1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
38 #define DBG(x) printf x
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
61 /* Fix any of them that we actually care about. */
63 #define OUTPUT_FLAVOR mips_output_flavor()
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
81 int mips_flag_pdr = FALSE;
83 int mips_flag_pdr = TRUE;
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
97 #define PIC_CALL_REG 25
105 #define ILLEGAL_REG (32)
107 #define AT mips_opts.at
109 /* Allow override of standard little-endian ECOFF format. */
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
115 extern int target_big_endian;
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
126 /* Ways in which an instruction can be "appended" to the output. */
128 /* Just add it normally. */
131 /* Add it normally and then add a nop. */
134 /* Turn an instruction with a delay slot into a "compact" version. */
137 /* Insert the instruction before the last one. */
141 /* Information about an instruction, including its format, operands
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
148 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
149 a copy of INSN_MO->match with the operands filled in. If we have
150 decided to use an extended MIPS16 instruction, this includes the
152 unsigned long insn_opcode;
154 /* The frag that contains the instruction. */
157 /* The offset into FRAG of the first instruction byte. */
160 /* The relocs associated with the instruction, if any. */
163 /* True if this entry cannot be moved from its current position. */
164 unsigned int fixed_p : 1;
166 /* True if this instruction occurred in a .set noreorder block. */
167 unsigned int noreorder_p : 1;
169 /* True for mips16 instructions that jump to an absolute address. */
170 unsigned int mips16_absolute_jump_p : 1;
172 /* True if this instruction is complete. */
173 unsigned int complete_p : 1;
175 /* True if this instruction is cleared from history by unconditional
177 unsigned int cleared_p : 1;
180 /* The ABI to use. */
191 /* MIPS ABI we are using for this output file. */
192 static enum mips_abi_level mips_abi = NO_ABI;
194 /* Whether or not we have code that can call pic code. */
195 int mips_abicalls = FALSE;
197 /* Whether or not we have code which can be put into a shared
199 static bfd_boolean mips_in_shared = TRUE;
201 /* This is the set of options which may be modified by the .set
202 pseudo-op. We use a struct so that .set push and .set pop are more
205 struct mips_set_options
207 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
208 if it has not been initialized. Changed by `.set mipsN', and the
209 -mipsN command line option, and the default CPU. */
211 /* Enabled Application Specific Extensions (ASEs). These are set to -1
212 if they have not been initialized. Changed by `.set <asename>', by
213 command line options, and based on the default architecture. */
221 /* Whether we are assembling for the mips16 processor. 0 if we are
222 not, 1 if we are, and -1 if the value has not been initialized.
223 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
224 -nomips16 command line options, and the default CPU. */
226 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
227 1 if we are, and -1 if the value has not been initialized. Changed
228 by `.set micromips' and `.set nomicromips', and the -mmicromips
229 and -mno-micromips command line options, and the default CPU. */
231 /* Non-zero if we should not reorder instructions. Changed by `.set
232 reorder' and `.set noreorder'. */
234 /* Non-zero if we should not permit the register designated "assembler
235 temporary" to be used in instructions. The value is the register
236 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
237 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
239 /* Non-zero if we should warn when a macro instruction expands into
240 more than one machine instruction. Changed by `.set nomacro' and
242 int warn_about_macros;
243 /* Non-zero if we should not move instructions. Changed by `.set
244 move', `.set volatile', `.set nomove', and `.set novolatile'. */
246 /* Non-zero if we should not optimize branches by moving the target
247 of the branch into the delay slot. Actually, we don't perform
248 this optimization anyhow. Changed by `.set bopt' and `.set
251 /* Non-zero if we should not autoextend mips16 instructions.
252 Changed by `.set autoextend' and `.set noautoextend'. */
254 /* Restrict general purpose registers and floating point registers
255 to 32 bit. This is initially determined when -mgp32 or -mfp32
256 is passed but can changed if the assembler code uses .set mipsN. */
259 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
260 command line option, and the default CPU. */
262 /* True if ".set sym32" is in effect. */
264 /* True if floating-point operations are not allowed. Changed by .set
265 softfloat or .set hardfloat, by command line options -msoft-float or
266 -mhard-float. The default is false. */
267 bfd_boolean soft_float;
269 /* True if only single-precision floating-point operations are allowed.
270 Changed by .set singlefloat or .set doublefloat, command-line options
271 -msingle-float or -mdouble-float. The default is false. */
272 bfd_boolean single_float;
275 /* This is the struct we use to hold the current set of options. Note
276 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
277 -1 to indicate that they have not been initialized. */
279 /* True if -mgp32 was passed. */
280 static int file_mips_gp32 = -1;
282 /* True if -mfp32 was passed. */
283 static int file_mips_fp32 = -1;
285 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
286 static int file_mips_soft_float = 0;
288 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
289 static int file_mips_single_float = 0;
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
294 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
295 /* ase_mcu */ -1, /* mips16 */ -1, /* micromips */ -1, /* noreorder */ 0,
296 /* at */ ATREG, /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
297 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
298 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
301 /* These variables are filled in with the masks of registers used.
302 The object format code reads them and puts them in the appropriate
304 unsigned long mips_gprmask;
305 unsigned long mips_cprmask[4];
307 /* MIPS ISA we are using for this output file. */
308 static int file_mips_isa = ISA_UNKNOWN;
310 /* True if any MIPS16 code was produced. */
311 static int file_ase_mips16;
313 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
314 || mips_opts.isa == ISA_MIPS32R2 \
315 || mips_opts.isa == ISA_MIPS64 \
316 || mips_opts.isa == ISA_MIPS64R2)
318 /* True if any microMIPS code was produced. */
319 static int file_ase_micromips;
321 /* True if we want to create R_MIPS_JALR for jalr $25. */
323 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
325 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
326 because there's no place for any addend, the only acceptable
327 expression is a bare symbol. */
328 #define MIPS_JALR_HINT_P(EXPR) \
329 (!HAVE_IN_PLACE_ADDENDS \
330 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
333 /* True if -mips3d was passed or implied by arguments passed on the
334 command line (e.g., by -march). */
335 static int file_ase_mips3d;
337 /* True if -mdmx was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mdmx;
341 /* True if -msmartmips was passed or implied by arguments passed on the
342 command line (e.g., by -march). */
343 static int file_ase_smartmips;
345 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
346 || mips_opts.isa == ISA_MIPS32R2)
348 /* True if -mdsp was passed or implied by arguments passed on the
349 command line (e.g., by -march). */
350 static int file_ase_dsp;
352 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
353 || mips_opts.isa == ISA_MIPS64R2 \
354 || mips_opts.micromips)
356 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
358 /* True if -mdspr2 was passed or implied by arguments passed on the
359 command line (e.g., by -march). */
360 static int file_ase_dspr2;
362 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
363 || mips_opts.isa == ISA_MIPS64R2 \
364 || mips_opts.micromips)
366 /* True if -mmt was passed or implied by arguments passed on the
367 command line (e.g., by -march). */
368 static int file_ase_mt;
370 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
371 || mips_opts.isa == ISA_MIPS64R2)
373 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
374 || mips_opts.isa == ISA_MIPS64R2 \
375 || mips_opts.micromips)
377 /* The argument of the -march= flag. The architecture we are assembling. */
378 static int file_mips_arch = CPU_UNKNOWN;
379 static const char *mips_arch_string;
381 /* The argument of the -mtune= flag. The architecture for which we
383 static int mips_tune = CPU_UNKNOWN;
384 static const char *mips_tune_string;
386 /* True when generating 32-bit code for a 64-bit processor. */
387 static int mips_32bitmode = 0;
389 /* True if the given ABI requires 32-bit registers. */
390 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
392 /* Likewise 64-bit registers. */
393 #define ABI_NEEDS_64BIT_REGS(ABI) \
395 || (ABI) == N64_ABI \
398 /* Return true if ISA supports 64 bit wide gp registers. */
399 #define ISA_HAS_64BIT_REGS(ISA) \
400 ((ISA) == ISA_MIPS3 \
401 || (ISA) == ISA_MIPS4 \
402 || (ISA) == ISA_MIPS5 \
403 || (ISA) == ISA_MIPS64 \
404 || (ISA) == ISA_MIPS64R2)
406 /* Return true if ISA supports 64 bit wide float registers. */
407 #define ISA_HAS_64BIT_FPRS(ISA) \
408 ((ISA) == ISA_MIPS3 \
409 || (ISA) == ISA_MIPS4 \
410 || (ISA) == ISA_MIPS5 \
411 || (ISA) == ISA_MIPS32R2 \
412 || (ISA) == ISA_MIPS64 \
413 || (ISA) == ISA_MIPS64R2)
415 /* Return true if ISA supports 64-bit right rotate (dror et al.)
417 #define ISA_HAS_DROR(ISA) \
418 ((ISA) == ISA_MIPS64R2 \
419 || (mips_opts.micromips \
420 && ISA_HAS_64BIT_REGS (ISA)) \
423 /* Return true if ISA supports 32-bit right rotate (ror et al.)
425 #define ISA_HAS_ROR(ISA) \
426 ((ISA) == ISA_MIPS32R2 \
427 || (ISA) == ISA_MIPS64R2 \
428 || mips_opts.ase_smartmips \
429 || mips_opts.micromips \
432 /* Return true if ISA supports single-precision floats in odd registers. */
433 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
434 ((ISA) == ISA_MIPS32 \
435 || (ISA) == ISA_MIPS32R2 \
436 || (ISA) == ISA_MIPS64 \
437 || (ISA) == ISA_MIPS64R2)
439 /* Return true if ISA supports move to/from high part of a 64-bit
440 floating-point register. */
441 #define ISA_HAS_MXHC1(ISA) \
442 ((ISA) == ISA_MIPS32R2 \
443 || (ISA) == ISA_MIPS64R2)
445 #define HAVE_32BIT_GPRS \
446 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
448 #define HAVE_32BIT_FPRS \
449 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
451 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
452 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
454 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
456 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
458 /* True if relocations are stored in-place. */
459 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
461 /* The ABI-derived address size. */
462 #define HAVE_64BIT_ADDRESSES \
463 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
464 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
466 /* The size of symbolic constants (i.e., expressions of the form
467 "SYMBOL" or "SYMBOL + OFFSET"). */
468 #define HAVE_32BIT_SYMBOLS \
469 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
470 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
472 /* Addresses are loaded in different ways, depending on the address size
473 in use. The n32 ABI Documentation also mandates the use of additions
474 with overflow checking, but existing implementations don't follow it. */
475 #define ADDRESS_ADD_INSN \
476 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
478 #define ADDRESS_ADDI_INSN \
479 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
481 #define ADDRESS_LOAD_INSN \
482 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
484 #define ADDRESS_STORE_INSN \
485 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
487 /* Return true if the given CPU supports the MIPS16 ASE. */
488 #define CPU_HAS_MIPS16(cpu) \
489 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
490 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
492 /* Return true if the given CPU supports the microMIPS ASE. */
493 #define CPU_HAS_MICROMIPS(cpu) 0
495 /* True if CPU has a dror instruction. */
496 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
498 /* True if CPU has a ror instruction. */
499 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
501 /* True if CPU is in the Octeon family */
502 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
504 /* True if CPU has seq/sne and seqi/snei instructions. */
505 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
507 /* True, if CPU has support for ldc1 and sdc1. */
508 #define CPU_HAS_LDC1_SDC1(CPU) \
509 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
511 /* True if mflo and mfhi can be immediately followed by instructions
512 which write to the HI and LO registers.
514 According to MIPS specifications, MIPS ISAs I, II, and III need
515 (at least) two instructions between the reads of HI/LO and
516 instructions which write them, and later ISAs do not. Contradicting
517 the MIPS specifications, some MIPS IV processor user manuals (e.g.
518 the UM for the NEC Vr5000) document needing the instructions between
519 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
520 MIPS64 and later ISAs to have the interlocks, plus any specific
521 earlier-ISA CPUs for which CPU documentation declares that the
522 instructions are really interlocked. */
523 #define hilo_interlocks \
524 (mips_opts.isa == ISA_MIPS32 \
525 || mips_opts.isa == ISA_MIPS32R2 \
526 || mips_opts.isa == ISA_MIPS64 \
527 || mips_opts.isa == ISA_MIPS64R2 \
528 || mips_opts.arch == CPU_R4010 \
529 || mips_opts.arch == CPU_R5900 \
530 || mips_opts.arch == CPU_R10000 \
531 || mips_opts.arch == CPU_R12000 \
532 || mips_opts.arch == CPU_R14000 \
533 || mips_opts.arch == CPU_R16000 \
534 || mips_opts.arch == CPU_RM7000 \
535 || mips_opts.arch == CPU_VR5500 \
536 || mips_opts.micromips \
539 /* Whether the processor uses hardware interlocks to protect reads
540 from the GPRs after they are loaded from memory, and thus does not
541 require nops to be inserted. This applies to instructions marked
542 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
543 level I and microMIPS mode instructions are always interlocked. */
544 #define gpr_interlocks \
545 (mips_opts.isa != ISA_MIPS1 \
546 || mips_opts.arch == CPU_R3900 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.micromips \
551 /* Whether the processor uses hardware interlocks to avoid delays
552 required by coprocessor instructions, and thus does not require
553 nops to be inserted. This applies to instructions marked
554 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
555 between instructions marked INSN_WRITE_COND_CODE and ones marked
556 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
557 levels I, II, and III and microMIPS mode instructions are always
559 /* Itbl support may require additional care here. */
560 #define cop_interlocks \
561 ((mips_opts.isa != ISA_MIPS1 \
562 && mips_opts.isa != ISA_MIPS2 \
563 && mips_opts.isa != ISA_MIPS3) \
564 || mips_opts.arch == CPU_R4300 \
565 || mips_opts.micromips \
568 /* Whether the processor uses hardware interlocks to protect reads
569 from coprocessor registers after they are loaded from memory, and
570 thus does not require nops to be inserted. This applies to
571 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
572 requires at MIPS ISA level I and microMIPS mode instructions are
573 always interlocked. */
574 #define cop_mem_interlocks \
575 (mips_opts.isa != ISA_MIPS1 \
576 || mips_opts.micromips \
579 /* Is this a mfhi or mflo instruction? */
580 #define MF_HILO_INSN(PINFO) \
581 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
583 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
584 has been selected. This implies, in particular, that addresses of text
585 labels have their LSB set. */
586 #define HAVE_CODE_COMPRESSION \
587 ((mips_opts.mips16 | mips_opts.micromips) != 0)
589 /* MIPS PIC level. */
591 enum mips_pic_level mips_pic;
593 /* 1 if we should generate 32 bit offsets from the $gp register in
594 SVR4_PIC mode. Currently has no meaning in other modes. */
595 static int mips_big_got = 0;
597 /* 1 if trap instructions should used for overflow rather than break
599 static int mips_trap = 0;
601 /* 1 if double width floating point constants should not be constructed
602 by assembling two single width halves into two single width floating
603 point registers which just happen to alias the double width destination
604 register. On some architectures this aliasing can be disabled by a bit
605 in the status register, and the setting of this bit cannot be determined
606 automatically at assemble time. */
607 static int mips_disable_float_construction;
609 /* Non-zero if any .set noreorder directives were used. */
611 static int mips_any_noreorder;
613 /* Non-zero if nops should be inserted when the register referenced in
614 an mfhi/mflo instruction is read in the next two instructions. */
615 static int mips_7000_hilo_fix;
617 /* The size of objects in the small data section. */
618 static unsigned int g_switch_value = 8;
619 /* Whether the -G option was used. */
620 static int g_switch_seen = 0;
625 /* If we can determine in advance that GP optimization won't be
626 possible, we can skip the relaxation stuff that tries to produce
627 GP-relative references. This makes delay slot optimization work
630 This function can only provide a guess, but it seems to work for
631 gcc output. It needs to guess right for gcc, otherwise gcc
632 will put what it thinks is a GP-relative instruction in a branch
635 I don't know if a fix is needed for the SVR4_PIC mode. I've only
636 fixed it for the non-PIC mode. KR 95/04/07 */
637 static int nopic_need_relax (symbolS *, int);
639 /* handle of the OPCODE hash table */
640 static struct hash_control *op_hash = NULL;
642 /* The opcode hash table we use for the mips16. */
643 static struct hash_control *mips16_op_hash = NULL;
645 /* The opcode hash table we use for the microMIPS ASE. */
646 static struct hash_control *micromips_op_hash = NULL;
648 /* This array holds the chars that always start a comment. If the
649 pre-processor is disabled, these aren't very useful */
650 const char comment_chars[] = "#";
652 /* This array holds the chars that only start a comment at the beginning of
653 a line. If the line seems to have the form '# 123 filename'
654 .line and .file directives will appear in the pre-processed output */
655 /* Note that input_file.c hand checks for '#' at the beginning of the
656 first line of the input file. This is because the compiler outputs
657 #NO_APP at the beginning of its output. */
658 /* Also note that C style comments are always supported. */
659 const char line_comment_chars[] = "#";
661 /* This array holds machine specific line separator characters. */
662 const char line_separator_chars[] = ";";
664 /* Chars that can be used to separate mant from exp in floating point nums */
665 const char EXP_CHARS[] = "eE";
667 /* Chars that mean this number is a floating point constant */
670 const char FLT_CHARS[] = "rRsSfFdDxXpP";
672 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
673 changed in read.c . Ideally it shouldn't have to know about it at all,
674 but nothing is ideal around here.
677 static char *insn_error;
679 static int auto_align = 1;
681 /* When outputting SVR4 PIC code, the assembler needs to know the
682 offset in the stack frame from which to restore the $gp register.
683 This is set by the .cprestore pseudo-op, and saved in this
685 static offsetT mips_cprestore_offset = -1;
687 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
688 more optimizations, it can use a register value instead of a memory-saved
689 offset and even an other register than $gp as global pointer. */
690 static offsetT mips_cpreturn_offset = -1;
691 static int mips_cpreturn_register = -1;
692 static int mips_gp_register = GP;
693 static int mips_gprel_offset = 0;
695 /* Whether mips_cprestore_offset has been set in the current function
696 (or whether it has already been warned about, if not). */
697 static int mips_cprestore_valid = 0;
699 /* This is the register which holds the stack frame, as set by the
700 .frame pseudo-op. This is needed to implement .cprestore. */
701 static int mips_frame_reg = SP;
703 /* Whether mips_frame_reg has been set in the current function
704 (or whether it has already been warned about, if not). */
705 static int mips_frame_reg_valid = 0;
707 /* To output NOP instructions correctly, we need to keep information
708 about the previous two instructions. */
710 /* Whether we are optimizing. The default value of 2 means to remove
711 unneeded NOPs and swap branch instructions when possible. A value
712 of 1 means to not swap branches. A value of 0 means to always
714 static int mips_optimize = 2;
716 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
717 equivalent to seeing no -g option at all. */
718 static int mips_debug = 0;
720 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
721 #define MAX_VR4130_NOPS 4
723 /* The maximum number of NOPs needed to fill delay slots. */
724 #define MAX_DELAY_NOPS 2
726 /* The maximum number of NOPs needed for any purpose. */
729 /* A list of previous instructions, with index 0 being the most recent.
730 We need to look back MAX_NOPS instructions when filling delay slots
731 or working around processor errata. We need to look back one
732 instruction further if we're thinking about using history[0] to
733 fill a branch delay slot. */
734 static struct mips_cl_insn history[1 + MAX_NOPS];
736 /* Nop instructions used by emit_nop. */
737 static struct mips_cl_insn nop_insn;
738 static struct mips_cl_insn mips16_nop_insn;
739 static struct mips_cl_insn micromips_nop16_insn;
740 static struct mips_cl_insn micromips_nop32_insn;
742 /* The appropriate nop for the current mode. */
743 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
744 : (mips_opts.micromips ? µmips_nop16_insn : &nop_insn))
746 /* The size of NOP_INSN in bytes. */
747 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
749 /* If this is set, it points to a frag holding nop instructions which
750 were inserted before the start of a noreorder section. If those
751 nops turn out to be unnecessary, the size of the frag can be
753 static fragS *prev_nop_frag;
755 /* The number of nop instructions we created in prev_nop_frag. */
756 static int prev_nop_frag_holds;
758 /* The number of nop instructions that we know we need in
760 static int prev_nop_frag_required;
762 /* The number of instructions we've seen since prev_nop_frag. */
763 static int prev_nop_frag_since;
765 /* For ECOFF and ELF, relocations against symbols are done in two
766 parts, with a HI relocation and a LO relocation. Each relocation
767 has only 16 bits of space to store an addend. This means that in
768 order for the linker to handle carries correctly, it must be able
769 to locate both the HI and the LO relocation. This means that the
770 relocations must appear in order in the relocation table.
772 In order to implement this, we keep track of each unmatched HI
773 relocation. We then sort them so that they immediately precede the
774 corresponding LO relocation. */
779 struct mips_hi_fixup *next;
782 /* The section this fixup is in. */
786 /* The list of unmatched HI relocs. */
788 static struct mips_hi_fixup *mips_hi_fixup_list;
790 /* The frag containing the last explicit relocation operator.
791 Null if explicit relocations have not been used. */
793 static fragS *prev_reloc_op_frag;
795 /* Map normal MIPS register numbers to mips16 register numbers. */
797 #define X ILLEGAL_REG
798 static const int mips32_to_16_reg_map[] =
800 X, X, 2, 3, 4, 5, 6, 7,
801 X, X, X, X, X, X, X, X,
802 0, 1, X, X, X, X, X, X,
803 X, X, X, X, X, X, X, X
807 /* Map mips16 register numbers to normal MIPS register numbers. */
809 static const unsigned int mips16_to_32_reg_map[] =
811 16, 17, 2, 3, 4, 5, 6, 7
814 /* Map normal MIPS register numbers to microMIPS register numbers. */
816 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
817 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
818 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
819 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
820 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
821 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
822 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
824 #define X ILLEGAL_REG
825 /* reg type h: 4, 5, 6. */
826 static const int mips32_to_micromips_reg_h_map[] =
828 X, X, X, X, 4, 5, 6, X,
829 X, X, X, X, X, X, X, X,
830 X, X, X, X, X, X, X, X,
831 X, X, X, X, X, X, X, X
834 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
835 static const int mips32_to_micromips_reg_m_map[] =
837 0, X, 2, 3, X, X, X, X,
838 X, X, X, X, X, X, X, X,
839 4, 1, 5, 6, 7, X, X, X,
840 X, X, X, X, X, X, X, X
843 /* reg type q: 0, 2-7. 17. */
844 static const int mips32_to_micromips_reg_q_map[] =
846 0, X, 2, 3, 4, 5, 6, 7,
847 X, X, X, X, X, X, X, X,
848 X, 1, X, X, X, X, X, X,
849 X, X, X, X, X, X, X, X
852 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
855 /* Map microMIPS register numbers to normal MIPS register numbers. */
857 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
858 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
859 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
860 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
861 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
862 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
864 /* The microMIPS registers with type h. */
865 static const unsigned int micromips_to_32_reg_h_map[] =
867 5, 5, 6, 4, 4, 4, 4, 4
870 /* The microMIPS registers with type i. */
871 static const unsigned int micromips_to_32_reg_i_map[] =
873 6, 7, 7, 21, 22, 5, 6, 7
876 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
878 /* The microMIPS registers with type m. */
879 static const unsigned int micromips_to_32_reg_m_map[] =
881 0, 17, 2, 3, 16, 18, 19, 20
884 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
886 /* The microMIPS registers with type q. */
887 static const unsigned int micromips_to_32_reg_q_map[] =
889 0, 17, 2, 3, 4, 5, 6, 7
892 /* microMIPS imm type B. */
893 static const int micromips_imm_b_map[] =
895 1, 4, 8, 12, 16, 20, 24, -1
898 /* microMIPS imm type C. */
899 static const int micromips_imm_c_map[] =
901 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
904 /* Classifies the kind of instructions we're interested in when
905 implementing -mfix-vr4120. */
906 enum fix_vr4120_class
914 NUM_FIX_VR4120_CLASSES
917 /* ...likewise -mfix-loongson2f-jump. */
918 static bfd_boolean mips_fix_loongson2f_jump;
920 /* ...likewise -mfix-loongson2f-nop. */
921 static bfd_boolean mips_fix_loongson2f_nop;
923 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
924 static bfd_boolean mips_fix_loongson2f;
926 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
927 there must be at least one other instruction between an instruction
928 of type X and an instruction of type Y. */
929 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
931 /* True if -mfix-vr4120 is in force. */
932 static int mips_fix_vr4120;
934 /* ...likewise -mfix-vr4130. */
935 static int mips_fix_vr4130;
937 /* ...likewise -mfix-24k. */
938 static int mips_fix_24k;
940 /* ...likewise -mfix-cn63xxp1 */
941 static bfd_boolean mips_fix_cn63xxp1;
943 /* We don't relax branches by default, since this causes us to expand
944 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
945 fail to compute the offset before expanding the macro to the most
946 efficient expansion. */
948 static int mips_relax_branch;
950 /* The expansion of many macros depends on the type of symbol that
951 they refer to. For example, when generating position-dependent code,
952 a macro that refers to a symbol may have two different expansions,
953 one which uses GP-relative addresses and one which uses absolute
954 addresses. When generating SVR4-style PIC, a macro may have
955 different expansions for local and global symbols.
957 We handle these situations by generating both sequences and putting
958 them in variant frags. In position-dependent code, the first sequence
959 will be the GP-relative one and the second sequence will be the
960 absolute one. In SVR4 PIC, the first sequence will be for global
961 symbols and the second will be for local symbols.
963 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
964 SECOND are the lengths of the two sequences in bytes. These fields
965 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
966 the subtype has the following flags:
969 Set if it has been decided that we should use the second
970 sequence instead of the first.
973 Set in the first variant frag if the macro's second implementation
974 is longer than its first. This refers to the macro as a whole,
975 not an individual relaxation.
978 Set in the first variant frag if the macro appeared in a .set nomacro
979 block and if one alternative requires a warning but the other does not.
982 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
985 RELAX_DELAY_SLOT_16BIT
986 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
989 RELAX_DELAY_SLOT_SIZE_FIRST
990 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
991 the macro is of the wrong size for the branch delay slot.
993 RELAX_DELAY_SLOT_SIZE_SECOND
994 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
995 the macro is of the wrong size for the branch delay slot.
997 The frag's "opcode" points to the first fixup for relaxable code.
999 Relaxable macros are generated using a sequence such as:
1001 relax_start (SYMBOL);
1002 ... generate first expansion ...
1004 ... generate second expansion ...
1007 The code and fixups for the unwanted alternative are discarded
1008 by md_convert_frag. */
1009 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1011 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1012 #define RELAX_SECOND(X) ((X) & 0xff)
1013 #define RELAX_USE_SECOND 0x10000
1014 #define RELAX_SECOND_LONGER 0x20000
1015 #define RELAX_NOMACRO 0x40000
1016 #define RELAX_DELAY_SLOT 0x80000
1017 #define RELAX_DELAY_SLOT_16BIT 0x100000
1018 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1019 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1021 /* Branch without likely bit. If label is out of range, we turn:
1023 beq reg1, reg2, label
1033 with the following opcode replacements:
1040 bltzal <-> bgezal (with jal label instead of j label)
1042 Even though keeping the delay slot instruction in the delay slot of
1043 the branch would be more efficient, it would be very tricky to do
1044 correctly, because we'd have to introduce a variable frag *after*
1045 the delay slot instruction, and expand that instead. Let's do it
1046 the easy way for now, even if the branch-not-taken case now costs
1047 one additional instruction. Out-of-range branches are not supposed
1048 to be common, anyway.
1050 Branch likely. If label is out of range, we turn:
1052 beql reg1, reg2, label
1053 delay slot (annulled if branch not taken)
1062 delay slot (executed only if branch taken)
1065 It would be possible to generate a shorter sequence by losing the
1066 likely bit, generating something like:
1071 delay slot (executed only if branch taken)
1083 bltzall -> bgezal (with jal label instead of j label)
1084 bgezall -> bltzal (ditto)
1087 but it's not clear that it would actually improve performance. */
1088 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1089 ((relax_substateT) \
1092 | ((toofar) ? 0x20 : 0) \
1093 | ((link) ? 0x40 : 0) \
1094 | ((likely) ? 0x80 : 0) \
1095 | ((uncond) ? 0x100 : 0)))
1096 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1097 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1098 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1099 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1100 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1101 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1103 /* For mips16 code, we use an entirely different form of relaxation.
1104 mips16 supports two versions of most instructions which take
1105 immediate values: a small one which takes some small value, and a
1106 larger one which takes a 16 bit value. Since branches also follow
1107 this pattern, relaxing these values is required.
1109 We can assemble both mips16 and normal MIPS code in a single
1110 object. Therefore, we need to support this type of relaxation at
1111 the same time that we support the relaxation described above. We
1112 use the high bit of the subtype field to distinguish these cases.
1114 The information we store for this type of relaxation is the
1115 argument code found in the opcode file for this relocation, whether
1116 the user explicitly requested a small or extended form, and whether
1117 the relocation is in a jump or jal delay slot. That tells us the
1118 size of the value, and how it should be stored. We also store
1119 whether the fragment is considered to be extended or not. We also
1120 store whether this is known to be a branch to a different section,
1121 whether we have tried to relax this frag yet, and whether we have
1122 ever extended a PC relative fragment because of a shift count. */
1123 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1126 | ((small) ? 0x100 : 0) \
1127 | ((ext) ? 0x200 : 0) \
1128 | ((dslot) ? 0x400 : 0) \
1129 | ((jal_dslot) ? 0x800 : 0))
1130 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1131 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1132 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1133 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1134 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1135 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1136 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1137 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1138 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1139 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1140 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1141 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1143 /* For microMIPS code, we use relaxation similar to one we use for
1144 MIPS16 code. Some instructions that take immediate values support
1145 two encodings: a small one which takes some small value, and a
1146 larger one which takes a 16 bit value. As some branches also follow
1147 this pattern, relaxing these values is required.
1149 We can assemble both microMIPS and normal MIPS code in a single
1150 object. Therefore, we need to support this type of relaxation at
1151 the same time that we support the relaxation described above. We
1152 use one of the high bits of the subtype field to distinguish these
1155 The information we store for this type of relaxation is the argument
1156 code found in the opcode file for this relocation, the register
1157 selected as the assembler temporary, whether the branch is
1158 unconditional, whether it is compact, whether it stores the link
1159 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1160 branches to a sequence of instructions is enabled, and whether the
1161 displacement of a branch is too large to fit as an immediate argument
1162 of a 16-bit and a 32-bit branch, respectively. */
1163 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1164 relax32, toofar16, toofar32) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((uncond) ? 0x2000 : 0) \
1169 | ((compact) ? 0x4000 : 0) \
1170 | ((link) ? 0x8000 : 0) \
1171 | ((relax32) ? 0x10000 : 0) \
1172 | ((toofar16) ? 0x20000 : 0) \
1173 | ((toofar32) ? 0x40000 : 0))
1174 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1175 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1176 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1177 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1178 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1179 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1180 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1182 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1185 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1186 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1187 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1189 /* Sign-extend 16-bit value X. */
1190 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1192 /* Is the given value a sign-extended 32-bit value? */
1193 #define IS_SEXT_32BIT_NUM(x) \
1194 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1195 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1197 /* Is the given value a sign-extended 16-bit value? */
1198 #define IS_SEXT_16BIT_NUM(x) \
1199 (((x) &~ (offsetT) 0x7fff) == 0 \
1200 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1202 /* Is the given value a sign-extended 12-bit value? */
1203 #define IS_SEXT_12BIT_NUM(x) \
1204 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1206 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1207 #define IS_ZEXT_32BIT_NUM(x) \
1208 (((x) &~ (offsetT) 0xffffffff) == 0 \
1209 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1212 VALUE << SHIFT. VALUE is evaluated exactly once. */
1213 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1214 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1215 | (((VALUE) & (MASK)) << (SHIFT)))
1217 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1219 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1220 (((STRUCT) >> (SHIFT)) & (MASK))
1222 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1223 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1225 include/opcode/mips.h specifies operand fields using the macros
1226 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1227 with "MIPS16OP" instead of "OP". */
1228 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1231 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1232 OP_MASK_##FIELD, OP_SH_##FIELD); \
1234 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1235 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1237 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1238 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1239 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1241 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1242 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1244 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1245 : EXTRACT_BITS ((INSN).insn_opcode, \
1246 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1247 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1248 EXTRACT_BITS ((INSN).insn_opcode, \
1249 MIPS16OP_MASK_##FIELD, \
1250 MIPS16OP_SH_##FIELD)
1252 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1253 #define MIPS16_EXTEND (0xf000U << 16)
1255 /* Whether or not we are emitting a branch-likely macro. */
1256 static bfd_boolean emit_branch_likely_macro = FALSE;
1258 /* Global variables used when generating relaxable macros. See the
1259 comment above RELAX_ENCODE for more details about how relaxation
1262 /* 0 if we're not emitting a relaxable macro.
1263 1 if we're emitting the first of the two relaxation alternatives.
1264 2 if we're emitting the second alternative. */
1267 /* The first relaxable fixup in the current frag. (In other words,
1268 the first fixup that refers to relaxable code.) */
1271 /* sizes[0] says how many bytes of the first alternative are stored in
1272 the current frag. Likewise sizes[1] for the second alternative. */
1273 unsigned int sizes[2];
1275 /* The symbol on which the choice of sequence depends. */
1279 /* Global variables used to decide whether a macro needs a warning. */
1281 /* True if the macro is in a branch delay slot. */
1282 bfd_boolean delay_slot_p;
1284 /* Set to the length in bytes required if the macro is in a delay slot
1285 that requires a specific length of instruction, otherwise zero. */
1286 unsigned int delay_slot_length;
1288 /* For relaxable macros, sizes[0] is the length of the first alternative
1289 in bytes and sizes[1] is the length of the second alternative.
1290 For non-relaxable macros, both elements give the length of the
1292 unsigned int sizes[2];
1294 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1295 instruction of the first alternative in bytes and first_insn_sizes[1]
1296 is the length of the first instruction of the second alternative.
1297 For non-relaxable macros, both elements give the length of the first
1298 instruction in bytes.
1300 Set to zero if we haven't yet seen the first instruction. */
1301 unsigned int first_insn_sizes[2];
1303 /* For relaxable macros, insns[0] is the number of instructions for the
1304 first alternative and insns[1] is the number of instructions for the
1307 For non-relaxable macros, both elements give the number of
1308 instructions for the macro. */
1309 unsigned int insns[2];
1311 /* The first variant frag for this macro. */
1313 } mips_macro_warning;
1315 /* Prototypes for static functions. */
1317 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1319 static void append_insn
1320 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1321 bfd_boolean expansionp);
1322 static void mips_no_prev_insn (void);
1323 static void macro_build (expressionS *, const char *, const char *, ...);
1324 static void mips16_macro_build
1325 (expressionS *, const char *, const char *, va_list *);
1326 static void load_register (int, expressionS *, int);
1327 static void macro_start (void);
1328 static void macro_end (void);
1329 static void macro (struct mips_cl_insn * ip);
1330 static void mips16_macro (struct mips_cl_insn * ip);
1331 static void mips_ip (char *str, struct mips_cl_insn * ip);
1332 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1333 static void mips16_immed
1334 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1335 unsigned int, unsigned long *);
1336 static size_t my_getSmallExpression
1337 (expressionS *, bfd_reloc_code_real_type *, char *);
1338 static void my_getExpression (expressionS *, char *);
1339 static void s_align (int);
1340 static void s_change_sec (int);
1341 static void s_change_section (int);
1342 static void s_cons (int);
1343 static void s_float_cons (int);
1344 static void s_mips_globl (int);
1345 static void s_option (int);
1346 static void s_mipsset (int);
1347 static void s_abicalls (int);
1348 static void s_cpload (int);
1349 static void s_cpsetup (int);
1350 static void s_cplocal (int);
1351 static void s_cprestore (int);
1352 static void s_cpreturn (int);
1353 static void s_dtprelword (int);
1354 static void s_dtpreldword (int);
1355 static void s_tprelword (int);
1356 static void s_tpreldword (int);
1357 static void s_gpvalue (int);
1358 static void s_gpword (int);
1359 static void s_gpdword (int);
1360 static void s_cpadd (int);
1361 static void s_insn (int);
1362 static void md_obj_begin (void);
1363 static void md_obj_end (void);
1364 static void s_mips_ent (int);
1365 static void s_mips_end (int);
1366 static void s_mips_frame (int);
1367 static void s_mips_mask (int reg_type);
1368 static void s_mips_stab (int);
1369 static void s_mips_weakext (int);
1370 static void s_mips_file (int);
1371 static void s_mips_loc (int);
1372 static bfd_boolean pic_need_relax (symbolS *, asection *);
1373 static int relaxed_branch_length (fragS *, asection *, int);
1374 static int validate_mips_insn (const struct mips_opcode *);
1375 static int validate_micromips_insn (const struct mips_opcode *);
1376 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1377 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1379 /* Table and functions used to map between CPU/ISA names, and
1380 ISA levels, and CPU numbers. */
1382 struct mips_cpu_info
1384 const char *name; /* CPU or ISA name. */
1385 int flags; /* ASEs available, or ISA flag. */
1386 int isa; /* ISA level. */
1387 int cpu; /* CPU number (default CPU if ISA). */
1390 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1391 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1392 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1393 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1394 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1395 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1396 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1397 #define MIPS_CPU_ASE_MCU 0x0080 /* CPU implements MCU ASE */
1399 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1400 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1401 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1405 The following pseudo-ops from the Kane and Heinrich MIPS book
1406 should be defined here, but are currently unsupported: .alias,
1407 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1409 The following pseudo-ops from the Kane and Heinrich MIPS book are
1410 specific to the type of debugging information being generated, and
1411 should be defined by the object format: .aent, .begin, .bend,
1412 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1415 The following pseudo-ops from the Kane and Heinrich MIPS book are
1416 not MIPS CPU specific, but are also not specific to the object file
1417 format. This file is probably the best place to define them, but
1418 they are not currently supported: .asm0, .endr, .lab, .struct. */
1420 static const pseudo_typeS mips_pseudo_table[] =
1422 /* MIPS specific pseudo-ops. */
1423 {"option", s_option, 0},
1424 {"set", s_mipsset, 0},
1425 {"rdata", s_change_sec, 'r'},
1426 {"sdata", s_change_sec, 's'},
1427 {"livereg", s_ignore, 0},
1428 {"abicalls", s_abicalls, 0},
1429 {"cpload", s_cpload, 0},
1430 {"cpsetup", s_cpsetup, 0},
1431 {"cplocal", s_cplocal, 0},
1432 {"cprestore", s_cprestore, 0},
1433 {"cpreturn", s_cpreturn, 0},
1434 {"dtprelword", s_dtprelword, 0},
1435 {"dtpreldword", s_dtpreldword, 0},
1436 {"tprelword", s_tprelword, 0},
1437 {"tpreldword", s_tpreldword, 0},
1438 {"gpvalue", s_gpvalue, 0},
1439 {"gpword", s_gpword, 0},
1440 {"gpdword", s_gpdword, 0},
1441 {"cpadd", s_cpadd, 0},
1442 {"insn", s_insn, 0},
1444 /* Relatively generic pseudo-ops that happen to be used on MIPS
1446 {"asciiz", stringer, 8 + 1},
1447 {"bss", s_change_sec, 'b'},
1449 {"half", s_cons, 1},
1450 {"dword", s_cons, 3},
1451 {"weakext", s_mips_weakext, 0},
1452 {"origin", s_org, 0},
1453 {"repeat", s_rept, 0},
1455 /* For MIPS this is non-standard, but we define it for consistency. */
1456 {"sbss", s_change_sec, 'B'},
1458 /* These pseudo-ops are defined in read.c, but must be overridden
1459 here for one reason or another. */
1460 {"align", s_align, 0},
1461 {"byte", s_cons, 0},
1462 {"data", s_change_sec, 'd'},
1463 {"double", s_float_cons, 'd'},
1464 {"float", s_float_cons, 'f'},
1465 {"globl", s_mips_globl, 0},
1466 {"global", s_mips_globl, 0},
1467 {"hword", s_cons, 1},
1469 {"long", s_cons, 2},
1470 {"octa", s_cons, 4},
1471 {"quad", s_cons, 3},
1472 {"section", s_change_section, 0},
1473 {"short", s_cons, 1},
1474 {"single", s_float_cons, 'f'},
1475 {"stabd", s_mips_stab, 'd'},
1476 {"stabn", s_mips_stab, 'n'},
1477 {"stabs", s_mips_stab, 's'},
1478 {"text", s_change_sec, 't'},
1479 {"word", s_cons, 2},
1481 { "extern", ecoff_directive_extern, 0},
1486 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1488 /* These pseudo-ops should be defined by the object file format.
1489 However, a.out doesn't support them, so we have versions here. */
1490 {"aent", s_mips_ent, 1},
1491 {"bgnb", s_ignore, 0},
1492 {"end", s_mips_end, 0},
1493 {"endb", s_ignore, 0},
1494 {"ent", s_mips_ent, 0},
1495 {"file", s_mips_file, 0},
1496 {"fmask", s_mips_mask, 'F'},
1497 {"frame", s_mips_frame, 0},
1498 {"loc", s_mips_loc, 0},
1499 {"mask", s_mips_mask, 'R'},
1500 {"verstamp", s_ignore, 0},
1504 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1505 purpose of the `.dc.a' internal pseudo-op. */
1508 mips_address_bytes (void)
1510 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1513 extern void pop_insert (const pseudo_typeS *);
1516 mips_pop_insert (void)
1518 pop_insert (mips_pseudo_table);
1519 if (! ECOFF_DEBUGGING)
1520 pop_insert (mips_nonecoff_pseudo_table);
1523 /* Symbols labelling the current insn. */
1525 struct insn_label_list
1527 struct insn_label_list *next;
1531 static struct insn_label_list *free_insn_labels;
1532 #define label_list tc_segment_info_data.labels
1534 static void mips_clear_insn_labels (void);
1535 static void mips_mark_labels (void);
1536 static void mips_compressed_mark_labels (void);
1539 mips_clear_insn_labels (void)
1541 register struct insn_label_list **pl;
1542 segment_info_type *si;
1546 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1549 si = seg_info (now_seg);
1550 *pl = si->label_list;
1551 si->label_list = NULL;
1555 /* Mark instruction labels in MIPS16/microMIPS mode. */
1558 mips_mark_labels (void)
1560 if (HAVE_CODE_COMPRESSION)
1561 mips_compressed_mark_labels ();
1564 static char *expr_end;
1566 /* Expressions which appear in instructions. These are set by
1569 static expressionS imm_expr;
1570 static expressionS imm2_expr;
1571 static expressionS offset_expr;
1573 /* Relocs associated with imm_expr and offset_expr. */
1575 static bfd_reloc_code_real_type imm_reloc[3]
1576 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1577 static bfd_reloc_code_real_type offset_reloc[3]
1578 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1580 /* This is set to the resulting size of the instruction to be produced
1581 by mips16_ip if an explicit extension is used or by mips_ip if an
1582 explicit size is supplied. */
1584 static unsigned int forced_insn_length;
1586 /* True if we are assembling an instruction. All dot symbols defined during
1587 this time should be treated as code labels. */
1589 static bfd_boolean mips_assembling_insn;
1592 /* The pdr segment for per procedure frame/regmask info. Not used for
1595 static segT pdr_seg;
1598 /* The default target format to use. */
1600 #if defined (TE_FreeBSD)
1601 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1602 #elif defined (TE_TMIPS)
1603 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1605 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1609 mips_target_format (void)
1611 switch (OUTPUT_FLAVOR)
1613 case bfd_target_ecoff_flavour:
1614 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1615 case bfd_target_coff_flavour:
1617 case bfd_target_elf_flavour:
1619 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1620 return (target_big_endian
1621 ? "elf32-bigmips-vxworks"
1622 : "elf32-littlemips-vxworks");
1624 return (target_big_endian
1625 ? (HAVE_64BIT_OBJECTS
1626 ? ELF_TARGET ("elf64-", "big")
1628 ? ELF_TARGET ("elf32-n", "big")
1629 : ELF_TARGET ("elf32-", "big")))
1630 : (HAVE_64BIT_OBJECTS
1631 ? ELF_TARGET ("elf64-", "little")
1633 ? ELF_TARGET ("elf32-n", "little")
1634 : ELF_TARGET ("elf32-", "little"))));
1641 /* Return the length of a microMIPS instruction in bytes. If bits of
1642 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1643 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1644 major opcode) will require further modifications to the opcode
1647 static inline unsigned int
1648 micromips_insn_length (const struct mips_opcode *mo)
1650 return (mo->mask >> 16) == 0 ? 2 : 4;
1653 /* Return the length of MIPS16 instruction OPCODE. */
1655 static inline unsigned int
1656 mips16_opcode_length (unsigned long opcode)
1658 return (opcode >> 16) == 0 ? 2 : 4;
1661 /* Return the length of instruction INSN. */
1663 static inline unsigned int
1664 insn_length (const struct mips_cl_insn *insn)
1666 if (mips_opts.micromips)
1667 return micromips_insn_length (insn->insn_mo);
1668 else if (mips_opts.mips16)
1669 return mips16_opcode_length (insn->insn_opcode);
1674 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1677 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1682 insn->insn_opcode = mo->match;
1685 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1686 insn->fixp[i] = NULL;
1687 insn->fixed_p = (mips_opts.noreorder > 0);
1688 insn->noreorder_p = (mips_opts.noreorder > 0);
1689 insn->mips16_absolute_jump_p = 0;
1690 insn->complete_p = 0;
1691 insn->cleared_p = 0;
1694 /* Record the current MIPS16/microMIPS mode in now_seg. */
1697 mips_record_compressed_mode (void)
1699 segment_info_type *si;
1701 si = seg_info (now_seg);
1702 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1703 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1704 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1705 si->tc_segment_info_data.micromips = mips_opts.micromips;
1708 /* Read a standard MIPS instruction from BUF. */
1710 static unsigned long
1711 read_insn (char *buf)
1713 if (target_big_endian)
1714 return bfd_getb32 ((bfd_byte *) buf);
1716 return bfd_getl32 ((bfd_byte *) buf);
1719 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
1723 write_insn (char *buf, unsigned int insn)
1725 md_number_to_chars (buf, insn, 4);
1729 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
1730 has length LENGTH. */
1732 static unsigned long
1733 read_compressed_insn (char *buf, unsigned int length)
1739 for (i = 0; i < length; i += 2)
1742 if (target_big_endian)
1743 insn |= bfd_getb16 ((char *) buf);
1745 insn |= bfd_getl16 ((char *) buf);
1751 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
1752 instruction is LENGTH bytes long. Return a pointer to the next byte. */
1755 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
1759 for (i = 0; i < length; i += 2)
1760 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
1761 return buf + length;
1764 /* Install INSN at the location specified by its "frag" and "where" fields. */
1767 install_insn (const struct mips_cl_insn *insn)
1769 char *f = insn->frag->fr_literal + insn->where;
1770 if (HAVE_CODE_COMPRESSION)
1771 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1773 write_insn (f, insn->insn_opcode);
1774 mips_record_compressed_mode ();
1777 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1778 and install the opcode in the new location. */
1781 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1786 insn->where = where;
1787 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1788 if (insn->fixp[i] != NULL)
1790 insn->fixp[i]->fx_frag = frag;
1791 insn->fixp[i]->fx_where = where;
1793 install_insn (insn);
1796 /* Add INSN to the end of the output. */
1799 add_fixed_insn (struct mips_cl_insn *insn)
1801 char *f = frag_more (insn_length (insn));
1802 move_insn (insn, frag_now, f - frag_now->fr_literal);
1805 /* Start a variant frag and move INSN to the start of the variant part,
1806 marking it as fixed. The other arguments are as for frag_var. */
1809 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1810 relax_substateT subtype, symbolS *symbol, offsetT offset)
1812 frag_grow (max_chars);
1813 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1815 frag_var (rs_machine_dependent, max_chars, var,
1816 subtype, symbol, offset, NULL);
1819 /* Insert N copies of INSN into the history buffer, starting at
1820 position FIRST. Neither FIRST nor N need to be clipped. */
1823 insert_into_history (unsigned int first, unsigned int n,
1824 const struct mips_cl_insn *insn)
1826 if (mips_relax.sequence != 2)
1830 for (i = ARRAY_SIZE (history); i-- > first;)
1832 history[i] = history[i - n];
1838 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1839 the idea is to make it obvious at a glance that each errata is
1843 init_vr4120_conflicts (void)
1845 #define CONFLICT(FIRST, SECOND) \
1846 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1848 /* Errata 21 - [D]DIV[U] after [D]MACC */
1849 CONFLICT (MACC, DIV);
1850 CONFLICT (DMACC, DIV);
1852 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1853 CONFLICT (DMULT, DMULT);
1854 CONFLICT (DMULT, DMACC);
1855 CONFLICT (DMACC, DMULT);
1856 CONFLICT (DMACC, DMACC);
1858 /* Errata 24 - MT{LO,HI} after [D]MACC */
1859 CONFLICT (MACC, MTHILO);
1860 CONFLICT (DMACC, MTHILO);
1862 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1863 instruction is executed immediately after a MACC or DMACC
1864 instruction, the result of [either instruction] is incorrect." */
1865 CONFLICT (MACC, MULT);
1866 CONFLICT (MACC, DMULT);
1867 CONFLICT (DMACC, MULT);
1868 CONFLICT (DMACC, DMULT);
1870 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1871 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1872 DDIV or DDIVU instruction, the result of the MACC or
1873 DMACC instruction is incorrect.". */
1874 CONFLICT (DMULT, MACC);
1875 CONFLICT (DMULT, DMACC);
1876 CONFLICT (DIV, MACC);
1877 CONFLICT (DIV, DMACC);
1887 #define RTYPE_MASK 0x1ff00
1888 #define RTYPE_NUM 0x00100
1889 #define RTYPE_FPU 0x00200
1890 #define RTYPE_FCC 0x00400
1891 #define RTYPE_VEC 0x00800
1892 #define RTYPE_GP 0x01000
1893 #define RTYPE_CP0 0x02000
1894 #define RTYPE_PC 0x04000
1895 #define RTYPE_ACC 0x08000
1896 #define RTYPE_CCC 0x10000
1897 #define RNUM_MASK 0x000ff
1898 #define RWARN 0x80000
1900 #define GENERIC_REGISTER_NUMBERS \
1901 {"$0", RTYPE_NUM | 0}, \
1902 {"$1", RTYPE_NUM | 1}, \
1903 {"$2", RTYPE_NUM | 2}, \
1904 {"$3", RTYPE_NUM | 3}, \
1905 {"$4", RTYPE_NUM | 4}, \
1906 {"$5", RTYPE_NUM | 5}, \
1907 {"$6", RTYPE_NUM | 6}, \
1908 {"$7", RTYPE_NUM | 7}, \
1909 {"$8", RTYPE_NUM | 8}, \
1910 {"$9", RTYPE_NUM | 9}, \
1911 {"$10", RTYPE_NUM | 10}, \
1912 {"$11", RTYPE_NUM | 11}, \
1913 {"$12", RTYPE_NUM | 12}, \
1914 {"$13", RTYPE_NUM | 13}, \
1915 {"$14", RTYPE_NUM | 14}, \
1916 {"$15", RTYPE_NUM | 15}, \
1917 {"$16", RTYPE_NUM | 16}, \
1918 {"$17", RTYPE_NUM | 17}, \
1919 {"$18", RTYPE_NUM | 18}, \
1920 {"$19", RTYPE_NUM | 19}, \
1921 {"$20", RTYPE_NUM | 20}, \
1922 {"$21", RTYPE_NUM | 21}, \
1923 {"$22", RTYPE_NUM | 22}, \
1924 {"$23", RTYPE_NUM | 23}, \
1925 {"$24", RTYPE_NUM | 24}, \
1926 {"$25", RTYPE_NUM | 25}, \
1927 {"$26", RTYPE_NUM | 26}, \
1928 {"$27", RTYPE_NUM | 27}, \
1929 {"$28", RTYPE_NUM | 28}, \
1930 {"$29", RTYPE_NUM | 29}, \
1931 {"$30", RTYPE_NUM | 30}, \
1932 {"$31", RTYPE_NUM | 31}
1934 #define FPU_REGISTER_NAMES \
1935 {"$f0", RTYPE_FPU | 0}, \
1936 {"$f1", RTYPE_FPU | 1}, \
1937 {"$f2", RTYPE_FPU | 2}, \
1938 {"$f3", RTYPE_FPU | 3}, \
1939 {"$f4", RTYPE_FPU | 4}, \
1940 {"$f5", RTYPE_FPU | 5}, \
1941 {"$f6", RTYPE_FPU | 6}, \
1942 {"$f7", RTYPE_FPU | 7}, \
1943 {"$f8", RTYPE_FPU | 8}, \
1944 {"$f9", RTYPE_FPU | 9}, \
1945 {"$f10", RTYPE_FPU | 10}, \
1946 {"$f11", RTYPE_FPU | 11}, \
1947 {"$f12", RTYPE_FPU | 12}, \
1948 {"$f13", RTYPE_FPU | 13}, \
1949 {"$f14", RTYPE_FPU | 14}, \
1950 {"$f15", RTYPE_FPU | 15}, \
1951 {"$f16", RTYPE_FPU | 16}, \
1952 {"$f17", RTYPE_FPU | 17}, \
1953 {"$f18", RTYPE_FPU | 18}, \
1954 {"$f19", RTYPE_FPU | 19}, \
1955 {"$f20", RTYPE_FPU | 20}, \
1956 {"$f21", RTYPE_FPU | 21}, \
1957 {"$f22", RTYPE_FPU | 22}, \
1958 {"$f23", RTYPE_FPU | 23}, \
1959 {"$f24", RTYPE_FPU | 24}, \
1960 {"$f25", RTYPE_FPU | 25}, \
1961 {"$f26", RTYPE_FPU | 26}, \
1962 {"$f27", RTYPE_FPU | 27}, \
1963 {"$f28", RTYPE_FPU | 28}, \
1964 {"$f29", RTYPE_FPU | 29}, \
1965 {"$f30", RTYPE_FPU | 30}, \
1966 {"$f31", RTYPE_FPU | 31}
1968 #define FPU_CONDITION_CODE_NAMES \
1969 {"$fcc0", RTYPE_FCC | 0}, \
1970 {"$fcc1", RTYPE_FCC | 1}, \
1971 {"$fcc2", RTYPE_FCC | 2}, \
1972 {"$fcc3", RTYPE_FCC | 3}, \
1973 {"$fcc4", RTYPE_FCC | 4}, \
1974 {"$fcc5", RTYPE_FCC | 5}, \
1975 {"$fcc6", RTYPE_FCC | 6}, \
1976 {"$fcc7", RTYPE_FCC | 7}
1978 #define COPROC_CONDITION_CODE_NAMES \
1979 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1980 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1981 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1982 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1983 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1984 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1985 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1986 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1988 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1989 {"$a4", RTYPE_GP | 8}, \
1990 {"$a5", RTYPE_GP | 9}, \
1991 {"$a6", RTYPE_GP | 10}, \
1992 {"$a7", RTYPE_GP | 11}, \
1993 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1994 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1995 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1996 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1997 {"$t0", RTYPE_GP | 12}, \
1998 {"$t1", RTYPE_GP | 13}, \
1999 {"$t2", RTYPE_GP | 14}, \
2000 {"$t3", RTYPE_GP | 15}
2002 #define O32_SYMBOLIC_REGISTER_NAMES \
2003 {"$t0", RTYPE_GP | 8}, \
2004 {"$t1", RTYPE_GP | 9}, \
2005 {"$t2", RTYPE_GP | 10}, \
2006 {"$t3", RTYPE_GP | 11}, \
2007 {"$t4", RTYPE_GP | 12}, \
2008 {"$t5", RTYPE_GP | 13}, \
2009 {"$t6", RTYPE_GP | 14}, \
2010 {"$t7", RTYPE_GP | 15}, \
2011 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2012 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2013 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2014 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2016 /* Remaining symbolic register names */
2017 #define SYMBOLIC_REGISTER_NAMES \
2018 {"$zero", RTYPE_GP | 0}, \
2019 {"$at", RTYPE_GP | 1}, \
2020 {"$AT", RTYPE_GP | 1}, \
2021 {"$v0", RTYPE_GP | 2}, \
2022 {"$v1", RTYPE_GP | 3}, \
2023 {"$a0", RTYPE_GP | 4}, \
2024 {"$a1", RTYPE_GP | 5}, \
2025 {"$a2", RTYPE_GP | 6}, \
2026 {"$a3", RTYPE_GP | 7}, \
2027 {"$s0", RTYPE_GP | 16}, \
2028 {"$s1", RTYPE_GP | 17}, \
2029 {"$s2", RTYPE_GP | 18}, \
2030 {"$s3", RTYPE_GP | 19}, \
2031 {"$s4", RTYPE_GP | 20}, \
2032 {"$s5", RTYPE_GP | 21}, \
2033 {"$s6", RTYPE_GP | 22}, \
2034 {"$s7", RTYPE_GP | 23}, \
2035 {"$t8", RTYPE_GP | 24}, \
2036 {"$t9", RTYPE_GP | 25}, \
2037 {"$k0", RTYPE_GP | 26}, \
2038 {"$kt0", RTYPE_GP | 26}, \
2039 {"$k1", RTYPE_GP | 27}, \
2040 {"$kt1", RTYPE_GP | 27}, \
2041 {"$gp", RTYPE_GP | 28}, \
2042 {"$sp", RTYPE_GP | 29}, \
2043 {"$s8", RTYPE_GP | 30}, \
2044 {"$fp", RTYPE_GP | 30}, \
2045 {"$ra", RTYPE_GP | 31}
2047 #define MIPS16_SPECIAL_REGISTER_NAMES \
2048 {"$pc", RTYPE_PC | 0}
2050 #define MDMX_VECTOR_REGISTER_NAMES \
2051 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2052 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2053 {"$v2", RTYPE_VEC | 2}, \
2054 {"$v3", RTYPE_VEC | 3}, \
2055 {"$v4", RTYPE_VEC | 4}, \
2056 {"$v5", RTYPE_VEC | 5}, \
2057 {"$v6", RTYPE_VEC | 6}, \
2058 {"$v7", RTYPE_VEC | 7}, \
2059 {"$v8", RTYPE_VEC | 8}, \
2060 {"$v9", RTYPE_VEC | 9}, \
2061 {"$v10", RTYPE_VEC | 10}, \
2062 {"$v11", RTYPE_VEC | 11}, \
2063 {"$v12", RTYPE_VEC | 12}, \
2064 {"$v13", RTYPE_VEC | 13}, \
2065 {"$v14", RTYPE_VEC | 14}, \
2066 {"$v15", RTYPE_VEC | 15}, \
2067 {"$v16", RTYPE_VEC | 16}, \
2068 {"$v17", RTYPE_VEC | 17}, \
2069 {"$v18", RTYPE_VEC | 18}, \
2070 {"$v19", RTYPE_VEC | 19}, \
2071 {"$v20", RTYPE_VEC | 20}, \
2072 {"$v21", RTYPE_VEC | 21}, \
2073 {"$v22", RTYPE_VEC | 22}, \
2074 {"$v23", RTYPE_VEC | 23}, \
2075 {"$v24", RTYPE_VEC | 24}, \
2076 {"$v25", RTYPE_VEC | 25}, \
2077 {"$v26", RTYPE_VEC | 26}, \
2078 {"$v27", RTYPE_VEC | 27}, \
2079 {"$v28", RTYPE_VEC | 28}, \
2080 {"$v29", RTYPE_VEC | 29}, \
2081 {"$v30", RTYPE_VEC | 30}, \
2082 {"$v31", RTYPE_VEC | 31}
2084 #define MIPS_DSP_ACCUMULATOR_NAMES \
2085 {"$ac0", RTYPE_ACC | 0}, \
2086 {"$ac1", RTYPE_ACC | 1}, \
2087 {"$ac2", RTYPE_ACC | 2}, \
2088 {"$ac3", RTYPE_ACC | 3}
2090 static const struct regname reg_names[] = {
2091 GENERIC_REGISTER_NUMBERS,
2093 FPU_CONDITION_CODE_NAMES,
2094 COPROC_CONDITION_CODE_NAMES,
2096 /* The $txx registers depends on the abi,
2097 these will be added later into the symbol table from
2098 one of the tables below once mips_abi is set after
2099 parsing of arguments from the command line. */
2100 SYMBOLIC_REGISTER_NAMES,
2102 MIPS16_SPECIAL_REGISTER_NAMES,
2103 MDMX_VECTOR_REGISTER_NAMES,
2104 MIPS_DSP_ACCUMULATOR_NAMES,
2108 static const struct regname reg_names_o32[] = {
2109 O32_SYMBOLIC_REGISTER_NAMES,
2113 static const struct regname reg_names_n32n64[] = {
2114 N32N64_SYMBOLIC_REGISTER_NAMES,
2118 /* Check if S points at a valid register specifier according to TYPES.
2119 If so, then return 1, advance S to consume the specifier and store
2120 the register's number in REGNOP, otherwise return 0. */
2123 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2130 /* Find end of name. */
2132 if (is_name_beginner (*e))
2134 while (is_part_of_name (*e))
2137 /* Terminate name. */
2141 /* Look for a register symbol. */
2142 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2144 int r = S_GET_VALUE (symbolP);
2146 reg = r & RNUM_MASK;
2147 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2148 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2149 reg = (r & RNUM_MASK) - 2;
2151 /* Else see if this is a register defined in an itbl entry. */
2152 else if ((types & RTYPE_GP) && itbl_have_entries)
2159 if (itbl_get_reg_val (n, &r))
2160 reg = r & RNUM_MASK;
2163 /* Advance to next token if a register was recognised. */
2166 else if (types & RWARN)
2167 as_warn (_("Unrecognized register name `%s'"), *s);
2175 /* Check if S points at a valid register list according to TYPES.
2176 If so, then return 1, advance S to consume the list and store
2177 the registers present on the list as a bitmask of ones in REGLISTP,
2178 otherwise return 0. A valid list comprises a comma-separated
2179 enumeration of valid single registers and/or dash-separated
2180 contiguous register ranges as determined by their numbers.
2182 As a special exception if one of s0-s7 registers is specified as
2183 the range's lower delimiter and s8 (fp) is its upper one, then no
2184 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2185 are selected; they have to be listed separately if needed. */
2188 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2190 unsigned int reglist = 0;
2191 unsigned int lastregno;
2192 bfd_boolean ok = TRUE;
2193 unsigned int regmask;
2194 char *s_endlist = *s;
2198 while (reg_lookup (s, types, ®no))
2204 ok = reg_lookup (s, types, &lastregno);
2205 if (ok && lastregno < regno)
2211 if (lastregno == FP && regno >= S0 && regno <= S7)
2216 regmask = 1 << lastregno;
2217 regmask = (regmask << 1) - 1;
2218 regmask ^= (1 << regno) - 1;
2232 *reglistp = reglist;
2233 return ok && reglist != 0;
2236 /* Return TRUE if opcode MO is valid on the currently selected ISA and
2237 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2240 is_opcode_valid (const struct mips_opcode *mo)
2242 int isa = mips_opts.isa;
2245 if (mips_opts.ase_mdmx)
2247 if (mips_opts.ase_dsp)
2249 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
2251 if (mips_opts.ase_dspr2)
2253 if (mips_opts.ase_mt)
2255 if (mips_opts.ase_mips3d)
2257 if (mips_opts.ase_smartmips)
2258 isa |= INSN_SMARTMIPS;
2259 if (mips_opts.ase_mcu)
2262 if (!opcode_is_member (mo, isa, mips_opts.arch))
2265 /* Check whether the instruction or macro requires single-precision or
2266 double-precision floating-point support. Note that this information is
2267 stored differently in the opcode table for insns and macros. */
2268 if (mo->pinfo == INSN_MACRO)
2270 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2271 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2275 fp_s = mo->pinfo & FP_S;
2276 fp_d = mo->pinfo & FP_D;
2279 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2282 if (fp_s && mips_opts.soft_float)
2288 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2289 selected ISA and architecture. */
2292 is_opcode_valid_16 (const struct mips_opcode *mo)
2294 return opcode_is_member (mo, mips_opts.isa, mips_opts.arch);
2297 /* Return TRUE if the size of the microMIPS opcode MO matches one
2298 explicitly requested. Always TRUE in the standard MIPS mode. */
2301 is_size_valid (const struct mips_opcode *mo)
2303 if (!mips_opts.micromips)
2306 if (!forced_insn_length)
2308 if (mo->pinfo == INSN_MACRO)
2310 return forced_insn_length == micromips_insn_length (mo);
2313 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2314 of the preceding instruction. Always TRUE in the standard MIPS mode.
2316 We don't accept macros in 16-bit delay slots to avoid a case where
2317 a macro expansion fails because it relies on a preceding 32-bit real
2318 instruction to have matched and does not handle the operands correctly.
2319 The only macros that may expand to 16-bit instructions are JAL that
2320 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2321 and BGT (that likewise cannot be placed in a delay slot) that decay to
2322 a NOP. In all these cases the macros precede any corresponding real
2323 instruction definitions in the opcode table, so they will match in the
2324 second pass where the size of the delay slot is ignored and therefore
2325 produce correct code. */
2328 is_delay_slot_valid (const struct mips_opcode *mo)
2330 if (!mips_opts.micromips)
2333 if (mo->pinfo == INSN_MACRO)
2334 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2335 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2336 && micromips_insn_length (mo) != 4)
2338 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2339 && micromips_insn_length (mo) != 2)
2345 /* This function is called once, at assembler startup time. It should set up
2346 all the tables, etc. that the MD part of the assembler will need. */
2351 const char *retval = NULL;
2355 if (mips_pic != NO_PIC)
2357 if (g_switch_seen && g_switch_value != 0)
2358 as_bad (_("-G may not be used in position-independent code"));
2362 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2363 as_warn (_("Could not set architecture and machine"));
2365 op_hash = hash_new ();
2367 for (i = 0; i < NUMOPCODES;)
2369 const char *name = mips_opcodes[i].name;
2371 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2374 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2375 mips_opcodes[i].name, retval);
2376 /* Probably a memory allocation problem? Give up now. */
2377 as_fatal (_("Broken assembler. No assembly attempted."));
2381 if (mips_opcodes[i].pinfo != INSN_MACRO)
2383 if (!validate_mips_insn (&mips_opcodes[i]))
2385 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2387 create_insn (&nop_insn, mips_opcodes + i);
2388 if (mips_fix_loongson2f_nop)
2389 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2390 nop_insn.fixed_p = 1;
2395 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2398 mips16_op_hash = hash_new ();
2401 while (i < bfd_mips16_num_opcodes)
2403 const char *name = mips16_opcodes[i].name;
2405 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2407 as_fatal (_("internal: can't hash `%s': %s"),
2408 mips16_opcodes[i].name, retval);
2411 if (mips16_opcodes[i].pinfo != INSN_MACRO
2412 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2413 != mips16_opcodes[i].match))
2415 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2416 mips16_opcodes[i].name, mips16_opcodes[i].args);
2419 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2421 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2422 mips16_nop_insn.fixed_p = 1;
2426 while (i < bfd_mips16_num_opcodes
2427 && strcmp (mips16_opcodes[i].name, name) == 0);
2430 micromips_op_hash = hash_new ();
2433 while (i < bfd_micromips_num_opcodes)
2435 const char *name = micromips_opcodes[i].name;
2437 retval = hash_insert (micromips_op_hash, name,
2438 (void *) µmips_opcodes[i]);
2440 as_fatal (_("internal: can't hash `%s': %s"),
2441 micromips_opcodes[i].name, retval);
2443 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2445 struct mips_cl_insn *micromips_nop_insn;
2447 if (!validate_micromips_insn (µmips_opcodes[i]))
2450 if (micromips_insn_length (micromips_opcodes + i) == 2)
2451 micromips_nop_insn = µmips_nop16_insn;
2452 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2453 micromips_nop_insn = µmips_nop32_insn;
2457 if (micromips_nop_insn->insn_mo == NULL
2458 && strcmp (name, "nop") == 0)
2460 create_insn (micromips_nop_insn, micromips_opcodes + i);
2461 micromips_nop_insn->fixed_p = 1;
2464 while (++i < bfd_micromips_num_opcodes
2465 && strcmp (micromips_opcodes[i].name, name) == 0);
2469 as_fatal (_("Broken assembler. No assembly attempted."));
2471 /* We add all the general register names to the symbol table. This
2472 helps us detect invalid uses of them. */
2473 for (i = 0; reg_names[i].name; i++)
2474 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2475 reg_names[i].num, /* & RNUM_MASK, */
2476 &zero_address_frag));
2478 for (i = 0; reg_names_n32n64[i].name; i++)
2479 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2480 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2481 &zero_address_frag));
2483 for (i = 0; reg_names_o32[i].name; i++)
2484 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2485 reg_names_o32[i].num, /* & RNUM_MASK, */
2486 &zero_address_frag));
2488 mips_no_prev_insn ();
2491 mips_cprmask[0] = 0;
2492 mips_cprmask[1] = 0;
2493 mips_cprmask[2] = 0;
2494 mips_cprmask[3] = 0;
2496 /* set the default alignment for the text section (2**2) */
2497 record_alignment (text_section, 2);
2499 bfd_set_gp_size (stdoutput, g_switch_value);
2504 /* On a native system other than VxWorks, sections must be aligned
2505 to 16 byte boundaries. When configured for an embedded ELF
2506 target, we don't bother. */
2507 if (strncmp (TARGET_OS, "elf", 3) != 0
2508 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2510 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2511 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2512 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2515 /* Create a .reginfo section for register masks and a .mdebug
2516 section for debugging information. */
2524 subseg = now_subseg;
2526 /* The ABI says this section should be loaded so that the
2527 running program can access it. However, we don't load it
2528 if we are configured for an embedded target */
2529 flags = SEC_READONLY | SEC_DATA;
2530 if (strncmp (TARGET_OS, "elf", 3) != 0)
2531 flags |= SEC_ALLOC | SEC_LOAD;
2533 if (mips_abi != N64_ABI)
2535 sec = subseg_new (".reginfo", (subsegT) 0);
2537 bfd_set_section_flags (stdoutput, sec, flags);
2538 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2540 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2544 /* The 64-bit ABI uses a .MIPS.options section rather than
2545 .reginfo section. */
2546 sec = subseg_new (".MIPS.options", (subsegT) 0);
2547 bfd_set_section_flags (stdoutput, sec, flags);
2548 bfd_set_section_alignment (stdoutput, sec, 3);
2550 /* Set up the option header. */
2552 Elf_Internal_Options opthdr;
2555 opthdr.kind = ODK_REGINFO;
2556 opthdr.size = (sizeof (Elf_External_Options)
2557 + sizeof (Elf64_External_RegInfo));
2560 f = frag_more (sizeof (Elf_External_Options));
2561 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2562 (Elf_External_Options *) f);
2564 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2568 if (ECOFF_DEBUGGING)
2570 sec = subseg_new (".mdebug", (subsegT) 0);
2571 (void) bfd_set_section_flags (stdoutput, sec,
2572 SEC_HAS_CONTENTS | SEC_READONLY);
2573 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2575 else if (mips_flag_pdr)
2577 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2578 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2579 SEC_READONLY | SEC_RELOC
2581 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2584 subseg_set (seg, subseg);
2587 #endif /* OBJ_ELF */
2589 if (! ECOFF_DEBUGGING)
2592 if (mips_fix_vr4120)
2593 init_vr4120_conflicts ();
2599 mips_emit_delays ();
2600 if (! ECOFF_DEBUGGING)
2605 md_assemble (char *str)
2607 struct mips_cl_insn insn;
2608 bfd_reloc_code_real_type unused_reloc[3]
2609 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2611 imm_expr.X_op = O_absent;
2612 imm2_expr.X_op = O_absent;
2613 offset_expr.X_op = O_absent;
2614 imm_reloc[0] = BFD_RELOC_UNUSED;
2615 imm_reloc[1] = BFD_RELOC_UNUSED;
2616 imm_reloc[2] = BFD_RELOC_UNUSED;
2617 offset_reloc[0] = BFD_RELOC_UNUSED;
2618 offset_reloc[1] = BFD_RELOC_UNUSED;
2619 offset_reloc[2] = BFD_RELOC_UNUSED;
2621 mips_mark_labels ();
2622 mips_assembling_insn = TRUE;
2624 if (mips_opts.mips16)
2625 mips16_ip (str, &insn);
2628 mips_ip (str, &insn);
2629 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2630 str, insn.insn_opcode));
2634 as_bad ("%s `%s'", insn_error, str);
2635 else if (insn.insn_mo->pinfo == INSN_MACRO)
2638 if (mips_opts.mips16)
2639 mips16_macro (&insn);
2646 if (imm_expr.X_op != O_absent)
2647 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2648 else if (offset_expr.X_op != O_absent)
2649 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2651 append_insn (&insn, NULL, unused_reloc, FALSE);
2654 mips_assembling_insn = FALSE;
2657 /* Convenience functions for abstracting away the differences between
2658 MIPS16 and non-MIPS16 relocations. */
2660 static inline bfd_boolean
2661 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2665 case BFD_RELOC_MIPS16_JMP:
2666 case BFD_RELOC_MIPS16_GPREL:
2667 case BFD_RELOC_MIPS16_GOT16:
2668 case BFD_RELOC_MIPS16_CALL16:
2669 case BFD_RELOC_MIPS16_HI16_S:
2670 case BFD_RELOC_MIPS16_HI16:
2671 case BFD_RELOC_MIPS16_LO16:
2679 static inline bfd_boolean
2680 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2684 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2685 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2686 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2687 case BFD_RELOC_MICROMIPS_GPREL16:
2688 case BFD_RELOC_MICROMIPS_JMP:
2689 case BFD_RELOC_MICROMIPS_HI16:
2690 case BFD_RELOC_MICROMIPS_HI16_S:
2691 case BFD_RELOC_MICROMIPS_LO16:
2692 case BFD_RELOC_MICROMIPS_LITERAL:
2693 case BFD_RELOC_MICROMIPS_GOT16:
2694 case BFD_RELOC_MICROMIPS_CALL16:
2695 case BFD_RELOC_MICROMIPS_GOT_HI16:
2696 case BFD_RELOC_MICROMIPS_GOT_LO16:
2697 case BFD_RELOC_MICROMIPS_CALL_HI16:
2698 case BFD_RELOC_MICROMIPS_CALL_LO16:
2699 case BFD_RELOC_MICROMIPS_SUB:
2700 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2701 case BFD_RELOC_MICROMIPS_GOT_OFST:
2702 case BFD_RELOC_MICROMIPS_GOT_DISP:
2703 case BFD_RELOC_MICROMIPS_HIGHEST:
2704 case BFD_RELOC_MICROMIPS_HIGHER:
2705 case BFD_RELOC_MICROMIPS_SCN_DISP:
2706 case BFD_RELOC_MICROMIPS_JALR:
2714 static inline bfd_boolean
2715 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2717 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2720 static inline bfd_boolean
2721 got16_reloc_p (bfd_reloc_code_real_type reloc)
2723 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2724 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2727 static inline bfd_boolean
2728 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2730 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2731 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2734 static inline bfd_boolean
2735 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2737 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2738 || reloc == BFD_RELOC_MICROMIPS_LO16);
2741 static inline bfd_boolean
2742 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2744 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2747 /* Return true if the given relocation might need a matching %lo().
2748 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2749 need a matching %lo() when applied to local symbols. */
2751 static inline bfd_boolean
2752 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2754 return (HAVE_IN_PLACE_ADDENDS
2755 && (hi16_reloc_p (reloc)
2756 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2757 all GOT16 relocations evaluate to "G". */
2758 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2761 /* Return the type of %lo() reloc needed by RELOC, given that
2762 reloc_needs_lo_p. */
2764 static inline bfd_reloc_code_real_type
2765 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2767 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2768 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2772 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2775 static inline bfd_boolean
2776 fixup_has_matching_lo_p (fixS *fixp)
2778 return (fixp->fx_next != NULL
2779 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2780 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2781 && fixp->fx_offset == fixp->fx_next->fx_offset);
2784 /* This function returns true if modifying a register requires a
2788 reg_needs_delay (unsigned int reg)
2790 unsigned long prev_pinfo;
2792 prev_pinfo = history[0].insn_mo->pinfo;
2793 if (! mips_opts.noreorder
2794 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2795 && ! gpr_interlocks)
2796 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2797 && ! cop_interlocks)))
2799 /* A load from a coprocessor or from memory. All load delays
2800 delay the use of general register rt for one instruction. */
2801 /* Itbl support may require additional care here. */
2802 know (prev_pinfo & INSN_WRITE_GPR_T);
2803 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
2810 /* Move all labels in LABELS to the current insertion point. TEXT_P
2811 says whether the labels refer to text or data. */
2814 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
2816 struct insn_label_list *l;
2819 for (l = labels; l != NULL; l = l->next)
2821 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2822 symbol_set_frag (l->label, frag_now);
2823 val = (valueT) frag_now_fix ();
2824 /* MIPS16/microMIPS text labels are stored as odd. */
2825 if (text_p && HAVE_CODE_COMPRESSION)
2827 S_SET_VALUE (l->label, val);
2831 /* Move all labels in insn_labels to the current insertion point
2832 and treat them as text labels. */
2835 mips_move_text_labels (void)
2837 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
2841 s_is_linkonce (symbolS *sym, segT from_seg)
2843 bfd_boolean linkonce = FALSE;
2844 segT symseg = S_GET_SEGMENT (sym);
2846 if (symseg != from_seg && !S_IS_LOCAL (sym))
2848 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2851 /* The GNU toolchain uses an extension for ELF: a section
2852 beginning with the magic string .gnu.linkonce is a
2853 linkonce section. */
2854 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2855 sizeof ".gnu.linkonce" - 1) == 0)
2862 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
2863 linker to handle them specially, such as generating jalx instructions
2864 when needed. We also make them odd for the duration of the assembly,
2865 in order to generate the right sort of code. We will make them even
2866 in the adjust_symtab routine, while leaving them marked. This is
2867 convenient for the debugger and the disassembler. The linker knows
2868 to make them odd again. */
2871 mips_compressed_mark_label (symbolS *label)
2873 gas_assert (HAVE_CODE_COMPRESSION);
2875 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2878 if (mips_opts.mips16)
2879 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2881 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
2884 if ((S_GET_VALUE (label) & 1) == 0
2885 /* Don't adjust the address if the label is global or weak, or
2886 in a link-once section, since we'll be emitting symbol reloc
2887 references to it which will be patched up by the linker, and
2888 the final value of the symbol may or may not be MIPS16/microMIPS. */
2889 && !S_IS_WEAK (label)
2890 && !S_IS_EXTERNAL (label)
2891 && !s_is_linkonce (label, now_seg))
2892 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2895 /* Mark preceding MIPS16 or microMIPS instruction labels. */
2898 mips_compressed_mark_labels (void)
2900 struct insn_label_list *l;
2902 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
2903 mips_compressed_mark_label (l->label);
2906 /* End the current frag. Make it a variant frag and record the
2910 relax_close_frag (void)
2912 mips_macro_warning.first_frag = frag_now;
2913 frag_var (rs_machine_dependent, 0, 0,
2914 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2915 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2917 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2918 mips_relax.first_fixup = 0;
2921 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2922 See the comment above RELAX_ENCODE for more details. */
2925 relax_start (symbolS *symbol)
2927 gas_assert (mips_relax.sequence == 0);
2928 mips_relax.sequence = 1;
2929 mips_relax.symbol = symbol;
2932 /* Start generating the second version of a relaxable sequence.
2933 See the comment above RELAX_ENCODE for more details. */
2938 gas_assert (mips_relax.sequence == 1);
2939 mips_relax.sequence = 2;
2942 /* End the current relaxable sequence. */
2947 gas_assert (mips_relax.sequence == 2);
2948 relax_close_frag ();
2949 mips_relax.sequence = 0;
2952 /* Return true if IP is a delayed branch or jump. */
2954 static inline bfd_boolean
2955 delayed_branch_p (const struct mips_cl_insn *ip)
2957 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2958 | INSN_COND_BRANCH_DELAY
2959 | INSN_COND_BRANCH_LIKELY)) != 0;
2962 /* Return true if IP is a compact branch or jump. */
2964 static inline bfd_boolean
2965 compact_branch_p (const struct mips_cl_insn *ip)
2967 if (mips_opts.mips16)
2968 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2969 | MIPS16_INSN_COND_BRANCH)) != 0;
2971 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
2972 | INSN2_COND_BRANCH)) != 0;
2975 /* Return true if IP is an unconditional branch or jump. */
2977 static inline bfd_boolean
2978 uncond_branch_p (const struct mips_cl_insn *ip)
2980 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
2981 || (mips_opts.mips16
2982 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
2983 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
2986 /* Return true if IP is a branch-likely instruction. */
2988 static inline bfd_boolean
2989 branch_likely_p (const struct mips_cl_insn *ip)
2991 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
2994 /* Return the type of nop that should be used to fill the delay slot
2995 of delayed branch IP. */
2997 static struct mips_cl_insn *
2998 get_delay_slot_nop (const struct mips_cl_insn *ip)
3000 if (mips_opts.micromips
3001 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3002 return µmips_nop32_insn;
3006 /* Return the mask of core registers that IP reads or writes. */
3009 gpr_mod_mask (const struct mips_cl_insn *ip)
3011 unsigned long pinfo2;
3015 pinfo2 = ip->insn_mo->pinfo2;
3016 if (mips_opts.micromips)
3018 if (pinfo2 & INSN2_MOD_GPR_MD)
3019 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3020 if (pinfo2 & INSN2_MOD_GPR_MF)
3021 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3022 if (pinfo2 & INSN2_MOD_SP)
3028 /* Return the mask of core registers that IP reads. */
3031 gpr_read_mask (const struct mips_cl_insn *ip)
3033 unsigned long pinfo, pinfo2;
3036 mask = gpr_mod_mask (ip);
3037 pinfo = ip->insn_mo->pinfo;
3038 pinfo2 = ip->insn_mo->pinfo2;
3039 if (mips_opts.mips16)
3041 if (pinfo & MIPS16_INSN_READ_X)
3042 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3043 if (pinfo & MIPS16_INSN_READ_Y)
3044 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3045 if (pinfo & MIPS16_INSN_READ_T)
3047 if (pinfo & MIPS16_INSN_READ_SP)
3049 if (pinfo & MIPS16_INSN_READ_31)
3051 if (pinfo & MIPS16_INSN_READ_Z)
3052 mask |= 1 << (mips16_to_32_reg_map
3053 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3054 if (pinfo & MIPS16_INSN_READ_GPR_X)
3055 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3059 if (pinfo2 & INSN2_READ_GPR_D)
3060 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3061 if (pinfo & INSN_READ_GPR_T)
3062 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3063 if (pinfo & INSN_READ_GPR_S)
3064 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3065 if (pinfo2 & INSN2_READ_GP)
3067 if (pinfo2 & INSN2_READ_GPR_31)
3069 if (pinfo2 & INSN2_READ_GPR_Z)
3070 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3072 if (mips_opts.micromips)
3074 if (pinfo2 & INSN2_READ_GPR_MC)
3075 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3076 if (pinfo2 & INSN2_READ_GPR_ME)
3077 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3078 if (pinfo2 & INSN2_READ_GPR_MG)
3079 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3080 if (pinfo2 & INSN2_READ_GPR_MJ)
3081 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3082 if (pinfo2 & INSN2_READ_GPR_MMN)
3084 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3085 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3087 if (pinfo2 & INSN2_READ_GPR_MP)
3088 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3089 if (pinfo2 & INSN2_READ_GPR_MQ)
3090 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3092 /* Don't include register 0. */
3096 /* Return the mask of core registers that IP writes. */
3099 gpr_write_mask (const struct mips_cl_insn *ip)
3101 unsigned long pinfo, pinfo2;
3104 mask = gpr_mod_mask (ip);
3105 pinfo = ip->insn_mo->pinfo;
3106 pinfo2 = ip->insn_mo->pinfo2;
3107 if (mips_opts.mips16)
3109 if (pinfo & MIPS16_INSN_WRITE_X)
3110 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3111 if (pinfo & MIPS16_INSN_WRITE_Y)
3112 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3113 if (pinfo & MIPS16_INSN_WRITE_Z)
3114 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3115 if (pinfo & MIPS16_INSN_WRITE_T)
3117 if (pinfo & MIPS16_INSN_WRITE_SP)
3119 if (pinfo & MIPS16_INSN_WRITE_31)
3121 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3122 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3126 if (pinfo & INSN_WRITE_GPR_D)
3127 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3128 if (pinfo & INSN_WRITE_GPR_T)
3129 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3130 if (pinfo & INSN_WRITE_GPR_S)
3131 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3132 if (pinfo & INSN_WRITE_GPR_31)
3134 if (pinfo2 & INSN2_WRITE_GPR_Z)
3135 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3137 if (mips_opts.micromips)
3139 if (pinfo2 & INSN2_WRITE_GPR_MB)
3140 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3141 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3143 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3144 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3146 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3147 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3148 if (pinfo2 & INSN2_WRITE_GPR_MP)
3149 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3151 /* Don't include register 0. */
3155 /* Return the mask of floating-point registers that IP reads. */
3158 fpr_read_mask (const struct mips_cl_insn *ip)
3160 unsigned long pinfo, pinfo2;
3164 pinfo = ip->insn_mo->pinfo;
3165 pinfo2 = ip->insn_mo->pinfo2;
3166 if (!mips_opts.mips16)
3168 if (pinfo2 & INSN2_READ_FPR_D)
3169 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3170 if (pinfo & INSN_READ_FPR_S)
3171 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3172 if (pinfo & INSN_READ_FPR_T)
3173 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3174 if (pinfo & INSN_READ_FPR_R)
3175 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3176 if (pinfo2 & INSN2_READ_FPR_Z)
3177 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3179 /* Conservatively treat all operands to an FP_D instruction are doubles.
3180 (This is overly pessimistic for things like cvt.d.s.) */
3181 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3186 /* Return the mask of floating-point registers that IP writes. */
3189 fpr_write_mask (const struct mips_cl_insn *ip)
3191 unsigned long pinfo, pinfo2;
3195 pinfo = ip->insn_mo->pinfo;
3196 pinfo2 = ip->insn_mo->pinfo2;
3197 if (!mips_opts.mips16)
3199 if (pinfo & INSN_WRITE_FPR_D)
3200 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3201 if (pinfo & INSN_WRITE_FPR_S)
3202 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3203 if (pinfo & INSN_WRITE_FPR_T)
3204 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3205 if (pinfo2 & INSN2_WRITE_FPR_Z)
3206 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3208 /* Conservatively treat all operands to an FP_D instruction are doubles.
3209 (This is overly pessimistic for things like cvt.s.d.) */
3210 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3215 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3216 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3217 by VR4120 errata. */
3220 classify_vr4120_insn (const char *name)
3222 if (strncmp (name, "macc", 4) == 0)
3223 return FIX_VR4120_MACC;
3224 if (strncmp (name, "dmacc", 5) == 0)
3225 return FIX_VR4120_DMACC;
3226 if (strncmp (name, "mult", 4) == 0)
3227 return FIX_VR4120_MULT;
3228 if (strncmp (name, "dmult", 5) == 0)
3229 return FIX_VR4120_DMULT;
3230 if (strstr (name, "div"))
3231 return FIX_VR4120_DIV;
3232 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3233 return FIX_VR4120_MTHILO;
3234 return NUM_FIX_VR4120_CLASSES;
3237 #define INSN_ERET 0x42000018
3238 #define INSN_DERET 0x4200001f
3240 /* Return the number of instructions that must separate INSN1 and INSN2,
3241 where INSN1 is the earlier instruction. Return the worst-case value
3242 for any INSN2 if INSN2 is null. */
3245 insns_between (const struct mips_cl_insn *insn1,
3246 const struct mips_cl_insn *insn2)
3248 unsigned long pinfo1, pinfo2;
3251 /* This function needs to know which pinfo flags are set for INSN2
3252 and which registers INSN2 uses. The former is stored in PINFO2 and
3253 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3254 will have every flag set and INSN2_USES_GPR will always return true. */
3255 pinfo1 = insn1->insn_mo->pinfo;
3256 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3258 #define INSN2_USES_GPR(REG) \
3259 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3261 /* For most targets, write-after-read dependencies on the HI and LO
3262 registers must be separated by at least two instructions. */
3263 if (!hilo_interlocks)
3265 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3267 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3271 /* If we're working around r7000 errata, there must be two instructions
3272 between an mfhi or mflo and any instruction that uses the result. */
3273 if (mips_7000_hilo_fix
3274 && !mips_opts.micromips
3275 && MF_HILO_INSN (pinfo1)
3276 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3279 /* If we're working around 24K errata, one instruction is required
3280 if an ERET or DERET is followed by a branch instruction. */
3281 if (mips_fix_24k && !mips_opts.micromips)
3283 if (insn1->insn_opcode == INSN_ERET
3284 || insn1->insn_opcode == INSN_DERET)
3287 || insn2->insn_opcode == INSN_ERET
3288 || insn2->insn_opcode == INSN_DERET
3289 || delayed_branch_p (insn2))
3294 /* If working around VR4120 errata, check for combinations that need
3295 a single intervening instruction. */
3296 if (mips_fix_vr4120 && !mips_opts.micromips)
3298 unsigned int class1, class2;
3300 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3301 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3305 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3306 if (vr4120_conflicts[class1] & (1 << class2))
3311 if (!HAVE_CODE_COMPRESSION)
3313 /* Check for GPR or coprocessor load delays. All such delays
3314 are on the RT register. */
3315 /* Itbl support may require additional care here. */
3316 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3317 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3319 know (pinfo1 & INSN_WRITE_GPR_T);
3320 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3324 /* Check for generic coprocessor hazards.
3326 This case is not handled very well. There is no special
3327 knowledge of CP0 handling, and the coprocessors other than
3328 the floating point unit are not distinguished at all. */
3329 /* Itbl support may require additional care here. FIXME!
3330 Need to modify this to include knowledge about
3331 user specified delays! */
3332 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3333 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3335 /* Handle cases where INSN1 writes to a known general coprocessor
3336 register. There must be a one instruction delay before INSN2
3337 if INSN2 reads that register, otherwise no delay is needed. */
3338 mask = fpr_write_mask (insn1);
3341 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3346 /* Read-after-write dependencies on the control registers
3347 require a two-instruction gap. */
3348 if ((pinfo1 & INSN_WRITE_COND_CODE)
3349 && (pinfo2 & INSN_READ_COND_CODE))
3352 /* We don't know exactly what INSN1 does. If INSN2 is
3353 also a coprocessor instruction, assume there must be
3354 a one instruction gap. */
3355 if (pinfo2 & INSN_COP)
3360 /* Check for read-after-write dependencies on the coprocessor
3361 control registers in cases where INSN1 does not need a general
3362 coprocessor delay. This means that INSN1 is a floating point
3363 comparison instruction. */
3364 /* Itbl support may require additional care here. */
3365 else if (!cop_interlocks
3366 && (pinfo1 & INSN_WRITE_COND_CODE)
3367 && (pinfo2 & INSN_READ_COND_CODE))
3371 #undef INSN2_USES_GPR
3376 /* Return the number of nops that would be needed to work around the
3377 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3378 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3379 that are contained within the first IGNORE instructions of HIST. */
3382 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3383 const struct mips_cl_insn *insn)
3388 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3389 are not affected by the errata. */
3391 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3392 || strcmp (insn->insn_mo->name, "mtlo") == 0
3393 || strcmp (insn->insn_mo->name, "mthi") == 0))
3396 /* Search for the first MFLO or MFHI. */
3397 for (i = 0; i < MAX_VR4130_NOPS; i++)
3398 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3400 /* Extract the destination register. */
3401 mask = gpr_write_mask (&hist[i]);
3403 /* No nops are needed if INSN reads that register. */
3404 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3407 /* ...or if any of the intervening instructions do. */
3408 for (j = 0; j < i; j++)
3409 if (gpr_read_mask (&hist[j]) & mask)
3413 return MAX_VR4130_NOPS - i;
3418 #define BASE_REG_EQ(INSN1, INSN2) \
3419 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3420 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3422 /* Return the minimum alignment for this store instruction. */
3425 fix_24k_align_to (const struct mips_opcode *mo)
3427 if (strcmp (mo->name, "sh") == 0)
3430 if (strcmp (mo->name, "swc1") == 0
3431 || strcmp (mo->name, "swc2") == 0
3432 || strcmp (mo->name, "sw") == 0
3433 || strcmp (mo->name, "sc") == 0
3434 || strcmp (mo->name, "s.s") == 0)
3437 if (strcmp (mo->name, "sdc1") == 0
3438 || strcmp (mo->name, "sdc2") == 0
3439 || strcmp (mo->name, "s.d") == 0)
3446 struct fix_24k_store_info
3448 /* Immediate offset, if any, for this store instruction. */
3450 /* Alignment required by this store instruction. */
3452 /* True for register offsets. */
3453 int register_offset;
3456 /* Comparison function used by qsort. */
3459 fix_24k_sort (const void *a, const void *b)
3461 const struct fix_24k_store_info *pos1 = a;
3462 const struct fix_24k_store_info *pos2 = b;
3464 return (pos1->off - pos2->off);
3467 /* INSN is a store instruction. Try to record the store information
3468 in STINFO. Return false if the information isn't known. */
3471 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3472 const struct mips_cl_insn *insn)
3474 /* The instruction must have a known offset. */
3475 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3478 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3479 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3483 /* Return the number of nops that would be needed to work around the 24k
3484 "lost data on stores during refill" errata if instruction INSN
3485 immediately followed the 2 instructions described by HIST.
3486 Ignore hazards that are contained within the first IGNORE
3487 instructions of HIST.
3489 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3490 for the data cache refills and store data. The following describes
3491 the scenario where the store data could be lost.
3493 * A data cache miss, due to either a load or a store, causing fill
3494 data to be supplied by the memory subsystem
3495 * The first three doublewords of fill data are returned and written
3497 * A sequence of four stores occurs in consecutive cycles around the
3498 final doubleword of the fill:
3502 * Zero, One or more instructions
3505 The four stores A-D must be to different doublewords of the line that
3506 is being filled. The fourth instruction in the sequence above permits
3507 the fill of the final doubleword to be transferred from the FSB into
3508 the cache. In the sequence above, the stores may be either integer
3509 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3510 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3511 different doublewords on the line. If the floating point unit is
3512 running in 1:2 mode, it is not possible to create the sequence above
3513 using only floating point store instructions.
3515 In this case, the cache line being filled is incorrectly marked
3516 invalid, thereby losing the data from any store to the line that
3517 occurs between the original miss and the completion of the five
3518 cycle sequence shown above.
3520 The workarounds are:
3522 * Run the data cache in write-through mode.
3523 * Insert a non-store instruction between
3524 Store A and Store B or Store B and Store C. */
3527 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3528 const struct mips_cl_insn *insn)
3530 struct fix_24k_store_info pos[3];
3531 int align, i, base_offset;
3536 /* If the previous instruction wasn't a store, there's nothing to
3538 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3541 /* If the instructions after the previous one are unknown, we have
3542 to assume the worst. */
3546 /* Check whether we are dealing with three consecutive stores. */
3547 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3548 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3551 /* If we don't know the relationship between the store addresses,
3552 assume the worst. */
3553 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3554 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3557 if (!fix_24k_record_store_info (&pos[0], insn)
3558 || !fix_24k_record_store_info (&pos[1], &hist[0])
3559 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3562 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3564 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3565 X bytes and such that the base register + X is known to be aligned
3568 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3572 align = pos[0].align_to;
3573 base_offset = pos[0].off;
3574 for (i = 1; i < 3; i++)
3575 if (align < pos[i].align_to)
3577 align = pos[i].align_to;
3578 base_offset = pos[i].off;
3580 for (i = 0; i < 3; i++)
3581 pos[i].off -= base_offset;
3584 pos[0].off &= ~align + 1;
3585 pos[1].off &= ~align + 1;
3586 pos[2].off &= ~align + 1;
3588 /* If any two stores write to the same chunk, they also write to the
3589 same doubleword. The offsets are still sorted at this point. */
3590 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3593 /* A range of at least 9 bytes is needed for the stores to be in
3594 non-overlapping doublewords. */
3595 if (pos[2].off - pos[0].off <= 8)
3598 if (pos[2].off - pos[1].off >= 24
3599 || pos[1].off - pos[0].off >= 24
3600 || pos[2].off - pos[0].off >= 32)
3606 /* Return the number of nops that would be needed if instruction INSN
3607 immediately followed the MAX_NOPS instructions given by HIST,
3608 where HIST[0] is the most recent instruction. Ignore hazards
3609 between INSN and the first IGNORE instructions in HIST.
3611 If INSN is null, return the worse-case number of nops for any
3615 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3616 const struct mips_cl_insn *insn)
3618 int i, nops, tmp_nops;
3621 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3623 tmp_nops = insns_between (hist + i, insn) - i;
3624 if (tmp_nops > nops)
3628 if (mips_fix_vr4130 && !mips_opts.micromips)
3630 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3631 if (tmp_nops > nops)
3635 if (mips_fix_24k && !mips_opts.micromips)
3637 tmp_nops = nops_for_24k (ignore, hist, insn);
3638 if (tmp_nops > nops)
3645 /* The variable arguments provide NUM_INSNS extra instructions that
3646 might be added to HIST. Return the largest number of nops that
3647 would be needed after the extended sequence, ignoring hazards
3648 in the first IGNORE instructions. */
3651 nops_for_sequence (int num_insns, int ignore,
3652 const struct mips_cl_insn *hist, ...)
3655 struct mips_cl_insn buffer[MAX_NOPS];
3656 struct mips_cl_insn *cursor;
3659 va_start (args, hist);
3660 cursor = buffer + num_insns;
3661 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3662 while (cursor > buffer)
3663 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3665 nops = nops_for_insn (ignore, buffer, NULL);
3670 /* Like nops_for_insn, but if INSN is a branch, take into account the
3671 worst-case delay for the branch target. */
3674 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3675 const struct mips_cl_insn *insn)
3679 nops = nops_for_insn (ignore, hist, insn);
3680 if (delayed_branch_p (insn))
3682 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3683 hist, insn, get_delay_slot_nop (insn));
3684 if (tmp_nops > nops)
3687 else if (compact_branch_p (insn))
3689 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3690 if (tmp_nops > nops)
3696 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3699 fix_loongson2f_nop (struct mips_cl_insn * ip)
3701 gas_assert (!HAVE_CODE_COMPRESSION);
3702 if (strcmp (ip->insn_mo->name, "nop") == 0)
3703 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3706 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3707 jr target pc &= 'hffff_ffff_cfff_ffff. */
3710 fix_loongson2f_jump (struct mips_cl_insn * ip)
3712 gas_assert (!HAVE_CODE_COMPRESSION);
3713 if (strcmp (ip->insn_mo->name, "j") == 0
3714 || strcmp (ip->insn_mo->name, "jr") == 0
3715 || strcmp (ip->insn_mo->name, "jalr") == 0)
3723 sreg = EXTRACT_OPERAND (0, RS, *ip);
3724 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3727 ep.X_op = O_constant;
3728 ep.X_add_number = 0xcfff0000;
3729 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3730 ep.X_add_number = 0xffff;
3731 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3732 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3737 fix_loongson2f (struct mips_cl_insn * ip)
3739 if (mips_fix_loongson2f_nop)
3740 fix_loongson2f_nop (ip);
3742 if (mips_fix_loongson2f_jump)
3743 fix_loongson2f_jump (ip);
3746 /* IP is a branch that has a delay slot, and we need to fill it
3747 automatically. Return true if we can do that by swapping IP
3748 with the previous instruction.
3749 ADDRESS_EXPR is an operand of the instruction to be used with
3753 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
3754 bfd_reloc_code_real_type *reloc_type)
3756 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3757 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3759 /* -O2 and above is required for this optimization. */
3760 if (mips_optimize < 2)
3763 /* If we have seen .set volatile or .set nomove, don't optimize. */
3764 if (mips_opts.nomove)
3767 /* We can't swap if the previous instruction's position is fixed. */
3768 if (history[0].fixed_p)
3771 /* If the previous previous insn was in a .set noreorder, we can't
3772 swap. Actually, the MIPS assembler will swap in this situation.
3773 However, gcc configured -with-gnu-as will generate code like
3781 in which we can not swap the bne and INSN. If gcc is not configured
3782 -with-gnu-as, it does not output the .set pseudo-ops. */
3783 if (history[1].noreorder_p)
3786 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
3787 This means that the previous instruction was a 4-byte one anyhow. */
3788 if (mips_opts.mips16 && history[0].fixp[0])
3791 /* If the branch is itself the target of a branch, we can not swap.
3792 We cheat on this; all we check for is whether there is a label on
3793 this instruction. If there are any branches to anything other than
3794 a label, users must use .set noreorder. */
3795 if (seg_info (now_seg)->label_list)
3798 /* If the previous instruction is in a variant frag other than this
3799 branch's one, we cannot do the swap. This does not apply to
3800 MIPS16 code, which uses variant frags for different purposes. */
3801 if (!mips_opts.mips16
3803 && history[0].frag->fr_type == rs_machine_dependent)
3806 /* We do not swap with instructions that cannot architecturally
3807 be placed in a branch delay slot, such as SYNC or ERET. We
3808 also refrain from swapping with a trap instruction, since it
3809 complicates trap handlers to have the trap instruction be in
3811 prev_pinfo = history[0].insn_mo->pinfo;
3812 if (prev_pinfo & INSN_NO_DELAY_SLOT)
3815 /* Check for conflicts between the branch and the instructions
3816 before the candidate delay slot. */
3817 if (nops_for_insn (0, history + 1, ip) > 0)
3820 /* Check for conflicts between the swapped sequence and the
3821 target of the branch. */
3822 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
3825 /* If the branch reads a register that the previous
3826 instruction sets, we can not swap. */
3827 gpr_read = gpr_read_mask (ip);
3828 prev_gpr_write = gpr_write_mask (&history[0]);
3829 if (gpr_read & prev_gpr_write)
3832 /* If the branch writes a register that the previous
3833 instruction sets, we can not swap. */
3834 gpr_write = gpr_write_mask (ip);
3835 if (gpr_write & prev_gpr_write)
3838 /* If the branch writes a register that the previous
3839 instruction reads, we can not swap. */
3840 prev_gpr_read = gpr_read_mask (&history[0]);
3841 if (gpr_write & prev_gpr_read)
3844 /* If one instruction sets a condition code and the
3845 other one uses a condition code, we can not swap. */
3846 pinfo = ip->insn_mo->pinfo;
3847 if ((pinfo & INSN_READ_COND_CODE)
3848 && (prev_pinfo & INSN_WRITE_COND_CODE))
3850 if ((pinfo & INSN_WRITE_COND_CODE)
3851 && (prev_pinfo & INSN_READ_COND_CODE))
3854 /* If the previous instruction uses the PC, we can not swap. */
3855 prev_pinfo2 = history[0].insn_mo->pinfo2;
3856 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
3858 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
3861 /* If the previous instruction has an incorrect size for a fixed
3862 branch delay slot in microMIPS mode, we cannot swap. */
3863 pinfo2 = ip->insn_mo->pinfo2;
3864 if (mips_opts.micromips
3865 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
3866 && insn_length (history) != 2)
3868 if (mips_opts.micromips
3869 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
3870 && insn_length (history) != 4)
3873 /* On R5900 short loops need to be fixed by inserting a nop in
3874 the branch delay slots.
3875 A short loop can be terminated too early. */
3876 if (mips_opts.arch == CPU_R5900
3877 /* Check if instruction has a parameter, ignore "j $31". */
3878 && (address_expr != NULL)
3879 /* Parameter must be 16 bit. */
3880 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
3881 /* Branch to same segment. */
3882 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
3883 /* Branch to same code fragment. */
3884 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
3885 /* Can only calculate branch offset if value is known. */
3886 && symbol_constant_p(address_expr->X_add_symbol)
3887 /* Check if branch is really conditional. */
3888 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
3889 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
3890 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
3893 /* Check if loop is shorter than 6 instructions including
3894 branch and delay slot. */
3895 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
3902 /* When the loop includes branches or jumps,
3903 it is not a short loop. */
3904 for (i = 0; i < (distance / 4); i++)
3906 if ((history[i].cleared_p)
3907 || delayed_branch_p(&history[i]))
3915 /* Insert nop after branch to fix short loop. */
3924 /* Decide how we should add IP to the instruction stream.
3925 ADDRESS_EXPR is an operand of the instruction to be used with
3928 static enum append_method
3929 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
3930 bfd_reloc_code_real_type *reloc_type)
3932 unsigned long pinfo;
3934 /* The relaxed version of a macro sequence must be inherently
3936 if (mips_relax.sequence == 2)
3939 /* We must not dabble with instructions in a ".set norerorder" block. */
3940 if (mips_opts.noreorder)
3943 /* Otherwise, it's our responsibility to fill branch delay slots. */
3944 if (delayed_branch_p (ip))
3946 if (!branch_likely_p (ip)
3947 && can_swap_branch_p (ip, address_expr, reloc_type))
3950 pinfo = ip->insn_mo->pinfo;
3951 if (mips_opts.mips16
3952 && ISA_SUPPORTS_MIPS16E
3953 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
3954 return APPEND_ADD_COMPACT;
3956 return APPEND_ADD_WITH_NOP;
3962 /* IP is a MIPS16 instruction whose opcode we have just changed.
3963 Point IP->insn_mo to the new opcode's definition. */
3966 find_altered_mips16_opcode (struct mips_cl_insn *ip)
3968 const struct mips_opcode *mo, *end;
3970 end = &mips16_opcodes[bfd_mips16_num_opcodes];
3971 for (mo = ip->insn_mo; mo < end; mo++)
3972 if ((ip->insn_opcode & mo->mask) == mo->match)
3980 /* For microMIPS macros, we need to generate a local number label
3981 as the target of branches. */
3982 #define MICROMIPS_LABEL_CHAR '\037'
3983 static unsigned long micromips_target_label;
3984 static char micromips_target_name[32];
3987 micromips_label_name (void)
3989 char *p = micromips_target_name;
3990 char symbol_name_temporary[24];
3998 l = micromips_target_label;
3999 #ifdef LOCAL_LABEL_PREFIX
4000 *p++ = LOCAL_LABEL_PREFIX;
4003 *p++ = MICROMIPS_LABEL_CHAR;
4006 symbol_name_temporary[i++] = l % 10 + '0';
4011 *p++ = symbol_name_temporary[--i];
4014 return micromips_target_name;
4018 micromips_label_expr (expressionS *label_expr)
4020 label_expr->X_op = O_symbol;
4021 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
4022 label_expr->X_add_number = 0;
4026 micromips_label_inc (void)
4028 micromips_target_label++;
4029 *micromips_target_name = '\0';
4033 micromips_add_label (void)
4037 s = colon (micromips_label_name ());
4038 micromips_label_inc ();
4039 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
4041 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
4047 /* If assembling microMIPS code, then return the microMIPS reloc
4048 corresponding to the requested one if any. Otherwise return
4049 the reloc unchanged. */
4051 static bfd_reloc_code_real_type
4052 micromips_map_reloc (bfd_reloc_code_real_type reloc)
4054 static const bfd_reloc_code_real_type relocs[][2] =
4056 /* Keep sorted incrementally by the left-hand key. */
4057 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
4058 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
4059 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
4060 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
4061 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
4062 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
4063 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
4064 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
4065 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
4066 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
4067 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
4068 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
4069 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
4070 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
4071 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
4072 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
4073 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
4074 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
4075 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
4076 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
4077 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
4078 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
4079 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
4080 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
4081 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
4082 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
4083 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
4085 bfd_reloc_code_real_type r;
4088 if (!mips_opts.micromips)
4090 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4096 return relocs[i][1];
4101 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
4102 Return true on success, storing the resolved value in RESULT. */
4105 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
4110 case BFD_RELOC_MIPS_HIGHEST:
4111 case BFD_RELOC_MICROMIPS_HIGHEST:
4112 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
4115 case BFD_RELOC_MIPS_HIGHER:
4116 case BFD_RELOC_MICROMIPS_HIGHER:
4117 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
4120 case BFD_RELOC_HI16_S:
4121 case BFD_RELOC_MICROMIPS_HI16_S:
4122 case BFD_RELOC_MIPS16_HI16_S:
4123 *result = ((operand + 0x8000) >> 16) & 0xffff;
4126 case BFD_RELOC_HI16:
4127 case BFD_RELOC_MICROMIPS_HI16:
4128 case BFD_RELOC_MIPS16_HI16:
4129 *result = (operand >> 16) & 0xffff;
4132 case BFD_RELOC_LO16:
4133 case BFD_RELOC_MICROMIPS_LO16:
4134 case BFD_RELOC_MIPS16_LO16:
4135 *result = operand & 0xffff;
4138 case BFD_RELOC_UNUSED:
4147 /* Output an instruction. IP is the instruction information.
4148 ADDRESS_EXPR is an operand of the instruction to be used with
4149 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4150 a macro expansion. */
4153 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4154 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4156 unsigned long prev_pinfo2, pinfo;
4157 bfd_boolean relaxed_branch = FALSE;
4158 enum append_method method;
4159 bfd_boolean relax32;
4162 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4163 fix_loongson2f (ip);
4165 file_ase_mips16 |= mips_opts.mips16;
4166 file_ase_micromips |= mips_opts.micromips;
4168 prev_pinfo2 = history[0].insn_mo->pinfo2;
4169 pinfo = ip->insn_mo->pinfo;
4171 if (mips_opts.micromips
4173 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4174 && micromips_insn_length (ip->insn_mo) != 2)
4175 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4176 && micromips_insn_length (ip->insn_mo) != 4)))
4177 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4178 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4180 if (address_expr == NULL)
4182 else if (reloc_type[0] <= BFD_RELOC_UNUSED
4183 && reloc_type[1] == BFD_RELOC_UNUSED
4184 && reloc_type[2] == BFD_RELOC_UNUSED
4185 && address_expr->X_op == O_constant)
4187 switch (*reloc_type)
4189 case BFD_RELOC_MIPS_JMP:
4193 shift = mips_opts.micromips ? 1 : 2;
4194 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4195 as_bad (_("jump to misaligned address (0x%lx)"),
4196 (unsigned long) address_expr->X_add_number);
4197 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4203 case BFD_RELOC_MIPS16_JMP:
4204 if ((address_expr->X_add_number & 3) != 0)
4205 as_bad (_("jump to misaligned address (0x%lx)"),
4206 (unsigned long) address_expr->X_add_number);
4208 (((address_expr->X_add_number & 0x7c0000) << 3)
4209 | ((address_expr->X_add_number & 0xf800000) >> 7)
4210 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4214 case BFD_RELOC_16_PCREL_S2:
4218 shift = mips_opts.micromips ? 1 : 2;
4219 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4220 as_bad (_("branch to misaligned address (0x%lx)"),
4221 (unsigned long) address_expr->X_add_number);
4222 if (!mips_relax_branch)
4224 if ((address_expr->X_add_number + (1 << (shift + 15)))
4225 & ~((1 << (shift + 16)) - 1))
4226 as_bad (_("branch address range overflow (0x%lx)"),
4227 (unsigned long) address_expr->X_add_number);
4228 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4238 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
4241 ip->insn_opcode |= value & 0xffff;
4249 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4251 /* There are a lot of optimizations we could do that we don't.
4252 In particular, we do not, in general, reorder instructions.
4253 If you use gcc with optimization, it will reorder
4254 instructions and generally do much more optimization then we
4255 do here; repeating all that work in the assembler would only
4256 benefit hand written assembly code, and does not seem worth
4258 int nops = (mips_optimize == 0
4259 ? nops_for_insn (0, history, NULL)
4260 : nops_for_insn_or_target (0, history, ip));
4264 unsigned long old_frag_offset;
4267 old_frag = frag_now;
4268 old_frag_offset = frag_now_fix ();
4270 for (i = 0; i < nops; i++)
4271 add_fixed_insn (NOP_INSN);
4272 insert_into_history (0, nops, NOP_INSN);
4276 listing_prev_line ();
4277 /* We may be at the start of a variant frag. In case we
4278 are, make sure there is enough space for the frag
4279 after the frags created by listing_prev_line. The
4280 argument to frag_grow here must be at least as large
4281 as the argument to all other calls to frag_grow in
4282 this file. We don't have to worry about being in the
4283 middle of a variant frag, because the variants insert
4284 all needed nop instructions themselves. */
4288 mips_move_text_labels ();
4290 #ifndef NO_ECOFF_DEBUGGING
4291 if (ECOFF_DEBUGGING)
4292 ecoff_fix_loc (old_frag, old_frag_offset);
4296 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4300 /* Work out how many nops in prev_nop_frag are needed by IP,
4301 ignoring hazards generated by the first prev_nop_frag_since
4303 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4304 gas_assert (nops <= prev_nop_frag_holds);
4306 /* Enforce NOPS as a minimum. */
4307 if (nops > prev_nop_frag_required)
4308 prev_nop_frag_required = nops;
4310 if (prev_nop_frag_holds == prev_nop_frag_required)
4312 /* Settle for the current number of nops. Update the history
4313 accordingly (for the benefit of any future .set reorder code). */
4314 prev_nop_frag = NULL;
4315 insert_into_history (prev_nop_frag_since,
4316 prev_nop_frag_holds, NOP_INSN);
4320 /* Allow this instruction to replace one of the nops that was
4321 tentatively added to prev_nop_frag. */
4322 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4323 prev_nop_frag_holds--;
4324 prev_nop_frag_since++;
4328 method = get_append_method (ip, address_expr, reloc_type);
4329 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4332 /* The value passed to dwarf2_emit_insn is the distance between
4333 the beginning of the current instruction and the address that
4334 should be recorded in the debug tables. This is normally the
4337 For MIPS16/microMIPS debug info we want to use ISA-encoded
4338 addresses, so we use -1 for an address higher by one than the
4341 If the instruction produced is a branch that we will swap with
4342 the preceding instruction, then we add the displacement by which
4343 the branch will be moved backwards. This is more appropriate
4344 and for MIPS16/microMIPS code also prevents a debugger from
4345 placing a breakpoint in the middle of the branch (and corrupting
4346 code if software breakpoints are used). */
4347 dwarf2_emit_insn ((HAVE_CODE_COMPRESSION ? -1 : 0) + branch_disp);
4350 relax32 = (mips_relax_branch
4351 /* Don't try branch relaxation within .set nomacro, or within
4352 .set noat if we use $at for PIC computations. If it turns
4353 out that the branch was out-of-range, we'll get an error. */
4354 && !mips_opts.warn_about_macros
4355 && (mips_opts.at || mips_pic == NO_PIC)
4356 /* Don't relax BPOSGE32/64 as they have no complementing
4358 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP)));
4360 if (!HAVE_CODE_COMPRESSION
4363 && *reloc_type == BFD_RELOC_16_PCREL_S2
4364 && delayed_branch_p (ip))
4366 relaxed_branch = TRUE;
4367 add_relaxed_insn (ip, (relaxed_branch_length
4369 uncond_branch_p (ip) ? -1
4370 : branch_likely_p (ip) ? 1
4374 uncond_branch_p (ip),
4375 branch_likely_p (ip),
4376 pinfo & INSN_WRITE_GPR_31,
4378 address_expr->X_add_symbol,
4379 address_expr->X_add_number);
4380 *reloc_type = BFD_RELOC_UNUSED;
4382 else if (mips_opts.micromips
4384 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4385 || *reloc_type > BFD_RELOC_UNUSED)
4386 && (delayed_branch_p (ip) || compact_branch_p (ip))
4387 /* Don't try branch relaxation when users specify
4388 16-bit/32-bit instructions. */
4389 && !forced_insn_length)
4391 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4392 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4393 int uncond = uncond_branch_p (ip) ? -1 : 0;
4394 int compact = compact_branch_p (ip);
4395 int al = pinfo & INSN_WRITE_GPR_31;
4398 gas_assert (address_expr != NULL);
4399 gas_assert (!mips_relax.sequence);
4401 relaxed_branch = TRUE;
4402 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4403 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4404 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4406 address_expr->X_add_symbol,
4407 address_expr->X_add_number);
4408 *reloc_type = BFD_RELOC_UNUSED;
4410 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4412 /* We need to set up a variant frag. */
4413 gas_assert (address_expr != NULL);
4414 add_relaxed_insn (ip, 4, 0,
4416 (*reloc_type - BFD_RELOC_UNUSED,
4417 forced_insn_length == 2, forced_insn_length == 4,
4418 delayed_branch_p (&history[0]),
4419 history[0].mips16_absolute_jump_p),
4420 make_expr_symbol (address_expr), 0);
4422 else if (mips_opts.mips16 && insn_length (ip) == 2)
4424 if (!delayed_branch_p (ip))
4425 /* Make sure there is enough room to swap this instruction with
4426 a following jump instruction. */
4428 add_fixed_insn (ip);
4432 if (mips_opts.mips16
4433 && mips_opts.noreorder
4434 && delayed_branch_p (&history[0]))
4435 as_warn (_("extended instruction in delay slot"));
4437 if (mips_relax.sequence)
4439 /* If we've reached the end of this frag, turn it into a variant
4440 frag and record the information for the instructions we've
4442 if (frag_room () < 4)
4443 relax_close_frag ();
4444 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4447 if (mips_relax.sequence != 2)
4449 if (mips_macro_warning.first_insn_sizes[0] == 0)
4450 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4451 mips_macro_warning.sizes[0] += insn_length (ip);
4452 mips_macro_warning.insns[0]++;
4454 if (mips_relax.sequence != 1)
4456 if (mips_macro_warning.first_insn_sizes[1] == 0)
4457 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4458 mips_macro_warning.sizes[1] += insn_length (ip);
4459 mips_macro_warning.insns[1]++;
4462 if (mips_opts.mips16)
4465 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4467 add_fixed_insn (ip);
4470 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4472 bfd_reloc_code_real_type final_type[3];
4473 reloc_howto_type *howto0;
4474 reloc_howto_type *howto;
4477 /* Perform any necessary conversion to microMIPS relocations
4478 and find out how many relocations there actually are. */
4479 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4480 final_type[i] = micromips_map_reloc (reloc_type[i]);
4482 /* In a compound relocation, it is the final (outermost)
4483 operator that determines the relocated field. */
4484 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4488 /* To reproduce this failure try assembling gas/testsuites/
4489 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4491 as_bad (_("Unsupported MIPS relocation number %d"),
4493 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4497 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4498 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4499 bfd_get_reloc_size (howto),
4501 howto0 && howto0->pc_relative,
4504 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4505 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4506 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4508 /* These relocations can have an addend that won't fit in
4509 4 octets for 64bit assembly. */
4511 && ! howto->partial_inplace
4512 && (reloc_type[0] == BFD_RELOC_16
4513 || reloc_type[0] == BFD_RELOC_32
4514 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4515 || reloc_type[0] == BFD_RELOC_GPREL16
4516 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4517 || reloc_type[0] == BFD_RELOC_GPREL32
4518 || reloc_type[0] == BFD_RELOC_64
4519 || reloc_type[0] == BFD_RELOC_CTOR
4520 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4521 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4522 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4523 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4524 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4525 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4526 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4527 || hi16_reloc_p (reloc_type[0])
4528 || lo16_reloc_p (reloc_type[0])))
4529 ip->fixp[0]->fx_no_overflow = 1;
4531 /* These relocations can have an addend that won't fit in 2 octets. */
4532 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
4533 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
4534 ip->fixp[0]->fx_no_overflow = 1;
4536 if (mips_relax.sequence)
4538 if (mips_relax.first_fixup == 0)
4539 mips_relax.first_fixup = ip->fixp[0];
4541 else if (reloc_needs_lo_p (*reloc_type))
4543 struct mips_hi_fixup *hi_fixup;
4545 /* Reuse the last entry if it already has a matching %lo. */
4546 hi_fixup = mips_hi_fixup_list;
4548 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4550 hi_fixup = ((struct mips_hi_fixup *)
4551 xmalloc (sizeof (struct mips_hi_fixup)));
4552 hi_fixup->next = mips_hi_fixup_list;
4553 mips_hi_fixup_list = hi_fixup;
4555 hi_fixup->fixp = ip->fixp[0];
4556 hi_fixup->seg = now_seg;
4559 /* Add fixups for the second and third relocations, if given.
4560 Note that the ABI allows the second relocation to be
4561 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4562 moment we only use RSS_UNDEF, but we could add support
4563 for the others if it ever becomes necessary. */
4564 for (i = 1; i < 3; i++)
4565 if (reloc_type[i] != BFD_RELOC_UNUSED)
4567 ip->fixp[i] = fix_new (ip->frag, ip->where,
4568 ip->fixp[0]->fx_size, NULL, 0,
4569 FALSE, final_type[i]);
4571 /* Use fx_tcbit to mark compound relocs. */
4572 ip->fixp[0]->fx_tcbit = 1;
4573 ip->fixp[i]->fx_tcbit = 1;
4578 /* Update the register mask information. */
4579 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4580 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4585 insert_into_history (0, 1, ip);
4588 case APPEND_ADD_WITH_NOP:
4590 struct mips_cl_insn *nop;
4592 insert_into_history (0, 1, ip);
4593 nop = get_delay_slot_nop (ip);
4594 add_fixed_insn (nop);
4595 insert_into_history (0, 1, nop);
4596 if (mips_relax.sequence)
4597 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4601 case APPEND_ADD_COMPACT:
4602 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4603 gas_assert (mips_opts.mips16);
4604 ip->insn_opcode |= 0x0080;
4605 find_altered_mips16_opcode (ip);
4607 insert_into_history (0, 1, ip);
4612 struct mips_cl_insn delay = history[0];
4613 if (mips_opts.mips16)
4615 know (delay.frag == ip->frag);
4616 move_insn (ip, delay.frag, delay.where);
4617 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4619 else if (relaxed_branch || delay.frag != ip->frag)
4621 /* Add the delay slot instruction to the end of the
4622 current frag and shrink the fixed part of the
4623 original frag. If the branch occupies the tail of
4624 the latter, move it backwards to cover the gap. */
4625 delay.frag->fr_fix -= branch_disp;
4626 if (delay.frag == ip->frag)
4627 move_insn (ip, ip->frag, ip->where - branch_disp);
4628 add_fixed_insn (&delay);
4632 move_insn (&delay, ip->frag,
4633 ip->where - branch_disp + insn_length (ip));
4634 move_insn (ip, history[0].frag, history[0].where);
4638 insert_into_history (0, 1, &delay);
4643 /* If we have just completed an unconditional branch, clear the history. */
4644 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4645 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4649 mips_no_prev_insn ();
4651 for (i = 0; i < ARRAY_SIZE (history); i++)
4652 history[i].cleared_p = 1;
4655 /* We need to emit a label at the end of branch-likely macros. */
4656 if (emit_branch_likely_macro)
4658 emit_branch_likely_macro = FALSE;
4659 micromips_add_label ();
4662 /* We just output an insn, so the next one doesn't have a label. */
4663 mips_clear_insn_labels ();
4666 /* Forget that there was any previous instruction or label.
4667 When BRANCH is true, the branch history is also flushed. */
4670 mips_no_prev_insn (void)
4672 prev_nop_frag = NULL;
4673 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4674 mips_clear_insn_labels ();
4677 /* This function must be called before we emit something other than
4678 instructions. It is like mips_no_prev_insn except that it inserts
4679 any NOPS that might be needed by previous instructions. */
4682 mips_emit_delays (void)
4684 if (! mips_opts.noreorder)
4686 int nops = nops_for_insn (0, history, NULL);
4690 add_fixed_insn (NOP_INSN);
4691 mips_move_text_labels ();
4694 mips_no_prev_insn ();
4697 /* Start a (possibly nested) noreorder block. */
4700 start_noreorder (void)
4702 if (mips_opts.noreorder == 0)
4707 /* None of the instructions before the .set noreorder can be moved. */
4708 for (i = 0; i < ARRAY_SIZE (history); i++)
4709 history[i].fixed_p = 1;
4711 /* Insert any nops that might be needed between the .set noreorder
4712 block and the previous instructions. We will later remove any
4713 nops that turn out not to be needed. */
4714 nops = nops_for_insn (0, history, NULL);
4717 if (mips_optimize != 0)
4719 /* Record the frag which holds the nop instructions, so
4720 that we can remove them if we don't need them. */
4721 frag_grow (nops * NOP_INSN_SIZE);
4722 prev_nop_frag = frag_now;
4723 prev_nop_frag_holds = nops;
4724 prev_nop_frag_required = 0;
4725 prev_nop_frag_since = 0;
4728 for (; nops > 0; --nops)
4729 add_fixed_insn (NOP_INSN);
4731 /* Move on to a new frag, so that it is safe to simply
4732 decrease the size of prev_nop_frag. */
4733 frag_wane (frag_now);
4735 mips_move_text_labels ();
4737 mips_mark_labels ();
4738 mips_clear_insn_labels ();
4740 mips_opts.noreorder++;
4741 mips_any_noreorder = 1;
4744 /* End a nested noreorder block. */
4747 end_noreorder (void)
4749 mips_opts.noreorder--;
4750 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4752 /* Commit to inserting prev_nop_frag_required nops and go back to
4753 handling nop insertion the .set reorder way. */
4754 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4756 insert_into_history (prev_nop_frag_since,
4757 prev_nop_frag_required, NOP_INSN);
4758 prev_nop_frag = NULL;
4762 /* Set up global variables for the start of a new macro. */
4767 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4768 memset (&mips_macro_warning.first_insn_sizes, 0,
4769 sizeof (mips_macro_warning.first_insn_sizes));
4770 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4771 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4772 && delayed_branch_p (&history[0]));
4773 switch (history[0].insn_mo->pinfo2
4774 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4776 case INSN2_BRANCH_DELAY_32BIT:
4777 mips_macro_warning.delay_slot_length = 4;
4779 case INSN2_BRANCH_DELAY_16BIT:
4780 mips_macro_warning.delay_slot_length = 2;
4783 mips_macro_warning.delay_slot_length = 0;
4786 mips_macro_warning.first_frag = NULL;
4789 /* Given that a macro is longer than one instruction or of the wrong size,
4790 return the appropriate warning for it. Return null if no warning is
4791 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
4792 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
4793 and RELAX_NOMACRO. */
4796 macro_warning (relax_substateT subtype)
4798 if (subtype & RELAX_DELAY_SLOT)
4799 return _("Macro instruction expanded into multiple instructions"
4800 " in a branch delay slot");
4801 else if (subtype & RELAX_NOMACRO)
4802 return _("Macro instruction expanded into multiple instructions");
4803 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
4804 | RELAX_DELAY_SLOT_SIZE_SECOND))
4805 return ((subtype & RELAX_DELAY_SLOT_16BIT)
4806 ? _("Macro instruction expanded into a wrong size instruction"
4807 " in a 16-bit branch delay slot")
4808 : _("Macro instruction expanded into a wrong size instruction"
4809 " in a 32-bit branch delay slot"));
4814 /* Finish up a macro. Emit warnings as appropriate. */
4819 /* Relaxation warning flags. */
4820 relax_substateT subtype = 0;
4822 /* Check delay slot size requirements. */
4823 if (mips_macro_warning.delay_slot_length == 2)
4824 subtype |= RELAX_DELAY_SLOT_16BIT;
4825 if (mips_macro_warning.delay_slot_length != 0)
4827 if (mips_macro_warning.delay_slot_length
4828 != mips_macro_warning.first_insn_sizes[0])
4829 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
4830 if (mips_macro_warning.delay_slot_length
4831 != mips_macro_warning.first_insn_sizes[1])
4832 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
4835 /* Check instruction count requirements. */
4836 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
4838 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
4839 subtype |= RELAX_SECOND_LONGER;
4840 if (mips_opts.warn_about_macros)
4841 subtype |= RELAX_NOMACRO;
4842 if (mips_macro_warning.delay_slot_p)
4843 subtype |= RELAX_DELAY_SLOT;
4846 /* If both alternatives fail to fill a delay slot correctly,
4847 emit the warning now. */
4848 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
4849 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
4854 s = subtype & (RELAX_DELAY_SLOT_16BIT
4855 | RELAX_DELAY_SLOT_SIZE_FIRST
4856 | RELAX_DELAY_SLOT_SIZE_SECOND);
4857 msg = macro_warning (s);
4859 as_warn ("%s", msg);
4863 /* If both implementations are longer than 1 instruction, then emit the
4865 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
4870 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
4871 msg = macro_warning (s);
4873 as_warn ("%s", msg);
4877 /* If any flags still set, then one implementation might need a warning
4878 and the other either will need one of a different kind or none at all.
4879 Pass any remaining flags over to relaxation. */
4880 if (mips_macro_warning.first_frag != NULL)
4881 mips_macro_warning.first_frag->fr_subtype |= subtype;
4884 /* Instruction operand formats used in macros that vary between
4885 standard MIPS and microMIPS code. */
4887 static const char * const brk_fmt[2] = { "c", "mF" };
4888 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
4889 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
4890 static const char * const lui_fmt[2] = { "t,u", "s,u" };
4891 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
4892 static const char * const mfhl_fmt[2] = { "d", "mj" };
4893 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
4894 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
4896 #define BRK_FMT (brk_fmt[mips_opts.micromips])
4897 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
4898 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
4899 #define LUI_FMT (lui_fmt[mips_opts.micromips])
4900 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
4901 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
4902 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
4903 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
4905 /* Read a macro's relocation codes from *ARGS and store them in *R.
4906 The first argument in *ARGS will be either the code for a single
4907 relocation or -1 followed by the three codes that make up a
4908 composite relocation. */
4911 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
4915 next = va_arg (*args, int);
4917 r[0] = (bfd_reloc_code_real_type) next;
4919 for (i = 0; i < 3; i++)
4920 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
4923 /* Build an instruction created by a macro expansion. This is passed
4924 a pointer to the count of instructions created so far, an
4925 expression, the name of the instruction to build, an operand format
4926 string, and corresponding arguments. */
4929 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
4931 const struct mips_opcode *mo = NULL;
4932 bfd_reloc_code_real_type r[3];
4933 const struct mips_opcode *amo;
4934 struct hash_control *hash;
4935 struct mips_cl_insn insn;
4938 va_start (args, fmt);
4940 if (mips_opts.mips16)
4942 mips16_macro_build (ep, name, fmt, &args);
4947 r[0] = BFD_RELOC_UNUSED;
4948 r[1] = BFD_RELOC_UNUSED;
4949 r[2] = BFD_RELOC_UNUSED;
4950 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
4951 amo = (struct mips_opcode *) hash_find (hash, name);
4953 gas_assert (strcmp (name, amo->name) == 0);
4957 /* Search until we get a match for NAME. It is assumed here that
4958 macros will never generate MDMX, MIPS-3D, or MT instructions.
4959 We try to match an instruction that fulfils the branch delay
4960 slot instruction length requirement (if any) of the previous
4961 instruction. While doing this we record the first instruction
4962 seen that matches all the other conditions and use it anyway
4963 if the requirement cannot be met; we will issue an appropriate
4964 warning later on. */
4965 if (strcmp (fmt, amo->args) == 0
4966 && amo->pinfo != INSN_MACRO
4967 && is_opcode_valid (amo)
4968 && is_size_valid (amo))
4970 if (is_delay_slot_valid (amo))
4980 gas_assert (amo->name);
4982 while (strcmp (name, amo->name) == 0);
4985 create_insn (&insn, mo);
5003 INSERT_OPERAND (mips_opts.micromips,
5004 EXTLSB, insn, va_arg (args, int));
5009 /* Note that in the macro case, these arguments are already
5010 in MSB form. (When handling the instruction in the
5011 non-macro case, these arguments are sizes from which
5012 MSB values must be calculated.) */
5013 INSERT_OPERAND (mips_opts.micromips,
5014 INSMSB, insn, va_arg (args, int));
5020 /* Note that in the macro case, these arguments are already
5021 in MSBD form. (When handling the instruction in the
5022 non-macro case, these arguments are sizes from which
5023 MSBD values must be calculated.) */
5024 INSERT_OPERAND (mips_opts.micromips,
5025 EXTMSBD, insn, va_arg (args, int));
5029 gas_assert (!mips_opts.micromips);
5030 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
5039 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
5043 gas_assert (mips_opts.micromips);
5047 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
5051 gas_assert (!mips_opts.micromips);
5052 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
5056 gas_assert (!mips_opts.micromips);
5058 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
5062 if (mips_opts.micromips)
5063 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
5065 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
5069 gas_assert (!mips_opts.micromips);
5071 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
5075 gas_assert (!mips_opts.micromips);
5077 int tmp = va_arg (args, int);
5079 INSERT_OPERAND (0, RT, insn, tmp);
5080 INSERT_OPERAND (0, RD, insn, tmp);
5086 gas_assert (!mips_opts.micromips);
5087 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
5094 INSERT_OPERAND (mips_opts.micromips,
5095 SHAMT, insn, va_arg (args, int));
5099 gas_assert (!mips_opts.micromips);
5100 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
5104 gas_assert (!mips_opts.micromips);
5105 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
5109 gas_assert (!mips_opts.micromips);
5110 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
5114 gas_assert (!mips_opts.micromips);
5115 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
5122 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5127 macro_read_relocs (&args, r);
5128 gas_assert (*r == BFD_RELOC_GPREL16
5129 || *r == BFD_RELOC_MIPS_HIGHER
5130 || *r == BFD_RELOC_HI16_S
5131 || *r == BFD_RELOC_LO16
5132 || *r == BFD_RELOC_MIPS_GOT_OFST);
5136 macro_read_relocs (&args, r);
5140 macro_read_relocs (&args, r);
5141 gas_assert (ep != NULL
5142 && (ep->X_op == O_constant
5143 || (ep->X_op == O_symbol
5144 && (*r == BFD_RELOC_MIPS_HIGHEST
5145 || *r == BFD_RELOC_HI16_S
5146 || *r == BFD_RELOC_HI16
5147 || *r == BFD_RELOC_GPREL16
5148 || *r == BFD_RELOC_MIPS_GOT_HI16
5149 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5153 gas_assert (ep != NULL);
5156 * This allows macro() to pass an immediate expression for
5157 * creating short branches without creating a symbol.
5159 * We don't allow branch relaxation for these branches, as
5160 * they should only appear in ".set nomacro" anyway.
5162 if (ep->X_op == O_constant)
5164 /* For microMIPS we always use relocations for branches.
5165 So we should not resolve immediate values. */
5166 gas_assert (!mips_opts.micromips);
5168 if ((ep->X_add_number & 3) != 0)
5169 as_bad (_("branch to misaligned address (0x%lx)"),
5170 (unsigned long) ep->X_add_number);
5171 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5172 as_bad (_("branch address range overflow (0x%lx)"),
5173 (unsigned long) ep->X_add_number);
5174 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5178 *r = BFD_RELOC_16_PCREL_S2;
5182 gas_assert (ep != NULL);
5183 *r = BFD_RELOC_MIPS_JMP;
5187 gas_assert (!mips_opts.micromips);
5188 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5192 INSERT_OPERAND (mips_opts.micromips,
5193 CACHE, insn, va_arg (args, unsigned long));
5197 gas_assert (mips_opts.micromips);
5198 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5202 gas_assert (mips_opts.micromips);
5203 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5207 INSERT_OPERAND (mips_opts.micromips,
5208 3BITPOS, insn, va_arg (args, unsigned int));
5212 INSERT_OPERAND (mips_opts.micromips,
5213 OFFSET12, insn, va_arg (args, unsigned long));
5217 gas_assert (mips_opts.micromips);
5218 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5221 case 'm': /* Opcode extension character. */
5222 gas_assert (mips_opts.micromips);
5226 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5230 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5234 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5248 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5250 append_insn (&insn, ep, r, TRUE);
5254 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5257 struct mips_opcode *mo;
5258 struct mips_cl_insn insn;
5259 bfd_reloc_code_real_type r[3]
5260 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5262 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5264 gas_assert (strcmp (name, mo->name) == 0);
5266 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5269 gas_assert (mo->name);
5270 gas_assert (strcmp (name, mo->name) == 0);
5273 create_insn (&insn, mo);
5291 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5296 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5300 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5304 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5314 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5321 regno = va_arg (*args, int);
5322 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5323 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5346 gas_assert (ep != NULL);
5348 if (ep->X_op != O_constant)
5349 *r = (int) BFD_RELOC_UNUSED + c;
5350 else if (calculate_reloc (*r, ep->X_add_number, &value))
5352 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
5354 *r = BFD_RELOC_UNUSED;
5360 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5367 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5369 append_insn (&insn, ep, r, TRUE);
5373 * Sign-extend 32-bit mode constants that have bit 31 set and all
5374 * higher bits unset.
5377 normalize_constant_expr (expressionS *ex)
5379 if (ex->X_op == O_constant
5380 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5381 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5386 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5387 * all higher bits unset.
5390 normalize_address_expr (expressionS *ex)
5392 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5393 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5394 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5395 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5400 * Generate a "jalr" instruction with a relocation hint to the called
5401 * function. This occurs in NewABI PIC code.
5404 macro_build_jalr (expressionS *ep, int cprestore)
5406 static const bfd_reloc_code_real_type jalr_relocs[2]
5407 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5408 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5412 if (MIPS_JALR_HINT_P (ep))
5417 if (mips_opts.micromips)
5419 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5420 if (MIPS_JALR_HINT_P (ep)
5421 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5422 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5424 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5427 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5428 if (MIPS_JALR_HINT_P (ep))
5429 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5433 * Generate a "lui" instruction.
5436 macro_build_lui (expressionS *ep, int regnum)
5438 gas_assert (! mips_opts.mips16);
5440 if (ep->X_op != O_constant)
5442 gas_assert (ep->X_op == O_symbol);
5443 /* _gp_disp is a special case, used from s_cpload.
5444 __gnu_local_gp is used if mips_no_shared. */
5445 gas_assert (mips_pic == NO_PIC
5447 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5448 || (! mips_in_shared
5449 && strcmp (S_GET_NAME (ep->X_add_symbol),
5450 "__gnu_local_gp") == 0));
5453 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5456 /* Generate a sequence of instructions to do a load or store from a constant
5457 offset off of a base register (breg) into/from a target register (treg),
5458 using AT if necessary. */
5460 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5461 int treg, int breg, int dbl)
5463 gas_assert (ep->X_op == O_constant);
5465 /* Sign-extending 32-bit constants makes their handling easier. */
5467 normalize_constant_expr (ep);
5469 /* Right now, this routine can only handle signed 32-bit constants. */
5470 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5471 as_warn (_("operand overflow"));
5473 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5475 /* Signed 16-bit offset will fit in the op. Easy! */
5476 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5480 /* 32-bit offset, need multiple instructions and AT, like:
5481 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5482 addu $tempreg,$tempreg,$breg
5483 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5484 to handle the complete offset. */
5485 macro_build_lui (ep, AT);
5486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5487 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5490 as_bad (_("Macro used $at after \".set noat\""));
5495 * Generates code to set the $at register to true (one)
5496 * if reg is less than the immediate expression.
5499 set_at (int reg, int unsignedp)
5501 if (imm_expr.X_op == O_constant
5502 && imm_expr.X_add_number >= -0x8000
5503 && imm_expr.X_add_number < 0x8000)
5504 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5505 AT, reg, BFD_RELOC_LO16);
5508 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5509 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5513 /* Warn if an expression is not a constant. */
5516 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5518 if (ex->X_op == O_big)
5519 as_bad (_("unsupported large constant"));
5520 else if (ex->X_op != O_constant)
5521 as_bad (_("Instruction %s requires absolute expression"),
5524 if (HAVE_32BIT_GPRS)
5525 normalize_constant_expr (ex);
5528 /* Count the leading zeroes by performing a binary chop. This is a
5529 bulky bit of source, but performance is a LOT better for the
5530 majority of values than a simple loop to count the bits:
5531 for (lcnt = 0; (lcnt < 32); lcnt++)
5532 if ((v) & (1 << (31 - lcnt)))
5534 However it is not code size friendly, and the gain will drop a bit
5535 on certain cached systems.
5537 #define COUNT_TOP_ZEROES(v) \
5538 (((v) & ~0xffff) == 0 \
5539 ? ((v) & ~0xff) == 0 \
5540 ? ((v) & ~0xf) == 0 \
5541 ? ((v) & ~0x3) == 0 \
5542 ? ((v) & ~0x1) == 0 \
5547 : ((v) & ~0x7) == 0 \
5550 : ((v) & ~0x3f) == 0 \
5551 ? ((v) & ~0x1f) == 0 \
5554 : ((v) & ~0x7f) == 0 \
5557 : ((v) & ~0xfff) == 0 \
5558 ? ((v) & ~0x3ff) == 0 \
5559 ? ((v) & ~0x1ff) == 0 \
5562 : ((v) & ~0x7ff) == 0 \
5565 : ((v) & ~0x3fff) == 0 \
5566 ? ((v) & ~0x1fff) == 0 \
5569 : ((v) & ~0x7fff) == 0 \
5572 : ((v) & ~0xffffff) == 0 \
5573 ? ((v) & ~0xfffff) == 0 \
5574 ? ((v) & ~0x3ffff) == 0 \
5575 ? ((v) & ~0x1ffff) == 0 \
5578 : ((v) & ~0x7ffff) == 0 \
5581 : ((v) & ~0x3fffff) == 0 \
5582 ? ((v) & ~0x1fffff) == 0 \
5585 : ((v) & ~0x7fffff) == 0 \
5588 : ((v) & ~0xfffffff) == 0 \
5589 ? ((v) & ~0x3ffffff) == 0 \
5590 ? ((v) & ~0x1ffffff) == 0 \
5593 : ((v) & ~0x7ffffff) == 0 \
5596 : ((v) & ~0x3fffffff) == 0 \
5597 ? ((v) & ~0x1fffffff) == 0 \
5600 : ((v) & ~0x7fffffff) == 0 \
5605 * This routine generates the least number of instructions necessary to load
5606 * an absolute expression value into a register.
5609 load_register (int reg, expressionS *ep, int dbl)
5612 expressionS hi32, lo32;
5614 if (ep->X_op != O_big)
5616 gas_assert (ep->X_op == O_constant);
5618 /* Sign-extending 32-bit constants makes their handling easier. */
5620 normalize_constant_expr (ep);
5622 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5624 /* We can handle 16 bit signed values with an addiu to
5625 $zero. No need to ever use daddiu here, since $zero and
5626 the result are always correct in 32 bit mode. */
5627 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5630 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5632 /* We can handle 16 bit unsigned values with an ori to
5634 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5637 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5639 /* 32 bit values require an lui. */
5640 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5641 if ((ep->X_add_number & 0xffff) != 0)
5642 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5647 /* The value is larger than 32 bits. */
5649 if (!dbl || HAVE_32BIT_GPRS)
5653 sprintf_vma (value, ep->X_add_number);
5654 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5655 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5659 if (ep->X_op != O_big)
5662 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5663 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5664 hi32.X_add_number &= 0xffffffff;
5666 lo32.X_add_number &= 0xffffffff;
5670 gas_assert (ep->X_add_number > 2);
5671 if (ep->X_add_number == 3)
5672 generic_bignum[3] = 0;
5673 else if (ep->X_add_number > 4)
5674 as_bad (_("Number larger than 64 bits"));
5675 lo32.X_op = O_constant;
5676 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5677 hi32.X_op = O_constant;
5678 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5681 if (hi32.X_add_number == 0)
5686 unsigned long hi, lo;
5688 if (hi32.X_add_number == (offsetT) 0xffffffff)
5690 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5692 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5695 if (lo32.X_add_number & 0x80000000)
5697 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5698 if (lo32.X_add_number & 0xffff)
5699 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5704 /* Check for 16bit shifted constant. We know that hi32 is
5705 non-zero, so start the mask on the first bit of the hi32
5710 unsigned long himask, lomask;
5714 himask = 0xffff >> (32 - shift);
5715 lomask = (0xffff << shift) & 0xffffffff;
5719 himask = 0xffff << (shift - 32);
5722 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5723 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5727 tmp.X_op = O_constant;
5729 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5730 | (lo32.X_add_number >> shift));
5732 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5733 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5734 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5735 reg, reg, (shift >= 32) ? shift - 32 : shift);
5740 while (shift <= (64 - 16));
5742 /* Find the bit number of the lowest one bit, and store the
5743 shifted value in hi/lo. */
5744 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5745 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5749 while ((lo & 1) == 0)
5754 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5760 while ((hi & 1) == 0)
5769 /* Optimize if the shifted value is a (power of 2) - 1. */
5770 if ((hi == 0 && ((lo + 1) & lo) == 0)
5771 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5773 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5778 /* This instruction will set the register to be all
5780 tmp.X_op = O_constant;
5781 tmp.X_add_number = (offsetT) -1;
5782 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5786 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5787 reg, reg, (bit >= 32) ? bit - 32 : bit);
5789 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
5790 reg, reg, (shift >= 32) ? shift - 32 : shift);
5795 /* Sign extend hi32 before calling load_register, because we can
5796 generally get better code when we load a sign extended value. */
5797 if ((hi32.X_add_number & 0x80000000) != 0)
5798 hi32.X_add_number |= ~(offsetT) 0xffffffff;
5799 load_register (reg, &hi32, 0);
5802 if ((lo32.X_add_number & 0xffff0000) == 0)
5806 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
5814 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
5816 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5817 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
5823 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
5827 mid16.X_add_number >>= 16;
5828 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5829 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5832 if ((lo32.X_add_number & 0xffff) != 0)
5833 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5837 load_delay_nop (void)
5839 if (!gpr_interlocks)
5840 macro_build (NULL, "nop", "");
5843 /* Load an address into a register. */
5846 load_address (int reg, expressionS *ep, int *used_at)
5848 if (ep->X_op != O_constant
5849 && ep->X_op != O_symbol)
5851 as_bad (_("expression too complex"));
5852 ep->X_op = O_constant;
5855 if (ep->X_op == O_constant)
5857 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
5861 if (mips_pic == NO_PIC)
5863 /* If this is a reference to a GP relative symbol, we want
5864 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
5866 lui $reg,<sym> (BFD_RELOC_HI16_S)
5867 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5868 If we have an addend, we always use the latter form.
5870 With 64bit address space and a usable $at we want
5871 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5872 lui $at,<sym> (BFD_RELOC_HI16_S)
5873 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5874 daddiu $at,<sym> (BFD_RELOC_LO16)
5878 If $at is already in use, we use a path which is suboptimal
5879 on superscalar processors.
5880 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5881 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5883 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
5885 daddiu $reg,<sym> (BFD_RELOC_LO16)
5887 For GP relative symbols in 64bit address space we can use
5888 the same sequence as in 32bit address space. */
5889 if (HAVE_64BIT_SYMBOLS)
5891 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5892 && !nopic_need_relax (ep->X_add_symbol, 1))
5894 relax_start (ep->X_add_symbol);
5895 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5896 mips_gp_register, BFD_RELOC_GPREL16);
5900 if (*used_at == 0 && mips_opts.at)
5902 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5903 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
5904 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5905 BFD_RELOC_MIPS_HIGHER);
5906 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
5907 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
5908 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
5913 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5914 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5915 BFD_RELOC_MIPS_HIGHER);
5916 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5917 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
5918 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5919 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
5922 if (mips_relax.sequence)
5927 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5928 && !nopic_need_relax (ep->X_add_symbol, 1))
5930 relax_start (ep->X_add_symbol);
5931 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5932 mips_gp_register, BFD_RELOC_GPREL16);
5935 macro_build_lui (ep, reg);
5936 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
5937 reg, reg, BFD_RELOC_LO16);
5938 if (mips_relax.sequence)
5942 else if (!mips_big_got)
5946 /* If this is a reference to an external symbol, we want
5947 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5949 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5951 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5952 If there is a constant, it must be added in after.
5954 If we have NewABI, we want
5955 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5956 unless we're referencing a global symbol with a non-zero
5957 offset, in which case cst must be added separately. */
5960 if (ep->X_add_number)
5962 ex.X_add_number = ep->X_add_number;
5963 ep->X_add_number = 0;
5964 relax_start (ep->X_add_symbol);
5965 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5966 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5967 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5968 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5969 ex.X_op = O_constant;
5970 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5971 reg, reg, BFD_RELOC_LO16);
5972 ep->X_add_number = ex.X_add_number;
5975 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5976 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5977 if (mips_relax.sequence)
5982 ex.X_add_number = ep->X_add_number;
5983 ep->X_add_number = 0;
5984 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5985 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5987 relax_start (ep->X_add_symbol);
5989 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5993 if (ex.X_add_number != 0)
5995 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5996 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5997 ex.X_op = O_constant;
5998 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5999 reg, reg, BFD_RELOC_LO16);
6003 else if (mips_big_got)
6007 /* This is the large GOT case. If this is a reference to an
6008 external symbol, we want
6009 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6011 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
6013 Otherwise, for a reference to a local symbol in old ABI, we want
6014 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6016 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6017 If there is a constant, it must be added in after.
6019 In the NewABI, for local symbols, with or without offsets, we want:
6020 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6021 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6025 ex.X_add_number = ep->X_add_number;
6026 ep->X_add_number = 0;
6027 relax_start (ep->X_add_symbol);
6028 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6029 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6030 reg, reg, mips_gp_register);
6031 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6032 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6033 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6034 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6035 else if (ex.X_add_number)
6037 ex.X_op = O_constant;
6038 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6042 ep->X_add_number = ex.X_add_number;
6044 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6045 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6046 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6047 BFD_RELOC_MIPS_GOT_OFST);
6052 ex.X_add_number = ep->X_add_number;
6053 ep->X_add_number = 0;
6054 relax_start (ep->X_add_symbol);
6055 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6056 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6057 reg, reg, mips_gp_register);
6058 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6059 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6061 if (reg_needs_delay (mips_gp_register))
6063 /* We need a nop before loading from $gp. This special
6064 check is required because the lui which starts the main
6065 instruction stream does not refer to $gp, and so will not
6066 insert the nop which may be required. */
6067 macro_build (NULL, "nop", "");
6069 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6070 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6072 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6076 if (ex.X_add_number != 0)
6078 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6079 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6080 ex.X_op = O_constant;
6081 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6089 if (!mips_opts.at && *used_at == 1)
6090 as_bad (_("Macro used $at after \".set noat\""));
6093 /* Move the contents of register SOURCE into register DEST. */
6096 move_register (int dest, int source)
6098 /* Prefer to use a 16-bit microMIPS instruction unless the previous
6099 instruction specifically requires a 32-bit one. */
6100 if (mips_opts.micromips
6101 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
6102 macro_build (NULL, "move", "mp,mj", dest, source);
6104 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
6108 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
6109 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
6110 The two alternatives are:
6112 Global symbol Local sybmol
6113 ------------- ------------
6114 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
6116 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
6118 load_got_offset emits the first instruction and add_got_offset
6119 emits the second for a 16-bit offset or add_got_offset_hilo emits
6120 a sequence to add a 32-bit offset using a scratch register. */
6123 load_got_offset (int dest, expressionS *local)
6128 global.X_add_number = 0;
6130 relax_start (local->X_add_symbol);
6131 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6132 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6134 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6135 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6140 add_got_offset (int dest, expressionS *local)
6144 global.X_op = O_constant;
6145 global.X_op_symbol = NULL;
6146 global.X_add_symbol = NULL;
6147 global.X_add_number = local->X_add_number;
6149 relax_start (local->X_add_symbol);
6150 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6151 dest, dest, BFD_RELOC_LO16);
6153 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6158 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6161 int hold_mips_optimize;
6163 global.X_op = O_constant;
6164 global.X_op_symbol = NULL;
6165 global.X_add_symbol = NULL;
6166 global.X_add_number = local->X_add_number;
6168 relax_start (local->X_add_symbol);
6169 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6171 /* Set mips_optimize around the lui instruction to avoid
6172 inserting an unnecessary nop after the lw. */
6173 hold_mips_optimize = mips_optimize;
6175 macro_build_lui (&global, tmp);
6176 mips_optimize = hold_mips_optimize;
6177 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6180 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6183 /* Emit a sequence of instructions to emulate a branch likely operation.
6184 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6185 is its complementing branch with the original condition negated.
6186 CALL is set if the original branch specified the link operation.
6187 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6189 Code like this is produced in the noreorder mode:
6194 delay slot (executed only if branch taken)
6202 delay slot (executed only if branch taken)
6205 In the reorder mode the delay slot would be filled with a nop anyway,
6206 so code produced is simply:
6211 This function is used when producing code for the microMIPS ASE that
6212 does not implement branch likely instructions in hardware. */
6215 macro_build_branch_likely (const char *br, const char *brneg,
6216 int call, expressionS *ep, const char *fmt,
6217 unsigned int sreg, unsigned int treg)
6219 int noreorder = mips_opts.noreorder;
6222 gas_assert (mips_opts.micromips);
6226 micromips_label_expr (&expr1);
6227 macro_build (&expr1, brneg, fmt, sreg, treg);
6228 macro_build (NULL, "nop", "");
6229 macro_build (ep, call ? "bal" : "b", "p");
6231 /* Set to true so that append_insn adds a label. */
6232 emit_branch_likely_macro = TRUE;
6236 macro_build (ep, br, fmt, sreg, treg);
6237 macro_build (NULL, "nop", "");
6242 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6243 the condition code tested. EP specifies the branch target. */
6246 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6273 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6276 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6277 the register tested. EP specifies the branch target. */
6280 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6282 const char *brneg = NULL;
6292 br = mips_opts.micromips ? "bgez" : "bgezl";
6296 gas_assert (mips_opts.micromips);
6305 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6312 br = mips_opts.micromips ? "blez" : "blezl";
6319 br = mips_opts.micromips ? "bltz" : "bltzl";
6323 gas_assert (mips_opts.micromips);
6331 if (mips_opts.micromips && brneg)
6332 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6334 macro_build (ep, br, "s,p", sreg);
6337 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6338 TREG as the registers tested. EP specifies the branch target. */
6341 macro_build_branch_rsrt (int type, expressionS *ep,
6342 unsigned int sreg, unsigned int treg)
6344 const char *brneg = NULL;
6356 br = mips_opts.micromips ? "beq" : "beql";
6365 br = mips_opts.micromips ? "bne" : "bnel";
6371 if (mips_opts.micromips && brneg)
6372 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6374 macro_build (ep, br, "s,t,p", sreg, treg);
6379 * This routine implements the seemingly endless macro or synthesized
6380 * instructions and addressing modes in the mips assembly language. Many
6381 * of these macros are simple and are similar to each other. These could
6382 * probably be handled by some kind of table or grammar approach instead of
6383 * this verbose method. Others are not simple macros but are more like
6384 * optimizing code generation.
6385 * One interesting optimization is when several store macros appear
6386 * consecutively that would load AT with the upper half of the same address.
6387 * The ensuing load upper instructions are ommited. This implies some kind
6388 * of global optimization. We currently only optimize within a single macro.
6389 * For many of the load and store macros if the address is specified as a
6390 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6391 * first load register 'at' with zero and use it as the base register. The
6392 * mips assembler simply uses register $zero. Just one tiny optimization
6396 macro (struct mips_cl_insn *ip)
6398 unsigned int treg, sreg, dreg, breg;
6399 unsigned int tempreg;
6402 expressionS label_expr;
6421 bfd_reloc_code_real_type r;
6422 int hold_mips_optimize;
6424 gas_assert (! mips_opts.mips16);
6426 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6427 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6428 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6429 mask = ip->insn_mo->mask;
6431 label_expr.X_op = O_constant;
6432 label_expr.X_op_symbol = NULL;
6433 label_expr.X_add_symbol = NULL;
6434 label_expr.X_add_number = 0;
6436 expr1.X_op = O_constant;
6437 expr1.X_op_symbol = NULL;
6438 expr1.X_add_symbol = NULL;
6439 expr1.X_add_number = 1;
6454 if (mips_opts.micromips)
6455 micromips_label_expr (&label_expr);
6457 label_expr.X_add_number = 8;
6458 macro_build (&label_expr, "bgez", "s,p", sreg);
6460 macro_build (NULL, "nop", "");
6462 move_register (dreg, sreg);
6463 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6464 if (mips_opts.micromips)
6465 micromips_add_label ();
6482 if (!mips_opts.micromips)
6484 if (imm_expr.X_op == O_constant
6485 && imm_expr.X_add_number >= -0x200
6486 && imm_expr.X_add_number < 0x200)
6488 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6497 if (imm_expr.X_op == O_constant
6498 && imm_expr.X_add_number >= -0x8000
6499 && imm_expr.X_add_number < 0x8000)
6501 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6506 load_register (AT, &imm_expr, dbl);
6507 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6526 if (imm_expr.X_op == O_constant
6527 && imm_expr.X_add_number >= 0
6528 && imm_expr.X_add_number < 0x10000)
6530 if (mask != M_NOR_I)
6531 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6534 macro_build (&imm_expr, "ori", "t,r,i",
6535 treg, sreg, BFD_RELOC_LO16);
6536 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6542 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6543 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6547 switch (imm_expr.X_add_number)
6550 macro_build (NULL, "nop", "");
6553 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6557 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6558 (int) imm_expr.X_add_number);
6561 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6562 (unsigned long) imm_expr.X_add_number);
6571 gas_assert (mips_opts.micromips);
6572 macro_build_branch_ccl (mask, &offset_expr,
6573 EXTRACT_OPERAND (1, BCC, *ip));
6580 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6586 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6591 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6598 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6600 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6604 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6605 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6606 &offset_expr, AT, ZERO);
6616 macro_build_branch_rs (mask, &offset_expr, sreg);
6622 /* Check for > max integer. */
6623 maxnum = 0x7fffffff;
6624 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6631 if (imm_expr.X_op == O_constant
6632 && imm_expr.X_add_number >= maxnum
6633 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6636 /* Result is always false. */
6638 macro_build (NULL, "nop", "");
6640 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6643 if (imm_expr.X_op != O_constant)
6644 as_bad (_("Unsupported large constant"));
6645 ++imm_expr.X_add_number;
6649 if (mask == M_BGEL_I)
6651 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6653 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6654 &offset_expr, sreg);
6657 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6659 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6660 &offset_expr, sreg);
6663 maxnum = 0x7fffffff;
6664 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6671 maxnum = - maxnum - 1;
6672 if (imm_expr.X_op == O_constant
6673 && imm_expr.X_add_number <= maxnum
6674 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6677 /* result is always true */
6678 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6679 macro_build (&offset_expr, "b", "p");
6684 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6685 &offset_expr, AT, ZERO);
6694 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6695 &offset_expr, ZERO, treg);
6699 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6700 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6701 &offset_expr, AT, ZERO);
6710 && imm_expr.X_op == O_constant
6711 && imm_expr.X_add_number == -1))
6713 if (imm_expr.X_op != O_constant)
6714 as_bad (_("Unsupported large constant"));
6715 ++imm_expr.X_add_number;
6719 if (mask == M_BGEUL_I)
6721 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6723 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6724 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6725 &offset_expr, sreg, ZERO);
6730 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6731 &offset_expr, AT, ZERO);
6739 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6741 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6745 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6746 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6747 &offset_expr, AT, ZERO);
6755 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6756 &offset_expr, sreg, ZERO);
6762 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6763 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6764 &offset_expr, AT, ZERO);
6772 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6774 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6778 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6779 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6780 &offset_expr, AT, ZERO);
6787 maxnum = 0x7fffffff;
6788 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6795 if (imm_expr.X_op == O_constant
6796 && imm_expr.X_add_number >= maxnum
6797 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6799 if (imm_expr.X_op != O_constant)
6800 as_bad (_("Unsupported large constant"));
6801 ++imm_expr.X_add_number;
6805 if (mask == M_BLTL_I)
6807 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6808 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6809 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6810 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6815 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6816 &offset_expr, AT, ZERO);
6824 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6825 &offset_expr, sreg, ZERO);
6831 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6832 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6833 &offset_expr, AT, ZERO);
6842 && imm_expr.X_op == O_constant
6843 && imm_expr.X_add_number == -1))
6845 if (imm_expr.X_op != O_constant)
6846 as_bad (_("Unsupported large constant"));
6847 ++imm_expr.X_add_number;
6851 if (mask == M_BLTUL_I)
6853 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6855 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6856 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6857 &offset_expr, sreg, ZERO);
6862 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6863 &offset_expr, AT, ZERO);
6871 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6873 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
6877 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6878 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6879 &offset_expr, AT, ZERO);
6889 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6890 &offset_expr, ZERO, treg);
6894 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6895 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6896 &offset_expr, AT, ZERO);
6902 /* Use unsigned arithmetic. */
6906 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6908 as_bad (_("Unsupported large constant"));
6913 pos = imm_expr.X_add_number;
6914 size = imm2_expr.X_add_number;
6919 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6922 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6924 as_bad (_("Improper extract size (%lu, position %lu)"),
6925 (unsigned long) size, (unsigned long) pos);
6929 if (size <= 32 && pos < 32)
6934 else if (size <= 32)
6944 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6951 /* Use unsigned arithmetic. */
6955 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6957 as_bad (_("Unsupported large constant"));
6962 pos = imm_expr.X_add_number;
6963 size = imm2_expr.X_add_number;
6968 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6971 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6973 as_bad (_("Improper insert size (%lu, position %lu)"),
6974 (unsigned long) size, (unsigned long) pos);
6978 if (pos < 32 && (pos + size - 1) < 32)
6993 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6994 (int) (pos + size - 1));
7010 as_warn (_("Divide by zero."));
7012 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7014 macro_build (NULL, "break", BRK_FMT, 7);
7021 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7022 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7026 if (mips_opts.micromips)
7027 micromips_label_expr (&label_expr);
7029 label_expr.X_add_number = 8;
7030 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7031 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7032 macro_build (NULL, "break", BRK_FMT, 7);
7033 if (mips_opts.micromips)
7034 micromips_add_label ();
7036 expr1.X_add_number = -1;
7038 load_register (AT, &expr1, dbl);
7039 if (mips_opts.micromips)
7040 micromips_label_expr (&label_expr);
7042 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
7043 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
7046 expr1.X_add_number = 1;
7047 load_register (AT, &expr1, dbl);
7048 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
7052 expr1.X_add_number = 0x80000000;
7053 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
7057 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
7058 /* We want to close the noreorder block as soon as possible, so
7059 that later insns are available for delay slot filling. */
7064 if (mips_opts.micromips)
7065 micromips_label_expr (&label_expr);
7067 label_expr.X_add_number = 8;
7068 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
7069 macro_build (NULL, "nop", "");
7071 /* We want to close the noreorder block as soon as possible, so
7072 that later insns are available for delay slot filling. */
7075 macro_build (NULL, "break", BRK_FMT, 6);
7077 if (mips_opts.micromips)
7078 micromips_add_label ();
7079 macro_build (NULL, s, MFHL_FMT, dreg);
7118 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7120 as_warn (_("Divide by zero."));
7122 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7124 macro_build (NULL, "break", BRK_FMT, 7);
7127 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7129 if (strcmp (s2, "mflo") == 0)
7130 move_register (dreg, sreg);
7132 move_register (dreg, ZERO);
7135 if (imm_expr.X_op == O_constant
7136 && imm_expr.X_add_number == -1
7137 && s[strlen (s) - 1] != 'u')
7139 if (strcmp (s2, "mflo") == 0)
7141 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7144 move_register (dreg, ZERO);
7149 load_register (AT, &imm_expr, dbl);
7150 macro_build (NULL, s, "z,s,t", sreg, AT);
7151 macro_build (NULL, s2, MFHL_FMT, dreg);
7173 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7174 macro_build (NULL, s, "z,s,t", sreg, treg);
7175 /* We want to close the noreorder block as soon as possible, so
7176 that later insns are available for delay slot filling. */
7181 if (mips_opts.micromips)
7182 micromips_label_expr (&label_expr);
7184 label_expr.X_add_number = 8;
7185 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7186 macro_build (NULL, s, "z,s,t", sreg, treg);
7188 /* We want to close the noreorder block as soon as possible, so
7189 that later insns are available for delay slot filling. */
7191 macro_build (NULL, "break", BRK_FMT, 7);
7192 if (mips_opts.micromips)
7193 micromips_add_label ();
7195 macro_build (NULL, s2, MFHL_FMT, dreg);
7207 /* Load the address of a symbol into a register. If breg is not
7208 zero, we then add a base register to it. */
7210 if (dbl && HAVE_32BIT_GPRS)
7211 as_warn (_("dla used to load 32-bit register"));
7213 if (!dbl && HAVE_64BIT_OBJECTS)
7214 as_warn (_("la used to load 64-bit address"));
7216 if (offset_expr.X_op == O_constant
7217 && offset_expr.X_add_number >= -0x8000
7218 && offset_expr.X_add_number < 0x8000)
7220 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7221 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7225 if (mips_opts.at && (treg == breg))
7235 if (offset_expr.X_op != O_symbol
7236 && offset_expr.X_op != O_constant)
7238 as_bad (_("Expression too complex"));
7239 offset_expr.X_op = O_constant;
7242 if (offset_expr.X_op == O_constant)
7243 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7244 else if (mips_pic == NO_PIC)
7246 /* If this is a reference to a GP relative symbol, we want
7247 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7249 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7250 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7251 If we have a constant, we need two instructions anyhow,
7252 so we may as well always use the latter form.
7254 With 64bit address space and a usable $at we want
7255 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7256 lui $at,<sym> (BFD_RELOC_HI16_S)
7257 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7258 daddiu $at,<sym> (BFD_RELOC_LO16)
7260 daddu $tempreg,$tempreg,$at
7262 If $at is already in use, we use a path which is suboptimal
7263 on superscalar processors.
7264 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7265 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7267 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7269 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7271 For GP relative symbols in 64bit address space we can use
7272 the same sequence as in 32bit address space. */
7273 if (HAVE_64BIT_SYMBOLS)
7275 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7276 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7278 relax_start (offset_expr.X_add_symbol);
7279 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7280 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7284 if (used_at == 0 && mips_opts.at)
7286 macro_build (&offset_expr, "lui", LUI_FMT,
7287 tempreg, BFD_RELOC_MIPS_HIGHEST);
7288 macro_build (&offset_expr, "lui", LUI_FMT,
7289 AT, BFD_RELOC_HI16_S);
7290 macro_build (&offset_expr, "daddiu", "t,r,j",
7291 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7292 macro_build (&offset_expr, "daddiu", "t,r,j",
7293 AT, AT, BFD_RELOC_LO16);
7294 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7295 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7300 macro_build (&offset_expr, "lui", LUI_FMT,
7301 tempreg, BFD_RELOC_MIPS_HIGHEST);
7302 macro_build (&offset_expr, "daddiu", "t,r,j",
7303 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7304 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7305 macro_build (&offset_expr, "daddiu", "t,r,j",
7306 tempreg, tempreg, BFD_RELOC_HI16_S);
7307 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7308 macro_build (&offset_expr, "daddiu", "t,r,j",
7309 tempreg, tempreg, BFD_RELOC_LO16);
7312 if (mips_relax.sequence)
7317 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7318 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7320 relax_start (offset_expr.X_add_symbol);
7321 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7322 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7325 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7326 as_bad (_("Offset too large"));
7327 macro_build_lui (&offset_expr, tempreg);
7328 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7329 tempreg, tempreg, BFD_RELOC_LO16);
7330 if (mips_relax.sequence)
7334 else if (!mips_big_got && !HAVE_NEWABI)
7336 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7338 /* If this is a reference to an external symbol, and there
7339 is no constant, we want
7340 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7341 or for lca or if tempreg is PIC_CALL_REG
7342 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7343 For a local symbol, we want
7344 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7346 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7348 If we have a small constant, and this is a reference to
7349 an external symbol, we want
7350 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7352 addiu $tempreg,$tempreg,<constant>
7353 For a local symbol, we want the same instruction
7354 sequence, but we output a BFD_RELOC_LO16 reloc on the
7357 If we have a large constant, and this is a reference to
7358 an external symbol, we want
7359 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7360 lui $at,<hiconstant>
7361 addiu $at,$at,<loconstant>
7362 addu $tempreg,$tempreg,$at
7363 For a local symbol, we want the same instruction
7364 sequence, but we output a BFD_RELOC_LO16 reloc on the
7368 if (offset_expr.X_add_number == 0)
7370 if (mips_pic == SVR4_PIC
7372 && (call || tempreg == PIC_CALL_REG))
7373 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7375 relax_start (offset_expr.X_add_symbol);
7376 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7377 lw_reloc_type, mips_gp_register);
7380 /* We're going to put in an addu instruction using
7381 tempreg, so we may as well insert the nop right
7386 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7387 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7389 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7390 tempreg, tempreg, BFD_RELOC_LO16);
7392 /* FIXME: If breg == 0, and the next instruction uses
7393 $tempreg, then if this variant case is used an extra
7394 nop will be generated. */
7396 else if (offset_expr.X_add_number >= -0x8000
7397 && offset_expr.X_add_number < 0x8000)
7399 load_got_offset (tempreg, &offset_expr);
7401 add_got_offset (tempreg, &offset_expr);
7405 expr1.X_add_number = offset_expr.X_add_number;
7406 offset_expr.X_add_number =
7407 SEXT_16BIT (offset_expr.X_add_number);
7408 load_got_offset (tempreg, &offset_expr);
7409 offset_expr.X_add_number = expr1.X_add_number;
7410 /* If we are going to add in a base register, and the
7411 target register and the base register are the same,
7412 then we are using AT as a temporary register. Since
7413 we want to load the constant into AT, we add our
7414 current AT (from the global offset table) and the
7415 register into the register now, and pretend we were
7416 not using a base register. */
7420 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7425 add_got_offset_hilo (tempreg, &offset_expr, AT);
7429 else if (!mips_big_got && HAVE_NEWABI)
7431 int add_breg_early = 0;
7433 /* If this is a reference to an external, and there is no
7434 constant, or local symbol (*), with or without a
7436 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7437 or for lca or if tempreg is PIC_CALL_REG
7438 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7440 If we have a small constant, and this is a reference to
7441 an external symbol, we want
7442 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7443 addiu $tempreg,$tempreg,<constant>
7445 If we have a large constant, and this is a reference to
7446 an external symbol, we want
7447 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7448 lui $at,<hiconstant>
7449 addiu $at,$at,<loconstant>
7450 addu $tempreg,$tempreg,$at
7452 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7453 local symbols, even though it introduces an additional
7456 if (offset_expr.X_add_number)
7458 expr1.X_add_number = offset_expr.X_add_number;
7459 offset_expr.X_add_number = 0;
7461 relax_start (offset_expr.X_add_symbol);
7462 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7463 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7465 if (expr1.X_add_number >= -0x8000
7466 && expr1.X_add_number < 0x8000)
7468 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7469 tempreg, tempreg, BFD_RELOC_LO16);
7471 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7473 /* If we are going to add in a base register, and the
7474 target register and the base register are the same,
7475 then we are using AT as a temporary register. Since
7476 we want to load the constant into AT, we add our
7477 current AT (from the global offset table) and the
7478 register into the register now, and pretend we were
7479 not using a base register. */
7484 gas_assert (tempreg == AT);
7485 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7491 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7492 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7498 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7501 offset_expr.X_add_number = expr1.X_add_number;
7503 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7504 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7507 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7508 treg, tempreg, breg);
7514 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7516 relax_start (offset_expr.X_add_symbol);
7517 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7518 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7520 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7521 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7526 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7527 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7530 else if (mips_big_got && !HAVE_NEWABI)
7533 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7534 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7535 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7537 /* This is the large GOT case. If this is a reference to an
7538 external symbol, and there is no constant, we want
7539 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7540 addu $tempreg,$tempreg,$gp
7541 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7542 or for lca or if tempreg is PIC_CALL_REG
7543 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7544 addu $tempreg,$tempreg,$gp
7545 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7546 For a local symbol, we want
7547 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7549 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7551 If we have a small constant, and this is a reference to
7552 an external symbol, we want
7553 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7554 addu $tempreg,$tempreg,$gp
7555 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7557 addiu $tempreg,$tempreg,<constant>
7558 For a local symbol, we want
7559 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7561 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7563 If we have a large constant, and this is a reference to
7564 an external symbol, we want
7565 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7566 addu $tempreg,$tempreg,$gp
7567 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7568 lui $at,<hiconstant>
7569 addiu $at,$at,<loconstant>
7570 addu $tempreg,$tempreg,$at
7571 For a local symbol, we want
7572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7573 lui $at,<hiconstant>
7574 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7575 addu $tempreg,$tempreg,$at
7578 expr1.X_add_number = offset_expr.X_add_number;
7579 offset_expr.X_add_number = 0;
7580 relax_start (offset_expr.X_add_symbol);
7581 gpdelay = reg_needs_delay (mips_gp_register);
7582 if (expr1.X_add_number == 0 && breg == 0
7583 && (call || tempreg == PIC_CALL_REG))
7585 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7586 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7588 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7589 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7590 tempreg, tempreg, mips_gp_register);
7591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7592 tempreg, lw_reloc_type, tempreg);
7593 if (expr1.X_add_number == 0)
7597 /* We're going to put in an addu instruction using
7598 tempreg, so we may as well insert the nop right
7603 else if (expr1.X_add_number >= -0x8000
7604 && expr1.X_add_number < 0x8000)
7607 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7608 tempreg, tempreg, BFD_RELOC_LO16);
7612 /* If we are going to add in a base register, and the
7613 target register and the base register are the same,
7614 then we are using AT as a temporary register. Since
7615 we want to load the constant into AT, we add our
7616 current AT (from the global offset table) and the
7617 register into the register now, and pretend we were
7618 not using a base register. */
7623 gas_assert (tempreg == AT);
7625 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7630 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7631 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7635 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7640 /* This is needed because this instruction uses $gp, but
7641 the first instruction on the main stream does not. */
7642 macro_build (NULL, "nop", "");
7645 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7646 local_reloc_type, mips_gp_register);
7647 if (expr1.X_add_number >= -0x8000
7648 && expr1.X_add_number < 0x8000)
7651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7652 tempreg, tempreg, BFD_RELOC_LO16);
7653 /* FIXME: If add_number is 0, and there was no base
7654 register, the external symbol case ended with a load,
7655 so if the symbol turns out to not be external, and
7656 the next instruction uses tempreg, an unnecessary nop
7657 will be inserted. */
7663 /* We must add in the base register now, as in the
7664 external symbol case. */
7665 gas_assert (tempreg == AT);
7667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7670 /* We set breg to 0 because we have arranged to add
7671 it in in both cases. */
7675 macro_build_lui (&expr1, AT);
7676 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7677 AT, AT, BFD_RELOC_LO16);
7678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7679 tempreg, tempreg, AT);
7684 else if (mips_big_got && HAVE_NEWABI)
7686 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7687 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7688 int add_breg_early = 0;
7690 /* This is the large GOT case. If this is a reference to an
7691 external symbol, and there is no constant, we want
7692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7693 add $tempreg,$tempreg,$gp
7694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7695 or for lca or if tempreg is PIC_CALL_REG
7696 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7697 add $tempreg,$tempreg,$gp
7698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7700 If we have a small constant, and this is a reference to
7701 an external symbol, we want
7702 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7703 add $tempreg,$tempreg,$gp
7704 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7705 addi $tempreg,$tempreg,<constant>
7707 If we have a large constant, and this is a reference to
7708 an external symbol, we want
7709 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7710 addu $tempreg,$tempreg,$gp
7711 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7712 lui $at,<hiconstant>
7713 addi $at,$at,<loconstant>
7714 add $tempreg,$tempreg,$at
7716 If we have NewABI, and we know it's a local symbol, we want
7717 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7718 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7719 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7721 relax_start (offset_expr.X_add_symbol);
7723 expr1.X_add_number = offset_expr.X_add_number;
7724 offset_expr.X_add_number = 0;
7726 if (expr1.X_add_number == 0 && breg == 0
7727 && (call || tempreg == PIC_CALL_REG))
7729 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7730 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7732 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7733 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7734 tempreg, tempreg, mips_gp_register);
7735 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7736 tempreg, lw_reloc_type, tempreg);
7738 if (expr1.X_add_number == 0)
7740 else if (expr1.X_add_number >= -0x8000
7741 && expr1.X_add_number < 0x8000)
7743 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7744 tempreg, tempreg, BFD_RELOC_LO16);
7746 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7748 /* If we are going to add in a base register, and the
7749 target register and the base register are the same,
7750 then we are using AT as a temporary register. Since
7751 we want to load the constant into AT, we add our
7752 current AT (from the global offset table) and the
7753 register into the register now, and pretend we were
7754 not using a base register. */
7759 gas_assert (tempreg == AT);
7760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7766 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7772 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7775 offset_expr.X_add_number = expr1.X_add_number;
7776 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7777 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7778 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7779 tempreg, BFD_RELOC_MIPS_GOT_OFST);
7782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7783 treg, tempreg, breg);
7793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
7797 gas_assert (!mips_opts.micromips);
7799 unsigned long temp = (treg << 16) | (0x01);
7800 macro_build (NULL, "c2", "C", temp);
7805 gas_assert (!mips_opts.micromips);
7807 unsigned long temp = (0x02);
7808 macro_build (NULL, "c2", "C", temp);
7813 gas_assert (!mips_opts.micromips);
7815 unsigned long temp = (treg << 16) | (0x02);
7816 macro_build (NULL, "c2", "C", temp);
7821 gas_assert (!mips_opts.micromips);
7822 macro_build (NULL, "c2", "C", 3);
7826 gas_assert (!mips_opts.micromips);
7828 unsigned long temp = (treg << 16) | 0x03;
7829 macro_build (NULL, "c2", "C", temp);
7834 /* The j instruction may not be used in PIC code, since it
7835 requires an absolute address. We convert it to a b
7837 if (mips_pic == NO_PIC)
7838 macro_build (&offset_expr, "j", "a");
7840 macro_build (&offset_expr, "b", "p");
7843 /* The jal instructions must be handled as macros because when
7844 generating PIC code they expand to multi-instruction
7845 sequences. Normally they are simple instructions. */
7850 gas_assert (mips_opts.micromips);
7858 if (mips_pic == NO_PIC)
7860 s = jals ? "jalrs" : "jalr";
7861 if (mips_opts.micromips
7863 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7864 macro_build (NULL, s, "mj", sreg);
7866 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7870 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
7871 && mips_cprestore_offset >= 0);
7873 if (sreg != PIC_CALL_REG)
7874 as_warn (_("MIPS PIC call to register other than $25"));
7876 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
7877 ? "jalrs" : "jalr");
7878 if (mips_opts.micromips
7880 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7881 macro_build (NULL, s, "mj", sreg);
7883 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7884 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
7886 if (mips_cprestore_offset < 0)
7887 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7890 if (!mips_frame_reg_valid)
7892 as_warn (_("No .frame pseudo-op used in PIC code"));
7893 /* Quiet this warning. */
7894 mips_frame_reg_valid = 1;
7896 if (!mips_cprestore_valid)
7898 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7899 /* Quiet this warning. */
7900 mips_cprestore_valid = 1;
7902 if (mips_opts.noreorder)
7903 macro_build (NULL, "nop", "");
7904 expr1.X_add_number = mips_cprestore_offset;
7905 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7908 HAVE_64BIT_ADDRESSES);
7916 gas_assert (mips_opts.micromips);
7920 if (mips_pic == NO_PIC)
7921 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
7922 else if (mips_pic == SVR4_PIC)
7924 /* If this is a reference to an external symbol, and we are
7925 using a small GOT, we want
7926 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7930 lw $gp,cprestore($sp)
7931 The cprestore value is set using the .cprestore
7932 pseudo-op. If we are using a big GOT, we want
7933 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7935 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
7939 lw $gp,cprestore($sp)
7940 If the symbol is not external, we want
7941 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7943 addiu $25,$25,<sym> (BFD_RELOC_LO16)
7946 lw $gp,cprestore($sp)
7948 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
7949 sequences above, minus nops, unless the symbol is local,
7950 which enables us to use GOT_PAGE/GOT_OFST (big got) or
7956 relax_start (offset_expr.X_add_symbol);
7957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7958 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7962 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
7968 relax_start (offset_expr.X_add_symbol);
7969 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7970 BFD_RELOC_MIPS_CALL_HI16);
7971 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7972 PIC_CALL_REG, mips_gp_register);
7973 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7974 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7977 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7978 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
7980 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7981 PIC_CALL_REG, PIC_CALL_REG,
7982 BFD_RELOC_MIPS_GOT_OFST);
7986 macro_build_jalr (&offset_expr, 0);
7990 relax_start (offset_expr.X_add_symbol);
7993 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7994 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8003 gpdelay = reg_needs_delay (mips_gp_register);
8004 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8005 BFD_RELOC_MIPS_CALL_HI16);
8006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8007 PIC_CALL_REG, mips_gp_register);
8008 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8009 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8014 macro_build (NULL, "nop", "");
8016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8017 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
8020 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8021 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
8023 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
8025 if (mips_cprestore_offset < 0)
8026 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8029 if (!mips_frame_reg_valid)
8031 as_warn (_("No .frame pseudo-op used in PIC code"));
8032 /* Quiet this warning. */
8033 mips_frame_reg_valid = 1;
8035 if (!mips_cprestore_valid)
8037 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8038 /* Quiet this warning. */
8039 mips_cprestore_valid = 1;
8041 if (mips_opts.noreorder)
8042 macro_build (NULL, "nop", "");
8043 expr1.X_add_number = mips_cprestore_offset;
8044 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8047 HAVE_64BIT_ADDRESSES);
8051 else if (mips_pic == VXWORKS_PIC)
8052 as_bad (_("Non-PIC jump used in PIC library"));
8062 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8070 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8101 gas_assert (!mips_opts.micromips);
8104 /* Itbl support may require additional care here. */
8111 /* Itbl support may require additional care here. */
8119 off12 = mips_opts.micromips;
8120 /* Itbl support may require additional care here. */
8125 gas_assert (!mips_opts.micromips);
8128 /* Itbl support may require additional care here. */
8136 off12 = mips_opts.micromips;
8143 off12 = mips_opts.micromips;
8149 /* Itbl support may require additional care here. */
8157 off12 = mips_opts.micromips;
8158 /* Itbl support may require additional care here. */
8165 /* Itbl support may require additional care here. */
8173 off12 = mips_opts.micromips;
8180 off12 = mips_opts.micromips;
8187 off12 = mips_opts.micromips;
8194 off12 = mips_opts.micromips;
8201 off12 = mips_opts.micromips;
8206 gas_assert (mips_opts.micromips);
8215 gas_assert (mips_opts.micromips);
8224 gas_assert (mips_opts.micromips);
8232 gas_assert (mips_opts.micromips);
8239 if (breg == treg + lp)
8242 tempreg = treg + lp;
8262 gas_assert (!mips_opts.micromips);
8265 /* Itbl support may require additional care here. */
8272 /* Itbl support may require additional care here. */
8280 off12 = mips_opts.micromips;
8281 /* Itbl support may require additional care here. */
8286 gas_assert (!mips_opts.micromips);
8289 /* Itbl support may require additional care here. */
8297 off12 = mips_opts.micromips;
8304 off12 = mips_opts.micromips;
8311 off12 = mips_opts.micromips;
8318 off12 = mips_opts.micromips;
8324 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8325 off12 = mips_opts.micromips;
8331 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8332 off12 = mips_opts.micromips;
8339 /* Itbl support may require additional care here. */
8346 off12 = mips_opts.micromips;
8347 /* Itbl support may require additional care here. */
8352 gas_assert (!mips_opts.micromips);
8355 /* Itbl support may require additional care here. */
8363 off12 = mips_opts.micromips;
8370 off12 = mips_opts.micromips;
8375 gas_assert (mips_opts.micromips);
8383 gas_assert (mips_opts.micromips);
8391 gas_assert (mips_opts.micromips);
8399 gas_assert (mips_opts.micromips);
8408 if (offset_expr.X_op != O_constant
8409 && offset_expr.X_op != O_symbol)
8411 as_bad (_("Expression too complex"));
8412 offset_expr.X_op = O_constant;
8415 if (HAVE_32BIT_ADDRESSES
8416 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8420 sprintf_vma (value, offset_expr.X_add_number);
8421 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8424 /* A constant expression in PIC code can be handled just as it
8425 is in non PIC code. */
8426 if (offset_expr.X_op == O_constant)
8430 expr1.X_add_number = offset_expr.X_add_number;
8431 normalize_address_expr (&expr1);
8432 if (!off12 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8434 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8435 & ~(bfd_vma) 0xffff);
8438 else if (off12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8440 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8441 & ~(bfd_vma) 0xfff);
8446 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8448 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8449 tempreg, tempreg, breg);
8454 if (offset_expr.X_add_number == 0)
8457 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8458 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8459 macro_build (NULL, s, fmt, treg, tempreg);
8462 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8464 macro_build (NULL, s, fmt,
8465 treg, (unsigned long) offset_expr.X_add_number, breg);
8467 else if (off12 || off0)
8469 /* A 12-bit or 0-bit offset field is too narrow to be used
8470 for a low-part relocation, so load the whole address into
8471 the auxillary register. In the case of "A(b)" addresses,
8472 we first load absolute address "A" into the register and
8473 then add base register "b". In the case of "o(b)" addresses,
8474 we simply need to add 16-bit offset "o" to base register "b", and
8475 offset_reloc already contains the relocations associated
8479 load_address (tempreg, &offset_expr, &used_at);
8481 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8482 tempreg, tempreg, breg);
8485 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8487 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8488 expr1.X_add_number = 0;
8490 macro_build (NULL, s, fmt, treg, tempreg);
8492 macro_build (NULL, s, fmt,
8493 treg, (unsigned long) expr1.X_add_number, tempreg);
8495 else if (mips_pic == NO_PIC)
8497 /* If this is a reference to a GP relative symbol, and there
8498 is no base register, we want
8499 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8500 Otherwise, if there is no base register, we want
8501 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8502 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8503 If we have a constant, we need two instructions anyhow,
8504 so we always use the latter form.
8506 If we have a base register, and this is a reference to a
8507 GP relative symbol, we want
8508 addu $tempreg,$breg,$gp
8509 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8511 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8512 addu $tempreg,$tempreg,$breg
8513 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8514 With a constant we always use the latter case.
8516 With 64bit address space and no base register and $at usable,
8518 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8519 lui $at,<sym> (BFD_RELOC_HI16_S)
8520 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8523 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8524 If we have a base register, we want
8525 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8526 lui $at,<sym> (BFD_RELOC_HI16_S)
8527 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8531 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8533 Without $at we can't generate the optimal path for superscalar
8534 processors here since this would require two temporary registers.
8535 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8536 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8538 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8540 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8541 If we have a base register, we want
8542 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8543 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8545 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8547 daddu $tempreg,$tempreg,$breg
8548 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8550 For GP relative symbols in 64bit address space we can use
8551 the same sequence as in 32bit address space. */
8552 if (HAVE_64BIT_SYMBOLS)
8554 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8555 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8557 relax_start (offset_expr.X_add_symbol);
8560 macro_build (&offset_expr, s, fmt, treg,
8561 BFD_RELOC_GPREL16, mips_gp_register);
8565 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8566 tempreg, breg, mips_gp_register);
8567 macro_build (&offset_expr, s, fmt, treg,
8568 BFD_RELOC_GPREL16, tempreg);
8573 if (used_at == 0 && mips_opts.at)
8575 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8576 BFD_RELOC_MIPS_HIGHEST);
8577 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8579 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8580 tempreg, BFD_RELOC_MIPS_HIGHER);
8582 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8583 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8584 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8585 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8591 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8592 BFD_RELOC_MIPS_HIGHEST);
8593 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8594 tempreg, BFD_RELOC_MIPS_HIGHER);
8595 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8596 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8597 tempreg, BFD_RELOC_HI16_S);
8598 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8600 macro_build (NULL, "daddu", "d,v,t",
8601 tempreg, tempreg, breg);
8602 macro_build (&offset_expr, s, fmt, treg,
8603 BFD_RELOC_LO16, tempreg);
8606 if (mips_relax.sequence)
8613 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8614 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8616 relax_start (offset_expr.X_add_symbol);
8617 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8621 macro_build_lui (&offset_expr, tempreg);
8622 macro_build (&offset_expr, s, fmt, treg,
8623 BFD_RELOC_LO16, tempreg);
8624 if (mips_relax.sequence)
8629 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8630 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8632 relax_start (offset_expr.X_add_symbol);
8633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8634 tempreg, breg, mips_gp_register);
8635 macro_build (&offset_expr, s, fmt, treg,
8636 BFD_RELOC_GPREL16, tempreg);
8639 macro_build_lui (&offset_expr, tempreg);
8640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8641 tempreg, tempreg, breg);
8642 macro_build (&offset_expr, s, fmt, treg,
8643 BFD_RELOC_LO16, tempreg);
8644 if (mips_relax.sequence)
8648 else if (!mips_big_got)
8650 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8652 /* If this is a reference to an external symbol, we want
8653 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8655 <op> $treg,0($tempreg)
8657 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8659 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8660 <op> $treg,0($tempreg)
8663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8664 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
8666 If there is a base register, we add it to $tempreg before
8667 the <op>. If there is a constant, we stick it in the
8668 <op> instruction. We don't handle constants larger than
8669 16 bits, because we have no way to load the upper 16 bits
8670 (actually, we could handle them for the subset of cases
8671 in which we are not using $at). */
8672 gas_assert (offset_expr.X_op == O_symbol);
8675 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8676 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8679 tempreg, tempreg, breg);
8680 macro_build (&offset_expr, s, fmt, treg,
8681 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8684 expr1.X_add_number = offset_expr.X_add_number;
8685 offset_expr.X_add_number = 0;
8686 if (expr1.X_add_number < -0x8000
8687 || expr1.X_add_number >= 0x8000)
8688 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8689 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8690 lw_reloc_type, mips_gp_register);
8692 relax_start (offset_expr.X_add_symbol);
8694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8695 tempreg, BFD_RELOC_LO16);
8698 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8699 tempreg, tempreg, breg);
8700 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8702 else if (mips_big_got && !HAVE_NEWABI)
8706 /* If this is a reference to an external symbol, we want
8707 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8708 addu $tempreg,$tempreg,$gp
8709 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8710 <op> $treg,0($tempreg)
8712 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8714 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8715 <op> $treg,0($tempreg)
8716 If there is a base register, we add it to $tempreg before
8717 the <op>. If there is a constant, we stick it in the
8718 <op> instruction. We don't handle constants larger than
8719 16 bits, because we have no way to load the upper 16 bits
8720 (actually, we could handle them for the subset of cases
8721 in which we are not using $at). */
8722 gas_assert (offset_expr.X_op == O_symbol);
8723 expr1.X_add_number = offset_expr.X_add_number;
8724 offset_expr.X_add_number = 0;
8725 if (expr1.X_add_number < -0x8000
8726 || expr1.X_add_number >= 0x8000)
8727 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8728 gpdelay = reg_needs_delay (mips_gp_register);
8729 relax_start (offset_expr.X_add_symbol);
8730 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8731 BFD_RELOC_MIPS_GOT_HI16);
8732 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8735 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8738 macro_build (NULL, "nop", "");
8739 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8742 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8743 tempreg, BFD_RELOC_LO16);
8747 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8748 tempreg, tempreg, breg);
8749 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8751 else if (mips_big_got && HAVE_NEWABI)
8753 /* If this is a reference to an external symbol, we want
8754 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8755 add $tempreg,$tempreg,$gp
8756 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8757 <op> $treg,<ofst>($tempreg)
8758 Otherwise, for local symbols, we want:
8759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8760 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
8761 gas_assert (offset_expr.X_op == O_symbol);
8762 expr1.X_add_number = offset_expr.X_add_number;
8763 offset_expr.X_add_number = 0;
8764 if (expr1.X_add_number < -0x8000
8765 || expr1.X_add_number >= 0x8000)
8766 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8767 relax_start (offset_expr.X_add_symbol);
8768 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8769 BFD_RELOC_MIPS_GOT_HI16);
8770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8772 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8773 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8775 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8776 tempreg, tempreg, breg);
8777 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8780 offset_expr.X_add_number = expr1.X_add_number;
8781 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8782 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8784 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8785 tempreg, tempreg, breg);
8786 macro_build (&offset_expr, s, fmt, treg,
8787 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8797 load_register (treg, &imm_expr, 0);
8801 load_register (treg, &imm_expr, 1);
8805 if (imm_expr.X_op == O_constant)
8808 load_register (AT, &imm_expr, 0);
8809 macro_build (NULL, "mtc1", "t,G", AT, treg);
8814 gas_assert (offset_expr.X_op == O_symbol
8815 && strcmp (segment_name (S_GET_SEGMENT
8816 (offset_expr.X_add_symbol)),
8818 && offset_expr.X_add_number == 0);
8819 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
8820 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8825 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
8826 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
8827 order 32 bits of the value and the low order 32 bits are either
8828 zero or in OFFSET_EXPR. */
8829 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8831 if (HAVE_64BIT_GPRS)
8832 load_register (treg, &imm_expr, 1);
8837 if (target_big_endian)
8849 load_register (hreg, &imm_expr, 0);
8852 if (offset_expr.X_op == O_absent)
8853 move_register (lreg, 0);
8856 gas_assert (offset_expr.X_op == O_constant);
8857 load_register (lreg, &offset_expr, 0);
8864 /* We know that sym is in the .rdata section. First we get the
8865 upper 16 bits of the address. */
8866 if (mips_pic == NO_PIC)
8868 macro_build_lui (&offset_expr, AT);
8873 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8874 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8878 /* Now we load the register(s). */
8879 if (HAVE_64BIT_GPRS)
8882 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8887 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8890 /* FIXME: How in the world do we deal with the possible
8892 offset_expr.X_add_number += 4;
8893 macro_build (&offset_expr, "lw", "t,o(b)",
8894 treg + 1, BFD_RELOC_LO16, AT);
8900 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
8901 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
8902 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
8903 the value and the low order 32 bits are either zero or in
8905 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8908 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
8909 if (HAVE_64BIT_FPRS)
8911 gas_assert (HAVE_64BIT_GPRS);
8912 macro_build (NULL, "dmtc1", "t,S", AT, treg);
8916 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
8917 if (offset_expr.X_op == O_absent)
8918 macro_build (NULL, "mtc1", "t,G", 0, treg);
8921 gas_assert (offset_expr.X_op == O_constant);
8922 load_register (AT, &offset_expr, 0);
8923 macro_build (NULL, "mtc1", "t,G", AT, treg);
8929 gas_assert (offset_expr.X_op == O_symbol
8930 && offset_expr.X_add_number == 0);
8931 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
8932 if (strcmp (s, ".lit8") == 0)
8934 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
8936 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
8937 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8940 breg = mips_gp_register;
8941 r = BFD_RELOC_MIPS_LITERAL;
8946 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8948 if (mips_pic != NO_PIC)
8949 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8950 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8953 /* FIXME: This won't work for a 64 bit address. */
8954 macro_build_lui (&offset_expr, AT);
8957 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
8959 macro_build (&offset_expr, "ldc1", "T,o(b)",
8960 treg, BFD_RELOC_LO16, AT);
8969 /* Even on a big endian machine $fn comes before $fn+1. We have
8970 to adjust when loading from memory. */
8973 gas_assert (!mips_opts.micromips);
8974 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
8975 macro_build (&offset_expr, "lwc1", "T,o(b)",
8976 target_big_endian ? treg + 1 : treg, r, breg);
8977 /* FIXME: A possible overflow which I don't know how to deal
8979 offset_expr.X_add_number += 4;
8980 macro_build (&offset_expr, "lwc1", "T,o(b)",
8981 target_big_endian ? treg : treg + 1, r, breg);
8985 gas_assert (!mips_opts.micromips);
8986 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
8987 /* Even on a big endian machine $fn comes before $fn+1. We have
8988 to adjust when storing to memory. */
8989 macro_build (&offset_expr, "swc1", "T,o(b)",
8990 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
8991 offset_expr.X_add_number += 4;
8992 macro_build (&offset_expr, "swc1", "T,o(b)",
8993 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
8997 gas_assert (!mips_opts.micromips);
8999 * The MIPS assembler seems to check for X_add_number not
9000 * being double aligned and generating:
9003 * addiu at,at,%lo(foo+1)
9006 * But, the resulting address is the same after relocation so why
9007 * generate the extra instruction?
9009 /* Itbl support may require additional care here. */
9012 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9021 gas_assert (!mips_opts.micromips);
9022 /* Itbl support may require additional care here. */
9025 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9045 if (HAVE_64BIT_GPRS)
9055 if (HAVE_64BIT_GPRS)
9063 if (offset_expr.X_op != O_symbol
9064 && offset_expr.X_op != O_constant)
9066 as_bad (_("Expression too complex"));
9067 offset_expr.X_op = O_constant;
9070 if (HAVE_32BIT_ADDRESSES
9071 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9075 sprintf_vma (value, offset_expr.X_add_number);
9076 as_bad (_("Number (0x%s) larger than 32 bits"), value);
9079 /* Even on a big endian machine $fn comes before $fn+1. We have
9080 to adjust when loading from memory. We set coproc if we must
9081 load $fn+1 first. */
9082 /* Itbl support may require additional care here. */
9083 if (!target_big_endian)
9086 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
9088 /* If this is a reference to a GP relative symbol, we want
9089 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
9090 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
9091 If we have a base register, we use this
9093 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
9094 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
9095 If this is not a GP relative symbol, we want
9096 lui $at,<sym> (BFD_RELOC_HI16_S)
9097 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9098 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9099 If there is a base register, we add it to $at after the
9100 lui instruction. If there is a constant, we always use
9102 if (offset_expr.X_op == O_symbol
9103 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9104 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9106 relax_start (offset_expr.X_add_symbol);
9109 tempreg = mips_gp_register;
9113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9114 AT, breg, mips_gp_register);
9119 /* Itbl support may require additional care here. */
9120 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9121 BFD_RELOC_GPREL16, tempreg);
9122 offset_expr.X_add_number += 4;
9124 /* Set mips_optimize to 2 to avoid inserting an
9126 hold_mips_optimize = mips_optimize;
9128 /* Itbl support may require additional care here. */
9129 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9130 BFD_RELOC_GPREL16, tempreg);
9131 mips_optimize = hold_mips_optimize;
9135 offset_expr.X_add_number -= 4;
9138 macro_build_lui (&offset_expr, AT);
9140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9141 /* Itbl support may require additional care here. */
9142 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9143 BFD_RELOC_LO16, AT);
9144 /* FIXME: How do we handle overflow here? */
9145 offset_expr.X_add_number += 4;
9146 /* Itbl support may require additional care here. */
9147 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9148 BFD_RELOC_LO16, AT);
9149 if (mips_relax.sequence)
9152 else if (!mips_big_got)
9154 /* If this is a reference to an external symbol, we want
9155 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9160 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9162 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9163 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9164 If there is a base register we add it to $at before the
9165 lwc1 instructions. If there is a constant we include it
9166 in the lwc1 instructions. */
9168 expr1.X_add_number = offset_expr.X_add_number;
9169 if (expr1.X_add_number < -0x8000
9170 || expr1.X_add_number >= 0x8000 - 4)
9171 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9172 load_got_offset (AT, &offset_expr);
9175 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9177 /* Set mips_optimize to 2 to avoid inserting an undesired
9179 hold_mips_optimize = mips_optimize;
9182 /* Itbl support may require additional care here. */
9183 relax_start (offset_expr.X_add_symbol);
9184 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9185 BFD_RELOC_LO16, AT);
9186 expr1.X_add_number += 4;
9187 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9188 BFD_RELOC_LO16, AT);
9190 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9191 BFD_RELOC_LO16, AT);
9192 offset_expr.X_add_number += 4;
9193 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9194 BFD_RELOC_LO16, AT);
9197 mips_optimize = hold_mips_optimize;
9199 else if (mips_big_got)
9203 /* If this is a reference to an external symbol, we want
9204 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9206 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9211 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9213 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9214 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9215 If there is a base register we add it to $at before the
9216 lwc1 instructions. If there is a constant we include it
9217 in the lwc1 instructions. */
9219 expr1.X_add_number = offset_expr.X_add_number;
9220 offset_expr.X_add_number = 0;
9221 if (expr1.X_add_number < -0x8000
9222 || expr1.X_add_number >= 0x8000 - 4)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 gpdelay = reg_needs_delay (mips_gp_register);
9225 relax_start (offset_expr.X_add_symbol);
9226 macro_build (&offset_expr, "lui", LUI_FMT,
9227 AT, BFD_RELOC_MIPS_GOT_HI16);
9228 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9229 AT, AT, mips_gp_register);
9230 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9231 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9234 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9235 /* Itbl support may require additional care here. */
9236 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9237 BFD_RELOC_LO16, AT);
9238 expr1.X_add_number += 4;
9240 /* Set mips_optimize to 2 to avoid inserting an undesired
9242 hold_mips_optimize = mips_optimize;
9244 /* Itbl support may require additional care here. */
9245 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9246 BFD_RELOC_LO16, AT);
9247 mips_optimize = hold_mips_optimize;
9248 expr1.X_add_number -= 4;
9251 offset_expr.X_add_number = expr1.X_add_number;
9253 macro_build (NULL, "nop", "");
9254 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9255 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9259 /* Itbl support may require additional care here. */
9260 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9261 BFD_RELOC_LO16, AT);
9262 offset_expr.X_add_number += 4;
9264 /* Set mips_optimize to 2 to avoid inserting an undesired
9266 hold_mips_optimize = mips_optimize;
9268 /* Itbl support may require additional care here. */
9269 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9270 BFD_RELOC_LO16, AT);
9271 mips_optimize = hold_mips_optimize;
9280 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9283 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9285 macro_build (&offset_expr, s, "t,o(b)", treg,
9286 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9288 if (!HAVE_64BIT_GPRS)
9290 offset_expr.X_add_number += 4;
9291 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9292 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9313 /* New code added to support COPZ instructions.
9314 This code builds table entries out of the macros in mip_opcodes.
9315 R4000 uses interlocks to handle coproc delays.
9316 Other chips (like the R3000) require nops to be inserted for delays.
9318 FIXME: Currently, we require that the user handle delays.
9319 In order to fill delay slots for non-interlocked chips,
9320 we must have a way to specify delays based on the coprocessor.
9321 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9322 What are the side-effects of the cop instruction?
9323 What cache support might we have and what are its effects?
9324 Both coprocessor & memory require delays. how long???
9325 What registers are read/set/modified?
9327 If an itbl is provided to interpret cop instructions,
9328 this knowledge can be encoded in the itbl spec. */
9342 gas_assert (!mips_opts.micromips);
9343 /* For now we just do C (same as Cz). The parameter will be
9344 stored in insn_opcode by mips_ip. */
9345 macro_build (NULL, s, "C", ip->insn_opcode);
9349 move_register (dreg, sreg);
9355 if (mips_opts.arch == CPU_R5900)
9357 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
9361 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9362 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9369 /* The MIPS assembler some times generates shifts and adds. I'm
9370 not trying to be that fancy. GCC should do this for us
9373 load_register (AT, &imm_expr, dbl);
9374 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9375 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9391 load_register (AT, &imm_expr, dbl);
9392 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9393 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9394 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9395 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9397 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9400 if (mips_opts.micromips)
9401 micromips_label_expr (&label_expr);
9403 label_expr.X_add_number = 8;
9404 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9405 macro_build (NULL, "nop", "");
9406 macro_build (NULL, "break", BRK_FMT, 6);
9407 if (mips_opts.micromips)
9408 micromips_add_label ();
9411 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9427 load_register (AT, &imm_expr, dbl);
9428 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9429 sreg, imm ? AT : treg);
9430 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9431 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9433 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9436 if (mips_opts.micromips)
9437 micromips_label_expr (&label_expr);
9439 label_expr.X_add_number = 8;
9440 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9441 macro_build (NULL, "nop", "");
9442 macro_build (NULL, "break", BRK_FMT, 6);
9443 if (mips_opts.micromips)
9444 micromips_add_label ();
9450 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9461 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9462 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9466 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9467 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9468 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9469 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9473 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9484 macro_build (NULL, "negu", "d,w", tempreg, treg);
9485 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9489 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9490 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9491 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9492 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9501 if (imm_expr.X_op != O_constant)
9502 as_bad (_("Improper rotate count"));
9503 rot = imm_expr.X_add_number & 0x3f;
9504 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9506 rot = (64 - rot) & 0x3f;
9508 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9510 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9515 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9518 l = (rot < 0x20) ? "dsll" : "dsll32";
9519 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9522 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9523 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9524 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9532 if (imm_expr.X_op != O_constant)
9533 as_bad (_("Improper rotate count"));
9534 rot = imm_expr.X_add_number & 0x1f;
9535 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9537 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9542 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9546 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9547 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9548 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9553 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9555 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9559 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9560 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9561 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9562 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9566 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9568 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9572 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9573 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9574 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9575 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9584 if (imm_expr.X_op != O_constant)
9585 as_bad (_("Improper rotate count"));
9586 rot = imm_expr.X_add_number & 0x3f;
9587 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9590 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9592 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9597 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9600 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9601 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9604 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9605 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9606 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9614 if (imm_expr.X_op != O_constant)
9615 as_bad (_("Improper rotate count"));
9616 rot = imm_expr.X_add_number & 0x1f;
9617 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9619 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9624 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9628 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9629 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9630 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9636 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9638 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9641 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9642 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9647 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9649 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9654 as_warn (_("Instruction %s: result is always false"),
9656 move_register (dreg, 0);
9659 if (CPU_HAS_SEQ (mips_opts.arch)
9660 && -512 <= imm_expr.X_add_number
9661 && imm_expr.X_add_number < 512)
9663 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
9664 (int) imm_expr.X_add_number);
9667 if (imm_expr.X_op == O_constant
9668 && imm_expr.X_add_number >= 0
9669 && imm_expr.X_add_number < 0x10000)
9671 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9673 else if (imm_expr.X_op == O_constant
9674 && imm_expr.X_add_number > -0x8000
9675 && imm_expr.X_add_number < 0)
9677 imm_expr.X_add_number = -imm_expr.X_add_number;
9678 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9679 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9681 else if (CPU_HAS_SEQ (mips_opts.arch))
9684 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9685 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
9690 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9691 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9694 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9697 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
9703 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
9704 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9707 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
9709 if (imm_expr.X_op == O_constant
9710 && imm_expr.X_add_number >= -0x8000
9711 && imm_expr.X_add_number < 0x8000)
9713 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
9714 dreg, sreg, BFD_RELOC_LO16);
9718 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9719 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
9723 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9726 case M_SGT: /* sreg > treg <==> treg < sreg */
9732 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9735 case M_SGT_I: /* sreg > I <==> I < sreg */
9742 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9743 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9746 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
9752 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9753 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9756 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
9763 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9764 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9765 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9769 if (imm_expr.X_op == O_constant
9770 && imm_expr.X_add_number >= -0x8000
9771 && imm_expr.X_add_number < 0x8000)
9773 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9777 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9778 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
9782 if (imm_expr.X_op == O_constant
9783 && imm_expr.X_add_number >= -0x8000
9784 && imm_expr.X_add_number < 0x8000)
9786 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
9791 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9792 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
9797 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
9799 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9802 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9803 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9808 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9810 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9815 as_warn (_("Instruction %s: result is always true"),
9817 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
9818 dreg, 0, BFD_RELOC_LO16);
9821 if (CPU_HAS_SEQ (mips_opts.arch)
9822 && -512 <= imm_expr.X_add_number
9823 && imm_expr.X_add_number < 512)
9825 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
9826 (int) imm_expr.X_add_number);
9829 if (imm_expr.X_op == O_constant
9830 && imm_expr.X_add_number >= 0
9831 && imm_expr.X_add_number < 0x10000)
9833 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9835 else if (imm_expr.X_op == O_constant
9836 && imm_expr.X_add_number > -0x8000
9837 && imm_expr.X_add_number < 0)
9839 imm_expr.X_add_number = -imm_expr.X_add_number;
9840 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9841 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9843 else if (CPU_HAS_SEQ (mips_opts.arch))
9846 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9847 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
9852 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9853 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9856 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9871 if (!mips_opts.micromips)
9873 if (imm_expr.X_op == O_constant
9874 && imm_expr.X_add_number > -0x200
9875 && imm_expr.X_add_number <= 0x200)
9877 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
9886 if (imm_expr.X_op == O_constant
9887 && imm_expr.X_add_number > -0x8000
9888 && imm_expr.X_add_number <= 0x8000)
9890 imm_expr.X_add_number = -imm_expr.X_add_number;
9891 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9896 load_register (AT, &imm_expr, dbl);
9897 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
9919 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9920 macro_build (NULL, s, "s,t", sreg, AT);
9925 gas_assert (!mips_opts.micromips);
9926 gas_assert (mips_opts.isa == ISA_MIPS1);
9928 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
9929 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
9932 * Is the double cfc1 instruction a bug in the mips assembler;
9933 * or is there a reason for it?
9936 macro_build (NULL, "cfc1", "t,G", treg, RA);
9937 macro_build (NULL, "cfc1", "t,G", treg, RA);
9938 macro_build (NULL, "nop", "");
9939 expr1.X_add_number = 3;
9940 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
9941 expr1.X_add_number = 2;
9942 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
9943 macro_build (NULL, "ctc1", "t,G", AT, RA);
9944 macro_build (NULL, "nop", "");
9945 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
9947 macro_build (NULL, "ctc1", "t,G", treg, RA);
9948 macro_build (NULL, "nop", "");
9971 off12 = mips_opts.micromips;
9979 off12 = mips_opts.micromips;
9995 off12 = mips_opts.micromips;
10004 off12 = mips_opts.micromips;
10009 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
10010 as_bad (_("Operand overflow"));
10013 expr1.X_add_number = 0;
10018 load_address (tempreg, ep, &used_at);
10020 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10021 tempreg, tempreg, breg);
10027 && (offset_expr.X_op != O_constant
10028 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
10029 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
10033 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
10034 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10039 else if (!ust && treg == breg)
10050 if (!target_big_endian)
10051 ep->X_add_number += off;
10053 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10055 macro_build (NULL, s, "t,~(b)",
10056 tempreg, (unsigned long) ep->X_add_number, breg);
10058 if (!target_big_endian)
10059 ep->X_add_number -= off;
10061 ep->X_add_number += off;
10063 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10065 macro_build (NULL, s2, "t,~(b)",
10066 tempreg, (unsigned long) ep->X_add_number, breg);
10068 /* If necessary, move the result in tempreg to the final destination. */
10069 if (!ust && treg != tempreg)
10071 /* Protect second load's delay slot. */
10073 move_register (treg, tempreg);
10079 if (target_big_endian == ust)
10080 ep->X_add_number += off;
10081 tempreg = ust || ab ? treg : AT;
10082 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10084 /* For halfword transfers we need a temporary register to shuffle
10085 bytes. Unfortunately for M_USH_A we have none available before
10086 the next store as AT holds the base address. We deal with this
10087 case by clobbering TREG and then restoring it as with ULH. */
10088 tempreg = ust == ab ? treg : AT;
10090 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
10092 if (target_big_endian == ust)
10093 ep->X_add_number -= off;
10095 ep->X_add_number += off;
10096 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10098 /* For M_USH_A re-retrieve the LSB. */
10101 if (target_big_endian)
10102 ep->X_add_number += off;
10104 ep->X_add_number -= off;
10105 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
10107 /* For ULH and M_USH_A OR the LSB in. */
10110 tempreg = !ab ? AT : treg;
10111 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
10112 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
10117 /* FIXME: Check if this is one of the itbl macros, since they
10118 are added dynamically. */
10119 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
10122 if (!mips_opts.at && used_at)
10123 as_bad (_("Macro used $at after \".set noat\""));
10126 /* Implement macros in mips16 mode. */
10129 mips16_macro (struct mips_cl_insn *ip)
10132 int xreg, yreg, zreg, tmp;
10135 const char *s, *s2, *s3;
10137 mask = ip->insn_mo->mask;
10139 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
10140 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
10141 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
10143 expr1.X_op = O_constant;
10144 expr1.X_op_symbol = NULL;
10145 expr1.X_add_symbol = NULL;
10146 expr1.X_add_number = 1;
10165 start_noreorder ();
10166 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10167 expr1.X_add_number = 2;
10168 macro_build (&expr1, "bnez", "x,p", yreg);
10169 macro_build (NULL, "break", "6", 7);
10171 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10172 since that causes an overflow. We should do that as well,
10173 but I don't see how to do the comparisons without a temporary
10176 macro_build (NULL, s, "x", zreg);
10195 start_noreorder ();
10196 macro_build (NULL, s, "0,x,y", xreg, yreg);
10197 expr1.X_add_number = 2;
10198 macro_build (&expr1, "bnez", "x,p", yreg);
10199 macro_build (NULL, "break", "6", 7);
10201 macro_build (NULL, s2, "x", zreg);
10207 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10208 macro_build (NULL, "mflo", "x", zreg);
10216 if (imm_expr.X_op != O_constant)
10217 as_bad (_("Unsupported large constant"));
10218 imm_expr.X_add_number = -imm_expr.X_add_number;
10219 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10223 if (imm_expr.X_op != O_constant)
10224 as_bad (_("Unsupported large constant"));
10225 imm_expr.X_add_number = -imm_expr.X_add_number;
10226 macro_build (&imm_expr, "addiu", "x,k", xreg);
10230 if (imm_expr.X_op != O_constant)
10231 as_bad (_("Unsupported large constant"));
10232 imm_expr.X_add_number = -imm_expr.X_add_number;
10233 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10255 goto do_reverse_branch;
10259 goto do_reverse_branch;
10271 goto do_reverse_branch;
10282 macro_build (NULL, s, "x,y", xreg, yreg);
10283 macro_build (&offset_expr, s2, "p");
10310 goto do_addone_branch_i;
10315 goto do_addone_branch_i;
10330 goto do_addone_branch_i;
10336 do_addone_branch_i:
10337 if (imm_expr.X_op != O_constant)
10338 as_bad (_("Unsupported large constant"));
10339 ++imm_expr.X_add_number;
10342 macro_build (&imm_expr, s, s3, xreg);
10343 macro_build (&offset_expr, s2, "p");
10347 expr1.X_add_number = 0;
10348 macro_build (&expr1, "slti", "x,8", yreg);
10350 move_register (xreg, yreg);
10351 expr1.X_add_number = 2;
10352 macro_build (&expr1, "bteqz", "p");
10353 macro_build (NULL, "neg", "x,w", xreg, xreg);
10357 /* For consistency checking, verify that all bits are specified either
10358 by the match/mask part of the instruction definition, or by the
10361 validate_mips_insn (const struct mips_opcode *opc)
10363 const char *p = opc->args;
10365 unsigned long used_bits = opc->mask;
10367 if ((used_bits & opc->match) != opc->match)
10369 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10370 opc->name, opc->args);
10373 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10383 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10384 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10385 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10386 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10387 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10388 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10389 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10390 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10391 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10392 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10393 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10394 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10395 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10397 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10398 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10399 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10400 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10401 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10402 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10403 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10404 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10405 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10406 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10407 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10408 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10409 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10410 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10411 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10414 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10415 c, opc->name, opc->args);
10419 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10420 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10422 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10423 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10424 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10425 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10427 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10428 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10430 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10431 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10433 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10434 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10435 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10436 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10437 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10438 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10439 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10440 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10441 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10442 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10443 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10444 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10445 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10446 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10447 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10448 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10449 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10451 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10452 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10453 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10454 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10456 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10457 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10458 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10459 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10460 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10461 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10462 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10463 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10464 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10467 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10468 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10469 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10470 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10471 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10474 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10475 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10476 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10477 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10478 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10479 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10480 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10481 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10482 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10483 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10484 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10485 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10486 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10487 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10488 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10489 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10490 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10491 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10492 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10493 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10495 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10496 c, opc->name, opc->args);
10500 if (used_bits != 0xffffffff)
10502 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10503 ~used_bits & 0xffffffff, opc->name, opc->args);
10509 /* For consistency checking, verify that the length implied matches the
10510 major opcode and that all bits are specified either by the match/mask
10511 part of the instruction definition, or by the operand list. */
10514 validate_micromips_insn (const struct mips_opcode *opc)
10516 unsigned long match = opc->match;
10517 unsigned long mask = opc->mask;
10518 const char *p = opc->args;
10519 unsigned long insn_bits;
10520 unsigned long used_bits;
10521 unsigned long major;
10522 unsigned int length;
10526 if ((mask & match) != match)
10528 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10529 opc->name, opc->args);
10532 length = micromips_insn_length (opc);
10533 if (length != 2 && length != 4)
10535 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10536 "%s %s"), length, opc->name, opc->args);
10539 major = match >> (10 + 8 * (length - 2));
10540 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10541 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10543 as_bad (_("Internal error: bad microMIPS opcode "
10544 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10548 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10549 insn_bits = 1 << 4 * length;
10550 insn_bits <<= 4 * length;
10553 #define USE_BITS(field) \
10554 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10565 case 'A': USE_BITS (EXTLSB); break;
10566 case 'B': USE_BITS (INSMSB); break;
10567 case 'C': USE_BITS (EXTMSBD); break;
10568 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10569 case 'E': USE_BITS (EXTLSB); break;
10570 case 'F': USE_BITS (INSMSB); break;
10571 case 'G': USE_BITS (EXTMSBD); break;
10572 case 'H': USE_BITS (EXTMSBD); break;
10574 as_bad (_("Internal error: bad mips opcode "
10575 "(unknown extension operand type `%c%c'): %s %s"),
10576 e, c, opc->name, opc->args);
10584 case 'A': USE_BITS (IMMA); break;
10585 case 'B': USE_BITS (IMMB); break;
10586 case 'C': USE_BITS (IMMC); break;
10587 case 'D': USE_BITS (IMMD); break;
10588 case 'E': USE_BITS (IMME); break;
10589 case 'F': USE_BITS (IMMF); break;
10590 case 'G': USE_BITS (IMMG); break;
10591 case 'H': USE_BITS (IMMH); break;
10592 case 'I': USE_BITS (IMMI); break;
10593 case 'J': USE_BITS (IMMJ); break;
10594 case 'L': USE_BITS (IMML); break;
10595 case 'M': USE_BITS (IMMM); break;
10596 case 'N': USE_BITS (IMMN); break;
10597 case 'O': USE_BITS (IMMO); break;
10598 case 'P': USE_BITS (IMMP); break;
10599 case 'Q': USE_BITS (IMMQ); break;
10600 case 'U': USE_BITS (IMMU); break;
10601 case 'W': USE_BITS (IMMW); break;
10602 case 'X': USE_BITS (IMMX); break;
10603 case 'Y': USE_BITS (IMMY); break;
10606 case 'b': USE_BITS (MB); break;
10607 case 'c': USE_BITS (MC); break;
10608 case 'd': USE_BITS (MD); break;
10609 case 'e': USE_BITS (ME); break;
10610 case 'f': USE_BITS (MF); break;
10611 case 'g': USE_BITS (MG); break;
10612 case 'h': USE_BITS (MH); break;
10613 case 'i': USE_BITS (MI); break;
10614 case 'j': USE_BITS (MJ); break;
10615 case 'l': USE_BITS (ML); break;
10616 case 'm': USE_BITS (MM); break;
10617 case 'n': USE_BITS (MN); break;
10618 case 'p': USE_BITS (MP); break;
10619 case 'q': USE_BITS (MQ); break;
10627 as_bad (_("Internal error: bad mips opcode "
10628 "(unknown extension operand type `%c%c'): %s %s"),
10629 e, c, opc->name, opc->args);
10633 case '.': USE_BITS (OFFSET10); break;
10634 case '1': USE_BITS (STYPE); break;
10635 case '2': USE_BITS (BP); break;
10636 case '3': USE_BITS (SA3); break;
10637 case '4': USE_BITS (SA4); break;
10638 case '5': USE_BITS (IMM8); break;
10639 case '6': USE_BITS (RS); break;
10640 case '7': USE_BITS (DSPACC); break;
10641 case '8': USE_BITS (WRDSP); break;
10642 case '0': USE_BITS (DSPSFT); break;
10643 case '<': USE_BITS (SHAMT); break;
10644 case '>': USE_BITS (SHAMT); break;
10645 case '@': USE_BITS (IMM10); break;
10646 case 'B': USE_BITS (CODE10); break;
10647 case 'C': USE_BITS (COPZ); break;
10648 case 'D': USE_BITS (FD); break;
10649 case 'E': USE_BITS (RT); break;
10650 case 'G': USE_BITS (RS); break;
10651 case 'H': USE_BITS (SEL); break;
10652 case 'K': USE_BITS (RS); break;
10653 case 'M': USE_BITS (CCC); break;
10654 case 'N': USE_BITS (BCC); break;
10655 case 'R': USE_BITS (FR); break;
10656 case 'S': USE_BITS (FS); break;
10657 case 'T': USE_BITS (FT); break;
10658 case 'V': USE_BITS (FS); break;
10659 case '\\': USE_BITS (3BITPOS); break;
10660 case '^': USE_BITS (RD); break;
10661 case 'a': USE_BITS (TARGET); break;
10662 case 'b': USE_BITS (RS); break;
10663 case 'c': USE_BITS (CODE); break;
10664 case 'd': USE_BITS (RD); break;
10665 case 'h': USE_BITS (PREFX); break;
10666 case 'i': USE_BITS (IMMEDIATE); break;
10667 case 'j': USE_BITS (DELTA); break;
10668 case 'k': USE_BITS (CACHE); break;
10669 case 'n': USE_BITS (RT); break;
10670 case 'o': USE_BITS (DELTA); break;
10671 case 'p': USE_BITS (DELTA); break;
10672 case 'q': USE_BITS (CODE2); break;
10673 case 'r': USE_BITS (RS); break;
10674 case 's': USE_BITS (RS); break;
10675 case 't': USE_BITS (RT); break;
10676 case 'u': USE_BITS (IMMEDIATE); break;
10677 case 'v': USE_BITS (RS); break;
10678 case 'w': USE_BITS (RT); break;
10679 case 'y': USE_BITS (RS3); break;
10681 case '|': USE_BITS (TRAP); break;
10682 case '~': USE_BITS (OFFSET12); break;
10684 as_bad (_("Internal error: bad microMIPS opcode "
10685 "(unknown operand type `%c'): %s %s"),
10686 c, opc->name, opc->args);
10690 if (used_bits != insn_bits)
10692 if (~used_bits & insn_bits)
10693 as_bad (_("Internal error: bad microMIPS opcode "
10694 "(bits 0x%lx undefined): %s %s"),
10695 ~used_bits & insn_bits, opc->name, opc->args);
10696 if (used_bits & ~insn_bits)
10697 as_bad (_("Internal error: bad microMIPS opcode "
10698 "(bits 0x%lx defined): %s %s"),
10699 used_bits & ~insn_bits, opc->name, opc->args);
10705 /* UDI immediates. */
10706 struct mips_immed {
10708 unsigned int shift;
10709 unsigned long mask;
10713 static const struct mips_immed mips_immed[] = {
10714 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
10715 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
10716 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
10717 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
10721 /* Check whether an odd floating-point register is allowed. */
10723 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
10725 const char *s = insn->name;
10727 if (insn->pinfo == INSN_MACRO)
10728 /* Let a macro pass, we'll catch it later when it is expanded. */
10731 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || (mips_opts.arch == CPU_R5900))
10733 /* Allow odd registers for single-precision ops. */
10734 switch (insn->pinfo & (FP_S | FP_D))
10738 return 1; /* both single precision - ok */
10740 return 0; /* both double precision - fail */
10745 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
10746 s = strchr (insn->name, '.');
10748 s = s != NULL ? strchr (s + 1, '.') : NULL;
10749 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
10752 /* Single-precision coprocessor loads and moves are OK too. */
10753 if ((insn->pinfo & FP_S)
10754 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
10755 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
10761 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
10762 taking bits from BIT up. */
10764 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
10766 return (ep->X_op == O_constant
10767 && (ep->X_add_number & ((1 << bit) - 1)) == 0
10768 && ep->X_add_number >= min << bit
10769 && ep->X_add_number < max << bit);
10772 /* This routine assembles an instruction into its binary format. As a
10773 side effect, it sets one of the global variables imm_reloc or
10774 offset_reloc to the type of relocation to do if one of the operands
10775 is an address expression. */
10778 mips_ip (char *str, struct mips_cl_insn *ip)
10780 bfd_boolean wrong_delay_slot_insns = FALSE;
10781 bfd_boolean need_delay_slot_ok = TRUE;
10782 struct mips_opcode *firstinsn = NULL;
10783 const struct mips_opcode *past;
10784 struct hash_control *hash;
10788 struct mips_opcode *insn;
10790 unsigned int regno;
10791 unsigned int lastregno;
10792 unsigned int destregno = 0;
10793 unsigned int lastpos = 0;
10794 unsigned int limlo, limhi;
10797 offsetT min_range, max_range;
10801 unsigned int rtype;
10807 if (mips_opts.micromips)
10809 hash = micromips_op_hash;
10810 past = µmips_opcodes[bfd_micromips_num_opcodes];
10815 past = &mips_opcodes[NUMOPCODES];
10817 forced_insn_length = 0;
10820 /* We first try to match an instruction up to a space or to the end. */
10821 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
10824 /* Make a copy of the instruction so that we can fiddle with it. */
10825 name = alloca (end + 1);
10826 memcpy (name, str, end);
10831 insn = (struct mips_opcode *) hash_find (hash, name);
10833 if (insn != NULL || !mips_opts.micromips)
10835 if (forced_insn_length)
10838 /* See if there's an instruction size override suffix,
10839 either `16' or `32', at the end of the mnemonic proper,
10840 that defines the operation, i.e. before the first `.'
10841 character if any. Strip it and retry. */
10842 dot = strchr (name, '.');
10843 opend = dot != NULL ? dot - name : end;
10846 if (name[opend - 2] == '1' && name[opend - 1] == '6')
10847 forced_insn_length = 2;
10848 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
10849 forced_insn_length = 4;
10852 memcpy (name + opend - 2, name + opend, end - opend + 1);
10856 insn_error = _("Unrecognized opcode");
10860 /* For microMIPS instructions placed in a fixed-length branch delay slot
10861 we make up to two passes over the relevant fragment of the opcode
10862 table. First we try instructions that meet the delay slot's length
10863 requirement. If none matched, then we retry with the remaining ones
10864 and if one matches, then we use it and then issue an appropriate
10865 warning later on. */
10866 argsStart = s = str + end;
10869 bfd_boolean delay_slot_ok;
10870 bfd_boolean size_ok;
10873 gas_assert (strcmp (insn->name, name) == 0);
10875 ok = is_opcode_valid (insn);
10876 size_ok = is_size_valid (insn);
10877 delay_slot_ok = is_delay_slot_valid (insn);
10878 if (!delay_slot_ok && !wrong_delay_slot_insns)
10881 wrong_delay_slot_insns = TRUE;
10883 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
10885 static char buf[256];
10887 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
10892 if (wrong_delay_slot_insns && need_delay_slot_ok)
10894 gas_assert (firstinsn);
10895 need_delay_slot_ok = FALSE;
10905 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
10906 mips_cpu_info_from_arch (mips_opts.arch)->name,
10907 mips_cpu_info_from_isa (mips_opts.isa)->name);
10909 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
10910 8 * forced_insn_length);
10916 create_insn (ip, insn);
10919 lastregno = 0xffffffff;
10920 for (args = insn->args;; ++args)
10924 s += strspn (s, " \t");
10928 case '\0': /* end of args */
10934 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
10935 code) or 14 (for microMIPS code). */
10936 my_getExpression (&imm_expr, s);
10937 check_absolute_expr (ip, &imm_expr);
10938 if ((unsigned long) imm_expr.X_add_number != 1
10939 && (unsigned long) imm_expr.X_add_number != 3)
10941 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
10942 (unsigned long) imm_expr.X_add_number);
10944 INSERT_OPERAND (mips_opts.micromips,
10945 BP, *ip, imm_expr.X_add_number);
10946 imm_expr.X_op = O_absent;
10951 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
10952 code) or 21 (for microMIPS code). */
10954 unsigned long mask = (mips_opts.micromips
10955 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
10957 my_getExpression (&imm_expr, s);
10958 check_absolute_expr (ip, &imm_expr);
10959 if ((unsigned long) imm_expr.X_add_number > mask)
10960 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10961 mask, (unsigned long) imm_expr.X_add_number);
10962 INSERT_OPERAND (mips_opts.micromips,
10963 SA3, *ip, imm_expr.X_add_number);
10964 imm_expr.X_op = O_absent;
10970 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
10971 code) or 21 (for microMIPS code). */
10973 unsigned long mask = (mips_opts.micromips
10974 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
10976 my_getExpression (&imm_expr, s);
10977 check_absolute_expr (ip, &imm_expr);
10978 if ((unsigned long) imm_expr.X_add_number > mask)
10979 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10980 mask, (unsigned long) imm_expr.X_add_number);
10981 INSERT_OPERAND (mips_opts.micromips,
10982 SA4, *ip, imm_expr.X_add_number);
10983 imm_expr.X_op = O_absent;
10989 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
10990 code) or 16 (for microMIPS code). */
10992 unsigned long mask = (mips_opts.micromips
10993 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
10995 my_getExpression (&imm_expr, s);
10996 check_absolute_expr (ip, &imm_expr);
10997 if ((unsigned long) imm_expr.X_add_number > mask)
10998 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10999 mask, (unsigned long) imm_expr.X_add_number);
11000 INSERT_OPERAND (mips_opts.micromips,
11001 IMM8, *ip, imm_expr.X_add_number);
11002 imm_expr.X_op = O_absent;
11008 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
11009 code) or 21 (for microMIPS code). */
11011 unsigned long mask = (mips_opts.micromips
11012 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
11014 my_getExpression (&imm_expr, s);
11015 check_absolute_expr (ip, &imm_expr);
11016 if ((unsigned long) imm_expr.X_add_number > mask)
11017 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11018 mask, (unsigned long) imm_expr.X_add_number);
11019 INSERT_OPERAND (mips_opts.micromips,
11020 RS, *ip, imm_expr.X_add_number);
11021 imm_expr.X_op = O_absent;
11026 case '7': /* Four DSP accumulators in bits 11,12. */
11027 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11028 && s[3] >= '0' && s[3] <= '3')
11030 regno = s[3] - '0';
11032 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
11036 as_bad (_("Invalid dsp acc register"));
11040 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
11041 code) or 14 (for microMIPS code). */
11043 unsigned long mask = (mips_opts.micromips
11044 ? MICROMIPSOP_MASK_WRDSP
11047 my_getExpression (&imm_expr, s);
11048 check_absolute_expr (ip, &imm_expr);
11049 if ((unsigned long) imm_expr.X_add_number > mask)
11050 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11051 mask, (unsigned long) imm_expr.X_add_number);
11052 INSERT_OPERAND (mips_opts.micromips,
11053 WRDSP, *ip, imm_expr.X_add_number);
11054 imm_expr.X_op = O_absent;
11059 case '9': /* Four DSP accumulators in bits 21,22. */
11060 gas_assert (!mips_opts.micromips);
11061 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11062 && s[3] >= '0' && s[3] <= '3')
11064 regno = s[3] - '0';
11066 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
11070 as_bad (_("Invalid dsp acc register"));
11074 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
11075 code) or 20 (for microMIPS code). */
11077 long mask = (mips_opts.micromips
11078 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
11080 my_getExpression (&imm_expr, s);
11081 check_absolute_expr (ip, &imm_expr);
11082 min_range = -((mask + 1) >> 1);
11083 max_range = ((mask + 1) >> 1) - 1;
11084 if (imm_expr.X_add_number < min_range
11085 || imm_expr.X_add_number > max_range)
11086 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11087 (long) min_range, (long) max_range,
11088 (long) imm_expr.X_add_number);
11089 INSERT_OPERAND (mips_opts.micromips,
11090 DSPSFT, *ip, imm_expr.X_add_number);
11091 imm_expr.X_op = O_absent;
11096 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
11097 gas_assert (!mips_opts.micromips);
11098 my_getExpression (&imm_expr, s);
11099 check_absolute_expr (ip, &imm_expr);
11100 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
11102 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11104 (unsigned long) imm_expr.X_add_number);
11106 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
11107 imm_expr.X_op = O_absent;
11111 case ':': /* DSP 7-bit signed immediate in bit 19. */
11112 gas_assert (!mips_opts.micromips);
11113 my_getExpression (&imm_expr, s);
11114 check_absolute_expr (ip, &imm_expr);
11115 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
11116 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
11117 if (imm_expr.X_add_number < min_range ||
11118 imm_expr.X_add_number > max_range)
11120 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11121 (long) min_range, (long) max_range,
11122 (long) imm_expr.X_add_number);
11124 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
11125 imm_expr.X_op = O_absent;
11129 case '@': /* DSP 10-bit signed immediate in bit 16. */
11131 long mask = (mips_opts.micromips
11132 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
11134 my_getExpression (&imm_expr, s);
11135 check_absolute_expr (ip, &imm_expr);
11136 min_range = -((mask + 1) >> 1);
11137 max_range = ((mask + 1) >> 1) - 1;
11138 if (imm_expr.X_add_number < min_range
11139 || imm_expr.X_add_number > max_range)
11140 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11141 (long) min_range, (long) max_range,
11142 (long) imm_expr.X_add_number);
11143 INSERT_OPERAND (mips_opts.micromips,
11144 IMM10, *ip, imm_expr.X_add_number);
11145 imm_expr.X_op = O_absent;
11150 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11151 gas_assert (mips_opts.micromips);
11152 my_getExpression (&imm_expr, s);
11153 check_absolute_expr (ip, &imm_expr);
11154 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11155 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11156 MICROMIPSOP_MASK_RD,
11157 (unsigned long) imm_expr.X_add_number);
11158 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11159 imm_expr.X_op = O_absent;
11163 case '!': /* MT usermode flag bit. */
11164 gas_assert (!mips_opts.micromips);
11165 my_getExpression (&imm_expr, s);
11166 check_absolute_expr (ip, &imm_expr);
11167 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11168 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11169 (unsigned long) imm_expr.X_add_number);
11170 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11171 imm_expr.X_op = O_absent;
11175 case '$': /* MT load high flag bit. */
11176 gas_assert (!mips_opts.micromips);
11177 my_getExpression (&imm_expr, s);
11178 check_absolute_expr (ip, &imm_expr);
11179 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11180 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11181 (unsigned long) imm_expr.X_add_number);
11182 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11183 imm_expr.X_op = O_absent;
11187 case '*': /* Four DSP accumulators in bits 18,19. */
11188 gas_assert (!mips_opts.micromips);
11189 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11190 s[3] >= '0' && s[3] <= '3')
11192 regno = s[3] - '0';
11194 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11198 as_bad (_("Invalid dsp/smartmips acc register"));
11201 case '&': /* Four DSP accumulators in bits 13,14. */
11202 gas_assert (!mips_opts.micromips);
11203 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11204 s[3] >= '0' && s[3] <= '3')
11206 regno = s[3] - '0';
11208 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11212 as_bad (_("Invalid dsp/smartmips acc register"));
11215 case '\\': /* 3-bit bit position. */
11217 unsigned long mask = (mips_opts.micromips
11218 ? MICROMIPSOP_MASK_3BITPOS
11219 : OP_MASK_3BITPOS);
11221 my_getExpression (&imm_expr, s);
11222 check_absolute_expr (ip, &imm_expr);
11223 if ((unsigned long) imm_expr.X_add_number > mask)
11224 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11226 mask, (unsigned long) imm_expr.X_add_number);
11227 INSERT_OPERAND (mips_opts.micromips,
11228 3BITPOS, *ip, imm_expr.X_add_number);
11229 imm_expr.X_op = O_absent;
11243 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11247 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11251 gas_assert (!mips_opts.micromips);
11252 INSERT_OPERAND (0, FT, *ip, lastregno);
11256 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11262 /* Handle optional base register.
11263 Either the base register is omitted or
11264 we must have a left paren. */
11265 /* This is dependent on the next operand specifier
11266 is a base register specification. */
11267 gas_assert (args[1] == 'b'
11268 || (mips_opts.micromips
11270 && (args[2] == 'l' || args[2] == 'n'
11271 || args[2] == 's' || args[2] == 'a')));
11272 if (*s == '\0' && args[1] == 'b')
11274 /* Fall through. */
11276 case ')': /* These must match exactly. */
11281 case '[': /* These must match exactly. */
11283 gas_assert (!mips_opts.micromips);
11288 case '+': /* Opcode extension character. */
11291 case '1': /* UDI immediates. */
11295 gas_assert (!mips_opts.micromips);
11297 const struct mips_immed *imm = mips_immed;
11299 while (imm->type && imm->type != *args)
11303 my_getExpression (&imm_expr, s);
11304 check_absolute_expr (ip, &imm_expr);
11305 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11307 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11308 imm->desc ? imm->desc : ip->insn_mo->name,
11309 (unsigned long) imm_expr.X_add_number,
11310 (unsigned long) imm_expr.X_add_number);
11311 imm_expr.X_add_number &= imm->mask;
11313 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11315 imm_expr.X_op = O_absent;
11320 case 'A': /* ins/ext position, becomes LSB. */
11329 my_getExpression (&imm_expr, s);
11330 check_absolute_expr (ip, &imm_expr);
11331 if ((unsigned long) imm_expr.X_add_number < limlo
11332 || (unsigned long) imm_expr.X_add_number > limhi)
11334 as_bad (_("Improper position (%lu)"),
11335 (unsigned long) imm_expr.X_add_number);
11336 imm_expr.X_add_number = limlo;
11338 lastpos = imm_expr.X_add_number;
11339 INSERT_OPERAND (mips_opts.micromips,
11340 EXTLSB, *ip, imm_expr.X_add_number);
11341 imm_expr.X_op = O_absent;
11345 case 'B': /* ins size, becomes MSB. */
11354 my_getExpression (&imm_expr, s);
11355 check_absolute_expr (ip, &imm_expr);
11356 /* Check for negative input so that small negative numbers
11357 will not succeed incorrectly. The checks against
11358 (pos+size) transitively check "size" itself,
11359 assuming that "pos" is reasonable. */
11360 if ((long) imm_expr.X_add_number < 0
11361 || ((unsigned long) imm_expr.X_add_number
11363 || ((unsigned long) imm_expr.X_add_number
11364 + lastpos) > limhi)
11366 as_bad (_("Improper insert size (%lu, position %lu)"),
11367 (unsigned long) imm_expr.X_add_number,
11368 (unsigned long) lastpos);
11369 imm_expr.X_add_number = limlo - lastpos;
11371 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11372 lastpos + imm_expr.X_add_number - 1);
11373 imm_expr.X_op = O_absent;
11377 case 'C': /* ext size, becomes MSBD. */
11393 my_getExpression (&imm_expr, s);
11394 check_absolute_expr (ip, &imm_expr);
11395 /* The checks against (pos+size) don't transitively check
11396 "size" itself, assuming that "pos" is reasonable.
11397 We also need to check the lower bound of "size". */
11398 if ((long) imm_expr.X_add_number < sizelo
11399 || ((unsigned long) imm_expr.X_add_number
11401 || ((unsigned long) imm_expr.X_add_number
11402 + lastpos) > limhi)
11404 as_bad (_("Improper extract size (%lu, position %lu)"),
11405 (unsigned long) imm_expr.X_add_number,
11406 (unsigned long) lastpos);
11407 imm_expr.X_add_number = limlo - lastpos;
11409 INSERT_OPERAND (mips_opts.micromips,
11410 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11411 imm_expr.X_op = O_absent;
11416 /* +D is for disassembly only; never match. */
11420 /* "+I" is like "I", except that imm2_expr is used. */
11421 my_getExpression (&imm2_expr, s);
11422 if (imm2_expr.X_op != O_big
11423 && imm2_expr.X_op != O_constant)
11424 insn_error = _("absolute expression required");
11425 if (HAVE_32BIT_GPRS)
11426 normalize_constant_expr (&imm2_expr);
11430 case 'T': /* Coprocessor register. */
11431 gas_assert (!mips_opts.micromips);
11432 /* +T is for disassembly only; never match. */
11435 case 't': /* Coprocessor register number. */
11436 gas_assert (!mips_opts.micromips);
11437 if (s[0] == '$' && ISDIGIT (s[1]))
11447 while (ISDIGIT (*s));
11449 as_bad (_("Invalid register number (%d)"), regno);
11452 INSERT_OPERAND (0, RT, *ip, regno);
11457 as_bad (_("Invalid coprocessor 0 register number"));
11461 /* bbit[01] and bbit[01]32 bit index. Give error if index
11462 is not in the valid range. */
11463 gas_assert (!mips_opts.micromips);
11464 my_getExpression (&imm_expr, s);
11465 check_absolute_expr (ip, &imm_expr);
11466 if ((unsigned) imm_expr.X_add_number > 31)
11468 as_bad (_("Improper bit index (%lu)"),
11469 (unsigned long) imm_expr.X_add_number);
11470 imm_expr.X_add_number = 0;
11472 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11473 imm_expr.X_op = O_absent;
11478 /* bbit[01] bit index when bbit is used but we generate
11479 bbit[01]32 because the index is over 32. Move to the
11480 next candidate if index is not in the valid range. */
11481 gas_assert (!mips_opts.micromips);
11482 my_getExpression (&imm_expr, s);
11483 check_absolute_expr (ip, &imm_expr);
11484 if ((unsigned) imm_expr.X_add_number < 32
11485 || (unsigned) imm_expr.X_add_number > 63)
11487 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11488 imm_expr.X_op = O_absent;
11493 /* cins, cins32, exts and exts32 position field. Give error
11494 if it's not in the valid range. */
11495 gas_assert (!mips_opts.micromips);
11496 my_getExpression (&imm_expr, s);
11497 check_absolute_expr (ip, &imm_expr);
11498 if ((unsigned) imm_expr.X_add_number > 31)
11500 as_bad (_("Improper position (%lu)"),
11501 (unsigned long) imm_expr.X_add_number);
11502 imm_expr.X_add_number = 0;
11504 /* Make the pos explicit to simplify +S. */
11505 lastpos = imm_expr.X_add_number + 32;
11506 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11507 imm_expr.X_op = O_absent;
11512 /* cins, cins32, exts and exts32 position field. Move to
11513 the next candidate if it's not in the valid range. */
11514 gas_assert (!mips_opts.micromips);
11515 my_getExpression (&imm_expr, s);
11516 check_absolute_expr (ip, &imm_expr);
11517 if ((unsigned) imm_expr.X_add_number < 32
11518 || (unsigned) imm_expr.X_add_number > 63)
11520 lastpos = imm_expr.X_add_number;
11521 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11522 imm_expr.X_op = O_absent;
11527 /* cins and exts length-minus-one field. */
11528 gas_assert (!mips_opts.micromips);
11529 my_getExpression (&imm_expr, s);
11530 check_absolute_expr (ip, &imm_expr);
11531 if ((unsigned long) imm_expr.X_add_number > 31)
11533 as_bad (_("Improper size (%lu)"),
11534 (unsigned long) imm_expr.X_add_number);
11535 imm_expr.X_add_number = 0;
11537 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11538 imm_expr.X_op = O_absent;
11543 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11544 length-minus-one field. */
11545 gas_assert (!mips_opts.micromips);
11546 my_getExpression (&imm_expr, s);
11547 check_absolute_expr (ip, &imm_expr);
11548 if ((long) imm_expr.X_add_number < 0
11549 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11551 as_bad (_("Improper size (%lu)"),
11552 (unsigned long) imm_expr.X_add_number);
11553 imm_expr.X_add_number = 0;
11555 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11556 imm_expr.X_op = O_absent;
11561 /* seqi/snei immediate field. */
11562 gas_assert (!mips_opts.micromips);
11563 my_getExpression (&imm_expr, s);
11564 check_absolute_expr (ip, &imm_expr);
11565 if ((long) imm_expr.X_add_number < -512
11566 || (long) imm_expr.X_add_number >= 512)
11568 as_bad (_("Improper immediate (%ld)"),
11569 (long) imm_expr.X_add_number);
11570 imm_expr.X_add_number = 0;
11572 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11573 imm_expr.X_op = O_absent;
11577 case 'a': /* 8-bit signed offset in bit 6 */
11578 gas_assert (!mips_opts.micromips);
11579 my_getExpression (&imm_expr, s);
11580 check_absolute_expr (ip, &imm_expr);
11581 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11582 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11583 if (imm_expr.X_add_number < min_range
11584 || imm_expr.X_add_number > max_range)
11586 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11587 (long) min_range, (long) max_range,
11588 (long) imm_expr.X_add_number);
11590 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11591 imm_expr.X_op = O_absent;
11595 case 'b': /* 8-bit signed offset in bit 3 */
11596 gas_assert (!mips_opts.micromips);
11597 my_getExpression (&imm_expr, s);
11598 check_absolute_expr (ip, &imm_expr);
11599 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11600 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11601 if (imm_expr.X_add_number < min_range
11602 || imm_expr.X_add_number > max_range)
11604 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11605 (long) min_range, (long) max_range,
11606 (long) imm_expr.X_add_number);
11608 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11609 imm_expr.X_op = O_absent;
11613 case 'c': /* 9-bit signed offset in bit 6 */
11614 gas_assert (!mips_opts.micromips);
11615 my_getExpression (&imm_expr, s);
11616 check_absolute_expr (ip, &imm_expr);
11617 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11618 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11619 /* We check the offset range before adjusted. */
11622 if (imm_expr.X_add_number < min_range
11623 || imm_expr.X_add_number > max_range)
11625 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11626 (long) min_range, (long) max_range,
11627 (long) imm_expr.X_add_number);
11629 if (imm_expr.X_add_number & 0xf)
11631 as_bad (_("Offset not 16 bytes alignment (%ld)"),
11632 (long) imm_expr.X_add_number);
11634 /* Right shift 4 bits to adjust the offset operand. */
11635 INSERT_OPERAND (0, OFFSET_C, *ip,
11636 imm_expr.X_add_number >> 4);
11637 imm_expr.X_op = O_absent;
11642 gas_assert (!mips_opts.micromips);
11643 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
11645 if (regno == AT && mips_opts.at)
11647 if (mips_opts.at == ATREG)
11648 as_warn (_("used $at without \".set noat\""));
11650 as_warn (_("used $%u with \".set at=$%u\""),
11651 regno, mips_opts.at);
11653 INSERT_OPERAND (0, RZ, *ip, regno);
11657 gas_assert (!mips_opts.micromips);
11658 if (!reg_lookup (&s, RTYPE_FPU, ®no))
11660 INSERT_OPERAND (0, FZ, *ip, regno);
11664 as_bad (_("Internal error: bad %s opcode "
11665 "(unknown extension operand type `+%c'): %s %s"),
11666 mips_opts.micromips ? "microMIPS" : "MIPS",
11667 *args, insn->name, insn->args);
11668 /* Further processing is fruitless. */
11673 case '.': /* 10-bit offset. */
11674 gas_assert (mips_opts.micromips);
11675 case '~': /* 12-bit offset. */
11677 int shift = *args == '.' ? 9 : 11;
11680 /* Check whether there is only a single bracketed expression
11681 left. If so, it must be the base register and the
11682 constant must be zero. */
11683 if (*s == '(' && strchr (s + 1, '(') == 0)
11686 /* If this value won't fit into the offset, then go find
11687 a macro that will generate a 16- or 32-bit offset code
11689 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
11690 if ((i == 0 && (imm_expr.X_op != O_constant
11691 || imm_expr.X_add_number >= 1 << shift
11692 || imm_expr.X_add_number < -1 << shift))
11695 imm_expr.X_op = O_absent;
11699 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
11701 INSERT_OPERAND (mips_opts.micromips,
11702 OFFSET12, *ip, imm_expr.X_add_number);
11703 imm_expr.X_op = O_absent;
11708 case '<': /* must be at least one digit */
11710 * According to the manual, if the shift amount is greater
11711 * than 31 or less than 0, then the shift amount should be
11712 * mod 32. In reality the mips assembler issues an error.
11713 * We issue a warning and mask out all but the low 5 bits.
11715 my_getExpression (&imm_expr, s);
11716 check_absolute_expr (ip, &imm_expr);
11717 if ((unsigned long) imm_expr.X_add_number > 31)
11718 as_warn (_("Improper shift amount (%lu)"),
11719 (unsigned long) imm_expr.X_add_number);
11720 INSERT_OPERAND (mips_opts.micromips,
11721 SHAMT, *ip, imm_expr.X_add_number);
11722 imm_expr.X_op = O_absent;
11726 case '>': /* shift amount minus 32 */
11727 my_getExpression (&imm_expr, s);
11728 check_absolute_expr (ip, &imm_expr);
11729 if ((unsigned long) imm_expr.X_add_number < 32
11730 || (unsigned long) imm_expr.X_add_number > 63)
11732 INSERT_OPERAND (mips_opts.micromips,
11733 SHAMT, *ip, imm_expr.X_add_number - 32);
11734 imm_expr.X_op = O_absent;
11738 case 'k': /* CACHE code. */
11739 case 'h': /* PREFX code. */
11740 case '1': /* SYNC type. */
11741 my_getExpression (&imm_expr, s);
11742 check_absolute_expr (ip, &imm_expr);
11743 if ((unsigned long) imm_expr.X_add_number > 31)
11744 as_warn (_("Invalid value for `%s' (%lu)"),
11746 (unsigned long) imm_expr.X_add_number);
11750 if (mips_fix_cn63xxp1
11751 && !mips_opts.micromips
11752 && strcmp ("pref", insn->name) == 0)
11753 switch (imm_expr.X_add_number)
11762 case 31: /* These are ok. */
11765 default: /* The rest must be changed to 28. */
11766 imm_expr.X_add_number = 28;
11769 INSERT_OPERAND (mips_opts.micromips,
11770 CACHE, *ip, imm_expr.X_add_number);
11773 INSERT_OPERAND (mips_opts.micromips,
11774 PREFX, *ip, imm_expr.X_add_number);
11777 INSERT_OPERAND (mips_opts.micromips,
11778 STYPE, *ip, imm_expr.X_add_number);
11781 imm_expr.X_op = O_absent;
11785 case 'c': /* BREAK code. */
11787 unsigned long mask = (mips_opts.micromips
11788 ? MICROMIPSOP_MASK_CODE
11791 my_getExpression (&imm_expr, s);
11792 check_absolute_expr (ip, &imm_expr);
11793 if ((unsigned long) imm_expr.X_add_number > mask)
11794 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11796 mask, (unsigned long) imm_expr.X_add_number);
11797 INSERT_OPERAND (mips_opts.micromips,
11798 CODE, *ip, imm_expr.X_add_number);
11799 imm_expr.X_op = O_absent;
11804 case 'q': /* Lower BREAK code. */
11806 unsigned long mask = (mips_opts.micromips
11807 ? MICROMIPSOP_MASK_CODE2
11810 my_getExpression (&imm_expr, s);
11811 check_absolute_expr (ip, &imm_expr);
11812 if ((unsigned long) imm_expr.X_add_number > mask)
11813 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
11815 mask, (unsigned long) imm_expr.X_add_number);
11816 INSERT_OPERAND (mips_opts.micromips,
11817 CODE2, *ip, imm_expr.X_add_number);
11818 imm_expr.X_op = O_absent;
11823 case 'B': /* 20- or 10-bit syscall/break/wait code. */
11825 unsigned long mask = (mips_opts.micromips
11826 ? MICROMIPSOP_MASK_CODE10
11829 my_getExpression (&imm_expr, s);
11830 check_absolute_expr (ip, &imm_expr);
11831 if ((unsigned long) imm_expr.X_add_number > mask)
11832 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11834 mask, (unsigned long) imm_expr.X_add_number);
11835 if (mips_opts.micromips)
11836 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
11838 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
11839 imm_expr.X_op = O_absent;
11844 case 'C': /* 25- or 23-bit coprocessor code. */
11846 unsigned long mask = (mips_opts.micromips
11847 ? MICROMIPSOP_MASK_COPZ
11850 my_getExpression (&imm_expr, s);
11851 check_absolute_expr (ip, &imm_expr);
11852 if ((unsigned long) imm_expr.X_add_number > mask)
11853 as_warn (_("Coproccesor code > %u bits (%lu)"),
11854 mips_opts.micromips ? 23U : 25U,
11855 (unsigned long) imm_expr.X_add_number);
11856 INSERT_OPERAND (mips_opts.micromips,
11857 COPZ, *ip, imm_expr.X_add_number);
11858 imm_expr.X_op = O_absent;
11863 case 'J': /* 19-bit WAIT code. */
11864 gas_assert (!mips_opts.micromips);
11865 my_getExpression (&imm_expr, s);
11866 check_absolute_expr (ip, &imm_expr);
11867 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
11869 as_warn (_("Illegal 19-bit code (%lu)"),
11870 (unsigned long) imm_expr.X_add_number);
11871 imm_expr.X_add_number &= OP_MASK_CODE19;
11873 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
11874 imm_expr.X_op = O_absent;
11878 case 'P': /* Performance register. */
11879 gas_assert (!mips_opts.micromips);
11880 my_getExpression (&imm_expr, s);
11881 check_absolute_expr (ip, &imm_expr);
11882 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
11883 as_warn (_("Invalid performance register (%lu)"),
11884 (unsigned long) imm_expr.X_add_number);
11885 if (imm_expr.X_add_number != 0 && mips_opts.arch == CPU_R5900
11886 && (!strcmp(insn->name,"mfps") || !strcmp(insn->name,"mtps")))
11887 as_warn (_("Invalid performance register (%lu)"),
11888 (unsigned long) imm_expr.X_add_number);
11889 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
11890 imm_expr.X_op = O_absent;
11894 case 'G': /* Coprocessor destination register. */
11896 unsigned long opcode = ip->insn_opcode;
11897 unsigned long mask;
11898 unsigned int types;
11901 if (mips_opts.micromips)
11903 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
11904 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
11905 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
11909 case 0x000000fc: /* mfc0 */
11910 case 0x000002fc: /* mtc0 */
11911 case 0x580000fc: /* dmfc0 */
11912 case 0x580002fc: /* dmtc0 */
11922 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
11923 cop0 = opcode == OP_OP_COP0;
11925 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
11926 ok = reg_lookup (&s, types, ®no);
11927 if (mips_opts.micromips)
11928 INSERT_OPERAND (1, RS, *ip, regno);
11930 INSERT_OPERAND (0, RD, *ip, regno);
11939 case 'y': /* ALNV.PS source register. */
11940 gas_assert (mips_opts.micromips);
11942 case 'x': /* Ignore register name. */
11943 case 'U': /* Destination register (CLO/CLZ). */
11944 case 'g': /* Coprocessor destination register. */
11945 gas_assert (!mips_opts.micromips);
11946 case 'b': /* Base register. */
11947 case 'd': /* Destination register. */
11948 case 's': /* Source register. */
11949 case 't': /* Target register. */
11950 case 'r': /* Both target and source. */
11951 case 'v': /* Both dest and source. */
11952 case 'w': /* Both dest and target. */
11953 case 'E': /* Coprocessor target register. */
11954 case 'K': /* RDHWR destination register. */
11955 case 'z': /* Must be zero register. */
11958 if (*args == 'E' || *args == 'K')
11959 ok = reg_lookup (&s, RTYPE_NUM, ®no);
11962 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
11963 if (regno == AT && mips_opts.at)
11965 if (mips_opts.at == ATREG)
11966 as_warn (_("Used $at without \".set noat\""));
11968 as_warn (_("Used $%u with \".set at=$%u\""),
11969 regno, mips_opts.at);
11979 if (c == 'r' || c == 'v' || c == 'w')
11986 /* 'z' only matches $0. */
11987 if (c == 'z' && regno != 0)
11990 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
11992 if (regno == lastregno)
11995 = _("Source and destination must be different");
11998 if (regno == 31 && lastregno == 0xffffffff)
12001 = _("A destination register must be supplied");
12005 /* Now that we have assembled one operand, we use the args
12006 string to figure out where it goes in the instruction. */
12013 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
12017 if (mips_opts.micromips)
12018 INSERT_OPERAND (1, RS, *ip, regno);
12020 INSERT_OPERAND (0, RD, *ip, regno);
12025 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
12029 gas_assert (!mips_opts.micromips);
12030 INSERT_OPERAND (0, RD, *ip, regno);
12031 INSERT_OPERAND (0, RT, *ip, regno);
12037 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
12041 gas_assert (mips_opts.micromips);
12042 INSERT_OPERAND (1, RS3, *ip, regno);
12046 /* This case exists because on the r3000 trunc
12047 expands into a macro which requires a gp
12048 register. On the r6000 or r4000 it is
12049 assembled into a single instruction which
12050 ignores the register. Thus the insn version
12051 is MIPS_ISA2 and uses 'x', and the macro
12052 version is MIPS_ISA1 and uses 't'. */
12056 /* This case is for the div instruction, which
12057 acts differently if the destination argument
12058 is $0. This only matches $0, and is checked
12059 outside the switch. */
12069 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
12073 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
12078 case 'O': /* MDMX alignment immediate constant. */
12079 gas_assert (!mips_opts.micromips);
12080 my_getExpression (&imm_expr, s);
12081 check_absolute_expr (ip, &imm_expr);
12082 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
12083 as_warn (_("Improper align amount (%ld), using low bits"),
12084 (long) imm_expr.X_add_number);
12085 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
12086 imm_expr.X_op = O_absent;
12090 case 'Q': /* MDMX vector, element sel, or const. */
12093 /* MDMX Immediate. */
12094 gas_assert (!mips_opts.micromips);
12095 my_getExpression (&imm_expr, s);
12096 check_absolute_expr (ip, &imm_expr);
12097 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
12098 as_warn (_("Invalid MDMX Immediate (%ld)"),
12099 (long) imm_expr.X_add_number);
12100 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
12101 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12102 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
12104 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
12105 imm_expr.X_op = O_absent;
12109 /* Not MDMX Immediate. Fall through. */
12110 case 'X': /* MDMX destination register. */
12111 case 'Y': /* MDMX source register. */
12112 case 'Z': /* MDMX target register. */
12115 gas_assert (!mips_opts.micromips);
12116 case 'D': /* Floating point destination register. */
12117 case 'S': /* Floating point source register. */
12118 case 'T': /* Floating point target register. */
12119 case 'R': /* Floating point source register. */
12123 || (mips_opts.ase_mdmx
12124 && (ip->insn_mo->pinfo & FP_D)
12125 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
12126 | INSN_COPROC_MEMORY_DELAY
12127 | INSN_LOAD_COPROC_DELAY
12128 | INSN_LOAD_MEMORY_DELAY
12129 | INSN_STORE_MEMORY))))
12130 rtype |= RTYPE_VEC;
12132 if (reg_lookup (&s, rtype, ®no))
12134 if ((regno & 1) != 0
12136 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
12137 as_warn (_("Float register should be even, was %d"),
12145 if (c == 'V' || c == 'W')
12156 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12162 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12166 /* This is like 'Z', but also needs to fix the MDMX
12167 vector/scalar select bits. Note that the
12168 scalar immediate case is handled above. */
12171 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12172 int max_el = (is_qh ? 3 : 7);
12174 my_getExpression(&imm_expr, s);
12175 check_absolute_expr (ip, &imm_expr);
12177 if (imm_expr.X_add_number > max_el)
12178 as_bad (_("Bad element selector %ld"),
12179 (long) imm_expr.X_add_number);
12180 imm_expr.X_add_number &= max_el;
12181 ip->insn_opcode |= (imm_expr.X_add_number
12184 imm_expr.X_op = O_absent;
12186 as_warn (_("Expecting ']' found '%s'"), s);
12192 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12193 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12196 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12199 /* Fall through. */
12203 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12207 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12217 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12221 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12227 my_getExpression (&imm_expr, s);
12228 if (imm_expr.X_op != O_big
12229 && imm_expr.X_op != O_constant)
12230 insn_error = _("absolute expression required");
12231 if (HAVE_32BIT_GPRS)
12232 normalize_constant_expr (&imm_expr);
12237 my_getExpression (&offset_expr, s);
12238 normalize_address_expr (&offset_expr);
12239 *imm_reloc = BFD_RELOC_32;
12252 unsigned char temp[8];
12254 unsigned int length;
12259 /* These only appear as the last operand in an
12260 instruction, and every instruction that accepts
12261 them in any variant accepts them in all variants.
12262 This means we don't have to worry about backing out
12263 any changes if the instruction does not match.
12265 The difference between them is the size of the
12266 floating point constant and where it goes. For 'F'
12267 and 'L' the constant is 64 bits; for 'f' and 'l' it
12268 is 32 bits. Where the constant is placed is based
12269 on how the MIPS assembler does things:
12272 f -- immediate value
12275 The .lit4 and .lit8 sections are only used if
12276 permitted by the -G argument.
12278 The code below needs to know whether the target register
12279 is 32 or 64 bits wide. It relies on the fact 'f' and
12280 'F' are used with GPR-based instructions and 'l' and
12281 'L' are used with FPR-based instructions. */
12283 f64 = *args == 'F' || *args == 'L';
12284 using_gprs = *args == 'F' || *args == 'f';
12286 save_in = input_line_pointer;
12287 input_line_pointer = s;
12288 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12290 s = input_line_pointer;
12291 input_line_pointer = save_in;
12292 if (err != NULL && *err != '\0')
12294 as_bad (_("Bad floating point constant: %s"), err);
12295 memset (temp, '\0', sizeof temp);
12296 length = f64 ? 8 : 4;
12299 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12303 && (g_switch_value < 4
12304 || (temp[0] == 0 && temp[1] == 0)
12305 || (temp[2] == 0 && temp[3] == 0))))
12307 imm_expr.X_op = O_constant;
12308 if (!target_big_endian)
12309 imm_expr.X_add_number = bfd_getl32 (temp);
12311 imm_expr.X_add_number = bfd_getb32 (temp);
12313 else if (length > 4
12314 && !mips_disable_float_construction
12315 /* Constants can only be constructed in GPRs and
12316 copied to FPRs if the GPRs are at least as wide
12317 as the FPRs. Force the constant into memory if
12318 we are using 64-bit FPRs but the GPRs are only
12321 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12322 && ((temp[0] == 0 && temp[1] == 0)
12323 || (temp[2] == 0 && temp[3] == 0))
12324 && ((temp[4] == 0 && temp[5] == 0)
12325 || (temp[6] == 0 && temp[7] == 0)))
12327 /* The value is simple enough to load with a couple of
12328 instructions. If using 32-bit registers, set
12329 imm_expr to the high order 32 bits and offset_expr to
12330 the low order 32 bits. Otherwise, set imm_expr to
12331 the entire 64 bit constant. */
12332 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12334 imm_expr.X_op = O_constant;
12335 offset_expr.X_op = O_constant;
12336 if (!target_big_endian)
12338 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12339 offset_expr.X_add_number = bfd_getl32 (temp);
12343 imm_expr.X_add_number = bfd_getb32 (temp);
12344 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12346 if (offset_expr.X_add_number == 0)
12347 offset_expr.X_op = O_absent;
12349 else if (sizeof (imm_expr.X_add_number) > 4)
12351 imm_expr.X_op = O_constant;
12352 if (!target_big_endian)
12353 imm_expr.X_add_number = bfd_getl64 (temp);
12355 imm_expr.X_add_number = bfd_getb64 (temp);
12359 imm_expr.X_op = O_big;
12360 imm_expr.X_add_number = 4;
12361 if (!target_big_endian)
12363 generic_bignum[0] = bfd_getl16 (temp);
12364 generic_bignum[1] = bfd_getl16 (temp + 2);
12365 generic_bignum[2] = bfd_getl16 (temp + 4);
12366 generic_bignum[3] = bfd_getl16 (temp + 6);
12370 generic_bignum[0] = bfd_getb16 (temp + 6);
12371 generic_bignum[1] = bfd_getb16 (temp + 4);
12372 generic_bignum[2] = bfd_getb16 (temp + 2);
12373 generic_bignum[3] = bfd_getb16 (temp);
12379 const char *newname;
12382 /* Switch to the right section. */
12384 subseg = now_subseg;
12387 default: /* unused default case avoids warnings. */
12389 newname = RDATA_SECTION_NAME;
12390 if (g_switch_value >= 8)
12394 newname = RDATA_SECTION_NAME;
12397 gas_assert (g_switch_value >= 4);
12401 new_seg = subseg_new (newname, (subsegT) 0);
12403 bfd_set_section_flags (stdoutput, new_seg,
12408 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12409 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12410 record_alignment (new_seg, 4);
12412 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12413 if (seg == now_seg)
12414 as_bad (_("Can't use floating point insn in this section"));
12416 /* Set the argument to the current address in the
12418 offset_expr.X_op = O_symbol;
12419 offset_expr.X_add_symbol = symbol_temp_new_now ();
12420 offset_expr.X_add_number = 0;
12422 /* Put the floating point number into the section. */
12423 p = frag_more ((int) length);
12424 memcpy (p, temp, length);
12426 /* Switch back to the original section. */
12427 subseg_set (seg, subseg);
12432 case 'i': /* 16-bit unsigned immediate. */
12433 case 'j': /* 16-bit signed immediate. */
12434 *imm_reloc = BFD_RELOC_LO16;
12435 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12438 offsetT minval, maxval;
12440 more = (insn + 1 < past
12441 && strcmp (insn->name, insn[1].name) == 0);
12443 /* If the expression was written as an unsigned number,
12444 only treat it as signed if there are no more
12448 && sizeof (imm_expr.X_add_number) <= 4
12449 && imm_expr.X_op == O_constant
12450 && imm_expr.X_add_number < 0
12451 && imm_expr.X_unsigned
12452 && HAVE_64BIT_GPRS)
12455 /* For compatibility with older assemblers, we accept
12456 0x8000-0xffff as signed 16-bit numbers when only
12457 signed numbers are allowed. */
12459 minval = 0, maxval = 0xffff;
12461 minval = -0x8000, maxval = 0x7fff;
12463 minval = -0x8000, maxval = 0xffff;
12465 if (imm_expr.X_op != O_constant
12466 || imm_expr.X_add_number < minval
12467 || imm_expr.X_add_number > maxval)
12471 if (imm_expr.X_op == O_constant
12472 || imm_expr.X_op == O_big)
12473 as_bad (_("Expression out of range"));
12479 case 'o': /* 16-bit offset. */
12480 offset_reloc[0] = BFD_RELOC_LO16;
12481 offset_reloc[1] = BFD_RELOC_UNUSED;
12482 offset_reloc[2] = BFD_RELOC_UNUSED;
12484 /* Check whether there is only a single bracketed expression
12485 left. If so, it must be the base register and the
12486 constant must be zero. */
12487 if (*s == '(' && strchr (s + 1, '(') == 0)
12489 offset_expr.X_op = O_constant;
12490 offset_expr.X_add_number = 0;
12494 /* If this value won't fit into a 16 bit offset, then go
12495 find a macro that will generate the 32 bit offset
12497 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12498 && (offset_expr.X_op != O_constant
12499 || offset_expr.X_add_number >= 0x8000
12500 || offset_expr.X_add_number < -0x8000))
12506 case 'p': /* PC-relative offset. */
12507 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12508 my_getExpression (&offset_expr, s);
12512 case 'u': /* Upper 16 bits. */
12513 *imm_reloc = BFD_RELOC_LO16;
12514 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12515 && imm_expr.X_op == O_constant
12516 && (imm_expr.X_add_number < 0
12517 || imm_expr.X_add_number >= 0x10000))
12518 as_bad (_("lui expression (%lu) not in range 0..65535"),
12519 (unsigned long) imm_expr.X_add_number);
12523 case 'a': /* 26-bit address. */
12524 *offset_reloc = BFD_RELOC_MIPS_JMP;
12525 my_getExpression (&offset_expr, s);
12529 case 'N': /* 3-bit branch condition code. */
12530 case 'M': /* 3-bit compare condition code. */
12532 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12533 rtype |= RTYPE_FCC;
12534 if (!reg_lookup (&s, rtype, ®no))
12536 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12537 || strcmp (str + strlen (str) - 5, "any2f") == 0
12538 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12539 && (regno & 1) != 0)
12540 as_warn (_("Condition code register should be even for %s, "
12543 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12544 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12545 && (regno & 3) != 0)
12546 as_warn (_("Condition code register should be 0 or 4 for %s, "
12550 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12552 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12556 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12567 while (ISDIGIT (*s));
12570 c = 8; /* Invalid sel value. */
12573 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12574 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12578 gas_assert (!mips_opts.micromips);
12579 /* Must be at least one digit. */
12580 my_getExpression (&imm_expr, s);
12581 check_absolute_expr (ip, &imm_expr);
12583 if ((unsigned long) imm_expr.X_add_number
12584 > (unsigned long) OP_MASK_VECBYTE)
12586 as_bad (_("bad byte vector index (%ld)"),
12587 (long) imm_expr.X_add_number);
12588 imm_expr.X_add_number = 0;
12591 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12592 imm_expr.X_op = O_absent;
12597 gas_assert (!mips_opts.micromips);
12598 my_getExpression (&imm_expr, s);
12599 check_absolute_expr (ip, &imm_expr);
12601 if ((unsigned long) imm_expr.X_add_number
12602 > (unsigned long) OP_MASK_VECALIGN)
12604 as_bad (_("bad byte vector index (%ld)"),
12605 (long) imm_expr.X_add_number);
12606 imm_expr.X_add_number = 0;
12609 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
12610 imm_expr.X_op = O_absent;
12614 case 'm': /* Opcode extension character. */
12615 gas_assert (mips_opts.micromips);
12620 if (strncmp (s, "$pc", 3) == 0)
12648 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
12649 if (regno == AT && mips_opts.at)
12651 if (mips_opts.at == ATREG)
12652 as_warn (_("Used $at without \".set noat\""));
12654 as_warn (_("Used $%u with \".set at=$%u\""),
12655 regno, mips_opts.at);
12661 gas_assert (args[1] == ',');
12667 gas_assert (args[1] == ',');
12669 continue; /* Nothing to do. */
12675 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
12677 if (regno == lastregno)
12680 = _("Source and destination must be different");
12683 if (regno == 31 && lastregno == 0xffffffff)
12686 = _("A destination register must be supplied");
12697 gas_assert (args[1] == ',');
12704 gas_assert (args[1] == ',');
12707 continue; /* Nothing to do. */
12711 /* Make sure regno is the same as lastregno. */
12712 if (c == 't' && regno != lastregno)
12715 /* Make sure regno is the same as destregno. */
12716 if (c == 'x' && regno != destregno)
12719 /* We need to save regno, before regno maps to the
12720 microMIPS register encoding. */
12730 regno = ILLEGAL_REG;
12734 regno = mips32_to_micromips_reg_b_map[regno];
12738 regno = mips32_to_micromips_reg_c_map[regno];
12742 regno = mips32_to_micromips_reg_d_map[regno];
12746 regno = mips32_to_micromips_reg_e_map[regno];
12750 regno = mips32_to_micromips_reg_f_map[regno];
12754 regno = mips32_to_micromips_reg_g_map[regno];
12758 regno = mips32_to_micromips_reg_h_map[regno];
12762 switch (EXTRACT_OPERAND (1, MI, *ip))
12767 else if (regno == 22)
12769 else if (regno == 5)
12771 else if (regno == 6)
12773 else if (regno == 7)
12776 regno = ILLEGAL_REG;
12782 else if (regno == 7)
12785 regno = ILLEGAL_REG;
12792 regno = ILLEGAL_REG;
12796 regno = ILLEGAL_REG;
12802 regno = mips32_to_micromips_reg_l_map[regno];
12806 regno = mips32_to_micromips_reg_m_map[regno];
12810 regno = mips32_to_micromips_reg_n_map[regno];
12814 regno = mips32_to_micromips_reg_q_map[regno];
12819 regno = ILLEGAL_REG;
12824 regno = ILLEGAL_REG;
12829 regno = ILLEGAL_REG;
12832 case 'j': /* Do nothing. */
12842 if (regno == ILLEGAL_REG)
12848 INSERT_OPERAND (1, MB, *ip, regno);
12852 INSERT_OPERAND (1, MC, *ip, regno);
12856 INSERT_OPERAND (1, MD, *ip, regno);
12860 INSERT_OPERAND (1, ME, *ip, regno);
12864 INSERT_OPERAND (1, MF, *ip, regno);
12868 INSERT_OPERAND (1, MG, *ip, regno);
12872 INSERT_OPERAND (1, MH, *ip, regno);
12876 INSERT_OPERAND (1, MI, *ip, regno);
12880 INSERT_OPERAND (1, MJ, *ip, regno);
12884 INSERT_OPERAND (1, ML, *ip, regno);
12888 INSERT_OPERAND (1, MM, *ip, regno);
12892 INSERT_OPERAND (1, MN, *ip, regno);
12896 INSERT_OPERAND (1, MP, *ip, regno);
12900 INSERT_OPERAND (1, MQ, *ip, regno);
12903 case 'a': /* Do nothing. */
12904 case 's': /* Do nothing. */
12905 case 't': /* Do nothing. */
12906 case 'x': /* Do nothing. */
12907 case 'y': /* Do nothing. */
12908 case 'z': /* Do nothing. */
12918 bfd_reloc_code_real_type r[3];
12922 /* Check whether there is only a single bracketed
12923 expression left. If so, it must be the base register
12924 and the constant must be zero. */
12925 if (*s == '(' && strchr (s + 1, '(') == 0)
12927 INSERT_OPERAND (1, IMMA, *ip, 0);
12931 if (my_getSmallExpression (&ep, r, s) > 0
12932 || !expr_const_in_range (&ep, -64, 64, 2))
12935 imm = ep.X_add_number >> 2;
12936 INSERT_OPERAND (1, IMMA, *ip, imm);
12943 bfd_reloc_code_real_type r[3];
12947 if (my_getSmallExpression (&ep, r, s) > 0
12948 || ep.X_op != O_constant)
12951 for (imm = 0; imm < 8; imm++)
12952 if (micromips_imm_b_map[imm] == ep.X_add_number)
12957 INSERT_OPERAND (1, IMMB, *ip, imm);
12964 bfd_reloc_code_real_type r[3];
12968 if (my_getSmallExpression (&ep, r, s) > 0
12969 || ep.X_op != O_constant)
12972 for (imm = 0; imm < 16; imm++)
12973 if (micromips_imm_c_map[imm] == ep.X_add_number)
12978 INSERT_OPERAND (1, IMMC, *ip, imm);
12983 case 'D': /* pc relative offset */
12984 case 'E': /* pc relative offset */
12985 my_getExpression (&offset_expr, s);
12986 if (offset_expr.X_op == O_register)
12989 if (!forced_insn_length)
12990 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12992 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12994 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
13000 bfd_reloc_code_real_type r[3];
13004 if (my_getSmallExpression (&ep, r, s) > 0
13005 || !expr_const_in_range (&ep, 0, 16, 0))
13008 imm = ep.X_add_number;
13009 INSERT_OPERAND (1, IMMF, *ip, imm);
13016 bfd_reloc_code_real_type r[3];
13020 /* Check whether there is only a single bracketed
13021 expression left. If so, it must be the base register
13022 and the constant must be zero. */
13023 if (*s == '(' && strchr (s + 1, '(') == 0)
13025 INSERT_OPERAND (1, IMMG, *ip, 0);
13029 if (my_getSmallExpression (&ep, r, s) > 0
13030 || !expr_const_in_range (&ep, -1, 15, 0))
13033 imm = ep.X_add_number & 15;
13034 INSERT_OPERAND (1, IMMG, *ip, imm);
13041 bfd_reloc_code_real_type r[3];
13045 /* Check whether there is only a single bracketed
13046 expression left. If so, it must be the base register
13047 and the constant must be zero. */
13048 if (*s == '(' && strchr (s + 1, '(') == 0)
13050 INSERT_OPERAND (1, IMMH, *ip, 0);
13054 if (my_getSmallExpression (&ep, r, s) > 0
13055 || !expr_const_in_range (&ep, 0, 16, 1))
13058 imm = ep.X_add_number >> 1;
13059 INSERT_OPERAND (1, IMMH, *ip, imm);
13066 bfd_reloc_code_real_type r[3];
13070 if (my_getSmallExpression (&ep, r, s) > 0
13071 || !expr_const_in_range (&ep, -1, 127, 0))
13074 imm = ep.X_add_number & 127;
13075 INSERT_OPERAND (1, IMMI, *ip, imm);
13082 bfd_reloc_code_real_type r[3];
13086 /* Check whether there is only a single bracketed
13087 expression left. If so, it must be the base register
13088 and the constant must be zero. */
13089 if (*s == '(' && strchr (s + 1, '(') == 0)
13091 INSERT_OPERAND (1, IMMJ, *ip, 0);
13095 if (my_getSmallExpression (&ep, r, s) > 0
13096 || !expr_const_in_range (&ep, 0, 16, 2))
13099 imm = ep.X_add_number >> 2;
13100 INSERT_OPERAND (1, IMMJ, *ip, imm);
13107 bfd_reloc_code_real_type r[3];
13111 /* Check whether there is only a single bracketed
13112 expression left. If so, it must be the base register
13113 and the constant must be zero. */
13114 if (*s == '(' && strchr (s + 1, '(') == 0)
13116 INSERT_OPERAND (1, IMML, *ip, 0);
13120 if (my_getSmallExpression (&ep, r, s) > 0
13121 || !expr_const_in_range (&ep, 0, 16, 0))
13124 imm = ep.X_add_number;
13125 INSERT_OPERAND (1, IMML, *ip, imm);
13132 bfd_reloc_code_real_type r[3];
13136 if (my_getSmallExpression (&ep, r, s) > 0
13137 || !expr_const_in_range (&ep, 1, 9, 0))
13140 imm = ep.X_add_number & 7;
13141 INSERT_OPERAND (1, IMMM, *ip, imm);
13146 case 'N': /* Register list for lwm and swm. */
13148 /* A comma-separated list of registers and/or
13149 dash-separated contiguous ranges including
13150 both ra and a set of one or more registers
13151 starting at s0 up to s3 which have to be
13158 and any permutations of these. */
13159 unsigned int reglist;
13162 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, ®list))
13165 if ((reglist & 0xfff1ffff) != 0x80010000)
13168 reglist = (reglist >> 17) & 7;
13170 if ((reglist & -reglist) != reglist)
13173 imm = ffs (reglist) - 1;
13174 INSERT_OPERAND (1, IMMN, *ip, imm);
13178 case 'O': /* sdbbp 4-bit code. */
13180 bfd_reloc_code_real_type r[3];
13184 if (my_getSmallExpression (&ep, r, s) > 0
13185 || !expr_const_in_range (&ep, 0, 16, 0))
13188 imm = ep.X_add_number;
13189 INSERT_OPERAND (1, IMMO, *ip, imm);
13196 bfd_reloc_code_real_type r[3];
13200 if (my_getSmallExpression (&ep, r, s) > 0
13201 || !expr_const_in_range (&ep, 0, 32, 2))
13204 imm = ep.X_add_number >> 2;
13205 INSERT_OPERAND (1, IMMP, *ip, imm);
13212 bfd_reloc_code_real_type r[3];
13216 if (my_getSmallExpression (&ep, r, s) > 0
13217 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13220 imm = ep.X_add_number >> 2;
13221 INSERT_OPERAND (1, IMMQ, *ip, imm);
13228 bfd_reloc_code_real_type r[3];
13232 /* Check whether there is only a single bracketed
13233 expression left. If so, it must be the base register
13234 and the constant must be zero. */
13235 if (*s == '(' && strchr (s + 1, '(') == 0)
13237 INSERT_OPERAND (1, IMMU, *ip, 0);
13241 if (my_getSmallExpression (&ep, r, s) > 0
13242 || !expr_const_in_range (&ep, 0, 32, 2))
13245 imm = ep.X_add_number >> 2;
13246 INSERT_OPERAND (1, IMMU, *ip, imm);
13253 bfd_reloc_code_real_type r[3];
13257 if (my_getSmallExpression (&ep, r, s) > 0
13258 || !expr_const_in_range (&ep, 0, 64, 2))
13261 imm = ep.X_add_number >> 2;
13262 INSERT_OPERAND (1, IMMW, *ip, imm);
13269 bfd_reloc_code_real_type r[3];
13273 if (my_getSmallExpression (&ep, r, s) > 0
13274 || !expr_const_in_range (&ep, -8, 8, 0))
13277 imm = ep.X_add_number;
13278 INSERT_OPERAND (1, IMMX, *ip, imm);
13285 bfd_reloc_code_real_type r[3];
13289 if (my_getSmallExpression (&ep, r, s) > 0
13290 || expr_const_in_range (&ep, -2, 2, 2)
13291 || !expr_const_in_range (&ep, -258, 258, 2))
13294 imm = ep.X_add_number >> 2;
13295 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13296 INSERT_OPERAND (1, IMMY, *ip, imm);
13303 bfd_reloc_code_real_type r[3];
13306 if (my_getSmallExpression (&ep, r, s) > 0
13307 || !expr_const_in_range (&ep, 0, 1, 0))
13314 as_bad (_("Internal error: bad microMIPS opcode "
13315 "(unknown extension operand type `m%c'): %s %s"),
13316 *args, insn->name, insn->args);
13317 /* Further processing is fruitless. */
13322 case 'n': /* Register list for 32-bit lwm and swm. */
13323 gas_assert (mips_opts.micromips);
13325 /* A comma-separated list of registers and/or
13326 dash-separated contiguous ranges including
13327 at least one of ra and a set of one or more
13328 registers starting at s0 up to s7 and then
13329 s8 which have to be consecutive, e.g.:
13337 and any permutations of these. */
13338 unsigned int reglist;
13342 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, ®list))
13345 if ((reglist & 0x3f00ffff) != 0)
13348 ra = (reglist >> 27) & 0x10;
13349 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13351 if ((reglist & -reglist) != reglist)
13354 imm = (ffs (reglist) - 1) | ra;
13355 INSERT_OPERAND (1, RT, *ip, imm);
13356 imm_expr.X_op = O_absent;
13360 case '|': /* 4-bit trap code. */
13361 gas_assert (mips_opts.micromips);
13362 my_getExpression (&imm_expr, s);
13363 check_absolute_expr (ip, &imm_expr);
13364 if ((unsigned long) imm_expr.X_add_number
13365 > MICROMIPSOP_MASK_TRAP)
13366 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13367 (unsigned long) imm_expr.X_add_number,
13368 ip->insn_mo->name);
13369 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13370 imm_expr.X_op = O_absent;
13375 as_bad (_("Bad char = '%c'\n"), *args);
13380 /* Args don't match. */
13382 insn_error = _("Illegal operands");
13383 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13388 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13390 gas_assert (firstinsn);
13391 need_delay_slot_ok = FALSE;
13400 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13402 /* This routine assembles an instruction into its binary format when
13403 assembling for the mips16. As a side effect, it sets one of the
13404 global variables imm_reloc or offset_reloc to the type of relocation
13405 to do if one of the operands is an address expression. It also sets
13406 forced_insn_length to the resulting instruction size in bytes if the
13407 user explicitly requested a small or extended instruction. */
13410 mips16_ip (char *str, struct mips_cl_insn *ip)
13414 struct mips_opcode *insn;
13416 unsigned int regno;
13417 unsigned int lastregno = 0;
13423 forced_insn_length = 0;
13425 for (s = str; ISLOWER (*s); ++s)
13437 if (s[1] == 't' && s[2] == ' ')
13440 forced_insn_length = 2;
13444 else if (s[1] == 'e' && s[2] == ' ')
13447 forced_insn_length = 4;
13451 /* Fall through. */
13453 insn_error = _("unknown opcode");
13457 if (mips_opts.noautoextend && !forced_insn_length)
13458 forced_insn_length = 2;
13460 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13462 insn_error = _("unrecognized opcode");
13471 gas_assert (strcmp (insn->name, str) == 0);
13473 ok = is_opcode_valid_16 (insn);
13476 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13477 && strcmp (insn->name, insn[1].name) == 0)
13486 static char buf[100];
13488 _("Opcode not supported on this processor: %s (%s)"),
13489 mips_cpu_info_from_arch (mips_opts.arch)->name,
13490 mips_cpu_info_from_isa (mips_opts.isa)->name);
13497 create_insn (ip, insn);
13498 imm_expr.X_op = O_absent;
13499 imm_reloc[0] = BFD_RELOC_UNUSED;
13500 imm_reloc[1] = BFD_RELOC_UNUSED;
13501 imm_reloc[2] = BFD_RELOC_UNUSED;
13502 imm2_expr.X_op = O_absent;
13503 offset_expr.X_op = O_absent;
13504 offset_reloc[0] = BFD_RELOC_UNUSED;
13505 offset_reloc[1] = BFD_RELOC_UNUSED;
13506 offset_reloc[2] = BFD_RELOC_UNUSED;
13507 for (args = insn->args; 1; ++args)
13514 /* In this switch statement we call break if we did not find
13515 a match, continue if we did find a match, or return if we
13526 /* Stuff the immediate value in now, if we can. */
13527 if (imm_expr.X_op == O_constant
13528 && *imm_reloc > BFD_RELOC_UNUSED
13529 && insn->pinfo != INSN_MACRO
13530 && calculate_reloc (*offset_reloc,
13531 imm_expr.X_add_number, &value))
13533 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13534 *offset_reloc, value, forced_insn_length,
13536 imm_expr.X_op = O_absent;
13537 *imm_reloc = BFD_RELOC_UNUSED;
13538 *offset_reloc = BFD_RELOC_UNUSED;
13552 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13555 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13571 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13573 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13577 /* Fall through. */
13588 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
13590 if (c == 'v' || c == 'w')
13593 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13595 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13606 if (c == 'v' || c == 'w')
13608 regno = mips16_to_32_reg_map[lastregno];
13622 regno = mips32_to_16_reg_map[regno];
13627 regno = ILLEGAL_REG;
13632 regno = ILLEGAL_REG;
13637 regno = ILLEGAL_REG;
13642 if (regno == AT && mips_opts.at)
13644 if (mips_opts.at == ATREG)
13645 as_warn (_("used $at without \".set noat\""));
13647 as_warn (_("used $%u with \".set at=$%u\""),
13648 regno, mips_opts.at);
13656 if (regno == ILLEGAL_REG)
13663 MIPS16_INSERT_OPERAND (RX, *ip, regno);
13667 MIPS16_INSERT_OPERAND (RY, *ip, regno);
13670 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
13673 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
13679 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
13682 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
13683 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
13693 if (strncmp (s, "$pc", 3) == 0)
13710 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
13713 if (imm_expr.X_op != O_constant)
13715 forced_insn_length = 4;
13716 ip->insn_opcode |= MIPS16_EXTEND;
13720 /* We need to relax this instruction. */
13721 *offset_reloc = *imm_reloc;
13722 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13727 *imm_reloc = BFD_RELOC_UNUSED;
13728 /* Fall through. */
13735 my_getExpression (&imm_expr, s);
13736 if (imm_expr.X_op == O_register)
13738 /* What we thought was an expression turned out to
13741 if (s[0] == '(' && args[1] == '(')
13743 /* It looks like the expression was omitted
13744 before a register indirection, which means
13745 that the expression is implicitly zero. We
13746 still set up imm_expr, so that we handle
13747 explicit extensions correctly. */
13748 imm_expr.X_op = O_constant;
13749 imm_expr.X_add_number = 0;
13750 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13757 /* We need to relax this instruction. */
13758 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13767 /* We use offset_reloc rather than imm_reloc for the PC
13768 relative operands. This lets macros with both
13769 immediate and address operands work correctly. */
13770 my_getExpression (&offset_expr, s);
13772 if (offset_expr.X_op == O_register)
13775 /* We need to relax this instruction. */
13776 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13780 case '6': /* break code */
13781 my_getExpression (&imm_expr, s);
13782 check_absolute_expr (ip, &imm_expr);
13783 if ((unsigned long) imm_expr.X_add_number > 63)
13784 as_warn (_("Invalid value for `%s' (%lu)"),
13786 (unsigned long) imm_expr.X_add_number);
13787 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
13788 imm_expr.X_op = O_absent;
13792 case 'a': /* 26 bit address */
13793 my_getExpression (&offset_expr, s);
13795 *offset_reloc = BFD_RELOC_MIPS16_JMP;
13796 ip->insn_opcode <<= 16;
13799 case 'l': /* register list for entry macro */
13800 case 'L': /* register list for exit macro */
13810 unsigned int freg, reg1, reg2;
13812 while (*s == ' ' || *s == ',')
13814 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
13816 else if (reg_lookup (&s, RTYPE_FPU, ®1))
13820 as_bad (_("can't parse register list"));
13830 if (!reg_lookup (&s, freg ? RTYPE_FPU
13831 : (RTYPE_GP | RTYPE_NUM), ®2))
13833 as_bad (_("invalid register list"));
13837 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
13839 mask &= ~ (7 << 3);
13842 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
13844 mask &= ~ (7 << 3);
13847 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
13848 mask |= (reg2 - 3) << 3;
13849 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
13850 mask |= (reg2 - 15) << 1;
13851 else if (reg1 == RA && reg2 == RA)
13855 as_bad (_("invalid register list"));
13859 /* The mask is filled in in the opcode table for the
13860 benefit of the disassembler. We remove it before
13861 applying the actual mask. */
13862 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
13863 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
13867 case 'm': /* Register list for save insn. */
13868 case 'M': /* Register list for restore insn. */
13870 int opcode = ip->insn_opcode;
13871 int framesz = 0, seen_framesz = 0;
13872 int nargs = 0, statics = 0, sregs = 0;
13876 unsigned int reg1, reg2;
13878 SKIP_SPACE_TABS (s);
13881 SKIP_SPACE_TABS (s);
13883 my_getExpression (&imm_expr, s);
13884 if (imm_expr.X_op == O_constant)
13886 /* Handle the frame size. */
13889 as_bad (_("more than one frame size in list"));
13893 framesz = imm_expr.X_add_number;
13894 imm_expr.X_op = O_absent;
13899 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
13901 as_bad (_("can't parse register list"));
13913 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®2)
13916 as_bad (_("can't parse register list"));
13921 while (reg1 <= reg2)
13923 if (reg1 >= 4 && reg1 <= 7)
13927 nargs |= 1 << (reg1 - 4);
13929 /* statics $a0-$a3 */
13930 statics |= 1 << (reg1 - 4);
13932 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
13935 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
13937 else if (reg1 == 31)
13939 /* Add $ra to insn. */
13944 as_bad (_("unexpected register in list"));
13952 /* Encode args/statics combination. */
13953 if (nargs & statics)
13954 as_bad (_("arg/static registers overlap"));
13955 else if (nargs == 0xf)
13956 /* All $a0-$a3 are args. */
13957 opcode |= MIPS16_ALL_ARGS << 16;
13958 else if (statics == 0xf)
13959 /* All $a0-$a3 are statics. */
13960 opcode |= MIPS16_ALL_STATICS << 16;
13963 int narg = 0, nstat = 0;
13965 /* Count arg registers. */
13966 while (nargs & 0x1)
13972 as_bad (_("invalid arg register list"));
13974 /* Count static registers. */
13975 while (statics & 0x8)
13977 statics = (statics << 1) & 0xf;
13981 as_bad (_("invalid static register list"));
13983 /* Encode args/statics. */
13984 opcode |= ((narg << 2) | nstat) << 16;
13987 /* Encode $s0/$s1. */
13988 if (sregs & (1 << 0)) /* $s0 */
13990 if (sregs & (1 << 1)) /* $s1 */
13996 /* Count regs $s2-$s8. */
14004 as_bad (_("invalid static register list"));
14005 /* Encode $s2-$s8. */
14006 opcode |= nsreg << 24;
14009 /* Encode frame size. */
14011 as_bad (_("missing frame size"));
14012 else if ((framesz & 7) != 0 || framesz < 0
14013 || framesz > 0xff * 8)
14014 as_bad (_("invalid frame size"));
14015 else if (framesz != 128 || (opcode >> 16) != 0)
14018 opcode |= (((framesz & 0xf0) << 16)
14019 | (framesz & 0x0f));
14022 /* Finally build the instruction. */
14023 if ((opcode >> 16) != 0 || framesz == 0)
14024 opcode |= MIPS16_EXTEND;
14025 ip->insn_opcode = opcode;
14029 case 'e': /* extend code */
14030 my_getExpression (&imm_expr, s);
14031 check_absolute_expr (ip, &imm_expr);
14032 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
14034 as_warn (_("Invalid value for `%s' (%lu)"),
14036 (unsigned long) imm_expr.X_add_number);
14037 imm_expr.X_add_number &= 0x7ff;
14039 ip->insn_opcode |= imm_expr.X_add_number;
14040 imm_expr.X_op = O_absent;
14050 /* Args don't match. */
14051 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
14052 strcmp (insn->name, insn[1].name) == 0)
14059 insn_error = _("illegal operands");
14065 /* This structure holds information we know about a mips16 immediate
14068 struct mips16_immed_operand
14070 /* The type code used in the argument string in the opcode table. */
14072 /* The number of bits in the short form of the opcode. */
14074 /* The number of bits in the extended form of the opcode. */
14076 /* The amount by which the short form is shifted when it is used;
14077 for example, the sw instruction has a shift count of 2. */
14079 /* The amount by which the short form is shifted when it is stored
14080 into the instruction code. */
14082 /* Non-zero if the short form is unsigned. */
14084 /* Non-zero if the extended form is unsigned. */
14086 /* Non-zero if the value is PC relative. */
14090 /* The mips16 immediate operand types. */
14092 static const struct mips16_immed_operand mips16_immed_operands[] =
14094 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14095 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14096 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14097 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14098 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
14099 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
14100 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
14101 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
14102 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
14103 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
14104 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
14105 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
14106 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
14107 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
14108 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
14109 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
14110 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14111 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14112 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
14113 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
14114 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
14117 #define MIPS16_NUM_IMMED \
14118 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
14120 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14121 NBITS is the number of significant bits in VAL. */
14123 static unsigned long
14124 mips16_immed_extend (offsetT val, unsigned int nbits)
14129 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14132 else if (nbits == 15)
14134 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14139 extval = ((val & 0x1f) << 6) | (val & 0x20);
14142 return (extval << 16) | val;
14145 /* Install immediate value VAL into MIPS16 instruction *INSN,
14146 extending it if necessary. The instruction in *INSN may
14147 already be extended.
14149 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14150 if none. In the former case, VAL is a 16-bit number with no
14151 defined signedness.
14153 TYPE is the type of the immediate field. USER_INSN_LENGTH
14154 is the length that the user requested, or 0 if none. */
14157 mips16_immed (char *file, unsigned int line, int type,
14158 bfd_reloc_code_real_type reloc, offsetT val,
14159 unsigned int user_insn_length, unsigned long *insn)
14161 const struct mips16_immed_operand *op;
14162 int mintiny, maxtiny;
14164 op = mips16_immed_operands;
14165 while (op->type != type)
14168 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14173 if (type == '<' || type == '>' || type == '[' || type == ']')
14176 maxtiny = 1 << op->nbits;
14181 maxtiny = (1 << op->nbits) - 1;
14183 if (reloc != BFD_RELOC_UNUSED)
14188 mintiny = - (1 << (op->nbits - 1));
14189 maxtiny = (1 << (op->nbits - 1)) - 1;
14190 if (reloc != BFD_RELOC_UNUSED)
14191 val = SEXT_16BIT (val);
14194 /* Branch offsets have an implicit 0 in the lowest bit. */
14195 if (type == 'p' || type == 'q')
14198 if ((val & ((1 << op->shift) - 1)) != 0
14199 || val < (mintiny << op->shift)
14200 || val > (maxtiny << op->shift))
14202 /* We need an extended instruction. */
14203 if (user_insn_length == 2)
14204 as_bad_where (file, line, _("invalid unextended operand value"));
14206 *insn |= MIPS16_EXTEND;
14208 else if (user_insn_length == 4)
14210 /* The operand doesn't force an unextended instruction to be extended.
14211 Warn if the user wanted an extended instruction anyway. */
14212 *insn |= MIPS16_EXTEND;
14213 as_warn_where (file, line,
14214 _("extended operand requested but not required"));
14217 if (mips16_opcode_length (*insn) == 2)
14221 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14222 insnval <<= op->op_shift;
14227 long minext, maxext;
14229 if (reloc == BFD_RELOC_UNUSED)
14234 maxext = (1 << op->extbits) - 1;
14238 minext = - (1 << (op->extbits - 1));
14239 maxext = (1 << (op->extbits - 1)) - 1;
14241 if (val < minext || val > maxext)
14242 as_bad_where (file, line,
14243 _("operand value out of range for instruction"));
14246 *insn |= mips16_immed_extend (val, op->extbits);
14250 struct percent_op_match
14253 bfd_reloc_code_real_type reloc;
14256 static const struct percent_op_match mips_percent_op[] =
14258 {"%lo", BFD_RELOC_LO16},
14260 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14261 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14262 {"%call16", BFD_RELOC_MIPS_CALL16},
14263 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14264 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14265 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14266 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14267 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14268 {"%got", BFD_RELOC_MIPS_GOT16},
14269 {"%gp_rel", BFD_RELOC_GPREL16},
14270 {"%half", BFD_RELOC_16},
14271 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14272 {"%higher", BFD_RELOC_MIPS_HIGHER},
14273 {"%neg", BFD_RELOC_MIPS_SUB},
14274 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14275 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14276 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14277 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14278 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14279 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14280 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14282 {"%hi", BFD_RELOC_HI16_S}
14285 static const struct percent_op_match mips16_percent_op[] =
14287 {"%lo", BFD_RELOC_MIPS16_LO16},
14288 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14289 {"%got", BFD_RELOC_MIPS16_GOT16},
14290 {"%call16", BFD_RELOC_MIPS16_CALL16},
14291 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14292 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14293 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14294 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14295 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14296 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14297 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14298 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14302 /* Return true if *STR points to a relocation operator. When returning true,
14303 move *STR over the operator and store its relocation code in *RELOC.
14304 Leave both *STR and *RELOC alone when returning false. */
14307 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14309 const struct percent_op_match *percent_op;
14312 if (mips_opts.mips16)
14314 percent_op = mips16_percent_op;
14315 limit = ARRAY_SIZE (mips16_percent_op);
14319 percent_op = mips_percent_op;
14320 limit = ARRAY_SIZE (mips_percent_op);
14323 for (i = 0; i < limit; i++)
14324 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14326 int len = strlen (percent_op[i].str);
14328 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14331 *str += strlen (percent_op[i].str);
14332 *reloc = percent_op[i].reloc;
14334 /* Check whether the output BFD supports this relocation.
14335 If not, issue an error and fall back on something safe. */
14336 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14338 as_bad (_("relocation %s isn't supported by the current ABI"),
14339 percent_op[i].str);
14340 *reloc = BFD_RELOC_UNUSED;
14348 /* Parse string STR as a 16-bit relocatable operand. Store the
14349 expression in *EP and the relocations in the array starting
14350 at RELOC. Return the number of relocation operators used.
14352 On exit, EXPR_END points to the first character after the expression. */
14355 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14358 bfd_reloc_code_real_type reversed_reloc[3];
14359 size_t reloc_index, i;
14360 int crux_depth, str_depth;
14363 /* Search for the start of the main expression, recoding relocations
14364 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14365 of the main expression and with CRUX_DEPTH containing the number
14366 of open brackets at that point. */
14373 crux_depth = str_depth;
14375 /* Skip over whitespace and brackets, keeping count of the number
14377 while (*str == ' ' || *str == '\t' || *str == '(')
14382 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14383 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14385 my_getExpression (ep, crux);
14388 /* Match every open bracket. */
14389 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14393 if (crux_depth > 0)
14394 as_bad (_("unclosed '('"));
14398 if (reloc_index != 0)
14400 prev_reloc_op_frag = frag_now;
14401 for (i = 0; i < reloc_index; i++)
14402 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14405 return reloc_index;
14409 my_getExpression (expressionS *ep, char *str)
14413 save_in = input_line_pointer;
14414 input_line_pointer = str;
14416 expr_end = input_line_pointer;
14417 input_line_pointer = save_in;
14421 md_atof (int type, char *litP, int *sizeP)
14423 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14427 md_number_to_chars (char *buf, valueT val, int n)
14429 if (target_big_endian)
14430 number_to_chars_bigendian (buf, val, n);
14432 number_to_chars_littleendian (buf, val, n);
14436 static int support_64bit_objects(void)
14438 const char **list, **l;
14441 list = bfd_target_list ();
14442 for (l = list; *l != NULL; l++)
14443 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14444 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14446 yes = (*l != NULL);
14450 #endif /* OBJ_ELF */
14452 const char *md_shortopts = "O::g::G:";
14456 OPTION_MARCH = OPTION_MD_BASE,
14478 OPTION_NO_SMARTMIPS,
14482 OPTION_NO_MICROMIPS,
14485 OPTION_COMPAT_ARCH_BASE,
14494 OPTION_M7000_HILO_FIX,
14495 OPTION_MNO_7000_HILO_FIX,
14498 OPTION_FIX_LOONGSON2F_JUMP,
14499 OPTION_NO_FIX_LOONGSON2F_JUMP,
14500 OPTION_FIX_LOONGSON2F_NOP,
14501 OPTION_NO_FIX_LOONGSON2F_NOP,
14503 OPTION_NO_FIX_VR4120,
14505 OPTION_NO_FIX_VR4130,
14506 OPTION_FIX_CN63XXP1,
14507 OPTION_NO_FIX_CN63XXP1,
14514 OPTION_CONSTRUCT_FLOATS,
14515 OPTION_NO_CONSTRUCT_FLOATS,
14518 OPTION_RELAX_BRANCH,
14519 OPTION_NO_RELAX_BRANCH,
14526 OPTION_SINGLE_FLOAT,
14527 OPTION_DOUBLE_FLOAT,
14530 OPTION_CALL_SHARED,
14531 OPTION_CALL_NONPIC,
14541 OPTION_MVXWORKS_PIC,
14542 #endif /* OBJ_ELF */
14546 struct option md_longopts[] =
14548 /* Options which specify architecture. */
14549 {"march", required_argument, NULL, OPTION_MARCH},
14550 {"mtune", required_argument, NULL, OPTION_MTUNE},
14551 {"mips0", no_argument, NULL, OPTION_MIPS1},
14552 {"mips1", no_argument, NULL, OPTION_MIPS1},
14553 {"mips2", no_argument, NULL, OPTION_MIPS2},
14554 {"mips3", no_argument, NULL, OPTION_MIPS3},
14555 {"mips4", no_argument, NULL, OPTION_MIPS4},
14556 {"mips5", no_argument, NULL, OPTION_MIPS5},
14557 {"mips32", no_argument, NULL, OPTION_MIPS32},
14558 {"mips64", no_argument, NULL, OPTION_MIPS64},
14559 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
14560 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
14562 /* Options which specify Application Specific Extensions (ASEs). */
14563 {"mips16", no_argument, NULL, OPTION_MIPS16},
14564 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
14565 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
14566 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
14567 {"mdmx", no_argument, NULL, OPTION_MDMX},
14568 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
14569 {"mdsp", no_argument, NULL, OPTION_DSP},
14570 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
14571 {"mmt", no_argument, NULL, OPTION_MT},
14572 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
14573 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
14574 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
14575 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
14576 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
14577 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
14578 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
14579 {"mmcu", no_argument, NULL, OPTION_MCU},
14580 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
14582 /* Old-style architecture options. Don't add more of these. */
14583 {"m4650", no_argument, NULL, OPTION_M4650},
14584 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
14585 {"m4010", no_argument, NULL, OPTION_M4010},
14586 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
14587 {"m4100", no_argument, NULL, OPTION_M4100},
14588 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
14589 {"m3900", no_argument, NULL, OPTION_M3900},
14590 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
14592 /* Options which enable bug fixes. */
14593 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
14594 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14595 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14596 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
14597 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
14598 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
14599 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
14600 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
14601 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
14602 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
14603 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
14604 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
14605 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
14606 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
14607 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
14609 /* Miscellaneous options. */
14610 {"trap", no_argument, NULL, OPTION_TRAP},
14611 {"no-break", no_argument, NULL, OPTION_TRAP},
14612 {"break", no_argument, NULL, OPTION_BREAK},
14613 {"no-trap", no_argument, NULL, OPTION_BREAK},
14614 {"EB", no_argument, NULL, OPTION_EB},
14615 {"EL", no_argument, NULL, OPTION_EL},
14616 {"mfp32", no_argument, NULL, OPTION_FP32},
14617 {"mgp32", no_argument, NULL, OPTION_GP32},
14618 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
14619 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
14620 {"mfp64", no_argument, NULL, OPTION_FP64},
14621 {"mgp64", no_argument, NULL, OPTION_GP64},
14622 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
14623 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
14624 {"mshared", no_argument, NULL, OPTION_MSHARED},
14625 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
14626 {"msym32", no_argument, NULL, OPTION_MSYM32},
14627 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
14628 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
14629 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
14630 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
14631 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
14633 /* Strictly speaking this next option is ELF specific,
14634 but we allow it for other ports as well in order to
14635 make testing easier. */
14636 {"32", no_argument, NULL, OPTION_32},
14638 /* ELF-specific options. */
14640 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
14641 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
14642 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
14643 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
14644 {"xgot", no_argument, NULL, OPTION_XGOT},
14645 {"mabi", required_argument, NULL, OPTION_MABI},
14646 {"n32", no_argument, NULL, OPTION_N32},
14647 {"64", no_argument, NULL, OPTION_64},
14648 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
14649 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
14650 {"mpdr", no_argument, NULL, OPTION_PDR},
14651 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
14652 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
14653 #endif /* OBJ_ELF */
14655 {NULL, no_argument, NULL, 0}
14657 size_t md_longopts_size = sizeof (md_longopts);
14659 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14660 NEW_VALUE. Warn if another value was already specified. Note:
14661 we have to defer parsing the -march and -mtune arguments in order
14662 to handle 'from-abi' correctly, since the ABI might be specified
14663 in a later argument. */
14666 mips_set_option_string (const char **string_ptr, const char *new_value)
14668 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14669 as_warn (_("A different %s was already specified, is now %s"),
14670 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14673 *string_ptr = new_value;
14677 md_parse_option (int c, char *arg)
14681 case OPTION_CONSTRUCT_FLOATS:
14682 mips_disable_float_construction = 0;
14685 case OPTION_NO_CONSTRUCT_FLOATS:
14686 mips_disable_float_construction = 1;
14698 target_big_endian = 1;
14702 target_big_endian = 0;
14708 else if (arg[0] == '0')
14710 else if (arg[0] == '1')
14720 mips_debug = atoi (arg);
14724 file_mips_isa = ISA_MIPS1;
14728 file_mips_isa = ISA_MIPS2;
14732 file_mips_isa = ISA_MIPS3;
14736 file_mips_isa = ISA_MIPS4;
14740 file_mips_isa = ISA_MIPS5;
14743 case OPTION_MIPS32:
14744 file_mips_isa = ISA_MIPS32;
14747 case OPTION_MIPS32R2:
14748 file_mips_isa = ISA_MIPS32R2;
14751 case OPTION_MIPS64R2:
14752 file_mips_isa = ISA_MIPS64R2;
14755 case OPTION_MIPS64:
14756 file_mips_isa = ISA_MIPS64;
14760 mips_set_option_string (&mips_tune_string, arg);
14764 mips_set_option_string (&mips_arch_string, arg);
14768 mips_set_option_string (&mips_arch_string, "4650");
14769 mips_set_option_string (&mips_tune_string, "4650");
14772 case OPTION_NO_M4650:
14776 mips_set_option_string (&mips_arch_string, "4010");
14777 mips_set_option_string (&mips_tune_string, "4010");
14780 case OPTION_NO_M4010:
14784 mips_set_option_string (&mips_arch_string, "4100");
14785 mips_set_option_string (&mips_tune_string, "4100");
14788 case OPTION_NO_M4100:
14792 mips_set_option_string (&mips_arch_string, "3900");
14793 mips_set_option_string (&mips_tune_string, "3900");
14796 case OPTION_NO_M3900:
14800 mips_opts.ase_mdmx = 1;
14803 case OPTION_NO_MDMX:
14804 mips_opts.ase_mdmx = 0;
14808 mips_opts.ase_dsp = 1;
14809 mips_opts.ase_dspr2 = 0;
14812 case OPTION_NO_DSP:
14813 mips_opts.ase_dsp = 0;
14814 mips_opts.ase_dspr2 = 0;
14818 mips_opts.ase_dspr2 = 1;
14819 mips_opts.ase_dsp = 1;
14822 case OPTION_NO_DSPR2:
14823 mips_opts.ase_dspr2 = 0;
14824 mips_opts.ase_dsp = 0;
14828 mips_opts.ase_mt = 1;
14832 mips_opts.ase_mt = 0;
14836 mips_opts.ase_mcu = 1;
14839 case OPTION_NO_MCU:
14840 mips_opts.ase_mcu = 0;
14843 case OPTION_MICROMIPS:
14844 if (mips_opts.mips16 == 1)
14846 as_bad (_("-mmicromips cannot be used with -mips16"));
14849 mips_opts.micromips = 1;
14850 mips_no_prev_insn ();
14853 case OPTION_NO_MICROMIPS:
14854 mips_opts.micromips = 0;
14855 mips_no_prev_insn ();
14858 case OPTION_MIPS16:
14859 if (mips_opts.micromips == 1)
14861 as_bad (_("-mips16 cannot be used with -micromips"));
14864 mips_opts.mips16 = 1;
14865 mips_no_prev_insn ();
14868 case OPTION_NO_MIPS16:
14869 mips_opts.mips16 = 0;
14870 mips_no_prev_insn ();
14873 case OPTION_MIPS3D:
14874 mips_opts.ase_mips3d = 1;
14877 case OPTION_NO_MIPS3D:
14878 mips_opts.ase_mips3d = 0;
14881 case OPTION_SMARTMIPS:
14882 mips_opts.ase_smartmips = 1;
14885 case OPTION_NO_SMARTMIPS:
14886 mips_opts.ase_smartmips = 0;
14889 case OPTION_FIX_24K:
14893 case OPTION_NO_FIX_24K:
14897 case OPTION_FIX_LOONGSON2F_JUMP:
14898 mips_fix_loongson2f_jump = TRUE;
14901 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14902 mips_fix_loongson2f_jump = FALSE;
14905 case OPTION_FIX_LOONGSON2F_NOP:
14906 mips_fix_loongson2f_nop = TRUE;
14909 case OPTION_NO_FIX_LOONGSON2F_NOP:
14910 mips_fix_loongson2f_nop = FALSE;
14913 case OPTION_FIX_VR4120:
14914 mips_fix_vr4120 = 1;
14917 case OPTION_NO_FIX_VR4120:
14918 mips_fix_vr4120 = 0;
14921 case OPTION_FIX_VR4130:
14922 mips_fix_vr4130 = 1;
14925 case OPTION_NO_FIX_VR4130:
14926 mips_fix_vr4130 = 0;
14929 case OPTION_FIX_CN63XXP1:
14930 mips_fix_cn63xxp1 = TRUE;
14933 case OPTION_NO_FIX_CN63XXP1:
14934 mips_fix_cn63xxp1 = FALSE;
14937 case OPTION_RELAX_BRANCH:
14938 mips_relax_branch = 1;
14941 case OPTION_NO_RELAX_BRANCH:
14942 mips_relax_branch = 0;
14945 case OPTION_MSHARED:
14946 mips_in_shared = TRUE;
14949 case OPTION_MNO_SHARED:
14950 mips_in_shared = FALSE;
14953 case OPTION_MSYM32:
14954 mips_opts.sym32 = TRUE;
14957 case OPTION_MNO_SYM32:
14958 mips_opts.sym32 = FALSE;
14962 /* When generating ELF code, we permit -KPIC and -call_shared to
14963 select SVR4_PIC, and -non_shared to select no PIC. This is
14964 intended to be compatible with Irix 5. */
14965 case OPTION_CALL_SHARED:
14968 as_bad (_("-call_shared is supported only for ELF format"));
14971 mips_pic = SVR4_PIC;
14972 mips_abicalls = TRUE;
14975 case OPTION_CALL_NONPIC:
14978 as_bad (_("-call_nonpic is supported only for ELF format"));
14982 mips_abicalls = TRUE;
14985 case OPTION_NON_SHARED:
14988 as_bad (_("-non_shared is supported only for ELF format"));
14992 mips_abicalls = FALSE;
14995 /* The -xgot option tells the assembler to use 32 bit offsets
14996 when accessing the got in SVR4_PIC mode. It is for Irix
15001 #endif /* OBJ_ELF */
15004 g_switch_value = atoi (arg);
15008 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15012 mips_abi = O32_ABI;
15013 /* We silently ignore -32 for non-ELF targets. This greatly
15014 simplifies the construction of the MIPS GAS test cases. */
15021 as_bad (_("-n32 is supported for ELF format only"));
15024 mips_abi = N32_ABI;
15030 as_bad (_("-64 is supported for ELF format only"));
15033 mips_abi = N64_ABI;
15034 if (!support_64bit_objects())
15035 as_fatal (_("No compiled in support for 64 bit object file format"));
15037 #endif /* OBJ_ELF */
15040 file_mips_gp32 = 1;
15044 file_mips_gp32 = 0;
15048 file_mips_fp32 = 1;
15052 file_mips_fp32 = 0;
15055 case OPTION_SINGLE_FLOAT:
15056 file_mips_single_float = 1;
15059 case OPTION_DOUBLE_FLOAT:
15060 file_mips_single_float = 0;
15063 case OPTION_SOFT_FLOAT:
15064 file_mips_soft_float = 1;
15067 case OPTION_HARD_FLOAT:
15068 file_mips_soft_float = 0;
15075 as_bad (_("-mabi is supported for ELF format only"));
15078 if (strcmp (arg, "32") == 0)
15079 mips_abi = O32_ABI;
15080 else if (strcmp (arg, "o64") == 0)
15081 mips_abi = O64_ABI;
15082 else if (strcmp (arg, "n32") == 0)
15083 mips_abi = N32_ABI;
15084 else if (strcmp (arg, "64") == 0)
15086 mips_abi = N64_ABI;
15087 if (! support_64bit_objects())
15088 as_fatal (_("No compiled in support for 64 bit object file "
15091 else if (strcmp (arg, "eabi") == 0)
15092 mips_abi = EABI_ABI;
15095 as_fatal (_("invalid abi -mabi=%s"), arg);
15099 #endif /* OBJ_ELF */
15101 case OPTION_M7000_HILO_FIX:
15102 mips_7000_hilo_fix = TRUE;
15105 case OPTION_MNO_7000_HILO_FIX:
15106 mips_7000_hilo_fix = FALSE;
15110 case OPTION_MDEBUG:
15111 mips_flag_mdebug = TRUE;
15114 case OPTION_NO_MDEBUG:
15115 mips_flag_mdebug = FALSE;
15119 mips_flag_pdr = TRUE;
15122 case OPTION_NO_PDR:
15123 mips_flag_pdr = FALSE;
15126 case OPTION_MVXWORKS_PIC:
15127 mips_pic = VXWORKS_PIC;
15129 #endif /* OBJ_ELF */
15135 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15140 /* Set up globals to generate code for the ISA or processor
15141 described by INFO. */
15144 mips_set_architecture (const struct mips_cpu_info *info)
15148 file_mips_arch = info->cpu;
15149 mips_opts.arch = info->cpu;
15150 mips_opts.isa = info->isa;
15155 /* Likewise for tuning. */
15158 mips_set_tune (const struct mips_cpu_info *info)
15161 mips_tune = info->cpu;
15166 mips_after_parse_args (void)
15168 const struct mips_cpu_info *arch_info = 0;
15169 const struct mips_cpu_info *tune_info = 0;
15171 /* GP relative stuff not working for PE */
15172 if (strncmp (TARGET_OS, "pe", 2) == 0)
15174 if (g_switch_seen && g_switch_value != 0)
15175 as_bad (_("-G not supported in this configuration."));
15176 g_switch_value = 0;
15179 if (mips_abi == NO_ABI)
15180 mips_abi = MIPS_DEFAULT_ABI;
15182 /* The following code determines the architecture and register size.
15183 Similar code was added to GCC 3.3 (see override_options() in
15184 config/mips/mips.c). The GAS and GCC code should be kept in sync
15185 as much as possible. */
15187 if (mips_arch_string != 0)
15188 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15190 if (file_mips_isa != ISA_UNKNOWN)
15192 /* Handle -mipsN. At this point, file_mips_isa contains the
15193 ISA level specified by -mipsN, while arch_info->isa contains
15194 the -march selection (if any). */
15195 if (arch_info != 0)
15197 /* -march takes precedence over -mipsN, since it is more descriptive.
15198 There's no harm in specifying both as long as the ISA levels
15200 if (file_mips_isa != arch_info->isa)
15201 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15202 mips_cpu_info_from_isa (file_mips_isa)->name,
15203 mips_cpu_info_from_isa (arch_info->isa)->name);
15206 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15209 if (arch_info == 0)
15211 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15212 gas_assert (arch_info);
15215 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15216 as_bad (_("-march=%s is not compatible with the selected ABI"),
15219 mips_set_architecture (arch_info);
15221 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15222 if (mips_tune_string != 0)
15223 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15225 if (tune_info == 0)
15226 mips_set_tune (arch_info);
15228 mips_set_tune (tune_info);
15230 if (file_mips_gp32 >= 0)
15232 /* The user specified the size of the integer registers. Make sure
15233 it agrees with the ABI and ISA. */
15234 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15235 as_bad (_("-mgp64 used with a 32-bit processor"));
15236 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15237 as_bad (_("-mgp32 used with a 64-bit ABI"));
15238 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15239 as_bad (_("-mgp64 used with a 32-bit ABI"));
15243 /* Infer the integer register size from the ABI and processor.
15244 Restrict ourselves to 32-bit registers if that's all the
15245 processor has, or if the ABI cannot handle 64-bit registers. */
15246 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15247 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15250 switch (file_mips_fp32)
15254 /* No user specified float register size.
15255 ??? GAS treats single-float processors as though they had 64-bit
15256 float registers (although it complains when double-precision
15257 instructions are used). As things stand, saying they have 32-bit
15258 registers would lead to spurious "register must be even" messages.
15259 So here we assume float registers are never smaller than the
15261 if (file_mips_gp32 == 0)
15262 /* 64-bit integer registers implies 64-bit float registers. */
15263 file_mips_fp32 = 0;
15264 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
15265 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15266 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15267 file_mips_fp32 = 0;
15269 /* 32-bit float registers. */
15270 file_mips_fp32 = 1;
15273 /* The user specified the size of the float registers. Check if it
15274 agrees with the ABI and ISA. */
15276 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15277 as_bad (_("-mfp64 used with a 32-bit fpu"));
15278 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15279 && !ISA_HAS_MXHC1 (mips_opts.isa))
15280 as_warn (_("-mfp64 used with a 32-bit ABI"));
15283 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15284 as_warn (_("-mfp32 used with a 64-bit ABI"));
15288 /* End of GCC-shared inference code. */
15290 /* This flag is set when we have a 64-bit capable CPU but use only
15291 32-bit wide registers. Note that EABI does not use it. */
15292 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15293 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15294 || mips_abi == O32_ABI))
15295 mips_32bitmode = 1;
15297 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15298 as_bad (_("trap exception not supported at ISA 1"));
15300 /* If the selected architecture includes support for ASEs, enable
15301 generation of code for them. */
15302 if (mips_opts.mips16 == -1)
15303 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15304 if (mips_opts.micromips == -1)
15305 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15306 if (mips_opts.ase_mips3d == -1)
15307 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
15308 && file_mips_fp32 == 0) ? 1 : 0;
15309 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
15310 as_bad (_("-mfp32 used with -mips3d"));
15312 if (mips_opts.ase_mdmx == -1)
15313 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
15314 && file_mips_fp32 == 0) ? 1 : 0;
15315 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
15316 as_bad (_("-mfp32 used with -mdmx"));
15318 if (mips_opts.ase_smartmips == -1)
15319 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
15320 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
15321 as_warn (_("%s ISA does not support SmartMIPS"),
15322 mips_cpu_info_from_isa (mips_opts.isa)->name);
15324 if (mips_opts.ase_dsp == -1)
15325 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15326 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
15327 as_warn (_("%s ISA does not support DSP ASE"),
15328 mips_cpu_info_from_isa (mips_opts.isa)->name);
15330 if (mips_opts.ase_dspr2 == -1)
15332 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
15333 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15335 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
15336 as_warn (_("%s ISA does not support DSP R2 ASE"),
15337 mips_cpu_info_from_isa (mips_opts.isa)->name);
15339 if (mips_opts.ase_mt == -1)
15340 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
15341 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
15342 as_warn (_("%s ISA does not support MT ASE"),
15343 mips_cpu_info_from_isa (mips_opts.isa)->name);
15345 if (mips_opts.ase_mcu == -1)
15346 mips_opts.ase_mcu = (arch_info->flags & MIPS_CPU_ASE_MCU) ? 1 : 0;
15347 if (mips_opts.ase_mcu && !ISA_SUPPORTS_MCU_ASE)
15348 as_warn (_("%s ISA does not support MCU ASE"),
15349 mips_cpu_info_from_isa (mips_opts.isa)->name);
15351 file_mips_isa = mips_opts.isa;
15352 file_ase_mips3d = mips_opts.ase_mips3d;
15353 file_ase_mdmx = mips_opts.ase_mdmx;
15354 file_ase_smartmips = mips_opts.ase_smartmips;
15355 file_ase_dsp = mips_opts.ase_dsp;
15356 file_ase_dspr2 = mips_opts.ase_dspr2;
15357 file_ase_mt = mips_opts.ase_mt;
15358 mips_opts.gp32 = file_mips_gp32;
15359 mips_opts.fp32 = file_mips_fp32;
15360 mips_opts.soft_float = file_mips_soft_float;
15361 mips_opts.single_float = file_mips_single_float;
15363 if (mips_flag_mdebug < 0)
15365 #ifdef OBJ_MAYBE_ECOFF
15366 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15367 mips_flag_mdebug = 1;
15369 #endif /* OBJ_MAYBE_ECOFF */
15370 mips_flag_mdebug = 0;
15375 mips_init_after_args (void)
15377 /* initialize opcodes */
15378 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15379 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15383 md_pcrel_from (fixS *fixP)
15385 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15386 switch (fixP->fx_r_type)
15388 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15389 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15390 /* Return the address of the delay slot. */
15393 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15394 case BFD_RELOC_MICROMIPS_JMP:
15395 case BFD_RELOC_16_PCREL_S2:
15396 case BFD_RELOC_MIPS_JMP:
15397 /* Return the address of the delay slot. */
15401 /* We have no relocation type for PC relative MIPS16 instructions. */
15402 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15403 as_bad_where (fixP->fx_file, fixP->fx_line,
15404 _("PC relative MIPS16 instruction references a different section"));
15409 /* This is called before the symbol table is processed. In order to
15410 work with gcc when using mips-tfile, we must keep all local labels.
15411 However, in other cases, we want to discard them. If we were
15412 called with -g, but we didn't see any debugging information, it may
15413 mean that gcc is smuggling debugging information through to
15414 mips-tfile, in which case we must generate all local labels. */
15417 mips_frob_file_before_adjust (void)
15419 #ifndef NO_ECOFF_DEBUGGING
15420 if (ECOFF_DEBUGGING
15422 && ! ecoff_debugging_seen)
15423 flag_keep_locals = 1;
15427 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15428 the corresponding LO16 reloc. This is called before md_apply_fix and
15429 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15430 relocation operators.
15432 For our purposes, a %lo() expression matches a %got() or %hi()
15435 (a) it refers to the same symbol; and
15436 (b) the offset applied in the %lo() expression is no lower than
15437 the offset applied in the %got() or %hi().
15439 (b) allows us to cope with code like:
15442 lh $4,%lo(foo+2)($4)
15444 ...which is legal on RELA targets, and has a well-defined behaviour
15445 if the user knows that adding 2 to "foo" will not induce a carry to
15448 When several %lo()s match a particular %got() or %hi(), we use the
15449 following rules to distinguish them:
15451 (1) %lo()s with smaller offsets are a better match than %lo()s with
15454 (2) %lo()s with no matching %got() or %hi() are better than those
15455 that already have a matching %got() or %hi().
15457 (3) later %lo()s are better than earlier %lo()s.
15459 These rules are applied in order.
15461 (1) means, among other things, that %lo()s with identical offsets are
15462 chosen if they exist.
15464 (2) means that we won't associate several high-part relocations with
15465 the same low-part relocation unless there's no alternative. Having
15466 several high parts for the same low part is a GNU extension; this rule
15467 allows careful users to avoid it.
15469 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15470 with the last high-part relocation being at the front of the list.
15471 It therefore makes sense to choose the last matching low-part
15472 relocation, all other things being equal. It's also easier
15473 to code that way. */
15476 mips_frob_file (void)
15478 struct mips_hi_fixup *l;
15479 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15481 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15483 segment_info_type *seginfo;
15484 bfd_boolean matched_lo_p;
15485 fixS **hi_pos, **lo_pos, **pos;
15487 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15489 /* If a GOT16 relocation turns out to be against a global symbol,
15490 there isn't supposed to be a matching LO. Ignore %gots against
15491 constants; we'll report an error for those later. */
15492 if (got16_reloc_p (l->fixp->fx_r_type)
15493 && !(l->fixp->fx_addsy
15494 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
15497 /* Check quickly whether the next fixup happens to be a matching %lo. */
15498 if (fixup_has_matching_lo_p (l->fixp))
15501 seginfo = seg_info (l->seg);
15503 /* Set HI_POS to the position of this relocation in the chain.
15504 Set LO_POS to the position of the chosen low-part relocation.
15505 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15506 relocation that matches an immediately-preceding high-part
15510 matched_lo_p = FALSE;
15511 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15513 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15515 if (*pos == l->fixp)
15518 if ((*pos)->fx_r_type == looking_for_rtype
15519 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15520 && (*pos)->fx_offset >= l->fixp->fx_offset
15522 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15524 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15527 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15528 && fixup_has_matching_lo_p (*pos));
15531 /* If we found a match, remove the high-part relocation from its
15532 current position and insert it before the low-part relocation.
15533 Make the offsets match so that fixup_has_matching_lo_p()
15536 We don't warn about unmatched high-part relocations since some
15537 versions of gcc have been known to emit dead "lui ...%hi(...)"
15539 if (lo_pos != NULL)
15541 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15542 if (l->fixp->fx_next != *lo_pos)
15544 *hi_pos = l->fixp->fx_next;
15545 l->fixp->fx_next = *lo_pos;
15553 mips_force_relocation (fixS *fixp)
15555 if (generic_force_reloc (fixp))
15558 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15559 so that the linker relaxation can update targets. */
15560 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15561 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15562 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15568 /* Read the instruction associated with RELOC from BUF. */
15570 static unsigned int
15571 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15573 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15574 return read_compressed_insn (buf, 4);
15576 return read_insn (buf);
15579 /* Write instruction INSN to BUF, given that it has been relocated
15583 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15584 unsigned long insn)
15586 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15587 write_compressed_insn (buf, insn, 4);
15589 write_insn (buf, insn);
15592 /* Apply a fixup to the object file. */
15595 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15598 unsigned long insn;
15599 reloc_howto_type *howto;
15601 /* We ignore generic BFD relocations we don't know about. */
15602 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15606 gas_assert (fixP->fx_size == 2
15607 || fixP->fx_size == 4
15608 || fixP->fx_r_type == BFD_RELOC_16
15609 || fixP->fx_r_type == BFD_RELOC_64
15610 || fixP->fx_r_type == BFD_RELOC_CTOR
15611 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15612 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15613 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15614 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15615 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15617 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15619 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15620 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15621 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15622 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
15624 /* Don't treat parts of a composite relocation as done. There are two
15627 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15628 should nevertheless be emitted if the first part is.
15630 (2) In normal usage, composite relocations are never assembly-time
15631 constants. The easiest way of dealing with the pathological
15632 exceptions is to generate a relocation against STN_UNDEF and
15633 leave everything up to the linker. */
15634 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15637 switch (fixP->fx_r_type)
15639 case BFD_RELOC_MIPS_TLS_GD:
15640 case BFD_RELOC_MIPS_TLS_LDM:
15641 case BFD_RELOC_MIPS_TLS_DTPREL32:
15642 case BFD_RELOC_MIPS_TLS_DTPREL64:
15643 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15644 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15645 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15646 case BFD_RELOC_MIPS_TLS_TPREL32:
15647 case BFD_RELOC_MIPS_TLS_TPREL64:
15648 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15649 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15650 case BFD_RELOC_MICROMIPS_TLS_GD:
15651 case BFD_RELOC_MICROMIPS_TLS_LDM:
15652 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15653 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15654 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15655 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15656 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15657 case BFD_RELOC_MIPS16_TLS_GD:
15658 case BFD_RELOC_MIPS16_TLS_LDM:
15659 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15660 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15661 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15662 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15663 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15664 if (!fixP->fx_addsy)
15666 as_bad_where (fixP->fx_file, fixP->fx_line,
15667 _("TLS relocation against a constant"));
15670 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15673 case BFD_RELOC_MIPS_JMP:
15674 case BFD_RELOC_MIPS_SHIFT5:
15675 case BFD_RELOC_MIPS_SHIFT6:
15676 case BFD_RELOC_MIPS_GOT_DISP:
15677 case BFD_RELOC_MIPS_GOT_PAGE:
15678 case BFD_RELOC_MIPS_GOT_OFST:
15679 case BFD_RELOC_MIPS_SUB:
15680 case BFD_RELOC_MIPS_INSERT_A:
15681 case BFD_RELOC_MIPS_INSERT_B:
15682 case BFD_RELOC_MIPS_DELETE:
15683 case BFD_RELOC_MIPS_HIGHEST:
15684 case BFD_RELOC_MIPS_HIGHER:
15685 case BFD_RELOC_MIPS_SCN_DISP:
15686 case BFD_RELOC_MIPS_REL16:
15687 case BFD_RELOC_MIPS_RELGOT:
15688 case BFD_RELOC_MIPS_JALR:
15689 case BFD_RELOC_HI16:
15690 case BFD_RELOC_HI16_S:
15691 case BFD_RELOC_LO16:
15692 case BFD_RELOC_GPREL16:
15693 case BFD_RELOC_MIPS_LITERAL:
15694 case BFD_RELOC_MIPS_CALL16:
15695 case BFD_RELOC_MIPS_GOT16:
15696 case BFD_RELOC_GPREL32:
15697 case BFD_RELOC_MIPS_GOT_HI16:
15698 case BFD_RELOC_MIPS_GOT_LO16:
15699 case BFD_RELOC_MIPS_CALL_HI16:
15700 case BFD_RELOC_MIPS_CALL_LO16:
15701 case BFD_RELOC_MIPS16_GPREL:
15702 case BFD_RELOC_MIPS16_GOT16:
15703 case BFD_RELOC_MIPS16_CALL16:
15704 case BFD_RELOC_MIPS16_HI16:
15705 case BFD_RELOC_MIPS16_HI16_S:
15706 case BFD_RELOC_MIPS16_LO16:
15707 case BFD_RELOC_MIPS16_JMP:
15708 case BFD_RELOC_MICROMIPS_JMP:
15709 case BFD_RELOC_MICROMIPS_GOT_DISP:
15710 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15711 case BFD_RELOC_MICROMIPS_GOT_OFST:
15712 case BFD_RELOC_MICROMIPS_SUB:
15713 case BFD_RELOC_MICROMIPS_HIGHEST:
15714 case BFD_RELOC_MICROMIPS_HIGHER:
15715 case BFD_RELOC_MICROMIPS_SCN_DISP:
15716 case BFD_RELOC_MICROMIPS_JALR:
15717 case BFD_RELOC_MICROMIPS_HI16:
15718 case BFD_RELOC_MICROMIPS_HI16_S:
15719 case BFD_RELOC_MICROMIPS_LO16:
15720 case BFD_RELOC_MICROMIPS_GPREL16:
15721 case BFD_RELOC_MICROMIPS_LITERAL:
15722 case BFD_RELOC_MICROMIPS_CALL16:
15723 case BFD_RELOC_MICROMIPS_GOT16:
15724 case BFD_RELOC_MICROMIPS_GOT_HI16:
15725 case BFD_RELOC_MICROMIPS_GOT_LO16:
15726 case BFD_RELOC_MICROMIPS_CALL_HI16:
15727 case BFD_RELOC_MICROMIPS_CALL_LO16:
15732 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15734 insn = read_reloc_insn (buf, fixP->fx_r_type);
15735 if (mips16_reloc_p (fixP->fx_r_type))
15736 insn |= mips16_immed_extend (value, 16);
15738 insn |= (value & 0xffff);
15739 write_reloc_insn (buf, fixP->fx_r_type, insn);
15742 as_bad_where (fixP->fx_file, fixP->fx_line,
15743 _("Unsupported constant in relocation"));
15748 /* This is handled like BFD_RELOC_32, but we output a sign
15749 extended value if we are only 32 bits. */
15752 if (8 <= sizeof (valueT))
15753 md_number_to_chars (buf, *valP, 8);
15758 if ((*valP & 0x80000000) != 0)
15762 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15763 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15768 case BFD_RELOC_RVA:
15771 /* If we are deleting this reloc entry, we must fill in the
15772 value now. This can happen if we have a .word which is not
15773 resolved when it appears but is later defined. */
15775 md_number_to_chars (buf, *valP, fixP->fx_size);
15778 case BFD_RELOC_16_PCREL_S2:
15779 if ((*valP & 0x3) != 0)
15780 as_bad_where (fixP->fx_file, fixP->fx_line,
15781 _("Branch to misaligned address (%lx)"), (long) *valP);
15783 /* We need to save the bits in the instruction since fixup_segment()
15784 might be deleting the relocation entry (i.e., a branch within
15785 the current segment). */
15786 if (! fixP->fx_done)
15789 /* Update old instruction data. */
15790 insn = read_insn (buf);
15792 if (*valP + 0x20000 <= 0x3ffff)
15794 insn |= (*valP >> 2) & 0xffff;
15795 write_insn (buf, insn);
15797 else if (mips_pic == NO_PIC
15799 && fixP->fx_frag->fr_address >= text_section->vma
15800 && (fixP->fx_frag->fr_address
15801 < text_section->vma + bfd_get_section_size (text_section))
15802 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15803 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15804 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15806 /* The branch offset is too large. If this is an
15807 unconditional branch, and we are not generating PIC code,
15808 we can convert it to an absolute jump instruction. */
15809 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15810 insn = 0x0c000000; /* jal */
15812 insn = 0x08000000; /* j */
15813 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15815 fixP->fx_addsy = section_symbol (text_section);
15816 *valP += md_pcrel_from (fixP);
15817 write_insn (buf, insn);
15821 /* If we got here, we have branch-relaxation disabled,
15822 and there's nothing we can do to fix this instruction
15823 without turning it into a longer sequence. */
15824 as_bad_where (fixP->fx_file, fixP->fx_line,
15825 _("Branch out of range"));
15829 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15830 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15831 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15832 /* We adjust the offset back to even. */
15833 if ((*valP & 0x1) != 0)
15836 if (! fixP->fx_done)
15839 /* Should never visit here, because we keep the relocation. */
15843 case BFD_RELOC_VTABLE_INHERIT:
15846 && !S_IS_DEFINED (fixP->fx_addsy)
15847 && !S_IS_WEAK (fixP->fx_addsy))
15848 S_SET_WEAK (fixP->fx_addsy);
15851 case BFD_RELOC_VTABLE_ENTRY:
15859 /* Remember value for tc_gen_reloc. */
15860 fixP->fx_addnumber = *valP;
15870 name = input_line_pointer;
15871 c = get_symbol_end ();
15872 p = (symbolS *) symbol_find_or_make (name);
15873 *input_line_pointer = c;
15877 /* Align the current frag to a given power of two. If a particular
15878 fill byte should be used, FILL points to an integer that contains
15879 that byte, otherwise FILL is null.
15881 This function used to have the comment:
15883 The MIPS assembler also automatically adjusts any preceding label.
15885 The implementation therefore applied the adjustment to a maximum of
15886 one label. However, other label adjustments are applied to batches
15887 of labels, and adjusting just one caused problems when new labels
15888 were added for the sake of debugging or unwind information.
15889 We therefore adjust all preceding labels (given as LABELS) instead. */
15892 mips_align (int to, int *fill, struct insn_label_list *labels)
15894 mips_emit_delays ();
15895 mips_record_compressed_mode ();
15896 if (fill == NULL && subseg_text_p (now_seg))
15897 frag_align_code (to, 0);
15899 frag_align (to, fill ? *fill : 0, 0);
15900 record_alignment (now_seg, to);
15901 mips_move_labels (labels, FALSE);
15904 /* Align to a given power of two. .align 0 turns off the automatic
15905 alignment used by the data creating pseudo-ops. */
15908 s_align (int x ATTRIBUTE_UNUSED)
15910 int temp, fill_value, *fill_ptr;
15911 long max_alignment = 28;
15913 /* o Note that the assembler pulls down any immediately preceding label
15914 to the aligned address.
15915 o It's not documented but auto alignment is reinstated by
15916 a .align pseudo instruction.
15917 o Note also that after auto alignment is turned off the mips assembler
15918 issues an error on attempt to assemble an improperly aligned data item.
15921 temp = get_absolute_expression ();
15922 if (temp > max_alignment)
15923 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
15926 as_warn (_("Alignment negative: 0 assumed."));
15929 if (*input_line_pointer == ',')
15931 ++input_line_pointer;
15932 fill_value = get_absolute_expression ();
15933 fill_ptr = &fill_value;
15939 segment_info_type *si = seg_info (now_seg);
15940 struct insn_label_list *l = si->label_list;
15941 /* Auto alignment should be switched on by next section change. */
15943 mips_align (temp, fill_ptr, l);
15950 demand_empty_rest_of_line ();
15954 s_change_sec (int sec)
15959 /* The ELF backend needs to know that we are changing sections, so
15960 that .previous works correctly. We could do something like check
15961 for an obj_section_change_hook macro, but that might be confusing
15962 as it would not be appropriate to use it in the section changing
15963 functions in read.c, since obj-elf.c intercepts those. FIXME:
15964 This should be cleaner, somehow. */
15966 obj_elf_section_change_hook ();
15969 mips_emit_delays ();
15980 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15981 demand_empty_rest_of_line ();
15985 seg = subseg_new (RDATA_SECTION_NAME,
15986 (subsegT) get_absolute_expression ());
15989 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15990 | SEC_READONLY | SEC_RELOC
15992 if (strncmp (TARGET_OS, "elf", 3) != 0)
15993 record_alignment (seg, 4);
15995 demand_empty_rest_of_line ();
15999 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16002 bfd_set_section_flags (stdoutput, seg,
16003 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16004 if (strncmp (TARGET_OS, "elf", 3) != 0)
16005 record_alignment (seg, 4);
16007 demand_empty_rest_of_line ();
16011 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16014 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16015 if (strncmp (TARGET_OS, "elf", 3) != 0)
16016 record_alignment (seg, 4);
16018 demand_empty_rest_of_line ();
16026 s_change_section (int ignore ATTRIBUTE_UNUSED)
16029 char *section_name;
16034 int section_entry_size;
16035 int section_alignment;
16040 section_name = input_line_pointer;
16041 c = get_symbol_end ();
16043 next_c = *(input_line_pointer + 1);
16045 /* Do we have .section Name<,"flags">? */
16046 if (c != ',' || (c == ',' && next_c == '"'))
16048 /* just after name is now '\0'. */
16049 *input_line_pointer = c;
16050 input_line_pointer = section_name;
16051 obj_elf_section (ignore);
16054 input_line_pointer++;
16056 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16058 section_type = get_absolute_expression ();
16061 if (*input_line_pointer++ == ',')
16062 section_flag = get_absolute_expression ();
16065 if (*input_line_pointer++ == ',')
16066 section_entry_size = get_absolute_expression ();
16068 section_entry_size = 0;
16069 if (*input_line_pointer++ == ',')
16070 section_alignment = get_absolute_expression ();
16072 section_alignment = 0;
16073 /* FIXME: really ignore? */
16074 (void) section_alignment;
16076 section_name = xstrdup (section_name);
16078 /* When using the generic form of .section (as implemented by obj-elf.c),
16079 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16080 traditionally had to fall back on the more common @progbits instead.
16082 There's nothing really harmful in this, since bfd will correct
16083 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16084 means that, for backwards compatibility, the special_section entries
16085 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16087 Even so, we shouldn't force users of the MIPS .section syntax to
16088 incorrectly label the sections as SHT_PROGBITS. The best compromise
16089 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16090 generic type-checking code. */
16091 if (section_type == SHT_MIPS_DWARF)
16092 section_type = SHT_PROGBITS;
16094 obj_elf_change_section (section_name, section_type, section_flag,
16095 section_entry_size, 0, 0, 0);
16097 if (now_seg->name != section_name)
16098 free (section_name);
16099 #endif /* OBJ_ELF */
16103 mips_enable_auto_align (void)
16109 s_cons (int log_size)
16111 segment_info_type *si = seg_info (now_seg);
16112 struct insn_label_list *l = si->label_list;
16114 mips_emit_delays ();
16115 if (log_size > 0 && auto_align)
16116 mips_align (log_size, 0, l);
16117 cons (1 << log_size);
16118 mips_clear_insn_labels ();
16122 s_float_cons (int type)
16124 segment_info_type *si = seg_info (now_seg);
16125 struct insn_label_list *l = si->label_list;
16127 mips_emit_delays ();
16132 mips_align (3, 0, l);
16134 mips_align (2, 0, l);
16138 mips_clear_insn_labels ();
16141 /* Handle .globl. We need to override it because on Irix 5 you are
16144 where foo is an undefined symbol, to mean that foo should be
16145 considered to be the address of a function. */
16148 s_mips_globl (int x ATTRIBUTE_UNUSED)
16157 name = input_line_pointer;
16158 c = get_symbol_end ();
16159 symbolP = symbol_find_or_make (name);
16160 S_SET_EXTERNAL (symbolP);
16162 *input_line_pointer = c;
16163 SKIP_WHITESPACE ();
16165 /* On Irix 5, every global symbol that is not explicitly labelled as
16166 being a function is apparently labelled as being an object. */
16169 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16170 && (*input_line_pointer != ','))
16175 secname = input_line_pointer;
16176 c = get_symbol_end ();
16177 sec = bfd_get_section_by_name (stdoutput, secname);
16179 as_bad (_("%s: no such section"), secname);
16180 *input_line_pointer = c;
16182 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16183 flag = BSF_FUNCTION;
16186 symbol_get_bfdsym (symbolP)->flags |= flag;
16188 c = *input_line_pointer;
16191 input_line_pointer++;
16192 SKIP_WHITESPACE ();
16193 if (is_end_of_line[(unsigned char) *input_line_pointer])
16199 demand_empty_rest_of_line ();
16203 s_option (int x ATTRIBUTE_UNUSED)
16208 opt = input_line_pointer;
16209 c = get_symbol_end ();
16213 /* FIXME: What does this mean? */
16215 else if (strncmp (opt, "pic", 3) == 0)
16219 i = atoi (opt + 3);
16224 mips_pic = SVR4_PIC;
16225 mips_abicalls = TRUE;
16228 as_bad (_(".option pic%d not supported"), i);
16230 if (mips_pic == SVR4_PIC)
16232 if (g_switch_seen && g_switch_value != 0)
16233 as_warn (_("-G may not be used with SVR4 PIC code"));
16234 g_switch_value = 0;
16235 bfd_set_gp_size (stdoutput, 0);
16239 as_warn (_("Unrecognized option \"%s\""), opt);
16241 *input_line_pointer = c;
16242 demand_empty_rest_of_line ();
16245 /* This structure is used to hold a stack of .set values. */
16247 struct mips_option_stack
16249 struct mips_option_stack *next;
16250 struct mips_set_options options;
16253 static struct mips_option_stack *mips_opts_stack;
16255 /* Handle the .set pseudo-op. */
16258 s_mipsset (int x ATTRIBUTE_UNUSED)
16260 char *name = input_line_pointer, ch;
16262 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16263 ++input_line_pointer;
16264 ch = *input_line_pointer;
16265 *input_line_pointer = '\0';
16267 if (strcmp (name, "reorder") == 0)
16269 if (mips_opts.noreorder)
16272 else if (strcmp (name, "noreorder") == 0)
16274 if (!mips_opts.noreorder)
16275 start_noreorder ();
16277 else if (strncmp (name, "at=", 3) == 0)
16279 char *s = name + 3;
16281 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16282 as_bad (_("Unrecognized register name `%s'"), s);
16284 else if (strcmp (name, "at") == 0)
16286 mips_opts.at = ATREG;
16288 else if (strcmp (name, "noat") == 0)
16290 mips_opts.at = ZERO;
16292 else if (strcmp (name, "macro") == 0)
16294 mips_opts.warn_about_macros = 0;
16296 else if (strcmp (name, "nomacro") == 0)
16298 if (mips_opts.noreorder == 0)
16299 as_bad (_("`noreorder' must be set before `nomacro'"));
16300 mips_opts.warn_about_macros = 1;
16302 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16304 mips_opts.nomove = 0;
16306 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16308 mips_opts.nomove = 1;
16310 else if (strcmp (name, "bopt") == 0)
16312 mips_opts.nobopt = 0;
16314 else if (strcmp (name, "nobopt") == 0)
16316 mips_opts.nobopt = 1;
16318 else if (strcmp (name, "gp=default") == 0)
16319 mips_opts.gp32 = file_mips_gp32;
16320 else if (strcmp (name, "gp=32") == 0)
16321 mips_opts.gp32 = 1;
16322 else if (strcmp (name, "gp=64") == 0)
16324 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16325 as_warn (_("%s isa does not support 64-bit registers"),
16326 mips_cpu_info_from_isa (mips_opts.isa)->name);
16327 mips_opts.gp32 = 0;
16329 else if (strcmp (name, "fp=default") == 0)
16330 mips_opts.fp32 = file_mips_fp32;
16331 else if (strcmp (name, "fp=32") == 0)
16332 mips_opts.fp32 = 1;
16333 else if (strcmp (name, "fp=64") == 0)
16335 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16336 as_warn (_("%s isa does not support 64-bit floating point registers"),
16337 mips_cpu_info_from_isa (mips_opts.isa)->name);
16338 mips_opts.fp32 = 0;
16340 else if (strcmp (name, "softfloat") == 0)
16341 mips_opts.soft_float = 1;
16342 else if (strcmp (name, "hardfloat") == 0)
16343 mips_opts.soft_float = 0;
16344 else if (strcmp (name, "singlefloat") == 0)
16345 mips_opts.single_float = 1;
16346 else if (strcmp (name, "doublefloat") == 0)
16347 mips_opts.single_float = 0;
16348 else if (strcmp (name, "mips16") == 0
16349 || strcmp (name, "MIPS-16") == 0)
16351 if (mips_opts.micromips == 1)
16352 as_fatal (_("`mips16' cannot be used with `micromips'"));
16353 mips_opts.mips16 = 1;
16355 else if (strcmp (name, "nomips16") == 0
16356 || strcmp (name, "noMIPS-16") == 0)
16357 mips_opts.mips16 = 0;
16358 else if (strcmp (name, "micromips") == 0)
16360 if (mips_opts.mips16 == 1)
16361 as_fatal (_("`micromips' cannot be used with `mips16'"));
16362 mips_opts.micromips = 1;
16364 else if (strcmp (name, "nomicromips") == 0)
16365 mips_opts.micromips = 0;
16366 else if (strcmp (name, "smartmips") == 0)
16368 if (!ISA_SUPPORTS_SMARTMIPS)
16369 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16370 mips_cpu_info_from_isa (mips_opts.isa)->name);
16371 mips_opts.ase_smartmips = 1;
16373 else if (strcmp (name, "nosmartmips") == 0)
16374 mips_opts.ase_smartmips = 0;
16375 else if (strcmp (name, "mips3d") == 0)
16376 mips_opts.ase_mips3d = 1;
16377 else if (strcmp (name, "nomips3d") == 0)
16378 mips_opts.ase_mips3d = 0;
16379 else if (strcmp (name, "mdmx") == 0)
16380 mips_opts.ase_mdmx = 1;
16381 else if (strcmp (name, "nomdmx") == 0)
16382 mips_opts.ase_mdmx = 0;
16383 else if (strcmp (name, "dsp") == 0)
16385 if (!ISA_SUPPORTS_DSP_ASE)
16386 as_warn (_("%s ISA does not support DSP ASE"),
16387 mips_cpu_info_from_isa (mips_opts.isa)->name);
16388 mips_opts.ase_dsp = 1;
16389 mips_opts.ase_dspr2 = 0;
16391 else if (strcmp (name, "nodsp") == 0)
16393 mips_opts.ase_dsp = 0;
16394 mips_opts.ase_dspr2 = 0;
16396 else if (strcmp (name, "dspr2") == 0)
16398 if (!ISA_SUPPORTS_DSPR2_ASE)
16399 as_warn (_("%s ISA does not support DSP R2 ASE"),
16400 mips_cpu_info_from_isa (mips_opts.isa)->name);
16401 mips_opts.ase_dspr2 = 1;
16402 mips_opts.ase_dsp = 1;
16404 else if (strcmp (name, "nodspr2") == 0)
16406 mips_opts.ase_dspr2 = 0;
16407 mips_opts.ase_dsp = 0;
16409 else if (strcmp (name, "mt") == 0)
16411 if (!ISA_SUPPORTS_MT_ASE)
16412 as_warn (_("%s ISA does not support MT ASE"),
16413 mips_cpu_info_from_isa (mips_opts.isa)->name);
16414 mips_opts.ase_mt = 1;
16416 else if (strcmp (name, "nomt") == 0)
16417 mips_opts.ase_mt = 0;
16418 else if (strcmp (name, "mcu") == 0)
16419 mips_opts.ase_mcu = 1;
16420 else if (strcmp (name, "nomcu") == 0)
16421 mips_opts.ase_mcu = 0;
16422 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16426 /* Permit the user to change the ISA and architecture on the fly.
16427 Needless to say, misuse can cause serious problems. */
16428 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16431 mips_opts.isa = file_mips_isa;
16432 mips_opts.arch = file_mips_arch;
16434 else if (strncmp (name, "arch=", 5) == 0)
16436 const struct mips_cpu_info *p;
16438 p = mips_parse_cpu("internal use", name + 5);
16440 as_bad (_("unknown architecture %s"), name + 5);
16443 mips_opts.arch = p->cpu;
16444 mips_opts.isa = p->isa;
16447 else if (strncmp (name, "mips", 4) == 0)
16449 const struct mips_cpu_info *p;
16451 p = mips_parse_cpu("internal use", name);
16453 as_bad (_("unknown ISA level %s"), name + 4);
16456 mips_opts.arch = p->cpu;
16457 mips_opts.isa = p->isa;
16461 as_bad (_("unknown ISA or architecture %s"), name);
16463 switch (mips_opts.isa)
16471 mips_opts.gp32 = 1;
16472 mips_opts.fp32 = 1;
16479 mips_opts.gp32 = 0;
16480 if (mips_opts.arch == CPU_R5900)
16482 mips_opts.fp32 = 1;
16486 mips_opts.fp32 = 0;
16490 as_bad (_("unknown ISA level %s"), name + 4);
16495 mips_opts.gp32 = file_mips_gp32;
16496 mips_opts.fp32 = file_mips_fp32;
16499 else if (strcmp (name, "autoextend") == 0)
16500 mips_opts.noautoextend = 0;
16501 else if (strcmp (name, "noautoextend") == 0)
16502 mips_opts.noautoextend = 1;
16503 else if (strcmp (name, "push") == 0)
16505 struct mips_option_stack *s;
16507 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16508 s->next = mips_opts_stack;
16509 s->options = mips_opts;
16510 mips_opts_stack = s;
16512 else if (strcmp (name, "pop") == 0)
16514 struct mips_option_stack *s;
16516 s = mips_opts_stack;
16518 as_bad (_(".set pop with no .set push"));
16521 /* If we're changing the reorder mode we need to handle
16522 delay slots correctly. */
16523 if (s->options.noreorder && ! mips_opts.noreorder)
16524 start_noreorder ();
16525 else if (! s->options.noreorder && mips_opts.noreorder)
16528 mips_opts = s->options;
16529 mips_opts_stack = s->next;
16533 else if (strcmp (name, "sym32") == 0)
16534 mips_opts.sym32 = TRUE;
16535 else if (strcmp (name, "nosym32") == 0)
16536 mips_opts.sym32 = FALSE;
16537 else if (strchr (name, ','))
16539 /* Generic ".set" directive; use the generic handler. */
16540 *input_line_pointer = ch;
16541 input_line_pointer = name;
16547 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16549 *input_line_pointer = ch;
16550 demand_empty_rest_of_line ();
16553 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16554 .option pic2. It means to generate SVR4 PIC calls. */
16557 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16559 mips_pic = SVR4_PIC;
16560 mips_abicalls = TRUE;
16562 if (g_switch_seen && g_switch_value != 0)
16563 as_warn (_("-G may not be used with SVR4 PIC code"));
16564 g_switch_value = 0;
16566 bfd_set_gp_size (stdoutput, 0);
16567 demand_empty_rest_of_line ();
16570 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16571 PIC code. It sets the $gp register for the function based on the
16572 function address, which is in the register named in the argument.
16573 This uses a relocation against _gp_disp, which is handled specially
16574 by the linker. The result is:
16575 lui $gp,%hi(_gp_disp)
16576 addiu $gp,$gp,%lo(_gp_disp)
16577 addu $gp,$gp,.cpload argument
16578 The .cpload argument is normally $25 == $t9.
16580 The -mno-shared option changes this to:
16581 lui $gp,%hi(__gnu_local_gp)
16582 addiu $gp,$gp,%lo(__gnu_local_gp)
16583 and the argument is ignored. This saves an instruction, but the
16584 resulting code is not position independent; it uses an absolute
16585 address for __gnu_local_gp. Thus code assembled with -mno-shared
16586 can go into an ordinary executable, but not into a shared library. */
16589 s_cpload (int ignore ATTRIBUTE_UNUSED)
16595 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16596 .cpload is ignored. */
16597 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16603 if (mips_opts.mips16)
16605 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16606 ignore_rest_of_line ();
16610 /* .cpload should be in a .set noreorder section. */
16611 if (mips_opts.noreorder == 0)
16612 as_warn (_(".cpload not in noreorder section"));
16614 reg = tc_get_register (0);
16616 /* If we need to produce a 64-bit address, we are better off using
16617 the default instruction sequence. */
16618 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16620 ex.X_op = O_symbol;
16621 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16623 ex.X_op_symbol = NULL;
16624 ex.X_add_number = 0;
16626 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16627 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16629 mips_mark_labels ();
16630 mips_assembling_insn = TRUE;
16633 macro_build_lui (&ex, mips_gp_register);
16634 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16635 mips_gp_register, BFD_RELOC_LO16);
16637 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16638 mips_gp_register, reg);
16641 mips_assembling_insn = FALSE;
16642 demand_empty_rest_of_line ();
16645 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16646 .cpsetup $reg1, offset|$reg2, label
16648 If offset is given, this results in:
16649 sd $gp, offset($sp)
16650 lui $gp, %hi(%neg(%gp_rel(label)))
16651 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16652 daddu $gp, $gp, $reg1
16654 If $reg2 is given, this results in:
16655 daddu $reg2, $gp, $0
16656 lui $gp, %hi(%neg(%gp_rel(label)))
16657 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16658 daddu $gp, $gp, $reg1
16659 $reg1 is normally $25 == $t9.
16661 The -mno-shared option replaces the last three instructions with
16663 addiu $gp,$gp,%lo(_gp) */
16666 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16668 expressionS ex_off;
16669 expressionS ex_sym;
16672 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16673 We also need NewABI support. */
16674 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16680 if (mips_opts.mips16)
16682 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16683 ignore_rest_of_line ();
16687 reg1 = tc_get_register (0);
16688 SKIP_WHITESPACE ();
16689 if (*input_line_pointer != ',')
16691 as_bad (_("missing argument separator ',' for .cpsetup"));
16695 ++input_line_pointer;
16696 SKIP_WHITESPACE ();
16697 if (*input_line_pointer == '$')
16699 mips_cpreturn_register = tc_get_register (0);
16700 mips_cpreturn_offset = -1;
16704 mips_cpreturn_offset = get_absolute_expression ();
16705 mips_cpreturn_register = -1;
16707 SKIP_WHITESPACE ();
16708 if (*input_line_pointer != ',')
16710 as_bad (_("missing argument separator ',' for .cpsetup"));
16714 ++input_line_pointer;
16715 SKIP_WHITESPACE ();
16716 expression (&ex_sym);
16718 mips_mark_labels ();
16719 mips_assembling_insn = TRUE;
16722 if (mips_cpreturn_register == -1)
16724 ex_off.X_op = O_constant;
16725 ex_off.X_add_symbol = NULL;
16726 ex_off.X_op_symbol = NULL;
16727 ex_off.X_add_number = mips_cpreturn_offset;
16729 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16730 BFD_RELOC_LO16, SP);
16733 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16734 mips_gp_register, 0);
16736 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16738 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16739 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16742 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16743 mips_gp_register, -1, BFD_RELOC_GPREL16,
16744 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16746 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16747 mips_gp_register, reg1);
16753 ex.X_op = O_symbol;
16754 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16755 ex.X_op_symbol = NULL;
16756 ex.X_add_number = 0;
16758 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16759 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16761 macro_build_lui (&ex, mips_gp_register);
16762 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16763 mips_gp_register, BFD_RELOC_LO16);
16768 mips_assembling_insn = FALSE;
16769 demand_empty_rest_of_line ();
16773 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16775 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16776 .cplocal is ignored. */
16777 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16783 if (mips_opts.mips16)
16785 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16786 ignore_rest_of_line ();
16790 mips_gp_register = tc_get_register (0);
16791 demand_empty_rest_of_line ();
16794 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16795 offset from $sp. The offset is remembered, and after making a PIC
16796 call $gp is restored from that location. */
16799 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16803 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16804 .cprestore is ignored. */
16805 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16811 if (mips_opts.mips16)
16813 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16814 ignore_rest_of_line ();
16818 mips_cprestore_offset = get_absolute_expression ();
16819 mips_cprestore_valid = 1;
16821 ex.X_op = O_constant;
16822 ex.X_add_symbol = NULL;
16823 ex.X_op_symbol = NULL;
16824 ex.X_add_number = mips_cprestore_offset;
16826 mips_mark_labels ();
16827 mips_assembling_insn = TRUE;
16830 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16831 SP, HAVE_64BIT_ADDRESSES);
16834 mips_assembling_insn = FALSE;
16835 demand_empty_rest_of_line ();
16838 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16839 was given in the preceding .cpsetup, it results in:
16840 ld $gp, offset($sp)
16842 If a register $reg2 was given there, it results in:
16843 daddu $gp, $reg2, $0 */
16846 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16850 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16851 We also need NewABI support. */
16852 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16858 if (mips_opts.mips16)
16860 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16861 ignore_rest_of_line ();
16865 mips_mark_labels ();
16866 mips_assembling_insn = TRUE;
16869 if (mips_cpreturn_register == -1)
16871 ex.X_op = O_constant;
16872 ex.X_add_symbol = NULL;
16873 ex.X_op_symbol = NULL;
16874 ex.X_add_number = mips_cpreturn_offset;
16876 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16879 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16880 mips_cpreturn_register, 0);
16883 mips_assembling_insn = FALSE;
16884 demand_empty_rest_of_line ();
16887 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16888 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16889 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16890 debug information or MIPS16 TLS. */
16893 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16894 bfd_reloc_code_real_type rtype)
16901 if (ex.X_op != O_symbol)
16903 as_bad (_("Unsupported use of %s"), dirstr);
16904 ignore_rest_of_line ();
16907 p = frag_more (bytes);
16908 md_number_to_chars (p, 0, bytes);
16909 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16910 demand_empty_rest_of_line ();
16911 mips_clear_insn_labels ();
16914 /* Handle .dtprelword. */
16917 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16919 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16922 /* Handle .dtpreldword. */
16925 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16927 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16930 /* Handle .tprelword. */
16933 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16935 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16938 /* Handle .tpreldword. */
16941 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16943 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16946 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16947 code. It sets the offset to use in gp_rel relocations. */
16950 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16952 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16953 We also need NewABI support. */
16954 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16960 mips_gprel_offset = get_absolute_expression ();
16962 demand_empty_rest_of_line ();
16965 /* Handle the .gpword pseudo-op. This is used when generating PIC
16966 code. It generates a 32 bit GP relative reloc. */
16969 s_gpword (int ignore ATTRIBUTE_UNUSED)
16971 segment_info_type *si;
16972 struct insn_label_list *l;
16976 /* When not generating PIC code, this is treated as .word. */
16977 if (mips_pic != SVR4_PIC)
16983 si = seg_info (now_seg);
16984 l = si->label_list;
16985 mips_emit_delays ();
16987 mips_align (2, 0, l);
16990 mips_clear_insn_labels ();
16992 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16994 as_bad (_("Unsupported use of .gpword"));
16995 ignore_rest_of_line ();
16999 md_number_to_chars (p, 0, 4);
17000 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17001 BFD_RELOC_GPREL32);
17003 demand_empty_rest_of_line ();
17007 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17009 segment_info_type *si;
17010 struct insn_label_list *l;
17014 /* When not generating PIC code, this is treated as .dword. */
17015 if (mips_pic != SVR4_PIC)
17021 si = seg_info (now_seg);
17022 l = si->label_list;
17023 mips_emit_delays ();
17025 mips_align (3, 0, l);
17028 mips_clear_insn_labels ();
17030 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17032 as_bad (_("Unsupported use of .gpdword"));
17033 ignore_rest_of_line ();
17037 md_number_to_chars (p, 0, 8);
17038 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17039 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17041 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17042 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17043 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17045 demand_empty_rest_of_line ();
17048 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17049 tables in SVR4 PIC code. */
17052 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17056 /* This is ignored when not generating SVR4 PIC code. */
17057 if (mips_pic != SVR4_PIC)
17063 mips_mark_labels ();
17064 mips_assembling_insn = TRUE;
17066 /* Add $gp to the register named as an argument. */
17068 reg = tc_get_register (0);
17069 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17072 mips_assembling_insn = FALSE;
17073 demand_empty_rest_of_line ();
17076 /* Handle the .insn pseudo-op. This marks instruction labels in
17077 mips16/micromips mode. This permits the linker to handle them specially,
17078 such as generating jalx instructions when needed. We also make
17079 them odd for the duration of the assembly, in order to generate the
17080 right sort of code. We will make them even in the adjust_symtab
17081 routine, while leaving them marked. This is convenient for the
17082 debugger and the disassembler. The linker knows to make them odd
17086 s_insn (int ignore ATTRIBUTE_UNUSED)
17088 mips_mark_labels ();
17090 demand_empty_rest_of_line ();
17093 /* Handle a .stab[snd] directive. Ideally these directives would be
17094 implemented in a transparent way, so that removing them would not
17095 have any effect on the generated instructions. However, s_stab
17096 internally changes the section, so in practice we need to decide
17097 now whether the preceding label marks compressed code. We do not
17098 support changing the compression mode of a label after a .stab*
17099 directive, such as in:
17105 so the current mode wins. */
17108 s_mips_stab (int type)
17110 mips_mark_labels ();
17114 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17117 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17124 name = input_line_pointer;
17125 c = get_symbol_end ();
17126 symbolP = symbol_find_or_make (name);
17127 S_SET_WEAK (symbolP);
17128 *input_line_pointer = c;
17130 SKIP_WHITESPACE ();
17132 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17134 if (S_IS_DEFINED (symbolP))
17136 as_bad (_("ignoring attempt to redefine symbol %s"),
17137 S_GET_NAME (symbolP));
17138 ignore_rest_of_line ();
17142 if (*input_line_pointer == ',')
17144 ++input_line_pointer;
17145 SKIP_WHITESPACE ();
17149 if (exp.X_op != O_symbol)
17151 as_bad (_("bad .weakext directive"));
17152 ignore_rest_of_line ();
17155 symbol_set_value_expression (symbolP, &exp);
17158 demand_empty_rest_of_line ();
17161 /* Parse a register string into a number. Called from the ECOFF code
17162 to parse .frame. The argument is non-zero if this is the frame
17163 register, so that we can record it in mips_frame_reg. */
17166 tc_get_register (int frame)
17170 SKIP_WHITESPACE ();
17171 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
17175 mips_frame_reg = reg != 0 ? reg : SP;
17176 mips_frame_reg_valid = 1;
17177 mips_cprestore_valid = 0;
17183 md_section_align (asection *seg, valueT addr)
17185 int align = bfd_get_section_alignment (stdoutput, seg);
17189 /* We don't need to align ELF sections to the full alignment.
17190 However, Irix 5 may prefer that we align them at least to a 16
17191 byte boundary. We don't bother to align the sections if we
17192 are targeted for an embedded system. */
17193 if (strncmp (TARGET_OS, "elf", 3) == 0)
17199 return ((addr + (1 << align) - 1) & (-1 << align));
17202 /* Utility routine, called from above as well. If called while the
17203 input file is still being read, it's only an approximation. (For
17204 example, a symbol may later become defined which appeared to be
17205 undefined earlier.) */
17208 nopic_need_relax (symbolS *sym, int before_relaxing)
17213 if (g_switch_value > 0)
17215 const char *symname;
17218 /* Find out whether this symbol can be referenced off the $gp
17219 register. It can be if it is smaller than the -G size or if
17220 it is in the .sdata or .sbss section. Certain symbols can
17221 not be referenced off the $gp, although it appears as though
17223 symname = S_GET_NAME (sym);
17224 if (symname != (const char *) NULL
17225 && (strcmp (symname, "eprol") == 0
17226 || strcmp (symname, "etext") == 0
17227 || strcmp (symname, "_gp") == 0
17228 || strcmp (symname, "edata") == 0
17229 || strcmp (symname, "_fbss") == 0
17230 || strcmp (symname, "_fdata") == 0
17231 || strcmp (symname, "_ftext") == 0
17232 || strcmp (symname, "end") == 0
17233 || strcmp (symname, "_gp_disp") == 0))
17235 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17237 #ifndef NO_ECOFF_DEBUGGING
17238 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17239 && (symbol_get_obj (sym)->ecoff_extern_size
17240 <= g_switch_value))
17242 /* We must defer this decision until after the whole
17243 file has been read, since there might be a .extern
17244 after the first use of this symbol. */
17245 || (before_relaxing
17246 #ifndef NO_ECOFF_DEBUGGING
17247 && symbol_get_obj (sym)->ecoff_extern_size == 0
17249 && S_GET_VALUE (sym) == 0)
17250 || (S_GET_VALUE (sym) != 0
17251 && S_GET_VALUE (sym) <= g_switch_value)))
17255 const char *segname;
17257 segname = segment_name (S_GET_SEGMENT (sym));
17258 gas_assert (strcmp (segname, ".lit8") != 0
17259 && strcmp (segname, ".lit4") != 0);
17260 change = (strcmp (segname, ".sdata") != 0
17261 && strcmp (segname, ".sbss") != 0
17262 && strncmp (segname, ".sdata.", 7) != 0
17263 && strncmp (segname, ".sbss.", 6) != 0
17264 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17265 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17270 /* We are not optimizing for the $gp register. */
17275 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17278 pic_need_relax (symbolS *sym, asection *segtype)
17282 /* Handle the case of a symbol equated to another symbol. */
17283 while (symbol_equated_reloc_p (sym))
17287 /* It's possible to get a loop here in a badly written program. */
17288 n = symbol_get_value_expression (sym)->X_add_symbol;
17294 if (symbol_section_p (sym))
17297 symsec = S_GET_SEGMENT (sym);
17299 /* This must duplicate the test in adjust_reloc_syms. */
17300 return (!bfd_is_und_section (symsec)
17301 && !bfd_is_abs_section (symsec)
17302 && !bfd_is_com_section (symsec)
17303 && !s_is_linkonce (sym, segtype)
17305 /* A global or weak symbol is treated as external. */
17306 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17312 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17313 extended opcode. SEC is the section the frag is in. */
17316 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17319 const struct mips16_immed_operand *op;
17321 int mintiny, maxtiny;
17325 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17327 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17330 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17331 op = mips16_immed_operands;
17332 while (op->type != type)
17335 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17340 if (type == '<' || type == '>' || type == '[' || type == ']')
17343 maxtiny = 1 << op->nbits;
17348 maxtiny = (1 << op->nbits) - 1;
17353 mintiny = - (1 << (op->nbits - 1));
17354 maxtiny = (1 << (op->nbits - 1)) - 1;
17357 sym_frag = symbol_get_frag (fragp->fr_symbol);
17358 val = S_GET_VALUE (fragp->fr_symbol);
17359 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17365 /* We won't have the section when we are called from
17366 mips_relax_frag. However, we will always have been called
17367 from md_estimate_size_before_relax first. If this is a
17368 branch to a different section, we mark it as such. If SEC is
17369 NULL, and the frag is not marked, then it must be a branch to
17370 the same section. */
17373 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17378 /* Must have been called from md_estimate_size_before_relax. */
17381 fragp->fr_subtype =
17382 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17384 /* FIXME: We should support this, and let the linker
17385 catch branches and loads that are out of range. */
17386 as_bad_where (fragp->fr_file, fragp->fr_line,
17387 _("unsupported PC relative reference to different section"));
17391 if (fragp != sym_frag && sym_frag->fr_address == 0)
17392 /* Assume non-extended on the first relaxation pass.
17393 The address we have calculated will be bogus if this is
17394 a forward branch to another frag, as the forward frag
17395 will have fr_address == 0. */
17399 /* In this case, we know for sure that the symbol fragment is in
17400 the same section. If the relax_marker of the symbol fragment
17401 differs from the relax_marker of this fragment, we have not
17402 yet adjusted the symbol fragment fr_address. We want to add
17403 in STRETCH in order to get a better estimate of the address.
17404 This particularly matters because of the shift bits. */
17406 && sym_frag->relax_marker != fragp->relax_marker)
17410 /* Adjust stretch for any alignment frag. Note that if have
17411 been expanding the earlier code, the symbol may be
17412 defined in what appears to be an earlier frag. FIXME:
17413 This doesn't handle the fr_subtype field, which specifies
17414 a maximum number of bytes to skip when doing an
17416 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17418 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17421 stretch = - ((- stretch)
17422 & ~ ((1 << (int) f->fr_offset) - 1));
17424 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17433 addr = fragp->fr_address + fragp->fr_fix;
17435 /* The base address rules are complicated. The base address of
17436 a branch is the following instruction. The base address of a
17437 PC relative load or add is the instruction itself, but if it
17438 is in a delay slot (in which case it can not be extended) use
17439 the address of the instruction whose delay slot it is in. */
17440 if (type == 'p' || type == 'q')
17444 /* If we are currently assuming that this frag should be
17445 extended, then, the current address is two bytes
17447 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17450 /* Ignore the low bit in the target, since it will be set
17451 for a text label. */
17452 if ((val & 1) != 0)
17455 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17457 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17460 val -= addr & ~ ((1 << op->shift) - 1);
17462 /* Branch offsets have an implicit 0 in the lowest bit. */
17463 if (type == 'p' || type == 'q')
17466 /* If any of the shifted bits are set, we must use an extended
17467 opcode. If the address depends on the size of this
17468 instruction, this can lead to a loop, so we arrange to always
17469 use an extended opcode. We only check this when we are in
17470 the main relaxation loop, when SEC is NULL. */
17471 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17473 fragp->fr_subtype =
17474 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17478 /* If we are about to mark a frag as extended because the value
17479 is precisely maxtiny + 1, then there is a chance of an
17480 infinite loop as in the following code:
17485 In this case when the la is extended, foo is 0x3fc bytes
17486 away, so the la can be shrunk, but then foo is 0x400 away, so
17487 the la must be extended. To avoid this loop, we mark the
17488 frag as extended if it was small, and is about to become
17489 extended with a value of maxtiny + 1. */
17490 if (val == ((maxtiny + 1) << op->shift)
17491 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17494 fragp->fr_subtype =
17495 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17499 else if (symsec != absolute_section && sec != NULL)
17500 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17502 if ((val & ((1 << op->shift) - 1)) != 0
17503 || val < (mintiny << op->shift)
17504 || val > (maxtiny << op->shift))
17510 /* Compute the length of a branch sequence, and adjust the
17511 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17512 worst-case length is computed, with UPDATE being used to indicate
17513 whether an unconditional (-1), branch-likely (+1) or regular (0)
17514 branch is to be computed. */
17516 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17518 bfd_boolean toofar;
17522 && S_IS_DEFINED (fragp->fr_symbol)
17523 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17528 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17530 addr = fragp->fr_address + fragp->fr_fix + 4;
17534 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17537 /* If the symbol is not defined or it's in a different segment,
17538 assume the user knows what's going on and emit a short
17544 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17546 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17547 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17548 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17549 RELAX_BRANCH_LINK (fragp->fr_subtype),
17555 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17558 if (mips_pic != NO_PIC)
17560 /* Additional space for PIC loading of target address. */
17562 if (mips_opts.isa == ISA_MIPS1)
17563 /* Additional space for $at-stabilizing nop. */
17567 /* If branch is conditional. */
17568 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17575 /* Compute the length of a branch sequence, and adjust the
17576 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17577 worst-case length is computed, with UPDATE being used to indicate
17578 whether an unconditional (-1), or regular (0) branch is to be
17582 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17584 bfd_boolean toofar;
17588 && S_IS_DEFINED (fragp->fr_symbol)
17589 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17594 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17595 /* Ignore the low bit in the target, since it will be set
17596 for a text label. */
17597 if ((val & 1) != 0)
17600 addr = fragp->fr_address + fragp->fr_fix + 4;
17604 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17607 /* If the symbol is not defined or it's in a different segment,
17608 assume the user knows what's going on and emit a short
17614 if (fragp && update
17615 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17616 fragp->fr_subtype = (toofar
17617 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17618 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17623 bfd_boolean compact_known = fragp != NULL;
17624 bfd_boolean compact = FALSE;
17625 bfd_boolean uncond;
17628 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17630 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17632 uncond = update < 0;
17634 /* If label is out of range, we turn branch <br>:
17636 <br> label # 4 bytes
17642 nop # 2 bytes if compact && !PIC
17645 if (mips_pic == NO_PIC && (!compact_known || compact))
17648 /* If assembling PIC code, we further turn:
17654 lw/ld at, %got(label)(gp) # 4 bytes
17655 d/addiu at, %lo(label) # 4 bytes
17658 if (mips_pic != NO_PIC)
17661 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17663 <brneg> 0f # 4 bytes
17664 nop # 2 bytes if !compact
17667 length += (compact_known && compact) ? 4 : 6;
17673 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17674 bit accordingly. */
17677 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17679 bfd_boolean toofar;
17682 && S_IS_DEFINED (fragp->fr_symbol)
17683 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17689 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17690 /* Ignore the low bit in the target, since it will be set
17691 for a text label. */
17692 if ((val & 1) != 0)
17695 /* Assume this is a 2-byte branch. */
17696 addr = fragp->fr_address + fragp->fr_fix + 2;
17698 /* We try to avoid the infinite loop by not adding 2 more bytes for
17703 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17705 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17706 else if (type == 'E')
17707 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17712 /* If the symbol is not defined or it's in a different segment,
17713 we emit a normal 32-bit branch. */
17716 if (fragp && update
17717 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17719 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17720 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17728 /* Estimate the size of a frag before relaxing. Unless this is the
17729 mips16, we are not really relaxing here, and the final size is
17730 encoded in the subtype information. For the mips16, we have to
17731 decide whether we are using an extended opcode or not. */
17734 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17738 if (RELAX_BRANCH_P (fragp->fr_subtype))
17741 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17743 return fragp->fr_var;
17746 if (RELAX_MIPS16_P (fragp->fr_subtype))
17747 /* We don't want to modify the EXTENDED bit here; it might get us
17748 into infinite loops. We change it only in mips_relax_frag(). */
17749 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17751 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17755 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17756 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17757 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17758 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17759 fragp->fr_var = length;
17764 if (mips_pic == NO_PIC)
17765 change = nopic_need_relax (fragp->fr_symbol, 0);
17766 else if (mips_pic == SVR4_PIC)
17767 change = pic_need_relax (fragp->fr_symbol, segtype);
17768 else if (mips_pic == VXWORKS_PIC)
17769 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17776 fragp->fr_subtype |= RELAX_USE_SECOND;
17777 return -RELAX_FIRST (fragp->fr_subtype);
17780 return -RELAX_SECOND (fragp->fr_subtype);
17783 /* This is called to see whether a reloc against a defined symbol
17784 should be converted into a reloc against a section. */
17787 mips_fix_adjustable (fixS *fixp)
17789 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17790 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17793 if (fixp->fx_addsy == NULL)
17796 /* If symbol SYM is in a mergeable section, relocations of the form
17797 SYM + 0 can usually be made section-relative. The mergeable data
17798 is then identified by the section offset rather than by the symbol.
17800 However, if we're generating REL LO16 relocations, the offset is split
17801 between the LO16 and parterning high part relocation. The linker will
17802 need to recalculate the complete offset in order to correctly identify
17805 The linker has traditionally not looked for the parterning high part
17806 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17807 placed anywhere. Rather than break backwards compatibility by changing
17808 this, it seems better not to force the issue, and instead keep the
17809 original symbol. This will work with either linker behavior. */
17810 if ((lo16_reloc_p (fixp->fx_r_type)
17811 || reloc_needs_lo_p (fixp->fx_r_type))
17812 && HAVE_IN_PLACE_ADDENDS
17813 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17816 /* There is no place to store an in-place offset for JALR relocations.
17817 Likewise an in-range offset of PC-relative relocations may overflow
17818 the in-place relocatable field if recalculated against the start
17819 address of the symbol's containing section. */
17820 if (HAVE_IN_PLACE_ADDENDS
17821 && (fixp->fx_pcrel || jalr_reloc_p (fixp->fx_r_type)))
17825 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17826 to a floating-point stub. The same is true for non-R_MIPS16_26
17827 relocations against MIPS16 functions; in this case, the stub becomes
17828 the function's canonical address.
17830 Floating-point stubs are stored in unique .mips16.call.* or
17831 .mips16.fn.* sections. If a stub T for function F is in section S,
17832 the first relocation in section S must be against F; this is how the
17833 linker determines the target function. All relocations that might
17834 resolve to T must also be against F. We therefore have the following
17835 restrictions, which are given in an intentionally-redundant way:
17837 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17840 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17841 if that stub might be used.
17843 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17846 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17847 that stub might be used.
17849 There is a further restriction:
17851 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17852 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17853 targets with in-place addends; the relocation field cannot
17854 encode the low bit.
17856 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17857 against a MIPS16 symbol. We deal with (5) by by not reducing any
17858 such relocations on REL targets.
17860 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17861 relocation against some symbol R, no relocation against R may be
17862 reduced. (Note that this deals with (2) as well as (1) because
17863 relocations against global symbols will never be reduced on ELF
17864 targets.) This approach is a little simpler than trying to detect
17865 stub sections, and gives the "all or nothing" per-symbol consistency
17866 that we have for MIPS16 symbols. */
17868 && fixp->fx_subsy == NULL
17869 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17870 || *symbol_get_tc (fixp->fx_addsy)
17871 || (HAVE_IN_PLACE_ADDENDS
17872 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17873 && jmp_reloc_p (fixp->fx_r_type))))
17880 /* Translate internal representation of relocation info to BFD target
17884 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17886 static arelent *retval[4];
17888 bfd_reloc_code_real_type code;
17890 memset (retval, 0, sizeof(retval));
17891 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17892 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17893 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17894 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17896 if (fixp->fx_pcrel)
17898 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17899 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17900 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17901 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
17903 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17904 Relocations want only the symbol offset. */
17905 reloc->addend = fixp->fx_addnumber + reloc->address;
17908 /* A gruesome hack which is a result of the gruesome gas
17909 reloc handling. What's worse, for COFF (as opposed to
17910 ECOFF), we might need yet another copy of reloc->address.
17911 See bfd_install_relocation. */
17912 reloc->addend += reloc->address;
17916 reloc->addend = fixp->fx_addnumber;
17918 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17919 entry to be used in the relocation's section offset. */
17920 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17922 reloc->address = reloc->addend;
17926 code = fixp->fx_r_type;
17928 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17929 if (reloc->howto == NULL)
17931 as_bad_where (fixp->fx_file, fixp->fx_line,
17932 _("Can not represent %s relocation in this object file format"),
17933 bfd_get_reloc_code_name (code));
17940 /* Relax a machine dependent frag. This returns the amount by which
17941 the current size of the frag should change. */
17944 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17946 if (RELAX_BRANCH_P (fragp->fr_subtype))
17948 offsetT old_var = fragp->fr_var;
17950 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17952 return fragp->fr_var - old_var;
17955 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17957 offsetT old_var = fragp->fr_var;
17958 offsetT new_var = 4;
17960 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17961 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17962 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17963 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17964 fragp->fr_var = new_var;
17966 return new_var - old_var;
17969 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17972 if (mips16_extended_frag (fragp, NULL, stretch))
17974 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17976 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17981 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17983 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17990 /* Convert a machine dependent frag. */
17993 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17995 if (RELAX_BRANCH_P (fragp->fr_subtype))
17998 unsigned long insn;
18002 buf = fragp->fr_literal + fragp->fr_fix;
18003 insn = read_insn (buf);
18005 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18007 /* We generate a fixup instead of applying it right now
18008 because, if there are linker relaxations, we're going to
18009 need the relocations. */
18010 exp.X_op = O_symbol;
18011 exp.X_add_symbol = fragp->fr_symbol;
18012 exp.X_add_number = fragp->fr_offset;
18014 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18015 BFD_RELOC_16_PCREL_S2);
18016 fixp->fx_file = fragp->fr_file;
18017 fixp->fx_line = fragp->fr_line;
18019 buf = write_insn (buf, insn);
18025 as_warn_where (fragp->fr_file, fragp->fr_line,
18026 _("Relaxed out-of-range branch into a jump"));
18028 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18031 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18033 /* Reverse the branch. */
18034 switch ((insn >> 28) & 0xf)
18037 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
18038 have the condition reversed by tweaking a single
18039 bit, and their opcodes all have 0x4???????. */
18040 gas_assert ((insn & 0xf1000000) == 0x41000000);
18041 insn ^= 0x00010000;
18045 /* bltz 0x04000000 bgez 0x04010000
18046 bltzal 0x04100000 bgezal 0x04110000 */
18047 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18048 insn ^= 0x00010000;
18052 /* beq 0x10000000 bne 0x14000000
18053 blez 0x18000000 bgtz 0x1c000000 */
18054 insn ^= 0x04000000;
18062 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18064 /* Clear the and-link bit. */
18065 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18067 /* bltzal 0x04100000 bgezal 0x04110000
18068 bltzall 0x04120000 bgezall 0x04130000 */
18069 insn &= ~0x00100000;
18072 /* Branch over the branch (if the branch was likely) or the
18073 full jump (not likely case). Compute the offset from the
18074 current instruction to branch to. */
18075 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18079 /* How many bytes in instructions we've already emitted? */
18080 i = buf - fragp->fr_literal - fragp->fr_fix;
18081 /* How many bytes in instructions from here to the end? */
18082 i = fragp->fr_var - i;
18084 /* Convert to instruction count. */
18086 /* Branch counts from the next instruction. */
18089 /* Branch over the jump. */
18090 buf = write_insn (buf, insn);
18093 buf = write_insn (buf, 0);
18095 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18097 /* beql $0, $0, 2f */
18099 /* Compute the PC offset from the current instruction to
18100 the end of the variable frag. */
18101 /* How many bytes in instructions we've already emitted? */
18102 i = buf - fragp->fr_literal - fragp->fr_fix;
18103 /* How many bytes in instructions from here to the end? */
18104 i = fragp->fr_var - i;
18105 /* Convert to instruction count. */
18107 /* Don't decrement i, because we want to branch over the
18111 buf = write_insn (buf, insn);
18112 buf = write_insn (buf, 0);
18116 if (mips_pic == NO_PIC)
18119 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18120 ? 0x0c000000 : 0x08000000);
18121 exp.X_op = O_symbol;
18122 exp.X_add_symbol = fragp->fr_symbol;
18123 exp.X_add_number = fragp->fr_offset;
18125 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18126 FALSE, BFD_RELOC_MIPS_JMP);
18127 fixp->fx_file = fragp->fr_file;
18128 fixp->fx_line = fragp->fr_line;
18130 buf = write_insn (buf, insn);
18134 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18136 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18137 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18138 insn |= at << OP_SH_RT;
18139 exp.X_op = O_symbol;
18140 exp.X_add_symbol = fragp->fr_symbol;
18141 exp.X_add_number = fragp->fr_offset;
18143 if (fragp->fr_offset)
18145 exp.X_add_symbol = make_expr_symbol (&exp);
18146 exp.X_add_number = 0;
18149 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18150 FALSE, BFD_RELOC_MIPS_GOT16);
18151 fixp->fx_file = fragp->fr_file;
18152 fixp->fx_line = fragp->fr_line;
18154 buf = write_insn (buf, insn);
18156 if (mips_opts.isa == ISA_MIPS1)
18158 buf = write_insn (buf, 0);
18160 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18161 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18162 insn |= at << OP_SH_RS | at << OP_SH_RT;
18164 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18165 FALSE, BFD_RELOC_LO16);
18166 fixp->fx_file = fragp->fr_file;
18167 fixp->fx_line = fragp->fr_line;
18169 buf = write_insn (buf, insn);
18172 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18176 insn |= at << OP_SH_RS;
18178 buf = write_insn (buf, insn);
18182 fragp->fr_fix += fragp->fr_var;
18183 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18187 /* Relax microMIPS branches. */
18188 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18190 char *buf = fragp->fr_literal + fragp->fr_fix;
18191 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18192 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18193 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18194 bfd_boolean short_ds;
18195 unsigned long insn;
18199 exp.X_op = O_symbol;
18200 exp.X_add_symbol = fragp->fr_symbol;
18201 exp.X_add_number = fragp->fr_offset;
18203 fragp->fr_fix += fragp->fr_var;
18205 /* Handle 16-bit branches that fit or are forced to fit. */
18206 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18208 /* We generate a fixup instead of applying it right now,
18209 because if there is linker relaxation, we're going to
18210 need the relocations. */
18212 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18213 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18214 else if (type == 'E')
18215 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18216 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18220 fixp->fx_file = fragp->fr_file;
18221 fixp->fx_line = fragp->fr_line;
18223 /* These relocations can have an addend that won't fit in
18225 fixp->fx_no_overflow = 1;
18230 /* Handle 32-bit branches that fit or are forced to fit. */
18231 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18232 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18234 /* We generate a fixup instead of applying it right now,
18235 because if there is linker relaxation, we're going to
18236 need the relocations. */
18237 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18238 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18239 fixp->fx_file = fragp->fr_file;
18240 fixp->fx_line = fragp->fr_line;
18246 /* Relax 16-bit branches to 32-bit branches. */
18249 insn = read_compressed_insn (buf, 2);
18251 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18252 insn = 0x94000000; /* beq */
18253 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18255 unsigned long regno;
18257 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18258 regno = micromips_to_32_reg_d_map [regno];
18259 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18260 insn |= regno << MICROMIPSOP_SH_RS;
18265 /* Nothing else to do, just write it out. */
18266 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18267 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18269 buf = write_compressed_insn (buf, insn, 4);
18270 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18275 insn = read_compressed_insn (buf, 4);
18277 /* Relax 32-bit branches to a sequence of instructions. */
18278 as_warn_where (fragp->fr_file, fragp->fr_line,
18279 _("Relaxed out-of-range branch into a jump"));
18281 /* Set the short-delay-slot bit. */
18282 short_ds = al && (insn & 0x02000000) != 0;
18284 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18288 /* Reverse the branch. */
18289 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18290 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18291 insn ^= 0x20000000;
18292 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18293 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18294 || (insn & 0xffe00000) == 0x40800000 /* blez */
18295 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18296 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18297 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18298 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18299 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18300 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18301 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18302 insn ^= 0x00400000;
18303 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18304 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18305 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18306 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18307 insn ^= 0x00200000;
18313 /* Clear the and-link and short-delay-slot bits. */
18314 gas_assert ((insn & 0xfda00000) == 0x40200000);
18316 /* bltzal 0x40200000 bgezal 0x40600000 */
18317 /* bltzals 0x42200000 bgezals 0x42600000 */
18318 insn &= ~0x02200000;
18321 /* Make a label at the end for use with the branch. */
18322 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18323 micromips_label_inc ();
18324 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18326 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18330 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18331 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18332 fixp->fx_file = fragp->fr_file;
18333 fixp->fx_line = fragp->fr_line;
18335 /* Branch over the jump. */
18336 buf = write_compressed_insn (buf, insn, 4);
18339 buf = write_compressed_insn (buf, 0x0c00, 2);
18342 if (mips_pic == NO_PIC)
18344 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18346 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18347 insn = al ? jal : 0xd4000000;
18349 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18350 BFD_RELOC_MICROMIPS_JMP);
18351 fixp->fx_file = fragp->fr_file;
18352 fixp->fx_line = fragp->fr_line;
18354 buf = write_compressed_insn (buf, insn, 4);
18357 buf = write_compressed_insn (buf, 0x0c00, 2);
18361 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18362 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18363 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18365 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18366 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18367 insn |= at << MICROMIPSOP_SH_RT;
18369 if (exp.X_add_number)
18371 exp.X_add_symbol = make_expr_symbol (&exp);
18372 exp.X_add_number = 0;
18375 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18376 BFD_RELOC_MICROMIPS_GOT16);
18377 fixp->fx_file = fragp->fr_file;
18378 fixp->fx_line = fragp->fr_line;
18380 buf = write_compressed_insn (buf, insn, 4);
18382 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18383 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18384 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18386 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18387 BFD_RELOC_MICROMIPS_LO16);
18388 fixp->fx_file = fragp->fr_file;
18389 fixp->fx_line = fragp->fr_line;
18391 buf = write_compressed_insn (buf, insn, 4);
18393 /* jr/jrc/jalr/jalrs $at */
18394 insn = al ? jalr : jr;
18395 insn |= at << MICROMIPSOP_SH_MJ;
18397 buf = write_compressed_insn (buf, insn, 2);
18400 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18404 if (RELAX_MIPS16_P (fragp->fr_subtype))
18407 const struct mips16_immed_operand *op;
18410 unsigned int user_length, length;
18411 unsigned long insn;
18414 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18415 op = mips16_immed_operands;
18416 while (op->type != type)
18419 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18420 val = resolve_symbol_value (fragp->fr_symbol);
18425 addr = fragp->fr_address + fragp->fr_fix;
18427 /* The rules for the base address of a PC relative reloc are
18428 complicated; see mips16_extended_frag. */
18429 if (type == 'p' || type == 'q')
18434 /* Ignore the low bit in the target, since it will be
18435 set for a text label. */
18436 if ((val & 1) != 0)
18439 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18441 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18444 addr &= ~ (addressT) ((1 << op->shift) - 1);
18447 /* Make sure the section winds up with the alignment we have
18450 record_alignment (asec, op->shift);
18454 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18455 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18456 as_warn_where (fragp->fr_file, fragp->fr_line,
18457 _("extended instruction in delay slot"));
18459 buf = fragp->fr_literal + fragp->fr_fix;
18461 insn = read_compressed_insn (buf, 2);
18463 insn |= MIPS16_EXTEND;
18465 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18467 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18472 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18473 BFD_RELOC_UNUSED, val, user_length, &insn);
18475 length = (ext ? 4 : 2);
18476 gas_assert (mips16_opcode_length (insn) == length);
18477 write_compressed_insn (buf, insn, length);
18478 fragp->fr_fix += length;
18482 relax_substateT subtype = fragp->fr_subtype;
18483 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18484 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18488 first = RELAX_FIRST (subtype);
18489 second = RELAX_SECOND (subtype);
18490 fixp = (fixS *) fragp->fr_opcode;
18492 /* If the delay slot chosen does not match the size of the instruction,
18493 then emit a warning. */
18494 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18495 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18500 s = subtype & (RELAX_DELAY_SLOT_16BIT
18501 | RELAX_DELAY_SLOT_SIZE_FIRST
18502 | RELAX_DELAY_SLOT_SIZE_SECOND);
18503 msg = macro_warning (s);
18505 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18509 /* Possibly emit a warning if we've chosen the longer option. */
18510 if (use_second == second_longer)
18516 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18517 msg = macro_warning (s);
18519 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18523 /* Go through all the fixups for the first sequence. Disable them
18524 (by marking them as done) if we're going to use the second
18525 sequence instead. */
18527 && fixp->fx_frag == fragp
18528 && fixp->fx_where < fragp->fr_fix - second)
18530 if (subtype & RELAX_USE_SECOND)
18532 fixp = fixp->fx_next;
18535 /* Go through the fixups for the second sequence. Disable them if
18536 we're going to use the first sequence, otherwise adjust their
18537 addresses to account for the relaxation. */
18538 while (fixp && fixp->fx_frag == fragp)
18540 if (subtype & RELAX_USE_SECOND)
18541 fixp->fx_where -= first;
18544 fixp = fixp->fx_next;
18547 /* Now modify the frag contents. */
18548 if (subtype & RELAX_USE_SECOND)
18552 start = fragp->fr_literal + fragp->fr_fix - first - second;
18553 memmove (start, start + first, second);
18554 fragp->fr_fix -= first;
18557 fragp->fr_fix -= second;
18563 /* This function is called after the relocs have been generated.
18564 We've been storing mips16 text labels as odd. Here we convert them
18565 back to even for the convenience of the debugger. */
18568 mips_frob_file_after_relocs (void)
18571 unsigned int count, i;
18576 syms = bfd_get_outsymbols (stdoutput);
18577 count = bfd_get_symcount (stdoutput);
18578 for (i = 0; i < count; i++, syms++)
18579 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18580 && ((*syms)->value & 1) != 0)
18582 (*syms)->value &= ~1;
18583 /* If the symbol has an odd size, it was probably computed
18584 incorrectly, so adjust that as well. */
18585 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18586 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18592 /* This function is called whenever a label is defined, including fake
18593 labels instantiated off the dot special symbol. It is used when
18594 handling branch delays; if a branch has a label, we assume we cannot
18595 move it. This also bumps the value of the symbol by 1 in compressed
18599 mips_record_label (symbolS *sym)
18601 segment_info_type *si = seg_info (now_seg);
18602 struct insn_label_list *l;
18604 if (free_insn_labels == NULL)
18605 l = (struct insn_label_list *) xmalloc (sizeof *l);
18608 l = free_insn_labels;
18609 free_insn_labels = l->next;
18613 l->next = si->label_list;
18614 si->label_list = l;
18617 /* This function is called as tc_frob_label() whenever a label is defined
18618 and adds a DWARF-2 record we only want for true labels. */
18621 mips_define_label (symbolS *sym)
18623 mips_record_label (sym);
18625 dwarf2_emit_label (sym);
18629 /* This function is called by tc_new_dot_label whenever a new dot symbol
18633 mips_add_dot_label (symbolS *sym)
18635 mips_record_label (sym);
18636 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18637 mips_compressed_mark_label (sym);
18640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18642 /* Some special processing for a MIPS ELF file. */
18645 mips_elf_final_processing (void)
18647 /* Write out the register information. */
18648 if (mips_abi != N64_ABI)
18652 s.ri_gprmask = mips_gprmask;
18653 s.ri_cprmask[0] = mips_cprmask[0];
18654 s.ri_cprmask[1] = mips_cprmask[1];
18655 s.ri_cprmask[2] = mips_cprmask[2];
18656 s.ri_cprmask[3] = mips_cprmask[3];
18657 /* The gp_value field is set by the MIPS ELF backend. */
18659 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18660 ((Elf32_External_RegInfo *)
18661 mips_regmask_frag));
18665 Elf64_Internal_RegInfo s;
18667 s.ri_gprmask = mips_gprmask;
18669 s.ri_cprmask[0] = mips_cprmask[0];
18670 s.ri_cprmask[1] = mips_cprmask[1];
18671 s.ri_cprmask[2] = mips_cprmask[2];
18672 s.ri_cprmask[3] = mips_cprmask[3];
18673 /* The gp_value field is set by the MIPS ELF backend. */
18675 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18676 ((Elf64_External_RegInfo *)
18677 mips_regmask_frag));
18680 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18681 sort of BFD interface for this. */
18682 if (mips_any_noreorder)
18683 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18684 if (mips_pic != NO_PIC)
18686 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18687 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18690 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18692 /* Set MIPS ELF flags for ASEs. */
18693 /* We may need to define a new flag for DSP ASE, and set this flag when
18694 file_ase_dsp is true. */
18695 /* Same for DSP R2. */
18696 /* We may need to define a new flag for MT ASE, and set this flag when
18697 file_ase_mt is true. */
18698 if (file_ase_mips16)
18699 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18700 if (file_ase_micromips)
18701 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18702 #if 0 /* XXX FIXME */
18703 if (file_ase_mips3d)
18704 elf_elfheader (stdoutput)->e_flags |= ???;
18707 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18709 /* Set the MIPS ELF ABI flags. */
18710 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18711 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18712 else if (mips_abi == O64_ABI)
18713 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18714 else if (mips_abi == EABI_ABI)
18716 if (!file_mips_gp32)
18717 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18719 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18721 else if (mips_abi == N32_ABI)
18722 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18724 /* Nothing to do for N64_ABI. */
18726 if (mips_32bitmode)
18727 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18729 #if 0 /* XXX FIXME */
18730 /* 32 bit code with 64 bit FP registers. */
18731 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18732 elf_elfheader (stdoutput)->e_flags |= ???;
18736 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18738 typedef struct proc {
18740 symbolS *func_end_sym;
18741 unsigned long reg_mask;
18742 unsigned long reg_offset;
18743 unsigned long fpreg_mask;
18744 unsigned long fpreg_offset;
18745 unsigned long frame_offset;
18746 unsigned long frame_reg;
18747 unsigned long pc_reg;
18750 static procS cur_proc;
18751 static procS *cur_proc_ptr;
18752 static int numprocs;
18754 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18755 as "2", and a normal nop as "0". */
18757 #define NOP_OPCODE_MIPS 0
18758 #define NOP_OPCODE_MIPS16 1
18759 #define NOP_OPCODE_MICROMIPS 2
18762 mips_nop_opcode (void)
18764 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18765 return NOP_OPCODE_MICROMIPS;
18766 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18767 return NOP_OPCODE_MIPS16;
18769 return NOP_OPCODE_MIPS;
18772 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18773 32-bit microMIPS NOPs here (if applicable). */
18776 mips_handle_align (fragS *fragp)
18780 int bytes, size, excess;
18783 if (fragp->fr_type != rs_align_code)
18786 p = fragp->fr_literal + fragp->fr_fix;
18788 switch (nop_opcode)
18790 case NOP_OPCODE_MICROMIPS:
18791 opcode = micromips_nop32_insn.insn_opcode;
18794 case NOP_OPCODE_MIPS16:
18795 opcode = mips16_nop_insn.insn_opcode;
18798 case NOP_OPCODE_MIPS:
18800 opcode = nop_insn.insn_opcode;
18805 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18806 excess = bytes % size;
18808 /* Handle the leading part if we're not inserting a whole number of
18809 instructions, and make it the end of the fixed part of the frag.
18810 Try to fit in a short microMIPS NOP if applicable and possible,
18811 and use zeroes otherwise. */
18812 gas_assert (excess < 4);
18813 fragp->fr_fix += excess;
18818 /* Fall through. */
18820 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18822 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18826 /* Fall through. */
18829 /* Fall through. */
18834 md_number_to_chars (p, opcode, size);
18835 fragp->fr_var = size;
18839 md_obj_begin (void)
18846 /* Check for premature end, nesting errors, etc. */
18848 as_warn (_("missing .end at end of assembly"));
18857 if (*input_line_pointer == '-')
18859 ++input_line_pointer;
18862 if (!ISDIGIT (*input_line_pointer))
18863 as_bad (_("expected simple number"));
18864 if (input_line_pointer[0] == '0')
18866 if (input_line_pointer[1] == 'x')
18868 input_line_pointer += 2;
18869 while (ISXDIGIT (*input_line_pointer))
18872 val |= hex_value (*input_line_pointer++);
18874 return negative ? -val : val;
18878 ++input_line_pointer;
18879 while (ISDIGIT (*input_line_pointer))
18882 val |= *input_line_pointer++ - '0';
18884 return negative ? -val : val;
18887 if (!ISDIGIT (*input_line_pointer))
18889 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18890 *input_line_pointer, *input_line_pointer);
18891 as_warn (_("invalid number"));
18894 while (ISDIGIT (*input_line_pointer))
18897 val += *input_line_pointer++ - '0';
18899 return negative ? -val : val;
18902 /* The .file directive; just like the usual .file directive, but there
18903 is an initial number which is the ECOFF file index. In the non-ECOFF
18904 case .file implies DWARF-2. */
18907 s_mips_file (int x ATTRIBUTE_UNUSED)
18909 static int first_file_directive = 0;
18911 if (ECOFF_DEBUGGING)
18920 filename = dwarf2_directive_file (0);
18922 /* Versions of GCC up to 3.1 start files with a ".file"
18923 directive even for stabs output. Make sure that this
18924 ".file" is handled. Note that you need a version of GCC
18925 after 3.1 in order to support DWARF-2 on MIPS. */
18926 if (filename != NULL && ! first_file_directive)
18928 (void) new_logical_line (filename, -1);
18929 s_app_file_string (filename, 0);
18931 first_file_directive = 1;
18935 /* The .loc directive, implying DWARF-2. */
18938 s_mips_loc (int x ATTRIBUTE_UNUSED)
18940 if (!ECOFF_DEBUGGING)
18941 dwarf2_directive_loc (0);
18944 /* The .end directive. */
18947 s_mips_end (int x ATTRIBUTE_UNUSED)
18951 /* Following functions need their own .frame and .cprestore directives. */
18952 mips_frame_reg_valid = 0;
18953 mips_cprestore_valid = 0;
18955 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18958 demand_empty_rest_of_line ();
18963 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18964 as_warn (_(".end not in text section"));
18968 as_warn (_(".end directive without a preceding .ent directive."));
18969 demand_empty_rest_of_line ();
18975 gas_assert (S_GET_NAME (p));
18976 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18977 as_warn (_(".end symbol does not match .ent symbol."));
18979 if (debug_type == DEBUG_STABS)
18980 stabs_generate_asm_endfunc (S_GET_NAME (p),
18984 as_warn (_(".end directive missing or unknown symbol"));
18987 /* Create an expression to calculate the size of the function. */
18988 if (p && cur_proc_ptr)
18990 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18991 expressionS *exp = xmalloc (sizeof (expressionS));
18994 exp->X_op = O_subtract;
18995 exp->X_add_symbol = symbol_temp_new_now ();
18996 exp->X_op_symbol = p;
18997 exp->X_add_number = 0;
18999 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19002 /* Generate a .pdr section. */
19003 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
19005 segT saved_seg = now_seg;
19006 subsegT saved_subseg = now_subseg;
19010 #ifdef md_flush_pending_output
19011 md_flush_pending_output ();
19014 gas_assert (pdr_seg);
19015 subseg_set (pdr_seg, 0);
19017 /* Write the symbol. */
19018 exp.X_op = O_symbol;
19019 exp.X_add_symbol = p;
19020 exp.X_add_number = 0;
19021 emit_expr (&exp, 4);
19023 fragp = frag_more (7 * 4);
19025 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19026 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19027 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19028 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19029 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19030 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19031 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19033 subseg_set (saved_seg, saved_subseg);
19035 #endif /* OBJ_ELF */
19037 cur_proc_ptr = NULL;
19040 /* The .aent and .ent directives. */
19043 s_mips_ent (int aent)
19047 symbolP = get_symbol ();
19048 if (*input_line_pointer == ',')
19049 ++input_line_pointer;
19050 SKIP_WHITESPACE ();
19051 if (ISDIGIT (*input_line_pointer)
19052 || *input_line_pointer == '-')
19055 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19056 as_warn (_(".ent or .aent not in text section."));
19058 if (!aent && cur_proc_ptr)
19059 as_warn (_("missing .end"));
19063 /* This function needs its own .frame and .cprestore directives. */
19064 mips_frame_reg_valid = 0;
19065 mips_cprestore_valid = 0;
19067 cur_proc_ptr = &cur_proc;
19068 memset (cur_proc_ptr, '\0', sizeof (procS));
19070 cur_proc_ptr->func_sym = symbolP;
19074 if (debug_type == DEBUG_STABS)
19075 stabs_generate_asm_func (S_GET_NAME (symbolP),
19076 S_GET_NAME (symbolP));
19079 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19081 demand_empty_rest_of_line ();
19084 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19085 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19086 s_mips_frame is used so that we can set the PDR information correctly.
19087 We can't use the ecoff routines because they make reference to the ecoff
19088 symbol table (in the mdebug section). */
19091 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19094 if (IS_ELF && !ECOFF_DEBUGGING)
19098 if (cur_proc_ptr == (procS *) NULL)
19100 as_warn (_(".frame outside of .ent"));
19101 demand_empty_rest_of_line ();
19105 cur_proc_ptr->frame_reg = tc_get_register (1);
19107 SKIP_WHITESPACE ();
19108 if (*input_line_pointer++ != ','
19109 || get_absolute_expression_and_terminator (&val) != ',')
19111 as_warn (_("Bad .frame directive"));
19112 --input_line_pointer;
19113 demand_empty_rest_of_line ();
19117 cur_proc_ptr->frame_offset = val;
19118 cur_proc_ptr->pc_reg = tc_get_register (0);
19120 demand_empty_rest_of_line ();
19123 #endif /* OBJ_ELF */
19127 /* The .fmask and .mask directives. If the mdebug section is present
19128 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19129 embedded targets, s_mips_mask is used so that we can set the PDR
19130 information correctly. We can't use the ecoff routines because they
19131 make reference to the ecoff symbol table (in the mdebug section). */
19134 s_mips_mask (int reg_type)
19137 if (IS_ELF && !ECOFF_DEBUGGING)
19141 if (cur_proc_ptr == (procS *) NULL)
19143 as_warn (_(".mask/.fmask outside of .ent"));
19144 demand_empty_rest_of_line ();
19148 if (get_absolute_expression_and_terminator (&mask) != ',')
19150 as_warn (_("Bad .mask/.fmask directive"));
19151 --input_line_pointer;
19152 demand_empty_rest_of_line ();
19156 off = get_absolute_expression ();
19158 if (reg_type == 'F')
19160 cur_proc_ptr->fpreg_mask = mask;
19161 cur_proc_ptr->fpreg_offset = off;
19165 cur_proc_ptr->reg_mask = mask;
19166 cur_proc_ptr->reg_offset = off;
19169 demand_empty_rest_of_line ();
19172 #endif /* OBJ_ELF */
19173 s_ignore (reg_type);
19176 /* A table describing all the processors gas knows about. Names are
19177 matched in the order listed.
19179 To ease comparison, please keep this table in the same order as
19180 gcc's mips_cpu_info_table[]. */
19181 static const struct mips_cpu_info mips_cpu_info_table[] =
19183 /* Entries for generic ISAs */
19184 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
19185 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
19186 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
19187 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
19188 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
19189 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
19190 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
19191 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
19192 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
19195 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
19196 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
19197 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
19200 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
19203 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
19204 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
19205 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
19206 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
19207 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
19208 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
19209 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
19210 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
19211 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
19212 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
19213 { "orion", 0, ISA_MIPS3, CPU_R4600 },
19214 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
19215 { "r5900", 0, ISA_MIPS3, CPU_R5900 },
19216 /* ST Microelectronics Loongson 2E and 2F cores */
19217 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
19218 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
19221 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
19222 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
19223 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
19224 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
19225 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
19226 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
19227 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
19228 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
19229 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
19230 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
19231 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
19232 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
19233 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
19234 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
19235 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
19238 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
19239 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
19240 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
19241 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19243 /* MIPS 32 Release 2 */
19244 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19245 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19246 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19247 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19248 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19249 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19250 { "m14k", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19251 { "m14kc", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19252 { "m14ke", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19253 ISA_MIPS32R2, CPU_MIPS32R2 },
19254 { "m14kec", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19255 ISA_MIPS32R2, CPU_MIPS32R2 },
19256 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19257 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19258 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19259 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19260 /* Deprecated forms of the above. */
19261 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19262 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19263 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19264 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19265 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19266 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19267 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19268 /* Deprecated forms of the above. */
19269 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19270 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19271 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19272 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19273 ISA_MIPS32R2, CPU_MIPS32R2 },
19274 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19275 ISA_MIPS32R2, CPU_MIPS32R2 },
19276 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19277 ISA_MIPS32R2, CPU_MIPS32R2 },
19278 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19279 ISA_MIPS32R2, CPU_MIPS32R2 },
19280 /* Deprecated forms of the above. */
19281 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19282 ISA_MIPS32R2, CPU_MIPS32R2 },
19283 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19284 ISA_MIPS32R2, CPU_MIPS32R2 },
19285 /* 34Kn is a 34kc without DSP. */
19286 { "34kn", MIPS_CPU_ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19287 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19288 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19289 ISA_MIPS32R2, CPU_MIPS32R2 },
19290 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19291 ISA_MIPS32R2, CPU_MIPS32R2 },
19292 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19293 ISA_MIPS32R2, CPU_MIPS32R2 },
19294 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19295 ISA_MIPS32R2, CPU_MIPS32R2 },
19296 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19297 ISA_MIPS32R2, CPU_MIPS32R2 },
19298 /* Deprecated forms of the above. */
19299 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19300 ISA_MIPS32R2, CPU_MIPS32R2 },
19301 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19302 ISA_MIPS32R2, CPU_MIPS32R2 },
19303 /* 1004K cores are multiprocessor versions of the 34K. */
19304 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19305 ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19307 ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19309 ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19311 ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
19315 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
19316 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19317 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19319 /* Broadcom SB-1 CPU core */
19320 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19321 ISA_MIPS64, CPU_SB1 },
19322 /* Broadcom SB-1A CPU core */
19323 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19324 ISA_MIPS64, CPU_SB1 },
19326 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
19328 /* MIPS 64 Release 2 */
19330 /* Cavium Networks Octeon CPU core */
19331 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
19332 { "octeon+", 0, ISA_MIPS64R2, CPU_OCTEONP },
19333 { "octeon2", 0, ISA_MIPS64R2, CPU_OCTEON2 },
19336 { "xlr", 0, ISA_MIPS64, CPU_XLR },
19339 XLP is mostly like XLR, with the prominent exception that it is
19340 MIPS64R2 rather than MIPS64. */
19341 { "xlp", 0, ISA_MIPS64R2, CPU_XLR },
19348 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19349 with a final "000" replaced by "k". Ignore case.
19351 Note: this function is shared between GCC and GAS. */
19354 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19356 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19357 given++, canonical++;
19359 return ((*given == 0 && *canonical == 0)
19360 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19364 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19365 CPU name. We've traditionally allowed a lot of variation here.
19367 Note: this function is shared between GCC and GAS. */
19370 mips_matching_cpu_name_p (const char *canonical, const char *given)
19372 /* First see if the name matches exactly, or with a final "000"
19373 turned into "k". */
19374 if (mips_strict_matching_cpu_name_p (canonical, given))
19377 /* If not, try comparing based on numerical designation alone.
19378 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19379 if (TOLOWER (*given) == 'r')
19381 if (!ISDIGIT (*given))
19384 /* Skip over some well-known prefixes in the canonical name,
19385 hoping to find a number there too. */
19386 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19388 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19390 else if (TOLOWER (canonical[0]) == 'r')
19393 return mips_strict_matching_cpu_name_p (canonical, given);
19397 /* Parse an option that takes the name of a processor as its argument.
19398 OPTION is the name of the option and CPU_STRING is the argument.
19399 Return the corresponding processor enumeration if the CPU_STRING is
19400 recognized, otherwise report an error and return null.
19402 A similar function exists in GCC. */
19404 static const struct mips_cpu_info *
19405 mips_parse_cpu (const char *option, const char *cpu_string)
19407 const struct mips_cpu_info *p;
19409 /* 'from-abi' selects the most compatible architecture for the given
19410 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19411 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19412 version. Look first at the -mgp options, if given, otherwise base
19413 the choice on MIPS_DEFAULT_64BIT.
19415 Treat NO_ABI like the EABIs. One reason to do this is that the
19416 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19417 architecture. This code picks MIPS I for 'mips' and MIPS III for
19418 'mips64', just as we did in the days before 'from-abi'. */
19419 if (strcasecmp (cpu_string, "from-abi") == 0)
19421 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19422 return mips_cpu_info_from_isa (ISA_MIPS1);
19424 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19425 return mips_cpu_info_from_isa (ISA_MIPS3);
19427 if (file_mips_gp32 >= 0)
19428 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19430 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19435 /* 'default' has traditionally been a no-op. Probably not very useful. */
19436 if (strcasecmp (cpu_string, "default") == 0)
19439 for (p = mips_cpu_info_table; p->name != 0; p++)
19440 if (mips_matching_cpu_name_p (p->name, cpu_string))
19443 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19447 /* Return the canonical processor information for ISA (a member of the
19448 ISA_MIPS* enumeration). */
19450 static const struct mips_cpu_info *
19451 mips_cpu_info_from_isa (int isa)
19455 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19456 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19457 && isa == mips_cpu_info_table[i].isa)
19458 return (&mips_cpu_info_table[i]);
19463 static const struct mips_cpu_info *
19464 mips_cpu_info_from_arch (int arch)
19468 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19469 if (arch == mips_cpu_info_table[i].cpu)
19470 return (&mips_cpu_info_table[i]);
19476 show (FILE *stream, const char *string, int *col_p, int *first_p)
19480 fprintf (stream, "%24s", "");
19485 fprintf (stream, ", ");
19489 if (*col_p + strlen (string) > 72)
19491 fprintf (stream, "\n%24s", "");
19495 fprintf (stream, "%s", string);
19496 *col_p += strlen (string);
19502 md_show_usage (FILE *stream)
19507 fprintf (stream, _("\
19509 -EB generate big endian output\n\
19510 -EL generate little endian output\n\
19511 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19512 -G NUM allow referencing objects up to NUM bytes\n\
19513 implicitly with the gp register [default 8]\n"));
19514 fprintf (stream, _("\
19515 -mips1 generate MIPS ISA I instructions\n\
19516 -mips2 generate MIPS ISA II instructions\n\
19517 -mips3 generate MIPS ISA III instructions\n\
19518 -mips4 generate MIPS ISA IV instructions\n\
19519 -mips5 generate MIPS ISA V instructions\n\
19520 -mips32 generate MIPS32 ISA instructions\n\
19521 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19522 -mips64 generate MIPS64 ISA instructions\n\
19523 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19524 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19528 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19529 show (stream, mips_cpu_info_table[i].name, &column, &first);
19530 show (stream, "from-abi", &column, &first);
19531 fputc ('\n', stream);
19533 fprintf (stream, _("\
19534 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19535 -no-mCPU don't generate code specific to CPU.\n\
19536 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19540 show (stream, "3900", &column, &first);
19541 show (stream, "4010", &column, &first);
19542 show (stream, "4100", &column, &first);
19543 show (stream, "4650", &column, &first);
19544 fputc ('\n', stream);
19546 fprintf (stream, _("\
19547 -mips16 generate mips16 instructions\n\
19548 -no-mips16 do not generate mips16 instructions\n"));
19549 fprintf (stream, _("\
19550 -mmicromips generate microMIPS instructions\n\
19551 -mno-micromips do not generate microMIPS instructions\n"));
19552 fprintf (stream, _("\
19553 -msmartmips generate smartmips instructions\n\
19554 -mno-smartmips do not generate smartmips instructions\n"));
19555 fprintf (stream, _("\
19556 -mdsp generate DSP instructions\n\
19557 -mno-dsp do not generate DSP instructions\n"));
19558 fprintf (stream, _("\
19559 -mdspr2 generate DSP R2 instructions\n\
19560 -mno-dspr2 do not generate DSP R2 instructions\n"));
19561 fprintf (stream, _("\
19562 -mmt generate MT instructions\n\
19563 -mno-mt do not generate MT instructions\n"));
19564 fprintf (stream, _("\
19565 -mmcu generate MCU instructions\n\
19566 -mno-mcu do not generate MCU instructions\n"));
19567 fprintf (stream, _("\
19568 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19569 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19570 -mfix-vr4120 work around certain VR4120 errata\n\
19571 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19572 -mfix-24k insert a nop after ERET and DERET instructions\n\
19573 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19574 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19575 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19576 -msym32 assume all symbols have 32-bit values\n\
19577 -O0 remove unneeded NOPs, do not swap branches\n\
19578 -O remove unneeded NOPs and swap branches\n\
19579 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19580 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19581 fprintf (stream, _("\
19582 -mhard-float allow floating-point instructions\n\
19583 -msoft-float do not allow floating-point instructions\n\
19584 -msingle-float only allow 32-bit floating-point operations\n\
19585 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19586 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
19589 fprintf (stream, _("\
19590 -KPIC, -call_shared generate SVR4 position independent code\n\
19591 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19592 -mvxworks-pic generate VxWorks position independent code\n\
19593 -non_shared do not generate code that can operate with DSOs\n\
19594 -xgot assume a 32 bit GOT\n\
19595 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19596 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19597 position dependent (non shared) code\n\
19598 -mabi=ABI create ABI conformant object file for:\n"));
19602 show (stream, "32", &column, &first);
19603 show (stream, "o64", &column, &first);
19604 show (stream, "n32", &column, &first);
19605 show (stream, "64", &column, &first);
19606 show (stream, "eabi", &column, &first);
19608 fputc ('\n', stream);
19610 fprintf (stream, _("\
19611 -32 create o32 ABI object file (default)\n\
19612 -n32 create n32 ABI object file\n\
19613 -64 create 64 ABI object file\n"));
19619 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19621 if (HAVE_64BIT_SYMBOLS)
19622 return dwarf2_format_64bit_irix;
19624 return dwarf2_format_32bit;
19629 mips_dwarf2_addr_size (void)
19631 if (HAVE_64BIT_OBJECTS)
19637 /* Standard calling conventions leave the CFA at SP on entry. */
19639 mips_cfi_frame_initial_instructions (void)
19641 cfi_add_CFA_def_cfa_register (SP);
19645 tc_mips_regname_to_dw2regnum (char *regname)
19647 unsigned int regnum = -1;
19650 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))