1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug = -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr = FALSE;
86 int mips_flag_pdr = TRUE;
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
99 #define PIC_CALL_REG 25
107 #define ILLEGAL_REG (32)
109 #define AT mips_opts.at
111 extern int target_big_endian;
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
116 /* Ways in which an instruction can be "appended" to the output. */
118 /* Just add it normally. */
121 /* Add it normally and then add a nop. */
124 /* Turn an instruction with a delay slot into a "compact" version. */
127 /* Insert the instruction before the last one. */
131 /* Information about an instruction, including its format, operands
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
142 unsigned long insn_opcode;
144 /* The frag that contains the instruction. */
147 /* The offset into FRAG of the first instruction byte. */
150 /* The relocs associated with the instruction, if any. */
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
165 /* True if this instruction is cleared from history by unconditional
167 unsigned int cleared_p : 1;
170 /* The ABI to use. */
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
187 /* Whether or not we have code which can be put into a shared
189 static bfd_boolean mips_in_shared = TRUE;
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
195 struct mips_set_options
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
250 /* True if ".set sym32" is in effect. */
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
262 /* 1 if single-precision operations on odd-numbered registers are
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
280 static struct mips_set_options file_mips_opts =
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
289 /* This is similar to file_mips_opts, but for the current set of options. */
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
339 /* The argument of the -mtune= flag. The architecture for which we
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
353 || (ABI) == N64_ABI \
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
611 /* MIPS PIC level. */
613 enum mips_pic_level mips_pic;
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
619 /* 1 if trap instructions should used for overflow rather than break
621 static int mips_trap = 0;
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
631 /* Non-zero if any .set noreorder directives were used. */
633 static int mips_any_noreorder;
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
689 /* Chars that mean this number is a floating point constant */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
707 /* Information about an error that was found while assembling the current
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
737 static int auto_align = 1;
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
743 static offsetT mips_cprestore_offset = -1;
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
772 static int mips_optimize = 2;
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
784 /* The maximum number of NOPs needed for any purpose. */
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
827 static fragS *prev_nop_frag;
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
832 /* The number of nop instructions that we know we need in
834 static int prev_nop_frag_required;
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
853 struct mips_hi_fixup *next;
856 /* The section this fixup is in. */
860 /* The list of unmatched HI relocs. */
862 static struct mips_hi_fixup *mips_hi_fixup_list;
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
867 static fragS *prev_reloc_op_frag;
869 /* Map mips16 register numbers to normal MIPS register numbers. */
871 static const unsigned int mips16_to_32_reg_map[] =
873 16, 17, 2, 3, 4, 5, 6, 7
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
883 5, 5, 6, 4, 4, 4, 4, 4
885 static const unsigned int micromips_to_32_reg_h_map2[] =
887 6, 7, 7, 21, 22, 5, 6, 7
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
893 0, 17, 2, 3, 16, 18, 19, 20
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
908 NUM_FIX_VR4120_CLASSES
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
945 static int mips_relax_branch;
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
994 The frag's "opcode" points to the first fixup for relaxable code.
996 Relaxable macros are generated using a sequence such as:
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1001 ... generate second expansion ...
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1018 /* Branch without likely bit. If label is out of range, we turn:
1020 beq reg1, reg2, label
1030 with the following opcode replacements:
1037 bltzal <-> bgezal (with jal label instead of j label)
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1047 Branch likely. If label is out of range, we turn:
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1059 delay slot (executed only if branch taken)
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1068 delay slot (executed only if branch taken)
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1251 /* The symbol on which the choice of sequence depends. */
1255 /* Global variables used to decide whether a macro needs a warning. */
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1268 unsigned int sizes[2];
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1287 /* The first variant frag for this macro. */
1289 } mips_macro_warning;
1291 /* Prototypes for static functions. */
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1358 struct mips_cpu_info
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1378 OPTION_MARCH = OPTION_MD_BASE,
1410 OPTION_NO_SMARTMIPS,
1420 OPTION_NO_MICROMIPS,
1423 OPTION_COMPAT_ARCH_BASE,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1443 OPTION_NO_FIX_VR4120,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1483 OPTION_MVXWORKS_PIC,
1486 OPTION_NO_ODD_SPREG,
1490 struct option md_longopts[] =
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1621 {NULL, no_argument, NULL, 0}
1623 size_t md_longopts_size = sizeof (md_longopts);
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1630 /* The name of the ASE, used in both the command-line and .set options. */
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1642 /* The command-line options that turn the ASE on and off. */
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1650 int micromips32_rev;
1651 int micromips64_rev;
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1698 OPTION_MT, OPTION_NO_MT,
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1748 static const pseudo_typeS mips_pseudo_table[] =
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1773 {"module", s_module, 0},
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1812 { "extern", ecoff_directive_extern, 0},
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1839 mips_address_bytes (void)
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1845 extern void pop_insert (const pseudo_typeS *);
1848 mips_pop_insert (void)
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1855 /* Symbols labelling the current insn. */
1857 struct insn_label_list
1859 struct insn_label_list *next;
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1871 mips_clear_insn_labels (void)
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1890 mips_mark_labels (void)
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1896 static char *expr_end;
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1901 static expressionS imm_expr;
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1916 static unsigned int forced_insn_length;
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1921 static bfd_boolean mips_assembling_insn;
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1926 static segT pdr_seg;
1928 /* The default target format to use. */
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1939 mips_target_format (void)
1941 switch (OUTPUT_FLAVOR)
1943 case bfd_target_elf_flavour:
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1998 mips_ase_mask (unsigned int flags)
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2059 mips_check_isa_supports_ases (void)
2061 unsigned int i, mask;
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2080 mask = mips_ase_mask (ase->flags);
2083 opts->ase |= ase->flags;
2087 /* Return the ASE called NAME, or null if none. */
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2110 /* Return the length of MIPS16 instruction OPCODE. */
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2115 return (opcode >> 16) == 0 ? 2 : 4;
2118 /* Return the length of instruction INSN. */
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2139 insn->insn_opcode = mo->match;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2151 /* Get a list of all the operands in INSN. */
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2164 if (insn->insn_mo >= µmips_opcodes[0]
2165 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2166 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2171 /* Get a description of operand OPNO of INSN. */
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2176 const struct mips_operand_array *operands;
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2181 return operands->operand[opno];
2184 /* Install UVAL as the value of OPERAND in INSN. */
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2193 /* Extract the value of OPERAND from INSN. */
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2199 return mips_extract_operand (operand, insn->insn_opcode);
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2205 mips_record_compressed_mode (void)
2207 segment_info_type *si;
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2216 /* Read a standard MIPS instruction from BUF. */
2218 static unsigned long
2219 read_insn (char *buf)
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2224 return bfd_getl32 ((bfd_byte *) buf);
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2231 write_insn (char *buf, unsigned int insn)
2233 md_number_to_chars (buf, insn, 4);
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2247 for (i = 0; i < length; i += 2)
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2253 insn |= bfd_getl16 ((char *) buf);
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2275 install_insn (const struct mips_cl_insn *insn)
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2301 install_insn (insn);
2304 /* Add INSN to the end of the output. */
2307 add_fixed_insn (struct mips_cl_insn *insn)
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2334 if (mips_relax.sequence != 2)
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2340 history[i] = history[i - n];
2346 /* Clear the error in insn_error. */
2349 clear_insn_error (void)
2351 memset (&insn_error, 0, sizeof (insn_error));
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2382 && strcmp (insn_error.msg, msg) != 0)
2385 insn_error.min_argnum += 1;
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2399 set_insn_error (int argnum, const char *msg)
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2408 set_insn_error_i (int argnum, const char *msg, int i)
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2427 /* Report the error in insn_error, which is against assembly code STR. */
2430 report_insn_error (const char *str)
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2434 switch (insn_error.format)
2441 as_bad (msg, insn_error.u.i, str);
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2449 free ((char *) msg);
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2457 init_vr4120_conflicts (void)
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2761 mips_prefer_vec_regno (unsigned int symval)
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2777 /* Terminate name. */
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2788 *symval_ptr = S_GET_VALUE (symbol);
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2808 unsigned int channels, symval, bit;
2810 /* Find end of name. */
2812 if (is_name_beginner (*e))
2814 while (is_part_of_name (*e))
2818 if (!mips_parse_register_1 (s, e, &symval))
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2842 *symval_ptr = symval;
2844 *channels_ptr = channels;
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2857 if (mips_parse_register (s, ®no, NULL))
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2869 as_warn (_("unrecognized register name `%s'"), *s);
2874 return regno <= RNUM_MASK;
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2889 *channels |= 1 << (3 - i);
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2900 /* A 4-bit XYZW channel mask. */
2903 /* A constant vector index, e.g. [1]. */
2906 /* A register vector index, e.g. [$2]. */
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2912 /* A (possibly relocated) expression. */
2915 /* A floating-point value. */
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2922 /* A doubled character, either "--" or "++". */
2925 /* The end of the operand list. */
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2942 /* The integer value of an OT_INTEGER_INDEX. */
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2947 unsigned int regno1;
2948 unsigned int regno2;
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2957 bfd_reloc_code_real_type relocs[3];
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2963 unsigned char data[8];
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2990 mips_parse_base_start (char *s)
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
3000 SKIP_SPACE_TABS (s);
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3008 SKIP_SPACE_TABS (s);
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, ®no, &channels))
3017 mips_add_token (&token, OT_CHAR);
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3052 mips_parse_argument_token (char *s, char float_format)
3054 char *end, *save_in;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3069 mips_add_token (&token, OT_CHAR);
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, ®no1, &channels))
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3088 SKIP_SPACE_TABS (s);
3091 /* A register range. */
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, ®no2, NULL))
3096 set_insn_error (0, _("invalid register range"));
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3110 /* Check for a vector index. */
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3119 expressionS element;
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3124 set_insn_error (0, _("vector element must be constant"));
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3131 SKIP_SPACE_TABS (s);
3134 set_insn_error (0, _("missing `]'"));
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3153 set_insn_error (0, err);
3158 mips_add_token (&token, OT_FLOAT);
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3169 mips_add_token (&token, OT_INTEGER);
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3184 struct mips_operand_token token;
3186 SKIP_SPACE_TABS (s);
3189 s = mips_parse_argument_token (s, float_format);
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3196 SKIP_SPACE_TABS (s);
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3206 is_opcode_valid (const struct mips_opcode *mo)
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3238 if (fp_s && mips_opts.soft_float)
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3257 is_size_valid (const struct mips_opcode *mo)
3259 if (!mips_opts.micromips)
3262 if (mips_opts.insn32)
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3269 if (!forced_insn_length)
3271 if (mo->pinfo == INSN_MACRO)
3273 return forced_insn_length == micromips_insn_length (mo);
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3293 if (!mips_opts.micromips)
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3379 doubled = used_bits & mask & insn_bits;
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3394 used_bits &= ~insn_bits;
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3404 /* The MIPS16 version of validate_mips_insn. */
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3424 /* The microMIPS version of validate_mips_insn. */
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3468 const char *retval = NULL;
3472 if (mips_pic != NO_PIC)
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3478 else if (mips_abicalls)
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3488 op_hash = hash_new ();
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3493 const char *name = mips_opcodes[i].name;
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3525 while (i < bfd_mips16_num_opcodes)
3527 const char *name = mips16_opcodes[i].name;
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3553 while (i < bfd_micromips_num_opcodes)
3555 const char *name = micromips_opcodes[i].name;
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) µmips_opcodes[i]);
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3564 struct mips_cl_insn *micromips_nop_insn;
3566 if (!validate_micromips_insn (µmips_opcodes[i],
3567 µmips_operands[i]))
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = µmips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = µmips_nop32_insn;
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3592 as_fatal (_("broken assembler, no assembly attempted"));
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3611 for (i = 0; i < 32; i++)
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3631 obstack_init (&mips_operand_tokens);
3633 mips_no_prev_insn ();
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3666 subseg = now_subseg;
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3675 if (mips_abi != N64_ABI)
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3692 /* Set up the option header. */
3694 Elf_Internal_Options opthdr;
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3716 if (ECOFF_DEBUGGING)
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3723 else if (mips_flag_pdr)
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3732 subseg_set (seg, subseg);
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3740 fpabi_incompatible_with (int fpabi, const char *what)
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3747 fpabi_requires (int fpabi, const char *what)
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3755 check_fpabi (int fpabi)
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3825 /* Perform consistency checks on the current options. */
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3865 as_bad (_("Unknown size of floating point registers"));
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3894 file_mips_check_options (void)
3896 const struct mips_cpu_info *arch_info = 0;
3898 if (file_mips_opts_checked)
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3906 if (file_mips_opts.gp < 0)
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3916 if (file_mips_opts.fp < 0)
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3949 file_mips_opts.oddspreg = 1;
3952 /* End of GCC-shared inference code. */
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3999 md_assemble (char *str)
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4005 file_mips_check_options ();
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4045 mips_assembling_insn = FALSE;
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 case BFD_RELOC_MIPS16_16_PCREL_S1:
4071 static inline bfd_boolean
4072 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4076 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4079 case BFD_RELOC_MICROMIPS_GPREL16:
4080 case BFD_RELOC_MICROMIPS_JMP:
4081 case BFD_RELOC_MICROMIPS_HI16:
4082 case BFD_RELOC_MICROMIPS_HI16_S:
4083 case BFD_RELOC_MICROMIPS_LO16:
4084 case BFD_RELOC_MICROMIPS_LITERAL:
4085 case BFD_RELOC_MICROMIPS_GOT16:
4086 case BFD_RELOC_MICROMIPS_CALL16:
4087 case BFD_RELOC_MICROMIPS_GOT_HI16:
4088 case BFD_RELOC_MICROMIPS_GOT_LO16:
4089 case BFD_RELOC_MICROMIPS_CALL_HI16:
4090 case BFD_RELOC_MICROMIPS_CALL_LO16:
4091 case BFD_RELOC_MICROMIPS_SUB:
4092 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4093 case BFD_RELOC_MICROMIPS_GOT_OFST:
4094 case BFD_RELOC_MICROMIPS_GOT_DISP:
4095 case BFD_RELOC_MICROMIPS_HIGHEST:
4096 case BFD_RELOC_MICROMIPS_HIGHER:
4097 case BFD_RELOC_MICROMIPS_SCN_DISP:
4098 case BFD_RELOC_MICROMIPS_JALR:
4106 static inline bfd_boolean
4107 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4109 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4112 static inline bfd_boolean
4113 b_reloc_p (bfd_reloc_code_real_type reloc)
4115 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4116 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4117 || reloc == BFD_RELOC_16_PCREL_S2
4118 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4119 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4120 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4121 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4124 static inline bfd_boolean
4125 got16_reloc_p (bfd_reloc_code_real_type reloc)
4127 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4128 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4131 static inline bfd_boolean
4132 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4134 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4135 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4138 static inline bfd_boolean
4139 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4141 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4142 || reloc == BFD_RELOC_MICROMIPS_LO16);
4145 static inline bfd_boolean
4146 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4148 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4151 static inline bfd_boolean
4152 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4154 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4155 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4158 /* Return true if RELOC is a PC-relative relocation that does not have
4159 full address range. */
4161 static inline bfd_boolean
4162 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4166 case BFD_RELOC_16_PCREL_S2:
4167 case BFD_RELOC_MIPS16_16_PCREL_S1:
4168 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4169 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4170 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4171 case BFD_RELOC_MIPS_21_PCREL_S2:
4172 case BFD_RELOC_MIPS_26_PCREL_S2:
4173 case BFD_RELOC_MIPS_18_PCREL_S3:
4174 case BFD_RELOC_MIPS_19_PCREL_S2:
4177 case BFD_RELOC_32_PCREL:
4178 case BFD_RELOC_HI16_S_PCREL:
4179 case BFD_RELOC_LO16_PCREL:
4180 return HAVE_64BIT_ADDRESSES;
4187 /* Return true if the given relocation might need a matching %lo().
4188 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4189 need a matching %lo() when applied to local symbols. */
4191 static inline bfd_boolean
4192 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4194 return (HAVE_IN_PLACE_ADDENDS
4195 && (hi16_reloc_p (reloc)
4196 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4197 all GOT16 relocations evaluate to "G". */
4198 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4201 /* Return the type of %lo() reloc needed by RELOC, given that
4202 reloc_needs_lo_p. */
4204 static inline bfd_reloc_code_real_type
4205 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4207 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4208 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4212 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4215 static inline bfd_boolean
4216 fixup_has_matching_lo_p (fixS *fixp)
4218 return (fixp->fx_next != NULL
4219 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4220 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4221 && fixp->fx_offset == fixp->fx_next->fx_offset);
4224 /* Move all labels in LABELS to the current insertion point. TEXT_P
4225 says whether the labels refer to text or data. */
4228 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4230 struct insn_label_list *l;
4233 for (l = labels; l != NULL; l = l->next)
4235 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4236 symbol_set_frag (l->label, frag_now);
4237 val = (valueT) frag_now_fix ();
4238 /* MIPS16/microMIPS text labels are stored as odd. */
4239 if (text_p && HAVE_CODE_COMPRESSION)
4241 S_SET_VALUE (l->label, val);
4245 /* Move all labels in insn_labels to the current insertion point
4246 and treat them as text labels. */
4249 mips_move_text_labels (void)
4251 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4255 s_is_linkonce (symbolS *sym, segT from_seg)
4257 bfd_boolean linkonce = FALSE;
4258 segT symseg = S_GET_SEGMENT (sym);
4260 if (symseg != from_seg && !S_IS_LOCAL (sym))
4262 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4264 /* The GNU toolchain uses an extension for ELF: a section
4265 beginning with the magic string .gnu.linkonce is a
4266 linkonce section. */
4267 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4268 sizeof ".gnu.linkonce" - 1) == 0)
4274 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4275 linker to handle them specially, such as generating jalx instructions
4276 when needed. We also make them odd for the duration of the assembly,
4277 in order to generate the right sort of code. We will make them even
4278 in the adjust_symtab routine, while leaving them marked. This is
4279 convenient for the debugger and the disassembler. The linker knows
4280 to make them odd again. */
4283 mips_compressed_mark_label (symbolS *label)
4285 gas_assert (HAVE_CODE_COMPRESSION);
4287 if (mips_opts.mips16)
4288 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4290 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4291 if ((S_GET_VALUE (label) & 1) == 0
4292 /* Don't adjust the address if the label is global or weak, or
4293 in a link-once section, since we'll be emitting symbol reloc
4294 references to it which will be patched up by the linker, and
4295 the final value of the symbol may or may not be MIPS16/microMIPS. */
4296 && !S_IS_WEAK (label)
4297 && !S_IS_EXTERNAL (label)
4298 && !s_is_linkonce (label, now_seg))
4299 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4302 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4305 mips_compressed_mark_labels (void)
4307 struct insn_label_list *l;
4309 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4310 mips_compressed_mark_label (l->label);
4313 /* End the current frag. Make it a variant frag and record the
4317 relax_close_frag (void)
4319 mips_macro_warning.first_frag = frag_now;
4320 frag_var (rs_machine_dependent, 0, 0,
4321 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4322 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4324 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4325 mips_relax.first_fixup = 0;
4328 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4329 See the comment above RELAX_ENCODE for more details. */
4332 relax_start (symbolS *symbol)
4334 gas_assert (mips_relax.sequence == 0);
4335 mips_relax.sequence = 1;
4336 mips_relax.symbol = symbol;
4339 /* Start generating the second version of a relaxable sequence.
4340 See the comment above RELAX_ENCODE for more details. */
4345 gas_assert (mips_relax.sequence == 1);
4346 mips_relax.sequence = 2;
4349 /* End the current relaxable sequence. */
4354 gas_assert (mips_relax.sequence == 2);
4355 relax_close_frag ();
4356 mips_relax.sequence = 0;
4359 /* Return true if IP is a delayed branch or jump. */
4361 static inline bfd_boolean
4362 delayed_branch_p (const struct mips_cl_insn *ip)
4364 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_DELAY
4366 | INSN_COND_BRANCH_LIKELY)) != 0;
4369 /* Return true if IP is a compact branch or jump. */
4371 static inline bfd_boolean
4372 compact_branch_p (const struct mips_cl_insn *ip)
4374 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4375 | INSN2_COND_BRANCH)) != 0;
4378 /* Return true if IP is an unconditional branch or jump. */
4380 static inline bfd_boolean
4381 uncond_branch_p (const struct mips_cl_insn *ip)
4383 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4384 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4387 /* Return true if IP is a branch-likely instruction. */
4389 static inline bfd_boolean
4390 branch_likely_p (const struct mips_cl_insn *ip)
4392 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4395 /* Return the type of nop that should be used to fill the delay slot
4396 of delayed branch IP. */
4398 static struct mips_cl_insn *
4399 get_delay_slot_nop (const struct mips_cl_insn *ip)
4401 if (mips_opts.micromips
4402 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4403 return µmips_nop32_insn;
4407 /* Return a mask that has bit N set if OPCODE reads the register(s)
4411 insn_read_mask (const struct mips_opcode *opcode)
4413 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4416 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4420 insn_write_mask (const struct mips_opcode *opcode)
4422 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4425 /* Return a mask of the registers specified by operand OPERAND of INSN.
4426 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4430 operand_reg_mask (const struct mips_cl_insn *insn,
4431 const struct mips_operand *operand,
4432 unsigned int type_mask)
4434 unsigned int uval, vsel;
4436 switch (operand->type)
4443 case OP_ADDIUSP_INT:
4444 case OP_ENTRY_EXIT_LIST:
4445 case OP_REPEAT_DEST_REG:
4446 case OP_REPEAT_PREV_REG:
4449 case OP_VU0_MATCH_SUFFIX:
4454 case OP_OPTIONAL_REG:
4456 const struct mips_reg_operand *reg_op;
4458 reg_op = (const struct mips_reg_operand *) operand;
4459 if (!(type_mask & (1 << reg_op->reg_type)))
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << mips_decode_reg_operand (reg_op, uval);
4467 const struct mips_reg_pair_operand *pair_op;
4469 pair_op = (const struct mips_reg_pair_operand *) operand;
4470 if (!(type_mask & (1 << pair_op->reg_type)))
4472 uval = insn_extract_operand (insn, operand);
4473 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4476 case OP_CLO_CLZ_DEST:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << (uval & 31)) | (1 << (uval >> 5));
4483 if (!(type_mask & (1 << OP_REG_GP)))
4485 uval = insn_extract_operand (insn, operand);
4486 gas_assert ((uval & 31) == (uval >> 5));
4487 return 1 << (uval & 31);
4490 case OP_NON_ZERO_REG:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4493 uval = insn_extract_operand (insn, operand);
4494 return 1 << (uval & 31);
4496 case OP_LWM_SWM_LIST:
4499 case OP_SAVE_RESTORE_LIST:
4502 case OP_MDMX_IMM_REG:
4503 if (!(type_mask & (1 << OP_REG_VEC)))
4505 uval = insn_extract_operand (insn, operand);
4507 if ((vsel & 0x18) == 0x18)
4509 return 1 << (uval & 31);
4512 if (!(type_mask & (1 << OP_REG_GP)))
4514 return 1 << insn_extract_operand (insn, operand);
4519 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4520 where bit N of OPNO_MASK is set if operand N should be included.
4521 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4525 insn_reg_mask (const struct mips_cl_insn *insn,
4526 unsigned int type_mask, unsigned int opno_mask)
4528 unsigned int opno, reg_mask;
4532 while (opno_mask != 0)
4535 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4542 /* Return the mask of core registers that IP reads. */
4545 gpr_read_mask (const struct mips_cl_insn *ip)
4547 unsigned long pinfo, pinfo2;
4550 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4551 pinfo = ip->insn_mo->pinfo;
4552 pinfo2 = ip->insn_mo->pinfo2;
4553 if (pinfo & INSN_UDI)
4555 /* UDI instructions have traditionally been assumed to read RS
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4558 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4560 if (pinfo & INSN_READ_GPR_24)
4562 if (pinfo2 & INSN2_READ_GPR_16)
4564 if (pinfo2 & INSN2_READ_SP)
4566 if (pinfo2 & INSN2_READ_GPR_31)
4568 /* Don't include register 0. */
4572 /* Return the mask of core registers that IP writes. */
4575 gpr_write_mask (const struct mips_cl_insn *ip)
4577 unsigned long pinfo, pinfo2;
4580 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4581 pinfo = ip->insn_mo->pinfo;
4582 pinfo2 = ip->insn_mo->pinfo2;
4583 if (pinfo & INSN_WRITE_GPR_24)
4585 if (pinfo & INSN_WRITE_GPR_31)
4587 if (pinfo & INSN_UDI)
4588 /* UDI instructions have traditionally been assumed to write to RD. */
4589 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4590 if (pinfo2 & INSN2_WRITE_SP)
4592 /* Don't include register 0. */
4596 /* Return the mask of floating-point registers that IP reads. */
4599 fpr_read_mask (const struct mips_cl_insn *ip)
4601 unsigned long pinfo;
4604 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4605 | (1 << OP_REG_MSA)),
4606 insn_read_mask (ip->insn_mo));
4607 pinfo = ip->insn_mo->pinfo;
4608 /* Conservatively treat all operands to an FP_D instruction are doubles.
4609 (This is overly pessimistic for things like cvt.d.s.) */
4610 if (FPR_SIZE != 64 && (pinfo & FP_D))
4615 /* Return the mask of floating-point registers that IP writes. */
4618 fpr_write_mask (const struct mips_cl_insn *ip)
4620 unsigned long pinfo;
4623 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4624 | (1 << OP_REG_MSA)),
4625 insn_write_mask (ip->insn_mo));
4626 pinfo = ip->insn_mo->pinfo;
4627 /* Conservatively treat all operands to an FP_D instruction are doubles.
4628 (This is overly pessimistic for things like cvt.s.d.) */
4629 if (FPR_SIZE != 64 && (pinfo & FP_D))
4634 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4635 Check whether that is allowed. */
4638 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4640 const char *s = insn->name;
4641 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4643 && mips_opts.oddspreg;
4645 if (insn->pinfo == INSN_MACRO)
4646 /* Let a macro pass, we'll catch it later when it is expanded. */
4649 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4650 otherwise it depends on oddspreg. */
4651 if ((insn->pinfo & FP_S)
4652 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4653 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4654 return FPR_SIZE == 32 || oddspreg;
4656 /* Allow odd registers for single-precision ops and double-precision if the
4657 floating-point registers are 64-bit wide. */
4658 switch (insn->pinfo & (FP_S | FP_D))
4664 return FPR_SIZE == 64;
4669 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4670 s = strchr (insn->name, '.');
4671 if (s != NULL && opnum == 2)
4672 s = strchr (s + 1, '.');
4673 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4676 return FPR_SIZE == 64;
4679 /* Information about an instruction argument that we're trying to match. */
4680 struct mips_arg_info
4682 /* The instruction so far. */
4683 struct mips_cl_insn *insn;
4685 /* The first unconsumed operand token. */
4686 struct mips_operand_token *token;
4688 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4691 /* The 1-based argument number, for error reporting. This does not
4692 count elided optional registers, etc.. */
4695 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4696 unsigned int last_regno;
4698 /* If the first operand was an OP_REG, this is the register that it
4699 specified, otherwise it is ILLEGAL_REG. */
4700 unsigned int dest_regno;
4702 /* The value of the last OP_INT operand. Only used for OP_MSB,
4703 where it gives the lsb position. */
4704 unsigned int last_op_int;
4706 /* If true, match routines should assume that no later instruction
4707 alternative matches and should therefore be as accomodating as
4708 possible. Match routines should not report errors if something
4709 is only invalid for !LAX_MATCH. */
4710 bfd_boolean lax_match;
4712 /* True if a reference to the current AT register was seen. */
4713 bfd_boolean seen_at;
4716 /* Record that the argument is out of range. */
4719 match_out_of_range (struct mips_arg_info *arg)
4721 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4724 /* Record that the argument isn't constant but needs to be. */
4727 match_not_constant (struct mips_arg_info *arg)
4729 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4733 /* Try to match an OT_CHAR token for character CH. Consume the token
4734 and return true on success, otherwise return false. */
4737 match_char (struct mips_arg_info *arg, char ch)
4739 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4749 /* Try to get an expression from the next tokens in ARG. Consume the
4750 tokens and return true on success, storing the expression value in
4751 VALUE and relocation types in R. */
4754 match_expression (struct mips_arg_info *arg, expressionS *value,
4755 bfd_reloc_code_real_type *r)
4757 /* If the next token is a '(' that was parsed as being part of a base
4758 expression, assume we have an elided offset. The later match will fail
4759 if this turns out to be wrong. */
4760 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4762 value->X_op = O_constant;
4763 value->X_add_number = 0;
4764 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4768 /* Reject register-based expressions such as "0+$2" and "(($2))".
4769 For plain registers the default error seems more appropriate. */
4770 if (arg->token->type == OT_INTEGER
4771 && arg->token->u.integer.value.X_op == O_register)
4773 set_insn_error (arg->argnum, _("register value used as expression"));
4777 if (arg->token->type == OT_INTEGER)
4779 *value = arg->token->u.integer.value;
4780 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4786 (arg->argnum, _("operand %d must be an immediate expression"),
4791 /* Try to get a constant expression from the next tokens in ARG. Consume
4792 the tokens and return return true on success, storing the constant value
4793 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4797 match_const_int (struct mips_arg_info *arg, offsetT *value)
4800 bfd_reloc_code_real_type r[3];
4802 if (!match_expression (arg, &ex, r))
4805 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4806 *value = ex.X_add_number;
4809 match_not_constant (arg);
4815 /* Return the RTYPE_* flags for a register operand of type TYPE that
4816 appears in instruction OPCODE. */
4819 convert_reg_type (const struct mips_opcode *opcode,
4820 enum mips_reg_operand_type type)
4825 return RTYPE_NUM | RTYPE_GP;
4828 /* Allow vector register names for MDMX if the instruction is a 64-bit
4829 FPR load, store or move (including moves to and from GPRs). */
4830 if ((mips_opts.ase & ASE_MDMX)
4831 && (opcode->pinfo & FP_D)
4832 && (opcode->pinfo & (INSN_COPROC_MOVE
4833 | INSN_COPROC_MEMORY_DELAY
4836 | INSN_STORE_MEMORY)))
4837 return RTYPE_FPU | RTYPE_VEC;
4841 if (opcode->pinfo & (FP_D | FP_S))
4842 return RTYPE_CCC | RTYPE_FCC;
4846 if (opcode->membership & INSN_5400)
4848 return RTYPE_FPU | RTYPE_VEC;
4854 if (opcode->name[strlen (opcode->name) - 1] == '0')
4855 return RTYPE_NUM | RTYPE_CP0;
4862 return RTYPE_NUM | RTYPE_VI;
4865 return RTYPE_NUM | RTYPE_VF;
4867 case OP_REG_R5900_I:
4868 return RTYPE_R5900_I;
4870 case OP_REG_R5900_Q:
4871 return RTYPE_R5900_Q;
4873 case OP_REG_R5900_R:
4874 return RTYPE_R5900_R;
4876 case OP_REG_R5900_ACC:
4877 return RTYPE_R5900_ACC;
4882 case OP_REG_MSA_CTRL:
4888 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4891 check_regno (struct mips_arg_info *arg,
4892 enum mips_reg_operand_type type, unsigned int regno)
4894 if (AT && type == OP_REG_GP && regno == AT)
4895 arg->seen_at = TRUE;
4897 if (type == OP_REG_FP
4899 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4901 /* This was a warning prior to introducing O32 FPXX and FP64 support
4902 so maintain a warning for FP32 but raise an error for the new
4905 as_warn (_("float register should be even, was %d"), regno);
4907 as_bad (_("float register should be even, was %d"), regno);
4910 if (type == OP_REG_CCC)
4915 name = arg->insn->insn_mo->name;
4916 length = strlen (name);
4917 if ((regno & 1) != 0
4918 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4919 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4920 as_warn (_("condition code register should be even for %s, was %d"),
4923 if ((regno & 3) != 0
4924 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4925 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4930 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4931 a register of type TYPE. Return true on success, storing the register
4932 number in *REGNO and warning about any dubious uses. */
4935 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4936 unsigned int symval, unsigned int *regno)
4938 if (type == OP_REG_VEC)
4939 symval = mips_prefer_vec_regno (symval);
4940 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4943 *regno = symval & RNUM_MASK;
4944 check_regno (arg, type, *regno);
4948 /* Try to interpret the next token in ARG as a register of type TYPE.
4949 Consume the token and return true on success, storing the register
4950 number in *REGNO. Return false on failure. */
4953 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4954 unsigned int *regno)
4956 if (arg->token->type == OT_REG
4957 && match_regno (arg, type, arg->token->u.regno, regno))
4965 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4966 Consume the token and return true on success, storing the register numbers
4967 in *REGNO1 and *REGNO2. Return false on failure. */
4970 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4971 unsigned int *regno1, unsigned int *regno2)
4973 if (match_reg (arg, type, regno1))
4978 if (arg->token->type == OT_REG_RANGE
4979 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4980 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4981 && *regno1 <= *regno2)
4989 /* OP_INT matcher. */
4992 match_int_operand (struct mips_arg_info *arg,
4993 const struct mips_operand *operand_base)
4995 const struct mips_int_operand *operand;
4997 int min_val, max_val, factor;
5000 operand = (const struct mips_int_operand *) operand_base;
5001 factor = 1 << operand->shift;
5002 min_val = mips_int_operand_min (operand);
5003 max_val = mips_int_operand_max (operand);
5005 if (operand_base->lsb == 0
5006 && operand_base->size == 16
5007 && operand->shift == 0
5008 && operand->bias == 0
5009 && (operand->max_val == 32767 || operand->max_val == 65535))
5011 /* The operand can be relocated. */
5012 if (!match_expression (arg, &offset_expr, offset_reloc))
5015 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5016 /* Relocation operators were used. Accept the arguent and
5017 leave the relocation value in offset_expr and offset_relocs
5018 for the caller to process. */
5021 if (offset_expr.X_op != O_constant)
5023 /* Accept non-constant operands if no later alternative matches,
5024 leaving it for the caller to process. */
5025 if (!arg->lax_match)
5027 offset_reloc[0] = BFD_RELOC_LO16;
5031 /* Clear the global state; we're going to install the operand
5033 sval = offset_expr.X_add_number;
5034 offset_expr.X_op = O_absent;
5036 /* For compatibility with older assemblers, we accept
5037 0x8000-0xffff as signed 16-bit numbers when only
5038 signed numbers are allowed. */
5041 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5042 if (!arg->lax_match && sval <= max_val)
5048 if (!match_const_int (arg, &sval))
5052 arg->last_op_int = sval;
5054 if (sval < min_val || sval > max_val || sval % factor)
5056 match_out_of_range (arg);
5060 uval = (unsigned int) sval >> operand->shift;
5061 uval -= operand->bias;
5063 /* Handle -mfix-cn63xxp1. */
5065 && mips_fix_cn63xxp1
5066 && !mips_opts.micromips
5067 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5082 /* The rest must be changed to 28. */
5087 insn_insert_operand (arg->insn, operand_base, uval);
5091 /* OP_MAPPED_INT matcher. */
5094 match_mapped_int_operand (struct mips_arg_info *arg,
5095 const struct mips_operand *operand_base)
5097 const struct mips_mapped_int_operand *operand;
5098 unsigned int uval, num_vals;
5101 operand = (const struct mips_mapped_int_operand *) operand_base;
5102 if (!match_const_int (arg, &sval))
5105 num_vals = 1 << operand_base->size;
5106 for (uval = 0; uval < num_vals; uval++)
5107 if (operand->int_map[uval] == sval)
5109 if (uval == num_vals)
5111 match_out_of_range (arg);
5115 insn_insert_operand (arg->insn, operand_base, uval);
5119 /* OP_MSB matcher. */
5122 match_msb_operand (struct mips_arg_info *arg,
5123 const struct mips_operand *operand_base)
5125 const struct mips_msb_operand *operand;
5126 int min_val, max_val, max_high;
5127 offsetT size, sval, high;
5129 operand = (const struct mips_msb_operand *) operand_base;
5130 min_val = operand->bias;
5131 max_val = min_val + (1 << operand_base->size) - 1;
5132 max_high = operand->opsize;
5134 if (!match_const_int (arg, &size))
5137 high = size + arg->last_op_int;
5138 sval = operand->add_lsb ? high : size;
5140 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5142 match_out_of_range (arg);
5145 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5149 /* OP_REG matcher. */
5152 match_reg_operand (struct mips_arg_info *arg,
5153 const struct mips_operand *operand_base)
5155 const struct mips_reg_operand *operand;
5156 unsigned int regno, uval, num_vals;
5158 operand = (const struct mips_reg_operand *) operand_base;
5159 if (!match_reg (arg, operand->reg_type, ®no))
5162 if (operand->reg_map)
5164 num_vals = 1 << operand->root.size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg_map[uval] == regno)
5168 if (num_vals == uval)
5174 arg->last_regno = regno;
5175 if (arg->opnum == 1)
5176 arg->dest_regno = regno;
5177 insn_insert_operand (arg->insn, operand_base, uval);
5181 /* OP_REG_PAIR matcher. */
5184 match_reg_pair_operand (struct mips_arg_info *arg,
5185 const struct mips_operand *operand_base)
5187 const struct mips_reg_pair_operand *operand;
5188 unsigned int regno1, regno2, uval, num_vals;
5190 operand = (const struct mips_reg_pair_operand *) operand_base;
5191 if (!match_reg (arg, operand->reg_type, ®no1)
5192 || !match_char (arg, ',')
5193 || !match_reg (arg, operand->reg_type, ®no2))
5196 num_vals = 1 << operand_base->size;
5197 for (uval = 0; uval < num_vals; uval++)
5198 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5200 if (uval == num_vals)
5203 insn_insert_operand (arg->insn, operand_base, uval);
5207 /* OP_PCREL matcher. The caller chooses the relocation type. */
5210 match_pcrel_operand (struct mips_arg_info *arg)
5212 bfd_reloc_code_real_type r[3];
5214 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5217 /* OP_PERF_REG matcher. */
5220 match_perf_reg_operand (struct mips_arg_info *arg,
5221 const struct mips_operand *operand)
5225 if (!match_const_int (arg, &sval))
5230 || (mips_opts.arch == CPU_R5900
5231 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5232 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5234 set_insn_error (arg->argnum, _("invalid performance register"));
5238 insn_insert_operand (arg->insn, operand, sval);
5242 /* OP_ADDIUSP matcher. */
5245 match_addiusp_operand (struct mips_arg_info *arg,
5246 const struct mips_operand *operand)
5251 if (!match_const_int (arg, &sval))
5256 match_out_of_range (arg);
5261 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5263 match_out_of_range (arg);
5267 uval = (unsigned int) sval;
5268 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5269 insn_insert_operand (arg->insn, operand, uval);
5273 /* OP_CLO_CLZ_DEST matcher. */
5276 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5277 const struct mips_operand *operand)
5281 if (!match_reg (arg, OP_REG_GP, ®no))
5284 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5288 /* OP_CHECK_PREV matcher. */
5291 match_check_prev_operand (struct mips_arg_info *arg,
5292 const struct mips_operand *operand_base)
5294 const struct mips_check_prev_operand *operand;
5297 operand = (const struct mips_check_prev_operand *) operand_base;
5299 if (!match_reg (arg, OP_REG_GP, ®no))
5302 if (!operand->zero_ok && regno == 0)
5305 if ((operand->less_than_ok && regno < arg->last_regno)
5306 || (operand->greater_than_ok && regno > arg->last_regno)
5307 || (operand->equal_ok && regno == arg->last_regno))
5309 arg->last_regno = regno;
5310 insn_insert_operand (arg->insn, operand_base, regno);
5317 /* OP_SAME_RS_RT matcher. */
5320 match_same_rs_rt_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5325 if (!match_reg (arg, OP_REG_GP, ®no))
5330 set_insn_error (arg->argnum, _("the source register must not be $0"));
5334 arg->last_regno = regno;
5336 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5340 /* OP_LWM_SWM_LIST matcher. */
5343 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5344 const struct mips_operand *operand)
5346 unsigned int reglist, sregs, ra, regno1, regno2;
5347 struct mips_arg_info reset;
5350 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5354 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5359 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5362 while (match_char (arg, ',')
5363 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5366 if (operand->size == 2)
5368 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5374 and any permutations of these. */
5375 if ((reglist & 0xfff1ffff) != 0x80010000)
5378 sregs = (reglist >> 17) & 7;
5383 /* The list must include at least one of ra and s0-sN,
5384 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5385 which are $23 and $30 respectively.) E.g.:
5393 and any permutations of these. */
5394 if ((reglist & 0x3f00ffff) != 0)
5397 ra = (reglist >> 27) & 0x10;
5398 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5401 if ((sregs & -sregs) != sregs)
5404 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5408 /* OP_ENTRY_EXIT_LIST matcher. */
5411 match_entry_exit_operand (struct mips_arg_info *arg,
5412 const struct mips_operand *operand)
5415 bfd_boolean is_exit;
5417 /* The format is the same for both ENTRY and EXIT, but the constraints
5419 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5420 mask = (is_exit ? 7 << 3 : 0);
5423 unsigned int regno1, regno2;
5424 bfd_boolean is_freg;
5426 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5428 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5433 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5436 mask |= (5 + regno2) << 3;
5438 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5439 mask |= (regno2 - 3) << 3;
5440 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5441 mask |= (regno2 - 15) << 1;
5442 else if (regno1 == RA && regno2 == RA)
5447 while (match_char (arg, ','));
5449 insn_insert_operand (arg->insn, operand, mask);
5453 /* OP_SAVE_RESTORE_LIST matcher. */
5456 match_save_restore_list_operand (struct mips_arg_info *arg)
5458 unsigned int opcode, args, statics, sregs;
5459 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5462 opcode = arg->insn->insn_opcode;
5464 num_frame_sizes = 0;
5470 unsigned int regno1, regno2;
5472 if (arg->token->type == OT_INTEGER)
5474 /* Handle the frame size. */
5475 if (!match_const_int (arg, &frame_size))
5477 num_frame_sizes += 1;
5481 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5484 while (regno1 <= regno2)
5486 if (regno1 >= 4 && regno1 <= 7)
5488 if (num_frame_sizes == 0)
5490 args |= 1 << (regno1 - 4);
5492 /* statics $a0-$a3 */
5493 statics |= 1 << (regno1 - 4);
5495 else if (regno1 >= 16 && regno1 <= 23)
5497 sregs |= 1 << (regno1 - 16);
5498 else if (regno1 == 30)
5501 else if (regno1 == 31)
5502 /* Add $ra to insn. */
5512 while (match_char (arg, ','));
5514 /* Encode args/statics combination. */
5517 else if (args == 0xf)
5518 /* All $a0-$a3 are args. */
5519 opcode |= MIPS16_ALL_ARGS << 16;
5520 else if (statics == 0xf)
5521 /* All $a0-$a3 are statics. */
5522 opcode |= MIPS16_ALL_STATICS << 16;
5525 /* Count arg registers. */
5535 /* Count static registers. */
5537 while (statics & 0x8)
5539 statics = (statics << 1) & 0xf;
5545 /* Encode args/statics. */
5546 opcode |= ((num_args << 2) | num_statics) << 16;
5549 /* Encode $s0/$s1. */
5550 if (sregs & (1 << 0)) /* $s0 */
5552 if (sregs & (1 << 1)) /* $s1 */
5556 /* Encode $s2-$s8. */
5565 opcode |= num_sregs << 24;
5567 /* Encode frame size. */
5568 if (num_frame_sizes == 0)
5570 set_insn_error (arg->argnum, _("missing frame size"));
5573 if (num_frame_sizes > 1)
5575 set_insn_error (arg->argnum, _("frame size specified twice"));
5578 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5580 set_insn_error (arg->argnum, _("invalid frame size"));
5583 if (frame_size != 128 || (opcode >> 16) != 0)
5586 opcode |= (((frame_size & 0xf0) << 16)
5587 | (frame_size & 0x0f));
5590 /* Finally build the instruction. */
5591 if ((opcode >> 16) != 0 || frame_size == 0)
5592 opcode |= MIPS16_EXTEND;
5593 arg->insn->insn_opcode = opcode;
5597 /* OP_MDMX_IMM_REG matcher. */
5600 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5601 const struct mips_operand *operand)
5603 unsigned int regno, uval;
5605 const struct mips_opcode *opcode;
5607 /* The mips_opcode records whether this is an octobyte or quadhalf
5608 instruction. Start out with that bit in place. */
5609 opcode = arg->insn->insn_mo;
5610 uval = mips_extract_operand (operand, opcode->match);
5611 is_qh = (uval != 0);
5613 if (arg->token->type == OT_REG)
5615 if ((opcode->membership & INSN_5400)
5616 && strcmp (opcode->name, "rzu.ob") == 0)
5618 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5623 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5627 /* Check whether this is a vector register or a broadcast of
5628 a single element. */
5629 if (arg->token->type == OT_INTEGER_INDEX)
5631 if (arg->token->u.index > (is_qh ? 3 : 7))
5633 set_insn_error (arg->argnum, _("invalid element selector"));
5636 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5641 /* A full vector. */
5642 if ((opcode->membership & INSN_5400)
5643 && (strcmp (opcode->name, "sll.ob") == 0
5644 || strcmp (opcode->name, "srl.ob") == 0))
5646 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5652 uval |= MDMX_FMTSEL_VEC_QH << 5;
5654 uval |= MDMX_FMTSEL_VEC_OB << 5;
5662 if (!match_const_int (arg, &sval))
5664 if (sval < 0 || sval > 31)
5666 match_out_of_range (arg);
5669 uval |= (sval & 31);
5671 uval |= MDMX_FMTSEL_IMM_QH << 5;
5673 uval |= MDMX_FMTSEL_IMM_OB << 5;
5675 insn_insert_operand (arg->insn, operand, uval);
5679 /* OP_IMM_INDEX matcher. */
5682 match_imm_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5685 unsigned int max_val;
5687 if (arg->token->type != OT_INTEGER_INDEX)
5690 max_val = (1 << operand->size) - 1;
5691 if (arg->token->u.index > max_val)
5693 match_out_of_range (arg);
5696 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5701 /* OP_REG_INDEX matcher. */
5704 match_reg_index_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5709 if (arg->token->type != OT_REG_INDEX)
5712 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5715 insn_insert_operand (arg->insn, operand, regno);
5720 /* OP_PC matcher. */
5723 match_pc_operand (struct mips_arg_info *arg)
5725 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5733 /* OP_NON_ZERO_REG matcher. */
5736 match_non_zero_reg_operand (struct mips_arg_info *arg,
5737 const struct mips_operand *operand)
5741 if (!match_reg (arg, OP_REG_GP, ®no))
5747 arg->last_regno = regno;
5748 insn_insert_operand (arg->insn, operand, regno);
5752 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5753 register that we need to match. */
5756 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5760 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5763 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5764 the length of the value in bytes (4 for float, 8 for double) and
5765 USING_GPRS says whether the destination is a GPR rather than an FPR.
5767 Return the constant in IMM and OFFSET as follows:
5769 - If the constant should be loaded via memory, set IMM to O_absent and
5770 OFFSET to the memory address.
5772 - Otherwise, if the constant should be loaded into two 32-bit registers,
5773 set IMM to the O_constant to load into the high register and OFFSET
5774 to the corresponding value for the low register.
5776 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5778 These constants only appear as the last operand in an instruction,
5779 and every instruction that accepts them in any variant accepts them
5780 in all variants. This means we don't have to worry about backing out
5781 any changes if the instruction does not match. We just match
5782 unconditionally and report an error if the constant is invalid. */
5785 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5786 expressionS *offset, int length, bfd_boolean using_gprs)
5791 const char *newname;
5792 unsigned char *data;
5794 /* Where the constant is placed is based on how the MIPS assembler
5797 length == 4 && using_gprs -- immediate value only
5798 length == 8 && using_gprs -- .rdata or immediate value
5799 length == 4 && !using_gprs -- .lit4 or immediate value
5800 length == 8 && !using_gprs -- .lit8 or immediate value
5802 The .lit4 and .lit8 sections are only used if permitted by the
5804 if (arg->token->type != OT_FLOAT)
5806 set_insn_error (arg->argnum, _("floating-point expression required"));
5810 gas_assert (arg->token->u.flt.length == length);
5811 data = arg->token->u.flt.data;
5814 /* Handle 32-bit constants for which an immediate value is best. */
5817 || g_switch_value < 4
5818 || (data[0] == 0 && data[1] == 0)
5819 || (data[2] == 0 && data[3] == 0)))
5821 imm->X_op = O_constant;
5822 if (!target_big_endian)
5823 imm->X_add_number = bfd_getl32 (data);
5825 imm->X_add_number = bfd_getb32 (data);
5826 offset->X_op = O_absent;
5830 /* Handle 64-bit constants for which an immediate value is best. */
5832 && !mips_disable_float_construction
5833 /* Constants can only be constructed in GPRs and copied to FPRs if the
5834 GPRs are at least as wide as the FPRs or MTHC1 is available.
5835 Unlike most tests for 32-bit floating-point registers this check
5836 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5837 permit 64-bit moves without MXHC1.
5838 Force the constant into memory otherwise. */
5841 || ISA_HAS_MXHC1 (mips_opts.isa)
5843 && ((data[0] == 0 && data[1] == 0)
5844 || (data[2] == 0 && data[3] == 0))
5845 && ((data[4] == 0 && data[5] == 0)
5846 || (data[6] == 0 && data[7] == 0)))
5848 /* The value is simple enough to load with a couple of instructions.
5849 If using 32-bit registers, set IMM to the high order 32 bits and
5850 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5852 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5854 imm->X_op = O_constant;
5855 offset->X_op = O_constant;
5856 if (!target_big_endian)
5858 imm->X_add_number = bfd_getl32 (data + 4);
5859 offset->X_add_number = bfd_getl32 (data);
5863 imm->X_add_number = bfd_getb32 (data);
5864 offset->X_add_number = bfd_getb32 (data + 4);
5866 if (offset->X_add_number == 0)
5867 offset->X_op = O_absent;
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl64 (data);
5875 imm->X_add_number = bfd_getb64 (data);
5876 offset->X_op = O_absent;
5881 /* Switch to the right section. */
5883 subseg = now_subseg;
5886 gas_assert (!using_gprs && g_switch_value >= 4);
5891 if (using_gprs || g_switch_value < 8)
5892 newname = RDATA_SECTION_NAME;
5897 new_seg = subseg_new (newname, (subsegT) 0);
5898 bfd_set_section_flags (stdoutput, new_seg,
5899 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5900 frag_align (length == 4 ? 2 : 3, 0, 0);
5901 if (strncmp (TARGET_OS, "elf", 3) != 0)
5902 record_alignment (new_seg, 4);
5904 record_alignment (new_seg, length == 4 ? 2 : 3);
5906 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5908 /* Set the argument to the current address in the section. */
5909 imm->X_op = O_absent;
5910 offset->X_op = O_symbol;
5911 offset->X_add_symbol = symbol_temp_new_now ();
5912 offset->X_add_number = 0;
5914 /* Put the floating point number into the section. */
5915 p = frag_more (length);
5916 memcpy (p, data, length);
5918 /* Switch back to the original section. */
5919 subseg_set (seg, subseg);
5923 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5927 match_vu0_suffix_operand (struct mips_arg_info *arg,
5928 const struct mips_operand *operand,
5929 bfd_boolean match_p)
5933 /* The operand can be an XYZW mask or a single 2-bit channel index
5934 (with X being 0). */
5935 gas_assert (operand->size == 2 || operand->size == 4);
5937 /* The suffix can be omitted when it is already part of the opcode. */
5938 if (arg->token->type != OT_CHANNELS)
5941 uval = arg->token->u.channels;
5942 if (operand->size == 2)
5944 /* Check that a single bit is set and convert it into a 2-bit index. */
5945 if ((uval & -uval) != uval)
5947 uval = 4 - ffs (uval);
5950 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5955 insn_insert_operand (arg->insn, operand, uval);
5959 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5960 of the argument text if the match is successful, otherwise return null. */
5963 match_operand (struct mips_arg_info *arg,
5964 const struct mips_operand *operand)
5966 switch (operand->type)
5969 return match_int_operand (arg, operand);
5972 return match_mapped_int_operand (arg, operand);
5975 return match_msb_operand (arg, operand);
5978 case OP_OPTIONAL_REG:
5979 return match_reg_operand (arg, operand);
5982 return match_reg_pair_operand (arg, operand);
5985 return match_pcrel_operand (arg);
5988 return match_perf_reg_operand (arg, operand);
5990 case OP_ADDIUSP_INT:
5991 return match_addiusp_operand (arg, operand);
5993 case OP_CLO_CLZ_DEST:
5994 return match_clo_clz_dest_operand (arg, operand);
5996 case OP_LWM_SWM_LIST:
5997 return match_lwm_swm_list_operand (arg, operand);
5999 case OP_ENTRY_EXIT_LIST:
6000 return match_entry_exit_operand (arg, operand);
6002 case OP_SAVE_RESTORE_LIST:
6003 return match_save_restore_list_operand (arg);
6005 case OP_MDMX_IMM_REG:
6006 return match_mdmx_imm_reg_operand (arg, operand);
6008 case OP_REPEAT_DEST_REG:
6009 return match_tied_reg_operand (arg, arg->dest_regno);
6011 case OP_REPEAT_PREV_REG:
6012 return match_tied_reg_operand (arg, arg->last_regno);
6015 return match_pc_operand (arg);
6018 return match_vu0_suffix_operand (arg, operand, FALSE);
6020 case OP_VU0_MATCH_SUFFIX:
6021 return match_vu0_suffix_operand (arg, operand, TRUE);
6024 return match_imm_index_operand (arg, operand);
6027 return match_reg_index_operand (arg, operand);
6030 return match_same_rs_rt_operand (arg, operand);
6033 return match_check_prev_operand (arg, operand);
6035 case OP_NON_ZERO_REG:
6036 return match_non_zero_reg_operand (arg, operand);
6041 /* ARG is the state after successfully matching an instruction.
6042 Issue any queued-up warnings. */
6045 check_completed_insn (struct mips_arg_info *arg)
6050 as_warn (_("used $at without \".set noat\""));
6052 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6056 /* Return true if modifying general-purpose register REG needs a delay. */
6059 reg_needs_delay (unsigned int reg)
6061 unsigned long prev_pinfo;
6063 prev_pinfo = history[0].insn_mo->pinfo;
6064 if (!mips_opts.noreorder
6065 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6066 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6067 && (gpr_write_mask (&history[0]) & (1 << reg)))
6073 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6074 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6075 by VR4120 errata. */
6078 classify_vr4120_insn (const char *name)
6080 if (strncmp (name, "macc", 4) == 0)
6081 return FIX_VR4120_MACC;
6082 if (strncmp (name, "dmacc", 5) == 0)
6083 return FIX_VR4120_DMACC;
6084 if (strncmp (name, "mult", 4) == 0)
6085 return FIX_VR4120_MULT;
6086 if (strncmp (name, "dmult", 5) == 0)
6087 return FIX_VR4120_DMULT;
6088 if (strstr (name, "div"))
6089 return FIX_VR4120_DIV;
6090 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6091 return FIX_VR4120_MTHILO;
6092 return NUM_FIX_VR4120_CLASSES;
6095 #define INSN_ERET 0x42000018
6096 #define INSN_DERET 0x4200001f
6097 #define INSN_DMULT 0x1c
6098 #define INSN_DMULTU 0x1d
6100 /* Return the number of instructions that must separate INSN1 and INSN2,
6101 where INSN1 is the earlier instruction. Return the worst-case value
6102 for any INSN2 if INSN2 is null. */
6105 insns_between (const struct mips_cl_insn *insn1,
6106 const struct mips_cl_insn *insn2)
6108 unsigned long pinfo1, pinfo2;
6111 /* If INFO2 is null, pessimistically assume that all flags are set for
6112 the second instruction. */
6113 pinfo1 = insn1->insn_mo->pinfo;
6114 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6116 /* For most targets, write-after-read dependencies on the HI and LO
6117 registers must be separated by at least two instructions. */
6118 if (!hilo_interlocks)
6120 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6122 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6126 /* If we're working around r7000 errata, there must be two instructions
6127 between an mfhi or mflo and any instruction that uses the result. */
6128 if (mips_7000_hilo_fix
6129 && !mips_opts.micromips
6130 && MF_HILO_INSN (pinfo1)
6131 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6134 /* If we're working around 24K errata, one instruction is required
6135 if an ERET or DERET is followed by a branch instruction. */
6136 if (mips_fix_24k && !mips_opts.micromips)
6138 if (insn1->insn_opcode == INSN_ERET
6139 || insn1->insn_opcode == INSN_DERET)
6142 || insn2->insn_opcode == INSN_ERET
6143 || insn2->insn_opcode == INSN_DERET
6144 || delayed_branch_p (insn2))
6149 /* If we're working around PMC RM7000 errata, there must be three
6150 nops between a dmult and a load instruction. */
6151 if (mips_fix_rm7000 && !mips_opts.micromips)
6153 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6154 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6156 if (pinfo2 & INSN_LOAD_MEMORY)
6161 /* If working around VR4120 errata, check for combinations that need
6162 a single intervening instruction. */
6163 if (mips_fix_vr4120 && !mips_opts.micromips)
6165 unsigned int class1, class2;
6167 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6168 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6172 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6173 if (vr4120_conflicts[class1] & (1 << class2))
6178 if (!HAVE_CODE_COMPRESSION)
6180 /* Check for GPR or coprocessor load delays. All such delays
6181 are on the RT register. */
6182 /* Itbl support may require additional care here. */
6183 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6184 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6186 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6190 /* Check for generic coprocessor hazards.
6192 This case is not handled very well. There is no special
6193 knowledge of CP0 handling, and the coprocessors other than
6194 the floating point unit are not distinguished at all. */
6195 /* Itbl support may require additional care here. FIXME!
6196 Need to modify this to include knowledge about
6197 user specified delays! */
6198 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6199 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6201 /* Handle cases where INSN1 writes to a known general coprocessor
6202 register. There must be a one instruction delay before INSN2
6203 if INSN2 reads that register, otherwise no delay is needed. */
6204 mask = fpr_write_mask (insn1);
6207 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6212 /* Read-after-write dependencies on the control registers
6213 require a two-instruction gap. */
6214 if ((pinfo1 & INSN_WRITE_COND_CODE)
6215 && (pinfo2 & INSN_READ_COND_CODE))
6218 /* We don't know exactly what INSN1 does. If INSN2 is
6219 also a coprocessor instruction, assume there must be
6220 a one instruction gap. */
6221 if (pinfo2 & INSN_COP)
6226 /* Check for read-after-write dependencies on the coprocessor
6227 control registers in cases where INSN1 does not need a general
6228 coprocessor delay. This means that INSN1 is a floating point
6229 comparison instruction. */
6230 /* Itbl support may require additional care here. */
6231 else if (!cop_interlocks
6232 && (pinfo1 & INSN_WRITE_COND_CODE)
6233 && (pinfo2 & INSN_READ_COND_CODE))
6237 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6238 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6240 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6241 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6242 || (insn2 && delayed_branch_p (insn2))))
6248 /* Return the number of nops that would be needed to work around the
6249 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6250 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6251 that are contained within the first IGNORE instructions of HIST. */
6254 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6255 const struct mips_cl_insn *insn)
6260 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6261 are not affected by the errata. */
6263 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6264 || strcmp (insn->insn_mo->name, "mtlo") == 0
6265 || strcmp (insn->insn_mo->name, "mthi") == 0))
6268 /* Search for the first MFLO or MFHI. */
6269 for (i = 0; i < MAX_VR4130_NOPS; i++)
6270 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6272 /* Extract the destination register. */
6273 mask = gpr_write_mask (&hist[i]);
6275 /* No nops are needed if INSN reads that register. */
6276 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6279 /* ...or if any of the intervening instructions do. */
6280 for (j = 0; j < i; j++)
6281 if (gpr_read_mask (&hist[j]) & mask)
6285 return MAX_VR4130_NOPS - i;
6290 #define BASE_REG_EQ(INSN1, INSN2) \
6291 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6292 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6294 /* Return the minimum alignment for this store instruction. */
6297 fix_24k_align_to (const struct mips_opcode *mo)
6299 if (strcmp (mo->name, "sh") == 0)
6302 if (strcmp (mo->name, "swc1") == 0
6303 || strcmp (mo->name, "swc2") == 0
6304 || strcmp (mo->name, "sw") == 0
6305 || strcmp (mo->name, "sc") == 0
6306 || strcmp (mo->name, "s.s") == 0)
6309 if (strcmp (mo->name, "sdc1") == 0
6310 || strcmp (mo->name, "sdc2") == 0
6311 || strcmp (mo->name, "s.d") == 0)
6318 struct fix_24k_store_info
6320 /* Immediate offset, if any, for this store instruction. */
6322 /* Alignment required by this store instruction. */
6324 /* True for register offsets. */
6325 int register_offset;
6328 /* Comparison function used by qsort. */
6331 fix_24k_sort (const void *a, const void *b)
6333 const struct fix_24k_store_info *pos1 = a;
6334 const struct fix_24k_store_info *pos2 = b;
6336 return (pos1->off - pos2->off);
6339 /* INSN is a store instruction. Try to record the store information
6340 in STINFO. Return false if the information isn't known. */
6343 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6344 const struct mips_cl_insn *insn)
6346 /* The instruction must have a known offset. */
6347 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6350 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6351 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6355 /* Return the number of nops that would be needed to work around the 24k
6356 "lost data on stores during refill" errata if instruction INSN
6357 immediately followed the 2 instructions described by HIST.
6358 Ignore hazards that are contained within the first IGNORE
6359 instructions of HIST.
6361 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6362 for the data cache refills and store data. The following describes
6363 the scenario where the store data could be lost.
6365 * A data cache miss, due to either a load or a store, causing fill
6366 data to be supplied by the memory subsystem
6367 * The first three doublewords of fill data are returned and written
6369 * A sequence of four stores occurs in consecutive cycles around the
6370 final doubleword of the fill:
6374 * Zero, One or more instructions
6377 The four stores A-D must be to different doublewords of the line that
6378 is being filled. The fourth instruction in the sequence above permits
6379 the fill of the final doubleword to be transferred from the FSB into
6380 the cache. In the sequence above, the stores may be either integer
6381 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6382 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6383 different doublewords on the line. If the floating point unit is
6384 running in 1:2 mode, it is not possible to create the sequence above
6385 using only floating point store instructions.
6387 In this case, the cache line being filled is incorrectly marked
6388 invalid, thereby losing the data from any store to the line that
6389 occurs between the original miss and the completion of the five
6390 cycle sequence shown above.
6392 The workarounds are:
6394 * Run the data cache in write-through mode.
6395 * Insert a non-store instruction between
6396 Store A and Store B or Store B and Store C. */
6399 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6400 const struct mips_cl_insn *insn)
6402 struct fix_24k_store_info pos[3];
6403 int align, i, base_offset;
6408 /* If the previous instruction wasn't a store, there's nothing to
6410 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6413 /* If the instructions after the previous one are unknown, we have
6414 to assume the worst. */
6418 /* Check whether we are dealing with three consecutive stores. */
6419 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6420 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6423 /* If we don't know the relationship between the store addresses,
6424 assume the worst. */
6425 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6426 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6429 if (!fix_24k_record_store_info (&pos[0], insn)
6430 || !fix_24k_record_store_info (&pos[1], &hist[0])
6431 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6434 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6436 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6437 X bytes and such that the base register + X is known to be aligned
6440 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6444 align = pos[0].align_to;
6445 base_offset = pos[0].off;
6446 for (i = 1; i < 3; i++)
6447 if (align < pos[i].align_to)
6449 align = pos[i].align_to;
6450 base_offset = pos[i].off;
6452 for (i = 0; i < 3; i++)
6453 pos[i].off -= base_offset;
6456 pos[0].off &= ~align + 1;
6457 pos[1].off &= ~align + 1;
6458 pos[2].off &= ~align + 1;
6460 /* If any two stores write to the same chunk, they also write to the
6461 same doubleword. The offsets are still sorted at this point. */
6462 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6465 /* A range of at least 9 bytes is needed for the stores to be in
6466 non-overlapping doublewords. */
6467 if (pos[2].off - pos[0].off <= 8)
6470 if (pos[2].off - pos[1].off >= 24
6471 || pos[1].off - pos[0].off >= 24
6472 || pos[2].off - pos[0].off >= 32)
6478 /* Return the number of nops that would be needed if instruction INSN
6479 immediately followed the MAX_NOPS instructions given by HIST,
6480 where HIST[0] is the most recent instruction. Ignore hazards
6481 between INSN and the first IGNORE instructions in HIST.
6483 If INSN is null, return the worse-case number of nops for any
6487 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6488 const struct mips_cl_insn *insn)
6490 int i, nops, tmp_nops;
6493 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6495 tmp_nops = insns_between (hist + i, insn) - i;
6496 if (tmp_nops > nops)
6500 if (mips_fix_vr4130 && !mips_opts.micromips)
6502 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6503 if (tmp_nops > nops)
6507 if (mips_fix_24k && !mips_opts.micromips)
6509 tmp_nops = nops_for_24k (ignore, hist, insn);
6510 if (tmp_nops > nops)
6517 /* The variable arguments provide NUM_INSNS extra instructions that
6518 might be added to HIST. Return the largest number of nops that
6519 would be needed after the extended sequence, ignoring hazards
6520 in the first IGNORE instructions. */
6523 nops_for_sequence (int num_insns, int ignore,
6524 const struct mips_cl_insn *hist, ...)
6527 struct mips_cl_insn buffer[MAX_NOPS];
6528 struct mips_cl_insn *cursor;
6531 va_start (args, hist);
6532 cursor = buffer + num_insns;
6533 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6534 while (cursor > buffer)
6535 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6537 nops = nops_for_insn (ignore, buffer, NULL);
6542 /* Like nops_for_insn, but if INSN is a branch, take into account the
6543 worst-case delay for the branch target. */
6546 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6547 const struct mips_cl_insn *insn)
6551 nops = nops_for_insn (ignore, hist, insn);
6552 if (delayed_branch_p (insn))
6554 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6555 hist, insn, get_delay_slot_nop (insn));
6556 if (tmp_nops > nops)
6559 else if (compact_branch_p (insn))
6561 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6562 if (tmp_nops > nops)
6568 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6571 fix_loongson2f_nop (struct mips_cl_insn * ip)
6573 gas_assert (!HAVE_CODE_COMPRESSION);
6574 if (strcmp (ip->insn_mo->name, "nop") == 0)
6575 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6578 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6579 jr target pc &= 'hffff_ffff_cfff_ffff. */
6582 fix_loongson2f_jump (struct mips_cl_insn * ip)
6584 gas_assert (!HAVE_CODE_COMPRESSION);
6585 if (strcmp (ip->insn_mo->name, "j") == 0
6586 || strcmp (ip->insn_mo->name, "jr") == 0
6587 || strcmp (ip->insn_mo->name, "jalr") == 0)
6595 sreg = EXTRACT_OPERAND (0, RS, *ip);
6596 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6599 ep.X_op = O_constant;
6600 ep.X_add_number = 0xcfff0000;
6601 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6602 ep.X_add_number = 0xffff;
6603 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6604 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6609 fix_loongson2f (struct mips_cl_insn * ip)
6611 if (mips_fix_loongson2f_nop)
6612 fix_loongson2f_nop (ip);
6614 if (mips_fix_loongson2f_jump)
6615 fix_loongson2f_jump (ip);
6618 /* IP is a branch that has a delay slot, and we need to fill it
6619 automatically. Return true if we can do that by swapping IP
6620 with the previous instruction.
6621 ADDRESS_EXPR is an operand of the instruction to be used with
6625 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6626 bfd_reloc_code_real_type *reloc_type)
6628 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6629 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6630 unsigned int fpr_read, prev_fpr_write;
6632 /* -O2 and above is required for this optimization. */
6633 if (mips_optimize < 2)
6636 /* If we have seen .set volatile or .set nomove, don't optimize. */
6637 if (mips_opts.nomove)
6640 /* We can't swap if the previous instruction's position is fixed. */
6641 if (history[0].fixed_p)
6644 /* If the previous previous insn was in a .set noreorder, we can't
6645 swap. Actually, the MIPS assembler will swap in this situation.
6646 However, gcc configured -with-gnu-as will generate code like
6654 in which we can not swap the bne and INSN. If gcc is not configured
6655 -with-gnu-as, it does not output the .set pseudo-ops. */
6656 if (history[1].noreorder_p)
6659 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6660 This means that the previous instruction was a 4-byte one anyhow. */
6661 if (mips_opts.mips16 && history[0].fixp[0])
6664 /* If the branch is itself the target of a branch, we can not swap.
6665 We cheat on this; all we check for is whether there is a label on
6666 this instruction. If there are any branches to anything other than
6667 a label, users must use .set noreorder. */
6668 if (seg_info (now_seg)->label_list)
6671 /* If the previous instruction is in a variant frag other than this
6672 branch's one, we cannot do the swap. This does not apply to
6673 MIPS16 code, which uses variant frags for different purposes. */
6674 if (!mips_opts.mips16
6676 && history[0].frag->fr_type == rs_machine_dependent)
6679 /* We do not swap with instructions that cannot architecturally
6680 be placed in a branch delay slot, such as SYNC or ERET. We
6681 also refrain from swapping with a trap instruction, since it
6682 complicates trap handlers to have the trap instruction be in
6684 prev_pinfo = history[0].insn_mo->pinfo;
6685 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6688 /* Check for conflicts between the branch and the instructions
6689 before the candidate delay slot. */
6690 if (nops_for_insn (0, history + 1, ip) > 0)
6693 /* Check for conflicts between the swapped sequence and the
6694 target of the branch. */
6695 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6698 /* If the branch reads a register that the previous
6699 instruction sets, we can not swap. */
6700 gpr_read = gpr_read_mask (ip);
6701 prev_gpr_write = gpr_write_mask (&history[0]);
6702 if (gpr_read & prev_gpr_write)
6705 fpr_read = fpr_read_mask (ip);
6706 prev_fpr_write = fpr_write_mask (&history[0]);
6707 if (fpr_read & prev_fpr_write)
6710 /* If the branch writes a register that the previous
6711 instruction sets, we can not swap. */
6712 gpr_write = gpr_write_mask (ip);
6713 if (gpr_write & prev_gpr_write)
6716 /* If the branch writes a register that the previous
6717 instruction reads, we can not swap. */
6718 prev_gpr_read = gpr_read_mask (&history[0]);
6719 if (gpr_write & prev_gpr_read)
6722 /* If one instruction sets a condition code and the
6723 other one uses a condition code, we can not swap. */
6724 pinfo = ip->insn_mo->pinfo;
6725 if ((pinfo & INSN_READ_COND_CODE)
6726 && (prev_pinfo & INSN_WRITE_COND_CODE))
6728 if ((pinfo & INSN_WRITE_COND_CODE)
6729 && (prev_pinfo & INSN_READ_COND_CODE))
6732 /* If the previous instruction uses the PC, we can not swap. */
6733 prev_pinfo2 = history[0].insn_mo->pinfo2;
6734 if (prev_pinfo2 & INSN2_READ_PC)
6737 /* If the previous instruction has an incorrect size for a fixed
6738 branch delay slot in microMIPS mode, we cannot swap. */
6739 pinfo2 = ip->insn_mo->pinfo2;
6740 if (mips_opts.micromips
6741 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6742 && insn_length (history) != 2)
6744 if (mips_opts.micromips
6745 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6746 && insn_length (history) != 4)
6749 /* On R5900 short loops need to be fixed by inserting a nop in
6750 the branch delay slots.
6751 A short loop can be terminated too early. */
6752 if (mips_opts.arch == CPU_R5900
6753 /* Check if instruction has a parameter, ignore "j $31". */
6754 && (address_expr != NULL)
6755 /* Parameter must be 16 bit. */
6756 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6757 /* Branch to same segment. */
6758 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6759 /* Branch to same code fragment. */
6760 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6761 /* Can only calculate branch offset if value is known. */
6762 && symbol_constant_p (address_expr->X_add_symbol)
6763 /* Check if branch is really conditional. */
6764 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6765 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6766 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6769 /* Check if loop is shorter than 6 instructions including
6770 branch and delay slot. */
6771 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6778 /* When the loop includes branches or jumps,
6779 it is not a short loop. */
6780 for (i = 0; i < (distance / 4); i++)
6782 if ((history[i].cleared_p)
6783 || delayed_branch_p (&history[i]))
6791 /* Insert nop after branch to fix short loop. */
6800 /* Decide how we should add IP to the instruction stream.
6801 ADDRESS_EXPR is an operand of the instruction to be used with
6804 static enum append_method
6805 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6806 bfd_reloc_code_real_type *reloc_type)
6808 /* The relaxed version of a macro sequence must be inherently
6810 if (mips_relax.sequence == 2)
6813 /* We must not dabble with instructions in a ".set noreorder" block. */
6814 if (mips_opts.noreorder)
6817 /* Otherwise, it's our responsibility to fill branch delay slots. */
6818 if (delayed_branch_p (ip))
6820 if (!branch_likely_p (ip)
6821 && can_swap_branch_p (ip, address_expr, reloc_type))
6824 if (mips_opts.mips16
6825 && ISA_SUPPORTS_MIPS16E
6826 && gpr_read_mask (ip) != 0)
6827 return APPEND_ADD_COMPACT;
6829 return APPEND_ADD_WITH_NOP;
6835 /* IP is a MIPS16 instruction whose opcode we have just changed.
6836 Point IP->insn_mo to the new opcode's definition. */
6839 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6841 const struct mips_opcode *mo, *end;
6843 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6844 for (mo = ip->insn_mo; mo < end; mo++)
6845 if ((ip->insn_opcode & mo->mask) == mo->match)
6853 /* For microMIPS macros, we need to generate a local number label
6854 as the target of branches. */
6855 #define MICROMIPS_LABEL_CHAR '\037'
6856 static unsigned long micromips_target_label;
6857 static char micromips_target_name[32];
6860 micromips_label_name (void)
6862 char *p = micromips_target_name;
6863 char symbol_name_temporary[24];
6871 l = micromips_target_label;
6872 #ifdef LOCAL_LABEL_PREFIX
6873 *p++ = LOCAL_LABEL_PREFIX;
6876 *p++ = MICROMIPS_LABEL_CHAR;
6879 symbol_name_temporary[i++] = l % 10 + '0';
6884 *p++ = symbol_name_temporary[--i];
6887 return micromips_target_name;
6891 micromips_label_expr (expressionS *label_expr)
6893 label_expr->X_op = O_symbol;
6894 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6895 label_expr->X_add_number = 0;
6899 micromips_label_inc (void)
6901 micromips_target_label++;
6902 *micromips_target_name = '\0';
6906 micromips_add_label (void)
6910 s = colon (micromips_label_name ());
6911 micromips_label_inc ();
6912 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6915 /* If assembling microMIPS code, then return the microMIPS reloc
6916 corresponding to the requested one if any. Otherwise return
6917 the reloc unchanged. */
6919 static bfd_reloc_code_real_type
6920 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6922 static const bfd_reloc_code_real_type relocs[][2] =
6924 /* Keep sorted incrementally by the left-hand key. */
6925 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6926 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6927 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6928 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6929 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6930 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6931 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6932 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6933 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6934 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6935 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6936 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6937 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6938 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6939 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6940 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6941 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6942 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6943 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6944 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6945 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6946 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6947 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6948 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6949 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6950 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6951 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6953 bfd_reloc_code_real_type r;
6956 if (!mips_opts.micromips)
6958 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6964 return relocs[i][1];
6969 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6970 Return true on success, storing the resolved value in RESULT. */
6973 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6978 case BFD_RELOC_MIPS_HIGHEST:
6979 case BFD_RELOC_MICROMIPS_HIGHEST:
6980 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6983 case BFD_RELOC_MIPS_HIGHER:
6984 case BFD_RELOC_MICROMIPS_HIGHER:
6985 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6988 case BFD_RELOC_HI16_S:
6989 case BFD_RELOC_HI16_S_PCREL:
6990 case BFD_RELOC_MICROMIPS_HI16_S:
6991 case BFD_RELOC_MIPS16_HI16_S:
6992 *result = ((operand + 0x8000) >> 16) & 0xffff;
6995 case BFD_RELOC_HI16:
6996 case BFD_RELOC_MICROMIPS_HI16:
6997 case BFD_RELOC_MIPS16_HI16:
6998 *result = (operand >> 16) & 0xffff;
7001 case BFD_RELOC_LO16:
7002 case BFD_RELOC_LO16_PCREL:
7003 case BFD_RELOC_MICROMIPS_LO16:
7004 case BFD_RELOC_MIPS16_LO16:
7005 *result = operand & 0xffff;
7008 case BFD_RELOC_UNUSED:
7017 /* Output an instruction. IP is the instruction information.
7018 ADDRESS_EXPR is an operand of the instruction to be used with
7019 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7020 a macro expansion. */
7023 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7024 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7026 unsigned long prev_pinfo2, pinfo;
7027 bfd_boolean relaxed_branch = FALSE;
7028 enum append_method method;
7029 bfd_boolean relax32;
7032 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7033 fix_loongson2f (ip);
7035 file_ase_mips16 |= mips_opts.mips16;
7036 file_ase_micromips |= mips_opts.micromips;
7038 prev_pinfo2 = history[0].insn_mo->pinfo2;
7039 pinfo = ip->insn_mo->pinfo;
7041 if (mips_opts.micromips
7043 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7044 && micromips_insn_length (ip->insn_mo) != 2)
7045 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7046 && micromips_insn_length (ip->insn_mo) != 4)))
7047 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7048 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7050 if (address_expr == NULL)
7052 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7053 && reloc_type[1] == BFD_RELOC_UNUSED
7054 && reloc_type[2] == BFD_RELOC_UNUSED
7055 && address_expr->X_op == O_constant)
7057 switch (*reloc_type)
7059 case BFD_RELOC_MIPS_JMP:
7063 /* Shift is 2, unusually, for microMIPS JALX. */
7064 shift = (mips_opts.micromips
7065 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7066 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7067 as_bad (_("jump to misaligned address (0x%lx)"),
7068 (unsigned long) address_expr->X_add_number);
7069 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7075 case BFD_RELOC_MIPS16_JMP:
7076 if ((address_expr->X_add_number & 3) != 0)
7077 as_bad (_("jump to misaligned address (0x%lx)"),
7078 (unsigned long) address_expr->X_add_number);
7080 (((address_expr->X_add_number & 0x7c0000) << 3)
7081 | ((address_expr->X_add_number & 0xf800000) >> 7)
7082 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7086 case BFD_RELOC_16_PCREL_S2:
7090 shift = mips_opts.micromips ? 1 : 2;
7091 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7092 as_bad (_("branch to misaligned address (0x%lx)"),
7093 (unsigned long) address_expr->X_add_number);
7094 if (!mips_relax_branch)
7096 if ((address_expr->X_add_number + (1 << (shift + 15)))
7097 & ~((1 << (shift + 16)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7106 case BFD_RELOC_MIPS_21_PCREL_S2:
7111 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7112 as_bad (_("branch to misaligned address (0x%lx)"),
7113 (unsigned long) address_expr->X_add_number);
7114 if ((address_expr->X_add_number + (1 << (shift + 20)))
7115 & ~((1 << (shift + 21)) - 1))
7116 as_bad (_("branch address range overflow (0x%lx)"),
7117 (unsigned long) address_expr->X_add_number);
7118 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7123 case BFD_RELOC_MIPS_26_PCREL_S2:
7128 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7129 as_bad (_("branch to misaligned address (0x%lx)"),
7130 (unsigned long) address_expr->X_add_number);
7131 if ((address_expr->X_add_number + (1 << (shift + 25)))
7132 & ~((1 << (shift + 26)) - 1))
7133 as_bad (_("branch address range overflow (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7144 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7147 ip->insn_opcode |= value & 0xffff;
7155 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7157 /* There are a lot of optimizations we could do that we don't.
7158 In particular, we do not, in general, reorder instructions.
7159 If you use gcc with optimization, it will reorder
7160 instructions and generally do much more optimization then we
7161 do here; repeating all that work in the assembler would only
7162 benefit hand written assembly code, and does not seem worth
7164 int nops = (mips_optimize == 0
7165 ? nops_for_insn (0, history, NULL)
7166 : nops_for_insn_or_target (0, history, ip));
7170 unsigned long old_frag_offset;
7173 old_frag = frag_now;
7174 old_frag_offset = frag_now_fix ();
7176 for (i = 0; i < nops; i++)
7177 add_fixed_insn (NOP_INSN);
7178 insert_into_history (0, nops, NOP_INSN);
7182 listing_prev_line ();
7183 /* We may be at the start of a variant frag. In case we
7184 are, make sure there is enough space for the frag
7185 after the frags created by listing_prev_line. The
7186 argument to frag_grow here must be at least as large
7187 as the argument to all other calls to frag_grow in
7188 this file. We don't have to worry about being in the
7189 middle of a variant frag, because the variants insert
7190 all needed nop instructions themselves. */
7194 mips_move_text_labels ();
7196 #ifndef NO_ECOFF_DEBUGGING
7197 if (ECOFF_DEBUGGING)
7198 ecoff_fix_loc (old_frag, old_frag_offset);
7202 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7206 /* Work out how many nops in prev_nop_frag are needed by IP,
7207 ignoring hazards generated by the first prev_nop_frag_since
7209 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7210 gas_assert (nops <= prev_nop_frag_holds);
7212 /* Enforce NOPS as a minimum. */
7213 if (nops > prev_nop_frag_required)
7214 prev_nop_frag_required = nops;
7216 if (prev_nop_frag_holds == prev_nop_frag_required)
7218 /* Settle for the current number of nops. Update the history
7219 accordingly (for the benefit of any future .set reorder code). */
7220 prev_nop_frag = NULL;
7221 insert_into_history (prev_nop_frag_since,
7222 prev_nop_frag_holds, NOP_INSN);
7226 /* Allow this instruction to replace one of the nops that was
7227 tentatively added to prev_nop_frag. */
7228 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7229 prev_nop_frag_holds--;
7230 prev_nop_frag_since++;
7234 method = get_append_method (ip, address_expr, reloc_type);
7235 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7237 dwarf2_emit_insn (0);
7238 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7239 so "move" the instruction address accordingly.
7241 Also, it doesn't seem appropriate for the assembler to reorder .loc
7242 entries. If this instruction is a branch that we are going to swap
7243 with the previous instruction, the two instructions should be
7244 treated as a unit, and the debug information for both instructions
7245 should refer to the start of the branch sequence. Using the
7246 current position is certainly wrong when swapping a 32-bit branch
7247 and a 16-bit delay slot, since the current position would then be
7248 in the middle of a branch. */
7249 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7251 relax32 = (mips_relax_branch
7252 /* Don't try branch relaxation within .set nomacro, or within
7253 .set noat if we use $at for PIC computations. If it turns
7254 out that the branch was out-of-range, we'll get an error. */
7255 && !mips_opts.warn_about_macros
7256 && (mips_opts.at || mips_pic == NO_PIC)
7257 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7258 as they have no complementing branches. */
7259 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7261 if (!HAVE_CODE_COMPRESSION
7264 && *reloc_type == BFD_RELOC_16_PCREL_S2
7265 && delayed_branch_p (ip))
7267 relaxed_branch = TRUE;
7268 add_relaxed_insn (ip, (relaxed_branch_length
7270 uncond_branch_p (ip) ? -1
7271 : branch_likely_p (ip) ? 1
7275 uncond_branch_p (ip),
7276 branch_likely_p (ip),
7277 pinfo & INSN_WRITE_GPR_31,
7279 address_expr->X_add_symbol,
7280 address_expr->X_add_number);
7281 *reloc_type = BFD_RELOC_UNUSED;
7283 else if (mips_opts.micromips
7285 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7286 || *reloc_type > BFD_RELOC_UNUSED)
7287 && (delayed_branch_p (ip) || compact_branch_p (ip))
7288 /* Don't try branch relaxation when users specify
7289 16-bit/32-bit instructions. */
7290 && !forced_insn_length)
7292 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7293 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7294 int uncond = uncond_branch_p (ip) ? -1 : 0;
7295 int compact = compact_branch_p (ip);
7296 int al = pinfo & INSN_WRITE_GPR_31;
7299 gas_assert (address_expr != NULL);
7300 gas_assert (!mips_relax.sequence);
7302 relaxed_branch = TRUE;
7303 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7304 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7305 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7307 address_expr->X_add_symbol,
7308 address_expr->X_add_number);
7309 *reloc_type = BFD_RELOC_UNUSED;
7311 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7316 /* We need to set up a variant frag. */
7317 gas_assert (address_expr != NULL);
7318 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7319 symbol created by `make_expr_symbol' may not get a necessary
7320 external relocation produced. */
7321 if (address_expr->X_op == O_symbol)
7323 symbol = address_expr->X_add_symbol;
7324 offset = address_expr->X_add_number;
7328 symbol = make_expr_symbol (address_expr);
7331 add_relaxed_insn (ip, 4, 0,
7333 (*reloc_type - BFD_RELOC_UNUSED,
7334 forced_insn_length == 2, forced_insn_length == 4,
7335 delayed_branch_p (&history[0]),
7336 history[0].mips16_absolute_jump_p),
7339 else if (mips_opts.mips16 && insn_length (ip) == 2)
7341 if (!delayed_branch_p (ip))
7342 /* Make sure there is enough room to swap this instruction with
7343 a following jump instruction. */
7345 add_fixed_insn (ip);
7349 if (mips_opts.mips16
7350 && mips_opts.noreorder
7351 && delayed_branch_p (&history[0]))
7352 as_warn (_("extended instruction in delay slot"));
7354 if (mips_relax.sequence)
7356 /* If we've reached the end of this frag, turn it into a variant
7357 frag and record the information for the instructions we've
7359 if (frag_room () < 4)
7360 relax_close_frag ();
7361 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7364 if (mips_relax.sequence != 2)
7366 if (mips_macro_warning.first_insn_sizes[0] == 0)
7367 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7368 mips_macro_warning.sizes[0] += insn_length (ip);
7369 mips_macro_warning.insns[0]++;
7371 if (mips_relax.sequence != 1)
7373 if (mips_macro_warning.first_insn_sizes[1] == 0)
7374 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7375 mips_macro_warning.sizes[1] += insn_length (ip);
7376 mips_macro_warning.insns[1]++;
7379 if (mips_opts.mips16)
7382 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7384 add_fixed_insn (ip);
7387 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7389 bfd_reloc_code_real_type final_type[3];
7390 reloc_howto_type *howto0;
7391 reloc_howto_type *howto;
7394 /* Perform any necessary conversion to microMIPS relocations
7395 and find out how many relocations there actually are. */
7396 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7397 final_type[i] = micromips_map_reloc (reloc_type[i]);
7399 /* In a compound relocation, it is the final (outermost)
7400 operator that determines the relocated field. */
7401 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7406 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7407 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7408 bfd_get_reloc_size (howto),
7410 howto0 && howto0->pc_relative,
7413 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7414 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7415 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7417 /* These relocations can have an addend that won't fit in
7418 4 octets for 64bit assembly. */
7420 && ! howto->partial_inplace
7421 && (reloc_type[0] == BFD_RELOC_16
7422 || reloc_type[0] == BFD_RELOC_32
7423 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7424 || reloc_type[0] == BFD_RELOC_GPREL16
7425 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7426 || reloc_type[0] == BFD_RELOC_GPREL32
7427 || reloc_type[0] == BFD_RELOC_64
7428 || reloc_type[0] == BFD_RELOC_CTOR
7429 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7430 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7431 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7432 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7433 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7434 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7435 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7436 || hi16_reloc_p (reloc_type[0])
7437 || lo16_reloc_p (reloc_type[0])))
7438 ip->fixp[0]->fx_no_overflow = 1;
7440 /* These relocations can have an addend that won't fit in 2 octets. */
7441 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7442 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7443 ip->fixp[0]->fx_no_overflow = 1;
7445 if (mips_relax.sequence)
7447 if (mips_relax.first_fixup == 0)
7448 mips_relax.first_fixup = ip->fixp[0];
7450 else if (reloc_needs_lo_p (*reloc_type))
7452 struct mips_hi_fixup *hi_fixup;
7454 /* Reuse the last entry if it already has a matching %lo. */
7455 hi_fixup = mips_hi_fixup_list;
7457 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7459 hi_fixup = XNEW (struct mips_hi_fixup);
7460 hi_fixup->next = mips_hi_fixup_list;
7461 mips_hi_fixup_list = hi_fixup;
7463 hi_fixup->fixp = ip->fixp[0];
7464 hi_fixup->seg = now_seg;
7467 /* Add fixups for the second and third relocations, if given.
7468 Note that the ABI allows the second relocation to be
7469 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7470 moment we only use RSS_UNDEF, but we could add support
7471 for the others if it ever becomes necessary. */
7472 for (i = 1; i < 3; i++)
7473 if (reloc_type[i] != BFD_RELOC_UNUSED)
7475 ip->fixp[i] = fix_new (ip->frag, ip->where,
7476 ip->fixp[0]->fx_size, NULL, 0,
7477 FALSE, final_type[i]);
7479 /* Use fx_tcbit to mark compound relocs. */
7480 ip->fixp[0]->fx_tcbit = 1;
7481 ip->fixp[i]->fx_tcbit = 1;
7485 /* Update the register mask information. */
7486 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7487 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7492 insert_into_history (0, 1, ip);
7495 case APPEND_ADD_WITH_NOP:
7497 struct mips_cl_insn *nop;
7499 insert_into_history (0, 1, ip);
7500 nop = get_delay_slot_nop (ip);
7501 add_fixed_insn (nop);
7502 insert_into_history (0, 1, nop);
7503 if (mips_relax.sequence)
7504 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7508 case APPEND_ADD_COMPACT:
7509 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7510 gas_assert (mips_opts.mips16);
7511 ip->insn_opcode |= 0x0080;
7512 find_altered_mips16_opcode (ip);
7514 insert_into_history (0, 1, ip);
7519 struct mips_cl_insn delay = history[0];
7521 if (relaxed_branch || delay.frag != ip->frag)
7523 /* Add the delay slot instruction to the end of the
7524 current frag and shrink the fixed part of the
7525 original frag. If the branch occupies the tail of
7526 the latter, move it backwards to cover the gap. */
7527 delay.frag->fr_fix -= branch_disp;
7528 if (delay.frag == ip->frag)
7529 move_insn (ip, ip->frag, ip->where - branch_disp);
7530 add_fixed_insn (&delay);
7534 /* If this is not a relaxed branch and we are in the
7535 same frag, then just swap the instructions. */
7536 move_insn (ip, delay.frag, delay.where);
7537 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7541 insert_into_history (0, 1, &delay);
7546 /* If we have just completed an unconditional branch, clear the history. */
7547 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7548 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7552 mips_no_prev_insn ();
7554 for (i = 0; i < ARRAY_SIZE (history); i++)
7555 history[i].cleared_p = 1;
7558 /* We need to emit a label at the end of branch-likely macros. */
7559 if (emit_branch_likely_macro)
7561 emit_branch_likely_macro = FALSE;
7562 micromips_add_label ();
7565 /* We just output an insn, so the next one doesn't have a label. */
7566 mips_clear_insn_labels ();
7569 /* Forget that there was any previous instruction or label.
7570 When BRANCH is true, the branch history is also flushed. */
7573 mips_no_prev_insn (void)
7575 prev_nop_frag = NULL;
7576 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7577 mips_clear_insn_labels ();
7580 /* This function must be called before we emit something other than
7581 instructions. It is like mips_no_prev_insn except that it inserts
7582 any NOPS that might be needed by previous instructions. */
7585 mips_emit_delays (void)
7587 if (! mips_opts.noreorder)
7589 int nops = nops_for_insn (0, history, NULL);
7593 add_fixed_insn (NOP_INSN);
7594 mips_move_text_labels ();
7597 mips_no_prev_insn ();
7600 /* Start a (possibly nested) noreorder block. */
7603 start_noreorder (void)
7605 if (mips_opts.noreorder == 0)
7610 /* None of the instructions before the .set noreorder can be moved. */
7611 for (i = 0; i < ARRAY_SIZE (history); i++)
7612 history[i].fixed_p = 1;
7614 /* Insert any nops that might be needed between the .set noreorder
7615 block and the previous instructions. We will later remove any
7616 nops that turn out not to be needed. */
7617 nops = nops_for_insn (0, history, NULL);
7620 if (mips_optimize != 0)
7622 /* Record the frag which holds the nop instructions, so
7623 that we can remove them if we don't need them. */
7624 frag_grow (nops * NOP_INSN_SIZE);
7625 prev_nop_frag = frag_now;
7626 prev_nop_frag_holds = nops;
7627 prev_nop_frag_required = 0;
7628 prev_nop_frag_since = 0;
7631 for (; nops > 0; --nops)
7632 add_fixed_insn (NOP_INSN);
7634 /* Move on to a new frag, so that it is safe to simply
7635 decrease the size of prev_nop_frag. */
7636 frag_wane (frag_now);
7638 mips_move_text_labels ();
7640 mips_mark_labels ();
7641 mips_clear_insn_labels ();
7643 mips_opts.noreorder++;
7644 mips_any_noreorder = 1;
7647 /* End a nested noreorder block. */
7650 end_noreorder (void)
7652 mips_opts.noreorder--;
7653 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7655 /* Commit to inserting prev_nop_frag_required nops and go back to
7656 handling nop insertion the .set reorder way. */
7657 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7659 insert_into_history (prev_nop_frag_since,
7660 prev_nop_frag_required, NOP_INSN);
7661 prev_nop_frag = NULL;
7665 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7666 higher bits unset. */
7669 normalize_constant_expr (expressionS *ex)
7671 if (ex->X_op == O_constant
7672 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7673 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7677 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7678 all higher bits unset. */
7681 normalize_address_expr (expressionS *ex)
7683 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7684 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7685 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7686 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7690 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7691 Return true if the match was successful.
7693 OPCODE_EXTRA is a value that should be ORed into the opcode
7694 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7695 there are more alternatives after OPCODE and SOFT_MATCH is
7696 as for mips_arg_info. */
7699 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7700 struct mips_operand_token *tokens, unsigned int opcode_extra,
7701 bfd_boolean lax_match, bfd_boolean complete_p)
7704 struct mips_arg_info arg;
7705 const struct mips_operand *operand;
7708 imm_expr.X_op = O_absent;
7709 offset_expr.X_op = O_absent;
7710 offset_reloc[0] = BFD_RELOC_UNUSED;
7711 offset_reloc[1] = BFD_RELOC_UNUSED;
7712 offset_reloc[2] = BFD_RELOC_UNUSED;
7714 create_insn (insn, opcode);
7715 /* When no opcode suffix is specified, assume ".xyzw". */
7716 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7717 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7719 insn->insn_opcode |= opcode_extra;
7720 memset (&arg, 0, sizeof (arg));
7724 arg.last_regno = ILLEGAL_REG;
7725 arg.dest_regno = ILLEGAL_REG;
7726 arg.lax_match = lax_match;
7727 for (args = opcode->args;; ++args)
7729 if (arg.token->type == OT_END)
7731 /* Handle unary instructions in which only one operand is given.
7732 The source is then the same as the destination. */
7733 if (arg.opnum == 1 && *args == ',')
7735 operand = (mips_opts.micromips
7736 ? decode_micromips_operand (args + 1)
7737 : decode_mips_operand (args + 1));
7738 if (operand && mips_optional_operand_p (operand))
7746 /* Treat elided base registers as $0. */
7747 if (strcmp (args, "(b)") == 0)
7755 /* The register suffix is optional. */
7760 /* Fail the match if there were too few operands. */
7764 /* Successful match. */
7767 clear_insn_error ();
7768 if (arg.dest_regno == arg.last_regno
7769 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7773 (0, _("source and destination must be different"));
7774 else if (arg.last_regno == 31)
7776 (0, _("a destination register must be supplied"));
7778 else if (arg.last_regno == 31
7779 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7780 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7781 set_insn_error (0, _("the source register must not be $31"));
7782 check_completed_insn (&arg);
7786 /* Fail the match if the line has too many operands. */
7790 /* Handle characters that need to match exactly. */
7791 if (*args == '(' || *args == ')' || *args == ',')
7793 if (match_char (&arg, *args))
7800 if (arg.token->type == OT_DOUBLE_CHAR
7801 && arg.token->u.ch == *args)
7809 /* Handle special macro operands. Work out the properties of
7818 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7822 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7831 *offset_reloc = BFD_RELOC_MIPS_JMP;
7835 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7839 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7845 if (!match_const_int (&arg, &imm_expr.X_add_number))
7847 imm_expr.X_op = O_constant;
7849 normalize_constant_expr (&imm_expr);
7853 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7855 /* Assume that the offset has been elided and that what
7856 we saw was a base register. The match will fail later
7857 if that assumption turns out to be wrong. */
7858 offset_expr.X_op = O_constant;
7859 offset_expr.X_add_number = 0;
7863 if (!match_expression (&arg, &offset_expr, offset_reloc))
7865 normalize_address_expr (&offset_expr);
7870 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7876 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7882 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7888 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7894 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7898 *offset_reloc = BFD_RELOC_MIPS_JMP;
7902 gas_assert (mips_opts.micromips);
7908 if (!forced_insn_length)
7909 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7911 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7913 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7919 operand = (mips_opts.micromips
7920 ? decode_micromips_operand (args)
7921 : decode_mips_operand (args));
7925 /* Skip prefixes. */
7926 if (*args == '+' || *args == 'm' || *args == '-')
7929 if (mips_optional_operand_p (operand)
7931 && (arg.token[0].type != OT_REG
7932 || arg.token[1].type == OT_END))
7934 /* Assume that the register has been elided and is the
7935 same as the first operand. */
7940 if (!match_operand (&arg, operand))
7945 /* Like match_insn, but for MIPS16. */
7948 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7949 struct mips_operand_token *tokens)
7952 const struct mips_operand *operand;
7953 const struct mips_operand *ext_operand;
7954 struct mips_arg_info arg;
7957 create_insn (insn, opcode);
7958 imm_expr.X_op = O_absent;
7959 offset_expr.X_op = O_absent;
7960 offset_reloc[0] = BFD_RELOC_UNUSED;
7961 offset_reloc[1] = BFD_RELOC_UNUSED;
7962 offset_reloc[2] = BFD_RELOC_UNUSED;
7965 memset (&arg, 0, sizeof (arg));
7969 arg.last_regno = ILLEGAL_REG;
7970 arg.dest_regno = ILLEGAL_REG;
7972 for (args = opcode->args;; ++args)
7976 if (arg.token->type == OT_END)
7980 /* Handle unary instructions in which only one operand is given.
7981 The source is then the same as the destination. */
7982 if (arg.opnum == 1 && *args == ',')
7984 operand = decode_mips16_operand (args[1], FALSE);
7985 if (operand && mips_optional_operand_p (operand))
7993 /* Fail the match if there were too few operands. */
7997 /* Successful match. Stuff the immediate value in now, if
7999 clear_insn_error ();
8000 if (opcode->pinfo == INSN_MACRO)
8002 gas_assert (relax_char == 0 || relax_char == 'p');
8003 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8006 && offset_expr.X_op == O_constant
8007 && calculate_reloc (*offset_reloc,
8008 offset_expr.X_add_number,
8011 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8012 forced_insn_length, &insn->insn_opcode);
8013 offset_expr.X_op = O_absent;
8014 *offset_reloc = BFD_RELOC_UNUSED;
8016 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8018 if (forced_insn_length == 2)
8019 set_insn_error (0, _("invalid unextended operand value"));
8020 forced_insn_length = 4;
8021 insn->insn_opcode |= MIPS16_EXTEND;
8023 else if (relax_char)
8024 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8026 check_completed_insn (&arg);
8030 /* Fail the match if the line has too many operands. */
8034 /* Handle characters that need to match exactly. */
8035 if (*args == '(' || *args == ')' || *args == ',')
8037 if (match_char (&arg, *args))
8055 if (!match_const_int (&arg, &imm_expr.X_add_number))
8057 imm_expr.X_op = O_constant;
8059 normalize_constant_expr (&imm_expr);
8064 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8065 insn->insn_opcode <<= 16;
8069 operand = decode_mips16_operand (c, FALSE);
8073 /* '6' is a special case. It is used for BREAK and SDBBP,
8074 whose operands are only meaningful to the software that decodes
8075 them. This means that there is no architectural reason why
8076 they cannot be prefixed by EXTEND, but in practice,
8077 exception handlers will only look at the instruction
8078 itself. We therefore allow '6' to be extended when
8079 disassembling but not when assembling. */
8080 if (operand->type != OP_PCREL && c != '6')
8082 ext_operand = decode_mips16_operand (c, TRUE);
8083 if (operand != ext_operand)
8085 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8087 offset_expr.X_op = O_constant;
8088 offset_expr.X_add_number = 0;
8093 /* We need the OT_INTEGER check because some MIPS16
8094 immediate variants are listed before the register ones. */
8095 if (arg.token->type != OT_INTEGER
8096 || !match_expression (&arg, &offset_expr, offset_reloc))
8099 /* '8' is used for SLTI(U) and has traditionally not
8100 been allowed to take relocation operators. */
8101 if (offset_reloc[0] != BFD_RELOC_UNUSED
8102 && (ext_operand->size != 16 || c == '8'))
8110 if (mips_optional_operand_p (operand)
8112 && (arg.token[0].type != OT_REG
8113 || arg.token[1].type == OT_END))
8115 /* Assume that the register has been elided and is the
8116 same as the first operand. */
8121 if (!match_operand (&arg, operand))
8126 /* Record that the current instruction is invalid for the current ISA. */
8129 match_invalid_for_isa (void)
8132 (0, _("opcode not supported on this processor: %s (%s)"),
8133 mips_cpu_info_from_arch (mips_opts.arch)->name,
8134 mips_cpu_info_from_isa (mips_opts.isa)->name);
8137 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8138 Return true if a definite match or failure was found, storing any match
8139 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8140 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8141 tried and failed to match under normal conditions and now want to try a
8142 more relaxed match. */
8145 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8146 const struct mips_opcode *past, struct mips_operand_token *tokens,
8147 int opcode_extra, bfd_boolean lax_match)
8149 const struct mips_opcode *opcode;
8150 const struct mips_opcode *invalid_delay_slot;
8151 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8153 /* Search for a match, ignoring alternatives that don't satisfy the
8154 current ISA or forced_length. */
8155 invalid_delay_slot = 0;
8156 seen_valid_for_isa = FALSE;
8157 seen_valid_for_size = FALSE;
8161 gas_assert (strcmp (opcode->name, first->name) == 0);
8162 if (is_opcode_valid (opcode))
8164 seen_valid_for_isa = TRUE;
8165 if (is_size_valid (opcode))
8167 bfd_boolean delay_slot_ok;
8169 seen_valid_for_size = TRUE;
8170 delay_slot_ok = is_delay_slot_valid (opcode);
8171 if (match_insn (insn, opcode, tokens, opcode_extra,
8172 lax_match, delay_slot_ok))
8176 if (!invalid_delay_slot)
8177 invalid_delay_slot = opcode;
8186 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8188 /* If the only matches we found had the wrong length for the delay slot,
8189 pick the first such match. We'll issue an appropriate warning later. */
8190 if (invalid_delay_slot)
8192 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8198 /* Handle the case where we didn't try to match an instruction because
8199 all the alternatives were incompatible with the current ISA. */
8200 if (!seen_valid_for_isa)
8202 match_invalid_for_isa ();
8206 /* Handle the case where we didn't try to match an instruction because
8207 all the alternatives were of the wrong size. */
8208 if (!seen_valid_for_size)
8210 if (mips_opts.insn32)
8211 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8214 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8215 8 * forced_insn_length);
8222 /* Like match_insns, but for MIPS16. */
8225 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8226 struct mips_operand_token *tokens)
8228 const struct mips_opcode *opcode;
8229 bfd_boolean seen_valid_for_isa;
8231 /* Search for a match, ignoring alternatives that don't satisfy the
8232 current ISA. There are no separate entries for extended forms so
8233 we deal with forced_length later. */
8234 seen_valid_for_isa = FALSE;
8238 gas_assert (strcmp (opcode->name, first->name) == 0);
8239 if (is_opcode_valid_16 (opcode))
8241 seen_valid_for_isa = TRUE;
8242 if (match_mips16_insn (insn, opcode, tokens))
8247 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8248 && strcmp (opcode->name, first->name) == 0);
8250 /* Handle the case where we didn't try to match an instruction because
8251 all the alternatives were incompatible with the current ISA. */
8252 if (!seen_valid_for_isa)
8254 match_invalid_for_isa ();
8261 /* Set up global variables for the start of a new macro. */
8266 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8267 memset (&mips_macro_warning.first_insn_sizes, 0,
8268 sizeof (mips_macro_warning.first_insn_sizes));
8269 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8270 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8271 && delayed_branch_p (&history[0]));
8272 switch (history[0].insn_mo->pinfo2
8273 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8275 case INSN2_BRANCH_DELAY_32BIT:
8276 mips_macro_warning.delay_slot_length = 4;
8278 case INSN2_BRANCH_DELAY_16BIT:
8279 mips_macro_warning.delay_slot_length = 2;
8282 mips_macro_warning.delay_slot_length = 0;
8285 mips_macro_warning.first_frag = NULL;
8288 /* Given that a macro is longer than one instruction or of the wrong size,
8289 return the appropriate warning for it. Return null if no warning is
8290 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8291 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8292 and RELAX_NOMACRO. */
8295 macro_warning (relax_substateT subtype)
8297 if (subtype & RELAX_DELAY_SLOT)
8298 return _("macro instruction expanded into multiple instructions"
8299 " in a branch delay slot");
8300 else if (subtype & RELAX_NOMACRO)
8301 return _("macro instruction expanded into multiple instructions");
8302 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8303 | RELAX_DELAY_SLOT_SIZE_SECOND))
8304 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8305 ? _("macro instruction expanded into a wrong size instruction"
8306 " in a 16-bit branch delay slot")
8307 : _("macro instruction expanded into a wrong size instruction"
8308 " in a 32-bit branch delay slot"));
8313 /* Finish up a macro. Emit warnings as appropriate. */
8318 /* Relaxation warning flags. */
8319 relax_substateT subtype = 0;
8321 /* Check delay slot size requirements. */
8322 if (mips_macro_warning.delay_slot_length == 2)
8323 subtype |= RELAX_DELAY_SLOT_16BIT;
8324 if (mips_macro_warning.delay_slot_length != 0)
8326 if (mips_macro_warning.delay_slot_length
8327 != mips_macro_warning.first_insn_sizes[0])
8328 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8329 if (mips_macro_warning.delay_slot_length
8330 != mips_macro_warning.first_insn_sizes[1])
8331 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8334 /* Check instruction count requirements. */
8335 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8337 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8338 subtype |= RELAX_SECOND_LONGER;
8339 if (mips_opts.warn_about_macros)
8340 subtype |= RELAX_NOMACRO;
8341 if (mips_macro_warning.delay_slot_p)
8342 subtype |= RELAX_DELAY_SLOT;
8345 /* If both alternatives fail to fill a delay slot correctly,
8346 emit the warning now. */
8347 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8348 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8353 s = subtype & (RELAX_DELAY_SLOT_16BIT
8354 | RELAX_DELAY_SLOT_SIZE_FIRST
8355 | RELAX_DELAY_SLOT_SIZE_SECOND);
8356 msg = macro_warning (s);
8358 as_warn ("%s", msg);
8362 /* If both implementations are longer than 1 instruction, then emit the
8364 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8369 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8370 msg = macro_warning (s);
8372 as_warn ("%s", msg);
8376 /* If any flags still set, then one implementation might need a warning
8377 and the other either will need one of a different kind or none at all.
8378 Pass any remaining flags over to relaxation. */
8379 if (mips_macro_warning.first_frag != NULL)
8380 mips_macro_warning.first_frag->fr_subtype |= subtype;
8383 /* Instruction operand formats used in macros that vary between
8384 standard MIPS and microMIPS code. */
8386 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8387 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8388 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8389 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8390 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8391 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8392 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8393 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8395 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8396 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8397 : cop12_fmt[mips_opts.micromips])
8398 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8399 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8400 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8401 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8402 : mem12_fmt[mips_opts.micromips])
8403 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8404 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8405 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8407 /* Read a macro's relocation codes from *ARGS and store them in *R.
8408 The first argument in *ARGS will be either the code for a single
8409 relocation or -1 followed by the three codes that make up a
8410 composite relocation. */
8413 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8417 next = va_arg (*args, int);
8419 r[0] = (bfd_reloc_code_real_type) next;
8422 for (i = 0; i < 3; i++)
8423 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8424 /* This function is only used for 16-bit relocation fields.
8425 To make the macro code simpler, treat an unrelocated value
8426 in the same way as BFD_RELOC_LO16. */
8427 if (r[0] == BFD_RELOC_UNUSED)
8428 r[0] = BFD_RELOC_LO16;
8432 /* Build an instruction created by a macro expansion. This is passed
8433 a pointer to the count of instructions created so far, an
8434 expression, the name of the instruction to build, an operand format
8435 string, and corresponding arguments. */
8438 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8440 const struct mips_opcode *mo = NULL;
8441 bfd_reloc_code_real_type r[3];
8442 const struct mips_opcode *amo;
8443 const struct mips_operand *operand;
8444 struct hash_control *hash;
8445 struct mips_cl_insn insn;
8449 va_start (args, fmt);
8451 if (mips_opts.mips16)
8453 mips16_macro_build (ep, name, fmt, &args);
8458 r[0] = BFD_RELOC_UNUSED;
8459 r[1] = BFD_RELOC_UNUSED;
8460 r[2] = BFD_RELOC_UNUSED;
8461 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8462 amo = (struct mips_opcode *) hash_find (hash, name);
8464 gas_assert (strcmp (name, amo->name) == 0);
8468 /* Search until we get a match for NAME. It is assumed here that
8469 macros will never generate MDMX, MIPS-3D, or MT instructions.
8470 We try to match an instruction that fulfils the branch delay
8471 slot instruction length requirement (if any) of the previous
8472 instruction. While doing this we record the first instruction
8473 seen that matches all the other conditions and use it anyway
8474 if the requirement cannot be met; we will issue an appropriate
8475 warning later on. */
8476 if (strcmp (fmt, amo->args) == 0
8477 && amo->pinfo != INSN_MACRO
8478 && is_opcode_valid (amo)
8479 && is_size_valid (amo))
8481 if (is_delay_slot_valid (amo))
8491 gas_assert (amo->name);
8493 while (strcmp (name, amo->name) == 0);
8496 create_insn (&insn, mo);
8509 macro_read_relocs (&args, r);
8510 gas_assert (*r == BFD_RELOC_GPREL16
8511 || *r == BFD_RELOC_MIPS_HIGHER
8512 || *r == BFD_RELOC_HI16_S
8513 || *r == BFD_RELOC_LO16
8514 || *r == BFD_RELOC_MIPS_GOT_OFST);
8518 macro_read_relocs (&args, r);
8522 macro_read_relocs (&args, r);
8523 gas_assert (ep != NULL
8524 && (ep->X_op == O_constant
8525 || (ep->X_op == O_symbol
8526 && (*r == BFD_RELOC_MIPS_HIGHEST
8527 || *r == BFD_RELOC_HI16_S
8528 || *r == BFD_RELOC_HI16
8529 || *r == BFD_RELOC_GPREL16
8530 || *r == BFD_RELOC_MIPS_GOT_HI16
8531 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8535 gas_assert (ep != NULL);
8538 * This allows macro() to pass an immediate expression for
8539 * creating short branches without creating a symbol.
8541 * We don't allow branch relaxation for these branches, as
8542 * they should only appear in ".set nomacro" anyway.
8544 if (ep->X_op == O_constant)
8546 /* For microMIPS we always use relocations for branches.
8547 So we should not resolve immediate values. */
8548 gas_assert (!mips_opts.micromips);
8550 if ((ep->X_add_number & 3) != 0)
8551 as_bad (_("branch to misaligned address (0x%lx)"),
8552 (unsigned long) ep->X_add_number);
8553 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8554 as_bad (_("branch address range overflow (0x%lx)"),
8555 (unsigned long) ep->X_add_number);
8556 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8560 *r = BFD_RELOC_16_PCREL_S2;
8564 gas_assert (ep != NULL);
8565 *r = BFD_RELOC_MIPS_JMP;
8569 operand = (mips_opts.micromips
8570 ? decode_micromips_operand (fmt)
8571 : decode_mips_operand (fmt));
8575 uval = va_arg (args, int);
8576 if (operand->type == OP_CLO_CLZ_DEST)
8577 uval |= (uval << 5);
8578 insn_insert_operand (&insn, operand, uval);
8580 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8586 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8588 append_insn (&insn, ep, r, TRUE);
8592 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8595 struct mips_opcode *mo;
8596 struct mips_cl_insn insn;
8597 const struct mips_operand *operand;
8598 bfd_reloc_code_real_type r[3]
8599 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8601 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8603 gas_assert (strcmp (name, mo->name) == 0);
8605 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8608 gas_assert (mo->name);
8609 gas_assert (strcmp (name, mo->name) == 0);
8612 create_insn (&insn, mo);
8650 gas_assert (ep != NULL);
8652 if (ep->X_op != O_constant)
8653 *r = (int) BFD_RELOC_UNUSED + c;
8654 else if (calculate_reloc (*r, ep->X_add_number, &value))
8656 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8658 *r = BFD_RELOC_UNUSED;
8664 operand = decode_mips16_operand (c, FALSE);
8668 insn_insert_operand (&insn, operand, va_arg (*args, int));
8673 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8675 append_insn (&insn, ep, r, TRUE);
8679 * Generate a "jalr" instruction with a relocation hint to the called
8680 * function. This occurs in NewABI PIC code.
8683 macro_build_jalr (expressionS *ep, int cprestore)
8685 static const bfd_reloc_code_real_type jalr_relocs[2]
8686 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8687 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8691 if (MIPS_JALR_HINT_P (ep))
8696 if (mips_opts.micromips)
8698 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8699 ? "jalr" : "jalrs");
8700 if (MIPS_JALR_HINT_P (ep)
8702 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8703 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8705 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8708 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8709 if (MIPS_JALR_HINT_P (ep))
8710 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8714 * Generate a "lui" instruction.
8717 macro_build_lui (expressionS *ep, int regnum)
8719 gas_assert (! mips_opts.mips16);
8721 if (ep->X_op != O_constant)
8723 gas_assert (ep->X_op == O_symbol);
8724 /* _gp_disp is a special case, used from s_cpload.
8725 __gnu_local_gp is used if mips_no_shared. */
8726 gas_assert (mips_pic == NO_PIC
8728 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8729 || (! mips_in_shared
8730 && strcmp (S_GET_NAME (ep->X_add_symbol),
8731 "__gnu_local_gp") == 0));
8734 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8737 /* Generate a sequence of instructions to do a load or store from a constant
8738 offset off of a base register (breg) into/from a target register (treg),
8739 using AT if necessary. */
8741 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8742 int treg, int breg, int dbl)
8744 gas_assert (ep->X_op == O_constant);
8746 /* Sign-extending 32-bit constants makes their handling easier. */
8748 normalize_constant_expr (ep);
8750 /* Right now, this routine can only handle signed 32-bit constants. */
8751 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8752 as_warn (_("operand overflow"));
8754 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8756 /* Signed 16-bit offset will fit in the op. Easy! */
8757 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8761 /* 32-bit offset, need multiple instructions and AT, like:
8762 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8763 addu $tempreg,$tempreg,$breg
8764 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8765 to handle the complete offset. */
8766 macro_build_lui (ep, AT);
8767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8768 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8771 as_bad (_("macro used $at after \".set noat\""));
8776 * Generates code to set the $at register to true (one)
8777 * if reg is less than the immediate expression.
8780 set_at (int reg, int unsignedp)
8782 if (imm_expr.X_add_number >= -0x8000
8783 && imm_expr.X_add_number < 0x8000)
8784 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8785 AT, reg, BFD_RELOC_LO16);
8788 load_register (AT, &imm_expr, GPR_SIZE == 64);
8789 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8793 /* Count the leading zeroes by performing a binary chop. This is a
8794 bulky bit of source, but performance is a LOT better for the
8795 majority of values than a simple loop to count the bits:
8796 for (lcnt = 0; (lcnt < 32); lcnt++)
8797 if ((v) & (1 << (31 - lcnt)))
8799 However it is not code size friendly, and the gain will drop a bit
8800 on certain cached systems.
8802 #define COUNT_TOP_ZEROES(v) \
8803 (((v) & ~0xffff) == 0 \
8804 ? ((v) & ~0xff) == 0 \
8805 ? ((v) & ~0xf) == 0 \
8806 ? ((v) & ~0x3) == 0 \
8807 ? ((v) & ~0x1) == 0 \
8812 : ((v) & ~0x7) == 0 \
8815 : ((v) & ~0x3f) == 0 \
8816 ? ((v) & ~0x1f) == 0 \
8819 : ((v) & ~0x7f) == 0 \
8822 : ((v) & ~0xfff) == 0 \
8823 ? ((v) & ~0x3ff) == 0 \
8824 ? ((v) & ~0x1ff) == 0 \
8827 : ((v) & ~0x7ff) == 0 \
8830 : ((v) & ~0x3fff) == 0 \
8831 ? ((v) & ~0x1fff) == 0 \
8834 : ((v) & ~0x7fff) == 0 \
8837 : ((v) & ~0xffffff) == 0 \
8838 ? ((v) & ~0xfffff) == 0 \
8839 ? ((v) & ~0x3ffff) == 0 \
8840 ? ((v) & ~0x1ffff) == 0 \
8843 : ((v) & ~0x7ffff) == 0 \
8846 : ((v) & ~0x3fffff) == 0 \
8847 ? ((v) & ~0x1fffff) == 0 \
8850 : ((v) & ~0x7fffff) == 0 \
8853 : ((v) & ~0xfffffff) == 0 \
8854 ? ((v) & ~0x3ffffff) == 0 \
8855 ? ((v) & ~0x1ffffff) == 0 \
8858 : ((v) & ~0x7ffffff) == 0 \
8861 : ((v) & ~0x3fffffff) == 0 \
8862 ? ((v) & ~0x1fffffff) == 0 \
8865 : ((v) & ~0x7fffffff) == 0 \
8870 * This routine generates the least number of instructions necessary to load
8871 * an absolute expression value into a register.
8874 load_register (int reg, expressionS *ep, int dbl)
8877 expressionS hi32, lo32;
8879 if (ep->X_op != O_big)
8881 gas_assert (ep->X_op == O_constant);
8883 /* Sign-extending 32-bit constants makes their handling easier. */
8885 normalize_constant_expr (ep);
8887 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8889 /* We can handle 16 bit signed values with an addiu to
8890 $zero. No need to ever use daddiu here, since $zero and
8891 the result are always correct in 32 bit mode. */
8892 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8895 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8897 /* We can handle 16 bit unsigned values with an ori to
8899 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8902 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8904 /* 32 bit values require an lui. */
8905 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8906 if ((ep->X_add_number & 0xffff) != 0)
8907 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8912 /* The value is larger than 32 bits. */
8914 if (!dbl || GPR_SIZE == 32)
8918 sprintf_vma (value, ep->X_add_number);
8919 as_bad (_("number (0x%s) larger than 32 bits"), value);
8920 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8924 if (ep->X_op != O_big)
8927 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8928 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8929 hi32.X_add_number &= 0xffffffff;
8931 lo32.X_add_number &= 0xffffffff;
8935 gas_assert (ep->X_add_number > 2);
8936 if (ep->X_add_number == 3)
8937 generic_bignum[3] = 0;
8938 else if (ep->X_add_number > 4)
8939 as_bad (_("number larger than 64 bits"));
8940 lo32.X_op = O_constant;
8941 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8942 hi32.X_op = O_constant;
8943 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8946 if (hi32.X_add_number == 0)
8951 unsigned long hi, lo;
8953 if (hi32.X_add_number == (offsetT) 0xffffffff)
8955 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8957 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8960 if (lo32.X_add_number & 0x80000000)
8962 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8963 if (lo32.X_add_number & 0xffff)
8964 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8969 /* Check for 16bit shifted constant. We know that hi32 is
8970 non-zero, so start the mask on the first bit of the hi32
8975 unsigned long himask, lomask;
8979 himask = 0xffff >> (32 - shift);
8980 lomask = (0xffff << shift) & 0xffffffff;
8984 himask = 0xffff << (shift - 32);
8987 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8988 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8992 tmp.X_op = O_constant;
8994 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8995 | (lo32.X_add_number >> shift));
8997 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8998 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8999 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9000 reg, reg, (shift >= 32) ? shift - 32 : shift);
9005 while (shift <= (64 - 16));
9007 /* Find the bit number of the lowest one bit, and store the
9008 shifted value in hi/lo. */
9009 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9010 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9014 while ((lo & 1) == 0)
9019 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9025 while ((hi & 1) == 0)
9034 /* Optimize if the shifted value is a (power of 2) - 1. */
9035 if ((hi == 0 && ((lo + 1) & lo) == 0)
9036 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9038 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9043 /* This instruction will set the register to be all
9045 tmp.X_op = O_constant;
9046 tmp.X_add_number = (offsetT) -1;
9047 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9051 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9052 reg, reg, (bit >= 32) ? bit - 32 : bit);
9054 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9055 reg, reg, (shift >= 32) ? shift - 32 : shift);
9060 /* Sign extend hi32 before calling load_register, because we can
9061 generally get better code when we load a sign extended value. */
9062 if ((hi32.X_add_number & 0x80000000) != 0)
9063 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9064 load_register (reg, &hi32, 0);
9067 if ((lo32.X_add_number & 0xffff0000) == 0)
9071 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9079 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9081 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9082 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9088 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9092 mid16.X_add_number >>= 16;
9093 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9094 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9097 if ((lo32.X_add_number & 0xffff) != 0)
9098 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9102 load_delay_nop (void)
9104 if (!gpr_interlocks)
9105 macro_build (NULL, "nop", "");
9108 /* Load an address into a register. */
9111 load_address (int reg, expressionS *ep, int *used_at)
9113 if (ep->X_op != O_constant
9114 && ep->X_op != O_symbol)
9116 as_bad (_("expression too complex"));
9117 ep->X_op = O_constant;
9120 if (ep->X_op == O_constant)
9122 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9126 if (mips_pic == NO_PIC)
9128 /* If this is a reference to a GP relative symbol, we want
9129 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9131 lui $reg,<sym> (BFD_RELOC_HI16_S)
9132 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9133 If we have an addend, we always use the latter form.
9135 With 64bit address space and a usable $at we want
9136 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9137 lui $at,<sym> (BFD_RELOC_HI16_S)
9138 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9139 daddiu $at,<sym> (BFD_RELOC_LO16)
9143 If $at is already in use, we use a path which is suboptimal
9144 on superscalar processors.
9145 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9146 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9148 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9150 daddiu $reg,<sym> (BFD_RELOC_LO16)
9152 For GP relative symbols in 64bit address space we can use
9153 the same sequence as in 32bit address space. */
9154 if (HAVE_64BIT_SYMBOLS)
9156 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9157 && !nopic_need_relax (ep->X_add_symbol, 1))
9159 relax_start (ep->X_add_symbol);
9160 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9161 mips_gp_register, BFD_RELOC_GPREL16);
9165 if (*used_at == 0 && mips_opts.at)
9167 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9168 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9169 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9170 BFD_RELOC_MIPS_HIGHER);
9171 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9172 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9173 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9178 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9179 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9180 BFD_RELOC_MIPS_HIGHER);
9181 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9182 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9183 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9184 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9187 if (mips_relax.sequence)
9192 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9193 && !nopic_need_relax (ep->X_add_symbol, 1))
9195 relax_start (ep->X_add_symbol);
9196 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9197 mips_gp_register, BFD_RELOC_GPREL16);
9200 macro_build_lui (ep, reg);
9201 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9202 reg, reg, BFD_RELOC_LO16);
9203 if (mips_relax.sequence)
9207 else if (!mips_big_got)
9211 /* If this is a reference to an external symbol, we want
9212 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9214 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9216 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9217 If there is a constant, it must be added in after.
9219 If we have NewABI, we want
9220 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9221 unless we're referencing a global symbol with a non-zero
9222 offset, in which case cst must be added separately. */
9225 if (ep->X_add_number)
9227 ex.X_add_number = ep->X_add_number;
9228 ep->X_add_number = 0;
9229 relax_start (ep->X_add_symbol);
9230 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9231 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9232 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9233 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9234 ex.X_op = O_constant;
9235 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9236 reg, reg, BFD_RELOC_LO16);
9237 ep->X_add_number = ex.X_add_number;
9240 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9241 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9242 if (mips_relax.sequence)
9247 ex.X_add_number = ep->X_add_number;
9248 ep->X_add_number = 0;
9249 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9250 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9252 relax_start (ep->X_add_symbol);
9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9258 if (ex.X_add_number != 0)
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 ex.X_op = O_constant;
9263 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9264 reg, reg, BFD_RELOC_LO16);
9268 else if (mips_big_got)
9272 /* This is the large GOT case. If this is a reference to an
9273 external symbol, we want
9274 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9276 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9278 Otherwise, for a reference to a local symbol in old ABI, we want
9279 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9281 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9282 If there is a constant, it must be added in after.
9284 In the NewABI, for local symbols, with or without offsets, we want:
9285 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9286 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9290 ex.X_add_number = ep->X_add_number;
9291 ep->X_add_number = 0;
9292 relax_start (ep->X_add_symbol);
9293 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9294 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9295 reg, reg, mips_gp_register);
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9297 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9298 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9299 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9300 else if (ex.X_add_number)
9302 ex.X_op = O_constant;
9303 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9307 ep->X_add_number = ex.X_add_number;
9309 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9310 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9311 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9312 BFD_RELOC_MIPS_GOT_OFST);
9317 ex.X_add_number = ep->X_add_number;
9318 ep->X_add_number = 0;
9319 relax_start (ep->X_add_symbol);
9320 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9322 reg, reg, mips_gp_register);
9323 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9324 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9326 if (reg_needs_delay (mips_gp_register))
9328 /* We need a nop before loading from $gp. This special
9329 check is required because the lui which starts the main
9330 instruction stream does not refer to $gp, and so will not
9331 insert the nop which may be required. */
9332 macro_build (NULL, "nop", "");
9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9335 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9337 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9341 if (ex.X_add_number != 0)
9343 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9344 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9345 ex.X_op = O_constant;
9346 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9354 if (!mips_opts.at && *used_at == 1)
9355 as_bad (_("macro used $at after \".set noat\""));
9358 /* Move the contents of register SOURCE into register DEST. */
9361 move_register (int dest, int source)
9363 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9364 instruction specifically requires a 32-bit one. */
9365 if (mips_opts.micromips
9366 && !mips_opts.insn32
9367 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9368 macro_build (NULL, "move", "mp,mj", dest, source);
9370 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9373 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9374 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9375 The two alternatives are:
9377 Global symbol Local sybmol
9378 ------------- ------------
9379 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9381 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9383 load_got_offset emits the first instruction and add_got_offset
9384 emits the second for a 16-bit offset or add_got_offset_hilo emits
9385 a sequence to add a 32-bit offset using a scratch register. */
9388 load_got_offset (int dest, expressionS *local)
9393 global.X_add_number = 0;
9395 relax_start (local->X_add_symbol);
9396 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9397 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9399 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9400 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9405 add_got_offset (int dest, expressionS *local)
9409 global.X_op = O_constant;
9410 global.X_op_symbol = NULL;
9411 global.X_add_symbol = NULL;
9412 global.X_add_number = local->X_add_number;
9414 relax_start (local->X_add_symbol);
9415 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9416 dest, dest, BFD_RELOC_LO16);
9418 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9423 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9426 int hold_mips_optimize;
9428 global.X_op = O_constant;
9429 global.X_op_symbol = NULL;
9430 global.X_add_symbol = NULL;
9431 global.X_add_number = local->X_add_number;
9433 relax_start (local->X_add_symbol);
9434 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9436 /* Set mips_optimize around the lui instruction to avoid
9437 inserting an unnecessary nop after the lw. */
9438 hold_mips_optimize = mips_optimize;
9440 macro_build_lui (&global, tmp);
9441 mips_optimize = hold_mips_optimize;
9442 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9448 /* Emit a sequence of instructions to emulate a branch likely operation.
9449 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9450 is its complementing branch with the original condition negated.
9451 CALL is set if the original branch specified the link operation.
9452 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9454 Code like this is produced in the noreorder mode:
9459 delay slot (executed only if branch taken)
9467 delay slot (executed only if branch taken)
9470 In the reorder mode the delay slot would be filled with a nop anyway,
9471 so code produced is simply:
9476 This function is used when producing code for the microMIPS ASE that
9477 does not implement branch likely instructions in hardware. */
9480 macro_build_branch_likely (const char *br, const char *brneg,
9481 int call, expressionS *ep, const char *fmt,
9482 unsigned int sreg, unsigned int treg)
9484 int noreorder = mips_opts.noreorder;
9487 gas_assert (mips_opts.micromips);
9491 micromips_label_expr (&expr1);
9492 macro_build (&expr1, brneg, fmt, sreg, treg);
9493 macro_build (NULL, "nop", "");
9494 macro_build (ep, call ? "bal" : "b", "p");
9496 /* Set to true so that append_insn adds a label. */
9497 emit_branch_likely_macro = TRUE;
9501 macro_build (ep, br, fmt, sreg, treg);
9502 macro_build (NULL, "nop", "");
9507 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9508 the condition code tested. EP specifies the branch target. */
9511 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9538 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9541 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9542 the register tested. EP specifies the branch target. */
9545 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9547 const char *brneg = NULL;
9557 br = mips_opts.micromips ? "bgez" : "bgezl";
9561 gas_assert (mips_opts.micromips);
9562 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9570 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9577 br = mips_opts.micromips ? "blez" : "blezl";
9584 br = mips_opts.micromips ? "bltz" : "bltzl";
9588 gas_assert (mips_opts.micromips);
9589 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9596 if (mips_opts.micromips && brneg)
9597 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9599 macro_build (ep, br, "s,p", sreg);
9602 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9603 TREG as the registers tested. EP specifies the branch target. */
9606 macro_build_branch_rsrt (int type, expressionS *ep,
9607 unsigned int sreg, unsigned int treg)
9609 const char *brneg = NULL;
9621 br = mips_opts.micromips ? "beq" : "beql";
9630 br = mips_opts.micromips ? "bne" : "bnel";
9636 if (mips_opts.micromips && brneg)
9637 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9639 macro_build (ep, br, "s,t,p", sreg, treg);
9642 /* Return the high part that should be loaded in order to make the low
9643 part of VALUE accessible using an offset of OFFBITS bits. */
9646 offset_high_part (offsetT value, unsigned int offbits)
9653 bias = 1 << (offbits - 1);
9654 low_mask = bias * 2 - 1;
9655 return (value + bias) & ~low_mask;
9658 /* Return true if the value stored in offset_expr and offset_reloc
9659 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9660 amount that the caller wants to add without inducing overflow
9661 and ALIGN is the known alignment of the value in bytes. */
9664 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9668 /* Accept any relocation operator if overflow isn't a concern. */
9669 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9672 /* These relocations are guaranteed not to overflow in correct links. */
9673 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9674 || gprel16_reloc_p (*offset_reloc))
9677 if (offset_expr.X_op == O_constant
9678 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9679 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9686 * This routine implements the seemingly endless macro or synthesized
9687 * instructions and addressing modes in the mips assembly language. Many
9688 * of these macros are simple and are similar to each other. These could
9689 * probably be handled by some kind of table or grammar approach instead of
9690 * this verbose method. Others are not simple macros but are more like
9691 * optimizing code generation.
9692 * One interesting optimization is when several store macros appear
9693 * consecutively that would load AT with the upper half of the same address.
9694 * The ensuing load upper instructions are ommited. This implies some kind
9695 * of global optimization. We currently only optimize within a single macro.
9696 * For many of the load and store macros if the address is specified as a
9697 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9698 * first load register 'at' with zero and use it as the base register. The
9699 * mips assembler simply uses register $zero. Just one tiny optimization
9703 macro (struct mips_cl_insn *ip, char *str)
9705 const struct mips_operand_array *operands;
9706 unsigned int breg, i;
9707 unsigned int tempreg;
9710 expressionS label_expr;
9725 bfd_boolean large_offset;
9727 int hold_mips_optimize;
9729 unsigned int op[MAX_OPERANDS];
9731 gas_assert (! mips_opts.mips16);
9733 operands = insn_operands (ip);
9734 for (i = 0; i < MAX_OPERANDS; i++)
9735 if (operands->operand[i])
9736 op[i] = insn_extract_operand (ip, operands->operand[i]);
9740 mask = ip->insn_mo->mask;
9742 label_expr.X_op = O_constant;
9743 label_expr.X_op_symbol = NULL;
9744 label_expr.X_add_symbol = NULL;
9745 label_expr.X_add_number = 0;
9747 expr1.X_op = O_constant;
9748 expr1.X_op_symbol = NULL;
9749 expr1.X_add_symbol = NULL;
9750 expr1.X_add_number = 1;
9766 if (mips_opts.micromips)
9767 micromips_label_expr (&label_expr);
9769 label_expr.X_add_number = 8;
9770 macro_build (&label_expr, "bgez", "s,p", op[1]);
9772 macro_build (NULL, "nop", "");
9774 move_register (op[0], op[1]);
9775 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9776 if (mips_opts.micromips)
9777 micromips_add_label ();
9794 if (!mips_opts.micromips)
9796 if (imm_expr.X_add_number >= -0x200
9797 && imm_expr.X_add_number < 0x200)
9799 macro_build (NULL, s, "t,r,.", op[0], op[1],
9800 (int) imm_expr.X_add_number);
9809 if (imm_expr.X_add_number >= -0x8000
9810 && imm_expr.X_add_number < 0x8000)
9812 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9817 load_register (AT, &imm_expr, dbl);
9818 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9837 if (imm_expr.X_add_number >= 0
9838 && imm_expr.X_add_number < 0x10000)
9840 if (mask != M_NOR_I)
9841 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9844 macro_build (&imm_expr, "ori", "t,r,i",
9845 op[0], op[1], BFD_RELOC_LO16);
9846 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9852 load_register (AT, &imm_expr, GPR_SIZE == 64);
9853 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9857 switch (imm_expr.X_add_number)
9860 macro_build (NULL, "nop", "");
9863 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9867 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9868 (int) imm_expr.X_add_number);
9871 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9872 (unsigned long) imm_expr.X_add_number);
9881 gas_assert (mips_opts.micromips);
9882 macro_build_branch_ccl (mask, &offset_expr,
9883 EXTRACT_OPERAND (1, BCC, *ip));
9890 if (imm_expr.X_add_number == 0)
9896 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9901 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9908 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9909 else if (op[0] == 0)
9910 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9914 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9915 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9916 &offset_expr, AT, ZERO);
9926 macro_build_branch_rs (mask, &offset_expr, op[0]);
9932 /* Check for > max integer. */
9933 if (imm_expr.X_add_number >= GPR_SMAX)
9936 /* Result is always false. */
9938 macro_build (NULL, "nop", "");
9940 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9943 ++imm_expr.X_add_number;
9947 if (mask == M_BGEL_I)
9949 if (imm_expr.X_add_number == 0)
9951 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9952 &offset_expr, op[0]);
9955 if (imm_expr.X_add_number == 1)
9957 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9958 &offset_expr, op[0]);
9961 if (imm_expr.X_add_number <= GPR_SMIN)
9964 /* result is always true */
9965 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9966 macro_build (&offset_expr, "b", "p");
9971 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9972 &offset_expr, AT, ZERO);
9980 else if (op[0] == 0)
9981 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9982 &offset_expr, ZERO, op[1]);
9986 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9987 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9988 &offset_expr, AT, ZERO);
9997 && imm_expr.X_add_number == -1))
9999 ++imm_expr.X_add_number;
10003 if (mask == M_BGEUL_I)
10005 if (imm_expr.X_add_number == 0)
10007 else if (imm_expr.X_add_number == 1)
10008 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10009 &offset_expr, op[0], ZERO);
10014 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10015 &offset_expr, AT, ZERO);
10023 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10024 else if (op[0] == 0)
10025 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10029 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10030 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10031 &offset_expr, AT, ZERO);
10039 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10040 &offset_expr, op[0], ZERO);
10041 else if (op[0] == 0)
10046 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10047 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10048 &offset_expr, AT, ZERO);
10056 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10057 else if (op[0] == 0)
10058 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10062 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10063 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10064 &offset_expr, AT, ZERO);
10071 if (imm_expr.X_add_number >= GPR_SMAX)
10073 ++imm_expr.X_add_number;
10077 if (mask == M_BLTL_I)
10079 if (imm_expr.X_add_number == 0)
10080 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10081 else if (imm_expr.X_add_number == 1)
10082 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10087 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10088 &offset_expr, AT, ZERO);
10096 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10097 &offset_expr, op[0], ZERO);
10098 else if (op[0] == 0)
10103 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10104 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10105 &offset_expr, AT, ZERO);
10114 && imm_expr.X_add_number == -1))
10116 ++imm_expr.X_add_number;
10120 if (mask == M_BLTUL_I)
10122 if (imm_expr.X_add_number == 0)
10124 else if (imm_expr.X_add_number == 1)
10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10126 &offset_expr, op[0], ZERO);
10131 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10132 &offset_expr, AT, ZERO);
10140 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10141 else if (op[0] == 0)
10142 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10146 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10147 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10148 &offset_expr, AT, ZERO);
10157 else if (op[0] == 0)
10158 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10159 &offset_expr, ZERO, op[1]);
10163 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10164 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10165 &offset_expr, AT, ZERO);
10181 as_warn (_("divide by zero"));
10183 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10185 macro_build (NULL, "break", BRK_FMT, 7);
10189 start_noreorder ();
10192 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10193 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10200 label_expr.X_add_number = 8;
10201 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10202 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10203 macro_build (NULL, "break", BRK_FMT, 7);
10204 if (mips_opts.micromips)
10205 micromips_add_label ();
10207 expr1.X_add_number = -1;
10209 load_register (AT, &expr1, dbl);
10210 if (mips_opts.micromips)
10211 micromips_label_expr (&label_expr);
10213 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10214 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10217 expr1.X_add_number = 1;
10218 load_register (AT, &expr1, dbl);
10219 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10223 expr1.X_add_number = 0x80000000;
10224 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10228 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10229 /* We want to close the noreorder block as soon as possible, so
10230 that later insns are available for delay slot filling. */
10235 if (mips_opts.micromips)
10236 micromips_label_expr (&label_expr);
10238 label_expr.X_add_number = 8;
10239 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10240 macro_build (NULL, "nop", "");
10242 /* We want to close the noreorder block as soon as possible, so
10243 that later insns are available for delay slot filling. */
10246 macro_build (NULL, "break", BRK_FMT, 6);
10248 if (mips_opts.micromips)
10249 micromips_add_label ();
10250 macro_build (NULL, s, MFHL_FMT, op[0]);
10289 if (imm_expr.X_add_number == 0)
10291 as_warn (_("divide by zero"));
10293 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10295 macro_build (NULL, "break", BRK_FMT, 7);
10298 if (imm_expr.X_add_number == 1)
10300 if (strcmp (s2, "mflo") == 0)
10301 move_register (op[0], op[1]);
10303 move_register (op[0], ZERO);
10306 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10308 if (strcmp (s2, "mflo") == 0)
10309 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10311 move_register (op[0], ZERO);
10316 load_register (AT, &imm_expr, dbl);
10317 macro_build (NULL, s, "z,s,t", op[1], AT);
10318 macro_build (NULL, s2, MFHL_FMT, op[0]);
10337 start_noreorder ();
10340 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10341 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10342 /* We want to close the noreorder block as soon as possible, so
10343 that later insns are available for delay slot filling. */
10348 if (mips_opts.micromips)
10349 micromips_label_expr (&label_expr);
10351 label_expr.X_add_number = 8;
10352 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10353 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10355 /* We want to close the noreorder block as soon as possible, so
10356 that later insns are available for delay slot filling. */
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
10362 macro_build (NULL, s2, MFHL_FMT, op[0]);
10374 /* Load the address of a symbol into a register. If breg is not
10375 zero, we then add a base register to it. */
10378 if (dbl && GPR_SIZE == 32)
10379 as_warn (_("dla used to load 32-bit register; recommend using la "
10382 if (!dbl && HAVE_64BIT_OBJECTS)
10383 as_warn (_("la used to load 64-bit address; recommend using dla "
10386 if (small_offset_p (0, align, 16))
10388 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10389 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10393 if (mips_opts.at && (op[0] == breg))
10401 if (offset_expr.X_op != O_symbol
10402 && offset_expr.X_op != O_constant)
10404 as_bad (_("expression too complex"));
10405 offset_expr.X_op = O_constant;
10408 if (offset_expr.X_op == O_constant)
10409 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10410 else if (mips_pic == NO_PIC)
10412 /* If this is a reference to a GP relative symbol, we want
10413 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10415 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10416 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10417 If we have a constant, we need two instructions anyhow,
10418 so we may as well always use the latter form.
10420 With 64bit address space and a usable $at we want
10421 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10422 lui $at,<sym> (BFD_RELOC_HI16_S)
10423 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10424 daddiu $at,<sym> (BFD_RELOC_LO16)
10426 daddu $tempreg,$tempreg,$at
10428 If $at is already in use, we use a path which is suboptimal
10429 on superscalar processors.
10430 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10431 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10433 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10435 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10437 For GP relative symbols in 64bit address space we can use
10438 the same sequence as in 32bit address space. */
10439 if (HAVE_64BIT_SYMBOLS)
10441 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10442 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10444 relax_start (offset_expr.X_add_symbol);
10445 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10446 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10450 if (used_at == 0 && mips_opts.at)
10452 macro_build (&offset_expr, "lui", LUI_FMT,
10453 tempreg, BFD_RELOC_MIPS_HIGHEST);
10454 macro_build (&offset_expr, "lui", LUI_FMT,
10455 AT, BFD_RELOC_HI16_S);
10456 macro_build (&offset_expr, "daddiu", "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10458 macro_build (&offset_expr, "daddiu", "t,r,j",
10459 AT, AT, BFD_RELOC_LO16);
10460 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10461 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10466 macro_build (&offset_expr, "lui", LUI_FMT,
10467 tempreg, BFD_RELOC_MIPS_HIGHEST);
10468 macro_build (&offset_expr, "daddiu", "t,r,j",
10469 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10470 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10471 macro_build (&offset_expr, "daddiu", "t,r,j",
10472 tempreg, tempreg, BFD_RELOC_HI16_S);
10473 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10474 macro_build (&offset_expr, "daddiu", "t,r,j",
10475 tempreg, tempreg, BFD_RELOC_LO16);
10478 if (mips_relax.sequence)
10483 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10484 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10486 relax_start (offset_expr.X_add_symbol);
10487 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10488 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10491 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10492 as_bad (_("offset too large"));
10493 macro_build_lui (&offset_expr, tempreg);
10494 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10495 tempreg, tempreg, BFD_RELOC_LO16);
10496 if (mips_relax.sequence)
10500 else if (!mips_big_got && !HAVE_NEWABI)
10502 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10504 /* If this is a reference to an external symbol, and there
10505 is no constant, we want
10506 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10507 or for lca or if tempreg is PIC_CALL_REG
10508 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10509 For a local symbol, we want
10510 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10512 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10514 If we have a small constant, and this is a reference to
10515 an external symbol, we want
10516 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10518 addiu $tempreg,$tempreg,<constant>
10519 For a local symbol, we want the same instruction
10520 sequence, but we output a BFD_RELOC_LO16 reloc on the
10523 If we have a large constant, and this is a reference to
10524 an external symbol, we want
10525 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10526 lui $at,<hiconstant>
10527 addiu $at,$at,<loconstant>
10528 addu $tempreg,$tempreg,$at
10529 For a local symbol, we want the same instruction
10530 sequence, but we output a BFD_RELOC_LO16 reloc on the
10534 if (offset_expr.X_add_number == 0)
10536 if (mips_pic == SVR4_PIC
10538 && (call || tempreg == PIC_CALL_REG))
10539 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10541 relax_start (offset_expr.X_add_symbol);
10542 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10543 lw_reloc_type, mips_gp_register);
10546 /* We're going to put in an addu instruction using
10547 tempreg, so we may as well insert the nop right
10552 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10553 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10555 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10556 tempreg, tempreg, BFD_RELOC_LO16);
10558 /* FIXME: If breg == 0, and the next instruction uses
10559 $tempreg, then if this variant case is used an extra
10560 nop will be generated. */
10562 else if (offset_expr.X_add_number >= -0x8000
10563 && offset_expr.X_add_number < 0x8000)
10565 load_got_offset (tempreg, &offset_expr);
10567 add_got_offset (tempreg, &offset_expr);
10571 expr1.X_add_number = offset_expr.X_add_number;
10572 offset_expr.X_add_number =
10573 SEXT_16BIT (offset_expr.X_add_number);
10574 load_got_offset (tempreg, &offset_expr);
10575 offset_expr.X_add_number = expr1.X_add_number;
10576 /* If we are going to add in a base register, and the
10577 target register and the base register are the same,
10578 then we are using AT as a temporary register. Since
10579 we want to load the constant into AT, we add our
10580 current AT (from the global offset table) and the
10581 register into the register now, and pretend we were
10582 not using a base register. */
10586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10591 add_got_offset_hilo (tempreg, &offset_expr, AT);
10595 else if (!mips_big_got && HAVE_NEWABI)
10597 int add_breg_early = 0;
10599 /* If this is a reference to an external, and there is no
10600 constant, or local symbol (*), with or without a
10602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10603 or for lca or if tempreg is PIC_CALL_REG
10604 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10606 If we have a small constant, and this is a reference to
10607 an external symbol, we want
10608 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10609 addiu $tempreg,$tempreg,<constant>
10611 If we have a large constant, and this is a reference to
10612 an external symbol, we want
10613 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10614 lui $at,<hiconstant>
10615 addiu $at,$at,<loconstant>
10616 addu $tempreg,$tempreg,$at
10618 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10619 local symbols, even though it introduces an additional
10622 if (offset_expr.X_add_number)
10624 expr1.X_add_number = offset_expr.X_add_number;
10625 offset_expr.X_add_number = 0;
10627 relax_start (offset_expr.X_add_symbol);
10628 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10629 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10631 if (expr1.X_add_number >= -0x8000
10632 && expr1.X_add_number < 0x8000)
10634 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10635 tempreg, tempreg, BFD_RELOC_LO16);
10637 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10641 /* If we are going to add in a base register, and the
10642 target register and the base register are the same,
10643 then we are using AT as a temporary register. Since
10644 we want to load the constant into AT, we add our
10645 current AT (from the global offset table) and the
10646 register into the register now, and pretend we were
10647 not using a base register. */
10652 gas_assert (tempreg == AT);
10653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10656 add_breg_early = 1;
10659 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10660 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10666 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10669 offset_expr.X_add_number = expr1.X_add_number;
10671 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10672 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10673 if (add_breg_early)
10675 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10676 op[0], tempreg, breg);
10682 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10684 relax_start (offset_expr.X_add_symbol);
10685 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10686 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10689 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10695 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10698 else if (mips_big_got && !HAVE_NEWABI)
10701 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10702 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10703 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10705 /* This is the large GOT case. If this is a reference to an
10706 external symbol, and there is no constant, we want
10707 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10708 addu $tempreg,$tempreg,$gp
10709 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10710 or for lca or if tempreg is PIC_CALL_REG
10711 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10712 addu $tempreg,$tempreg,$gp
10713 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10714 For a local symbol, we want
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10717 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10719 If we have a small constant, and this is a reference to
10720 an external symbol, we want
10721 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10722 addu $tempreg,$tempreg,$gp
10723 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10725 addiu $tempreg,$tempreg,<constant>
10726 For a local symbol, we want
10727 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10729 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10731 If we have a large constant, and this is a reference to
10732 an external symbol, we want
10733 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10734 addu $tempreg,$tempreg,$gp
10735 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10736 lui $at,<hiconstant>
10737 addiu $at,$at,<loconstant>
10738 addu $tempreg,$tempreg,$at
10739 For a local symbol, we want
10740 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10741 lui $at,<hiconstant>
10742 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10743 addu $tempreg,$tempreg,$at
10746 expr1.X_add_number = offset_expr.X_add_number;
10747 offset_expr.X_add_number = 0;
10748 relax_start (offset_expr.X_add_symbol);
10749 gpdelay = reg_needs_delay (mips_gp_register);
10750 if (expr1.X_add_number == 0 && breg == 0
10751 && (call || tempreg == PIC_CALL_REG))
10753 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10754 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10756 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10758 tempreg, tempreg, mips_gp_register);
10759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10760 tempreg, lw_reloc_type, tempreg);
10761 if (expr1.X_add_number == 0)
10765 /* We're going to put in an addu instruction using
10766 tempreg, so we may as well insert the nop right
10771 else if (expr1.X_add_number >= -0x8000
10772 && expr1.X_add_number < 0x8000)
10775 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10776 tempreg, tempreg, BFD_RELOC_LO16);
10782 /* If we are going to add in a base register, and the
10783 target register and the base register are the same,
10784 then we are using AT as a temporary register. Since
10785 we want to load the constant into AT, we add our
10786 current AT (from the global offset table) and the
10787 register into the register now, and pretend we were
10788 not using a base register. */
10793 gas_assert (tempreg == AT);
10795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10800 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10801 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10805 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10810 /* This is needed because this instruction uses $gp, but
10811 the first instruction on the main stream does not. */
10812 macro_build (NULL, "nop", "");
10815 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10816 local_reloc_type, mips_gp_register);
10817 if (expr1.X_add_number >= -0x8000
10818 && expr1.X_add_number < 0x8000)
10821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10822 tempreg, tempreg, BFD_RELOC_LO16);
10823 /* FIXME: If add_number is 0, and there was no base
10824 register, the external symbol case ended with a load,
10825 so if the symbol turns out to not be external, and
10826 the next instruction uses tempreg, an unnecessary nop
10827 will be inserted. */
10833 /* We must add in the base register now, as in the
10834 external symbol case. */
10835 gas_assert (tempreg == AT);
10837 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10840 /* We set breg to 0 because we have arranged to add
10841 it in in both cases. */
10845 macro_build_lui (&expr1, AT);
10846 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10847 AT, AT, BFD_RELOC_LO16);
10848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10849 tempreg, tempreg, AT);
10854 else if (mips_big_got && HAVE_NEWABI)
10856 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10857 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10858 int add_breg_early = 0;
10860 /* This is the large GOT case. If this is a reference to an
10861 external symbol, and there is no constant, we want
10862 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10863 add $tempreg,$tempreg,$gp
10864 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10865 or for lca or if tempreg is PIC_CALL_REG
10866 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10867 add $tempreg,$tempreg,$gp
10868 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10870 If we have a small constant, and this is a reference to
10871 an external symbol, we want
10872 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10873 add $tempreg,$tempreg,$gp
10874 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10875 addi $tempreg,$tempreg,<constant>
10877 If we have a large constant, and this is a reference to
10878 an external symbol, we want
10879 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10880 addu $tempreg,$tempreg,$gp
10881 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10882 lui $at,<hiconstant>
10883 addi $at,$at,<loconstant>
10884 add $tempreg,$tempreg,$at
10886 If we have NewABI, and we know it's a local symbol, we want
10887 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10888 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10889 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10891 relax_start (offset_expr.X_add_symbol);
10893 expr1.X_add_number = offset_expr.X_add_number;
10894 offset_expr.X_add_number = 0;
10896 if (expr1.X_add_number == 0 && breg == 0
10897 && (call || tempreg == PIC_CALL_REG))
10899 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10900 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10904 tempreg, tempreg, mips_gp_register);
10905 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10906 tempreg, lw_reloc_type, tempreg);
10908 if (expr1.X_add_number == 0)
10910 else if (expr1.X_add_number >= -0x8000
10911 && expr1.X_add_number < 0x8000)
10913 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10914 tempreg, tempreg, BFD_RELOC_LO16);
10916 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10920 /* If we are going to add in a base register, and the
10921 target register and the base register are the same,
10922 then we are using AT as a temporary register. Since
10923 we want to load the constant into AT, we add our
10924 current AT (from the global offset table) and the
10925 register into the register now, and pretend we were
10926 not using a base register. */
10931 gas_assert (tempreg == AT);
10932 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10935 add_breg_early = 1;
10938 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10944 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10947 offset_expr.X_add_number = expr1.X_add_number;
10948 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10949 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10950 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10951 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10952 if (add_breg_early)
10954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10955 op[0], tempreg, breg);
10965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10969 gas_assert (!mips_opts.micromips);
10970 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10974 gas_assert (!mips_opts.micromips);
10975 macro_build (NULL, "c2", "C", 0x02);
10979 gas_assert (!mips_opts.micromips);
10980 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10984 gas_assert (!mips_opts.micromips);
10985 macro_build (NULL, "c2", "C", 3);
10989 gas_assert (!mips_opts.micromips);
10990 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10994 /* The j instruction may not be used in PIC code, since it
10995 requires an absolute address. We convert it to a b
10997 if (mips_pic == NO_PIC)
10998 macro_build (&offset_expr, "j", "a");
11000 macro_build (&offset_expr, "b", "p");
11003 /* The jal instructions must be handled as macros because when
11004 generating PIC code they expand to multi-instruction
11005 sequences. Normally they are simple instructions. */
11009 /* Fall through. */
11011 gas_assert (mips_opts.micromips);
11012 if (mips_opts.insn32)
11014 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11022 /* Fall through. */
11025 if (mips_pic == NO_PIC)
11027 s = jals ? "jalrs" : "jalr";
11028 if (mips_opts.micromips
11029 && !mips_opts.insn32
11031 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11032 macro_build (NULL, s, "mj", op[1]);
11034 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11038 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11039 && mips_cprestore_offset >= 0);
11041 if (op[1] != PIC_CALL_REG)
11042 as_warn (_("MIPS PIC call to register other than $25"));
11044 s = ((mips_opts.micromips
11045 && !mips_opts.insn32
11046 && (!mips_opts.noreorder || cprestore))
11047 ? "jalrs" : "jalr");
11048 if (mips_opts.micromips
11049 && !mips_opts.insn32
11051 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11052 macro_build (NULL, s, "mj", op[1]);
11054 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11055 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11057 if (mips_cprestore_offset < 0)
11058 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11061 if (!mips_frame_reg_valid)
11063 as_warn (_("no .frame pseudo-op used in PIC code"));
11064 /* Quiet this warning. */
11065 mips_frame_reg_valid = 1;
11067 if (!mips_cprestore_valid)
11069 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11070 /* Quiet this warning. */
11071 mips_cprestore_valid = 1;
11073 if (mips_opts.noreorder)
11074 macro_build (NULL, "nop", "");
11075 expr1.X_add_number = mips_cprestore_offset;
11076 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11079 HAVE_64BIT_ADDRESSES);
11087 gas_assert (mips_opts.micromips);
11088 if (mips_opts.insn32)
11090 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11094 /* Fall through. */
11096 if (mips_pic == NO_PIC)
11097 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11098 else if (mips_pic == SVR4_PIC)
11100 /* If this is a reference to an external symbol, and we are
11101 using a small GOT, we want
11102 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11106 lw $gp,cprestore($sp)
11107 The cprestore value is set using the .cprestore
11108 pseudo-op. If we are using a big GOT, we want
11109 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11111 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11115 lw $gp,cprestore($sp)
11116 If the symbol is not external, we want
11117 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11119 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11122 lw $gp,cprestore($sp)
11124 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11125 sequences above, minus nops, unless the symbol is local,
11126 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11132 relax_start (offset_expr.X_add_symbol);
11133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11134 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11137 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11138 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11144 relax_start (offset_expr.X_add_symbol);
11145 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11146 BFD_RELOC_MIPS_CALL_HI16);
11147 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11148 PIC_CALL_REG, mips_gp_register);
11149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11150 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11153 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11154 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11156 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11157 PIC_CALL_REG, PIC_CALL_REG,
11158 BFD_RELOC_MIPS_GOT_OFST);
11162 macro_build_jalr (&offset_expr, 0);
11166 relax_start (offset_expr.X_add_symbol);
11169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11170 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11179 gpdelay = reg_needs_delay (mips_gp_register);
11180 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11181 BFD_RELOC_MIPS_CALL_HI16);
11182 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11183 PIC_CALL_REG, mips_gp_register);
11184 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11185 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11190 macro_build (NULL, "nop", "");
11192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11193 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11196 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11197 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11199 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11201 if (mips_cprestore_offset < 0)
11202 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11205 if (!mips_frame_reg_valid)
11207 as_warn (_("no .frame pseudo-op used in PIC code"));
11208 /* Quiet this warning. */
11209 mips_frame_reg_valid = 1;
11211 if (!mips_cprestore_valid)
11213 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11214 /* Quiet this warning. */
11215 mips_cprestore_valid = 1;
11217 if (mips_opts.noreorder)
11218 macro_build (NULL, "nop", "");
11219 expr1.X_add_number = mips_cprestore_offset;
11220 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11223 HAVE_64BIT_ADDRESSES);
11227 else if (mips_pic == VXWORKS_PIC)
11228 as_bad (_("non-PIC jump used in PIC library"));
11335 gas_assert (!mips_opts.micromips);
11338 /* Itbl support may require additional care here. */
11344 /* Itbl support may require additional care here. */
11350 offbits = (mips_opts.micromips ? 12
11351 : ISA_IS_R6 (mips_opts.isa) ? 11
11353 /* Itbl support may require additional care here. */
11357 gas_assert (!mips_opts.micromips);
11360 /* Itbl support may require additional care here. */
11366 offbits = (mips_opts.micromips ? 12 : 16);
11371 offbits = (mips_opts.micromips ? 12 : 16);
11376 /* Itbl support may require additional care here. */
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 11
11385 /* Itbl support may require additional care here. */
11391 /* Itbl support may require additional care here. */
11397 /* Itbl support may require additional care here. */
11403 offbits = (mips_opts.micromips ? 12 : 16);
11408 offbits = (mips_opts.micromips ? 12 : 16);
11413 offbits = (mips_opts.micromips ? 12
11414 : ISA_IS_R6 (mips_opts.isa) ? 9
11420 offbits = (mips_opts.micromips ? 12
11421 : ISA_IS_R6 (mips_opts.isa) ? 9
11427 offbits = (mips_opts.micromips ? 12 : 16);
11430 gas_assert (mips_opts.micromips);
11437 gas_assert (mips_opts.micromips);
11444 gas_assert (mips_opts.micromips);
11450 gas_assert (mips_opts.micromips);
11457 /* We don't want to use $0 as tempreg. */
11458 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11461 tempreg = op[0] + lp;
11477 gas_assert (!mips_opts.micromips);
11480 /* Itbl support may require additional care here. */
11486 /* Itbl support may require additional care here. */
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 11
11495 /* Itbl support may require additional care here. */
11499 gas_assert (!mips_opts.micromips);
11502 /* Itbl support may require additional care here. */
11508 offbits = (mips_opts.micromips ? 12 : 16);
11513 offbits = (mips_opts.micromips ? 12 : 16);
11518 offbits = (mips_opts.micromips ? 12
11519 : ISA_IS_R6 (mips_opts.isa) ? 9
11525 offbits = (mips_opts.micromips ? 12
11526 : ISA_IS_R6 (mips_opts.isa) ? 9
11531 fmt = (mips_opts.micromips ? "k,~(b)"
11532 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11534 offbits = (mips_opts.micromips ? 12
11535 : ISA_IS_R6 (mips_opts.isa) ? 9
11545 fmt = (mips_opts.micromips ? "k,~(b)"
11546 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11548 offbits = (mips_opts.micromips ? 12
11549 : ISA_IS_R6 (mips_opts.isa) ? 9
11561 /* Itbl support may require additional care here. */
11566 offbits = (mips_opts.micromips ? 12
11567 : ISA_IS_R6 (mips_opts.isa) ? 11
11569 /* Itbl support may require additional care here. */
11575 /* Itbl support may require additional care here. */
11579 gas_assert (!mips_opts.micromips);
11582 /* Itbl support may require additional care here. */
11588 offbits = (mips_opts.micromips ? 12 : 16);
11593 offbits = (mips_opts.micromips ? 12 : 16);
11596 gas_assert (mips_opts.micromips);
11602 gas_assert (mips_opts.micromips);
11608 gas_assert (mips_opts.micromips);
11614 gas_assert (mips_opts.micromips);
11623 if (small_offset_p (0, align, 16))
11625 /* The first case exists for M_LD_AB and M_SD_AB, which are
11626 macros for o32 but which should act like normal instructions
11629 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11630 offset_reloc[1], offset_reloc[2], breg);
11631 else if (small_offset_p (0, align, offbits))
11634 macro_build (NULL, s, fmt, op[0], breg);
11636 macro_build (NULL, s, fmt, op[0],
11637 (int) offset_expr.X_add_number, breg);
11643 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11644 tempreg, breg, -1, offset_reloc[0],
11645 offset_reloc[1], offset_reloc[2]);
11647 macro_build (NULL, s, fmt, op[0], tempreg);
11649 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11657 if (offset_expr.X_op != O_constant
11658 && offset_expr.X_op != O_symbol)
11660 as_bad (_("expression too complex"));
11661 offset_expr.X_op = O_constant;
11664 if (HAVE_32BIT_ADDRESSES
11665 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11669 sprintf_vma (value, offset_expr.X_add_number);
11670 as_bad (_("number (0x%s) larger than 32 bits"), value);
11673 /* A constant expression in PIC code can be handled just as it
11674 is in non PIC code. */
11675 if (offset_expr.X_op == O_constant)
11677 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11678 offbits == 0 ? 16 : offbits);
11679 offset_expr.X_add_number -= expr1.X_add_number;
11681 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11683 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11684 tempreg, tempreg, breg);
11687 if (offset_expr.X_add_number != 0)
11688 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11689 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11690 macro_build (NULL, s, fmt, op[0], tempreg);
11692 else if (offbits == 16)
11693 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11695 macro_build (NULL, s, fmt, op[0],
11696 (int) offset_expr.X_add_number, tempreg);
11698 else if (offbits != 16)
11700 /* The offset field is too narrow to be used for a low-part
11701 relocation, so load the whole address into the auxillary
11703 load_address (tempreg, &offset_expr, &used_at);
11705 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11706 tempreg, tempreg, breg);
11708 macro_build (NULL, s, fmt, op[0], tempreg);
11710 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11712 else if (mips_pic == NO_PIC)
11714 /* If this is a reference to a GP relative symbol, and there
11715 is no base register, we want
11716 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11717 Otherwise, if there is no base register, we want
11718 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720 If we have a constant, we need two instructions anyhow,
11721 so we always use the latter form.
11723 If we have a base register, and this is a reference to a
11724 GP relative symbol, we want
11725 addu $tempreg,$breg,$gp
11726 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11728 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11729 addu $tempreg,$tempreg,$breg
11730 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11731 With a constant we always use the latter case.
11733 With 64bit address space and no base register and $at usable,
11735 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11736 lui $at,<sym> (BFD_RELOC_HI16_S)
11737 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11740 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11741 If we have a base register, we want
11742 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11743 lui $at,<sym> (BFD_RELOC_HI16_S)
11744 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11748 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11750 Without $at we can't generate the optimal path for superscalar
11751 processors here since this would require two temporary registers.
11752 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11753 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11755 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11757 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11758 If we have a base register, we want
11759 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11760 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11762 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11764 daddu $tempreg,$tempreg,$breg
11765 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11767 For GP relative symbols in 64bit address space we can use
11768 the same sequence as in 32bit address space. */
11769 if (HAVE_64BIT_SYMBOLS)
11771 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11772 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11774 relax_start (offset_expr.X_add_symbol);
11777 macro_build (&offset_expr, s, fmt, op[0],
11778 BFD_RELOC_GPREL16, mips_gp_register);
11782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11783 tempreg, breg, mips_gp_register);
11784 macro_build (&offset_expr, s, fmt, op[0],
11785 BFD_RELOC_GPREL16, tempreg);
11790 if (used_at == 0 && mips_opts.at)
11792 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11793 BFD_RELOC_MIPS_HIGHEST);
11794 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11796 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11797 tempreg, BFD_RELOC_MIPS_HIGHER);
11799 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11800 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11801 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11802 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11808 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11809 BFD_RELOC_MIPS_HIGHEST);
11810 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11811 tempreg, BFD_RELOC_MIPS_HIGHER);
11812 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11813 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11814 tempreg, BFD_RELOC_HI16_S);
11815 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11817 macro_build (NULL, "daddu", "d,v,t",
11818 tempreg, tempreg, breg);
11819 macro_build (&offset_expr, s, fmt, op[0],
11820 BFD_RELOC_LO16, tempreg);
11823 if (mips_relax.sequence)
11830 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11831 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11833 relax_start (offset_expr.X_add_symbol);
11834 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11838 macro_build_lui (&offset_expr, tempreg);
11839 macro_build (&offset_expr, s, fmt, op[0],
11840 BFD_RELOC_LO16, tempreg);
11841 if (mips_relax.sequence)
11846 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11847 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11849 relax_start (offset_expr.X_add_symbol);
11850 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11851 tempreg, breg, mips_gp_register);
11852 macro_build (&offset_expr, s, fmt, op[0],
11853 BFD_RELOC_GPREL16, tempreg);
11856 macro_build_lui (&offset_expr, tempreg);
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 macro_build (&offset_expr, s, fmt, op[0],
11860 BFD_RELOC_LO16, tempreg);
11861 if (mips_relax.sequence)
11865 else if (!mips_big_got)
11867 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11869 /* If this is a reference to an external symbol, we want
11870 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11872 <op> op[0],0($tempreg)
11874 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11876 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11877 <op> op[0],0($tempreg)
11879 For NewABI, we want
11880 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11881 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11883 If there is a base register, we add it to $tempreg before
11884 the <op>. If there is a constant, we stick it in the
11885 <op> instruction. We don't handle constants larger than
11886 16 bits, because we have no way to load the upper 16 bits
11887 (actually, we could handle them for the subset of cases
11888 in which we are not using $at). */
11889 gas_assert (offset_expr.X_op == O_symbol);
11892 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11893 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11896 tempreg, tempreg, breg);
11897 macro_build (&offset_expr, s, fmt, op[0],
11898 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11901 expr1.X_add_number = offset_expr.X_add_number;
11902 offset_expr.X_add_number = 0;
11903 if (expr1.X_add_number < -0x8000
11904 || expr1.X_add_number >= 0x8000)
11905 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11907 lw_reloc_type, mips_gp_register);
11909 relax_start (offset_expr.X_add_symbol);
11911 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11912 tempreg, BFD_RELOC_LO16);
11915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11916 tempreg, tempreg, breg);
11917 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11919 else if (mips_big_got && !HAVE_NEWABI)
11923 /* If this is a reference to an external symbol, we want
11924 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11925 addu $tempreg,$tempreg,$gp
11926 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11927 <op> op[0],0($tempreg)
11929 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11931 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11932 <op> op[0],0($tempreg)
11933 If there is a base register, we add it to $tempreg before
11934 the <op>. If there is a constant, we stick it in the
11935 <op> instruction. We don't handle constants larger than
11936 16 bits, because we have no way to load the upper 16 bits
11937 (actually, we could handle them for the subset of cases
11938 in which we are not using $at). */
11939 gas_assert (offset_expr.X_op == O_symbol);
11940 expr1.X_add_number = offset_expr.X_add_number;
11941 offset_expr.X_add_number = 0;
11942 if (expr1.X_add_number < -0x8000
11943 || expr1.X_add_number >= 0x8000)
11944 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11945 gpdelay = reg_needs_delay (mips_gp_register);
11946 relax_start (offset_expr.X_add_symbol);
11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11948 BFD_RELOC_MIPS_GOT_HI16);
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11955 macro_build (NULL, "nop", "");
11956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11957 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11959 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11960 tempreg, BFD_RELOC_LO16);
11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11965 tempreg, tempreg, breg);
11966 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11968 else if (mips_big_got && HAVE_NEWABI)
11970 /* If this is a reference to an external symbol, we want
11971 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11972 add $tempreg,$tempreg,$gp
11973 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11974 <op> op[0],<ofst>($tempreg)
11975 Otherwise, for local symbols, we want:
11976 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11977 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11978 gas_assert (offset_expr.X_op == O_symbol);
11979 expr1.X_add_number = offset_expr.X_add_number;
11980 offset_expr.X_add_number = 0;
11981 if (expr1.X_add_number < -0x8000
11982 || expr1.X_add_number >= 0x8000)
11983 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11984 relax_start (offset_expr.X_add_symbol);
11985 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11986 BFD_RELOC_MIPS_GOT_HI16);
11987 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11989 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11990 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11993 tempreg, tempreg, breg);
11994 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11997 offset_expr.X_add_number = expr1.X_add_number;
11998 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11999 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12002 tempreg, tempreg, breg);
12003 macro_build (&offset_expr, s, fmt, op[0],
12004 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12013 gas_assert (mips_opts.micromips);
12014 gas_assert (mips_opts.insn32);
12015 start_noreorder ();
12016 macro_build (NULL, "jr", "s", RA);
12017 expr1.X_add_number = op[0] << 2;
12018 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12023 gas_assert (mips_opts.micromips);
12024 gas_assert (mips_opts.insn32);
12025 macro_build (NULL, "jr", "s", op[0]);
12026 if (mips_opts.noreorder)
12027 macro_build (NULL, "nop", "");
12032 load_register (op[0], &imm_expr, 0);
12036 load_register (op[0], &imm_expr, 1);
12040 if (imm_expr.X_op == O_constant)
12043 load_register (AT, &imm_expr, 0);
12044 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12049 gas_assert (imm_expr.X_op == O_absent
12050 && offset_expr.X_op == O_symbol
12051 && strcmp (segment_name (S_GET_SEGMENT
12052 (offset_expr.X_add_symbol)),
12054 && offset_expr.X_add_number == 0);
12055 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12056 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12061 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12062 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12063 order 32 bits of the value and the low order 32 bits are either
12064 zero or in OFFSET_EXPR. */
12065 if (imm_expr.X_op == O_constant)
12067 if (GPR_SIZE == 64)
12068 load_register (op[0], &imm_expr, 1);
12073 if (target_big_endian)
12085 load_register (hreg, &imm_expr, 0);
12088 if (offset_expr.X_op == O_absent)
12089 move_register (lreg, 0);
12092 gas_assert (offset_expr.X_op == O_constant);
12093 load_register (lreg, &offset_expr, 0);
12099 gas_assert (imm_expr.X_op == O_absent);
12101 /* We know that sym is in the .rdata section. First we get the
12102 upper 16 bits of the address. */
12103 if (mips_pic == NO_PIC)
12105 macro_build_lui (&offset_expr, AT);
12110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12111 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12115 /* Now we load the register(s). */
12116 if (GPR_SIZE == 64)
12119 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12120 BFD_RELOC_LO16, AT);
12125 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12126 BFD_RELOC_LO16, AT);
12129 /* FIXME: How in the world do we deal with the possible
12131 offset_expr.X_add_number += 4;
12132 macro_build (&offset_expr, "lw", "t,o(b)",
12133 op[0] + 1, BFD_RELOC_LO16, AT);
12139 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12140 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12141 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12142 the value and the low order 32 bits are either zero or in
12144 if (imm_expr.X_op == O_constant)
12147 load_register (AT, &imm_expr, FPR_SIZE == 64);
12148 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12149 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12152 if (ISA_HAS_MXHC1 (mips_opts.isa))
12153 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12154 else if (FPR_SIZE != 32)
12155 as_bad (_("Unable to generate `%s' compliant code "
12157 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12159 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12160 if (offset_expr.X_op == O_absent)
12161 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12164 gas_assert (offset_expr.X_op == O_constant);
12165 load_register (AT, &offset_expr, 0);
12166 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12172 gas_assert (imm_expr.X_op == O_absent
12173 && offset_expr.X_op == O_symbol
12174 && offset_expr.X_add_number == 0);
12175 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12176 if (strcmp (s, ".lit8") == 0)
12178 op[2] = mips_gp_register;
12179 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12180 offset_reloc[1] = BFD_RELOC_UNUSED;
12181 offset_reloc[2] = BFD_RELOC_UNUSED;
12185 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12187 if (mips_pic != NO_PIC)
12188 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12189 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12192 /* FIXME: This won't work for a 64 bit address. */
12193 macro_build_lui (&offset_expr, AT);
12197 offset_reloc[0] = BFD_RELOC_LO16;
12198 offset_reloc[1] = BFD_RELOC_UNUSED;
12199 offset_reloc[2] = BFD_RELOC_UNUSED;
12206 * The MIPS assembler seems to check for X_add_number not
12207 * being double aligned and generating:
12208 * lui at,%hi(foo+1)
12210 * addiu at,at,%lo(foo+1)
12213 * But, the resulting address is the same after relocation so why
12214 * generate the extra instruction?
12216 /* Itbl support may require additional care here. */
12219 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12228 gas_assert (!mips_opts.micromips);
12229 /* Itbl support may require additional care here. */
12232 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12252 if (GPR_SIZE == 64)
12262 if (GPR_SIZE == 64)
12270 /* Even on a big endian machine $fn comes before $fn+1. We have
12271 to adjust when loading from memory. We set coproc if we must
12272 load $fn+1 first. */
12273 /* Itbl support may require additional care here. */
12274 if (!target_big_endian)
12278 if (small_offset_p (0, align, 16))
12281 if (!small_offset_p (4, align, 16))
12283 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12284 -1, offset_reloc[0], offset_reloc[1],
12286 expr1.X_add_number = 0;
12290 offset_reloc[0] = BFD_RELOC_LO16;
12291 offset_reloc[1] = BFD_RELOC_UNUSED;
12292 offset_reloc[2] = BFD_RELOC_UNUSED;
12294 if (strcmp (s, "lw") == 0 && op[0] == breg)
12296 ep->X_add_number += 4;
12297 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12298 offset_reloc[1], offset_reloc[2], breg);
12299 ep->X_add_number -= 4;
12300 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12301 offset_reloc[1], offset_reloc[2], breg);
12305 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12306 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12308 ep->X_add_number += 4;
12309 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12310 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12316 if (offset_expr.X_op != O_symbol
12317 && offset_expr.X_op != O_constant)
12319 as_bad (_("expression too complex"));
12320 offset_expr.X_op = O_constant;
12323 if (HAVE_32BIT_ADDRESSES
12324 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12328 sprintf_vma (value, offset_expr.X_add_number);
12329 as_bad (_("number (0x%s) larger than 32 bits"), value);
12332 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12334 /* If this is a reference to a GP relative symbol, we want
12335 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12336 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12337 If we have a base register, we use this
12339 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12340 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12341 If this is not a GP relative symbol, we want
12342 lui $at,<sym> (BFD_RELOC_HI16_S)
12343 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12344 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12345 If there is a base register, we add it to $at after the
12346 lui instruction. If there is a constant, we always use
12348 if (offset_expr.X_op == O_symbol
12349 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12350 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12352 relax_start (offset_expr.X_add_symbol);
12355 tempreg = mips_gp_register;
12359 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12360 AT, breg, mips_gp_register);
12365 /* Itbl support may require additional care here. */
12366 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12367 BFD_RELOC_GPREL16, tempreg);
12368 offset_expr.X_add_number += 4;
12370 /* Set mips_optimize to 2 to avoid inserting an
12372 hold_mips_optimize = mips_optimize;
12374 /* Itbl support may require additional care here. */
12375 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12376 BFD_RELOC_GPREL16, tempreg);
12377 mips_optimize = hold_mips_optimize;
12381 offset_expr.X_add_number -= 4;
12384 if (offset_high_part (offset_expr.X_add_number, 16)
12385 != offset_high_part (offset_expr.X_add_number + 4, 16))
12387 load_address (AT, &offset_expr, &used_at);
12388 offset_expr.X_op = O_constant;
12389 offset_expr.X_add_number = 0;
12392 macro_build_lui (&offset_expr, AT);
12394 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12395 /* Itbl support may require additional care here. */
12396 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12397 BFD_RELOC_LO16, AT);
12398 /* FIXME: How do we handle overflow here? */
12399 offset_expr.X_add_number += 4;
12400 /* Itbl support may require additional care here. */
12401 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12402 BFD_RELOC_LO16, AT);
12403 if (mips_relax.sequence)
12406 else if (!mips_big_got)
12408 /* If this is a reference to an external symbol, we want
12409 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12412 <op> op[0]+1,4($at)
12414 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12416 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12417 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12418 If there is a base register we add it to $at before the
12419 lwc1 instructions. If there is a constant we include it
12420 in the lwc1 instructions. */
12422 expr1.X_add_number = offset_expr.X_add_number;
12423 if (expr1.X_add_number < -0x8000
12424 || expr1.X_add_number >= 0x8000 - 4)
12425 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12426 load_got_offset (AT, &offset_expr);
12429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12431 /* Set mips_optimize to 2 to avoid inserting an undesired
12433 hold_mips_optimize = mips_optimize;
12436 /* Itbl support may require additional care here. */
12437 relax_start (offset_expr.X_add_symbol);
12438 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12439 BFD_RELOC_LO16, AT);
12440 expr1.X_add_number += 4;
12441 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12442 BFD_RELOC_LO16, AT);
12444 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12445 BFD_RELOC_LO16, AT);
12446 offset_expr.X_add_number += 4;
12447 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12448 BFD_RELOC_LO16, AT);
12451 mips_optimize = hold_mips_optimize;
12453 else if (mips_big_got)
12457 /* If this is a reference to an external symbol, we want
12458 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12460 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12463 <op> op[0]+1,4($at)
12465 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12467 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12468 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12469 If there is a base register we add it to $at before the
12470 lwc1 instructions. If there is a constant we include it
12471 in the lwc1 instructions. */
12473 expr1.X_add_number = offset_expr.X_add_number;
12474 offset_expr.X_add_number = 0;
12475 if (expr1.X_add_number < -0x8000
12476 || expr1.X_add_number >= 0x8000 - 4)
12477 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12478 gpdelay = reg_needs_delay (mips_gp_register);
12479 relax_start (offset_expr.X_add_symbol);
12480 macro_build (&offset_expr, "lui", LUI_FMT,
12481 AT, BFD_RELOC_MIPS_GOT_HI16);
12482 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12483 AT, AT, mips_gp_register);
12484 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12485 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12489 /* Itbl support may require additional care here. */
12490 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12491 BFD_RELOC_LO16, AT);
12492 expr1.X_add_number += 4;
12494 /* Set mips_optimize to 2 to avoid inserting an undesired
12496 hold_mips_optimize = mips_optimize;
12498 /* Itbl support may require additional care here. */
12499 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12500 BFD_RELOC_LO16, AT);
12501 mips_optimize = hold_mips_optimize;
12502 expr1.X_add_number -= 4;
12505 offset_expr.X_add_number = expr1.X_add_number;
12507 macro_build (NULL, "nop", "");
12508 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12509 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12512 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12513 /* Itbl support may require additional care here. */
12514 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12515 BFD_RELOC_LO16, AT);
12516 offset_expr.X_add_number += 4;
12518 /* Set mips_optimize to 2 to avoid inserting an undesired
12520 hold_mips_optimize = mips_optimize;
12522 /* Itbl support may require additional care here. */
12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12524 BFD_RELOC_LO16, AT);
12525 mips_optimize = hold_mips_optimize;
12539 gas_assert (!mips_opts.micromips);
12544 /* New code added to support COPZ instructions.
12545 This code builds table entries out of the macros in mip_opcodes.
12546 R4000 uses interlocks to handle coproc delays.
12547 Other chips (like the R3000) require nops to be inserted for delays.
12549 FIXME: Currently, we require that the user handle delays.
12550 In order to fill delay slots for non-interlocked chips,
12551 we must have a way to specify delays based on the coprocessor.
12552 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12553 What are the side-effects of the cop instruction?
12554 What cache support might we have and what are its effects?
12555 Both coprocessor & memory require delays. how long???
12556 What registers are read/set/modified?
12558 If an itbl is provided to interpret cop instructions,
12559 this knowledge can be encoded in the itbl spec. */
12573 gas_assert (!mips_opts.micromips);
12574 /* For now we just do C (same as Cz). The parameter will be
12575 stored in insn_opcode by mips_ip. */
12576 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12580 move_register (op[0], op[1]);
12584 gas_assert (mips_opts.micromips);
12585 gas_assert (mips_opts.insn32);
12586 move_register (micromips_to_32_reg_h_map1[op[0]],
12587 micromips_to_32_reg_m_map[op[1]]);
12588 move_register (micromips_to_32_reg_h_map2[op[0]],
12589 micromips_to_32_reg_n_map[op[2]]);
12595 if (mips_opts.arch == CPU_R5900)
12596 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12600 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12601 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12608 /* The MIPS assembler some times generates shifts and adds. I'm
12609 not trying to be that fancy. GCC should do this for us
12612 load_register (AT, &imm_expr, dbl);
12613 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12627 start_noreorder ();
12630 load_register (AT, &imm_expr, dbl);
12631 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12632 op[1], imm ? AT : op[2]);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12634 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12635 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12637 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12640 if (mips_opts.micromips)
12641 micromips_label_expr (&label_expr);
12643 label_expr.X_add_number = 8;
12644 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12645 macro_build (NULL, "nop", "");
12646 macro_build (NULL, "break", BRK_FMT, 6);
12647 if (mips_opts.micromips)
12648 micromips_add_label ();
12651 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12664 start_noreorder ();
12667 load_register (AT, &imm_expr, dbl);
12668 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12669 op[1], imm ? AT : op[2]);
12670 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12671 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12673 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12676 if (mips_opts.micromips)
12677 micromips_label_expr (&label_expr);
12679 label_expr.X_add_number = 8;
12680 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12681 macro_build (NULL, "nop", "");
12682 macro_build (NULL, "break", BRK_FMT, 6);
12683 if (mips_opts.micromips)
12684 micromips_add_label ();
12690 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12692 if (op[0] == op[1])
12699 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12700 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12704 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12705 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12706 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12707 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12711 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12713 if (op[0] == op[1])
12720 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12721 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12725 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12726 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12727 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12728 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12737 rot = imm_expr.X_add_number & 0x3f;
12738 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12740 rot = (64 - rot) & 0x3f;
12742 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12744 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12749 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12752 l = (rot < 0x20) ? "dsll" : "dsll32";
12753 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12756 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12757 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12766 rot = imm_expr.X_add_number & 0x1f;
12767 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12769 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12770 (32 - rot) & 0x1f);
12775 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12779 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12780 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12781 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12786 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12788 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12792 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12793 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12794 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12795 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12799 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12801 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12805 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12806 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12807 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12808 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12817 rot = imm_expr.X_add_number & 0x3f;
12818 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12821 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12823 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12828 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12831 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12832 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12835 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12836 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12837 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12845 rot = imm_expr.X_add_number & 0x1f;
12846 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12848 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12853 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12857 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12858 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12859 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12865 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12866 else if (op[2] == 0)
12867 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12870 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12871 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12876 if (imm_expr.X_add_number == 0)
12878 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12883 as_warn (_("instruction %s: result is always false"),
12884 ip->insn_mo->name);
12885 move_register (op[0], 0);
12888 if (CPU_HAS_SEQ (mips_opts.arch)
12889 && -512 <= imm_expr.X_add_number
12890 && imm_expr.X_add_number < 512)
12892 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12893 (int) imm_expr.X_add_number);
12896 if (imm_expr.X_add_number >= 0
12897 && imm_expr.X_add_number < 0x10000)
12898 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12899 else if (imm_expr.X_add_number > -0x8000
12900 && imm_expr.X_add_number < 0)
12902 imm_expr.X_add_number = -imm_expr.X_add_number;
12903 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12904 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12906 else if (CPU_HAS_SEQ (mips_opts.arch))
12909 load_register (AT, &imm_expr, GPR_SIZE == 64);
12910 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12915 load_register (AT, &imm_expr, GPR_SIZE == 64);
12916 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12919 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12922 case M_SGE: /* X >= Y <==> not (X < Y) */
12928 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12929 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12932 case M_SGE_I: /* X >= I <==> not (X < I) */
12934 if (imm_expr.X_add_number >= -0x8000
12935 && imm_expr.X_add_number < 0x8000)
12936 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12937 op[0], op[1], BFD_RELOC_LO16);
12940 load_register (AT, &imm_expr, GPR_SIZE == 64);
12941 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12945 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12948 case M_SGT: /* X > Y <==> Y < X */
12954 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12957 case M_SGT_I: /* X > I <==> I < X */
12964 load_register (AT, &imm_expr, GPR_SIZE == 64);
12965 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12968 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12974 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12975 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12978 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12985 load_register (AT, &imm_expr, GPR_SIZE == 64);
12986 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12987 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12991 if (imm_expr.X_add_number >= -0x8000
12992 && imm_expr.X_add_number < 0x8000)
12994 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12999 load_register (AT, &imm_expr, GPR_SIZE == 64);
13000 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13004 if (imm_expr.X_add_number >= -0x8000
13005 && imm_expr.X_add_number < 0x8000)
13007 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13012 load_register (AT, &imm_expr, GPR_SIZE == 64);
13013 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13018 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13019 else if (op[2] == 0)
13020 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13023 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13024 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13029 if (imm_expr.X_add_number == 0)
13031 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13036 as_warn (_("instruction %s: result is always true"),
13037 ip->insn_mo->name);
13038 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13039 op[0], 0, BFD_RELOC_LO16);
13042 if (CPU_HAS_SEQ (mips_opts.arch)
13043 && -512 <= imm_expr.X_add_number
13044 && imm_expr.X_add_number < 512)
13046 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13047 (int) imm_expr.X_add_number);
13050 if (imm_expr.X_add_number >= 0
13051 && imm_expr.X_add_number < 0x10000)
13053 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13056 else if (imm_expr.X_add_number > -0x8000
13057 && imm_expr.X_add_number < 0)
13059 imm_expr.X_add_number = -imm_expr.X_add_number;
13060 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13061 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13063 else if (CPU_HAS_SEQ (mips_opts.arch))
13066 load_register (AT, &imm_expr, GPR_SIZE == 64);
13067 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
13073 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13076 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13091 if (!mips_opts.micromips)
13093 if (imm_expr.X_add_number > -0x200
13094 && imm_expr.X_add_number <= 0x200)
13096 macro_build (NULL, s, "t,r,.", op[0], op[1],
13097 (int) -imm_expr.X_add_number);
13106 if (imm_expr.X_add_number > -0x8000
13107 && imm_expr.X_add_number <= 0x8000)
13109 imm_expr.X_add_number = -imm_expr.X_add_number;
13110 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13115 load_register (AT, &imm_expr, dbl);
13116 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13138 load_register (AT, &imm_expr, GPR_SIZE == 64);
13139 macro_build (NULL, s, "s,t", op[0], AT);
13144 gas_assert (!mips_opts.micromips);
13145 gas_assert (mips_opts.isa == ISA_MIPS1);
13149 * Is the double cfc1 instruction a bug in the mips assembler;
13150 * or is there a reason for it?
13152 start_noreorder ();
13153 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13154 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13155 macro_build (NULL, "nop", "");
13156 expr1.X_add_number = 3;
13157 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13158 expr1.X_add_number = 2;
13159 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13160 macro_build (NULL, "ctc1", "t,G", AT, RA);
13161 macro_build (NULL, "nop", "");
13162 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13164 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13165 macro_build (NULL, "nop", "");
13182 offbits = (mips_opts.micromips ? 12 : 16);
13188 offbits = (mips_opts.micromips ? 12 : 16);
13200 offbits = (mips_opts.micromips ? 12 : 16);
13207 offbits = (mips_opts.micromips ? 12 : 16);
13213 large_offset = !small_offset_p (off, align, offbits);
13215 expr1.X_add_number = 0;
13220 if (small_offset_p (0, align, 16))
13221 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13222 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13225 load_address (tempreg, ep, &used_at);
13227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13228 tempreg, tempreg, breg);
13230 offset_reloc[0] = BFD_RELOC_LO16;
13231 offset_reloc[1] = BFD_RELOC_UNUSED;
13232 offset_reloc[2] = BFD_RELOC_UNUSED;
13237 else if (!ust && op[0] == breg)
13248 if (!target_big_endian)
13249 ep->X_add_number += off;
13251 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13253 macro_build (ep, s, "t,o(b)", tempreg, -1,
13254 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13256 if (!target_big_endian)
13257 ep->X_add_number -= off;
13259 ep->X_add_number += off;
13261 macro_build (NULL, s2, "t,~(b)",
13262 tempreg, (int) ep->X_add_number, breg);
13264 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13265 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13267 /* If necessary, move the result in tempreg to the final destination. */
13268 if (!ust && op[0] != tempreg)
13270 /* Protect second load's delay slot. */
13272 move_register (op[0], tempreg);
13278 if (target_big_endian == ust)
13279 ep->X_add_number += off;
13280 tempreg = ust || large_offset ? op[0] : AT;
13281 macro_build (ep, s, "t,o(b)", tempreg, -1,
13282 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13284 /* For halfword transfers we need a temporary register to shuffle
13285 bytes. Unfortunately for M_USH_A we have none available before
13286 the next store as AT holds the base address. We deal with this
13287 case by clobbering TREG and then restoring it as with ULH. */
13288 tempreg = ust == large_offset ? op[0] : AT;
13290 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13292 if (target_big_endian == ust)
13293 ep->X_add_number -= off;
13295 ep->X_add_number += off;
13296 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13297 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13299 /* For M_USH_A re-retrieve the LSB. */
13300 if (ust && large_offset)
13302 if (target_big_endian)
13303 ep->X_add_number += off;
13305 ep->X_add_number -= off;
13306 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13307 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13309 /* For ULH and M_USH_A OR the LSB in. */
13310 if (!ust || large_offset)
13312 tempreg = !large_offset ? AT : op[0];
13313 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13314 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13319 /* FIXME: Check if this is one of the itbl macros, since they
13320 are added dynamically. */
13321 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13324 if (!mips_opts.at && used_at)
13325 as_bad (_("macro used $at after \".set noat\""));
13328 /* Implement macros in mips16 mode. */
13331 mips16_macro (struct mips_cl_insn *ip)
13333 const struct mips_operand_array *operands;
13338 const char *s, *s2, *s3;
13339 unsigned int op[MAX_OPERANDS];
13342 mask = ip->insn_mo->mask;
13344 operands = insn_operands (ip);
13345 for (i = 0; i < MAX_OPERANDS; i++)
13346 if (operands->operand[i])
13347 op[i] = insn_extract_operand (ip, operands->operand[i]);
13351 expr1.X_op = O_constant;
13352 expr1.X_op_symbol = NULL;
13353 expr1.X_add_symbol = NULL;
13354 expr1.X_add_number = 1;
13373 start_noreorder ();
13374 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13375 expr1.X_add_number = 2;
13376 macro_build (&expr1, "bnez", "x,p", op[2]);
13377 macro_build (NULL, "break", "6", 7);
13379 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13380 since that causes an overflow. We should do that as well,
13381 but I don't see how to do the comparisons without a temporary
13384 macro_build (NULL, s, "x", op[0]);
13403 start_noreorder ();
13404 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13405 expr1.X_add_number = 2;
13406 macro_build (&expr1, "bnez", "x,p", op[2]);
13407 macro_build (NULL, "break", "6", 7);
13409 macro_build (NULL, s2, "x", op[0]);
13415 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13416 macro_build (NULL, "mflo", "x", op[0]);
13424 imm_expr.X_add_number = -imm_expr.X_add_number;
13425 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13429 imm_expr.X_add_number = -imm_expr.X_add_number;
13430 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13434 imm_expr.X_add_number = -imm_expr.X_add_number;
13435 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13457 goto do_reverse_branch;
13461 goto do_reverse_branch;
13473 goto do_reverse_branch;
13484 macro_build (NULL, s, "x,y", op[0], op[1]);
13485 macro_build (&offset_expr, s2, "p");
13512 goto do_addone_branch_i;
13517 goto do_addone_branch_i;
13532 goto do_addone_branch_i;
13538 do_addone_branch_i:
13539 ++imm_expr.X_add_number;
13542 macro_build (&imm_expr, s, s3, op[0]);
13543 macro_build (&offset_expr, s2, "p");
13547 expr1.X_add_number = 0;
13548 macro_build (&expr1, "slti", "x,8", op[1]);
13549 if (op[0] != op[1])
13550 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13551 expr1.X_add_number = 2;
13552 macro_build (&expr1, "bteqz", "p");
13553 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13558 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13559 opcode bits in *OPCODE_EXTRA. */
13561 static struct mips_opcode *
13562 mips_lookup_insn (struct hash_control *hash, const char *start,
13563 ssize_t length, unsigned int *opcode_extra)
13565 char *name, *dot, *p;
13566 unsigned int mask, suffix;
13568 struct mips_opcode *insn;
13570 /* Make a copy of the instruction so that we can fiddle with it. */
13571 name = xstrndup (start, length);
13573 /* Look up the instruction as-is. */
13574 insn = (struct mips_opcode *) hash_find (hash, name);
13578 dot = strchr (name, '.');
13581 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13582 p = mips_parse_vu0_channels (dot + 1, &mask);
13583 if (*p == 0 && mask != 0)
13586 insn = (struct mips_opcode *) hash_find (hash, name);
13588 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13590 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13596 if (mips_opts.micromips)
13598 /* See if there's an instruction size override suffix,
13599 either `16' or `32', at the end of the mnemonic proper,
13600 that defines the operation, i.e. before the first `.'
13601 character if any. Strip it and retry. */
13602 opend = dot != NULL ? dot - name : length;
13603 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13605 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13611 memcpy (name + opend - 2, name + opend, length - opend + 1);
13612 insn = (struct mips_opcode *) hash_find (hash, name);
13615 forced_insn_length = suffix;
13627 /* Assemble an instruction into its binary format. If the instruction
13628 is a macro, set imm_expr and offset_expr to the values associated
13629 with "I" and "A" operands respectively. Otherwise store the value
13630 of the relocatable field (if any) in offset_expr. In both cases
13631 set offset_reloc to the relocation operators applied to offset_expr. */
13634 mips_ip (char *str, struct mips_cl_insn *insn)
13636 const struct mips_opcode *first, *past;
13637 struct hash_control *hash;
13640 struct mips_operand_token *tokens;
13641 unsigned int opcode_extra;
13643 if (mips_opts.micromips)
13645 hash = micromips_op_hash;
13646 past = µmips_opcodes[bfd_micromips_num_opcodes];
13651 past = &mips_opcodes[NUMOPCODES];
13653 forced_insn_length = 0;
13656 /* We first try to match an instruction up to a space or to the end. */
13657 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13660 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13663 set_insn_error (0, _("unrecognized opcode"));
13667 if (strcmp (first->name, "li.s") == 0)
13669 else if (strcmp (first->name, "li.d") == 0)
13673 tokens = mips_parse_arguments (str + end, format);
13677 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13678 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13679 set_insn_error (0, _("invalid operands"));
13681 obstack_free (&mips_operand_tokens, tokens);
13684 /* As for mips_ip, but used when assembling MIPS16 code.
13685 Also set forced_insn_length to the resulting instruction size in
13686 bytes if the user explicitly requested a small or extended instruction. */
13689 mips16_ip (char *str, struct mips_cl_insn *insn)
13692 struct mips_opcode *first;
13693 struct mips_operand_token *tokens;
13695 forced_insn_length = 0;
13697 for (s = str; ISLOWER (*s); ++s)
13711 if (s[1] == 't' && s[2] == ' ')
13713 forced_insn_length = 2;
13717 else if (s[1] == 'e' && s[2] == ' ')
13719 forced_insn_length = 4;
13723 /* Fall through. */
13725 set_insn_error (0, _("unrecognized opcode"));
13729 if (mips_opts.noautoextend && !forced_insn_length)
13730 forced_insn_length = 2;
13733 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13738 set_insn_error (0, _("unrecognized opcode"));
13742 tokens = mips_parse_arguments (s, 0);
13746 if (!match_mips16_insns (insn, first, tokens))
13747 set_insn_error (0, _("invalid operands"));
13749 obstack_free (&mips_operand_tokens, tokens);
13752 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13753 NBITS is the number of significant bits in VAL. */
13755 static unsigned long
13756 mips16_immed_extend (offsetT val, unsigned int nbits)
13761 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13764 else if (nbits == 15)
13766 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13771 extval = ((val & 0x1f) << 6) | (val & 0x20);
13774 return (extval << 16) | val;
13777 /* Like decode_mips16_operand, but require the operand to be defined and
13778 require it to be an integer. */
13780 static const struct mips_int_operand *
13781 mips16_immed_operand (int type, bfd_boolean extended_p)
13783 const struct mips_operand *operand;
13785 operand = decode_mips16_operand (type, extended_p);
13786 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13788 return (const struct mips_int_operand *) operand;
13791 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13794 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13795 bfd_reloc_code_real_type reloc, offsetT sval)
13797 int min_val, max_val;
13799 min_val = mips_int_operand_min (operand);
13800 max_val = mips_int_operand_max (operand);
13801 if (reloc != BFD_RELOC_UNUSED)
13804 sval = SEXT_16BIT (sval);
13809 return (sval >= min_val
13811 && (sval & ((1 << operand->shift) - 1)) == 0);
13814 /* Install immediate value VAL into MIPS16 instruction *INSN,
13815 extending it if necessary. The instruction in *INSN may
13816 already be extended.
13818 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13819 if none. In the former case, VAL is a 16-bit number with no
13820 defined signedness.
13822 TYPE is the type of the immediate field. USER_INSN_LENGTH
13823 is the length that the user requested, or 0 if none. */
13826 mips16_immed (const char *file, unsigned int line, int type,
13827 bfd_reloc_code_real_type reloc, offsetT val,
13828 unsigned int user_insn_length, unsigned long *insn)
13830 const struct mips_int_operand *operand;
13831 unsigned int uval, length;
13833 operand = mips16_immed_operand (type, FALSE);
13834 if (!mips16_immed_in_range_p (operand, reloc, val))
13836 /* We need an extended instruction. */
13837 if (user_insn_length == 2)
13838 as_bad_where (file, line, _("invalid unextended operand value"));
13840 *insn |= MIPS16_EXTEND;
13842 else if (user_insn_length == 4)
13844 /* The operand doesn't force an unextended instruction to be extended.
13845 Warn if the user wanted an extended instruction anyway. */
13846 *insn |= MIPS16_EXTEND;
13847 as_warn_where (file, line,
13848 _("extended operand requested but not required"));
13851 length = mips16_opcode_length (*insn);
13854 operand = mips16_immed_operand (type, TRUE);
13855 if (!mips16_immed_in_range_p (operand, reloc, val))
13856 as_bad_where (file, line,
13857 _("operand value out of range for instruction"));
13859 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13861 *insn = mips_insert_operand (&operand->root, *insn, uval);
13863 *insn |= mips16_immed_extend (uval, operand->root.size);
13866 struct percent_op_match
13869 bfd_reloc_code_real_type reloc;
13872 static const struct percent_op_match mips_percent_op[] =
13874 {"%lo", BFD_RELOC_LO16},
13875 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13876 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13877 {"%call16", BFD_RELOC_MIPS_CALL16},
13878 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13879 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13880 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13881 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13882 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13883 {"%got", BFD_RELOC_MIPS_GOT16},
13884 {"%gp_rel", BFD_RELOC_GPREL16},
13885 {"%half", BFD_RELOC_16},
13886 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13887 {"%higher", BFD_RELOC_MIPS_HIGHER},
13888 {"%neg", BFD_RELOC_MIPS_SUB},
13889 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13890 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13891 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13892 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13893 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13894 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13895 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13896 {"%hi", BFD_RELOC_HI16_S},
13897 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13898 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13901 static const struct percent_op_match mips16_percent_op[] =
13903 {"%lo", BFD_RELOC_MIPS16_LO16},
13904 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13905 {"%got", BFD_RELOC_MIPS16_GOT16},
13906 {"%call16", BFD_RELOC_MIPS16_CALL16},
13907 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13908 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13909 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13910 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13911 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13912 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13913 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13914 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13918 /* Return true if *STR points to a relocation operator. When returning true,
13919 move *STR over the operator and store its relocation code in *RELOC.
13920 Leave both *STR and *RELOC alone when returning false. */
13923 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13925 const struct percent_op_match *percent_op;
13928 if (mips_opts.mips16)
13930 percent_op = mips16_percent_op;
13931 limit = ARRAY_SIZE (mips16_percent_op);
13935 percent_op = mips_percent_op;
13936 limit = ARRAY_SIZE (mips_percent_op);
13939 for (i = 0; i < limit; i++)
13940 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13942 int len = strlen (percent_op[i].str);
13944 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13947 *str += strlen (percent_op[i].str);
13948 *reloc = percent_op[i].reloc;
13950 /* Check whether the output BFD supports this relocation.
13951 If not, issue an error and fall back on something safe. */
13952 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13954 as_bad (_("relocation %s isn't supported by the current ABI"),
13955 percent_op[i].str);
13956 *reloc = BFD_RELOC_UNUSED;
13964 /* Parse string STR as a 16-bit relocatable operand. Store the
13965 expression in *EP and the relocations in the array starting
13966 at RELOC. Return the number of relocation operators used.
13968 On exit, EXPR_END points to the first character after the expression. */
13971 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13974 bfd_reloc_code_real_type reversed_reloc[3];
13975 size_t reloc_index, i;
13976 int crux_depth, str_depth;
13979 /* Search for the start of the main expression, recoding relocations
13980 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13981 of the main expression and with CRUX_DEPTH containing the number
13982 of open brackets at that point. */
13989 crux_depth = str_depth;
13991 /* Skip over whitespace and brackets, keeping count of the number
13993 while (*str == ' ' || *str == '\t' || *str == '(')
13998 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13999 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14001 my_getExpression (ep, crux);
14004 /* Match every open bracket. */
14005 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14009 if (crux_depth > 0)
14010 as_bad (_("unclosed '('"));
14014 if (reloc_index != 0)
14016 prev_reloc_op_frag = frag_now;
14017 for (i = 0; i < reloc_index; i++)
14018 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14021 return reloc_index;
14025 my_getExpression (expressionS *ep, char *str)
14029 save_in = input_line_pointer;
14030 input_line_pointer = str;
14032 expr_end = input_line_pointer;
14033 input_line_pointer = save_in;
14037 md_atof (int type, char *litP, int *sizeP)
14039 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14043 md_number_to_chars (char *buf, valueT val, int n)
14045 if (target_big_endian)
14046 number_to_chars_bigendian (buf, val, n);
14048 number_to_chars_littleendian (buf, val, n);
14051 static int support_64bit_objects(void)
14053 const char **list, **l;
14056 list = bfd_target_list ();
14057 for (l = list; *l != NULL; l++)
14058 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14059 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14061 yes = (*l != NULL);
14066 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14067 NEW_VALUE. Warn if another value was already specified. Note:
14068 we have to defer parsing the -march and -mtune arguments in order
14069 to handle 'from-abi' correctly, since the ABI might be specified
14070 in a later argument. */
14073 mips_set_option_string (const char **string_ptr, const char *new_value)
14075 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14076 as_warn (_("a different %s was already specified, is now %s"),
14077 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14080 *string_ptr = new_value;
14084 md_parse_option (int c, const char *arg)
14088 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14089 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14091 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14092 c == mips_ases[i].option_on);
14098 case OPTION_CONSTRUCT_FLOATS:
14099 mips_disable_float_construction = 0;
14102 case OPTION_NO_CONSTRUCT_FLOATS:
14103 mips_disable_float_construction = 1;
14115 target_big_endian = 1;
14119 target_big_endian = 0;
14125 else if (arg[0] == '0')
14127 else if (arg[0] == '1')
14137 mips_debug = atoi (arg);
14141 file_mips_opts.isa = ISA_MIPS1;
14145 file_mips_opts.isa = ISA_MIPS2;
14149 file_mips_opts.isa = ISA_MIPS3;
14153 file_mips_opts.isa = ISA_MIPS4;
14157 file_mips_opts.isa = ISA_MIPS5;
14160 case OPTION_MIPS32:
14161 file_mips_opts.isa = ISA_MIPS32;
14164 case OPTION_MIPS32R2:
14165 file_mips_opts.isa = ISA_MIPS32R2;
14168 case OPTION_MIPS32R3:
14169 file_mips_opts.isa = ISA_MIPS32R3;
14172 case OPTION_MIPS32R5:
14173 file_mips_opts.isa = ISA_MIPS32R5;
14176 case OPTION_MIPS32R6:
14177 file_mips_opts.isa = ISA_MIPS32R6;
14180 case OPTION_MIPS64R2:
14181 file_mips_opts.isa = ISA_MIPS64R2;
14184 case OPTION_MIPS64R3:
14185 file_mips_opts.isa = ISA_MIPS64R3;
14188 case OPTION_MIPS64R5:
14189 file_mips_opts.isa = ISA_MIPS64R5;
14192 case OPTION_MIPS64R6:
14193 file_mips_opts.isa = ISA_MIPS64R6;
14196 case OPTION_MIPS64:
14197 file_mips_opts.isa = ISA_MIPS64;
14201 mips_set_option_string (&mips_tune_string, arg);
14205 mips_set_option_string (&mips_arch_string, arg);
14209 mips_set_option_string (&mips_arch_string, "4650");
14210 mips_set_option_string (&mips_tune_string, "4650");
14213 case OPTION_NO_M4650:
14217 mips_set_option_string (&mips_arch_string, "4010");
14218 mips_set_option_string (&mips_tune_string, "4010");
14221 case OPTION_NO_M4010:
14225 mips_set_option_string (&mips_arch_string, "4100");
14226 mips_set_option_string (&mips_tune_string, "4100");
14229 case OPTION_NO_M4100:
14233 mips_set_option_string (&mips_arch_string, "3900");
14234 mips_set_option_string (&mips_tune_string, "3900");
14237 case OPTION_NO_M3900:
14240 case OPTION_MICROMIPS:
14241 if (file_mips_opts.mips16 == 1)
14243 as_bad (_("-mmicromips cannot be used with -mips16"));
14246 file_mips_opts.micromips = 1;
14247 mips_no_prev_insn ();
14250 case OPTION_NO_MICROMIPS:
14251 file_mips_opts.micromips = 0;
14252 mips_no_prev_insn ();
14255 case OPTION_MIPS16:
14256 if (file_mips_opts.micromips == 1)
14258 as_bad (_("-mips16 cannot be used with -micromips"));
14261 file_mips_opts.mips16 = 1;
14262 mips_no_prev_insn ();
14265 case OPTION_NO_MIPS16:
14266 file_mips_opts.mips16 = 0;
14267 mips_no_prev_insn ();
14270 case OPTION_FIX_24K:
14274 case OPTION_NO_FIX_24K:
14278 case OPTION_FIX_RM7000:
14279 mips_fix_rm7000 = 1;
14282 case OPTION_NO_FIX_RM7000:
14283 mips_fix_rm7000 = 0;
14286 case OPTION_FIX_LOONGSON2F_JUMP:
14287 mips_fix_loongson2f_jump = TRUE;
14290 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14291 mips_fix_loongson2f_jump = FALSE;
14294 case OPTION_FIX_LOONGSON2F_NOP:
14295 mips_fix_loongson2f_nop = TRUE;
14298 case OPTION_NO_FIX_LOONGSON2F_NOP:
14299 mips_fix_loongson2f_nop = FALSE;
14302 case OPTION_FIX_VR4120:
14303 mips_fix_vr4120 = 1;
14306 case OPTION_NO_FIX_VR4120:
14307 mips_fix_vr4120 = 0;
14310 case OPTION_FIX_VR4130:
14311 mips_fix_vr4130 = 1;
14314 case OPTION_NO_FIX_VR4130:
14315 mips_fix_vr4130 = 0;
14318 case OPTION_FIX_CN63XXP1:
14319 mips_fix_cn63xxp1 = TRUE;
14322 case OPTION_NO_FIX_CN63XXP1:
14323 mips_fix_cn63xxp1 = FALSE;
14326 case OPTION_RELAX_BRANCH:
14327 mips_relax_branch = 1;
14330 case OPTION_NO_RELAX_BRANCH:
14331 mips_relax_branch = 0;
14334 case OPTION_INSN32:
14335 file_mips_opts.insn32 = TRUE;
14338 case OPTION_NO_INSN32:
14339 file_mips_opts.insn32 = FALSE;
14342 case OPTION_MSHARED:
14343 mips_in_shared = TRUE;
14346 case OPTION_MNO_SHARED:
14347 mips_in_shared = FALSE;
14350 case OPTION_MSYM32:
14351 file_mips_opts.sym32 = TRUE;
14354 case OPTION_MNO_SYM32:
14355 file_mips_opts.sym32 = FALSE;
14358 /* When generating ELF code, we permit -KPIC and -call_shared to
14359 select SVR4_PIC, and -non_shared to select no PIC. This is
14360 intended to be compatible with Irix 5. */
14361 case OPTION_CALL_SHARED:
14362 mips_pic = SVR4_PIC;
14363 mips_abicalls = TRUE;
14366 case OPTION_CALL_NONPIC:
14368 mips_abicalls = TRUE;
14371 case OPTION_NON_SHARED:
14373 mips_abicalls = FALSE;
14376 /* The -xgot option tells the assembler to use 32 bit offsets
14377 when accessing the got in SVR4_PIC mode. It is for Irix
14384 g_switch_value = atoi (arg);
14388 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14391 mips_abi = O32_ABI;
14395 mips_abi = N32_ABI;
14399 mips_abi = N64_ABI;
14400 if (!support_64bit_objects())
14401 as_fatal (_("no compiled in support for 64 bit object file format"));
14405 file_mips_opts.gp = 32;
14409 file_mips_opts.gp = 64;
14413 file_mips_opts.fp = 32;
14417 file_mips_opts.fp = 0;
14421 file_mips_opts.fp = 64;
14424 case OPTION_ODD_SPREG:
14425 file_mips_opts.oddspreg = 1;
14428 case OPTION_NO_ODD_SPREG:
14429 file_mips_opts.oddspreg = 0;
14432 case OPTION_SINGLE_FLOAT:
14433 file_mips_opts.single_float = 1;
14436 case OPTION_DOUBLE_FLOAT:
14437 file_mips_opts.single_float = 0;
14440 case OPTION_SOFT_FLOAT:
14441 file_mips_opts.soft_float = 1;
14444 case OPTION_HARD_FLOAT:
14445 file_mips_opts.soft_float = 0;
14449 if (strcmp (arg, "32") == 0)
14450 mips_abi = O32_ABI;
14451 else if (strcmp (arg, "o64") == 0)
14452 mips_abi = O64_ABI;
14453 else if (strcmp (arg, "n32") == 0)
14454 mips_abi = N32_ABI;
14455 else if (strcmp (arg, "64") == 0)
14457 mips_abi = N64_ABI;
14458 if (! support_64bit_objects())
14459 as_fatal (_("no compiled in support for 64 bit object file "
14462 else if (strcmp (arg, "eabi") == 0)
14463 mips_abi = EABI_ABI;
14466 as_fatal (_("invalid abi -mabi=%s"), arg);
14471 case OPTION_M7000_HILO_FIX:
14472 mips_7000_hilo_fix = TRUE;
14475 case OPTION_MNO_7000_HILO_FIX:
14476 mips_7000_hilo_fix = FALSE;
14479 case OPTION_MDEBUG:
14480 mips_flag_mdebug = TRUE;
14483 case OPTION_NO_MDEBUG:
14484 mips_flag_mdebug = FALSE;
14488 mips_flag_pdr = TRUE;
14491 case OPTION_NO_PDR:
14492 mips_flag_pdr = FALSE;
14495 case OPTION_MVXWORKS_PIC:
14496 mips_pic = VXWORKS_PIC;
14500 if (strcmp (arg, "2008") == 0)
14502 else if (strcmp (arg, "legacy") == 0)
14506 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14515 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14520 /* Set up globals to tune for the ISA or processor described by INFO. */
14523 mips_set_tune (const struct mips_cpu_info *info)
14526 mips_tune = info->cpu;
14531 mips_after_parse_args (void)
14533 const struct mips_cpu_info *arch_info = 0;
14534 const struct mips_cpu_info *tune_info = 0;
14536 /* GP relative stuff not working for PE */
14537 if (strncmp (TARGET_OS, "pe", 2) == 0)
14539 if (g_switch_seen && g_switch_value != 0)
14540 as_bad (_("-G not supported in this configuration"));
14541 g_switch_value = 0;
14544 if (mips_abi == NO_ABI)
14545 mips_abi = MIPS_DEFAULT_ABI;
14547 /* The following code determines the architecture.
14548 Similar code was added to GCC 3.3 (see override_options() in
14549 config/mips/mips.c). The GAS and GCC code should be kept in sync
14550 as much as possible. */
14552 if (mips_arch_string != 0)
14553 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14555 if (file_mips_opts.isa != ISA_UNKNOWN)
14557 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14558 ISA level specified by -mipsN, while arch_info->isa contains
14559 the -march selection (if any). */
14560 if (arch_info != 0)
14562 /* -march takes precedence over -mipsN, since it is more descriptive.
14563 There's no harm in specifying both as long as the ISA levels
14565 if (file_mips_opts.isa != arch_info->isa)
14566 as_bad (_("-%s conflicts with the other architecture options,"
14567 " which imply -%s"),
14568 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14569 mips_cpu_info_from_isa (arch_info->isa)->name);
14572 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14575 if (arch_info == 0)
14577 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14578 gas_assert (arch_info);
14581 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14582 as_bad (_("-march=%s is not compatible with the selected ABI"),
14585 file_mips_opts.arch = arch_info->cpu;
14586 file_mips_opts.isa = arch_info->isa;
14588 /* Set up initial mips_opts state. */
14589 mips_opts = file_mips_opts;
14591 /* The register size inference code is now placed in
14592 file_mips_check_options. */
14594 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14596 if (mips_tune_string != 0)
14597 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14599 if (tune_info == 0)
14600 mips_set_tune (arch_info);
14602 mips_set_tune (tune_info);
14604 if (mips_flag_mdebug < 0)
14605 mips_flag_mdebug = 0;
14609 mips_init_after_args (void)
14611 /* initialize opcodes */
14612 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14613 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14617 md_pcrel_from (fixS *fixP)
14619 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14620 switch (fixP->fx_r_type)
14622 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14623 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14624 /* Return the address of the delay slot. */
14627 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14628 case BFD_RELOC_MICROMIPS_JMP:
14629 case BFD_RELOC_MIPS16_16_PCREL_S1:
14630 case BFD_RELOC_16_PCREL_S2:
14631 case BFD_RELOC_MIPS_21_PCREL_S2:
14632 case BFD_RELOC_MIPS_26_PCREL_S2:
14633 case BFD_RELOC_MIPS_JMP:
14634 /* Return the address of the delay slot. */
14637 case BFD_RELOC_MIPS_18_PCREL_S3:
14638 /* Return the aligned address of the doubleword containing
14639 the instruction. */
14647 /* This is called before the symbol table is processed. In order to
14648 work with gcc when using mips-tfile, we must keep all local labels.
14649 However, in other cases, we want to discard them. If we were
14650 called with -g, but we didn't see any debugging information, it may
14651 mean that gcc is smuggling debugging information through to
14652 mips-tfile, in which case we must generate all local labels. */
14655 mips_frob_file_before_adjust (void)
14657 #ifndef NO_ECOFF_DEBUGGING
14658 if (ECOFF_DEBUGGING
14660 && ! ecoff_debugging_seen)
14661 flag_keep_locals = 1;
14665 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14666 the corresponding LO16 reloc. This is called before md_apply_fix and
14667 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14668 relocation operators.
14670 For our purposes, a %lo() expression matches a %got() or %hi()
14673 (a) it refers to the same symbol; and
14674 (b) the offset applied in the %lo() expression is no lower than
14675 the offset applied in the %got() or %hi().
14677 (b) allows us to cope with code like:
14680 lh $4,%lo(foo+2)($4)
14682 ...which is legal on RELA targets, and has a well-defined behaviour
14683 if the user knows that adding 2 to "foo" will not induce a carry to
14686 When several %lo()s match a particular %got() or %hi(), we use the
14687 following rules to distinguish them:
14689 (1) %lo()s with smaller offsets are a better match than %lo()s with
14692 (2) %lo()s with no matching %got() or %hi() are better than those
14693 that already have a matching %got() or %hi().
14695 (3) later %lo()s are better than earlier %lo()s.
14697 These rules are applied in order.
14699 (1) means, among other things, that %lo()s with identical offsets are
14700 chosen if they exist.
14702 (2) means that we won't associate several high-part relocations with
14703 the same low-part relocation unless there's no alternative. Having
14704 several high parts for the same low part is a GNU extension; this rule
14705 allows careful users to avoid it.
14707 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14708 with the last high-part relocation being at the front of the list.
14709 It therefore makes sense to choose the last matching low-part
14710 relocation, all other things being equal. It's also easier
14711 to code that way. */
14714 mips_frob_file (void)
14716 struct mips_hi_fixup *l;
14717 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14719 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14721 segment_info_type *seginfo;
14722 bfd_boolean matched_lo_p;
14723 fixS **hi_pos, **lo_pos, **pos;
14725 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14727 /* If a GOT16 relocation turns out to be against a global symbol,
14728 there isn't supposed to be a matching LO. Ignore %gots against
14729 constants; we'll report an error for those later. */
14730 if (got16_reloc_p (l->fixp->fx_r_type)
14731 && !(l->fixp->fx_addsy
14732 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14735 /* Check quickly whether the next fixup happens to be a matching %lo. */
14736 if (fixup_has_matching_lo_p (l->fixp))
14739 seginfo = seg_info (l->seg);
14741 /* Set HI_POS to the position of this relocation in the chain.
14742 Set LO_POS to the position of the chosen low-part relocation.
14743 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14744 relocation that matches an immediately-preceding high-part
14748 matched_lo_p = FALSE;
14749 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14751 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14753 if (*pos == l->fixp)
14756 if ((*pos)->fx_r_type == looking_for_rtype
14757 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14758 && (*pos)->fx_offset >= l->fixp->fx_offset
14760 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14762 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14765 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14766 && fixup_has_matching_lo_p (*pos));
14769 /* If we found a match, remove the high-part relocation from its
14770 current position and insert it before the low-part relocation.
14771 Make the offsets match so that fixup_has_matching_lo_p()
14774 We don't warn about unmatched high-part relocations since some
14775 versions of gcc have been known to emit dead "lui ...%hi(...)"
14777 if (lo_pos != NULL)
14779 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14780 if (l->fixp->fx_next != *lo_pos)
14782 *hi_pos = l->fixp->fx_next;
14783 l->fixp->fx_next = *lo_pos;
14791 mips_force_relocation (fixS *fixp)
14793 if (generic_force_reloc (fixp))
14796 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14797 so that the linker relaxation can update targets. */
14798 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14799 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14800 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14803 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14804 if (ISA_IS_R6 (file_mips_opts.isa)
14805 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14806 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14807 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14808 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14809 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14810 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14811 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14817 /* Read the instruction associated with RELOC from BUF. */
14819 static unsigned int
14820 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14822 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14823 return read_compressed_insn (buf, 4);
14825 return read_insn (buf);
14828 /* Write instruction INSN to BUF, given that it has been relocated
14832 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14833 unsigned long insn)
14835 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14836 write_compressed_insn (buf, insn, 4);
14838 write_insn (buf, insn);
14841 /* Apply a fixup to the object file. */
14844 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14847 unsigned long insn;
14848 reloc_howto_type *howto;
14850 if (fixP->fx_pcrel)
14851 switch (fixP->fx_r_type)
14853 case BFD_RELOC_16_PCREL_S2:
14854 case BFD_RELOC_MIPS16_16_PCREL_S1:
14855 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14856 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14857 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14858 case BFD_RELOC_32_PCREL:
14859 case BFD_RELOC_MIPS_21_PCREL_S2:
14860 case BFD_RELOC_MIPS_26_PCREL_S2:
14861 case BFD_RELOC_MIPS_18_PCREL_S3:
14862 case BFD_RELOC_MIPS_19_PCREL_S2:
14863 case BFD_RELOC_HI16_S_PCREL:
14864 case BFD_RELOC_LO16_PCREL:
14868 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14872 as_bad_where (fixP->fx_file, fixP->fx_line,
14873 _("PC-relative reference to a different section"));
14877 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14878 that have no MIPS ELF equivalent. */
14879 if (fixP->fx_r_type != BFD_RELOC_8)
14881 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14886 gas_assert (fixP->fx_size == 2
14887 || fixP->fx_size == 4
14888 || fixP->fx_r_type == BFD_RELOC_8
14889 || fixP->fx_r_type == BFD_RELOC_16
14890 || fixP->fx_r_type == BFD_RELOC_64
14891 || fixP->fx_r_type == BFD_RELOC_CTOR
14892 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14893 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14894 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14895 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14896 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14897 || fixP->fx_r_type == BFD_RELOC_NONE);
14899 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14901 /* Don't treat parts of a composite relocation as done. There are two
14904 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14905 should nevertheless be emitted if the first part is.
14907 (2) In normal usage, composite relocations are never assembly-time
14908 constants. The easiest way of dealing with the pathological
14909 exceptions is to generate a relocation against STN_UNDEF and
14910 leave everything up to the linker. */
14911 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14914 switch (fixP->fx_r_type)
14916 case BFD_RELOC_MIPS_TLS_GD:
14917 case BFD_RELOC_MIPS_TLS_LDM:
14918 case BFD_RELOC_MIPS_TLS_DTPREL32:
14919 case BFD_RELOC_MIPS_TLS_DTPREL64:
14920 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14921 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14922 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14923 case BFD_RELOC_MIPS_TLS_TPREL32:
14924 case BFD_RELOC_MIPS_TLS_TPREL64:
14925 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14926 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14927 case BFD_RELOC_MICROMIPS_TLS_GD:
14928 case BFD_RELOC_MICROMIPS_TLS_LDM:
14929 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14930 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14931 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14932 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14933 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14934 case BFD_RELOC_MIPS16_TLS_GD:
14935 case BFD_RELOC_MIPS16_TLS_LDM:
14936 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14937 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14938 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14939 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14940 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14941 if (fixP->fx_addsy)
14942 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14944 as_bad_where (fixP->fx_file, fixP->fx_line,
14945 _("TLS relocation against a constant"));
14948 case BFD_RELOC_MIPS_JMP:
14949 case BFD_RELOC_MIPS_SHIFT5:
14950 case BFD_RELOC_MIPS_SHIFT6:
14951 case BFD_RELOC_MIPS_GOT_DISP:
14952 case BFD_RELOC_MIPS_GOT_PAGE:
14953 case BFD_RELOC_MIPS_GOT_OFST:
14954 case BFD_RELOC_MIPS_SUB:
14955 case BFD_RELOC_MIPS_INSERT_A:
14956 case BFD_RELOC_MIPS_INSERT_B:
14957 case BFD_RELOC_MIPS_DELETE:
14958 case BFD_RELOC_MIPS_HIGHEST:
14959 case BFD_RELOC_MIPS_HIGHER:
14960 case BFD_RELOC_MIPS_SCN_DISP:
14961 case BFD_RELOC_MIPS_REL16:
14962 case BFD_RELOC_MIPS_RELGOT:
14963 case BFD_RELOC_MIPS_JALR:
14964 case BFD_RELOC_HI16:
14965 case BFD_RELOC_HI16_S:
14966 case BFD_RELOC_LO16:
14967 case BFD_RELOC_GPREL16:
14968 case BFD_RELOC_MIPS_LITERAL:
14969 case BFD_RELOC_MIPS_CALL16:
14970 case BFD_RELOC_MIPS_GOT16:
14971 case BFD_RELOC_GPREL32:
14972 case BFD_RELOC_MIPS_GOT_HI16:
14973 case BFD_RELOC_MIPS_GOT_LO16:
14974 case BFD_RELOC_MIPS_CALL_HI16:
14975 case BFD_RELOC_MIPS_CALL_LO16:
14976 case BFD_RELOC_HI16_S_PCREL:
14977 case BFD_RELOC_LO16_PCREL:
14978 case BFD_RELOC_MIPS16_GPREL:
14979 case BFD_RELOC_MIPS16_GOT16:
14980 case BFD_RELOC_MIPS16_CALL16:
14981 case BFD_RELOC_MIPS16_HI16:
14982 case BFD_RELOC_MIPS16_HI16_S:
14983 case BFD_RELOC_MIPS16_LO16:
14984 case BFD_RELOC_MIPS16_JMP:
14985 case BFD_RELOC_MICROMIPS_JMP:
14986 case BFD_RELOC_MICROMIPS_GOT_DISP:
14987 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14988 case BFD_RELOC_MICROMIPS_GOT_OFST:
14989 case BFD_RELOC_MICROMIPS_SUB:
14990 case BFD_RELOC_MICROMIPS_HIGHEST:
14991 case BFD_RELOC_MICROMIPS_HIGHER:
14992 case BFD_RELOC_MICROMIPS_SCN_DISP:
14993 case BFD_RELOC_MICROMIPS_JALR:
14994 case BFD_RELOC_MICROMIPS_HI16:
14995 case BFD_RELOC_MICROMIPS_HI16_S:
14996 case BFD_RELOC_MICROMIPS_LO16:
14997 case BFD_RELOC_MICROMIPS_GPREL16:
14998 case BFD_RELOC_MICROMIPS_LITERAL:
14999 case BFD_RELOC_MICROMIPS_CALL16:
15000 case BFD_RELOC_MICROMIPS_GOT16:
15001 case BFD_RELOC_MICROMIPS_GOT_HI16:
15002 case BFD_RELOC_MICROMIPS_GOT_LO16:
15003 case BFD_RELOC_MICROMIPS_CALL_HI16:
15004 case BFD_RELOC_MICROMIPS_CALL_LO16:
15005 case BFD_RELOC_MIPS_EH:
15010 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15012 insn = read_reloc_insn (buf, fixP->fx_r_type);
15013 if (mips16_reloc_p (fixP->fx_r_type))
15014 insn |= mips16_immed_extend (value, 16);
15016 insn |= (value & 0xffff);
15017 write_reloc_insn (buf, fixP->fx_r_type, insn);
15020 as_bad_where (fixP->fx_file, fixP->fx_line,
15021 _("unsupported constant in relocation"));
15026 /* This is handled like BFD_RELOC_32, but we output a sign
15027 extended value if we are only 32 bits. */
15030 if (8 <= sizeof (valueT))
15031 md_number_to_chars (buf, *valP, 8);
15036 if ((*valP & 0x80000000) != 0)
15040 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15041 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15046 case BFD_RELOC_RVA:
15048 case BFD_RELOC_32_PCREL:
15051 /* If we are deleting this reloc entry, we must fill in the
15052 value now. This can happen if we have a .word which is not
15053 resolved when it appears but is later defined. */
15055 md_number_to_chars (buf, *valP, fixP->fx_size);
15058 case BFD_RELOC_MIPS_21_PCREL_S2:
15059 if ((*valP & 0x3) != 0)
15060 as_bad_where (fixP->fx_file, fixP->fx_line,
15061 _("branch to misaligned address (%lx)"), (long) *valP);
15062 if (!fixP->fx_done)
15065 if (*valP + 0x400000 <= 0x7fffff)
15067 insn = read_insn (buf);
15068 insn |= (*valP >> 2) & 0x1fffff;
15069 write_insn (buf, insn);
15072 as_bad_where (fixP->fx_file, fixP->fx_line,
15073 _("branch out of range"));
15076 case BFD_RELOC_MIPS_26_PCREL_S2:
15077 if ((*valP & 0x3) != 0)
15078 as_bad_where (fixP->fx_file, fixP->fx_line,
15079 _("branch to misaligned address (%lx)"), (long) *valP);
15080 if (!fixP->fx_done)
15083 if (*valP + 0x8000000 <= 0xfffffff)
15085 insn = read_insn (buf);
15086 insn |= (*valP >> 2) & 0x3ffffff;
15087 write_insn (buf, insn);
15090 as_bad_where (fixP->fx_file, fixP->fx_line,
15091 _("branch out of range"));
15094 case BFD_RELOC_MIPS_18_PCREL_S3:
15095 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15096 as_bad_where (fixP->fx_file, fixP->fx_line,
15097 _("PC-relative access using misaligned symbol (%lx)"),
15098 (long) S_GET_VALUE (fixP->fx_addsy));
15099 if ((fixP->fx_offset & 0x7) != 0)
15100 as_bad_where (fixP->fx_file, fixP->fx_line,
15101 _("PC-relative access using misaligned offset (%lx)"),
15102 (long) fixP->fx_offset);
15103 if (!fixP->fx_done)
15106 if (*valP + 0x100000 <= 0x1fffff)
15108 insn = read_insn (buf);
15109 insn |= (*valP >> 3) & 0x3ffff;
15110 write_insn (buf, insn);
15113 as_bad_where (fixP->fx_file, fixP->fx_line,
15114 _("PC-relative access out of range"));
15117 case BFD_RELOC_MIPS_19_PCREL_S2:
15118 if ((*valP & 0x3) != 0)
15119 as_bad_where (fixP->fx_file, fixP->fx_line,
15120 _("PC-relative access to misaligned address (%lx)"),
15122 if (!fixP->fx_done)
15125 if (*valP + 0x100000 <= 0x1fffff)
15127 insn = read_insn (buf);
15128 insn |= (*valP >> 2) & 0x7ffff;
15129 write_insn (buf, insn);
15132 as_bad_where (fixP->fx_file, fixP->fx_line,
15133 _("PC-relative access out of range"));
15136 case BFD_RELOC_16_PCREL_S2:
15137 if ((*valP & 0x3) != 0)
15138 as_bad_where (fixP->fx_file, fixP->fx_line,
15139 _("branch to misaligned address (%lx)"), (long) *valP);
15141 /* We need to save the bits in the instruction since fixup_segment()
15142 might be deleting the relocation entry (i.e., a branch within
15143 the current segment). */
15144 if (! fixP->fx_done)
15147 /* Update old instruction data. */
15148 insn = read_insn (buf);
15150 if (*valP + 0x20000 <= 0x3ffff)
15152 insn |= (*valP >> 2) & 0xffff;
15153 write_insn (buf, insn);
15155 else if (mips_pic == NO_PIC
15157 && fixP->fx_frag->fr_address >= text_section->vma
15158 && (fixP->fx_frag->fr_address
15159 < text_section->vma + bfd_get_section_size (text_section))
15160 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15161 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15162 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15164 /* The branch offset is too large. If this is an
15165 unconditional branch, and we are not generating PIC code,
15166 we can convert it to an absolute jump instruction. */
15167 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15168 insn = 0x0c000000; /* jal */
15170 insn = 0x08000000; /* j */
15171 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15173 fixP->fx_addsy = section_symbol (text_section);
15174 *valP += md_pcrel_from (fixP);
15175 write_insn (buf, insn);
15179 /* If we got here, we have branch-relaxation disabled,
15180 and there's nothing we can do to fix this instruction
15181 without turning it into a longer sequence. */
15182 as_bad_where (fixP->fx_file, fixP->fx_line,
15183 _("branch out of range"));
15187 case BFD_RELOC_MIPS16_16_PCREL_S1:
15188 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15189 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15190 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15191 gas_assert (!fixP->fx_done);
15194 case BFD_RELOC_VTABLE_INHERIT:
15197 && !S_IS_DEFINED (fixP->fx_addsy)
15198 && !S_IS_WEAK (fixP->fx_addsy))
15199 S_SET_WEAK (fixP->fx_addsy);
15202 case BFD_RELOC_NONE:
15203 case BFD_RELOC_VTABLE_ENTRY:
15211 /* Remember value for tc_gen_reloc. */
15212 fixP->fx_addnumber = *valP;
15222 c = get_symbol_name (&name);
15223 p = (symbolS *) symbol_find_or_make (name);
15224 (void) restore_line_pointer (c);
15228 /* Align the current frag to a given power of two. If a particular
15229 fill byte should be used, FILL points to an integer that contains
15230 that byte, otherwise FILL is null.
15232 This function used to have the comment:
15234 The MIPS assembler also automatically adjusts any preceding label.
15236 The implementation therefore applied the adjustment to a maximum of
15237 one label. However, other label adjustments are applied to batches
15238 of labels, and adjusting just one caused problems when new labels
15239 were added for the sake of debugging or unwind information.
15240 We therefore adjust all preceding labels (given as LABELS) instead. */
15243 mips_align (int to, int *fill, struct insn_label_list *labels)
15245 mips_emit_delays ();
15246 mips_record_compressed_mode ();
15247 if (fill == NULL && subseg_text_p (now_seg))
15248 frag_align_code (to, 0);
15250 frag_align (to, fill ? *fill : 0, 0);
15251 record_alignment (now_seg, to);
15252 mips_move_labels (labels, FALSE);
15255 /* Align to a given power of two. .align 0 turns off the automatic
15256 alignment used by the data creating pseudo-ops. */
15259 s_align (int x ATTRIBUTE_UNUSED)
15261 int temp, fill_value, *fill_ptr;
15262 long max_alignment = 28;
15264 /* o Note that the assembler pulls down any immediately preceding label
15265 to the aligned address.
15266 o It's not documented but auto alignment is reinstated by
15267 a .align pseudo instruction.
15268 o Note also that after auto alignment is turned off the mips assembler
15269 issues an error on attempt to assemble an improperly aligned data item.
15272 temp = get_absolute_expression ();
15273 if (temp > max_alignment)
15274 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15277 as_warn (_("alignment negative, 0 assumed"));
15280 if (*input_line_pointer == ',')
15282 ++input_line_pointer;
15283 fill_value = get_absolute_expression ();
15284 fill_ptr = &fill_value;
15290 segment_info_type *si = seg_info (now_seg);
15291 struct insn_label_list *l = si->label_list;
15292 /* Auto alignment should be switched on by next section change. */
15294 mips_align (temp, fill_ptr, l);
15301 demand_empty_rest_of_line ();
15305 s_change_sec (int sec)
15309 /* The ELF backend needs to know that we are changing sections, so
15310 that .previous works correctly. We could do something like check
15311 for an obj_section_change_hook macro, but that might be confusing
15312 as it would not be appropriate to use it in the section changing
15313 functions in read.c, since obj-elf.c intercepts those. FIXME:
15314 This should be cleaner, somehow. */
15315 obj_elf_section_change_hook ();
15317 mips_emit_delays ();
15328 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15329 demand_empty_rest_of_line ();
15333 seg = subseg_new (RDATA_SECTION_NAME,
15334 (subsegT) get_absolute_expression ());
15335 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15336 | SEC_READONLY | SEC_RELOC
15338 if (strncmp (TARGET_OS, "elf", 3) != 0)
15339 record_alignment (seg, 4);
15340 demand_empty_rest_of_line ();
15344 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15345 bfd_set_section_flags (stdoutput, seg,
15346 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15347 if (strncmp (TARGET_OS, "elf", 3) != 0)
15348 record_alignment (seg, 4);
15349 demand_empty_rest_of_line ();
15353 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15354 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15355 if (strncmp (TARGET_OS, "elf", 3) != 0)
15356 record_alignment (seg, 4);
15357 demand_empty_rest_of_line ();
15365 s_change_section (int ignore ATTRIBUTE_UNUSED)
15368 char *section_name;
15373 int section_entry_size;
15374 int section_alignment;
15376 saved_ilp = input_line_pointer;
15377 endc = get_symbol_name (§ion_name);
15378 c = (endc == '"' ? input_line_pointer[1] : endc);
15380 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15382 /* Do we have .section Name<,"flags">? */
15383 if (c != ',' || (c == ',' && next_c == '"'))
15385 /* Just after name is now '\0'. */
15386 (void) restore_line_pointer (endc);
15387 input_line_pointer = saved_ilp;
15388 obj_elf_section (ignore);
15392 section_name = xstrdup (section_name);
15393 c = restore_line_pointer (endc);
15395 input_line_pointer++;
15397 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15399 section_type = get_absolute_expression ();
15403 if (*input_line_pointer++ == ',')
15404 section_flag = get_absolute_expression ();
15408 if (*input_line_pointer++ == ',')
15409 section_entry_size = get_absolute_expression ();
15411 section_entry_size = 0;
15413 if (*input_line_pointer++ == ',')
15414 section_alignment = get_absolute_expression ();
15416 section_alignment = 0;
15418 /* FIXME: really ignore? */
15419 (void) section_alignment;
15421 /* When using the generic form of .section (as implemented by obj-elf.c),
15422 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15423 traditionally had to fall back on the more common @progbits instead.
15425 There's nothing really harmful in this, since bfd will correct
15426 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15427 means that, for backwards compatibility, the special_section entries
15428 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15430 Even so, we shouldn't force users of the MIPS .section syntax to
15431 incorrectly label the sections as SHT_PROGBITS. The best compromise
15432 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15433 generic type-checking code. */
15434 if (section_type == SHT_MIPS_DWARF)
15435 section_type = SHT_PROGBITS;
15437 obj_elf_change_section (section_name, section_type, section_flag,
15438 section_entry_size, 0, 0, 0);
15440 if (now_seg->name != section_name)
15441 free (section_name);
15445 mips_enable_auto_align (void)
15451 s_cons (int log_size)
15453 segment_info_type *si = seg_info (now_seg);
15454 struct insn_label_list *l = si->label_list;
15456 mips_emit_delays ();
15457 if (log_size > 0 && auto_align)
15458 mips_align (log_size, 0, l);
15459 cons (1 << log_size);
15460 mips_clear_insn_labels ();
15464 s_float_cons (int type)
15466 segment_info_type *si = seg_info (now_seg);
15467 struct insn_label_list *l = si->label_list;
15469 mips_emit_delays ();
15474 mips_align (3, 0, l);
15476 mips_align (2, 0, l);
15480 mips_clear_insn_labels ();
15483 /* Handle .globl. We need to override it because on Irix 5 you are
15486 where foo is an undefined symbol, to mean that foo should be
15487 considered to be the address of a function. */
15490 s_mips_globl (int x ATTRIBUTE_UNUSED)
15499 c = get_symbol_name (&name);
15500 symbolP = symbol_find_or_make (name);
15501 S_SET_EXTERNAL (symbolP);
15503 *input_line_pointer = c;
15504 SKIP_WHITESPACE_AFTER_NAME ();
15506 /* On Irix 5, every global symbol that is not explicitly labelled as
15507 being a function is apparently labelled as being an object. */
15510 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15511 && (*input_line_pointer != ','))
15516 c = get_symbol_name (&secname);
15517 sec = bfd_get_section_by_name (stdoutput, secname);
15519 as_bad (_("%s: no such section"), secname);
15520 (void) restore_line_pointer (c);
15522 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15523 flag = BSF_FUNCTION;
15526 symbol_get_bfdsym (symbolP)->flags |= flag;
15528 c = *input_line_pointer;
15531 input_line_pointer++;
15532 SKIP_WHITESPACE ();
15533 if (is_end_of_line[(unsigned char) *input_line_pointer])
15539 demand_empty_rest_of_line ();
15543 s_option (int x ATTRIBUTE_UNUSED)
15548 c = get_symbol_name (&opt);
15552 /* FIXME: What does this mean? */
15554 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15558 i = atoi (opt + 3);
15559 if (i != 0 && i != 2)
15560 as_bad (_(".option pic%d not supported"), i);
15561 else if (mips_pic == VXWORKS_PIC)
15562 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15567 mips_pic = SVR4_PIC;
15568 mips_abicalls = TRUE;
15571 if (mips_pic == SVR4_PIC)
15573 if (g_switch_seen && g_switch_value != 0)
15574 as_warn (_("-G may not be used with SVR4 PIC code"));
15575 g_switch_value = 0;
15576 bfd_set_gp_size (stdoutput, 0);
15580 as_warn (_("unrecognized option \"%s\""), opt);
15582 (void) restore_line_pointer (c);
15583 demand_empty_rest_of_line ();
15586 /* This structure is used to hold a stack of .set values. */
15588 struct mips_option_stack
15590 struct mips_option_stack *next;
15591 struct mips_set_options options;
15594 static struct mips_option_stack *mips_opts_stack;
15596 /* Return status for .set/.module option handling. */
15598 enum code_option_type
15600 /* Unrecognized option. */
15601 OPTION_TYPE_BAD = -1,
15603 /* Ordinary option. */
15604 OPTION_TYPE_NORMAL,
15606 /* ISA changing option. */
15610 /* Handle common .set/.module options. Return status indicating option
15613 static enum code_option_type
15614 parse_code_option (char * name)
15616 bfd_boolean isa_set = FALSE;
15617 const struct mips_ase *ase;
15619 if (strncmp (name, "at=", 3) == 0)
15621 char *s = name + 3;
15623 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15624 as_bad (_("unrecognized register name `%s'"), s);
15626 else if (strcmp (name, "at") == 0)
15627 mips_opts.at = ATREG;
15628 else if (strcmp (name, "noat") == 0)
15629 mips_opts.at = ZERO;
15630 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15631 mips_opts.nomove = 0;
15632 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15633 mips_opts.nomove = 1;
15634 else if (strcmp (name, "bopt") == 0)
15635 mips_opts.nobopt = 0;
15636 else if (strcmp (name, "nobopt") == 0)
15637 mips_opts.nobopt = 1;
15638 else if (strcmp (name, "gp=32") == 0)
15640 else if (strcmp (name, "gp=64") == 0)
15642 else if (strcmp (name, "fp=32") == 0)
15644 else if (strcmp (name, "fp=xx") == 0)
15646 else if (strcmp (name, "fp=64") == 0)
15648 else if (strcmp (name, "softfloat") == 0)
15649 mips_opts.soft_float = 1;
15650 else if (strcmp (name, "hardfloat") == 0)
15651 mips_opts.soft_float = 0;
15652 else if (strcmp (name, "singlefloat") == 0)
15653 mips_opts.single_float = 1;
15654 else if (strcmp (name, "doublefloat") == 0)
15655 mips_opts.single_float = 0;
15656 else if (strcmp (name, "nooddspreg") == 0)
15657 mips_opts.oddspreg = 0;
15658 else if (strcmp (name, "oddspreg") == 0)
15659 mips_opts.oddspreg = 1;
15660 else if (strcmp (name, "mips16") == 0
15661 || strcmp (name, "MIPS-16") == 0)
15662 mips_opts.mips16 = 1;
15663 else if (strcmp (name, "nomips16") == 0
15664 || strcmp (name, "noMIPS-16") == 0)
15665 mips_opts.mips16 = 0;
15666 else if (strcmp (name, "micromips") == 0)
15667 mips_opts.micromips = 1;
15668 else if (strcmp (name, "nomicromips") == 0)
15669 mips_opts.micromips = 0;
15670 else if (name[0] == 'n'
15672 && (ase = mips_lookup_ase (name + 2)))
15673 mips_set_ase (ase, &mips_opts, FALSE);
15674 else if ((ase = mips_lookup_ase (name)))
15675 mips_set_ase (ase, &mips_opts, TRUE);
15676 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15678 /* Permit the user to change the ISA and architecture on the fly.
15679 Needless to say, misuse can cause serious problems. */
15680 if (strncmp (name, "arch=", 5) == 0)
15682 const struct mips_cpu_info *p;
15684 p = mips_parse_cpu ("internal use", name + 5);
15686 as_bad (_("unknown architecture %s"), name + 5);
15689 mips_opts.arch = p->cpu;
15690 mips_opts.isa = p->isa;
15694 else if (strncmp (name, "mips", 4) == 0)
15696 const struct mips_cpu_info *p;
15698 p = mips_parse_cpu ("internal use", name);
15700 as_bad (_("unknown ISA level %s"), name + 4);
15703 mips_opts.arch = p->cpu;
15704 mips_opts.isa = p->isa;
15709 as_bad (_("unknown ISA or architecture %s"), name);
15711 else if (strcmp (name, "autoextend") == 0)
15712 mips_opts.noautoextend = 0;
15713 else if (strcmp (name, "noautoextend") == 0)
15714 mips_opts.noautoextend = 1;
15715 else if (strcmp (name, "insn32") == 0)
15716 mips_opts.insn32 = TRUE;
15717 else if (strcmp (name, "noinsn32") == 0)
15718 mips_opts.insn32 = FALSE;
15719 else if (strcmp (name, "sym32") == 0)
15720 mips_opts.sym32 = TRUE;
15721 else if (strcmp (name, "nosym32") == 0)
15722 mips_opts.sym32 = FALSE;
15724 return OPTION_TYPE_BAD;
15726 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15729 /* Handle the .set pseudo-op. */
15732 s_mipsset (int x ATTRIBUTE_UNUSED)
15734 enum code_option_type type = OPTION_TYPE_NORMAL;
15735 char *name = input_line_pointer, ch;
15737 file_mips_check_options ();
15739 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15740 ++input_line_pointer;
15741 ch = *input_line_pointer;
15742 *input_line_pointer = '\0';
15744 if (strchr (name, ','))
15746 /* Generic ".set" directive; use the generic handler. */
15747 *input_line_pointer = ch;
15748 input_line_pointer = name;
15753 if (strcmp (name, "reorder") == 0)
15755 if (mips_opts.noreorder)
15758 else if (strcmp (name, "noreorder") == 0)
15760 if (!mips_opts.noreorder)
15761 start_noreorder ();
15763 else if (strcmp (name, "macro") == 0)
15764 mips_opts.warn_about_macros = 0;
15765 else if (strcmp (name, "nomacro") == 0)
15767 if (mips_opts.noreorder == 0)
15768 as_bad (_("`noreorder' must be set before `nomacro'"));
15769 mips_opts.warn_about_macros = 1;
15771 else if (strcmp (name, "gp=default") == 0)
15772 mips_opts.gp = file_mips_opts.gp;
15773 else if (strcmp (name, "fp=default") == 0)
15774 mips_opts.fp = file_mips_opts.fp;
15775 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15777 mips_opts.isa = file_mips_opts.isa;
15778 mips_opts.arch = file_mips_opts.arch;
15779 mips_opts.gp = file_mips_opts.gp;
15780 mips_opts.fp = file_mips_opts.fp;
15782 else if (strcmp (name, "push") == 0)
15784 struct mips_option_stack *s;
15786 s = XNEW (struct mips_option_stack);
15787 s->next = mips_opts_stack;
15788 s->options = mips_opts;
15789 mips_opts_stack = s;
15791 else if (strcmp (name, "pop") == 0)
15793 struct mips_option_stack *s;
15795 s = mips_opts_stack;
15797 as_bad (_(".set pop with no .set push"));
15800 /* If we're changing the reorder mode we need to handle
15801 delay slots correctly. */
15802 if (s->options.noreorder && ! mips_opts.noreorder)
15803 start_noreorder ();
15804 else if (! s->options.noreorder && mips_opts.noreorder)
15807 mips_opts = s->options;
15808 mips_opts_stack = s->next;
15814 type = parse_code_option (name);
15815 if (type == OPTION_TYPE_BAD)
15816 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15819 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15820 registers based on what is supported by the arch/cpu. */
15821 if (type == OPTION_TYPE_ISA)
15823 switch (mips_opts.isa)
15828 /* MIPS I cannot support FPXX. */
15830 /* fall-through. */
15837 if (mips_opts.fp != 0)
15853 if (mips_opts.fp != 0)
15855 if (mips_opts.arch == CPU_R5900)
15862 as_bad (_("unknown ISA level %s"), name + 4);
15867 mips_check_options (&mips_opts, FALSE);
15869 mips_check_isa_supports_ases ();
15870 *input_line_pointer = ch;
15871 demand_empty_rest_of_line ();
15874 /* Handle the .module pseudo-op. */
15877 s_module (int ignore ATTRIBUTE_UNUSED)
15879 char *name = input_line_pointer, ch;
15881 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15882 ++input_line_pointer;
15883 ch = *input_line_pointer;
15884 *input_line_pointer = '\0';
15886 if (!file_mips_opts_checked)
15888 if (parse_code_option (name) == OPTION_TYPE_BAD)
15889 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15891 /* Update module level settings from mips_opts. */
15892 file_mips_opts = mips_opts;
15895 as_bad (_(".module is not permitted after generating code"));
15897 *input_line_pointer = ch;
15898 demand_empty_rest_of_line ();
15901 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15902 .option pic2. It means to generate SVR4 PIC calls. */
15905 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15907 mips_pic = SVR4_PIC;
15908 mips_abicalls = TRUE;
15910 if (g_switch_seen && g_switch_value != 0)
15911 as_warn (_("-G may not be used with SVR4 PIC code"));
15912 g_switch_value = 0;
15914 bfd_set_gp_size (stdoutput, 0);
15915 demand_empty_rest_of_line ();
15918 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15919 PIC code. It sets the $gp register for the function based on the
15920 function address, which is in the register named in the argument.
15921 This uses a relocation against _gp_disp, which is handled specially
15922 by the linker. The result is:
15923 lui $gp,%hi(_gp_disp)
15924 addiu $gp,$gp,%lo(_gp_disp)
15925 addu $gp,$gp,.cpload argument
15926 The .cpload argument is normally $25 == $t9.
15928 The -mno-shared option changes this to:
15929 lui $gp,%hi(__gnu_local_gp)
15930 addiu $gp,$gp,%lo(__gnu_local_gp)
15931 and the argument is ignored. This saves an instruction, but the
15932 resulting code is not position independent; it uses an absolute
15933 address for __gnu_local_gp. Thus code assembled with -mno-shared
15934 can go into an ordinary executable, but not into a shared library. */
15937 s_cpload (int ignore ATTRIBUTE_UNUSED)
15943 file_mips_check_options ();
15945 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15946 .cpload is ignored. */
15947 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15953 if (mips_opts.mips16)
15955 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15956 ignore_rest_of_line ();
15960 /* .cpload should be in a .set noreorder section. */
15961 if (mips_opts.noreorder == 0)
15962 as_warn (_(".cpload not in noreorder section"));
15964 reg = tc_get_register (0);
15966 /* If we need to produce a 64-bit address, we are better off using
15967 the default instruction sequence. */
15968 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15970 ex.X_op = O_symbol;
15971 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15973 ex.X_op_symbol = NULL;
15974 ex.X_add_number = 0;
15976 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15977 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15979 mips_mark_labels ();
15980 mips_assembling_insn = TRUE;
15983 macro_build_lui (&ex, mips_gp_register);
15984 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15985 mips_gp_register, BFD_RELOC_LO16);
15987 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15988 mips_gp_register, reg);
15991 mips_assembling_insn = FALSE;
15992 demand_empty_rest_of_line ();
15995 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15996 .cpsetup $reg1, offset|$reg2, label
15998 If offset is given, this results in:
15999 sd $gp, offset($sp)
16000 lui $gp, %hi(%neg(%gp_rel(label)))
16001 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16002 daddu $gp, $gp, $reg1
16004 If $reg2 is given, this results in:
16006 lui $gp, %hi(%neg(%gp_rel(label)))
16007 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16008 daddu $gp, $gp, $reg1
16009 $reg1 is normally $25 == $t9.
16011 The -mno-shared option replaces the last three instructions with
16013 addiu $gp,$gp,%lo(_gp) */
16016 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16018 expressionS ex_off;
16019 expressionS ex_sym;
16022 file_mips_check_options ();
16024 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16025 We also need NewABI support. */
16026 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16032 if (mips_opts.mips16)
16034 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16035 ignore_rest_of_line ();
16039 reg1 = tc_get_register (0);
16040 SKIP_WHITESPACE ();
16041 if (*input_line_pointer != ',')
16043 as_bad (_("missing argument separator ',' for .cpsetup"));
16047 ++input_line_pointer;
16048 SKIP_WHITESPACE ();
16049 if (*input_line_pointer == '$')
16051 mips_cpreturn_register = tc_get_register (0);
16052 mips_cpreturn_offset = -1;
16056 mips_cpreturn_offset = get_absolute_expression ();
16057 mips_cpreturn_register = -1;
16059 SKIP_WHITESPACE ();
16060 if (*input_line_pointer != ',')
16062 as_bad (_("missing argument separator ',' for .cpsetup"));
16066 ++input_line_pointer;
16067 SKIP_WHITESPACE ();
16068 expression (&ex_sym);
16070 mips_mark_labels ();
16071 mips_assembling_insn = TRUE;
16074 if (mips_cpreturn_register == -1)
16076 ex_off.X_op = O_constant;
16077 ex_off.X_add_symbol = NULL;
16078 ex_off.X_op_symbol = NULL;
16079 ex_off.X_add_number = mips_cpreturn_offset;
16081 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16082 BFD_RELOC_LO16, SP);
16085 move_register (mips_cpreturn_register, mips_gp_register);
16087 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16089 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16090 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16093 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16094 mips_gp_register, -1, BFD_RELOC_GPREL16,
16095 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16098 mips_gp_register, reg1);
16104 ex.X_op = O_symbol;
16105 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16106 ex.X_op_symbol = NULL;
16107 ex.X_add_number = 0;
16109 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16110 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16112 macro_build_lui (&ex, mips_gp_register);
16113 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16114 mips_gp_register, BFD_RELOC_LO16);
16119 mips_assembling_insn = FALSE;
16120 demand_empty_rest_of_line ();
16124 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16126 file_mips_check_options ();
16128 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16129 .cplocal is ignored. */
16130 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16136 if (mips_opts.mips16)
16138 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16139 ignore_rest_of_line ();
16143 mips_gp_register = tc_get_register (0);
16144 demand_empty_rest_of_line ();
16147 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16148 offset from $sp. The offset is remembered, and after making a PIC
16149 call $gp is restored from that location. */
16152 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16156 file_mips_check_options ();
16158 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16159 .cprestore is ignored. */
16160 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16166 if (mips_opts.mips16)
16168 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16169 ignore_rest_of_line ();
16173 mips_cprestore_offset = get_absolute_expression ();
16174 mips_cprestore_valid = 1;
16176 ex.X_op = O_constant;
16177 ex.X_add_symbol = NULL;
16178 ex.X_op_symbol = NULL;
16179 ex.X_add_number = mips_cprestore_offset;
16181 mips_mark_labels ();
16182 mips_assembling_insn = TRUE;
16185 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16186 SP, HAVE_64BIT_ADDRESSES);
16189 mips_assembling_insn = FALSE;
16190 demand_empty_rest_of_line ();
16193 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16194 was given in the preceding .cpsetup, it results in:
16195 ld $gp, offset($sp)
16197 If a register $reg2 was given there, it results in:
16198 or $gp, $reg2, $0 */
16201 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16205 file_mips_check_options ();
16207 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16208 We also need NewABI support. */
16209 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16215 if (mips_opts.mips16)
16217 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16218 ignore_rest_of_line ();
16222 mips_mark_labels ();
16223 mips_assembling_insn = TRUE;
16226 if (mips_cpreturn_register == -1)
16228 ex.X_op = O_constant;
16229 ex.X_add_symbol = NULL;
16230 ex.X_op_symbol = NULL;
16231 ex.X_add_number = mips_cpreturn_offset;
16233 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16236 move_register (mips_gp_register, mips_cpreturn_register);
16240 mips_assembling_insn = FALSE;
16241 demand_empty_rest_of_line ();
16244 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16245 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16246 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16247 debug information or MIPS16 TLS. */
16250 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16251 bfd_reloc_code_real_type rtype)
16258 if (ex.X_op != O_symbol)
16260 as_bad (_("unsupported use of %s"), dirstr);
16261 ignore_rest_of_line ();
16264 p = frag_more (bytes);
16265 md_number_to_chars (p, 0, bytes);
16266 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16267 demand_empty_rest_of_line ();
16268 mips_clear_insn_labels ();
16271 /* Handle .dtprelword. */
16274 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16276 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16279 /* Handle .dtpreldword. */
16282 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16284 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16287 /* Handle .tprelword. */
16290 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16292 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16295 /* Handle .tpreldword. */
16298 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16300 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16303 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16304 code. It sets the offset to use in gp_rel relocations. */
16307 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16309 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16310 We also need NewABI support. */
16311 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16317 mips_gprel_offset = get_absolute_expression ();
16319 demand_empty_rest_of_line ();
16322 /* Handle the .gpword pseudo-op. This is used when generating PIC
16323 code. It generates a 32 bit GP relative reloc. */
16326 s_gpword (int ignore ATTRIBUTE_UNUSED)
16328 segment_info_type *si;
16329 struct insn_label_list *l;
16333 /* When not generating PIC code, this is treated as .word. */
16334 if (mips_pic != SVR4_PIC)
16340 si = seg_info (now_seg);
16341 l = si->label_list;
16342 mips_emit_delays ();
16344 mips_align (2, 0, l);
16347 mips_clear_insn_labels ();
16349 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16351 as_bad (_("unsupported use of .gpword"));
16352 ignore_rest_of_line ();
16356 md_number_to_chars (p, 0, 4);
16357 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16358 BFD_RELOC_GPREL32);
16360 demand_empty_rest_of_line ();
16364 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16366 segment_info_type *si;
16367 struct insn_label_list *l;
16371 /* When not generating PIC code, this is treated as .dword. */
16372 if (mips_pic != SVR4_PIC)
16378 si = seg_info (now_seg);
16379 l = si->label_list;
16380 mips_emit_delays ();
16382 mips_align (3, 0, l);
16385 mips_clear_insn_labels ();
16387 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16389 as_bad (_("unsupported use of .gpdword"));
16390 ignore_rest_of_line ();
16394 md_number_to_chars (p, 0, 8);
16395 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16396 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16398 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16399 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16400 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16402 demand_empty_rest_of_line ();
16405 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16406 tables. It generates a R_MIPS_EH reloc. */
16409 s_ehword (int ignore ATTRIBUTE_UNUSED)
16414 mips_emit_delays ();
16417 mips_clear_insn_labels ();
16419 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16421 as_bad (_("unsupported use of .ehword"));
16422 ignore_rest_of_line ();
16426 md_number_to_chars (p, 0, 4);
16427 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16428 BFD_RELOC_32_PCREL);
16430 demand_empty_rest_of_line ();
16433 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16434 tables in SVR4 PIC code. */
16437 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16441 file_mips_check_options ();
16443 /* This is ignored when not generating SVR4 PIC code. */
16444 if (mips_pic != SVR4_PIC)
16450 mips_mark_labels ();
16451 mips_assembling_insn = TRUE;
16453 /* Add $gp to the register named as an argument. */
16455 reg = tc_get_register (0);
16456 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16459 mips_assembling_insn = FALSE;
16460 demand_empty_rest_of_line ();
16463 /* Handle the .insn pseudo-op. This marks instruction labels in
16464 mips16/micromips mode. This permits the linker to handle them specially,
16465 such as generating jalx instructions when needed. We also make
16466 them odd for the duration of the assembly, in order to generate the
16467 right sort of code. We will make them even in the adjust_symtab
16468 routine, while leaving them marked. This is convenient for the
16469 debugger and the disassembler. The linker knows to make them odd
16473 s_insn (int ignore ATTRIBUTE_UNUSED)
16475 file_mips_check_options ();
16476 file_ase_mips16 |= mips_opts.mips16;
16477 file_ase_micromips |= mips_opts.micromips;
16479 mips_mark_labels ();
16481 demand_empty_rest_of_line ();
16484 /* Handle the .nan pseudo-op. */
16487 s_nan (int ignore ATTRIBUTE_UNUSED)
16489 static const char str_legacy[] = "legacy";
16490 static const char str_2008[] = "2008";
16493 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16495 if (i == sizeof (str_2008) - 1
16496 && memcmp (input_line_pointer, str_2008, i) == 0)
16498 else if (i == sizeof (str_legacy) - 1
16499 && memcmp (input_line_pointer, str_legacy, i) == 0)
16501 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16504 as_bad (_("`%s' does not support legacy NaN"),
16505 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16508 as_bad (_("bad .nan directive"));
16510 input_line_pointer += i;
16511 demand_empty_rest_of_line ();
16514 /* Handle a .stab[snd] directive. Ideally these directives would be
16515 implemented in a transparent way, so that removing them would not
16516 have any effect on the generated instructions. However, s_stab
16517 internally changes the section, so in practice we need to decide
16518 now whether the preceding label marks compressed code. We do not
16519 support changing the compression mode of a label after a .stab*
16520 directive, such as in:
16526 so the current mode wins. */
16529 s_mips_stab (int type)
16531 mips_mark_labels ();
16535 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16538 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16545 c = get_symbol_name (&name);
16546 symbolP = symbol_find_or_make (name);
16547 S_SET_WEAK (symbolP);
16548 *input_line_pointer = c;
16550 SKIP_WHITESPACE_AFTER_NAME ();
16552 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16554 if (S_IS_DEFINED (symbolP))
16556 as_bad (_("ignoring attempt to redefine symbol %s"),
16557 S_GET_NAME (symbolP));
16558 ignore_rest_of_line ();
16562 if (*input_line_pointer == ',')
16564 ++input_line_pointer;
16565 SKIP_WHITESPACE ();
16569 if (exp.X_op != O_symbol)
16571 as_bad (_("bad .weakext directive"));
16572 ignore_rest_of_line ();
16575 symbol_set_value_expression (symbolP, &exp);
16578 demand_empty_rest_of_line ();
16581 /* Parse a register string into a number. Called from the ECOFF code
16582 to parse .frame. The argument is non-zero if this is the frame
16583 register, so that we can record it in mips_frame_reg. */
16586 tc_get_register (int frame)
16590 SKIP_WHITESPACE ();
16591 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
16595 mips_frame_reg = reg != 0 ? reg : SP;
16596 mips_frame_reg_valid = 1;
16597 mips_cprestore_valid = 0;
16603 md_section_align (asection *seg, valueT addr)
16605 int align = bfd_get_section_alignment (stdoutput, seg);
16607 /* We don't need to align ELF sections to the full alignment.
16608 However, Irix 5 may prefer that we align them at least to a 16
16609 byte boundary. We don't bother to align the sections if we
16610 are targeted for an embedded system. */
16611 if (strncmp (TARGET_OS, "elf", 3) == 0)
16616 return ((addr + (1 << align) - 1) & -(1 << align));
16619 /* Utility routine, called from above as well. If called while the
16620 input file is still being read, it's only an approximation. (For
16621 example, a symbol may later become defined which appeared to be
16622 undefined earlier.) */
16625 nopic_need_relax (symbolS *sym, int before_relaxing)
16630 if (g_switch_value > 0)
16632 const char *symname;
16635 /* Find out whether this symbol can be referenced off the $gp
16636 register. It can be if it is smaller than the -G size or if
16637 it is in the .sdata or .sbss section. Certain symbols can
16638 not be referenced off the $gp, although it appears as though
16640 symname = S_GET_NAME (sym);
16641 if (symname != (const char *) NULL
16642 && (strcmp (symname, "eprol") == 0
16643 || strcmp (symname, "etext") == 0
16644 || strcmp (symname, "_gp") == 0
16645 || strcmp (symname, "edata") == 0
16646 || strcmp (symname, "_fbss") == 0
16647 || strcmp (symname, "_fdata") == 0
16648 || strcmp (symname, "_ftext") == 0
16649 || strcmp (symname, "end") == 0
16650 || strcmp (symname, "_gp_disp") == 0))
16652 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16654 #ifndef NO_ECOFF_DEBUGGING
16655 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16656 && (symbol_get_obj (sym)->ecoff_extern_size
16657 <= g_switch_value))
16659 /* We must defer this decision until after the whole
16660 file has been read, since there might be a .extern
16661 after the first use of this symbol. */
16662 || (before_relaxing
16663 #ifndef NO_ECOFF_DEBUGGING
16664 && symbol_get_obj (sym)->ecoff_extern_size == 0
16666 && S_GET_VALUE (sym) == 0)
16667 || (S_GET_VALUE (sym) != 0
16668 && S_GET_VALUE (sym) <= g_switch_value)))
16672 const char *segname;
16674 segname = segment_name (S_GET_SEGMENT (sym));
16675 gas_assert (strcmp (segname, ".lit8") != 0
16676 && strcmp (segname, ".lit4") != 0);
16677 change = (strcmp (segname, ".sdata") != 0
16678 && strcmp (segname, ".sbss") != 0
16679 && strncmp (segname, ".sdata.", 7) != 0
16680 && strncmp (segname, ".sbss.", 6) != 0
16681 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16682 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16687 /* We are not optimizing for the $gp register. */
16692 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16695 pic_need_relax (symbolS *sym, asection *segtype)
16699 /* Handle the case of a symbol equated to another symbol. */
16700 while (symbol_equated_reloc_p (sym))
16704 /* It's possible to get a loop here in a badly written program. */
16705 n = symbol_get_value_expression (sym)->X_add_symbol;
16711 if (symbol_section_p (sym))
16714 symsec = S_GET_SEGMENT (sym);
16716 /* This must duplicate the test in adjust_reloc_syms. */
16717 return (!bfd_is_und_section (symsec)
16718 && !bfd_is_abs_section (symsec)
16719 && !bfd_is_com_section (symsec)
16720 && !s_is_linkonce (sym, segtype)
16721 /* A global or weak symbol is treated as external. */
16722 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16726 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16727 extended opcode. SEC is the section the frag is in. */
16730 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16733 const struct mips_int_operand *operand;
16738 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16740 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16743 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16744 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16745 operand = mips16_immed_operand (type, FALSE);
16746 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
16747 || (operand->root.type == OP_PCREL
16749 : !bfd_is_abs_section (symsec)))
16752 sym_frag = symbol_get_frag (fragp->fr_symbol);
16753 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16755 if (operand->root.type == OP_PCREL)
16757 const struct mips_pcrel_operand *pcrel_op;
16761 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16764 pcrel_op = (const struct mips_pcrel_operand *) operand;
16766 /* If the relax_marker of the symbol fragment differs from the
16767 relax_marker of this fragment, we have not yet adjusted the
16768 symbol fragment fr_address. We want to add in STRETCH in
16769 order to get a better estimate of the address. This
16770 particularly matters because of the shift bits. */
16772 && sym_frag->relax_marker != fragp->relax_marker)
16776 /* Adjust stretch for any alignment frag. Note that if have
16777 been expanding the earlier code, the symbol may be
16778 defined in what appears to be an earlier frag. FIXME:
16779 This doesn't handle the fr_subtype field, which specifies
16780 a maximum number of bytes to skip when doing an
16782 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16784 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16787 stretch = - ((- stretch)
16788 & ~ ((1 << (int) f->fr_offset) - 1));
16790 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16799 addr = fragp->fr_address + fragp->fr_fix;
16801 /* The base address rules are complicated. The base address of
16802 a branch is the following instruction. The base address of a
16803 PC relative load or add is the instruction itself, but if it
16804 is in a delay slot (in which case it can not be extended) use
16805 the address of the instruction whose delay slot it is in. */
16806 if (pcrel_op->include_isa_bit)
16810 /* If we are currently assuming that this frag should be
16811 extended, then, the current address is two bytes
16813 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16816 /* Ignore the low bit in the target, since it will be set
16817 for a text label. */
16820 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16822 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16825 val -= addr & -(1 << pcrel_op->align_log2);
16827 /* If any of the shifted bits are set, we must use an extended
16828 opcode. If the address depends on the size of this
16829 instruction, this can lead to a loop, so we arrange to always
16830 use an extended opcode. */
16831 if ((val & ((1 << operand->shift) - 1)) != 0)
16833 fragp->fr_subtype =
16834 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16838 /* If we are about to mark a frag as extended because the value
16839 is precisely the next value above maxtiny, then there is a
16840 chance of an infinite loop as in the following code:
16845 In this case when the la is extended, foo is 0x3fc bytes
16846 away, so the la can be shrunk, but then foo is 0x400 away, so
16847 the la must be extended. To avoid this loop, we mark the
16848 frag as extended if it was small, and is about to become
16849 extended with the next value above maxtiny. */
16850 maxtiny = mips_int_operand_max (operand);
16851 if (val == maxtiny + (1 << operand->shift)
16852 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16854 fragp->fr_subtype =
16855 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16860 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16863 /* Compute the length of a branch sequence, and adjust the
16864 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16865 worst-case length is computed, with UPDATE being used to indicate
16866 whether an unconditional (-1), branch-likely (+1) or regular (0)
16867 branch is to be computed. */
16869 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16871 bfd_boolean toofar;
16875 && S_IS_DEFINED (fragp->fr_symbol)
16876 && !S_IS_WEAK (fragp->fr_symbol)
16877 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16882 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16884 addr = fragp->fr_address + fragp->fr_fix + 4;
16888 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16891 /* If the symbol is not defined or it's in a different segment,
16892 we emit the long sequence. */
16895 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16897 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16898 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16899 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16900 RELAX_BRANCH_LINK (fragp->fr_subtype),
16906 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16909 if (mips_pic != NO_PIC)
16911 /* Additional space for PIC loading of target address. */
16913 if (mips_opts.isa == ISA_MIPS1)
16914 /* Additional space for $at-stabilizing nop. */
16918 /* If branch is conditional. */
16919 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16926 /* Compute the length of a branch sequence, and adjust the
16927 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16928 worst-case length is computed, with UPDATE being used to indicate
16929 whether an unconditional (-1), or regular (0) branch is to be
16933 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16935 bfd_boolean toofar;
16939 && S_IS_DEFINED (fragp->fr_symbol)
16940 && !S_IS_WEAK (fragp->fr_symbol)
16941 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16946 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16947 /* Ignore the low bit in the target, since it will be set
16948 for a text label. */
16949 if ((val & 1) != 0)
16952 addr = fragp->fr_address + fragp->fr_fix + 4;
16956 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16959 /* If the symbol is not defined or it's in a different segment,
16960 we emit the long sequence. */
16963 if (fragp && update
16964 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16965 fragp->fr_subtype = (toofar
16966 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16967 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16972 bfd_boolean compact_known = fragp != NULL;
16973 bfd_boolean compact = FALSE;
16974 bfd_boolean uncond;
16977 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16979 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16981 uncond = update < 0;
16983 /* If label is out of range, we turn branch <br>:
16985 <br> label # 4 bytes
16991 nop # 2 bytes if compact && !PIC
16994 if (mips_pic == NO_PIC && (!compact_known || compact))
16997 /* If assembling PIC code, we further turn:
17003 lw/ld at, %got(label)(gp) # 4 bytes
17004 d/addiu at, %lo(label) # 4 bytes
17007 if (mips_pic != NO_PIC)
17010 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17012 <brneg> 0f # 4 bytes
17013 nop # 2 bytes if !compact
17016 length += (compact_known && compact) ? 4 : 6;
17022 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17023 bit accordingly. */
17026 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17028 bfd_boolean toofar;
17031 && S_IS_DEFINED (fragp->fr_symbol)
17032 && !S_IS_WEAK (fragp->fr_symbol)
17033 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17039 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17040 /* Ignore the low bit in the target, since it will be set
17041 for a text label. */
17042 if ((val & 1) != 0)
17045 /* Assume this is a 2-byte branch. */
17046 addr = fragp->fr_address + fragp->fr_fix + 2;
17048 /* We try to avoid the infinite loop by not adding 2 more bytes for
17053 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17055 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17056 else if (type == 'E')
17057 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17062 /* If the symbol is not defined or it's in a different segment,
17063 we emit a normal 32-bit branch. */
17066 if (fragp && update
17067 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17069 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17070 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17078 /* Estimate the size of a frag before relaxing. Unless this is the
17079 mips16, we are not really relaxing here, and the final size is
17080 encoded in the subtype information. For the mips16, we have to
17081 decide whether we are using an extended opcode or not. */
17084 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17088 if (RELAX_BRANCH_P (fragp->fr_subtype))
17091 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17093 return fragp->fr_var;
17096 if (RELAX_MIPS16_P (fragp->fr_subtype))
17097 /* We don't want to modify the EXTENDED bit here; it might get us
17098 into infinite loops. We change it only in mips_relax_frag(). */
17099 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17101 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17105 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17106 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17107 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17108 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17109 fragp->fr_var = length;
17114 if (mips_pic == NO_PIC)
17115 change = nopic_need_relax (fragp->fr_symbol, 0);
17116 else if (mips_pic == SVR4_PIC)
17117 change = pic_need_relax (fragp->fr_symbol, segtype);
17118 else if (mips_pic == VXWORKS_PIC)
17119 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17126 fragp->fr_subtype |= RELAX_USE_SECOND;
17127 return -RELAX_FIRST (fragp->fr_subtype);
17130 return -RELAX_SECOND (fragp->fr_subtype);
17133 /* This is called to see whether a reloc against a defined symbol
17134 should be converted into a reloc against a section. */
17137 mips_fix_adjustable (fixS *fixp)
17139 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17140 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17143 if (fixp->fx_addsy == NULL)
17146 /* Allow relocs used for EH tables. */
17147 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17150 /* If symbol SYM is in a mergeable section, relocations of the form
17151 SYM + 0 can usually be made section-relative. The mergeable data
17152 is then identified by the section offset rather than by the symbol.
17154 However, if we're generating REL LO16 relocations, the offset is split
17155 between the LO16 and parterning high part relocation. The linker will
17156 need to recalculate the complete offset in order to correctly identify
17159 The linker has traditionally not looked for the parterning high part
17160 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17161 placed anywhere. Rather than break backwards compatibility by changing
17162 this, it seems better not to force the issue, and instead keep the
17163 original symbol. This will work with either linker behavior. */
17164 if ((lo16_reloc_p (fixp->fx_r_type)
17165 || reloc_needs_lo_p (fixp->fx_r_type))
17166 && HAVE_IN_PLACE_ADDENDS
17167 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17170 /* There is no place to store an in-place offset for JALR relocations. */
17171 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17174 /* Likewise an in-range offset of limited PC-relative relocations may
17175 overflow the in-place relocatable field if recalculated against the
17176 start address of the symbol's containing section.
17178 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17179 section relative to allow linker relaxations to be performed later on. */
17180 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17181 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17184 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17185 to a floating-point stub. The same is true for non-R_MIPS16_26
17186 relocations against MIPS16 functions; in this case, the stub becomes
17187 the function's canonical address.
17189 Floating-point stubs are stored in unique .mips16.call.* or
17190 .mips16.fn.* sections. If a stub T for function F is in section S,
17191 the first relocation in section S must be against F; this is how the
17192 linker determines the target function. All relocations that might
17193 resolve to T must also be against F. We therefore have the following
17194 restrictions, which are given in an intentionally-redundant way:
17196 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17199 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17200 if that stub might be used.
17202 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17205 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17206 that stub might be used.
17208 There is a further restriction:
17210 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17211 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17212 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17213 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17214 against MIPS16 or microMIPS symbols because we need to keep the
17215 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17216 detection and JAL to JALX instruction conversion in the linker.
17218 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17219 against a MIPS16 symbol. We deal with (5) by additionally leaving
17220 alone any jump and branch relocations against a microMIPS symbol.
17222 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17223 relocation against some symbol R, no relocation against R may be
17224 reduced. (Note that this deals with (2) as well as (1) because
17225 relocations against global symbols will never be reduced on ELF
17226 targets.) This approach is a little simpler than trying to detect
17227 stub sections, and gives the "all or nothing" per-symbol consistency
17228 that we have for MIPS16 symbols. */
17229 if (fixp->fx_subsy == NULL
17230 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17231 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17232 && (jmp_reloc_p (fixp->fx_r_type)
17233 || b_reloc_p (fixp->fx_r_type)))
17234 || *symbol_get_tc (fixp->fx_addsy)))
17240 /* Translate internal representation of relocation info to BFD target
17244 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17246 static arelent *retval[4];
17248 bfd_reloc_code_real_type code;
17250 memset (retval, 0, sizeof(retval));
17251 reloc = retval[0] = XCNEW (arelent);
17252 reloc->sym_ptr_ptr = XNEW (asymbol *);
17253 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17254 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17256 if (fixp->fx_pcrel)
17258 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17259 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17260 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17261 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17262 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17263 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17264 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17265 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17266 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17267 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17268 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17269 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17271 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17272 Relocations want only the symbol offset. */
17273 switch (fixp->fx_r_type)
17275 case BFD_RELOC_MIPS_18_PCREL_S3:
17276 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17279 reloc->addend = fixp->fx_addnumber + reloc->address;
17283 else if (HAVE_IN_PLACE_ADDENDS
17284 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17285 && (read_compressed_insn (fixp->fx_frag->fr_literal
17286 + fixp->fx_where, 4) >> 26) == 0x3c)
17288 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17289 addend accordingly. */
17290 reloc->addend = fixp->fx_addnumber >> 1;
17293 reloc->addend = fixp->fx_addnumber;
17295 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17296 entry to be used in the relocation's section offset. */
17297 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17299 reloc->address = reloc->addend;
17303 code = fixp->fx_r_type;
17305 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17306 if (reloc->howto == NULL)
17308 as_bad_where (fixp->fx_file, fixp->fx_line,
17309 _("cannot represent %s relocation in this object file"
17311 bfd_get_reloc_code_name (code));
17318 /* Relax a machine dependent frag. This returns the amount by which
17319 the current size of the frag should change. */
17322 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17324 if (RELAX_BRANCH_P (fragp->fr_subtype))
17326 offsetT old_var = fragp->fr_var;
17328 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17330 return fragp->fr_var - old_var;
17333 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17335 offsetT old_var = fragp->fr_var;
17336 offsetT new_var = 4;
17338 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17339 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17340 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17341 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17342 fragp->fr_var = new_var;
17344 return new_var - old_var;
17347 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17350 if (mips16_extended_frag (fragp, sec, stretch))
17352 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17354 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17359 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17361 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17368 /* Convert a machine dependent frag. */
17371 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17373 if (RELAX_BRANCH_P (fragp->fr_subtype))
17376 unsigned long insn;
17380 buf = fragp->fr_literal + fragp->fr_fix;
17381 insn = read_insn (buf);
17383 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17385 /* We generate a fixup instead of applying it right now
17386 because, if there are linker relaxations, we're going to
17387 need the relocations. */
17388 exp.X_op = O_symbol;
17389 exp.X_add_symbol = fragp->fr_symbol;
17390 exp.X_add_number = fragp->fr_offset;
17392 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17393 BFD_RELOC_16_PCREL_S2);
17394 fixp->fx_file = fragp->fr_file;
17395 fixp->fx_line = fragp->fr_line;
17397 buf = write_insn (buf, insn);
17403 as_warn_where (fragp->fr_file, fragp->fr_line,
17404 _("relaxed out-of-range branch into a jump"));
17406 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17409 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17411 /* Reverse the branch. */
17412 switch ((insn >> 28) & 0xf)
17415 if ((insn & 0xff000000) == 0x47000000
17416 || (insn & 0xff600000) == 0x45600000)
17418 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17419 reversed by tweaking bit 23. */
17420 insn ^= 0x00800000;
17424 /* bc[0-3][tf]l? instructions can have the condition
17425 reversed by tweaking a single TF bit, and their
17426 opcodes all have 0x4???????. */
17427 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17428 insn ^= 0x00010000;
17433 /* bltz 0x04000000 bgez 0x04010000
17434 bltzal 0x04100000 bgezal 0x04110000 */
17435 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17436 insn ^= 0x00010000;
17440 /* beq 0x10000000 bne 0x14000000
17441 blez 0x18000000 bgtz 0x1c000000 */
17442 insn ^= 0x04000000;
17450 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17452 /* Clear the and-link bit. */
17453 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17455 /* bltzal 0x04100000 bgezal 0x04110000
17456 bltzall 0x04120000 bgezall 0x04130000 */
17457 insn &= ~0x00100000;
17460 /* Branch over the branch (if the branch was likely) or the
17461 full jump (not likely case). Compute the offset from the
17462 current instruction to branch to. */
17463 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17467 /* How many bytes in instructions we've already emitted? */
17468 i = buf - fragp->fr_literal - fragp->fr_fix;
17469 /* How many bytes in instructions from here to the end? */
17470 i = fragp->fr_var - i;
17472 /* Convert to instruction count. */
17474 /* Branch counts from the next instruction. */
17477 /* Branch over the jump. */
17478 buf = write_insn (buf, insn);
17481 buf = write_insn (buf, 0);
17483 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17485 /* beql $0, $0, 2f */
17487 /* Compute the PC offset from the current instruction to
17488 the end of the variable frag. */
17489 /* How many bytes in instructions we've already emitted? */
17490 i = buf - fragp->fr_literal - fragp->fr_fix;
17491 /* How many bytes in instructions from here to the end? */
17492 i = fragp->fr_var - i;
17493 /* Convert to instruction count. */
17495 /* Don't decrement i, because we want to branch over the
17499 buf = write_insn (buf, insn);
17500 buf = write_insn (buf, 0);
17504 if (mips_pic == NO_PIC)
17507 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17508 ? 0x0c000000 : 0x08000000);
17509 exp.X_op = O_symbol;
17510 exp.X_add_symbol = fragp->fr_symbol;
17511 exp.X_add_number = fragp->fr_offset;
17513 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17514 FALSE, BFD_RELOC_MIPS_JMP);
17515 fixp->fx_file = fragp->fr_file;
17516 fixp->fx_line = fragp->fr_line;
17518 buf = write_insn (buf, insn);
17522 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17524 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17525 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17526 insn |= at << OP_SH_RT;
17527 exp.X_op = O_symbol;
17528 exp.X_add_symbol = fragp->fr_symbol;
17529 exp.X_add_number = fragp->fr_offset;
17531 if (fragp->fr_offset)
17533 exp.X_add_symbol = make_expr_symbol (&exp);
17534 exp.X_add_number = 0;
17537 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17538 FALSE, BFD_RELOC_MIPS_GOT16);
17539 fixp->fx_file = fragp->fr_file;
17540 fixp->fx_line = fragp->fr_line;
17542 buf = write_insn (buf, insn);
17544 if (mips_opts.isa == ISA_MIPS1)
17546 buf = write_insn (buf, 0);
17548 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17549 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17550 insn |= at << OP_SH_RS | at << OP_SH_RT;
17552 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17553 FALSE, BFD_RELOC_LO16);
17554 fixp->fx_file = fragp->fr_file;
17555 fixp->fx_line = fragp->fr_line;
17557 buf = write_insn (buf, insn);
17560 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17564 insn |= at << OP_SH_RS;
17566 buf = write_insn (buf, insn);
17570 fragp->fr_fix += fragp->fr_var;
17571 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17575 /* Relax microMIPS branches. */
17576 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17578 char *buf = fragp->fr_literal + fragp->fr_fix;
17579 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17580 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17581 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17582 bfd_boolean short_ds;
17583 unsigned long insn;
17587 exp.X_op = O_symbol;
17588 exp.X_add_symbol = fragp->fr_symbol;
17589 exp.X_add_number = fragp->fr_offset;
17591 fragp->fr_fix += fragp->fr_var;
17593 /* Handle 16-bit branches that fit or are forced to fit. */
17594 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17596 /* We generate a fixup instead of applying it right now,
17597 because if there is linker relaxation, we're going to
17598 need the relocations. */
17600 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17601 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17602 else if (type == 'E')
17603 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17604 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17608 fixp->fx_file = fragp->fr_file;
17609 fixp->fx_line = fragp->fr_line;
17611 /* These relocations can have an addend that won't fit in
17613 fixp->fx_no_overflow = 1;
17618 /* Handle 32-bit branches that fit or are forced to fit. */
17619 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17620 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17622 /* We generate a fixup instead of applying it right now,
17623 because if there is linker relaxation, we're going to
17624 need the relocations. */
17625 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17626 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17627 fixp->fx_file = fragp->fr_file;
17628 fixp->fx_line = fragp->fr_line;
17634 /* Relax 16-bit branches to 32-bit branches. */
17637 insn = read_compressed_insn (buf, 2);
17639 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17640 insn = 0x94000000; /* beq */
17641 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17643 unsigned long regno;
17645 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17646 regno = micromips_to_32_reg_d_map [regno];
17647 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17648 insn |= regno << MICROMIPSOP_SH_RS;
17653 /* Nothing else to do, just write it out. */
17654 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17655 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17657 buf = write_compressed_insn (buf, insn, 4);
17658 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17663 insn = read_compressed_insn (buf, 4);
17665 /* Relax 32-bit branches to a sequence of instructions. */
17666 as_warn_where (fragp->fr_file, fragp->fr_line,
17667 _("relaxed out-of-range branch into a jump"));
17669 /* Set the short-delay-slot bit. */
17670 short_ds = al && (insn & 0x02000000) != 0;
17672 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17676 /* Reverse the branch. */
17677 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17678 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17679 insn ^= 0x20000000;
17680 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17681 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17682 || (insn & 0xffe00000) == 0x40800000 /* blez */
17683 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17684 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17685 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17686 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17687 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17688 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17689 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17690 insn ^= 0x00400000;
17691 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17692 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17693 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17694 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17695 insn ^= 0x00200000;
17696 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17698 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17700 insn ^= 0x00800000;
17706 /* Clear the and-link and short-delay-slot bits. */
17707 gas_assert ((insn & 0xfda00000) == 0x40200000);
17709 /* bltzal 0x40200000 bgezal 0x40600000 */
17710 /* bltzals 0x42200000 bgezals 0x42600000 */
17711 insn &= ~0x02200000;
17714 /* Make a label at the end for use with the branch. */
17715 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17716 micromips_label_inc ();
17717 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17720 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17721 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17722 fixp->fx_file = fragp->fr_file;
17723 fixp->fx_line = fragp->fr_line;
17725 /* Branch over the jump. */
17726 buf = write_compressed_insn (buf, insn, 4);
17729 buf = write_compressed_insn (buf, 0x0c00, 2);
17732 if (mips_pic == NO_PIC)
17734 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17736 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17737 insn = al ? jal : 0xd4000000;
17739 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17740 BFD_RELOC_MICROMIPS_JMP);
17741 fixp->fx_file = fragp->fr_file;
17742 fixp->fx_line = fragp->fr_line;
17744 buf = write_compressed_insn (buf, insn, 4);
17747 buf = write_compressed_insn (buf, 0x0c00, 2);
17751 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17752 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17753 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17755 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17756 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17757 insn |= at << MICROMIPSOP_SH_RT;
17759 if (exp.X_add_number)
17761 exp.X_add_symbol = make_expr_symbol (&exp);
17762 exp.X_add_number = 0;
17765 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17766 BFD_RELOC_MICROMIPS_GOT16);
17767 fixp->fx_file = fragp->fr_file;
17768 fixp->fx_line = fragp->fr_line;
17770 buf = write_compressed_insn (buf, insn, 4);
17772 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17773 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17774 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17776 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17777 BFD_RELOC_MICROMIPS_LO16);
17778 fixp->fx_file = fragp->fr_file;
17779 fixp->fx_line = fragp->fr_line;
17781 buf = write_compressed_insn (buf, insn, 4);
17783 /* jr/jrc/jalr/jalrs $at */
17784 insn = al ? jalr : jr;
17785 insn |= at << MICROMIPSOP_SH_MJ;
17787 buf = write_compressed_insn (buf, insn, 2);
17790 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17794 if (RELAX_MIPS16_P (fragp->fr_subtype))
17797 const struct mips_int_operand *operand;
17800 unsigned int user_length, length;
17801 unsigned long insn;
17805 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17806 operand = mips16_immed_operand (type, FALSE);
17808 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17809 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
17810 if (operand->root.type == OP_PCREL)
17812 const struct mips_pcrel_operand *pcrel_op;
17815 pcrel_op = (const struct mips_pcrel_operand *) operand;
17816 addr = fragp->fr_address + fragp->fr_fix;
17818 /* The rules for the base address of a PC relative reloc are
17819 complicated; see mips16_extended_frag. */
17820 if (pcrel_op->include_isa_bit)
17825 /* Ignore the low bit in the target, since it will be
17826 set for a text label. */
17829 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17831 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17834 addr &= -(1 << pcrel_op->align_log2);
17837 /* Make sure the section winds up with the alignment we have
17839 if (operand->shift > 0)
17840 record_alignment (asec, operand->shift);
17844 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17845 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17846 as_warn_where (fragp->fr_file, fragp->fr_line,
17847 _("extended instruction in delay slot"));
17849 buf = fragp->fr_literal + fragp->fr_fix;
17851 insn = read_compressed_insn (buf, 2);
17853 insn |= MIPS16_EXTEND;
17855 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17857 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17862 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17863 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17864 || (operand->root.type == OP_PCREL
17866 : !bfd_is_abs_section (symsec)))
17868 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
17876 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
17879 as_bad_where (fragp->fr_file, fragp->fr_line,
17880 _("unsupported relocation"));
17883 if (reloc != BFD_RELOC_NONE)
17887 exp.X_op = O_symbol;
17888 exp.X_add_symbol = fragp->fr_symbol;
17889 exp.X_add_number = fragp->fr_offset;
17891 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
17894 fixp->fx_file = fragp->fr_file;
17895 fixp->fx_line = fragp->fr_line;
17897 /* These relocations can have an addend that won't fit
17899 fixp->fx_no_overflow = 1;
17903 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17904 BFD_RELOC_UNUSED, val, user_length, &insn);
17906 length = (ext ? 4 : 2);
17907 gas_assert (mips16_opcode_length (insn) == length);
17908 write_compressed_insn (buf, insn, length);
17909 fragp->fr_fix += length;
17913 relax_substateT subtype = fragp->fr_subtype;
17914 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17915 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17919 first = RELAX_FIRST (subtype);
17920 second = RELAX_SECOND (subtype);
17921 fixp = (fixS *) fragp->fr_opcode;
17923 /* If the delay slot chosen does not match the size of the instruction,
17924 then emit a warning. */
17925 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17926 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17931 s = subtype & (RELAX_DELAY_SLOT_16BIT
17932 | RELAX_DELAY_SLOT_SIZE_FIRST
17933 | RELAX_DELAY_SLOT_SIZE_SECOND);
17934 msg = macro_warning (s);
17936 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17940 /* Possibly emit a warning if we've chosen the longer option. */
17941 if (use_second == second_longer)
17947 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17948 msg = macro_warning (s);
17950 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17954 /* Go through all the fixups for the first sequence. Disable them
17955 (by marking them as done) if we're going to use the second
17956 sequence instead. */
17958 && fixp->fx_frag == fragp
17959 && fixp->fx_where < fragp->fr_fix - second)
17961 if (subtype & RELAX_USE_SECOND)
17963 fixp = fixp->fx_next;
17966 /* Go through the fixups for the second sequence. Disable them if
17967 we're going to use the first sequence, otherwise adjust their
17968 addresses to account for the relaxation. */
17969 while (fixp && fixp->fx_frag == fragp)
17971 if (subtype & RELAX_USE_SECOND)
17972 fixp->fx_where -= first;
17975 fixp = fixp->fx_next;
17978 /* Now modify the frag contents. */
17979 if (subtype & RELAX_USE_SECOND)
17983 start = fragp->fr_literal + fragp->fr_fix - first - second;
17984 memmove (start, start + first, second);
17985 fragp->fr_fix -= first;
17988 fragp->fr_fix -= second;
17992 /* This function is called after the relocs have been generated.
17993 We've been storing mips16 text labels as odd. Here we convert them
17994 back to even for the convenience of the debugger. */
17997 mips_frob_file_after_relocs (void)
18000 unsigned int count, i;
18002 syms = bfd_get_outsymbols (stdoutput);
18003 count = bfd_get_symcount (stdoutput);
18004 for (i = 0; i < count; i++, syms++)
18005 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18006 && ((*syms)->value & 1) != 0)
18008 (*syms)->value &= ~1;
18009 /* If the symbol has an odd size, it was probably computed
18010 incorrectly, so adjust that as well. */
18011 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18012 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18016 /* This function is called whenever a label is defined, including fake
18017 labels instantiated off the dot special symbol. It is used when
18018 handling branch delays; if a branch has a label, we assume we cannot
18019 move it. This also bumps the value of the symbol by 1 in compressed
18023 mips_record_label (symbolS *sym)
18025 segment_info_type *si = seg_info (now_seg);
18026 struct insn_label_list *l;
18028 if (free_insn_labels == NULL)
18029 l = XNEW (struct insn_label_list);
18032 l = free_insn_labels;
18033 free_insn_labels = l->next;
18037 l->next = si->label_list;
18038 si->label_list = l;
18041 /* This function is called as tc_frob_label() whenever a label is defined
18042 and adds a DWARF-2 record we only want for true labels. */
18045 mips_define_label (symbolS *sym)
18047 mips_record_label (sym);
18048 dwarf2_emit_label (sym);
18051 /* This function is called by tc_new_dot_label whenever a new dot symbol
18055 mips_add_dot_label (symbolS *sym)
18057 mips_record_label (sym);
18058 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18059 mips_compressed_mark_label (sym);
18062 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18063 static unsigned int
18064 mips_convert_ase_flags (int ase)
18066 unsigned int ext_ases = 0;
18069 ext_ases |= AFL_ASE_DSP;
18070 if (ase & ASE_DSPR2)
18071 ext_ases |= AFL_ASE_DSPR2;
18072 if (ase & ASE_DSPR3)
18073 ext_ases |= AFL_ASE_DSPR3;
18075 ext_ases |= AFL_ASE_EVA;
18077 ext_ases |= AFL_ASE_MCU;
18078 if (ase & ASE_MDMX)
18079 ext_ases |= AFL_ASE_MDMX;
18080 if (ase & ASE_MIPS3D)
18081 ext_ases |= AFL_ASE_MIPS3D;
18083 ext_ases |= AFL_ASE_MT;
18084 if (ase & ASE_SMARTMIPS)
18085 ext_ases |= AFL_ASE_SMARTMIPS;
18086 if (ase & ASE_VIRT)
18087 ext_ases |= AFL_ASE_VIRT;
18089 ext_ases |= AFL_ASE_MSA;
18091 ext_ases |= AFL_ASE_XPA;
18095 /* Some special processing for a MIPS ELF file. */
18098 mips_elf_final_processing (void)
18101 Elf_Internal_ABIFlags_v0 flags;
18105 switch (file_mips_opts.isa)
18108 flags.isa_level = 1;
18111 flags.isa_level = 2;
18114 flags.isa_level = 3;
18117 flags.isa_level = 4;
18120 flags.isa_level = 5;
18123 flags.isa_level = 32;
18127 flags.isa_level = 32;
18131 flags.isa_level = 32;
18135 flags.isa_level = 32;
18139 flags.isa_level = 32;
18143 flags.isa_level = 64;
18147 flags.isa_level = 64;
18151 flags.isa_level = 64;
18155 flags.isa_level = 64;
18159 flags.isa_level = 64;
18164 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18165 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18166 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18167 : (file_mips_opts.fp == 64) ? AFL_REG_64
18169 flags.cpr2_size = AFL_REG_NONE;
18170 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18171 Tag_GNU_MIPS_ABI_FP);
18172 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18173 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18174 if (file_ase_mips16)
18175 flags.ases |= AFL_ASE_MIPS16;
18176 if (file_ase_micromips)
18177 flags.ases |= AFL_ASE_MICROMIPS;
18179 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18180 || file_mips_opts.fp == 64)
18181 && file_mips_opts.oddspreg)
18182 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18185 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18186 ((Elf_External_ABIFlags_v0 *)
18189 /* Write out the register information. */
18190 if (mips_abi != N64_ABI)
18194 s.ri_gprmask = mips_gprmask;
18195 s.ri_cprmask[0] = mips_cprmask[0];
18196 s.ri_cprmask[1] = mips_cprmask[1];
18197 s.ri_cprmask[2] = mips_cprmask[2];
18198 s.ri_cprmask[3] = mips_cprmask[3];
18199 /* The gp_value field is set by the MIPS ELF backend. */
18201 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18202 ((Elf32_External_RegInfo *)
18203 mips_regmask_frag));
18207 Elf64_Internal_RegInfo s;
18209 s.ri_gprmask = mips_gprmask;
18211 s.ri_cprmask[0] = mips_cprmask[0];
18212 s.ri_cprmask[1] = mips_cprmask[1];
18213 s.ri_cprmask[2] = mips_cprmask[2];
18214 s.ri_cprmask[3] = mips_cprmask[3];
18215 /* The gp_value field is set by the MIPS ELF backend. */
18217 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18218 ((Elf64_External_RegInfo *)
18219 mips_regmask_frag));
18222 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18223 sort of BFD interface for this. */
18224 if (mips_any_noreorder)
18225 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18226 if (mips_pic != NO_PIC)
18228 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18229 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18232 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18234 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18235 defined at present; this might need to change in future. */
18236 if (file_ase_mips16)
18237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18238 if (file_ase_micromips)
18239 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18240 if (file_mips_opts.ase & ASE_MDMX)
18241 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18243 /* Set the MIPS ELF ABI flags. */
18244 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18245 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18246 else if (mips_abi == O64_ABI)
18247 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18248 else if (mips_abi == EABI_ABI)
18250 if (file_mips_opts.gp == 64)
18251 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18253 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18255 else if (mips_abi == N32_ABI)
18256 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18258 /* Nothing to do for N64_ABI. */
18260 if (mips_32bitmode)
18261 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18263 if (mips_nan2008 == 1)
18264 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18266 /* 32 bit code with 64 bit FP registers. */
18267 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18268 Tag_GNU_MIPS_ABI_FP);
18269 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18270 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18273 typedef struct proc {
18275 symbolS *func_end_sym;
18276 unsigned long reg_mask;
18277 unsigned long reg_offset;
18278 unsigned long fpreg_mask;
18279 unsigned long fpreg_offset;
18280 unsigned long frame_offset;
18281 unsigned long frame_reg;
18282 unsigned long pc_reg;
18285 static procS cur_proc;
18286 static procS *cur_proc_ptr;
18287 static int numprocs;
18289 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18290 as "2", and a normal nop as "0". */
18292 #define NOP_OPCODE_MIPS 0
18293 #define NOP_OPCODE_MIPS16 1
18294 #define NOP_OPCODE_MICROMIPS 2
18297 mips_nop_opcode (void)
18299 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18300 return NOP_OPCODE_MICROMIPS;
18301 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18302 return NOP_OPCODE_MIPS16;
18304 return NOP_OPCODE_MIPS;
18307 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18308 32-bit microMIPS NOPs here (if applicable). */
18311 mips_handle_align (fragS *fragp)
18315 int bytes, size, excess;
18318 if (fragp->fr_type != rs_align_code)
18321 p = fragp->fr_literal + fragp->fr_fix;
18323 switch (nop_opcode)
18325 case NOP_OPCODE_MICROMIPS:
18326 opcode = micromips_nop32_insn.insn_opcode;
18329 case NOP_OPCODE_MIPS16:
18330 opcode = mips16_nop_insn.insn_opcode;
18333 case NOP_OPCODE_MIPS:
18335 opcode = nop_insn.insn_opcode;
18340 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18341 excess = bytes % size;
18343 /* Handle the leading part if we're not inserting a whole number of
18344 instructions, and make it the end of the fixed part of the frag.
18345 Try to fit in a short microMIPS NOP if applicable and possible,
18346 and use zeroes otherwise. */
18347 gas_assert (excess < 4);
18348 fragp->fr_fix += excess;
18353 /* Fall through. */
18355 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18357 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18361 /* Fall through. */
18364 /* Fall through. */
18369 md_number_to_chars (p, opcode, size);
18370 fragp->fr_var = size;
18379 if (*input_line_pointer == '-')
18381 ++input_line_pointer;
18384 if (!ISDIGIT (*input_line_pointer))
18385 as_bad (_("expected simple number"));
18386 if (input_line_pointer[0] == '0')
18388 if (input_line_pointer[1] == 'x')
18390 input_line_pointer += 2;
18391 while (ISXDIGIT (*input_line_pointer))
18394 val |= hex_value (*input_line_pointer++);
18396 return negative ? -val : val;
18400 ++input_line_pointer;
18401 while (ISDIGIT (*input_line_pointer))
18404 val |= *input_line_pointer++ - '0';
18406 return negative ? -val : val;
18409 if (!ISDIGIT (*input_line_pointer))
18411 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18412 *input_line_pointer, *input_line_pointer);
18413 as_warn (_("invalid number"));
18416 while (ISDIGIT (*input_line_pointer))
18419 val += *input_line_pointer++ - '0';
18421 return negative ? -val : val;
18424 /* The .file directive; just like the usual .file directive, but there
18425 is an initial number which is the ECOFF file index. In the non-ECOFF
18426 case .file implies DWARF-2. */
18429 s_mips_file (int x ATTRIBUTE_UNUSED)
18431 static int first_file_directive = 0;
18433 if (ECOFF_DEBUGGING)
18442 filename = dwarf2_directive_file (0);
18444 /* Versions of GCC up to 3.1 start files with a ".file"
18445 directive even for stabs output. Make sure that this
18446 ".file" is handled. Note that you need a version of GCC
18447 after 3.1 in order to support DWARF-2 on MIPS. */
18448 if (filename != NULL && ! first_file_directive)
18450 (void) new_logical_line (filename, -1);
18451 s_app_file_string (filename, 0);
18453 first_file_directive = 1;
18457 /* The .loc directive, implying DWARF-2. */
18460 s_mips_loc (int x ATTRIBUTE_UNUSED)
18462 if (!ECOFF_DEBUGGING)
18463 dwarf2_directive_loc (0);
18466 /* The .end directive. */
18469 s_mips_end (int x ATTRIBUTE_UNUSED)
18473 /* Following functions need their own .frame and .cprestore directives. */
18474 mips_frame_reg_valid = 0;
18475 mips_cprestore_valid = 0;
18477 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18480 demand_empty_rest_of_line ();
18485 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18486 as_warn (_(".end not in text section"));
18490 as_warn (_(".end directive without a preceding .ent directive"));
18491 demand_empty_rest_of_line ();
18497 gas_assert (S_GET_NAME (p));
18498 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18499 as_warn (_(".end symbol does not match .ent symbol"));
18501 if (debug_type == DEBUG_STABS)
18502 stabs_generate_asm_endfunc (S_GET_NAME (p),
18506 as_warn (_(".end directive missing or unknown symbol"));
18508 /* Create an expression to calculate the size of the function. */
18509 if (p && cur_proc_ptr)
18511 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18512 expressionS *exp = XNEW (expressionS);
18515 exp->X_op = O_subtract;
18516 exp->X_add_symbol = symbol_temp_new_now ();
18517 exp->X_op_symbol = p;
18518 exp->X_add_number = 0;
18520 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18523 /* Generate a .pdr section. */
18524 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18526 segT saved_seg = now_seg;
18527 subsegT saved_subseg = now_subseg;
18531 #ifdef md_flush_pending_output
18532 md_flush_pending_output ();
18535 gas_assert (pdr_seg);
18536 subseg_set (pdr_seg, 0);
18538 /* Write the symbol. */
18539 exp.X_op = O_symbol;
18540 exp.X_add_symbol = p;
18541 exp.X_add_number = 0;
18542 emit_expr (&exp, 4);
18544 fragp = frag_more (7 * 4);
18546 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18547 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18548 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18549 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18550 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18551 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18552 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18554 subseg_set (saved_seg, saved_subseg);
18557 cur_proc_ptr = NULL;
18560 /* The .aent and .ent directives. */
18563 s_mips_ent (int aent)
18567 symbolP = get_symbol ();
18568 if (*input_line_pointer == ',')
18569 ++input_line_pointer;
18570 SKIP_WHITESPACE ();
18571 if (ISDIGIT (*input_line_pointer)
18572 || *input_line_pointer == '-')
18575 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18576 as_warn (_(".ent or .aent not in text section"));
18578 if (!aent && cur_proc_ptr)
18579 as_warn (_("missing .end"));
18583 /* This function needs its own .frame and .cprestore directives. */
18584 mips_frame_reg_valid = 0;
18585 mips_cprestore_valid = 0;
18587 cur_proc_ptr = &cur_proc;
18588 memset (cur_proc_ptr, '\0', sizeof (procS));
18590 cur_proc_ptr->func_sym = symbolP;
18594 if (debug_type == DEBUG_STABS)
18595 stabs_generate_asm_func (S_GET_NAME (symbolP),
18596 S_GET_NAME (symbolP));
18599 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18601 demand_empty_rest_of_line ();
18604 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18605 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18606 s_mips_frame is used so that we can set the PDR information correctly.
18607 We can't use the ecoff routines because they make reference to the ecoff
18608 symbol table (in the mdebug section). */
18611 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18613 if (ECOFF_DEBUGGING)
18619 if (cur_proc_ptr == (procS *) NULL)
18621 as_warn (_(".frame outside of .ent"));
18622 demand_empty_rest_of_line ();
18626 cur_proc_ptr->frame_reg = tc_get_register (1);
18628 SKIP_WHITESPACE ();
18629 if (*input_line_pointer++ != ','
18630 || get_absolute_expression_and_terminator (&val) != ',')
18632 as_warn (_("bad .frame directive"));
18633 --input_line_pointer;
18634 demand_empty_rest_of_line ();
18638 cur_proc_ptr->frame_offset = val;
18639 cur_proc_ptr->pc_reg = tc_get_register (0);
18641 demand_empty_rest_of_line ();
18645 /* The .fmask and .mask directives. If the mdebug section is present
18646 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18647 embedded targets, s_mips_mask is used so that we can set the PDR
18648 information correctly. We can't use the ecoff routines because they
18649 make reference to the ecoff symbol table (in the mdebug section). */
18652 s_mips_mask (int reg_type)
18654 if (ECOFF_DEBUGGING)
18655 s_ignore (reg_type);
18660 if (cur_proc_ptr == (procS *) NULL)
18662 as_warn (_(".mask/.fmask outside of .ent"));
18663 demand_empty_rest_of_line ();
18667 if (get_absolute_expression_and_terminator (&mask) != ',')
18669 as_warn (_("bad .mask/.fmask directive"));
18670 --input_line_pointer;
18671 demand_empty_rest_of_line ();
18675 off = get_absolute_expression ();
18677 if (reg_type == 'F')
18679 cur_proc_ptr->fpreg_mask = mask;
18680 cur_proc_ptr->fpreg_offset = off;
18684 cur_proc_ptr->reg_mask = mask;
18685 cur_proc_ptr->reg_offset = off;
18688 demand_empty_rest_of_line ();
18692 /* A table describing all the processors gas knows about. Names are
18693 matched in the order listed.
18695 To ease comparison, please keep this table in the same order as
18696 gcc's mips_cpu_info_table[]. */
18697 static const struct mips_cpu_info mips_cpu_info_table[] =
18699 /* Entries for generic ISAs */
18700 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18701 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18702 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18703 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18704 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18705 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18706 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18707 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18708 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18709 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18710 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18711 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18712 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18713 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18714 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18717 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18718 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18719 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18722 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18725 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18726 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18727 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18728 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18729 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18730 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18731 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18732 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18733 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18734 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18735 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18736 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18737 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18738 /* ST Microelectronics Loongson 2E and 2F cores */
18739 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18740 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18743 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18744 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18745 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18746 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18747 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18748 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18749 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18750 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18751 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18752 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18753 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18754 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18755 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18756 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18757 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18760 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18761 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18762 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18763 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18765 /* MIPS 32 Release 2 */
18766 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18767 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18768 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18769 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18770 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18771 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18772 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18773 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18774 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18775 ISA_MIPS32R2, CPU_MIPS32R2 },
18776 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18777 ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18781 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18782 /* Deprecated forms of the above. */
18783 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18784 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18785 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18786 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18787 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18788 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18789 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18790 /* Deprecated forms of the above. */
18791 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18792 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18793 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18794 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18795 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18796 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18797 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18798 /* Deprecated forms of the above. */
18799 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18800 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18801 /* 34Kn is a 34kc without DSP. */
18802 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18803 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18804 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18805 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18806 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18807 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18808 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18809 /* Deprecated forms of the above. */
18810 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18811 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18812 /* 1004K cores are multiprocessor versions of the 34K. */
18813 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18814 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18815 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18816 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18817 /* interaptiv is the new name for 1004kf */
18818 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18820 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18821 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18822 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18823 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18826 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18827 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18828 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18829 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18831 /* Broadcom SB-1 CPU core */
18832 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18833 /* Broadcom SB-1A CPU core */
18834 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18836 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18838 /* MIPS 64 Release 2 */
18840 /* Cavium Networks Octeon CPU core */
18841 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18842 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18843 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18844 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18847 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18850 XLP is mostly like XLR, with the prominent exception that it is
18851 MIPS64R2 rather than MIPS64. */
18852 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18854 /* MIPS 64 Release 6 */
18855 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18856 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18859 { NULL, 0, 0, 0, 0 }
18863 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18864 with a final "000" replaced by "k". Ignore case.
18866 Note: this function is shared between GCC and GAS. */
18869 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18871 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18872 given++, canonical++;
18874 return ((*given == 0 && *canonical == 0)
18875 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18879 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18880 CPU name. We've traditionally allowed a lot of variation here.
18882 Note: this function is shared between GCC and GAS. */
18885 mips_matching_cpu_name_p (const char *canonical, const char *given)
18887 /* First see if the name matches exactly, or with a final "000"
18888 turned into "k". */
18889 if (mips_strict_matching_cpu_name_p (canonical, given))
18892 /* If not, try comparing based on numerical designation alone.
18893 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18894 if (TOLOWER (*given) == 'r')
18896 if (!ISDIGIT (*given))
18899 /* Skip over some well-known prefixes in the canonical name,
18900 hoping to find a number there too. */
18901 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18903 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18905 else if (TOLOWER (canonical[0]) == 'r')
18908 return mips_strict_matching_cpu_name_p (canonical, given);
18912 /* Parse an option that takes the name of a processor as its argument.
18913 OPTION is the name of the option and CPU_STRING is the argument.
18914 Return the corresponding processor enumeration if the CPU_STRING is
18915 recognized, otherwise report an error and return null.
18917 A similar function exists in GCC. */
18919 static const struct mips_cpu_info *
18920 mips_parse_cpu (const char *option, const char *cpu_string)
18922 const struct mips_cpu_info *p;
18924 /* 'from-abi' selects the most compatible architecture for the given
18925 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18926 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18927 version. Look first at the -mgp options, if given, otherwise base
18928 the choice on MIPS_DEFAULT_64BIT.
18930 Treat NO_ABI like the EABIs. One reason to do this is that the
18931 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18932 architecture. This code picks MIPS I for 'mips' and MIPS III for
18933 'mips64', just as we did in the days before 'from-abi'. */
18934 if (strcasecmp (cpu_string, "from-abi") == 0)
18936 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18937 return mips_cpu_info_from_isa (ISA_MIPS1);
18939 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18940 return mips_cpu_info_from_isa (ISA_MIPS3);
18942 if (file_mips_opts.gp >= 0)
18943 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18944 ? ISA_MIPS1 : ISA_MIPS3);
18946 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18951 /* 'default' has traditionally been a no-op. Probably not very useful. */
18952 if (strcasecmp (cpu_string, "default") == 0)
18955 for (p = mips_cpu_info_table; p->name != 0; p++)
18956 if (mips_matching_cpu_name_p (p->name, cpu_string))
18959 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18963 /* Return the canonical processor information for ISA (a member of the
18964 ISA_MIPS* enumeration). */
18966 static const struct mips_cpu_info *
18967 mips_cpu_info_from_isa (int isa)
18971 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18972 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18973 && isa == mips_cpu_info_table[i].isa)
18974 return (&mips_cpu_info_table[i]);
18979 static const struct mips_cpu_info *
18980 mips_cpu_info_from_arch (int arch)
18984 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18985 if (arch == mips_cpu_info_table[i].cpu)
18986 return (&mips_cpu_info_table[i]);
18992 show (FILE *stream, const char *string, int *col_p, int *first_p)
18996 fprintf (stream, "%24s", "");
19001 fprintf (stream, ", ");
19005 if (*col_p + strlen (string) > 72)
19007 fprintf (stream, "\n%24s", "");
19011 fprintf (stream, "%s", string);
19012 *col_p += strlen (string);
19018 md_show_usage (FILE *stream)
19023 fprintf (stream, _("\
19025 -EB generate big endian output\n\
19026 -EL generate little endian output\n\
19027 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19028 -G NUM allow referencing objects up to NUM bytes\n\
19029 implicitly with the gp register [default 8]\n"));
19030 fprintf (stream, _("\
19031 -mips1 generate MIPS ISA I instructions\n\
19032 -mips2 generate MIPS ISA II instructions\n\
19033 -mips3 generate MIPS ISA III instructions\n\
19034 -mips4 generate MIPS ISA IV instructions\n\
19035 -mips5 generate MIPS ISA V instructions\n\
19036 -mips32 generate MIPS32 ISA instructions\n\
19037 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19038 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19039 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19040 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19041 -mips64 generate MIPS64 ISA instructions\n\
19042 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19043 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19044 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19045 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19046 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19050 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19051 show (stream, mips_cpu_info_table[i].name, &column, &first);
19052 show (stream, "from-abi", &column, &first);
19053 fputc ('\n', stream);
19055 fprintf (stream, _("\
19056 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19057 -no-mCPU don't generate code specific to CPU.\n\
19058 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19062 show (stream, "3900", &column, &first);
19063 show (stream, "4010", &column, &first);
19064 show (stream, "4100", &column, &first);
19065 show (stream, "4650", &column, &first);
19066 fputc ('\n', stream);
19068 fprintf (stream, _("\
19069 -mips16 generate mips16 instructions\n\
19070 -no-mips16 do not generate mips16 instructions\n"));
19071 fprintf (stream, _("\
19072 -mmicromips generate microMIPS instructions\n\
19073 -mno-micromips do not generate microMIPS instructions\n"));
19074 fprintf (stream, _("\
19075 -msmartmips generate smartmips instructions\n\
19076 -mno-smartmips do not generate smartmips instructions\n"));
19077 fprintf (stream, _("\
19078 -mdsp generate DSP instructions\n\
19079 -mno-dsp do not generate DSP instructions\n"));
19080 fprintf (stream, _("\
19081 -mdspr2 generate DSP R2 instructions\n\
19082 -mno-dspr2 do not generate DSP R2 instructions\n"));
19083 fprintf (stream, _("\
19084 -mdspr3 generate DSP R3 instructions\n\
19085 -mno-dspr3 do not generate DSP R3 instructions\n"));
19086 fprintf (stream, _("\
19087 -mmt generate MT instructions\n\
19088 -mno-mt do not generate MT instructions\n"));
19089 fprintf (stream, _("\
19090 -mmcu generate MCU instructions\n\
19091 -mno-mcu do not generate MCU instructions\n"));
19092 fprintf (stream, _("\
19093 -mmsa generate MSA instructions\n\
19094 -mno-msa do not generate MSA instructions\n"));
19095 fprintf (stream, _("\
19096 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19097 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19098 fprintf (stream, _("\
19099 -mvirt generate Virtualization instructions\n\
19100 -mno-virt do not generate Virtualization instructions\n"));
19101 fprintf (stream, _("\
19102 -minsn32 only generate 32-bit microMIPS instructions\n\
19103 -mno-insn32 generate all microMIPS instructions\n"));
19104 fprintf (stream, _("\
19105 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19106 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19107 -mfix-vr4120 work around certain VR4120 errata\n\
19108 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19109 -mfix-24k insert a nop after ERET and DERET instructions\n\
19110 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19111 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19112 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19113 -msym32 assume all symbols have 32-bit values\n\
19114 -O0 remove unneeded NOPs, do not swap branches\n\
19115 -O remove unneeded NOPs and swap branches\n\
19116 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19117 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19118 fprintf (stream, _("\
19119 -mhard-float allow floating-point instructions\n\
19120 -msoft-float do not allow floating-point instructions\n\
19121 -msingle-float only allow 32-bit floating-point operations\n\
19122 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19123 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19124 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19125 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19129 show (stream, "legacy", &column, &first);
19130 show (stream, "2008", &column, &first);
19132 fputc ('\n', stream);
19134 fprintf (stream, _("\
19135 -KPIC, -call_shared generate SVR4 position independent code\n\
19136 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19137 -mvxworks-pic generate VxWorks position independent code\n\
19138 -non_shared do not generate code that can operate with DSOs\n\
19139 -xgot assume a 32 bit GOT\n\
19140 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19141 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19142 position dependent (non shared) code\n\
19143 -mabi=ABI create ABI conformant object file for:\n"));
19147 show (stream, "32", &column, &first);
19148 show (stream, "o64", &column, &first);
19149 show (stream, "n32", &column, &first);
19150 show (stream, "64", &column, &first);
19151 show (stream, "eabi", &column, &first);
19153 fputc ('\n', stream);
19155 fprintf (stream, _("\
19156 -32 create o32 ABI object file (default)\n\
19157 -n32 create n32 ABI object file\n\
19158 -64 create 64 ABI object file\n"));
19163 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19165 if (HAVE_64BIT_SYMBOLS)
19166 return dwarf2_format_64bit_irix;
19168 return dwarf2_format_32bit;
19173 mips_dwarf2_addr_size (void)
19175 if (HAVE_64BIT_OBJECTS)
19181 /* Standard calling conventions leave the CFA at SP on entry. */
19183 mips_cfi_frame_initial_instructions (void)
19185 cfi_add_CFA_def_cfa_register (SP);
19189 tc_mips_regname_to_dw2regnum (char *regname)
19191 unsigned int regnum = -1;
19194 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19200 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19201 Given a symbolic attribute NAME, return the proper integer value.
19202 Returns -1 if the attribute is not known. */
19205 mips_convert_symbolic_attribute (const char *name)
19207 static const struct
19212 attribute_table[] =
19214 #define T(tag) {#tag, tag}
19215 T (Tag_GNU_MIPS_ABI_FP),
19216 T (Tag_GNU_MIPS_ABI_MSA),
19224 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19225 if (streq (name, attribute_table[i].name))
19226 return attribute_table[i].tag;
19234 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19236 mips_emit_delays ();
19238 as_warn (_("missing .end at end of assembly"));
19240 /* Just in case no code was emitted, do the consistency check. */
19241 file_mips_check_options ();
19243 /* Set a floating-point ABI if the user did not. */
19244 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19246 /* Perform consistency checks on the floating-point ABI. */
19247 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19248 Tag_GNU_MIPS_ABI_FP);
19249 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19250 check_fpabi (fpabi);
19254 /* Soft-float gets precedence over single-float, the two options should
19255 not be used together so this should not matter. */
19256 if (file_mips_opts.soft_float == 1)
19257 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19258 /* Single-float gets precedence over all double_float cases. */
19259 else if (file_mips_opts.single_float == 1)
19260 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19263 switch (file_mips_opts.fp)
19266 if (file_mips_opts.gp == 32)
19267 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19270 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19273 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19274 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19275 else if (file_mips_opts.gp == 32)
19276 fpabi = Val_GNU_MIPS_ABI_FP_64;
19278 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19283 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19284 Tag_GNU_MIPS_ABI_FP, fpabi);
19288 /* Returns the relocation type required for a particular CFI encoding. */
19290 bfd_reloc_code_real_type
19291 mips_cfi_reloc_for_encoding (int encoding)
19293 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19294 return BFD_RELOC_32_PCREL;
19295 else return BFD_RELOC_NONE;