success, storing the register
4977 number in *REGNO. Return false on failure. */
4980 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4981 unsigned int *regno)
4983 if (arg->token->type == OT_REG
4984 && match_regno (arg, type, arg->token->u.regno, regno))
4992 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4993 Consume the token and return true on success, storing the register numbers
4994 in *REGNO1 and *REGNO2. Return false on failure. */
4997 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4998 unsigned int *regno1, unsigned int *regno2)
5000 if (match_reg (arg, type, regno1))
5005 if (arg->token->type == OT_REG_RANGE
5006 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5007 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5008 && *regno1 <= *regno2)
5016 /* OP_INT matcher. */
5019 match_int_operand (struct mips_arg_info *arg,
5020 const struct mips_operand *operand_base)
5022 const struct mips_int_operand *operand;
5024 int min_val, max_val, factor;
5027 operand = (const struct mips_int_operand *) operand_base;
5028 factor = 1 << operand->shift;
5029 min_val = mips_int_operand_min (operand);
5030 max_val = mips_int_operand_max (operand);
5032 if (operand_base->lsb == 0
5033 && operand_base->size == 16
5034 && operand->shift == 0
5035 && operand->bias == 0
5036 && (operand->max_val == 32767 || operand->max_val == 65535))
5038 /* The operand can be relocated. */
5039 if (!match_expression (arg, &offset_expr, offset_reloc))
5042 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5043 /* Relocation operators were used. Accept the argument and
5044 leave the relocation value in offset_expr and offset_relocs
5045 for the caller to process. */
5048 if (offset_expr.X_op != O_constant)
5050 /* Accept non-constant operands if no later alternative matches,
5051 leaving it for the caller to process. */
5052 if (!arg->lax_match)
5054 offset_reloc[0] = BFD_RELOC_LO16;
5058 /* Clear the global state; we're going to install the operand
5060 sval = offset_expr.X_add_number;
5061 offset_expr.X_op = O_absent;
5063 /* For compatibility with older assemblers, we accept
5064 0x8000-0xffff as signed 16-bit numbers when only
5065 signed numbers are allowed. */
5068 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5069 if (!arg->lax_match && sval <= max_val)
5075 if (!match_const_int (arg, &sval))
5079 arg->last_op_int = sval;
5081 if (sval < min_val || sval > max_val || sval % factor)
5083 match_out_of_range (arg);
5087 uval = (unsigned int) sval >> operand->shift;
5088 uval -= operand->bias;
5090 /* Handle -mfix-cn63xxp1. */
5092 && mips_fix_cn63xxp1
5093 && !mips_opts.micromips
5094 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5109 /* The rest must be changed to 28. */
5114 insn_insert_operand (arg->insn, operand_base, uval);
5118 /* OP_MAPPED_INT matcher. */
5121 match_mapped_int_operand (struct mips_arg_info *arg,
5122 const struct mips_operand *operand_base)
5124 const struct mips_mapped_int_operand *operand;
5125 unsigned int uval, num_vals;
5128 operand = (const struct mips_mapped_int_operand *) operand_base;
5129 if (!match_const_int (arg, &sval))
5132 num_vals = 1 << operand_base->size;
5133 for (uval = 0; uval < num_vals; uval++)
5134 if (operand->int_map[uval] == sval)
5136 if (uval == num_vals)
5138 match_out_of_range (arg);
5142 insn_insert_operand (arg->insn, operand_base, uval);
5146 /* OP_MSB matcher. */
5149 match_msb_operand (struct mips_arg_info *arg,
5150 const struct mips_operand *operand_base)
5152 const struct mips_msb_operand *operand;
5153 int min_val, max_val, max_high;
5154 offsetT size, sval, high;
5156 operand = (const struct mips_msb_operand *) operand_base;
5157 min_val = operand->bias;
5158 max_val = min_val + (1 << operand_base->size) - 1;
5159 max_high = operand->opsize;
5161 if (!match_const_int (arg, &size))
5164 high = size + arg->last_op_int;
5165 sval = operand->add_lsb ? high : size;
5167 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5169 match_out_of_range (arg);
5172 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5176 /* OP_REG matcher. */
5179 match_reg_operand (struct mips_arg_info *arg,
5180 const struct mips_operand *operand_base)
5182 const struct mips_reg_operand *operand;
5183 unsigned int regno, uval, num_vals;
5185 operand = (const struct mips_reg_operand *) operand_base;
5186 if (!match_reg (arg, operand->reg_type, ®no))
5189 if (operand->reg_map)
5191 num_vals = 1 << operand->root.size;
5192 for (uval = 0; uval < num_vals; uval++)
5193 if (operand->reg_map[uval] == regno)
5195 if (num_vals == uval)
5201 arg->last_regno = regno;
5202 if (arg->opnum == 1)
5203 arg->dest_regno = regno;
5204 insn_insert_operand (arg->insn, operand_base, uval);
5208 /* OP_REG_PAIR matcher. */
5211 match_reg_pair_operand (struct mips_arg_info *arg,
5212 const struct mips_operand *operand_base)
5214 const struct mips_reg_pair_operand *operand;
5215 unsigned int regno1, regno2, uval, num_vals;
5217 operand = (const struct mips_reg_pair_operand *) operand_base;
5218 if (!match_reg (arg, operand->reg_type, ®no1)
5219 || !match_char (arg, ',')
5220 || !match_reg (arg, operand->reg_type, ®no2))
5223 num_vals = 1 << operand_base->size;
5224 for (uval = 0; uval < num_vals; uval++)
5225 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5227 if (uval == num_vals)
5230 insn_insert_operand (arg->insn, operand_base, uval);
5234 /* OP_PCREL matcher. The caller chooses the relocation type. */
5237 match_pcrel_operand (struct mips_arg_info *arg)
5239 bfd_reloc_code_real_type r[3];
5241 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5244 /* OP_PERF_REG matcher. */
5247 match_perf_reg_operand (struct mips_arg_info *arg,
5248 const struct mips_operand *operand)
5252 if (!match_const_int (arg, &sval))
5257 || (mips_opts.arch == CPU_R5900
5258 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5259 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5261 set_insn_error (arg->argnum, _("invalid performance register"));
5265 insn_insert_operand (arg->insn, operand, sval);
5269 /* OP_ADDIUSP matcher. */
5272 match_addiusp_operand (struct mips_arg_info *arg,
5273 const struct mips_operand *operand)
5278 if (!match_const_int (arg, &sval))
5283 match_out_of_range (arg);
5288 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5290 match_out_of_range (arg);
5294 uval = (unsigned int) sval;
5295 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5296 insn_insert_operand (arg->insn, operand, uval);
5300 /* OP_CLO_CLZ_DEST matcher. */
5303 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5304 const struct mips_operand *operand)
5308 if (!match_reg (arg, OP_REG_GP, ®no))
5311 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5315 /* OP_CHECK_PREV matcher. */
5318 match_check_prev_operand (struct mips_arg_info *arg,
5319 const struct mips_operand *operand_base)
5321 const struct mips_check_prev_operand *operand;
5324 operand = (const struct mips_check_prev_operand *) operand_base;
5326 if (!match_reg (arg, OP_REG_GP, ®no))
5329 if (!operand->zero_ok && regno == 0)
5332 if ((operand->less_than_ok && regno < arg->last_regno)
5333 || (operand->greater_than_ok && regno > arg->last_regno)
5334 || (operand->equal_ok && regno == arg->last_regno))
5336 arg->last_regno = regno;
5337 insn_insert_operand (arg->insn, operand_base, regno);
5344 /* OP_SAME_RS_RT matcher. */
5347 match_same_rs_rt_operand (struct mips_arg_info *arg,
5348 const struct mips_operand *operand)
5352 if (!match_reg (arg, OP_REG_GP, ®no))
5357 set_insn_error (arg->argnum, _("the source register must not be $0"));
5361 arg->last_regno = regno;
5363 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5367 /* OP_LWM_SWM_LIST matcher. */
5370 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5371 const struct mips_operand *operand)
5373 unsigned int reglist, sregs, ra, regno1, regno2;
5374 struct mips_arg_info reset;
5377 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5381 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5386 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5389 while (match_char (arg, ',')
5390 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5393 if (operand->size == 2)
5395 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5401 and any permutations of these. */
5402 if ((reglist & 0xfff1ffff) != 0x80010000)
5405 sregs = (reglist >> 17) & 7;
5410 /* The list must include at least one of ra and s0-sN,
5411 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5412 which are $23 and $30 respectively.) E.g.:
5420 and any permutations of these. */
5421 if ((reglist & 0x3f00ffff) != 0)
5424 ra = (reglist >> 27) & 0x10;
5425 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5428 if ((sregs & -sregs) != sregs)
5431 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5435 /* OP_ENTRY_EXIT_LIST matcher. */
5438 match_entry_exit_operand (struct mips_arg_info *arg,
5439 const struct mips_operand *operand)
5442 bfd_boolean is_exit;
5444 /* The format is the same for both ENTRY and EXIT, but the constraints
5446 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5447 mask = (is_exit ? 7 << 3 : 0);
5450 unsigned int regno1, regno2;
5451 bfd_boolean is_freg;
5453 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5455 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5460 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5463 mask |= (5 + regno2) << 3;
5465 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5466 mask |= (regno2 - 3) << 3;
5467 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5468 mask |= (regno2 - 15) << 1;
5469 else if (regno1 == RA && regno2 == RA)
5474 while (match_char (arg, ','));
5476 insn_insert_operand (arg->insn, operand, mask);
5480 /* OP_SAVE_RESTORE_LIST matcher. */
5483 match_save_restore_list_operand (struct mips_arg_info *arg)
5485 unsigned int opcode, args, statics, sregs;
5486 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5489 opcode = arg->insn->insn_opcode;
5491 num_frame_sizes = 0;
5497 unsigned int regno1, regno2;
5499 if (arg->token->type == OT_INTEGER)
5501 /* Handle the frame size. */
5502 if (!match_const_int (arg, &frame_size))
5504 num_frame_sizes += 1;
5508 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5511 while (regno1 <= regno2)
5513 if (regno1 >= 4 && regno1 <= 7)
5515 if (num_frame_sizes == 0)
5517 args |= 1 << (regno1 - 4);
5519 /* statics $a0-$a3 */
5520 statics |= 1 << (regno1 - 4);
5522 else if (regno1 >= 16 && regno1 <= 23)
5524 sregs |= 1 << (regno1 - 16);
5525 else if (regno1 == 30)
5528 else if (regno1 == 31)
5529 /* Add $ra to insn. */
5539 while (match_char (arg, ','));
5541 /* Encode args/statics combination. */
5544 else if (args == 0xf)
5545 /* All $a0-$a3 are args. */
5546 opcode |= MIPS16_ALL_ARGS << 16;
5547 else if (statics == 0xf)
5548 /* All $a0-$a3 are statics. */
5549 opcode |= MIPS16_ALL_STATICS << 16;
5552 /* Count arg registers. */
5562 /* Count static registers. */
5564 while (statics & 0x8)
5566 statics = (statics << 1) & 0xf;
5572 /* Encode args/statics. */
5573 opcode |= ((num_args << 2) | num_statics) << 16;
5576 /* Encode $s0/$s1. */
5577 if (sregs & (1 << 0)) /* $s0 */
5579 if (sregs & (1 << 1)) /* $s1 */
5583 /* Encode $s2-$s8. */
5592 opcode |= num_sregs << 24;
5594 /* Encode frame size. */
5595 if (num_frame_sizes == 0)
5597 set_insn_error (arg->argnum, _("missing frame size"));
5600 if (num_frame_sizes > 1)
5602 set_insn_error (arg->argnum, _("frame size specified twice"));
5605 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5607 set_insn_error (arg->argnum, _("invalid frame size"));
5610 if (frame_size != 128 || (opcode >> 16) != 0)
5613 opcode |= (((frame_size & 0xf0) << 16)
5614 | (frame_size & 0x0f));
5617 /* Finally build the instruction. */
5618 if ((opcode >> 16) != 0 || frame_size == 0)
5619 opcode |= MIPS16_EXTEND;
5620 arg->insn->insn_opcode = opcode;
5624 /* OP_MDMX_IMM_REG matcher. */
5627 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5628 const struct mips_operand *operand)
5630 unsigned int regno, uval;
5632 const struct mips_opcode *opcode;
5634 /* The mips_opcode records whether this is an octobyte or quadhalf
5635 instruction. Start out with that bit in place. */
5636 opcode = arg->insn->insn_mo;
5637 uval = mips_extract_operand (operand, opcode->match);
5638 is_qh = (uval != 0);
5640 if (arg->token->type == OT_REG)
5642 if ((opcode->membership & INSN_5400)
5643 && strcmp (opcode->name, "rzu.ob") == 0)
5645 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5650 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5654 /* Check whether this is a vector register or a broadcast of
5655 a single element. */
5656 if (arg->token->type == OT_INTEGER_INDEX)
5658 if (arg->token->u.index > (is_qh ? 3 : 7))
5660 set_insn_error (arg->argnum, _("invalid element selector"));
5663 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5668 /* A full vector. */
5669 if ((opcode->membership & INSN_5400)
5670 && (strcmp (opcode->name, "sll.ob") == 0
5671 || strcmp (opcode->name, "srl.ob") == 0))
5673 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5679 uval |= MDMX_FMTSEL_VEC_QH << 5;
5681 uval |= MDMX_FMTSEL_VEC_OB << 5;
5689 if (!match_const_int (arg, &sval))
5691 if (sval < 0 || sval > 31)
5693 match_out_of_range (arg);
5696 uval |= (sval & 31);
5698 uval |= MDMX_FMTSEL_IMM_QH << 5;
5700 uval |= MDMX_FMTSEL_IMM_OB << 5;
5702 insn_insert_operand (arg->insn, operand, uval);
5706 /* OP_IMM_INDEX matcher. */
5709 match_imm_index_operand (struct mips_arg_info *arg,
5710 const struct mips_operand *operand)
5712 unsigned int max_val;
5714 if (arg->token->type != OT_INTEGER_INDEX)
5717 max_val = (1 << operand->size) - 1;
5718 if (arg->token->u.index > max_val)
5720 match_out_of_range (arg);
5723 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5728 /* OP_REG_INDEX matcher. */
5731 match_reg_index_operand (struct mips_arg_info *arg,
5732 const struct mips_operand *operand)
5736 if (arg->token->type != OT_REG_INDEX)
5739 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5742 insn_insert_operand (arg->insn, operand, regno);
5747 /* OP_PC matcher. */
5750 match_pc_operand (struct mips_arg_info *arg)
5752 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5760 /* OP_NON_ZERO_REG matcher. */
5763 match_non_zero_reg_operand (struct mips_arg_info *arg,
5764 const struct mips_operand *operand)
5768 if (!match_reg (arg, OP_REG_GP, ®no))
5774 arg->last_regno = regno;
5775 insn_insert_operand (arg->insn, operand, regno);
5779 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5780 register that we need to match. */
5783 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5787 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5790 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5791 the length of the value in bytes (4 for float, 8 for double) and
5792 USING_GPRS says whether the destination is a GPR rather than an FPR.
5794 Return the constant in IMM and OFFSET as follows:
5796 - If the constant should be loaded via memory, set IMM to O_absent and
5797 OFFSET to the memory address.
5799 - Otherwise, if the constant should be loaded into two 32-bit registers,
5800 set IMM to the O_constant to load into the high register and OFFSET
5801 to the corresponding value for the low register.
5803 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5805 These constants only appear as the last operand in an instruction,
5806 and every instruction that accepts them in any variant accepts them
5807 in all variants. This means we don't have to worry about backing out
5808 any changes if the instruction does not match. We just match
5809 unconditionally and report an error if the constant is invalid. */
5812 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5813 expressionS *offset, int length, bfd_boolean using_gprs)
5818 const char *newname;
5819 unsigned char *data;
5821 /* Where the constant is placed is based on how the MIPS assembler
5824 length == 4 && using_gprs -- immediate value only
5825 length == 8 && using_gprs -- .rdata or immediate value
5826 length == 4 && !using_gprs -- .lit4 or immediate value
5827 length == 8 && !using_gprs -- .lit8 or immediate value
5829 The .lit4 and .lit8 sections are only used if permitted by the
5831 if (arg->token->type != OT_FLOAT)
5833 set_insn_error (arg->argnum, _("floating-point expression required"));
5837 gas_assert (arg->token->u.flt.length == length);
5838 data = arg->token->u.flt.data;
5841 /* Handle 32-bit constants for which an immediate value is best. */
5844 || g_switch_value < 4
5845 || (data[0] == 0 && data[1] == 0)
5846 || (data[2] == 0 && data[3] == 0)))
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl32 (data);
5852 imm->X_add_number = bfd_getb32 (data);
5853 offset->X_op = O_absent;
5857 /* Handle 64-bit constants for which an immediate value is best. */
5859 && !mips_disable_float_construction
5860 /* Constants can only be constructed in GPRs and copied to FPRs if the
5861 GPRs are at least as wide as the FPRs or MTHC1 is available.
5862 Unlike most tests for 32-bit floating-point registers this check
5863 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5864 permit 64-bit moves without MXHC1.
5865 Force the constant into memory otherwise. */
5868 || ISA_HAS_MXHC1 (mips_opts.isa)
5870 && ((data[0] == 0 && data[1] == 0)
5871 || (data[2] == 0 && data[3] == 0))
5872 && ((data[4] == 0 && data[5] == 0)
5873 || (data[6] == 0 && data[7] == 0)))
5875 /* The value is simple enough to load with a couple of instructions.
5876 If using 32-bit registers, set IMM to the high order 32 bits and
5877 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5879 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5881 imm->X_op = O_constant;
5882 offset->X_op = O_constant;
5883 if (!target_big_endian)
5885 imm->X_add_number = bfd_getl32 (data + 4);
5886 offset->X_add_number = bfd_getl32 (data);
5890 imm->X_add_number = bfd_getb32 (data);
5891 offset->X_add_number = bfd_getb32 (data + 4);
5893 if (offset->X_add_number == 0)
5894 offset->X_op = O_absent;
5898 imm->X_op = O_constant;
5899 if (!target_big_endian)
5900 imm->X_add_number = bfd_getl64 (data);
5902 imm->X_add_number = bfd_getb64 (data);
5903 offset->X_op = O_absent;
5908 /* Switch to the right section. */
5910 subseg = now_subseg;
5913 gas_assert (!using_gprs && g_switch_value >= 4);
5918 if (using_gprs || g_switch_value < 8)
5919 newname = RDATA_SECTION_NAME;
5924 new_seg = subseg_new (newname, (subsegT) 0);
5925 bfd_set_section_flags (stdoutput, new_seg,
5926 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5927 frag_align (length == 4 ? 2 : 3, 0, 0);
5928 if (strncmp (TARGET_OS, "elf", 3) != 0)
5929 record_alignment (new_seg, 4);
5931 record_alignment (new_seg, length == 4 ? 2 : 3);
5933 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5935 /* Set the argument to the current address in the section. */
5936 imm->X_op = O_absent;
5937 offset->X_op = O_symbol;
5938 offset->X_add_symbol = symbol_temp_new_now ();
5939 offset->X_add_number = 0;
5941 /* Put the floating point number into the section. */
5942 p = frag_more (length);
5943 memcpy (p, data, length);
5945 /* Switch back to the original section. */
5946 subseg_set (seg, subseg);
5950 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5954 match_vu0_suffix_operand (struct mips_arg_info *arg,
5955 const struct mips_operand *operand,
5956 bfd_boolean match_p)
5960 /* The operand can be an XYZW mask or a single 2-bit channel index
5961 (with X being 0). */
5962 gas_assert (operand->size == 2 || operand->size == 4);
5964 /* The suffix can be omitted when it is already part of the opcode. */
5965 if (arg->token->type != OT_CHANNELS)
5968 uval = arg->token->u.channels;
5969 if (operand->size == 2)
5971 /* Check that a single bit is set and convert it into a 2-bit index. */
5972 if ((uval & -uval) != uval)
5974 uval = 4 - ffs (uval);
5977 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5982 insn_insert_operand (arg->insn, operand, uval);
5986 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5987 of the argument text if the match is successful, otherwise return null. */
5990 match_operand (struct mips_arg_info *arg,
5991 const struct mips_operand *operand)
5993 switch (operand->type)
5996 return match_int_operand (arg, operand);
5999 return match_mapped_int_operand (arg, operand);
6002 return match_msb_operand (arg, operand);
6005 case OP_OPTIONAL_REG:
6006 return match_reg_operand (arg, operand);
6009 return match_reg_pair_operand (arg, operand);
6012 return match_pcrel_operand (arg);
6015 return match_perf_reg_operand (arg, operand);
6017 case OP_ADDIUSP_INT:
6018 return match_addiusp_operand (arg, operand);
6020 case OP_CLO_CLZ_DEST:
6021 return match_clo_clz_dest_operand (arg, operand);
6023 case OP_LWM_SWM_LIST:
6024 return match_lwm_swm_list_operand (arg, operand);
6026 case OP_ENTRY_EXIT_LIST:
6027 return match_entry_exit_operand (arg, operand);
6029 case OP_SAVE_RESTORE_LIST:
6030 return match_save_restore_list_operand (arg);
6032 case OP_MDMX_IMM_REG:
6033 return match_mdmx_imm_reg_operand (arg, operand);
6035 case OP_REPEAT_DEST_REG:
6036 return match_tied_reg_operand (arg, arg->dest_regno);
6038 case OP_REPEAT_PREV_REG:
6039 return match_tied_reg_operand (arg, arg->last_regno);
6042 return match_pc_operand (arg);
6045 return match_vu0_suffix_operand (arg, operand, FALSE);
6047 case OP_VU0_MATCH_SUFFIX:
6048 return match_vu0_suffix_operand (arg, operand, TRUE);
6051 return match_imm_index_operand (arg, operand);
6054 return match_reg_index_operand (arg, operand);
6057 return match_same_rs_rt_operand (arg, operand);
6060 return match_check_prev_operand (arg, operand);
6062 case OP_NON_ZERO_REG:
6063 return match_non_zero_reg_operand (arg, operand);
6068 /* ARG is the state after successfully matching an instruction.
6069 Issue any queued-up warnings. */
6072 check_completed_insn (struct mips_arg_info *arg)
6077 as_warn (_("used $at without \".set noat\""));
6079 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6083 /* Return true if modifying general-purpose register REG needs a delay. */
6086 reg_needs_delay (unsigned int reg)
6088 unsigned long prev_pinfo;
6090 prev_pinfo = history[0].insn_mo->pinfo;
6091 if (!mips_opts.noreorder
6092 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6093 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6094 && (gpr_write_mask (&history[0]) & (1 << reg)))
6100 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6101 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6102 by VR4120 errata. */
6105 classify_vr4120_insn (const char *name)
6107 if (strncmp (name, "macc", 4) == 0)
6108 return FIX_VR4120_MACC;
6109 if (strncmp (name, "dmacc", 5) == 0)
6110 return FIX_VR4120_DMACC;
6111 if (strncmp (name, "mult", 4) == 0)
6112 return FIX_VR4120_MULT;
6113 if (strncmp (name, "dmult", 5) == 0)
6114 return FIX_VR4120_DMULT;
6115 if (strstr (name, "div"))
6116 return FIX_VR4120_DIV;
6117 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6118 return FIX_VR4120_MTHILO;
6119 return NUM_FIX_VR4120_CLASSES;
6122 #define INSN_ERET 0x42000018
6123 #define INSN_DERET 0x4200001f
6124 #define INSN_DMULT 0x1c
6125 #define INSN_DMULTU 0x1d
6127 /* Return the number of instructions that must separate INSN1 and INSN2,
6128 where INSN1 is the earlier instruction. Return the worst-case value
6129 for any INSN2 if INSN2 is null. */
6132 insns_between (const struct mips_cl_insn *insn1,
6133 const struct mips_cl_insn *insn2)
6135 unsigned long pinfo1, pinfo2;
6138 /* If INFO2 is null, pessimistically assume that all flags are set for
6139 the second instruction. */
6140 pinfo1 = insn1->insn_mo->pinfo;
6141 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6143 /* For most targets, write-after-read dependencies on the HI and LO
6144 registers must be separated by at least two instructions. */
6145 if (!hilo_interlocks)
6147 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6149 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6153 /* If we're working around r7000 errata, there must be two instructions
6154 between an mfhi or mflo and any instruction that uses the result. */
6155 if (mips_7000_hilo_fix
6156 && !mips_opts.micromips
6157 && MF_HILO_INSN (pinfo1)
6158 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6161 /* If we're working around 24K errata, one instruction is required
6162 if an ERET or DERET is followed by a branch instruction. */
6163 if (mips_fix_24k && !mips_opts.micromips)
6165 if (insn1->insn_opcode == INSN_ERET
6166 || insn1->insn_opcode == INSN_DERET)
6169 || insn2->insn_opcode == INSN_ERET
6170 || insn2->insn_opcode == INSN_DERET
6171 || delayed_branch_p (insn2))
6176 /* If we're working around PMC RM7000 errata, there must be three
6177 nops between a dmult and a load instruction. */
6178 if (mips_fix_rm7000 && !mips_opts.micromips)
6180 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6181 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6183 if (pinfo2 & INSN_LOAD_MEMORY)
6188 /* If working around VR4120 errata, check for combinations that need
6189 a single intervening instruction. */
6190 if (mips_fix_vr4120 && !mips_opts.micromips)
6192 unsigned int class1, class2;
6194 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6195 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6199 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6200 if (vr4120_conflicts[class1] & (1 << class2))
6205 if (!HAVE_CODE_COMPRESSION)
6207 /* Check for GPR or coprocessor load delays. All such delays
6208 are on the RT register. */
6209 /* Itbl support may require additional care here. */
6210 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6211 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6213 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6217 /* Check for generic coprocessor hazards.
6219 This case is not handled very well. There is no special
6220 knowledge of CP0 handling, and the coprocessors other than
6221 the floating point unit are not distinguished at all. */
6222 /* Itbl support may require additional care here. FIXME!
6223 Need to modify this to include knowledge about
6224 user specified delays! */
6225 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6226 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6228 /* Handle cases where INSN1 writes to a known general coprocessor
6229 register. There must be a one instruction delay before INSN2
6230 if INSN2 reads that register, otherwise no delay is needed. */
6231 mask = fpr_write_mask (insn1);
6234 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6239 /* Read-after-write dependencies on the control registers
6240 require a two-instruction gap. */
6241 if ((pinfo1 & INSN_WRITE_COND_CODE)
6242 && (pinfo2 & INSN_READ_COND_CODE))
6245 /* We don't know exactly what INSN1 does. If INSN2 is
6246 also a coprocessor instruction, assume there must be
6247 a one instruction gap. */
6248 if (pinfo2 & INSN_COP)
6253 /* Check for read-after-write dependencies on the coprocessor
6254 control registers in cases where INSN1 does not need a general
6255 coprocessor delay. This means that INSN1 is a floating point
6256 comparison instruction. */
6257 /* Itbl support may require additional care here. */
6258 else if (!cop_interlocks
6259 && (pinfo1 & INSN_WRITE_COND_CODE)
6260 && (pinfo2 & INSN_READ_COND_CODE))
6264 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6265 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6267 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6268 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6269 || (insn2 && delayed_branch_p (insn2))))
6275 /* Return the number of nops that would be needed to work around the
6276 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6277 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6278 that are contained within the first IGNORE instructions of HIST. */
6281 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6282 const struct mips_cl_insn *insn)
6287 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6288 are not affected by the errata. */
6290 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6291 || strcmp (insn->insn_mo->name, "mtlo") == 0
6292 || strcmp (insn->insn_mo->name, "mthi") == 0))
6295 /* Search for the first MFLO or MFHI. */
6296 for (i = 0; i < MAX_VR4130_NOPS; i++)
6297 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6299 /* Extract the destination register. */
6300 mask = gpr_write_mask (&hist[i]);
6302 /* No nops are needed if INSN reads that register. */
6303 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6306 /* ...or if any of the intervening instructions do. */
6307 for (j = 0; j < i; j++)
6308 if (gpr_read_mask (&hist[j]) & mask)
6312 return MAX_VR4130_NOPS - i;
6317 #define BASE_REG_EQ(INSN1, INSN2) \
6318 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6319 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6321 /* Return the minimum alignment for this store instruction. */
6324 fix_24k_align_to (const struct mips_opcode *mo)
6326 if (strcmp (mo->name, "sh") == 0)
6329 if (strcmp (mo->name, "swc1") == 0
6330 || strcmp (mo->name, "swc2") == 0
6331 || strcmp (mo->name, "sw") == 0
6332 || strcmp (mo->name, "sc") == 0
6333 || strcmp (mo->name, "s.s") == 0)
6336 if (strcmp (mo->name, "sdc1") == 0
6337 || strcmp (mo->name, "sdc2") == 0
6338 || strcmp (mo->name, "s.d") == 0)
6345 struct fix_24k_store_info
6347 /* Immediate offset, if any, for this store instruction. */
6349 /* Alignment required by this store instruction. */
6351 /* True for register offsets. */
6352 int register_offset;
6355 /* Comparison function used by qsort. */
6358 fix_24k_sort (const void *a, const void *b)
6360 const struct fix_24k_store_info *pos1 = a;
6361 const struct fix_24k_store_info *pos2 = b;
6363 return (pos1->off - pos2->off);
6366 /* INSN is a store instruction. Try to record the store information
6367 in STINFO. Return false if the information isn't known. */
6370 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6371 const struct mips_cl_insn *insn)
6373 /* The instruction must have a known offset. */
6374 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6377 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6378 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6382 /* Return the number of nops that would be needed to work around the 24k
6383 "lost data on stores during refill" errata if instruction INSN
6384 immediately followed the 2 instructions described by HIST.
6385 Ignore hazards that are contained within the first IGNORE
6386 instructions of HIST.
6388 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6389 for the data cache refills and store data. The following describes
6390 the scenario where the store data could be lost.
6392 * A data cache miss, due to either a load or a store, causing fill
6393 data to be supplied by the memory subsystem
6394 * The first three doublewords of fill data are returned and written
6396 * A sequence of four stores occurs in consecutive cycles around the
6397 final doubleword of the fill:
6401 * Zero, One or more instructions
6404 The four stores A-D must be to different doublewords of the line that
6405 is being filled. The fourth instruction in the sequence above permits
6406 the fill of the final doubleword to be transferred from the FSB into
6407 the cache. In the sequence above, the stores may be either integer
6408 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6409 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6410 different doublewords on the line. If the floating point unit is
6411 running in 1:2 mode, it is not possible to create the sequence above
6412 using only floating point store instructions.
6414 In this case, the cache line being filled is incorrectly marked
6415 invalid, thereby losing the data from any store to the line that
6416 occurs between the original miss and the completion of the five
6417 cycle sequence shown above.
6419 The workarounds are:
6421 * Run the data cache in write-through mode.
6422 * Insert a non-store instruction between
6423 Store A and Store B or Store B and Store C. */
6426 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6427 const struct mips_cl_insn *insn)
6429 struct fix_24k_store_info pos[3];
6430 int align, i, base_offset;
6435 /* If the previous instruction wasn't a store, there's nothing to
6437 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6440 /* If the instructions after the previous one are unknown, we have
6441 to assume the worst. */
6445 /* Check whether we are dealing with three consecutive stores. */
6446 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6447 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6450 /* If we don't know the relationship between the store addresses,
6451 assume the worst. */
6452 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6453 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6456 if (!fix_24k_record_store_info (&pos[0], insn)
6457 || !fix_24k_record_store_info (&pos[1], &hist[0])
6458 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6461 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6463 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6464 X bytes and such that the base register + X is known to be aligned
6467 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6471 align = pos[0].align_to;
6472 base_offset = pos[0].off;
6473 for (i = 1; i < 3; i++)
6474 if (align < pos[i].align_to)
6476 align = pos[i].align_to;
6477 base_offset = pos[i].off;
6479 for (i = 0; i < 3; i++)
6480 pos[i].off -= base_offset;
6483 pos[0].off &= ~align + 1;
6484 pos[1].off &= ~align + 1;
6485 pos[2].off &= ~align + 1;
6487 /* If any two stores write to the same chunk, they also write to the
6488 same doubleword. The offsets are still sorted at this point. */
6489 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6492 /* A range of at least 9 bytes is needed for the stores to be in
6493 non-overlapping doublewords. */
6494 if (pos[2].off - pos[0].off <= 8)
6497 if (pos[2].off - pos[1].off >= 24
6498 || pos[1].off - pos[0].off >= 24
6499 || pos[2].off - pos[0].off >= 32)
6505 /* Return the number of nops that would be needed if instruction INSN
6506 immediately followed the MAX_NOPS instructions given by HIST,
6507 where HIST[0] is the most recent instruction. Ignore hazards
6508 between INSN and the first IGNORE instructions in HIST.
6510 If INSN is null, return the worse-case number of nops for any
6514 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6515 const struct mips_cl_insn *insn)
6517 int i, nops, tmp_nops;
6520 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6522 tmp_nops = insns_between (hist + i, insn) - i;
6523 if (tmp_nops > nops)
6527 if (mips_fix_vr4130 && !mips_opts.micromips)
6529 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6530 if (tmp_nops > nops)
6534 if (mips_fix_24k && !mips_opts.micromips)
6536 tmp_nops = nops_for_24k (ignore, hist, insn);
6537 if (tmp_nops > nops)
6544 /* The variable arguments provide NUM_INSNS extra instructions that
6545 might be added to HIST. Return the largest number of nops that
6546 would be needed after the extended sequence, ignoring hazards
6547 in the first IGNORE instructions. */
6550 nops_for_sequence (int num_insns, int ignore,
6551 const struct mips_cl_insn *hist, ...)
6554 struct mips_cl_insn buffer[MAX_NOPS];
6555 struct mips_cl_insn *cursor;
6558 va_start (args, hist);
6559 cursor = buffer + num_insns;
6560 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6561 while (cursor > buffer)
6562 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6564 nops = nops_for_insn (ignore, buffer, NULL);
6569 /* Like nops_for_insn, but if INSN is a branch, take into account the
6570 worst-case delay for the branch target. */
6573 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6574 const struct mips_cl_insn *insn)
6578 nops = nops_for_insn (ignore, hist, insn);
6579 if (delayed_branch_p (insn))
6581 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6582 hist, insn, get_delay_slot_nop (insn));
6583 if (tmp_nops > nops)
6586 else if (compact_branch_p (insn))
6588 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6589 if (tmp_nops > nops)
6595 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6598 fix_loongson2f_nop (struct mips_cl_insn * ip)
6600 gas_assert (!HAVE_CODE_COMPRESSION);
6601 if (strcmp (ip->insn_mo->name, "nop") == 0)
6602 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6605 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6606 jr target pc &= 'hffff_ffff_cfff_ffff. */
6609 fix_loongson2f_jump (struct mips_cl_insn * ip)
6611 gas_assert (!HAVE_CODE_COMPRESSION);
6612 if (strcmp (ip->insn_mo->name, "j") == 0
6613 || strcmp (ip->insn_mo->name, "jr") == 0
6614 || strcmp (ip->insn_mo->name, "jalr") == 0)
6622 sreg = EXTRACT_OPERAND (0, RS, *ip);
6623 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6626 ep.X_op = O_constant;
6627 ep.X_add_number = 0xcfff0000;
6628 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6629 ep.X_add_number = 0xffff;
6630 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6631 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6636 fix_loongson2f (struct mips_cl_insn * ip)
6638 if (mips_fix_loongson2f_nop)
6639 fix_loongson2f_nop (ip);
6641 if (mips_fix_loongson2f_jump)
6642 fix_loongson2f_jump (ip);
6645 /* IP is a branch that has a delay slot, and we need to fill it
6646 automatically. Return true if we can do that by swapping IP
6647 with the previous instruction.
6648 ADDRESS_EXPR is an operand of the instruction to be used with
6652 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6653 bfd_reloc_code_real_type *reloc_type)
6655 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6656 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6657 unsigned int fpr_read, prev_fpr_write;
6659 /* -O2 and above is required for this optimization. */
6660 if (mips_optimize < 2)
6663 /* If we have seen .set volatile or .set nomove, don't optimize. */
6664 if (mips_opts.nomove)
6667 /* We can't swap if the previous instruction's position is fixed. */
6668 if (history[0].fixed_p)
6671 /* If the previous previous insn was in a .set noreorder, we can't
6672 swap. Actually, the MIPS assembler will swap in this situation.
6673 However, gcc configured -with-gnu-as will generate code like
6681 in which we can not swap the bne and INSN. If gcc is not configured
6682 -with-gnu-as, it does not output the .set pseudo-ops. */
6683 if (history[1].noreorder_p)
6686 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6687 This means that the previous instruction was a 4-byte one anyhow. */
6688 if (mips_opts.mips16 && history[0].fixp[0])
6691 /* If the branch is itself the target of a branch, we can not swap.
6692 We cheat on this; all we check for is whether there is a label on
6693 this instruction. If there are any branches to anything other than
6694 a label, users must use .set noreorder. */
6695 if (seg_info (now_seg)->label_list)
6698 /* If the previous instruction is in a variant frag other than this
6699 branch's one, we cannot do the swap. This does not apply to
6700 MIPS16 code, which uses variant frags for different purposes. */
6701 if (!mips_opts.mips16
6703 && history[0].frag->fr_type == rs_machine_dependent)
6706 /* We do not swap with instructions that cannot architecturally
6707 be placed in a branch delay slot, such as SYNC or ERET. We
6708 also refrain from swapping with a trap instruction, since it
6709 complicates trap handlers to have the trap instruction be in
6711 prev_pinfo = history[0].insn_mo->pinfo;
6712 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6715 /* Check for conflicts between the branch and the instructions
6716 before the candidate delay slot. */
6717 if (nops_for_insn (0, history + 1, ip) > 0)
6720 /* Check for conflicts between the swapped sequence and the
6721 target of the branch. */
6722 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6725 /* If the branch reads a register that the previous
6726 instruction sets, we can not swap. */
6727 gpr_read = gpr_read_mask (ip);
6728 prev_gpr_write = gpr_write_mask (&history[0]);
6729 if (gpr_read & prev_gpr_write)
6732 fpr_read = fpr_read_mask (ip);
6733 prev_fpr_write = fpr_write_mask (&history[0]);
6734 if (fpr_read & prev_fpr_write)
6737 /* If the branch writes a register that the previous
6738 instruction sets, we can not swap. */
6739 gpr_write = gpr_write_mask (ip);
6740 if (gpr_write & prev_gpr_write)
6743 /* If the branch writes a register that the previous
6744 instruction reads, we can not swap. */
6745 prev_gpr_read = gpr_read_mask (&history[0]);
6746 if (gpr_write & prev_gpr_read)
6749 /* If one instruction sets a condition code and the
6750 other one uses a condition code, we can not swap. */
6751 pinfo = ip->insn_mo->pinfo;
6752 if ((pinfo & INSN_READ_COND_CODE)
6753 && (prev_pinfo & INSN_WRITE_COND_CODE))
6755 if ((pinfo & INSN_WRITE_COND_CODE)
6756 && (prev_pinfo & INSN_READ_COND_CODE))
6759 /* If the previous instruction uses the PC, we can not swap. */
6760 prev_pinfo2 = history[0].insn_mo->pinfo2;
6761 if (prev_pinfo2 & INSN2_READ_PC)
6764 /* If the previous instruction has an incorrect size for a fixed
6765 branch delay slot in microMIPS mode, we cannot swap. */
6766 pinfo2 = ip->insn_mo->pinfo2;
6767 if (mips_opts.micromips
6768 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6769 && insn_length (history) != 2)
6771 if (mips_opts.micromips
6772 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6773 && insn_length (history) != 4)
6776 /* On R5900 short loops need to be fixed by inserting a nop in
6777 the branch delay slots.
6778 A short loop can be terminated too early. */
6779 if (mips_opts.arch == CPU_R5900
6780 /* Check if instruction has a parameter, ignore "j $31". */
6781 && (address_expr != NULL)
6782 /* Parameter must be 16 bit. */
6783 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6784 /* Branch to same segment. */
6785 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6786 /* Branch to same code fragment. */
6787 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6788 /* Can only calculate branch offset if value is known. */
6789 && symbol_constant_p (address_expr->X_add_symbol)
6790 /* Check if branch is really conditional. */
6791 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6792 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6793 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6796 /* Check if loop is shorter than 6 instructions including
6797 branch and delay slot. */
6798 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6805 /* When the loop includes branches or jumps,
6806 it is not a short loop. */
6807 for (i = 0; i < (distance / 4); i++)
6809 if ((history[i].cleared_p)
6810 || delayed_branch_p (&history[i]))
6818 /* Insert nop after branch to fix short loop. */
6827 /* Decide how we should add IP to the instruction stream.
6828 ADDRESS_EXPR is an operand of the instruction to be used with
6831 static enum append_method
6832 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6833 bfd_reloc_code_real_type *reloc_type)
6835 /* The relaxed version of a macro sequence must be inherently
6837 if (mips_relax.sequence == 2)
6840 /* We must not dabble with instructions in a ".set noreorder" block. */
6841 if (mips_opts.noreorder)
6844 /* Otherwise, it's our responsibility to fill branch delay slots. */
6845 if (delayed_branch_p (ip))
6847 if (!branch_likely_p (ip)
6848 && can_swap_branch_p (ip, address_expr, reloc_type))
6851 if (mips_opts.mips16
6852 && ISA_SUPPORTS_MIPS16E
6853 && gpr_read_mask (ip) != 0)
6854 return APPEND_ADD_COMPACT;
6856 if (mips_opts.micromips
6857 && ((ip->insn_opcode & 0xffe0) == 0x4580
6858 || (!forced_insn_length
6859 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6860 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6861 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6862 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6863 return APPEND_ADD_COMPACT;
6865 return APPEND_ADD_WITH_NOP;
6871 /* IP is an instruction whose opcode we have just changed, END points
6872 to the end of the opcode table processed. Point IP->insn_mo to the
6873 new opcode's definition. */
6876 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6878 const struct mips_opcode *mo;
6880 for (mo = ip->insn_mo; mo < end; mo++)
6881 if (mo->pinfo != INSN_MACRO
6882 && (ip->insn_opcode & mo->mask) == mo->match)
6890 /* IP is a MIPS16 instruction whose opcode we have just changed.
6891 Point IP->insn_mo to the new opcode's definition. */
6894 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6896 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6899 /* IP is a microMIPS instruction whose opcode we have just changed.
6900 Point IP->insn_mo to the new opcode's definition. */
6903 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6905 find_altered_opcode (ip, µmips_opcodes[bfd_micromips_num_opcodes]);
6908 /* For microMIPS macros, we need to generate a local number label
6909 as the target of branches. */
6910 #define MICROMIPS_LABEL_CHAR '\037'
6911 static unsigned long micromips_target_label;
6912 static char micromips_target_name[32];
6915 micromips_label_name (void)
6917 char *p = micromips_target_name;
6918 char symbol_name_temporary[24];
6926 l = micromips_target_label;
6927 #ifdef LOCAL_LABEL_PREFIX
6928 *p++ = LOCAL_LABEL_PREFIX;
6931 *p++ = MICROMIPS_LABEL_CHAR;
6934 symbol_name_temporary[i++] = l % 10 + '0';
6939 *p++ = symbol_name_temporary[--i];
6942 return micromips_target_name;
6946 micromips_label_expr (expressionS *label_expr)
6948 label_expr->X_op = O_symbol;
6949 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6950 label_expr->X_add_number = 0;
6954 micromips_label_inc (void)
6956 micromips_target_label++;
6957 *micromips_target_name = '\0';
6961 micromips_add_label (void)
6965 s = colon (micromips_label_name ());
6966 micromips_label_inc ();
6967 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6970 /* If assembling microMIPS code, then return the microMIPS reloc
6971 corresponding to the requested one if any. Otherwise return
6972 the reloc unchanged. */
6974 static bfd_reloc_code_real_type
6975 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6977 static const bfd_reloc_code_real_type relocs[][2] =
6979 /* Keep sorted incrementally by the left-hand key. */
6980 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6981 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6982 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6983 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6984 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6985 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6986 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6987 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6988 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6989 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6990 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6991 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6992 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6993 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6994 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6995 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6996 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6997 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6998 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6999 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7000 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7001 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7002 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7003 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7004 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7005 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7006 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7008 bfd_reloc_code_real_type r;
7011 if (!mips_opts.micromips)
7013 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7019 return relocs[i][1];
7024 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7025 Return true on success, storing the resolved value in RESULT. */
7028 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7033 case BFD_RELOC_MIPS_HIGHEST:
7034 case BFD_RELOC_MICROMIPS_HIGHEST:
7035 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7038 case BFD_RELOC_MIPS_HIGHER:
7039 case BFD_RELOC_MICROMIPS_HIGHER:
7040 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7043 case BFD_RELOC_HI16_S:
7044 case BFD_RELOC_HI16_S_PCREL:
7045 case BFD_RELOC_MICROMIPS_HI16_S:
7046 case BFD_RELOC_MIPS16_HI16_S:
7047 *result = ((operand + 0x8000) >> 16) & 0xffff;
7050 case BFD_RELOC_HI16:
7051 case BFD_RELOC_MICROMIPS_HI16:
7052 case BFD_RELOC_MIPS16_HI16:
7053 *result = (operand >> 16) & 0xffff;
7056 case BFD_RELOC_LO16:
7057 case BFD_RELOC_LO16_PCREL:
7058 case BFD_RELOC_MICROMIPS_LO16:
7059 case BFD_RELOC_MIPS16_LO16:
7060 *result = operand & 0xffff;
7063 case BFD_RELOC_UNUSED:
7072 /* Output an instruction. IP is the instruction information.
7073 ADDRESS_EXPR is an operand of the instruction to be used with
7074 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7075 a macro expansion. */
7078 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7079 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7081 unsigned long prev_pinfo2, pinfo;
7082 bfd_boolean relaxed_branch = FALSE;
7083 enum append_method method;
7084 bfd_boolean relax32;
7087 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7088 fix_loongson2f (ip);
7090 file_ase_mips16 |= mips_opts.mips16;
7091 file_ase_micromips |= mips_opts.micromips;
7093 prev_pinfo2 = history[0].insn_mo->pinfo2;
7094 pinfo = ip->insn_mo->pinfo;
7096 /* Don't raise alarm about `nods' frags as they'll fill in the right
7097 kind of nop in relaxation if required. */
7098 if (mips_opts.micromips
7100 && !(history[0].frag
7101 && history[0].frag->fr_type == rs_machine_dependent
7102 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7103 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7104 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7105 && micromips_insn_length (ip->insn_mo) != 2)
7106 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7107 && micromips_insn_length (ip->insn_mo) != 4)))
7108 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7109 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7111 if (address_expr == NULL)
7113 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7114 && reloc_type[1] == BFD_RELOC_UNUSED
7115 && reloc_type[2] == BFD_RELOC_UNUSED
7116 && address_expr->X_op == O_constant)
7118 switch (*reloc_type)
7120 case BFD_RELOC_MIPS_JMP:
7124 /* Shift is 2, unusually, for microMIPS JALX. */
7125 shift = (mips_opts.micromips
7126 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7127 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7128 as_bad (_("jump to misaligned address (0x%lx)"),
7129 (unsigned long) address_expr->X_add_number);
7130 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7136 case BFD_RELOC_MIPS16_JMP:
7137 if ((address_expr->X_add_number & 3) != 0)
7138 as_bad (_("jump to misaligned address (0x%lx)"),
7139 (unsigned long) address_expr->X_add_number);
7141 (((address_expr->X_add_number & 0x7c0000) << 3)
7142 | ((address_expr->X_add_number & 0xf800000) >> 7)
7143 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7147 case BFD_RELOC_16_PCREL_S2:
7151 shift = mips_opts.micromips ? 1 : 2;
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if (!mips_relax_branch)
7157 if ((address_expr->X_add_number + (1 << (shift + 15)))
7158 & ~((1 << (shift + 16)) - 1))
7159 as_bad (_("branch address range overflow (0x%lx)"),
7160 (unsigned long) address_expr->X_add_number);
7161 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7167 case BFD_RELOC_MIPS_21_PCREL_S2:
7172 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7173 as_bad (_("branch to misaligned address (0x%lx)"),
7174 (unsigned long) address_expr->X_add_number);
7175 if ((address_expr->X_add_number + (1 << (shift + 20)))
7176 & ~((1 << (shift + 21)) - 1))
7177 as_bad (_("branch address range overflow (0x%lx)"),
7178 (unsigned long) address_expr->X_add_number);
7179 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7184 case BFD_RELOC_MIPS_26_PCREL_S2:
7189 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7190 as_bad (_("branch to misaligned address (0x%lx)"),
7191 (unsigned long) address_expr->X_add_number);
7192 if ((address_expr->X_add_number + (1 << (shift + 25)))
7193 & ~((1 << (shift + 26)) - 1))
7194 as_bad (_("branch address range overflow (0x%lx)"),
7195 (unsigned long) address_expr->X_add_number);
7196 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7205 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7208 ip->insn_opcode |= value & 0xffff;
7216 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7218 /* There are a lot of optimizations we could do that we don't.
7219 In particular, we do not, in general, reorder instructions.
7220 If you use gcc with optimization, it will reorder
7221 instructions and generally do much more optimization then we
7222 do here; repeating all that work in the assembler would only
7223 benefit hand written assembly code, and does not seem worth
7225 int nops = (mips_optimize == 0
7226 ? nops_for_insn (0, history, NULL)
7227 : nops_for_insn_or_target (0, history, ip));
7231 unsigned long old_frag_offset;
7234 old_frag = frag_now;
7235 old_frag_offset = frag_now_fix ();
7237 for (i = 0; i < nops; i++)
7238 add_fixed_insn (NOP_INSN);
7239 insert_into_history (0, nops, NOP_INSN);
7243 listing_prev_line ();
7244 /* We may be at the start of a variant frag. In case we
7245 are, make sure there is enough space for the frag
7246 after the frags created by listing_prev_line. The
7247 argument to frag_grow here must be at least as large
7248 as the argument to all other calls to frag_grow in
7249 this file. We don't have to worry about being in the
7250 middle of a variant frag, because the variants insert
7251 all needed nop instructions themselves. */
7255 mips_move_text_labels ();
7257 #ifndef NO_ECOFF_DEBUGGING
7258 if (ECOFF_DEBUGGING)
7259 ecoff_fix_loc (old_frag, old_frag_offset);
7263 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7267 /* Work out how many nops in prev_nop_frag are needed by IP,
7268 ignoring hazards generated by the first prev_nop_frag_since
7270 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7271 gas_assert (nops <= prev_nop_frag_holds);
7273 /* Enforce NOPS as a minimum. */
7274 if (nops > prev_nop_frag_required)
7275 prev_nop_frag_required = nops;
7277 if (prev_nop_frag_holds == prev_nop_frag_required)
7279 /* Settle for the current number of nops. Update the history
7280 accordingly (for the benefit of any future .set reorder code). */
7281 prev_nop_frag = NULL;
7282 insert_into_history (prev_nop_frag_since,
7283 prev_nop_frag_holds, NOP_INSN);
7287 /* Allow this instruction to replace one of the nops that was
7288 tentatively added to prev_nop_frag. */
7289 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7290 prev_nop_frag_holds--;
7291 prev_nop_frag_since++;
7295 method = get_append_method (ip, address_expr, reloc_type);
7296 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7298 dwarf2_emit_insn (0);
7299 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7300 so "move" the instruction address accordingly.
7302 Also, it doesn't seem appropriate for the assembler to reorder .loc
7303 entries. If this instruction is a branch that we are going to swap
7304 with the previous instruction, the two instructions should be
7305 treated as a unit, and the debug information for both instructions
7306 should refer to the start of the branch sequence. Using the
7307 current position is certainly wrong when swapping a 32-bit branch
7308 and a 16-bit delay slot, since the current position would then be
7309 in the middle of a branch. */
7310 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7312 relax32 = (mips_relax_branch
7313 /* Don't try branch relaxation within .set nomacro, or within
7314 .set noat if we use $at for PIC computations. If it turns
7315 out that the branch was out-of-range, we'll get an error. */
7316 && !mips_opts.warn_about_macros
7317 && (mips_opts.at || mips_pic == NO_PIC)
7318 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7319 as they have no complementing branches. */
7320 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7322 if (!HAVE_CODE_COMPRESSION
7325 && *reloc_type == BFD_RELOC_16_PCREL_S2
7326 && delayed_branch_p (ip))
7328 relaxed_branch = TRUE;
7329 add_relaxed_insn (ip, (relaxed_branch_length
7331 uncond_branch_p (ip) ? -1
7332 : branch_likely_p (ip) ? 1
7336 uncond_branch_p (ip),
7337 branch_likely_p (ip),
7338 pinfo & INSN_WRITE_GPR_31,
7340 address_expr->X_add_symbol,
7341 address_expr->X_add_number);
7342 *reloc_type = BFD_RELOC_UNUSED;
7344 else if (mips_opts.micromips
7346 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7347 || *reloc_type > BFD_RELOC_UNUSED)
7348 && (delayed_branch_p (ip) || compact_branch_p (ip))
7349 /* Don't try branch relaxation when users specify
7350 16-bit/32-bit instructions. */
7351 && !forced_insn_length)
7353 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7354 && *reloc_type > BFD_RELOC_UNUSED);
7355 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7356 int uncond = uncond_branch_p (ip) ? -1 : 0;
7357 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7358 int nods = method == APPEND_ADD_WITH_NOP;
7359 int al = pinfo & INSN_WRITE_GPR_31;
7360 int length32 = nods ? 8 : 4;
7362 gas_assert (address_expr != NULL);
7363 gas_assert (!mips_relax.sequence);
7365 relaxed_branch = TRUE;
7367 method = APPEND_ADD;
7369 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7370 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7371 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7372 uncond, compact, al, nods,
7374 address_expr->X_add_symbol,
7375 address_expr->X_add_number);
7376 *reloc_type = BFD_RELOC_UNUSED;
7378 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7380 bfd_boolean require_unextended;
7381 bfd_boolean require_extended;
7385 if (forced_insn_length != 0)
7387 require_unextended = forced_insn_length == 2;
7388 require_extended = forced_insn_length == 4;
7392 require_unextended = (mips_opts.noautoextend
7393 && !mips_opcode_32bit_p (ip->insn_mo));
7394 require_extended = 0;
7397 /* We need to set up a variant frag. */
7398 gas_assert (address_expr != NULL);
7399 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7400 symbol created by `make_expr_symbol' may not get a necessary
7401 external relocation produced. */
7402 if (address_expr->X_op == O_symbol)
7404 symbol = address_expr->X_add_symbol;
7405 offset = address_expr->X_add_number;
7409 symbol = make_expr_symbol (address_expr);
7412 add_relaxed_insn (ip, 4, 0,
7414 (*reloc_type - BFD_RELOC_UNUSED,
7415 require_unextended, require_extended,
7416 delayed_branch_p (&history[0]),
7417 history[0].mips16_absolute_jump_p),
7420 else if (mips_opts.mips16 && insn_length (ip) == 2)
7422 if (!delayed_branch_p (ip))
7423 /* Make sure there is enough room to swap this instruction with
7424 a following jump instruction. */
7426 add_fixed_insn (ip);
7430 if (mips_opts.mips16
7431 && mips_opts.noreorder
7432 && delayed_branch_p (&history[0]))
7433 as_warn (_("extended instruction in delay slot"));
7435 if (mips_relax.sequence)
7437 /* If we've reached the end of this frag, turn it into a variant
7438 frag and record the information for the instructions we've
7440 if (frag_room () < 4)
7441 relax_close_frag ();
7442 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7445 if (mips_relax.sequence != 2)
7447 if (mips_macro_warning.first_insn_sizes[0] == 0)
7448 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7449 mips_macro_warning.sizes[0] += insn_length (ip);
7450 mips_macro_warning.insns[0]++;
7452 if (mips_relax.sequence != 1)
7454 if (mips_macro_warning.first_insn_sizes[1] == 0)
7455 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7456 mips_macro_warning.sizes[1] += insn_length (ip);
7457 mips_macro_warning.insns[1]++;
7460 if (mips_opts.mips16)
7463 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7465 add_fixed_insn (ip);
7468 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7470 bfd_reloc_code_real_type final_type[3];
7471 reloc_howto_type *howto0;
7472 reloc_howto_type *howto;
7475 /* Perform any necessary conversion to microMIPS relocations
7476 and find out how many relocations there actually are. */
7477 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7478 final_type[i] = micromips_map_reloc (reloc_type[i]);
7480 /* In a compound relocation, it is the final (outermost)
7481 operator that determines the relocated field. */
7482 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7487 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7488 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7489 bfd_get_reloc_size (howto),
7491 howto0 && howto0->pc_relative,
7494 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7495 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7496 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7498 /* These relocations can have an addend that won't fit in
7499 4 octets for 64bit assembly. */
7501 && ! howto->partial_inplace
7502 && (reloc_type[0] == BFD_RELOC_16
7503 || reloc_type[0] == BFD_RELOC_32
7504 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7505 || reloc_type[0] == BFD_RELOC_GPREL16
7506 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7507 || reloc_type[0] == BFD_RELOC_GPREL32
7508 || reloc_type[0] == BFD_RELOC_64
7509 || reloc_type[0] == BFD_RELOC_CTOR
7510 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7511 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7512 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7513 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7514 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7515 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7516 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7517 || hi16_reloc_p (reloc_type[0])
7518 || lo16_reloc_p (reloc_type[0])))
7519 ip->fixp[0]->fx_no_overflow = 1;
7521 /* These relocations can have an addend that won't fit in 2 octets. */
7522 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7523 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7524 ip->fixp[0]->fx_no_overflow = 1;
7526 if (mips_relax.sequence)
7528 if (mips_relax.first_fixup == 0)
7529 mips_relax.first_fixup = ip->fixp[0];
7531 else if (reloc_needs_lo_p (*reloc_type))
7533 struct mips_hi_fixup *hi_fixup;
7535 /* Reuse the last entry if it already has a matching %lo. */
7536 hi_fixup = mips_hi_fixup_list;
7538 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7540 hi_fixup = XNEW (struct mips_hi_fixup);
7541 hi_fixup->next = mips_hi_fixup_list;
7542 mips_hi_fixup_list = hi_fixup;
7544 hi_fixup->fixp = ip->fixp[0];
7545 hi_fixup->seg = now_seg;
7548 /* Add fixups for the second and third relocations, if given.
7549 Note that the ABI allows the second relocation to be
7550 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7551 moment we only use RSS_UNDEF, but we could add support
7552 for the others if it ever becomes necessary. */
7553 for (i = 1; i < 3; i++)
7554 if (reloc_type[i] != BFD_RELOC_UNUSED)
7556 ip->fixp[i] = fix_new (ip->frag, ip->where,
7557 ip->fixp[0]->fx_size, NULL, 0,
7558 FALSE, final_type[i]);
7560 /* Use fx_tcbit to mark compound relocs. */
7561 ip->fixp[0]->fx_tcbit = 1;
7562 ip->fixp[i]->fx_tcbit = 1;
7566 /* Update the register mask information. */
7567 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7568 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7573 insert_into_history (0, 1, ip);
7576 case APPEND_ADD_WITH_NOP:
7578 struct mips_cl_insn *nop;
7580 insert_into_history (0, 1, ip);
7581 nop = get_delay_slot_nop (ip);
7582 add_fixed_insn (nop);
7583 insert_into_history (0, 1, nop);
7584 if (mips_relax.sequence)
7585 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7589 case APPEND_ADD_COMPACT:
7590 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7591 if (mips_opts.mips16)
7593 ip->insn_opcode |= 0x0080;
7594 find_altered_mips16_opcode (ip);
7596 /* Convert microMIPS instructions. */
7597 else if (mips_opts.micromips)
7600 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7601 ip->insn_opcode |= 0x0020;
7603 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7604 ip->insn_opcode = 0x40e00000;
7605 /* beqz16->beqzc, bnez16->bnezc */
7606 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7608 unsigned long regno;
7610 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7611 regno &= MICROMIPSOP_MASK_MD;
7612 regno = micromips_to_32_reg_d_map[regno];
7613 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7614 | (regno << MICROMIPSOP_SH_RS)
7615 | 0x40a00000) ^ 0x00400000;
7617 /* beqz->beqzc, bnez->bnezc */
7618 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7619 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7620 | ((ip->insn_opcode >> 7) & 0x00400000)
7621 | 0x40a00000) ^ 0x00400000;
7622 /* beq $0->beqzc, bne $0->bnezc */
7623 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7624 ip->insn_opcode = (((ip->insn_opcode >>
7625 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7626 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7627 | ((ip->insn_opcode >> 7) & 0x00400000)
7628 | 0x40a00000) ^ 0x00400000;
7631 find_altered_micromips_opcode (ip);
7636 insert_into_history (0, 1, ip);
7641 struct mips_cl_insn delay = history[0];
7643 if (relaxed_branch || delay.frag != ip->frag)
7645 /* Add the delay slot instruction to the end of the
7646 current frag and shrink the fixed part of the
7647 original frag. If the branch occupies the tail of
7648 the latter, move it backwards to cover the gap. */
7649 delay.frag->fr_fix -= branch_disp;
7650 if (delay.frag == ip->frag)
7651 move_insn (ip, ip->frag, ip->where - branch_disp);
7652 add_fixed_insn (&delay);
7656 /* If this is not a relaxed branch and we are in the
7657 same frag, then just swap the instructions. */
7658 move_insn (ip, delay.frag, delay.where);
7659 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7663 insert_into_history (0, 1, &delay);
7668 /* If we have just completed an unconditional branch, clear the history. */
7669 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7670 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7674 mips_no_prev_insn ();
7676 for (i = 0; i < ARRAY_SIZE (history); i++)
7677 history[i].cleared_p = 1;
7680 /* We need to emit a label at the end of branch-likely macros. */
7681 if (emit_branch_likely_macro)
7683 emit_branch_likely_macro = FALSE;
7684 micromips_add_label ();
7687 /* We just output an insn, so the next one doesn't have a label. */
7688 mips_clear_insn_labels ();
7691 /* Forget that there was any previous instruction or label.
7692 When BRANCH is true, the branch history is also flushed. */
7695 mips_no_prev_insn (void)
7697 prev_nop_frag = NULL;
7698 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7699 mips_clear_insn_labels ();
7702 /* This function must be called before we emit something other than
7703 instructions. It is like mips_no_prev_insn except that it inserts
7704 any NOPS that might be needed by previous instructions. */
7707 mips_emit_delays (void)
7709 if (! mips_opts.noreorder)
7711 int nops = nops_for_insn (0, history, NULL);
7715 add_fixed_insn (NOP_INSN);
7716 mips_move_text_labels ();
7719 mips_no_prev_insn ();
7722 /* Start a (possibly nested) noreorder block. */
7725 start_noreorder (void)
7727 if (mips_opts.noreorder == 0)
7732 /* None of the instructions before the .set noreorder can be moved. */
7733 for (i = 0; i < ARRAY_SIZE (history); i++)
7734 history[i].fixed_p = 1;
7736 /* Insert any nops that might be needed between the .set noreorder
7737 block and the previous instructions. We will later remove any
7738 nops that turn out not to be needed. */
7739 nops = nops_for_insn (0, history, NULL);
7742 if (mips_optimize != 0)
7744 /* Record the frag which holds the nop instructions, so
7745 that we can remove them if we don't need them. */
7746 frag_grow (nops * NOP_INSN_SIZE);
7747 prev_nop_frag = frag_now;
7748 prev_nop_frag_holds = nops;
7749 prev_nop_frag_required = 0;
7750 prev_nop_frag_since = 0;
7753 for (; nops > 0; --nops)
7754 add_fixed_insn (NOP_INSN);
7756 /* Move on to a new frag, so that it is safe to simply
7757 decrease the size of prev_nop_frag. */
7758 frag_wane (frag_now);
7760 mips_move_text_labels ();
7762 mips_mark_labels ();
7763 mips_clear_insn_labels ();
7765 mips_opts.noreorder++;
7766 mips_any_noreorder = 1;
7769 /* End a nested noreorder block. */
7772 end_noreorder (void)
7774 mips_opts.noreorder--;
7775 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7777 /* Commit to inserting prev_nop_frag_required nops and go back to
7778 handling nop insertion the .set reorder way. */
7779 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7781 insert_into_history (prev_nop_frag_since,
7782 prev_nop_frag_required, NOP_INSN);
7783 prev_nop_frag = NULL;
7787 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7788 higher bits unset. */
7791 normalize_constant_expr (expressionS *ex)
7793 if (ex->X_op == O_constant
7794 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7795 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7799 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7800 all higher bits unset. */
7803 normalize_address_expr (expressionS *ex)
7805 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7806 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7807 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7808 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7812 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7813 Return true if the match was successful.
7815 OPCODE_EXTRA is a value that should be ORed into the opcode
7816 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7817 there are more alternatives after OPCODE and SOFT_MATCH is
7818 as for mips_arg_info. */
7821 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7822 struct mips_operand_token *tokens, unsigned int opcode_extra,
7823 bfd_boolean lax_match, bfd_boolean complete_p)
7826 struct mips_arg_info arg;
7827 const struct mips_operand *operand;
7830 imm_expr.X_op = O_absent;
7831 offset_expr.X_op = O_absent;
7832 offset_reloc[0] = BFD_RELOC_UNUSED;
7833 offset_reloc[1] = BFD_RELOC_UNUSED;
7834 offset_reloc[2] = BFD_RELOC_UNUSED;
7836 create_insn (insn, opcode);
7837 /* When no opcode suffix is specified, assume ".xyzw". */
7838 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7839 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7841 insn->insn_opcode |= opcode_extra;
7842 memset (&arg, 0, sizeof (arg));
7846 arg.last_regno = ILLEGAL_REG;
7847 arg.dest_regno = ILLEGAL_REG;
7848 arg.lax_match = lax_match;
7849 for (args = opcode->args;; ++args)
7851 if (arg.token->type == OT_END)
7853 /* Handle unary instructions in which only one operand is given.
7854 The source is then the same as the destination. */
7855 if (arg.opnum == 1 && *args == ',')
7857 operand = (mips_opts.micromips
7858 ? decode_micromips_operand (args + 1)
7859 : decode_mips_operand (args + 1));
7860 if (operand && mips_optional_operand_p (operand))
7868 /* Treat elided base registers as $0. */
7869 if (strcmp (args, "(b)") == 0)
7877 /* The register suffix is optional. */
7882 /* Fail the match if there were too few operands. */
7886 /* Successful match. */
7889 clear_insn_error ();
7890 if (arg.dest_regno == arg.last_regno
7891 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7895 (0, _("source and destination must be different"));
7896 else if (arg.last_regno == 31)
7898 (0, _("a destination register must be supplied"));
7900 else if (arg.last_regno == 31
7901 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7902 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7903 set_insn_error (0, _("the source register must not be $31"));
7904 check_completed_insn (&arg);
7908 /* Fail the match if the line has too many operands. */
7912 /* Handle characters that need to match exactly. */
7913 if (*args == '(' || *args == ')' || *args == ',')
7915 if (match_char (&arg, *args))
7922 if (arg.token->type == OT_DOUBLE_CHAR
7923 && arg.token->u.ch == *args)
7931 /* Handle special macro operands. Work out the properties of
7940 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7944 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7953 *offset_reloc = BFD_RELOC_MIPS_JMP;
7957 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7961 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7967 if (!match_const_int (&arg, &imm_expr.X_add_number))
7969 imm_expr.X_op = O_constant;
7971 normalize_constant_expr (&imm_expr);
7975 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7977 /* Assume that the offset has been elided and that what
7978 we saw was a base register. The match will fail later
7979 if that assumption turns out to be wrong. */
7980 offset_expr.X_op = O_constant;
7981 offset_expr.X_add_number = 0;
7985 if (!match_expression (&arg, &offset_expr, offset_reloc))
7987 normalize_address_expr (&offset_expr);
7992 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7998 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8004 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8010 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8016 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8020 *offset_reloc = BFD_RELOC_MIPS_JMP;
8024 gas_assert (mips_opts.micromips);
8030 if (!forced_insn_length)
8031 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8033 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8035 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8041 operand = (mips_opts.micromips
8042 ? decode_micromips_operand (args)
8043 : decode_mips_operand (args));
8047 /* Skip prefixes. */
8048 if (*args == '+' || *args == 'm' || *args == '-')
8051 if (mips_optional_operand_p (operand)
8053 && (arg.token[0].type != OT_REG
8054 || arg.token[1].type == OT_END))
8056 /* Assume that the register has been elided and is the
8057 same as the first operand. */
8062 if (!match_operand (&arg, operand))
8067 /* Like match_insn, but for MIPS16. */
8070 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8071 struct mips_operand_token *tokens)
8074 const struct mips_operand *operand;
8075 const struct mips_operand *ext_operand;
8076 int required_insn_length;
8077 struct mips_arg_info arg;
8080 if (forced_insn_length)
8081 required_insn_length = forced_insn_length;
8082 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8083 required_insn_length = 2;
8085 required_insn_length = 0;
8087 create_insn (insn, opcode);
8088 imm_expr.X_op = O_absent;
8089 offset_expr.X_op = O_absent;
8090 offset_reloc[0] = BFD_RELOC_UNUSED;
8091 offset_reloc[1] = BFD_RELOC_UNUSED;
8092 offset_reloc[2] = BFD_RELOC_UNUSED;
8095 memset (&arg, 0, sizeof (arg));
8099 arg.last_regno = ILLEGAL_REG;
8100 arg.dest_regno = ILLEGAL_REG;
8102 for (args = opcode->args;; ++args)
8106 if (arg.token->type == OT_END)
8110 /* Handle unary instructions in which only one operand is given.
8111 The source is then the same as the destination. */
8112 if (arg.opnum == 1 && *args == ',')
8114 operand = decode_mips16_operand (args[1], FALSE);
8115 if (operand && mips_optional_operand_p (operand))
8123 /* Fail the match if there were too few operands. */
8127 /* Successful match. Stuff the immediate value in now, if
8129 clear_insn_error ();
8130 if (opcode->pinfo == INSN_MACRO)
8132 gas_assert (relax_char == 0 || relax_char == 'p');
8133 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8136 && offset_expr.X_op == O_constant
8137 && calculate_reloc (*offset_reloc,
8138 offset_expr.X_add_number,
8141 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8142 required_insn_length, &insn->insn_opcode);
8143 offset_expr.X_op = O_absent;
8144 *offset_reloc = BFD_RELOC_UNUSED;
8146 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8148 if (required_insn_length == 2)
8149 set_insn_error (0, _("invalid unextended operand value"));
8152 forced_insn_length = 4;
8153 insn->insn_opcode |= MIPS16_EXTEND;
8156 else if (relax_char)
8157 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8159 check_completed_insn (&arg);
8163 /* Fail the match if the line has too many operands. */
8167 /* Handle characters that need to match exactly. */
8168 if (*args == '(' || *args == ')' || *args == ',')
8170 if (match_char (&arg, *args))
8188 if (!match_const_int (&arg, &imm_expr.X_add_number))
8190 imm_expr.X_op = O_constant;
8192 normalize_constant_expr (&imm_expr);
8197 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8201 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8205 if (operand->type != OP_PCREL)
8207 ext_operand = decode_mips16_operand (c, TRUE);
8208 if (operand != ext_operand)
8210 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8212 offset_expr.X_op = O_constant;
8213 offset_expr.X_add_number = 0;
8218 /* We need the OT_INTEGER check because some MIPS16
8219 immediate variants are listed before the register ones. */
8220 if (arg.token->type != OT_INTEGER
8221 || !match_expression (&arg, &offset_expr, offset_reloc))
8224 /* '8' is used for SLTI(U) and has traditionally not
8225 been allowed to take relocation operators. */
8226 if (offset_reloc[0] != BFD_RELOC_UNUSED
8227 && (ext_operand->size != 16 || c == '8'))
8235 if (mips_optional_operand_p (operand)
8237 && (arg.token[0].type != OT_REG
8238 || arg.token[1].type == OT_END))
8240 /* Assume that the register has been elided and is the
8241 same as the first operand. */
8246 if (!match_operand (&arg, operand))
8251 /* Record that the current instruction is invalid for the current ISA. */
8254 match_invalid_for_isa (void)
8257 (0, _("opcode not supported on this processor: %s (%s)"),
8258 mips_cpu_info_from_arch (mips_opts.arch)->name,
8259 mips_cpu_info_from_isa (mips_opts.isa)->name);
8262 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8263 Return true if a definite match or failure was found, storing any match
8264 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8265 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8266 tried and failed to match under normal conditions and now want to try a
8267 more relaxed match. */
8270 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8271 const struct mips_opcode *past, struct mips_operand_token *tokens,
8272 int opcode_extra, bfd_boolean lax_match)
8274 const struct mips_opcode *opcode;
8275 const struct mips_opcode *invalid_delay_slot;
8276 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8278 /* Search for a match, ignoring alternatives that don't satisfy the
8279 current ISA or forced_length. */
8280 invalid_delay_slot = 0;
8281 seen_valid_for_isa = FALSE;
8282 seen_valid_for_size = FALSE;
8286 gas_assert (strcmp (opcode->name, first->name) == 0);
8287 if (is_opcode_valid (opcode))
8289 seen_valid_for_isa = TRUE;
8290 if (is_size_valid (opcode))
8292 bfd_boolean delay_slot_ok;
8294 seen_valid_for_size = TRUE;
8295 delay_slot_ok = is_delay_slot_valid (opcode);
8296 if (match_insn (insn, opcode, tokens, opcode_extra,
8297 lax_match, delay_slot_ok))
8301 if (!invalid_delay_slot)
8302 invalid_delay_slot = opcode;
8311 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8313 /* If the only matches we found had the wrong length for the delay slot,
8314 pick the first such match. We'll issue an appropriate warning later. */
8315 if (invalid_delay_slot)
8317 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8323 /* Handle the case where we didn't try to match an instruction because
8324 all the alternatives were incompatible with the current ISA. */
8325 if (!seen_valid_for_isa)
8327 match_invalid_for_isa ();
8331 /* Handle the case where we didn't try to match an instruction because
8332 all the alternatives were of the wrong size. */
8333 if (!seen_valid_for_size)
8335 if (mips_opts.insn32)
8336 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8339 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8340 8 * forced_insn_length);
8347 /* Like match_insns, but for MIPS16. */
8350 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8351 struct mips_operand_token *tokens)
8353 const struct mips_opcode *opcode;
8354 bfd_boolean seen_valid_for_isa;
8355 bfd_boolean seen_valid_for_size;
8357 /* Search for a match, ignoring alternatives that don't satisfy the
8358 current ISA. There are no separate entries for extended forms so
8359 we deal with forced_length later. */
8360 seen_valid_for_isa = FALSE;
8361 seen_valid_for_size = FALSE;
8365 gas_assert (strcmp (opcode->name, first->name) == 0);
8366 if (is_opcode_valid_16 (opcode))
8368 seen_valid_for_isa = TRUE;
8369 if (is_size_valid_16 (opcode))
8371 seen_valid_for_size = TRUE;
8372 if (match_mips16_insn (insn, opcode, tokens))
8378 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8379 && strcmp (opcode->name, first->name) == 0);
8381 /* Handle the case where we didn't try to match an instruction because
8382 all the alternatives were incompatible with the current ISA. */
8383 if (!seen_valid_for_isa)
8385 match_invalid_for_isa ();
8389 /* Handle the case where we didn't try to match an instruction because
8390 all the alternatives were of the wrong size. */
8391 if (!seen_valid_for_size)
8393 if (forced_insn_length == 2)
8395 (0, _("unrecognized unextended version of MIPS16 opcode"));
8398 (0, _("unrecognized extended version of MIPS16 opcode"));
8405 /* Set up global variables for the start of a new macro. */
8410 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8411 memset (&mips_macro_warning.first_insn_sizes, 0,
8412 sizeof (mips_macro_warning.first_insn_sizes));
8413 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8414 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8415 && delayed_branch_p (&history[0]));
8417 && history[0].frag->fr_type == rs_machine_dependent
8418 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8419 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8420 mips_macro_warning.delay_slot_length = 0;
8422 switch (history[0].insn_mo->pinfo2
8423 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8425 case INSN2_BRANCH_DELAY_32BIT:
8426 mips_macro_warning.delay_slot_length = 4;
8428 case INSN2_BRANCH_DELAY_16BIT:
8429 mips_macro_warning.delay_slot_length = 2;
8432 mips_macro_warning.delay_slot_length = 0;
8435 mips_macro_warning.first_frag = NULL;
8438 /* Given that a macro is longer than one instruction or of the wrong size,
8439 return the appropriate warning for it. Return null if no warning is
8440 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8441 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8442 and RELAX_NOMACRO. */
8445 macro_warning (relax_substateT subtype)
8447 if (subtype & RELAX_DELAY_SLOT)
8448 return _("macro instruction expanded into multiple instructions"
8449 " in a branch delay slot");
8450 else if (subtype & RELAX_NOMACRO)
8451 return _("macro instruction expanded into multiple instructions");
8452 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8453 | RELAX_DELAY_SLOT_SIZE_SECOND))
8454 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8455 ? _("macro instruction expanded into a wrong size instruction"
8456 " in a 16-bit branch delay slot")
8457 : _("macro instruction expanded into a wrong size instruction"
8458 " in a 32-bit branch delay slot"));
8463 /* Finish up a macro. Emit warnings as appropriate. */
8468 /* Relaxation warning flags. */
8469 relax_substateT subtype = 0;
8471 /* Check delay slot size requirements. */
8472 if (mips_macro_warning.delay_slot_length == 2)
8473 subtype |= RELAX_DELAY_SLOT_16BIT;
8474 if (mips_macro_warning.delay_slot_length != 0)
8476 if (mips_macro_warning.delay_slot_length
8477 != mips_macro_warning.first_insn_sizes[0])
8478 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8479 if (mips_macro_warning.delay_slot_length
8480 != mips_macro_warning.first_insn_sizes[1])
8481 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8484 /* Check instruction count requirements. */
8485 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8487 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8488 subtype |= RELAX_SECOND_LONGER;
8489 if (mips_opts.warn_about_macros)
8490 subtype |= RELAX_NOMACRO;
8491 if (mips_macro_warning.delay_slot_p)
8492 subtype |= RELAX_DELAY_SLOT;
8495 /* If both alternatives fail to fill a delay slot correctly,
8496 emit the warning now. */
8497 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8498 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8503 s = subtype & (RELAX_DELAY_SLOT_16BIT
8504 | RELAX_DELAY_SLOT_SIZE_FIRST
8505 | RELAX_DELAY_SLOT_SIZE_SECOND);
8506 msg = macro_warning (s);
8508 as_warn ("%s", msg);
8512 /* If both implementations are longer than 1 instruction, then emit the
8514 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8519 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8520 msg = macro_warning (s);
8522 as_warn ("%s", msg);
8526 /* If any flags still set, then one implementation might need a warning
8527 and the other either will need one of a different kind or none at all.
8528 Pass any remaining flags over to relaxation. */
8529 if (mips_macro_warning.first_frag != NULL)
8530 mips_macro_warning.first_frag->fr_subtype |= subtype;
8533 /* Instruction operand formats used in macros that vary between
8534 standard MIPS and microMIPS code. */
8536 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8537 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8538 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8539 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8540 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8541 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8542 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8543 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8545 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8546 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8547 : cop12_fmt[mips_opts.micromips])
8548 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8549 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8550 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8551 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8552 : mem12_fmt[mips_opts.micromips])
8553 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8554 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8555 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8557 /* Read a macro's relocation codes from *ARGS and store them in *R.
8558 The first argument in *ARGS will be either the code for a single
8559 relocation or -1 followed by the three codes that make up a
8560 composite relocation. */
8563 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8567 next = va_arg (*args, int);
8569 r[0] = (bfd_reloc_code_real_type) next;
8572 for (i = 0; i < 3; i++)
8573 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8574 /* This function is only used for 16-bit relocation fields.
8575 To make the macro code simpler, treat an unrelocated value
8576 in the same way as BFD_RELOC_LO16. */
8577 if (r[0] == BFD_RELOC_UNUSED)
8578 r[0] = BFD_RELOC_LO16;
8582 /* Build an instruction created by a macro expansion. This is passed
8583 a pointer to the count of instructions created so far, an
8584 expression, the name of the instruction to build, an operand format
8585 string, and corresponding arguments. */
8588 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8590 const struct mips_opcode *mo = NULL;
8591 bfd_reloc_code_real_type r[3];
8592 const struct mips_opcode *amo;
8593 const struct mips_operand *operand;
8594 struct hash_control *hash;
8595 struct mips_cl_insn insn;
8599 va_start (args, fmt);
8601 if (mips_opts.mips16)
8603 mips16_macro_build (ep, name, fmt, &args);
8608 r[0] = BFD_RELOC_UNUSED;
8609 r[1] = BFD_RELOC_UNUSED;
8610 r[2] = BFD_RELOC_UNUSED;
8611 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8612 amo = (struct mips_opcode *) hash_find (hash, name);
8614 gas_assert (strcmp (name, amo->name) == 0);
8618 /* Search until we get a match for NAME. It is assumed here that
8619 macros will never generate MDMX, MIPS-3D, or MT instructions.
8620 We try to match an instruction that fulfills the branch delay
8621 slot instruction length requirement (if any) of the previous
8622 instruction. While doing this we record the first instruction
8623 seen that matches all the other conditions and use it anyway
8624 if the requirement cannot be met; we will issue an appropriate
8625 warning later on. */
8626 if (strcmp (fmt, amo->args) == 0
8627 && amo->pinfo != INSN_MACRO
8628 && is_opcode_valid (amo)
8629 && is_size_valid (amo))
8631 if (is_delay_slot_valid (amo))
8641 gas_assert (amo->name);
8643 while (strcmp (name, amo->name) == 0);
8646 create_insn (&insn, mo);
8659 macro_read_relocs (&args, r);
8660 gas_assert (*r == BFD_RELOC_GPREL16
8661 || *r == BFD_RELOC_MIPS_HIGHER
8662 || *r == BFD_RELOC_HI16_S
8663 || *r == BFD_RELOC_LO16
8664 || *r == BFD_RELOC_MIPS_GOT_OFST);
8668 macro_read_relocs (&args, r);
8672 macro_read_relocs (&args, r);
8673 gas_assert (ep != NULL
8674 && (ep->X_op == O_constant
8675 || (ep->X_op == O_symbol
8676 && (*r == BFD_RELOC_MIPS_HIGHEST
8677 || *r == BFD_RELOC_HI16_S
8678 || *r == BFD_RELOC_HI16
8679 || *r == BFD_RELOC_GPREL16
8680 || *r == BFD_RELOC_MIPS_GOT_HI16
8681 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8685 gas_assert (ep != NULL);
8688 * This allows macro() to pass an immediate expression for
8689 * creating short branches without creating a symbol.
8691 * We don't allow branch relaxation for these branches, as
8692 * they should only appear in ".set nomacro" anyway.
8694 if (ep->X_op == O_constant)
8696 /* For microMIPS we always use relocations for branches.
8697 So we should not resolve immediate values. */
8698 gas_assert (!mips_opts.micromips);
8700 if ((ep->X_add_number & 3) != 0)
8701 as_bad (_("branch to misaligned address (0x%lx)"),
8702 (unsigned long) ep->X_add_number);
8703 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8704 as_bad (_("branch address range overflow (0x%lx)"),
8705 (unsigned long) ep->X_add_number);
8706 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8710 *r = BFD_RELOC_16_PCREL_S2;
8714 gas_assert (ep != NULL);
8715 *r = BFD_RELOC_MIPS_JMP;
8719 operand = (mips_opts.micromips
8720 ? decode_micromips_operand (fmt)
8721 : decode_mips_operand (fmt));
8725 uval = va_arg (args, int);
8726 if (operand->type == OP_CLO_CLZ_DEST)
8727 uval |= (uval << 5);
8728 insn_insert_operand (&insn, operand, uval);
8730 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8736 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8738 append_insn (&insn, ep, r, TRUE);
8742 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8745 struct mips_opcode *mo;
8746 struct mips_cl_insn insn;
8747 const struct mips_operand *operand;
8748 bfd_reloc_code_real_type r[3]
8749 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8751 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8753 gas_assert (strcmp (name, mo->name) == 0);
8755 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8758 gas_assert (mo->name);
8759 gas_assert (strcmp (name, mo->name) == 0);
8762 create_insn (&insn, mo);
8799 gas_assert (ep != NULL);
8801 if (ep->X_op != O_constant)
8802 *r = (int) BFD_RELOC_UNUSED + c;
8803 else if (calculate_reloc (*r, ep->X_add_number, &value))
8805 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8807 *r = BFD_RELOC_UNUSED;
8813 operand = decode_mips16_operand (c, FALSE);
8817 insn_insert_operand (&insn, operand, va_arg (*args, int));
8822 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8824 append_insn (&insn, ep, r, TRUE);
8828 * Generate a "jalr" instruction with a relocation hint to the called
8829 * function. This occurs in NewABI PIC code.
8832 macro_build_jalr (expressionS *ep, int cprestore)
8834 static const bfd_reloc_code_real_type jalr_relocs[2]
8835 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8836 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8840 if (MIPS_JALR_HINT_P (ep))
8845 if (mips_opts.micromips)
8847 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8848 ? "jalr" : "jalrs");
8849 if (MIPS_JALR_HINT_P (ep)
8851 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8852 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8854 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8857 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8858 if (MIPS_JALR_HINT_P (ep))
8859 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8863 * Generate a "lui" instruction.
8866 macro_build_lui (expressionS *ep, int regnum)
8868 gas_assert (! mips_opts.mips16);
8870 if (ep->X_op != O_constant)
8872 gas_assert (ep->X_op == O_symbol);
8873 /* _gp_disp is a special case, used from s_cpload.
8874 __gnu_local_gp is used if mips_no_shared. */
8875 gas_assert (mips_pic == NO_PIC
8877 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8878 || (! mips_in_shared
8879 && strcmp (S_GET_NAME (ep->X_add_symbol),
8880 "__gnu_local_gp") == 0));
8883 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8886 /* Generate a sequence of instructions to do a load or store from a constant
8887 offset off of a base register (breg) into/from a target register (treg),
8888 using AT if necessary. */
8890 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8891 int treg, int breg, int dbl)
8893 gas_assert (ep->X_op == O_constant);
8895 /* Sign-extending 32-bit constants makes their handling easier. */
8897 normalize_constant_expr (ep);
8899 /* Right now, this routine can only handle signed 32-bit constants. */
8900 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8901 as_warn (_("operand overflow"));
8903 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8905 /* Signed 16-bit offset will fit in the op. Easy! */
8906 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8910 /* 32-bit offset, need multiple instructions and AT, like:
8911 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8912 addu $tempreg,$tempreg,$breg
8913 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8914 to handle the complete offset. */
8915 macro_build_lui (ep, AT);
8916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8917 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8920 as_bad (_("macro used $at after \".set noat\""));
8925 * Generates code to set the $at register to true (one)
8926 * if reg is less than the immediate expression.
8929 set_at (int reg, int unsignedp)
8931 if (imm_expr.X_add_number >= -0x8000
8932 && imm_expr.X_add_number < 0x8000)
8933 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8934 AT, reg, BFD_RELOC_LO16);
8937 load_register (AT, &imm_expr, GPR_SIZE == 64);
8938 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8942 /* Count the leading zeroes by performing a binary chop. This is a
8943 bulky bit of source, but performance is a LOT better for the
8944 majority of values than a simple loop to count the bits:
8945 for (lcnt = 0; (lcnt < 32); lcnt++)
8946 if ((v) & (1 << (31 - lcnt)))
8948 However it is not code size friendly, and the gain will drop a bit
8949 on certain cached systems.
8951 #define COUNT_TOP_ZEROES(v) \
8952 (((v) & ~0xffff) == 0 \
8953 ? ((v) & ~0xff) == 0 \
8954 ? ((v) & ~0xf) == 0 \
8955 ? ((v) & ~0x3) == 0 \
8956 ? ((v) & ~0x1) == 0 \
8961 : ((v) & ~0x7) == 0 \
8964 : ((v) & ~0x3f) == 0 \
8965 ? ((v) & ~0x1f) == 0 \
8968 : ((v) & ~0x7f) == 0 \
8971 : ((v) & ~0xfff) == 0 \
8972 ? ((v) & ~0x3ff) == 0 \
8973 ? ((v) & ~0x1ff) == 0 \
8976 : ((v) & ~0x7ff) == 0 \
8979 : ((v) & ~0x3fff) == 0 \
8980 ? ((v) & ~0x1fff) == 0 \
8983 : ((v) & ~0x7fff) == 0 \
8986 : ((v) & ~0xffffff) == 0 \
8987 ? ((v) & ~0xfffff) == 0 \
8988 ? ((v) & ~0x3ffff) == 0 \
8989 ? ((v) & ~0x1ffff) == 0 \
8992 : ((v) & ~0x7ffff) == 0 \
8995 : ((v) & ~0x3fffff) == 0 \
8996 ? ((v) & ~0x1fffff) == 0 \
8999 : ((v) & ~0x7fffff) == 0 \
9002 : ((v) & ~0xfffffff) == 0 \
9003 ? ((v) & ~0x3ffffff) == 0 \
9004 ? ((v) & ~0x1ffffff) == 0 \
9007 : ((v) & ~0x7ffffff) == 0 \
9010 : ((v) & ~0x3fffffff) == 0 \
9011 ? ((v) & ~0x1fffffff) == 0 \
9014 : ((v) & ~0x7fffffff) == 0 \
9019 * This routine generates the least number of instructions necessary to load
9020 * an absolute expression value into a register.
9023 load_register (int reg, expressionS *ep, int dbl)
9026 expressionS hi32, lo32;
9028 if (ep->X_op != O_big)
9030 gas_assert (ep->X_op == O_constant);
9032 /* Sign-extending 32-bit constants makes their handling easier. */
9034 normalize_constant_expr (ep);
9036 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9038 /* We can handle 16 bit signed values with an addiu to
9039 $zero. No need to ever use daddiu here, since $zero and
9040 the result are always correct in 32 bit mode. */
9041 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9044 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9046 /* We can handle 16 bit unsigned values with an ori to
9048 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9051 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9053 /* 32 bit values require an lui. */
9054 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9055 if ((ep->X_add_number & 0xffff) != 0)
9056 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9061 /* The value is larger than 32 bits. */
9063 if (!dbl || GPR_SIZE == 32)
9067 sprintf_vma (value, ep->X_add_number);
9068 as_bad (_("number (0x%s) larger than 32 bits"), value);
9069 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9073 if (ep->X_op != O_big)
9076 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9077 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9078 hi32.X_add_number &= 0xffffffff;
9080 lo32.X_add_number &= 0xffffffff;
9084 gas_assert (ep->X_add_number > 2);
9085 if (ep->X_add_number == 3)
9086 generic_bignum[3] = 0;
9087 else if (ep->X_add_number > 4)
9088 as_bad (_("number larger than 64 bits"));
9089 lo32.X_op = O_constant;
9090 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9091 hi32.X_op = O_constant;
9092 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9095 if (hi32.X_add_number == 0)
9100 unsigned long hi, lo;
9102 if (hi32.X_add_number == (offsetT) 0xffffffff)
9104 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9106 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9109 if (lo32.X_add_number & 0x80000000)
9111 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9112 if (lo32.X_add_number & 0xffff)
9113 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9118 /* Check for 16bit shifted constant. We know that hi32 is
9119 non-zero, so start the mask on the first bit of the hi32
9124 unsigned long himask, lomask;
9128 himask = 0xffff >> (32 - shift);
9129 lomask = (0xffff << shift) & 0xffffffff;
9133 himask = 0xffff << (shift - 32);
9136 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9137 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9141 tmp.X_op = O_constant;
9143 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9144 | (lo32.X_add_number >> shift));
9146 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9147 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9148 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9149 reg, reg, (shift >= 32) ? shift - 32 : shift);
9154 while (shift <= (64 - 16));
9156 /* Find the bit number of the lowest one bit, and store the
9157 shifted value in hi/lo. */
9158 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9159 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9163 while ((lo & 1) == 0)
9168 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9174 while ((hi & 1) == 0)
9183 /* Optimize if the shifted value is a (power of 2) - 1. */
9184 if ((hi == 0 && ((lo + 1) & lo) == 0)
9185 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9187 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9192 /* This instruction will set the register to be all
9194 tmp.X_op = O_constant;
9195 tmp.X_add_number = (offsetT) -1;
9196 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9200 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9201 reg, reg, (bit >= 32) ? bit - 32 : bit);
9203 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9204 reg, reg, (shift >= 32) ? shift - 32 : shift);
9209 /* Sign extend hi32 before calling load_register, because we can
9210 generally get better code when we load a sign extended value. */
9211 if ((hi32.X_add_number & 0x80000000) != 0)
9212 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9213 load_register (reg, &hi32, 0);
9216 if ((lo32.X_add_number & 0xffff0000) == 0)
9220 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9228 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9230 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9231 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9237 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9241 mid16.X_add_number >>= 16;
9242 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9243 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9246 if ((lo32.X_add_number & 0xffff) != 0)
9247 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9251 load_delay_nop (void)
9253 if (!gpr_interlocks)
9254 macro_build (NULL, "nop", "");
9257 /* Load an address into a register. */
9260 load_address (int reg, expressionS *ep, int *used_at)
9262 if (ep->X_op != O_constant
9263 && ep->X_op != O_symbol)
9265 as_bad (_("expression too complex"));
9266 ep->X_op = O_constant;
9269 if (ep->X_op == O_constant)
9271 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9275 if (mips_pic == NO_PIC)
9277 /* If this is a reference to a GP relative symbol, we want
9278 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9280 lui $reg,<sym> (BFD_RELOC_HI16_S)
9281 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9282 If we have an addend, we always use the latter form.
9284 With 64bit address space and a usable $at we want
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 lui $at,<sym> (BFD_RELOC_HI16_S)
9287 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9288 daddiu $at,<sym> (BFD_RELOC_LO16)
9292 If $at is already in use, we use a path which is suboptimal
9293 on superscalar processors.
9294 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9295 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9297 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9299 daddiu $reg,<sym> (BFD_RELOC_LO16)
9301 For GP relative symbols in 64bit address space we can use
9302 the same sequence as in 32bit address space. */
9303 if (HAVE_64BIT_SYMBOLS)
9305 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9306 && !nopic_need_relax (ep->X_add_symbol, 1))
9308 relax_start (ep->X_add_symbol);
9309 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9310 mips_gp_register, BFD_RELOC_GPREL16);
9314 if (*used_at == 0 && mips_opts.at)
9316 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9317 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9318 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9319 BFD_RELOC_MIPS_HIGHER);
9320 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9321 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9322 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9327 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9328 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9329 BFD_RELOC_MIPS_HIGHER);
9330 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9331 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9332 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9333 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9336 if (mips_relax.sequence)
9341 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9342 && !nopic_need_relax (ep->X_add_symbol, 1))
9344 relax_start (ep->X_add_symbol);
9345 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9346 mips_gp_register, BFD_RELOC_GPREL16);
9349 macro_build_lui (ep, reg);
9350 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9351 reg, reg, BFD_RELOC_LO16);
9352 if (mips_relax.sequence)
9356 else if (!mips_big_got)
9360 /* If this is a reference to an external symbol, we want
9361 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9363 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9365 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9366 If there is a constant, it must be added in after.
9368 If we have NewABI, we want
9369 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9370 unless we're referencing a global symbol with a non-zero
9371 offset, in which case cst must be added separately. */
9374 if (ep->X_add_number)
9376 ex.X_add_number = ep->X_add_number;
9377 ep->X_add_number = 0;
9378 relax_start (ep->X_add_symbol);
9379 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9380 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9381 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9382 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9383 ex.X_op = O_constant;
9384 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9385 reg, reg, BFD_RELOC_LO16);
9386 ep->X_add_number = ex.X_add_number;
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9390 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9391 if (mips_relax.sequence)
9396 ex.X_add_number = ep->X_add_number;
9397 ep->X_add_number = 0;
9398 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9399 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9401 relax_start (ep->X_add_symbol);
9403 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9407 if (ex.X_add_number != 0)
9409 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9410 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9411 ex.X_op = O_constant;
9412 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9413 reg, reg, BFD_RELOC_LO16);
9417 else if (mips_big_got)
9421 /* This is the large GOT case. If this is a reference to an
9422 external symbol, we want
9423 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9425 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9427 Otherwise, for a reference to a local symbol in old ABI, we want
9428 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9430 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9431 If there is a constant, it must be added in after.
9433 In the NewABI, for local symbols, with or without offsets, we want:
9434 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9435 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9439 ex.X_add_number = ep->X_add_number;
9440 ep->X_add_number = 0;
9441 relax_start (ep->X_add_symbol);
9442 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9443 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9444 reg, reg, mips_gp_register);
9445 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9446 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9447 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9448 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9449 else if (ex.X_add_number)
9451 ex.X_op = O_constant;
9452 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9456 ep->X_add_number = ex.X_add_number;
9458 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9459 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9460 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9461 BFD_RELOC_MIPS_GOT_OFST);
9466 ex.X_add_number = ep->X_add_number;
9467 ep->X_add_number = 0;
9468 relax_start (ep->X_add_symbol);
9469 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9471 reg, reg, mips_gp_register);
9472 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9473 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9475 if (reg_needs_delay (mips_gp_register))
9477 /* We need a nop before loading from $gp. This special
9478 check is required because the lui which starts the main
9479 instruction stream does not refer to $gp, and so will not
9480 insert the nop which may be required. */
9481 macro_build (NULL, "nop", "");
9483 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9484 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9486 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9490 if (ex.X_add_number != 0)
9492 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9493 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9494 ex.X_op = O_constant;
9495 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9503 if (!mips_opts.at && *used_at == 1)
9504 as_bad (_("macro used $at after \".set noat\""));
9507 /* Move the contents of register SOURCE into register DEST. */
9510 move_register (int dest, int source)
9512 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9513 instruction specifically requires a 32-bit one. */
9514 if (mips_opts.micromips
9515 && !mips_opts.insn32
9516 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9517 macro_build (NULL, "move", "mp,mj", dest, source);
9519 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9522 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9523 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9524 The two alternatives are:
9526 Global symbol Local symbol
9527 ------------- ------------
9528 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9530 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9532 load_got_offset emits the first instruction and add_got_offset
9533 emits the second for a 16-bit offset or add_got_offset_hilo emits
9534 a sequence to add a 32-bit offset using a scratch register. */
9537 load_got_offset (int dest, expressionS *local)
9542 global.X_add_number = 0;
9544 relax_start (local->X_add_symbol);
9545 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9546 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9548 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9549 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9554 add_got_offset (int dest, expressionS *local)
9558 global.X_op = O_constant;
9559 global.X_op_symbol = NULL;
9560 global.X_add_symbol = NULL;
9561 global.X_add_number = local->X_add_number;
9563 relax_start (local->X_add_symbol);
9564 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9565 dest, dest, BFD_RELOC_LO16);
9567 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9572 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9575 int hold_mips_optimize;
9577 global.X_op = O_constant;
9578 global.X_op_symbol = NULL;
9579 global.X_add_symbol = NULL;
9580 global.X_add_number = local->X_add_number;
9582 relax_start (local->X_add_symbol);
9583 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9585 /* Set mips_optimize around the lui instruction to avoid
9586 inserting an unnecessary nop after the lw. */
9587 hold_mips_optimize = mips_optimize;
9589 macro_build_lui (&global, tmp);
9590 mips_optimize = hold_mips_optimize;
9591 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9597 /* Emit a sequence of instructions to emulate a branch likely operation.
9598 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9599 is its complementing branch with the original condition negated.
9600 CALL is set if the original branch specified the link operation.
9601 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9603 Code like this is produced in the noreorder mode:
9608 delay slot (executed only if branch taken)
9616 delay slot (executed only if branch taken)
9619 In the reorder mode the delay slot would be filled with a nop anyway,
9620 so code produced is simply:
9625 This function is used when producing code for the microMIPS ASE that
9626 does not implement branch likely instructions in hardware. */
9629 macro_build_branch_likely (const char *br, const char *brneg,
9630 int call, expressionS *ep, const char *fmt,
9631 unsigned int sreg, unsigned int treg)
9633 int noreorder = mips_opts.noreorder;
9636 gas_assert (mips_opts.micromips);
9640 micromips_label_expr (&expr1);
9641 macro_build (&expr1, brneg, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 macro_build (ep, call ? "bal" : "b", "p");
9645 /* Set to true so that append_insn adds a label. */
9646 emit_branch_likely_macro = TRUE;
9650 macro_build (ep, br, fmt, sreg, treg);
9651 macro_build (NULL, "nop", "");
9656 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9657 the condition code tested. EP specifies the branch target. */
9660 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9687 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9690 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9691 the register tested. EP specifies the branch target. */
9694 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9696 const char *brneg = NULL;
9706 br = mips_opts.micromips ? "bgez" : "bgezl";
9710 gas_assert (mips_opts.micromips);
9711 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9719 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9726 br = mips_opts.micromips ? "blez" : "blezl";
9733 br = mips_opts.micromips ? "bltz" : "bltzl";
9737 gas_assert (mips_opts.micromips);
9738 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9745 if (mips_opts.micromips && brneg)
9746 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9748 macro_build (ep, br, "s,p", sreg);
9751 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9752 TREG as the registers tested. EP specifies the branch target. */
9755 macro_build_branch_rsrt (int type, expressionS *ep,
9756 unsigned int sreg, unsigned int treg)
9758 const char *brneg = NULL;
9770 br = mips_opts.micromips ? "beq" : "beql";
9779 br = mips_opts.micromips ? "bne" : "bnel";
9785 if (mips_opts.micromips && brneg)
9786 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9788 macro_build (ep, br, "s,t,p", sreg, treg);
9791 /* Return the high part that should be loaded in order to make the low
9792 part of VALUE accessible using an offset of OFFBITS bits. */
9795 offset_high_part (offsetT value, unsigned int offbits)
9802 bias = 1 << (offbits - 1);
9803 low_mask = bias * 2 - 1;
9804 return (value + bias) & ~low_mask;
9807 /* Return true if the value stored in offset_expr and offset_reloc
9808 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9809 amount that the caller wants to add without inducing overflow
9810 and ALIGN is the known alignment of the value in bytes. */
9813 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9817 /* Accept any relocation operator if overflow isn't a concern. */
9818 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9821 /* These relocations are guaranteed not to overflow in correct links. */
9822 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9823 || gprel16_reloc_p (*offset_reloc))
9826 if (offset_expr.X_op == O_constant
9827 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9828 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9835 * This routine implements the seemingly endless macro or synthesized
9836 * instructions and addressing modes in the mips assembly language. Many
9837 * of these macros are simple and are similar to each other. These could
9838 * probably be handled by some kind of table or grammar approach instead of
9839 * this verbose method. Others are not simple macros but are more like
9840 * optimizing code generation.
9841 * One interesting optimization is when several store macros appear
9842 * consecutively that would load AT with the upper half of the same address.
9843 * The ensuing load upper instructions are omitted. This implies some kind
9844 * of global optimization. We currently only optimize within a single macro.
9845 * For many of the load and store macros if the address is specified as a
9846 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9847 * first load register 'at' with zero and use it as the base register. The
9848 * mips assembler simply uses register $zero. Just one tiny optimization
9852 macro (struct mips_cl_insn *ip, char *str)
9854 const struct mips_operand_array *operands;
9855 unsigned int breg, i;
9856 unsigned int tempreg;
9859 expressionS label_expr;
9874 bfd_boolean large_offset;
9876 int hold_mips_optimize;
9878 unsigned int op[MAX_OPERANDS];
9880 gas_assert (! mips_opts.mips16);
9882 operands = insn_operands (ip);
9883 for (i = 0; i < MAX_OPERANDS; i++)
9884 if (operands->operand[i])
9885 op[i] = insn_extract_operand (ip, operands->operand[i]);
9889 mask = ip->insn_mo->mask;
9891 label_expr.X_op = O_constant;
9892 label_expr.X_op_symbol = NULL;
9893 label_expr.X_add_symbol = NULL;
9894 label_expr.X_add_number = 0;
9896 expr1.X_op = O_constant;
9897 expr1.X_op_symbol = NULL;
9898 expr1.X_add_symbol = NULL;
9899 expr1.X_add_number = 1;
9916 if (mips_opts.micromips)
9917 micromips_label_expr (&label_expr);
9919 label_expr.X_add_number = 8;
9920 macro_build (&label_expr, "bgez", "s,p", op[1]);
9922 macro_build (NULL, "nop", "");
9924 move_register (op[0], op[1]);
9925 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9926 if (mips_opts.micromips)
9927 micromips_add_label ();
9944 if (!mips_opts.micromips)
9946 if (imm_expr.X_add_number >= -0x200
9947 && imm_expr.X_add_number < 0x200)
9949 macro_build (NULL, s, "t,r,.", op[0], op[1],
9950 (int) imm_expr.X_add_number);
9959 if (imm_expr.X_add_number >= -0x8000
9960 && imm_expr.X_add_number < 0x8000)
9962 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9967 load_register (AT, &imm_expr, dbl);
9968 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9987 if (imm_expr.X_add_number >= 0
9988 && imm_expr.X_add_number < 0x10000)
9990 if (mask != M_NOR_I)
9991 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9994 macro_build (&imm_expr, "ori", "t,r,i",
9995 op[0], op[1], BFD_RELOC_LO16);
9996 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10002 load_register (AT, &imm_expr, GPR_SIZE == 64);
10003 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10007 switch (imm_expr.X_add_number)
10010 macro_build (NULL, "nop", "");
10013 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10017 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10018 (int) imm_expr.X_add_number);
10021 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10022 (unsigned long) imm_expr.X_add_number);
10031 gas_assert (mips_opts.micromips);
10032 macro_build_branch_ccl (mask, &offset_expr,
10033 EXTRACT_OPERAND (1, BCC, *ip));
10040 if (imm_expr.X_add_number == 0)
10046 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10048 /* Fall through. */
10051 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10056 /* Fall through. */
10059 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10060 else if (op[0] == 0)
10061 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10065 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
10077 macro_build_branch_rs (mask, &offset_expr, op[0]);
10082 /* Fall through. */
10084 /* Check for > max integer. */
10085 if (imm_expr.X_add_number >= GPR_SMAX)
10088 /* Result is always false. */
10090 macro_build (NULL, "nop", "");
10092 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10095 ++imm_expr.X_add_number;
10099 if (mask == M_BGEL_I)
10101 if (imm_expr.X_add_number == 0)
10103 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10104 &offset_expr, op[0]);
10107 if (imm_expr.X_add_number == 1)
10109 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10110 &offset_expr, op[0]);
10113 if (imm_expr.X_add_number <= GPR_SMIN)
10116 /* result is always true */
10117 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10118 macro_build (&offset_expr, "b", "p");
10123 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10124 &offset_expr, AT, ZERO);
10129 /* Fall through. */
10133 else if (op[0] == 0)
10134 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10135 &offset_expr, ZERO, op[1]);
10139 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10140 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10141 &offset_expr, AT, ZERO);
10147 /* Fall through. */
10151 && imm_expr.X_add_number == -1))
10153 ++imm_expr.X_add_number;
10157 if (mask == M_BGEUL_I)
10159 if (imm_expr.X_add_number == 0)
10161 else if (imm_expr.X_add_number == 1)
10162 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10163 &offset_expr, op[0], ZERO);
10168 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10169 &offset_expr, AT, ZERO);
10175 /* Fall through. */
10178 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10179 else if (op[0] == 0)
10180 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10184 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10185 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10186 &offset_expr, AT, ZERO);
10192 /* Fall through. */
10195 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10196 &offset_expr, op[0], ZERO);
10197 else if (op[0] == 0)
10202 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10203 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10204 &offset_expr, AT, ZERO);
10210 /* Fall through. */
10213 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10214 else if (op[0] == 0)
10215 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10219 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10220 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10221 &offset_expr, AT, ZERO);
10227 /* Fall through. */
10229 if (imm_expr.X_add_number >= GPR_SMAX)
10231 ++imm_expr.X_add_number;
10235 if (mask == M_BLTL_I)
10237 if (imm_expr.X_add_number == 0)
10238 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10239 else if (imm_expr.X_add_number == 1)
10240 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10245 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10246 &offset_expr, AT, ZERO);
10252 /* Fall through. */
10255 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10256 &offset_expr, op[0], ZERO);
10257 else if (op[0] == 0)
10262 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10263 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10264 &offset_expr, AT, ZERO);
10270 /* Fall through. */
10274 && imm_expr.X_add_number == -1))
10276 ++imm_expr.X_add_number;
10280 if (mask == M_BLTUL_I)
10282 if (imm_expr.X_add_number == 0)
10284 else if (imm_expr.X_add_number == 1)
10285 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10286 &offset_expr, op[0], ZERO);
10291 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10292 &offset_expr, AT, ZERO);
10298 /* Fall through. */
10301 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10302 else if (op[0] == 0)
10303 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10307 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10308 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10309 &offset_expr, AT, ZERO);
10315 /* Fall through. */
10319 else if (op[0] == 0)
10320 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10321 &offset_expr, ZERO, op[1]);
10325 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10326 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10327 &offset_expr, AT, ZERO);
10333 /* Fall through. */
10339 /* Fall through. */
10345 as_warn (_("divide by zero"));
10347 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10349 macro_build (NULL, "break", BRK_FMT, 7);
10353 start_noreorder ();
10356 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10361 if (mips_opts.micromips)
10362 micromips_label_expr (&label_expr);
10364 label_expr.X_add_number = 8;
10365 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10366 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10367 macro_build (NULL, "break", BRK_FMT, 7);
10368 if (mips_opts.micromips)
10369 micromips_add_label ();
10371 expr1.X_add_number = -1;
10373 load_register (AT, &expr1, dbl);
10374 if (mips_opts.micromips)
10375 micromips_label_expr (&label_expr);
10377 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10378 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10381 expr1.X_add_number = 1;
10382 load_register (AT, &expr1, dbl);
10383 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10387 expr1.X_add_number = 0x80000000;
10388 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10392 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10393 /* We want to close the noreorder block as soon as possible, so
10394 that later insns are available for delay slot filling. */
10399 if (mips_opts.micromips)
10400 micromips_label_expr (&label_expr);
10402 label_expr.X_add_number = 8;
10403 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10404 macro_build (NULL, "nop", "");
10406 /* We want to close the noreorder block as soon as possible, so
10407 that later insns are available for delay slot filling. */
10410 macro_build (NULL, "break", BRK_FMT, 6);
10412 if (mips_opts.micromips)
10413 micromips_add_label ();
10414 macro_build (NULL, s, MFHL_FMT, op[0]);
10453 if (imm_expr.X_add_number == 0)
10455 as_warn (_("divide by zero"));
10457 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10459 macro_build (NULL, "break", BRK_FMT, 7);
10462 if (imm_expr.X_add_number == 1)
10464 if (strcmp (s2, "mflo") == 0)
10465 move_register (op[0], op[1]);
10467 move_register (op[0], ZERO);
10470 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10472 if (strcmp (s2, "mflo") == 0)
10473 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10475 move_register (op[0], ZERO);
10480 load_register (AT, &imm_expr, dbl);
10481 macro_build (NULL, s, "z,s,t", op[1], AT);
10482 macro_build (NULL, s2, MFHL_FMT, op[0]);
10501 start_noreorder ();
10504 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10505 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10506 /* We want to close the noreorder block as soon as possible, so
10507 that later insns are available for delay slot filling. */
10512 if (mips_opts.micromips)
10513 micromips_label_expr (&label_expr);
10515 label_expr.X_add_number = 8;
10516 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10517 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10519 /* We want to close the noreorder block as soon as possible, so
10520 that later insns are available for delay slot filling. */
10522 macro_build (NULL, "break", BRK_FMT, 7);
10523 if (mips_opts.micromips)
10524 micromips_add_label ();
10526 macro_build (NULL, s2, MFHL_FMT, op[0]);
10531 /* Fall through. */
10537 /* Fall through. */
10540 /* Load the address of a symbol into a register. If breg is not
10541 zero, we then add a base register to it. */
10544 if (dbl && GPR_SIZE == 32)
10545 as_warn (_("dla used to load 32-bit register; recommend using la "
10548 if (!dbl && HAVE_64BIT_OBJECTS)
10549 as_warn (_("la used to load 64-bit address; recommend using dla "
10552 if (small_offset_p (0, align, 16))
10554 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10555 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10559 if (mips_opts.at && (op[0] == breg))
10567 if (offset_expr.X_op != O_symbol
10568 && offset_expr.X_op != O_constant)
10570 as_bad (_("expression too complex"));
10571 offset_expr.X_op = O_constant;
10574 if (offset_expr.X_op == O_constant)
10575 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10576 else if (mips_pic == NO_PIC)
10578 /* If this is a reference to a GP relative symbol, we want
10579 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10581 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10582 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10583 If we have a constant, we need two instructions anyhow,
10584 so we may as well always use the latter form.
10586 With 64bit address space and a usable $at we want
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 lui $at,<sym> (BFD_RELOC_HI16_S)
10589 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10590 daddiu $at,<sym> (BFD_RELOC_LO16)
10592 daddu $tempreg,$tempreg,$at
10594 If $at is already in use, we use a path which is suboptimal
10595 on superscalar processors.
10596 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10597 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10599 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10601 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10603 For GP relative symbols in 64bit address space we can use
10604 the same sequence as in 32bit address space. */
10605 if (HAVE_64BIT_SYMBOLS)
10607 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10608 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10610 relax_start (offset_expr.X_add_symbol);
10611 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10612 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10616 if (used_at == 0 && mips_opts.at)
10618 macro_build (&offset_expr, "lui", LUI_FMT,
10619 tempreg, BFD_RELOC_MIPS_HIGHEST);
10620 macro_build (&offset_expr, "lui", LUI_FMT,
10621 AT, BFD_RELOC_HI16_S);
10622 macro_build (&offset_expr, "daddiu", "t,r,j",
10623 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10624 macro_build (&offset_expr, "daddiu", "t,r,j",
10625 AT, AT, BFD_RELOC_LO16);
10626 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10627 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10632 macro_build (&offset_expr, "lui", LUI_FMT,
10633 tempreg, BFD_RELOC_MIPS_HIGHEST);
10634 macro_build (&offset_expr, "daddiu", "t,r,j",
10635 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10636 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10637 macro_build (&offset_expr, "daddiu", "t,r,j",
10638 tempreg, tempreg, BFD_RELOC_HI16_S);
10639 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10640 macro_build (&offset_expr, "daddiu", "t,r,j",
10641 tempreg, tempreg, BFD_RELOC_LO16);
10644 if (mips_relax.sequence)
10649 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10650 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10652 relax_start (offset_expr.X_add_symbol);
10653 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10654 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10657 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10658 as_bad (_("offset too large"));
10659 macro_build_lui (&offset_expr, tempreg);
10660 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10661 tempreg, tempreg, BFD_RELOC_LO16);
10662 if (mips_relax.sequence)
10666 else if (!mips_big_got && !HAVE_NEWABI)
10668 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10670 /* If this is a reference to an external symbol, and there
10671 is no constant, we want
10672 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10673 or for lca or if tempreg is PIC_CALL_REG
10674 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10675 For a local symbol, we want
10676 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10680 If we have a small constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10684 addiu $tempreg,$tempreg,<constant>
10685 For a local symbol, we want the same instruction
10686 sequence, but we output a BFD_RELOC_LO16 reloc on the
10689 If we have a large constant, and this is a reference to
10690 an external symbol, we want
10691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10692 lui $at,<hiconstant>
10693 addiu $at,$at,<loconstant>
10694 addu $tempreg,$tempreg,$at
10695 For a local symbol, we want the same instruction
10696 sequence, but we output a BFD_RELOC_LO16 reloc on the
10700 if (offset_expr.X_add_number == 0)
10702 if (mips_pic == SVR4_PIC
10704 && (call || tempreg == PIC_CALL_REG))
10705 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10707 relax_start (offset_expr.X_add_symbol);
10708 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10709 lw_reloc_type, mips_gp_register);
10712 /* We're going to put in an addu instruction using
10713 tempreg, so we may as well insert the nop right
10718 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10719 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10721 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10722 tempreg, tempreg, BFD_RELOC_LO16);
10724 /* FIXME: If breg == 0, and the next instruction uses
10725 $tempreg, then if this variant case is used an extra
10726 nop will be generated. */
10728 else if (offset_expr.X_add_number >= -0x8000
10729 && offset_expr.X_add_number < 0x8000)
10731 load_got_offset (tempreg, &offset_expr);
10733 add_got_offset (tempreg, &offset_expr);
10737 expr1.X_add_number = offset_expr.X_add_number;
10738 offset_expr.X_add_number =
10739 SEXT_16BIT (offset_expr.X_add_number);
10740 load_got_offset (tempreg, &offset_expr);
10741 offset_expr.X_add_number = expr1.X_add_number;
10742 /* If we are going to add in a base register, and the
10743 target register and the base register are the same,
10744 then we are using AT as a temporary register. Since
10745 we want to load the constant into AT, we add our
10746 current AT (from the global offset table) and the
10747 register into the register now, and pretend we were
10748 not using a base register. */
10752 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10757 add_got_offset_hilo (tempreg, &offset_expr, AT);
10761 else if (!mips_big_got && HAVE_NEWABI)
10763 int add_breg_early = 0;
10765 /* If this is a reference to an external, and there is no
10766 constant, or local symbol (*), with or without a
10768 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10769 or for lca or if tempreg is PIC_CALL_REG
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10772 If we have a small constant, and this is a reference to
10773 an external symbol, we want
10774 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10775 addiu $tempreg,$tempreg,<constant>
10777 If we have a large constant, and this is a reference to
10778 an external symbol, we want
10779 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10780 lui $at,<hiconstant>
10781 addiu $at,$at,<loconstant>
10782 addu $tempreg,$tempreg,$at
10784 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10785 local symbols, even though it introduces an additional
10788 if (offset_expr.X_add_number)
10790 expr1.X_add_number = offset_expr.X_add_number;
10791 offset_expr.X_add_number = 0;
10793 relax_start (offset_expr.X_add_symbol);
10794 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10795 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10797 if (expr1.X_add_number >= -0x8000
10798 && expr1.X_add_number < 0x8000)
10800 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10801 tempreg, tempreg, BFD_RELOC_LO16);
10803 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10807 /* If we are going to add in a base register, and the
10808 target register and the base register are the same,
10809 then we are using AT as a temporary register. Since
10810 we want to load the constant into AT, we add our
10811 current AT (from the global offset table) and the
10812 register into the register now, and pretend we were
10813 not using a base register. */
10818 gas_assert (tempreg == AT);
10819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10822 add_breg_early = 1;
10825 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10826 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10832 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10835 offset_expr.X_add_number = expr1.X_add_number;
10837 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10838 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10839 if (add_breg_early)
10841 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10842 op[0], tempreg, breg);
10848 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10850 relax_start (offset_expr.X_add_symbol);
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10860 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10861 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10864 else if (mips_big_got && !HAVE_NEWABI)
10867 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10868 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10869 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10871 /* This is the large GOT case. If this is a reference to an
10872 external symbol, and there is no constant, we want
10873 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10874 addu $tempreg,$tempreg,$gp
10875 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10876 or for lca or if tempreg is PIC_CALL_REG
10877 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10878 addu $tempreg,$tempreg,$gp
10879 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10880 For a local symbol, we want
10881 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10883 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10885 If we have a small constant, and this is a reference to
10886 an external symbol, we want
10887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10888 addu $tempreg,$tempreg,$gp
10889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10891 addiu $tempreg,$tempreg,<constant>
10892 For a local symbol, we want
10893 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10895 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10897 If we have a large constant, and this is a reference to
10898 an external symbol, we want
10899 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10900 addu $tempreg,$tempreg,$gp
10901 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10902 lui $at,<hiconstant>
10903 addiu $at,$at,<loconstant>
10904 addu $tempreg,$tempreg,$at
10905 For a local symbol, we want
10906 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10907 lui $at,<hiconstant>
10908 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10909 addu $tempreg,$tempreg,$at
10912 expr1.X_add_number = offset_expr.X_add_number;
10913 offset_expr.X_add_number = 0;
10914 relax_start (offset_expr.X_add_symbol);
10915 gpdelay = reg_needs_delay (mips_gp_register);
10916 if (expr1.X_add_number == 0 && breg == 0
10917 && (call || tempreg == PIC_CALL_REG))
10919 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10920 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10922 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10924 tempreg, tempreg, mips_gp_register);
10925 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10926 tempreg, lw_reloc_type, tempreg);
10927 if (expr1.X_add_number == 0)
10931 /* We're going to put in an addu instruction using
10932 tempreg, so we may as well insert the nop right
10937 else if (expr1.X_add_number >= -0x8000
10938 && expr1.X_add_number < 0x8000)
10941 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10942 tempreg, tempreg, BFD_RELOC_LO16);
10948 /* If we are going to add in a base register, and the
10949 target register and the base register are the same,
10950 then we are using AT as a temporary register. Since
10951 we want to load the constant into AT, we add our
10952 current AT (from the global offset table) and the
10953 register into the register now, and pretend we were
10954 not using a base register. */
10959 gas_assert (tempreg == AT);
10961 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10966 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10971 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10976 /* This is needed because this instruction uses $gp, but
10977 the first instruction on the main stream does not. */
10978 macro_build (NULL, "nop", "");
10981 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10982 local_reloc_type, mips_gp_register);
10983 if (expr1.X_add_number >= -0x8000
10984 && expr1.X_add_number < 0x8000)
10987 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10988 tempreg, tempreg, BFD_RELOC_LO16);
10989 /* FIXME: If add_number is 0, and there was no base
10990 register, the external symbol case ended with a load,
10991 so if the symbol turns out to not be external, and
10992 the next instruction uses tempreg, an unnecessary nop
10993 will be inserted. */
10999 /* We must add in the base register now, as in the
11000 external symbol case. */
11001 gas_assert (tempreg == AT);
11003 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11006 /* We set breg to 0 because we have arranged to add
11007 it in in both cases. */
11011 macro_build_lui (&expr1, AT);
11012 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11013 AT, AT, BFD_RELOC_LO16);
11014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11015 tempreg, tempreg, AT);
11020 else if (mips_big_got && HAVE_NEWABI)
11022 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11023 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11024 int add_breg_early = 0;
11026 /* This is the large GOT case. If this is a reference to an
11027 external symbol, and there is no constant, we want
11028 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11029 add $tempreg,$tempreg,$gp
11030 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11031 or for lca or if tempreg is PIC_CALL_REG
11032 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11033 add $tempreg,$tempreg,$gp
11034 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11036 If we have a small constant, and this is a reference to
11037 an external symbol, we want
11038 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11039 add $tempreg,$tempreg,$gp
11040 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11041 addi $tempreg,$tempreg,<constant>
11043 If we have a large constant, and this is a reference to
11044 an external symbol, we want
11045 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11046 addu $tempreg,$tempreg,$gp
11047 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11048 lui $at,<hiconstant>
11049 addi $at,$at,<loconstant>
11050 add $tempreg,$tempreg,$at
11052 If we have NewABI, and we know it's a local symbol, we want
11053 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11054 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11055 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11057 relax_start (offset_expr.X_add_symbol);
11059 expr1.X_add_number = offset_expr.X_add_number;
11060 offset_expr.X_add_number = 0;
11062 if (expr1.X_add_number == 0 && breg == 0
11063 && (call || tempreg == PIC_CALL_REG))
11065 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11066 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11068 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11069 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11070 tempreg, tempreg, mips_gp_register);
11071 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11072 tempreg, lw_reloc_type, tempreg);
11074 if (expr1.X_add_number == 0)
11076 else if (expr1.X_add_number >= -0x8000
11077 && expr1.X_add_number < 0x8000)
11079 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11080 tempreg, tempreg, BFD_RELOC_LO16);
11082 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11086 /* If we are going to add in a base register, and the
11087 target register and the base register are the same,
11088 then we are using AT as a temporary register. Since
11089 we want to load the constant into AT, we add our
11090 current AT (from the global offset table) and the
11091 register into the register now, and pretend we were
11092 not using a base register. */
11097 gas_assert (tempreg == AT);
11098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11101 add_breg_early = 1;
11104 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11110 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11113 offset_expr.X_add_number = expr1.X_add_number;
11114 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11115 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11117 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11118 if (add_breg_early)
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11121 op[0], tempreg, breg);
11131 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11135 gas_assert (!mips_opts.micromips);
11136 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11140 gas_assert (!mips_opts.micromips);
11141 macro_build (NULL, "c2", "C", 0x02);
11145 gas_assert (!mips_opts.micromips);
11146 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11150 gas_assert (!mips_opts.micromips);
11151 macro_build (NULL, "c2", "C", 3);
11155 gas_assert (!mips_opts.micromips);
11156 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11160 /* The j instruction may not be used in PIC code, since it
11161 requires an absolute address. We convert it to a b
11163 if (mips_pic == NO_PIC)
11164 macro_build (&offset_expr, "j", "a");
11166 macro_build (&offset_expr, "b", "p");
11169 /* The jal instructions must be handled as macros because when
11170 generating PIC code they expand to multi-instruction
11171 sequences. Normally they are simple instructions. */
11175 /* Fall through. */
11177 gas_assert (mips_opts.micromips);
11178 if (mips_opts.insn32)
11180 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11188 /* Fall through. */
11191 if (mips_pic == NO_PIC)
11193 s = jals ? "jalrs" : "jalr";
11194 if (mips_opts.micromips
11195 && !mips_opts.insn32
11197 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11198 macro_build (NULL, s, "mj", op[1]);
11200 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11204 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11205 && mips_cprestore_offset >= 0);
11207 if (op[1] != PIC_CALL_REG)
11208 as_warn (_("MIPS PIC call to register other than $25"));
11210 s = ((mips_opts.micromips
11211 && !mips_opts.insn32
11212 && (!mips_opts.noreorder || cprestore))
11213 ? "jalrs" : "jalr");
11214 if (mips_opts.micromips
11215 && !mips_opts.insn32
11217 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11218 macro_build (NULL, s, "mj", op[1]);
11220 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11221 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11223 if (mips_cprestore_offset < 0)
11224 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11227 if (!mips_frame_reg_valid)
11229 as_warn (_("no .frame pseudo-op used in PIC code"));
11230 /* Quiet this warning. */
11231 mips_frame_reg_valid = 1;
11233 if (!mips_cprestore_valid)
11235 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11236 /* Quiet this warning. */
11237 mips_cprestore_valid = 1;
11239 if (mips_opts.noreorder)
11240 macro_build (NULL, "nop", "");
11241 expr1.X_add_number = mips_cprestore_offset;
11242 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11245 HAVE_64BIT_ADDRESSES);
11253 gas_assert (mips_opts.micromips);
11254 if (mips_opts.insn32)
11256 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11260 /* Fall through. */
11262 if (mips_pic == NO_PIC)
11263 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11264 else if (mips_pic == SVR4_PIC)
11266 /* If this is a reference to an external symbol, and we are
11267 using a small GOT, we want
11268 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11272 lw $gp,cprestore($sp)
11273 The cprestore value is set using the .cprestore
11274 pseudo-op. If we are using a big GOT, we want
11275 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11277 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11281 lw $gp,cprestore($sp)
11282 If the symbol is not external, we want
11283 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11285 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11288 lw $gp,cprestore($sp)
11290 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11291 sequences above, minus nops, unless the symbol is local,
11292 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11298 relax_start (offset_expr.X_add_symbol);
11299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11300 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11304 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11310 relax_start (offset_expr.X_add_symbol);
11311 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11312 BFD_RELOC_MIPS_CALL_HI16);
11313 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11314 PIC_CALL_REG, mips_gp_register);
11315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11319 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11320 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11322 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11323 PIC_CALL_REG, PIC_CALL_REG,
11324 BFD_RELOC_MIPS_GOT_OFST);
11328 macro_build_jalr (&offset_expr, 0);
11332 relax_start (offset_expr.X_add_symbol);
11335 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11336 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11345 gpdelay = reg_needs_delay (mips_gp_register);
11346 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11347 BFD_RELOC_MIPS_CALL_HI16);
11348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11349 PIC_CALL_REG, mips_gp_register);
11350 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11351 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11356 macro_build (NULL, "nop", "");
11358 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11359 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11362 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11363 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11365 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11367 if (mips_cprestore_offset < 0)
11368 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11371 if (!mips_frame_reg_valid)
11373 as_warn (_("no .frame pseudo-op used in PIC code"));
11374 /* Quiet this warning. */
11375 mips_frame_reg_valid = 1;
11377 if (!mips_cprestore_valid)
11379 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11380 /* Quiet this warning. */
11381 mips_cprestore_valid = 1;
11383 if (mips_opts.noreorder)
11384 macro_build (NULL, "nop", "");
11385 expr1.X_add_number = mips_cprestore_offset;
11386 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11389 HAVE_64BIT_ADDRESSES);
11393 else if (mips_pic == VXWORKS_PIC)
11394 as_bad (_("non-PIC jump used in PIC library"));
11501 gas_assert (!mips_opts.micromips);
11504 /* Itbl support may require additional care here. */
11510 /* Itbl support may require additional care here. */
11516 offbits = (mips_opts.micromips ? 12
11517 : ISA_IS_R6 (mips_opts.isa) ? 11
11519 /* Itbl support may require additional care here. */
11523 gas_assert (!mips_opts.micromips);
11526 /* Itbl support may require additional care here. */
11532 offbits = (mips_opts.micromips ? 12 : 16);
11537 offbits = (mips_opts.micromips ? 12 : 16);
11542 /* Itbl support may require additional care here. */
11548 offbits = (mips_opts.micromips ? 12
11549 : ISA_IS_R6 (mips_opts.isa) ? 11
11551 /* Itbl support may require additional care here. */
11557 /* Itbl support may require additional care here. */
11563 /* Itbl support may require additional care here. */
11569 offbits = (mips_opts.micromips ? 12 : 16);
11574 offbits = (mips_opts.micromips ? 12 : 16);
11579 offbits = (mips_opts.micromips ? 12
11580 : ISA_IS_R6 (mips_opts.isa) ? 9
11586 offbits = (mips_opts.micromips ? 12
11587 : ISA_IS_R6 (mips_opts.isa) ? 9
11593 offbits = (mips_opts.micromips ? 12 : 16);
11596 gas_assert (mips_opts.micromips);
11603 gas_assert (mips_opts.micromips);
11610 gas_assert (mips_opts.micromips);
11616 gas_assert (mips_opts.micromips);
11623 /* We don't want to use $0 as tempreg. */
11624 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11627 tempreg = op[0] + lp;
11643 gas_assert (!mips_opts.micromips);
11646 /* Itbl support may require additional care here. */
11652 /* Itbl support may require additional care here. */
11658 offbits = (mips_opts.micromips ? 12
11659 : ISA_IS_R6 (mips_opts.isa) ? 11
11661 /* Itbl support may require additional care here. */
11665 gas_assert (!mips_opts.micromips);
11668 /* Itbl support may require additional care here. */
11674 offbits = (mips_opts.micromips ? 12 : 16);
11679 offbits = (mips_opts.micromips ? 12 : 16);
11684 offbits = (mips_opts.micromips ? 12
11685 : ISA_IS_R6 (mips_opts.isa) ? 9
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11697 fmt = (mips_opts.micromips ? "k,~(b)"
11698 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11700 offbits = (mips_opts.micromips ? 12
11701 : ISA_IS_R6 (mips_opts.isa) ? 9
11711 fmt = (mips_opts.micromips ? "k,~(b)"
11712 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11714 offbits = (mips_opts.micromips ? 12
11715 : ISA_IS_R6 (mips_opts.isa) ? 9
11727 /* Itbl support may require additional care here. */
11732 offbits = (mips_opts.micromips ? 12
11733 : ISA_IS_R6 (mips_opts.isa) ? 11
11735 /* Itbl support may require additional care here. */
11741 /* Itbl support may require additional care here. */
11745 gas_assert (!mips_opts.micromips);
11748 /* Itbl support may require additional care here. */
11754 offbits = (mips_opts.micromips ? 12 : 16);
11759 offbits = (mips_opts.micromips ? 12 : 16);
11762 gas_assert (mips_opts.micromips);
11768 gas_assert (mips_opts.micromips);
11774 gas_assert (mips_opts.micromips);
11780 gas_assert (mips_opts.micromips);
11789 if (small_offset_p (0, align, 16))
11791 /* The first case exists for M_LD_AB and M_SD_AB, which are
11792 macros for o32 but which should act like normal instructions
11795 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11796 offset_reloc[1], offset_reloc[2], breg);
11797 else if (small_offset_p (0, align, offbits))
11800 macro_build (NULL, s, fmt, op[0], breg);
11802 macro_build (NULL, s, fmt, op[0],
11803 (int) offset_expr.X_add_number, breg);
11809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11810 tempreg, breg, -1, offset_reloc[0],
11811 offset_reloc[1], offset_reloc[2]);
11813 macro_build (NULL, s, fmt, op[0], tempreg);
11815 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11823 if (offset_expr.X_op != O_constant
11824 && offset_expr.X_op != O_symbol)
11826 as_bad (_("expression too complex"));
11827 offset_expr.X_op = O_constant;
11830 if (HAVE_32BIT_ADDRESSES
11831 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11835 sprintf_vma (value, offset_expr.X_add_number);
11836 as_bad (_("number (0x%s) larger than 32 bits"), value);
11839 /* A constant expression in PIC code can be handled just as it
11840 is in non PIC code. */
11841 if (offset_expr.X_op == O_constant)
11843 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11844 offbits == 0 ? 16 : offbits);
11845 offset_expr.X_add_number -= expr1.X_add_number;
11847 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11849 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11850 tempreg, tempreg, breg);
11853 if (offset_expr.X_add_number != 0)
11854 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11855 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11856 macro_build (NULL, s, fmt, op[0], tempreg);
11858 else if (offbits == 16)
11859 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11861 macro_build (NULL, s, fmt, op[0],
11862 (int) offset_expr.X_add_number, tempreg);
11864 else if (offbits != 16)
11866 /* The offset field is too narrow to be used for a low-part
11867 relocation, so load the whole address into the auxiliary
11869 load_address (tempreg, &offset_expr, &used_at);
11871 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11872 tempreg, tempreg, breg);
11874 macro_build (NULL, s, fmt, op[0], tempreg);
11876 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11878 else if (mips_pic == NO_PIC)
11880 /* If this is a reference to a GP relative symbol, and there
11881 is no base register, we want
11882 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11883 Otherwise, if there is no base register, we want
11884 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11885 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11886 If we have a constant, we need two instructions anyhow,
11887 so we always use the latter form.
11889 If we have a base register, and this is a reference to a
11890 GP relative symbol, we want
11891 addu $tempreg,$breg,$gp
11892 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11894 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11895 addu $tempreg,$tempreg,$breg
11896 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11897 With a constant we always use the latter case.
11899 With 64bit address space and no base register and $at usable,
11901 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11902 lui $at,<sym> (BFD_RELOC_HI16_S)
11903 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11906 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11907 If we have a base register, we want
11908 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11909 lui $at,<sym> (BFD_RELOC_HI16_S)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11916 Without $at we can't generate the optimal path for superscalar
11917 processors here since this would require two temporary registers.
11918 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11919 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11921 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11923 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11924 If we have a base register, we want
11925 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11926 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11928 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11930 daddu $tempreg,$tempreg,$breg
11931 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11933 For GP relative symbols in 64bit address space we can use
11934 the same sequence as in 32bit address space. */
11935 if (HAVE_64BIT_SYMBOLS)
11937 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11938 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11940 relax_start (offset_expr.X_add_symbol);
11943 macro_build (&offset_expr, s, fmt, op[0],
11944 BFD_RELOC_GPREL16, mips_gp_register);
11948 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11949 tempreg, breg, mips_gp_register);
11950 macro_build (&offset_expr, s, fmt, op[0],
11951 BFD_RELOC_GPREL16, tempreg);
11956 if (used_at == 0 && mips_opts.at)
11958 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11959 BFD_RELOC_MIPS_HIGHEST);
11960 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11962 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11963 tempreg, BFD_RELOC_MIPS_HIGHER);
11965 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11966 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11967 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11968 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11974 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11975 BFD_RELOC_MIPS_HIGHEST);
11976 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11977 tempreg, BFD_RELOC_MIPS_HIGHER);
11978 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11979 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11980 tempreg, BFD_RELOC_HI16_S);
11981 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11983 macro_build (NULL, "daddu", "d,v,t",
11984 tempreg, tempreg, breg);
11985 macro_build (&offset_expr, s, fmt, op[0],
11986 BFD_RELOC_LO16, tempreg);
11989 if (mips_relax.sequence)
11996 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11997 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11999 relax_start (offset_expr.X_add_symbol);
12000 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12004 macro_build_lui (&offset_expr, tempreg);
12005 macro_build (&offset_expr, s, fmt, op[0],
12006 BFD_RELOC_LO16, tempreg);
12007 if (mips_relax.sequence)
12012 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12013 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12015 relax_start (offset_expr.X_add_symbol);
12016 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12017 tempreg, breg, mips_gp_register);
12018 macro_build (&offset_expr, s, fmt, op[0],
12019 BFD_RELOC_GPREL16, tempreg);
12022 macro_build_lui (&offset_expr, tempreg);
12023 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12024 tempreg, tempreg, breg);
12025 macro_build (&offset_expr, s, fmt, op[0],
12026 BFD_RELOC_LO16, tempreg);
12027 if (mips_relax.sequence)
12031 else if (!mips_big_got)
12033 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12035 /* If this is a reference to an external symbol, we want
12036 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12038 <op> op[0],0($tempreg)
12040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12042 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12043 <op> op[0],0($tempreg)
12045 For NewABI, we want
12046 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12047 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12049 If there is a base register, we add it to $tempreg before
12050 the <op>. If there is a constant, we stick it in the
12051 <op> instruction. We don't handle constants larger than
12052 16 bits, because we have no way to load the upper 16 bits
12053 (actually, we could handle them for the subset of cases
12054 in which we are not using $at). */
12055 gas_assert (offset_expr.X_op == O_symbol);
12058 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12059 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12061 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12062 tempreg, tempreg, breg);
12063 macro_build (&offset_expr, s, fmt, op[0],
12064 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12067 expr1.X_add_number = offset_expr.X_add_number;
12068 offset_expr.X_add_number = 0;
12069 if (expr1.X_add_number < -0x8000
12070 || expr1.X_add_number >= 0x8000)
12071 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12073 lw_reloc_type, mips_gp_register);
12075 relax_start (offset_expr.X_add_symbol);
12077 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12078 tempreg, BFD_RELOC_LO16);
12081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12082 tempreg, tempreg, breg);
12083 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12085 else if (mips_big_got && !HAVE_NEWABI)
12089 /* If this is a reference to an external symbol, we want
12090 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12091 addu $tempreg,$tempreg,$gp
12092 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12093 <op> op[0],0($tempreg)
12095 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12097 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12098 <op> op[0],0($tempreg)
12099 If there is a base register, we add it to $tempreg before
12100 the <op>. If there is a constant, we stick it in the
12101 <op> instruction. We don't handle constants larger than
12102 16 bits, because we have no way to load the upper 16 bits
12103 (actually, we could handle them for the subset of cases
12104 in which we are not using $at). */
12105 gas_assert (offset_expr.X_op == O_symbol);
12106 expr1.X_add_number = offset_expr.X_add_number;
12107 offset_expr.X_add_number = 0;
12108 if (expr1.X_add_number < -0x8000
12109 || expr1.X_add_number >= 0x8000)
12110 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12111 gpdelay = reg_needs_delay (mips_gp_register);
12112 relax_start (offset_expr.X_add_symbol);
12113 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12114 BFD_RELOC_MIPS_GOT_HI16);
12115 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12117 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12118 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12121 macro_build (NULL, "nop", "");
12122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12123 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12125 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12126 tempreg, BFD_RELOC_LO16);
12130 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12131 tempreg, tempreg, breg);
12132 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12134 else if (mips_big_got && HAVE_NEWABI)
12136 /* If this is a reference to an external symbol, we want
12137 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12138 add $tempreg,$tempreg,$gp
12139 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12140 <op> op[0],<ofst>($tempreg)
12141 Otherwise, for local symbols, we want:
12142 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12143 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12144 gas_assert (offset_expr.X_op == O_symbol);
12145 expr1.X_add_number = offset_expr.X_add_number;
12146 offset_expr.X_add_number = 0;
12147 if (expr1.X_add_number < -0x8000
12148 || expr1.X_add_number >= 0x8000)
12149 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12150 relax_start (offset_expr.X_add_symbol);
12151 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12152 BFD_RELOC_MIPS_GOT_HI16);
12153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12159 tempreg, tempreg, breg);
12160 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12163 offset_expr.X_add_number = expr1.X_add_number;
12164 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12165 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12168 tempreg, tempreg, breg);
12169 macro_build (&offset_expr, s, fmt, op[0],
12170 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12179 gas_assert (mips_opts.micromips);
12180 gas_assert (mips_opts.insn32);
12181 start_noreorder ();
12182 macro_build (NULL, "jr", "s", RA);
12183 expr1.X_add_number = op[0] << 2;
12184 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12189 gas_assert (mips_opts.micromips);
12190 gas_assert (mips_opts.insn32);
12191 macro_build (NULL, "jr", "s", op[0]);
12192 if (mips_opts.noreorder)
12193 macro_build (NULL, "nop", "");
12198 load_register (op[0], &imm_expr, 0);
12202 load_register (op[0], &imm_expr, 1);
12206 if (imm_expr.X_op == O_constant)
12209 load_register (AT, &imm_expr, 0);
12210 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12215 gas_assert (imm_expr.X_op == O_absent
12216 && offset_expr.X_op == O_symbol
12217 && strcmp (segment_name (S_GET_SEGMENT
12218 (offset_expr.X_add_symbol)),
12220 && offset_expr.X_add_number == 0);
12221 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12222 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12227 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12228 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12229 order 32 bits of the value and the low order 32 bits are either
12230 zero or in OFFSET_EXPR. */
12231 if (imm_expr.X_op == O_constant)
12233 if (GPR_SIZE == 64)
12234 load_register (op[0], &imm_expr, 1);
12239 if (target_big_endian)
12251 load_register (hreg, &imm_expr, 0);
12254 if (offset_expr.X_op == O_absent)
12255 move_register (lreg, 0);
12258 gas_assert (offset_expr.X_op == O_constant);
12259 load_register (lreg, &offset_expr, 0);
12265 gas_assert (imm_expr.X_op == O_absent);
12267 /* We know that sym is in the .rdata section. First we get the
12268 upper 16 bits of the address. */
12269 if (mips_pic == NO_PIC)
12271 macro_build_lui (&offset_expr, AT);
12276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12277 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12281 /* Now we load the register(s). */
12282 if (GPR_SIZE == 64)
12285 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12286 BFD_RELOC_LO16, AT);
12291 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12292 BFD_RELOC_LO16, AT);
12295 /* FIXME: How in the world do we deal with the possible
12297 offset_expr.X_add_number += 4;
12298 macro_build (&offset_expr, "lw", "t,o(b)",
12299 op[0] + 1, BFD_RELOC_LO16, AT);
12305 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12306 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12307 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12308 the value and the low order 32 bits are either zero or in
12310 if (imm_expr.X_op == O_constant)
12313 load_register (AT, &imm_expr, FPR_SIZE == 64);
12314 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12315 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12318 if (ISA_HAS_MXHC1 (mips_opts.isa))
12319 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12320 else if (FPR_SIZE != 32)
12321 as_bad (_("Unable to generate `%s' compliant code "
12323 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12325 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12326 if (offset_expr.X_op == O_absent)
12327 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12330 gas_assert (offset_expr.X_op == O_constant);
12331 load_register (AT, &offset_expr, 0);
12332 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12338 gas_assert (imm_expr.X_op == O_absent
12339 && offset_expr.X_op == O_symbol
12340 && offset_expr.X_add_number == 0);
12341 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12342 if (strcmp (s, ".lit8") == 0)
12344 op[2] = mips_gp_register;
12345 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12346 offset_reloc[1] = BFD_RELOC_UNUSED;
12347 offset_reloc[2] = BFD_RELOC_UNUSED;
12351 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12353 if (mips_pic != NO_PIC)
12354 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12358 /* FIXME: This won't work for a 64 bit address. */
12359 macro_build_lui (&offset_expr, AT);
12363 offset_reloc[0] = BFD_RELOC_LO16;
12364 offset_reloc[1] = BFD_RELOC_UNUSED;
12365 offset_reloc[2] = BFD_RELOC_UNUSED;
12372 * The MIPS assembler seems to check for X_add_number not
12373 * being double aligned and generating:
12374 * lui at,%hi(foo+1)
12376 * addiu at,at,%lo(foo+1)
12379 * But, the resulting address is the same after relocation so why
12380 * generate the extra instruction?
12382 /* Itbl support may require additional care here. */
12385 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12394 gas_assert (!mips_opts.micromips);
12395 /* Itbl support may require additional care here. */
12398 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12418 if (GPR_SIZE == 64)
12428 if (GPR_SIZE == 64)
12436 /* Even on a big endian machine $fn comes before $fn+1. We have
12437 to adjust when loading from memory. We set coproc if we must
12438 load $fn+1 first. */
12439 /* Itbl support may require additional care here. */
12440 if (!target_big_endian)
12444 if (small_offset_p (0, align, 16))
12447 if (!small_offset_p (4, align, 16))
12449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12450 -1, offset_reloc[0], offset_reloc[1],
12452 expr1.X_add_number = 0;
12456 offset_reloc[0] = BFD_RELOC_LO16;
12457 offset_reloc[1] = BFD_RELOC_UNUSED;
12458 offset_reloc[2] = BFD_RELOC_UNUSED;
12460 if (strcmp (s, "lw") == 0 && op[0] == breg)
12462 ep->X_add_number += 4;
12463 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12464 offset_reloc[1], offset_reloc[2], breg);
12465 ep->X_add_number -= 4;
12466 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12467 offset_reloc[1], offset_reloc[2], breg);
12471 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12472 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12474 ep->X_add_number += 4;
12475 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12476 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12482 if (offset_expr.X_op != O_symbol
12483 && offset_expr.X_op != O_constant)
12485 as_bad (_("expression too complex"));
12486 offset_expr.X_op = O_constant;
12489 if (HAVE_32BIT_ADDRESSES
12490 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12494 sprintf_vma (value, offset_expr.X_add_number);
12495 as_bad (_("number (0x%s) larger than 32 bits"), value);
12498 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12500 /* If this is a reference to a GP relative symbol, we want
12501 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12502 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12503 If we have a base register, we use this
12505 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12506 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12507 If this is not a GP relative symbol, we want
12508 lui $at,<sym> (BFD_RELOC_HI16_S)
12509 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12510 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12511 If there is a base register, we add it to $at after the
12512 lui instruction. If there is a constant, we always use
12514 if (offset_expr.X_op == O_symbol
12515 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12516 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12518 relax_start (offset_expr.X_add_symbol);
12521 tempreg = mips_gp_register;
12525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12526 AT, breg, mips_gp_register);
12531 /* Itbl support may require additional care here. */
12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12533 BFD_RELOC_GPREL16, tempreg);
12534 offset_expr.X_add_number += 4;
12536 /* Set mips_optimize to 2 to avoid inserting an
12538 hold_mips_optimize = mips_optimize;
12540 /* Itbl support may require additional care here. */
12541 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12542 BFD_RELOC_GPREL16, tempreg);
12543 mips_optimize = hold_mips_optimize;
12547 offset_expr.X_add_number -= 4;
12550 if (offset_high_part (offset_expr.X_add_number, 16)
12551 != offset_high_part (offset_expr.X_add_number + 4, 16))
12553 load_address (AT, &offset_expr, &used_at);
12554 offset_expr.X_op = O_constant;
12555 offset_expr.X_add_number = 0;
12558 macro_build_lui (&offset_expr, AT);
12560 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12561 /* Itbl support may require additional care here. */
12562 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12563 BFD_RELOC_LO16, AT);
12564 /* FIXME: How do we handle overflow here? */
12565 offset_expr.X_add_number += 4;
12566 /* Itbl support may require additional care here. */
12567 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12568 BFD_RELOC_LO16, AT);
12569 if (mips_relax.sequence)
12572 else if (!mips_big_got)
12574 /* If this is a reference to an external symbol, we want
12575 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12578 <op> op[0]+1,4($at)
12580 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12582 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12583 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12584 If there is a base register we add it to $at before the
12585 lwc1 instructions. If there is a constant we include it
12586 in the lwc1 instructions. */
12588 expr1.X_add_number = offset_expr.X_add_number;
12589 if (expr1.X_add_number < -0x8000
12590 || expr1.X_add_number >= 0x8000 - 4)
12591 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12592 load_got_offset (AT, &offset_expr);
12595 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12597 /* Set mips_optimize to 2 to avoid inserting an undesired
12599 hold_mips_optimize = mips_optimize;
12602 /* Itbl support may require additional care here. */
12603 relax_start (offset_expr.X_add_symbol);
12604 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12605 BFD_RELOC_LO16, AT);
12606 expr1.X_add_number += 4;
12607 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12608 BFD_RELOC_LO16, AT);
12610 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12611 BFD_RELOC_LO16, AT);
12612 offset_expr.X_add_number += 4;
12613 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12614 BFD_RELOC_LO16, AT);
12617 mips_optimize = hold_mips_optimize;
12619 else if (mips_big_got)
12623 /* If this is a reference to an external symbol, we want
12624 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12626 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12629 <op> op[0]+1,4($at)
12631 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12633 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12634 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12635 If there is a base register we add it to $at before the
12636 lwc1 instructions. If there is a constant we include it
12637 in the lwc1 instructions. */
12639 expr1.X_add_number = offset_expr.X_add_number;
12640 offset_expr.X_add_number = 0;
12641 if (expr1.X_add_number < -0x8000
12642 || expr1.X_add_number >= 0x8000 - 4)
12643 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12644 gpdelay = reg_needs_delay (mips_gp_register);
12645 relax_start (offset_expr.X_add_symbol);
12646 macro_build (&offset_expr, "lui", LUI_FMT,
12647 AT, BFD_RELOC_MIPS_GOT_HI16);
12648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12649 AT, AT, mips_gp_register);
12650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12651 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12655 /* Itbl support may require additional care here. */
12656 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12657 BFD_RELOC_LO16, AT);
12658 expr1.X_add_number += 4;
12660 /* Set mips_optimize to 2 to avoid inserting an undesired
12662 hold_mips_optimize = mips_optimize;
12664 /* Itbl support may require additional care here. */
12665 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12666 BFD_RELOC_LO16, AT);
12667 mips_optimize = hold_mips_optimize;
12668 expr1.X_add_number -= 4;
12671 offset_expr.X_add_number = expr1.X_add_number;
12673 macro_build (NULL, "nop", "");
12674 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12675 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12679 /* Itbl support may require additional care here. */
12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12681 BFD_RELOC_LO16, AT);
12682 offset_expr.X_add_number += 4;
12684 /* Set mips_optimize to 2 to avoid inserting an undesired
12686 hold_mips_optimize = mips_optimize;
12688 /* Itbl support may require additional care here. */
12689 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12690 BFD_RELOC_LO16, AT);
12691 mips_optimize = hold_mips_optimize;
12705 gas_assert (!mips_opts.micromips);
12710 /* New code added to support COPZ instructions.
12711 This code builds table entries out of the macros in mip_opcodes.
12712 R4000 uses interlocks to handle coproc delays.
12713 Other chips (like the R3000) require nops to be inserted for delays.
12715 FIXME: Currently, we require that the user handle delays.
12716 In order to fill delay slots for non-interlocked chips,
12717 we must have a way to specify delays based on the coprocessor.
12718 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12719 What are the side-effects of the cop instruction?
12720 What cache support might we have and what are its effects?
12721 Both coprocessor & memory require delays. how long???
12722 What registers are read/set/modified?
12724 If an itbl is provided to interpret cop instructions,
12725 this knowledge can be encoded in the itbl spec. */
12739 gas_assert (!mips_opts.micromips);
12740 /* For now we just do C (same as Cz). The parameter will be
12741 stored in insn_opcode by mips_ip. */
12742 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12746 move_register (op[0], op[1]);
12750 gas_assert (mips_opts.micromips);
12751 gas_assert (mips_opts.insn32);
12752 move_register (micromips_to_32_reg_h_map1[op[0]],
12753 micromips_to_32_reg_m_map[op[1]]);
12754 move_register (micromips_to_32_reg_h_map2[op[0]],
12755 micromips_to_32_reg_n_map[op[2]]);
12760 /* Fall through. */
12762 if (mips_opts.arch == CPU_R5900)
12763 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12767 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12768 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12774 /* Fall through. */
12776 /* The MIPS assembler some times generates shifts and adds. I'm
12777 not trying to be that fancy. GCC should do this for us
12780 load_register (AT, &imm_expr, dbl);
12781 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12782 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12787 /* Fall through. */
12794 /* Fall through. */
12797 start_noreorder ();
12800 load_register (AT, &imm_expr, dbl);
12801 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12802 op[1], imm ? AT : op[2]);
12803 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12804 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12805 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12807 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12810 if (mips_opts.micromips)
12811 micromips_label_expr (&label_expr);
12813 label_expr.X_add_number = 8;
12814 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12815 macro_build (NULL, "nop", "");
12816 macro_build (NULL, "break", BRK_FMT, 6);
12817 if (mips_opts.micromips)
12818 micromips_add_label ();
12821 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12826 /* Fall through. */
12833 /* Fall through. */
12836 start_noreorder ();
12839 load_register (AT, &imm_expr, dbl);
12840 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12841 op[1], imm ? AT : op[2]);
12842 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12843 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12845 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12848 if (mips_opts.micromips)
12849 micromips_label_expr (&label_expr);
12851 label_expr.X_add_number = 8;
12852 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12853 macro_build (NULL, "nop", "");
12854 macro_build (NULL, "break", BRK_FMT, 6);
12855 if (mips_opts.micromips)
12856 micromips_add_label ();
12862 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12864 if (op[0] == op[1])
12871 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12872 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12876 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12877 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12878 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12879 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12883 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12885 if (op[0] == op[1])
12892 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12893 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12897 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12898 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12899 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12900 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12909 rot = imm_expr.X_add_number & 0x3f;
12910 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12912 rot = (64 - rot) & 0x3f;
12914 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12916 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12921 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12924 l = (rot < 0x20) ? "dsll" : "dsll32";
12925 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12928 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12929 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12930 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12938 rot = imm_expr.X_add_number & 0x1f;
12939 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12941 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12942 (32 - rot) & 0x1f);
12947 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12951 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12952 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12958 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12960 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12964 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12965 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12966 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12967 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12971 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12973 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12977 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12978 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12979 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12980 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12989 rot = imm_expr.X_add_number & 0x3f;
12990 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12993 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12995 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13000 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13003 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13004 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13007 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13008 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13009 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13017 rot = imm_expr.X_add_number & 0x1f;
13018 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13020 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13025 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13029 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13030 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13031 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13037 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13038 else if (op[2] == 0)
13039 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13042 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13043 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13048 if (imm_expr.X_add_number == 0)
13050 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13055 as_warn (_("instruction %s: result is always false"),
13056 ip->insn_mo->name);
13057 move_register (op[0], 0);
13060 if (CPU_HAS_SEQ (mips_opts.arch)
13061 && -512 <= imm_expr.X_add_number
13062 && imm_expr.X_add_number < 512)
13064 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13065 (int) imm_expr.X_add_number);
13068 if (imm_expr.X_add_number >= 0
13069 && imm_expr.X_add_number < 0x10000)
13070 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13071 else if (imm_expr.X_add_number > -0x8000
13072 && imm_expr.X_add_number < 0)
13074 imm_expr.X_add_number = -imm_expr.X_add_number;
13075 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13076 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13078 else if (CPU_HAS_SEQ (mips_opts.arch))
13081 load_register (AT, &imm_expr, GPR_SIZE == 64);
13082 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13087 load_register (AT, &imm_expr, GPR_SIZE == 64);
13088 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13091 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13094 case M_SGE: /* X >= Y <==> not (X < Y) */
13100 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13101 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13104 case M_SGE_I: /* X >= I <==> not (X < I) */
13106 if (imm_expr.X_add_number >= -0x8000
13107 && imm_expr.X_add_number < 0x8000)
13108 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13109 op[0], op[1], BFD_RELOC_LO16);
13112 load_register (AT, &imm_expr, GPR_SIZE == 64);
13113 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13117 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13120 case M_SGT: /* X > Y <==> Y < X */
13126 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13129 case M_SGT_I: /* X > I <==> I < X */
13136 load_register (AT, &imm_expr, GPR_SIZE == 64);
13137 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13140 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13146 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13147 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13150 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13157 load_register (AT, &imm_expr, GPR_SIZE == 64);
13158 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13159 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13163 if (imm_expr.X_add_number >= -0x8000
13164 && imm_expr.X_add_number < 0x8000)
13166 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13171 load_register (AT, &imm_expr, GPR_SIZE == 64);
13172 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13176 if (imm_expr.X_add_number >= -0x8000
13177 && imm_expr.X_add_number < 0x8000)
13179 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13184 load_register (AT, &imm_expr, GPR_SIZE == 64);
13185 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13190 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13191 else if (op[2] == 0)
13192 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13195 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13196 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13201 if (imm_expr.X_add_number == 0)
13203 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13208 as_warn (_("instruction %s: result is always true"),
13209 ip->insn_mo->name);
13210 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13211 op[0], 0, BFD_RELOC_LO16);
13214 if (CPU_HAS_SEQ (mips_opts.arch)
13215 && -512 <= imm_expr.X_add_number
13216 && imm_expr.X_add_number < 512)
13218 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13219 (int) imm_expr.X_add_number);
13222 if (imm_expr.X_add_number >= 0
13223 && imm_expr.X_add_number < 0x10000)
13225 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13228 else if (imm_expr.X_add_number > -0x8000
13229 && imm_expr.X_add_number < 0)
13231 imm_expr.X_add_number = -imm_expr.X_add_number;
13232 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13233 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13235 else if (CPU_HAS_SEQ (mips_opts.arch))
13238 load_register (AT, &imm_expr, GPR_SIZE == 64);
13239 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13244 load_register (AT, &imm_expr, GPR_SIZE == 64);
13245 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13248 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13263 if (!mips_opts.micromips)
13265 if (imm_expr.X_add_number > -0x200
13266 && imm_expr.X_add_number <= 0x200)
13268 macro_build (NULL, s, "t,r,.", op[0], op[1],
13269 (int) -imm_expr.X_add_number);
13278 if (imm_expr.X_add_number > -0x8000
13279 && imm_expr.X_add_number <= 0x8000)
13281 imm_expr.X_add_number = -imm_expr.X_add_number;
13282 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13287 load_register (AT, &imm_expr, dbl);
13288 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13310 load_register (AT, &imm_expr, GPR_SIZE == 64);
13311 macro_build (NULL, s, "s,t", op[0], AT);
13316 gas_assert (!mips_opts.micromips);
13317 gas_assert (mips_opts.isa == ISA_MIPS1);
13321 * Is the double cfc1 instruction a bug in the mips assembler;
13322 * or is there a reason for it?
13324 start_noreorder ();
13325 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13326 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13327 macro_build (NULL, "nop", "");
13328 expr1.X_add_number = 3;
13329 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13330 expr1.X_add_number = 2;
13331 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13332 macro_build (NULL, "ctc1", "t,G", AT, RA);
13333 macro_build (NULL, "nop", "");
13334 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13336 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13337 macro_build (NULL, "nop", "");
13354 offbits = (mips_opts.micromips ? 12 : 16);
13360 offbits = (mips_opts.micromips ? 12 : 16);
13372 offbits = (mips_opts.micromips ? 12 : 16);
13379 offbits = (mips_opts.micromips ? 12 : 16);
13385 large_offset = !small_offset_p (off, align, offbits);
13387 expr1.X_add_number = 0;
13392 if (small_offset_p (0, align, 16))
13393 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13394 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13397 load_address (tempreg, ep, &used_at);
13399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13400 tempreg, tempreg, breg);
13402 offset_reloc[0] = BFD_RELOC_LO16;
13403 offset_reloc[1] = BFD_RELOC_UNUSED;
13404 offset_reloc[2] = BFD_RELOC_UNUSED;
13409 else if (!ust && op[0] == breg)
13420 if (!target_big_endian)
13421 ep->X_add_number += off;
13423 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13425 macro_build (ep, s, "t,o(b)", tempreg, -1,
13426 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13428 if (!target_big_endian)
13429 ep->X_add_number -= off;
13431 ep->X_add_number += off;
13433 macro_build (NULL, s2, "t,~(b)",
13434 tempreg, (int) ep->X_add_number, breg);
13436 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13437 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13439 /* If necessary, move the result in tempreg to the final destination. */
13440 if (!ust && op[0] != tempreg)
13442 /* Protect second load's delay slot. */
13444 move_register (op[0], tempreg);
13450 if (target_big_endian == ust)
13451 ep->X_add_number += off;
13452 tempreg = ust || large_offset ? op[0] : AT;
13453 macro_build (ep, s, "t,o(b)", tempreg, -1,
13454 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13456 /* For halfword transfers we need a temporary register to shuffle
13457 bytes. Unfortunately for M_USH_A we have none available before
13458 the next store as AT holds the base address. We deal with this
13459 case by clobbering TREG and then restoring it as with ULH. */
13460 tempreg = ust == large_offset ? op[0] : AT;
13462 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13464 if (target_big_endian == ust)
13465 ep->X_add_number -= off;
13467 ep->X_add_number += off;
13468 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13469 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13471 /* For M_USH_A re-retrieve the LSB. */
13472 if (ust && large_offset)
13474 if (target_big_endian)
13475 ep->X_add_number += off;
13477 ep->X_add_number -= off;
13478 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13479 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13481 /* For ULH and M_USH_A OR the LSB in. */
13482 if (!ust || large_offset)
13484 tempreg = !large_offset ? AT : op[0];
13485 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13486 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13491 /* FIXME: Check if this is one of the itbl macros, since they
13492 are added dynamically. */
13493 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13496 if (!mips_opts.at && used_at)
13497 as_bad (_("macro used $at after \".set noat\""));
13500 /* Implement macros in mips16 mode. */
13503 mips16_macro (struct mips_cl_insn *ip)
13505 const struct mips_operand_array *operands;
13510 const char *s, *s2, *s3;
13511 unsigned int op[MAX_OPERANDS];
13514 mask = ip->insn_mo->mask;
13516 operands = insn_operands (ip);
13517 for (i = 0; i < MAX_OPERANDS; i++)
13518 if (operands->operand[i])
13519 op[i] = insn_extract_operand (ip, operands->operand[i]);
13523 expr1.X_op = O_constant;
13524 expr1.X_op_symbol = NULL;
13525 expr1.X_add_symbol = NULL;
13526 expr1.X_add_number = 1;
13537 /* Fall through. */
13543 /* Fall through. */
13547 start_noreorder ();
13548 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13549 expr1.X_add_number = 2;
13550 macro_build (&expr1, "bnez", "x,p", op[2]);
13551 macro_build (NULL, "break", "6", 7);
13553 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13554 since that causes an overflow. We should do that as well,
13555 but I don't see how to do the comparisons without a temporary
13558 macro_build (NULL, s, "x", op[0]);
13577 start_noreorder ();
13578 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13579 expr1.X_add_number = 2;
13580 macro_build (&expr1, "bnez", "x,p", op[2]);
13581 macro_build (NULL, "break", "6", 7);
13583 macro_build (NULL, s2, "x", op[0]);
13588 /* Fall through. */
13590 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13591 macro_build (NULL, "mflo", "x", op[0]);
13599 imm_expr.X_add_number = -imm_expr.X_add_number;
13600 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13604 imm_expr.X_add_number = -imm_expr.X_add_number;
13605 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13609 imm_expr.X_add_number = -imm_expr.X_add_number;
13610 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13632 goto do_reverse_branch;
13636 goto do_reverse_branch;
13648 goto do_reverse_branch;
13659 macro_build (NULL, s, "x,y", op[0], op[1]);
13660 macro_build (&offset_expr, s2, "p");
13687 goto do_addone_branch_i;
13692 goto do_addone_branch_i;
13707 goto do_addone_branch_i;
13713 do_addone_branch_i:
13714 ++imm_expr.X_add_number;
13717 macro_build (&imm_expr, s, s3, op[0]);
13718 macro_build (&offset_expr, s2, "p");
13722 expr1.X_add_number = 0;
13723 macro_build (&expr1, "slti", "x,8", op[1]);
13724 if (op[0] != op[1])
13725 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13726 expr1.X_add_number = 2;
13727 macro_build (&expr1, "bteqz", "p");
13728 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13733 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13734 opcode bits in *OPCODE_EXTRA. */
13736 static struct mips_opcode *
13737 mips_lookup_insn (struct hash_control *hash, const char *start,
13738 ssize_t length, unsigned int *opcode_extra)
13740 char *name, *dot, *p;
13741 unsigned int mask, suffix;
13743 struct mips_opcode *insn;
13745 /* Make a copy of the instruction so that we can fiddle with it. */
13746 name = xstrndup (start, length);
13748 /* Look up the instruction as-is. */
13749 insn = (struct mips_opcode *) hash_find (hash, name);
13753 dot = strchr (name, '.');
13756 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13757 p = mips_parse_vu0_channels (dot + 1, &mask);
13758 if (*p == 0 && mask != 0)
13761 insn = (struct mips_opcode *) hash_find (hash, name);
13763 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13765 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13771 if (mips_opts.micromips)
13773 /* See if there's an instruction size override suffix,
13774 either `16' or `32', at the end of the mnemonic proper,
13775 that defines the operation, i.e. before the first `.'
13776 character if any. Strip it and retry. */
13777 opend = dot != NULL ? dot - name : length;
13778 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13780 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13786 memcpy (name + opend - 2, name + opend, length - opend + 1);
13787 insn = (struct mips_opcode *) hash_find (hash, name);
13790 forced_insn_length = suffix;
13802 /* Assemble an instruction into its binary format. If the instruction
13803 is a macro, set imm_expr and offset_expr to the values associated
13804 with "I" and "A" operands respectively. Otherwise store the value
13805 of the relocatable field (if any) in offset_expr. In both cases
13806 set offset_reloc to the relocation operators applied to offset_expr. */
13809 mips_ip (char *str, struct mips_cl_insn *insn)
13811 const struct mips_opcode *first, *past;
13812 struct hash_control *hash;
13815 struct mips_operand_token *tokens;
13816 unsigned int opcode_extra;
13818 if (mips_opts.micromips)
13820 hash = micromips_op_hash;
13821 past = µmips_opcodes[bfd_micromips_num_opcodes];
13826 past = &mips_opcodes[NUMOPCODES];
13828 forced_insn_length = 0;
13831 /* We first try to match an instruction up to a space or to the end. */
13832 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13835 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13838 set_insn_error (0, _("unrecognized opcode"));
13842 if (strcmp (first->name, "li.s") == 0)
13844 else if (strcmp (first->name, "li.d") == 0)
13848 tokens = mips_parse_arguments (str + end, format);
13852 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13853 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13854 set_insn_error (0, _("invalid operands"));
13856 obstack_free (&mips_operand_tokens, tokens);
13859 /* As for mips_ip, but used when assembling MIPS16 code.
13860 Also set forced_insn_length to the resulting instruction size in
13861 bytes if the user explicitly requested a small or extended instruction. */
13864 mips16_ip (char *str, struct mips_cl_insn *insn)
13867 struct mips_opcode *first;
13868 struct mips_operand_token *tokens;
13871 for (s = str; ISLOWER (*s); ++s)
13893 else if (*s == 'e')
13900 else if (*s++ == ' ')
13902 /* Fall through. */
13904 set_insn_error (0, _("unrecognized opcode"));
13907 forced_insn_length = l;
13910 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13915 set_insn_error (0, _("unrecognized opcode"));
13919 tokens = mips_parse_arguments (s, 0);
13923 if (!match_mips16_insns (insn, first, tokens))
13924 set_insn_error (0, _("invalid operands"));
13926 obstack_free (&mips_operand_tokens, tokens);
13929 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13930 NBITS is the number of significant bits in VAL. */
13932 static unsigned long
13933 mips16_immed_extend (offsetT val, unsigned int nbits)
13938 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13941 else if (nbits == 15)
13943 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13948 extval = ((val & 0x1f) << 6) | (val & 0x20);
13951 return (extval << 16) | val;
13954 /* Like decode_mips16_operand, but require the operand to be defined and
13955 require it to be an integer. */
13957 static const struct mips_int_operand *
13958 mips16_immed_operand (int type, bfd_boolean extended_p)
13960 const struct mips_operand *operand;
13962 operand = decode_mips16_operand (type, extended_p);
13963 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13965 return (const struct mips_int_operand *) operand;
13968 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13971 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13972 bfd_reloc_code_real_type reloc, offsetT sval)
13974 int min_val, max_val;
13976 min_val = mips_int_operand_min (operand);
13977 max_val = mips_int_operand_max (operand);
13978 if (reloc != BFD_RELOC_UNUSED)
13981 sval = SEXT_16BIT (sval);
13986 return (sval >= min_val
13988 && (sval & ((1 << operand->shift) - 1)) == 0);
13991 /* Install immediate value VAL into MIPS16 instruction *INSN,
13992 extending it if necessary. The instruction in *INSN may
13993 already be extended.
13995 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13996 if none. In the former case, VAL is a 16-bit number with no
13997 defined signedness.
13999 TYPE is the type of the immediate field. USER_INSN_LENGTH
14000 is the length that the user requested, or 0 if none. */
14003 mips16_immed (const char *file, unsigned int line, int type,
14004 bfd_reloc_code_real_type reloc, offsetT val,
14005 unsigned int user_insn_length, unsigned long *insn)
14007 const struct mips_int_operand *operand;
14008 unsigned int uval, length;
14010 operand = mips16_immed_operand (type, FALSE);
14011 if (!mips16_immed_in_range_p (operand, reloc, val))
14013 /* We need an extended instruction. */
14014 if (user_insn_length == 2)
14015 as_bad_where (file, line, _("invalid unextended operand value"));
14017 *insn |= MIPS16_EXTEND;
14019 else if (user_insn_length == 4)
14021 /* The operand doesn't force an unextended instruction to be extended.
14022 Warn if the user wanted an extended instruction anyway. */
14023 *insn |= MIPS16_EXTEND;
14024 as_warn_where (file, line,
14025 _("extended operand requested but not required"));
14028 length = mips16_opcode_length (*insn);
14031 operand = mips16_immed_operand (type, TRUE);
14032 if (!mips16_immed_in_range_p (operand, reloc, val))
14033 as_bad_where (file, line,
14034 _("operand value out of range for instruction"));
14036 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14037 if (length == 2 || operand->root.lsb != 0)
14038 *insn = mips_insert_operand (&operand->root, *insn, uval);
14040 *insn |= mips16_immed_extend (uval, operand->root.size);
14043 struct percent_op_match
14046 bfd_reloc_code_real_type reloc;
14049 static const struct percent_op_match mips_percent_op[] =
14051 {"%lo", BFD_RELOC_LO16},
14052 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14053 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14054 {"%call16", BFD_RELOC_MIPS_CALL16},
14055 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14056 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14057 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14058 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14059 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14060 {"%got", BFD_RELOC_MIPS_GOT16},
14061 {"%gp_rel", BFD_RELOC_GPREL16},
14062 {"%half", BFD_RELOC_16},
14063 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14064 {"%higher", BFD_RELOC_MIPS_HIGHER},
14065 {"%neg", BFD_RELOC_MIPS_SUB},
14066 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14067 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14068 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14069 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14070 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14071 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14072 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14073 {"%hi", BFD_RELOC_HI16_S},
14074 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14075 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14078 static const struct percent_op_match mips16_percent_op[] =
14080 {"%lo", BFD_RELOC_MIPS16_LO16},
14081 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14082 {"%got", BFD_RELOC_MIPS16_GOT16},
14083 {"%call16", BFD_RELOC_MIPS16_CALL16},
14084 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14085 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14086 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14087 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14088 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14089 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14090 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14091 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14095 /* Return true if *STR points to a relocation operator. When returning true,
14096 move *STR over the operator and store its relocation code in *RELOC.
14097 Leave both *STR and *RELOC alone when returning false. */
14100 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14102 const struct percent_op_match *percent_op;
14105 if (mips_opts.mips16)
14107 percent_op = mips16_percent_op;
14108 limit = ARRAY_SIZE (mips16_percent_op);
14112 percent_op = mips_percent_op;
14113 limit = ARRAY_SIZE (mips_percent_op);
14116 for (i = 0; i < limit; i++)
14117 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14119 int len = strlen (percent_op[i].str);
14121 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14124 *str += strlen (percent_op[i].str);
14125 *reloc = percent_op[i].reloc;
14127 /* Check whether the output BFD supports this relocation.
14128 If not, issue an error and fall back on something safe. */
14129 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14131 as_bad (_("relocation %s isn't supported by the current ABI"),
14132 percent_op[i].str);
14133 *reloc = BFD_RELOC_UNUSED;
14141 /* Parse string STR as a 16-bit relocatable operand. Store the
14142 expression in *EP and the relocations in the array starting
14143 at RELOC. Return the number of relocation operators used.
14145 On exit, EXPR_END points to the first character after the expression. */
14148 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14151 bfd_reloc_code_real_type reversed_reloc[3];
14152 size_t reloc_index, i;
14153 int crux_depth, str_depth;
14156 /* Search for the start of the main expression, recoding relocations
14157 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14158 of the main expression and with CRUX_DEPTH containing the number
14159 of open brackets at that point. */
14166 crux_depth = str_depth;
14168 /* Skip over whitespace and brackets, keeping count of the number
14170 while (*str == ' ' || *str == '\t' || *str == '(')
14175 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14176 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14178 my_getExpression (ep, crux);
14181 /* Match every open bracket. */
14182 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14186 if (crux_depth > 0)
14187 as_bad (_("unclosed '('"));
14191 if (reloc_index != 0)
14193 prev_reloc_op_frag = frag_now;
14194 for (i = 0; i < reloc_index; i++)
14195 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14198 return reloc_index;
14202 my_getExpression (expressionS *ep, char *str)
14206 save_in = input_line_pointer;
14207 input_line_pointer = str;
14209 expr_end = input_line_pointer;
14210 input_line_pointer = save_in;
14214 md_atof (int type, char *litP, int *sizeP)
14216 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14220 md_number_to_chars (char *buf, valueT val, int n)
14222 if (target_big_endian)
14223 number_to_chars_bigendian (buf, val, n);
14225 number_to_chars_littleendian (buf, val, n);
14228 static int support_64bit_objects(void)
14230 const char **list, **l;
14233 list = bfd_target_list ();
14234 for (l = list; *l != NULL; l++)
14235 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14236 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14238 yes = (*l != NULL);
14243 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14244 NEW_VALUE. Warn if another value was already specified. Note:
14245 we have to defer parsing the -march and -mtune arguments in order
14246 to handle 'from-abi' correctly, since the ABI might be specified
14247 in a later argument. */
14250 mips_set_option_string (const char **string_ptr, const char *new_value)
14252 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14253 as_warn (_("a different %s was already specified, is now %s"),
14254 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14257 *string_ptr = new_value;
14261 md_parse_option (int c, const char *arg)
14265 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14266 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14268 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14269 c == mips_ases[i].option_on);
14275 case OPTION_CONSTRUCT_FLOATS:
14276 mips_disable_float_construction = 0;
14279 case OPTION_NO_CONSTRUCT_FLOATS:
14280 mips_disable_float_construction = 1;
14292 target_big_endian = 1;
14296 target_big_endian = 0;
14302 else if (arg[0] == '0')
14304 else if (arg[0] == '1')
14314 mips_debug = atoi (arg);
14318 file_mips_opts.isa = ISA_MIPS1;
14322 file_mips_opts.isa = ISA_MIPS2;
14326 file_mips_opts.isa = ISA_MIPS3;
14330 file_mips_opts.isa = ISA_MIPS4;
14334 file_mips_opts.isa = ISA_MIPS5;
14337 case OPTION_MIPS32:
14338 file_mips_opts.isa = ISA_MIPS32;
14341 case OPTION_MIPS32R2:
14342 file_mips_opts.isa = ISA_MIPS32R2;
14345 case OPTION_MIPS32R3:
14346 file_mips_opts.isa = ISA_MIPS32R3;
14349 case OPTION_MIPS32R5:
14350 file_mips_opts.isa = ISA_MIPS32R5;
14353 case OPTION_MIPS32R6:
14354 file_mips_opts.isa = ISA_MIPS32R6;
14357 case OPTION_MIPS64R2:
14358 file_mips_opts.isa = ISA_MIPS64R2;
14361 case OPTION_MIPS64R3:
14362 file_mips_opts.isa = ISA_MIPS64R3;
14365 case OPTION_MIPS64R5:
14366 file_mips_opts.isa = ISA_MIPS64R5;
14369 case OPTION_MIPS64R6:
14370 file_mips_opts.isa = ISA_MIPS64R6;
14373 case OPTION_MIPS64:
14374 file_mips_opts.isa = ISA_MIPS64;
14378 mips_set_option_string (&mips_tune_string, arg);
14382 mips_set_option_string (&mips_arch_string, arg);
14386 mips_set_option_string (&mips_arch_string, "4650");
14387 mips_set_option_string (&mips_tune_string, "4650");
14390 case OPTION_NO_M4650:
14394 mips_set_option_string (&mips_arch_string, "4010");
14395 mips_set_option_string (&mips_tune_string, "4010");
14398 case OPTION_NO_M4010:
14402 mips_set_option_string (&mips_arch_string, "4100");
14403 mips_set_option_string (&mips_tune_string, "4100");
14406 case OPTION_NO_M4100:
14410 mips_set_option_string (&mips_arch_string, "3900");
14411 mips_set_option_string (&mips_tune_string, "3900");
14414 case OPTION_NO_M3900:
14417 case OPTION_MICROMIPS:
14418 if (file_mips_opts.mips16 == 1)
14420 as_bad (_("-mmicromips cannot be used with -mips16"));
14423 file_mips_opts.micromips = 1;
14424 mips_no_prev_insn ();
14427 case OPTION_NO_MICROMIPS:
14428 file_mips_opts.micromips = 0;
14429 mips_no_prev_insn ();
14432 case OPTION_MIPS16:
14433 if (file_mips_opts.micromips == 1)
14435 as_bad (_("-mips16 cannot be used with -micromips"));
14438 file_mips_opts.mips16 = 1;
14439 mips_no_prev_insn ();
14442 case OPTION_NO_MIPS16:
14443 file_mips_opts.mips16 = 0;
14444 mips_no_prev_insn ();
14447 case OPTION_FIX_24K:
14451 case OPTION_NO_FIX_24K:
14455 case OPTION_FIX_RM7000:
14456 mips_fix_rm7000 = 1;
14459 case OPTION_NO_FIX_RM7000:
14460 mips_fix_rm7000 = 0;
14463 case OPTION_FIX_LOONGSON2F_JUMP:
14464 mips_fix_loongson2f_jump = TRUE;
14467 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14468 mips_fix_loongson2f_jump = FALSE;
14471 case OPTION_FIX_LOONGSON2F_NOP:
14472 mips_fix_loongson2f_nop = TRUE;
14475 case OPTION_NO_FIX_LOONGSON2F_NOP:
14476 mips_fix_loongson2f_nop = FALSE;
14479 case OPTION_FIX_VR4120:
14480 mips_fix_vr4120 = 1;
14483 case OPTION_NO_FIX_VR4120:
14484 mips_fix_vr4120 = 0;
14487 case OPTION_FIX_VR4130:
14488 mips_fix_vr4130 = 1;
14491 case OPTION_NO_FIX_VR4130:
14492 mips_fix_vr4130 = 0;
14495 case OPTION_FIX_CN63XXP1:
14496 mips_fix_cn63xxp1 = TRUE;
14499 case OPTION_NO_FIX_CN63XXP1:
14500 mips_fix_cn63xxp1 = FALSE;
14503 case OPTION_RELAX_BRANCH:
14504 mips_relax_branch = 1;
14507 case OPTION_NO_RELAX_BRANCH:
14508 mips_relax_branch = 0;
14511 case OPTION_IGNORE_BRANCH_ISA:
14512 mips_ignore_branch_isa = TRUE;
14515 case OPTION_NO_IGNORE_BRANCH_ISA:
14516 mips_ignore_branch_isa = FALSE;
14519 case OPTION_INSN32:
14520 file_mips_opts.insn32 = TRUE;
14523 case OPTION_NO_INSN32:
14524 file_mips_opts.insn32 = FALSE;
14527 case OPTION_MSHARED:
14528 mips_in_shared = TRUE;
14531 case OPTION_MNO_SHARED:
14532 mips_in_shared = FALSE;
14535 case OPTION_MSYM32:
14536 file_mips_opts.sym32 = TRUE;
14539 case OPTION_MNO_SYM32:
14540 file_mips_opts.sym32 = FALSE;
14543 /* When generating ELF code, we permit -KPIC and -call_shared to
14544 select SVR4_PIC, and -non_shared to select no PIC. This is
14545 intended to be compatible with Irix 5. */
14546 case OPTION_CALL_SHARED:
14547 mips_pic = SVR4_PIC;
14548 mips_abicalls = TRUE;
14551 case OPTION_CALL_NONPIC:
14553 mips_abicalls = TRUE;
14556 case OPTION_NON_SHARED:
14558 mips_abicalls = FALSE;
14561 /* The -xgot option tells the assembler to use 32 bit offsets
14562 when accessing the got in SVR4_PIC mode. It is for Irix
14569 g_switch_value = atoi (arg);
14573 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14576 mips_abi = O32_ABI;
14580 mips_abi = N32_ABI;
14584 mips_abi = N64_ABI;
14585 if (!support_64bit_objects())
14586 as_fatal (_("no compiled in support for 64 bit object file format"));
14590 file_mips_opts.gp = 32;
14594 file_mips_opts.gp = 64;
14598 file_mips_opts.fp = 32;
14602 file_mips_opts.fp = 0;
14606 file_mips_opts.fp = 64;
14609 case OPTION_ODD_SPREG:
14610 file_mips_opts.oddspreg = 1;
14613 case OPTION_NO_ODD_SPREG:
14614 file_mips_opts.oddspreg = 0;
14617 case OPTION_SINGLE_FLOAT:
14618 file_mips_opts.single_float = 1;
14621 case OPTION_DOUBLE_FLOAT:
14622 file_mips_opts.single_float = 0;
14625 case OPTION_SOFT_FLOAT:
14626 file_mips_opts.soft_float = 1;
14629 case OPTION_HARD_FLOAT:
14630 file_mips_opts.soft_float = 0;
14634 if (strcmp (arg, "32") == 0)
14635 mips_abi = O32_ABI;
14636 else if (strcmp (arg, "o64") == 0)
14637 mips_abi = O64_ABI;
14638 else if (strcmp (arg, "n32") == 0)
14639 mips_abi = N32_ABI;
14640 else if (strcmp (arg, "64") == 0)
14642 mips_abi = N64_ABI;
14643 if (! support_64bit_objects())
14644 as_fatal (_("no compiled in support for 64 bit object file "
14647 else if (strcmp (arg, "eabi") == 0)
14648 mips_abi = EABI_ABI;
14651 as_fatal (_("invalid abi -mabi=%s"), arg);
14656 case OPTION_M7000_HILO_FIX:
14657 mips_7000_hilo_fix = TRUE;
14660 case OPTION_MNO_7000_HILO_FIX:
14661 mips_7000_hilo_fix = FALSE;
14664 case OPTION_MDEBUG:
14665 mips_flag_mdebug = TRUE;
14668 case OPTION_NO_MDEBUG:
14669 mips_flag_mdebug = FALSE;
14673 mips_flag_pdr = TRUE;
14676 case OPTION_NO_PDR:
14677 mips_flag_pdr = FALSE;
14680 case OPTION_MVXWORKS_PIC:
14681 mips_pic = VXWORKS_PIC;
14685 if (strcmp (arg, "2008") == 0)
14687 else if (strcmp (arg, "legacy") == 0)
14691 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14700 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14705 /* Set up globals to tune for the ISA or processor described by INFO. */
14708 mips_set_tune (const struct mips_cpu_info *info)
14711 mips_tune = info->cpu;
14716 mips_after_parse_args (void)
14718 const struct mips_cpu_info *arch_info = 0;
14719 const struct mips_cpu_info *tune_info = 0;
14721 /* GP relative stuff not working for PE */
14722 if (strncmp (TARGET_OS, "pe", 2) == 0)
14724 if (g_switch_seen && g_switch_value != 0)
14725 as_bad (_("-G not supported in this configuration"));
14726 g_switch_value = 0;
14729 if (mips_abi == NO_ABI)
14730 mips_abi = MIPS_DEFAULT_ABI;
14732 /* The following code determines the architecture.
14733 Similar code was added to GCC 3.3 (see override_options() in
14734 config/mips/mips.c). The GAS and GCC code should be kept in sync
14735 as much as possible. */
14737 if (mips_arch_string != 0)
14738 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14740 if (file_mips_opts.isa != ISA_UNKNOWN)
14742 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14743 ISA level specified by -mipsN, while arch_info->isa contains
14744 the -march selection (if any). */
14745 if (arch_info != 0)
14747 /* -march takes precedence over -mipsN, since it is more descriptive.
14748 There's no harm in specifying both as long as the ISA levels
14750 if (file_mips_opts.isa != arch_info->isa)
14751 as_bad (_("-%s conflicts with the other architecture options,"
14752 " which imply -%s"),
14753 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14754 mips_cpu_info_from_isa (arch_info->isa)->name);
14757 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14760 if (arch_info == 0)
14762 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14763 gas_assert (arch_info);
14766 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14767 as_bad (_("-march=%s is not compatible with the selected ABI"),
14770 file_mips_opts.arch = arch_info->cpu;
14771 file_mips_opts.isa = arch_info->isa;
14773 /* Set up initial mips_opts state. */
14774 mips_opts = file_mips_opts;
14776 /* The register size inference code is now placed in
14777 file_mips_check_options. */
14779 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14781 if (mips_tune_string != 0)
14782 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14784 if (tune_info == 0)
14785 mips_set_tune (arch_info);
14787 mips_set_tune (tune_info);
14789 if (mips_flag_mdebug < 0)
14790 mips_flag_mdebug = 0;
14794 mips_init_after_args (void)
14796 /* initialize opcodes */
14797 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14798 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14802 md_pcrel_from (fixS *fixP)
14804 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14805 switch (fixP->fx_r_type)
14807 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14808 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14809 /* Return the address of the delay slot. */
14812 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14813 case BFD_RELOC_MICROMIPS_JMP:
14814 case BFD_RELOC_MIPS16_16_PCREL_S1:
14815 case BFD_RELOC_16_PCREL_S2:
14816 case BFD_RELOC_MIPS_21_PCREL_S2:
14817 case BFD_RELOC_MIPS_26_PCREL_S2:
14818 case BFD_RELOC_MIPS_JMP:
14819 /* Return the address of the delay slot. */
14822 case BFD_RELOC_MIPS_18_PCREL_S3:
14823 /* Return the aligned address of the doubleword containing
14824 the instruction. */
14832 /* This is called before the symbol table is processed. In order to
14833 work with gcc when using mips-tfile, we must keep all local labels.
14834 However, in other cases, we want to discard them. If we were
14835 called with -g, but we didn't see any debugging information, it may
14836 mean that gcc is smuggling debugging information through to
14837 mips-tfile, in which case we must generate all local labels. */
14840 mips_frob_file_before_adjust (void)
14842 #ifndef NO_ECOFF_DEBUGGING
14843 if (ECOFF_DEBUGGING
14845 && ! ecoff_debugging_seen)
14846 flag_keep_locals = 1;
14850 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14851 the corresponding LO16 reloc. This is called before md_apply_fix and
14852 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14853 relocation operators.
14855 For our purposes, a %lo() expression matches a %got() or %hi()
14858 (a) it refers to the same symbol; and
14859 (b) the offset applied in the %lo() expression is no lower than
14860 the offset applied in the %got() or %hi().
14862 (b) allows us to cope with code like:
14865 lh $4,%lo(foo+2)($4)
14867 ...which is legal on RELA targets, and has a well-defined behaviour
14868 if the user knows that adding 2 to "foo" will not induce a carry to
14871 When several %lo()s match a particular %got() or %hi(), we use the
14872 following rules to distinguish them:
14874 (1) %lo()s with smaller offsets are a better match than %lo()s with
14877 (2) %lo()s with no matching %got() or %hi() are better than those
14878 that already have a matching %got() or %hi().
14880 (3) later %lo()s are better than earlier %lo()s.
14882 These rules are applied in order.
14884 (1) means, among other things, that %lo()s with identical offsets are
14885 chosen if they exist.
14887 (2) means that we won't associate several high-part relocations with
14888 the same low-part relocation unless there's no alternative. Having
14889 several high parts for the same low part is a GNU extension; this rule
14890 allows careful users to avoid it.
14892 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14893 with the last high-part relocation being at the front of the list.
14894 It therefore makes sense to choose the last matching low-part
14895 relocation, all other things being equal. It's also easier
14896 to code that way. */
14899 mips_frob_file (void)
14901 struct mips_hi_fixup *l;
14902 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14904 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14906 segment_info_type *seginfo;
14907 bfd_boolean matched_lo_p;
14908 fixS **hi_pos, **lo_pos, **pos;
14910 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14912 /* If a GOT16 relocation turns out to be against a global symbol,
14913 there isn't supposed to be a matching LO. Ignore %gots against
14914 constants; we'll report an error for those later. */
14915 if (got16_reloc_p (l->fixp->fx_r_type)
14916 && !(l->fixp->fx_addsy
14917 && pic_need_relax (l->fixp->fx_addsy)))
14920 /* Check quickly whether the next fixup happens to be a matching %lo. */
14921 if (fixup_has_matching_lo_p (l->fixp))
14924 seginfo = seg_info (l->seg);
14926 /* Set HI_POS to the position of this relocation in the chain.
14927 Set LO_POS to the position of the chosen low-part relocation.
14928 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14929 relocation that matches an immediately-preceding high-part
14933 matched_lo_p = FALSE;
14934 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14936 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14938 if (*pos == l->fixp)
14941 if ((*pos)->fx_r_type == looking_for_rtype
14942 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14943 && (*pos)->fx_offset >= l->fixp->fx_offset
14945 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14947 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14950 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14951 && fixup_has_matching_lo_p (*pos));
14954 /* If we found a match, remove the high-part relocation from its
14955 current position and insert it before the low-part relocation.
14956 Make the offsets match so that fixup_has_matching_lo_p()
14959 We don't warn about unmatched high-part relocations since some
14960 versions of gcc have been known to emit dead "lui ...%hi(...)"
14962 if (lo_pos != NULL)
14964 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14965 if (l->fixp->fx_next != *lo_pos)
14967 *hi_pos = l->fixp->fx_next;
14968 l->fixp->fx_next = *lo_pos;
14976 mips_force_relocation (fixS *fixp)
14978 if (generic_force_reloc (fixp))
14981 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14982 so that the linker relaxation can update targets. */
14983 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14984 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14985 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14988 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14989 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14990 microMIPS symbols so that we can do cross-mode branch diagnostics
14991 and BAL to JALX conversion by the linker. */
14992 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14993 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14994 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14996 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14999 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15000 if (ISA_IS_R6 (file_mips_opts.isa)
15001 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15002 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15003 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15004 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15005 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15006 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15007 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15013 /* Implement TC_FORCE_RELOCATION_ABS. */
15016 mips_force_relocation_abs (fixS *fixp)
15018 if (generic_force_reloc (fixp))
15021 /* These relocations do not have enough bits in the in-place addend
15022 to hold an arbitrary absolute section's offset. */
15023 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15029 /* Read the instruction associated with RELOC from BUF. */
15031 static unsigned int
15032 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15034 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15035 return read_compressed_insn (buf, 4);
15037 return read_insn (buf);
15040 /* Write instruction INSN to BUF, given that it has been relocated
15044 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15045 unsigned long insn)
15047 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15048 write_compressed_insn (buf, insn, 4);
15050 write_insn (buf, insn);
15053 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15054 to a symbol in another ISA mode, which cannot be converted to JALX. */
15057 fix_bad_cross_mode_jump_p (fixS *fixP)
15059 unsigned long opcode;
15063 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15066 other = S_GET_OTHER (fixP->fx_addsy);
15067 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15068 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15069 switch (fixP->fx_r_type)
15071 case BFD_RELOC_MIPS_JMP:
15072 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15073 case BFD_RELOC_MICROMIPS_JMP:
15074 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15080 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15081 jump to a symbol in the same ISA mode. */
15084 fix_bad_same_mode_jalx_p (fixS *fixP)
15086 unsigned long opcode;
15090 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15093 other = S_GET_OTHER (fixP->fx_addsy);
15094 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15095 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15096 switch (fixP->fx_r_type)
15098 case BFD_RELOC_MIPS_JMP:
15099 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15100 case BFD_RELOC_MIPS16_JMP:
15101 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15102 case BFD_RELOC_MICROMIPS_JMP:
15103 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15109 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15110 to a symbol whose value plus addend is not aligned according to the
15111 ultimate (after linker relaxation) jump instruction's immediate field
15112 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15113 regular MIPS code, to (1 << 2). */
15116 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15118 bfd_boolean micro_to_mips_p;
15122 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15125 other = S_GET_OTHER (fixP->fx_addsy);
15126 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15127 val += fixP->fx_offset;
15128 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15129 && !ELF_ST_IS_MICROMIPS (other));
15130 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15131 != ELF_ST_IS_COMPRESSED (other));
15134 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15135 to a symbol whose annotation indicates another ISA mode. For absolute
15136 symbols check the ISA bit instead.
15138 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15139 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15140 MIPS symbols and associated with BAL instructions as these instructions
15141 may be be converted to JALX by the linker. */
15144 fix_bad_cross_mode_branch_p (fixS *fixP)
15146 bfd_boolean absolute_p;
15147 unsigned long opcode;
15153 if (mips_ignore_branch_isa)
15156 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15159 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15160 absolute_p = bfd_is_abs_section (symsec);
15162 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15163 other = S_GET_OTHER (fixP->fx_addsy);
15165 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15166 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15167 switch (fixP->fx_r_type)
15169 case BFD_RELOC_16_PCREL_S2:
15170 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15171 && opcode != 0x0411);
15172 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15173 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15174 && opcode != 0x4060);
15175 case BFD_RELOC_MIPS_21_PCREL_S2:
15176 case BFD_RELOC_MIPS_26_PCREL_S2:
15177 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15178 case BFD_RELOC_MIPS16_16_PCREL_S1:
15179 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15180 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15181 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15182 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15188 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15189 branch instruction pointed to by FIXP is not aligned according to the
15190 branch instruction's immediate field requirement. We need the addend
15191 to preserve the ISA bit and also the sum must not have bit 2 set. We
15192 must explicitly OR in the ISA bit from symbol annotation as the bit
15193 won't be set in the symbol's value then. */
15196 fix_bad_misaligned_branch_p (fixS *fixP)
15198 bfd_boolean absolute_p;
15205 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15208 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15209 absolute_p = bfd_is_abs_section (symsec);
15211 val = S_GET_VALUE (fixP->fx_addsy);
15212 other = S_GET_OTHER (fixP->fx_addsy);
15213 off = fixP->fx_offset;
15215 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15216 val |= ELF_ST_IS_COMPRESSED (other);
15218 return (val & 0x3) != isa_bit;
15221 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15222 and its calculated value VAL. */
15225 fix_validate_branch (fixS *fixP, valueT val)
15227 if (fixP->fx_done && (val & 0x3) != 0)
15228 as_bad_where (fixP->fx_file, fixP->fx_line,
15229 _("branch to misaligned address (0x%lx)"),
15230 (long) (val + md_pcrel_from (fixP)));
15231 else if (fix_bad_cross_mode_branch_p (fixP))
15232 as_bad_where (fixP->fx_file, fixP->fx_line,
15233 _("branch to a symbol in another ISA mode"));
15234 else if (fix_bad_misaligned_branch_p (fixP))
15235 as_bad_where (fixP->fx_file, fixP->fx_line,
15236 _("branch to misaligned address (0x%lx)"),
15237 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15238 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15239 as_bad_where (fixP->fx_file, fixP->fx_line,
15240 _("cannot encode misaligned addend "
15241 "in the relocatable field (0x%lx)"),
15242 (long) fixP->fx_offset);
15245 /* Apply a fixup to the object file. */
15248 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15251 unsigned long insn;
15252 reloc_howto_type *howto;
15254 if (fixP->fx_pcrel)
15255 switch (fixP->fx_r_type)
15257 case BFD_RELOC_16_PCREL_S2:
15258 case BFD_RELOC_MIPS16_16_PCREL_S1:
15259 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15260 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15261 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15262 case BFD_RELOC_32_PCREL:
15263 case BFD_RELOC_MIPS_21_PCREL_S2:
15264 case BFD_RELOC_MIPS_26_PCREL_S2:
15265 case BFD_RELOC_MIPS_18_PCREL_S3:
15266 case BFD_RELOC_MIPS_19_PCREL_S2:
15267 case BFD_RELOC_HI16_S_PCREL:
15268 case BFD_RELOC_LO16_PCREL:
15272 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15276 as_bad_where (fixP->fx_file, fixP->fx_line,
15277 _("PC-relative reference to a different section"));
15281 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15282 that have no MIPS ELF equivalent. */
15283 if (fixP->fx_r_type != BFD_RELOC_8)
15285 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15290 gas_assert (fixP->fx_size == 2
15291 || fixP->fx_size == 4
15292 || fixP->fx_r_type == BFD_RELOC_8
15293 || fixP->fx_r_type == BFD_RELOC_16
15294 || fixP->fx_r_type == BFD_RELOC_64
15295 || fixP->fx_r_type == BFD_RELOC_CTOR
15296 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15297 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15298 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15299 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15300 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15301 || fixP->fx_r_type == BFD_RELOC_NONE);
15303 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15305 /* Don't treat parts of a composite relocation as done. There are two
15308 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15309 should nevertheless be emitted if the first part is.
15311 (2) In normal usage, composite relocations are never assembly-time
15312 constants. The easiest way of dealing with the pathological
15313 exceptions is to generate a relocation against STN_UNDEF and
15314 leave everything up to the linker. */
15315 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15318 switch (fixP->fx_r_type)
15320 case BFD_RELOC_MIPS_TLS_GD:
15321 case BFD_RELOC_MIPS_TLS_LDM:
15322 case BFD_RELOC_MIPS_TLS_DTPREL32:
15323 case BFD_RELOC_MIPS_TLS_DTPREL64:
15324 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15325 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15326 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15327 case BFD_RELOC_MIPS_TLS_TPREL32:
15328 case BFD_RELOC_MIPS_TLS_TPREL64:
15329 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15330 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15331 case BFD_RELOC_MICROMIPS_TLS_GD:
15332 case BFD_RELOC_MICROMIPS_TLS_LDM:
15333 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15334 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15335 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15336 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15337 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15338 case BFD_RELOC_MIPS16_TLS_GD:
15339 case BFD_RELOC_MIPS16_TLS_LDM:
15340 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15341 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15342 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15343 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15344 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15345 if (fixP->fx_addsy)
15346 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15348 as_bad_where (fixP->fx_file, fixP->fx_line,
15349 _("TLS relocation against a constant"));
15352 case BFD_RELOC_MIPS_JMP:
15353 case BFD_RELOC_MIPS16_JMP:
15354 case BFD_RELOC_MICROMIPS_JMP:
15358 gas_assert (!fixP->fx_done);
15360 /* Shift is 2, unusually, for microMIPS JALX. */
15361 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15362 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15367 if (fix_bad_cross_mode_jump_p (fixP))
15368 as_bad_where (fixP->fx_file, fixP->fx_line,
15369 _("jump to a symbol in another ISA mode"));
15370 else if (fix_bad_same_mode_jalx_p (fixP))
15371 as_bad_where (fixP->fx_file, fixP->fx_line,
15372 _("JALX to a symbol in the same ISA mode"));
15373 else if (fix_bad_misaligned_jump_p (fixP, shift))
15374 as_bad_where (fixP->fx_file, fixP->fx_line,
15375 _("jump to misaligned address (0x%lx)"),
15376 (long) (S_GET_VALUE (fixP->fx_addsy)
15377 + fixP->fx_offset));
15378 else if (HAVE_IN_PLACE_ADDENDS
15379 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15380 as_bad_where (fixP->fx_file, fixP->fx_line,
15381 _("cannot encode misaligned addend "
15382 "in the relocatable field (0x%lx)"),
15383 (long) fixP->fx_offset);
15385 /* Fall through. */
15387 case BFD_RELOC_MIPS_SHIFT5:
15388 case BFD_RELOC_MIPS_SHIFT6:
15389 case BFD_RELOC_MIPS_GOT_DISP:
15390 case BFD_RELOC_MIPS_GOT_PAGE:
15391 case BFD_RELOC_MIPS_GOT_OFST:
15392 case BFD_RELOC_MIPS_SUB:
15393 case BFD_RELOC_MIPS_INSERT_A:
15394 case BFD_RELOC_MIPS_INSERT_B:
15395 case BFD_RELOC_MIPS_DELETE:
15396 case BFD_RELOC_MIPS_HIGHEST:
15397 case BFD_RELOC_MIPS_HIGHER:
15398 case BFD_RELOC_MIPS_SCN_DISP:
15399 case BFD_RELOC_MIPS_REL16:
15400 case BFD_RELOC_MIPS_RELGOT:
15401 case BFD_RELOC_MIPS_JALR:
15402 case BFD_RELOC_HI16:
15403 case BFD_RELOC_HI16_S:
15404 case BFD_RELOC_LO16:
15405 case BFD_RELOC_GPREL16:
15406 case BFD_RELOC_MIPS_LITERAL:
15407 case BFD_RELOC_MIPS_CALL16:
15408 case BFD_RELOC_MIPS_GOT16:
15409 case BFD_RELOC_GPREL32:
15410 case BFD_RELOC_MIPS_GOT_HI16:
15411 case BFD_RELOC_MIPS_GOT_LO16:
15412 case BFD_RELOC_MIPS_CALL_HI16:
15413 case BFD_RELOC_MIPS_CALL_LO16:
15414 case BFD_RELOC_HI16_S_PCREL:
15415 case BFD_RELOC_LO16_PCREL:
15416 case BFD_RELOC_MIPS16_GPREL:
15417 case BFD_RELOC_MIPS16_GOT16:
15418 case BFD_RELOC_MIPS16_CALL16:
15419 case BFD_RELOC_MIPS16_HI16:
15420 case BFD_RELOC_MIPS16_HI16_S:
15421 case BFD_RELOC_MIPS16_LO16:
15422 case BFD_RELOC_MICROMIPS_GOT_DISP:
15423 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15424 case BFD_RELOC_MICROMIPS_GOT_OFST:
15425 case BFD_RELOC_MICROMIPS_SUB:
15426 case BFD_RELOC_MICROMIPS_HIGHEST:
15427 case BFD_RELOC_MICROMIPS_HIGHER:
15428 case BFD_RELOC_MICROMIPS_SCN_DISP:
15429 case BFD_RELOC_MICROMIPS_JALR:
15430 case BFD_RELOC_MICROMIPS_HI16:
15431 case BFD_RELOC_MICROMIPS_HI16_S:
15432 case BFD_RELOC_MICROMIPS_LO16:
15433 case BFD_RELOC_MICROMIPS_GPREL16:
15434 case BFD_RELOC_MICROMIPS_LITERAL:
15435 case BFD_RELOC_MICROMIPS_CALL16:
15436 case BFD_RELOC_MICROMIPS_GOT16:
15437 case BFD_RELOC_MICROMIPS_GOT_HI16:
15438 case BFD_RELOC_MICROMIPS_GOT_LO16:
15439 case BFD_RELOC_MICROMIPS_CALL_HI16:
15440 case BFD_RELOC_MICROMIPS_CALL_LO16:
15441 case BFD_RELOC_MIPS_EH:
15446 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15448 insn = read_reloc_insn (buf, fixP->fx_r_type);
15449 if (mips16_reloc_p (fixP->fx_r_type))
15450 insn |= mips16_immed_extend (value, 16);
15452 insn |= (value & 0xffff);
15453 write_reloc_insn (buf, fixP->fx_r_type, insn);
15456 as_bad_where (fixP->fx_file, fixP->fx_line,
15457 _("unsupported constant in relocation"));
15462 /* This is handled like BFD_RELOC_32, but we output a sign
15463 extended value if we are only 32 bits. */
15466 if (8 <= sizeof (valueT))
15467 md_number_to_chars (buf, *valP, 8);
15472 if ((*valP & 0x80000000) != 0)
15476 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15477 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15482 case BFD_RELOC_RVA:
15484 case BFD_RELOC_32_PCREL:
15487 /* If we are deleting this reloc entry, we must fill in the
15488 value now. This can happen if we have a .word which is not
15489 resolved when it appears but is later defined. */
15491 md_number_to_chars (buf, *valP, fixP->fx_size);
15494 case BFD_RELOC_MIPS_21_PCREL_S2:
15495 fix_validate_branch (fixP, *valP);
15496 if (!fixP->fx_done)
15499 if (*valP + 0x400000 <= 0x7fffff)
15501 insn = read_insn (buf);
15502 insn |= (*valP >> 2) & 0x1fffff;
15503 write_insn (buf, insn);
15506 as_bad_where (fixP->fx_file, fixP->fx_line,
15507 _("branch out of range"));
15510 case BFD_RELOC_MIPS_26_PCREL_S2:
15511 fix_validate_branch (fixP, *valP);
15512 if (!fixP->fx_done)
15515 if (*valP + 0x8000000 <= 0xfffffff)
15517 insn = read_insn (buf);
15518 insn |= (*valP >> 2) & 0x3ffffff;
15519 write_insn (buf, insn);
15522 as_bad_where (fixP->fx_file, fixP->fx_line,
15523 _("branch out of range"));
15526 case BFD_RELOC_MIPS_18_PCREL_S3:
15527 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15528 as_bad_where (fixP->fx_file, fixP->fx_line,
15529 _("PC-relative access using misaligned symbol (%lx)"),
15530 (long) S_GET_VALUE (fixP->fx_addsy));
15531 if ((fixP->fx_offset & 0x7) != 0)
15532 as_bad_where (fixP->fx_file, fixP->fx_line,
15533 _("PC-relative access using misaligned offset (%lx)"),
15534 (long) fixP->fx_offset);
15535 if (!fixP->fx_done)
15538 if (*valP + 0x100000 <= 0x1fffff)
15540 insn = read_insn (buf);
15541 insn |= (*valP >> 3) & 0x3ffff;
15542 write_insn (buf, insn);
15545 as_bad_where (fixP->fx_file, fixP->fx_line,
15546 _("PC-relative access out of range"));
15549 case BFD_RELOC_MIPS_19_PCREL_S2:
15550 if ((*valP & 0x3) != 0)
15551 as_bad_where (fixP->fx_file, fixP->fx_line,
15552 _("PC-relative access to misaligned address (%lx)"),
15554 if (!fixP->fx_done)
15557 if (*valP + 0x100000 <= 0x1fffff)
15559 insn = read_insn (buf);
15560 insn |= (*valP >> 2) & 0x7ffff;
15561 write_insn (buf, insn);
15564 as_bad_where (fixP->fx_file, fixP->fx_line,
15565 _("PC-relative access out of range"));
15568 case BFD_RELOC_16_PCREL_S2:
15569 fix_validate_branch (fixP, *valP);
15571 /* We need to save the bits in the instruction since fixup_segment()
15572 might be deleting the relocation entry (i.e., a branch within
15573 the current segment). */
15574 if (! fixP->fx_done)
15577 /* Update old instruction data. */
15578 insn = read_insn (buf);
15580 if (*valP + 0x20000 <= 0x3ffff)
15582 insn |= (*valP >> 2) & 0xffff;
15583 write_insn (buf, insn);
15585 else if (mips_pic == NO_PIC
15587 && fixP->fx_frag->fr_address >= text_section->vma
15588 && (fixP->fx_frag->fr_address
15589 < text_section->vma + bfd_get_section_size (text_section))
15590 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15591 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15592 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15594 /* The branch offset is too large. If this is an
15595 unconditional branch, and we are not generating PIC code,
15596 we can convert it to an absolute jump instruction. */
15597 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15598 insn = 0x0c000000; /* jal */
15600 insn = 0x08000000; /* j */
15601 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15603 fixP->fx_addsy = section_symbol (text_section);
15604 *valP += md_pcrel_from (fixP);
15605 write_insn (buf, insn);
15609 /* If we got here, we have branch-relaxation disabled,
15610 and there's nothing we can do to fix this instruction
15611 without turning it into a longer sequence. */
15612 as_bad_where (fixP->fx_file, fixP->fx_line,
15613 _("branch out of range"));
15617 case BFD_RELOC_MIPS16_16_PCREL_S1:
15618 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15619 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15620 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15621 gas_assert (!fixP->fx_done);
15622 if (fix_bad_cross_mode_branch_p (fixP))
15623 as_bad_where (fixP->fx_file, fixP->fx_line,
15624 _("branch to a symbol in another ISA mode"));
15625 else if (fixP->fx_addsy
15626 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15627 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15628 && (fixP->fx_offset & 0x1) != 0)
15629 as_bad_where (fixP->fx_file, fixP->fx_line,
15630 _("branch to misaligned address (0x%lx)"),
15631 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15632 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15633 as_bad_where (fixP->fx_file, fixP->fx_line,
15634 _("cannot encode misaligned addend "
15635 "in the relocatable field (0x%lx)"),
15636 (long) fixP->fx_offset);
15639 case BFD_RELOC_VTABLE_INHERIT:
15642 && !S_IS_DEFINED (fixP->fx_addsy)
15643 && !S_IS_WEAK (fixP->fx_addsy))
15644 S_SET_WEAK (fixP->fx_addsy);
15647 case BFD_RELOC_NONE:
15648 case BFD_RELOC_VTABLE_ENTRY:
15656 /* Remember value for tc_gen_reloc. */
15657 fixP->fx_addnumber = *valP;
15667 c = get_symbol_name (&name);
15668 p = (symbolS *) symbol_find_or_make (name);
15669 (void) restore_line_pointer (c);
15673 /* Align the current frag to a given power of two. If a particular
15674 fill byte should be used, FILL points to an integer that contains
15675 that byte, otherwise FILL is null.
15677 This function used to have the comment:
15679 The MIPS assembler also automatically adjusts any preceding label.
15681 The implementation therefore applied the adjustment to a maximum of
15682 one label. However, other label adjustments are applied to batches
15683 of labels, and adjusting just one caused problems when new labels
15684 were added for the sake of debugging or unwind information.
15685 We therefore adjust all preceding labels (given as LABELS) instead. */
15688 mips_align (int to, int *fill, struct insn_label_list *labels)
15690 mips_emit_delays ();
15691 mips_record_compressed_mode ();
15692 if (fill == NULL && subseg_text_p (now_seg))
15693 frag_align_code (to, 0);
15695 frag_align (to, fill ? *fill : 0, 0);
15696 record_alignment (now_seg, to);
15697 mips_move_labels (labels, FALSE);
15700 /* Align to a given power of two. .align 0 turns off the automatic
15701 alignment used by the data creating pseudo-ops. */
15704 s_align (int x ATTRIBUTE_UNUSED)
15706 int temp, fill_value, *fill_ptr;
15707 long max_alignment = 28;
15709 /* o Note that the assembler pulls down any immediately preceding label
15710 to the aligned address.
15711 o It's not documented but auto alignment is reinstated by
15712 a .align pseudo instruction.
15713 o Note also that after auto alignment is turned off the mips assembler
15714 issues an error on attempt to assemble an improperly aligned data item.
15717 temp = get_absolute_expression ();
15718 if (temp > max_alignment)
15719 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15722 as_warn (_("alignment negative, 0 assumed"));
15725 if (*input_line_pointer == ',')
15727 ++input_line_pointer;
15728 fill_value = get_absolute_expression ();
15729 fill_ptr = &fill_value;
15735 segment_info_type *si = seg_info (now_seg);
15736 struct insn_label_list *l = si->label_list;
15737 /* Auto alignment should be switched on by next section change. */
15739 mips_align (temp, fill_ptr, l);
15746 demand_empty_rest_of_line ();
15750 s_change_sec (int sec)
15754 /* The ELF backend needs to know that we are changing sections, so
15755 that .previous works correctly. We could do something like check
15756 for an obj_section_change_hook macro, but that might be confusing
15757 as it would not be appropriate to use it in the section changing
15758 functions in read.c, since obj-elf.c intercepts those. FIXME:
15759 This should be cleaner, somehow. */
15760 obj_elf_section_change_hook ();
15762 mips_emit_delays ();
15773 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15774 demand_empty_rest_of_line ();
15778 seg = subseg_new (RDATA_SECTION_NAME,
15779 (subsegT) get_absolute_expression ());
15780 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15781 | SEC_READONLY | SEC_RELOC
15783 if (strncmp (TARGET_OS, "elf", 3) != 0)
15784 record_alignment (seg, 4);
15785 demand_empty_rest_of_line ();
15789 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15790 bfd_set_section_flags (stdoutput, seg,
15791 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15792 if (strncmp (TARGET_OS, "elf", 3) != 0)
15793 record_alignment (seg, 4);
15794 demand_empty_rest_of_line ();
15798 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15799 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15800 if (strncmp (TARGET_OS, "elf", 3) != 0)
15801 record_alignment (seg, 4);
15802 demand_empty_rest_of_line ();
15810 s_change_section (int ignore ATTRIBUTE_UNUSED)
15813 char *section_name;
15818 int section_entry_size;
15819 int section_alignment;
15821 saved_ilp = input_line_pointer;
15822 endc = get_symbol_name (§ion_name);
15823 c = (endc == '"' ? input_line_pointer[1] : endc);
15825 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15827 /* Do we have .section Name<,"flags">? */
15828 if (c != ',' || (c == ',' && next_c == '"'))
15830 /* Just after name is now '\0'. */
15831 (void) restore_line_pointer (endc);
15832 input_line_pointer = saved_ilp;
15833 obj_elf_section (ignore);
15837 section_name = xstrdup (section_name);
15838 c = restore_line_pointer (endc);
15840 input_line_pointer++;
15842 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15844 section_type = get_absolute_expression ();
15848 if (*input_line_pointer++ == ',')
15849 section_flag = get_absolute_expression ();
15853 if (*input_line_pointer++ == ',')
15854 section_entry_size = get_absolute_expression ();
15856 section_entry_size = 0;
15858 if (*input_line_pointer++ == ',')
15859 section_alignment = get_absolute_expression ();
15861 section_alignment = 0;
15863 /* FIXME: really ignore? */
15864 (void) section_alignment;
15866 /* When using the generic form of .section (as implemented by obj-elf.c),
15867 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15868 traditionally had to fall back on the more common @progbits instead.
15870 There's nothing really harmful in this, since bfd will correct
15871 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15872 means that, for backwards compatibility, the special_section entries
15873 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15875 Even so, we shouldn't force users of the MIPS .section syntax to
15876 incorrectly label the sections as SHT_PROGBITS. The best compromise
15877 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15878 generic type-checking code. */
15879 if (section_type == SHT_MIPS_DWARF)
15880 section_type = SHT_PROGBITS;
15882 obj_elf_change_section (section_name, section_type, 0, section_flag,
15883 section_entry_size, 0, 0, 0);
15885 if (now_seg->name != section_name)
15886 free (section_name);
15890 mips_enable_auto_align (void)
15896 s_cons (int log_size)
15898 segment_info_type *si = seg_info (now_seg);
15899 struct insn_label_list *l = si->label_list;
15901 mips_emit_delays ();
15902 if (log_size > 0 && auto_align)
15903 mips_align (log_size, 0, l);
15904 cons (1 << log_size);
15905 mips_clear_insn_labels ();
15909 s_float_cons (int type)
15911 segment_info_type *si = seg_info (now_seg);
15912 struct insn_label_list *l = si->label_list;
15914 mips_emit_delays ();
15919 mips_align (3, 0, l);
15921 mips_align (2, 0, l);
15925 mips_clear_insn_labels ();
15928 /* Handle .globl. We need to override it because on Irix 5 you are
15931 where foo is an undefined symbol, to mean that foo should be
15932 considered to be the address of a function. */
15935 s_mips_globl (int x ATTRIBUTE_UNUSED)
15944 c = get_symbol_name (&name);
15945 symbolP = symbol_find_or_make (name);
15946 S_SET_EXTERNAL (symbolP);
15948 *input_line_pointer = c;
15949 SKIP_WHITESPACE_AFTER_NAME ();
15951 /* On Irix 5, every global symbol that is not explicitly labelled as
15952 being a function is apparently labelled as being an object. */
15955 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15956 && (*input_line_pointer != ','))
15961 c = get_symbol_name (&secname);
15962 sec = bfd_get_section_by_name (stdoutput, secname);
15964 as_bad (_("%s: no such section"), secname);
15965 (void) restore_line_pointer (c);
15967 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15968 flag = BSF_FUNCTION;
15971 symbol_get_bfdsym (symbolP)->flags |= flag;
15973 c = *input_line_pointer;
15976 input_line_pointer++;
15977 SKIP_WHITESPACE ();
15978 if (is_end_of_line[(unsigned char) *input_line_pointer])
15984 demand_empty_rest_of_line ();
15988 s_option (int x ATTRIBUTE_UNUSED)
15993 c = get_symbol_name (&opt);
15997 /* FIXME: What does this mean? */
15999 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16003 i = atoi (opt + 3);
16004 if (i != 0 && i != 2)
16005 as_bad (_(".option pic%d not supported"), i);
16006 else if (mips_pic == VXWORKS_PIC)
16007 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16012 mips_pic = SVR4_PIC;
16013 mips_abicalls = TRUE;
16016 if (mips_pic == SVR4_PIC)
16018 if (g_switch_seen && g_switch_value != 0)
16019 as_warn (_("-G may not be used with SVR4 PIC code"));
16020 g_switch_value = 0;
16021 bfd_set_gp_size (stdoutput, 0);
16025 as_warn (_("unrecognized option \"%s\""), opt);
16027 (void) restore_line_pointer (c);
16028 demand_empty_rest_of_line ();
16031 /* This structure is used to hold a stack of .set values. */
16033 struct mips_option_stack
16035 struct mips_option_stack *next;
16036 struct mips_set_options options;
16039 static struct mips_option_stack *mips_opts_stack;
16041 /* Return status for .set/.module option handling. */
16043 enum code_option_type
16045 /* Unrecognized option. */
16046 OPTION_TYPE_BAD = -1,
16048 /* Ordinary option. */
16049 OPTION_TYPE_NORMAL,
16051 /* ISA changing option. */
16055 /* Handle common .set/.module options. Return status indicating option
16058 static enum code_option_type
16059 parse_code_option (char * name)
16061 bfd_boolean isa_set = FALSE;
16062 const struct mips_ase *ase;
16064 if (strncmp (name, "at=", 3) == 0)
16066 char *s = name + 3;
16068 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16069 as_bad (_("unrecognized register name `%s'"), s);
16071 else if (strcmp (name, "at") == 0)
16072 mips_opts.at = ATREG;
16073 else if (strcmp (name, "noat") == 0)
16074 mips_opts.at = ZERO;
16075 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16076 mips_opts.nomove = 0;
16077 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16078 mips_opts.nomove = 1;
16079 else if (strcmp (name, "bopt") == 0)
16080 mips_opts.nobopt = 0;
16081 else if (strcmp (name, "nobopt") == 0)
16082 mips_opts.nobopt = 1;
16083 else if (strcmp (name, "gp=32") == 0)
16085 else if (strcmp (name, "gp=64") == 0)
16087 else if (strcmp (name, "fp=32") == 0)
16089 else if (strcmp (name, "fp=xx") == 0)
16091 else if (strcmp (name, "fp=64") == 0)
16093 else if (strcmp (name, "softfloat") == 0)
16094 mips_opts.soft_float = 1;
16095 else if (strcmp (name, "hardfloat") == 0)
16096 mips_opts.soft_float = 0;
16097 else if (strcmp (name, "singlefloat") == 0)
16098 mips_opts.single_float = 1;
16099 else if (strcmp (name, "doublefloat") == 0)
16100 mips_opts.single_float = 0;
16101 else if (strcmp (name, "nooddspreg") == 0)
16102 mips_opts.oddspreg = 0;
16103 else if (strcmp (name, "oddspreg") == 0)
16104 mips_opts.oddspreg = 1;
16105 else if (strcmp (name, "mips16") == 0
16106 || strcmp (name, "MIPS-16") == 0)
16107 mips_opts.mips16 = 1;
16108 else if (strcmp (name, "nomips16") == 0
16109 || strcmp (name, "noMIPS-16") == 0)
16110 mips_opts.mips16 = 0;
16111 else if (strcmp (name, "micromips") == 0)
16112 mips_opts.micromips = 1;
16113 else if (strcmp (name, "nomicromips") == 0)
16114 mips_opts.micromips = 0;
16115 else if (name[0] == 'n'
16117 && (ase = mips_lookup_ase (name + 2)))
16118 mips_set_ase (ase, &mips_opts, FALSE);
16119 else if ((ase = mips_lookup_ase (name)))
16120 mips_set_ase (ase, &mips_opts, TRUE);
16121 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16123 /* Permit the user to change the ISA and architecture on the fly.
16124 Needless to say, misuse can cause serious problems. */
16125 if (strncmp (name, "arch=", 5) == 0)
16127 const struct mips_cpu_info *p;
16129 p = mips_parse_cpu ("internal use", name + 5);
16131 as_bad (_("unknown architecture %s"), name + 5);
16134 mips_opts.arch = p->cpu;
16135 mips_opts.isa = p->isa;
16139 else if (strncmp (name, "mips", 4) == 0)
16141 const struct mips_cpu_info *p;
16143 p = mips_parse_cpu ("internal use", name);
16145 as_bad (_("unknown ISA level %s"), name + 4);
16148 mips_opts.arch = p->cpu;
16149 mips_opts.isa = p->isa;
16154 as_bad (_("unknown ISA or architecture %s"), name);
16156 else if (strcmp (name, "autoextend") == 0)
16157 mips_opts.noautoextend = 0;
16158 else if (strcmp (name, "noautoextend") == 0)
16159 mips_opts.noautoextend = 1;
16160 else if (strcmp (name, "insn32") == 0)
16161 mips_opts.insn32 = TRUE;
16162 else if (strcmp (name, "noinsn32") == 0)
16163 mips_opts.insn32 = FALSE;
16164 else if (strcmp (name, "sym32") == 0)
16165 mips_opts.sym32 = TRUE;
16166 else if (strcmp (name, "nosym32") == 0)
16167 mips_opts.sym32 = FALSE;
16169 return OPTION_TYPE_BAD;
16171 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16174 /* Handle the .set pseudo-op. */
16177 s_mipsset (int x ATTRIBUTE_UNUSED)
16179 enum code_option_type type = OPTION_TYPE_NORMAL;
16180 char *name = input_line_pointer, ch;
16182 file_mips_check_options ();
16184 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16185 ++input_line_pointer;
16186 ch = *input_line_pointer;
16187 *input_line_pointer = '\0';
16189 if (strchr (name, ','))
16191 /* Generic ".set" directive; use the generic handler. */
16192 *input_line_pointer = ch;
16193 input_line_pointer = name;
16198 if (strcmp (name, "reorder") == 0)
16200 if (mips_opts.noreorder)
16203 else if (strcmp (name, "noreorder") == 0)
16205 if (!mips_opts.noreorder)
16206 start_noreorder ();
16208 else if (strcmp (name, "macro") == 0)
16209 mips_opts.warn_about_macros = 0;
16210 else if (strcmp (name, "nomacro") == 0)
16212 if (mips_opts.noreorder == 0)
16213 as_bad (_("`noreorder' must be set before `nomacro'"));
16214 mips_opts.warn_about_macros = 1;
16216 else if (strcmp (name, "gp=default") == 0)
16217 mips_opts.gp = file_mips_opts.gp;
16218 else if (strcmp (name, "fp=default") == 0)
16219 mips_opts.fp = file_mips_opts.fp;
16220 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16222 mips_opts.isa = file_mips_opts.isa;
16223 mips_opts.arch = file_mips_opts.arch;
16224 mips_opts.gp = file_mips_opts.gp;
16225 mips_opts.fp = file_mips_opts.fp;
16227 else if (strcmp (name, "push") == 0)
16229 struct mips_option_stack *s;
16231 s = XNEW (struct mips_option_stack);
16232 s->next = mips_opts_stack;
16233 s->options = mips_opts;
16234 mips_opts_stack = s;
16236 else if (strcmp (name, "pop") == 0)
16238 struct mips_option_stack *s;
16240 s = mips_opts_stack;
16242 as_bad (_(".set pop with no .set push"));
16245 /* If we're changing the reorder mode we need to handle
16246 delay slots correctly. */
16247 if (s->options.noreorder && ! mips_opts.noreorder)
16248 start_noreorder ();
16249 else if (! s->options.noreorder && mips_opts.noreorder)
16252 mips_opts = s->options;
16253 mips_opts_stack = s->next;
16259 type = parse_code_option (name);
16260 if (type == OPTION_TYPE_BAD)
16261 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16264 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16265 registers based on what is supported by the arch/cpu. */
16266 if (type == OPTION_TYPE_ISA)
16268 switch (mips_opts.isa)
16273 /* MIPS I cannot support FPXX. */
16275 /* fall-through. */
16282 if (mips_opts.fp != 0)
16298 if (mips_opts.fp != 0)
16300 if (mips_opts.arch == CPU_R5900)
16307 as_bad (_("unknown ISA level %s"), name + 4);
16312 mips_check_options (&mips_opts, FALSE);
16314 mips_check_isa_supports_ases ();
16315 *input_line_pointer = ch;
16316 demand_empty_rest_of_line ();
16319 /* Handle the .module pseudo-op. */
16322 s_module (int ignore ATTRIBUTE_UNUSED)
16324 char *name = input_line_pointer, ch;
16326 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16327 ++input_line_pointer;
16328 ch = *input_line_pointer;
16329 *input_line_pointer = '\0';
16331 if (!file_mips_opts_checked)
16333 if (parse_code_option (name) == OPTION_TYPE_BAD)
16334 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16336 /* Update module level settings from mips_opts. */
16337 file_mips_opts = mips_opts;
16340 as_bad (_(".module is not permitted after generating code"));
16342 *input_line_pointer = ch;
16343 demand_empty_rest_of_line ();
16346 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16347 .option pic2. It means to generate SVR4 PIC calls. */
16350 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16352 mips_pic = SVR4_PIC;
16353 mips_abicalls = TRUE;
16355 if (g_switch_seen && g_switch_value != 0)
16356 as_warn (_("-G may not be used with SVR4 PIC code"));
16357 g_switch_value = 0;
16359 bfd_set_gp_size (stdoutput, 0);
16360 demand_empty_rest_of_line ();
16363 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16364 PIC code. It sets the $gp register for the function based on the
16365 function address, which is in the register named in the argument.
16366 This uses a relocation against _gp_disp, which is handled specially
16367 by the linker. The result is:
16368 lui $gp,%hi(_gp_disp)
16369 addiu $gp,$gp,%lo(_gp_disp)
16370 addu $gp,$gp,.cpload argument
16371 The .cpload argument is normally $25 == $t9.
16373 The -mno-shared option changes this to:
16374 lui $gp,%hi(__gnu_local_gp)
16375 addiu $gp,$gp,%lo(__gnu_local_gp)
16376 and the argument is ignored. This saves an instruction, but the
16377 resulting code is not position independent; it uses an absolute
16378 address for __gnu_local_gp. Thus code assembled with -mno-shared
16379 can go into an ordinary executable, but not into a shared library. */
16382 s_cpload (int ignore ATTRIBUTE_UNUSED)
16388 file_mips_check_options ();
16390 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16391 .cpload is ignored. */
16392 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16398 if (mips_opts.mips16)
16400 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16401 ignore_rest_of_line ();
16405 /* .cpload should be in a .set noreorder section. */
16406 if (mips_opts.noreorder == 0)
16407 as_warn (_(".cpload not in noreorder section"));
16409 reg = tc_get_register (0);
16411 /* If we need to produce a 64-bit address, we are better off using
16412 the default instruction sequence. */
16413 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16415 ex.X_op = O_symbol;
16416 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16418 ex.X_op_symbol = NULL;
16419 ex.X_add_number = 0;
16421 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16422 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16424 mips_mark_labels ();
16425 mips_assembling_insn = TRUE;
16428 macro_build_lui (&ex, mips_gp_register);
16429 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16430 mips_gp_register, BFD_RELOC_LO16);
16432 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16433 mips_gp_register, reg);
16436 mips_assembling_insn = FALSE;
16437 demand_empty_rest_of_line ();
16440 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16441 .cpsetup $reg1, offset|$reg2, label
16443 If offset is given, this results in:
16444 sd $gp, offset($sp)
16445 lui $gp, %hi(%neg(%gp_rel(label)))
16446 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16447 daddu $gp, $gp, $reg1
16449 If $reg2 is given, this results in:
16451 lui $gp, %hi(%neg(%gp_rel(label)))
16452 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16453 daddu $gp, $gp, $reg1
16454 $reg1 is normally $25 == $t9.
16456 The -mno-shared option replaces the last three instructions with
16458 addiu $gp,$gp,%lo(_gp) */
16461 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16463 expressionS ex_off;
16464 expressionS ex_sym;
16467 file_mips_check_options ();
16469 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16470 We also need NewABI support. */
16471 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16477 if (mips_opts.mips16)
16479 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16480 ignore_rest_of_line ();
16484 reg1 = tc_get_register (0);
16485 SKIP_WHITESPACE ();
16486 if (*input_line_pointer != ',')
16488 as_bad (_("missing argument separator ',' for .cpsetup"));
16492 ++input_line_pointer;
16493 SKIP_WHITESPACE ();
16494 if (*input_line_pointer == '$')
16496 mips_cpreturn_register = tc_get_register (0);
16497 mips_cpreturn_offset = -1;
16501 mips_cpreturn_offset = get_absolute_expression ();
16502 mips_cpreturn_register = -1;
16504 SKIP_WHITESPACE ();
16505 if (*input_line_pointer != ',')
16507 as_bad (_("missing argument separator ',' for .cpsetup"));
16511 ++input_line_pointer;
16512 SKIP_WHITESPACE ();
16513 expression (&ex_sym);
16515 mips_mark_labels ();
16516 mips_assembling_insn = TRUE;
16519 if (mips_cpreturn_register == -1)
16521 ex_off.X_op = O_constant;
16522 ex_off.X_add_symbol = NULL;
16523 ex_off.X_op_symbol = NULL;
16524 ex_off.X_add_number = mips_cpreturn_offset;
16526 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16527 BFD_RELOC_LO16, SP);
16530 move_register (mips_cpreturn_register, mips_gp_register);
16532 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16534 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16535 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16538 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16539 mips_gp_register, -1, BFD_RELOC_GPREL16,
16540 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16543 mips_gp_register, reg1);
16549 ex.X_op = O_symbol;
16550 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16551 ex.X_op_symbol = NULL;
16552 ex.X_add_number = 0;
16554 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16555 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16557 macro_build_lui (&ex, mips_gp_register);
16558 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16559 mips_gp_register, BFD_RELOC_LO16);
16564 mips_assembling_insn = FALSE;
16565 demand_empty_rest_of_line ();
16569 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16571 file_mips_check_options ();
16573 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16574 .cplocal is ignored. */
16575 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16581 if (mips_opts.mips16)
16583 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16584 ignore_rest_of_line ();
16588 mips_gp_register = tc_get_register (0);
16589 demand_empty_rest_of_line ();
16592 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16593 offset from $sp. The offset is remembered, and after making a PIC
16594 call $gp is restored from that location. */
16597 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16601 file_mips_check_options ();
16603 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16604 .cprestore is ignored. */
16605 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16611 if (mips_opts.mips16)
16613 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16614 ignore_rest_of_line ();
16618 mips_cprestore_offset = get_absolute_expression ();
16619 mips_cprestore_valid = 1;
16621 ex.X_op = O_constant;
16622 ex.X_add_symbol = NULL;
16623 ex.X_op_symbol = NULL;
16624 ex.X_add_number = mips_cprestore_offset;
16626 mips_mark_labels ();
16627 mips_assembling_insn = TRUE;
16630 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16631 SP, HAVE_64BIT_ADDRESSES);
16634 mips_assembling_insn = FALSE;
16635 demand_empty_rest_of_line ();
16638 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16639 was given in the preceding .cpsetup, it results in:
16640 ld $gp, offset($sp)
16642 If a register $reg2 was given there, it results in:
16643 or $gp, $reg2, $0 */
16646 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16650 file_mips_check_options ();
16652 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16653 We also need NewABI support. */
16654 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16660 if (mips_opts.mips16)
16662 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16663 ignore_rest_of_line ();
16667 mips_mark_labels ();
16668 mips_assembling_insn = TRUE;
16671 if (mips_cpreturn_register == -1)
16673 ex.X_op = O_constant;
16674 ex.X_add_symbol = NULL;
16675 ex.X_op_symbol = NULL;
16676 ex.X_add_number = mips_cpreturn_offset;
16678 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16681 move_register (mips_gp_register, mips_cpreturn_register);
16685 mips_assembling_insn = FALSE;
16686 demand_empty_rest_of_line ();
16689 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16690 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16691 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16692 debug information or MIPS16 TLS. */
16695 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16696 bfd_reloc_code_real_type rtype)
16703 if (ex.X_op != O_symbol)
16705 as_bad (_("unsupported use of %s"), dirstr);
16706 ignore_rest_of_line ();
16709 p = frag_more (bytes);
16710 md_number_to_chars (p, 0, bytes);
16711 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16712 demand_empty_rest_of_line ();
16713 mips_clear_insn_labels ();
16716 /* Handle .dtprelword. */
16719 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16721 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16724 /* Handle .dtpreldword. */
16727 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16729 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16732 /* Handle .tprelword. */
16735 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16737 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16740 /* Handle .tpreldword. */
16743 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16745 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16748 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16749 code. It sets the offset to use in gp_rel relocations. */
16752 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16754 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16755 We also need NewABI support. */
16756 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16762 mips_gprel_offset = get_absolute_expression ();
16764 demand_empty_rest_of_line ();
16767 /* Handle the .gpword pseudo-op. This is used when generating PIC
16768 code. It generates a 32 bit GP relative reloc. */
16771 s_gpword (int ignore ATTRIBUTE_UNUSED)
16773 segment_info_type *si;
16774 struct insn_label_list *l;
16778 /* When not generating PIC code, this is treated as .word. */
16779 if (mips_pic != SVR4_PIC)
16785 si = seg_info (now_seg);
16786 l = si->label_list;
16787 mips_emit_delays ();
16789 mips_align (2, 0, l);
16792 mips_clear_insn_labels ();
16794 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16796 as_bad (_("unsupported use of .gpword"));
16797 ignore_rest_of_line ();
16801 md_number_to_chars (p, 0, 4);
16802 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16803 BFD_RELOC_GPREL32);
16805 demand_empty_rest_of_line ();
16809 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16811 segment_info_type *si;
16812 struct insn_label_list *l;
16816 /* When not generating PIC code, this is treated as .dword. */
16817 if (mips_pic != SVR4_PIC)
16823 si = seg_info (now_seg);
16824 l = si->label_list;
16825 mips_emit_delays ();
16827 mips_align (3, 0, l);
16830 mips_clear_insn_labels ();
16832 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16834 as_bad (_("unsupported use of .gpdword"));
16835 ignore_rest_of_line ();
16839 md_number_to_chars (p, 0, 8);
16840 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16841 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16843 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16844 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16845 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16847 demand_empty_rest_of_line ();
16850 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16851 tables. It generates a R_MIPS_EH reloc. */
16854 s_ehword (int ignore ATTRIBUTE_UNUSED)
16859 mips_emit_delays ();
16862 mips_clear_insn_labels ();
16864 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16866 as_bad (_("unsupported use of .ehword"));
16867 ignore_rest_of_line ();
16871 md_number_to_chars (p, 0, 4);
16872 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16873 BFD_RELOC_32_PCREL);
16875 demand_empty_rest_of_line ();
16878 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16879 tables in SVR4 PIC code. */
16882 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16886 file_mips_check_options ();
16888 /* This is ignored when not generating SVR4 PIC code. */
16889 if (mips_pic != SVR4_PIC)
16895 mips_mark_labels ();
16896 mips_assembling_insn = TRUE;
16898 /* Add $gp to the register named as an argument. */
16900 reg = tc_get_register (0);
16901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16904 mips_assembling_insn = FALSE;
16905 demand_empty_rest_of_line ();
16908 /* Handle the .insn pseudo-op. This marks instruction labels in
16909 mips16/micromips mode. This permits the linker to handle them specially,
16910 such as generating jalx instructions when needed. We also make
16911 them odd for the duration of the assembly, in order to generate the
16912 right sort of code. We will make them even in the adjust_symtab
16913 routine, while leaving them marked. This is convenient for the
16914 debugger and the disassembler. The linker knows to make them odd
16918 s_insn (int ignore ATTRIBUTE_UNUSED)
16920 file_mips_check_options ();
16921 file_ase_mips16 |= mips_opts.mips16;
16922 file_ase_micromips |= mips_opts.micromips;
16924 mips_mark_labels ();
16926 demand_empty_rest_of_line ();
16929 /* Handle the .nan pseudo-op. */
16932 s_nan (int ignore ATTRIBUTE_UNUSED)
16934 static const char str_legacy[] = "legacy";
16935 static const char str_2008[] = "2008";
16938 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16940 if (i == sizeof (str_2008) - 1
16941 && memcmp (input_line_pointer, str_2008, i) == 0)
16943 else if (i == sizeof (str_legacy) - 1
16944 && memcmp (input_line_pointer, str_legacy, i) == 0)
16946 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16949 as_bad (_("`%s' does not support legacy NaN"),
16950 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16953 as_bad (_("bad .nan directive"));
16955 input_line_pointer += i;
16956 demand_empty_rest_of_line ();
16959 /* Handle a .stab[snd] directive. Ideally these directives would be
16960 implemented in a transparent way, so that removing them would not
16961 have any effect on the generated instructions. However, s_stab
16962 internally changes the section, so in practice we need to decide
16963 now whether the preceding label marks compressed code. We do not
16964 support changing the compression mode of a label after a .stab*
16965 directive, such as in:
16971 so the current mode wins. */
16974 s_mips_stab (int type)
16976 mips_mark_labels ();
16980 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16983 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16990 c = get_symbol_name (&name);
16991 symbolP = symbol_find_or_make (name);
16992 S_SET_WEAK (symbolP);
16993 *input_line_pointer = c;
16995 SKIP_WHITESPACE_AFTER_NAME ();
16997 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16999 if (S_IS_DEFINED (symbolP))
17001 as_bad (_("ignoring attempt to redefine symbol %s"),
17002 S_GET_NAME (symbolP));
17003 ignore_rest_of_line ();
17007 if (*input_line_pointer == ',')
17009 ++input_line_pointer;
17010 SKIP_WHITESPACE ();
17014 if (exp.X_op != O_symbol)
17016 as_bad (_("bad .weakext directive"));
17017 ignore_rest_of_line ();
17020 symbol_set_value_expression (symbolP, &exp);
17023 demand_empty_rest_of_line ();
17026 /* Parse a register string into a number. Called from the ECOFF code
17027 to parse .frame. The argument is non-zero if this is the frame
17028 register, so that we can record it in mips_frame_reg. */
17031 tc_get_register (int frame)
17035 SKIP_WHITESPACE ();
17036 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
17040 mips_frame_reg = reg != 0 ? reg : SP;
17041 mips_frame_reg_valid = 1;
17042 mips_cprestore_valid = 0;
17048 md_section_align (asection *seg, valueT addr)
17050 int align = bfd_get_section_alignment (stdoutput, seg);
17052 /* We don't need to align ELF sections to the full alignment.
17053 However, Irix 5 may prefer that we align them at least to a 16
17054 byte boundary. We don't bother to align the sections if we
17055 are targeted for an embedded system. */
17056 if (strncmp (TARGET_OS, "elf", 3) == 0)
17061 return ((addr + (1 << align) - 1) & -(1 << align));
17064 /* Utility routine, called from above as well. If called while the
17065 input file is still being read, it's only an approximation. (For
17066 example, a symbol may later become defined which appeared to be
17067 undefined earlier.) */
17070 nopic_need_relax (symbolS *sym, int before_relaxing)
17075 if (g_switch_value > 0)
17077 const char *symname;
17080 /* Find out whether this symbol can be referenced off the $gp
17081 register. It can be if it is smaller than the -G size or if
17082 it is in the .sdata or .sbss section. Certain symbols can
17083 not be referenced off the $gp, although it appears as though
17085 symname = S_GET_NAME (sym);
17086 if (symname != (const char *) NULL
17087 && (strcmp (symname, "eprol") == 0
17088 || strcmp (symname, "etext") == 0
17089 || strcmp (symname, "_gp") == 0
17090 || strcmp (symname, "edata") == 0
17091 || strcmp (symname, "_fbss") == 0
17092 || strcmp (symname, "_fdata") == 0
17093 || strcmp (symname, "_ftext") == 0
17094 || strcmp (symname, "end") == 0
17095 || strcmp (symname, "_gp_disp") == 0))
17097 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17099 #ifndef NO_ECOFF_DEBUGGING
17100 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17101 && (symbol_get_obj (sym)->ecoff_extern_size
17102 <= g_switch_value))
17104 /* We must defer this decision until after the whole
17105 file has been read, since there might be a .extern
17106 after the first use of this symbol. */
17107 || (before_relaxing
17108 #ifndef NO_ECOFF_DEBUGGING
17109 && symbol_get_obj (sym)->ecoff_extern_size == 0
17111 && S_GET_VALUE (sym) == 0)
17112 || (S_GET_VALUE (sym) != 0
17113 && S_GET_VALUE (sym) <= g_switch_value)))
17117 const char *segname;
17119 segname = segment_name (S_GET_SEGMENT (sym));
17120 gas_assert (strcmp (segname, ".lit8") != 0
17121 && strcmp (segname, ".lit4") != 0);
17122 change = (strcmp (segname, ".sdata") != 0
17123 && strcmp (segname, ".sbss") != 0
17124 && strncmp (segname, ".sdata.", 7) != 0
17125 && strncmp (segname, ".sbss.", 6) != 0
17126 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17127 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17132 /* We are not optimizing for the $gp register. */
17137 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17140 pic_need_relax (symbolS *sym)
17144 /* Handle the case of a symbol equated to another symbol. */
17145 while (symbol_equated_reloc_p (sym))
17149 /* It's possible to get a loop here in a badly written program. */
17150 n = symbol_get_value_expression (sym)->X_add_symbol;
17156 if (symbol_section_p (sym))
17159 symsec = S_GET_SEGMENT (sym);
17161 /* This must duplicate the test in adjust_reloc_syms. */
17162 return (!bfd_is_und_section (symsec)
17163 && !bfd_is_abs_section (symsec)
17164 && !bfd_is_com_section (symsec)
17165 /* A global or weak symbol is treated as external. */
17166 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17170 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17171 extended opcode. SEC is the section the frag is in. */
17174 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17177 const struct mips_int_operand *operand;
17182 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17184 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17187 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17188 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17189 operand = mips16_immed_operand (type, FALSE);
17190 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17191 || (operand->root.type == OP_PCREL
17193 : !bfd_is_abs_section (symsec)))
17196 sym_frag = symbol_get_frag (fragp->fr_symbol);
17197 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17199 if (operand->root.type == OP_PCREL)
17201 const struct mips_pcrel_operand *pcrel_op;
17205 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17208 pcrel_op = (const struct mips_pcrel_operand *) operand;
17210 /* If the relax_marker of the symbol fragment differs from the
17211 relax_marker of this fragment, we have not yet adjusted the
17212 symbol fragment fr_address. We want to add in STRETCH in
17213 order to get a better estimate of the address. This
17214 particularly matters because of the shift bits. */
17216 && sym_frag->relax_marker != fragp->relax_marker)
17220 /* Adjust stretch for any alignment frag. Note that if have
17221 been expanding the earlier code, the symbol may be
17222 defined in what appears to be an earlier frag. FIXME:
17223 This doesn't handle the fr_subtype field, which specifies
17224 a maximum number of bytes to skip when doing an
17226 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17228 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17231 stretch = - ((- stretch)
17232 & ~ ((1 << (int) f->fr_offset) - 1));
17234 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17243 addr = fragp->fr_address + fragp->fr_fix;
17245 /* The base address rules are complicated. The base address of
17246 a branch is the following instruction. The base address of a
17247 PC relative load or add is the instruction itself, but if it
17248 is in a delay slot (in which case it can not be extended) use
17249 the address of the instruction whose delay slot it is in. */
17250 if (pcrel_op->include_isa_bit)
17254 /* If we are currently assuming that this frag should be
17255 extended, then, the current address is two bytes
17257 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17260 /* Ignore the low bit in the target, since it will be set
17261 for a text label. */
17264 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17266 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17269 val -= addr & -(1 << pcrel_op->align_log2);
17271 /* If any of the shifted bits are set, we must use an extended
17272 opcode. If the address depends on the size of this
17273 instruction, this can lead to a loop, so we arrange to always
17274 use an extended opcode. */
17275 if ((val & ((1 << operand->shift) - 1)) != 0)
17277 fragp->fr_subtype =
17278 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17282 /* If we are about to mark a frag as extended because the value
17283 is precisely the next value above maxtiny, then there is a
17284 chance of an infinite loop as in the following code:
17289 In this case when the la is extended, foo is 0x3fc bytes
17290 away, so the la can be shrunk, but then foo is 0x400 away, so
17291 the la must be extended. To avoid this loop, we mark the
17292 frag as extended if it was small, and is about to become
17293 extended with the next value above maxtiny. */
17294 maxtiny = mips_int_operand_max (operand);
17295 if (val == maxtiny + (1 << operand->shift)
17296 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17298 fragp->fr_subtype =
17299 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17304 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17307 /* Compute the length of a branch sequence, and adjust the
17308 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17309 worst-case length is computed, with UPDATE being used to indicate
17310 whether an unconditional (-1), branch-likely (+1) or regular (0)
17311 branch is to be computed. */
17313 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17315 bfd_boolean toofar;
17319 && S_IS_DEFINED (fragp->fr_symbol)
17320 && !S_IS_WEAK (fragp->fr_symbol)
17321 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17326 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17328 addr = fragp->fr_address + fragp->fr_fix + 4;
17332 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17335 /* If the symbol is not defined or it's in a different segment,
17336 we emit the long sequence. */
17339 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17341 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17342 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17343 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17344 RELAX_BRANCH_LINK (fragp->fr_subtype),
17350 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17353 if (mips_pic != NO_PIC)
17355 /* Additional space for PIC loading of target address. */
17357 if (mips_opts.isa == ISA_MIPS1)
17358 /* Additional space for $at-stabilizing nop. */
17362 /* If branch is conditional. */
17363 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17370 /* Get a FRAG's branch instruction delay slot size, either from the
17371 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17372 or SHORT_INSN_SIZE otherwise. */
17375 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17377 char *buf = fragp->fr_literal + fragp->fr_fix;
17380 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17382 return short_insn_size;
17385 /* Compute the length of a branch sequence, and adjust the
17386 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17387 worst-case length is computed, with UPDATE being used to indicate
17388 whether an unconditional (-1), or regular (0) branch is to be
17392 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17394 bfd_boolean insn32 = TRUE;
17395 bfd_boolean nods = TRUE;
17396 bfd_boolean al = TRUE;
17397 int short_insn_size;
17398 bfd_boolean toofar;
17403 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17404 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17405 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17407 short_insn_size = insn32 ? 4 : 2;
17410 && S_IS_DEFINED (fragp->fr_symbol)
17411 && !S_IS_WEAK (fragp->fr_symbol)
17412 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17417 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17418 /* Ignore the low bit in the target, since it will be set
17419 for a text label. */
17420 if ((val & 1) != 0)
17423 addr = fragp->fr_address + fragp->fr_fix + 4;
17427 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17430 /* If the symbol is not defined or it's in a different segment,
17431 we emit the long sequence. */
17434 if (fragp && update
17435 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17436 fragp->fr_subtype = (toofar
17437 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17438 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17443 bfd_boolean compact_known = fragp != NULL;
17444 bfd_boolean compact = FALSE;
17445 bfd_boolean uncond;
17449 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17450 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17453 uncond = update < 0;
17455 /* If label is out of range, we turn branch <br>:
17457 <br> label # 4 bytes
17464 # compact && (!PIC || insn32)
17467 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17468 length += short_insn_size;
17470 /* If assembling PIC code, we further turn:
17476 lw/ld at, %got(label)(gp) # 4 bytes
17477 d/addiu at, %lo(label) # 4 bytes
17478 jr/c at # 2/4 bytes
17480 if (mips_pic != NO_PIC)
17481 length += 4 + short_insn_size;
17483 /* Add an extra nop if the jump has no compact form and we need
17484 to fill the delay slot. */
17485 if ((mips_pic == NO_PIC || al) && nods)
17487 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17488 : short_insn_size);
17490 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17492 <brneg> 0f # 4 bytes
17493 nop # 2/4 bytes if !compact
17496 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17500 /* Add an extra nop to fill the delay slot. */
17501 gas_assert (fragp);
17502 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17508 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17509 bit accordingly. */
17512 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17514 bfd_boolean toofar;
17517 && S_IS_DEFINED (fragp->fr_symbol)
17518 && !S_IS_WEAK (fragp->fr_symbol)
17519 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17525 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17526 /* Ignore the low bit in the target, since it will be set
17527 for a text label. */
17528 if ((val & 1) != 0)
17531 /* Assume this is a 2-byte branch. */
17532 addr = fragp->fr_address + fragp->fr_fix + 2;
17534 /* We try to avoid the infinite loop by not adding 2 more bytes for
17539 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17541 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17542 else if (type == 'E')
17543 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17548 /* If the symbol is not defined or it's in a different segment,
17549 we emit a normal 32-bit branch. */
17552 if (fragp && update
17553 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17555 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17556 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17564 /* Estimate the size of a frag before relaxing. Unless this is the
17565 mips16, we are not really relaxing here, and the final size is
17566 encoded in the subtype information. For the mips16, we have to
17567 decide whether we are using an extended opcode or not. */
17570 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17574 if (RELAX_BRANCH_P (fragp->fr_subtype))
17577 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17579 return fragp->fr_var;
17582 if (RELAX_MIPS16_P (fragp->fr_subtype))
17583 /* We don't want to modify the EXTENDED bit here; it might get us
17584 into infinite loops. We change it only in mips_relax_frag(). */
17585 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17587 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17591 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17592 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17593 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17594 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17595 fragp->fr_var = length;
17600 if (mips_pic == NO_PIC)
17601 change = nopic_need_relax (fragp->fr_symbol, 0);
17602 else if (mips_pic == SVR4_PIC)
17603 change = pic_need_relax (fragp->fr_symbol);
17604 else if (mips_pic == VXWORKS_PIC)
17605 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17612 fragp->fr_subtype |= RELAX_USE_SECOND;
17613 return -RELAX_FIRST (fragp->fr_subtype);
17616 return -RELAX_SECOND (fragp->fr_subtype);
17619 /* This is called to see whether a reloc against a defined symbol
17620 should be converted into a reloc against a section. */
17623 mips_fix_adjustable (fixS *fixp)
17625 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17626 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17629 if (fixp->fx_addsy == NULL)
17632 /* Allow relocs used for EH tables. */
17633 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17636 /* If symbol SYM is in a mergeable section, relocations of the form
17637 SYM + 0 can usually be made section-relative. The mergeable data
17638 is then identified by the section offset rather than by the symbol.
17640 However, if we're generating REL LO16 relocations, the offset is split
17641 between the LO16 and partnering high part relocation. The linker will
17642 need to recalculate the complete offset in order to correctly identify
17645 The linker has traditionally not looked for the partnering high part
17646 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17647 placed anywhere. Rather than break backwards compatibility by changing
17648 this, it seems better not to force the issue, and instead keep the
17649 original symbol. This will work with either linker behavior. */
17650 if ((lo16_reloc_p (fixp->fx_r_type)
17651 || reloc_needs_lo_p (fixp->fx_r_type))
17652 && HAVE_IN_PLACE_ADDENDS
17653 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17656 /* There is no place to store an in-place offset for JALR relocations. */
17657 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17660 /* Likewise an in-range offset of limited PC-relative relocations may
17661 overflow the in-place relocatable field if recalculated against the
17662 start address of the symbol's containing section.
17664 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17665 section relative to allow linker relaxations to be performed later on. */
17666 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17667 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17670 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17671 to a floating-point stub. The same is true for non-R_MIPS16_26
17672 relocations against MIPS16 functions; in this case, the stub becomes
17673 the function's canonical address.
17675 Floating-point stubs are stored in unique .mips16.call.* or
17676 .mips16.fn.* sections. If a stub T for function F is in section S,
17677 the first relocation in section S must be against F; this is how the
17678 linker determines the target function. All relocations that might
17679 resolve to T must also be against F. We therefore have the following
17680 restrictions, which are given in an intentionally-redundant way:
17682 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17685 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17686 if that stub might be used.
17688 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17691 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17692 that stub might be used.
17694 There is a further restriction:
17696 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17697 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17698 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17699 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17700 against MIPS16 or microMIPS symbols because we need to keep the
17701 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17702 detection and JAL or BAL to JALX instruction conversion in the
17705 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17706 against a MIPS16 symbol. We deal with (5) by additionally leaving
17707 alone any jump and branch relocations against a microMIPS symbol.
17709 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17710 relocation against some symbol R, no relocation against R may be
17711 reduced. (Note that this deals with (2) as well as (1) because
17712 relocations against global symbols will never be reduced on ELF
17713 targets.) This approach is a little simpler than trying to detect
17714 stub sections, and gives the "all or nothing" per-symbol consistency
17715 that we have for MIPS16 symbols. */
17716 if (fixp->fx_subsy == NULL
17717 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17718 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17719 && (jmp_reloc_p (fixp->fx_r_type)
17720 || b_reloc_p (fixp->fx_r_type)))
17721 || *symbol_get_tc (fixp->fx_addsy)))
17727 /* Translate internal representation of relocation info to BFD target
17731 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17733 static arelent *retval[4];
17735 bfd_reloc_code_real_type code;
17737 memset (retval, 0, sizeof(retval));
17738 reloc = retval[0] = XCNEW (arelent);
17739 reloc->sym_ptr_ptr = XNEW (asymbol *);
17740 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17741 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17743 if (fixp->fx_pcrel)
17745 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17746 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17747 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17748 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17749 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17750 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17751 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17752 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17753 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17754 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17755 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17756 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17758 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17759 Relocations want only the symbol offset. */
17760 switch (fixp->fx_r_type)
17762 case BFD_RELOC_MIPS_18_PCREL_S3:
17763 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17766 reloc->addend = fixp->fx_addnumber + reloc->address;
17770 else if (HAVE_IN_PLACE_ADDENDS
17771 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17772 && (read_compressed_insn (fixp->fx_frag->fr_literal
17773 + fixp->fx_where, 4) >> 26) == 0x3c)
17775 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17776 addend accordingly. */
17777 reloc->addend = fixp->fx_addnumber >> 1;
17780 reloc->addend = fixp->fx_addnumber;
17782 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17783 entry to be used in the relocation's section offset. */
17784 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17786 reloc->address = reloc->addend;
17790 code = fixp->fx_r_type;
17792 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17793 if (reloc->howto == NULL)
17795 as_bad_where (fixp->fx_file, fixp->fx_line,
17796 _("cannot represent %s relocation in this object file"
17798 bfd_get_reloc_code_name (code));
17805 /* Relax a machine dependent frag. This returns the amount by which
17806 the current size of the frag should change. */
17809 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17811 if (RELAX_BRANCH_P (fragp->fr_subtype))
17813 offsetT old_var = fragp->fr_var;
17815 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17817 return fragp->fr_var - old_var;
17820 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17822 offsetT old_var = fragp->fr_var;
17823 offsetT new_var = 4;
17825 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17826 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17827 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17828 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17829 fragp->fr_var = new_var;
17831 return new_var - old_var;
17834 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17837 if (mips16_extended_frag (fragp, sec, stretch))
17839 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17841 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17846 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17848 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17855 /* Convert a machine dependent frag. */
17858 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17860 if (RELAX_BRANCH_P (fragp->fr_subtype))
17863 unsigned long insn;
17867 buf = fragp->fr_literal + fragp->fr_fix;
17868 insn = read_insn (buf);
17870 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17872 /* We generate a fixup instead of applying it right now
17873 because, if there are linker relaxations, we're going to
17874 need the relocations. */
17875 exp.X_op = O_symbol;
17876 exp.X_add_symbol = fragp->fr_symbol;
17877 exp.X_add_number = fragp->fr_offset;
17879 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17880 BFD_RELOC_16_PCREL_S2);
17881 fixp->fx_file = fragp->fr_file;
17882 fixp->fx_line = fragp->fr_line;
17884 buf = write_insn (buf, insn);
17890 as_warn_where (fragp->fr_file, fragp->fr_line,
17891 _("relaxed out-of-range branch into a jump"));
17893 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17896 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17898 /* Reverse the branch. */
17899 switch ((insn >> 28) & 0xf)
17902 if ((insn & 0xff000000) == 0x47000000
17903 || (insn & 0xff600000) == 0x45600000)
17905 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17906 reversed by tweaking bit 23. */
17907 insn ^= 0x00800000;
17911 /* bc[0-3][tf]l? instructions can have the condition
17912 reversed by tweaking a single TF bit, and their
17913 opcodes all have 0x4???????. */
17914 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17915 insn ^= 0x00010000;
17920 /* bltz 0x04000000 bgez 0x04010000
17921 bltzal 0x04100000 bgezal 0x04110000 */
17922 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17923 insn ^= 0x00010000;
17927 /* beq 0x10000000 bne 0x14000000
17928 blez 0x18000000 bgtz 0x1c000000 */
17929 insn ^= 0x04000000;
17937 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17939 /* Clear the and-link bit. */
17940 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17942 /* bltzal 0x04100000 bgezal 0x04110000
17943 bltzall 0x04120000 bgezall 0x04130000 */
17944 insn &= ~0x00100000;
17947 /* Branch over the branch (if the branch was likely) or the
17948 full jump (not likely case). Compute the offset from the
17949 current instruction to branch to. */
17950 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17954 /* How many bytes in instructions we've already emitted? */
17955 i = buf - fragp->fr_literal - fragp->fr_fix;
17956 /* How many bytes in instructions from here to the end? */
17957 i = fragp->fr_var - i;
17959 /* Convert to instruction count. */
17961 /* Branch counts from the next instruction. */
17964 /* Branch over the jump. */
17965 buf = write_insn (buf, insn);
17968 buf = write_insn (buf, 0);
17970 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17972 /* beql $0, $0, 2f */
17974 /* Compute the PC offset from the current instruction to
17975 the end of the variable frag. */
17976 /* How many bytes in instructions we've already emitted? */
17977 i = buf - fragp->fr_literal - fragp->fr_fix;
17978 /* How many bytes in instructions from here to the end? */
17979 i = fragp->fr_var - i;
17980 /* Convert to instruction count. */
17982 /* Don't decrement i, because we want to branch over the
17986 buf = write_insn (buf, insn);
17987 buf = write_insn (buf, 0);
17991 if (mips_pic == NO_PIC)
17994 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17995 ? 0x0c000000 : 0x08000000);
17996 exp.X_op = O_symbol;
17997 exp.X_add_symbol = fragp->fr_symbol;
17998 exp.X_add_number = fragp->fr_offset;
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_JMP);
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18005 buf = write_insn (buf, insn);
18009 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18011 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18012 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18013 insn |= at << OP_SH_RT;
18014 exp.X_op = O_symbol;
18015 exp.X_add_symbol = fragp->fr_symbol;
18016 exp.X_add_number = fragp->fr_offset;
18018 if (fragp->fr_offset)
18020 exp.X_add_symbol = make_expr_symbol (&exp);
18021 exp.X_add_number = 0;
18024 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18025 FALSE, BFD_RELOC_MIPS_GOT16);
18026 fixp->fx_file = fragp->fr_file;
18027 fixp->fx_line = fragp->fr_line;
18029 buf = write_insn (buf, insn);
18031 if (mips_opts.isa == ISA_MIPS1)
18033 buf = write_insn (buf, 0);
18035 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18036 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18037 insn |= at << OP_SH_RS | at << OP_SH_RT;
18039 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18040 FALSE, BFD_RELOC_LO16);
18041 fixp->fx_file = fragp->fr_file;
18042 fixp->fx_line = fragp->fr_line;
18044 buf = write_insn (buf, insn);
18047 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18051 insn |= at << OP_SH_RS;
18053 buf = write_insn (buf, insn);
18057 fragp->fr_fix += fragp->fr_var;
18058 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18062 /* Relax microMIPS branches. */
18063 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18065 char *buf = fragp->fr_literal + fragp->fr_fix;
18066 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18067 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18068 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18069 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18070 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18071 bfd_boolean short_ds;
18072 unsigned long insn;
18076 exp.X_op = O_symbol;
18077 exp.X_add_symbol = fragp->fr_symbol;
18078 exp.X_add_number = fragp->fr_offset;
18080 fragp->fr_fix += fragp->fr_var;
18082 /* Handle 16-bit branches that fit or are forced to fit. */
18083 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18085 /* We generate a fixup instead of applying it right now,
18086 because if there is linker relaxation, we're going to
18087 need the relocations. */
18089 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18090 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18091 else if (type == 'E')
18092 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18093 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18097 fixp->fx_file = fragp->fr_file;
18098 fixp->fx_line = fragp->fr_line;
18100 /* These relocations can have an addend that won't fit in
18102 fixp->fx_no_overflow = 1;
18107 /* Handle 32-bit branches that fit or are forced to fit. */
18108 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18109 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18111 /* We generate a fixup instead of applying it right now,
18112 because if there is linker relaxation, we're going to
18113 need the relocations. */
18114 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18115 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18116 fixp->fx_file = fragp->fr_file;
18117 fixp->fx_line = fragp->fr_line;
18121 insn = read_compressed_insn (buf, 4);
18126 /* Check the short-delay-slot bit. */
18127 if (!al || (insn & 0x02000000) != 0)
18128 buf = write_compressed_insn (buf, 0x0c00, 2);
18130 buf = write_compressed_insn (buf, 0x00000000, 4);
18133 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18138 /* Relax 16-bit branches to 32-bit branches. */
18141 insn = read_compressed_insn (buf, 2);
18143 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18144 insn = 0x94000000; /* beq */
18145 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18147 unsigned long regno;
18149 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18150 regno = micromips_to_32_reg_d_map [regno];
18151 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18152 insn |= regno << MICROMIPSOP_SH_RS;
18157 /* Nothing else to do, just write it out. */
18158 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18159 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18161 buf = write_compressed_insn (buf, insn, 4);
18163 buf = write_compressed_insn (buf, 0x0c00, 2);
18164 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18169 insn = read_compressed_insn (buf, 4);
18171 /* Relax 32-bit branches to a sequence of instructions. */
18172 as_warn_where (fragp->fr_file, fragp->fr_line,
18173 _("relaxed out-of-range branch into a jump"));
18175 /* Set the short-delay-slot bit. */
18176 short_ds = !al || (insn & 0x02000000) != 0;
18178 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18182 /* Reverse the branch. */
18183 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18184 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18185 insn ^= 0x20000000;
18186 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18187 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18188 || (insn & 0xffe00000) == 0x40800000 /* blez */
18189 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18190 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18191 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18192 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18193 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18194 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18195 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18196 insn ^= 0x00400000;
18197 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18198 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18199 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18200 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18201 insn ^= 0x00200000;
18202 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18204 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18206 insn ^= 0x00800000;
18212 /* Clear the and-link and short-delay-slot bits. */
18213 gas_assert ((insn & 0xfda00000) == 0x40200000);
18215 /* bltzal 0x40200000 bgezal 0x40600000 */
18216 /* bltzals 0x42200000 bgezals 0x42600000 */
18217 insn &= ~0x02200000;
18220 /* Make a label at the end for use with the branch. */
18221 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18222 micromips_label_inc ();
18223 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18226 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18227 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18228 fixp->fx_file = fragp->fr_file;
18229 fixp->fx_line = fragp->fr_line;
18231 /* Branch over the jump. */
18232 buf = write_compressed_insn (buf, insn, 4);
18238 buf = write_compressed_insn (buf, 0x00000000, 4);
18240 buf = write_compressed_insn (buf, 0x0c00, 2);
18244 if (mips_pic == NO_PIC)
18246 unsigned long jal = (short_ds || nods
18247 ? 0x74000000 : 0xf4000000); /* jal/s */
18249 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18250 insn = al ? jal : 0xd4000000;
18252 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18253 BFD_RELOC_MICROMIPS_JMP);
18254 fixp->fx_file = fragp->fr_file;
18255 fixp->fx_line = fragp->fr_line;
18257 buf = write_compressed_insn (buf, insn, 4);
18259 if (compact || nods)
18263 buf = write_compressed_insn (buf, 0x00000000, 4);
18265 buf = write_compressed_insn (buf, 0x0c00, 2);
18270 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18272 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18273 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18274 insn |= at << MICROMIPSOP_SH_RT;
18276 if (exp.X_add_number)
18278 exp.X_add_symbol = make_expr_symbol (&exp);
18279 exp.X_add_number = 0;
18282 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18283 BFD_RELOC_MICROMIPS_GOT16);
18284 fixp->fx_file = fragp->fr_file;
18285 fixp->fx_line = fragp->fr_line;
18287 buf = write_compressed_insn (buf, insn, 4);
18289 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18290 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18291 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18293 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18294 BFD_RELOC_MICROMIPS_LO16);
18295 fixp->fx_file = fragp->fr_file;
18296 fixp->fx_line = fragp->fr_line;
18298 buf = write_compressed_insn (buf, insn, 4);
18303 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18304 insn |= at << MICROMIPSOP_SH_RS;
18306 buf = write_compressed_insn (buf, insn, 4);
18308 if (compact || nods)
18310 buf = write_compressed_insn (buf, 0x00000000, 4);
18314 /* jr/jrc/jalr/jalrs $at */
18315 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18316 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18318 insn = al ? jalr : jr;
18319 insn |= at << MICROMIPSOP_SH_MJ;
18321 buf = write_compressed_insn (buf, insn, 2);
18326 buf = write_compressed_insn (buf, 0x0c00, 2);
18328 buf = write_compressed_insn (buf, 0x00000000, 4);
18333 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18337 if (RELAX_MIPS16_P (fragp->fr_subtype))
18340 const struct mips_int_operand *operand;
18343 unsigned int user_length, length;
18344 bfd_boolean need_reloc;
18345 unsigned long insn;
18349 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18350 operand = mips16_immed_operand (type, FALSE);
18352 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18353 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18355 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18356 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18357 || (operand->root.type == OP_PCREL
18359 : !bfd_is_abs_section (symsec)));
18361 if (operand->root.type == OP_PCREL)
18363 const struct mips_pcrel_operand *pcrel_op;
18366 pcrel_op = (const struct mips_pcrel_operand *) operand;
18367 addr = fragp->fr_address + fragp->fr_fix;
18369 /* The rules for the base address of a PC relative reloc are
18370 complicated; see mips16_extended_frag. */
18371 if (pcrel_op->include_isa_bit)
18375 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18376 as_bad_where (fragp->fr_file, fragp->fr_line,
18377 _("branch to a symbol in another ISA mode"));
18378 else if ((fragp->fr_offset & 0x1) != 0)
18379 as_bad_where (fragp->fr_file, fragp->fr_line,
18380 _("branch to misaligned address (0x%lx)"),
18386 /* Ignore the low bit in the target, since it will be
18387 set for a text label. */
18390 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18392 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18395 addr &= -(1 << pcrel_op->align_log2);
18398 /* Make sure the section winds up with the alignment we have
18400 if (operand->shift > 0)
18401 record_alignment (asec, operand->shift);
18405 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18406 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18407 as_warn_where (fragp->fr_file, fragp->fr_line,
18408 _("extended instruction in delay slot"));
18410 buf = fragp->fr_literal + fragp->fr_fix;
18412 insn = read_compressed_insn (buf, 2);
18414 insn |= MIPS16_EXTEND;
18416 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18418 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18425 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18433 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18436 as_bad_where (fragp->fr_file, fragp->fr_line,
18437 _("unsupported relocation"));
18440 if (reloc == BFD_RELOC_NONE)
18444 exp.X_op = O_symbol;
18445 exp.X_add_symbol = fragp->fr_symbol;
18446 exp.X_add_number = fragp->fr_offset;
18448 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18451 fixp->fx_file = fragp->fr_file;
18452 fixp->fx_line = fragp->fr_line;
18455 as_bad_where (fragp->fr_file, fragp->fr_line,
18456 _("invalid unextended operand value"));
18459 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18460 BFD_RELOC_UNUSED, val, user_length, &insn);
18462 length = (ext ? 4 : 2);
18463 gas_assert (mips16_opcode_length (insn) == length);
18464 write_compressed_insn (buf, insn, length);
18465 fragp->fr_fix += length;
18469 relax_substateT subtype = fragp->fr_subtype;
18470 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18471 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18475 first = RELAX_FIRST (subtype);
18476 second = RELAX_SECOND (subtype);
18477 fixp = (fixS *) fragp->fr_opcode;
18479 /* If the delay slot chosen does not match the size of the instruction,
18480 then emit a warning. */
18481 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18482 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18487 s = subtype & (RELAX_DELAY_SLOT_16BIT
18488 | RELAX_DELAY_SLOT_SIZE_FIRST
18489 | RELAX_DELAY_SLOT_SIZE_SECOND);
18490 msg = macro_warning (s);
18492 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18496 /* Possibly emit a warning if we've chosen the longer option. */
18497 if (use_second == second_longer)
18503 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18504 msg = macro_warning (s);
18506 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18510 /* Go through all the fixups for the first sequence. Disable them
18511 (by marking them as done) if we're going to use the second
18512 sequence instead. */
18514 && fixp->fx_frag == fragp
18515 && fixp->fx_where < fragp->fr_fix - second)
18517 if (subtype & RELAX_USE_SECOND)
18519 fixp = fixp->fx_next;
18522 /* Go through the fixups for the second sequence. Disable them if
18523 we're going to use the first sequence, otherwise adjust their
18524 addresses to account for the relaxation. */
18525 while (fixp && fixp->fx_frag == fragp)
18527 if (subtype & RELAX_USE_SECOND)
18528 fixp->fx_where -= first;
18531 fixp = fixp->fx_next;
18534 /* Now modify the frag contents. */
18535 if (subtype & RELAX_USE_SECOND)
18539 start = fragp->fr_literal + fragp->fr_fix - first - second;
18540 memmove (start, start + first, second);
18541 fragp->fr_fix -= first;
18544 fragp->fr_fix -= second;
18548 /* This function is called after the relocs have been generated.
18549 We've been storing mips16 text labels as odd. Here we convert them
18550 back to even for the convenience of the debugger. */
18553 mips_frob_file_after_relocs (void)
18556 unsigned int count, i;
18558 syms = bfd_get_outsymbols (stdoutput);
18559 count = bfd_get_symcount (stdoutput);
18560 for (i = 0; i < count; i++, syms++)
18561 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18562 && ((*syms)->value & 1) != 0)
18564 (*syms)->value &= ~1;
18565 /* If the symbol has an odd size, it was probably computed
18566 incorrectly, so adjust that as well. */
18567 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18568 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18572 /* This function is called whenever a label is defined, including fake
18573 labels instantiated off the dot special symbol. It is used when
18574 handling branch delays; if a branch has a label, we assume we cannot
18575 move it. This also bumps the value of the symbol by 1 in compressed
18579 mips_record_label (symbolS *sym)
18581 segment_info_type *si = seg_info (now_seg);
18582 struct insn_label_list *l;
18584 if (free_insn_labels == NULL)
18585 l = XNEW (struct insn_label_list);
18588 l = free_insn_labels;
18589 free_insn_labels = l->next;
18593 l->next = si->label_list;
18594 si->label_list = l;
18597 /* This function is called as tc_frob_label() whenever a label is defined
18598 and adds a DWARF-2 record we only want for true labels. */
18601 mips_define_label (symbolS *sym)
18603 mips_record_label (sym);
18604 dwarf2_emit_label (sym);
18607 /* This function is called by tc_new_dot_label whenever a new dot symbol
18611 mips_add_dot_label (symbolS *sym)
18613 mips_record_label (sym);
18614 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18615 mips_compressed_mark_label (sym);
18618 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18619 static unsigned int
18620 mips_convert_ase_flags (int ase)
18622 unsigned int ext_ases = 0;
18625 ext_ases |= AFL_ASE_DSP;
18626 if (ase & ASE_DSPR2)
18627 ext_ases |= AFL_ASE_DSPR2;
18628 if (ase & ASE_DSPR3)
18629 ext_ases |= AFL_ASE_DSPR3;
18631 ext_ases |= AFL_ASE_EVA;
18633 ext_ases |= AFL_ASE_MCU;
18634 if (ase & ASE_MDMX)
18635 ext_ases |= AFL_ASE_MDMX;
18636 if (ase & ASE_MIPS3D)
18637 ext_ases |= AFL_ASE_MIPS3D;
18639 ext_ases |= AFL_ASE_MT;
18640 if (ase & ASE_SMARTMIPS)
18641 ext_ases |= AFL_ASE_SMARTMIPS;
18642 if (ase & ASE_VIRT)
18643 ext_ases |= AFL_ASE_VIRT;
18645 ext_ases |= AFL_ASE_MSA;
18647 ext_ases |= AFL_ASE_XPA;
18651 /* Some special processing for a MIPS ELF file. */
18654 mips_elf_final_processing (void)
18657 Elf_Internal_ABIFlags_v0 flags;
18661 switch (file_mips_opts.isa)
18664 flags.isa_level = 1;
18667 flags.isa_level = 2;
18670 flags.isa_level = 3;
18673 flags.isa_level = 4;
18676 flags.isa_level = 5;
18679 flags.isa_level = 32;
18683 flags.isa_level = 32;
18687 flags.isa_level = 32;
18691 flags.isa_level = 32;
18695 flags.isa_level = 32;
18699 flags.isa_level = 64;
18703 flags.isa_level = 64;
18707 flags.isa_level = 64;
18711 flags.isa_level = 64;
18715 flags.isa_level = 64;
18720 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18721 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18722 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18723 : (file_mips_opts.fp == 64) ? AFL_REG_64
18725 flags.cpr2_size = AFL_REG_NONE;
18726 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18727 Tag_GNU_MIPS_ABI_FP);
18728 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18729 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18730 if (file_ase_mips16)
18731 flags.ases |= AFL_ASE_MIPS16;
18732 if (file_ase_micromips)
18733 flags.ases |= AFL_ASE_MICROMIPS;
18735 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18736 || file_mips_opts.fp == 64)
18737 && file_mips_opts.oddspreg)
18738 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18741 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18742 ((Elf_External_ABIFlags_v0 *)
18745 /* Write out the register information. */
18746 if (mips_abi != N64_ABI)
18750 s.ri_gprmask = mips_gprmask;
18751 s.ri_cprmask[0] = mips_cprmask[0];
18752 s.ri_cprmask[1] = mips_cprmask[1];
18753 s.ri_cprmask[2] = mips_cprmask[2];
18754 s.ri_cprmask[3] = mips_cprmask[3];
18755 /* The gp_value field is set by the MIPS ELF backend. */
18757 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18758 ((Elf32_External_RegInfo *)
18759 mips_regmask_frag));
18763 Elf64_Internal_RegInfo s;
18765 s.ri_gprmask = mips_gprmask;
18767 s.ri_cprmask[0] = mips_cprmask[0];
18768 s.ri_cprmask[1] = mips_cprmask[1];
18769 s.ri_cprmask[2] = mips_cprmask[2];
18770 s.ri_cprmask[3] = mips_cprmask[3];
18771 /* The gp_value field is set by the MIPS ELF backend. */
18773 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18774 ((Elf64_External_RegInfo *)
18775 mips_regmask_frag));
18778 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18779 sort of BFD interface for this. */
18780 if (mips_any_noreorder)
18781 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18782 if (mips_pic != NO_PIC)
18784 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18785 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18788 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18790 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18791 defined at present; this might need to change in future. */
18792 if (file_ase_mips16)
18793 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18794 if (file_ase_micromips)
18795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18796 if (file_mips_opts.ase & ASE_MDMX)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18799 /* Set the MIPS ELF ABI flags. */
18800 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18801 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18802 else if (mips_abi == O64_ABI)
18803 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18804 else if (mips_abi == EABI_ABI)
18806 if (file_mips_opts.gp == 64)
18807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18809 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18811 else if (mips_abi == N32_ABI)
18812 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18814 /* Nothing to do for N64_ABI. */
18816 if (mips_32bitmode)
18817 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18819 if (mips_nan2008 == 1)
18820 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18822 /* 32 bit code with 64 bit FP registers. */
18823 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18824 Tag_GNU_MIPS_ABI_FP);
18825 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18826 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18829 typedef struct proc {
18831 symbolS *func_end_sym;
18832 unsigned long reg_mask;
18833 unsigned long reg_offset;
18834 unsigned long fpreg_mask;
18835 unsigned long fpreg_offset;
18836 unsigned long frame_offset;
18837 unsigned long frame_reg;
18838 unsigned long pc_reg;
18841 static procS cur_proc;
18842 static procS *cur_proc_ptr;
18843 static int numprocs;
18845 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18846 as "2", and a normal nop as "0". */
18848 #define NOP_OPCODE_MIPS 0
18849 #define NOP_OPCODE_MIPS16 1
18850 #define NOP_OPCODE_MICROMIPS 2
18853 mips_nop_opcode (void)
18855 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18856 return NOP_OPCODE_MICROMIPS;
18857 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18858 return NOP_OPCODE_MIPS16;
18860 return NOP_OPCODE_MIPS;
18863 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18864 32-bit microMIPS NOPs here (if applicable). */
18867 mips_handle_align (fragS *fragp)
18871 int bytes, size, excess;
18874 if (fragp->fr_type != rs_align_code)
18877 p = fragp->fr_literal + fragp->fr_fix;
18879 switch (nop_opcode)
18881 case NOP_OPCODE_MICROMIPS:
18882 opcode = micromips_nop32_insn.insn_opcode;
18885 case NOP_OPCODE_MIPS16:
18886 opcode = mips16_nop_insn.insn_opcode;
18889 case NOP_OPCODE_MIPS:
18891 opcode = nop_insn.insn_opcode;
18896 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18897 excess = bytes % size;
18899 /* Handle the leading part if we're not inserting a whole number of
18900 instructions, and make it the end of the fixed part of the frag.
18901 Try to fit in a short microMIPS NOP if applicable and possible,
18902 and use zeroes otherwise. */
18903 gas_assert (excess < 4);
18904 fragp->fr_fix += excess;
18909 /* Fall through. */
18911 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18913 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18917 /* Fall through. */
18920 /* Fall through. */
18925 md_number_to_chars (p, opcode, size);
18926 fragp->fr_var = size;
18935 if (*input_line_pointer == '-')
18937 ++input_line_pointer;
18940 if (!ISDIGIT (*input_line_pointer))
18941 as_bad (_("expected simple number"));
18942 if (input_line_pointer[0] == '0')
18944 if (input_line_pointer[1] == 'x')
18946 input_line_pointer += 2;
18947 while (ISXDIGIT (*input_line_pointer))
18950 val |= hex_value (*input_line_pointer++);
18952 return negative ? -val : val;
18956 ++input_line_pointer;
18957 while (ISDIGIT (*input_line_pointer))
18960 val |= *input_line_pointer++ - '0';
18962 return negative ? -val : val;
18965 if (!ISDIGIT (*input_line_pointer))
18967 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18968 *input_line_pointer, *input_line_pointer);
18969 as_warn (_("invalid number"));
18972 while (ISDIGIT (*input_line_pointer))
18975 val += *input_line_pointer++ - '0';
18977 return negative ? -val : val;
18980 /* The .file directive; just like the usual .file directive, but there
18981 is an initial number which is the ECOFF file index. In the non-ECOFF
18982 case .file implies DWARF-2. */
18985 s_mips_file (int x ATTRIBUTE_UNUSED)
18987 static int first_file_directive = 0;
18989 if (ECOFF_DEBUGGING)
18998 filename = dwarf2_directive_file (0);
19000 /* Versions of GCC up to 3.1 start files with a ".file"
19001 directive even for stabs output. Make sure that this
19002 ".file" is handled. Note that you need a version of GCC
19003 after 3.1 in order to support DWARF-2 on MIPS. */
19004 if (filename != NULL && ! first_file_directive)
19006 (void) new_logical_line (filename, -1);
19007 s_app_file_string (filename, 0);
19009 first_file_directive = 1;
19013 /* The .loc directive, implying DWARF-2. */
19016 s_mips_loc (int x ATTRIBUTE_UNUSED)
19018 if (!ECOFF_DEBUGGING)
19019 dwarf2_directive_loc (0);
19022 /* The .end directive. */
19025 s_mips_end (int x ATTRIBUTE_UNUSED)
19029 /* Following functions need their own .frame and .cprestore directives. */
19030 mips_frame_reg_valid = 0;
19031 mips_cprestore_valid = 0;
19033 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19036 demand_empty_rest_of_line ();
19041 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19042 as_warn (_(".end not in text section"));
19046 as_warn (_(".end directive without a preceding .ent directive"));
19047 demand_empty_rest_of_line ();
19053 gas_assert (S_GET_NAME (p));
19054 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19055 as_warn (_(".end symbol does not match .ent symbol"));
19057 if (debug_type == DEBUG_STABS)
19058 stabs_generate_asm_endfunc (S_GET_NAME (p),
19062 as_warn (_(".end directive missing or unknown symbol"));
19064 /* Create an expression to calculate the size of the function. */
19065 if (p && cur_proc_ptr)
19067 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19068 expressionS *exp = XNEW (expressionS);
19071 exp->X_op = O_subtract;
19072 exp->X_add_symbol = symbol_temp_new_now ();
19073 exp->X_op_symbol = p;
19074 exp->X_add_number = 0;
19076 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19079 #ifdef md_flush_pending_output
19080 md_flush_pending_output ();
19083 /* Generate a .pdr section. */
19084 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19086 segT saved_seg = now_seg;
19087 subsegT saved_subseg = now_subseg;
19091 gas_assert (pdr_seg);
19092 subseg_set (pdr_seg, 0);
19094 /* Write the symbol. */
19095 exp.X_op = O_symbol;
19096 exp.X_add_symbol = p;
19097 exp.X_add_number = 0;
19098 emit_expr (&exp, 4);
19100 fragp = frag_more (7 * 4);
19102 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19103 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19104 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19105 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19106 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19107 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19108 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19110 subseg_set (saved_seg, saved_subseg);
19113 cur_proc_ptr = NULL;
19116 /* The .aent and .ent directives. */
19119 s_mips_ent (int aent)
19123 symbolP = get_symbol ();
19124 if (*input_line_pointer == ',')
19125 ++input_line_pointer;
19126 SKIP_WHITESPACE ();
19127 if (ISDIGIT (*input_line_pointer)
19128 || *input_line_pointer == '-')
19131 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19132 as_warn (_(".ent or .aent not in text section"));
19134 if (!aent && cur_proc_ptr)
19135 as_warn (_("missing .end"));
19139 /* This function needs its own .frame and .cprestore directives. */
19140 mips_frame_reg_valid = 0;
19141 mips_cprestore_valid = 0;
19143 cur_proc_ptr = &cur_proc;
19144 memset (cur_proc_ptr, '\0', sizeof (procS));
19146 cur_proc_ptr->func_sym = symbolP;
19150 if (debug_type == DEBUG_STABS)
19151 stabs_generate_asm_func (S_GET_NAME (symbolP),
19152 S_GET_NAME (symbolP));
19155 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19157 demand_empty_rest_of_line ();
19160 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19161 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19162 s_mips_frame is used so that we can set the PDR information correctly.
19163 We can't use the ecoff routines because they make reference to the ecoff
19164 symbol table (in the mdebug section). */
19167 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19169 if (ECOFF_DEBUGGING)
19175 if (cur_proc_ptr == (procS *) NULL)
19177 as_warn (_(".frame outside of .ent"));
19178 demand_empty_rest_of_line ();
19182 cur_proc_ptr->frame_reg = tc_get_register (1);
19184 SKIP_WHITESPACE ();
19185 if (*input_line_pointer++ != ','
19186 || get_absolute_expression_and_terminator (&val) != ',')
19188 as_warn (_("bad .frame directive"));
19189 --input_line_pointer;
19190 demand_empty_rest_of_line ();
19194 cur_proc_ptr->frame_offset = val;
19195 cur_proc_ptr->pc_reg = tc_get_register (0);
19197 demand_empty_rest_of_line ();
19201 /* The .fmask and .mask directives. If the mdebug section is present
19202 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19203 embedded targets, s_mips_mask is used so that we can set the PDR
19204 information correctly. We can't use the ecoff routines because they
19205 make reference to the ecoff symbol table (in the mdebug section). */
19208 s_mips_mask (int reg_type)
19210 if (ECOFF_DEBUGGING)
19211 s_ignore (reg_type);
19216 if (cur_proc_ptr == (procS *) NULL)
19218 as_warn (_(".mask/.fmask outside of .ent"));
19219 demand_empty_rest_of_line ();
19223 if (get_absolute_expression_and_terminator (&mask) != ',')
19225 as_warn (_("bad .mask/.fmask directive"));
19226 --input_line_pointer;
19227 demand_empty_rest_of_line ();
19231 off = get_absolute_expression ();
19233 if (reg_type == 'F')
19235 cur_proc_ptr->fpreg_mask = mask;
19236 cur_proc_ptr->fpreg_offset = off;
19240 cur_proc_ptr->reg_mask = mask;
19241 cur_proc_ptr->reg_offset = off;
19244 demand_empty_rest_of_line ();
19248 /* A table describing all the processors gas knows about. Names are
19249 matched in the order listed.
19251 To ease comparison, please keep this table in the same order as
19252 gcc's mips_cpu_info_table[]. */
19253 static const struct mips_cpu_info mips_cpu_info_table[] =
19255 /* Entries for generic ISAs */
19256 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19257 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19258 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19259 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19260 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19261 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19262 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19263 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19264 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19265 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19266 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19267 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19268 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19269 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19270 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19273 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19274 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19275 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19278 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19281 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19282 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19283 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19284 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19285 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19286 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19287 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19288 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19289 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19290 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19291 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19292 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19293 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19294 /* ST Microelectronics Loongson 2E and 2F cores */
19295 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19296 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19299 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19300 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19301 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19302 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19303 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19304 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19305 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19306 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19307 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19308 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19309 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19310 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19311 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19312 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19313 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19316 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19317 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19318 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19319 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19321 /* MIPS 32 Release 2 */
19322 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19323 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19326 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19327 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19330 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19331 ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19333 ISA_MIPS32R2, CPU_MIPS32R2 },
19334 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19335 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19338 /* Deprecated forms of the above. */
19339 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19340 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19342 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19345 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19346 /* Deprecated forms of the above. */
19347 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19349 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19350 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19353 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19354 /* Deprecated forms of the above. */
19355 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19356 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 /* 34Kn is a 34kc without DSP. */
19358 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19359 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19360 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19361 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19362 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19363 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19364 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19365 /* Deprecated forms of the above. */
19366 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19367 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19368 /* 1004K cores are multiprocessor versions of the 34K. */
19369 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19370 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19371 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19372 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19373 /* interaptiv is the new name for 1004kf */
19374 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19376 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19377 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19378 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19379 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19382 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19383 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19384 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19385 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19387 /* Broadcom SB-1 CPU core */
19388 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19389 /* Broadcom SB-1A CPU core */
19390 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19392 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19394 /* MIPS 64 Release 2 */
19396 /* Cavium Networks Octeon CPU core */
19397 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19398 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19399 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19400 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19403 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19406 XLP is mostly like XLR, with the prominent exception that it is
19407 MIPS64R2 rather than MIPS64. */
19408 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19410 /* MIPS 64 Release 6 */
19411 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19412 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19415 { NULL, 0, 0, 0, 0 }
19419 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19420 with a final "000" replaced by "k". Ignore case.
19422 Note: this function is shared between GCC and GAS. */
19425 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19427 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19428 given++, canonical++;
19430 return ((*given == 0 && *canonical == 0)
19431 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19435 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19436 CPU name. We've traditionally allowed a lot of variation here.
19438 Note: this function is shared between GCC and GAS. */
19441 mips_matching_cpu_name_p (const char *canonical, const char *given)
19443 /* First see if the name matches exactly, or with a final "000"
19444 turned into "k". */
19445 if (mips_strict_matching_cpu_name_p (canonical, given))
19448 /* If not, try comparing based on numerical designation alone.
19449 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19450 if (TOLOWER (*given) == 'r')
19452 if (!ISDIGIT (*given))
19455 /* Skip over some well-known prefixes in the canonical name,
19456 hoping to find a number there too. */
19457 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19459 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19461 else if (TOLOWER (canonical[0]) == 'r')
19464 return mips_strict_matching_cpu_name_p (canonical, given);
19468 /* Parse an option that takes the name of a processor as its argument.
19469 OPTION is the name of the option and CPU_STRING is the argument.
19470 Return the corresponding processor enumeration if the CPU_STRING is
19471 recognized, otherwise report an error and return null.
19473 A similar function exists in GCC. */
19475 static const struct mips_cpu_info *
19476 mips_parse_cpu (const char *option, const char *cpu_string)
19478 const struct mips_cpu_info *p;
19480 /* 'from-abi' selects the most compatible architecture for the given
19481 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19482 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19483 version. Look first at the -mgp options, if given, otherwise base
19484 the choice on MIPS_DEFAULT_64BIT.
19486 Treat NO_ABI like the EABIs. One reason to do this is that the
19487 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19488 architecture. This code picks MIPS I for 'mips' and MIPS III for
19489 'mips64', just as we did in the days before 'from-abi'. */
19490 if (strcasecmp (cpu_string, "from-abi") == 0)
19492 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19493 return mips_cpu_info_from_isa (ISA_MIPS1);
19495 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19496 return mips_cpu_info_from_isa (ISA_MIPS3);
19498 if (file_mips_opts.gp >= 0)
19499 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19500 ? ISA_MIPS1 : ISA_MIPS3);
19502 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19507 /* 'default' has traditionally been a no-op. Probably not very useful. */
19508 if (strcasecmp (cpu_string, "default") == 0)
19511 for (p = mips_cpu_info_table; p->name != 0; p++)
19512 if (mips_matching_cpu_name_p (p->name, cpu_string))
19515 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19519 /* Return the canonical processor information for ISA (a member of the
19520 ISA_MIPS* enumeration). */
19522 static const struct mips_cpu_info *
19523 mips_cpu_info_from_isa (int isa)
19527 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19528 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19529 && isa == mips_cpu_info_table[i].isa)
19530 return (&mips_cpu_info_table[i]);
19535 static const struct mips_cpu_info *
19536 mips_cpu_info_from_arch (int arch)
19540 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19541 if (arch == mips_cpu_info_table[i].cpu)
19542 return (&mips_cpu_info_table[i]);
19548 show (FILE *stream, const char *string, int *col_p, int *first_p)
19552 fprintf (stream, "%24s", "");
19557 fprintf (stream, ", ");
19561 if (*col_p + strlen (string) > 72)
19563 fprintf (stream, "\n%24s", "");
19567 fprintf (stream, "%s", string);
19568 *col_p += strlen (string);
19574 md_show_usage (FILE *stream)
19579 fprintf (stream, _("\
19581 -EB generate big endian output\n\
19582 -EL generate little endian output\n\
19583 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19584 -G NUM allow referencing objects up to NUM bytes\n\
19585 implicitly with the gp register [default 8]\n"));
19586 fprintf (stream, _("\
19587 -mips1 generate MIPS ISA I instructions\n\
19588 -mips2 generate MIPS ISA II instructions\n\
19589 -mips3 generate MIPS ISA III instructions\n\
19590 -mips4 generate MIPS ISA IV instructions\n\
19591 -mips5 generate MIPS ISA V instructions\n\
19592 -mips32 generate MIPS32 ISA instructions\n\
19593 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19594 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19595 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19596 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19597 -mips64 generate MIPS64 ISA instructions\n\
19598 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19599 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19600 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19601 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19602 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19606 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19607 show (stream, mips_cpu_info_table[i].name, &column, &first);
19608 show (stream, "from-abi", &column, &first);
19609 fputc ('\n', stream);
19611 fprintf (stream, _("\
19612 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19613 -no-mCPU don't generate code specific to CPU.\n\
19614 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19618 show (stream, "3900", &column, &first);
19619 show (stream, "4010", &column, &first);
19620 show (stream, "4100", &column, &first);
19621 show (stream, "4650", &column, &first);
19622 fputc ('\n', stream);
19624 fprintf (stream, _("\
19625 -mips16 generate mips16 instructions\n\
19626 -no-mips16 do not generate mips16 instructions\n"));
19627 fprintf (stream, _("\
19628 -mmicromips generate microMIPS instructions\n\
19629 -mno-micromips do not generate microMIPS instructions\n"));
19630 fprintf (stream, _("\
19631 -msmartmips generate smartmips instructions\n\
19632 -mno-smartmips do not generate smartmips instructions\n"));
19633 fprintf (stream, _("\
19634 -mdsp generate DSP instructions\n\
19635 -mno-dsp do not generate DSP instructions\n"));
19636 fprintf (stream, _("\
19637 -mdspr2 generate DSP R2 instructions\n\
19638 -mno-dspr2 do not generate DSP R2 instructions\n"));
19639 fprintf (stream, _("\
19640 -mdspr3 generate DSP R3 instructions\n\
19641 -mno-dspr3 do not generate DSP R3 instructions\n"));
19642 fprintf (stream, _("\
19643 -mmt generate MT instructions\n\
19644 -mno-mt do not generate MT instructions\n"));
19645 fprintf (stream, _("\
19646 -mmcu generate MCU instructions\n\
19647 -mno-mcu do not generate MCU instructions\n"));
19648 fprintf (stream, _("\
19649 -mmsa generate MSA instructions\n\
19650 -mno-msa do not generate MSA instructions\n"));
19651 fprintf (stream, _("\
19652 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19653 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19654 fprintf (stream, _("\
19655 -mvirt generate Virtualization instructions\n\
19656 -mno-virt do not generate Virtualization instructions\n"));
19657 fprintf (stream, _("\
19658 -minsn32 only generate 32-bit microMIPS instructions\n\
19659 -mno-insn32 generate all microMIPS instructions\n"));
19660 fprintf (stream, _("\
19661 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19662 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19663 -mfix-vr4120 work around certain VR4120 errata\n\
19664 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19665 -mfix-24k insert a nop after ERET and DERET instructions\n\
19666 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19667 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19668 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19669 -msym32 assume all symbols have 32-bit values\n\
19670 -O0 remove unneeded NOPs, do not swap branches\n\
19671 -O remove unneeded NOPs and swap branches\n\
19672 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19673 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19674 fprintf (stream, _("\
19675 -mhard-float allow floating-point instructions\n\
19676 -msoft-float do not allow floating-point instructions\n\
19677 -msingle-float only allow 32-bit floating-point operations\n\
19678 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19679 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19680 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19681 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19682 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
19683 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19687 show (stream, "legacy", &column, &first);
19688 show (stream, "2008", &column, &first);
19690 fputc ('\n', stream);
19692 fprintf (stream, _("\
19693 -KPIC, -call_shared generate SVR4 position independent code\n\
19694 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19695 -mvxworks-pic generate VxWorks position independent code\n\
19696 -non_shared do not generate code that can operate with DSOs\n\
19697 -xgot assume a 32 bit GOT\n\
19698 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19699 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19700 position dependent (non shared) code\n\
19701 -mabi=ABI create ABI conformant object file for:\n"));
19705 show (stream, "32", &column, &first);
19706 show (stream, "o64", &column, &first);
19707 show (stream, "n32", &column, &first);
19708 show (stream, "64", &column, &first);
19709 show (stream, "eabi", &column, &first);
19711 fputc ('\n', stream);
19713 fprintf (stream, _("\
19714 -32 create o32 ABI object file (default)\n\
19715 -n32 create n32 ABI object file\n\
19716 -64 create 64 ABI object file\n"));
19721 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19723 if (HAVE_64BIT_SYMBOLS)
19724 return dwarf2_format_64bit_irix;
19726 return dwarf2_format_32bit;
19731 mips_dwarf2_addr_size (void)
19733 if (HAVE_64BIT_OBJECTS)
19739 /* Standard calling conventions leave the CFA at SP on entry. */
19741 mips_cfi_frame_initial_instructions (void)
19743 cfi_add_CFA_def_cfa_register (SP);
19747 tc_mips_regname_to_dw2regnum (char *regname)
19749 unsigned int regnum = -1;
19752 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19758 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19759 Given a symbolic attribute NAME, return the proper integer value.
19760 Returns -1 if the attribute is not known. */
19763 mips_convert_symbolic_attribute (const char *name)
19765 static const struct
19770 attribute_table[] =
19772 #define T(tag) {#tag, tag}
19773 T (Tag_GNU_MIPS_ABI_FP),
19774 T (Tag_GNU_MIPS_ABI_MSA),
19782 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19783 if (streq (name, attribute_table[i].name))
19784 return attribute_table[i].tag;
19792 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19794 mips_emit_delays ();
19796 as_warn (_("missing .end at end of assembly"));
19798 /* Just in case no code was emitted, do the consistency check. */
19799 file_mips_check_options ();
19801 /* Set a floating-point ABI if the user did not. */
19802 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19804 /* Perform consistency checks on the floating-point ABI. */
19805 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19806 Tag_GNU_MIPS_ABI_FP);
19807 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19808 check_fpabi (fpabi);
19812 /* Soft-float gets precedence over single-float, the two options should
19813 not be used together so this should not matter. */
19814 if (file_mips_opts.soft_float == 1)
19815 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19816 /* Single-float gets precedence over all double_float cases. */
19817 else if (file_mips_opts.single_float == 1)
19818 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19821 switch (file_mips_opts.fp)
19824 if (file_mips_opts.gp == 32)
19825 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19828 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19831 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19832 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19833 else if (file_mips_opts.gp == 32)
19834 fpabi = Val_GNU_MIPS_ABI_FP_64;
19836 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19841 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19842 Tag_GNU_MIPS_ABI_FP, fpabi);
19846 /* Returns the relocation type required for a particular CFI encoding. */
19848 bfd_reloc_code_real_type
19849 mips_cfi_reloc_for_encoding (int encoding)
19851 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19852 return BFD_RELOC_32_PCREL;
19853 else return BFD_RELOC_NONE;