1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
38 #define DBG(x) printf x
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
61 /* Fix any of them that we actually care about. */
63 #define OUTPUT_FLAVOR mips_output_flavor()
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
81 int mips_flag_pdr = FALSE;
83 int mips_flag_pdr = TRUE;
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
95 #define PIC_CALL_REG 25
103 #define ILLEGAL_REG (32)
105 #define AT mips_opts.at
107 /* Allow override of standard little-endian ECOFF format. */
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 extern int target_big_endian;
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
124 /* Information about an instruction, including its format, operands
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
131 /* True if this is a mips16 instruction and if we want the extended
133 bfd_boolean use_extend;
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
142 /* The frag that contains the instruction. */
145 /* The offset into FRAG of the first instruction byte. */
148 /* The relocs associated with the instruction, if any. */
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
161 /* The ABI to use. */
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
178 /* Whether or not we have code which can be put into a shared
180 static bfd_boolean mips_in_shared = TRUE;
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
186 struct mips_set_options
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
237 /* True if ".set sym32" is in effect. */
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
266 static struct mips_set_options mips_opts =
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
348 /* The argument of the -mtune= flag. The architecture for which we
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
362 || (ABI) == N64_ABI \
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
538 /* MIPS PIC level. */
540 enum mips_pic_level mips_pic;
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
546 /* 1 if trap instructions should used for overflow rather than break
548 static int mips_trap = 0;
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
558 /* Non-zero if any .set noreorder directives were used. */
560 static int mips_any_noreorder;
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
613 /* Chars that mean this number is a floating point constant */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
623 static char *insn_error;
625 static int auto_align = 1;
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
631 static offsetT mips_cprestore_offset = -1;
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
660 static int mips_optimize = 2;
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
672 /* The maximum number of NOPs needed for any purpose. */
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
692 static fragS *prev_nop_frag;
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
697 /* The number of nop instructions that we know we need in
699 static int prev_nop_frag_required;
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
718 struct mips_hi_fixup *next;
721 /* The section this fixup is in. */
725 /* The list of unmatched HI relocs. */
727 static struct mips_hi_fixup *mips_hi_fixup_list;
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
732 static fragS *prev_reloc_op_frag;
734 /* Map normal MIPS register numbers to mips16 register numbers. */
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
746 /* Map mips16 register numbers to normal MIPS register numbers. */
748 static const unsigned int mips16_to_32_reg_map[] =
750 16, 17, 2, 3, 4, 5, 6, 7
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
763 NUM_FIX_VR4120_CLASSES
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
797 static int mips_relax_branch;
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
834 The frag's "opcode" points to the first fixup for relaxable code.
836 Relaxable macros are generated using a sequence such as:
838 relax_start (SYMBOL);
839 ... generate first expansion ...
841 ... generate second expansion ...
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
855 /* Branch without likely bit. If label is out of range, we turn:
857 beq reg1, reg2, label
867 with the following opcode replacements:
874 bltzal <-> bgezal (with jal label instead of j label)
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
884 Branch likely. If label is out of range, we turn:
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
896 delay slot (executed only if branch taken)
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
905 delay slot (executed only if branch taken)
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
925 | ((toofar) ? 1 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1038 /* The symbol on which the choice of sequence depends. */
1042 /* Global variables used to decide whether a macro needs a warning. */
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1051 unsigned int sizes[2];
1053 /* The first variant frag for this macro. */
1055 } mips_macro_warning;
1057 /* Prototypes for static functions. */
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 static void mips_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1077 static void mips16_immed
1078 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1079 unsigned long *, bfd_boolean *, unsigned short *);
1080 static size_t my_getSmallExpression
1081 (expressionS *, bfd_reloc_code_real_type *, char *);
1082 static void my_getExpression (expressionS *, char *);
1083 static void s_align (int);
1084 static void s_change_sec (int);
1085 static void s_change_section (int);
1086 static void s_cons (int);
1087 static void s_float_cons (int);
1088 static void s_mips_globl (int);
1089 static void s_option (int);
1090 static void s_mipsset (int);
1091 static void s_abicalls (int);
1092 static void s_cpload (int);
1093 static void s_cpsetup (int);
1094 static void s_cplocal (int);
1095 static void s_cprestore (int);
1096 static void s_cpreturn (int);
1097 static void s_dtprelword (int);
1098 static void s_dtpreldword (int);
1099 static void s_gpvalue (int);
1100 static void s_gpword (int);
1101 static void s_gpdword (int);
1102 static void s_cpadd (int);
1103 static void s_insn (int);
1104 static void md_obj_begin (void);
1105 static void md_obj_end (void);
1106 static void s_mips_ent (int);
1107 static void s_mips_end (int);
1108 static void s_mips_frame (int);
1109 static void s_mips_mask (int reg_type);
1110 static void s_mips_stab (int);
1111 static void s_mips_weakext (int);
1112 static void s_mips_file (int);
1113 static void s_mips_loc (int);
1114 static bfd_boolean pic_need_relax (symbolS *, asection *);
1115 static int relaxed_branch_length (fragS *, asection *, int);
1116 static int validate_mips_insn (const struct mips_opcode *);
1118 /* Table and functions used to map between CPU/ISA names, and
1119 ISA levels, and CPU numbers. */
1121 struct mips_cpu_info
1123 const char *name; /* CPU or ISA name. */
1124 int flags; /* ASEs available, or ISA flag. */
1125 int isa; /* ISA level. */
1126 int cpu; /* CPU number (default CPU if ISA). */
1129 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1130 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1131 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1132 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1133 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1134 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1135 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1137 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1138 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1139 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1143 The following pseudo-ops from the Kane and Heinrich MIPS book
1144 should be defined here, but are currently unsupported: .alias,
1145 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1147 The following pseudo-ops from the Kane and Heinrich MIPS book are
1148 specific to the type of debugging information being generated, and
1149 should be defined by the object format: .aent, .begin, .bend,
1150 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1153 The following pseudo-ops from the Kane and Heinrich MIPS book are
1154 not MIPS CPU specific, but are also not specific to the object file
1155 format. This file is probably the best place to define them, but
1156 they are not currently supported: .asm0, .endr, .lab, .struct. */
1158 static const pseudo_typeS mips_pseudo_table[] =
1160 /* MIPS specific pseudo-ops. */
1161 {"option", s_option, 0},
1162 {"set", s_mipsset, 0},
1163 {"rdata", s_change_sec, 'r'},
1164 {"sdata", s_change_sec, 's'},
1165 {"livereg", s_ignore, 0},
1166 {"abicalls", s_abicalls, 0},
1167 {"cpload", s_cpload, 0},
1168 {"cpsetup", s_cpsetup, 0},
1169 {"cplocal", s_cplocal, 0},
1170 {"cprestore", s_cprestore, 0},
1171 {"cpreturn", s_cpreturn, 0},
1172 {"dtprelword", s_dtprelword, 0},
1173 {"dtpreldword", s_dtpreldword, 0},
1174 {"gpvalue", s_gpvalue, 0},
1175 {"gpword", s_gpword, 0},
1176 {"gpdword", s_gpdword, 0},
1177 {"cpadd", s_cpadd, 0},
1178 {"insn", s_insn, 0},
1180 /* Relatively generic pseudo-ops that happen to be used on MIPS
1182 {"asciiz", stringer, 8 + 1},
1183 {"bss", s_change_sec, 'b'},
1185 {"half", s_cons, 1},
1186 {"dword", s_cons, 3},
1187 {"weakext", s_mips_weakext, 0},
1188 {"origin", s_org, 0},
1189 {"repeat", s_rept, 0},
1191 /* For MIPS this is non-standard, but we define it for consistency. */
1192 {"sbss", s_change_sec, 'B'},
1194 /* These pseudo-ops are defined in read.c, but must be overridden
1195 here for one reason or another. */
1196 {"align", s_align, 0},
1197 {"byte", s_cons, 0},
1198 {"data", s_change_sec, 'd'},
1199 {"double", s_float_cons, 'd'},
1200 {"float", s_float_cons, 'f'},
1201 {"globl", s_mips_globl, 0},
1202 {"global", s_mips_globl, 0},
1203 {"hword", s_cons, 1},
1205 {"long", s_cons, 2},
1206 {"octa", s_cons, 4},
1207 {"quad", s_cons, 3},
1208 {"section", s_change_section, 0},
1209 {"short", s_cons, 1},
1210 {"single", s_float_cons, 'f'},
1211 {"stabn", s_mips_stab, 'n'},
1212 {"text", s_change_sec, 't'},
1213 {"word", s_cons, 2},
1215 { "extern", ecoff_directive_extern, 0},
1220 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1222 /* These pseudo-ops should be defined by the object file format.
1223 However, a.out doesn't support them, so we have versions here. */
1224 {"aent", s_mips_ent, 1},
1225 {"bgnb", s_ignore, 0},
1226 {"end", s_mips_end, 0},
1227 {"endb", s_ignore, 0},
1228 {"ent", s_mips_ent, 0},
1229 {"file", s_mips_file, 0},
1230 {"fmask", s_mips_mask, 'F'},
1231 {"frame", s_mips_frame, 0},
1232 {"loc", s_mips_loc, 0},
1233 {"mask", s_mips_mask, 'R'},
1234 {"verstamp", s_ignore, 0},
1238 extern void pop_insert (const pseudo_typeS *);
1241 mips_pop_insert (void)
1243 pop_insert (mips_pseudo_table);
1244 if (! ECOFF_DEBUGGING)
1245 pop_insert (mips_nonecoff_pseudo_table);
1248 /* Symbols labelling the current insn. */
1250 struct insn_label_list
1252 struct insn_label_list *next;
1256 static struct insn_label_list *free_insn_labels;
1257 #define label_list tc_segment_info_data.labels
1259 static void mips_clear_insn_labels (void);
1262 mips_clear_insn_labels (void)
1264 register struct insn_label_list **pl;
1265 segment_info_type *si;
1269 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1272 si = seg_info (now_seg);
1273 *pl = si->label_list;
1274 si->label_list = NULL;
1279 static char *expr_end;
1281 /* Expressions which appear in instructions. These are set by
1284 static expressionS imm_expr;
1285 static expressionS imm2_expr;
1286 static expressionS offset_expr;
1288 /* Relocs associated with imm_expr and offset_expr. */
1290 static bfd_reloc_code_real_type imm_reloc[3]
1291 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1292 static bfd_reloc_code_real_type offset_reloc[3]
1293 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1295 /* These are set by mips16_ip if an explicit extension is used. */
1297 static bfd_boolean mips16_small, mips16_ext;
1300 /* The pdr segment for per procedure frame/regmask info. Not used for
1303 static segT pdr_seg;
1306 /* The default target format to use. */
1309 mips_target_format (void)
1311 switch (OUTPUT_FLAVOR)
1313 case bfd_target_ecoff_flavour:
1314 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1315 case bfd_target_coff_flavour:
1317 case bfd_target_elf_flavour:
1319 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1320 return (target_big_endian
1321 ? "elf32-bigmips-vxworks"
1322 : "elf32-littlemips-vxworks");
1325 /* This is traditional mips. */
1326 return (target_big_endian
1327 ? (HAVE_64BIT_OBJECTS
1328 ? "elf64-tradbigmips"
1330 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1331 : (HAVE_64BIT_OBJECTS
1332 ? "elf64-tradlittlemips"
1334 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1336 return (target_big_endian
1337 ? (HAVE_64BIT_OBJECTS
1340 ? "elf32-nbigmips" : "elf32-bigmips"))
1341 : (HAVE_64BIT_OBJECTS
1342 ? "elf64-littlemips"
1344 ? "elf32-nlittlemips" : "elf32-littlemips")));
1352 /* Return the length of instruction INSN. */
1354 static inline unsigned int
1355 insn_length (const struct mips_cl_insn *insn)
1357 if (!mips_opts.mips16)
1359 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1362 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1365 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1370 insn->use_extend = FALSE;
1372 insn->insn_opcode = mo->match;
1375 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1376 insn->fixp[i] = NULL;
1377 insn->fixed_p = (mips_opts.noreorder > 0);
1378 insn->noreorder_p = (mips_opts.noreorder > 0);
1379 insn->mips16_absolute_jump_p = 0;
1382 /* Record the current MIPS16 mode in now_seg. */
1385 mips_record_mips16_mode (void)
1387 segment_info_type *si;
1389 si = seg_info (now_seg);
1390 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1391 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1394 /* Install INSN at the location specified by its "frag" and "where" fields. */
1397 install_insn (const struct mips_cl_insn *insn)
1399 char *f = insn->frag->fr_literal + insn->where;
1400 if (!mips_opts.mips16)
1401 md_number_to_chars (f, insn->insn_opcode, 4);
1402 else if (insn->mips16_absolute_jump_p)
1404 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1405 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1409 if (insn->use_extend)
1411 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1414 md_number_to_chars (f, insn->insn_opcode, 2);
1416 mips_record_mips16_mode ();
1419 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1420 and install the opcode in the new location. */
1423 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1428 insn->where = where;
1429 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1430 if (insn->fixp[i] != NULL)
1432 insn->fixp[i]->fx_frag = frag;
1433 insn->fixp[i]->fx_where = where;
1435 install_insn (insn);
1438 /* Add INSN to the end of the output. */
1441 add_fixed_insn (struct mips_cl_insn *insn)
1443 char *f = frag_more (insn_length (insn));
1444 move_insn (insn, frag_now, f - frag_now->fr_literal);
1447 /* Start a variant frag and move INSN to the start of the variant part,
1448 marking it as fixed. The other arguments are as for frag_var. */
1451 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1452 relax_substateT subtype, symbolS *symbol, offsetT offset)
1454 frag_grow (max_chars);
1455 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1457 frag_var (rs_machine_dependent, max_chars, var,
1458 subtype, symbol, offset, NULL);
1461 /* Insert N copies of INSN into the history buffer, starting at
1462 position FIRST. Neither FIRST nor N need to be clipped. */
1465 insert_into_history (unsigned int first, unsigned int n,
1466 const struct mips_cl_insn *insn)
1468 if (mips_relax.sequence != 2)
1472 for (i = ARRAY_SIZE (history); i-- > first;)
1474 history[i] = history[i - n];
1480 /* Emit a nop instruction, recording it in the history buffer. */
1485 add_fixed_insn (NOP_INSN);
1486 insert_into_history (0, 1, NOP_INSN);
1489 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1490 the idea is to make it obvious at a glance that each errata is
1494 init_vr4120_conflicts (void)
1496 #define CONFLICT(FIRST, SECOND) \
1497 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1499 /* Errata 21 - [D]DIV[U] after [D]MACC */
1500 CONFLICT (MACC, DIV);
1501 CONFLICT (DMACC, DIV);
1503 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1504 CONFLICT (DMULT, DMULT);
1505 CONFLICT (DMULT, DMACC);
1506 CONFLICT (DMACC, DMULT);
1507 CONFLICT (DMACC, DMACC);
1509 /* Errata 24 - MT{LO,HI} after [D]MACC */
1510 CONFLICT (MACC, MTHILO);
1511 CONFLICT (DMACC, MTHILO);
1513 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1514 instruction is executed immediately after a MACC or DMACC
1515 instruction, the result of [either instruction] is incorrect." */
1516 CONFLICT (MACC, MULT);
1517 CONFLICT (MACC, DMULT);
1518 CONFLICT (DMACC, MULT);
1519 CONFLICT (DMACC, DMULT);
1521 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1522 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1523 DDIV or DDIVU instruction, the result of the MACC or
1524 DMACC instruction is incorrect.". */
1525 CONFLICT (DMULT, MACC);
1526 CONFLICT (DMULT, DMACC);
1527 CONFLICT (DIV, MACC);
1528 CONFLICT (DIV, DMACC);
1538 #define RTYPE_MASK 0x1ff00
1539 #define RTYPE_NUM 0x00100
1540 #define RTYPE_FPU 0x00200
1541 #define RTYPE_FCC 0x00400
1542 #define RTYPE_VEC 0x00800
1543 #define RTYPE_GP 0x01000
1544 #define RTYPE_CP0 0x02000
1545 #define RTYPE_PC 0x04000
1546 #define RTYPE_ACC 0x08000
1547 #define RTYPE_CCC 0x10000
1548 #define RNUM_MASK 0x000ff
1549 #define RWARN 0x80000
1551 #define GENERIC_REGISTER_NUMBERS \
1552 {"$0", RTYPE_NUM | 0}, \
1553 {"$1", RTYPE_NUM | 1}, \
1554 {"$2", RTYPE_NUM | 2}, \
1555 {"$3", RTYPE_NUM | 3}, \
1556 {"$4", RTYPE_NUM | 4}, \
1557 {"$5", RTYPE_NUM | 5}, \
1558 {"$6", RTYPE_NUM | 6}, \
1559 {"$7", RTYPE_NUM | 7}, \
1560 {"$8", RTYPE_NUM | 8}, \
1561 {"$9", RTYPE_NUM | 9}, \
1562 {"$10", RTYPE_NUM | 10}, \
1563 {"$11", RTYPE_NUM | 11}, \
1564 {"$12", RTYPE_NUM | 12}, \
1565 {"$13", RTYPE_NUM | 13}, \
1566 {"$14", RTYPE_NUM | 14}, \
1567 {"$15", RTYPE_NUM | 15}, \
1568 {"$16", RTYPE_NUM | 16}, \
1569 {"$17", RTYPE_NUM | 17}, \
1570 {"$18", RTYPE_NUM | 18}, \
1571 {"$19", RTYPE_NUM | 19}, \
1572 {"$20", RTYPE_NUM | 20}, \
1573 {"$21", RTYPE_NUM | 21}, \
1574 {"$22", RTYPE_NUM | 22}, \
1575 {"$23", RTYPE_NUM | 23}, \
1576 {"$24", RTYPE_NUM | 24}, \
1577 {"$25", RTYPE_NUM | 25}, \
1578 {"$26", RTYPE_NUM | 26}, \
1579 {"$27", RTYPE_NUM | 27}, \
1580 {"$28", RTYPE_NUM | 28}, \
1581 {"$29", RTYPE_NUM | 29}, \
1582 {"$30", RTYPE_NUM | 30}, \
1583 {"$31", RTYPE_NUM | 31}
1585 #define FPU_REGISTER_NAMES \
1586 {"$f0", RTYPE_FPU | 0}, \
1587 {"$f1", RTYPE_FPU | 1}, \
1588 {"$f2", RTYPE_FPU | 2}, \
1589 {"$f3", RTYPE_FPU | 3}, \
1590 {"$f4", RTYPE_FPU | 4}, \
1591 {"$f5", RTYPE_FPU | 5}, \
1592 {"$f6", RTYPE_FPU | 6}, \
1593 {"$f7", RTYPE_FPU | 7}, \
1594 {"$f8", RTYPE_FPU | 8}, \
1595 {"$f9", RTYPE_FPU | 9}, \
1596 {"$f10", RTYPE_FPU | 10}, \
1597 {"$f11", RTYPE_FPU | 11}, \
1598 {"$f12", RTYPE_FPU | 12}, \
1599 {"$f13", RTYPE_FPU | 13}, \
1600 {"$f14", RTYPE_FPU | 14}, \
1601 {"$f15", RTYPE_FPU | 15}, \
1602 {"$f16", RTYPE_FPU | 16}, \
1603 {"$f17", RTYPE_FPU | 17}, \
1604 {"$f18", RTYPE_FPU | 18}, \
1605 {"$f19", RTYPE_FPU | 19}, \
1606 {"$f20", RTYPE_FPU | 20}, \
1607 {"$f21", RTYPE_FPU | 21}, \
1608 {"$f22", RTYPE_FPU | 22}, \
1609 {"$f23", RTYPE_FPU | 23}, \
1610 {"$f24", RTYPE_FPU | 24}, \
1611 {"$f25", RTYPE_FPU | 25}, \
1612 {"$f26", RTYPE_FPU | 26}, \
1613 {"$f27", RTYPE_FPU | 27}, \
1614 {"$f28", RTYPE_FPU | 28}, \
1615 {"$f29", RTYPE_FPU | 29}, \
1616 {"$f30", RTYPE_FPU | 30}, \
1617 {"$f31", RTYPE_FPU | 31}
1619 #define FPU_CONDITION_CODE_NAMES \
1620 {"$fcc0", RTYPE_FCC | 0}, \
1621 {"$fcc1", RTYPE_FCC | 1}, \
1622 {"$fcc2", RTYPE_FCC | 2}, \
1623 {"$fcc3", RTYPE_FCC | 3}, \
1624 {"$fcc4", RTYPE_FCC | 4}, \
1625 {"$fcc5", RTYPE_FCC | 5}, \
1626 {"$fcc6", RTYPE_FCC | 6}, \
1627 {"$fcc7", RTYPE_FCC | 7}
1629 #define COPROC_CONDITION_CODE_NAMES \
1630 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1631 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1632 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1633 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1634 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1635 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1636 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1637 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1639 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1640 {"$a4", RTYPE_GP | 8}, \
1641 {"$a5", RTYPE_GP | 9}, \
1642 {"$a6", RTYPE_GP | 10}, \
1643 {"$a7", RTYPE_GP | 11}, \
1644 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1645 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1646 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1647 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1648 {"$t0", RTYPE_GP | 12}, \
1649 {"$t1", RTYPE_GP | 13}, \
1650 {"$t2", RTYPE_GP | 14}, \
1651 {"$t3", RTYPE_GP | 15}
1653 #define O32_SYMBOLIC_REGISTER_NAMES \
1654 {"$t0", RTYPE_GP | 8}, \
1655 {"$t1", RTYPE_GP | 9}, \
1656 {"$t2", RTYPE_GP | 10}, \
1657 {"$t3", RTYPE_GP | 11}, \
1658 {"$t4", RTYPE_GP | 12}, \
1659 {"$t5", RTYPE_GP | 13}, \
1660 {"$t6", RTYPE_GP | 14}, \
1661 {"$t7", RTYPE_GP | 15}, \
1662 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1663 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1664 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1665 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1667 /* Remaining symbolic register names */
1668 #define SYMBOLIC_REGISTER_NAMES \
1669 {"$zero", RTYPE_GP | 0}, \
1670 {"$at", RTYPE_GP | 1}, \
1671 {"$AT", RTYPE_GP | 1}, \
1672 {"$v0", RTYPE_GP | 2}, \
1673 {"$v1", RTYPE_GP | 3}, \
1674 {"$a0", RTYPE_GP | 4}, \
1675 {"$a1", RTYPE_GP | 5}, \
1676 {"$a2", RTYPE_GP | 6}, \
1677 {"$a3", RTYPE_GP | 7}, \
1678 {"$s0", RTYPE_GP | 16}, \
1679 {"$s1", RTYPE_GP | 17}, \
1680 {"$s2", RTYPE_GP | 18}, \
1681 {"$s3", RTYPE_GP | 19}, \
1682 {"$s4", RTYPE_GP | 20}, \
1683 {"$s5", RTYPE_GP | 21}, \
1684 {"$s6", RTYPE_GP | 22}, \
1685 {"$s7", RTYPE_GP | 23}, \
1686 {"$t8", RTYPE_GP | 24}, \
1687 {"$t9", RTYPE_GP | 25}, \
1688 {"$k0", RTYPE_GP | 26}, \
1689 {"$kt0", RTYPE_GP | 26}, \
1690 {"$k1", RTYPE_GP | 27}, \
1691 {"$kt1", RTYPE_GP | 27}, \
1692 {"$gp", RTYPE_GP | 28}, \
1693 {"$sp", RTYPE_GP | 29}, \
1694 {"$s8", RTYPE_GP | 30}, \
1695 {"$fp", RTYPE_GP | 30}, \
1696 {"$ra", RTYPE_GP | 31}
1698 #define MIPS16_SPECIAL_REGISTER_NAMES \
1699 {"$pc", RTYPE_PC | 0}
1701 #define MDMX_VECTOR_REGISTER_NAMES \
1702 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1703 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1704 {"$v2", RTYPE_VEC | 2}, \
1705 {"$v3", RTYPE_VEC | 3}, \
1706 {"$v4", RTYPE_VEC | 4}, \
1707 {"$v5", RTYPE_VEC | 5}, \
1708 {"$v6", RTYPE_VEC | 6}, \
1709 {"$v7", RTYPE_VEC | 7}, \
1710 {"$v8", RTYPE_VEC | 8}, \
1711 {"$v9", RTYPE_VEC | 9}, \
1712 {"$v10", RTYPE_VEC | 10}, \
1713 {"$v11", RTYPE_VEC | 11}, \
1714 {"$v12", RTYPE_VEC | 12}, \
1715 {"$v13", RTYPE_VEC | 13}, \
1716 {"$v14", RTYPE_VEC | 14}, \
1717 {"$v15", RTYPE_VEC | 15}, \
1718 {"$v16", RTYPE_VEC | 16}, \
1719 {"$v17", RTYPE_VEC | 17}, \
1720 {"$v18", RTYPE_VEC | 18}, \
1721 {"$v19", RTYPE_VEC | 19}, \
1722 {"$v20", RTYPE_VEC | 20}, \
1723 {"$v21", RTYPE_VEC | 21}, \
1724 {"$v22", RTYPE_VEC | 22}, \
1725 {"$v23", RTYPE_VEC | 23}, \
1726 {"$v24", RTYPE_VEC | 24}, \
1727 {"$v25", RTYPE_VEC | 25}, \
1728 {"$v26", RTYPE_VEC | 26}, \
1729 {"$v27", RTYPE_VEC | 27}, \
1730 {"$v28", RTYPE_VEC | 28}, \
1731 {"$v29", RTYPE_VEC | 29}, \
1732 {"$v30", RTYPE_VEC | 30}, \
1733 {"$v31", RTYPE_VEC | 31}
1735 #define MIPS_DSP_ACCUMULATOR_NAMES \
1736 {"$ac0", RTYPE_ACC | 0}, \
1737 {"$ac1", RTYPE_ACC | 1}, \
1738 {"$ac2", RTYPE_ACC | 2}, \
1739 {"$ac3", RTYPE_ACC | 3}
1741 static const struct regname reg_names[] = {
1742 GENERIC_REGISTER_NUMBERS,
1744 FPU_CONDITION_CODE_NAMES,
1745 COPROC_CONDITION_CODE_NAMES,
1747 /* The $txx registers depends on the abi,
1748 these will be added later into the symbol table from
1749 one of the tables below once mips_abi is set after
1750 parsing of arguments from the command line. */
1751 SYMBOLIC_REGISTER_NAMES,
1753 MIPS16_SPECIAL_REGISTER_NAMES,
1754 MDMX_VECTOR_REGISTER_NAMES,
1755 MIPS_DSP_ACCUMULATOR_NAMES,
1759 static const struct regname reg_names_o32[] = {
1760 O32_SYMBOLIC_REGISTER_NAMES,
1764 static const struct regname reg_names_n32n64[] = {
1765 N32N64_SYMBOLIC_REGISTER_NAMES,
1770 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1777 /* Find end of name. */
1779 if (is_name_beginner (*e))
1781 while (is_part_of_name (*e))
1784 /* Terminate name. */
1788 /* Look for a register symbol. */
1789 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1791 int r = S_GET_VALUE (symbolP);
1793 reg = r & RNUM_MASK;
1794 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1795 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1796 reg = (r & RNUM_MASK) - 2;
1798 /* Else see if this is a register defined in an itbl entry. */
1799 else if ((types & RTYPE_GP) && itbl_have_entries)
1806 if (itbl_get_reg_val (n, &r))
1807 reg = r & RNUM_MASK;
1810 /* Advance to next token if a register was recognised. */
1813 else if (types & RWARN)
1814 as_warn (_("Unrecognized register name `%s'"), *s);
1822 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1823 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1826 is_opcode_valid (const struct mips_opcode *mo)
1828 int isa = mips_opts.isa;
1831 if (mips_opts.ase_mdmx)
1833 if (mips_opts.ase_dsp)
1835 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1837 if (mips_opts.ase_dspr2)
1839 if (mips_opts.ase_mt)
1841 if (mips_opts.ase_mips3d)
1843 if (mips_opts.ase_smartmips)
1844 isa |= INSN_SMARTMIPS;
1846 /* Don't accept instructions based on the ISA if the CPU does not implement
1847 all the coprocessor insns. */
1848 if (NO_ISA_COP (mips_opts.arch)
1849 && COP_INSN (mo->pinfo))
1852 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1855 /* Check whether the instruction or macro requires single-precision or
1856 double-precision floating-point support. Note that this information is
1857 stored differently in the opcode table for insns and macros. */
1858 if (mo->pinfo == INSN_MACRO)
1860 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1861 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1865 fp_s = mo->pinfo & FP_S;
1866 fp_d = mo->pinfo & FP_D;
1869 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1872 if (fp_s && mips_opts.soft_float)
1878 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1879 selected ISA and architecture. */
1882 is_opcode_valid_16 (const struct mips_opcode *mo)
1884 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1887 /* This function is called once, at assembler startup time. It should set up
1888 all the tables, etc. that the MD part of the assembler will need. */
1893 const char *retval = NULL;
1897 if (mips_pic != NO_PIC)
1899 if (g_switch_seen && g_switch_value != 0)
1900 as_bad (_("-G may not be used in position-independent code"));
1904 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1905 as_warn (_("Could not set architecture and machine"));
1907 op_hash = hash_new ();
1909 for (i = 0; i < NUMOPCODES;)
1911 const char *name = mips_opcodes[i].name;
1913 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1916 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1917 mips_opcodes[i].name, retval);
1918 /* Probably a memory allocation problem? Give up now. */
1919 as_fatal (_("Broken assembler. No assembly attempted."));
1923 if (mips_opcodes[i].pinfo != INSN_MACRO)
1925 if (!validate_mips_insn (&mips_opcodes[i]))
1927 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1929 create_insn (&nop_insn, mips_opcodes + i);
1930 if (mips_fix_loongson2f_nop)
1931 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1932 nop_insn.fixed_p = 1;
1937 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1940 mips16_op_hash = hash_new ();
1943 while (i < bfd_mips16_num_opcodes)
1945 const char *name = mips16_opcodes[i].name;
1947 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1949 as_fatal (_("internal: can't hash `%s': %s"),
1950 mips16_opcodes[i].name, retval);
1953 if (mips16_opcodes[i].pinfo != INSN_MACRO
1954 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1955 != mips16_opcodes[i].match))
1957 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1958 mips16_opcodes[i].name, mips16_opcodes[i].args);
1961 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1963 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1964 mips16_nop_insn.fixed_p = 1;
1968 while (i < bfd_mips16_num_opcodes
1969 && strcmp (mips16_opcodes[i].name, name) == 0);
1973 as_fatal (_("Broken assembler. No assembly attempted."));
1975 /* We add all the general register names to the symbol table. This
1976 helps us detect invalid uses of them. */
1977 for (i = 0; reg_names[i].name; i++)
1978 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1979 reg_names[i].num, /* & RNUM_MASK, */
1980 &zero_address_frag));
1982 for (i = 0; reg_names_n32n64[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1984 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1987 for (i = 0; reg_names_o32[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1989 reg_names_o32[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1992 mips_no_prev_insn ();
1995 mips_cprmask[0] = 0;
1996 mips_cprmask[1] = 0;
1997 mips_cprmask[2] = 0;
1998 mips_cprmask[3] = 0;
2000 /* set the default alignment for the text section (2**2) */
2001 record_alignment (text_section, 2);
2003 bfd_set_gp_size (stdoutput, g_switch_value);
2008 /* On a native system other than VxWorks, sections must be aligned
2009 to 16 byte boundaries. When configured for an embedded ELF
2010 target, we don't bother. */
2011 if (strncmp (TARGET_OS, "elf", 3) != 0
2012 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2014 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2015 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2016 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2019 /* Create a .reginfo section for register masks and a .mdebug
2020 section for debugging information. */
2028 subseg = now_subseg;
2030 /* The ABI says this section should be loaded so that the
2031 running program can access it. However, we don't load it
2032 if we are configured for an embedded target */
2033 flags = SEC_READONLY | SEC_DATA;
2034 if (strncmp (TARGET_OS, "elf", 3) != 0)
2035 flags |= SEC_ALLOC | SEC_LOAD;
2037 if (mips_abi != N64_ABI)
2039 sec = subseg_new (".reginfo", (subsegT) 0);
2041 bfd_set_section_flags (stdoutput, sec, flags);
2042 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2044 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2048 /* The 64-bit ABI uses a .MIPS.options section rather than
2049 .reginfo section. */
2050 sec = subseg_new (".MIPS.options", (subsegT) 0);
2051 bfd_set_section_flags (stdoutput, sec, flags);
2052 bfd_set_section_alignment (stdoutput, sec, 3);
2054 /* Set up the option header. */
2056 Elf_Internal_Options opthdr;
2059 opthdr.kind = ODK_REGINFO;
2060 opthdr.size = (sizeof (Elf_External_Options)
2061 + sizeof (Elf64_External_RegInfo));
2064 f = frag_more (sizeof (Elf_External_Options));
2065 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2066 (Elf_External_Options *) f);
2068 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2072 if (ECOFF_DEBUGGING)
2074 sec = subseg_new (".mdebug", (subsegT) 0);
2075 (void) bfd_set_section_flags (stdoutput, sec,
2076 SEC_HAS_CONTENTS | SEC_READONLY);
2077 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2079 else if (mips_flag_pdr)
2081 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2082 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2083 SEC_READONLY | SEC_RELOC
2085 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2088 subseg_set (seg, subseg);
2091 #endif /* OBJ_ELF */
2093 if (! ECOFF_DEBUGGING)
2096 if (mips_fix_vr4120)
2097 init_vr4120_conflicts ();
2103 if (! ECOFF_DEBUGGING)
2108 md_assemble (char *str)
2110 struct mips_cl_insn insn;
2111 bfd_reloc_code_real_type unused_reloc[3]
2112 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2114 imm_expr.X_op = O_absent;
2115 imm2_expr.X_op = O_absent;
2116 offset_expr.X_op = O_absent;
2117 imm_reloc[0] = BFD_RELOC_UNUSED;
2118 imm_reloc[1] = BFD_RELOC_UNUSED;
2119 imm_reloc[2] = BFD_RELOC_UNUSED;
2120 offset_reloc[0] = BFD_RELOC_UNUSED;
2121 offset_reloc[1] = BFD_RELOC_UNUSED;
2122 offset_reloc[2] = BFD_RELOC_UNUSED;
2124 if (mips_opts.mips16)
2125 mips16_ip (str, &insn);
2128 mips_ip (str, &insn);
2129 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2130 str, insn.insn_opcode));
2135 as_bad ("%s `%s'", insn_error, str);
2139 if (insn.insn_mo->pinfo == INSN_MACRO)
2142 if (mips_opts.mips16)
2143 mips16_macro (&insn);
2150 if (imm_expr.X_op != O_absent)
2151 append_insn (&insn, &imm_expr, imm_reloc);
2152 else if (offset_expr.X_op != O_absent)
2153 append_insn (&insn, &offset_expr, offset_reloc);
2155 append_insn (&insn, NULL, unused_reloc);
2159 /* Convenience functions for abstracting away the differences between
2160 MIPS16 and non-MIPS16 relocations. */
2162 static inline bfd_boolean
2163 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2167 case BFD_RELOC_MIPS16_JMP:
2168 case BFD_RELOC_MIPS16_GPREL:
2169 case BFD_RELOC_MIPS16_GOT16:
2170 case BFD_RELOC_MIPS16_CALL16:
2171 case BFD_RELOC_MIPS16_HI16_S:
2172 case BFD_RELOC_MIPS16_HI16:
2173 case BFD_RELOC_MIPS16_LO16:
2181 static inline bfd_boolean
2182 got16_reloc_p (bfd_reloc_code_real_type reloc)
2184 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2187 static inline bfd_boolean
2188 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2190 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2193 static inline bfd_boolean
2194 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2196 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2199 /* Return true if the given relocation might need a matching %lo().
2200 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2201 need a matching %lo() when applied to local symbols. */
2203 static inline bfd_boolean
2204 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2206 return (HAVE_IN_PLACE_ADDENDS
2207 && (hi16_reloc_p (reloc)
2208 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2209 all GOT16 relocations evaluate to "G". */
2210 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2213 /* Return the type of %lo() reloc needed by RELOC, given that
2214 reloc_needs_lo_p. */
2216 static inline bfd_reloc_code_real_type
2217 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2219 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2222 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2225 static inline bfd_boolean
2226 fixup_has_matching_lo_p (fixS *fixp)
2228 return (fixp->fx_next != NULL
2229 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2230 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2231 && fixp->fx_offset == fixp->fx_next->fx_offset);
2234 /* See whether instruction IP reads register REG. CLASS is the type
2238 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2239 enum mips_regclass regclass)
2241 if (regclass == MIPS16_REG)
2243 gas_assert (mips_opts.mips16);
2244 reg = mips16_to_32_reg_map[reg];
2245 regclass = MIPS_GR_REG;
2248 /* Don't report on general register ZERO, since it never changes. */
2249 if (regclass == MIPS_GR_REG && reg == ZERO)
2252 if (regclass == MIPS_FP_REG)
2254 gas_assert (! mips_opts.mips16);
2255 /* If we are called with either $f0 or $f1, we must check $f0.
2256 This is not optimal, because it will introduce an unnecessary
2257 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2258 need to distinguish reading both $f0 and $f1 or just one of
2259 them. Note that we don't have to check the other way,
2260 because there is no instruction that sets both $f0 and $f1
2261 and requires a delay. */
2262 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2263 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2264 == (reg &~ (unsigned) 1)))
2266 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2267 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2268 == (reg &~ (unsigned) 1)))
2271 else if (! mips_opts.mips16)
2273 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2274 && EXTRACT_OPERAND (RS, *ip) == reg)
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2277 && EXTRACT_OPERAND (RT, *ip) == reg)
2282 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2283 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2289 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2292 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2294 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2296 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2298 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2299 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2306 /* This function returns true if modifying a register requires a
2310 reg_needs_delay (unsigned int reg)
2312 unsigned long prev_pinfo;
2314 prev_pinfo = history[0].insn_mo->pinfo;
2315 if (! mips_opts.noreorder
2316 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2317 && ! gpr_interlocks)
2318 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2319 && ! cop_interlocks)))
2321 /* A load from a coprocessor or from memory. All load delays
2322 delay the use of general register rt for one instruction. */
2323 /* Itbl support may require additional care here. */
2324 know (prev_pinfo & INSN_WRITE_GPR_T);
2325 if (reg == EXTRACT_OPERAND (RT, history[0]))
2332 /* Move all labels in insn_labels to the current insertion point. */
2335 mips_move_labels (void)
2337 segment_info_type *si = seg_info (now_seg);
2338 struct insn_label_list *l;
2341 for (l = si->label_list; l != NULL; l = l->next)
2343 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2344 symbol_set_frag (l->label, frag_now);
2345 val = (valueT) frag_now_fix ();
2346 /* mips16 text labels are stored as odd. */
2347 if (mips_opts.mips16)
2349 S_SET_VALUE (l->label, val);
2354 s_is_linkonce (symbolS *sym, segT from_seg)
2356 bfd_boolean linkonce = FALSE;
2357 segT symseg = S_GET_SEGMENT (sym);
2359 if (symseg != from_seg && !S_IS_LOCAL (sym))
2361 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2364 /* The GNU toolchain uses an extension for ELF: a section
2365 beginning with the magic string .gnu.linkonce is a
2366 linkonce section. */
2367 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2368 sizeof ".gnu.linkonce" - 1) == 0)
2375 /* Mark instruction labels in mips16 mode. This permits the linker to
2376 handle them specially, such as generating jalx instructions when
2377 needed. We also make them odd for the duration of the assembly, in
2378 order to generate the right sort of code. We will make them even
2379 in the adjust_symtab routine, while leaving them marked. This is
2380 convenient for the debugger and the disassembler. The linker knows
2381 to make them odd again. */
2384 mips16_mark_labels (void)
2386 segment_info_type *si = seg_info (now_seg);
2387 struct insn_label_list *l;
2389 if (!mips_opts.mips16)
2392 for (l = si->label_list; l != NULL; l = l->next)
2394 symbolS *label = l->label;
2396 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2398 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2400 if ((S_GET_VALUE (label) & 1) == 0
2401 /* Don't adjust the address if the label is global or weak, or
2402 in a link-once section, since we'll be emitting symbol reloc
2403 references to it which will be patched up by the linker, and
2404 the final value of the symbol may or may not be MIPS16. */
2405 && ! S_IS_WEAK (label)
2406 && ! S_IS_EXTERNAL (label)
2407 && ! s_is_linkonce (label, now_seg))
2408 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2412 /* End the current frag. Make it a variant frag and record the
2416 relax_close_frag (void)
2418 mips_macro_warning.first_frag = frag_now;
2419 frag_var (rs_machine_dependent, 0, 0,
2420 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2421 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2423 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2424 mips_relax.first_fixup = 0;
2427 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2428 See the comment above RELAX_ENCODE for more details. */
2431 relax_start (symbolS *symbol)
2433 gas_assert (mips_relax.sequence == 0);
2434 mips_relax.sequence = 1;
2435 mips_relax.symbol = symbol;
2438 /* Start generating the second version of a relaxable sequence.
2439 See the comment above RELAX_ENCODE for more details. */
2444 gas_assert (mips_relax.sequence == 1);
2445 mips_relax.sequence = 2;
2448 /* End the current relaxable sequence. */
2453 gas_assert (mips_relax.sequence == 2);
2454 relax_close_frag ();
2455 mips_relax.sequence = 0;
2458 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2459 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2460 by VR4120 errata. */
2463 classify_vr4120_insn (const char *name)
2465 if (strncmp (name, "macc", 4) == 0)
2466 return FIX_VR4120_MACC;
2467 if (strncmp (name, "dmacc", 5) == 0)
2468 return FIX_VR4120_DMACC;
2469 if (strncmp (name, "mult", 4) == 0)
2470 return FIX_VR4120_MULT;
2471 if (strncmp (name, "dmult", 5) == 0)
2472 return FIX_VR4120_DMULT;
2473 if (strstr (name, "div"))
2474 return FIX_VR4120_DIV;
2475 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2476 return FIX_VR4120_MTHILO;
2477 return NUM_FIX_VR4120_CLASSES;
2480 #define INSN_ERET 0x42000018
2481 #define INSN_DERET 0x4200001f
2483 /* Return the number of instructions that must separate INSN1 and INSN2,
2484 where INSN1 is the earlier instruction. Return the worst-case value
2485 for any INSN2 if INSN2 is null. */
2488 insns_between (const struct mips_cl_insn *insn1,
2489 const struct mips_cl_insn *insn2)
2491 unsigned long pinfo1, pinfo2;
2493 /* This function needs to know which pinfo flags are set for INSN2
2494 and which registers INSN2 uses. The former is stored in PINFO2 and
2495 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2496 will have every flag set and INSN2_USES_REG will always return true. */
2497 pinfo1 = insn1->insn_mo->pinfo;
2498 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2500 #define INSN2_USES_REG(REG, CLASS) \
2501 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2503 /* For most targets, write-after-read dependencies on the HI and LO
2504 registers must be separated by at least two instructions. */
2505 if (!hilo_interlocks)
2507 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2509 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2513 /* If we're working around r7000 errata, there must be two instructions
2514 between an mfhi or mflo and any instruction that uses the result. */
2515 if (mips_7000_hilo_fix
2516 && MF_HILO_INSN (pinfo1)
2517 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2520 /* If we're working around 24K errata, one instruction is required
2521 if an ERET or DERET is followed by a branch instruction. */
2524 if (insn1->insn_opcode == INSN_ERET
2525 || insn1->insn_opcode == INSN_DERET)
2528 || insn2->insn_opcode == INSN_ERET
2529 || insn2->insn_opcode == INSN_DERET
2530 || (insn2->insn_mo->pinfo
2531 & (INSN_UNCOND_BRANCH_DELAY
2532 | INSN_COND_BRANCH_DELAY
2533 | INSN_COND_BRANCH_LIKELY)) != 0)
2538 /* If working around VR4120 errata, check for combinations that need
2539 a single intervening instruction. */
2540 if (mips_fix_vr4120)
2542 unsigned int class1, class2;
2544 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2545 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2549 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2550 if (vr4120_conflicts[class1] & (1 << class2))
2555 if (!mips_opts.mips16)
2557 /* Check for GPR or coprocessor load delays. All such delays
2558 are on the RT register. */
2559 /* Itbl support may require additional care here. */
2560 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2561 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2563 know (pinfo1 & INSN_WRITE_GPR_T);
2564 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2568 /* Check for generic coprocessor hazards.
2570 This case is not handled very well. There is no special
2571 knowledge of CP0 handling, and the coprocessors other than
2572 the floating point unit are not distinguished at all. */
2573 /* Itbl support may require additional care here. FIXME!
2574 Need to modify this to include knowledge about
2575 user specified delays! */
2576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2579 /* Handle cases where INSN1 writes to a known general coprocessor
2580 register. There must be a one instruction delay before INSN2
2581 if INSN2 reads that register, otherwise no delay is needed. */
2582 if (pinfo1 & INSN_WRITE_FPR_T)
2584 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2587 else if (pinfo1 & INSN_WRITE_FPR_S)
2589 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2594 /* Read-after-write dependencies on the control registers
2595 require a two-instruction gap. */
2596 if ((pinfo1 & INSN_WRITE_COND_CODE)
2597 && (pinfo2 & INSN_READ_COND_CODE))
2600 /* We don't know exactly what INSN1 does. If INSN2 is
2601 also a coprocessor instruction, assume there must be
2602 a one instruction gap. */
2603 if (pinfo2 & INSN_COP)
2608 /* Check for read-after-write dependencies on the coprocessor
2609 control registers in cases where INSN1 does not need a general
2610 coprocessor delay. This means that INSN1 is a floating point
2611 comparison instruction. */
2612 /* Itbl support may require additional care here. */
2613 else if (!cop_interlocks
2614 && (pinfo1 & INSN_WRITE_COND_CODE)
2615 && (pinfo2 & INSN_READ_COND_CODE))
2619 #undef INSN2_USES_REG
2624 /* Return the number of nops that would be needed to work around the
2625 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2626 the MAX_VR4130_NOPS instructions described by HIST. */
2629 nops_for_vr4130 (const struct mips_cl_insn *hist,
2630 const struct mips_cl_insn *insn)
2634 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2635 are not affected by the errata. */
2637 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2638 || strcmp (insn->insn_mo->name, "mtlo") == 0
2639 || strcmp (insn->insn_mo->name, "mthi") == 0))
2642 /* Search for the first MFLO or MFHI. */
2643 for (i = 0; i < MAX_VR4130_NOPS; i++)
2644 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2646 /* Extract the destination register. */
2647 if (mips_opts.mips16)
2648 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2650 reg = EXTRACT_OPERAND (RD, hist[i]);
2652 /* No nops are needed if INSN reads that register. */
2653 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2656 /* ...or if any of the intervening instructions do. */
2657 for (j = 0; j < i; j++)
2658 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2661 return MAX_VR4130_NOPS - i;
2666 /* Return the number of nops that would be needed if instruction INSN
2667 immediately followed the MAX_NOPS instructions given by HIST,
2668 where HIST[0] is the most recent instruction. If INSN is null,
2669 return the worse-case number of nops for any instruction. */
2672 nops_for_insn (const struct mips_cl_insn *hist,
2673 const struct mips_cl_insn *insn)
2675 int i, nops, tmp_nops;
2678 for (i = 0; i < MAX_DELAY_NOPS; i++)
2680 tmp_nops = insns_between (hist + i, insn) - i;
2681 if (tmp_nops > nops)
2685 if (mips_fix_vr4130)
2687 tmp_nops = nops_for_vr4130 (hist, insn);
2688 if (tmp_nops > nops)
2695 /* The variable arguments provide NUM_INSNS extra instructions that
2696 might be added to HIST. Return the largest number of nops that
2697 would be needed after the extended sequence. */
2700 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2703 struct mips_cl_insn buffer[MAX_NOPS];
2704 struct mips_cl_insn *cursor;
2707 va_start (args, hist);
2708 cursor = buffer + num_insns;
2709 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2710 while (cursor > buffer)
2711 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2713 nops = nops_for_insn (buffer, NULL);
2718 /* Like nops_for_insn, but if INSN is a branch, take into account the
2719 worst-case delay for the branch target. */
2722 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2723 const struct mips_cl_insn *insn)
2727 nops = nops_for_insn (hist, insn);
2728 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2729 | INSN_COND_BRANCH_DELAY
2730 | INSN_COND_BRANCH_LIKELY))
2732 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2733 if (tmp_nops > nops)
2736 else if (mips_opts.mips16
2737 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2738 | MIPS16_INSN_COND_BRANCH)))
2740 tmp_nops = nops_for_sequence (1, hist, insn);
2741 if (tmp_nops > nops)
2747 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2750 fix_loongson2f_nop (struct mips_cl_insn * ip)
2752 if (strcmp (ip->insn_mo->name, "nop") == 0)
2753 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2756 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2757 jr target pc &= 'hffff_ffff_cfff_ffff. */
2760 fix_loongson2f_jump (struct mips_cl_insn * ip)
2762 if (strcmp (ip->insn_mo->name, "j") == 0
2763 || strcmp (ip->insn_mo->name, "jr") == 0
2764 || strcmp (ip->insn_mo->name, "jalr") == 0)
2772 sreg = EXTRACT_OPERAND (RS, *ip);
2773 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2776 ep.X_op = O_constant;
2777 ep.X_add_number = 0xcfff0000;
2778 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2779 ep.X_add_number = 0xffff;
2780 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2781 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2786 fix_loongson2f (struct mips_cl_insn * ip)
2788 if (mips_fix_loongson2f_nop)
2789 fix_loongson2f_nop (ip);
2791 if (mips_fix_loongson2f_jump)
2792 fix_loongson2f_jump (ip);
2795 /* Output an instruction. IP is the instruction information.
2796 ADDRESS_EXPR is an operand of the instruction to be used with
2800 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2801 bfd_reloc_code_real_type *reloc_type)
2803 unsigned long prev_pinfo, pinfo;
2804 relax_stateT prev_insn_frag_type = 0;
2805 bfd_boolean relaxed_branch = FALSE;
2806 segment_info_type *si = seg_info (now_seg);
2808 if (mips_fix_loongson2f)
2809 fix_loongson2f (ip);
2811 /* Mark instruction labels in mips16 mode. */
2812 mips16_mark_labels ();
2814 prev_pinfo = history[0].insn_mo->pinfo;
2815 pinfo = ip->insn_mo->pinfo;
2817 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2819 /* There are a lot of optimizations we could do that we don't.
2820 In particular, we do not, in general, reorder instructions.
2821 If you use gcc with optimization, it will reorder
2822 instructions and generally do much more optimization then we
2823 do here; repeating all that work in the assembler would only
2824 benefit hand written assembly code, and does not seem worth
2826 int nops = (mips_optimize == 0
2827 ? nops_for_insn (history, NULL)
2828 : nops_for_insn_or_target (history, ip));
2832 unsigned long old_frag_offset;
2835 old_frag = frag_now;
2836 old_frag_offset = frag_now_fix ();
2838 for (i = 0; i < nops; i++)
2843 listing_prev_line ();
2844 /* We may be at the start of a variant frag. In case we
2845 are, make sure there is enough space for the frag
2846 after the frags created by listing_prev_line. The
2847 argument to frag_grow here must be at least as large
2848 as the argument to all other calls to frag_grow in
2849 this file. We don't have to worry about being in the
2850 middle of a variant frag, because the variants insert
2851 all needed nop instructions themselves. */
2855 mips_move_labels ();
2857 #ifndef NO_ECOFF_DEBUGGING
2858 if (ECOFF_DEBUGGING)
2859 ecoff_fix_loc (old_frag, old_frag_offset);
2863 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2865 /* Work out how many nops in prev_nop_frag are needed by IP. */
2866 int nops = nops_for_insn_or_target (history, ip);
2867 gas_assert (nops <= prev_nop_frag_holds);
2869 /* Enforce NOPS as a minimum. */
2870 if (nops > prev_nop_frag_required)
2871 prev_nop_frag_required = nops;
2873 if (prev_nop_frag_holds == prev_nop_frag_required)
2875 /* Settle for the current number of nops. Update the history
2876 accordingly (for the benefit of any future .set reorder code). */
2877 prev_nop_frag = NULL;
2878 insert_into_history (prev_nop_frag_since,
2879 prev_nop_frag_holds, NOP_INSN);
2883 /* Allow this instruction to replace one of the nops that was
2884 tentatively added to prev_nop_frag. */
2885 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2886 prev_nop_frag_holds--;
2887 prev_nop_frag_since++;
2892 /* The value passed to dwarf2_emit_insn is the distance between
2893 the beginning of the current instruction and the address that
2894 should be recorded in the debug tables. For MIPS16 debug info
2895 we want to use ISA-encoded addresses, so we pass -1 for an
2896 address higher by one than the current. */
2897 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2900 /* Record the frag type before frag_var. */
2901 if (history[0].frag)
2902 prev_insn_frag_type = history[0].frag->fr_type;
2905 && *reloc_type == BFD_RELOC_16_PCREL_S2
2906 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2907 || pinfo & INSN_COND_BRANCH_LIKELY)
2908 && mips_relax_branch
2909 /* Don't try branch relaxation within .set nomacro, or within
2910 .set noat if we use $at for PIC computations. If it turns
2911 out that the branch was out-of-range, we'll get an error. */
2912 && !mips_opts.warn_about_macros
2913 && (mips_opts.at || mips_pic == NO_PIC)
2914 && !mips_opts.mips16)
2916 relaxed_branch = TRUE;
2917 add_relaxed_insn (ip, (relaxed_branch_length
2919 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2920 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2923 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2924 pinfo & INSN_COND_BRANCH_LIKELY,
2925 pinfo & INSN_WRITE_GPR_31,
2927 address_expr->X_add_symbol,
2928 address_expr->X_add_number);
2929 *reloc_type = BFD_RELOC_UNUSED;
2931 else if (*reloc_type > BFD_RELOC_UNUSED)
2933 /* We need to set up a variant frag. */
2934 gas_assert (mips_opts.mips16 && address_expr != NULL);
2935 add_relaxed_insn (ip, 4, 0,
2937 (*reloc_type - BFD_RELOC_UNUSED,
2938 mips16_small, mips16_ext,
2939 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2940 history[0].mips16_absolute_jump_p),
2941 make_expr_symbol (address_expr), 0);
2943 else if (mips_opts.mips16
2945 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2947 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2948 /* Make sure there is enough room to swap this instruction with
2949 a following jump instruction. */
2951 add_fixed_insn (ip);
2955 if (mips_opts.mips16
2956 && mips_opts.noreorder
2957 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2958 as_warn (_("extended instruction in delay slot"));
2960 if (mips_relax.sequence)
2962 /* If we've reached the end of this frag, turn it into a variant
2963 frag and record the information for the instructions we've
2965 if (frag_room () < 4)
2966 relax_close_frag ();
2967 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2970 if (mips_relax.sequence != 2)
2971 mips_macro_warning.sizes[0] += 4;
2972 if (mips_relax.sequence != 1)
2973 mips_macro_warning.sizes[1] += 4;
2975 if (mips_opts.mips16)
2978 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2980 add_fixed_insn (ip);
2983 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2985 if (address_expr->X_op == O_constant)
2989 switch (*reloc_type)
2992 ip->insn_opcode |= address_expr->X_add_number;
2995 case BFD_RELOC_MIPS_HIGHEST:
2996 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2997 ip->insn_opcode |= tmp & 0xffff;
3000 case BFD_RELOC_MIPS_HIGHER:
3001 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3002 ip->insn_opcode |= tmp & 0xffff;
3005 case BFD_RELOC_HI16_S:
3006 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3007 ip->insn_opcode |= tmp & 0xffff;
3010 case BFD_RELOC_HI16:
3011 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3014 case BFD_RELOC_UNUSED:
3015 case BFD_RELOC_LO16:
3016 case BFD_RELOC_MIPS_GOT_DISP:
3017 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3020 case BFD_RELOC_MIPS_JMP:
3021 if ((address_expr->X_add_number & 3) != 0)
3022 as_bad (_("jump to misaligned address (0x%lx)"),
3023 (unsigned long) address_expr->X_add_number);
3024 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3027 case BFD_RELOC_MIPS16_JMP:
3028 if ((address_expr->X_add_number & 3) != 0)
3029 as_bad (_("jump to misaligned address (0x%lx)"),
3030 (unsigned long) address_expr->X_add_number);
3032 (((address_expr->X_add_number & 0x7c0000) << 3)
3033 | ((address_expr->X_add_number & 0xf800000) >> 7)
3034 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3037 case BFD_RELOC_16_PCREL_S2:
3038 if ((address_expr->X_add_number & 3) != 0)
3039 as_bad (_("branch to misaligned address (0x%lx)"),
3040 (unsigned long) address_expr->X_add_number);
3041 if (mips_relax_branch)
3043 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3044 as_bad (_("branch address range overflow (0x%lx)"),
3045 (unsigned long) address_expr->X_add_number);
3046 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3053 else if (*reloc_type < BFD_RELOC_UNUSED)
3056 reloc_howto_type *howto;
3059 /* In a compound relocation, it is the final (outermost)
3060 operator that determines the relocated field. */
3061 for (i = 1; i < 3; i++)
3062 if (reloc_type[i] == BFD_RELOC_UNUSED)
3065 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3068 /* To reproduce this failure try assembling gas/testsuites/
3069 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3071 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3072 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3075 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3076 bfd_get_reloc_size (howto),
3078 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3081 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3082 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3083 && ip->fixp[0]->fx_addsy)
3084 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3086 /* These relocations can have an addend that won't fit in
3087 4 octets for 64bit assembly. */
3089 && ! howto->partial_inplace
3090 && (reloc_type[0] == BFD_RELOC_16
3091 || reloc_type[0] == BFD_RELOC_32
3092 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3093 || reloc_type[0] == BFD_RELOC_GPREL16
3094 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3095 || reloc_type[0] == BFD_RELOC_GPREL32
3096 || reloc_type[0] == BFD_RELOC_64
3097 || reloc_type[0] == BFD_RELOC_CTOR
3098 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3099 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3100 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3101 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3102 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3103 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3104 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3105 || hi16_reloc_p (reloc_type[0])
3106 || lo16_reloc_p (reloc_type[0])))
3107 ip->fixp[0]->fx_no_overflow = 1;
3109 if (mips_relax.sequence)
3111 if (mips_relax.first_fixup == 0)
3112 mips_relax.first_fixup = ip->fixp[0];
3114 else if (reloc_needs_lo_p (*reloc_type))
3116 struct mips_hi_fixup *hi_fixup;
3118 /* Reuse the last entry if it already has a matching %lo. */
3119 hi_fixup = mips_hi_fixup_list;
3121 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3123 hi_fixup = ((struct mips_hi_fixup *)
3124 xmalloc (sizeof (struct mips_hi_fixup)));
3125 hi_fixup->next = mips_hi_fixup_list;
3126 mips_hi_fixup_list = hi_fixup;
3128 hi_fixup->fixp = ip->fixp[0];
3129 hi_fixup->seg = now_seg;
3132 /* Add fixups for the second and third relocations, if given.
3133 Note that the ABI allows the second relocation to be
3134 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3135 moment we only use RSS_UNDEF, but we could add support
3136 for the others if it ever becomes necessary. */
3137 for (i = 1; i < 3; i++)
3138 if (reloc_type[i] != BFD_RELOC_UNUSED)
3140 ip->fixp[i] = fix_new (ip->frag, ip->where,
3141 ip->fixp[0]->fx_size, NULL, 0,
3142 FALSE, reloc_type[i]);
3144 /* Use fx_tcbit to mark compound relocs. */
3145 ip->fixp[0]->fx_tcbit = 1;
3146 ip->fixp[i]->fx_tcbit = 1;
3152 /* Update the register mask information. */
3153 if (! mips_opts.mips16)
3155 if (pinfo & INSN_WRITE_GPR_D)
3156 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3157 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3158 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3159 if (pinfo & INSN_READ_GPR_S)
3160 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3161 if (pinfo & INSN_WRITE_GPR_31)
3162 mips_gprmask |= 1 << RA;
3163 if (pinfo & INSN_WRITE_FPR_D)
3164 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3165 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3166 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3167 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3168 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3169 if ((pinfo & INSN_READ_FPR_R) != 0)
3170 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3171 if (pinfo & INSN_COP)
3173 /* We don't keep enough information to sort these cases out.
3174 The itbl support does keep this information however, although
3175 we currently don't support itbl fprmats as part of the cop
3176 instruction. May want to add this support in the future. */
3178 /* Never set the bit for $0, which is always zero. */
3179 mips_gprmask &= ~1 << 0;
3183 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3184 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3185 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3186 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3187 if (pinfo & MIPS16_INSN_WRITE_Z)
3188 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3189 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3190 mips_gprmask |= 1 << TREG;
3191 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3192 mips_gprmask |= 1 << SP;
3193 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3194 mips_gprmask |= 1 << RA;
3195 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3196 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3197 if (pinfo & MIPS16_INSN_READ_Z)
3198 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3199 if (pinfo & MIPS16_INSN_READ_GPR_X)
3200 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3205 /* Filling the branch delay slot is more complex. We try to
3206 switch the branch with the previous instruction, which we can
3207 do if the previous instruction does not set up a condition
3208 that the branch tests and if the branch is not itself the
3209 target of any branch. */
3210 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3211 || (pinfo & INSN_COND_BRANCH_DELAY))
3213 if (mips_optimize < 2
3214 /* If we have seen .set volatile or .set nomove, don't
3216 || mips_opts.nomove != 0
3217 /* We can't swap if the previous instruction's position
3219 || history[0].fixed_p
3220 /* If the previous previous insn was in a .set
3221 noreorder, we can't swap. Actually, the MIPS
3222 assembler will swap in this situation. However, gcc
3223 configured -with-gnu-as will generate code like
3229 in which we can not swap the bne and INSN. If gcc is
3230 not configured -with-gnu-as, it does not output the
3232 || history[1].noreorder_p
3233 /* If the branch is itself the target of a branch, we
3234 can not swap. We cheat on this; all we check for is
3235 whether there is a label on this instruction. If
3236 there are any branches to anything other than a
3237 label, users must use .set noreorder. */
3238 || si->label_list != NULL
3239 /* If the previous instruction is in a variant frag
3240 other than this branch's one, we cannot do the swap.
3241 This does not apply to the mips16, which uses variant
3242 frags for different purposes. */
3243 || (! mips_opts.mips16
3244 && prev_insn_frag_type == rs_machine_dependent)
3245 /* Check for conflicts between the branch and the instructions
3246 before the candidate delay slot. */
3247 || nops_for_insn (history + 1, ip) > 0
3248 /* Check for conflicts between the swapped sequence and the
3249 target of the branch. */
3250 || nops_for_sequence (2, history + 1, ip, history) > 0
3251 /* We do not swap with a trap instruction, since it
3252 complicates trap handlers to have the trap
3253 instruction be in a delay slot. */
3254 || (prev_pinfo & INSN_TRAP)
3255 /* If the branch reads a register that the previous
3256 instruction sets, we can not swap. */
3257 || (! mips_opts.mips16
3258 && (prev_pinfo & INSN_WRITE_GPR_T)
3259 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3261 || (! mips_opts.mips16
3262 && (prev_pinfo & INSN_WRITE_GPR_D)
3263 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3265 || (mips_opts.mips16
3266 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3268 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3270 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3272 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3274 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3276 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3278 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3279 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3280 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3281 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3282 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3283 && insn_uses_reg (ip,
3284 MIPS16OP_EXTRACT_REG32R
3285 (history[0].insn_opcode),
3287 /* If the branch writes a register that the previous
3288 instruction sets, we can not swap (we know that
3289 branches write only to RD or to $31). */
3290 || (! mips_opts.mips16
3291 && (prev_pinfo & INSN_WRITE_GPR_T)
3292 && (((pinfo & INSN_WRITE_GPR_D)
3293 && (EXTRACT_OPERAND (RT, history[0])
3294 == EXTRACT_OPERAND (RD, *ip)))
3295 || ((pinfo & INSN_WRITE_GPR_31)
3296 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3297 || (! mips_opts.mips16
3298 && (prev_pinfo & INSN_WRITE_GPR_D)
3299 && (((pinfo & INSN_WRITE_GPR_D)
3300 && (EXTRACT_OPERAND (RD, history[0])
3301 == EXTRACT_OPERAND (RD, *ip)))
3302 || ((pinfo & INSN_WRITE_GPR_31)
3303 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3304 || (mips_opts.mips16
3305 && (pinfo & MIPS16_INSN_WRITE_31)
3306 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3307 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3308 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3310 /* If the branch writes a register that the previous
3311 instruction reads, we can not swap (we know that
3312 branches only write to RD or to $31). */
3313 || (! mips_opts.mips16
3314 && (pinfo & INSN_WRITE_GPR_D)
3315 && insn_uses_reg (&history[0],
3316 EXTRACT_OPERAND (RD, *ip),
3318 || (! mips_opts.mips16
3319 && (pinfo & INSN_WRITE_GPR_31)
3320 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3321 || (mips_opts.mips16
3322 && (pinfo & MIPS16_INSN_WRITE_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 /* If one instruction sets a condition code and the
3325 other one uses a condition code, we can not swap. */
3326 || ((pinfo & INSN_READ_COND_CODE)
3327 && (prev_pinfo & INSN_WRITE_COND_CODE))
3328 || ((pinfo & INSN_WRITE_COND_CODE)
3329 && (prev_pinfo & INSN_READ_COND_CODE))
3330 /* If the previous instruction uses the PC, we can not
3332 || (mips_opts.mips16
3333 && (prev_pinfo & MIPS16_INSN_READ_PC))
3334 /* If the previous instruction had a fixup in mips16
3335 mode, we can not swap. This normally means that the
3336 previous instruction was a 4 byte branch anyhow. */
3337 || (mips_opts.mips16 && history[0].fixp[0])
3338 /* If the previous instruction is a sync, sync.l, or
3339 sync.p, we can not swap. */
3340 || (prev_pinfo & INSN_SYNC)
3341 /* If the previous instruction is an ERET or
3342 DERET, avoid the swap. */
3343 || (history[0].insn_opcode == INSN_ERET)
3344 || (history[0].insn_opcode == INSN_DERET))
3346 if (mips_opts.mips16
3347 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3348 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3349 && ISA_SUPPORTS_MIPS16E)
3351 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3352 ip->insn_opcode |= 0x0080;
3354 insert_into_history (0, 1, ip);
3358 /* We could do even better for unconditional branches to
3359 portions of this object file; we could pick up the
3360 instruction at the destination, put it in the delay
3361 slot, and bump the destination address. */
3362 insert_into_history (0, 1, ip);
3366 if (mips_relax.sequence)
3367 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3371 /* It looks like we can actually do the swap. */
3372 struct mips_cl_insn delay = history[0];
3373 if (mips_opts.mips16)
3375 know (delay.frag == ip->frag);
3376 move_insn (ip, delay.frag, delay.where);
3377 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3379 else if (relaxed_branch)
3381 /* Add the delay slot instruction to the end of the
3382 current frag and shrink the fixed part of the
3383 original frag. If the branch occupies the tail of
3384 the latter, move it backwards to cover the gap. */
3385 delay.frag->fr_fix -= 4;
3386 if (delay.frag == ip->frag)
3387 move_insn (ip, ip->frag, ip->where - 4);
3388 add_fixed_insn (&delay);
3392 move_insn (&delay, ip->frag, ip->where);
3393 move_insn (ip, history[0].frag, history[0].where);
3397 insert_into_history (0, 1, &delay);
3400 /* If that was an unconditional branch, forget the previous
3401 insn information. */
3402 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3404 mips_no_prev_insn ();
3407 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3409 /* We don't yet optimize a branch likely. What we should do
3410 is look at the target, copy the instruction found there
3411 into the delay slot, and increment the branch to jump to
3412 the next instruction. */
3413 insert_into_history (0, 1, ip);
3417 insert_into_history (0, 1, ip);
3420 insert_into_history (0, 1, ip);
3422 /* We just output an insn, so the next one doesn't have a label. */
3423 mips_clear_insn_labels ();
3426 /* Forget that there was any previous instruction or label. */
3429 mips_no_prev_insn (void)
3431 prev_nop_frag = NULL;
3432 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3433 mips_clear_insn_labels ();
3436 /* This function must be called before we emit something other than
3437 instructions. It is like mips_no_prev_insn except that it inserts
3438 any NOPS that might be needed by previous instructions. */
3441 mips_emit_delays (void)
3443 if (! mips_opts.noreorder)
3445 int nops = nops_for_insn (history, NULL);
3449 add_fixed_insn (NOP_INSN);
3450 mips_move_labels ();
3453 mips_no_prev_insn ();
3456 /* Start a (possibly nested) noreorder block. */
3459 start_noreorder (void)
3461 if (mips_opts.noreorder == 0)
3466 /* None of the instructions before the .set noreorder can be moved. */
3467 for (i = 0; i < ARRAY_SIZE (history); i++)
3468 history[i].fixed_p = 1;
3470 /* Insert any nops that might be needed between the .set noreorder
3471 block and the previous instructions. We will later remove any
3472 nops that turn out not to be needed. */
3473 nops = nops_for_insn (history, NULL);
3476 if (mips_optimize != 0)
3478 /* Record the frag which holds the nop instructions, so
3479 that we can remove them if we don't need them. */
3480 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3481 prev_nop_frag = frag_now;
3482 prev_nop_frag_holds = nops;
3483 prev_nop_frag_required = 0;
3484 prev_nop_frag_since = 0;
3487 for (; nops > 0; --nops)
3488 add_fixed_insn (NOP_INSN);
3490 /* Move on to a new frag, so that it is safe to simply
3491 decrease the size of prev_nop_frag. */
3492 frag_wane (frag_now);
3494 mips_move_labels ();
3496 mips16_mark_labels ();
3497 mips_clear_insn_labels ();
3499 mips_opts.noreorder++;
3500 mips_any_noreorder = 1;
3503 /* End a nested noreorder block. */
3506 end_noreorder (void)
3509 mips_opts.noreorder--;
3510 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3512 /* Commit to inserting prev_nop_frag_required nops and go back to
3513 handling nop insertion the .set reorder way. */
3514 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3515 * (mips_opts.mips16 ? 2 : 4));
3516 insert_into_history (prev_nop_frag_since,
3517 prev_nop_frag_required, NOP_INSN);
3518 prev_nop_frag = NULL;
3522 /* Set up global variables for the start of a new macro. */
3527 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3528 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3529 && (history[0].insn_mo->pinfo
3530 & (INSN_UNCOND_BRANCH_DELAY
3531 | INSN_COND_BRANCH_DELAY
3532 | INSN_COND_BRANCH_LIKELY)) != 0);
3535 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3536 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3537 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3540 macro_warning (relax_substateT subtype)
3542 if (subtype & RELAX_DELAY_SLOT)
3543 return _("Macro instruction expanded into multiple instructions"
3544 " in a branch delay slot");
3545 else if (subtype & RELAX_NOMACRO)
3546 return _("Macro instruction expanded into multiple instructions");
3551 /* Finish up a macro. Emit warnings as appropriate. */
3556 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3558 relax_substateT subtype;
3560 /* Set up the relaxation warning flags. */
3562 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3563 subtype |= RELAX_SECOND_LONGER;
3564 if (mips_opts.warn_about_macros)
3565 subtype |= RELAX_NOMACRO;
3566 if (mips_macro_warning.delay_slot_p)
3567 subtype |= RELAX_DELAY_SLOT;
3569 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3571 /* Either the macro has a single implementation or both
3572 implementations are longer than 4 bytes. Emit the
3574 const char *msg = macro_warning (subtype);
3576 as_warn ("%s", msg);
3580 /* One implementation might need a warning but the other
3581 definitely doesn't. */
3582 mips_macro_warning.first_frag->fr_subtype |= subtype;
3587 /* Read a macro's relocation codes from *ARGS and store them in *R.
3588 The first argument in *ARGS will be either the code for a single
3589 relocation or -1 followed by the three codes that make up a
3590 composite relocation. */
3593 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3597 next = va_arg (*args, int);
3599 r[0] = (bfd_reloc_code_real_type) next;
3601 for (i = 0; i < 3; i++)
3602 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3605 /* Build an instruction created by a macro expansion. This is passed
3606 a pointer to the count of instructions created so far, an
3607 expression, the name of the instruction to build, an operand format
3608 string, and corresponding arguments. */
3611 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3613 const struct mips_opcode *mo;
3614 struct mips_cl_insn insn;
3615 bfd_reloc_code_real_type r[3];
3618 va_start (args, fmt);
3620 if (mips_opts.mips16)
3622 mips16_macro_build (ep, name, fmt, &args);
3627 r[0] = BFD_RELOC_UNUSED;
3628 r[1] = BFD_RELOC_UNUSED;
3629 r[2] = BFD_RELOC_UNUSED;
3630 mo = (struct mips_opcode *) hash_find (op_hash, name);
3632 gas_assert (strcmp (name, mo->name) == 0);
3636 /* Search until we get a match for NAME. It is assumed here that
3637 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3638 if (strcmp (fmt, mo->args) == 0
3639 && mo->pinfo != INSN_MACRO
3640 && is_opcode_valid (mo))
3644 gas_assert (mo->name);
3645 gas_assert (strcmp (name, mo->name) == 0);
3648 create_insn (&insn, mo);
3666 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3671 /* Note that in the macro case, these arguments are already
3672 in MSB form. (When handling the instruction in the
3673 non-macro case, these arguments are sizes from which
3674 MSB values must be calculated.) */
3675 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3681 /* Note that in the macro case, these arguments are already
3682 in MSBD form. (When handling the instruction in the
3683 non-macro case, these arguments are sizes from which
3684 MSBD values must be calculated.) */
3685 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3689 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3698 INSERT_OPERAND (BP, insn, va_arg (args, int));
3704 INSERT_OPERAND (RT, insn, va_arg (args, int));
3708 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3713 INSERT_OPERAND (FT, insn, va_arg (args, int));
3719 INSERT_OPERAND (RD, insn, va_arg (args, int));
3724 int tmp = va_arg (args, int);
3726 INSERT_OPERAND (RT, insn, tmp);
3727 INSERT_OPERAND (RD, insn, tmp);
3733 INSERT_OPERAND (FS, insn, va_arg (args, int));
3740 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3744 INSERT_OPERAND (FD, insn, va_arg (args, int));
3748 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3752 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3756 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3763 INSERT_OPERAND (RS, insn, va_arg (args, int));
3768 macro_read_relocs (&args, r);
3769 gas_assert (*r == BFD_RELOC_GPREL16
3770 || *r == BFD_RELOC_MIPS_HIGHER
3771 || *r == BFD_RELOC_HI16_S
3772 || *r == BFD_RELOC_LO16
3773 || *r == BFD_RELOC_MIPS_GOT_OFST);
3777 macro_read_relocs (&args, r);
3781 macro_read_relocs (&args, r);
3782 gas_assert (ep != NULL
3783 && (ep->X_op == O_constant
3784 || (ep->X_op == O_symbol
3785 && (*r == BFD_RELOC_MIPS_HIGHEST
3786 || *r == BFD_RELOC_HI16_S
3787 || *r == BFD_RELOC_HI16
3788 || *r == BFD_RELOC_GPREL16
3789 || *r == BFD_RELOC_MIPS_GOT_HI16
3790 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3794 gas_assert (ep != NULL);
3797 * This allows macro() to pass an immediate expression for
3798 * creating short branches without creating a symbol.
3800 * We don't allow branch relaxation for these branches, as
3801 * they should only appear in ".set nomacro" anyway.
3803 if (ep->X_op == O_constant)
3805 if ((ep->X_add_number & 3) != 0)
3806 as_bad (_("branch to misaligned address (0x%lx)"),
3807 (unsigned long) ep->X_add_number);
3808 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3809 as_bad (_("branch address range overflow (0x%lx)"),
3810 (unsigned long) ep->X_add_number);
3811 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3815 *r = BFD_RELOC_16_PCREL_S2;
3819 gas_assert (ep != NULL);
3820 *r = BFD_RELOC_MIPS_JMP;
3824 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3828 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3837 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3839 append_insn (&insn, ep, r);
3843 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3846 struct mips_opcode *mo;
3847 struct mips_cl_insn insn;
3848 bfd_reloc_code_real_type r[3]
3849 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3851 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3853 gas_assert (strcmp (name, mo->name) == 0);
3855 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3858 gas_assert (mo->name);
3859 gas_assert (strcmp (name, mo->name) == 0);
3862 create_insn (&insn, mo);
3880 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3885 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3889 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3893 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3903 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3910 regno = va_arg (*args, int);
3911 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3912 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3933 gas_assert (ep != NULL);
3935 if (ep->X_op != O_constant)
3936 *r = (int) BFD_RELOC_UNUSED + c;
3939 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3940 FALSE, &insn.insn_opcode, &insn.use_extend,
3943 *r = BFD_RELOC_UNUSED;
3949 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3956 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3958 append_insn (&insn, ep, r);
3962 * Sign-extend 32-bit mode constants that have bit 31 set and all
3963 * higher bits unset.
3966 normalize_constant_expr (expressionS *ex)
3968 if (ex->X_op == O_constant
3969 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3970 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3975 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3976 * all higher bits unset.
3979 normalize_address_expr (expressionS *ex)
3981 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3982 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3983 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3984 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3989 * Generate a "jalr" instruction with a relocation hint to the called
3990 * function. This occurs in NewABI PIC code.
3993 macro_build_jalr (expressionS *ep)
3997 if (MIPS_JALR_HINT_P (ep))
4002 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4003 if (MIPS_JALR_HINT_P (ep))
4004 fix_new_exp (frag_now, f - frag_now->fr_literal,
4005 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4009 * Generate a "lui" instruction.
4012 macro_build_lui (expressionS *ep, int regnum)
4014 expressionS high_expr;
4015 const struct mips_opcode *mo;
4016 struct mips_cl_insn insn;
4017 bfd_reloc_code_real_type r[3]
4018 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4019 const char *name = "lui";
4020 const char *fmt = "t,u";
4022 gas_assert (! mips_opts.mips16);
4026 if (high_expr.X_op == O_constant)
4028 /* We can compute the instruction now without a relocation entry. */
4029 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4031 *r = BFD_RELOC_UNUSED;
4035 gas_assert (ep->X_op == O_symbol);
4036 /* _gp_disp is a special case, used from s_cpload.
4037 __gnu_local_gp is used if mips_no_shared. */
4038 gas_assert (mips_pic == NO_PIC
4040 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4041 || (! mips_in_shared
4042 && strcmp (S_GET_NAME (ep->X_add_symbol),
4043 "__gnu_local_gp") == 0));
4044 *r = BFD_RELOC_HI16_S;
4047 mo = hash_find (op_hash, name);
4048 gas_assert (strcmp (name, mo->name) == 0);
4049 gas_assert (strcmp (fmt, mo->args) == 0);
4050 create_insn (&insn, mo);
4052 insn.insn_opcode = insn.insn_mo->match;
4053 INSERT_OPERAND (RT, insn, regnum);
4054 if (*r == BFD_RELOC_UNUSED)
4056 insn.insn_opcode |= high_expr.X_add_number;
4057 append_insn (&insn, NULL, r);
4060 append_insn (&insn, &high_expr, r);
4063 /* Generate a sequence of instructions to do a load or store from a constant
4064 offset off of a base register (breg) into/from a target register (treg),
4065 using AT if necessary. */
4067 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4068 int treg, int breg, int dbl)
4070 gas_assert (ep->X_op == O_constant);
4072 /* Sign-extending 32-bit constants makes their handling easier. */
4074 normalize_constant_expr (ep);
4076 /* Right now, this routine can only handle signed 32-bit constants. */
4077 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4078 as_warn (_("operand overflow"));
4080 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4082 /* Signed 16-bit offset will fit in the op. Easy! */
4083 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4087 /* 32-bit offset, need multiple instructions and AT, like:
4088 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4089 addu $tempreg,$tempreg,$breg
4090 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4091 to handle the complete offset. */
4092 macro_build_lui (ep, AT);
4093 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4094 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4097 as_bad (_("Macro used $at after \".set noat\""));
4102 * Generates code to set the $at register to true (one)
4103 * if reg is less than the immediate expression.
4106 set_at (int reg, int unsignedp)
4108 if (imm_expr.X_op == O_constant
4109 && imm_expr.X_add_number >= -0x8000
4110 && imm_expr.X_add_number < 0x8000)
4111 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4112 AT, reg, BFD_RELOC_LO16);
4115 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4116 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4120 /* Warn if an expression is not a constant. */
4123 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4125 if (ex->X_op == O_big)
4126 as_bad (_("unsupported large constant"));
4127 else if (ex->X_op != O_constant)
4128 as_bad (_("Instruction %s requires absolute expression"),
4131 if (HAVE_32BIT_GPRS)
4132 normalize_constant_expr (ex);
4135 /* Count the leading zeroes by performing a binary chop. This is a
4136 bulky bit of source, but performance is a LOT better for the
4137 majority of values than a simple loop to count the bits:
4138 for (lcnt = 0; (lcnt < 32); lcnt++)
4139 if ((v) & (1 << (31 - lcnt)))
4141 However it is not code size friendly, and the gain will drop a bit
4142 on certain cached systems.
4144 #define COUNT_TOP_ZEROES(v) \
4145 (((v) & ~0xffff) == 0 \
4146 ? ((v) & ~0xff) == 0 \
4147 ? ((v) & ~0xf) == 0 \
4148 ? ((v) & ~0x3) == 0 \
4149 ? ((v) & ~0x1) == 0 \
4154 : ((v) & ~0x7) == 0 \
4157 : ((v) & ~0x3f) == 0 \
4158 ? ((v) & ~0x1f) == 0 \
4161 : ((v) & ~0x7f) == 0 \
4164 : ((v) & ~0xfff) == 0 \
4165 ? ((v) & ~0x3ff) == 0 \
4166 ? ((v) & ~0x1ff) == 0 \
4169 : ((v) & ~0x7ff) == 0 \
4172 : ((v) & ~0x3fff) == 0 \
4173 ? ((v) & ~0x1fff) == 0 \
4176 : ((v) & ~0x7fff) == 0 \
4179 : ((v) & ~0xffffff) == 0 \
4180 ? ((v) & ~0xfffff) == 0 \
4181 ? ((v) & ~0x3ffff) == 0 \
4182 ? ((v) & ~0x1ffff) == 0 \
4185 : ((v) & ~0x7ffff) == 0 \
4188 : ((v) & ~0x3fffff) == 0 \
4189 ? ((v) & ~0x1fffff) == 0 \
4192 : ((v) & ~0x7fffff) == 0 \
4195 : ((v) & ~0xfffffff) == 0 \
4196 ? ((v) & ~0x3ffffff) == 0 \
4197 ? ((v) & ~0x1ffffff) == 0 \
4200 : ((v) & ~0x7ffffff) == 0 \
4203 : ((v) & ~0x3fffffff) == 0 \
4204 ? ((v) & ~0x1fffffff) == 0 \
4207 : ((v) & ~0x7fffffff) == 0 \
4212 * This routine generates the least number of instructions necessary to load
4213 * an absolute expression value into a register.
4216 load_register (int reg, expressionS *ep, int dbl)
4219 expressionS hi32, lo32;
4221 if (ep->X_op != O_big)
4223 gas_assert (ep->X_op == O_constant);
4225 /* Sign-extending 32-bit constants makes their handling easier. */
4227 normalize_constant_expr (ep);
4229 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4231 /* We can handle 16 bit signed values with an addiu to
4232 $zero. No need to ever use daddiu here, since $zero and
4233 the result are always correct in 32 bit mode. */
4234 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4237 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4239 /* We can handle 16 bit unsigned values with an ori to
4241 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4244 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4246 /* 32 bit values require an lui. */
4247 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4248 if ((ep->X_add_number & 0xffff) != 0)
4249 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4254 /* The value is larger than 32 bits. */
4256 if (!dbl || HAVE_32BIT_GPRS)
4260 sprintf_vma (value, ep->X_add_number);
4261 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4262 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4266 if (ep->X_op != O_big)
4269 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4270 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4271 hi32.X_add_number &= 0xffffffff;
4273 lo32.X_add_number &= 0xffffffff;
4277 gas_assert (ep->X_add_number > 2);
4278 if (ep->X_add_number == 3)
4279 generic_bignum[3] = 0;
4280 else if (ep->X_add_number > 4)
4281 as_bad (_("Number larger than 64 bits"));
4282 lo32.X_op = O_constant;
4283 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4284 hi32.X_op = O_constant;
4285 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4288 if (hi32.X_add_number == 0)
4293 unsigned long hi, lo;
4295 if (hi32.X_add_number == (offsetT) 0xffffffff)
4297 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4299 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4302 if (lo32.X_add_number & 0x80000000)
4304 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4305 if (lo32.X_add_number & 0xffff)
4306 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4311 /* Check for 16bit shifted constant. We know that hi32 is
4312 non-zero, so start the mask on the first bit of the hi32
4317 unsigned long himask, lomask;
4321 himask = 0xffff >> (32 - shift);
4322 lomask = (0xffff << shift) & 0xffffffff;
4326 himask = 0xffff << (shift - 32);
4329 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4330 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4334 tmp.X_op = O_constant;
4336 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4337 | (lo32.X_add_number >> shift));
4339 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4340 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4341 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4342 reg, reg, (shift >= 32) ? shift - 32 : shift);
4347 while (shift <= (64 - 16));
4349 /* Find the bit number of the lowest one bit, and store the
4350 shifted value in hi/lo. */
4351 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4352 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4356 while ((lo & 1) == 0)
4361 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4367 while ((hi & 1) == 0)
4376 /* Optimize if the shifted value is a (power of 2) - 1. */
4377 if ((hi == 0 && ((lo + 1) & lo) == 0)
4378 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4380 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4385 /* This instruction will set the register to be all
4387 tmp.X_op = O_constant;
4388 tmp.X_add_number = (offsetT) -1;
4389 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4393 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4394 reg, reg, (bit >= 32) ? bit - 32 : bit);
4396 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4397 reg, reg, (shift >= 32) ? shift - 32 : shift);
4402 /* Sign extend hi32 before calling load_register, because we can
4403 generally get better code when we load a sign extended value. */
4404 if ((hi32.X_add_number & 0x80000000) != 0)
4405 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4406 load_register (reg, &hi32, 0);
4409 if ((lo32.X_add_number & 0xffff0000) == 0)
4413 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4421 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4423 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4424 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4430 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4434 mid16.X_add_number >>= 16;
4435 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4436 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4439 if ((lo32.X_add_number & 0xffff) != 0)
4440 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4444 load_delay_nop (void)
4446 if (!gpr_interlocks)
4447 macro_build (NULL, "nop", "");
4450 /* Load an address into a register. */
4453 load_address (int reg, expressionS *ep, int *used_at)
4455 if (ep->X_op != O_constant
4456 && ep->X_op != O_symbol)
4458 as_bad (_("expression too complex"));
4459 ep->X_op = O_constant;
4462 if (ep->X_op == O_constant)
4464 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4468 if (mips_pic == NO_PIC)
4470 /* If this is a reference to a GP relative symbol, we want
4471 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4473 lui $reg,<sym> (BFD_RELOC_HI16_S)
4474 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4475 If we have an addend, we always use the latter form.
4477 With 64bit address space and a usable $at we want
4478 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4479 lui $at,<sym> (BFD_RELOC_HI16_S)
4480 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4481 daddiu $at,<sym> (BFD_RELOC_LO16)
4485 If $at is already in use, we use a path which is suboptimal
4486 on superscalar processors.
4487 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4488 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4490 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4492 daddiu $reg,<sym> (BFD_RELOC_LO16)
4494 For GP relative symbols in 64bit address space we can use
4495 the same sequence as in 32bit address space. */
4496 if (HAVE_64BIT_SYMBOLS)
4498 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4499 && !nopic_need_relax (ep->X_add_symbol, 1))
4501 relax_start (ep->X_add_symbol);
4502 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4503 mips_gp_register, BFD_RELOC_GPREL16);
4507 if (*used_at == 0 && mips_opts.at)
4509 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4510 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4511 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4512 BFD_RELOC_MIPS_HIGHER);
4513 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4514 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4515 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4520 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4521 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4522 BFD_RELOC_MIPS_HIGHER);
4523 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4524 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4525 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4526 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4529 if (mips_relax.sequence)
4534 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4535 && !nopic_need_relax (ep->X_add_symbol, 1))
4537 relax_start (ep->X_add_symbol);
4538 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4539 mips_gp_register, BFD_RELOC_GPREL16);
4542 macro_build_lui (ep, reg);
4543 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4544 reg, reg, BFD_RELOC_LO16);
4545 if (mips_relax.sequence)
4549 else if (!mips_big_got)
4553 /* If this is a reference to an external symbol, we want
4554 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4556 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4558 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4559 If there is a constant, it must be added in after.
4561 If we have NewABI, we want
4562 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4563 unless we're referencing a global symbol with a non-zero
4564 offset, in which case cst must be added separately. */
4567 if (ep->X_add_number)
4569 ex.X_add_number = ep->X_add_number;
4570 ep->X_add_number = 0;
4571 relax_start (ep->X_add_symbol);
4572 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4573 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4574 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4575 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4576 ex.X_op = O_constant;
4577 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4578 reg, reg, BFD_RELOC_LO16);
4579 ep->X_add_number = ex.X_add_number;
4582 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4583 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4584 if (mips_relax.sequence)
4589 ex.X_add_number = ep->X_add_number;
4590 ep->X_add_number = 0;
4591 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4592 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4594 relax_start (ep->X_add_symbol);
4596 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4600 if (ex.X_add_number != 0)
4602 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4603 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4604 ex.X_op = O_constant;
4605 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4606 reg, reg, BFD_RELOC_LO16);
4610 else if (mips_big_got)
4614 /* This is the large GOT case. If this is a reference to an
4615 external symbol, we want
4616 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4618 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4620 Otherwise, for a reference to a local symbol in old ABI, we want
4621 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4623 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4624 If there is a constant, it must be added in after.
4626 In the NewABI, for local symbols, with or without offsets, we want:
4627 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4628 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4632 ex.X_add_number = ep->X_add_number;
4633 ep->X_add_number = 0;
4634 relax_start (ep->X_add_symbol);
4635 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4637 reg, reg, mips_gp_register);
4638 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4639 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4640 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4641 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4642 else if (ex.X_add_number)
4644 ex.X_op = O_constant;
4645 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4649 ep->X_add_number = ex.X_add_number;
4651 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4652 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4653 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4654 BFD_RELOC_MIPS_GOT_OFST);
4659 ex.X_add_number = ep->X_add_number;
4660 ep->X_add_number = 0;
4661 relax_start (ep->X_add_symbol);
4662 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4664 reg, reg, mips_gp_register);
4665 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4666 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4668 if (reg_needs_delay (mips_gp_register))
4670 /* We need a nop before loading from $gp. This special
4671 check is required because the lui which starts the main
4672 instruction stream does not refer to $gp, and so will not
4673 insert the nop which may be required. */
4674 macro_build (NULL, "nop", "");
4676 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4677 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4679 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4683 if (ex.X_add_number != 0)
4685 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4686 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4687 ex.X_op = O_constant;
4688 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4696 if (!mips_opts.at && *used_at == 1)
4697 as_bad (_("Macro used $at after \".set noat\""));
4700 /* Move the contents of register SOURCE into register DEST. */
4703 move_register (int dest, int source)
4705 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4709 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4710 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4711 The two alternatives are:
4713 Global symbol Local sybmol
4714 ------------- ------------
4715 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4717 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4719 load_got_offset emits the first instruction and add_got_offset
4720 emits the second for a 16-bit offset or add_got_offset_hilo emits
4721 a sequence to add a 32-bit offset using a scratch register. */
4724 load_got_offset (int dest, expressionS *local)
4729 global.X_add_number = 0;
4731 relax_start (local->X_add_symbol);
4732 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4733 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4735 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4736 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4741 add_got_offset (int dest, expressionS *local)
4745 global.X_op = O_constant;
4746 global.X_op_symbol = NULL;
4747 global.X_add_symbol = NULL;
4748 global.X_add_number = local->X_add_number;
4750 relax_start (local->X_add_symbol);
4751 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4752 dest, dest, BFD_RELOC_LO16);
4754 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4759 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4762 int hold_mips_optimize;
4764 global.X_op = O_constant;
4765 global.X_op_symbol = NULL;
4766 global.X_add_symbol = NULL;
4767 global.X_add_number = local->X_add_number;
4769 relax_start (local->X_add_symbol);
4770 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4772 /* Set mips_optimize around the lui instruction to avoid
4773 inserting an unnecessary nop after the lw. */
4774 hold_mips_optimize = mips_optimize;
4776 macro_build_lui (&global, tmp);
4777 mips_optimize = hold_mips_optimize;
4778 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4781 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4786 * This routine implements the seemingly endless macro or synthesized
4787 * instructions and addressing modes in the mips assembly language. Many
4788 * of these macros are simple and are similar to each other. These could
4789 * probably be handled by some kind of table or grammar approach instead of
4790 * this verbose method. Others are not simple macros but are more like
4791 * optimizing code generation.
4792 * One interesting optimization is when several store macros appear
4793 * consecutively that would load AT with the upper half of the same address.
4794 * The ensuing load upper instructions are ommited. This implies some kind
4795 * of global optimization. We currently only optimize within a single macro.
4796 * For many of the load and store macros if the address is specified as a
4797 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4798 * first load register 'at' with zero and use it as the base register. The
4799 * mips assembler simply uses register $zero. Just one tiny optimization
4803 macro (struct mips_cl_insn *ip)
4805 unsigned int treg, sreg, dreg, breg;
4806 unsigned int tempreg;
4821 bfd_reloc_code_real_type r;
4822 int hold_mips_optimize;
4824 gas_assert (! mips_opts.mips16);
4826 treg = (ip->insn_opcode >> 16) & 0x1f;
4827 dreg = (ip->insn_opcode >> 11) & 0x1f;
4828 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4829 mask = ip->insn_mo->mask;
4831 expr1.X_op = O_constant;
4832 expr1.X_op_symbol = NULL;
4833 expr1.X_add_symbol = NULL;
4834 expr1.X_add_number = 1;
4848 expr1.X_add_number = 8;
4849 macro_build (&expr1, "bgez", "s,p", sreg);
4851 macro_build (NULL, "nop", "", 0);
4853 move_register (dreg, sreg);
4854 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4877 if (imm_expr.X_op == O_constant
4878 && imm_expr.X_add_number >= -0x8000
4879 && imm_expr.X_add_number < 0x8000)
4881 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4885 load_register (AT, &imm_expr, dbl);
4886 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4905 if (imm_expr.X_op == O_constant
4906 && imm_expr.X_add_number >= 0
4907 && imm_expr.X_add_number < 0x10000)
4909 if (mask != M_NOR_I)
4910 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4913 macro_build (&imm_expr, "ori", "t,r,i",
4914 treg, sreg, BFD_RELOC_LO16);
4915 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4921 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4922 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4926 switch (imm_expr.X_add_number)
4929 macro_build (NULL, "nop", "");
4932 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4935 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4936 (int)imm_expr.X_add_number);
4955 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4957 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4961 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4962 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4970 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4975 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4979 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4980 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4986 /* check for > max integer */
4987 maxnum = 0x7fffffff;
4988 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4995 if (imm_expr.X_op == O_constant
4996 && imm_expr.X_add_number >= maxnum
4997 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5000 /* result is always false */
5002 macro_build (NULL, "nop", "", 0);
5004 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5007 if (imm_expr.X_op != O_constant)
5008 as_bad (_("Unsupported large constant"));
5009 ++imm_expr.X_add_number;
5013 if (mask == M_BGEL_I)
5015 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5017 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5020 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5022 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5025 maxnum = 0x7fffffff;
5026 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5033 maxnum = - maxnum - 1;
5034 if (imm_expr.X_op == O_constant
5035 && imm_expr.X_add_number <= maxnum
5036 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5039 /* result is always true */
5040 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5041 macro_build (&offset_expr, "b", "p");
5046 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5056 macro_build (&offset_expr, likely ? "beql" : "beq",
5061 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5062 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5070 && imm_expr.X_op == O_constant
5071 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5073 if (imm_expr.X_op != O_constant)
5074 as_bad (_("Unsupported large constant"));
5075 ++imm_expr.X_add_number;
5079 if (mask == M_BGEUL_I)
5081 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5083 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5085 macro_build (&offset_expr, likely ? "bnel" : "bne",
5091 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5099 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5104 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5108 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5109 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5117 macro_build (&offset_expr, likely ? "bnel" : "bne",
5124 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5125 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5133 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5138 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5142 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5143 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5149 maxnum = 0x7fffffff;
5150 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5157 if (imm_expr.X_op == O_constant
5158 && imm_expr.X_add_number >= maxnum
5159 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5161 if (imm_expr.X_op != O_constant)
5162 as_bad (_("Unsupported large constant"));
5163 ++imm_expr.X_add_number;
5167 if (mask == M_BLTL_I)
5169 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5171 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5174 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5176 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5181 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5189 macro_build (&offset_expr, likely ? "beql" : "beq",
5196 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5197 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5205 && imm_expr.X_op == O_constant
5206 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5208 if (imm_expr.X_op != O_constant)
5209 as_bad (_("Unsupported large constant"));
5210 ++imm_expr.X_add_number;
5214 if (mask == M_BLTUL_I)
5216 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5218 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5220 macro_build (&offset_expr, likely ? "beql" : "beq",
5226 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5234 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5239 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5243 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5244 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5254 macro_build (&offset_expr, likely ? "bnel" : "bne",
5259 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5260 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5268 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5270 as_bad (_("Unsupported large constant"));
5275 pos = (unsigned long) imm_expr.X_add_number;
5276 size = (unsigned long) imm2_expr.X_add_number;
5281 as_bad (_("Improper position (%lu)"), pos);
5284 if (size == 0 || size > 64
5285 || (pos + size - 1) > 63)
5287 as_bad (_("Improper extract size (%lu, position %lu)"),
5292 if (size <= 32 && pos < 32)
5297 else if (size <= 32)
5307 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5316 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5318 as_bad (_("Unsupported large constant"));
5323 pos = (unsigned long) imm_expr.X_add_number;
5324 size = (unsigned long) imm2_expr.X_add_number;
5329 as_bad (_("Improper position (%lu)"), pos);
5332 if (size == 0 || size > 64
5333 || (pos + size - 1) > 63)
5335 as_bad (_("Improper insert size (%lu, position %lu)"),
5340 if (pos < 32 && (pos + size - 1) < 32)
5355 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5356 (int) (pos + size - 1));
5372 as_warn (_("Divide by zero."));
5374 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5376 macro_build (NULL, "break", "c", 7);
5383 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5384 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5388 expr1.X_add_number = 8;
5389 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5390 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5391 macro_build (NULL, "break", "c", 7);
5393 expr1.X_add_number = -1;
5395 load_register (AT, &expr1, dbl);
5396 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5397 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5400 expr1.X_add_number = 1;
5401 load_register (AT, &expr1, dbl);
5402 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5406 expr1.X_add_number = 0x80000000;
5407 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5411 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5412 /* We want to close the noreorder block as soon as possible, so
5413 that later insns are available for delay slot filling. */
5418 expr1.X_add_number = 8;
5419 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5420 macro_build (NULL, "nop", "", 0);
5422 /* We want to close the noreorder block as soon as possible, so
5423 that later insns are available for delay slot filling. */
5426 macro_build (NULL, "break", "c", 6);
5428 macro_build (NULL, s, "d", dreg);
5467 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5469 as_warn (_("Divide by zero."));
5471 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5473 macro_build (NULL, "break", "c", 7);
5476 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5478 if (strcmp (s2, "mflo") == 0)
5479 move_register (dreg, sreg);
5481 move_register (dreg, 0);
5484 if (imm_expr.X_op == O_constant
5485 && imm_expr.X_add_number == -1
5486 && s[strlen (s) - 1] != 'u')
5488 if (strcmp (s2, "mflo") == 0)
5490 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5493 move_register (dreg, 0);
5498 load_register (AT, &imm_expr, dbl);
5499 macro_build (NULL, s, "z,s,t", sreg, AT);
5500 macro_build (NULL, s2, "d", dreg);
5522 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5523 macro_build (NULL, s, "z,s,t", sreg, treg);
5524 /* We want to close the noreorder block as soon as possible, so
5525 that later insns are available for delay slot filling. */
5530 expr1.X_add_number = 8;
5531 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5532 macro_build (NULL, s, "z,s,t", sreg, treg);
5534 /* We want to close the noreorder block as soon as possible, so
5535 that later insns are available for delay slot filling. */
5537 macro_build (NULL, "break", "c", 7);
5539 macro_build (NULL, s2, "d", dreg);
5551 /* Load the address of a symbol into a register. If breg is not
5552 zero, we then add a base register to it. */
5554 if (dbl && HAVE_32BIT_GPRS)
5555 as_warn (_("dla used to load 32-bit register"));
5557 if (! dbl && HAVE_64BIT_OBJECTS)
5558 as_warn (_("la used to load 64-bit address"));
5560 if (offset_expr.X_op == O_constant
5561 && offset_expr.X_add_number >= -0x8000
5562 && offset_expr.X_add_number < 0x8000)
5564 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5565 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5569 if (mips_opts.at && (treg == breg))
5579 if (offset_expr.X_op != O_symbol
5580 && offset_expr.X_op != O_constant)
5582 as_bad (_("expression too complex"));
5583 offset_expr.X_op = O_constant;
5586 if (offset_expr.X_op == O_constant)
5587 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5588 else if (mips_pic == NO_PIC)
5590 /* If this is a reference to a GP relative symbol, we want
5591 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5593 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5594 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5595 If we have a constant, we need two instructions anyhow,
5596 so we may as well always use the latter form.
5598 With 64bit address space and a usable $at we want
5599 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5600 lui $at,<sym> (BFD_RELOC_HI16_S)
5601 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5602 daddiu $at,<sym> (BFD_RELOC_LO16)
5604 daddu $tempreg,$tempreg,$at
5606 If $at is already in use, we use a path which is suboptimal
5607 on superscalar processors.
5608 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5609 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5611 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5613 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5615 For GP relative symbols in 64bit address space we can use
5616 the same sequence as in 32bit address space. */
5617 if (HAVE_64BIT_SYMBOLS)
5619 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5620 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5622 relax_start (offset_expr.X_add_symbol);
5623 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5624 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5628 if (used_at == 0 && mips_opts.at)
5630 macro_build (&offset_expr, "lui", "t,u",
5631 tempreg, BFD_RELOC_MIPS_HIGHEST);
5632 macro_build (&offset_expr, "lui", "t,u",
5633 AT, BFD_RELOC_HI16_S);
5634 macro_build (&offset_expr, "daddiu", "t,r,j",
5635 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5636 macro_build (&offset_expr, "daddiu", "t,r,j",
5637 AT, AT, BFD_RELOC_LO16);
5638 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5639 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5644 macro_build (&offset_expr, "lui", "t,u",
5645 tempreg, BFD_RELOC_MIPS_HIGHEST);
5646 macro_build (&offset_expr, "daddiu", "t,r,j",
5647 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5648 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5649 macro_build (&offset_expr, "daddiu", "t,r,j",
5650 tempreg, tempreg, BFD_RELOC_HI16_S);
5651 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5652 macro_build (&offset_expr, "daddiu", "t,r,j",
5653 tempreg, tempreg, BFD_RELOC_LO16);
5656 if (mips_relax.sequence)
5661 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5662 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5664 relax_start (offset_expr.X_add_symbol);
5665 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5666 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5669 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5670 as_bad (_("offset too large"));
5671 macro_build_lui (&offset_expr, tempreg);
5672 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5673 tempreg, tempreg, BFD_RELOC_LO16);
5674 if (mips_relax.sequence)
5678 else if (!mips_big_got && !HAVE_NEWABI)
5680 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5682 /* If this is a reference to an external symbol, and there
5683 is no constant, we want
5684 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5685 or for lca or if tempreg is PIC_CALL_REG
5686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5687 For a local symbol, we want
5688 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5690 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5692 If we have a small constant, and this is a reference to
5693 an external symbol, we want
5694 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5696 addiu $tempreg,$tempreg,<constant>
5697 For a local symbol, we want the same instruction
5698 sequence, but we output a BFD_RELOC_LO16 reloc on the
5701 If we have a large constant, and this is a reference to
5702 an external symbol, we want
5703 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5704 lui $at,<hiconstant>
5705 addiu $at,$at,<loconstant>
5706 addu $tempreg,$tempreg,$at
5707 For a local symbol, we want the same instruction
5708 sequence, but we output a BFD_RELOC_LO16 reloc on the
5712 if (offset_expr.X_add_number == 0)
5714 if (mips_pic == SVR4_PIC
5716 && (call || tempreg == PIC_CALL_REG))
5717 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5719 relax_start (offset_expr.X_add_symbol);
5720 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5721 lw_reloc_type, mips_gp_register);
5724 /* We're going to put in an addu instruction using
5725 tempreg, so we may as well insert the nop right
5730 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5731 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5733 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5734 tempreg, tempreg, BFD_RELOC_LO16);
5736 /* FIXME: If breg == 0, and the next instruction uses
5737 $tempreg, then if this variant case is used an extra
5738 nop will be generated. */
5740 else if (offset_expr.X_add_number >= -0x8000
5741 && offset_expr.X_add_number < 0x8000)
5743 load_got_offset (tempreg, &offset_expr);
5745 add_got_offset (tempreg, &offset_expr);
5749 expr1.X_add_number = offset_expr.X_add_number;
5750 offset_expr.X_add_number =
5751 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5752 load_got_offset (tempreg, &offset_expr);
5753 offset_expr.X_add_number = expr1.X_add_number;
5754 /* If we are going to add in a base register, and the
5755 target register and the base register are the same,
5756 then we are using AT as a temporary register. Since
5757 we want to load the constant into AT, we add our
5758 current AT (from the global offset table) and the
5759 register into the register now, and pretend we were
5760 not using a base register. */
5764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5769 add_got_offset_hilo (tempreg, &offset_expr, AT);
5773 else if (!mips_big_got && HAVE_NEWABI)
5775 int add_breg_early = 0;
5777 /* If this is a reference to an external, and there is no
5778 constant, or local symbol (*), with or without a
5780 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5781 or for lca or if tempreg is PIC_CALL_REG
5782 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5784 If we have a small constant, and this is a reference to
5785 an external symbol, we want
5786 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5787 addiu $tempreg,$tempreg,<constant>
5789 If we have a large constant, and this is a reference to
5790 an external symbol, we want
5791 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5792 lui $at,<hiconstant>
5793 addiu $at,$at,<loconstant>
5794 addu $tempreg,$tempreg,$at
5796 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5797 local symbols, even though it introduces an additional
5800 if (offset_expr.X_add_number)
5802 expr1.X_add_number = offset_expr.X_add_number;
5803 offset_expr.X_add_number = 0;
5805 relax_start (offset_expr.X_add_symbol);
5806 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5807 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5809 if (expr1.X_add_number >= -0x8000
5810 && expr1.X_add_number < 0x8000)
5812 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5813 tempreg, tempreg, BFD_RELOC_LO16);
5815 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5817 /* If we are going to add in a base register, and the
5818 target register and the base register are the same,
5819 then we are using AT as a temporary register. Since
5820 we want to load the constant into AT, we add our
5821 current AT (from the global offset table) and the
5822 register into the register now, and pretend we were
5823 not using a base register. */
5828 gas_assert (tempreg == AT);
5829 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5835 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5842 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5845 offset_expr.X_add_number = expr1.X_add_number;
5847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5848 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5851 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5852 treg, tempreg, breg);
5858 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5860 relax_start (offset_expr.X_add_symbol);
5861 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5862 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5864 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5865 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5870 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5871 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5874 else if (mips_big_got && !HAVE_NEWABI)
5877 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5878 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5879 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5881 /* This is the large GOT case. If this is a reference to an
5882 external symbol, and there is no constant, we want
5883 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5884 addu $tempreg,$tempreg,$gp
5885 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5886 or for lca or if tempreg is PIC_CALL_REG
5887 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5888 addu $tempreg,$tempreg,$gp
5889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5890 For a local symbol, we want
5891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5893 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5895 If we have a small constant, and this is a reference to
5896 an external symbol, we want
5897 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5898 addu $tempreg,$tempreg,$gp
5899 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5901 addiu $tempreg,$tempreg,<constant>
5902 For a local symbol, we want
5903 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5905 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5907 If we have a large constant, and this is a reference to
5908 an external symbol, we want
5909 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5910 addu $tempreg,$tempreg,$gp
5911 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5912 lui $at,<hiconstant>
5913 addiu $at,$at,<loconstant>
5914 addu $tempreg,$tempreg,$at
5915 For a local symbol, we want
5916 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5917 lui $at,<hiconstant>
5918 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5919 addu $tempreg,$tempreg,$at
5922 expr1.X_add_number = offset_expr.X_add_number;
5923 offset_expr.X_add_number = 0;
5924 relax_start (offset_expr.X_add_symbol);
5925 gpdelay = reg_needs_delay (mips_gp_register);
5926 if (expr1.X_add_number == 0 && breg == 0
5927 && (call || tempreg == PIC_CALL_REG))
5929 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5930 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5932 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5933 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5934 tempreg, tempreg, mips_gp_register);
5935 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5936 tempreg, lw_reloc_type, tempreg);
5937 if (expr1.X_add_number == 0)
5941 /* We're going to put in an addu instruction using
5942 tempreg, so we may as well insert the nop right
5947 else if (expr1.X_add_number >= -0x8000
5948 && expr1.X_add_number < 0x8000)
5951 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5952 tempreg, tempreg, BFD_RELOC_LO16);
5956 /* If we are going to add in a base register, and the
5957 target register and the base register are the same,
5958 then we are using AT as a temporary register. Since
5959 we want to load the constant into AT, we add our
5960 current AT (from the global offset table) and the
5961 register into the register now, and pretend we were
5962 not using a base register. */
5967 gas_assert (tempreg == AT);
5969 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5974 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5975 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5979 offset_expr.X_add_number =
5980 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5985 /* This is needed because this instruction uses $gp, but
5986 the first instruction on the main stream does not. */
5987 macro_build (NULL, "nop", "");
5990 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5991 local_reloc_type, mips_gp_register);
5992 if (expr1.X_add_number >= -0x8000
5993 && expr1.X_add_number < 0x8000)
5996 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5997 tempreg, tempreg, BFD_RELOC_LO16);
5998 /* FIXME: If add_number is 0, and there was no base
5999 register, the external symbol case ended with a load,
6000 so if the symbol turns out to not be external, and
6001 the next instruction uses tempreg, an unnecessary nop
6002 will be inserted. */
6008 /* We must add in the base register now, as in the
6009 external symbol case. */
6010 gas_assert (tempreg == AT);
6012 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6015 /* We set breg to 0 because we have arranged to add
6016 it in in both cases. */
6020 macro_build_lui (&expr1, AT);
6021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6022 AT, AT, BFD_RELOC_LO16);
6023 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6024 tempreg, tempreg, AT);
6029 else if (mips_big_got && HAVE_NEWABI)
6031 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6032 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6033 int add_breg_early = 0;
6035 /* This is the large GOT case. If this is a reference to an
6036 external symbol, and there is no constant, we want
6037 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6038 add $tempreg,$tempreg,$gp
6039 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6040 or for lca or if tempreg is PIC_CALL_REG
6041 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6042 add $tempreg,$tempreg,$gp
6043 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6045 If we have a small constant, and this is a reference to
6046 an external symbol, we want
6047 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6048 add $tempreg,$tempreg,$gp
6049 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6050 addi $tempreg,$tempreg,<constant>
6052 If we have a large constant, and this is a reference to
6053 an external symbol, we want
6054 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6055 addu $tempreg,$tempreg,$gp
6056 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6057 lui $at,<hiconstant>
6058 addi $at,$at,<loconstant>
6059 add $tempreg,$tempreg,$at
6061 If we have NewABI, and we know it's a local symbol, we want
6062 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6063 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6064 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6066 relax_start (offset_expr.X_add_symbol);
6068 expr1.X_add_number = offset_expr.X_add_number;
6069 offset_expr.X_add_number = 0;
6071 if (expr1.X_add_number == 0 && breg == 0
6072 && (call || tempreg == PIC_CALL_REG))
6074 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6075 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6077 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6078 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6079 tempreg, tempreg, mips_gp_register);
6080 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6081 tempreg, lw_reloc_type, tempreg);
6083 if (expr1.X_add_number == 0)
6085 else if (expr1.X_add_number >= -0x8000
6086 && expr1.X_add_number < 0x8000)
6088 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6089 tempreg, tempreg, BFD_RELOC_LO16);
6091 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6093 /* If we are going to add in a base register, and the
6094 target register and the base register are the same,
6095 then we are using AT as a temporary register. Since
6096 we want to load the constant into AT, we add our
6097 current AT (from the global offset table) and the
6098 register into the register now, and pretend we were
6099 not using a base register. */
6104 gas_assert (tempreg == AT);
6105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6111 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6117 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6120 offset_expr.X_add_number = expr1.X_add_number;
6121 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6122 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6123 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6124 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6127 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6128 treg, tempreg, breg);
6138 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6143 unsigned long temp = (treg << 16) | (0x01);
6144 macro_build (NULL, "c2", "C", temp);
6146 /* AT is not used, just return */
6151 unsigned long temp = (0x02);
6152 macro_build (NULL, "c2", "C", temp);
6154 /* AT is not used, just return */
6159 unsigned long temp = (treg << 16) | (0x02);
6160 macro_build (NULL, "c2", "C", temp);
6162 /* AT is not used, just return */
6166 macro_build (NULL, "c2", "C", 3);
6167 /* AT is not used, just return */
6172 unsigned long temp = (treg << 16) | 0x03;
6173 macro_build (NULL, "c2", "C", temp);
6175 /* AT is not used, just return */
6179 /* The j instruction may not be used in PIC code, since it
6180 requires an absolute address. We convert it to a b
6182 if (mips_pic == NO_PIC)
6183 macro_build (&offset_expr, "j", "a");
6185 macro_build (&offset_expr, "b", "p");
6188 /* The jal instructions must be handled as macros because when
6189 generating PIC code they expand to multi-instruction
6190 sequences. Normally they are simple instructions. */
6195 if (mips_pic == NO_PIC)
6196 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6199 if (sreg != PIC_CALL_REG)
6200 as_warn (_("MIPS PIC call to register other than $25"));
6202 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6203 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6205 if (mips_cprestore_offset < 0)
6206 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6209 if (! mips_frame_reg_valid)
6211 as_warn (_("No .frame pseudo-op used in PIC code"));
6212 /* Quiet this warning. */
6213 mips_frame_reg_valid = 1;
6215 if (! mips_cprestore_valid)
6217 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6218 /* Quiet this warning. */
6219 mips_cprestore_valid = 1;
6221 if (mips_opts.noreorder)
6222 macro_build (NULL, "nop", "");
6223 expr1.X_add_number = mips_cprestore_offset;
6224 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6227 HAVE_64BIT_ADDRESSES);
6235 if (mips_pic == NO_PIC)
6236 macro_build (&offset_expr, "jal", "a");
6237 else if (mips_pic == SVR4_PIC)
6239 /* If this is a reference to an external symbol, and we are
6240 using a small GOT, we want
6241 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6245 lw $gp,cprestore($sp)
6246 The cprestore value is set using the .cprestore
6247 pseudo-op. If we are using a big GOT, we want
6248 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6250 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6254 lw $gp,cprestore($sp)
6255 If the symbol is not external, we want
6256 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6258 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6261 lw $gp,cprestore($sp)
6263 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6264 sequences above, minus nops, unless the symbol is local,
6265 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6271 relax_start (offset_expr.X_add_symbol);
6272 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6273 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6277 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6283 relax_start (offset_expr.X_add_symbol);
6284 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6285 BFD_RELOC_MIPS_CALL_HI16);
6286 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6287 PIC_CALL_REG, mips_gp_register);
6288 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6289 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6292 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6293 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6295 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6296 PIC_CALL_REG, PIC_CALL_REG,
6297 BFD_RELOC_MIPS_GOT_OFST);
6301 macro_build_jalr (&offset_expr);
6305 relax_start (offset_expr.X_add_symbol);
6308 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6309 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6318 gpdelay = reg_needs_delay (mips_gp_register);
6319 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6320 BFD_RELOC_MIPS_CALL_HI16);
6321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6322 PIC_CALL_REG, mips_gp_register);
6323 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6324 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6329 macro_build (NULL, "nop", "");
6331 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6332 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6335 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6336 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6338 macro_build_jalr (&offset_expr);
6340 if (mips_cprestore_offset < 0)
6341 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6344 if (! mips_frame_reg_valid)
6346 as_warn (_("No .frame pseudo-op used in PIC code"));
6347 /* Quiet this warning. */
6348 mips_frame_reg_valid = 1;
6350 if (! mips_cprestore_valid)
6352 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6353 /* Quiet this warning. */
6354 mips_cprestore_valid = 1;
6356 if (mips_opts.noreorder)
6357 macro_build (NULL, "nop", "");
6358 expr1.X_add_number = mips_cprestore_offset;
6359 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6362 HAVE_64BIT_ADDRESSES);
6366 else if (mips_pic == VXWORKS_PIC)
6367 as_bad (_("Non-PIC jump used in PIC library"));
6390 /* Itbl support may require additional care here. */
6395 /* Itbl support may require additional care here. */
6400 /* Itbl support may require additional care here. */
6405 /* Itbl support may require additional care here. */
6418 /* Itbl support may require additional care here. */
6423 /* Itbl support may require additional care here. */
6428 /* Itbl support may require additional care here. */
6448 if (breg == treg || coproc || lr)
6469 /* Itbl support may require additional care here. */
6474 /* Itbl support may require additional care here. */
6479 /* Itbl support may require additional care here. */
6484 /* Itbl support may require additional care here. */
6505 /* Itbl support may require additional care here. */
6509 /* Itbl support may require additional care here. */
6514 /* Itbl support may require additional care here. */
6527 && NO_ISA_COP (mips_opts.arch)
6528 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6530 as_bad (_("opcode not supported on this processor: %s"),
6531 mips_cpu_info_from_arch (mips_opts.arch)->name);
6535 /* Itbl support may require additional care here. */
6536 if (mask == M_LWC1_AB
6537 || mask == M_SWC1_AB
6538 || mask == M_LDC1_AB
6539 || mask == M_SDC1_AB
6543 else if (mask == M_CACHE_AB)
6550 if (offset_expr.X_op != O_constant
6551 && offset_expr.X_op != O_symbol)
6553 as_bad (_("expression too complex"));
6554 offset_expr.X_op = O_constant;
6557 if (HAVE_32BIT_ADDRESSES
6558 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6562 sprintf_vma (value, offset_expr.X_add_number);
6563 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6566 /* A constant expression in PIC code can be handled just as it
6567 is in non PIC code. */
6568 if (offset_expr.X_op == O_constant)
6570 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6571 & ~(bfd_vma) 0xffff);
6572 normalize_address_expr (&expr1);
6573 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6575 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6576 tempreg, tempreg, breg);
6577 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6579 else if (mips_pic == NO_PIC)
6581 /* If this is a reference to a GP relative symbol, and there
6582 is no base register, we want
6583 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6584 Otherwise, if there is no base register, we want
6585 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6586 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6587 If we have a constant, we need two instructions anyhow,
6588 so we always use the latter form.
6590 If we have a base register, and this is a reference to a
6591 GP relative symbol, we want
6592 addu $tempreg,$breg,$gp
6593 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6595 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6596 addu $tempreg,$tempreg,$breg
6597 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6598 With a constant we always use the latter case.
6600 With 64bit address space and no base register and $at usable,
6602 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6603 lui $at,<sym> (BFD_RELOC_HI16_S)
6604 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6607 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6608 If we have a base register, we want
6609 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6610 lui $at,<sym> (BFD_RELOC_HI16_S)
6611 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6615 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6617 Without $at we can't generate the optimal path for superscalar
6618 processors here since this would require two temporary registers.
6619 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6620 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6622 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6624 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6625 If we have a base register, we want
6626 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6627 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6629 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6631 daddu $tempreg,$tempreg,$breg
6632 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6634 For GP relative symbols in 64bit address space we can use
6635 the same sequence as in 32bit address space. */
6636 if (HAVE_64BIT_SYMBOLS)
6638 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6639 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6641 relax_start (offset_expr.X_add_symbol);
6644 macro_build (&offset_expr, s, fmt, treg,
6645 BFD_RELOC_GPREL16, mips_gp_register);
6649 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6650 tempreg, breg, mips_gp_register);
6651 macro_build (&offset_expr, s, fmt, treg,
6652 BFD_RELOC_GPREL16, tempreg);
6657 if (used_at == 0 && mips_opts.at)
6659 macro_build (&offset_expr, "lui", "t,u", tempreg,
6660 BFD_RELOC_MIPS_HIGHEST);
6661 macro_build (&offset_expr, "lui", "t,u", AT,
6663 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6664 tempreg, BFD_RELOC_MIPS_HIGHER);
6666 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6667 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6668 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6669 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6675 macro_build (&offset_expr, "lui", "t,u", tempreg,
6676 BFD_RELOC_MIPS_HIGHEST);
6677 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6678 tempreg, BFD_RELOC_MIPS_HIGHER);
6679 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6680 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6681 tempreg, BFD_RELOC_HI16_S);
6682 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6684 macro_build (NULL, "daddu", "d,v,t",
6685 tempreg, tempreg, breg);
6686 macro_build (&offset_expr, s, fmt, treg,
6687 BFD_RELOC_LO16, tempreg);
6690 if (mips_relax.sequence)
6697 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6698 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6700 relax_start (offset_expr.X_add_symbol);
6701 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6705 macro_build_lui (&offset_expr, tempreg);
6706 macro_build (&offset_expr, s, fmt, treg,
6707 BFD_RELOC_LO16, tempreg);
6708 if (mips_relax.sequence)
6713 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6714 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6716 relax_start (offset_expr.X_add_symbol);
6717 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6718 tempreg, breg, mips_gp_register);
6719 macro_build (&offset_expr, s, fmt, treg,
6720 BFD_RELOC_GPREL16, tempreg);
6723 macro_build_lui (&offset_expr, tempreg);
6724 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6725 tempreg, tempreg, breg);
6726 macro_build (&offset_expr, s, fmt, treg,
6727 BFD_RELOC_LO16, tempreg);
6728 if (mips_relax.sequence)
6732 else if (!mips_big_got)
6734 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6736 /* If this is a reference to an external symbol, we want
6737 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6739 <op> $treg,0($tempreg)
6741 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6743 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6744 <op> $treg,0($tempreg)
6747 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6748 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6750 If there is a base register, we add it to $tempreg before
6751 the <op>. If there is a constant, we stick it in the
6752 <op> instruction. We don't handle constants larger than
6753 16 bits, because we have no way to load the upper 16 bits
6754 (actually, we could handle them for the subset of cases
6755 in which we are not using $at). */
6756 gas_assert (offset_expr.X_op == O_symbol);
6759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6760 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6762 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6763 tempreg, tempreg, breg);
6764 macro_build (&offset_expr, s, fmt, treg,
6765 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6768 expr1.X_add_number = offset_expr.X_add_number;
6769 offset_expr.X_add_number = 0;
6770 if (expr1.X_add_number < -0x8000
6771 || expr1.X_add_number >= 0x8000)
6772 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6773 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6774 lw_reloc_type, mips_gp_register);
6776 relax_start (offset_expr.X_add_symbol);
6778 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6779 tempreg, BFD_RELOC_LO16);
6782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6783 tempreg, tempreg, breg);
6784 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6786 else if (mips_big_got && !HAVE_NEWABI)
6790 /* If this is a reference to an external symbol, we want
6791 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6792 addu $tempreg,$tempreg,$gp
6793 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6794 <op> $treg,0($tempreg)
6796 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6798 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6799 <op> $treg,0($tempreg)
6800 If there is a base register, we add it to $tempreg before
6801 the <op>. If there is a constant, we stick it in the
6802 <op> instruction. We don't handle constants larger than
6803 16 bits, because we have no way to load the upper 16 bits
6804 (actually, we could handle them for the subset of cases
6805 in which we are not using $at). */
6806 gas_assert (offset_expr.X_op == O_symbol);
6807 expr1.X_add_number = offset_expr.X_add_number;
6808 offset_expr.X_add_number = 0;
6809 if (expr1.X_add_number < -0x8000
6810 || expr1.X_add_number >= 0x8000)
6811 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6812 gpdelay = reg_needs_delay (mips_gp_register);
6813 relax_start (offset_expr.X_add_symbol);
6814 macro_build (&offset_expr, "lui", "t,u", tempreg,
6815 BFD_RELOC_MIPS_GOT_HI16);
6816 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6818 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6819 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6822 macro_build (NULL, "nop", "");
6823 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6824 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6826 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6827 tempreg, BFD_RELOC_LO16);
6831 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6832 tempreg, tempreg, breg);
6833 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6835 else if (mips_big_got && HAVE_NEWABI)
6837 /* If this is a reference to an external symbol, we want
6838 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6839 add $tempreg,$tempreg,$gp
6840 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6841 <op> $treg,<ofst>($tempreg)
6842 Otherwise, for local symbols, we want:
6843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6844 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6845 gas_assert (offset_expr.X_op == O_symbol);
6846 expr1.X_add_number = offset_expr.X_add_number;
6847 offset_expr.X_add_number = 0;
6848 if (expr1.X_add_number < -0x8000
6849 || expr1.X_add_number >= 0x8000)
6850 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6851 relax_start (offset_expr.X_add_symbol);
6852 macro_build (&offset_expr, "lui", "t,u", tempreg,
6853 BFD_RELOC_MIPS_GOT_HI16);
6854 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6856 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6857 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6859 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6860 tempreg, tempreg, breg);
6861 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6864 offset_expr.X_add_number = expr1.X_add_number;
6865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6866 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6869 tempreg, tempreg, breg);
6870 macro_build (&offset_expr, s, fmt, treg,
6871 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6881 load_register (treg, &imm_expr, 0);
6885 load_register (treg, &imm_expr, 1);
6889 if (imm_expr.X_op == O_constant)
6892 load_register (AT, &imm_expr, 0);
6893 macro_build (NULL, "mtc1", "t,G", AT, treg);
6898 gas_assert (offset_expr.X_op == O_symbol
6899 && strcmp (segment_name (S_GET_SEGMENT
6900 (offset_expr.X_add_symbol)),
6902 && offset_expr.X_add_number == 0);
6903 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6904 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6909 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6910 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6911 order 32 bits of the value and the low order 32 bits are either
6912 zero or in OFFSET_EXPR. */
6913 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6915 if (HAVE_64BIT_GPRS)
6916 load_register (treg, &imm_expr, 1);
6921 if (target_big_endian)
6933 load_register (hreg, &imm_expr, 0);
6936 if (offset_expr.X_op == O_absent)
6937 move_register (lreg, 0);
6940 gas_assert (offset_expr.X_op == O_constant);
6941 load_register (lreg, &offset_expr, 0);
6948 /* We know that sym is in the .rdata section. First we get the
6949 upper 16 bits of the address. */
6950 if (mips_pic == NO_PIC)
6952 macro_build_lui (&offset_expr, AT);
6957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6958 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6962 /* Now we load the register(s). */
6963 if (HAVE_64BIT_GPRS)
6966 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6971 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6974 /* FIXME: How in the world do we deal with the possible
6976 offset_expr.X_add_number += 4;
6977 macro_build (&offset_expr, "lw", "t,o(b)",
6978 treg + 1, BFD_RELOC_LO16, AT);
6984 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6985 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6986 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6987 the value and the low order 32 bits are either zero or in
6989 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6992 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6993 if (HAVE_64BIT_FPRS)
6995 gas_assert (HAVE_64BIT_GPRS);
6996 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7000 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7001 if (offset_expr.X_op == O_absent)
7002 macro_build (NULL, "mtc1", "t,G", 0, treg);
7005 gas_assert (offset_expr.X_op == O_constant);
7006 load_register (AT, &offset_expr, 0);
7007 macro_build (NULL, "mtc1", "t,G", AT, treg);
7013 gas_assert (offset_expr.X_op == O_symbol
7014 && offset_expr.X_add_number == 0);
7015 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7016 if (strcmp (s, ".lit8") == 0)
7018 if (mips_opts.isa != ISA_MIPS1)
7020 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7021 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7024 breg = mips_gp_register;
7025 r = BFD_RELOC_MIPS_LITERAL;
7030 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7032 if (mips_pic != NO_PIC)
7033 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7034 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7037 /* FIXME: This won't work for a 64 bit address. */
7038 macro_build_lui (&offset_expr, AT);
7041 if (mips_opts.isa != ISA_MIPS1)
7043 macro_build (&offset_expr, "ldc1", "T,o(b)",
7044 treg, BFD_RELOC_LO16, AT);
7053 /* Even on a big endian machine $fn comes before $fn+1. We have
7054 to adjust when loading from memory. */
7057 gas_assert (mips_opts.isa == ISA_MIPS1);
7058 macro_build (&offset_expr, "lwc1", "T,o(b)",
7059 target_big_endian ? treg + 1 : treg, r, breg);
7060 /* FIXME: A possible overflow which I don't know how to deal
7062 offset_expr.X_add_number += 4;
7063 macro_build (&offset_expr, "lwc1", "T,o(b)",
7064 target_big_endian ? treg : treg + 1, r, breg);
7069 * The MIPS assembler seems to check for X_add_number not
7070 * being double aligned and generating:
7073 * addiu at,at,%lo(foo+1)
7076 * But, the resulting address is the same after relocation so why
7077 * generate the extra instruction?
7079 /* Itbl support may require additional care here. */
7081 if (mips_opts.isa != ISA_MIPS1)
7092 if (mips_opts.isa != ISA_MIPS1)
7100 /* Itbl support may require additional care here. */
7105 if (HAVE_64BIT_GPRS)
7116 if (HAVE_64BIT_GPRS)
7126 if (offset_expr.X_op != O_symbol
7127 && offset_expr.X_op != O_constant)
7129 as_bad (_("expression too complex"));
7130 offset_expr.X_op = O_constant;
7133 if (HAVE_32BIT_ADDRESSES
7134 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7138 sprintf_vma (value, offset_expr.X_add_number);
7139 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7142 /* Even on a big endian machine $fn comes before $fn+1. We have
7143 to adjust when loading from memory. We set coproc if we must
7144 load $fn+1 first. */
7145 /* Itbl support may require additional care here. */
7146 if (! target_big_endian)
7149 if (mips_pic == NO_PIC
7150 || offset_expr.X_op == O_constant)
7152 /* If this is a reference to a GP relative symbol, we want
7153 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7154 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7155 If we have a base register, we use this
7157 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7158 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7159 If this is not a GP relative symbol, we want
7160 lui $at,<sym> (BFD_RELOC_HI16_S)
7161 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7162 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7163 If there is a base register, we add it to $at after the
7164 lui instruction. If there is a constant, we always use
7166 if (offset_expr.X_op == O_symbol
7167 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7168 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7170 relax_start (offset_expr.X_add_symbol);
7173 tempreg = mips_gp_register;
7177 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7178 AT, breg, mips_gp_register);
7183 /* Itbl support may require additional care here. */
7184 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7185 BFD_RELOC_GPREL16, tempreg);
7186 offset_expr.X_add_number += 4;
7188 /* Set mips_optimize to 2 to avoid inserting an
7190 hold_mips_optimize = mips_optimize;
7192 /* Itbl support may require additional care here. */
7193 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7194 BFD_RELOC_GPREL16, tempreg);
7195 mips_optimize = hold_mips_optimize;
7199 offset_expr.X_add_number -= 4;
7202 macro_build_lui (&offset_expr, AT);
7204 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7205 /* Itbl support may require additional care here. */
7206 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7207 BFD_RELOC_LO16, AT);
7208 /* FIXME: How do we handle overflow here? */
7209 offset_expr.X_add_number += 4;
7210 /* Itbl support may require additional care here. */
7211 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7212 BFD_RELOC_LO16, AT);
7213 if (mips_relax.sequence)
7216 else if (!mips_big_got)
7218 /* If this is a reference to an external symbol, we want
7219 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7224 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7226 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7227 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7228 If there is a base register we add it to $at before the
7229 lwc1 instructions. If there is a constant we include it
7230 in the lwc1 instructions. */
7232 expr1.X_add_number = offset_expr.X_add_number;
7233 if (expr1.X_add_number < -0x8000
7234 || expr1.X_add_number >= 0x8000 - 4)
7235 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7236 load_got_offset (AT, &offset_expr);
7239 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7241 /* Set mips_optimize to 2 to avoid inserting an undesired
7243 hold_mips_optimize = mips_optimize;
7246 /* Itbl support may require additional care here. */
7247 relax_start (offset_expr.X_add_symbol);
7248 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7249 BFD_RELOC_LO16, AT);
7250 expr1.X_add_number += 4;
7251 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7252 BFD_RELOC_LO16, AT);
7254 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7255 BFD_RELOC_LO16, AT);
7256 offset_expr.X_add_number += 4;
7257 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7258 BFD_RELOC_LO16, AT);
7261 mips_optimize = hold_mips_optimize;
7263 else if (mips_big_got)
7267 /* If this is a reference to an external symbol, we want
7268 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7270 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7275 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7277 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7278 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7279 If there is a base register we add it to $at before the
7280 lwc1 instructions. If there is a constant we include it
7281 in the lwc1 instructions. */
7283 expr1.X_add_number = offset_expr.X_add_number;
7284 offset_expr.X_add_number = 0;
7285 if (expr1.X_add_number < -0x8000
7286 || expr1.X_add_number >= 0x8000 - 4)
7287 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7288 gpdelay = reg_needs_delay (mips_gp_register);
7289 relax_start (offset_expr.X_add_symbol);
7290 macro_build (&offset_expr, "lui", "t,u",
7291 AT, BFD_RELOC_MIPS_GOT_HI16);
7292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7293 AT, AT, mips_gp_register);
7294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7295 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7298 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7299 /* Itbl support may require additional care here. */
7300 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7301 BFD_RELOC_LO16, AT);
7302 expr1.X_add_number += 4;
7304 /* Set mips_optimize to 2 to avoid inserting an undesired
7306 hold_mips_optimize = mips_optimize;
7308 /* Itbl support may require additional care here. */
7309 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7310 BFD_RELOC_LO16, AT);
7311 mips_optimize = hold_mips_optimize;
7312 expr1.X_add_number -= 4;
7315 offset_expr.X_add_number = expr1.X_add_number;
7317 macro_build (NULL, "nop", "");
7318 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7319 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7323 /* Itbl support may require additional care here. */
7324 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7325 BFD_RELOC_LO16, AT);
7326 offset_expr.X_add_number += 4;
7328 /* Set mips_optimize to 2 to avoid inserting an undesired
7330 hold_mips_optimize = mips_optimize;
7332 /* Itbl support may require additional care here. */
7333 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7334 BFD_RELOC_LO16, AT);
7335 mips_optimize = hold_mips_optimize;
7344 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7347 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7349 macro_build (&offset_expr, s, "t,o(b)", treg,
7350 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7352 if (!HAVE_64BIT_GPRS)
7354 offset_expr.X_add_number += 4;
7355 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7356 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7361 /* New code added to support COPZ instructions.
7362 This code builds table entries out of the macros in mip_opcodes.
7363 R4000 uses interlocks to handle coproc delays.
7364 Other chips (like the R3000) require nops to be inserted for delays.
7366 FIXME: Currently, we require that the user handle delays.
7367 In order to fill delay slots for non-interlocked chips,
7368 we must have a way to specify delays based on the coprocessor.
7369 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7370 What are the side-effects of the cop instruction?
7371 What cache support might we have and what are its effects?
7372 Both coprocessor & memory require delays. how long???
7373 What registers are read/set/modified?
7375 If an itbl is provided to interpret cop instructions,
7376 this knowledge can be encoded in the itbl spec. */
7390 if (NO_ISA_COP (mips_opts.arch)
7391 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7393 as_bad (_("opcode not supported on this processor: %s"),
7394 mips_cpu_info_from_arch (mips_opts.arch)->name);
7398 /* For now we just do C (same as Cz). The parameter will be
7399 stored in insn_opcode by mips_ip. */
7400 macro_build (NULL, s, "C", ip->insn_opcode);
7404 move_register (dreg, sreg);
7410 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7411 macro_build (NULL, "mflo", "d", dreg);
7417 /* The MIPS assembler some times generates shifts and adds. I'm
7418 not trying to be that fancy. GCC should do this for us
7421 load_register (AT, &imm_expr, dbl);
7422 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7423 macro_build (NULL, "mflo", "d", dreg);
7439 load_register (AT, &imm_expr, dbl);
7440 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7441 macro_build (NULL, "mflo", "d", dreg);
7442 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7443 macro_build (NULL, "mfhi", "d", AT);
7445 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7448 expr1.X_add_number = 8;
7449 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7450 macro_build (NULL, "nop", "", 0);
7451 macro_build (NULL, "break", "c", 6);
7454 macro_build (NULL, "mflo", "d", dreg);
7470 load_register (AT, &imm_expr, dbl);
7471 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7472 sreg, imm ? AT : treg);
7473 macro_build (NULL, "mfhi", "d", AT);
7474 macro_build (NULL, "mflo", "d", dreg);
7476 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7479 expr1.X_add_number = 8;
7480 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7481 macro_build (NULL, "nop", "", 0);
7482 macro_build (NULL, "break", "c", 6);
7488 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7499 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7500 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7504 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7505 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7506 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7507 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7511 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7522 macro_build (NULL, "negu", "d,w", tempreg, treg);
7523 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7527 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7528 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7529 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7530 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7539 if (imm_expr.X_op != O_constant)
7540 as_bad (_("Improper rotate count"));
7541 rot = imm_expr.X_add_number & 0x3f;
7542 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7544 rot = (64 - rot) & 0x3f;
7546 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7548 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7553 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7556 l = (rot < 0x20) ? "dsll" : "dsll32";
7557 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7560 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7561 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7562 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7570 if (imm_expr.X_op != O_constant)
7571 as_bad (_("Improper rotate count"));
7572 rot = imm_expr.X_add_number & 0x1f;
7573 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7575 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7580 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7584 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7585 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7586 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7591 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7593 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7597 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7598 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7599 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7600 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7604 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7606 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7610 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7611 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7612 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7613 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7622 if (imm_expr.X_op != O_constant)
7623 as_bad (_("Improper rotate count"));
7624 rot = imm_expr.X_add_number & 0x3f;
7625 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7628 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7630 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7635 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7638 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7639 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7642 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7643 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7644 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7652 if (imm_expr.X_op != O_constant)
7653 as_bad (_("Improper rotate count"));
7654 rot = imm_expr.X_add_number & 0x1f;
7655 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7657 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7662 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7666 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7667 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7668 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7673 gas_assert (mips_opts.isa == ISA_MIPS1);
7674 /* Even on a big endian machine $fn comes before $fn+1. We have
7675 to adjust when storing to memory. */
7676 macro_build (&offset_expr, "swc1", "T,o(b)",
7677 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7678 offset_expr.X_add_number += 4;
7679 macro_build (&offset_expr, "swc1", "T,o(b)",
7680 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7685 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7687 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7690 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7691 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7696 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7698 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7703 as_warn (_("Instruction %s: result is always false"),
7705 move_register (dreg, 0);
7708 if (CPU_HAS_SEQ (mips_opts.arch)
7709 && -512 <= imm_expr.X_add_number
7710 && imm_expr.X_add_number < 512)
7712 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7713 (int) imm_expr.X_add_number);
7716 if (imm_expr.X_op == O_constant
7717 && imm_expr.X_add_number >= 0
7718 && imm_expr.X_add_number < 0x10000)
7720 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7722 else if (imm_expr.X_op == O_constant
7723 && imm_expr.X_add_number > -0x8000
7724 && imm_expr.X_add_number < 0)
7726 imm_expr.X_add_number = -imm_expr.X_add_number;
7727 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7728 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7730 else if (CPU_HAS_SEQ (mips_opts.arch))
7733 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7734 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7739 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7740 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7743 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7746 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7752 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7753 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7756 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7758 if (imm_expr.X_op == O_constant
7759 && imm_expr.X_add_number >= -0x8000
7760 && imm_expr.X_add_number < 0x8000)
7762 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7763 dreg, sreg, BFD_RELOC_LO16);
7767 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7768 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7772 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7775 case M_SGT: /* sreg > treg <==> treg < sreg */
7781 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7784 case M_SGT_I: /* sreg > I <==> I < sreg */
7791 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7792 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7795 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7801 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7802 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7805 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7812 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7813 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7814 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7818 if (imm_expr.X_op == O_constant
7819 && imm_expr.X_add_number >= -0x8000
7820 && imm_expr.X_add_number < 0x8000)
7822 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7826 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7827 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7831 if (imm_expr.X_op == O_constant
7832 && imm_expr.X_add_number >= -0x8000
7833 && imm_expr.X_add_number < 0x8000)
7835 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7840 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7841 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7846 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7848 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7851 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7852 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7857 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7859 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7864 as_warn (_("Instruction %s: result is always true"),
7866 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7867 dreg, 0, BFD_RELOC_LO16);
7870 if (CPU_HAS_SEQ (mips_opts.arch)
7871 && -512 <= imm_expr.X_add_number
7872 && imm_expr.X_add_number < 512)
7874 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7875 (int) imm_expr.X_add_number);
7878 if (imm_expr.X_op == O_constant
7879 && imm_expr.X_add_number >= 0
7880 && imm_expr.X_add_number < 0x10000)
7882 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7884 else if (imm_expr.X_op == O_constant
7885 && imm_expr.X_add_number > -0x8000
7886 && imm_expr.X_add_number < 0)
7888 imm_expr.X_add_number = -imm_expr.X_add_number;
7889 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7890 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7892 else if (CPU_HAS_SEQ (mips_opts.arch))
7895 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7896 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7901 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7902 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7905 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7911 if (imm_expr.X_op == O_constant
7912 && imm_expr.X_add_number > -0x8000
7913 && imm_expr.X_add_number <= 0x8000)
7915 imm_expr.X_add_number = -imm_expr.X_add_number;
7916 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7917 dreg, sreg, BFD_RELOC_LO16);
7921 load_register (AT, &imm_expr, dbl);
7922 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7928 if (imm_expr.X_op == O_constant
7929 && imm_expr.X_add_number > -0x8000
7930 && imm_expr.X_add_number <= 0x8000)
7932 imm_expr.X_add_number = -imm_expr.X_add_number;
7933 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7934 dreg, sreg, BFD_RELOC_LO16);
7938 load_register (AT, &imm_expr, dbl);
7939 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7961 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7962 macro_build (NULL, s, "s,t", sreg, AT);
7967 gas_assert (mips_opts.isa == ISA_MIPS1);
7969 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7970 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7973 * Is the double cfc1 instruction a bug in the mips assembler;
7974 * or is there a reason for it?
7977 macro_build (NULL, "cfc1", "t,G", treg, RA);
7978 macro_build (NULL, "cfc1", "t,G", treg, RA);
7979 macro_build (NULL, "nop", "");
7980 expr1.X_add_number = 3;
7981 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7982 expr1.X_add_number = 2;
7983 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7984 macro_build (NULL, "ctc1", "t,G", AT, RA);
7985 macro_build (NULL, "nop", "");
7986 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7988 macro_build (NULL, "ctc1", "t,G", treg, RA);
7989 macro_build (NULL, "nop", "");
8000 if (offset_expr.X_add_number >= 0x7fff)
8001 as_bad (_("operand overflow"));
8002 if (! target_big_endian)
8003 ++offset_expr.X_add_number;
8004 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8005 if (! target_big_endian)
8006 --offset_expr.X_add_number;
8008 ++offset_expr.X_add_number;
8009 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8010 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8011 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8024 if (offset_expr.X_add_number >= 0x8000 - off)
8025 as_bad (_("operand overflow"));
8033 if (! target_big_endian)
8034 offset_expr.X_add_number += off;
8035 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8036 if (! target_big_endian)
8037 offset_expr.X_add_number -= off;
8039 offset_expr.X_add_number += off;
8040 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8042 /* If necessary, move the result in tempreg the final destination. */
8043 if (treg == tempreg)
8045 /* Protect second load's delay slot. */
8047 move_register (treg, tempreg);
8061 load_address (AT, &offset_expr, &used_at);
8063 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8064 if (! target_big_endian)
8065 expr1.X_add_number = off;
8067 expr1.X_add_number = 0;
8068 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8069 if (! target_big_endian)
8070 expr1.X_add_number = 0;
8072 expr1.X_add_number = off;
8073 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8079 load_address (AT, &offset_expr, &used_at);
8081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8082 if (target_big_endian)
8083 expr1.X_add_number = 0;
8084 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8085 treg, BFD_RELOC_LO16, AT);
8086 if (target_big_endian)
8087 expr1.X_add_number = 1;
8089 expr1.X_add_number = 0;
8090 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8091 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8092 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8097 if (offset_expr.X_add_number >= 0x7fff)
8098 as_bad (_("operand overflow"));
8099 if (target_big_endian)
8100 ++offset_expr.X_add_number;
8101 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8102 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8103 if (target_big_endian)
8104 --offset_expr.X_add_number;
8106 ++offset_expr.X_add_number;
8107 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8120 if (offset_expr.X_add_number >= 0x8000 - off)
8121 as_bad (_("operand overflow"));
8122 if (! target_big_endian)
8123 offset_expr.X_add_number += off;
8124 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8125 if (! target_big_endian)
8126 offset_expr.X_add_number -= off;
8128 offset_expr.X_add_number += off;
8129 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8143 load_address (AT, &offset_expr, &used_at);
8145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8146 if (! target_big_endian)
8147 expr1.X_add_number = off;
8149 expr1.X_add_number = 0;
8150 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8151 if (! target_big_endian)
8152 expr1.X_add_number = 0;
8154 expr1.X_add_number = off;
8155 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8160 load_address (AT, &offset_expr, &used_at);
8162 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8163 if (! target_big_endian)
8164 expr1.X_add_number = 0;
8165 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8166 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8167 if (! target_big_endian)
8168 expr1.X_add_number = 1;
8170 expr1.X_add_number = 0;
8171 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8172 if (! target_big_endian)
8173 expr1.X_add_number = 0;
8175 expr1.X_add_number = 1;
8176 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8177 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8178 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8182 /* FIXME: Check if this is one of the itbl macros, since they
8183 are added dynamically. */
8184 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8187 if (!mips_opts.at && used_at)
8188 as_bad (_("Macro used $at after \".set noat\""));
8191 /* Implement macros in mips16 mode. */
8194 mips16_macro (struct mips_cl_insn *ip)
8197 int xreg, yreg, zreg, tmp;
8200 const char *s, *s2, *s3;
8202 mask = ip->insn_mo->mask;
8204 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8205 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8206 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8208 expr1.X_op = O_constant;
8209 expr1.X_op_symbol = NULL;
8210 expr1.X_add_symbol = NULL;
8211 expr1.X_add_number = 1;
8231 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8232 expr1.X_add_number = 2;
8233 macro_build (&expr1, "bnez", "x,p", yreg);
8234 macro_build (NULL, "break", "6", 7);
8236 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8237 since that causes an overflow. We should do that as well,
8238 but I don't see how to do the comparisons without a temporary
8241 macro_build (NULL, s, "x", zreg);
8261 macro_build (NULL, s, "0,x,y", xreg, yreg);
8262 expr1.X_add_number = 2;
8263 macro_build (&expr1, "bnez", "x,p", yreg);
8264 macro_build (NULL, "break", "6", 7);
8266 macro_build (NULL, s2, "x", zreg);
8272 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8273 macro_build (NULL, "mflo", "x", zreg);
8281 if (imm_expr.X_op != O_constant)
8282 as_bad (_("Unsupported large constant"));
8283 imm_expr.X_add_number = -imm_expr.X_add_number;
8284 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8288 if (imm_expr.X_op != O_constant)
8289 as_bad (_("Unsupported large constant"));
8290 imm_expr.X_add_number = -imm_expr.X_add_number;
8291 macro_build (&imm_expr, "addiu", "x,k", xreg);
8295 if (imm_expr.X_op != O_constant)
8296 as_bad (_("Unsupported large constant"));
8297 imm_expr.X_add_number = -imm_expr.X_add_number;
8298 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8320 goto do_reverse_branch;
8324 goto do_reverse_branch;
8336 goto do_reverse_branch;
8347 macro_build (NULL, s, "x,y", xreg, yreg);
8348 macro_build (&offset_expr, s2, "p");
8375 goto do_addone_branch_i;
8380 goto do_addone_branch_i;
8395 goto do_addone_branch_i;
8402 if (imm_expr.X_op != O_constant)
8403 as_bad (_("Unsupported large constant"));
8404 ++imm_expr.X_add_number;
8407 macro_build (&imm_expr, s, s3, xreg);
8408 macro_build (&offset_expr, s2, "p");
8412 expr1.X_add_number = 0;
8413 macro_build (&expr1, "slti", "x,8", yreg);
8415 move_register (xreg, yreg);
8416 expr1.X_add_number = 2;
8417 macro_build (&expr1, "bteqz", "p");
8418 macro_build (NULL, "neg", "x,w", xreg, xreg);
8422 /* For consistency checking, verify that all bits are specified either
8423 by the match/mask part of the instruction definition, or by the
8426 validate_mips_insn (const struct mips_opcode *opc)
8428 const char *p = opc->args;
8430 unsigned long used_bits = opc->mask;
8432 if ((used_bits & opc->match) != opc->match)
8434 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8435 opc->name, opc->args);
8438 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8448 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8449 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8450 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8451 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8452 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8453 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8454 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8455 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8456 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8457 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8458 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8459 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8460 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8462 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8463 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8464 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8465 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8466 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8467 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8468 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8469 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8470 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8471 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8474 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8475 c, opc->name, opc->args);
8479 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8480 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8482 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8483 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8484 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8485 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8487 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8488 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8490 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8491 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8493 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8494 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8495 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8496 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8497 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8498 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8499 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8500 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8501 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8502 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8503 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8504 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8505 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8506 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8507 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8508 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8509 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8511 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8512 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8513 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8514 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8516 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8517 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8518 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8519 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8520 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8521 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8522 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8523 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8524 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8527 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8528 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8529 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8530 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8531 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8534 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8535 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8536 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8537 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8538 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8539 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8540 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8541 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8542 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8543 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8544 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8545 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8546 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8547 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8548 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8549 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8550 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8551 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8553 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8554 c, opc->name, opc->args);
8558 if (used_bits != 0xffffffff)
8560 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8561 ~used_bits & 0xffffffff, opc->name, opc->args);
8567 /* UDI immediates. */
8575 static const struct mips_immed mips_immed[] = {
8576 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8577 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8578 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8579 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8583 /* Check whether an odd floating-point register is allowed. */
8585 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8587 const char *s = insn->name;
8589 if (insn->pinfo == INSN_MACRO)
8590 /* Let a macro pass, we'll catch it later when it is expanded. */
8593 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8595 /* Allow odd registers for single-precision ops. */
8596 switch (insn->pinfo & (FP_S | FP_D))
8600 return 1; /* both single precision - ok */
8602 return 0; /* both double precision - fail */
8607 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8608 s = strchr (insn->name, '.');
8610 s = s != NULL ? strchr (s + 1, '.') : NULL;
8611 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8614 /* Single-precision coprocessor loads and moves are OK too. */
8615 if ((insn->pinfo & FP_S)
8616 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8617 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8623 /* This routine assembles an instruction into its binary format. As a
8624 side effect, it sets one of the global variables imm_reloc or
8625 offset_reloc to the type of relocation to do if one of the operands
8626 is an address expression. */
8629 mips_ip (char *str, struct mips_cl_insn *ip)
8634 struct mips_opcode *insn;
8637 unsigned int lastregno = 0;
8638 unsigned int lastpos = 0;
8639 unsigned int limlo, limhi;
8642 offsetT min_range, max_range;
8648 /* If the instruction contains a '.', we first try to match an instruction
8649 including the '.'. Then we try again without the '.'. */
8651 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8654 /* If we stopped on whitespace, then replace the whitespace with null for
8655 the call to hash_find. Save the character we replaced just in case we
8656 have to re-parse the instruction. */
8663 insn = (struct mips_opcode *) hash_find (op_hash, str);
8665 /* If we didn't find the instruction in the opcode table, try again, but
8666 this time with just the instruction up to, but not including the
8670 /* Restore the character we overwrite above (if any). */
8674 /* Scan up to the first '.' or whitespace. */
8676 *s != '\0' && *s != '.' && !ISSPACE (*s);
8680 /* If we did not find a '.', then we can quit now. */
8683 insn_error = _("unrecognized opcode");
8687 /* Lookup the instruction in the hash table. */
8689 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8691 insn_error = _("unrecognized opcode");
8701 gas_assert (strcmp (insn->name, str) == 0);
8703 ok = is_opcode_valid (insn);
8706 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8707 && strcmp (insn->name, insn[1].name) == 0)
8716 static char buf[100];
8718 _("opcode not supported on this processor: %s (%s)"),
8719 mips_cpu_info_from_arch (mips_opts.arch)->name,
8720 mips_cpu_info_from_isa (mips_opts.isa)->name);
8729 create_insn (ip, insn);
8732 lastregno = 0xffffffff;
8733 for (args = insn->args;; ++args)
8737 s += strspn (s, " \t");
8741 case '\0': /* end of args */
8746 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8747 my_getExpression (&imm_expr, s);
8748 check_absolute_expr (ip, &imm_expr);
8749 if ((unsigned long) imm_expr.X_add_number != 1
8750 && (unsigned long) imm_expr.X_add_number != 3)
8752 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8753 (unsigned long) imm_expr.X_add_number);
8755 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8756 imm_expr.X_op = O_absent;
8760 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8761 my_getExpression (&imm_expr, s);
8762 check_absolute_expr (ip, &imm_expr);
8763 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8765 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8766 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8768 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8769 imm_expr.X_op = O_absent;
8773 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8774 my_getExpression (&imm_expr, s);
8775 check_absolute_expr (ip, &imm_expr);
8776 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8778 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8779 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8781 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8782 imm_expr.X_op = O_absent;
8786 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8787 my_getExpression (&imm_expr, s);
8788 check_absolute_expr (ip, &imm_expr);
8789 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8791 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8792 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8794 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8795 imm_expr.X_op = O_absent;
8799 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8800 my_getExpression (&imm_expr, s);
8801 check_absolute_expr (ip, &imm_expr);
8802 if (imm_expr.X_add_number & ~OP_MASK_RS)
8804 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8805 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8807 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8808 imm_expr.X_op = O_absent;
8812 case '7': /* four dsp accumulators in bits 11,12 */
8813 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8814 s[3] >= '0' && s[3] <= '3')
8818 INSERT_OPERAND (DSPACC, *ip, regno);
8822 as_bad (_("Invalid dsp acc register"));
8825 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8826 my_getExpression (&imm_expr, s);
8827 check_absolute_expr (ip, &imm_expr);
8828 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8830 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8832 (unsigned long) imm_expr.X_add_number);
8834 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8835 imm_expr.X_op = O_absent;
8839 case '9': /* four dsp accumulators in bits 21,22 */
8840 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8841 s[3] >= '0' && s[3] <= '3')
8845 INSERT_OPERAND (DSPACC_S, *ip, regno);
8849 as_bad (_("Invalid dsp acc register"));
8852 case '0': /* dsp 6-bit signed immediate in bit 20 */
8853 my_getExpression (&imm_expr, s);
8854 check_absolute_expr (ip, &imm_expr);
8855 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8856 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8857 if (imm_expr.X_add_number < min_range ||
8858 imm_expr.X_add_number > max_range)
8860 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8861 (long) min_range, (long) max_range,
8862 (long) imm_expr.X_add_number);
8864 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8865 imm_expr.X_op = O_absent;
8869 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8870 my_getExpression (&imm_expr, s);
8871 check_absolute_expr (ip, &imm_expr);
8872 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8874 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8876 (unsigned long) imm_expr.X_add_number);
8878 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8879 imm_expr.X_op = O_absent;
8883 case ':': /* dsp 7-bit signed immediate in bit 19 */
8884 my_getExpression (&imm_expr, s);
8885 check_absolute_expr (ip, &imm_expr);
8886 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8887 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8888 if (imm_expr.X_add_number < min_range ||
8889 imm_expr.X_add_number > max_range)
8891 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8892 (long) min_range, (long) max_range,
8893 (long) imm_expr.X_add_number);
8895 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8896 imm_expr.X_op = O_absent;
8900 case '@': /* dsp 10-bit signed immediate in bit 16 */
8901 my_getExpression (&imm_expr, s);
8902 check_absolute_expr (ip, &imm_expr);
8903 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8904 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8905 if (imm_expr.X_add_number < min_range ||
8906 imm_expr.X_add_number > max_range)
8908 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8909 (long) min_range, (long) max_range,
8910 (long) imm_expr.X_add_number);
8912 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8913 imm_expr.X_op = O_absent;
8917 case '!': /* MT usermode flag bit. */
8918 my_getExpression (&imm_expr, s);
8919 check_absolute_expr (ip, &imm_expr);
8920 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8921 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8922 (unsigned long) imm_expr.X_add_number);
8923 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8924 imm_expr.X_op = O_absent;
8928 case '$': /* MT load high flag bit. */
8929 my_getExpression (&imm_expr, s);
8930 check_absolute_expr (ip, &imm_expr);
8931 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8932 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8933 (unsigned long) imm_expr.X_add_number);
8934 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8935 imm_expr.X_op = O_absent;
8939 case '*': /* four dsp accumulators in bits 18,19 */
8940 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8941 s[3] >= '0' && s[3] <= '3')
8945 INSERT_OPERAND (MTACC_T, *ip, regno);
8949 as_bad (_("Invalid dsp/smartmips acc register"));
8952 case '&': /* four dsp accumulators in bits 13,14 */
8953 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8954 s[3] >= '0' && s[3] <= '3')
8958 INSERT_OPERAND (MTACC_D, *ip, regno);
8962 as_bad (_("Invalid dsp/smartmips acc register"));
8974 INSERT_OPERAND (RS, *ip, lastregno);
8978 INSERT_OPERAND (RT, *ip, lastregno);
8982 INSERT_OPERAND (FT, *ip, lastregno);
8986 INSERT_OPERAND (FS, *ip, lastregno);
8992 /* Handle optional base register.
8993 Either the base register is omitted or
8994 we must have a left paren. */
8995 /* This is dependent on the next operand specifier
8996 is a base register specification. */
8997 gas_assert (args[1] == 'b' || args[1] == '5'
8998 || args[1] == '-' || args[1] == '4');
9002 case ')': /* these must match exactly */
9009 case '+': /* Opcode extension character. */
9012 case '1': /* UDI immediates. */
9017 const struct mips_immed *imm = mips_immed;
9019 while (imm->type && imm->type != *args)
9023 my_getExpression (&imm_expr, s);
9024 check_absolute_expr (ip, &imm_expr);
9025 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9027 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9028 imm->desc ? imm->desc : ip->insn_mo->name,
9029 (unsigned long) imm_expr.X_add_number,
9030 (unsigned long) imm_expr.X_add_number);
9031 imm_expr.X_add_number &= imm->mask;
9033 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9035 imm_expr.X_op = O_absent;
9040 case 'A': /* ins/ext position, becomes LSB. */
9049 my_getExpression (&imm_expr, s);
9050 check_absolute_expr (ip, &imm_expr);
9051 if ((unsigned long) imm_expr.X_add_number < limlo
9052 || (unsigned long) imm_expr.X_add_number > limhi)
9054 as_bad (_("Improper position (%lu)"),
9055 (unsigned long) imm_expr.X_add_number);
9056 imm_expr.X_add_number = limlo;
9058 lastpos = imm_expr.X_add_number;
9059 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9060 imm_expr.X_op = O_absent;
9064 case 'B': /* ins size, becomes MSB. */
9073 my_getExpression (&imm_expr, s);
9074 check_absolute_expr (ip, &imm_expr);
9075 /* Check for negative input so that small negative numbers
9076 will not succeed incorrectly. The checks against
9077 (pos+size) transitively check "size" itself,
9078 assuming that "pos" is reasonable. */
9079 if ((long) imm_expr.X_add_number < 0
9080 || ((unsigned long) imm_expr.X_add_number
9082 || ((unsigned long) imm_expr.X_add_number
9085 as_bad (_("Improper insert size (%lu, position %lu)"),
9086 (unsigned long) imm_expr.X_add_number,
9087 (unsigned long) lastpos);
9088 imm_expr.X_add_number = limlo - lastpos;
9090 INSERT_OPERAND (INSMSB, *ip,
9091 lastpos + imm_expr.X_add_number - 1);
9092 imm_expr.X_op = O_absent;
9096 case 'C': /* ext size, becomes MSBD. */
9109 my_getExpression (&imm_expr, s);
9110 check_absolute_expr (ip, &imm_expr);
9111 /* Check for negative input so that small negative numbers
9112 will not succeed incorrectly. The checks against
9113 (pos+size) transitively check "size" itself,
9114 assuming that "pos" is reasonable. */
9115 if ((long) imm_expr.X_add_number < 0
9116 || ((unsigned long) imm_expr.X_add_number
9118 || ((unsigned long) imm_expr.X_add_number
9121 as_bad (_("Improper extract size (%lu, position %lu)"),
9122 (unsigned long) imm_expr.X_add_number,
9123 (unsigned long) lastpos);
9124 imm_expr.X_add_number = limlo - lastpos;
9126 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9127 imm_expr.X_op = O_absent;
9132 /* +D is for disassembly only; never match. */
9136 /* "+I" is like "I", except that imm2_expr is used. */
9137 my_getExpression (&imm2_expr, s);
9138 if (imm2_expr.X_op != O_big
9139 && imm2_expr.X_op != O_constant)
9140 insn_error = _("absolute expression required");
9141 if (HAVE_32BIT_GPRS)
9142 normalize_constant_expr (&imm2_expr);
9146 case 'T': /* Coprocessor register. */
9147 /* +T is for disassembly only; never match. */
9150 case 't': /* Coprocessor register number. */
9151 if (s[0] == '$' && ISDIGIT (s[1]))
9161 while (ISDIGIT (*s));
9163 as_bad (_("Invalid register number (%d)"), regno);
9166 INSERT_OPERAND (RT, *ip, regno);
9171 as_bad (_("Invalid coprocessor 0 register number"));
9175 /* bbit[01] and bbit[01]32 bit index. Give error if index
9176 is not in the valid range. */
9177 my_getExpression (&imm_expr, s);
9178 check_absolute_expr (ip, &imm_expr);
9179 if ((unsigned) imm_expr.X_add_number > 31)
9181 as_bad (_("Improper bit index (%lu)"),
9182 (unsigned long) imm_expr.X_add_number);
9183 imm_expr.X_add_number = 0;
9185 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9186 imm_expr.X_op = O_absent;
9191 /* bbit[01] bit index when bbit is used but we generate
9192 bbit[01]32 because the index is over 32. Move to the
9193 next candidate if index is not in the valid range. */
9194 my_getExpression (&imm_expr, s);
9195 check_absolute_expr (ip, &imm_expr);
9196 if ((unsigned) imm_expr.X_add_number < 32
9197 || (unsigned) imm_expr.X_add_number > 63)
9199 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9200 imm_expr.X_op = O_absent;
9205 /* cins, cins32, exts and exts32 position field. Give error
9206 if it's not in the valid range. */
9207 my_getExpression (&imm_expr, s);
9208 check_absolute_expr (ip, &imm_expr);
9209 if ((unsigned) imm_expr.X_add_number > 31)
9211 as_bad (_("Improper position (%lu)"),
9212 (unsigned long) imm_expr.X_add_number);
9213 imm_expr.X_add_number = 0;
9215 /* Make the pos explicit to simplify +S. */
9216 lastpos = imm_expr.X_add_number + 32;
9217 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9218 imm_expr.X_op = O_absent;
9223 /* cins, cins32, exts and exts32 position field. Move to
9224 the next candidate if it's not in the valid range. */
9225 my_getExpression (&imm_expr, s);
9226 check_absolute_expr (ip, &imm_expr);
9227 if ((unsigned) imm_expr.X_add_number < 32
9228 || (unsigned) imm_expr.X_add_number > 63)
9230 lastpos = imm_expr.X_add_number;
9231 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9232 imm_expr.X_op = O_absent;
9237 /* cins and exts length-minus-one field. */
9238 my_getExpression (&imm_expr, s);
9239 check_absolute_expr (ip, &imm_expr);
9240 if ((unsigned long) imm_expr.X_add_number > 31)
9242 as_bad (_("Improper size (%lu)"),
9243 (unsigned long) imm_expr.X_add_number);
9244 imm_expr.X_add_number = 0;
9246 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9247 imm_expr.X_op = O_absent;
9252 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9253 length-minus-one field. */
9254 my_getExpression (&imm_expr, s);
9255 check_absolute_expr (ip, &imm_expr);
9256 if ((long) imm_expr.X_add_number < 0
9257 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9259 as_bad (_("Improper size (%lu)"),
9260 (unsigned long) imm_expr.X_add_number);
9261 imm_expr.X_add_number = 0;
9263 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9264 imm_expr.X_op = O_absent;
9269 /* seqi/snei immediate field. */
9270 my_getExpression (&imm_expr, s);
9271 check_absolute_expr (ip, &imm_expr);
9272 if ((long) imm_expr.X_add_number < -512
9273 || (long) imm_expr.X_add_number >= 512)
9275 as_bad (_("Improper immediate (%ld)"),
9276 (long) imm_expr.X_add_number);
9277 imm_expr.X_add_number = 0;
9279 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9280 imm_expr.X_op = O_absent;
9285 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9286 *args, insn->name, insn->args);
9287 /* Further processing is fruitless. */
9292 case '<': /* must be at least one digit */
9294 * According to the manual, if the shift amount is greater
9295 * than 31 or less than 0, then the shift amount should be
9296 * mod 32. In reality the mips assembler issues an error.
9297 * We issue a warning and mask out all but the low 5 bits.
9299 my_getExpression (&imm_expr, s);
9300 check_absolute_expr (ip, &imm_expr);
9301 if ((unsigned long) imm_expr.X_add_number > 31)
9302 as_warn (_("Improper shift amount (%lu)"),
9303 (unsigned long) imm_expr.X_add_number);
9304 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9305 imm_expr.X_op = O_absent;
9309 case '>': /* shift amount minus 32 */
9310 my_getExpression (&imm_expr, s);
9311 check_absolute_expr (ip, &imm_expr);
9312 if ((unsigned long) imm_expr.X_add_number < 32
9313 || (unsigned long) imm_expr.X_add_number > 63)
9315 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9316 imm_expr.X_op = O_absent;
9320 case 'k': /* cache code */
9321 case 'h': /* prefx code */
9322 case '1': /* sync type */
9323 my_getExpression (&imm_expr, s);
9324 check_absolute_expr (ip, &imm_expr);
9325 if ((unsigned long) imm_expr.X_add_number > 31)
9326 as_warn (_("Invalid value for `%s' (%lu)"),
9328 (unsigned long) imm_expr.X_add_number);
9331 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9332 switch (imm_expr.X_add_number)
9341 case 31: /* These are ok. */
9344 default: /* The rest must be changed to 28. */
9345 imm_expr.X_add_number = 28;
9348 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9350 else if (*args == 'h')
9351 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9353 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9354 imm_expr.X_op = O_absent;
9358 case 'c': /* break code */
9359 my_getExpression (&imm_expr, s);
9360 check_absolute_expr (ip, &imm_expr);
9361 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9362 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9364 (unsigned long) imm_expr.X_add_number);
9365 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9366 imm_expr.X_op = O_absent;
9370 case 'q': /* lower break code */
9371 my_getExpression (&imm_expr, s);
9372 check_absolute_expr (ip, &imm_expr);
9373 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9374 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9376 (unsigned long) imm_expr.X_add_number);
9377 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9378 imm_expr.X_op = O_absent;
9382 case 'B': /* 20-bit syscall/break code. */
9383 my_getExpression (&imm_expr, s);
9384 check_absolute_expr (ip, &imm_expr);
9385 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9386 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9388 (unsigned long) imm_expr.X_add_number);
9389 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9390 imm_expr.X_op = O_absent;
9394 case 'C': /* Coprocessor code */
9395 my_getExpression (&imm_expr, s);
9396 check_absolute_expr (ip, &imm_expr);
9397 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9399 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9400 (unsigned long) imm_expr.X_add_number);
9401 imm_expr.X_add_number &= OP_MASK_COPZ;
9403 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9404 imm_expr.X_op = O_absent;
9408 case 'J': /* 19-bit wait code. */
9409 my_getExpression (&imm_expr, s);
9410 check_absolute_expr (ip, &imm_expr);
9411 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9413 as_warn (_("Illegal 19-bit code (%lu)"),
9414 (unsigned long) imm_expr.X_add_number);
9415 imm_expr.X_add_number &= OP_MASK_CODE19;
9417 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9418 imm_expr.X_op = O_absent;
9422 case 'P': /* Performance register. */
9423 my_getExpression (&imm_expr, s);
9424 check_absolute_expr (ip, &imm_expr);
9425 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9426 as_warn (_("Invalid performance register (%lu)"),
9427 (unsigned long) imm_expr.X_add_number);
9428 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9429 imm_expr.X_op = O_absent;
9433 case 'G': /* Coprocessor destination register. */
9434 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9435 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, ®no);
9437 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
9438 INSERT_OPERAND (RD, *ip, regno);
9447 case 'b': /* base register */
9448 case 'd': /* destination register */
9449 case 's': /* source register */
9450 case 't': /* target register */
9451 case 'r': /* both target and source */
9452 case 'v': /* both dest and source */
9453 case 'w': /* both dest and target */
9454 case 'E': /* coprocessor target register */
9455 case 'K': /* 'rdhwr' destination register */
9456 case 'x': /* ignore register name */
9457 case 'z': /* must be zero register */
9458 case 'U': /* destination register (clo/clz). */
9459 case 'g': /* coprocessor destination register */
9461 if (*args == 'E' || *args == 'K')
9462 ok = reg_lookup (&s, RTYPE_NUM, ®no);
9465 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
9466 if (regno == AT && mips_opts.at)
9468 if (mips_opts.at == ATREG)
9469 as_warn (_("used $at without \".set noat\""));
9471 as_warn (_("used $%u with \".set at=$%u\""),
9472 regno, mips_opts.at);
9482 if (c == 'r' || c == 'v' || c == 'w')
9489 /* 'z' only matches $0. */
9490 if (c == 'z' && regno != 0)
9493 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9495 if (regno == lastregno)
9497 insn_error = _("source and destination must be different");
9500 if (regno == 31 && lastregno == 0xffffffff)
9502 insn_error = _("a destination register must be supplied");
9506 /* Now that we have assembled one operand, we use the args string
9507 * to figure out where it goes in the instruction. */
9514 INSERT_OPERAND (RS, *ip, regno);
9520 INSERT_OPERAND (RD, *ip, regno);
9523 INSERT_OPERAND (RD, *ip, regno);
9524 INSERT_OPERAND (RT, *ip, regno);
9529 INSERT_OPERAND (RT, *ip, regno);
9532 /* This case exists because on the r3000 trunc
9533 expands into a macro which requires a gp
9534 register. On the r6000 or r4000 it is
9535 assembled into a single instruction which
9536 ignores the register. Thus the insn version
9537 is MIPS_ISA2 and uses 'x', and the macro
9538 version is MIPS_ISA1 and uses 't'. */
9541 /* This case is for the div instruction, which
9542 acts differently if the destination argument
9543 is $0. This only matches $0, and is checked
9544 outside the switch. */
9547 /* Itbl operand; not yet implemented. FIXME ?? */
9549 /* What about all other operands like 'i', which
9550 can be specified in the opcode table? */
9559 INSERT_OPERAND (RS, *ip, lastregno);
9562 INSERT_OPERAND (RT, *ip, lastregno);
9567 case 'O': /* MDMX alignment immediate constant. */
9568 my_getExpression (&imm_expr, s);
9569 check_absolute_expr (ip, &imm_expr);
9570 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9571 as_warn (_("Improper align amount (%ld), using low bits"),
9572 (long) imm_expr.X_add_number);
9573 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9574 imm_expr.X_op = O_absent;
9578 case 'Q': /* MDMX vector, element sel, or const. */
9581 /* MDMX Immediate. */
9582 my_getExpression (&imm_expr, s);
9583 check_absolute_expr (ip, &imm_expr);
9584 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9585 as_warn (_("Invalid MDMX Immediate (%ld)"),
9586 (long) imm_expr.X_add_number);
9587 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9588 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9589 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9591 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9592 imm_expr.X_op = O_absent;
9596 /* Not MDMX Immediate. Fall through. */
9597 case 'X': /* MDMX destination register. */
9598 case 'Y': /* MDMX source register. */
9599 case 'Z': /* MDMX target register. */
9601 case 'D': /* floating point destination register */
9602 case 'S': /* floating point source register */
9603 case 'T': /* floating point target register */
9604 case 'R': /* floating point source register */
9609 || (mips_opts.ase_mdmx
9610 && (ip->insn_mo->pinfo & FP_D)
9611 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9612 | INSN_COPROC_MEMORY_DELAY
9613 | INSN_LOAD_COPROC_DELAY
9614 | INSN_LOAD_MEMORY_DELAY
9615 | INSN_STORE_MEMORY))))
9618 if (reg_lookup (&s, rtype, ®no))
9620 if ((regno & 1) != 0
9622 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9623 as_warn (_("Float register should be even, was %d"),
9631 if (c == 'V' || c == 'W')
9642 INSERT_OPERAND (FD, *ip, regno);
9647 INSERT_OPERAND (FS, *ip, regno);
9650 /* This is like 'Z', but also needs to fix the MDMX
9651 vector/scalar select bits. Note that the
9652 scalar immediate case is handled above. */
9655 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9656 int max_el = (is_qh ? 3 : 7);
9658 my_getExpression(&imm_expr, s);
9659 check_absolute_expr (ip, &imm_expr);
9661 if (imm_expr.X_add_number > max_el)
9662 as_bad (_("Bad element selector %ld"),
9663 (long) imm_expr.X_add_number);
9664 imm_expr.X_add_number &= max_el;
9665 ip->insn_opcode |= (imm_expr.X_add_number
9668 imm_expr.X_op = O_absent;
9670 as_warn (_("Expecting ']' found '%s'"), s);
9676 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9677 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9680 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9687 INSERT_OPERAND (FT, *ip, regno);
9690 INSERT_OPERAND (FR, *ip, regno);
9700 INSERT_OPERAND (FS, *ip, lastregno);
9703 INSERT_OPERAND (FT, *ip, lastregno);
9709 my_getExpression (&imm_expr, s);
9710 if (imm_expr.X_op != O_big
9711 && imm_expr.X_op != O_constant)
9712 insn_error = _("absolute expression required");
9713 if (HAVE_32BIT_GPRS)
9714 normalize_constant_expr (&imm_expr);
9719 my_getExpression (&offset_expr, s);
9720 normalize_address_expr (&offset_expr);
9721 *imm_reloc = BFD_RELOC_32;
9734 unsigned char temp[8];
9736 unsigned int length;
9741 /* These only appear as the last operand in an
9742 instruction, and every instruction that accepts
9743 them in any variant accepts them in all variants.
9744 This means we don't have to worry about backing out
9745 any changes if the instruction does not match.
9747 The difference between them is the size of the
9748 floating point constant and where it goes. For 'F'
9749 and 'L' the constant is 64 bits; for 'f' and 'l' it
9750 is 32 bits. Where the constant is placed is based
9751 on how the MIPS assembler does things:
9754 f -- immediate value
9757 The .lit4 and .lit8 sections are only used if
9758 permitted by the -G argument.
9760 The code below needs to know whether the target register
9761 is 32 or 64 bits wide. It relies on the fact 'f' and
9762 'F' are used with GPR-based instructions and 'l' and
9763 'L' are used with FPR-based instructions. */
9765 f64 = *args == 'F' || *args == 'L';
9766 using_gprs = *args == 'F' || *args == 'f';
9768 save_in = input_line_pointer;
9769 input_line_pointer = s;
9770 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9772 s = input_line_pointer;
9773 input_line_pointer = save_in;
9774 if (err != NULL && *err != '\0')
9776 as_bad (_("Bad floating point constant: %s"), err);
9777 memset (temp, '\0', sizeof temp);
9778 length = f64 ? 8 : 4;
9781 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9785 && (g_switch_value < 4
9786 || (temp[0] == 0 && temp[1] == 0)
9787 || (temp[2] == 0 && temp[3] == 0))))
9789 imm_expr.X_op = O_constant;
9790 if (! target_big_endian)
9791 imm_expr.X_add_number = bfd_getl32 (temp);
9793 imm_expr.X_add_number = bfd_getb32 (temp);
9796 && ! mips_disable_float_construction
9797 /* Constants can only be constructed in GPRs and
9798 copied to FPRs if the GPRs are at least as wide
9799 as the FPRs. Force the constant into memory if
9800 we are using 64-bit FPRs but the GPRs are only
9803 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9804 && ((temp[0] == 0 && temp[1] == 0)
9805 || (temp[2] == 0 && temp[3] == 0))
9806 && ((temp[4] == 0 && temp[5] == 0)
9807 || (temp[6] == 0 && temp[7] == 0)))
9809 /* The value is simple enough to load with a couple of
9810 instructions. If using 32-bit registers, set
9811 imm_expr to the high order 32 bits and offset_expr to
9812 the low order 32 bits. Otherwise, set imm_expr to
9813 the entire 64 bit constant. */
9814 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9816 imm_expr.X_op = O_constant;
9817 offset_expr.X_op = O_constant;
9818 if (! target_big_endian)
9820 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9821 offset_expr.X_add_number = bfd_getl32 (temp);
9825 imm_expr.X_add_number = bfd_getb32 (temp);
9826 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9828 if (offset_expr.X_add_number == 0)
9829 offset_expr.X_op = O_absent;
9831 else if (sizeof (imm_expr.X_add_number) > 4)
9833 imm_expr.X_op = O_constant;
9834 if (! target_big_endian)
9835 imm_expr.X_add_number = bfd_getl64 (temp);
9837 imm_expr.X_add_number = bfd_getb64 (temp);
9841 imm_expr.X_op = O_big;
9842 imm_expr.X_add_number = 4;
9843 if (! target_big_endian)
9845 generic_bignum[0] = bfd_getl16 (temp);
9846 generic_bignum[1] = bfd_getl16 (temp + 2);
9847 generic_bignum[2] = bfd_getl16 (temp + 4);
9848 generic_bignum[3] = bfd_getl16 (temp + 6);
9852 generic_bignum[0] = bfd_getb16 (temp + 6);
9853 generic_bignum[1] = bfd_getb16 (temp + 4);
9854 generic_bignum[2] = bfd_getb16 (temp + 2);
9855 generic_bignum[3] = bfd_getb16 (temp);
9861 const char *newname;
9864 /* Switch to the right section. */
9866 subseg = now_subseg;
9869 default: /* unused default case avoids warnings. */
9871 newname = RDATA_SECTION_NAME;
9872 if (g_switch_value >= 8)
9876 newname = RDATA_SECTION_NAME;
9879 gas_assert (g_switch_value >= 4);
9883 new_seg = subseg_new (newname, (subsegT) 0);
9885 bfd_set_section_flags (stdoutput, new_seg,
9890 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9891 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9892 record_alignment (new_seg, 4);
9894 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9896 as_bad (_("Can't use floating point insn in this section"));
9898 /* Set the argument to the current address in the
9900 offset_expr.X_op = O_symbol;
9901 offset_expr.X_add_symbol = symbol_temp_new_now ();
9902 offset_expr.X_add_number = 0;
9904 /* Put the floating point number into the section. */
9905 p = frag_more ((int) length);
9906 memcpy (p, temp, length);
9908 /* Switch back to the original section. */
9909 subseg_set (seg, subseg);
9914 case 'i': /* 16 bit unsigned immediate */
9915 case 'j': /* 16 bit signed immediate */
9916 *imm_reloc = BFD_RELOC_LO16;
9917 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9920 offsetT minval, maxval;
9922 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9923 && strcmp (insn->name, insn[1].name) == 0);
9925 /* If the expression was written as an unsigned number,
9926 only treat it as signed if there are no more
9930 && sizeof (imm_expr.X_add_number) <= 4
9931 && imm_expr.X_op == O_constant
9932 && imm_expr.X_add_number < 0
9933 && imm_expr.X_unsigned
9937 /* For compatibility with older assemblers, we accept
9938 0x8000-0xffff as signed 16-bit numbers when only
9939 signed numbers are allowed. */
9941 minval = 0, maxval = 0xffff;
9943 minval = -0x8000, maxval = 0x7fff;
9945 minval = -0x8000, maxval = 0xffff;
9947 if (imm_expr.X_op != O_constant
9948 || imm_expr.X_add_number < minval
9949 || imm_expr.X_add_number > maxval)
9953 if (imm_expr.X_op == O_constant
9954 || imm_expr.X_op == O_big)
9955 as_bad (_("expression out of range"));
9961 case 'o': /* 16 bit offset */
9962 offset_reloc[0] = BFD_RELOC_LO16;
9963 offset_reloc[1] = BFD_RELOC_UNUSED;
9964 offset_reloc[2] = BFD_RELOC_UNUSED;
9966 /* Check whether there is only a single bracketed expression
9967 left. If so, it must be the base register and the
9968 constant must be zero. */
9969 offset_reloc[0] = BFD_RELOC_LO16;
9970 offset_reloc[1] = BFD_RELOC_UNUSED;
9971 offset_reloc[2] = BFD_RELOC_UNUSED;
9972 if (*s == '(' && strchr (s + 1, '(') == 0)
9974 offset_expr.X_op = O_constant;
9975 offset_expr.X_add_number = 0;
9979 /* If this value won't fit into a 16 bit offset, then go
9980 find a macro that will generate the 32 bit offset
9982 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9983 && (offset_expr.X_op != O_constant
9984 || offset_expr.X_add_number >= 0x8000
9985 || offset_expr.X_add_number < -0x8000))
9991 case 'p': /* pc relative offset */
9992 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9993 my_getExpression (&offset_expr, s);
9997 case 'u': /* upper 16 bits */
9998 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9999 && imm_expr.X_op == O_constant
10000 && (imm_expr.X_add_number < 0
10001 || imm_expr.X_add_number >= 0x10000))
10002 as_bad (_("lui expression not in range 0..65535"));
10006 case 'a': /* 26 bit address */
10007 my_getExpression (&offset_expr, s);
10009 *offset_reloc = BFD_RELOC_MIPS_JMP;
10012 case 'N': /* 3 bit branch condition code */
10013 case 'M': /* 3 bit compare condition code */
10015 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10016 rtype |= RTYPE_FCC;
10017 if (!reg_lookup (&s, rtype, ®no))
10019 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10020 || strcmp(str + strlen(str) - 5, "any2f") == 0
10021 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10022 && (regno & 1) != 0)
10023 as_warn (_("Condition code register should be even for %s, was %d"),
10025 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10026 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10027 && (regno & 3) != 0)
10028 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10031 INSERT_OPERAND (BCC, *ip, regno);
10033 INSERT_OPERAND (CCC, *ip, regno);
10037 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10048 while (ISDIGIT (*s));
10051 c = 8; /* Invalid sel value. */
10054 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10055 ip->insn_opcode |= c;
10059 /* Must be at least one digit. */
10060 my_getExpression (&imm_expr, s);
10061 check_absolute_expr (ip, &imm_expr);
10063 if ((unsigned long) imm_expr.X_add_number
10064 > (unsigned long) OP_MASK_VECBYTE)
10066 as_bad (_("bad byte vector index (%ld)"),
10067 (long) imm_expr.X_add_number);
10068 imm_expr.X_add_number = 0;
10071 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10072 imm_expr.X_op = O_absent;
10077 my_getExpression (&imm_expr, s);
10078 check_absolute_expr (ip, &imm_expr);
10080 if ((unsigned long) imm_expr.X_add_number
10081 > (unsigned long) OP_MASK_VECALIGN)
10083 as_bad (_("bad byte vector index (%ld)"),
10084 (long) imm_expr.X_add_number);
10085 imm_expr.X_add_number = 0;
10088 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10089 imm_expr.X_op = O_absent;
10094 as_bad (_("bad char = '%c'\n"), *args);
10099 /* Args don't match. */
10100 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10101 !strcmp (insn->name, insn[1].name))
10105 insn_error = _("illegal operands");
10109 *(--argsStart) = save_c;
10110 insn_error = _("illegal operands");
10115 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10117 /* This routine assembles an instruction into its binary format when
10118 assembling for the mips16. As a side effect, it sets one of the
10119 global variables imm_reloc or offset_reloc to the type of
10120 relocation to do if one of the operands is an address expression.
10121 It also sets mips16_small and mips16_ext if the user explicitly
10122 requested a small or extended instruction. */
10125 mips16_ip (char *str, struct mips_cl_insn *ip)
10129 struct mips_opcode *insn;
10131 unsigned int regno;
10132 unsigned int lastregno = 0;
10138 mips16_small = FALSE;
10139 mips16_ext = FALSE;
10141 for (s = str; ISLOWER (*s); ++s)
10153 if (s[1] == 't' && s[2] == ' ')
10156 mips16_small = TRUE;
10160 else if (s[1] == 'e' && s[2] == ' ')
10167 /* Fall through. */
10169 insn_error = _("unknown opcode");
10173 if (mips_opts.noautoextend && ! mips16_ext)
10174 mips16_small = TRUE;
10176 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10178 insn_error = _("unrecognized opcode");
10187 gas_assert (strcmp (insn->name, str) == 0);
10189 ok = is_opcode_valid_16 (insn);
10192 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10193 && strcmp (insn->name, insn[1].name) == 0)
10202 static char buf[100];
10204 _("opcode not supported on this processor: %s (%s)"),
10205 mips_cpu_info_from_arch (mips_opts.arch)->name,
10206 mips_cpu_info_from_isa (mips_opts.isa)->name);
10213 create_insn (ip, insn);
10214 imm_expr.X_op = O_absent;
10215 imm_reloc[0] = BFD_RELOC_UNUSED;
10216 imm_reloc[1] = BFD_RELOC_UNUSED;
10217 imm_reloc[2] = BFD_RELOC_UNUSED;
10218 imm2_expr.X_op = O_absent;
10219 offset_expr.X_op = O_absent;
10220 offset_reloc[0] = BFD_RELOC_UNUSED;
10221 offset_reloc[1] = BFD_RELOC_UNUSED;
10222 offset_reloc[2] = BFD_RELOC_UNUSED;
10223 for (args = insn->args; 1; ++args)
10230 /* In this switch statement we call break if we did not find
10231 a match, continue if we did find a match, or return if we
10240 /* Stuff the immediate value in now, if we can. */
10241 if (imm_expr.X_op == O_constant
10242 && *imm_reloc > BFD_RELOC_UNUSED
10243 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10244 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10245 && insn->pinfo != INSN_MACRO)
10249 switch (*offset_reloc)
10251 case BFD_RELOC_MIPS16_HI16_S:
10252 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10255 case BFD_RELOC_MIPS16_HI16:
10256 tmp = imm_expr.X_add_number >> 16;
10259 case BFD_RELOC_MIPS16_LO16:
10260 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10264 case BFD_RELOC_UNUSED:
10265 tmp = imm_expr.X_add_number;
10271 *offset_reloc = BFD_RELOC_UNUSED;
10273 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10274 tmp, TRUE, mips16_small,
10275 mips16_ext, &ip->insn_opcode,
10276 &ip->use_extend, &ip->extend);
10277 imm_expr.X_op = O_absent;
10278 *imm_reloc = BFD_RELOC_UNUSED;
10292 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10295 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10311 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10313 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10317 /* Fall through. */
10328 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
10330 if (c == 'v' || c == 'w')
10333 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10335 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10346 if (c == 'v' || c == 'w')
10348 regno = mips16_to_32_reg_map[lastregno];
10362 regno = mips32_to_16_reg_map[regno];
10367 regno = ILLEGAL_REG;
10372 regno = ILLEGAL_REG;
10377 regno = ILLEGAL_REG;
10382 if (regno == AT && mips_opts.at)
10384 if (mips_opts.at == ATREG)
10385 as_warn (_("used $at without \".set noat\""));
10387 as_warn (_("used $%u with \".set at=$%u\""),
10388 regno, mips_opts.at);
10396 if (regno == ILLEGAL_REG)
10403 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10407 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10410 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10413 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10419 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10422 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10423 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10433 if (strncmp (s, "$pc", 3) == 0)
10450 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10453 if (imm_expr.X_op != O_constant)
10456 ip->use_extend = TRUE;
10461 /* We need to relax this instruction. */
10462 *offset_reloc = *imm_reloc;
10463 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10468 *imm_reloc = BFD_RELOC_UNUSED;
10469 /* Fall through. */
10476 my_getExpression (&imm_expr, s);
10477 if (imm_expr.X_op == O_register)
10479 /* What we thought was an expression turned out to
10482 if (s[0] == '(' && args[1] == '(')
10484 /* It looks like the expression was omitted
10485 before a register indirection, which means
10486 that the expression is implicitly zero. We
10487 still set up imm_expr, so that we handle
10488 explicit extensions correctly. */
10489 imm_expr.X_op = O_constant;
10490 imm_expr.X_add_number = 0;
10491 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10498 /* We need to relax this instruction. */
10499 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10508 /* We use offset_reloc rather than imm_reloc for the PC
10509 relative operands. This lets macros with both
10510 immediate and address operands work correctly. */
10511 my_getExpression (&offset_expr, s);
10513 if (offset_expr.X_op == O_register)
10516 /* We need to relax this instruction. */
10517 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10521 case '6': /* break code */
10522 my_getExpression (&imm_expr, s);
10523 check_absolute_expr (ip, &imm_expr);
10524 if ((unsigned long) imm_expr.X_add_number > 63)
10525 as_warn (_("Invalid value for `%s' (%lu)"),
10527 (unsigned long) imm_expr.X_add_number);
10528 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10529 imm_expr.X_op = O_absent;
10533 case 'a': /* 26 bit address */
10534 my_getExpression (&offset_expr, s);
10536 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10537 ip->insn_opcode <<= 16;
10540 case 'l': /* register list for entry macro */
10541 case 'L': /* register list for exit macro */
10551 unsigned int freg, reg1, reg2;
10553 while (*s == ' ' || *s == ',')
10555 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
10557 else if (reg_lookup (&s, RTYPE_FPU, ®1))
10561 as_bad (_("can't parse register list"));
10571 if (!reg_lookup (&s, freg ? RTYPE_FPU
10572 : (RTYPE_GP | RTYPE_NUM), ®2))
10574 as_bad (_("invalid register list"));
10578 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10580 mask &= ~ (7 << 3);
10583 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10585 mask &= ~ (7 << 3);
10588 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10589 mask |= (reg2 - 3) << 3;
10590 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10591 mask |= (reg2 - 15) << 1;
10592 else if (reg1 == RA && reg2 == RA)
10596 as_bad (_("invalid register list"));
10600 /* The mask is filled in in the opcode table for the
10601 benefit of the disassembler. We remove it before
10602 applying the actual mask. */
10603 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10604 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10608 case 'm': /* Register list for save insn. */
10609 case 'M': /* Register list for restore insn. */
10612 int framesz = 0, seen_framesz = 0;
10613 int nargs = 0, statics = 0, sregs = 0;
10617 unsigned int reg1, reg2;
10619 SKIP_SPACE_TABS (s);
10622 SKIP_SPACE_TABS (s);
10624 my_getExpression (&imm_expr, s);
10625 if (imm_expr.X_op == O_constant)
10627 /* Handle the frame size. */
10630 as_bad (_("more than one frame size in list"));
10634 framesz = imm_expr.X_add_number;
10635 imm_expr.X_op = O_absent;
10640 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
10642 as_bad (_("can't parse register list"));
10654 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®2)
10657 as_bad (_("can't parse register list"));
10662 while (reg1 <= reg2)
10664 if (reg1 >= 4 && reg1 <= 7)
10668 nargs |= 1 << (reg1 - 4);
10670 /* statics $a0-$a3 */
10671 statics |= 1 << (reg1 - 4);
10673 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10676 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10678 else if (reg1 == 31)
10680 /* Add $ra to insn. */
10685 as_bad (_("unexpected register in list"));
10693 /* Encode args/statics combination. */
10694 if (nargs & statics)
10695 as_bad (_("arg/static registers overlap"));
10696 else if (nargs == 0xf)
10697 /* All $a0-$a3 are args. */
10698 opcode |= MIPS16_ALL_ARGS << 16;
10699 else if (statics == 0xf)
10700 /* All $a0-$a3 are statics. */
10701 opcode |= MIPS16_ALL_STATICS << 16;
10704 int narg = 0, nstat = 0;
10706 /* Count arg registers. */
10707 while (nargs & 0x1)
10713 as_bad (_("invalid arg register list"));
10715 /* Count static registers. */
10716 while (statics & 0x8)
10718 statics = (statics << 1) & 0xf;
10722 as_bad (_("invalid static register list"));
10724 /* Encode args/statics. */
10725 opcode |= ((narg << 2) | nstat) << 16;
10728 /* Encode $s0/$s1. */
10729 if (sregs & (1 << 0)) /* $s0 */
10731 if (sregs & (1 << 1)) /* $s1 */
10737 /* Count regs $s2-$s8. */
10745 as_bad (_("invalid static register list"));
10746 /* Encode $s2-$s8. */
10747 opcode |= nsreg << 24;
10750 /* Encode frame size. */
10752 as_bad (_("missing frame size"));
10753 else if ((framesz & 7) != 0 || framesz < 0
10754 || framesz > 0xff * 8)
10755 as_bad (_("invalid frame size"));
10756 else if (framesz != 128 || (opcode >> 16) != 0)
10759 opcode |= (((framesz & 0xf0) << 16)
10760 | (framesz & 0x0f));
10763 /* Finally build the instruction. */
10764 if ((opcode >> 16) != 0 || framesz == 0)
10766 ip->use_extend = TRUE;
10767 ip->extend = opcode >> 16;
10769 ip->insn_opcode |= opcode & 0x7f;
10773 case 'e': /* extend code */
10774 my_getExpression (&imm_expr, s);
10775 check_absolute_expr (ip, &imm_expr);
10776 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10778 as_warn (_("Invalid value for `%s' (%lu)"),
10780 (unsigned long) imm_expr.X_add_number);
10781 imm_expr.X_add_number &= 0x7ff;
10783 ip->insn_opcode |= imm_expr.X_add_number;
10784 imm_expr.X_op = O_absent;
10794 /* Args don't match. */
10795 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10796 strcmp (insn->name, insn[1].name) == 0)
10803 insn_error = _("illegal operands");
10809 /* This structure holds information we know about a mips16 immediate
10812 struct mips16_immed_operand
10814 /* The type code used in the argument string in the opcode table. */
10816 /* The number of bits in the short form of the opcode. */
10818 /* The number of bits in the extended form of the opcode. */
10820 /* The amount by which the short form is shifted when it is used;
10821 for example, the sw instruction has a shift count of 2. */
10823 /* The amount by which the short form is shifted when it is stored
10824 into the instruction code. */
10826 /* Non-zero if the short form is unsigned. */
10828 /* Non-zero if the extended form is unsigned. */
10830 /* Non-zero if the value is PC relative. */
10834 /* The mips16 immediate operand types. */
10836 static const struct mips16_immed_operand mips16_immed_operands[] =
10838 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10839 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10840 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10841 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10842 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10843 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10844 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10845 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10846 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10847 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10848 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10849 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10850 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10851 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10852 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10853 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10854 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10855 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10856 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10857 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10858 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10861 #define MIPS16_NUM_IMMED \
10862 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10864 /* Handle a mips16 instruction with an immediate value. This or's the
10865 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10866 whether an extended value is needed; if one is needed, it sets
10867 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10868 If SMALL is true, an unextended opcode was explicitly requested.
10869 If EXT is true, an extended opcode was explicitly requested. If
10870 WARN is true, warn if EXT does not match reality. */
10873 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10874 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10875 unsigned long *insn, bfd_boolean *use_extend,
10876 unsigned short *extend)
10878 const struct mips16_immed_operand *op;
10879 int mintiny, maxtiny;
10880 bfd_boolean needext;
10882 op = mips16_immed_operands;
10883 while (op->type != type)
10886 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10891 if (type == '<' || type == '>' || type == '[' || type == ']')
10894 maxtiny = 1 << op->nbits;
10899 maxtiny = (1 << op->nbits) - 1;
10904 mintiny = - (1 << (op->nbits - 1));
10905 maxtiny = (1 << (op->nbits - 1)) - 1;
10908 /* Branch offsets have an implicit 0 in the lowest bit. */
10909 if (type == 'p' || type == 'q')
10912 if ((val & ((1 << op->shift) - 1)) != 0
10913 || val < (mintiny << op->shift)
10914 || val > (maxtiny << op->shift))
10919 if (warn && ext && ! needext)
10920 as_warn_where (file, line,
10921 _("extended operand requested but not required"));
10922 if (small && needext)
10923 as_bad_where (file, line, _("invalid unextended operand value"));
10925 if (small || (! ext && ! needext))
10929 *use_extend = FALSE;
10930 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10931 insnval <<= op->op_shift;
10936 long minext, maxext;
10942 maxext = (1 << op->extbits) - 1;
10946 minext = - (1 << (op->extbits - 1));
10947 maxext = (1 << (op->extbits - 1)) - 1;
10949 if (val < minext || val > maxext)
10950 as_bad_where (file, line,
10951 _("operand value out of range for instruction"));
10953 *use_extend = TRUE;
10954 if (op->extbits == 16)
10956 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10959 else if (op->extbits == 15)
10961 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10966 extval = ((val & 0x1f) << 6) | (val & 0x20);
10970 *extend = (unsigned short) extval;
10975 struct percent_op_match
10978 bfd_reloc_code_real_type reloc;
10981 static const struct percent_op_match mips_percent_op[] =
10983 {"%lo", BFD_RELOC_LO16},
10985 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10986 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10987 {"%call16", BFD_RELOC_MIPS_CALL16},
10988 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10989 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10990 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10991 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10992 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10993 {"%got", BFD_RELOC_MIPS_GOT16},
10994 {"%gp_rel", BFD_RELOC_GPREL16},
10995 {"%half", BFD_RELOC_16},
10996 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10997 {"%higher", BFD_RELOC_MIPS_HIGHER},
10998 {"%neg", BFD_RELOC_MIPS_SUB},
10999 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11000 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11001 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11002 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11003 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11004 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11005 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11007 {"%hi", BFD_RELOC_HI16_S}
11010 static const struct percent_op_match mips16_percent_op[] =
11012 {"%lo", BFD_RELOC_MIPS16_LO16},
11013 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11014 {"%got", BFD_RELOC_MIPS16_GOT16},
11015 {"%call16", BFD_RELOC_MIPS16_CALL16},
11016 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11020 /* Return true if *STR points to a relocation operator. When returning true,
11021 move *STR over the operator and store its relocation code in *RELOC.
11022 Leave both *STR and *RELOC alone when returning false. */
11025 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11027 const struct percent_op_match *percent_op;
11030 if (mips_opts.mips16)
11032 percent_op = mips16_percent_op;
11033 limit = ARRAY_SIZE (mips16_percent_op);
11037 percent_op = mips_percent_op;
11038 limit = ARRAY_SIZE (mips_percent_op);
11041 for (i = 0; i < limit; i++)
11042 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11044 int len = strlen (percent_op[i].str);
11046 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11049 *str += strlen (percent_op[i].str);
11050 *reloc = percent_op[i].reloc;
11052 /* Check whether the output BFD supports this relocation.
11053 If not, issue an error and fall back on something safe. */
11054 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11056 as_bad (_("relocation %s isn't supported by the current ABI"),
11057 percent_op[i].str);
11058 *reloc = BFD_RELOC_UNUSED;
11066 /* Parse string STR as a 16-bit relocatable operand. Store the
11067 expression in *EP and the relocations in the array starting
11068 at RELOC. Return the number of relocation operators used.
11070 On exit, EXPR_END points to the first character after the expression. */
11073 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11076 bfd_reloc_code_real_type reversed_reloc[3];
11077 size_t reloc_index, i;
11078 int crux_depth, str_depth;
11081 /* Search for the start of the main expression, recoding relocations
11082 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11083 of the main expression and with CRUX_DEPTH containing the number
11084 of open brackets at that point. */
11091 crux_depth = str_depth;
11093 /* Skip over whitespace and brackets, keeping count of the number
11095 while (*str == ' ' || *str == '\t' || *str == '(')
11100 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11101 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11103 my_getExpression (ep, crux);
11106 /* Match every open bracket. */
11107 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11111 if (crux_depth > 0)
11112 as_bad (_("unclosed '('"));
11116 if (reloc_index != 0)
11118 prev_reloc_op_frag = frag_now;
11119 for (i = 0; i < reloc_index; i++)
11120 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11123 return reloc_index;
11127 my_getExpression (expressionS *ep, char *str)
11132 save_in = input_line_pointer;
11133 input_line_pointer = str;
11135 expr_end = input_line_pointer;
11136 input_line_pointer = save_in;
11138 /* If we are in mips16 mode, and this is an expression based on `.',
11139 then we bump the value of the symbol by 1 since that is how other
11140 text symbols are handled. We don't bother to handle complex
11141 expressions, just `.' plus or minus a constant. */
11142 if (mips_opts.mips16
11143 && ep->X_op == O_symbol
11144 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11145 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11146 && symbol_get_frag (ep->X_add_symbol) == frag_now
11147 && symbol_constant_p (ep->X_add_symbol)
11148 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11149 S_SET_VALUE (ep->X_add_symbol, val + 1);
11153 md_atof (int type, char *litP, int *sizeP)
11155 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11159 md_number_to_chars (char *buf, valueT val, int n)
11161 if (target_big_endian)
11162 number_to_chars_bigendian (buf, val, n);
11164 number_to_chars_littleendian (buf, val, n);
11168 static int support_64bit_objects(void)
11170 const char **list, **l;
11173 list = bfd_target_list ();
11174 for (l = list; *l != NULL; l++)
11176 /* This is traditional mips */
11177 if (strcmp (*l, "elf64-tradbigmips") == 0
11178 || strcmp (*l, "elf64-tradlittlemips") == 0)
11180 if (strcmp (*l, "elf64-bigmips") == 0
11181 || strcmp (*l, "elf64-littlemips") == 0)
11184 yes = (*l != NULL);
11188 #endif /* OBJ_ELF */
11190 const char *md_shortopts = "O::g::G:";
11194 OPTION_MARCH = OPTION_MD_BASE,
11216 OPTION_NO_SMARTMIPS,
11219 OPTION_COMPAT_ARCH_BASE,
11228 OPTION_M7000_HILO_FIX,
11229 OPTION_MNO_7000_HILO_FIX,
11232 OPTION_FIX_LOONGSON2F_JUMP,
11233 OPTION_NO_FIX_LOONGSON2F_JUMP,
11234 OPTION_FIX_LOONGSON2F_NOP,
11235 OPTION_NO_FIX_LOONGSON2F_NOP,
11237 OPTION_NO_FIX_VR4120,
11239 OPTION_NO_FIX_VR4130,
11240 OPTION_FIX_CN63XXP1,
11241 OPTION_NO_FIX_CN63XXP1,
11248 OPTION_CONSTRUCT_FLOATS,
11249 OPTION_NO_CONSTRUCT_FLOATS,
11252 OPTION_RELAX_BRANCH,
11253 OPTION_NO_RELAX_BRANCH,
11260 OPTION_SINGLE_FLOAT,
11261 OPTION_DOUBLE_FLOAT,
11264 OPTION_CALL_SHARED,
11265 OPTION_CALL_NONPIC,
11275 OPTION_MVXWORKS_PIC,
11276 #endif /* OBJ_ELF */
11280 struct option md_longopts[] =
11282 /* Options which specify architecture. */
11283 {"march", required_argument, NULL, OPTION_MARCH},
11284 {"mtune", required_argument, NULL, OPTION_MTUNE},
11285 {"mips0", no_argument, NULL, OPTION_MIPS1},
11286 {"mips1", no_argument, NULL, OPTION_MIPS1},
11287 {"mips2", no_argument, NULL, OPTION_MIPS2},
11288 {"mips3", no_argument, NULL, OPTION_MIPS3},
11289 {"mips4", no_argument, NULL, OPTION_MIPS4},
11290 {"mips5", no_argument, NULL, OPTION_MIPS5},
11291 {"mips32", no_argument, NULL, OPTION_MIPS32},
11292 {"mips64", no_argument, NULL, OPTION_MIPS64},
11293 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11294 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11296 /* Options which specify Application Specific Extensions (ASEs). */
11297 {"mips16", no_argument, NULL, OPTION_MIPS16},
11298 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11299 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11300 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11301 {"mdmx", no_argument, NULL, OPTION_MDMX},
11302 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11303 {"mdsp", no_argument, NULL, OPTION_DSP},
11304 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11305 {"mmt", no_argument, NULL, OPTION_MT},
11306 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11307 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11308 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11309 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11310 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11312 /* Old-style architecture options. Don't add more of these. */
11313 {"m4650", no_argument, NULL, OPTION_M4650},
11314 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11315 {"m4010", no_argument, NULL, OPTION_M4010},
11316 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11317 {"m4100", no_argument, NULL, OPTION_M4100},
11318 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11319 {"m3900", no_argument, NULL, OPTION_M3900},
11320 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11322 /* Options which enable bug fixes. */
11323 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11324 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11325 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11326 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11327 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11328 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11329 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11330 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11331 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11332 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11333 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11334 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11335 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11336 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11337 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11339 /* Miscellaneous options. */
11340 {"trap", no_argument, NULL, OPTION_TRAP},
11341 {"no-break", no_argument, NULL, OPTION_TRAP},
11342 {"break", no_argument, NULL, OPTION_BREAK},
11343 {"no-trap", no_argument, NULL, OPTION_BREAK},
11344 {"EB", no_argument, NULL, OPTION_EB},
11345 {"EL", no_argument, NULL, OPTION_EL},
11346 {"mfp32", no_argument, NULL, OPTION_FP32},
11347 {"mgp32", no_argument, NULL, OPTION_GP32},
11348 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11349 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11350 {"mfp64", no_argument, NULL, OPTION_FP64},
11351 {"mgp64", no_argument, NULL, OPTION_GP64},
11352 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11353 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11354 {"mshared", no_argument, NULL, OPTION_MSHARED},
11355 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11356 {"msym32", no_argument, NULL, OPTION_MSYM32},
11357 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11358 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11359 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11360 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11361 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11363 /* Strictly speaking this next option is ELF specific,
11364 but we allow it for other ports as well in order to
11365 make testing easier. */
11366 {"32", no_argument, NULL, OPTION_32},
11368 /* ELF-specific options. */
11370 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11371 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11372 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11373 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11374 {"xgot", no_argument, NULL, OPTION_XGOT},
11375 {"mabi", required_argument, NULL, OPTION_MABI},
11376 {"n32", no_argument, NULL, OPTION_N32},
11377 {"64", no_argument, NULL, OPTION_64},
11378 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11379 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11380 {"mpdr", no_argument, NULL, OPTION_PDR},
11381 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11382 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11383 #endif /* OBJ_ELF */
11385 {NULL, no_argument, NULL, 0}
11387 size_t md_longopts_size = sizeof (md_longopts);
11389 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11390 NEW_VALUE. Warn if another value was already specified. Note:
11391 we have to defer parsing the -march and -mtune arguments in order
11392 to handle 'from-abi' correctly, since the ABI might be specified
11393 in a later argument. */
11396 mips_set_option_string (const char **string_ptr, const char *new_value)
11398 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11399 as_warn (_("A different %s was already specified, is now %s"),
11400 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11403 *string_ptr = new_value;
11407 md_parse_option (int c, char *arg)
11411 case OPTION_CONSTRUCT_FLOATS:
11412 mips_disable_float_construction = 0;
11415 case OPTION_NO_CONSTRUCT_FLOATS:
11416 mips_disable_float_construction = 1;
11428 target_big_endian = 1;
11432 target_big_endian = 0;
11438 else if (arg[0] == '0')
11440 else if (arg[0] == '1')
11450 mips_debug = atoi (arg);
11454 file_mips_isa = ISA_MIPS1;
11458 file_mips_isa = ISA_MIPS2;
11462 file_mips_isa = ISA_MIPS3;
11466 file_mips_isa = ISA_MIPS4;
11470 file_mips_isa = ISA_MIPS5;
11473 case OPTION_MIPS32:
11474 file_mips_isa = ISA_MIPS32;
11477 case OPTION_MIPS32R2:
11478 file_mips_isa = ISA_MIPS32R2;
11481 case OPTION_MIPS64R2:
11482 file_mips_isa = ISA_MIPS64R2;
11485 case OPTION_MIPS64:
11486 file_mips_isa = ISA_MIPS64;
11490 mips_set_option_string (&mips_tune_string, arg);
11494 mips_set_option_string (&mips_arch_string, arg);
11498 mips_set_option_string (&mips_arch_string, "4650");
11499 mips_set_option_string (&mips_tune_string, "4650");
11502 case OPTION_NO_M4650:
11506 mips_set_option_string (&mips_arch_string, "4010");
11507 mips_set_option_string (&mips_tune_string, "4010");
11510 case OPTION_NO_M4010:
11514 mips_set_option_string (&mips_arch_string, "4100");
11515 mips_set_option_string (&mips_tune_string, "4100");
11518 case OPTION_NO_M4100:
11522 mips_set_option_string (&mips_arch_string, "3900");
11523 mips_set_option_string (&mips_tune_string, "3900");
11526 case OPTION_NO_M3900:
11530 mips_opts.ase_mdmx = 1;
11533 case OPTION_NO_MDMX:
11534 mips_opts.ase_mdmx = 0;
11538 mips_opts.ase_dsp = 1;
11539 mips_opts.ase_dspr2 = 0;
11542 case OPTION_NO_DSP:
11543 mips_opts.ase_dsp = 0;
11544 mips_opts.ase_dspr2 = 0;
11548 mips_opts.ase_dspr2 = 1;
11549 mips_opts.ase_dsp = 1;
11552 case OPTION_NO_DSPR2:
11553 mips_opts.ase_dspr2 = 0;
11554 mips_opts.ase_dsp = 0;
11558 mips_opts.ase_mt = 1;
11562 mips_opts.ase_mt = 0;
11565 case OPTION_MIPS16:
11566 mips_opts.mips16 = 1;
11567 mips_no_prev_insn ();
11570 case OPTION_NO_MIPS16:
11571 mips_opts.mips16 = 0;
11572 mips_no_prev_insn ();
11575 case OPTION_MIPS3D:
11576 mips_opts.ase_mips3d = 1;
11579 case OPTION_NO_MIPS3D:
11580 mips_opts.ase_mips3d = 0;
11583 case OPTION_SMARTMIPS:
11584 mips_opts.ase_smartmips = 1;
11587 case OPTION_NO_SMARTMIPS:
11588 mips_opts.ase_smartmips = 0;
11591 case OPTION_FIX_24K:
11595 case OPTION_NO_FIX_24K:
11599 case OPTION_FIX_LOONGSON2F_JUMP:
11600 mips_fix_loongson2f_jump = TRUE;
11603 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11604 mips_fix_loongson2f_jump = FALSE;
11607 case OPTION_FIX_LOONGSON2F_NOP:
11608 mips_fix_loongson2f_nop = TRUE;
11611 case OPTION_NO_FIX_LOONGSON2F_NOP:
11612 mips_fix_loongson2f_nop = FALSE;
11615 case OPTION_FIX_VR4120:
11616 mips_fix_vr4120 = 1;
11619 case OPTION_NO_FIX_VR4120:
11620 mips_fix_vr4120 = 0;
11623 case OPTION_FIX_VR4130:
11624 mips_fix_vr4130 = 1;
11627 case OPTION_NO_FIX_VR4130:
11628 mips_fix_vr4130 = 0;
11631 case OPTION_FIX_CN63XXP1:
11632 mips_fix_cn63xxp1 = TRUE;
11635 case OPTION_NO_FIX_CN63XXP1:
11636 mips_fix_cn63xxp1 = FALSE;
11639 case OPTION_RELAX_BRANCH:
11640 mips_relax_branch = 1;
11643 case OPTION_NO_RELAX_BRANCH:
11644 mips_relax_branch = 0;
11647 case OPTION_MSHARED:
11648 mips_in_shared = TRUE;
11651 case OPTION_MNO_SHARED:
11652 mips_in_shared = FALSE;
11655 case OPTION_MSYM32:
11656 mips_opts.sym32 = TRUE;
11659 case OPTION_MNO_SYM32:
11660 mips_opts.sym32 = FALSE;
11664 /* When generating ELF code, we permit -KPIC and -call_shared to
11665 select SVR4_PIC, and -non_shared to select no PIC. This is
11666 intended to be compatible with Irix 5. */
11667 case OPTION_CALL_SHARED:
11670 as_bad (_("-call_shared is supported only for ELF format"));
11673 mips_pic = SVR4_PIC;
11674 mips_abicalls = TRUE;
11677 case OPTION_CALL_NONPIC:
11680 as_bad (_("-call_nonpic is supported only for ELF format"));
11684 mips_abicalls = TRUE;
11687 case OPTION_NON_SHARED:
11690 as_bad (_("-non_shared is supported only for ELF format"));
11694 mips_abicalls = FALSE;
11697 /* The -xgot option tells the assembler to use 32 bit offsets
11698 when accessing the got in SVR4_PIC mode. It is for Irix
11703 #endif /* OBJ_ELF */
11706 g_switch_value = atoi (arg);
11710 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11714 mips_abi = O32_ABI;
11715 /* We silently ignore -32 for non-ELF targets. This greatly
11716 simplifies the construction of the MIPS GAS test cases. */
11723 as_bad (_("-n32 is supported for ELF format only"));
11726 mips_abi = N32_ABI;
11732 as_bad (_("-64 is supported for ELF format only"));
11735 mips_abi = N64_ABI;
11736 if (!support_64bit_objects())
11737 as_fatal (_("No compiled in support for 64 bit object file format"));
11739 #endif /* OBJ_ELF */
11742 file_mips_gp32 = 1;
11746 file_mips_gp32 = 0;
11750 file_mips_fp32 = 1;
11754 file_mips_fp32 = 0;
11757 case OPTION_SINGLE_FLOAT:
11758 file_mips_single_float = 1;
11761 case OPTION_DOUBLE_FLOAT:
11762 file_mips_single_float = 0;
11765 case OPTION_SOFT_FLOAT:
11766 file_mips_soft_float = 1;
11769 case OPTION_HARD_FLOAT:
11770 file_mips_soft_float = 0;
11777 as_bad (_("-mabi is supported for ELF format only"));
11780 if (strcmp (arg, "32") == 0)
11781 mips_abi = O32_ABI;
11782 else if (strcmp (arg, "o64") == 0)
11783 mips_abi = O64_ABI;
11784 else if (strcmp (arg, "n32") == 0)
11785 mips_abi = N32_ABI;
11786 else if (strcmp (arg, "64") == 0)
11788 mips_abi = N64_ABI;
11789 if (! support_64bit_objects())
11790 as_fatal (_("No compiled in support for 64 bit object file "
11793 else if (strcmp (arg, "eabi") == 0)
11794 mips_abi = EABI_ABI;
11797 as_fatal (_("invalid abi -mabi=%s"), arg);
11801 #endif /* OBJ_ELF */
11803 case OPTION_M7000_HILO_FIX:
11804 mips_7000_hilo_fix = TRUE;
11807 case OPTION_MNO_7000_HILO_FIX:
11808 mips_7000_hilo_fix = FALSE;
11812 case OPTION_MDEBUG:
11813 mips_flag_mdebug = TRUE;
11816 case OPTION_NO_MDEBUG:
11817 mips_flag_mdebug = FALSE;
11821 mips_flag_pdr = TRUE;
11824 case OPTION_NO_PDR:
11825 mips_flag_pdr = FALSE;
11828 case OPTION_MVXWORKS_PIC:
11829 mips_pic = VXWORKS_PIC;
11831 #endif /* OBJ_ELF */
11837 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11842 /* Set up globals to generate code for the ISA or processor
11843 described by INFO. */
11846 mips_set_architecture (const struct mips_cpu_info *info)
11850 file_mips_arch = info->cpu;
11851 mips_opts.arch = info->cpu;
11852 mips_opts.isa = info->isa;
11857 /* Likewise for tuning. */
11860 mips_set_tune (const struct mips_cpu_info *info)
11863 mips_tune = info->cpu;
11868 mips_after_parse_args (void)
11870 const struct mips_cpu_info *arch_info = 0;
11871 const struct mips_cpu_info *tune_info = 0;
11873 /* GP relative stuff not working for PE */
11874 if (strncmp (TARGET_OS, "pe", 2) == 0)
11876 if (g_switch_seen && g_switch_value != 0)
11877 as_bad (_("-G not supported in this configuration."));
11878 g_switch_value = 0;
11881 if (mips_abi == NO_ABI)
11882 mips_abi = MIPS_DEFAULT_ABI;
11884 /* The following code determines the architecture and register size.
11885 Similar code was added to GCC 3.3 (see override_options() in
11886 config/mips/mips.c). The GAS and GCC code should be kept in sync
11887 as much as possible. */
11889 if (mips_arch_string != 0)
11890 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11892 if (file_mips_isa != ISA_UNKNOWN)
11894 /* Handle -mipsN. At this point, file_mips_isa contains the
11895 ISA level specified by -mipsN, while arch_info->isa contains
11896 the -march selection (if any). */
11897 if (arch_info != 0)
11899 /* -march takes precedence over -mipsN, since it is more descriptive.
11900 There's no harm in specifying both as long as the ISA levels
11902 if (file_mips_isa != arch_info->isa)
11903 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11904 mips_cpu_info_from_isa (file_mips_isa)->name,
11905 mips_cpu_info_from_isa (arch_info->isa)->name);
11908 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11911 if (arch_info == 0)
11912 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11914 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11915 as_bad (_("-march=%s is not compatible with the selected ABI"),
11918 mips_set_architecture (arch_info);
11920 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11921 if (mips_tune_string != 0)
11922 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11924 if (tune_info == 0)
11925 mips_set_tune (arch_info);
11927 mips_set_tune (tune_info);
11929 if (file_mips_gp32 >= 0)
11931 /* The user specified the size of the integer registers. Make sure
11932 it agrees with the ABI and ISA. */
11933 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11934 as_bad (_("-mgp64 used with a 32-bit processor"));
11935 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11936 as_bad (_("-mgp32 used with a 64-bit ABI"));
11937 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11938 as_bad (_("-mgp64 used with a 32-bit ABI"));
11942 /* Infer the integer register size from the ABI and processor.
11943 Restrict ourselves to 32-bit registers if that's all the
11944 processor has, or if the ABI cannot handle 64-bit registers. */
11945 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11946 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11949 switch (file_mips_fp32)
11953 /* No user specified float register size.
11954 ??? GAS treats single-float processors as though they had 64-bit
11955 float registers (although it complains when double-precision
11956 instructions are used). As things stand, saying they have 32-bit
11957 registers would lead to spurious "register must be even" messages.
11958 So here we assume float registers are never smaller than the
11960 if (file_mips_gp32 == 0)
11961 /* 64-bit integer registers implies 64-bit float registers. */
11962 file_mips_fp32 = 0;
11963 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11964 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11965 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11966 file_mips_fp32 = 0;
11968 /* 32-bit float registers. */
11969 file_mips_fp32 = 1;
11972 /* The user specified the size of the float registers. Check if it
11973 agrees with the ABI and ISA. */
11975 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11976 as_bad (_("-mfp64 used with a 32-bit fpu"));
11977 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11978 && !ISA_HAS_MXHC1 (mips_opts.isa))
11979 as_warn (_("-mfp64 used with a 32-bit ABI"));
11982 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11983 as_warn (_("-mfp32 used with a 64-bit ABI"));
11987 /* End of GCC-shared inference code. */
11989 /* This flag is set when we have a 64-bit capable CPU but use only
11990 32-bit wide registers. Note that EABI does not use it. */
11991 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11992 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11993 || mips_abi == O32_ABI))
11994 mips_32bitmode = 1;
11996 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11997 as_bad (_("trap exception not supported at ISA 1"));
11999 /* If the selected architecture includes support for ASEs, enable
12000 generation of code for them. */
12001 if (mips_opts.mips16 == -1)
12002 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12003 if (mips_opts.ase_mips3d == -1)
12004 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12005 && file_mips_fp32 == 0) ? 1 : 0;
12006 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12007 as_bad (_("-mfp32 used with -mips3d"));
12009 if (mips_opts.ase_mdmx == -1)
12010 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12011 && file_mips_fp32 == 0) ? 1 : 0;
12012 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12013 as_bad (_("-mfp32 used with -mdmx"));
12015 if (mips_opts.ase_smartmips == -1)
12016 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12017 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12018 as_warn (_("%s ISA does not support SmartMIPS"),
12019 mips_cpu_info_from_isa (mips_opts.isa)->name);
12021 if (mips_opts.ase_dsp == -1)
12022 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12023 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12024 as_warn (_("%s ISA does not support DSP ASE"),
12025 mips_cpu_info_from_isa (mips_opts.isa)->name);
12027 if (mips_opts.ase_dspr2 == -1)
12029 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12030 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12032 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12033 as_warn (_("%s ISA does not support DSP R2 ASE"),
12034 mips_cpu_info_from_isa (mips_opts.isa)->name);
12036 if (mips_opts.ase_mt == -1)
12037 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12038 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12039 as_warn (_("%s ISA does not support MT ASE"),
12040 mips_cpu_info_from_isa (mips_opts.isa)->name);
12042 file_mips_isa = mips_opts.isa;
12043 file_ase_mips16 = mips_opts.mips16;
12044 file_ase_mips3d = mips_opts.ase_mips3d;
12045 file_ase_mdmx = mips_opts.ase_mdmx;
12046 file_ase_smartmips = mips_opts.ase_smartmips;
12047 file_ase_dsp = mips_opts.ase_dsp;
12048 file_ase_dspr2 = mips_opts.ase_dspr2;
12049 file_ase_mt = mips_opts.ase_mt;
12050 mips_opts.gp32 = file_mips_gp32;
12051 mips_opts.fp32 = file_mips_fp32;
12052 mips_opts.soft_float = file_mips_soft_float;
12053 mips_opts.single_float = file_mips_single_float;
12055 if (mips_flag_mdebug < 0)
12057 #ifdef OBJ_MAYBE_ECOFF
12058 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12059 mips_flag_mdebug = 1;
12061 #endif /* OBJ_MAYBE_ECOFF */
12062 mips_flag_mdebug = 0;
12067 mips_init_after_args (void)
12069 /* initialize opcodes */
12070 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12071 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12075 md_pcrel_from (fixS *fixP)
12077 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12078 switch (fixP->fx_r_type)
12080 case BFD_RELOC_16_PCREL_S2:
12081 case BFD_RELOC_MIPS_JMP:
12082 /* Return the address of the delay slot. */
12085 /* We have no relocation type for PC relative MIPS16 instructions. */
12086 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12087 as_bad_where (fixP->fx_file, fixP->fx_line,
12088 _("PC relative MIPS16 instruction references a different section"));
12093 /* This is called before the symbol table is processed. In order to
12094 work with gcc when using mips-tfile, we must keep all local labels.
12095 However, in other cases, we want to discard them. If we were
12096 called with -g, but we didn't see any debugging information, it may
12097 mean that gcc is smuggling debugging information through to
12098 mips-tfile, in which case we must generate all local labels. */
12101 mips_frob_file_before_adjust (void)
12103 #ifndef NO_ECOFF_DEBUGGING
12104 if (ECOFF_DEBUGGING
12106 && ! ecoff_debugging_seen)
12107 flag_keep_locals = 1;
12111 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12112 the corresponding LO16 reloc. This is called before md_apply_fix and
12113 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12114 relocation operators.
12116 For our purposes, a %lo() expression matches a %got() or %hi()
12119 (a) it refers to the same symbol; and
12120 (b) the offset applied in the %lo() expression is no lower than
12121 the offset applied in the %got() or %hi().
12123 (b) allows us to cope with code like:
12126 lh $4,%lo(foo+2)($4)
12128 ...which is legal on RELA targets, and has a well-defined behaviour
12129 if the user knows that adding 2 to "foo" will not induce a carry to
12132 When several %lo()s match a particular %got() or %hi(), we use the
12133 following rules to distinguish them:
12135 (1) %lo()s with smaller offsets are a better match than %lo()s with
12138 (2) %lo()s with no matching %got() or %hi() are better than those
12139 that already have a matching %got() or %hi().
12141 (3) later %lo()s are better than earlier %lo()s.
12143 These rules are applied in order.
12145 (1) means, among other things, that %lo()s with identical offsets are
12146 chosen if they exist.
12148 (2) means that we won't associate several high-part relocations with
12149 the same low-part relocation unless there's no alternative. Having
12150 several high parts for the same low part is a GNU extension; this rule
12151 allows careful users to avoid it.
12153 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12154 with the last high-part relocation being at the front of the list.
12155 It therefore makes sense to choose the last matching low-part
12156 relocation, all other things being equal. It's also easier
12157 to code that way. */
12160 mips_frob_file (void)
12162 struct mips_hi_fixup *l;
12163 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12165 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12167 segment_info_type *seginfo;
12168 bfd_boolean matched_lo_p;
12169 fixS **hi_pos, **lo_pos, **pos;
12171 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12173 /* If a GOT16 relocation turns out to be against a global symbol,
12174 there isn't supposed to be a matching LO. */
12175 if (got16_reloc_p (l->fixp->fx_r_type)
12176 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12179 /* Check quickly whether the next fixup happens to be a matching %lo. */
12180 if (fixup_has_matching_lo_p (l->fixp))
12183 seginfo = seg_info (l->seg);
12185 /* Set HI_POS to the position of this relocation in the chain.
12186 Set LO_POS to the position of the chosen low-part relocation.
12187 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12188 relocation that matches an immediately-preceding high-part
12192 matched_lo_p = FALSE;
12193 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12195 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12197 if (*pos == l->fixp)
12200 if ((*pos)->fx_r_type == looking_for_rtype
12201 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12202 && (*pos)->fx_offset >= l->fixp->fx_offset
12204 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12206 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12209 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12210 && fixup_has_matching_lo_p (*pos));
12213 /* If we found a match, remove the high-part relocation from its
12214 current position and insert it before the low-part relocation.
12215 Make the offsets match so that fixup_has_matching_lo_p()
12218 We don't warn about unmatched high-part relocations since some
12219 versions of gcc have been known to emit dead "lui ...%hi(...)"
12221 if (lo_pos != NULL)
12223 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12224 if (l->fixp->fx_next != *lo_pos)
12226 *hi_pos = l->fixp->fx_next;
12227 l->fixp->fx_next = *lo_pos;
12234 /* We may have combined relocations without symbols in the N32/N64 ABI.
12235 We have to prevent gas from dropping them. */
12238 mips_force_relocation (fixS *fixp)
12240 if (generic_force_reloc (fixp))
12244 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12245 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12246 || hi16_reloc_p (fixp->fx_r_type)
12247 || lo16_reloc_p (fixp->fx_r_type)))
12253 /* Apply a fixup to the object file. */
12256 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12260 reloc_howto_type *howto;
12262 /* We ignore generic BFD relocations we don't know about. */
12263 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12267 gas_assert (fixP->fx_size == 4
12268 || fixP->fx_r_type == BFD_RELOC_16
12269 || fixP->fx_r_type == BFD_RELOC_64
12270 || fixP->fx_r_type == BFD_RELOC_CTOR
12271 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12272 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12273 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12274 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12276 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12278 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12280 /* Don't treat parts of a composite relocation as done. There are two
12283 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12284 should nevertheless be emitted if the first part is.
12286 (2) In normal usage, composite relocations are never assembly-time
12287 constants. The easiest way of dealing with the pathological
12288 exceptions is to generate a relocation against STN_UNDEF and
12289 leave everything up to the linker. */
12290 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12293 switch (fixP->fx_r_type)
12295 case BFD_RELOC_MIPS_TLS_GD:
12296 case BFD_RELOC_MIPS_TLS_LDM:
12297 case BFD_RELOC_MIPS_TLS_DTPREL32:
12298 case BFD_RELOC_MIPS_TLS_DTPREL64:
12299 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12300 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12301 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12302 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12303 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12304 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12307 case BFD_RELOC_MIPS_JMP:
12308 case BFD_RELOC_MIPS_SHIFT5:
12309 case BFD_RELOC_MIPS_SHIFT6:
12310 case BFD_RELOC_MIPS_GOT_DISP:
12311 case BFD_RELOC_MIPS_GOT_PAGE:
12312 case BFD_RELOC_MIPS_GOT_OFST:
12313 case BFD_RELOC_MIPS_SUB:
12314 case BFD_RELOC_MIPS_INSERT_A:
12315 case BFD_RELOC_MIPS_INSERT_B:
12316 case BFD_RELOC_MIPS_DELETE:
12317 case BFD_RELOC_MIPS_HIGHEST:
12318 case BFD_RELOC_MIPS_HIGHER:
12319 case BFD_RELOC_MIPS_SCN_DISP:
12320 case BFD_RELOC_MIPS_REL16:
12321 case BFD_RELOC_MIPS_RELGOT:
12322 case BFD_RELOC_MIPS_JALR:
12323 case BFD_RELOC_HI16:
12324 case BFD_RELOC_HI16_S:
12325 case BFD_RELOC_GPREL16:
12326 case BFD_RELOC_MIPS_LITERAL:
12327 case BFD_RELOC_MIPS_CALL16:
12328 case BFD_RELOC_MIPS_GOT16:
12329 case BFD_RELOC_GPREL32:
12330 case BFD_RELOC_MIPS_GOT_HI16:
12331 case BFD_RELOC_MIPS_GOT_LO16:
12332 case BFD_RELOC_MIPS_CALL_HI16:
12333 case BFD_RELOC_MIPS_CALL_LO16:
12334 case BFD_RELOC_MIPS16_GPREL:
12335 case BFD_RELOC_MIPS16_GOT16:
12336 case BFD_RELOC_MIPS16_CALL16:
12337 case BFD_RELOC_MIPS16_HI16:
12338 case BFD_RELOC_MIPS16_HI16_S:
12339 case BFD_RELOC_MIPS16_JMP:
12340 /* Nothing needed to do. The value comes from the reloc entry. */
12344 /* This is handled like BFD_RELOC_32, but we output a sign
12345 extended value if we are only 32 bits. */
12348 if (8 <= sizeof (valueT))
12349 md_number_to_chars ((char *) buf, *valP, 8);
12354 if ((*valP & 0x80000000) != 0)
12358 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12360 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12366 case BFD_RELOC_RVA:
12369 /* If we are deleting this reloc entry, we must fill in the
12370 value now. This can happen if we have a .word which is not
12371 resolved when it appears but is later defined. */
12373 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12376 case BFD_RELOC_LO16:
12377 case BFD_RELOC_MIPS16_LO16:
12378 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12379 may be safe to remove, but if so it's not obvious. */
12380 /* When handling an embedded PIC switch statement, we can wind
12381 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12384 if (*valP + 0x8000 > 0xffff)
12385 as_bad_where (fixP->fx_file, fixP->fx_line,
12386 _("relocation overflow"));
12387 if (target_big_endian)
12389 md_number_to_chars ((char *) buf, *valP, 2);
12393 case BFD_RELOC_16_PCREL_S2:
12394 if ((*valP & 0x3) != 0)
12395 as_bad_where (fixP->fx_file, fixP->fx_line,
12396 _("Branch to misaligned address (%lx)"), (long) *valP);
12398 /* We need to save the bits in the instruction since fixup_segment()
12399 might be deleting the relocation entry (i.e., a branch within
12400 the current segment). */
12401 if (! fixP->fx_done)
12404 /* Update old instruction data. */
12405 if (target_big_endian)
12406 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12408 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12410 if (*valP + 0x20000 <= 0x3ffff)
12412 insn |= (*valP >> 2) & 0xffff;
12413 md_number_to_chars ((char *) buf, insn, 4);
12415 else if (mips_pic == NO_PIC
12417 && fixP->fx_frag->fr_address >= text_section->vma
12418 && (fixP->fx_frag->fr_address
12419 < text_section->vma + bfd_get_section_size (text_section))
12420 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12421 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12422 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12424 /* The branch offset is too large. If this is an
12425 unconditional branch, and we are not generating PIC code,
12426 we can convert it to an absolute jump instruction. */
12427 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12428 insn = 0x0c000000; /* jal */
12430 insn = 0x08000000; /* j */
12431 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12433 fixP->fx_addsy = section_symbol (text_section);
12434 *valP += md_pcrel_from (fixP);
12435 md_number_to_chars ((char *) buf, insn, 4);
12439 /* If we got here, we have branch-relaxation disabled,
12440 and there's nothing we can do to fix this instruction
12441 without turning it into a longer sequence. */
12442 as_bad_where (fixP->fx_file, fixP->fx_line,
12443 _("Branch out of range"));
12447 case BFD_RELOC_VTABLE_INHERIT:
12450 && !S_IS_DEFINED (fixP->fx_addsy)
12451 && !S_IS_WEAK (fixP->fx_addsy))
12452 S_SET_WEAK (fixP->fx_addsy);
12455 case BFD_RELOC_VTABLE_ENTRY:
12463 /* Remember value for tc_gen_reloc. */
12464 fixP->fx_addnumber = *valP;
12474 name = input_line_pointer;
12475 c = get_symbol_end ();
12476 p = (symbolS *) symbol_find_or_make (name);
12477 *input_line_pointer = c;
12481 /* Align the current frag to a given power of two. If a particular
12482 fill byte should be used, FILL points to an integer that contains
12483 that byte, otherwise FILL is null.
12485 The MIPS assembler also automatically adjusts any preceding
12489 mips_align (int to, int *fill, symbolS *label)
12491 mips_emit_delays ();
12492 mips_record_mips16_mode ();
12493 if (fill == NULL && subseg_text_p (now_seg))
12494 frag_align_code (to, 0);
12496 frag_align (to, fill ? *fill : 0, 0);
12497 record_alignment (now_seg, to);
12500 gas_assert (S_GET_SEGMENT (label) == now_seg);
12501 symbol_set_frag (label, frag_now);
12502 S_SET_VALUE (label, (valueT) frag_now_fix ());
12506 /* Align to a given power of two. .align 0 turns off the automatic
12507 alignment used by the data creating pseudo-ops. */
12510 s_align (int x ATTRIBUTE_UNUSED)
12512 int temp, fill_value, *fill_ptr;
12513 long max_alignment = 28;
12515 /* o Note that the assembler pulls down any immediately preceding label
12516 to the aligned address.
12517 o It's not documented but auto alignment is reinstated by
12518 a .align pseudo instruction.
12519 o Note also that after auto alignment is turned off the mips assembler
12520 issues an error on attempt to assemble an improperly aligned data item.
12523 temp = get_absolute_expression ();
12524 if (temp > max_alignment)
12525 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12528 as_warn (_("Alignment negative: 0 assumed."));
12531 if (*input_line_pointer == ',')
12533 ++input_line_pointer;
12534 fill_value = get_absolute_expression ();
12535 fill_ptr = &fill_value;
12541 segment_info_type *si = seg_info (now_seg);
12542 struct insn_label_list *l = si->label_list;
12543 /* Auto alignment should be switched on by next section change. */
12545 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12552 demand_empty_rest_of_line ();
12556 s_change_sec (int sec)
12561 /* The ELF backend needs to know that we are changing sections, so
12562 that .previous works correctly. We could do something like check
12563 for an obj_section_change_hook macro, but that might be confusing
12564 as it would not be appropriate to use it in the section changing
12565 functions in read.c, since obj-elf.c intercepts those. FIXME:
12566 This should be cleaner, somehow. */
12568 obj_elf_section_change_hook ();
12571 mips_emit_delays ();
12582 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12583 demand_empty_rest_of_line ();
12587 seg = subseg_new (RDATA_SECTION_NAME,
12588 (subsegT) get_absolute_expression ());
12591 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12592 | SEC_READONLY | SEC_RELOC
12594 if (strncmp (TARGET_OS, "elf", 3) != 0)
12595 record_alignment (seg, 4);
12597 demand_empty_rest_of_line ();
12601 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12604 bfd_set_section_flags (stdoutput, seg,
12605 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12606 if (strncmp (TARGET_OS, "elf", 3) != 0)
12607 record_alignment (seg, 4);
12609 demand_empty_rest_of_line ();
12613 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12616 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12617 if (strncmp (TARGET_OS, "elf", 3) != 0)
12618 record_alignment (seg, 4);
12620 demand_empty_rest_of_line ();
12628 s_change_section (int ignore ATTRIBUTE_UNUSED)
12631 char *section_name;
12636 int section_entry_size;
12637 int section_alignment;
12642 section_name = input_line_pointer;
12643 c = get_symbol_end ();
12645 next_c = *(input_line_pointer + 1);
12647 /* Do we have .section Name<,"flags">? */
12648 if (c != ',' || (c == ',' && next_c == '"'))
12650 /* just after name is now '\0'. */
12651 *input_line_pointer = c;
12652 input_line_pointer = section_name;
12653 obj_elf_section (ignore);
12656 input_line_pointer++;
12658 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12660 section_type = get_absolute_expression ();
12663 if (*input_line_pointer++ == ',')
12664 section_flag = get_absolute_expression ();
12667 if (*input_line_pointer++ == ',')
12668 section_entry_size = get_absolute_expression ();
12670 section_entry_size = 0;
12671 if (*input_line_pointer++ == ',')
12672 section_alignment = get_absolute_expression ();
12674 section_alignment = 0;
12675 /* FIXME: really ignore? */
12676 (void) section_alignment;
12678 section_name = xstrdup (section_name);
12680 /* When using the generic form of .section (as implemented by obj-elf.c),
12681 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12682 traditionally had to fall back on the more common @progbits instead.
12684 There's nothing really harmful in this, since bfd will correct
12685 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12686 means that, for backwards compatibility, the special_section entries
12687 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12689 Even so, we shouldn't force users of the MIPS .section syntax to
12690 incorrectly label the sections as SHT_PROGBITS. The best compromise
12691 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12692 generic type-checking code. */
12693 if (section_type == SHT_MIPS_DWARF)
12694 section_type = SHT_PROGBITS;
12696 obj_elf_change_section (section_name, section_type, section_flag,
12697 section_entry_size, 0, 0, 0);
12699 if (now_seg->name != section_name)
12700 free (section_name);
12701 #endif /* OBJ_ELF */
12705 mips_enable_auto_align (void)
12711 s_cons (int log_size)
12713 segment_info_type *si = seg_info (now_seg);
12714 struct insn_label_list *l = si->label_list;
12717 label = l != NULL ? l->label : NULL;
12718 mips_emit_delays ();
12719 if (log_size > 0 && auto_align)
12720 mips_align (log_size, 0, label);
12721 mips_clear_insn_labels ();
12722 cons (1 << log_size);
12726 s_float_cons (int type)
12728 segment_info_type *si = seg_info (now_seg);
12729 struct insn_label_list *l = si->label_list;
12732 label = l != NULL ? l->label : NULL;
12734 mips_emit_delays ();
12739 mips_align (3, 0, label);
12741 mips_align (2, 0, label);
12744 mips_clear_insn_labels ();
12749 /* Handle .globl. We need to override it because on Irix 5 you are
12752 where foo is an undefined symbol, to mean that foo should be
12753 considered to be the address of a function. */
12756 s_mips_globl (int x ATTRIBUTE_UNUSED)
12765 name = input_line_pointer;
12766 c = get_symbol_end ();
12767 symbolP = symbol_find_or_make (name);
12768 S_SET_EXTERNAL (symbolP);
12770 *input_line_pointer = c;
12771 SKIP_WHITESPACE ();
12773 /* On Irix 5, every global symbol that is not explicitly labelled as
12774 being a function is apparently labelled as being an object. */
12777 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12778 && (*input_line_pointer != ','))
12783 secname = input_line_pointer;
12784 c = get_symbol_end ();
12785 sec = bfd_get_section_by_name (stdoutput, secname);
12787 as_bad (_("%s: no such section"), secname);
12788 *input_line_pointer = c;
12790 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12791 flag = BSF_FUNCTION;
12794 symbol_get_bfdsym (symbolP)->flags |= flag;
12796 c = *input_line_pointer;
12799 input_line_pointer++;
12800 SKIP_WHITESPACE ();
12801 if (is_end_of_line[(unsigned char) *input_line_pointer])
12807 demand_empty_rest_of_line ();
12811 s_option (int x ATTRIBUTE_UNUSED)
12816 opt = input_line_pointer;
12817 c = get_symbol_end ();
12821 /* FIXME: What does this mean? */
12823 else if (strncmp (opt, "pic", 3) == 0)
12827 i = atoi (opt + 3);
12832 mips_pic = SVR4_PIC;
12833 mips_abicalls = TRUE;
12836 as_bad (_(".option pic%d not supported"), i);
12838 if (mips_pic == SVR4_PIC)
12840 if (g_switch_seen && g_switch_value != 0)
12841 as_warn (_("-G may not be used with SVR4 PIC code"));
12842 g_switch_value = 0;
12843 bfd_set_gp_size (stdoutput, 0);
12847 as_warn (_("Unrecognized option \"%s\""), opt);
12849 *input_line_pointer = c;
12850 demand_empty_rest_of_line ();
12853 /* This structure is used to hold a stack of .set values. */
12855 struct mips_option_stack
12857 struct mips_option_stack *next;
12858 struct mips_set_options options;
12861 static struct mips_option_stack *mips_opts_stack;
12863 /* Handle the .set pseudo-op. */
12866 s_mipsset (int x ATTRIBUTE_UNUSED)
12868 char *name = input_line_pointer, ch;
12870 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12871 ++input_line_pointer;
12872 ch = *input_line_pointer;
12873 *input_line_pointer = '\0';
12875 if (strcmp (name, "reorder") == 0)
12877 if (mips_opts.noreorder)
12880 else if (strcmp (name, "noreorder") == 0)
12882 if (!mips_opts.noreorder)
12883 start_noreorder ();
12885 else if (strncmp (name, "at=", 3) == 0)
12887 char *s = name + 3;
12889 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12890 as_bad (_("Unrecognized register name `%s'"), s);
12892 else if (strcmp (name, "at") == 0)
12894 mips_opts.at = ATREG;
12896 else if (strcmp (name, "noat") == 0)
12898 mips_opts.at = ZERO;
12900 else if (strcmp (name, "macro") == 0)
12902 mips_opts.warn_about_macros = 0;
12904 else if (strcmp (name, "nomacro") == 0)
12906 if (mips_opts.noreorder == 0)
12907 as_bad (_("`noreorder' must be set before `nomacro'"));
12908 mips_opts.warn_about_macros = 1;
12910 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12912 mips_opts.nomove = 0;
12914 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12916 mips_opts.nomove = 1;
12918 else if (strcmp (name, "bopt") == 0)
12920 mips_opts.nobopt = 0;
12922 else if (strcmp (name, "nobopt") == 0)
12924 mips_opts.nobopt = 1;
12926 else if (strcmp (name, "gp=default") == 0)
12927 mips_opts.gp32 = file_mips_gp32;
12928 else if (strcmp (name, "gp=32") == 0)
12929 mips_opts.gp32 = 1;
12930 else if (strcmp (name, "gp=64") == 0)
12932 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12933 as_warn (_("%s isa does not support 64-bit registers"),
12934 mips_cpu_info_from_isa (mips_opts.isa)->name);
12935 mips_opts.gp32 = 0;
12937 else if (strcmp (name, "fp=default") == 0)
12938 mips_opts.fp32 = file_mips_fp32;
12939 else if (strcmp (name, "fp=32") == 0)
12940 mips_opts.fp32 = 1;
12941 else if (strcmp (name, "fp=64") == 0)
12943 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12944 as_warn (_("%s isa does not support 64-bit floating point registers"),
12945 mips_cpu_info_from_isa (mips_opts.isa)->name);
12946 mips_opts.fp32 = 0;
12948 else if (strcmp (name, "softfloat") == 0)
12949 mips_opts.soft_float = 1;
12950 else if (strcmp (name, "hardfloat") == 0)
12951 mips_opts.soft_float = 0;
12952 else if (strcmp (name, "singlefloat") == 0)
12953 mips_opts.single_float = 1;
12954 else if (strcmp (name, "doublefloat") == 0)
12955 mips_opts.single_float = 0;
12956 else if (strcmp (name, "mips16") == 0
12957 || strcmp (name, "MIPS-16") == 0)
12958 mips_opts.mips16 = 1;
12959 else if (strcmp (name, "nomips16") == 0
12960 || strcmp (name, "noMIPS-16") == 0)
12961 mips_opts.mips16 = 0;
12962 else if (strcmp (name, "smartmips") == 0)
12964 if (!ISA_SUPPORTS_SMARTMIPS)
12965 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12966 mips_cpu_info_from_isa (mips_opts.isa)->name);
12967 mips_opts.ase_smartmips = 1;
12969 else if (strcmp (name, "nosmartmips") == 0)
12970 mips_opts.ase_smartmips = 0;
12971 else if (strcmp (name, "mips3d") == 0)
12972 mips_opts.ase_mips3d = 1;
12973 else if (strcmp (name, "nomips3d") == 0)
12974 mips_opts.ase_mips3d = 0;
12975 else if (strcmp (name, "mdmx") == 0)
12976 mips_opts.ase_mdmx = 1;
12977 else if (strcmp (name, "nomdmx") == 0)
12978 mips_opts.ase_mdmx = 0;
12979 else if (strcmp (name, "dsp") == 0)
12981 if (!ISA_SUPPORTS_DSP_ASE)
12982 as_warn (_("%s ISA does not support DSP ASE"),
12983 mips_cpu_info_from_isa (mips_opts.isa)->name);
12984 mips_opts.ase_dsp = 1;
12985 mips_opts.ase_dspr2 = 0;
12987 else if (strcmp (name, "nodsp") == 0)
12989 mips_opts.ase_dsp = 0;
12990 mips_opts.ase_dspr2 = 0;
12992 else if (strcmp (name, "dspr2") == 0)
12994 if (!ISA_SUPPORTS_DSPR2_ASE)
12995 as_warn (_("%s ISA does not support DSP R2 ASE"),
12996 mips_cpu_info_from_isa (mips_opts.isa)->name);
12997 mips_opts.ase_dspr2 = 1;
12998 mips_opts.ase_dsp = 1;
13000 else if (strcmp (name, "nodspr2") == 0)
13002 mips_opts.ase_dspr2 = 0;
13003 mips_opts.ase_dsp = 0;
13005 else if (strcmp (name, "mt") == 0)
13007 if (!ISA_SUPPORTS_MT_ASE)
13008 as_warn (_("%s ISA does not support MT ASE"),
13009 mips_cpu_info_from_isa (mips_opts.isa)->name);
13010 mips_opts.ase_mt = 1;
13012 else if (strcmp (name, "nomt") == 0)
13013 mips_opts.ase_mt = 0;
13014 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13018 /* Permit the user to change the ISA and architecture on the fly.
13019 Needless to say, misuse can cause serious problems. */
13020 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13023 mips_opts.isa = file_mips_isa;
13024 mips_opts.arch = file_mips_arch;
13026 else if (strncmp (name, "arch=", 5) == 0)
13028 const struct mips_cpu_info *p;
13030 p = mips_parse_cpu("internal use", name + 5);
13032 as_bad (_("unknown architecture %s"), name + 5);
13035 mips_opts.arch = p->cpu;
13036 mips_opts.isa = p->isa;
13039 else if (strncmp (name, "mips", 4) == 0)
13041 const struct mips_cpu_info *p;
13043 p = mips_parse_cpu("internal use", name);
13045 as_bad (_("unknown ISA level %s"), name + 4);
13048 mips_opts.arch = p->cpu;
13049 mips_opts.isa = p->isa;
13053 as_bad (_("unknown ISA or architecture %s"), name);
13055 switch (mips_opts.isa)
13063 mips_opts.gp32 = 1;
13064 mips_opts.fp32 = 1;
13071 mips_opts.gp32 = 0;
13072 mips_opts.fp32 = 0;
13075 as_bad (_("unknown ISA level %s"), name + 4);
13080 mips_opts.gp32 = file_mips_gp32;
13081 mips_opts.fp32 = file_mips_fp32;
13084 else if (strcmp (name, "autoextend") == 0)
13085 mips_opts.noautoextend = 0;
13086 else if (strcmp (name, "noautoextend") == 0)
13087 mips_opts.noautoextend = 1;
13088 else if (strcmp (name, "push") == 0)
13090 struct mips_option_stack *s;
13092 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13093 s->next = mips_opts_stack;
13094 s->options = mips_opts;
13095 mips_opts_stack = s;
13097 else if (strcmp (name, "pop") == 0)
13099 struct mips_option_stack *s;
13101 s = mips_opts_stack;
13103 as_bad (_(".set pop with no .set push"));
13106 /* If we're changing the reorder mode we need to handle
13107 delay slots correctly. */
13108 if (s->options.noreorder && ! mips_opts.noreorder)
13109 start_noreorder ();
13110 else if (! s->options.noreorder && mips_opts.noreorder)
13113 mips_opts = s->options;
13114 mips_opts_stack = s->next;
13118 else if (strcmp (name, "sym32") == 0)
13119 mips_opts.sym32 = TRUE;
13120 else if (strcmp (name, "nosym32") == 0)
13121 mips_opts.sym32 = FALSE;
13122 else if (strchr (name, ','))
13124 /* Generic ".set" directive; use the generic handler. */
13125 *input_line_pointer = ch;
13126 input_line_pointer = name;
13132 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13134 *input_line_pointer = ch;
13135 demand_empty_rest_of_line ();
13138 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13139 .option pic2. It means to generate SVR4 PIC calls. */
13142 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13144 mips_pic = SVR4_PIC;
13145 mips_abicalls = TRUE;
13147 if (g_switch_seen && g_switch_value != 0)
13148 as_warn (_("-G may not be used with SVR4 PIC code"));
13149 g_switch_value = 0;
13151 bfd_set_gp_size (stdoutput, 0);
13152 demand_empty_rest_of_line ();
13155 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13156 PIC code. It sets the $gp register for the function based on the
13157 function address, which is in the register named in the argument.
13158 This uses a relocation against _gp_disp, which is handled specially
13159 by the linker. The result is:
13160 lui $gp,%hi(_gp_disp)
13161 addiu $gp,$gp,%lo(_gp_disp)
13162 addu $gp,$gp,.cpload argument
13163 The .cpload argument is normally $25 == $t9.
13165 The -mno-shared option changes this to:
13166 lui $gp,%hi(__gnu_local_gp)
13167 addiu $gp,$gp,%lo(__gnu_local_gp)
13168 and the argument is ignored. This saves an instruction, but the
13169 resulting code is not position independent; it uses an absolute
13170 address for __gnu_local_gp. Thus code assembled with -mno-shared
13171 can go into an ordinary executable, but not into a shared library. */
13174 s_cpload (int ignore ATTRIBUTE_UNUSED)
13180 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13181 .cpload is ignored. */
13182 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13188 /* .cpload should be in a .set noreorder section. */
13189 if (mips_opts.noreorder == 0)
13190 as_warn (_(".cpload not in noreorder section"));
13192 reg = tc_get_register (0);
13194 /* If we need to produce a 64-bit address, we are better off using
13195 the default instruction sequence. */
13196 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13198 ex.X_op = O_symbol;
13199 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13201 ex.X_op_symbol = NULL;
13202 ex.X_add_number = 0;
13204 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13205 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13208 macro_build_lui (&ex, mips_gp_register);
13209 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13210 mips_gp_register, BFD_RELOC_LO16);
13212 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13213 mips_gp_register, reg);
13216 demand_empty_rest_of_line ();
13219 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13220 .cpsetup $reg1, offset|$reg2, label
13222 If offset is given, this results in:
13223 sd $gp, offset($sp)
13224 lui $gp, %hi(%neg(%gp_rel(label)))
13225 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13226 daddu $gp, $gp, $reg1
13228 If $reg2 is given, this results in:
13229 daddu $reg2, $gp, $0
13230 lui $gp, %hi(%neg(%gp_rel(label)))
13231 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13232 daddu $gp, $gp, $reg1
13233 $reg1 is normally $25 == $t9.
13235 The -mno-shared option replaces the last three instructions with
13237 addiu $gp,$gp,%lo(_gp) */
13240 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13242 expressionS ex_off;
13243 expressionS ex_sym;
13246 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13247 We also need NewABI support. */
13248 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13254 reg1 = tc_get_register (0);
13255 SKIP_WHITESPACE ();
13256 if (*input_line_pointer != ',')
13258 as_bad (_("missing argument separator ',' for .cpsetup"));
13262 ++input_line_pointer;
13263 SKIP_WHITESPACE ();
13264 if (*input_line_pointer == '$')
13266 mips_cpreturn_register = tc_get_register (0);
13267 mips_cpreturn_offset = -1;
13271 mips_cpreturn_offset = get_absolute_expression ();
13272 mips_cpreturn_register = -1;
13274 SKIP_WHITESPACE ();
13275 if (*input_line_pointer != ',')
13277 as_bad (_("missing argument separator ',' for .cpsetup"));
13281 ++input_line_pointer;
13282 SKIP_WHITESPACE ();
13283 expression (&ex_sym);
13286 if (mips_cpreturn_register == -1)
13288 ex_off.X_op = O_constant;
13289 ex_off.X_add_symbol = NULL;
13290 ex_off.X_op_symbol = NULL;
13291 ex_off.X_add_number = mips_cpreturn_offset;
13293 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13294 BFD_RELOC_LO16, SP);
13297 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13298 mips_gp_register, 0);
13300 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13302 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13303 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13306 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13307 mips_gp_register, -1, BFD_RELOC_GPREL16,
13308 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13310 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13311 mips_gp_register, reg1);
13317 ex.X_op = O_symbol;
13318 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13319 ex.X_op_symbol = NULL;
13320 ex.X_add_number = 0;
13322 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13323 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13325 macro_build_lui (&ex, mips_gp_register);
13326 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13327 mips_gp_register, BFD_RELOC_LO16);
13332 demand_empty_rest_of_line ();
13336 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13338 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13339 .cplocal is ignored. */
13340 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13346 mips_gp_register = tc_get_register (0);
13347 demand_empty_rest_of_line ();
13350 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13351 offset from $sp. The offset is remembered, and after making a PIC
13352 call $gp is restored from that location. */
13355 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13359 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13360 .cprestore is ignored. */
13361 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13367 mips_cprestore_offset = get_absolute_expression ();
13368 mips_cprestore_valid = 1;
13370 ex.X_op = O_constant;
13371 ex.X_add_symbol = NULL;
13372 ex.X_op_symbol = NULL;
13373 ex.X_add_number = mips_cprestore_offset;
13376 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13377 SP, HAVE_64BIT_ADDRESSES);
13380 demand_empty_rest_of_line ();
13383 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13384 was given in the preceding .cpsetup, it results in:
13385 ld $gp, offset($sp)
13387 If a register $reg2 was given there, it results in:
13388 daddu $gp, $reg2, $0 */
13391 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13395 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13396 We also need NewABI support. */
13397 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13404 if (mips_cpreturn_register == -1)
13406 ex.X_op = O_constant;
13407 ex.X_add_symbol = NULL;
13408 ex.X_op_symbol = NULL;
13409 ex.X_add_number = mips_cpreturn_offset;
13411 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13414 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13415 mips_cpreturn_register, 0);
13418 demand_empty_rest_of_line ();
13421 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13422 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13423 use in DWARF debug information. */
13426 s_dtprel_internal (size_t bytes)
13433 if (ex.X_op != O_symbol)
13435 as_bad (_("Unsupported use of %s"), (bytes == 8
13438 ignore_rest_of_line ();
13441 p = frag_more (bytes);
13442 md_number_to_chars (p, 0, bytes);
13443 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13445 ? BFD_RELOC_MIPS_TLS_DTPREL64
13446 : BFD_RELOC_MIPS_TLS_DTPREL32));
13448 demand_empty_rest_of_line ();
13451 /* Handle .dtprelword. */
13454 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13456 s_dtprel_internal (4);
13459 /* Handle .dtpreldword. */
13462 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13464 s_dtprel_internal (8);
13467 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13468 code. It sets the offset to use in gp_rel relocations. */
13471 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13473 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13474 We also need NewABI support. */
13475 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13481 mips_gprel_offset = get_absolute_expression ();
13483 demand_empty_rest_of_line ();
13486 /* Handle the .gpword pseudo-op. This is used when generating PIC
13487 code. It generates a 32 bit GP relative reloc. */
13490 s_gpword (int ignore ATTRIBUTE_UNUSED)
13492 segment_info_type *si;
13493 struct insn_label_list *l;
13498 /* When not generating PIC code, this is treated as .word. */
13499 if (mips_pic != SVR4_PIC)
13505 si = seg_info (now_seg);
13506 l = si->label_list;
13507 label = l != NULL ? l->label : NULL;
13508 mips_emit_delays ();
13510 mips_align (2, 0, label);
13511 mips_clear_insn_labels ();
13515 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13517 as_bad (_("Unsupported use of .gpword"));
13518 ignore_rest_of_line ();
13522 md_number_to_chars (p, 0, 4);
13523 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13524 BFD_RELOC_GPREL32);
13526 demand_empty_rest_of_line ();
13530 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13532 segment_info_type *si;
13533 struct insn_label_list *l;
13538 /* When not generating PIC code, this is treated as .dword. */
13539 if (mips_pic != SVR4_PIC)
13545 si = seg_info (now_seg);
13546 l = si->label_list;
13547 label = l != NULL ? l->label : NULL;
13548 mips_emit_delays ();
13550 mips_align (3, 0, label);
13551 mips_clear_insn_labels ();
13555 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13557 as_bad (_("Unsupported use of .gpdword"));
13558 ignore_rest_of_line ();
13562 md_number_to_chars (p, 0, 8);
13563 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13564 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13566 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13567 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13568 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13570 demand_empty_rest_of_line ();
13573 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13574 tables in SVR4 PIC code. */
13577 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13581 /* This is ignored when not generating SVR4 PIC code. */
13582 if (mips_pic != SVR4_PIC)
13588 /* Add $gp to the register named as an argument. */
13590 reg = tc_get_register (0);
13591 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13594 demand_empty_rest_of_line ();
13597 /* Handle the .insn pseudo-op. This marks instruction labels in
13598 mips16 mode. This permits the linker to handle them specially,
13599 such as generating jalx instructions when needed. We also make
13600 them odd for the duration of the assembly, in order to generate the
13601 right sort of code. We will make them even in the adjust_symtab
13602 routine, while leaving them marked. This is convenient for the
13603 debugger and the disassembler. The linker knows to make them odd
13607 s_insn (int ignore ATTRIBUTE_UNUSED)
13609 mips16_mark_labels ();
13611 demand_empty_rest_of_line ();
13614 /* Handle a .stabn directive. We need these in order to mark a label
13615 as being a mips16 text label correctly. Sometimes the compiler
13616 will emit a label, followed by a .stabn, and then switch sections.
13617 If the label and .stabn are in mips16 mode, then the label is
13618 really a mips16 text label. */
13621 s_mips_stab (int type)
13624 mips16_mark_labels ();
13629 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13632 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13639 name = input_line_pointer;
13640 c = get_symbol_end ();
13641 symbolP = symbol_find_or_make (name);
13642 S_SET_WEAK (symbolP);
13643 *input_line_pointer = c;
13645 SKIP_WHITESPACE ();
13647 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13649 if (S_IS_DEFINED (symbolP))
13651 as_bad (_("ignoring attempt to redefine symbol %s"),
13652 S_GET_NAME (symbolP));
13653 ignore_rest_of_line ();
13657 if (*input_line_pointer == ',')
13659 ++input_line_pointer;
13660 SKIP_WHITESPACE ();
13664 if (exp.X_op != O_symbol)
13666 as_bad (_("bad .weakext directive"));
13667 ignore_rest_of_line ();
13670 symbol_set_value_expression (symbolP, &exp);
13673 demand_empty_rest_of_line ();
13676 /* Parse a register string into a number. Called from the ECOFF code
13677 to parse .frame. The argument is non-zero if this is the frame
13678 register, so that we can record it in mips_frame_reg. */
13681 tc_get_register (int frame)
13685 SKIP_WHITESPACE ();
13686 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
13690 mips_frame_reg = reg != 0 ? reg : SP;
13691 mips_frame_reg_valid = 1;
13692 mips_cprestore_valid = 0;
13698 md_section_align (asection *seg, valueT addr)
13700 int align = bfd_get_section_alignment (stdoutput, seg);
13704 /* We don't need to align ELF sections to the full alignment.
13705 However, Irix 5 may prefer that we align them at least to a 16
13706 byte boundary. We don't bother to align the sections if we
13707 are targeted for an embedded system. */
13708 if (strncmp (TARGET_OS, "elf", 3) == 0)
13714 return ((addr + (1 << align) - 1) & (-1 << align));
13717 /* Utility routine, called from above as well. If called while the
13718 input file is still being read, it's only an approximation. (For
13719 example, a symbol may later become defined which appeared to be
13720 undefined earlier.) */
13723 nopic_need_relax (symbolS *sym, int before_relaxing)
13728 if (g_switch_value > 0)
13730 const char *symname;
13733 /* Find out whether this symbol can be referenced off the $gp
13734 register. It can be if it is smaller than the -G size or if
13735 it is in the .sdata or .sbss section. Certain symbols can
13736 not be referenced off the $gp, although it appears as though
13738 symname = S_GET_NAME (sym);
13739 if (symname != (const char *) NULL
13740 && (strcmp (symname, "eprol") == 0
13741 || strcmp (symname, "etext") == 0
13742 || strcmp (symname, "_gp") == 0
13743 || strcmp (symname, "edata") == 0
13744 || strcmp (symname, "_fbss") == 0
13745 || strcmp (symname, "_fdata") == 0
13746 || strcmp (symname, "_ftext") == 0
13747 || strcmp (symname, "end") == 0
13748 || strcmp (symname, "_gp_disp") == 0))
13750 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13752 #ifndef NO_ECOFF_DEBUGGING
13753 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13754 && (symbol_get_obj (sym)->ecoff_extern_size
13755 <= g_switch_value))
13757 /* We must defer this decision until after the whole
13758 file has been read, since there might be a .extern
13759 after the first use of this symbol. */
13760 || (before_relaxing
13761 #ifndef NO_ECOFF_DEBUGGING
13762 && symbol_get_obj (sym)->ecoff_extern_size == 0
13764 && S_GET_VALUE (sym) == 0)
13765 || (S_GET_VALUE (sym) != 0
13766 && S_GET_VALUE (sym) <= g_switch_value)))
13770 const char *segname;
13772 segname = segment_name (S_GET_SEGMENT (sym));
13773 gas_assert (strcmp (segname, ".lit8") != 0
13774 && strcmp (segname, ".lit4") != 0);
13775 change = (strcmp (segname, ".sdata") != 0
13776 && strcmp (segname, ".sbss") != 0
13777 && strncmp (segname, ".sdata.", 7) != 0
13778 && strncmp (segname, ".sbss.", 6) != 0
13779 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13780 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13785 /* We are not optimizing for the $gp register. */
13790 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13793 pic_need_relax (symbolS *sym, asection *segtype)
13797 /* Handle the case of a symbol equated to another symbol. */
13798 while (symbol_equated_reloc_p (sym))
13802 /* It's possible to get a loop here in a badly written program. */
13803 n = symbol_get_value_expression (sym)->X_add_symbol;
13809 if (symbol_section_p (sym))
13812 symsec = S_GET_SEGMENT (sym);
13814 /* This must duplicate the test in adjust_reloc_syms. */
13815 return (symsec != &bfd_und_section
13816 && symsec != &bfd_abs_section
13817 && !bfd_is_com_section (symsec)
13818 && !s_is_linkonce (sym, segtype)
13820 /* A global or weak symbol is treated as external. */
13821 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13827 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13828 extended opcode. SEC is the section the frag is in. */
13831 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13834 const struct mips16_immed_operand *op;
13836 int mintiny, maxtiny;
13840 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13842 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13845 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13846 op = mips16_immed_operands;
13847 while (op->type != type)
13850 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13855 if (type == '<' || type == '>' || type == '[' || type == ']')
13858 maxtiny = 1 << op->nbits;
13863 maxtiny = (1 << op->nbits) - 1;
13868 mintiny = - (1 << (op->nbits - 1));
13869 maxtiny = (1 << (op->nbits - 1)) - 1;
13872 sym_frag = symbol_get_frag (fragp->fr_symbol);
13873 val = S_GET_VALUE (fragp->fr_symbol);
13874 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13880 /* We won't have the section when we are called from
13881 mips_relax_frag. However, we will always have been called
13882 from md_estimate_size_before_relax first. If this is a
13883 branch to a different section, we mark it as such. If SEC is
13884 NULL, and the frag is not marked, then it must be a branch to
13885 the same section. */
13888 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13893 /* Must have been called from md_estimate_size_before_relax. */
13896 fragp->fr_subtype =
13897 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13899 /* FIXME: We should support this, and let the linker
13900 catch branches and loads that are out of range. */
13901 as_bad_where (fragp->fr_file, fragp->fr_line,
13902 _("unsupported PC relative reference to different section"));
13906 if (fragp != sym_frag && sym_frag->fr_address == 0)
13907 /* Assume non-extended on the first relaxation pass.
13908 The address we have calculated will be bogus if this is
13909 a forward branch to another frag, as the forward frag
13910 will have fr_address == 0. */
13914 /* In this case, we know for sure that the symbol fragment is in
13915 the same section. If the relax_marker of the symbol fragment
13916 differs from the relax_marker of this fragment, we have not
13917 yet adjusted the symbol fragment fr_address. We want to add
13918 in STRETCH in order to get a better estimate of the address.
13919 This particularly matters because of the shift bits. */
13921 && sym_frag->relax_marker != fragp->relax_marker)
13925 /* Adjust stretch for any alignment frag. Note that if have
13926 been expanding the earlier code, the symbol may be
13927 defined in what appears to be an earlier frag. FIXME:
13928 This doesn't handle the fr_subtype field, which specifies
13929 a maximum number of bytes to skip when doing an
13931 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13933 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13936 stretch = - ((- stretch)
13937 & ~ ((1 << (int) f->fr_offset) - 1));
13939 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13948 addr = fragp->fr_address + fragp->fr_fix;
13950 /* The base address rules are complicated. The base address of
13951 a branch is the following instruction. The base address of a
13952 PC relative load or add is the instruction itself, but if it
13953 is in a delay slot (in which case it can not be extended) use
13954 the address of the instruction whose delay slot it is in. */
13955 if (type == 'p' || type == 'q')
13959 /* If we are currently assuming that this frag should be
13960 extended, then, the current address is two bytes
13962 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13965 /* Ignore the low bit in the target, since it will be set
13966 for a text label. */
13967 if ((val & 1) != 0)
13970 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13972 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13975 val -= addr & ~ ((1 << op->shift) - 1);
13977 /* Branch offsets have an implicit 0 in the lowest bit. */
13978 if (type == 'p' || type == 'q')
13981 /* If any of the shifted bits are set, we must use an extended
13982 opcode. If the address depends on the size of this
13983 instruction, this can lead to a loop, so we arrange to always
13984 use an extended opcode. We only check this when we are in
13985 the main relaxation loop, when SEC is NULL. */
13986 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13988 fragp->fr_subtype =
13989 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13993 /* If we are about to mark a frag as extended because the value
13994 is precisely maxtiny + 1, then there is a chance of an
13995 infinite loop as in the following code:
14000 In this case when the la is extended, foo is 0x3fc bytes
14001 away, so the la can be shrunk, but then foo is 0x400 away, so
14002 the la must be extended. To avoid this loop, we mark the
14003 frag as extended if it was small, and is about to become
14004 extended with a value of maxtiny + 1. */
14005 if (val == ((maxtiny + 1) << op->shift)
14006 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14009 fragp->fr_subtype =
14010 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14014 else if (symsec != absolute_section && sec != NULL)
14015 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14017 if ((val & ((1 << op->shift) - 1)) != 0
14018 || val < (mintiny << op->shift)
14019 || val > (maxtiny << op->shift))
14025 /* Compute the length of a branch sequence, and adjust the
14026 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14027 worst-case length is computed, with UPDATE being used to indicate
14028 whether an unconditional (-1), branch-likely (+1) or regular (0)
14029 branch is to be computed. */
14031 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14033 bfd_boolean toofar;
14037 && S_IS_DEFINED (fragp->fr_symbol)
14038 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14043 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14045 addr = fragp->fr_address + fragp->fr_fix + 4;
14049 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14052 /* If the symbol is not defined or it's in a different segment,
14053 assume the user knows what's going on and emit a short
14059 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14061 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14062 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14063 RELAX_BRANCH_LINK (fragp->fr_subtype),
14069 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14072 if (mips_pic != NO_PIC)
14074 /* Additional space for PIC loading of target address. */
14076 if (mips_opts.isa == ISA_MIPS1)
14077 /* Additional space for $at-stabilizing nop. */
14081 /* If branch is conditional. */
14082 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14089 /* Estimate the size of a frag before relaxing. Unless this is the
14090 mips16, we are not really relaxing here, and the final size is
14091 encoded in the subtype information. For the mips16, we have to
14092 decide whether we are using an extended opcode or not. */
14095 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14099 if (RELAX_BRANCH_P (fragp->fr_subtype))
14102 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14104 return fragp->fr_var;
14107 if (RELAX_MIPS16_P (fragp->fr_subtype))
14108 /* We don't want to modify the EXTENDED bit here; it might get us
14109 into infinite loops. We change it only in mips_relax_frag(). */
14110 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14112 if (mips_pic == NO_PIC)
14113 change = nopic_need_relax (fragp->fr_symbol, 0);
14114 else if (mips_pic == SVR4_PIC)
14115 change = pic_need_relax (fragp->fr_symbol, segtype);
14116 else if (mips_pic == VXWORKS_PIC)
14117 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14124 fragp->fr_subtype |= RELAX_USE_SECOND;
14125 return -RELAX_FIRST (fragp->fr_subtype);
14128 return -RELAX_SECOND (fragp->fr_subtype);
14131 /* This is called to see whether a reloc against a defined symbol
14132 should be converted into a reloc against a section. */
14135 mips_fix_adjustable (fixS *fixp)
14137 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14138 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14141 if (fixp->fx_addsy == NULL)
14144 /* If symbol SYM is in a mergeable section, relocations of the form
14145 SYM + 0 can usually be made section-relative. The mergeable data
14146 is then identified by the section offset rather than by the symbol.
14148 However, if we're generating REL LO16 relocations, the offset is split
14149 between the LO16 and parterning high part relocation. The linker will
14150 need to recalculate the complete offset in order to correctly identify
14153 The linker has traditionally not looked for the parterning high part
14154 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14155 placed anywhere. Rather than break backwards compatibility by changing
14156 this, it seems better not to force the issue, and instead keep the
14157 original symbol. This will work with either linker behavior. */
14158 if ((lo16_reloc_p (fixp->fx_r_type)
14159 || reloc_needs_lo_p (fixp->fx_r_type))
14160 && HAVE_IN_PLACE_ADDENDS
14161 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14164 /* There is no place to store an in-place offset for JALR relocations. */
14165 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14169 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14170 to a floating-point stub. The same is true for non-R_MIPS16_26
14171 relocations against MIPS16 functions; in this case, the stub becomes
14172 the function's canonical address.
14174 Floating-point stubs are stored in unique .mips16.call.* or
14175 .mips16.fn.* sections. If a stub T for function F is in section S,
14176 the first relocation in section S must be against F; this is how the
14177 linker determines the target function. All relocations that might
14178 resolve to T must also be against F. We therefore have the following
14179 restrictions, which are given in an intentionally-redundant way:
14181 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14184 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14185 if that stub might be used.
14187 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14190 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14191 that stub might be used.
14193 There is a further restriction:
14195 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14196 on targets with in-place addends; the relocation field cannot
14197 encode the low bit.
14199 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14200 against a MIPS16 symbol.
14202 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14203 relocation against some symbol R, no relocation against R may be
14204 reduced. (Note that this deals with (2) as well as (1) because
14205 relocations against global symbols will never be reduced on ELF
14206 targets.) This approach is a little simpler than trying to detect
14207 stub sections, and gives the "all or nothing" per-symbol consistency
14208 that we have for MIPS16 symbols. */
14210 && fixp->fx_subsy == NULL
14211 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14212 || *symbol_get_tc (fixp->fx_addsy)))
14219 /* Translate internal representation of relocation info to BFD target
14223 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14225 static arelent *retval[4];
14227 bfd_reloc_code_real_type code;
14229 memset (retval, 0, sizeof(retval));
14230 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14231 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14232 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14233 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14235 if (fixp->fx_pcrel)
14237 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14239 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14240 Relocations want only the symbol offset. */
14241 reloc->addend = fixp->fx_addnumber + reloc->address;
14244 /* A gruesome hack which is a result of the gruesome gas
14245 reloc handling. What's worse, for COFF (as opposed to
14246 ECOFF), we might need yet another copy of reloc->address.
14247 See bfd_install_relocation. */
14248 reloc->addend += reloc->address;
14252 reloc->addend = fixp->fx_addnumber;
14254 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14255 entry to be used in the relocation's section offset. */
14256 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14258 reloc->address = reloc->addend;
14262 code = fixp->fx_r_type;
14264 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14265 if (reloc->howto == NULL)
14267 as_bad_where (fixp->fx_file, fixp->fx_line,
14268 _("Can not represent %s relocation in this object file format"),
14269 bfd_get_reloc_code_name (code));
14276 /* Relax a machine dependent frag. This returns the amount by which
14277 the current size of the frag should change. */
14280 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14282 if (RELAX_BRANCH_P (fragp->fr_subtype))
14284 offsetT old_var = fragp->fr_var;
14286 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14288 return fragp->fr_var - old_var;
14291 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14294 if (mips16_extended_frag (fragp, NULL, stretch))
14296 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14298 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14303 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14305 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14312 /* Convert a machine dependent frag. */
14315 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14317 if (RELAX_BRANCH_P (fragp->fr_subtype))
14320 unsigned long insn;
14324 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14326 if (target_big_endian)
14327 insn = bfd_getb32 (buf);
14329 insn = bfd_getl32 (buf);
14331 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14333 /* We generate a fixup instead of applying it right now
14334 because, if there are linker relaxations, we're going to
14335 need the relocations. */
14336 exp.X_op = O_symbol;
14337 exp.X_add_symbol = fragp->fr_symbol;
14338 exp.X_add_number = fragp->fr_offset;
14340 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14341 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14342 fixp->fx_file = fragp->fr_file;
14343 fixp->fx_line = fragp->fr_line;
14345 md_number_to_chars ((char *) buf, insn, 4);
14352 as_warn_where (fragp->fr_file, fragp->fr_line,
14353 _("relaxed out-of-range branch into a jump"));
14355 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14358 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14360 /* Reverse the branch. */
14361 switch ((insn >> 28) & 0xf)
14364 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14365 have the condition reversed by tweaking a single
14366 bit, and their opcodes all have 0x4???????. */
14367 gas_assert ((insn & 0xf1000000) == 0x41000000);
14368 insn ^= 0x00010000;
14372 /* bltz 0x04000000 bgez 0x04010000
14373 bltzal 0x04100000 bgezal 0x04110000 */
14374 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14375 insn ^= 0x00010000;
14379 /* beq 0x10000000 bne 0x14000000
14380 blez 0x18000000 bgtz 0x1c000000 */
14381 insn ^= 0x04000000;
14389 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14391 /* Clear the and-link bit. */
14392 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14394 /* bltzal 0x04100000 bgezal 0x04110000
14395 bltzall 0x04120000 bgezall 0x04130000 */
14396 insn &= ~0x00100000;
14399 /* Branch over the branch (if the branch was likely) or the
14400 full jump (not likely case). Compute the offset from the
14401 current instruction to branch to. */
14402 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14406 /* How many bytes in instructions we've already emitted? */
14407 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14408 /* How many bytes in instructions from here to the end? */
14409 i = fragp->fr_var - i;
14411 /* Convert to instruction count. */
14413 /* Branch counts from the next instruction. */
14416 /* Branch over the jump. */
14417 md_number_to_chars ((char *) buf, insn, 4);
14421 md_number_to_chars ((char *) buf, 0, 4);
14424 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14426 /* beql $0, $0, 2f */
14428 /* Compute the PC offset from the current instruction to
14429 the end of the variable frag. */
14430 /* How many bytes in instructions we've already emitted? */
14431 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14432 /* How many bytes in instructions from here to the end? */
14433 i = fragp->fr_var - i;
14434 /* Convert to instruction count. */
14436 /* Don't decrement i, because we want to branch over the
14440 md_number_to_chars ((char *) buf, insn, 4);
14443 md_number_to_chars ((char *) buf, 0, 4);
14448 if (mips_pic == NO_PIC)
14451 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14452 ? 0x0c000000 : 0x08000000);
14453 exp.X_op = O_symbol;
14454 exp.X_add_symbol = fragp->fr_symbol;
14455 exp.X_add_number = fragp->fr_offset;
14457 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14458 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14459 fixp->fx_file = fragp->fr_file;
14460 fixp->fx_line = fragp->fr_line;
14462 md_number_to_chars ((char *) buf, insn, 4);
14467 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14468 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14469 exp.X_op = O_symbol;
14470 exp.X_add_symbol = fragp->fr_symbol;
14471 exp.X_add_number = fragp->fr_offset;
14473 if (fragp->fr_offset)
14475 exp.X_add_symbol = make_expr_symbol (&exp);
14476 exp.X_add_number = 0;
14479 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14480 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14481 fixp->fx_file = fragp->fr_file;
14482 fixp->fx_line = fragp->fr_line;
14484 md_number_to_chars ((char *) buf, insn, 4);
14487 if (mips_opts.isa == ISA_MIPS1)
14490 md_number_to_chars ((char *) buf, 0, 4);
14494 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14495 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14497 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14498 4, &exp, FALSE, BFD_RELOC_LO16);
14499 fixp->fx_file = fragp->fr_file;
14500 fixp->fx_line = fragp->fr_line;
14502 md_number_to_chars ((char *) buf, insn, 4);
14506 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14511 md_number_to_chars ((char *) buf, insn, 4);
14516 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14517 + fragp->fr_fix + fragp->fr_var);
14519 fragp->fr_fix += fragp->fr_var;
14524 if (RELAX_MIPS16_P (fragp->fr_subtype))
14527 const struct mips16_immed_operand *op;
14528 bfd_boolean small, ext;
14531 unsigned long insn;
14532 bfd_boolean use_extend;
14533 unsigned short extend;
14535 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14536 op = mips16_immed_operands;
14537 while (op->type != type)
14540 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14551 val = resolve_symbol_value (fragp->fr_symbol);
14556 addr = fragp->fr_address + fragp->fr_fix;
14558 /* The rules for the base address of a PC relative reloc are
14559 complicated; see mips16_extended_frag. */
14560 if (type == 'p' || type == 'q')
14565 /* Ignore the low bit in the target, since it will be
14566 set for a text label. */
14567 if ((val & 1) != 0)
14570 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14572 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14575 addr &= ~ (addressT) ((1 << op->shift) - 1);
14578 /* Make sure the section winds up with the alignment we have
14581 record_alignment (asec, op->shift);
14585 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14586 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14587 as_warn_where (fragp->fr_file, fragp->fr_line,
14588 _("extended instruction in delay slot"));
14590 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14592 if (target_big_endian)
14593 insn = bfd_getb16 (buf);
14595 insn = bfd_getl16 (buf);
14597 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14598 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14599 small, ext, &insn, &use_extend, &extend);
14603 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14604 fragp->fr_fix += 2;
14608 md_number_to_chars ((char *) buf, insn, 2);
14609 fragp->fr_fix += 2;
14617 first = RELAX_FIRST (fragp->fr_subtype);
14618 second = RELAX_SECOND (fragp->fr_subtype);
14619 fixp = (fixS *) fragp->fr_opcode;
14621 /* Possibly emit a warning if we've chosen the longer option. */
14622 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14623 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14625 const char *msg = macro_warning (fragp->fr_subtype);
14627 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14630 /* Go through all the fixups for the first sequence. Disable them
14631 (by marking them as done) if we're going to use the second
14632 sequence instead. */
14634 && fixp->fx_frag == fragp
14635 && fixp->fx_where < fragp->fr_fix - second)
14637 if (fragp->fr_subtype & RELAX_USE_SECOND)
14639 fixp = fixp->fx_next;
14642 /* Go through the fixups for the second sequence. Disable them if
14643 we're going to use the first sequence, otherwise adjust their
14644 addresses to account for the relaxation. */
14645 while (fixp && fixp->fx_frag == fragp)
14647 if (fragp->fr_subtype & RELAX_USE_SECOND)
14648 fixp->fx_where -= first;
14651 fixp = fixp->fx_next;
14654 /* Now modify the frag contents. */
14655 if (fragp->fr_subtype & RELAX_USE_SECOND)
14659 start = fragp->fr_literal + fragp->fr_fix - first - second;
14660 memmove (start, start + first, second);
14661 fragp->fr_fix -= first;
14664 fragp->fr_fix -= second;
14670 /* This function is called after the relocs have been generated.
14671 We've been storing mips16 text labels as odd. Here we convert them
14672 back to even for the convenience of the debugger. */
14675 mips_frob_file_after_relocs (void)
14678 unsigned int count, i;
14683 syms = bfd_get_outsymbols (stdoutput);
14684 count = bfd_get_symcount (stdoutput);
14685 for (i = 0; i < count; i++, syms++)
14687 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14688 && ((*syms)->value & 1) != 0)
14690 (*syms)->value &= ~1;
14691 /* If the symbol has an odd size, it was probably computed
14692 incorrectly, so adjust that as well. */
14693 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14694 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14701 /* This function is called whenever a label is defined. It is used
14702 when handling branch delays; if a branch has a label, we assume we
14703 can not move it. */
14706 mips_define_label (symbolS *sym)
14708 segment_info_type *si = seg_info (now_seg);
14709 struct insn_label_list *l;
14711 if (free_insn_labels == NULL)
14712 l = (struct insn_label_list *) xmalloc (sizeof *l);
14715 l = free_insn_labels;
14716 free_insn_labels = l->next;
14720 l->next = si->label_list;
14721 si->label_list = l;
14724 dwarf2_emit_label (sym);
14728 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14730 /* Some special processing for a MIPS ELF file. */
14733 mips_elf_final_processing (void)
14735 /* Write out the register information. */
14736 if (mips_abi != N64_ABI)
14740 s.ri_gprmask = mips_gprmask;
14741 s.ri_cprmask[0] = mips_cprmask[0];
14742 s.ri_cprmask[1] = mips_cprmask[1];
14743 s.ri_cprmask[2] = mips_cprmask[2];
14744 s.ri_cprmask[3] = mips_cprmask[3];
14745 /* The gp_value field is set by the MIPS ELF backend. */
14747 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14748 ((Elf32_External_RegInfo *)
14749 mips_regmask_frag));
14753 Elf64_Internal_RegInfo s;
14755 s.ri_gprmask = mips_gprmask;
14757 s.ri_cprmask[0] = mips_cprmask[0];
14758 s.ri_cprmask[1] = mips_cprmask[1];
14759 s.ri_cprmask[2] = mips_cprmask[2];
14760 s.ri_cprmask[3] = mips_cprmask[3];
14761 /* The gp_value field is set by the MIPS ELF backend. */
14763 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14764 ((Elf64_External_RegInfo *)
14765 mips_regmask_frag));
14768 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14769 sort of BFD interface for this. */
14770 if (mips_any_noreorder)
14771 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14772 if (mips_pic != NO_PIC)
14774 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14775 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14778 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14780 /* Set MIPS ELF flags for ASEs. */
14781 /* We may need to define a new flag for DSP ASE, and set this flag when
14782 file_ase_dsp is true. */
14783 /* Same for DSP R2. */
14784 /* We may need to define a new flag for MT ASE, and set this flag when
14785 file_ase_mt is true. */
14786 if (file_ase_mips16)
14787 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14788 #if 0 /* XXX FIXME */
14789 if (file_ase_mips3d)
14790 elf_elfheader (stdoutput)->e_flags |= ???;
14793 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14795 /* Set the MIPS ELF ABI flags. */
14796 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14797 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14798 else if (mips_abi == O64_ABI)
14799 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14800 else if (mips_abi == EABI_ABI)
14802 if (!file_mips_gp32)
14803 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14807 else if (mips_abi == N32_ABI)
14808 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14810 /* Nothing to do for N64_ABI. */
14812 if (mips_32bitmode)
14813 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14815 #if 0 /* XXX FIXME */
14816 /* 32 bit code with 64 bit FP registers. */
14817 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14818 elf_elfheader (stdoutput)->e_flags |= ???;
14822 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14824 typedef struct proc {
14826 symbolS *func_end_sym;
14827 unsigned long reg_mask;
14828 unsigned long reg_offset;
14829 unsigned long fpreg_mask;
14830 unsigned long fpreg_offset;
14831 unsigned long frame_offset;
14832 unsigned long frame_reg;
14833 unsigned long pc_reg;
14836 static procS cur_proc;
14837 static procS *cur_proc_ptr;
14838 static int numprocs;
14840 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14844 mips_nop_opcode (void)
14846 return seg_info (now_seg)->tc_segment_info_data.mips16;
14849 /* Fill in an rs_align_code fragment. This only needs to do something
14850 for MIPS16 code, where 0 is not a nop. */
14853 mips_handle_align (fragS *fragp)
14856 int bytes, size, excess;
14859 if (fragp->fr_type != rs_align_code)
14862 p = fragp->fr_literal + fragp->fr_fix;
14865 opcode = mips16_nop_insn.insn_opcode;
14870 opcode = nop_insn.insn_opcode;
14874 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14875 excess = bytes % size;
14878 /* If we're not inserting a whole number of instructions,
14879 pad the end of the fixed part of the frag with zeros. */
14880 memset (p, 0, excess);
14882 fragp->fr_fix += excess;
14885 md_number_to_chars (p, opcode, size);
14886 fragp->fr_var = size;
14890 md_obj_begin (void)
14897 /* Check for premature end, nesting errors, etc. */
14899 as_warn (_("missing .end at end of assembly"));
14908 if (*input_line_pointer == '-')
14910 ++input_line_pointer;
14913 if (!ISDIGIT (*input_line_pointer))
14914 as_bad (_("expected simple number"));
14915 if (input_line_pointer[0] == '0')
14917 if (input_line_pointer[1] == 'x')
14919 input_line_pointer += 2;
14920 while (ISXDIGIT (*input_line_pointer))
14923 val |= hex_value (*input_line_pointer++);
14925 return negative ? -val : val;
14929 ++input_line_pointer;
14930 while (ISDIGIT (*input_line_pointer))
14933 val |= *input_line_pointer++ - '0';
14935 return negative ? -val : val;
14938 if (!ISDIGIT (*input_line_pointer))
14940 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14941 *input_line_pointer, *input_line_pointer);
14942 as_warn (_("invalid number"));
14945 while (ISDIGIT (*input_line_pointer))
14948 val += *input_line_pointer++ - '0';
14950 return negative ? -val : val;
14953 /* The .file directive; just like the usual .file directive, but there
14954 is an initial number which is the ECOFF file index. In the non-ECOFF
14955 case .file implies DWARF-2. */
14958 s_mips_file (int x ATTRIBUTE_UNUSED)
14960 static int first_file_directive = 0;
14962 if (ECOFF_DEBUGGING)
14971 filename = dwarf2_directive_file (0);
14973 /* Versions of GCC up to 3.1 start files with a ".file"
14974 directive even for stabs output. Make sure that this
14975 ".file" is handled. Note that you need a version of GCC
14976 after 3.1 in order to support DWARF-2 on MIPS. */
14977 if (filename != NULL && ! first_file_directive)
14979 (void) new_logical_line (filename, -1);
14980 s_app_file_string (filename, 0);
14982 first_file_directive = 1;
14986 /* The .loc directive, implying DWARF-2. */
14989 s_mips_loc (int x ATTRIBUTE_UNUSED)
14991 if (!ECOFF_DEBUGGING)
14992 dwarf2_directive_loc (0);
14995 /* The .end directive. */
14998 s_mips_end (int x ATTRIBUTE_UNUSED)
15002 /* Following functions need their own .frame and .cprestore directives. */
15003 mips_frame_reg_valid = 0;
15004 mips_cprestore_valid = 0;
15006 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15009 demand_empty_rest_of_line ();
15014 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15015 as_warn (_(".end not in text section"));
15019 as_warn (_(".end directive without a preceding .ent directive."));
15020 demand_empty_rest_of_line ();
15026 gas_assert (S_GET_NAME (p));
15027 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15028 as_warn (_(".end symbol does not match .ent symbol."));
15030 if (debug_type == DEBUG_STABS)
15031 stabs_generate_asm_endfunc (S_GET_NAME (p),
15035 as_warn (_(".end directive missing or unknown symbol"));
15038 /* Create an expression to calculate the size of the function. */
15039 if (p && cur_proc_ptr)
15041 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15042 expressionS *exp = xmalloc (sizeof (expressionS));
15045 exp->X_op = O_subtract;
15046 exp->X_add_symbol = symbol_temp_new_now ();
15047 exp->X_op_symbol = p;
15048 exp->X_add_number = 0;
15050 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15053 /* Generate a .pdr section. */
15054 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15056 segT saved_seg = now_seg;
15057 subsegT saved_subseg = now_subseg;
15061 #ifdef md_flush_pending_output
15062 md_flush_pending_output ();
15065 gas_assert (pdr_seg);
15066 subseg_set (pdr_seg, 0);
15068 /* Write the symbol. */
15069 exp.X_op = O_symbol;
15070 exp.X_add_symbol = p;
15071 exp.X_add_number = 0;
15072 emit_expr (&exp, 4);
15074 fragp = frag_more (7 * 4);
15076 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15077 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15078 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15079 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15080 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15081 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15082 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15084 subseg_set (saved_seg, saved_subseg);
15086 #endif /* OBJ_ELF */
15088 cur_proc_ptr = NULL;
15091 /* The .aent and .ent directives. */
15094 s_mips_ent (int aent)
15098 symbolP = get_symbol ();
15099 if (*input_line_pointer == ',')
15100 ++input_line_pointer;
15101 SKIP_WHITESPACE ();
15102 if (ISDIGIT (*input_line_pointer)
15103 || *input_line_pointer == '-')
15106 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15107 as_warn (_(".ent or .aent not in text section."));
15109 if (!aent && cur_proc_ptr)
15110 as_warn (_("missing .end"));
15114 /* This function needs its own .frame and .cprestore directives. */
15115 mips_frame_reg_valid = 0;
15116 mips_cprestore_valid = 0;
15118 cur_proc_ptr = &cur_proc;
15119 memset (cur_proc_ptr, '\0', sizeof (procS));
15121 cur_proc_ptr->func_sym = symbolP;
15125 if (debug_type == DEBUG_STABS)
15126 stabs_generate_asm_func (S_GET_NAME (symbolP),
15127 S_GET_NAME (symbolP));
15130 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15132 demand_empty_rest_of_line ();
15135 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15136 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15137 s_mips_frame is used so that we can set the PDR information correctly.
15138 We can't use the ecoff routines because they make reference to the ecoff
15139 symbol table (in the mdebug section). */
15142 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15145 if (IS_ELF && !ECOFF_DEBUGGING)
15149 if (cur_proc_ptr == (procS *) NULL)
15151 as_warn (_(".frame outside of .ent"));
15152 demand_empty_rest_of_line ();
15156 cur_proc_ptr->frame_reg = tc_get_register (1);
15158 SKIP_WHITESPACE ();
15159 if (*input_line_pointer++ != ','
15160 || get_absolute_expression_and_terminator (&val) != ',')
15162 as_warn (_("Bad .frame directive"));
15163 --input_line_pointer;
15164 demand_empty_rest_of_line ();
15168 cur_proc_ptr->frame_offset = val;
15169 cur_proc_ptr->pc_reg = tc_get_register (0);
15171 demand_empty_rest_of_line ();
15174 #endif /* OBJ_ELF */
15178 /* The .fmask and .mask directives. If the mdebug section is present
15179 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15180 embedded targets, s_mips_mask is used so that we can set the PDR
15181 information correctly. We can't use the ecoff routines because they
15182 make reference to the ecoff symbol table (in the mdebug section). */
15185 s_mips_mask (int reg_type)
15188 if (IS_ELF && !ECOFF_DEBUGGING)
15192 if (cur_proc_ptr == (procS *) NULL)
15194 as_warn (_(".mask/.fmask outside of .ent"));
15195 demand_empty_rest_of_line ();
15199 if (get_absolute_expression_and_terminator (&mask) != ',')
15201 as_warn (_("Bad .mask/.fmask directive"));
15202 --input_line_pointer;
15203 demand_empty_rest_of_line ();
15207 off = get_absolute_expression ();
15209 if (reg_type == 'F')
15211 cur_proc_ptr->fpreg_mask = mask;
15212 cur_proc_ptr->fpreg_offset = off;
15216 cur_proc_ptr->reg_mask = mask;
15217 cur_proc_ptr->reg_offset = off;
15220 demand_empty_rest_of_line ();
15223 #endif /* OBJ_ELF */
15224 s_ignore (reg_type);
15227 /* A table describing all the processors gas knows about. Names are
15228 matched in the order listed.
15230 To ease comparison, please keep this table in the same order as
15231 gcc's mips_cpu_info_table[]. */
15232 static const struct mips_cpu_info mips_cpu_info_table[] =
15234 /* Entries for generic ISAs */
15235 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15236 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15237 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15238 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15239 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15240 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15241 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15242 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15243 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15246 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15247 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15248 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15251 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15254 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15255 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15256 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15257 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15258 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15259 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15260 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15261 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15262 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15263 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15264 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15265 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15266 /* ST Microelectronics Loongson 2E and 2F cores */
15267 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15268 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15271 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15272 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15273 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15274 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15275 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15276 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15277 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15278 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15279 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15280 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15281 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15282 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15283 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15284 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15285 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15288 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15289 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15290 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15291 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15293 /* MIPS 32 Release 2 */
15294 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15295 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15296 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15297 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15298 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15299 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15300 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15301 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15302 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15303 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15304 /* Deprecated forms of the above. */
15305 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15306 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15307 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15308 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15309 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15310 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15311 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15312 /* Deprecated forms of the above. */
15313 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15314 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15315 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15316 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15317 ISA_MIPS32R2, CPU_MIPS32R2 },
15318 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15319 ISA_MIPS32R2, CPU_MIPS32R2 },
15320 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15321 ISA_MIPS32R2, CPU_MIPS32R2 },
15322 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15323 ISA_MIPS32R2, CPU_MIPS32R2 },
15324 /* Deprecated forms of the above. */
15325 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15326 ISA_MIPS32R2, CPU_MIPS32R2 },
15327 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15328 ISA_MIPS32R2, CPU_MIPS32R2 },
15329 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15330 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15331 ISA_MIPS32R2, CPU_MIPS32R2 },
15332 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15333 ISA_MIPS32R2, CPU_MIPS32R2 },
15334 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15335 ISA_MIPS32R2, CPU_MIPS32R2 },
15336 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15337 ISA_MIPS32R2, CPU_MIPS32R2 },
15338 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15339 ISA_MIPS32R2, CPU_MIPS32R2 },
15340 /* Deprecated forms of the above. */
15341 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15342 ISA_MIPS32R2, CPU_MIPS32R2 },
15343 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15344 ISA_MIPS32R2, CPU_MIPS32R2 },
15345 /* 1004K cores are multiprocessor versions of the 34K. */
15346 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15347 ISA_MIPS32R2, CPU_MIPS32R2 },
15348 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15349 ISA_MIPS32R2, CPU_MIPS32R2 },
15350 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15351 ISA_MIPS32R2, CPU_MIPS32R2 },
15352 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15353 ISA_MIPS32R2, CPU_MIPS32R2 },
15356 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15357 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15358 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15359 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15361 /* Broadcom SB-1 CPU core */
15362 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15363 ISA_MIPS64, CPU_SB1 },
15364 /* Broadcom SB-1A CPU core */
15365 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15366 ISA_MIPS64, CPU_SB1 },
15368 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15370 /* MIPS 64 Release 2 */
15372 /* Cavium Networks Octeon CPU core */
15373 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15376 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15383 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15384 with a final "000" replaced by "k". Ignore case.
15386 Note: this function is shared between GCC and GAS. */
15389 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15391 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15392 given++, canonical++;
15394 return ((*given == 0 && *canonical == 0)
15395 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15399 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15400 CPU name. We've traditionally allowed a lot of variation here.
15402 Note: this function is shared between GCC and GAS. */
15405 mips_matching_cpu_name_p (const char *canonical, const char *given)
15407 /* First see if the name matches exactly, or with a final "000"
15408 turned into "k". */
15409 if (mips_strict_matching_cpu_name_p (canonical, given))
15412 /* If not, try comparing based on numerical designation alone.
15413 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15414 if (TOLOWER (*given) == 'r')
15416 if (!ISDIGIT (*given))
15419 /* Skip over some well-known prefixes in the canonical name,
15420 hoping to find a number there too. */
15421 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15423 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15425 else if (TOLOWER (canonical[0]) == 'r')
15428 return mips_strict_matching_cpu_name_p (canonical, given);
15432 /* Parse an option that takes the name of a processor as its argument.
15433 OPTION is the name of the option and CPU_STRING is the argument.
15434 Return the corresponding processor enumeration if the CPU_STRING is
15435 recognized, otherwise report an error and return null.
15437 A similar function exists in GCC. */
15439 static const struct mips_cpu_info *
15440 mips_parse_cpu (const char *option, const char *cpu_string)
15442 const struct mips_cpu_info *p;
15444 /* 'from-abi' selects the most compatible architecture for the given
15445 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15446 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15447 version. Look first at the -mgp options, if given, otherwise base
15448 the choice on MIPS_DEFAULT_64BIT.
15450 Treat NO_ABI like the EABIs. One reason to do this is that the
15451 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15452 architecture. This code picks MIPS I for 'mips' and MIPS III for
15453 'mips64', just as we did in the days before 'from-abi'. */
15454 if (strcasecmp (cpu_string, "from-abi") == 0)
15456 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15457 return mips_cpu_info_from_isa (ISA_MIPS1);
15459 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15460 return mips_cpu_info_from_isa (ISA_MIPS3);
15462 if (file_mips_gp32 >= 0)
15463 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15465 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15470 /* 'default' has traditionally been a no-op. Probably not very useful. */
15471 if (strcasecmp (cpu_string, "default") == 0)
15474 for (p = mips_cpu_info_table; p->name != 0; p++)
15475 if (mips_matching_cpu_name_p (p->name, cpu_string))
15478 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15482 /* Return the canonical processor information for ISA (a member of the
15483 ISA_MIPS* enumeration). */
15485 static const struct mips_cpu_info *
15486 mips_cpu_info_from_isa (int isa)
15490 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15491 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15492 && isa == mips_cpu_info_table[i].isa)
15493 return (&mips_cpu_info_table[i]);
15498 static const struct mips_cpu_info *
15499 mips_cpu_info_from_arch (int arch)
15503 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15504 if (arch == mips_cpu_info_table[i].cpu)
15505 return (&mips_cpu_info_table[i]);
15511 show (FILE *stream, const char *string, int *col_p, int *first_p)
15515 fprintf (stream, "%24s", "");
15520 fprintf (stream, ", ");
15524 if (*col_p + strlen (string) > 72)
15526 fprintf (stream, "\n%24s", "");
15530 fprintf (stream, "%s", string);
15531 *col_p += strlen (string);
15537 md_show_usage (FILE *stream)
15542 fprintf (stream, _("\
15544 -EB generate big endian output\n\
15545 -EL generate little endian output\n\
15546 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15547 -G NUM allow referencing objects up to NUM bytes\n\
15548 implicitly with the gp register [default 8]\n"));
15549 fprintf (stream, _("\
15550 -mips1 generate MIPS ISA I instructions\n\
15551 -mips2 generate MIPS ISA II instructions\n\
15552 -mips3 generate MIPS ISA III instructions\n\
15553 -mips4 generate MIPS ISA IV instructions\n\
15554 -mips5 generate MIPS ISA V instructions\n\
15555 -mips32 generate MIPS32 ISA instructions\n\
15556 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15557 -mips64 generate MIPS64 ISA instructions\n\
15558 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15559 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15563 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15564 show (stream, mips_cpu_info_table[i].name, &column, &first);
15565 show (stream, "from-abi", &column, &first);
15566 fputc ('\n', stream);
15568 fprintf (stream, _("\
15569 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15570 -no-mCPU don't generate code specific to CPU.\n\
15571 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15575 show (stream, "3900", &column, &first);
15576 show (stream, "4010", &column, &first);
15577 show (stream, "4100", &column, &first);
15578 show (stream, "4650", &column, &first);
15579 fputc ('\n', stream);
15581 fprintf (stream, _("\
15582 -mips16 generate mips16 instructions\n\
15583 -no-mips16 do not generate mips16 instructions\n"));
15584 fprintf (stream, _("\
15585 -msmartmips generate smartmips instructions\n\
15586 -mno-smartmips do not generate smartmips instructions\n"));
15587 fprintf (stream, _("\
15588 -mdsp generate DSP instructions\n\
15589 -mno-dsp do not generate DSP instructions\n"));
15590 fprintf (stream, _("\
15591 -mdspr2 generate DSP R2 instructions\n\
15592 -mno-dspr2 do not generate DSP R2 instructions\n"));
15593 fprintf (stream, _("\
15594 -mmt generate MT instructions\n\
15595 -mno-mt do not generate MT instructions\n"));
15596 fprintf (stream, _("\
15597 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15598 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15599 -mfix-vr4120 work around certain VR4120 errata\n\
15600 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15601 -mfix-24k insert a nop after ERET and DERET instructions\n\
15602 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15603 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15604 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15605 -msym32 assume all symbols have 32-bit values\n\
15606 -O0 remove unneeded NOPs, do not swap branches\n\
15607 -O remove unneeded NOPs and swap branches\n\
15608 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15609 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15610 fprintf (stream, _("\
15611 -mhard-float allow floating-point instructions\n\
15612 -msoft-float do not allow floating-point instructions\n\
15613 -msingle-float only allow 32-bit floating-point operations\n\
15614 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15615 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15618 fprintf (stream, _("\
15619 -KPIC, -call_shared generate SVR4 position independent code\n\
15620 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15621 -mvxworks-pic generate VxWorks position independent code\n\
15622 -non_shared do not generate code that can operate with DSOs\n\
15623 -xgot assume a 32 bit GOT\n\
15624 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15625 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15626 position dependent (non shared) code\n\
15627 -mabi=ABI create ABI conformant object file for:\n"));
15631 show (stream, "32", &column, &first);
15632 show (stream, "o64", &column, &first);
15633 show (stream, "n32", &column, &first);
15634 show (stream, "64", &column, &first);
15635 show (stream, "eabi", &column, &first);
15637 fputc ('\n', stream);
15639 fprintf (stream, _("\
15640 -32 create o32 ABI object file (default)\n\
15641 -n32 create n32 ABI object file\n\
15642 -64 create 64 ABI object file\n"));
15648 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15650 if (HAVE_64BIT_SYMBOLS)
15651 return dwarf2_format_64bit_irix;
15653 return dwarf2_format_32bit;
15658 mips_dwarf2_addr_size (void)
15660 if (HAVE_64BIT_OBJECTS)
15666 /* Standard calling conventions leave the CFA at SP on entry. */
15668 mips_cfi_frame_initial_instructions (void)
15670 cfi_add_CFA_def_cfa_register (SP);
15674 tc_mips_regname_to_dw2regnum (char *regname)
15676 unsigned int regnum = -1;
15679 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))