1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug = -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr = FALSE;
86 int mips_flag_pdr = TRUE;
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
99 #define PIC_CALL_REG 25
107 #define ILLEGAL_REG (32)
109 #define AT mips_opts.at
111 extern int target_big_endian;
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
116 /* Ways in which an instruction can be "appended" to the output. */
118 /* Just add it normally. */
121 /* Add it normally and then add a nop. */
124 /* Turn an instruction with a delay slot into a "compact" version. */
127 /* Insert the instruction before the last one. */
131 /* Information about an instruction, including its format, operands
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
142 unsigned long insn_opcode;
144 /* The frag that contains the instruction. */
147 /* The offset into FRAG of the first instruction byte. */
150 /* The relocs associated with the instruction, if any. */
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
165 /* True if this instruction is cleared from history by unconditional
167 unsigned int cleared_p : 1;
170 /* The ABI to use. */
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
187 /* Whether or not we have code which can be put into a shared
189 static bfd_boolean mips_in_shared = TRUE;
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
195 struct mips_set_options
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
250 /* True if ".set sym32" is in effect. */
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
262 /* 1 if single-precision operations on odd-numbered registers are
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
280 static struct mips_set_options file_mips_opts =
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
289 /* This is similar to file_mips_opts, but for the current set of options. */
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
339 /* The argument of the -mtune= flag. The architecture for which we
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
353 || (ABI) == N64_ABI \
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
611 /* MIPS PIC level. */
613 enum mips_pic_level mips_pic;
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
619 /* 1 if trap instructions should used for overflow rather than break
621 static int mips_trap = 0;
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
631 /* Non-zero if any .set noreorder directives were used. */
633 static int mips_any_noreorder;
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
689 /* Chars that mean this number is a floating point constant */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
707 /* Information about an error that was found while assembling the current
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
737 static int auto_align = 1;
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
743 static offsetT mips_cprestore_offset = -1;
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
772 static int mips_optimize = 2;
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
784 /* The maximum number of NOPs needed for any purpose. */
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
827 static fragS *prev_nop_frag;
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
832 /* The number of nop instructions that we know we need in
834 static int prev_nop_frag_required;
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
853 struct mips_hi_fixup *next;
856 /* The section this fixup is in. */
860 /* The list of unmatched HI relocs. */
862 static struct mips_hi_fixup *mips_hi_fixup_list;
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
867 static fragS *prev_reloc_op_frag;
869 /* Map mips16 register numbers to normal MIPS register numbers. */
871 static const unsigned int mips16_to_32_reg_map[] =
873 16, 17, 2, 3, 4, 5, 6, 7
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
883 5, 5, 6, 4, 4, 4, 4, 4
885 static const unsigned int micromips_to_32_reg_h_map2[] =
887 6, 7, 7, 21, 22, 5, 6, 7
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
893 0, 17, 2, 3, 16, 18, 19, 20
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
908 NUM_FIX_VR4120_CLASSES
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
945 static int mips_relax_branch;
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
994 The frag's "opcode" points to the first fixup for relaxable code.
996 Relaxable macros are generated using a sequence such as:
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1001 ... generate second expansion ...
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1018 /* Branch without likely bit. If label is out of range, we turn:
1020 beq reg1, reg2, label
1030 with the following opcode replacements:
1037 bltzal <-> bgezal (with jal label instead of j label)
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1047 Branch likely. If label is out of range, we turn:
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1059 delay slot (executed only if branch taken)
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1068 delay slot (executed only if branch taken)
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1251 /* The symbol on which the choice of sequence depends. */
1255 /* Global variables used to decide whether a macro needs a warning. */
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1268 unsigned int sizes[2];
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1287 /* The first variant frag for this macro. */
1289 } mips_macro_warning;
1291 /* Prototypes for static functions. */
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1358 struct mips_cpu_info
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1378 OPTION_MARCH = OPTION_MD_BASE,
1410 OPTION_NO_SMARTMIPS,
1420 OPTION_NO_MICROMIPS,
1423 OPTION_COMPAT_ARCH_BASE,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1443 OPTION_NO_FIX_VR4120,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1483 OPTION_MVXWORKS_PIC,
1486 OPTION_NO_ODD_SPREG,
1490 struct option md_longopts[] =
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1621 {NULL, no_argument, NULL, 0}
1623 size_t md_longopts_size = sizeof (md_longopts);
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1630 /* The name of the ASE, used in both the command-line and .set options. */
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1642 /* The command-line options that turn the ASE on and off. */
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1650 int micromips32_rev;
1651 int micromips64_rev;
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1698 OPTION_MT, OPTION_NO_MT,
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1748 static const pseudo_typeS mips_pseudo_table[] =
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1773 {"module", s_module, 0},
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1812 { "extern", ecoff_directive_extern, 0},
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1839 mips_address_bytes (void)
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1845 extern void pop_insert (const pseudo_typeS *);
1848 mips_pop_insert (void)
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1855 /* Symbols labelling the current insn. */
1857 struct insn_label_list
1859 struct insn_label_list *next;
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1871 mips_clear_insn_labels (void)
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1890 mips_mark_labels (void)
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1896 static char *expr_end;
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1901 static expressionS imm_expr;
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1916 static unsigned int forced_insn_length;
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1921 static bfd_boolean mips_assembling_insn;
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1926 static segT pdr_seg;
1928 /* The default target format to use. */
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1939 mips_target_format (void)
1941 switch (OUTPUT_FLAVOR)
1943 case bfd_target_elf_flavour:
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1998 mips_ase_mask (unsigned int flags)
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2059 mips_check_isa_supports_ases (void)
2061 unsigned int i, mask;
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2080 mask = mips_ase_mask (ase->flags);
2083 opts->ase |= ase->flags;
2087 /* Return the ASE called NAME, or null if none. */
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2110 /* Return the length of MIPS16 instruction OPCODE. */
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2115 return (opcode >> 16) == 0 ? 2 : 4;
2118 /* Return the length of instruction INSN. */
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2139 insn->insn_opcode = mo->match;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2151 /* Get a list of all the operands in INSN. */
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2164 if (insn->insn_mo >= µmips_opcodes[0]
2165 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2166 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2171 /* Get a description of operand OPNO of INSN. */
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2176 const struct mips_operand_array *operands;
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2181 return operands->operand[opno];
2184 /* Install UVAL as the value of OPERAND in INSN. */
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2193 /* Extract the value of OPERAND from INSN. */
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2199 return mips_extract_operand (operand, insn->insn_opcode);
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2205 mips_record_compressed_mode (void)
2207 segment_info_type *si;
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2216 /* Read a standard MIPS instruction from BUF. */
2218 static unsigned long
2219 read_insn (char *buf)
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2224 return bfd_getl32 ((bfd_byte *) buf);
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2231 write_insn (char *buf, unsigned int insn)
2233 md_number_to_chars (buf, insn, 4);
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2247 for (i = 0; i < length; i += 2)
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2253 insn |= bfd_getl16 ((char *) buf);
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2275 install_insn (const struct mips_cl_insn *insn)
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2301 install_insn (insn);
2304 /* Add INSN to the end of the output. */
2307 add_fixed_insn (struct mips_cl_insn *insn)
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2334 if (mips_relax.sequence != 2)
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2340 history[i] = history[i - n];
2346 /* Clear the error in insn_error. */
2349 clear_insn_error (void)
2351 memset (&insn_error, 0, sizeof (insn_error));
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2382 && strcmp (insn_error.msg, msg) != 0)
2385 insn_error.min_argnum += 1;
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2399 set_insn_error (int argnum, const char *msg)
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2408 set_insn_error_i (int argnum, const char *msg, int i)
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2427 /* Report the error in insn_error, which is against assembly code STR. */
2430 report_insn_error (const char *str)
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2434 switch (insn_error.format)
2441 as_bad (msg, insn_error.u.i, str);
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2449 free ((char *) msg);
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2457 init_vr4120_conflicts (void)
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2761 mips_prefer_vec_regno (unsigned int symval)
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2777 /* Terminate name. */
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2788 *symval_ptr = S_GET_VALUE (symbol);
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2808 unsigned int channels, symval, bit;
2810 /* Find end of name. */
2812 if (is_name_beginner (*e))
2814 while (is_part_of_name (*e))
2818 if (!mips_parse_register_1 (s, e, &symval))
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2842 *symval_ptr = symval;
2844 *channels_ptr = channels;
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2857 if (mips_parse_register (s, ®no, NULL))
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2869 as_warn (_("unrecognized register name `%s'"), *s);
2874 return regno <= RNUM_MASK;
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2889 *channels |= 1 << (3 - i);
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2900 /* A 4-bit XYZW channel mask. */
2903 /* A constant vector index, e.g. [1]. */
2906 /* A register vector index, e.g. [$2]. */
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2912 /* A (possibly relocated) expression. */
2915 /* A floating-point value. */
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2922 /* A doubled character, either "--" or "++". */
2925 /* The end of the operand list. */
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2942 /* The integer value of an OT_INTEGER_INDEX. */
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2947 unsigned int regno1;
2948 unsigned int regno2;
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2957 bfd_reloc_code_real_type relocs[3];
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2963 unsigned char data[8];
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2990 mips_parse_base_start (char *s)
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
3000 SKIP_SPACE_TABS (s);
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3008 SKIP_SPACE_TABS (s);
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, ®no, &channels))
3017 mips_add_token (&token, OT_CHAR);
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3052 mips_parse_argument_token (char *s, char float_format)
3054 char *end, *save_in;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3069 mips_add_token (&token, OT_CHAR);
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, ®no1, &channels))
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3088 SKIP_SPACE_TABS (s);
3091 /* A register range. */
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, ®no2, NULL))
3096 set_insn_error (0, _("invalid register range"));
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3110 /* Check for a vector index. */
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3119 expressionS element;
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3124 set_insn_error (0, _("vector element must be constant"));
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3131 SKIP_SPACE_TABS (s);
3134 set_insn_error (0, _("missing `]'"));
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3153 set_insn_error (0, err);
3158 mips_add_token (&token, OT_FLOAT);
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3169 mips_add_token (&token, OT_INTEGER);
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3184 struct mips_operand_token token;
3186 SKIP_SPACE_TABS (s);
3189 s = mips_parse_argument_token (s, float_format);
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3196 SKIP_SPACE_TABS (s);
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3206 is_opcode_valid (const struct mips_opcode *mo)
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3238 if (fp_s && mips_opts.soft_float)
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3257 is_size_valid (const struct mips_opcode *mo)
3259 if (!mips_opts.micromips)
3262 if (mips_opts.insn32)
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3269 if (!forced_insn_length)
3271 if (mo->pinfo == INSN_MACRO)
3273 return forced_insn_length == micromips_insn_length (mo);
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3293 if (!mips_opts.micromips)
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3379 doubled = used_bits & mask & insn_bits;
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3394 used_bits &= ~insn_bits;
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3404 /* The MIPS16 version of validate_mips_insn. */
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3424 /* The microMIPS version of validate_mips_insn. */
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3468 const char *retval = NULL;
3472 if (mips_pic != NO_PIC)
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3478 else if (mips_abicalls)
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3488 op_hash = hash_new ();
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3493 const char *name = mips_opcodes[i].name;
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3525 while (i < bfd_mips16_num_opcodes)
3527 const char *name = mips16_opcodes[i].name;
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3553 while (i < bfd_micromips_num_opcodes)
3555 const char *name = micromips_opcodes[i].name;
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) µmips_opcodes[i]);
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3564 struct mips_cl_insn *micromips_nop_insn;
3566 if (!validate_micromips_insn (µmips_opcodes[i],
3567 µmips_operands[i]))
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = µmips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = µmips_nop32_insn;
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3592 as_fatal (_("broken assembler, no assembly attempted"));
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3611 for (i = 0; i < 32; i++)
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3631 obstack_init (&mips_operand_tokens);
3633 mips_no_prev_insn ();
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3666 subseg = now_subseg;
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3675 if (mips_abi != N64_ABI)
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3692 /* Set up the option header. */
3694 Elf_Internal_Options opthdr;
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3716 if (ECOFF_DEBUGGING)
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3723 else if (mips_flag_pdr)
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3732 subseg_set (seg, subseg);
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3740 fpabi_incompatible_with (int fpabi, const char *what)
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3747 fpabi_requires (int fpabi, const char *what)
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3755 check_fpabi (int fpabi)
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3825 /* Perform consistency checks on the current options. */
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3865 as_bad (_("Unknown size of floating point registers"));
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3894 file_mips_check_options (void)
3896 const struct mips_cpu_info *arch_info = 0;
3898 if (file_mips_opts_checked)
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3906 if (file_mips_opts.gp < 0)
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3916 if (file_mips_opts.fp < 0)
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3949 file_mips_opts.oddspreg = 1;
3952 /* End of GCC-shared inference code. */
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3999 md_assemble (char *str)
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4005 file_mips_check_options ();
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4045 mips_assembling_insn = FALSE;
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4070 static inline bfd_boolean
4071 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4105 static inline bfd_boolean
4106 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4111 static inline bfd_boolean
4112 got16_reloc_p (bfd_reloc_code_real_type reloc)
4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4118 static inline bfd_boolean
4119 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4125 static inline bfd_boolean
4126 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4132 static inline bfd_boolean
4133 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4138 static inline bfd_boolean
4139 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4145 /* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4148 static inline bfd_boolean
4149 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
4163 case BFD_RELOC_32_PCREL:
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
4166 return HAVE_64BIT_ADDRESSES;
4173 /* Return true if the given relocation might need a matching %lo().
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
4177 static inline bfd_boolean
4178 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4180 return (HAVE_IN_PLACE_ADDENDS
4181 && (hi16_reloc_p (reloc)
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4187 /* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4190 static inline bfd_reloc_code_real_type
4191 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4198 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4201 static inline bfd_boolean
4202 fixup_has_matching_lo_p (fixS *fixp)
4204 return (fixp->fx_next != NULL
4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4210 /* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
4214 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4216 struct insn_label_list *l;
4219 for (l = labels; l != NULL; l = l->next)
4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
4224 /* MIPS16/microMIPS text labels are stored as odd. */
4225 if (text_p && HAVE_CODE_COMPRESSION)
4227 S_SET_VALUE (l->label, val);
4231 /* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4235 mips_move_text_labels (void)
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4241 s_is_linkonce (symbolS *sym, segT from_seg)
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4260 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4269 mips_compressed_mark_label (symbolS *label)
4271 gas_assert (HAVE_CODE_COMPRESSION);
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4288 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4291 mips_compressed_mark_labels (void)
4293 struct insn_label_list *l;
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
4299 /* End the current frag. Make it a variant frag and record the
4303 relax_close_frag (void)
4305 mips_macro_warning.first_frag = frag_now;
4306 frag_var (rs_machine_dependent, 0, 0,
4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4314 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4318 relax_start (symbolS *symbol)
4320 gas_assert (mips_relax.sequence == 0);
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4325 /* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
4331 gas_assert (mips_relax.sequence == 1);
4332 mips_relax.sequence = 2;
4335 /* End the current relaxable sequence. */
4340 gas_assert (mips_relax.sequence == 2);
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4345 /* Return true if IP is a delayed branch or jump. */
4347 static inline bfd_boolean
4348 delayed_branch_p (const struct mips_cl_insn *ip)
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4355 /* Return true if IP is a compact branch or jump. */
4357 static inline bfd_boolean
4358 compact_branch_p (const struct mips_cl_insn *ip)
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
4364 /* Return true if IP is an unconditional branch or jump. */
4366 static inline bfd_boolean
4367 uncond_branch_p (const struct mips_cl_insn *ip)
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4373 /* Return true if IP is a branch-likely instruction. */
4375 static inline bfd_boolean
4376 branch_likely_p (const struct mips_cl_insn *ip)
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4381 /* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4384 static struct mips_cl_insn *
4385 get_delay_slot_nop (const struct mips_cl_insn *ip)
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return µmips_nop32_insn;
4393 /* Return a mask that has bit N set if OPCODE reads the register(s)
4397 insn_read_mask (const struct mips_opcode *opcode)
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4402 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4406 insn_write_mask (const struct mips_opcode *opcode)
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4411 /* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4416 operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4420 unsigned int uval, vsel;
4422 switch (operand->type)
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4435 case OP_VU0_MATCH_SUFFIX:
4440 case OP_OPTIONAL_REG:
4442 const struct mips_reg_operand *reg_op;
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4453 const struct mips_reg_pair_operand *pair_op;
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4469 if (!(type_mask & (1 << OP_REG_GP)))
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4482 case OP_LWM_SWM_LIST:
4485 case OP_SAVE_RESTORE_LIST:
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4491 uval = insn_extract_operand (insn, operand);
4493 if ((vsel & 0x18) == 0x18)
4495 return 1 << (uval & 31);
4498 if (!(type_mask & (1 << OP_REG_GP)))
4500 return 1 << insn_extract_operand (insn, operand);
4505 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4511 insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4514 unsigned int opno, reg_mask;
4518 while (opno_mask != 0)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4528 /* Return the mask of core registers that IP reads. */
4531 gpr_read_mask (const struct mips_cl_insn *ip)
4533 unsigned long pinfo, pinfo2;
4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
4539 if (pinfo & INSN_UDI)
4541 /* UDI instructions have traditionally been assumed to read RS
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4546 if (pinfo & INSN_READ_GPR_24)
4548 if (pinfo2 & INSN2_READ_GPR_16)
4550 if (pinfo2 & INSN2_READ_SP)
4552 if (pinfo2 & INSN2_READ_GPR_31)
4554 /* Don't include register 0. */
4558 /* Return the mask of core registers that IP writes. */
4561 gpr_write_mask (const struct mips_cl_insn *ip)
4563 unsigned long pinfo, pinfo2;
4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
4569 if (pinfo & INSN_WRITE_GPR_24)
4571 if (pinfo & INSN_WRITE_GPR_31)
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4578 /* Don't include register 0. */
4582 /* Return the mask of floating-point registers that IP reads. */
4585 fpr_read_mask (const struct mips_cl_insn *ip)
4587 unsigned long pinfo;
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
4592 insn_read_mask (ip->insn_mo));
4593 pinfo = ip->insn_mo->pinfo;
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4601 /* Return the mask of floating-point registers that IP writes. */
4604 fpr_write_mask (const struct mips_cl_insn *ip)
4606 unsigned long pinfo;
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
4611 insn_write_mask (ip->insn_mo));
4612 pinfo = ip->insn_mo->pinfo;
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4620 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4624 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4626 const char *s = insn->name;
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4629 && mips_opts.oddspreg;
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4640 return FPR_SIZE == 32 || oddspreg;
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4650 return FPR_SIZE == 64;
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4662 return FPR_SIZE == 64;
4665 /* Information about an instruction argument that we're trying to match. */
4666 struct mips_arg_info
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4702 /* Record that the argument is out of range. */
4705 match_out_of_range (struct mips_arg_info *arg)
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4710 /* Record that the argument isn't constant but needs to be. */
4713 match_not_constant (struct mips_arg_info *arg)
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4719 /* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
4723 match_char (struct mips_arg_info *arg, char ch)
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4735 /* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4740 match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4763 if (arg->token->type == OT_INTEGER)
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4777 /* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4783 match_const_int (struct mips_arg_info *arg, offsetT *value)
4786 bfd_reloc_code_real_type r[3];
4788 if (!match_expression (arg, &ex, r))
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4792 *value = ex.X_add_number;
4795 match_not_constant (arg);
4801 /* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4805 convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4811 return RTYPE_NUM | RTYPE_GP;
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
4818 && (opcode->pinfo & (INSN_COPROC_MOVE
4819 | INSN_COPROC_MEMORY_DELAY
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4832 if (opcode->membership & INSN_5400)
4834 return RTYPE_FPU | RTYPE_VEC;
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4848 return RTYPE_NUM | RTYPE_VI;
4851 return RTYPE_NUM | RTYPE_VF;
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
4868 case OP_REG_MSA_CTRL:
4874 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4877 check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4883 if (type == OP_REG_FP
4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4891 as_warn (_("float register should be even, was %d"), regno);
4893 as_bad (_("float register should be even, was %d"), regno);
4896 if (type == OP_REG_CCC)
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4906 as_warn (_("condition code register should be even for %s, was %d"),
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4916 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4921 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4934 /* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4939 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4951 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4956 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4959 if (match_reg (arg, type, regno1))
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4975 /* OP_INT matcher. */
4978 match_int_operand (struct mips_arg_info *arg,
4979 const struct mips_operand *operand_base)
4981 const struct mips_int_operand *operand;
4983 int min_val, max_val, factor;
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
4997 /* The operand can be relocated. */
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
5007 if (offset_expr.X_op != O_constant)
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5013 offset_reloc[0] = BFD_RELOC_LO16;
5017 /* Clear the global state; we're going to install the operand
5019 sval = offset_expr.X_add_number;
5020 offset_expr.X_op = O_absent;
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5034 if (!match_const_int (arg, &sval))
5038 arg->last_op_int = sval;
5040 if (sval < min_val || sval > max_val || sval % factor)
5042 match_out_of_range (arg);
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5049 /* Handle -mfix-cn63xxp1. */
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5068 /* The rest must be changed to 28. */
5073 insn_insert_operand (arg->insn, operand_base, uval);
5077 /* OP_MAPPED_INT matcher. */
5080 match_mapped_int_operand (struct mips_arg_info *arg,
5081 const struct mips_operand *operand_base)
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
5088 if (!match_const_int (arg, &sval))
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5095 if (uval == num_vals)
5097 match_out_of_range (arg);
5101 insn_insert_operand (arg->insn, operand_base, uval);
5105 /* OP_MSB matcher. */
5108 match_msb_operand (struct mips_arg_info *arg,
5109 const struct mips_operand *operand_base)
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5120 if (!match_const_int (arg, &size))
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5128 match_out_of_range (arg);
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5135 /* OP_REG matcher. */
5138 match_reg_operand (struct mips_arg_info *arg,
5139 const struct mips_operand *operand_base)
5141 const struct mips_reg_operand *operand;
5142 unsigned int regno, uval, num_vals;
5144 operand = (const struct mips_reg_operand *) operand_base;
5145 if (!match_reg (arg, operand->reg_type, ®no))
5148 if (operand->reg_map)
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5154 if (num_vals == uval)
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
5167 /* OP_REG_PAIR matcher. */
5170 match_reg_pair_operand (struct mips_arg_info *arg,
5171 const struct mips_operand *operand_base)
5173 const struct mips_reg_pair_operand *operand;
5174 unsigned int regno1, regno2, uval, num_vals;
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
5177 if (!match_reg (arg, operand->reg_type, ®no1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, ®no2))
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5186 if (uval == num_vals)
5189 insn_insert_operand (arg->insn, operand_base, uval);
5193 /* OP_PCREL matcher. The caller chooses the relocation type. */
5196 match_pcrel_operand (struct mips_arg_info *arg)
5198 bfd_reloc_code_real_type r[3];
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5203 /* OP_PERF_REG matcher. */
5206 match_perf_reg_operand (struct mips_arg_info *arg,
5207 const struct mips_operand *operand)
5211 if (!match_const_int (arg, &sval))
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5224 insn_insert_operand (arg->insn, operand, sval);
5228 /* OP_ADDIUSP matcher. */
5231 match_addiusp_operand (struct mips_arg_info *arg,
5232 const struct mips_operand *operand)
5237 if (!match_const_int (arg, &sval))
5242 match_out_of_range (arg);
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5249 match_out_of_range (arg);
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
5259 /* OP_CLO_CLZ_DEST matcher. */
5262 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5263 const struct mips_operand *operand)
5267 if (!match_reg (arg, OP_REG_GP, ®no))
5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5274 /* OP_CHECK_PREV matcher. */
5277 match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5280 const struct mips_check_prev_operand *operand;
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5285 if (!match_reg (arg, OP_REG_GP, ®no))
5288 if (!operand->zero_ok && regno == 0)
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5303 /* OP_SAME_RS_RT matcher. */
5306 match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5311 if (!match_reg (arg, OP_REG_GP, ®no))
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5320 arg->last_regno = regno;
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5326 /* OP_LWM_SWM_LIST matcher. */
5329 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand)
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
5336 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5352 if (operand->size == 2)
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
5364 sregs = (reglist >> 17) & 7;
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5387 if ((sregs & -sregs) != sregs)
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5394 /* OP_ENTRY_EXIT_LIST matcher. */
5397 match_entry_exit_operand (struct mips_arg_info *arg,
5398 const struct mips_operand *operand)
5401 bfd_boolean is_exit;
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5412 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5414 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5422 mask |= (5 + regno2) << 3;
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5433 while (match_char (arg, ','));
5435 insn_insert_operand (arg->insn, operand, mask);
5439 /* OP_SAVE_RESTORE_LIST matcher. */
5442 match_save_restore_list_operand (struct mips_arg_info *arg)
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5448 opcode = arg->insn->insn_opcode;
5450 num_frame_sizes = 0;
5456 unsigned int regno1, regno2;
5458 if (arg->token->type == OT_INTEGER)
5460 /* Handle the frame size. */
5461 if (!match_const_int (arg, &frame_size))
5463 num_frame_sizes += 1;
5467 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5470 while (regno1 <= regno2)
5472 if (regno1 >= 4 && regno1 <= 7)
5474 if (num_frame_sizes == 0)
5476 args |= 1 << (regno1 - 4);
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5481 else if (regno1 >= 16 && regno1 <= 23)
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5498 while (match_char (arg, ','));
5500 /* Encode args/statics combination. */
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5511 /* Count arg registers. */
5521 /* Count static registers. */
5523 while (statics & 0x8)
5525 statics = (statics << 1) & 0xf;
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5538 if (sregs & (1 << 1)) /* $s1 */
5542 /* Encode $s2-$s8. */
5551 opcode |= num_sregs << 24;
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
5556 set_insn_error (arg->argnum, _("missing frame size"));
5559 if (num_frame_sizes > 1)
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5569 if (frame_size != 128 || (opcode >> 16) != 0)
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
5583 /* OP_MDMX_IMM_REG matcher. */
5586 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5587 const struct mips_operand *operand)
5589 unsigned int regno, uval;
5591 const struct mips_opcode *opcode;
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5599 if (arg->token->type == OT_REG)
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
5615 if (arg->token->type == OT_INTEGER_INDEX)
5617 if (arg->token->u.index > (is_qh ? 3 : 7))
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5648 if (!match_const_int (arg, &sval))
5650 if (sval < 0 || sval > 31)
5652 match_out_of_range (arg);
5655 uval |= (sval & 31);
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5661 insn_insert_operand (arg->insn, operand, uval);
5665 /* OP_IMM_INDEX matcher. */
5668 match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5671 unsigned int max_val;
5673 if (arg->token->type != OT_INTEGER_INDEX)
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5679 match_out_of_range (arg);
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5687 /* OP_REG_INDEX matcher. */
5690 match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5695 if (arg->token->type != OT_REG_INDEX)
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5701 insn_insert_operand (arg->insn, operand, regno);
5706 /* OP_PC matcher. */
5709 match_pc_operand (struct mips_arg_info *arg)
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5719 /* OP_NON_ZERO_REG matcher. */
5722 match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5727 if (!match_reg (arg, OP_REG_GP, ®no))
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5738 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5742 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5746 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5749 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5753 Return the constant in IMM and OFFSET as follows:
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5771 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
5777 const char *newname;
5778 unsigned char *data;
5780 /* Where the constant is placed is based on how the MIPS assembler
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5788 The .lit4 and .lit8 sections are only used if permitted by the
5790 if (arg->token->type != OT_FLOAT)
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5800 /* Handle 32-bit constants for which an immediate value is best. */
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
5816 /* Handle 64-bit constants for which an immediate value is best. */
5818 && !mips_disable_float_construction
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5867 /* Switch to the right section. */
5869 subseg = now_subseg;
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
5909 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5913 match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5923 /* The suffix can be omitted when it is already part of the opcode. */
5924 if (arg->token->type != OT_CHANNELS)
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5933 uval = 4 - ffs (uval);
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5941 insn_insert_operand (arg->insn, operand, uval);
5945 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5949 match_operand (struct mips_arg_info *arg,
5950 const struct mips_operand *operand)
5952 switch (operand->type)
5955 return match_int_operand (arg, operand);
5958 return match_mapped_int_operand (arg, operand);
5961 return match_msb_operand (arg, operand);
5964 case OP_OPTIONAL_REG:
5965 return match_reg_operand (arg, operand);
5968 return match_reg_pair_operand (arg, operand);
5971 return match_pcrel_operand (arg);
5974 return match_perf_reg_operand (arg, operand);
5976 case OP_ADDIUSP_INT:
5977 return match_addiusp_operand (arg, operand);
5979 case OP_CLO_CLZ_DEST:
5980 return match_clo_clz_dest_operand (arg, operand);
5982 case OP_LWM_SWM_LIST:
5983 return match_lwm_swm_list_operand (arg, operand);
5985 case OP_ENTRY_EXIT_LIST:
5986 return match_entry_exit_operand (arg, operand);
5988 case OP_SAVE_RESTORE_LIST:
5989 return match_save_restore_list_operand (arg);
5991 case OP_MDMX_IMM_REG:
5992 return match_mdmx_imm_reg_operand (arg, operand);
5994 case OP_REPEAT_DEST_REG:
5995 return match_tied_reg_operand (arg, arg->dest_regno);
5997 case OP_REPEAT_PREV_REG:
5998 return match_tied_reg_operand (arg, arg->last_regno);
6001 return match_pc_operand (arg);
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
6010 return match_imm_index_operand (arg, operand);
6013 return match_reg_index_operand (arg, operand);
6016 return match_same_rs_rt_operand (arg, operand);
6019 return match_check_prev_operand (arg, operand);
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
6027 /* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6031 check_completed_insn (struct mips_arg_info *arg)
6036 as_warn (_("used $at without \".set noat\""));
6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6042 /* Return true if modifying general-purpose register REG needs a delay. */
6045 reg_needs_delay (unsigned int reg)
6047 unsigned long prev_pinfo;
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6059 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
6064 classify_vr4120_insn (const char *name)
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6081 #define INSN_ERET 0x42000018
6082 #define INSN_DERET 0x4200001f
6083 #define INSN_DMULT 0x1c
6084 #define INSN_DMULTU 0x1d
6086 /* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
6091 insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6094 unsigned long pinfo1, pinfo2;
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
6115 && !mips_opts.micromips
6116 && MF_HILO_INSN (pinfo1)
6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
6122 if (mips_fix_24k && !mips_opts.micromips)
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
6130 || delayed_branch_p (insn2))
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
6149 if (mips_fix_vr4120 && !mips_opts.micromips)
6151 unsigned int class1, class2;
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6164 if (!HAVE_CODE_COMPRESSION)
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6176 /* Check for generic coprocessor hazards.
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
6190 mask = fpr_write_mask (insn1);
6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6234 /* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
6240 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6241 const struct mips_cl_insn *insn)
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6258 /* Extract the destination register. */
6259 mask = gpr_write_mask (&hist[i]);
6261 /* No nops are needed if INSN reads that register. */
6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
6267 if (gpr_read_mask (&hist[j]) & mask)
6271 return MAX_VR4130_NOPS - i;
6276 #define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6280 /* Return the minimum alignment for this store instruction. */
6283 fix_24k_align_to (const struct mips_opcode *mo)
6285 if (strcmp (mo->name, "sh") == 0)
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6304 struct fix_24k_store_info
6306 /* Immediate offset, if any, for this store instruction. */
6308 /* Alignment required by this store instruction. */
6310 /* True for register offsets. */
6311 int register_offset;
6314 /* Comparison function used by qsort. */
6317 fix_24k_sort (const void *a, const void *b)
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6322 return (pos1->off - pos2->off);
6325 /* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6329 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6330 const struct mips_cl_insn *insn)
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6341 /* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6360 * Zero, One or more instructions
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6378 The workarounds are:
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
6385 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6386 const struct mips_cl_insn *insn)
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6394 /* If the previous instruction wasn't a store, there's nothing to
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6464 /* Return the number of nops that would be needed if instruction INSN
6465 immediately followed the MAX_NOPS instructions given by HIST,
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6469 If INSN is null, return the worse-case number of nops for any
6473 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6474 const struct mips_cl_insn *insn)
6476 int i, nops, tmp_nops;
6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6481 tmp_nops = insns_between (hist + i, insn) - i;
6482 if (tmp_nops > nops)
6486 if (mips_fix_vr4130 && !mips_opts.micromips)
6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6489 if (tmp_nops > nops)
6493 if (mips_fix_24k && !mips_opts.micromips)
6495 tmp_nops = nops_for_24k (ignore, hist, insn);
6496 if (tmp_nops > nops)
6503 /* The variable arguments provide NUM_INSNS extra instructions that
6504 might be added to HIST. Return the largest number of nops that
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
6509 nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6517 va_start (args, hist);
6518 cursor = buffer + num_insns;
6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6523 nops = nops_for_insn (ignore, buffer, NULL);
6528 /* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
6532 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6533 const struct mips_cl_insn *insn)
6537 nops = nops_for_insn (ignore, hist, insn);
6538 if (delayed_branch_p (insn))
6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6541 hist, insn, get_delay_slot_nop (insn));
6542 if (tmp_nops > nops)
6545 else if (compact_branch_p (insn))
6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6548 if (tmp_nops > nops)
6554 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6557 fix_loongson2f_nop (struct mips_cl_insn * ip)
6559 gas_assert (!HAVE_CODE_COMPRESSION);
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6564 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6568 fix_loongson2f_jump (struct mips_cl_insn * ip)
6570 gas_assert (!HAVE_CODE_COMPRESSION);
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6595 fix_loongson2f (struct mips_cl_insn * ip)
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6604 /* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6611 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6612 bfd_reloc_code_real_type *reloc_type)
6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6616 unsigned int fpr_read, prev_fpr_write;
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
6647 if (mips_opts.mips16 && history[0].fixp[0])
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6657 /* If the previous instruction is in a variant frag other than this
6658 branch's one, we cannot do the swap. This does not apply to
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
6662 && history[0].frag->fr_type == rs_machine_dependent)
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6670 prev_pinfo = history[0].insn_mo->pinfo;
6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6718 /* If the previous instruction uses the PC, we can not swap. */
6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
6720 if (prev_pinfo2 & INSN2_READ_PC)
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6745 /* Branch to same code fragment. */
6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6747 /* Can only calculate branch offset if value is known. */
6748 && symbol_constant_p (address_expr->X_add_symbol)
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6768 if ((history[i].cleared_p)
6769 || delayed_branch_p (&history[i]))
6777 /* Insert nop after branch to fix short loop. */
6786 /* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6790 static enum append_method
6791 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6792 bfd_reloc_code_real_type *reloc_type)
6794 /* The relaxed version of a macro sequence must be inherently
6796 if (mips_relax.sequence == 2)
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
6804 if (delayed_branch_p (ip))
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
6812 && gpr_read_mask (ip) != 0)
6813 return APPEND_ADD_COMPACT;
6815 return APPEND_ADD_WITH_NOP;
6821 /* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6825 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6827 const struct mips_opcode *mo, *end;
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6839 /* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841 #define MICROMIPS_LABEL_CHAR '\037'
6842 static unsigned long micromips_target_label;
6843 static char micromips_target_name[32];
6846 micromips_label_name (void)
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6857 l = micromips_target_label;
6858 #ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6862 *p++ = MICROMIPS_LABEL_CHAR;
6865 symbol_name_temporary[i++] = l % 10 + '0';
6870 *p++ = symbol_name_temporary[--i];
6873 return micromips_target_name;
6877 micromips_label_expr (expressionS *label_expr)
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6885 micromips_label_inc (void)
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6892 micromips_add_label (void)
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6901 /* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6905 static bfd_reloc_code_real_type
6906 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6908 static const bfd_reloc_code_real_type relocs[][2] =
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6939 bfd_reloc_code_real_type r;
6942 if (!mips_opts.micromips)
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6950 return relocs[i][1];
6955 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6959 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_HI16_S_PCREL:
6976 case BFD_RELOC_MICROMIPS_HI16_S:
6977 case BFD_RELOC_MIPS16_HI16_S:
6978 *result = ((operand + 0x8000) >> 16) & 0xffff;
6981 case BFD_RELOC_HI16:
6982 case BFD_RELOC_MICROMIPS_HI16:
6983 case BFD_RELOC_MIPS16_HI16:
6984 *result = (operand >> 16) & 0xffff;
6987 case BFD_RELOC_LO16:
6988 case BFD_RELOC_LO16_PCREL:
6989 case BFD_RELOC_MICROMIPS_LO16:
6990 case BFD_RELOC_MIPS16_LO16:
6991 *result = operand & 0xffff;
6994 case BFD_RELOC_UNUSED:
7003 /* Output an instruction. IP is the instruction information.
7004 ADDRESS_EXPR is an operand of the instruction to be used with
7005 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7006 a macro expansion. */
7009 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7010 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7012 unsigned long prev_pinfo2, pinfo;
7013 bfd_boolean relaxed_branch = FALSE;
7014 enum append_method method;
7015 bfd_boolean relax32;
7018 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7019 fix_loongson2f (ip);
7021 file_ase_mips16 |= mips_opts.mips16;
7022 file_ase_micromips |= mips_opts.micromips;
7024 prev_pinfo2 = history[0].insn_mo->pinfo2;
7025 pinfo = ip->insn_mo->pinfo;
7027 if (mips_opts.micromips
7029 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 2)
7031 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7032 && micromips_insn_length (ip->insn_mo) != 4)))
7033 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7034 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7036 if (address_expr == NULL)
7038 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7039 && reloc_type[1] == BFD_RELOC_UNUSED
7040 && reloc_type[2] == BFD_RELOC_UNUSED
7041 && address_expr->X_op == O_constant)
7043 switch (*reloc_type)
7045 case BFD_RELOC_MIPS_JMP:
7049 /* Shift is 2, unusually, for microMIPS JALX. */
7050 shift = (mips_opts.micromips
7051 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7052 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7053 as_bad (_("jump to misaligned address (0x%lx)"),
7054 (unsigned long) address_expr->X_add_number);
7055 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7061 case BFD_RELOC_MIPS16_JMP:
7062 if ((address_expr->X_add_number & 3) != 0)
7063 as_bad (_("jump to misaligned address (0x%lx)"),
7064 (unsigned long) address_expr->X_add_number);
7066 (((address_expr->X_add_number & 0x7c0000) << 3)
7067 | ((address_expr->X_add_number & 0xf800000) >> 7)
7068 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7072 case BFD_RELOC_16_PCREL_S2:
7076 shift = mips_opts.micromips ? 1 : 2;
7077 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7078 as_bad (_("branch to misaligned address (0x%lx)"),
7079 (unsigned long) address_expr->X_add_number);
7080 if (!mips_relax_branch)
7082 if ((address_expr->X_add_number + (1 << (shift + 15)))
7083 & ~((1 << (shift + 16)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7092 case BFD_RELOC_MIPS_21_PCREL_S2:
7097 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7098 as_bad (_("branch to misaligned address (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 if ((address_expr->X_add_number + (1 << (shift + 20)))
7101 & ~((1 << (shift + 21)) - 1))
7102 as_bad (_("branch address range overflow (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7109 case BFD_RELOC_MIPS_26_PCREL_S2:
7114 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7115 as_bad (_("branch to misaligned address (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 if ((address_expr->X_add_number + (1 << (shift + 25)))
7118 & ~((1 << (shift + 26)) - 1))
7119 as_bad (_("branch address range overflow (0x%lx)"),
7120 (unsigned long) address_expr->X_add_number);
7121 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7130 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7133 ip->insn_opcode |= value & 0xffff;
7141 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7143 /* There are a lot of optimizations we could do that we don't.
7144 In particular, we do not, in general, reorder instructions.
7145 If you use gcc with optimization, it will reorder
7146 instructions and generally do much more optimization then we
7147 do here; repeating all that work in the assembler would only
7148 benefit hand written assembly code, and does not seem worth
7150 int nops = (mips_optimize == 0
7151 ? nops_for_insn (0, history, NULL)
7152 : nops_for_insn_or_target (0, history, ip));
7156 unsigned long old_frag_offset;
7159 old_frag = frag_now;
7160 old_frag_offset = frag_now_fix ();
7162 for (i = 0; i < nops; i++)
7163 add_fixed_insn (NOP_INSN);
7164 insert_into_history (0, nops, NOP_INSN);
7168 listing_prev_line ();
7169 /* We may be at the start of a variant frag. In case we
7170 are, make sure there is enough space for the frag
7171 after the frags created by listing_prev_line. The
7172 argument to frag_grow here must be at least as large
7173 as the argument to all other calls to frag_grow in
7174 this file. We don't have to worry about being in the
7175 middle of a variant frag, because the variants insert
7176 all needed nop instructions themselves. */
7180 mips_move_text_labels ();
7182 #ifndef NO_ECOFF_DEBUGGING
7183 if (ECOFF_DEBUGGING)
7184 ecoff_fix_loc (old_frag, old_frag_offset);
7188 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7192 /* Work out how many nops in prev_nop_frag are needed by IP,
7193 ignoring hazards generated by the first prev_nop_frag_since
7195 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7196 gas_assert (nops <= prev_nop_frag_holds);
7198 /* Enforce NOPS as a minimum. */
7199 if (nops > prev_nop_frag_required)
7200 prev_nop_frag_required = nops;
7202 if (prev_nop_frag_holds == prev_nop_frag_required)
7204 /* Settle for the current number of nops. Update the history
7205 accordingly (for the benefit of any future .set reorder code). */
7206 prev_nop_frag = NULL;
7207 insert_into_history (prev_nop_frag_since,
7208 prev_nop_frag_holds, NOP_INSN);
7212 /* Allow this instruction to replace one of the nops that was
7213 tentatively added to prev_nop_frag. */
7214 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7215 prev_nop_frag_holds--;
7216 prev_nop_frag_since++;
7220 method = get_append_method (ip, address_expr, reloc_type);
7221 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7223 dwarf2_emit_insn (0);
7224 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7225 so "move" the instruction address accordingly.
7227 Also, it doesn't seem appropriate for the assembler to reorder .loc
7228 entries. If this instruction is a branch that we are going to swap
7229 with the previous instruction, the two instructions should be
7230 treated as a unit, and the debug information for both instructions
7231 should refer to the start of the branch sequence. Using the
7232 current position is certainly wrong when swapping a 32-bit branch
7233 and a 16-bit delay slot, since the current position would then be
7234 in the middle of a branch. */
7235 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7237 relax32 = (mips_relax_branch
7238 /* Don't try branch relaxation within .set nomacro, or within
7239 .set noat if we use $at for PIC computations. If it turns
7240 out that the branch was out-of-range, we'll get an error. */
7241 && !mips_opts.warn_about_macros
7242 && (mips_opts.at || mips_pic == NO_PIC)
7243 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7244 as they have no complementing branches. */
7245 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7247 if (!HAVE_CODE_COMPRESSION
7250 && *reloc_type == BFD_RELOC_16_PCREL_S2
7251 && delayed_branch_p (ip))
7253 relaxed_branch = TRUE;
7254 add_relaxed_insn (ip, (relaxed_branch_length
7256 uncond_branch_p (ip) ? -1
7257 : branch_likely_p (ip) ? 1
7261 uncond_branch_p (ip),
7262 branch_likely_p (ip),
7263 pinfo & INSN_WRITE_GPR_31,
7265 address_expr->X_add_symbol,
7266 address_expr->X_add_number);
7267 *reloc_type = BFD_RELOC_UNUSED;
7269 else if (mips_opts.micromips
7271 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7272 || *reloc_type > BFD_RELOC_UNUSED)
7273 && (delayed_branch_p (ip) || compact_branch_p (ip))
7274 /* Don't try branch relaxation when users specify
7275 16-bit/32-bit instructions. */
7276 && !forced_insn_length)
7278 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7279 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7280 int uncond = uncond_branch_p (ip) ? -1 : 0;
7281 int compact = compact_branch_p (ip);
7282 int al = pinfo & INSN_WRITE_GPR_31;
7285 gas_assert (address_expr != NULL);
7286 gas_assert (!mips_relax.sequence);
7288 relaxed_branch = TRUE;
7289 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7290 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7291 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7293 address_expr->X_add_symbol,
7294 address_expr->X_add_number);
7295 *reloc_type = BFD_RELOC_UNUSED;
7297 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7299 /* We need to set up a variant frag. */
7300 gas_assert (address_expr != NULL);
7301 add_relaxed_insn (ip, 4, 0,
7303 (*reloc_type - BFD_RELOC_UNUSED,
7304 forced_insn_length == 2, forced_insn_length == 4,
7305 delayed_branch_p (&history[0]),
7306 history[0].mips16_absolute_jump_p),
7307 make_expr_symbol (address_expr), 0);
7309 else if (mips_opts.mips16 && insn_length (ip) == 2)
7311 if (!delayed_branch_p (ip))
7312 /* Make sure there is enough room to swap this instruction with
7313 a following jump instruction. */
7315 add_fixed_insn (ip);
7319 if (mips_opts.mips16
7320 && mips_opts.noreorder
7321 && delayed_branch_p (&history[0]))
7322 as_warn (_("extended instruction in delay slot"));
7324 if (mips_relax.sequence)
7326 /* If we've reached the end of this frag, turn it into a variant
7327 frag and record the information for the instructions we've
7329 if (frag_room () < 4)
7330 relax_close_frag ();
7331 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7334 if (mips_relax.sequence != 2)
7336 if (mips_macro_warning.first_insn_sizes[0] == 0)
7337 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7338 mips_macro_warning.sizes[0] += insn_length (ip);
7339 mips_macro_warning.insns[0]++;
7341 if (mips_relax.sequence != 1)
7343 if (mips_macro_warning.first_insn_sizes[1] == 0)
7344 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7345 mips_macro_warning.sizes[1] += insn_length (ip);
7346 mips_macro_warning.insns[1]++;
7349 if (mips_opts.mips16)
7352 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7354 add_fixed_insn (ip);
7357 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7359 bfd_reloc_code_real_type final_type[3];
7360 reloc_howto_type *howto0;
7361 reloc_howto_type *howto;
7364 /* Perform any necessary conversion to microMIPS relocations
7365 and find out how many relocations there actually are. */
7366 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7367 final_type[i] = micromips_map_reloc (reloc_type[i]);
7369 /* In a compound relocation, it is the final (outermost)
7370 operator that determines the relocated field. */
7371 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7376 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7377 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7378 bfd_get_reloc_size (howto),
7380 howto0 && howto0->pc_relative,
7383 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7384 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7385 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7387 /* These relocations can have an addend that won't fit in
7388 4 octets for 64bit assembly. */
7390 && ! howto->partial_inplace
7391 && (reloc_type[0] == BFD_RELOC_16
7392 || reloc_type[0] == BFD_RELOC_32
7393 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7394 || reloc_type[0] == BFD_RELOC_GPREL16
7395 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7396 || reloc_type[0] == BFD_RELOC_GPREL32
7397 || reloc_type[0] == BFD_RELOC_64
7398 || reloc_type[0] == BFD_RELOC_CTOR
7399 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7400 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7401 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7402 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7403 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7404 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7405 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7406 || hi16_reloc_p (reloc_type[0])
7407 || lo16_reloc_p (reloc_type[0])))
7408 ip->fixp[0]->fx_no_overflow = 1;
7410 /* These relocations can have an addend that won't fit in 2 octets. */
7411 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7412 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7413 ip->fixp[0]->fx_no_overflow = 1;
7415 if (mips_relax.sequence)
7417 if (mips_relax.first_fixup == 0)
7418 mips_relax.first_fixup = ip->fixp[0];
7420 else if (reloc_needs_lo_p (*reloc_type))
7422 struct mips_hi_fixup *hi_fixup;
7424 /* Reuse the last entry if it already has a matching %lo. */
7425 hi_fixup = mips_hi_fixup_list;
7427 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7429 hi_fixup = XNEW (struct mips_hi_fixup);
7430 hi_fixup->next = mips_hi_fixup_list;
7431 mips_hi_fixup_list = hi_fixup;
7433 hi_fixup->fixp = ip->fixp[0];
7434 hi_fixup->seg = now_seg;
7437 /* Add fixups for the second and third relocations, if given.
7438 Note that the ABI allows the second relocation to be
7439 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7440 moment we only use RSS_UNDEF, but we could add support
7441 for the others if it ever becomes necessary. */
7442 for (i = 1; i < 3; i++)
7443 if (reloc_type[i] != BFD_RELOC_UNUSED)
7445 ip->fixp[i] = fix_new (ip->frag, ip->where,
7446 ip->fixp[0]->fx_size, NULL, 0,
7447 FALSE, final_type[i]);
7449 /* Use fx_tcbit to mark compound relocs. */
7450 ip->fixp[0]->fx_tcbit = 1;
7451 ip->fixp[i]->fx_tcbit = 1;
7456 /* Update the register mask information. */
7457 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7458 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7463 insert_into_history (0, 1, ip);
7466 case APPEND_ADD_WITH_NOP:
7468 struct mips_cl_insn *nop;
7470 insert_into_history (0, 1, ip);
7471 nop = get_delay_slot_nop (ip);
7472 add_fixed_insn (nop);
7473 insert_into_history (0, 1, nop);
7474 if (mips_relax.sequence)
7475 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7479 case APPEND_ADD_COMPACT:
7480 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7481 gas_assert (mips_opts.mips16);
7482 ip->insn_opcode |= 0x0080;
7483 find_altered_mips16_opcode (ip);
7485 insert_into_history (0, 1, ip);
7490 struct mips_cl_insn delay = history[0];
7491 if (mips_opts.mips16)
7493 know (delay.frag == ip->frag);
7494 move_insn (ip, delay.frag, delay.where);
7495 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7497 else if (relaxed_branch || delay.frag != ip->frag)
7499 /* Add the delay slot instruction to the end of the
7500 current frag and shrink the fixed part of the
7501 original frag. If the branch occupies the tail of
7502 the latter, move it backwards to cover the gap. */
7503 delay.frag->fr_fix -= branch_disp;
7504 if (delay.frag == ip->frag)
7505 move_insn (ip, ip->frag, ip->where - branch_disp);
7506 add_fixed_insn (&delay);
7510 move_insn (&delay, ip->frag,
7511 ip->where - branch_disp + insn_length (ip));
7512 move_insn (ip, history[0].frag, history[0].where);
7516 insert_into_history (0, 1, &delay);
7521 /* If we have just completed an unconditional branch, clear the history. */
7522 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7523 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7527 mips_no_prev_insn ();
7529 for (i = 0; i < ARRAY_SIZE (history); i++)
7530 history[i].cleared_p = 1;
7533 /* We need to emit a label at the end of branch-likely macros. */
7534 if (emit_branch_likely_macro)
7536 emit_branch_likely_macro = FALSE;
7537 micromips_add_label ();
7540 /* We just output an insn, so the next one doesn't have a label. */
7541 mips_clear_insn_labels ();
7544 /* Forget that there was any previous instruction or label.
7545 When BRANCH is true, the branch history is also flushed. */
7548 mips_no_prev_insn (void)
7550 prev_nop_frag = NULL;
7551 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7552 mips_clear_insn_labels ();
7555 /* This function must be called before we emit something other than
7556 instructions. It is like mips_no_prev_insn except that it inserts
7557 any NOPS that might be needed by previous instructions. */
7560 mips_emit_delays (void)
7562 if (! mips_opts.noreorder)
7564 int nops = nops_for_insn (0, history, NULL);
7568 add_fixed_insn (NOP_INSN);
7569 mips_move_text_labels ();
7572 mips_no_prev_insn ();
7575 /* Start a (possibly nested) noreorder block. */
7578 start_noreorder (void)
7580 if (mips_opts.noreorder == 0)
7585 /* None of the instructions before the .set noreorder can be moved. */
7586 for (i = 0; i < ARRAY_SIZE (history); i++)
7587 history[i].fixed_p = 1;
7589 /* Insert any nops that might be needed between the .set noreorder
7590 block and the previous instructions. We will later remove any
7591 nops that turn out not to be needed. */
7592 nops = nops_for_insn (0, history, NULL);
7595 if (mips_optimize != 0)
7597 /* Record the frag which holds the nop instructions, so
7598 that we can remove them if we don't need them. */
7599 frag_grow (nops * NOP_INSN_SIZE);
7600 prev_nop_frag = frag_now;
7601 prev_nop_frag_holds = nops;
7602 prev_nop_frag_required = 0;
7603 prev_nop_frag_since = 0;
7606 for (; nops > 0; --nops)
7607 add_fixed_insn (NOP_INSN);
7609 /* Move on to a new frag, so that it is safe to simply
7610 decrease the size of prev_nop_frag. */
7611 frag_wane (frag_now);
7613 mips_move_text_labels ();
7615 mips_mark_labels ();
7616 mips_clear_insn_labels ();
7618 mips_opts.noreorder++;
7619 mips_any_noreorder = 1;
7622 /* End a nested noreorder block. */
7625 end_noreorder (void)
7627 mips_opts.noreorder--;
7628 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7630 /* Commit to inserting prev_nop_frag_required nops and go back to
7631 handling nop insertion the .set reorder way. */
7632 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7634 insert_into_history (prev_nop_frag_since,
7635 prev_nop_frag_required, NOP_INSN);
7636 prev_nop_frag = NULL;
7640 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7641 higher bits unset. */
7644 normalize_constant_expr (expressionS *ex)
7646 if (ex->X_op == O_constant
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7652 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7653 all higher bits unset. */
7656 normalize_address_expr (expressionS *ex)
7658 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7659 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7660 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7661 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7665 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7666 Return true if the match was successful.
7668 OPCODE_EXTRA is a value that should be ORed into the opcode
7669 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7670 there are more alternatives after OPCODE and SOFT_MATCH is
7671 as for mips_arg_info. */
7674 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7675 struct mips_operand_token *tokens, unsigned int opcode_extra,
7676 bfd_boolean lax_match, bfd_boolean complete_p)
7679 struct mips_arg_info arg;
7680 const struct mips_operand *operand;
7683 imm_expr.X_op = O_absent;
7684 offset_expr.X_op = O_absent;
7685 offset_reloc[0] = BFD_RELOC_UNUSED;
7686 offset_reloc[1] = BFD_RELOC_UNUSED;
7687 offset_reloc[2] = BFD_RELOC_UNUSED;
7689 create_insn (insn, opcode);
7690 /* When no opcode suffix is specified, assume ".xyzw". */
7691 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7692 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7694 insn->insn_opcode |= opcode_extra;
7695 memset (&arg, 0, sizeof (arg));
7699 arg.last_regno = ILLEGAL_REG;
7700 arg.dest_regno = ILLEGAL_REG;
7701 arg.lax_match = lax_match;
7702 for (args = opcode->args;; ++args)
7704 if (arg.token->type == OT_END)
7706 /* Handle unary instructions in which only one operand is given.
7707 The source is then the same as the destination. */
7708 if (arg.opnum == 1 && *args == ',')
7710 operand = (mips_opts.micromips
7711 ? decode_micromips_operand (args + 1)
7712 : decode_mips_operand (args + 1));
7713 if (operand && mips_optional_operand_p (operand))
7721 /* Treat elided base registers as $0. */
7722 if (strcmp (args, "(b)") == 0)
7730 /* The register suffix is optional. */
7735 /* Fail the match if there were too few operands. */
7739 /* Successful match. */
7742 clear_insn_error ();
7743 if (arg.dest_regno == arg.last_regno
7744 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7748 (0, _("source and destination must be different"));
7749 else if (arg.last_regno == 31)
7751 (0, _("a destination register must be supplied"));
7753 else if (arg.last_regno == 31
7754 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7755 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7756 set_insn_error (0, _("the source register must not be $31"));
7757 check_completed_insn (&arg);
7761 /* Fail the match if the line has too many operands. */
7765 /* Handle characters that need to match exactly. */
7766 if (*args == '(' || *args == ')' || *args == ',')
7768 if (match_char (&arg, *args))
7775 if (arg.token->type == OT_DOUBLE_CHAR
7776 && arg.token->u.ch == *args)
7784 /* Handle special macro operands. Work out the properties of
7793 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7797 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7806 *offset_reloc = BFD_RELOC_MIPS_JMP;
7810 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7814 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7820 if (!match_const_int (&arg, &imm_expr.X_add_number))
7822 imm_expr.X_op = O_constant;
7824 normalize_constant_expr (&imm_expr);
7828 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7830 /* Assume that the offset has been elided and that what
7831 we saw was a base register. The match will fail later
7832 if that assumption turns out to be wrong. */
7833 offset_expr.X_op = O_constant;
7834 offset_expr.X_add_number = 0;
7838 if (!match_expression (&arg, &offset_expr, offset_reloc))
7840 normalize_address_expr (&offset_expr);
7845 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7851 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7857 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7863 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7869 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7873 *offset_reloc = BFD_RELOC_MIPS_JMP;
7877 gas_assert (mips_opts.micromips);
7883 if (!forced_insn_length)
7884 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7886 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7888 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7894 operand = (mips_opts.micromips
7895 ? decode_micromips_operand (args)
7896 : decode_mips_operand (args));
7900 /* Skip prefixes. */
7901 if (*args == '+' || *args == 'm' || *args == '-')
7904 if (mips_optional_operand_p (operand)
7906 && (arg.token[0].type != OT_REG
7907 || arg.token[1].type == OT_END))
7909 /* Assume that the register has been elided and is the
7910 same as the first operand. */
7915 if (!match_operand (&arg, operand))
7920 /* Like match_insn, but for MIPS16. */
7923 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7924 struct mips_operand_token *tokens)
7927 const struct mips_operand *operand;
7928 const struct mips_operand *ext_operand;
7929 struct mips_arg_info arg;
7932 create_insn (insn, opcode);
7933 imm_expr.X_op = O_absent;
7934 offset_expr.X_op = O_absent;
7935 offset_reloc[0] = BFD_RELOC_UNUSED;
7936 offset_reloc[1] = BFD_RELOC_UNUSED;
7937 offset_reloc[2] = BFD_RELOC_UNUSED;
7940 memset (&arg, 0, sizeof (arg));
7944 arg.last_regno = ILLEGAL_REG;
7945 arg.dest_regno = ILLEGAL_REG;
7947 for (args = opcode->args;; ++args)
7951 if (arg.token->type == OT_END)
7955 /* Handle unary instructions in which only one operand is given.
7956 The source is then the same as the destination. */
7957 if (arg.opnum == 1 && *args == ',')
7959 operand = decode_mips16_operand (args[1], FALSE);
7960 if (operand && mips_optional_operand_p (operand))
7968 /* Fail the match if there were too few operands. */
7972 /* Successful match. Stuff the immediate value in now, if
7974 clear_insn_error ();
7975 if (opcode->pinfo == INSN_MACRO)
7977 gas_assert (relax_char == 0 || relax_char == 'p');
7978 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7981 && offset_expr.X_op == O_constant
7982 && calculate_reloc (*offset_reloc,
7983 offset_expr.X_add_number,
7986 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7987 forced_insn_length, &insn->insn_opcode);
7988 offset_expr.X_op = O_absent;
7989 *offset_reloc = BFD_RELOC_UNUSED;
7991 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7993 if (forced_insn_length == 2)
7994 set_insn_error (0, _("invalid unextended operand value"));
7995 forced_insn_length = 4;
7996 insn->insn_opcode |= MIPS16_EXTEND;
7998 else if (relax_char)
7999 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8001 check_completed_insn (&arg);
8005 /* Fail the match if the line has too many operands. */
8009 /* Handle characters that need to match exactly. */
8010 if (*args == '(' || *args == ')' || *args == ',')
8012 if (match_char (&arg, *args))
8030 if (!match_const_int (&arg, &imm_expr.X_add_number))
8032 imm_expr.X_op = O_constant;
8034 normalize_constant_expr (&imm_expr);
8039 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8040 insn->insn_opcode <<= 16;
8044 operand = decode_mips16_operand (c, FALSE);
8048 /* '6' is a special case. It is used for BREAK and SDBBP,
8049 whose operands are only meaningful to the software that decodes
8050 them. This means that there is no architectural reason why
8051 they cannot be prefixed by EXTEND, but in practice,
8052 exception handlers will only look at the instruction
8053 itself. We therefore allow '6' to be extended when
8054 disassembling but not when assembling. */
8055 if (operand->type != OP_PCREL && c != '6')
8057 ext_operand = decode_mips16_operand (c, TRUE);
8058 if (operand != ext_operand)
8060 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8062 offset_expr.X_op = O_constant;
8063 offset_expr.X_add_number = 0;
8068 /* We need the OT_INTEGER check because some MIPS16
8069 immediate variants are listed before the register ones. */
8070 if (arg.token->type != OT_INTEGER
8071 || !match_expression (&arg, &offset_expr, offset_reloc))
8074 /* '8' is used for SLTI(U) and has traditionally not
8075 been allowed to take relocation operators. */
8076 if (offset_reloc[0] != BFD_RELOC_UNUSED
8077 && (ext_operand->size != 16 || c == '8'))
8085 if (mips_optional_operand_p (operand)
8087 && (arg.token[0].type != OT_REG
8088 || arg.token[1].type == OT_END))
8090 /* Assume that the register has been elided and is the
8091 same as the first operand. */
8096 if (!match_operand (&arg, operand))
8101 /* Record that the current instruction is invalid for the current ISA. */
8104 match_invalid_for_isa (void)
8107 (0, _("opcode not supported on this processor: %s (%s)"),
8108 mips_cpu_info_from_arch (mips_opts.arch)->name,
8109 mips_cpu_info_from_isa (mips_opts.isa)->name);
8112 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8113 Return true if a definite match or failure was found, storing any match
8114 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8115 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8116 tried and failed to match under normal conditions and now want to try a
8117 more relaxed match. */
8120 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8121 const struct mips_opcode *past, struct mips_operand_token *tokens,
8122 int opcode_extra, bfd_boolean lax_match)
8124 const struct mips_opcode *opcode;
8125 const struct mips_opcode *invalid_delay_slot;
8126 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8128 /* Search for a match, ignoring alternatives that don't satisfy the
8129 current ISA or forced_length. */
8130 invalid_delay_slot = 0;
8131 seen_valid_for_isa = FALSE;
8132 seen_valid_for_size = FALSE;
8136 gas_assert (strcmp (opcode->name, first->name) == 0);
8137 if (is_opcode_valid (opcode))
8139 seen_valid_for_isa = TRUE;
8140 if (is_size_valid (opcode))
8142 bfd_boolean delay_slot_ok;
8144 seen_valid_for_size = TRUE;
8145 delay_slot_ok = is_delay_slot_valid (opcode);
8146 if (match_insn (insn, opcode, tokens, opcode_extra,
8147 lax_match, delay_slot_ok))
8151 if (!invalid_delay_slot)
8152 invalid_delay_slot = opcode;
8161 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8163 /* If the only matches we found had the wrong length for the delay slot,
8164 pick the first such match. We'll issue an appropriate warning later. */
8165 if (invalid_delay_slot)
8167 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8173 /* Handle the case where we didn't try to match an instruction because
8174 all the alternatives were incompatible with the current ISA. */
8175 if (!seen_valid_for_isa)
8177 match_invalid_for_isa ();
8181 /* Handle the case where we didn't try to match an instruction because
8182 all the alternatives were of the wrong size. */
8183 if (!seen_valid_for_size)
8185 if (mips_opts.insn32)
8186 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8189 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8190 8 * forced_insn_length);
8197 /* Like match_insns, but for MIPS16. */
8200 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8201 struct mips_operand_token *tokens)
8203 const struct mips_opcode *opcode;
8204 bfd_boolean seen_valid_for_isa;
8206 /* Search for a match, ignoring alternatives that don't satisfy the
8207 current ISA. There are no separate entries for extended forms so
8208 we deal with forced_length later. */
8209 seen_valid_for_isa = FALSE;
8213 gas_assert (strcmp (opcode->name, first->name) == 0);
8214 if (is_opcode_valid_16 (opcode))
8216 seen_valid_for_isa = TRUE;
8217 if (match_mips16_insn (insn, opcode, tokens))
8222 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8223 && strcmp (opcode->name, first->name) == 0);
8225 /* Handle the case where we didn't try to match an instruction because
8226 all the alternatives were incompatible with the current ISA. */
8227 if (!seen_valid_for_isa)
8229 match_invalid_for_isa ();
8236 /* Set up global variables for the start of a new macro. */
8241 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8242 memset (&mips_macro_warning.first_insn_sizes, 0,
8243 sizeof (mips_macro_warning.first_insn_sizes));
8244 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8245 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8246 && delayed_branch_p (&history[0]));
8247 switch (history[0].insn_mo->pinfo2
8248 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8250 case INSN2_BRANCH_DELAY_32BIT:
8251 mips_macro_warning.delay_slot_length = 4;
8253 case INSN2_BRANCH_DELAY_16BIT:
8254 mips_macro_warning.delay_slot_length = 2;
8257 mips_macro_warning.delay_slot_length = 0;
8260 mips_macro_warning.first_frag = NULL;
8263 /* Given that a macro is longer than one instruction or of the wrong size,
8264 return the appropriate warning for it. Return null if no warning is
8265 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8266 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8267 and RELAX_NOMACRO. */
8270 macro_warning (relax_substateT subtype)
8272 if (subtype & RELAX_DELAY_SLOT)
8273 return _("macro instruction expanded into multiple instructions"
8274 " in a branch delay slot");
8275 else if (subtype & RELAX_NOMACRO)
8276 return _("macro instruction expanded into multiple instructions");
8277 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8278 | RELAX_DELAY_SLOT_SIZE_SECOND))
8279 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8280 ? _("macro instruction expanded into a wrong size instruction"
8281 " in a 16-bit branch delay slot")
8282 : _("macro instruction expanded into a wrong size instruction"
8283 " in a 32-bit branch delay slot"));
8288 /* Finish up a macro. Emit warnings as appropriate. */
8293 /* Relaxation warning flags. */
8294 relax_substateT subtype = 0;
8296 /* Check delay slot size requirements. */
8297 if (mips_macro_warning.delay_slot_length == 2)
8298 subtype |= RELAX_DELAY_SLOT_16BIT;
8299 if (mips_macro_warning.delay_slot_length != 0)
8301 if (mips_macro_warning.delay_slot_length
8302 != mips_macro_warning.first_insn_sizes[0])
8303 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8304 if (mips_macro_warning.delay_slot_length
8305 != mips_macro_warning.first_insn_sizes[1])
8306 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8309 /* Check instruction count requirements. */
8310 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8312 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8313 subtype |= RELAX_SECOND_LONGER;
8314 if (mips_opts.warn_about_macros)
8315 subtype |= RELAX_NOMACRO;
8316 if (mips_macro_warning.delay_slot_p)
8317 subtype |= RELAX_DELAY_SLOT;
8320 /* If both alternatives fail to fill a delay slot correctly,
8321 emit the warning now. */
8322 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8323 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8328 s = subtype & (RELAX_DELAY_SLOT_16BIT
8329 | RELAX_DELAY_SLOT_SIZE_FIRST
8330 | RELAX_DELAY_SLOT_SIZE_SECOND);
8331 msg = macro_warning (s);
8333 as_warn ("%s", msg);
8337 /* If both implementations are longer than 1 instruction, then emit the
8339 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8344 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8345 msg = macro_warning (s);
8347 as_warn ("%s", msg);
8351 /* If any flags still set, then one implementation might need a warning
8352 and the other either will need one of a different kind or none at all.
8353 Pass any remaining flags over to relaxation. */
8354 if (mips_macro_warning.first_frag != NULL)
8355 mips_macro_warning.first_frag->fr_subtype |= subtype;
8358 /* Instruction operand formats used in macros that vary between
8359 standard MIPS and microMIPS code. */
8361 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8362 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8363 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8364 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8365 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8366 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8367 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8368 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8370 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8371 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8372 : cop12_fmt[mips_opts.micromips])
8373 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8374 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8375 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8376 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8377 : mem12_fmt[mips_opts.micromips])
8378 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8379 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8380 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8382 /* Read a macro's relocation codes from *ARGS and store them in *R.
8383 The first argument in *ARGS will be either the code for a single
8384 relocation or -1 followed by the three codes that make up a
8385 composite relocation. */
8388 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8392 next = va_arg (*args, int);
8394 r[0] = (bfd_reloc_code_real_type) next;
8397 for (i = 0; i < 3; i++)
8398 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8399 /* This function is only used for 16-bit relocation fields.
8400 To make the macro code simpler, treat an unrelocated value
8401 in the same way as BFD_RELOC_LO16. */
8402 if (r[0] == BFD_RELOC_UNUSED)
8403 r[0] = BFD_RELOC_LO16;
8407 /* Build an instruction created by a macro expansion. This is passed
8408 a pointer to the count of instructions created so far, an
8409 expression, the name of the instruction to build, an operand format
8410 string, and corresponding arguments. */
8413 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8415 const struct mips_opcode *mo = NULL;
8416 bfd_reloc_code_real_type r[3];
8417 const struct mips_opcode *amo;
8418 const struct mips_operand *operand;
8419 struct hash_control *hash;
8420 struct mips_cl_insn insn;
8424 va_start (args, fmt);
8426 if (mips_opts.mips16)
8428 mips16_macro_build (ep, name, fmt, &args);
8433 r[0] = BFD_RELOC_UNUSED;
8434 r[1] = BFD_RELOC_UNUSED;
8435 r[2] = BFD_RELOC_UNUSED;
8436 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8437 amo = (struct mips_opcode *) hash_find (hash, name);
8439 gas_assert (strcmp (name, amo->name) == 0);
8443 /* Search until we get a match for NAME. It is assumed here that
8444 macros will never generate MDMX, MIPS-3D, or MT instructions.
8445 We try to match an instruction that fulfils the branch delay
8446 slot instruction length requirement (if any) of the previous
8447 instruction. While doing this we record the first instruction
8448 seen that matches all the other conditions and use it anyway
8449 if the requirement cannot be met; we will issue an appropriate
8450 warning later on. */
8451 if (strcmp (fmt, amo->args) == 0
8452 && amo->pinfo != INSN_MACRO
8453 && is_opcode_valid (amo)
8454 && is_size_valid (amo))
8456 if (is_delay_slot_valid (amo))
8466 gas_assert (amo->name);
8468 while (strcmp (name, amo->name) == 0);
8471 create_insn (&insn, mo);
8484 macro_read_relocs (&args, r);
8485 gas_assert (*r == BFD_RELOC_GPREL16
8486 || *r == BFD_RELOC_MIPS_HIGHER
8487 || *r == BFD_RELOC_HI16_S
8488 || *r == BFD_RELOC_LO16
8489 || *r == BFD_RELOC_MIPS_GOT_OFST);
8493 macro_read_relocs (&args, r);
8497 macro_read_relocs (&args, r);
8498 gas_assert (ep != NULL
8499 && (ep->X_op == O_constant
8500 || (ep->X_op == O_symbol
8501 && (*r == BFD_RELOC_MIPS_HIGHEST
8502 || *r == BFD_RELOC_HI16_S
8503 || *r == BFD_RELOC_HI16
8504 || *r == BFD_RELOC_GPREL16
8505 || *r == BFD_RELOC_MIPS_GOT_HI16
8506 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8510 gas_assert (ep != NULL);
8513 * This allows macro() to pass an immediate expression for
8514 * creating short branches without creating a symbol.
8516 * We don't allow branch relaxation for these branches, as
8517 * they should only appear in ".set nomacro" anyway.
8519 if (ep->X_op == O_constant)
8521 /* For microMIPS we always use relocations for branches.
8522 So we should not resolve immediate values. */
8523 gas_assert (!mips_opts.micromips);
8525 if ((ep->X_add_number & 3) != 0)
8526 as_bad (_("branch to misaligned address (0x%lx)"),
8527 (unsigned long) ep->X_add_number);
8528 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8529 as_bad (_("branch address range overflow (0x%lx)"),
8530 (unsigned long) ep->X_add_number);
8531 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8535 *r = BFD_RELOC_16_PCREL_S2;
8539 gas_assert (ep != NULL);
8540 *r = BFD_RELOC_MIPS_JMP;
8544 operand = (mips_opts.micromips
8545 ? decode_micromips_operand (fmt)
8546 : decode_mips_operand (fmt));
8550 uval = va_arg (args, int);
8551 if (operand->type == OP_CLO_CLZ_DEST)
8552 uval |= (uval << 5);
8553 insn_insert_operand (&insn, operand, uval);
8555 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8561 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8563 append_insn (&insn, ep, r, TRUE);
8567 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8570 struct mips_opcode *mo;
8571 struct mips_cl_insn insn;
8572 const struct mips_operand *operand;
8573 bfd_reloc_code_real_type r[3]
8574 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8576 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8578 gas_assert (strcmp (name, mo->name) == 0);
8580 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8583 gas_assert (mo->name);
8584 gas_assert (strcmp (name, mo->name) == 0);
8587 create_insn (&insn, mo);
8625 gas_assert (ep != NULL);
8627 if (ep->X_op != O_constant)
8628 *r = (int) BFD_RELOC_UNUSED + c;
8629 else if (calculate_reloc (*r, ep->X_add_number, &value))
8631 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8633 *r = BFD_RELOC_UNUSED;
8639 operand = decode_mips16_operand (c, FALSE);
8643 insn_insert_operand (&insn, operand, va_arg (*args, int));
8648 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8650 append_insn (&insn, ep, r, TRUE);
8654 * Generate a "jalr" instruction with a relocation hint to the called
8655 * function. This occurs in NewABI PIC code.
8658 macro_build_jalr (expressionS *ep, int cprestore)
8660 static const bfd_reloc_code_real_type jalr_relocs[2]
8661 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8662 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8666 if (MIPS_JALR_HINT_P (ep))
8671 if (mips_opts.micromips)
8673 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8674 ? "jalr" : "jalrs");
8675 if (MIPS_JALR_HINT_P (ep)
8677 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8678 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8680 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8683 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8684 if (MIPS_JALR_HINT_P (ep))
8685 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8689 * Generate a "lui" instruction.
8692 macro_build_lui (expressionS *ep, int regnum)
8694 gas_assert (! mips_opts.mips16);
8696 if (ep->X_op != O_constant)
8698 gas_assert (ep->X_op == O_symbol);
8699 /* _gp_disp is a special case, used from s_cpload.
8700 __gnu_local_gp is used if mips_no_shared. */
8701 gas_assert (mips_pic == NO_PIC
8703 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8704 || (! mips_in_shared
8705 && strcmp (S_GET_NAME (ep->X_add_symbol),
8706 "__gnu_local_gp") == 0));
8709 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8712 /* Generate a sequence of instructions to do a load or store from a constant
8713 offset off of a base register (breg) into/from a target register (treg),
8714 using AT if necessary. */
8716 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8717 int treg, int breg, int dbl)
8719 gas_assert (ep->X_op == O_constant);
8721 /* Sign-extending 32-bit constants makes their handling easier. */
8723 normalize_constant_expr (ep);
8725 /* Right now, this routine can only handle signed 32-bit constants. */
8726 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8727 as_warn (_("operand overflow"));
8729 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8731 /* Signed 16-bit offset will fit in the op. Easy! */
8732 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8736 /* 32-bit offset, need multiple instructions and AT, like:
8737 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8738 addu $tempreg,$tempreg,$breg
8739 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8740 to handle the complete offset. */
8741 macro_build_lui (ep, AT);
8742 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8743 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8746 as_bad (_("macro used $at after \".set noat\""));
8751 * Generates code to set the $at register to true (one)
8752 * if reg is less than the immediate expression.
8755 set_at (int reg, int unsignedp)
8757 if (imm_expr.X_add_number >= -0x8000
8758 && imm_expr.X_add_number < 0x8000)
8759 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8760 AT, reg, BFD_RELOC_LO16);
8763 load_register (AT, &imm_expr, GPR_SIZE == 64);
8764 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8768 /* Count the leading zeroes by performing a binary chop. This is a
8769 bulky bit of source, but performance is a LOT better for the
8770 majority of values than a simple loop to count the bits:
8771 for (lcnt = 0; (lcnt < 32); lcnt++)
8772 if ((v) & (1 << (31 - lcnt)))
8774 However it is not code size friendly, and the gain will drop a bit
8775 on certain cached systems.
8777 #define COUNT_TOP_ZEROES(v) \
8778 (((v) & ~0xffff) == 0 \
8779 ? ((v) & ~0xff) == 0 \
8780 ? ((v) & ~0xf) == 0 \
8781 ? ((v) & ~0x3) == 0 \
8782 ? ((v) & ~0x1) == 0 \
8787 : ((v) & ~0x7) == 0 \
8790 : ((v) & ~0x3f) == 0 \
8791 ? ((v) & ~0x1f) == 0 \
8794 : ((v) & ~0x7f) == 0 \
8797 : ((v) & ~0xfff) == 0 \
8798 ? ((v) & ~0x3ff) == 0 \
8799 ? ((v) & ~0x1ff) == 0 \
8802 : ((v) & ~0x7ff) == 0 \
8805 : ((v) & ~0x3fff) == 0 \
8806 ? ((v) & ~0x1fff) == 0 \
8809 : ((v) & ~0x7fff) == 0 \
8812 : ((v) & ~0xffffff) == 0 \
8813 ? ((v) & ~0xfffff) == 0 \
8814 ? ((v) & ~0x3ffff) == 0 \
8815 ? ((v) & ~0x1ffff) == 0 \
8818 : ((v) & ~0x7ffff) == 0 \
8821 : ((v) & ~0x3fffff) == 0 \
8822 ? ((v) & ~0x1fffff) == 0 \
8825 : ((v) & ~0x7fffff) == 0 \
8828 : ((v) & ~0xfffffff) == 0 \
8829 ? ((v) & ~0x3ffffff) == 0 \
8830 ? ((v) & ~0x1ffffff) == 0 \
8833 : ((v) & ~0x7ffffff) == 0 \
8836 : ((v) & ~0x3fffffff) == 0 \
8837 ? ((v) & ~0x1fffffff) == 0 \
8840 : ((v) & ~0x7fffffff) == 0 \
8845 * This routine generates the least number of instructions necessary to load
8846 * an absolute expression value into a register.
8849 load_register (int reg, expressionS *ep, int dbl)
8852 expressionS hi32, lo32;
8854 if (ep->X_op != O_big)
8856 gas_assert (ep->X_op == O_constant);
8858 /* Sign-extending 32-bit constants makes their handling easier. */
8860 normalize_constant_expr (ep);
8862 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8864 /* We can handle 16 bit signed values with an addiu to
8865 $zero. No need to ever use daddiu here, since $zero and
8866 the result are always correct in 32 bit mode. */
8867 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8870 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8872 /* We can handle 16 bit unsigned values with an ori to
8874 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8877 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8879 /* 32 bit values require an lui. */
8880 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8881 if ((ep->X_add_number & 0xffff) != 0)
8882 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8887 /* The value is larger than 32 bits. */
8889 if (!dbl || GPR_SIZE == 32)
8893 sprintf_vma (value, ep->X_add_number);
8894 as_bad (_("number (0x%s) larger than 32 bits"), value);
8895 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8899 if (ep->X_op != O_big)
8902 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8903 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8904 hi32.X_add_number &= 0xffffffff;
8906 lo32.X_add_number &= 0xffffffff;
8910 gas_assert (ep->X_add_number > 2);
8911 if (ep->X_add_number == 3)
8912 generic_bignum[3] = 0;
8913 else if (ep->X_add_number > 4)
8914 as_bad (_("number larger than 64 bits"));
8915 lo32.X_op = O_constant;
8916 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8917 hi32.X_op = O_constant;
8918 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8921 if (hi32.X_add_number == 0)
8926 unsigned long hi, lo;
8928 if (hi32.X_add_number == (offsetT) 0xffffffff)
8930 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8932 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8935 if (lo32.X_add_number & 0x80000000)
8937 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8938 if (lo32.X_add_number & 0xffff)
8939 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8944 /* Check for 16bit shifted constant. We know that hi32 is
8945 non-zero, so start the mask on the first bit of the hi32
8950 unsigned long himask, lomask;
8954 himask = 0xffff >> (32 - shift);
8955 lomask = (0xffff << shift) & 0xffffffff;
8959 himask = 0xffff << (shift - 32);
8962 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8963 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8967 tmp.X_op = O_constant;
8969 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8970 | (lo32.X_add_number >> shift));
8972 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8973 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8974 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8975 reg, reg, (shift >= 32) ? shift - 32 : shift);
8980 while (shift <= (64 - 16));
8982 /* Find the bit number of the lowest one bit, and store the
8983 shifted value in hi/lo. */
8984 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8985 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8989 while ((lo & 1) == 0)
8994 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9000 while ((hi & 1) == 0)
9009 /* Optimize if the shifted value is a (power of 2) - 1. */
9010 if ((hi == 0 && ((lo + 1) & lo) == 0)
9011 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9013 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9018 /* This instruction will set the register to be all
9020 tmp.X_op = O_constant;
9021 tmp.X_add_number = (offsetT) -1;
9022 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9026 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9027 reg, reg, (bit >= 32) ? bit - 32 : bit);
9029 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9030 reg, reg, (shift >= 32) ? shift - 32 : shift);
9035 /* Sign extend hi32 before calling load_register, because we can
9036 generally get better code when we load a sign extended value. */
9037 if ((hi32.X_add_number & 0x80000000) != 0)
9038 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9039 load_register (reg, &hi32, 0);
9042 if ((lo32.X_add_number & 0xffff0000) == 0)
9046 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9054 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9056 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9057 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9063 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9067 mid16.X_add_number >>= 16;
9068 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9069 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9072 if ((lo32.X_add_number & 0xffff) != 0)
9073 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9077 load_delay_nop (void)
9079 if (!gpr_interlocks)
9080 macro_build (NULL, "nop", "");
9083 /* Load an address into a register. */
9086 load_address (int reg, expressionS *ep, int *used_at)
9088 if (ep->X_op != O_constant
9089 && ep->X_op != O_symbol)
9091 as_bad (_("expression too complex"));
9092 ep->X_op = O_constant;
9095 if (ep->X_op == O_constant)
9097 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9101 if (mips_pic == NO_PIC)
9103 /* If this is a reference to a GP relative symbol, we want
9104 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9106 lui $reg,<sym> (BFD_RELOC_HI16_S)
9107 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9108 If we have an addend, we always use the latter form.
9110 With 64bit address space and a usable $at we want
9111 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9112 lui $at,<sym> (BFD_RELOC_HI16_S)
9113 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9114 daddiu $at,<sym> (BFD_RELOC_LO16)
9118 If $at is already in use, we use a path which is suboptimal
9119 on superscalar processors.
9120 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9121 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9123 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9125 daddiu $reg,<sym> (BFD_RELOC_LO16)
9127 For GP relative symbols in 64bit address space we can use
9128 the same sequence as in 32bit address space. */
9129 if (HAVE_64BIT_SYMBOLS)
9131 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9132 && !nopic_need_relax (ep->X_add_symbol, 1))
9134 relax_start (ep->X_add_symbol);
9135 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9136 mips_gp_register, BFD_RELOC_GPREL16);
9140 if (*used_at == 0 && mips_opts.at)
9142 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9143 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9144 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9145 BFD_RELOC_MIPS_HIGHER);
9146 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9147 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9148 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9153 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9154 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9155 BFD_RELOC_MIPS_HIGHER);
9156 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9157 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9158 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9159 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9162 if (mips_relax.sequence)
9167 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9168 && !nopic_need_relax (ep->X_add_symbol, 1))
9170 relax_start (ep->X_add_symbol);
9171 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9172 mips_gp_register, BFD_RELOC_GPREL16);
9175 macro_build_lui (ep, reg);
9176 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9177 reg, reg, BFD_RELOC_LO16);
9178 if (mips_relax.sequence)
9182 else if (!mips_big_got)
9186 /* If this is a reference to an external symbol, we want
9187 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9189 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9191 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9192 If there is a constant, it must be added in after.
9194 If we have NewABI, we want
9195 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9196 unless we're referencing a global symbol with a non-zero
9197 offset, in which case cst must be added separately. */
9200 if (ep->X_add_number)
9202 ex.X_add_number = ep->X_add_number;
9203 ep->X_add_number = 0;
9204 relax_start (ep->X_add_symbol);
9205 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9206 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9207 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9208 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9209 ex.X_op = O_constant;
9210 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9211 reg, reg, BFD_RELOC_LO16);
9212 ep->X_add_number = ex.X_add_number;
9215 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9216 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9217 if (mips_relax.sequence)
9222 ex.X_add_number = ep->X_add_number;
9223 ep->X_add_number = 0;
9224 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9225 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9227 relax_start (ep->X_add_symbol);
9229 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9233 if (ex.X_add_number != 0)
9235 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9236 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9237 ex.X_op = O_constant;
9238 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9239 reg, reg, BFD_RELOC_LO16);
9243 else if (mips_big_got)
9247 /* This is the large GOT case. If this is a reference to an
9248 external symbol, we want
9249 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9251 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9253 Otherwise, for a reference to a local symbol in old ABI, we want
9254 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9256 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9257 If there is a constant, it must be added in after.
9259 In the NewABI, for local symbols, with or without offsets, we want:
9260 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9261 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9265 ex.X_add_number = ep->X_add_number;
9266 ep->X_add_number = 0;
9267 relax_start (ep->X_add_symbol);
9268 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9269 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9270 reg, reg, mips_gp_register);
9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9272 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9273 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9274 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9275 else if (ex.X_add_number)
9277 ex.X_op = O_constant;
9278 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9282 ep->X_add_number = ex.X_add_number;
9284 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9285 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9286 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9287 BFD_RELOC_MIPS_GOT_OFST);
9292 ex.X_add_number = ep->X_add_number;
9293 ep->X_add_number = 0;
9294 relax_start (ep->X_add_symbol);
9295 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9296 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9297 reg, reg, mips_gp_register);
9298 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9299 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9301 if (reg_needs_delay (mips_gp_register))
9303 /* We need a nop before loading from $gp. This special
9304 check is required because the lui which starts the main
9305 instruction stream does not refer to $gp, and so will not
9306 insert the nop which may be required. */
9307 macro_build (NULL, "nop", "");
9309 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9310 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9312 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9316 if (ex.X_add_number != 0)
9318 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9319 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9320 ex.X_op = O_constant;
9321 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9329 if (!mips_opts.at && *used_at == 1)
9330 as_bad (_("macro used $at after \".set noat\""));
9333 /* Move the contents of register SOURCE into register DEST. */
9336 move_register (int dest, int source)
9338 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9339 instruction specifically requires a 32-bit one. */
9340 if (mips_opts.micromips
9341 && !mips_opts.insn32
9342 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9343 macro_build (NULL, "move", "mp,mj", dest, source);
9345 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9348 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9349 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9350 The two alternatives are:
9352 Global symbol Local sybmol
9353 ------------- ------------
9354 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9356 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9358 load_got_offset emits the first instruction and add_got_offset
9359 emits the second for a 16-bit offset or add_got_offset_hilo emits
9360 a sequence to add a 32-bit offset using a scratch register. */
9363 load_got_offset (int dest, expressionS *local)
9368 global.X_add_number = 0;
9370 relax_start (local->X_add_symbol);
9371 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9372 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9374 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9375 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9380 add_got_offset (int dest, expressionS *local)
9384 global.X_op = O_constant;
9385 global.X_op_symbol = NULL;
9386 global.X_add_symbol = NULL;
9387 global.X_add_number = local->X_add_number;
9389 relax_start (local->X_add_symbol);
9390 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9391 dest, dest, BFD_RELOC_LO16);
9393 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9398 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9401 int hold_mips_optimize;
9403 global.X_op = O_constant;
9404 global.X_op_symbol = NULL;
9405 global.X_add_symbol = NULL;
9406 global.X_add_number = local->X_add_number;
9408 relax_start (local->X_add_symbol);
9409 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9411 /* Set mips_optimize around the lui instruction to avoid
9412 inserting an unnecessary nop after the lw. */
9413 hold_mips_optimize = mips_optimize;
9415 macro_build_lui (&global, tmp);
9416 mips_optimize = hold_mips_optimize;
9417 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9420 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9423 /* Emit a sequence of instructions to emulate a branch likely operation.
9424 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9425 is its complementing branch with the original condition negated.
9426 CALL is set if the original branch specified the link operation.
9427 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9429 Code like this is produced in the noreorder mode:
9434 delay slot (executed only if branch taken)
9442 delay slot (executed only if branch taken)
9445 In the reorder mode the delay slot would be filled with a nop anyway,
9446 so code produced is simply:
9451 This function is used when producing code for the microMIPS ASE that
9452 does not implement branch likely instructions in hardware. */
9455 macro_build_branch_likely (const char *br, const char *brneg,
9456 int call, expressionS *ep, const char *fmt,
9457 unsigned int sreg, unsigned int treg)
9459 int noreorder = mips_opts.noreorder;
9462 gas_assert (mips_opts.micromips);
9466 micromips_label_expr (&expr1);
9467 macro_build (&expr1, brneg, fmt, sreg, treg);
9468 macro_build (NULL, "nop", "");
9469 macro_build (ep, call ? "bal" : "b", "p");
9471 /* Set to true so that append_insn adds a label. */
9472 emit_branch_likely_macro = TRUE;
9476 macro_build (ep, br, fmt, sreg, treg);
9477 macro_build (NULL, "nop", "");
9482 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9483 the condition code tested. EP specifies the branch target. */
9486 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9513 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9516 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9517 the register tested. EP specifies the branch target. */
9520 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9522 const char *brneg = NULL;
9532 br = mips_opts.micromips ? "bgez" : "bgezl";
9536 gas_assert (mips_opts.micromips);
9537 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9545 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9552 br = mips_opts.micromips ? "blez" : "blezl";
9559 br = mips_opts.micromips ? "bltz" : "bltzl";
9563 gas_assert (mips_opts.micromips);
9564 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9571 if (mips_opts.micromips && brneg)
9572 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9574 macro_build (ep, br, "s,p", sreg);
9577 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9578 TREG as the registers tested. EP specifies the branch target. */
9581 macro_build_branch_rsrt (int type, expressionS *ep,
9582 unsigned int sreg, unsigned int treg)
9584 const char *brneg = NULL;
9596 br = mips_opts.micromips ? "beq" : "beql";
9605 br = mips_opts.micromips ? "bne" : "bnel";
9611 if (mips_opts.micromips && brneg)
9612 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9614 macro_build (ep, br, "s,t,p", sreg, treg);
9617 /* Return the high part that should be loaded in order to make the low
9618 part of VALUE accessible using an offset of OFFBITS bits. */
9621 offset_high_part (offsetT value, unsigned int offbits)
9628 bias = 1 << (offbits - 1);
9629 low_mask = bias * 2 - 1;
9630 return (value + bias) & ~low_mask;
9633 /* Return true if the value stored in offset_expr and offset_reloc
9634 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9635 amount that the caller wants to add without inducing overflow
9636 and ALIGN is the known alignment of the value in bytes. */
9639 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9643 /* Accept any relocation operator if overflow isn't a concern. */
9644 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9647 /* These relocations are guaranteed not to overflow in correct links. */
9648 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9649 || gprel16_reloc_p (*offset_reloc))
9652 if (offset_expr.X_op == O_constant
9653 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9654 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9661 * This routine implements the seemingly endless macro or synthesized
9662 * instructions and addressing modes in the mips assembly language. Many
9663 * of these macros are simple and are similar to each other. These could
9664 * probably be handled by some kind of table or grammar approach instead of
9665 * this verbose method. Others are not simple macros but are more like
9666 * optimizing code generation.
9667 * One interesting optimization is when several store macros appear
9668 * consecutively that would load AT with the upper half of the same address.
9669 * The ensuing load upper instructions are ommited. This implies some kind
9670 * of global optimization. We currently only optimize within a single macro.
9671 * For many of the load and store macros if the address is specified as a
9672 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9673 * first load register 'at' with zero and use it as the base register. The
9674 * mips assembler simply uses register $zero. Just one tiny optimization
9678 macro (struct mips_cl_insn *ip, char *str)
9680 const struct mips_operand_array *operands;
9681 unsigned int breg, i;
9682 unsigned int tempreg;
9685 expressionS label_expr;
9700 bfd_boolean large_offset;
9702 int hold_mips_optimize;
9704 unsigned int op[MAX_OPERANDS];
9706 gas_assert (! mips_opts.mips16);
9708 operands = insn_operands (ip);
9709 for (i = 0; i < MAX_OPERANDS; i++)
9710 if (operands->operand[i])
9711 op[i] = insn_extract_operand (ip, operands->operand[i]);
9715 mask = ip->insn_mo->mask;
9717 label_expr.X_op = O_constant;
9718 label_expr.X_op_symbol = NULL;
9719 label_expr.X_add_symbol = NULL;
9720 label_expr.X_add_number = 0;
9722 expr1.X_op = O_constant;
9723 expr1.X_op_symbol = NULL;
9724 expr1.X_add_symbol = NULL;
9725 expr1.X_add_number = 1;
9741 if (mips_opts.micromips)
9742 micromips_label_expr (&label_expr);
9744 label_expr.X_add_number = 8;
9745 macro_build (&label_expr, "bgez", "s,p", op[1]);
9747 macro_build (NULL, "nop", "");
9749 move_register (op[0], op[1]);
9750 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9751 if (mips_opts.micromips)
9752 micromips_add_label ();
9769 if (!mips_opts.micromips)
9771 if (imm_expr.X_add_number >= -0x200
9772 && imm_expr.X_add_number < 0x200)
9774 macro_build (NULL, s, "t,r,.", op[0], op[1],
9775 (int) imm_expr.X_add_number);
9784 if (imm_expr.X_add_number >= -0x8000
9785 && imm_expr.X_add_number < 0x8000)
9787 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9792 load_register (AT, &imm_expr, dbl);
9793 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9812 if (imm_expr.X_add_number >= 0
9813 && imm_expr.X_add_number < 0x10000)
9815 if (mask != M_NOR_I)
9816 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9819 macro_build (&imm_expr, "ori", "t,r,i",
9820 op[0], op[1], BFD_RELOC_LO16);
9821 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9827 load_register (AT, &imm_expr, GPR_SIZE == 64);
9828 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9832 switch (imm_expr.X_add_number)
9835 macro_build (NULL, "nop", "");
9838 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9842 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9843 (int) imm_expr.X_add_number);
9846 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9847 (unsigned long) imm_expr.X_add_number);
9856 gas_assert (mips_opts.micromips);
9857 macro_build_branch_ccl (mask, &offset_expr,
9858 EXTRACT_OPERAND (1, BCC, *ip));
9865 if (imm_expr.X_add_number == 0)
9871 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9876 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9883 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9884 else if (op[0] == 0)
9885 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9889 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9890 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9891 &offset_expr, AT, ZERO);
9901 macro_build_branch_rs (mask, &offset_expr, op[0]);
9907 /* Check for > max integer. */
9908 if (imm_expr.X_add_number >= GPR_SMAX)
9911 /* Result is always false. */
9913 macro_build (NULL, "nop", "");
9915 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9918 ++imm_expr.X_add_number;
9922 if (mask == M_BGEL_I)
9924 if (imm_expr.X_add_number == 0)
9926 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9927 &offset_expr, op[0]);
9930 if (imm_expr.X_add_number == 1)
9932 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9933 &offset_expr, op[0]);
9936 if (imm_expr.X_add_number <= GPR_SMIN)
9939 /* result is always true */
9940 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9941 macro_build (&offset_expr, "b", "p");
9946 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9947 &offset_expr, AT, ZERO);
9955 else if (op[0] == 0)
9956 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9957 &offset_expr, ZERO, op[1]);
9961 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9962 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9963 &offset_expr, AT, ZERO);
9972 && imm_expr.X_add_number == -1))
9974 ++imm_expr.X_add_number;
9978 if (mask == M_BGEUL_I)
9980 if (imm_expr.X_add_number == 0)
9982 else if (imm_expr.X_add_number == 1)
9983 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9984 &offset_expr, op[0], ZERO);
9989 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9990 &offset_expr, AT, ZERO);
9998 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9999 else if (op[0] == 0)
10000 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10004 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10005 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10006 &offset_expr, AT, ZERO);
10014 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10015 &offset_expr, op[0], ZERO);
10016 else if (op[0] == 0)
10021 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10022 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10023 &offset_expr, AT, ZERO);
10031 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10032 else if (op[0] == 0)
10033 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10037 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10038 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10039 &offset_expr, AT, ZERO);
10046 if (imm_expr.X_add_number >= GPR_SMAX)
10048 ++imm_expr.X_add_number;
10052 if (mask == M_BLTL_I)
10054 if (imm_expr.X_add_number == 0)
10055 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10056 else if (imm_expr.X_add_number == 1)
10057 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10062 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10063 &offset_expr, AT, ZERO);
10071 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10072 &offset_expr, op[0], ZERO);
10073 else if (op[0] == 0)
10078 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10079 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10080 &offset_expr, AT, ZERO);
10089 && imm_expr.X_add_number == -1))
10091 ++imm_expr.X_add_number;
10095 if (mask == M_BLTUL_I)
10097 if (imm_expr.X_add_number == 0)
10099 else if (imm_expr.X_add_number == 1)
10100 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10101 &offset_expr, op[0], ZERO);
10106 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10107 &offset_expr, AT, ZERO);
10115 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10116 else if (op[0] == 0)
10117 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10121 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10122 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10123 &offset_expr, AT, ZERO);
10132 else if (op[0] == 0)
10133 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10134 &offset_expr, ZERO, op[1]);
10138 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10139 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10140 &offset_expr, AT, ZERO);
10156 as_warn (_("divide by zero"));
10158 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10160 macro_build (NULL, "break", BRK_FMT, 7);
10164 start_noreorder ();
10167 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10168 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10175 label_expr.X_add_number = 8;
10176 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10177 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10178 macro_build (NULL, "break", BRK_FMT, 7);
10179 if (mips_opts.micromips)
10180 micromips_add_label ();
10182 expr1.X_add_number = -1;
10184 load_register (AT, &expr1, dbl);
10185 if (mips_opts.micromips)
10186 micromips_label_expr (&label_expr);
10188 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10189 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10192 expr1.X_add_number = 1;
10193 load_register (AT, &expr1, dbl);
10194 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10198 expr1.X_add_number = 0x80000000;
10199 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10203 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
10210 if (mips_opts.micromips)
10211 micromips_label_expr (&label_expr);
10213 label_expr.X_add_number = 8;
10214 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10215 macro_build (NULL, "nop", "");
10217 /* We want to close the noreorder block as soon as possible, so
10218 that later insns are available for delay slot filling. */
10221 macro_build (NULL, "break", BRK_FMT, 6);
10223 if (mips_opts.micromips)
10224 micromips_add_label ();
10225 macro_build (NULL, s, MFHL_FMT, op[0]);
10264 if (imm_expr.X_add_number == 0)
10266 as_warn (_("divide by zero"));
10268 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10270 macro_build (NULL, "break", BRK_FMT, 7);
10273 if (imm_expr.X_add_number == 1)
10275 if (strcmp (s2, "mflo") == 0)
10276 move_register (op[0], op[1]);
10278 move_register (op[0], ZERO);
10281 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10283 if (strcmp (s2, "mflo") == 0)
10284 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10286 move_register (op[0], ZERO);
10291 load_register (AT, &imm_expr, dbl);
10292 macro_build (NULL, s, "z,s,t", op[1], AT);
10293 macro_build (NULL, s2, MFHL_FMT, op[0]);
10312 start_noreorder ();
10315 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10316 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
10323 if (mips_opts.micromips)
10324 micromips_label_expr (&label_expr);
10326 label_expr.X_add_number = 8;
10327 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10328 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10330 /* We want to close the noreorder block as soon as possible, so
10331 that later insns are available for delay slot filling. */
10333 macro_build (NULL, "break", BRK_FMT, 7);
10334 if (mips_opts.micromips)
10335 micromips_add_label ();
10337 macro_build (NULL, s2, MFHL_FMT, op[0]);
10349 /* Load the address of a symbol into a register. If breg is not
10350 zero, we then add a base register to it. */
10353 if (dbl && GPR_SIZE == 32)
10354 as_warn (_("dla used to load 32-bit register; recommend using la "
10357 if (!dbl && HAVE_64BIT_OBJECTS)
10358 as_warn (_("la used to load 64-bit address; recommend using dla "
10361 if (small_offset_p (0, align, 16))
10363 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10364 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10368 if (mips_opts.at && (op[0] == breg))
10376 if (offset_expr.X_op != O_symbol
10377 && offset_expr.X_op != O_constant)
10379 as_bad (_("expression too complex"));
10380 offset_expr.X_op = O_constant;
10383 if (offset_expr.X_op == O_constant)
10384 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10385 else if (mips_pic == NO_PIC)
10387 /* If this is a reference to a GP relative symbol, we want
10388 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10390 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10391 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10392 If we have a constant, we need two instructions anyhow,
10393 so we may as well always use the latter form.
10395 With 64bit address space and a usable $at we want
10396 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10397 lui $at,<sym> (BFD_RELOC_HI16_S)
10398 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10399 daddiu $at,<sym> (BFD_RELOC_LO16)
10401 daddu $tempreg,$tempreg,$at
10403 If $at is already in use, we use a path which is suboptimal
10404 on superscalar processors.
10405 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10406 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10408 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10410 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10412 For GP relative symbols in 64bit address space we can use
10413 the same sequence as in 32bit address space. */
10414 if (HAVE_64BIT_SYMBOLS)
10416 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10417 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10419 relax_start (offset_expr.X_add_symbol);
10420 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10421 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10425 if (used_at == 0 && mips_opts.at)
10427 macro_build (&offset_expr, "lui", LUI_FMT,
10428 tempreg, BFD_RELOC_MIPS_HIGHEST);
10429 macro_build (&offset_expr, "lui", LUI_FMT,
10430 AT, BFD_RELOC_HI16_S);
10431 macro_build (&offset_expr, "daddiu", "t,r,j",
10432 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 AT, AT, BFD_RELOC_LO16);
10435 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10436 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10441 macro_build (&offset_expr, "lui", LUI_FMT,
10442 tempreg, BFD_RELOC_MIPS_HIGHEST);
10443 macro_build (&offset_expr, "daddiu", "t,r,j",
10444 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10445 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10446 macro_build (&offset_expr, "daddiu", "t,r,j",
10447 tempreg, tempreg, BFD_RELOC_HI16_S);
10448 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10449 macro_build (&offset_expr, "daddiu", "t,r,j",
10450 tempreg, tempreg, BFD_RELOC_LO16);
10453 if (mips_relax.sequence)
10458 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10459 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10461 relax_start (offset_expr.X_add_symbol);
10462 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10463 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10466 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10467 as_bad (_("offset too large"));
10468 macro_build_lui (&offset_expr, tempreg);
10469 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10470 tempreg, tempreg, BFD_RELOC_LO16);
10471 if (mips_relax.sequence)
10475 else if (!mips_big_got && !HAVE_NEWABI)
10477 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10479 /* If this is a reference to an external symbol, and there
10480 is no constant, we want
10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10482 or for lca or if tempreg is PIC_CALL_REG
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10484 For a local symbol, we want
10485 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10487 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10489 If we have a small constant, and this is a reference to
10490 an external symbol, we want
10491 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10493 addiu $tempreg,$tempreg,<constant>
10494 For a local symbol, we want the same instruction
10495 sequence, but we output a BFD_RELOC_LO16 reloc on the
10498 If we have a large constant, and this is a reference to
10499 an external symbol, we want
10500 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10501 lui $at,<hiconstant>
10502 addiu $at,$at,<loconstant>
10503 addu $tempreg,$tempreg,$at
10504 For a local symbol, we want the same instruction
10505 sequence, but we output a BFD_RELOC_LO16 reloc on the
10509 if (offset_expr.X_add_number == 0)
10511 if (mips_pic == SVR4_PIC
10513 && (call || tempreg == PIC_CALL_REG))
10514 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10516 relax_start (offset_expr.X_add_symbol);
10517 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10518 lw_reloc_type, mips_gp_register);
10521 /* We're going to put in an addu instruction using
10522 tempreg, so we may as well insert the nop right
10527 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10528 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10530 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10531 tempreg, tempreg, BFD_RELOC_LO16);
10533 /* FIXME: If breg == 0, and the next instruction uses
10534 $tempreg, then if this variant case is used an extra
10535 nop will be generated. */
10537 else if (offset_expr.X_add_number >= -0x8000
10538 && offset_expr.X_add_number < 0x8000)
10540 load_got_offset (tempreg, &offset_expr);
10542 add_got_offset (tempreg, &offset_expr);
10546 expr1.X_add_number = offset_expr.X_add_number;
10547 offset_expr.X_add_number =
10548 SEXT_16BIT (offset_expr.X_add_number);
10549 load_got_offset (tempreg, &offset_expr);
10550 offset_expr.X_add_number = expr1.X_add_number;
10551 /* If we are going to add in a base register, and the
10552 target register and the base register are the same,
10553 then we are using AT as a temporary register. Since
10554 we want to load the constant into AT, we add our
10555 current AT (from the global offset table) and the
10556 register into the register now, and pretend we were
10557 not using a base register. */
10561 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10566 add_got_offset_hilo (tempreg, &offset_expr, AT);
10570 else if (!mips_big_got && HAVE_NEWABI)
10572 int add_breg_early = 0;
10574 /* If this is a reference to an external, and there is no
10575 constant, or local symbol (*), with or without a
10577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10578 or for lca or if tempreg is PIC_CALL_REG
10579 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10581 If we have a small constant, and this is a reference to
10582 an external symbol, we want
10583 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10584 addiu $tempreg,$tempreg,<constant>
10586 If we have a large constant, and this is a reference to
10587 an external symbol, we want
10588 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10589 lui $at,<hiconstant>
10590 addiu $at,$at,<loconstant>
10591 addu $tempreg,$tempreg,$at
10593 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10594 local symbols, even though it introduces an additional
10597 if (offset_expr.X_add_number)
10599 expr1.X_add_number = offset_expr.X_add_number;
10600 offset_expr.X_add_number = 0;
10602 relax_start (offset_expr.X_add_symbol);
10603 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10604 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10606 if (expr1.X_add_number >= -0x8000
10607 && expr1.X_add_number < 0x8000)
10609 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10610 tempreg, tempreg, BFD_RELOC_LO16);
10612 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10616 /* If we are going to add in a base register, and the
10617 target register and the base register are the same,
10618 then we are using AT as a temporary register. Since
10619 we want to load the constant into AT, we add our
10620 current AT (from the global offset table) and the
10621 register into the register now, and pretend we were
10622 not using a base register. */
10627 gas_assert (tempreg == AT);
10628 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10631 add_breg_early = 1;
10634 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10635 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10641 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10644 offset_expr.X_add_number = expr1.X_add_number;
10646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10647 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10648 if (add_breg_early)
10650 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10651 op[0], tempreg, breg);
10657 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10659 relax_start (offset_expr.X_add_symbol);
10660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10661 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10663 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10664 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10669 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10670 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10673 else if (mips_big_got && !HAVE_NEWABI)
10676 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10677 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10678 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10680 /* This is the large GOT case. If this is a reference to an
10681 external symbol, and there is no constant, we want
10682 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10683 addu $tempreg,$tempreg,$gp
10684 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10685 or for lca or if tempreg is PIC_CALL_REG
10686 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10687 addu $tempreg,$tempreg,$gp
10688 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10692 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10694 If we have a small constant, and this is a reference to
10695 an external symbol, we want
10696 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10697 addu $tempreg,$tempreg,$gp
10698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10700 addiu $tempreg,$tempreg,<constant>
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10704 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10706 If we have a large constant, and this is a reference to
10707 an external symbol, we want
10708 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10709 addu $tempreg,$tempreg,$gp
10710 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10711 lui $at,<hiconstant>
10712 addiu $at,$at,<loconstant>
10713 addu $tempreg,$tempreg,$at
10714 For a local symbol, we want
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10716 lui $at,<hiconstant>
10717 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10718 addu $tempreg,$tempreg,$at
10721 expr1.X_add_number = offset_expr.X_add_number;
10722 offset_expr.X_add_number = 0;
10723 relax_start (offset_expr.X_add_symbol);
10724 gpdelay = reg_needs_delay (mips_gp_register);
10725 if (expr1.X_add_number == 0 && breg == 0
10726 && (call || tempreg == PIC_CALL_REG))
10728 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10729 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10731 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10732 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10733 tempreg, tempreg, mips_gp_register);
10734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10735 tempreg, lw_reloc_type, tempreg);
10736 if (expr1.X_add_number == 0)
10740 /* We're going to put in an addu instruction using
10741 tempreg, so we may as well insert the nop right
10746 else if (expr1.X_add_number >= -0x8000
10747 && expr1.X_add_number < 0x8000)
10750 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10751 tempreg, tempreg, BFD_RELOC_LO16);
10757 /* If we are going to add in a base register, and the
10758 target register and the base register are the same,
10759 then we are using AT as a temporary register. Since
10760 we want to load the constant into AT, we add our
10761 current AT (from the global offset table) and the
10762 register into the register now, and pretend we were
10763 not using a base register. */
10768 gas_assert (tempreg == AT);
10770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10775 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10776 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10780 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10785 /* This is needed because this instruction uses $gp, but
10786 the first instruction on the main stream does not. */
10787 macro_build (NULL, "nop", "");
10790 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10791 local_reloc_type, mips_gp_register);
10792 if (expr1.X_add_number >= -0x8000
10793 && expr1.X_add_number < 0x8000)
10796 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10797 tempreg, tempreg, BFD_RELOC_LO16);
10798 /* FIXME: If add_number is 0, and there was no base
10799 register, the external symbol case ended with a load,
10800 so if the symbol turns out to not be external, and
10801 the next instruction uses tempreg, an unnecessary nop
10802 will be inserted. */
10808 /* We must add in the base register now, as in the
10809 external symbol case. */
10810 gas_assert (tempreg == AT);
10812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10815 /* We set breg to 0 because we have arranged to add
10816 it in in both cases. */
10820 macro_build_lui (&expr1, AT);
10821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10822 AT, AT, BFD_RELOC_LO16);
10823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10824 tempreg, tempreg, AT);
10829 else if (mips_big_got && HAVE_NEWABI)
10831 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10832 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10833 int add_breg_early = 0;
10835 /* This is the large GOT case. If this is a reference to an
10836 external symbol, and there is no constant, we want
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10838 add $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10840 or for lca or if tempreg is PIC_CALL_REG
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10842 add $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10845 If we have a small constant, and this is a reference to
10846 an external symbol, we want
10847 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10848 add $tempreg,$tempreg,$gp
10849 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10850 addi $tempreg,$tempreg,<constant>
10852 If we have a large constant, and this is a reference to
10853 an external symbol, we want
10854 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10855 addu $tempreg,$tempreg,$gp
10856 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10857 lui $at,<hiconstant>
10858 addi $at,$at,<loconstant>
10859 add $tempreg,$tempreg,$at
10861 If we have NewABI, and we know it's a local symbol, we want
10862 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10863 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10864 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10866 relax_start (offset_expr.X_add_symbol);
10868 expr1.X_add_number = offset_expr.X_add_number;
10869 offset_expr.X_add_number = 0;
10871 if (expr1.X_add_number == 0 && breg == 0
10872 && (call || tempreg == PIC_CALL_REG))
10874 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10875 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10877 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10879 tempreg, tempreg, mips_gp_register);
10880 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10881 tempreg, lw_reloc_type, tempreg);
10883 if (expr1.X_add_number == 0)
10885 else if (expr1.X_add_number >= -0x8000
10886 && expr1.X_add_number < 0x8000)
10888 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10889 tempreg, tempreg, BFD_RELOC_LO16);
10891 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10895 /* If we are going to add in a base register, and the
10896 target register and the base register are the same,
10897 then we are using AT as a temporary register. Since
10898 we want to load the constant into AT, we add our
10899 current AT (from the global offset table) and the
10900 register into the register now, and pretend we were
10901 not using a base register. */
10906 gas_assert (tempreg == AT);
10907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10910 add_breg_early = 1;
10913 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10919 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10922 offset_expr.X_add_number = expr1.X_add_number;
10923 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10924 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10925 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10926 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10927 if (add_breg_early)
10929 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10930 op[0], tempreg, breg);
10940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10944 gas_assert (!mips_opts.micromips);
10945 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10949 gas_assert (!mips_opts.micromips);
10950 macro_build (NULL, "c2", "C", 0x02);
10954 gas_assert (!mips_opts.micromips);
10955 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10959 gas_assert (!mips_opts.micromips);
10960 macro_build (NULL, "c2", "C", 3);
10964 gas_assert (!mips_opts.micromips);
10965 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10969 /* The j instruction may not be used in PIC code, since it
10970 requires an absolute address. We convert it to a b
10972 if (mips_pic == NO_PIC)
10973 macro_build (&offset_expr, "j", "a");
10975 macro_build (&offset_expr, "b", "p");
10978 /* The jal instructions must be handled as macros because when
10979 generating PIC code they expand to multi-instruction
10980 sequences. Normally they are simple instructions. */
10984 /* Fall through. */
10986 gas_assert (mips_opts.micromips);
10987 if (mips_opts.insn32)
10989 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10997 /* Fall through. */
11000 if (mips_pic == NO_PIC)
11002 s = jals ? "jalrs" : "jalr";
11003 if (mips_opts.micromips
11004 && !mips_opts.insn32
11006 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11007 macro_build (NULL, s, "mj", op[1]);
11009 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11013 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11014 && mips_cprestore_offset >= 0);
11016 if (op[1] != PIC_CALL_REG)
11017 as_warn (_("MIPS PIC call to register other than $25"));
11019 s = ((mips_opts.micromips
11020 && !mips_opts.insn32
11021 && (!mips_opts.noreorder || cprestore))
11022 ? "jalrs" : "jalr");
11023 if (mips_opts.micromips
11024 && !mips_opts.insn32
11026 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11027 macro_build (NULL, s, "mj", op[1]);
11029 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11030 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11032 if (mips_cprestore_offset < 0)
11033 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11036 if (!mips_frame_reg_valid)
11038 as_warn (_("no .frame pseudo-op used in PIC code"));
11039 /* Quiet this warning. */
11040 mips_frame_reg_valid = 1;
11042 if (!mips_cprestore_valid)
11044 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11045 /* Quiet this warning. */
11046 mips_cprestore_valid = 1;
11048 if (mips_opts.noreorder)
11049 macro_build (NULL, "nop", "");
11050 expr1.X_add_number = mips_cprestore_offset;
11051 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11054 HAVE_64BIT_ADDRESSES);
11062 gas_assert (mips_opts.micromips);
11063 if (mips_opts.insn32)
11065 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11069 /* Fall through. */
11071 if (mips_pic == NO_PIC)
11072 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11073 else if (mips_pic == SVR4_PIC)
11075 /* If this is a reference to an external symbol, and we are
11076 using a small GOT, we want
11077 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11081 lw $gp,cprestore($sp)
11082 The cprestore value is set using the .cprestore
11083 pseudo-op. If we are using a big GOT, we want
11084 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11086 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11090 lw $gp,cprestore($sp)
11091 If the symbol is not external, we want
11092 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11094 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11097 lw $gp,cprestore($sp)
11099 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11100 sequences above, minus nops, unless the symbol is local,
11101 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11107 relax_start (offset_expr.X_add_symbol);
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11119 relax_start (offset_expr.X_add_symbol);
11120 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11121 BFD_RELOC_MIPS_CALL_HI16);
11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11123 PIC_CALL_REG, mips_gp_register);
11124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11125 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11129 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11131 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11132 PIC_CALL_REG, PIC_CALL_REG,
11133 BFD_RELOC_MIPS_GOT_OFST);
11137 macro_build_jalr (&offset_expr, 0);
11141 relax_start (offset_expr.X_add_symbol);
11144 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11145 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11154 gpdelay = reg_needs_delay (mips_gp_register);
11155 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11156 BFD_RELOC_MIPS_CALL_HI16);
11157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11158 PIC_CALL_REG, mips_gp_register);
11159 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11160 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11165 macro_build (NULL, "nop", "");
11167 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11168 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11171 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11172 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11174 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11176 if (mips_cprestore_offset < 0)
11177 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11180 if (!mips_frame_reg_valid)
11182 as_warn (_("no .frame pseudo-op used in PIC code"));
11183 /* Quiet this warning. */
11184 mips_frame_reg_valid = 1;
11186 if (!mips_cprestore_valid)
11188 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11189 /* Quiet this warning. */
11190 mips_cprestore_valid = 1;
11192 if (mips_opts.noreorder)
11193 macro_build (NULL, "nop", "");
11194 expr1.X_add_number = mips_cprestore_offset;
11195 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11198 HAVE_64BIT_ADDRESSES);
11202 else if (mips_pic == VXWORKS_PIC)
11203 as_bad (_("non-PIC jump used in PIC library"));
11310 gas_assert (!mips_opts.micromips);
11313 /* Itbl support may require additional care here. */
11319 /* Itbl support may require additional care here. */
11325 offbits = (mips_opts.micromips ? 12
11326 : ISA_IS_R6 (mips_opts.isa) ? 11
11328 /* Itbl support may require additional care here. */
11332 gas_assert (!mips_opts.micromips);
11335 /* Itbl support may require additional care here. */
11341 offbits = (mips_opts.micromips ? 12 : 16);
11346 offbits = (mips_opts.micromips ? 12 : 16);
11351 /* Itbl support may require additional care here. */
11357 offbits = (mips_opts.micromips ? 12
11358 : ISA_IS_R6 (mips_opts.isa) ? 11
11360 /* Itbl support may require additional care here. */
11366 /* Itbl support may require additional care here. */
11372 /* Itbl support may require additional care here. */
11378 offbits = (mips_opts.micromips ? 12 : 16);
11383 offbits = (mips_opts.micromips ? 12 : 16);
11388 offbits = (mips_opts.micromips ? 12
11389 : ISA_IS_R6 (mips_opts.isa) ? 9
11395 offbits = (mips_opts.micromips ? 12
11396 : ISA_IS_R6 (mips_opts.isa) ? 9
11402 offbits = (mips_opts.micromips ? 12 : 16);
11405 gas_assert (mips_opts.micromips);
11412 gas_assert (mips_opts.micromips);
11419 gas_assert (mips_opts.micromips);
11425 gas_assert (mips_opts.micromips);
11432 /* We don't want to use $0 as tempreg. */
11433 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11436 tempreg = op[0] + lp;
11452 gas_assert (!mips_opts.micromips);
11455 /* Itbl support may require additional care here. */
11461 /* Itbl support may require additional care here. */
11467 offbits = (mips_opts.micromips ? 12
11468 : ISA_IS_R6 (mips_opts.isa) ? 11
11470 /* Itbl support may require additional care here. */
11474 gas_assert (!mips_opts.micromips);
11477 /* Itbl support may require additional care here. */
11483 offbits = (mips_opts.micromips ? 12 : 16);
11488 offbits = (mips_opts.micromips ? 12 : 16);
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 9
11500 offbits = (mips_opts.micromips ? 12
11501 : ISA_IS_R6 (mips_opts.isa) ? 9
11506 fmt = (mips_opts.micromips ? "k,~(b)"
11507 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11509 offbits = (mips_opts.micromips ? 12
11510 : ISA_IS_R6 (mips_opts.isa) ? 9
11520 fmt = (mips_opts.micromips ? "k,~(b)"
11521 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11523 offbits = (mips_opts.micromips ? 12
11524 : ISA_IS_R6 (mips_opts.isa) ? 9
11536 /* Itbl support may require additional care here. */
11541 offbits = (mips_opts.micromips ? 12
11542 : ISA_IS_R6 (mips_opts.isa) ? 11
11544 /* Itbl support may require additional care here. */
11550 /* Itbl support may require additional care here. */
11554 gas_assert (!mips_opts.micromips);
11557 /* Itbl support may require additional care here. */
11563 offbits = (mips_opts.micromips ? 12 : 16);
11568 offbits = (mips_opts.micromips ? 12 : 16);
11571 gas_assert (mips_opts.micromips);
11577 gas_assert (mips_opts.micromips);
11583 gas_assert (mips_opts.micromips);
11589 gas_assert (mips_opts.micromips);
11598 if (small_offset_p (0, align, 16))
11600 /* The first case exists for M_LD_AB and M_SD_AB, which are
11601 macros for o32 but which should act like normal instructions
11604 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11605 offset_reloc[1], offset_reloc[2], breg);
11606 else if (small_offset_p (0, align, offbits))
11609 macro_build (NULL, s, fmt, op[0], breg);
11611 macro_build (NULL, s, fmt, op[0],
11612 (int) offset_expr.X_add_number, breg);
11618 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11619 tempreg, breg, -1, offset_reloc[0],
11620 offset_reloc[1], offset_reloc[2]);
11622 macro_build (NULL, s, fmt, op[0], tempreg);
11624 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11632 if (offset_expr.X_op != O_constant
11633 && offset_expr.X_op != O_symbol)
11635 as_bad (_("expression too complex"));
11636 offset_expr.X_op = O_constant;
11639 if (HAVE_32BIT_ADDRESSES
11640 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11644 sprintf_vma (value, offset_expr.X_add_number);
11645 as_bad (_("number (0x%s) larger than 32 bits"), value);
11648 /* A constant expression in PIC code can be handled just as it
11649 is in non PIC code. */
11650 if (offset_expr.X_op == O_constant)
11652 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11653 offbits == 0 ? 16 : offbits);
11654 offset_expr.X_add_number -= expr1.X_add_number;
11656 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11658 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11659 tempreg, tempreg, breg);
11662 if (offset_expr.X_add_number != 0)
11663 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11664 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11665 macro_build (NULL, s, fmt, op[0], tempreg);
11667 else if (offbits == 16)
11668 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11670 macro_build (NULL, s, fmt, op[0],
11671 (int) offset_expr.X_add_number, tempreg);
11673 else if (offbits != 16)
11675 /* The offset field is too narrow to be used for a low-part
11676 relocation, so load the whole address into the auxillary
11678 load_address (tempreg, &offset_expr, &used_at);
11680 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11681 tempreg, tempreg, breg);
11683 macro_build (NULL, s, fmt, op[0], tempreg);
11685 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11687 else if (mips_pic == NO_PIC)
11689 /* If this is a reference to a GP relative symbol, and there
11690 is no base register, we want
11691 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11692 Otherwise, if there is no base register, we want
11693 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11694 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11695 If we have a constant, we need two instructions anyhow,
11696 so we always use the latter form.
11698 If we have a base register, and this is a reference to a
11699 GP relative symbol, we want
11700 addu $tempreg,$breg,$gp
11701 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11703 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11704 addu $tempreg,$tempreg,$breg
11705 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11706 With a constant we always use the latter case.
11708 With 64bit address space and no base register and $at usable,
11710 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11711 lui $at,<sym> (BFD_RELOC_HI16_S)
11712 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11715 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11716 If we have a base register, we want
11717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11718 lui $at,<sym> (BFD_RELOC_HI16_S)
11719 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11723 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11725 Without $at we can't generate the optimal path for superscalar
11726 processors here since this would require two temporary registers.
11727 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11728 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11730 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11732 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11733 If we have a base register, we want
11734 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11735 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11737 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11739 daddu $tempreg,$tempreg,$breg
11740 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11742 For GP relative symbols in 64bit address space we can use
11743 the same sequence as in 32bit address space. */
11744 if (HAVE_64BIT_SYMBOLS)
11746 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11747 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11749 relax_start (offset_expr.X_add_symbol);
11752 macro_build (&offset_expr, s, fmt, op[0],
11753 BFD_RELOC_GPREL16, mips_gp_register);
11757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11758 tempreg, breg, mips_gp_register);
11759 macro_build (&offset_expr, s, fmt, op[0],
11760 BFD_RELOC_GPREL16, tempreg);
11765 if (used_at == 0 && mips_opts.at)
11767 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11768 BFD_RELOC_MIPS_HIGHEST);
11769 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11771 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11772 tempreg, BFD_RELOC_MIPS_HIGHER);
11774 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11775 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11776 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11777 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11783 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11784 BFD_RELOC_MIPS_HIGHEST);
11785 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11786 tempreg, BFD_RELOC_MIPS_HIGHER);
11787 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11788 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11789 tempreg, BFD_RELOC_HI16_S);
11790 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11792 macro_build (NULL, "daddu", "d,v,t",
11793 tempreg, tempreg, breg);
11794 macro_build (&offset_expr, s, fmt, op[0],
11795 BFD_RELOC_LO16, tempreg);
11798 if (mips_relax.sequence)
11805 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11806 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11808 relax_start (offset_expr.X_add_symbol);
11809 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11813 macro_build_lui (&offset_expr, tempreg);
11814 macro_build (&offset_expr, s, fmt, op[0],
11815 BFD_RELOC_LO16, tempreg);
11816 if (mips_relax.sequence)
11821 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11822 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11824 relax_start (offset_expr.X_add_symbol);
11825 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11826 tempreg, breg, mips_gp_register);
11827 macro_build (&offset_expr, s, fmt, op[0],
11828 BFD_RELOC_GPREL16, tempreg);
11831 macro_build_lui (&offset_expr, tempreg);
11832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11833 tempreg, tempreg, breg);
11834 macro_build (&offset_expr, s, fmt, op[0],
11835 BFD_RELOC_LO16, tempreg);
11836 if (mips_relax.sequence)
11840 else if (!mips_big_got)
11842 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11844 /* If this is a reference to an external symbol, we want
11845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11847 <op> op[0],0($tempreg)
11849 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11851 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11852 <op> op[0],0($tempreg)
11854 For NewABI, we want
11855 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11856 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11858 If there is a base register, we add it to $tempreg before
11859 the <op>. If there is a constant, we stick it in the
11860 <op> instruction. We don't handle constants larger than
11861 16 bits, because we have no way to load the upper 16 bits
11862 (actually, we could handle them for the subset of cases
11863 in which we are not using $at). */
11864 gas_assert (offset_expr.X_op == O_symbol);
11867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11868 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11870 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11871 tempreg, tempreg, breg);
11872 macro_build (&offset_expr, s, fmt, op[0],
11873 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11876 expr1.X_add_number = offset_expr.X_add_number;
11877 offset_expr.X_add_number = 0;
11878 if (expr1.X_add_number < -0x8000
11879 || expr1.X_add_number >= 0x8000)
11880 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11882 lw_reloc_type, mips_gp_register);
11884 relax_start (offset_expr.X_add_symbol);
11886 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11887 tempreg, BFD_RELOC_LO16);
11890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11891 tempreg, tempreg, breg);
11892 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11894 else if (mips_big_got && !HAVE_NEWABI)
11898 /* If this is a reference to an external symbol, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11900 addu $tempreg,$tempreg,$gp
11901 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11902 <op> op[0],0($tempreg)
11904 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11906 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11907 <op> op[0],0($tempreg)
11908 If there is a base register, we add it to $tempreg before
11909 the <op>. If there is a constant, we stick it in the
11910 <op> instruction. We don't handle constants larger than
11911 16 bits, because we have no way to load the upper 16 bits
11912 (actually, we could handle them for the subset of cases
11913 in which we are not using $at). */
11914 gas_assert (offset_expr.X_op == O_symbol);
11915 expr1.X_add_number = offset_expr.X_add_number;
11916 offset_expr.X_add_number = 0;
11917 if (expr1.X_add_number < -0x8000
11918 || expr1.X_add_number >= 0x8000)
11919 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11920 gpdelay = reg_needs_delay (mips_gp_register);
11921 relax_start (offset_expr.X_add_symbol);
11922 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11923 BFD_RELOC_MIPS_GOT_HI16);
11924 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11926 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11927 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11930 macro_build (NULL, "nop", "");
11931 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11932 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11934 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11935 tempreg, BFD_RELOC_LO16);
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, tempreg, breg);
11941 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11943 else if (mips_big_got && HAVE_NEWABI)
11945 /* If this is a reference to an external symbol, we want
11946 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11947 add $tempreg,$tempreg,$gp
11948 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11949 <op> op[0],<ofst>($tempreg)
11950 Otherwise, for local symbols, we want:
11951 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11952 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11953 gas_assert (offset_expr.X_op == O_symbol);
11954 expr1.X_add_number = offset_expr.X_add_number;
11955 offset_expr.X_add_number = 0;
11956 if (expr1.X_add_number < -0x8000
11957 || expr1.X_add_number >= 0x8000)
11958 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11959 relax_start (offset_expr.X_add_symbol);
11960 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11961 BFD_RELOC_MIPS_GOT_HI16);
11962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11965 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11968 tempreg, tempreg, breg);
11969 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11972 offset_expr.X_add_number = expr1.X_add_number;
11973 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11974 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11977 tempreg, tempreg, breg);
11978 macro_build (&offset_expr, s, fmt, op[0],
11979 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11988 gas_assert (mips_opts.micromips);
11989 gas_assert (mips_opts.insn32);
11990 start_noreorder ();
11991 macro_build (NULL, "jr", "s", RA);
11992 expr1.X_add_number = op[0] << 2;
11993 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11998 gas_assert (mips_opts.micromips);
11999 gas_assert (mips_opts.insn32);
12000 macro_build (NULL, "jr", "s", op[0]);
12001 if (mips_opts.noreorder)
12002 macro_build (NULL, "nop", "");
12007 load_register (op[0], &imm_expr, 0);
12011 load_register (op[0], &imm_expr, 1);
12015 if (imm_expr.X_op == O_constant)
12018 load_register (AT, &imm_expr, 0);
12019 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12024 gas_assert (imm_expr.X_op == O_absent
12025 && offset_expr.X_op == O_symbol
12026 && strcmp (segment_name (S_GET_SEGMENT
12027 (offset_expr.X_add_symbol)),
12029 && offset_expr.X_add_number == 0);
12030 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12031 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12036 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12037 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12038 order 32 bits of the value and the low order 32 bits are either
12039 zero or in OFFSET_EXPR. */
12040 if (imm_expr.X_op == O_constant)
12042 if (GPR_SIZE == 64)
12043 load_register (op[0], &imm_expr, 1);
12048 if (target_big_endian)
12060 load_register (hreg, &imm_expr, 0);
12063 if (offset_expr.X_op == O_absent)
12064 move_register (lreg, 0);
12067 gas_assert (offset_expr.X_op == O_constant);
12068 load_register (lreg, &offset_expr, 0);
12074 gas_assert (imm_expr.X_op == O_absent);
12076 /* We know that sym is in the .rdata section. First we get the
12077 upper 16 bits of the address. */
12078 if (mips_pic == NO_PIC)
12080 macro_build_lui (&offset_expr, AT);
12085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12086 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12090 /* Now we load the register(s). */
12091 if (GPR_SIZE == 64)
12094 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12095 BFD_RELOC_LO16, AT);
12100 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12101 BFD_RELOC_LO16, AT);
12104 /* FIXME: How in the world do we deal with the possible
12106 offset_expr.X_add_number += 4;
12107 macro_build (&offset_expr, "lw", "t,o(b)",
12108 op[0] + 1, BFD_RELOC_LO16, AT);
12114 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12115 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12116 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12117 the value and the low order 32 bits are either zero or in
12119 if (imm_expr.X_op == O_constant)
12122 load_register (AT, &imm_expr, FPR_SIZE == 64);
12123 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12124 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12127 if (ISA_HAS_MXHC1 (mips_opts.isa))
12128 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12129 else if (FPR_SIZE != 32)
12130 as_bad (_("Unable to generate `%s' compliant code "
12132 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12134 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12135 if (offset_expr.X_op == O_absent)
12136 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12139 gas_assert (offset_expr.X_op == O_constant);
12140 load_register (AT, &offset_expr, 0);
12141 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12147 gas_assert (imm_expr.X_op == O_absent
12148 && offset_expr.X_op == O_symbol
12149 && offset_expr.X_add_number == 0);
12150 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12151 if (strcmp (s, ".lit8") == 0)
12153 op[2] = mips_gp_register;
12154 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12155 offset_reloc[1] = BFD_RELOC_UNUSED;
12156 offset_reloc[2] = BFD_RELOC_UNUSED;
12160 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12162 if (mips_pic != NO_PIC)
12163 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12164 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12167 /* FIXME: This won't work for a 64 bit address. */
12168 macro_build_lui (&offset_expr, AT);
12172 offset_reloc[0] = BFD_RELOC_LO16;
12173 offset_reloc[1] = BFD_RELOC_UNUSED;
12174 offset_reloc[2] = BFD_RELOC_UNUSED;
12181 * The MIPS assembler seems to check for X_add_number not
12182 * being double aligned and generating:
12183 * lui at,%hi(foo+1)
12185 * addiu at,at,%lo(foo+1)
12188 * But, the resulting address is the same after relocation so why
12189 * generate the extra instruction?
12191 /* Itbl support may require additional care here. */
12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12203 gas_assert (!mips_opts.micromips);
12204 /* Itbl support may require additional care here. */
12207 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12227 if (GPR_SIZE == 64)
12237 if (GPR_SIZE == 64)
12245 /* Even on a big endian machine $fn comes before $fn+1. We have
12246 to adjust when loading from memory. We set coproc if we must
12247 load $fn+1 first. */
12248 /* Itbl support may require additional care here. */
12249 if (!target_big_endian)
12253 if (small_offset_p (0, align, 16))
12256 if (!small_offset_p (4, align, 16))
12258 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12259 -1, offset_reloc[0], offset_reloc[1],
12261 expr1.X_add_number = 0;
12265 offset_reloc[0] = BFD_RELOC_LO16;
12266 offset_reloc[1] = BFD_RELOC_UNUSED;
12267 offset_reloc[2] = BFD_RELOC_UNUSED;
12269 if (strcmp (s, "lw") == 0 && op[0] == breg)
12271 ep->X_add_number += 4;
12272 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12273 offset_reloc[1], offset_reloc[2], breg);
12274 ep->X_add_number -= 4;
12275 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12276 offset_reloc[1], offset_reloc[2], breg);
12280 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12281 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12283 ep->X_add_number += 4;
12284 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12285 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12291 if (offset_expr.X_op != O_symbol
12292 && offset_expr.X_op != O_constant)
12294 as_bad (_("expression too complex"));
12295 offset_expr.X_op = O_constant;
12298 if (HAVE_32BIT_ADDRESSES
12299 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12303 sprintf_vma (value, offset_expr.X_add_number);
12304 as_bad (_("number (0x%s) larger than 32 bits"), value);
12307 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12309 /* If this is a reference to a GP relative symbol, we want
12310 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12311 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12312 If we have a base register, we use this
12314 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12315 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12316 If this is not a GP relative symbol, we want
12317 lui $at,<sym> (BFD_RELOC_HI16_S)
12318 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12319 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12320 If there is a base register, we add it to $at after the
12321 lui instruction. If there is a constant, we always use
12323 if (offset_expr.X_op == O_symbol
12324 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12325 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12327 relax_start (offset_expr.X_add_symbol);
12330 tempreg = mips_gp_register;
12334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12335 AT, breg, mips_gp_register);
12340 /* Itbl support may require additional care here. */
12341 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12342 BFD_RELOC_GPREL16, tempreg);
12343 offset_expr.X_add_number += 4;
12345 /* Set mips_optimize to 2 to avoid inserting an
12347 hold_mips_optimize = mips_optimize;
12349 /* Itbl support may require additional care here. */
12350 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12351 BFD_RELOC_GPREL16, tempreg);
12352 mips_optimize = hold_mips_optimize;
12356 offset_expr.X_add_number -= 4;
12359 if (offset_high_part (offset_expr.X_add_number, 16)
12360 != offset_high_part (offset_expr.X_add_number + 4, 16))
12362 load_address (AT, &offset_expr, &used_at);
12363 offset_expr.X_op = O_constant;
12364 offset_expr.X_add_number = 0;
12367 macro_build_lui (&offset_expr, AT);
12369 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12370 /* Itbl support may require additional care here. */
12371 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12372 BFD_RELOC_LO16, AT);
12373 /* FIXME: How do we handle overflow here? */
12374 offset_expr.X_add_number += 4;
12375 /* Itbl support may require additional care here. */
12376 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12377 BFD_RELOC_LO16, AT);
12378 if (mips_relax.sequence)
12381 else if (!mips_big_got)
12383 /* If this is a reference to an external symbol, we want
12384 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12387 <op> op[0]+1,4($at)
12389 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12391 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12392 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12393 If there is a base register we add it to $at before the
12394 lwc1 instructions. If there is a constant we include it
12395 in the lwc1 instructions. */
12397 expr1.X_add_number = offset_expr.X_add_number;
12398 if (expr1.X_add_number < -0x8000
12399 || expr1.X_add_number >= 0x8000 - 4)
12400 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12401 load_got_offset (AT, &offset_expr);
12404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12406 /* Set mips_optimize to 2 to avoid inserting an undesired
12408 hold_mips_optimize = mips_optimize;
12411 /* Itbl support may require additional care here. */
12412 relax_start (offset_expr.X_add_symbol);
12413 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12414 BFD_RELOC_LO16, AT);
12415 expr1.X_add_number += 4;
12416 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12417 BFD_RELOC_LO16, AT);
12419 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12420 BFD_RELOC_LO16, AT);
12421 offset_expr.X_add_number += 4;
12422 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12423 BFD_RELOC_LO16, AT);
12426 mips_optimize = hold_mips_optimize;
12428 else if (mips_big_got)
12432 /* If this is a reference to an external symbol, we want
12433 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12435 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12438 <op> op[0]+1,4($at)
12440 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12442 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12443 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12444 If there is a base register we add it to $at before the
12445 lwc1 instructions. If there is a constant we include it
12446 in the lwc1 instructions. */
12448 expr1.X_add_number = offset_expr.X_add_number;
12449 offset_expr.X_add_number = 0;
12450 if (expr1.X_add_number < -0x8000
12451 || expr1.X_add_number >= 0x8000 - 4)
12452 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12453 gpdelay = reg_needs_delay (mips_gp_register);
12454 relax_start (offset_expr.X_add_symbol);
12455 macro_build (&offset_expr, "lui", LUI_FMT,
12456 AT, BFD_RELOC_MIPS_GOT_HI16);
12457 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12458 AT, AT, mips_gp_register);
12459 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12460 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12463 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12464 /* Itbl support may require additional care here. */
12465 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12466 BFD_RELOC_LO16, AT);
12467 expr1.X_add_number += 4;
12469 /* Set mips_optimize to 2 to avoid inserting an undesired
12471 hold_mips_optimize = mips_optimize;
12473 /* Itbl support may require additional care here. */
12474 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12475 BFD_RELOC_LO16, AT);
12476 mips_optimize = hold_mips_optimize;
12477 expr1.X_add_number -= 4;
12480 offset_expr.X_add_number = expr1.X_add_number;
12482 macro_build (NULL, "nop", "");
12483 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12484 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12487 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12488 /* Itbl support may require additional care here. */
12489 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12490 BFD_RELOC_LO16, AT);
12491 offset_expr.X_add_number += 4;
12493 /* Set mips_optimize to 2 to avoid inserting an undesired
12495 hold_mips_optimize = mips_optimize;
12497 /* Itbl support may require additional care here. */
12498 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12499 BFD_RELOC_LO16, AT);
12500 mips_optimize = hold_mips_optimize;
12514 gas_assert (!mips_opts.micromips);
12519 /* New code added to support COPZ instructions.
12520 This code builds table entries out of the macros in mip_opcodes.
12521 R4000 uses interlocks to handle coproc delays.
12522 Other chips (like the R3000) require nops to be inserted for delays.
12524 FIXME: Currently, we require that the user handle delays.
12525 In order to fill delay slots for non-interlocked chips,
12526 we must have a way to specify delays based on the coprocessor.
12527 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12528 What are the side-effects of the cop instruction?
12529 What cache support might we have and what are its effects?
12530 Both coprocessor & memory require delays. how long???
12531 What registers are read/set/modified?
12533 If an itbl is provided to interpret cop instructions,
12534 this knowledge can be encoded in the itbl spec. */
12548 gas_assert (!mips_opts.micromips);
12549 /* For now we just do C (same as Cz). The parameter will be
12550 stored in insn_opcode by mips_ip. */
12551 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12555 move_register (op[0], op[1]);
12559 gas_assert (mips_opts.micromips);
12560 gas_assert (mips_opts.insn32);
12561 move_register (micromips_to_32_reg_h_map1[op[0]],
12562 micromips_to_32_reg_m_map[op[1]]);
12563 move_register (micromips_to_32_reg_h_map2[op[0]],
12564 micromips_to_32_reg_n_map[op[2]]);
12570 if (mips_opts.arch == CPU_R5900)
12571 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12575 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12583 /* The MIPS assembler some times generates shifts and adds. I'm
12584 not trying to be that fancy. GCC should do this for us
12587 load_register (AT, &imm_expr, dbl);
12588 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12589 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12602 start_noreorder ();
12605 load_register (AT, &imm_expr, dbl);
12606 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12607 op[1], imm ? AT : op[2]);
12608 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12609 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12610 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12612 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12615 if (mips_opts.micromips)
12616 micromips_label_expr (&label_expr);
12618 label_expr.X_add_number = 8;
12619 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12620 macro_build (NULL, "nop", "");
12621 macro_build (NULL, "break", BRK_FMT, 6);
12622 if (mips_opts.micromips)
12623 micromips_add_label ();
12626 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12639 start_noreorder ();
12642 load_register (AT, &imm_expr, dbl);
12643 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12644 op[1], imm ? AT : op[2]);
12645 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12646 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12648 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12651 if (mips_opts.micromips)
12652 micromips_label_expr (&label_expr);
12654 label_expr.X_add_number = 8;
12655 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12656 macro_build (NULL, "nop", "");
12657 macro_build (NULL, "break", BRK_FMT, 6);
12658 if (mips_opts.micromips)
12659 micromips_add_label ();
12665 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12667 if (op[0] == op[1])
12674 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12675 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12679 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12680 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12681 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12682 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12686 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12688 if (op[0] == op[1])
12695 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12696 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12700 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12701 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12702 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12703 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12712 rot = imm_expr.X_add_number & 0x3f;
12713 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12715 rot = (64 - rot) & 0x3f;
12717 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12719 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12724 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12727 l = (rot < 0x20) ? "dsll" : "dsll32";
12728 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12731 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12732 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12733 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12741 rot = imm_expr.X_add_number & 0x1f;
12742 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12744 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12745 (32 - rot) & 0x1f);
12750 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12754 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12755 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12756 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12761 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12763 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12767 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12774 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12776 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12780 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12781 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12782 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12783 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12792 rot = imm_expr.X_add_number & 0x3f;
12793 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12796 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12798 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12803 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12806 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12807 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12810 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12811 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12812 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12820 rot = imm_expr.X_add_number & 0x1f;
12821 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12823 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12828 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12832 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12833 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12834 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12841 else if (op[2] == 0)
12842 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12845 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12846 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12851 if (imm_expr.X_add_number == 0)
12853 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12858 as_warn (_("instruction %s: result is always false"),
12859 ip->insn_mo->name);
12860 move_register (op[0], 0);
12863 if (CPU_HAS_SEQ (mips_opts.arch)
12864 && -512 <= imm_expr.X_add_number
12865 && imm_expr.X_add_number < 512)
12867 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12868 (int) imm_expr.X_add_number);
12871 if (imm_expr.X_add_number >= 0
12872 && imm_expr.X_add_number < 0x10000)
12873 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12874 else if (imm_expr.X_add_number > -0x8000
12875 && imm_expr.X_add_number < 0)
12877 imm_expr.X_add_number = -imm_expr.X_add_number;
12878 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12879 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12881 else if (CPU_HAS_SEQ (mips_opts.arch))
12884 load_register (AT, &imm_expr, GPR_SIZE == 64);
12885 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12890 load_register (AT, &imm_expr, GPR_SIZE == 64);
12891 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12894 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12897 case M_SGE: /* X >= Y <==> not (X < Y) */
12903 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12904 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12907 case M_SGE_I: /* X >= I <==> not (X < I) */
12909 if (imm_expr.X_add_number >= -0x8000
12910 && imm_expr.X_add_number < 0x8000)
12911 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12912 op[0], op[1], BFD_RELOC_LO16);
12915 load_register (AT, &imm_expr, GPR_SIZE == 64);
12916 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12920 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12923 case M_SGT: /* X > Y <==> Y < X */
12929 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12932 case M_SGT_I: /* X > I <==> I < X */
12939 load_register (AT, &imm_expr, GPR_SIZE == 64);
12940 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12943 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12949 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12950 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12953 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12960 load_register (AT, &imm_expr, GPR_SIZE == 64);
12961 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12962 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12966 if (imm_expr.X_add_number >= -0x8000
12967 && imm_expr.X_add_number < 0x8000)
12969 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
12975 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12979 if (imm_expr.X_add_number >= -0x8000
12980 && imm_expr.X_add_number < 0x8000)
12982 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12987 load_register (AT, &imm_expr, GPR_SIZE == 64);
12988 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12994 else if (op[2] == 0)
12995 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12998 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12999 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13004 if (imm_expr.X_add_number == 0)
13006 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13011 as_warn (_("instruction %s: result is always true"),
13012 ip->insn_mo->name);
13013 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13014 op[0], 0, BFD_RELOC_LO16);
13017 if (CPU_HAS_SEQ (mips_opts.arch)
13018 && -512 <= imm_expr.X_add_number
13019 && imm_expr.X_add_number < 512)
13021 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13022 (int) imm_expr.X_add_number);
13025 if (imm_expr.X_add_number >= 0
13026 && imm_expr.X_add_number < 0x10000)
13028 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13031 else if (imm_expr.X_add_number > -0x8000
13032 && imm_expr.X_add_number < 0)
13034 imm_expr.X_add_number = -imm_expr.X_add_number;
13035 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13036 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13038 else if (CPU_HAS_SEQ (mips_opts.arch))
13041 load_register (AT, &imm_expr, GPR_SIZE == 64);
13042 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13047 load_register (AT, &imm_expr, GPR_SIZE == 64);
13048 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13051 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13066 if (!mips_opts.micromips)
13068 if (imm_expr.X_add_number > -0x200
13069 && imm_expr.X_add_number <= 0x200)
13071 macro_build (NULL, s, "t,r,.", op[0], op[1],
13072 (int) -imm_expr.X_add_number);
13081 if (imm_expr.X_add_number > -0x8000
13082 && imm_expr.X_add_number <= 0x8000)
13084 imm_expr.X_add_number = -imm_expr.X_add_number;
13085 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13090 load_register (AT, &imm_expr, dbl);
13091 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13113 load_register (AT, &imm_expr, GPR_SIZE == 64);
13114 macro_build (NULL, s, "s,t", op[0], AT);
13119 gas_assert (!mips_opts.micromips);
13120 gas_assert (mips_opts.isa == ISA_MIPS1);
13124 * Is the double cfc1 instruction a bug in the mips assembler;
13125 * or is there a reason for it?
13127 start_noreorder ();
13128 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13129 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13130 macro_build (NULL, "nop", "");
13131 expr1.X_add_number = 3;
13132 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13133 expr1.X_add_number = 2;
13134 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13135 macro_build (NULL, "ctc1", "t,G", AT, RA);
13136 macro_build (NULL, "nop", "");
13137 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13139 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13140 macro_build (NULL, "nop", "");
13157 offbits = (mips_opts.micromips ? 12 : 16);
13163 offbits = (mips_opts.micromips ? 12 : 16);
13175 offbits = (mips_opts.micromips ? 12 : 16);
13182 offbits = (mips_opts.micromips ? 12 : 16);
13188 large_offset = !small_offset_p (off, align, offbits);
13190 expr1.X_add_number = 0;
13195 if (small_offset_p (0, align, 16))
13196 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13197 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13200 load_address (tempreg, ep, &used_at);
13202 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13203 tempreg, tempreg, breg);
13205 offset_reloc[0] = BFD_RELOC_LO16;
13206 offset_reloc[1] = BFD_RELOC_UNUSED;
13207 offset_reloc[2] = BFD_RELOC_UNUSED;
13212 else if (!ust && op[0] == breg)
13223 if (!target_big_endian)
13224 ep->X_add_number += off;
13226 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13228 macro_build (ep, s, "t,o(b)", tempreg, -1,
13229 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13231 if (!target_big_endian)
13232 ep->X_add_number -= off;
13234 ep->X_add_number += off;
13236 macro_build (NULL, s2, "t,~(b)",
13237 tempreg, (int) ep->X_add_number, breg);
13239 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13240 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13242 /* If necessary, move the result in tempreg to the final destination. */
13243 if (!ust && op[0] != tempreg)
13245 /* Protect second load's delay slot. */
13247 move_register (op[0], tempreg);
13253 if (target_big_endian == ust)
13254 ep->X_add_number += off;
13255 tempreg = ust || large_offset ? op[0] : AT;
13256 macro_build (ep, s, "t,o(b)", tempreg, -1,
13257 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13259 /* For halfword transfers we need a temporary register to shuffle
13260 bytes. Unfortunately for M_USH_A we have none available before
13261 the next store as AT holds the base address. We deal with this
13262 case by clobbering TREG and then restoring it as with ULH. */
13263 tempreg = ust == large_offset ? op[0] : AT;
13265 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13267 if (target_big_endian == ust)
13268 ep->X_add_number -= off;
13270 ep->X_add_number += off;
13271 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13272 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13274 /* For M_USH_A re-retrieve the LSB. */
13275 if (ust && large_offset)
13277 if (target_big_endian)
13278 ep->X_add_number += off;
13280 ep->X_add_number -= off;
13281 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13282 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13284 /* For ULH and M_USH_A OR the LSB in. */
13285 if (!ust || large_offset)
13287 tempreg = !large_offset ? AT : op[0];
13288 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13289 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13294 /* FIXME: Check if this is one of the itbl macros, since they
13295 are added dynamically. */
13296 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13299 if (!mips_opts.at && used_at)
13300 as_bad (_("macro used $at after \".set noat\""));
13303 /* Implement macros in mips16 mode. */
13306 mips16_macro (struct mips_cl_insn *ip)
13308 const struct mips_operand_array *operands;
13313 const char *s, *s2, *s3;
13314 unsigned int op[MAX_OPERANDS];
13317 mask = ip->insn_mo->mask;
13319 operands = insn_operands (ip);
13320 for (i = 0; i < MAX_OPERANDS; i++)
13321 if (operands->operand[i])
13322 op[i] = insn_extract_operand (ip, operands->operand[i]);
13326 expr1.X_op = O_constant;
13327 expr1.X_op_symbol = NULL;
13328 expr1.X_add_symbol = NULL;
13329 expr1.X_add_number = 1;
13348 start_noreorder ();
13349 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13350 expr1.X_add_number = 2;
13351 macro_build (&expr1, "bnez", "x,p", op[2]);
13352 macro_build (NULL, "break", "6", 7);
13354 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13355 since that causes an overflow. We should do that as well,
13356 but I don't see how to do the comparisons without a temporary
13359 macro_build (NULL, s, "x", op[0]);
13378 start_noreorder ();
13379 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13380 expr1.X_add_number = 2;
13381 macro_build (&expr1, "bnez", "x,p", op[2]);
13382 macro_build (NULL, "break", "6", 7);
13384 macro_build (NULL, s2, "x", op[0]);
13390 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13391 macro_build (NULL, "mflo", "x", op[0]);
13399 imm_expr.X_add_number = -imm_expr.X_add_number;
13400 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13404 imm_expr.X_add_number = -imm_expr.X_add_number;
13405 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13409 imm_expr.X_add_number = -imm_expr.X_add_number;
13410 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13432 goto do_reverse_branch;
13436 goto do_reverse_branch;
13448 goto do_reverse_branch;
13459 macro_build (NULL, s, "x,y", op[0], op[1]);
13460 macro_build (&offset_expr, s2, "p");
13487 goto do_addone_branch_i;
13492 goto do_addone_branch_i;
13507 goto do_addone_branch_i;
13513 do_addone_branch_i:
13514 ++imm_expr.X_add_number;
13517 macro_build (&imm_expr, s, s3, op[0]);
13518 macro_build (&offset_expr, s2, "p");
13522 expr1.X_add_number = 0;
13523 macro_build (&expr1, "slti", "x,8", op[1]);
13524 if (op[0] != op[1])
13525 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13526 expr1.X_add_number = 2;
13527 macro_build (&expr1, "bteqz", "p");
13528 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13533 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13534 opcode bits in *OPCODE_EXTRA. */
13536 static struct mips_opcode *
13537 mips_lookup_insn (struct hash_control *hash, const char *start,
13538 ssize_t length, unsigned int *opcode_extra)
13540 char *name, *dot, *p;
13541 unsigned int mask, suffix;
13543 struct mips_opcode *insn;
13545 /* Make a copy of the instruction so that we can fiddle with it. */
13546 name = xstrndup (start, length);
13548 /* Look up the instruction as-is. */
13549 insn = (struct mips_opcode *) hash_find (hash, name);
13553 dot = strchr (name, '.');
13556 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13557 p = mips_parse_vu0_channels (dot + 1, &mask);
13558 if (*p == 0 && mask != 0)
13561 insn = (struct mips_opcode *) hash_find (hash, name);
13563 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13565 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13571 if (mips_opts.micromips)
13573 /* See if there's an instruction size override suffix,
13574 either `16' or `32', at the end of the mnemonic proper,
13575 that defines the operation, i.e. before the first `.'
13576 character if any. Strip it and retry. */
13577 opend = dot != NULL ? dot - name : length;
13578 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13580 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13586 memcpy (name + opend - 2, name + opend, length - opend + 1);
13587 insn = (struct mips_opcode *) hash_find (hash, name);
13590 forced_insn_length = suffix;
13602 /* Assemble an instruction into its binary format. If the instruction
13603 is a macro, set imm_expr and offset_expr to the values associated
13604 with "I" and "A" operands respectively. Otherwise store the value
13605 of the relocatable field (if any) in offset_expr. In both cases
13606 set offset_reloc to the relocation operators applied to offset_expr. */
13609 mips_ip (char *str, struct mips_cl_insn *insn)
13611 const struct mips_opcode *first, *past;
13612 struct hash_control *hash;
13615 struct mips_operand_token *tokens;
13616 unsigned int opcode_extra;
13618 if (mips_opts.micromips)
13620 hash = micromips_op_hash;
13621 past = µmips_opcodes[bfd_micromips_num_opcodes];
13626 past = &mips_opcodes[NUMOPCODES];
13628 forced_insn_length = 0;
13631 /* We first try to match an instruction up to a space or to the end. */
13632 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13635 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13638 set_insn_error (0, _("unrecognized opcode"));
13642 if (strcmp (first->name, "li.s") == 0)
13644 else if (strcmp (first->name, "li.d") == 0)
13648 tokens = mips_parse_arguments (str + end, format);
13652 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13653 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13654 set_insn_error (0, _("invalid operands"));
13656 obstack_free (&mips_operand_tokens, tokens);
13659 /* As for mips_ip, but used when assembling MIPS16 code.
13660 Also set forced_insn_length to the resulting instruction size in
13661 bytes if the user explicitly requested a small or extended instruction. */
13664 mips16_ip (char *str, struct mips_cl_insn *insn)
13667 struct mips_opcode *first;
13668 struct mips_operand_token *tokens;
13670 forced_insn_length = 0;
13672 for (s = str; ISLOWER (*s); ++s)
13686 if (s[1] == 't' && s[2] == ' ')
13688 forced_insn_length = 2;
13692 else if (s[1] == 'e' && s[2] == ' ')
13694 forced_insn_length = 4;
13698 /* Fall through. */
13700 set_insn_error (0, _("unrecognized opcode"));
13704 if (mips_opts.noautoextend && !forced_insn_length)
13705 forced_insn_length = 2;
13708 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13713 set_insn_error (0, _("unrecognized opcode"));
13717 tokens = mips_parse_arguments (s, 0);
13721 if (!match_mips16_insns (insn, first, tokens))
13722 set_insn_error (0, _("invalid operands"));
13724 obstack_free (&mips_operand_tokens, tokens);
13727 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13728 NBITS is the number of significant bits in VAL. */
13730 static unsigned long
13731 mips16_immed_extend (offsetT val, unsigned int nbits)
13736 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13739 else if (nbits == 15)
13741 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13746 extval = ((val & 0x1f) << 6) | (val & 0x20);
13749 return (extval << 16) | val;
13752 /* Like decode_mips16_operand, but require the operand to be defined and
13753 require it to be an integer. */
13755 static const struct mips_int_operand *
13756 mips16_immed_operand (int type, bfd_boolean extended_p)
13758 const struct mips_operand *operand;
13760 operand = decode_mips16_operand (type, extended_p);
13761 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13763 return (const struct mips_int_operand *) operand;
13766 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13769 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13770 bfd_reloc_code_real_type reloc, offsetT sval)
13772 int min_val, max_val;
13774 min_val = mips_int_operand_min (operand);
13775 max_val = mips_int_operand_max (operand);
13776 if (reloc != BFD_RELOC_UNUSED)
13779 sval = SEXT_16BIT (sval);
13784 return (sval >= min_val
13786 && (sval & ((1 << operand->shift) - 1)) == 0);
13789 /* Install immediate value VAL into MIPS16 instruction *INSN,
13790 extending it if necessary. The instruction in *INSN may
13791 already be extended.
13793 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13794 if none. In the former case, VAL is a 16-bit number with no
13795 defined signedness.
13797 TYPE is the type of the immediate field. USER_INSN_LENGTH
13798 is the length that the user requested, or 0 if none. */
13801 mips16_immed (const char *file, unsigned int line, int type,
13802 bfd_reloc_code_real_type reloc, offsetT val,
13803 unsigned int user_insn_length, unsigned long *insn)
13805 const struct mips_int_operand *operand;
13806 unsigned int uval, length;
13808 operand = mips16_immed_operand (type, FALSE);
13809 if (!mips16_immed_in_range_p (operand, reloc, val))
13811 /* We need an extended instruction. */
13812 if (user_insn_length == 2)
13813 as_bad_where (file, line, _("invalid unextended operand value"));
13815 *insn |= MIPS16_EXTEND;
13817 else if (user_insn_length == 4)
13819 /* The operand doesn't force an unextended instruction to be extended.
13820 Warn if the user wanted an extended instruction anyway. */
13821 *insn |= MIPS16_EXTEND;
13822 as_warn_where (file, line,
13823 _("extended operand requested but not required"));
13826 length = mips16_opcode_length (*insn);
13829 operand = mips16_immed_operand (type, TRUE);
13830 if (!mips16_immed_in_range_p (operand, reloc, val))
13831 as_bad_where (file, line,
13832 _("operand value out of range for instruction"));
13834 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13836 *insn = mips_insert_operand (&operand->root, *insn, uval);
13838 *insn |= mips16_immed_extend (uval, operand->root.size);
13841 struct percent_op_match
13844 bfd_reloc_code_real_type reloc;
13847 static const struct percent_op_match mips_percent_op[] =
13849 {"%lo", BFD_RELOC_LO16},
13850 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13851 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13852 {"%call16", BFD_RELOC_MIPS_CALL16},
13853 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13854 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13855 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13856 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13857 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13858 {"%got", BFD_RELOC_MIPS_GOT16},
13859 {"%gp_rel", BFD_RELOC_GPREL16},
13860 {"%half", BFD_RELOC_16},
13861 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13862 {"%higher", BFD_RELOC_MIPS_HIGHER},
13863 {"%neg", BFD_RELOC_MIPS_SUB},
13864 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13865 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13866 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13867 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13868 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13869 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13870 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13871 {"%hi", BFD_RELOC_HI16_S},
13872 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13873 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13876 static const struct percent_op_match mips16_percent_op[] =
13878 {"%lo", BFD_RELOC_MIPS16_LO16},
13879 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13880 {"%got", BFD_RELOC_MIPS16_GOT16},
13881 {"%call16", BFD_RELOC_MIPS16_CALL16},
13882 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13883 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13884 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13885 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13886 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13887 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13888 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13889 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13893 /* Return true if *STR points to a relocation operator. When returning true,
13894 move *STR over the operator and store its relocation code in *RELOC.
13895 Leave both *STR and *RELOC alone when returning false. */
13898 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13900 const struct percent_op_match *percent_op;
13903 if (mips_opts.mips16)
13905 percent_op = mips16_percent_op;
13906 limit = ARRAY_SIZE (mips16_percent_op);
13910 percent_op = mips_percent_op;
13911 limit = ARRAY_SIZE (mips_percent_op);
13914 for (i = 0; i < limit; i++)
13915 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13917 int len = strlen (percent_op[i].str);
13919 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13922 *str += strlen (percent_op[i].str);
13923 *reloc = percent_op[i].reloc;
13925 /* Check whether the output BFD supports this relocation.
13926 If not, issue an error and fall back on something safe. */
13927 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13929 as_bad (_("relocation %s isn't supported by the current ABI"),
13930 percent_op[i].str);
13931 *reloc = BFD_RELOC_UNUSED;
13939 /* Parse string STR as a 16-bit relocatable operand. Store the
13940 expression in *EP and the relocations in the array starting
13941 at RELOC. Return the number of relocation operators used.
13943 On exit, EXPR_END points to the first character after the expression. */
13946 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13949 bfd_reloc_code_real_type reversed_reloc[3];
13950 size_t reloc_index, i;
13951 int crux_depth, str_depth;
13954 /* Search for the start of the main expression, recoding relocations
13955 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13956 of the main expression and with CRUX_DEPTH containing the number
13957 of open brackets at that point. */
13964 crux_depth = str_depth;
13966 /* Skip over whitespace and brackets, keeping count of the number
13968 while (*str == ' ' || *str == '\t' || *str == '(')
13973 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13974 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13976 my_getExpression (ep, crux);
13979 /* Match every open bracket. */
13980 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13984 if (crux_depth > 0)
13985 as_bad (_("unclosed '('"));
13989 if (reloc_index != 0)
13991 prev_reloc_op_frag = frag_now;
13992 for (i = 0; i < reloc_index; i++)
13993 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13996 return reloc_index;
14000 my_getExpression (expressionS *ep, char *str)
14004 save_in = input_line_pointer;
14005 input_line_pointer = str;
14007 expr_end = input_line_pointer;
14008 input_line_pointer = save_in;
14012 md_atof (int type, char *litP, int *sizeP)
14014 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14018 md_number_to_chars (char *buf, valueT val, int n)
14020 if (target_big_endian)
14021 number_to_chars_bigendian (buf, val, n);
14023 number_to_chars_littleendian (buf, val, n);
14026 static int support_64bit_objects(void)
14028 const char **list, **l;
14031 list = bfd_target_list ();
14032 for (l = list; *l != NULL; l++)
14033 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14034 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14036 yes = (*l != NULL);
14041 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14042 NEW_VALUE. Warn if another value was already specified. Note:
14043 we have to defer parsing the -march and -mtune arguments in order
14044 to handle 'from-abi' correctly, since the ABI might be specified
14045 in a later argument. */
14048 mips_set_option_string (const char **string_ptr, const char *new_value)
14050 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14051 as_warn (_("a different %s was already specified, is now %s"),
14052 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14055 *string_ptr = new_value;
14059 md_parse_option (int c, const char *arg)
14063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14064 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14066 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14067 c == mips_ases[i].option_on);
14073 case OPTION_CONSTRUCT_FLOATS:
14074 mips_disable_float_construction = 0;
14077 case OPTION_NO_CONSTRUCT_FLOATS:
14078 mips_disable_float_construction = 1;
14090 target_big_endian = 1;
14094 target_big_endian = 0;
14100 else if (arg[0] == '0')
14102 else if (arg[0] == '1')
14112 mips_debug = atoi (arg);
14116 file_mips_opts.isa = ISA_MIPS1;
14120 file_mips_opts.isa = ISA_MIPS2;
14124 file_mips_opts.isa = ISA_MIPS3;
14128 file_mips_opts.isa = ISA_MIPS4;
14132 file_mips_opts.isa = ISA_MIPS5;
14135 case OPTION_MIPS32:
14136 file_mips_opts.isa = ISA_MIPS32;
14139 case OPTION_MIPS32R2:
14140 file_mips_opts.isa = ISA_MIPS32R2;
14143 case OPTION_MIPS32R3:
14144 file_mips_opts.isa = ISA_MIPS32R3;
14147 case OPTION_MIPS32R5:
14148 file_mips_opts.isa = ISA_MIPS32R5;
14151 case OPTION_MIPS32R6:
14152 file_mips_opts.isa = ISA_MIPS32R6;
14155 case OPTION_MIPS64R2:
14156 file_mips_opts.isa = ISA_MIPS64R2;
14159 case OPTION_MIPS64R3:
14160 file_mips_opts.isa = ISA_MIPS64R3;
14163 case OPTION_MIPS64R5:
14164 file_mips_opts.isa = ISA_MIPS64R5;
14167 case OPTION_MIPS64R6:
14168 file_mips_opts.isa = ISA_MIPS64R6;
14171 case OPTION_MIPS64:
14172 file_mips_opts.isa = ISA_MIPS64;
14176 mips_set_option_string (&mips_tune_string, arg);
14180 mips_set_option_string (&mips_arch_string, arg);
14184 mips_set_option_string (&mips_arch_string, "4650");
14185 mips_set_option_string (&mips_tune_string, "4650");
14188 case OPTION_NO_M4650:
14192 mips_set_option_string (&mips_arch_string, "4010");
14193 mips_set_option_string (&mips_tune_string, "4010");
14196 case OPTION_NO_M4010:
14200 mips_set_option_string (&mips_arch_string, "4100");
14201 mips_set_option_string (&mips_tune_string, "4100");
14204 case OPTION_NO_M4100:
14208 mips_set_option_string (&mips_arch_string, "3900");
14209 mips_set_option_string (&mips_tune_string, "3900");
14212 case OPTION_NO_M3900:
14215 case OPTION_MICROMIPS:
14216 if (file_mips_opts.mips16 == 1)
14218 as_bad (_("-mmicromips cannot be used with -mips16"));
14221 file_mips_opts.micromips = 1;
14222 mips_no_prev_insn ();
14225 case OPTION_NO_MICROMIPS:
14226 file_mips_opts.micromips = 0;
14227 mips_no_prev_insn ();
14230 case OPTION_MIPS16:
14231 if (file_mips_opts.micromips == 1)
14233 as_bad (_("-mips16 cannot be used with -micromips"));
14236 file_mips_opts.mips16 = 1;
14237 mips_no_prev_insn ();
14240 case OPTION_NO_MIPS16:
14241 file_mips_opts.mips16 = 0;
14242 mips_no_prev_insn ();
14245 case OPTION_FIX_24K:
14249 case OPTION_NO_FIX_24K:
14253 case OPTION_FIX_RM7000:
14254 mips_fix_rm7000 = 1;
14257 case OPTION_NO_FIX_RM7000:
14258 mips_fix_rm7000 = 0;
14261 case OPTION_FIX_LOONGSON2F_JUMP:
14262 mips_fix_loongson2f_jump = TRUE;
14265 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14266 mips_fix_loongson2f_jump = FALSE;
14269 case OPTION_FIX_LOONGSON2F_NOP:
14270 mips_fix_loongson2f_nop = TRUE;
14273 case OPTION_NO_FIX_LOONGSON2F_NOP:
14274 mips_fix_loongson2f_nop = FALSE;
14277 case OPTION_FIX_VR4120:
14278 mips_fix_vr4120 = 1;
14281 case OPTION_NO_FIX_VR4120:
14282 mips_fix_vr4120 = 0;
14285 case OPTION_FIX_VR4130:
14286 mips_fix_vr4130 = 1;
14289 case OPTION_NO_FIX_VR4130:
14290 mips_fix_vr4130 = 0;
14293 case OPTION_FIX_CN63XXP1:
14294 mips_fix_cn63xxp1 = TRUE;
14297 case OPTION_NO_FIX_CN63XXP1:
14298 mips_fix_cn63xxp1 = FALSE;
14301 case OPTION_RELAX_BRANCH:
14302 mips_relax_branch = 1;
14305 case OPTION_NO_RELAX_BRANCH:
14306 mips_relax_branch = 0;
14309 case OPTION_INSN32:
14310 file_mips_opts.insn32 = TRUE;
14313 case OPTION_NO_INSN32:
14314 file_mips_opts.insn32 = FALSE;
14317 case OPTION_MSHARED:
14318 mips_in_shared = TRUE;
14321 case OPTION_MNO_SHARED:
14322 mips_in_shared = FALSE;
14325 case OPTION_MSYM32:
14326 file_mips_opts.sym32 = TRUE;
14329 case OPTION_MNO_SYM32:
14330 file_mips_opts.sym32 = FALSE;
14333 /* When generating ELF code, we permit -KPIC and -call_shared to
14334 select SVR4_PIC, and -non_shared to select no PIC. This is
14335 intended to be compatible with Irix 5. */
14336 case OPTION_CALL_SHARED:
14337 mips_pic = SVR4_PIC;
14338 mips_abicalls = TRUE;
14341 case OPTION_CALL_NONPIC:
14343 mips_abicalls = TRUE;
14346 case OPTION_NON_SHARED:
14348 mips_abicalls = FALSE;
14351 /* The -xgot option tells the assembler to use 32 bit offsets
14352 when accessing the got in SVR4_PIC mode. It is for Irix
14359 g_switch_value = atoi (arg);
14363 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14366 mips_abi = O32_ABI;
14370 mips_abi = N32_ABI;
14374 mips_abi = N64_ABI;
14375 if (!support_64bit_objects())
14376 as_fatal (_("no compiled in support for 64 bit object file format"));
14380 file_mips_opts.gp = 32;
14384 file_mips_opts.gp = 64;
14388 file_mips_opts.fp = 32;
14392 file_mips_opts.fp = 0;
14396 file_mips_opts.fp = 64;
14399 case OPTION_ODD_SPREG:
14400 file_mips_opts.oddspreg = 1;
14403 case OPTION_NO_ODD_SPREG:
14404 file_mips_opts.oddspreg = 0;
14407 case OPTION_SINGLE_FLOAT:
14408 file_mips_opts.single_float = 1;
14411 case OPTION_DOUBLE_FLOAT:
14412 file_mips_opts.single_float = 0;
14415 case OPTION_SOFT_FLOAT:
14416 file_mips_opts.soft_float = 1;
14419 case OPTION_HARD_FLOAT:
14420 file_mips_opts.soft_float = 0;
14424 if (strcmp (arg, "32") == 0)
14425 mips_abi = O32_ABI;
14426 else if (strcmp (arg, "o64") == 0)
14427 mips_abi = O64_ABI;
14428 else if (strcmp (arg, "n32") == 0)
14429 mips_abi = N32_ABI;
14430 else if (strcmp (arg, "64") == 0)
14432 mips_abi = N64_ABI;
14433 if (! support_64bit_objects())
14434 as_fatal (_("no compiled in support for 64 bit object file "
14437 else if (strcmp (arg, "eabi") == 0)
14438 mips_abi = EABI_ABI;
14441 as_fatal (_("invalid abi -mabi=%s"), arg);
14446 case OPTION_M7000_HILO_FIX:
14447 mips_7000_hilo_fix = TRUE;
14450 case OPTION_MNO_7000_HILO_FIX:
14451 mips_7000_hilo_fix = FALSE;
14454 case OPTION_MDEBUG:
14455 mips_flag_mdebug = TRUE;
14458 case OPTION_NO_MDEBUG:
14459 mips_flag_mdebug = FALSE;
14463 mips_flag_pdr = TRUE;
14466 case OPTION_NO_PDR:
14467 mips_flag_pdr = FALSE;
14470 case OPTION_MVXWORKS_PIC:
14471 mips_pic = VXWORKS_PIC;
14475 if (strcmp (arg, "2008") == 0)
14477 else if (strcmp (arg, "legacy") == 0)
14481 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14490 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14495 /* Set up globals to tune for the ISA or processor described by INFO. */
14498 mips_set_tune (const struct mips_cpu_info *info)
14501 mips_tune = info->cpu;
14506 mips_after_parse_args (void)
14508 const struct mips_cpu_info *arch_info = 0;
14509 const struct mips_cpu_info *tune_info = 0;
14511 /* GP relative stuff not working for PE */
14512 if (strncmp (TARGET_OS, "pe", 2) == 0)
14514 if (g_switch_seen && g_switch_value != 0)
14515 as_bad (_("-G not supported in this configuration"));
14516 g_switch_value = 0;
14519 if (mips_abi == NO_ABI)
14520 mips_abi = MIPS_DEFAULT_ABI;
14522 /* The following code determines the architecture.
14523 Similar code was added to GCC 3.3 (see override_options() in
14524 config/mips/mips.c). The GAS and GCC code should be kept in sync
14525 as much as possible. */
14527 if (mips_arch_string != 0)
14528 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14530 if (file_mips_opts.isa != ISA_UNKNOWN)
14532 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14533 ISA level specified by -mipsN, while arch_info->isa contains
14534 the -march selection (if any). */
14535 if (arch_info != 0)
14537 /* -march takes precedence over -mipsN, since it is more descriptive.
14538 There's no harm in specifying both as long as the ISA levels
14540 if (file_mips_opts.isa != arch_info->isa)
14541 as_bad (_("-%s conflicts with the other architecture options,"
14542 " which imply -%s"),
14543 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14544 mips_cpu_info_from_isa (arch_info->isa)->name);
14547 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14550 if (arch_info == 0)
14552 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14553 gas_assert (arch_info);
14556 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14557 as_bad (_("-march=%s is not compatible with the selected ABI"),
14560 file_mips_opts.arch = arch_info->cpu;
14561 file_mips_opts.isa = arch_info->isa;
14563 /* Set up initial mips_opts state. */
14564 mips_opts = file_mips_opts;
14566 /* The register size inference code is now placed in
14567 file_mips_check_options. */
14569 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14571 if (mips_tune_string != 0)
14572 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14574 if (tune_info == 0)
14575 mips_set_tune (arch_info);
14577 mips_set_tune (tune_info);
14579 if (mips_flag_mdebug < 0)
14580 mips_flag_mdebug = 0;
14584 mips_init_after_args (void)
14586 /* initialize opcodes */
14587 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14588 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14592 md_pcrel_from (fixS *fixP)
14594 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14595 switch (fixP->fx_r_type)
14597 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14598 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14599 /* Return the address of the delay slot. */
14602 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14603 case BFD_RELOC_MICROMIPS_JMP:
14604 case BFD_RELOC_16_PCREL_S2:
14605 case BFD_RELOC_MIPS_21_PCREL_S2:
14606 case BFD_RELOC_MIPS_26_PCREL_S2:
14607 case BFD_RELOC_MIPS_JMP:
14608 /* Return the address of the delay slot. */
14611 case BFD_RELOC_MIPS_18_PCREL_S3:
14612 /* Return the aligned address of the doubleword containing
14613 the instruction. */
14621 /* This is called before the symbol table is processed. In order to
14622 work with gcc when using mips-tfile, we must keep all local labels.
14623 However, in other cases, we want to discard them. If we were
14624 called with -g, but we didn't see any debugging information, it may
14625 mean that gcc is smuggling debugging information through to
14626 mips-tfile, in which case we must generate all local labels. */
14629 mips_frob_file_before_adjust (void)
14631 #ifndef NO_ECOFF_DEBUGGING
14632 if (ECOFF_DEBUGGING
14634 && ! ecoff_debugging_seen)
14635 flag_keep_locals = 1;
14639 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14640 the corresponding LO16 reloc. This is called before md_apply_fix and
14641 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14642 relocation operators.
14644 For our purposes, a %lo() expression matches a %got() or %hi()
14647 (a) it refers to the same symbol; and
14648 (b) the offset applied in the %lo() expression is no lower than
14649 the offset applied in the %got() or %hi().
14651 (b) allows us to cope with code like:
14654 lh $4,%lo(foo+2)($4)
14656 ...which is legal on RELA targets, and has a well-defined behaviour
14657 if the user knows that adding 2 to "foo" will not induce a carry to
14660 When several %lo()s match a particular %got() or %hi(), we use the
14661 following rules to distinguish them:
14663 (1) %lo()s with smaller offsets are a better match than %lo()s with
14666 (2) %lo()s with no matching %got() or %hi() are better than those
14667 that already have a matching %got() or %hi().
14669 (3) later %lo()s are better than earlier %lo()s.
14671 These rules are applied in order.
14673 (1) means, among other things, that %lo()s with identical offsets are
14674 chosen if they exist.
14676 (2) means that we won't associate several high-part relocations with
14677 the same low-part relocation unless there's no alternative. Having
14678 several high parts for the same low part is a GNU extension; this rule
14679 allows careful users to avoid it.
14681 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14682 with the last high-part relocation being at the front of the list.
14683 It therefore makes sense to choose the last matching low-part
14684 relocation, all other things being equal. It's also easier
14685 to code that way. */
14688 mips_frob_file (void)
14690 struct mips_hi_fixup *l;
14691 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14693 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14695 segment_info_type *seginfo;
14696 bfd_boolean matched_lo_p;
14697 fixS **hi_pos, **lo_pos, **pos;
14699 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14701 /* If a GOT16 relocation turns out to be against a global symbol,
14702 there isn't supposed to be a matching LO. Ignore %gots against
14703 constants; we'll report an error for those later. */
14704 if (got16_reloc_p (l->fixp->fx_r_type)
14705 && !(l->fixp->fx_addsy
14706 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14709 /* Check quickly whether the next fixup happens to be a matching %lo. */
14710 if (fixup_has_matching_lo_p (l->fixp))
14713 seginfo = seg_info (l->seg);
14715 /* Set HI_POS to the position of this relocation in the chain.
14716 Set LO_POS to the position of the chosen low-part relocation.
14717 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14718 relocation that matches an immediately-preceding high-part
14722 matched_lo_p = FALSE;
14723 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14725 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14727 if (*pos == l->fixp)
14730 if ((*pos)->fx_r_type == looking_for_rtype
14731 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14732 && (*pos)->fx_offset >= l->fixp->fx_offset
14734 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14736 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14739 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14740 && fixup_has_matching_lo_p (*pos));
14743 /* If we found a match, remove the high-part relocation from its
14744 current position and insert it before the low-part relocation.
14745 Make the offsets match so that fixup_has_matching_lo_p()
14748 We don't warn about unmatched high-part relocations since some
14749 versions of gcc have been known to emit dead "lui ...%hi(...)"
14751 if (lo_pos != NULL)
14753 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14754 if (l->fixp->fx_next != *lo_pos)
14756 *hi_pos = l->fixp->fx_next;
14757 l->fixp->fx_next = *lo_pos;
14765 mips_force_relocation (fixS *fixp)
14767 if (generic_force_reloc (fixp))
14770 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14771 so that the linker relaxation can update targets. */
14772 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14773 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14774 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14777 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14778 if (ISA_IS_R6 (file_mips_opts.isa)
14779 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14780 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14781 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14782 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14783 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14784 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14785 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14791 /* Read the instruction associated with RELOC from BUF. */
14793 static unsigned int
14794 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14796 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14797 return read_compressed_insn (buf, 4);
14799 return read_insn (buf);
14802 /* Write instruction INSN to BUF, given that it has been relocated
14806 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14807 unsigned long insn)
14809 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14810 write_compressed_insn (buf, insn, 4);
14812 write_insn (buf, insn);
14815 /* Apply a fixup to the object file. */
14818 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14821 unsigned long insn;
14822 reloc_howto_type *howto;
14824 if (fixP->fx_pcrel)
14825 switch (fixP->fx_r_type)
14827 case BFD_RELOC_16_PCREL_S2:
14828 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14829 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14830 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14831 case BFD_RELOC_32_PCREL:
14832 case BFD_RELOC_MIPS_21_PCREL_S2:
14833 case BFD_RELOC_MIPS_26_PCREL_S2:
14834 case BFD_RELOC_MIPS_18_PCREL_S3:
14835 case BFD_RELOC_MIPS_19_PCREL_S2:
14836 case BFD_RELOC_HI16_S_PCREL:
14837 case BFD_RELOC_LO16_PCREL:
14841 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14845 as_bad_where (fixP->fx_file, fixP->fx_line,
14846 _("PC-relative reference to a different section"));
14850 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14851 that have no MIPS ELF equivalent. */
14852 if (fixP->fx_r_type != BFD_RELOC_8)
14854 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14859 gas_assert (fixP->fx_size == 2
14860 || fixP->fx_size == 4
14861 || fixP->fx_r_type == BFD_RELOC_8
14862 || fixP->fx_r_type == BFD_RELOC_16
14863 || fixP->fx_r_type == BFD_RELOC_64
14864 || fixP->fx_r_type == BFD_RELOC_CTOR
14865 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14866 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14867 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14868 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14869 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14870 || fixP->fx_r_type == BFD_RELOC_NONE);
14872 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14874 /* Don't treat parts of a composite relocation as done. There are two
14877 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14878 should nevertheless be emitted if the first part is.
14880 (2) In normal usage, composite relocations are never assembly-time
14881 constants. The easiest way of dealing with the pathological
14882 exceptions is to generate a relocation against STN_UNDEF and
14883 leave everything up to the linker. */
14884 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14887 switch (fixP->fx_r_type)
14889 case BFD_RELOC_MIPS_TLS_GD:
14890 case BFD_RELOC_MIPS_TLS_LDM:
14891 case BFD_RELOC_MIPS_TLS_DTPREL32:
14892 case BFD_RELOC_MIPS_TLS_DTPREL64:
14893 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14894 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14895 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14896 case BFD_RELOC_MIPS_TLS_TPREL32:
14897 case BFD_RELOC_MIPS_TLS_TPREL64:
14898 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14899 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14900 case BFD_RELOC_MICROMIPS_TLS_GD:
14901 case BFD_RELOC_MICROMIPS_TLS_LDM:
14902 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14903 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14904 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14905 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14906 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14907 case BFD_RELOC_MIPS16_TLS_GD:
14908 case BFD_RELOC_MIPS16_TLS_LDM:
14909 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14910 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14911 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14912 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14913 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14914 if (fixP->fx_addsy)
14915 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14917 as_bad_where (fixP->fx_file, fixP->fx_line,
14918 _("TLS relocation against a constant"));
14921 case BFD_RELOC_MIPS_JMP:
14922 case BFD_RELOC_MIPS_SHIFT5:
14923 case BFD_RELOC_MIPS_SHIFT6:
14924 case BFD_RELOC_MIPS_GOT_DISP:
14925 case BFD_RELOC_MIPS_GOT_PAGE:
14926 case BFD_RELOC_MIPS_GOT_OFST:
14927 case BFD_RELOC_MIPS_SUB:
14928 case BFD_RELOC_MIPS_INSERT_A:
14929 case BFD_RELOC_MIPS_INSERT_B:
14930 case BFD_RELOC_MIPS_DELETE:
14931 case BFD_RELOC_MIPS_HIGHEST:
14932 case BFD_RELOC_MIPS_HIGHER:
14933 case BFD_RELOC_MIPS_SCN_DISP:
14934 case BFD_RELOC_MIPS_REL16:
14935 case BFD_RELOC_MIPS_RELGOT:
14936 case BFD_RELOC_MIPS_JALR:
14937 case BFD_RELOC_HI16:
14938 case BFD_RELOC_HI16_S:
14939 case BFD_RELOC_LO16:
14940 case BFD_RELOC_GPREL16:
14941 case BFD_RELOC_MIPS_LITERAL:
14942 case BFD_RELOC_MIPS_CALL16:
14943 case BFD_RELOC_MIPS_GOT16:
14944 case BFD_RELOC_GPREL32:
14945 case BFD_RELOC_MIPS_GOT_HI16:
14946 case BFD_RELOC_MIPS_GOT_LO16:
14947 case BFD_RELOC_MIPS_CALL_HI16:
14948 case BFD_RELOC_MIPS_CALL_LO16:
14949 case BFD_RELOC_HI16_S_PCREL:
14950 case BFD_RELOC_LO16_PCREL:
14951 case BFD_RELOC_MIPS16_GPREL:
14952 case BFD_RELOC_MIPS16_GOT16:
14953 case BFD_RELOC_MIPS16_CALL16:
14954 case BFD_RELOC_MIPS16_HI16:
14955 case BFD_RELOC_MIPS16_HI16_S:
14956 case BFD_RELOC_MIPS16_LO16:
14957 case BFD_RELOC_MIPS16_JMP:
14958 case BFD_RELOC_MICROMIPS_JMP:
14959 case BFD_RELOC_MICROMIPS_GOT_DISP:
14960 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14961 case BFD_RELOC_MICROMIPS_GOT_OFST:
14962 case BFD_RELOC_MICROMIPS_SUB:
14963 case BFD_RELOC_MICROMIPS_HIGHEST:
14964 case BFD_RELOC_MICROMIPS_HIGHER:
14965 case BFD_RELOC_MICROMIPS_SCN_DISP:
14966 case BFD_RELOC_MICROMIPS_JALR:
14967 case BFD_RELOC_MICROMIPS_HI16:
14968 case BFD_RELOC_MICROMIPS_HI16_S:
14969 case BFD_RELOC_MICROMIPS_LO16:
14970 case BFD_RELOC_MICROMIPS_GPREL16:
14971 case BFD_RELOC_MICROMIPS_LITERAL:
14972 case BFD_RELOC_MICROMIPS_CALL16:
14973 case BFD_RELOC_MICROMIPS_GOT16:
14974 case BFD_RELOC_MICROMIPS_GOT_HI16:
14975 case BFD_RELOC_MICROMIPS_GOT_LO16:
14976 case BFD_RELOC_MICROMIPS_CALL_HI16:
14977 case BFD_RELOC_MICROMIPS_CALL_LO16:
14978 case BFD_RELOC_MIPS_EH:
14983 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14985 insn = read_reloc_insn (buf, fixP->fx_r_type);
14986 if (mips16_reloc_p (fixP->fx_r_type))
14987 insn |= mips16_immed_extend (value, 16);
14989 insn |= (value & 0xffff);
14990 write_reloc_insn (buf, fixP->fx_r_type, insn);
14993 as_bad_where (fixP->fx_file, fixP->fx_line,
14994 _("unsupported constant in relocation"));
14999 /* This is handled like BFD_RELOC_32, but we output a sign
15000 extended value if we are only 32 bits. */
15003 if (8 <= sizeof (valueT))
15004 md_number_to_chars (buf, *valP, 8);
15009 if ((*valP & 0x80000000) != 0)
15013 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15014 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15019 case BFD_RELOC_RVA:
15021 case BFD_RELOC_32_PCREL:
15024 /* If we are deleting this reloc entry, we must fill in the
15025 value now. This can happen if we have a .word which is not
15026 resolved when it appears but is later defined. */
15028 md_number_to_chars (buf, *valP, fixP->fx_size);
15031 case BFD_RELOC_MIPS_21_PCREL_S2:
15032 if ((*valP & 0x3) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("branch to misaligned address (%lx)"), (long) *valP);
15035 if (!fixP->fx_done)
15038 if (*valP + 0x400000 <= 0x7fffff)
15040 insn = read_insn (buf);
15041 insn |= (*valP >> 2) & 0x1fffff;
15042 write_insn (buf, insn);
15045 as_bad_where (fixP->fx_file, fixP->fx_line,
15046 _("branch out of range"));
15049 case BFD_RELOC_MIPS_26_PCREL_S2:
15050 if ((*valP & 0x3) != 0)
15051 as_bad_where (fixP->fx_file, fixP->fx_line,
15052 _("branch to misaligned address (%lx)"), (long) *valP);
15053 if (!fixP->fx_done)
15056 if (*valP + 0x8000000 <= 0xfffffff)
15058 insn = read_insn (buf);
15059 insn |= (*valP >> 2) & 0x3ffffff;
15060 write_insn (buf, insn);
15063 as_bad_where (fixP->fx_file, fixP->fx_line,
15064 _("branch out of range"));
15067 case BFD_RELOC_MIPS_18_PCREL_S3:
15068 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15069 as_bad_where (fixP->fx_file, fixP->fx_line,
15070 _("PC-relative access using misaligned symbol (%lx)"),
15071 (long) S_GET_VALUE (fixP->fx_addsy));
15072 if ((fixP->fx_offset & 0x7) != 0)
15073 as_bad_where (fixP->fx_file, fixP->fx_line,
15074 _("PC-relative access using misaligned offset (%lx)"),
15075 (long) fixP->fx_offset);
15076 if (!fixP->fx_done)
15079 if (*valP + 0x100000 <= 0x1fffff)
15081 insn = read_insn (buf);
15082 insn |= (*valP >> 3) & 0x3ffff;
15083 write_insn (buf, insn);
15086 as_bad_where (fixP->fx_file, fixP->fx_line,
15087 _("PC-relative access out of range"));
15090 case BFD_RELOC_MIPS_19_PCREL_S2:
15091 if ((*valP & 0x3) != 0)
15092 as_bad_where (fixP->fx_file, fixP->fx_line,
15093 _("PC-relative access to misaligned address (%lx)"),
15095 if (!fixP->fx_done)
15098 if (*valP + 0x100000 <= 0x1fffff)
15100 insn = read_insn (buf);
15101 insn |= (*valP >> 2) & 0x7ffff;
15102 write_insn (buf, insn);
15105 as_bad_where (fixP->fx_file, fixP->fx_line,
15106 _("PC-relative access out of range"));
15109 case BFD_RELOC_16_PCREL_S2:
15110 if ((*valP & 0x3) != 0)
15111 as_bad_where (fixP->fx_file, fixP->fx_line,
15112 _("branch to misaligned address (%lx)"), (long) *valP);
15114 /* We need to save the bits in the instruction since fixup_segment()
15115 might be deleting the relocation entry (i.e., a branch within
15116 the current segment). */
15117 if (! fixP->fx_done)
15120 /* Update old instruction data. */
15121 insn = read_insn (buf);
15123 if (*valP + 0x20000 <= 0x3ffff)
15125 insn |= (*valP >> 2) & 0xffff;
15126 write_insn (buf, insn);
15128 else if (mips_pic == NO_PIC
15130 && fixP->fx_frag->fr_address >= text_section->vma
15131 && (fixP->fx_frag->fr_address
15132 < text_section->vma + bfd_get_section_size (text_section))
15133 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15134 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15135 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15137 /* The branch offset is too large. If this is an
15138 unconditional branch, and we are not generating PIC code,
15139 we can convert it to an absolute jump instruction. */
15140 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15141 insn = 0x0c000000; /* jal */
15143 insn = 0x08000000; /* j */
15144 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15146 fixP->fx_addsy = section_symbol (text_section);
15147 *valP += md_pcrel_from (fixP);
15148 write_insn (buf, insn);
15152 /* If we got here, we have branch-relaxation disabled,
15153 and there's nothing we can do to fix this instruction
15154 without turning it into a longer sequence. */
15155 as_bad_where (fixP->fx_file, fixP->fx_line,
15156 _("branch out of range"));
15160 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15161 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15162 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15163 /* We adjust the offset back to even. */
15164 if ((*valP & 0x1) != 0)
15167 if (! fixP->fx_done)
15170 /* Should never visit here, because we keep the relocation. */
15174 case BFD_RELOC_VTABLE_INHERIT:
15177 && !S_IS_DEFINED (fixP->fx_addsy)
15178 && !S_IS_WEAK (fixP->fx_addsy))
15179 S_SET_WEAK (fixP->fx_addsy);
15182 case BFD_RELOC_NONE:
15183 case BFD_RELOC_VTABLE_ENTRY:
15191 /* Remember value for tc_gen_reloc. */
15192 fixP->fx_addnumber = *valP;
15202 c = get_symbol_name (&name);
15203 p = (symbolS *) symbol_find_or_make (name);
15204 (void) restore_line_pointer (c);
15208 /* Align the current frag to a given power of two. If a particular
15209 fill byte should be used, FILL points to an integer that contains
15210 that byte, otherwise FILL is null.
15212 This function used to have the comment:
15214 The MIPS assembler also automatically adjusts any preceding label.
15216 The implementation therefore applied the adjustment to a maximum of
15217 one label. However, other label adjustments are applied to batches
15218 of labels, and adjusting just one caused problems when new labels
15219 were added for the sake of debugging or unwind information.
15220 We therefore adjust all preceding labels (given as LABELS) instead. */
15223 mips_align (int to, int *fill, struct insn_label_list *labels)
15225 mips_emit_delays ();
15226 mips_record_compressed_mode ();
15227 if (fill == NULL && subseg_text_p (now_seg))
15228 frag_align_code (to, 0);
15230 frag_align (to, fill ? *fill : 0, 0);
15231 record_alignment (now_seg, to);
15232 mips_move_labels (labels, FALSE);
15235 /* Align to a given power of two. .align 0 turns off the automatic
15236 alignment used by the data creating pseudo-ops. */
15239 s_align (int x ATTRIBUTE_UNUSED)
15241 int temp, fill_value, *fill_ptr;
15242 long max_alignment = 28;
15244 /* o Note that the assembler pulls down any immediately preceding label
15245 to the aligned address.
15246 o It's not documented but auto alignment is reinstated by
15247 a .align pseudo instruction.
15248 o Note also that after auto alignment is turned off the mips assembler
15249 issues an error on attempt to assemble an improperly aligned data item.
15252 temp = get_absolute_expression ();
15253 if (temp > max_alignment)
15254 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15257 as_warn (_("alignment negative, 0 assumed"));
15260 if (*input_line_pointer == ',')
15262 ++input_line_pointer;
15263 fill_value = get_absolute_expression ();
15264 fill_ptr = &fill_value;
15270 segment_info_type *si = seg_info (now_seg);
15271 struct insn_label_list *l = si->label_list;
15272 /* Auto alignment should be switched on by next section change. */
15274 mips_align (temp, fill_ptr, l);
15281 demand_empty_rest_of_line ();
15285 s_change_sec (int sec)
15289 /* The ELF backend needs to know that we are changing sections, so
15290 that .previous works correctly. We could do something like check
15291 for an obj_section_change_hook macro, but that might be confusing
15292 as it would not be appropriate to use it in the section changing
15293 functions in read.c, since obj-elf.c intercepts those. FIXME:
15294 This should be cleaner, somehow. */
15295 obj_elf_section_change_hook ();
15297 mips_emit_delays ();
15308 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15309 demand_empty_rest_of_line ();
15313 seg = subseg_new (RDATA_SECTION_NAME,
15314 (subsegT) get_absolute_expression ());
15315 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15316 | SEC_READONLY | SEC_RELOC
15318 if (strncmp (TARGET_OS, "elf", 3) != 0)
15319 record_alignment (seg, 4);
15320 demand_empty_rest_of_line ();
15324 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15325 bfd_set_section_flags (stdoutput, seg,
15326 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15327 if (strncmp (TARGET_OS, "elf", 3) != 0)
15328 record_alignment (seg, 4);
15329 demand_empty_rest_of_line ();
15333 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15334 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15335 if (strncmp (TARGET_OS, "elf", 3) != 0)
15336 record_alignment (seg, 4);
15337 demand_empty_rest_of_line ();
15345 s_change_section (int ignore ATTRIBUTE_UNUSED)
15348 char *section_name;
15353 int section_entry_size;
15354 int section_alignment;
15356 saved_ilp = input_line_pointer;
15357 endc = get_symbol_name (§ion_name);
15358 c = (endc == '"' ? input_line_pointer[1] : endc);
15360 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15362 /* Do we have .section Name<,"flags">? */
15363 if (c != ',' || (c == ',' && next_c == '"'))
15365 /* Just after name is now '\0'. */
15366 (void) restore_line_pointer (endc);
15367 input_line_pointer = saved_ilp;
15368 obj_elf_section (ignore);
15372 section_name = xstrdup (section_name);
15373 c = restore_line_pointer (endc);
15375 input_line_pointer++;
15377 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15379 section_type = get_absolute_expression ();
15383 if (*input_line_pointer++ == ',')
15384 section_flag = get_absolute_expression ();
15388 if (*input_line_pointer++ == ',')
15389 section_entry_size = get_absolute_expression ();
15391 section_entry_size = 0;
15393 if (*input_line_pointer++ == ',')
15394 section_alignment = get_absolute_expression ();
15396 section_alignment = 0;
15398 /* FIXME: really ignore? */
15399 (void) section_alignment;
15401 /* When using the generic form of .section (as implemented by obj-elf.c),
15402 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15403 traditionally had to fall back on the more common @progbits instead.
15405 There's nothing really harmful in this, since bfd will correct
15406 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15407 means that, for backwards compatibility, the special_section entries
15408 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15410 Even so, we shouldn't force users of the MIPS .section syntax to
15411 incorrectly label the sections as SHT_PROGBITS. The best compromise
15412 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15413 generic type-checking code. */
15414 if (section_type == SHT_MIPS_DWARF)
15415 section_type = SHT_PROGBITS;
15417 obj_elf_change_section (section_name, section_type, section_flag,
15418 section_entry_size, 0, 0, 0);
15420 if (now_seg->name != section_name)
15421 free (section_name);
15425 mips_enable_auto_align (void)
15431 s_cons (int log_size)
15433 segment_info_type *si = seg_info (now_seg);
15434 struct insn_label_list *l = si->label_list;
15436 mips_emit_delays ();
15437 if (log_size > 0 && auto_align)
15438 mips_align (log_size, 0, l);
15439 cons (1 << log_size);
15440 mips_clear_insn_labels ();
15444 s_float_cons (int type)
15446 segment_info_type *si = seg_info (now_seg);
15447 struct insn_label_list *l = si->label_list;
15449 mips_emit_delays ();
15454 mips_align (3, 0, l);
15456 mips_align (2, 0, l);
15460 mips_clear_insn_labels ();
15463 /* Handle .globl. We need to override it because on Irix 5 you are
15466 where foo is an undefined symbol, to mean that foo should be
15467 considered to be the address of a function. */
15470 s_mips_globl (int x ATTRIBUTE_UNUSED)
15479 c = get_symbol_name (&name);
15480 symbolP = symbol_find_or_make (name);
15481 S_SET_EXTERNAL (symbolP);
15483 *input_line_pointer = c;
15484 SKIP_WHITESPACE_AFTER_NAME ();
15486 /* On Irix 5, every global symbol that is not explicitly labelled as
15487 being a function is apparently labelled as being an object. */
15490 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15491 && (*input_line_pointer != ','))
15496 c = get_symbol_name (&secname);
15497 sec = bfd_get_section_by_name (stdoutput, secname);
15499 as_bad (_("%s: no such section"), secname);
15500 (void) restore_line_pointer (c);
15502 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15503 flag = BSF_FUNCTION;
15506 symbol_get_bfdsym (symbolP)->flags |= flag;
15508 c = *input_line_pointer;
15511 input_line_pointer++;
15512 SKIP_WHITESPACE ();
15513 if (is_end_of_line[(unsigned char) *input_line_pointer])
15519 demand_empty_rest_of_line ();
15523 s_option (int x ATTRIBUTE_UNUSED)
15528 c = get_symbol_name (&opt);
15532 /* FIXME: What does this mean? */
15534 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15538 i = atoi (opt + 3);
15539 if (i != 0 && i != 2)
15540 as_bad (_(".option pic%d not supported"), i);
15541 else if (mips_pic == VXWORKS_PIC)
15542 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15547 mips_pic = SVR4_PIC;
15548 mips_abicalls = TRUE;
15551 if (mips_pic == SVR4_PIC)
15553 if (g_switch_seen && g_switch_value != 0)
15554 as_warn (_("-G may not be used with SVR4 PIC code"));
15555 g_switch_value = 0;
15556 bfd_set_gp_size (stdoutput, 0);
15560 as_warn (_("unrecognized option \"%s\""), opt);
15562 (void) restore_line_pointer (c);
15563 demand_empty_rest_of_line ();
15566 /* This structure is used to hold a stack of .set values. */
15568 struct mips_option_stack
15570 struct mips_option_stack *next;
15571 struct mips_set_options options;
15574 static struct mips_option_stack *mips_opts_stack;
15576 /* Return status for .set/.module option handling. */
15578 enum code_option_type
15580 /* Unrecognized option. */
15581 OPTION_TYPE_BAD = -1,
15583 /* Ordinary option. */
15584 OPTION_TYPE_NORMAL,
15586 /* ISA changing option. */
15590 /* Handle common .set/.module options. Return status indicating option
15593 static enum code_option_type
15594 parse_code_option (char * name)
15596 bfd_boolean isa_set = FALSE;
15597 const struct mips_ase *ase;
15599 if (strncmp (name, "at=", 3) == 0)
15601 char *s = name + 3;
15603 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15604 as_bad (_("unrecognized register name `%s'"), s);
15606 else if (strcmp (name, "at") == 0)
15607 mips_opts.at = ATREG;
15608 else if (strcmp (name, "noat") == 0)
15609 mips_opts.at = ZERO;
15610 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15611 mips_opts.nomove = 0;
15612 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15613 mips_opts.nomove = 1;
15614 else if (strcmp (name, "bopt") == 0)
15615 mips_opts.nobopt = 0;
15616 else if (strcmp (name, "nobopt") == 0)
15617 mips_opts.nobopt = 1;
15618 else if (strcmp (name, "gp=32") == 0)
15620 else if (strcmp (name, "gp=64") == 0)
15622 else if (strcmp (name, "fp=32") == 0)
15624 else if (strcmp (name, "fp=xx") == 0)
15626 else if (strcmp (name, "fp=64") == 0)
15628 else if (strcmp (name, "softfloat") == 0)
15629 mips_opts.soft_float = 1;
15630 else if (strcmp (name, "hardfloat") == 0)
15631 mips_opts.soft_float = 0;
15632 else if (strcmp (name, "singlefloat") == 0)
15633 mips_opts.single_float = 1;
15634 else if (strcmp (name, "doublefloat") == 0)
15635 mips_opts.single_float = 0;
15636 else if (strcmp (name, "nooddspreg") == 0)
15637 mips_opts.oddspreg = 0;
15638 else if (strcmp (name, "oddspreg") == 0)
15639 mips_opts.oddspreg = 1;
15640 else if (strcmp (name, "mips16") == 0
15641 || strcmp (name, "MIPS-16") == 0)
15642 mips_opts.mips16 = 1;
15643 else if (strcmp (name, "nomips16") == 0
15644 || strcmp (name, "noMIPS-16") == 0)
15645 mips_opts.mips16 = 0;
15646 else if (strcmp (name, "micromips") == 0)
15647 mips_opts.micromips = 1;
15648 else if (strcmp (name, "nomicromips") == 0)
15649 mips_opts.micromips = 0;
15650 else if (name[0] == 'n'
15652 && (ase = mips_lookup_ase (name + 2)))
15653 mips_set_ase (ase, &mips_opts, FALSE);
15654 else if ((ase = mips_lookup_ase (name)))
15655 mips_set_ase (ase, &mips_opts, TRUE);
15656 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15658 /* Permit the user to change the ISA and architecture on the fly.
15659 Needless to say, misuse can cause serious problems. */
15660 if (strncmp (name, "arch=", 5) == 0)
15662 const struct mips_cpu_info *p;
15664 p = mips_parse_cpu ("internal use", name + 5);
15666 as_bad (_("unknown architecture %s"), name + 5);
15669 mips_opts.arch = p->cpu;
15670 mips_opts.isa = p->isa;
15674 else if (strncmp (name, "mips", 4) == 0)
15676 const struct mips_cpu_info *p;
15678 p = mips_parse_cpu ("internal use", name);
15680 as_bad (_("unknown ISA level %s"), name + 4);
15683 mips_opts.arch = p->cpu;
15684 mips_opts.isa = p->isa;
15689 as_bad (_("unknown ISA or architecture %s"), name);
15691 else if (strcmp (name, "autoextend") == 0)
15692 mips_opts.noautoextend = 0;
15693 else if (strcmp (name, "noautoextend") == 0)
15694 mips_opts.noautoextend = 1;
15695 else if (strcmp (name, "insn32") == 0)
15696 mips_opts.insn32 = TRUE;
15697 else if (strcmp (name, "noinsn32") == 0)
15698 mips_opts.insn32 = FALSE;
15699 else if (strcmp (name, "sym32") == 0)
15700 mips_opts.sym32 = TRUE;
15701 else if (strcmp (name, "nosym32") == 0)
15702 mips_opts.sym32 = FALSE;
15704 return OPTION_TYPE_BAD;
15706 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15709 /* Handle the .set pseudo-op. */
15712 s_mipsset (int x ATTRIBUTE_UNUSED)
15714 enum code_option_type type = OPTION_TYPE_NORMAL;
15715 char *name = input_line_pointer, ch;
15717 file_mips_check_options ();
15719 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15720 ++input_line_pointer;
15721 ch = *input_line_pointer;
15722 *input_line_pointer = '\0';
15724 if (strchr (name, ','))
15726 /* Generic ".set" directive; use the generic handler. */
15727 *input_line_pointer = ch;
15728 input_line_pointer = name;
15733 if (strcmp (name, "reorder") == 0)
15735 if (mips_opts.noreorder)
15738 else if (strcmp (name, "noreorder") == 0)
15740 if (!mips_opts.noreorder)
15741 start_noreorder ();
15743 else if (strcmp (name, "macro") == 0)
15744 mips_opts.warn_about_macros = 0;
15745 else if (strcmp (name, "nomacro") == 0)
15747 if (mips_opts.noreorder == 0)
15748 as_bad (_("`noreorder' must be set before `nomacro'"));
15749 mips_opts.warn_about_macros = 1;
15751 else if (strcmp (name, "gp=default") == 0)
15752 mips_opts.gp = file_mips_opts.gp;
15753 else if (strcmp (name, "fp=default") == 0)
15754 mips_opts.fp = file_mips_opts.fp;
15755 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15757 mips_opts.isa = file_mips_opts.isa;
15758 mips_opts.arch = file_mips_opts.arch;
15759 mips_opts.gp = file_mips_opts.gp;
15760 mips_opts.fp = file_mips_opts.fp;
15762 else if (strcmp (name, "push") == 0)
15764 struct mips_option_stack *s;
15766 s = XNEW (struct mips_option_stack);
15767 s->next = mips_opts_stack;
15768 s->options = mips_opts;
15769 mips_opts_stack = s;
15771 else if (strcmp (name, "pop") == 0)
15773 struct mips_option_stack *s;
15775 s = mips_opts_stack;
15777 as_bad (_(".set pop with no .set push"));
15780 /* If we're changing the reorder mode we need to handle
15781 delay slots correctly. */
15782 if (s->options.noreorder && ! mips_opts.noreorder)
15783 start_noreorder ();
15784 else if (! s->options.noreorder && mips_opts.noreorder)
15787 mips_opts = s->options;
15788 mips_opts_stack = s->next;
15794 type = parse_code_option (name);
15795 if (type == OPTION_TYPE_BAD)
15796 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15799 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15800 registers based on what is supported by the arch/cpu. */
15801 if (type == OPTION_TYPE_ISA)
15803 switch (mips_opts.isa)
15808 /* MIPS I cannot support FPXX. */
15810 /* fall-through. */
15817 if (mips_opts.fp != 0)
15833 if (mips_opts.fp != 0)
15835 if (mips_opts.arch == CPU_R5900)
15842 as_bad (_("unknown ISA level %s"), name + 4);
15847 mips_check_options (&mips_opts, FALSE);
15849 mips_check_isa_supports_ases ();
15850 *input_line_pointer = ch;
15851 demand_empty_rest_of_line ();
15854 /* Handle the .module pseudo-op. */
15857 s_module (int ignore ATTRIBUTE_UNUSED)
15859 char *name = input_line_pointer, ch;
15861 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15862 ++input_line_pointer;
15863 ch = *input_line_pointer;
15864 *input_line_pointer = '\0';
15866 if (!file_mips_opts_checked)
15868 if (parse_code_option (name) == OPTION_TYPE_BAD)
15869 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15871 /* Update module level settings from mips_opts. */
15872 file_mips_opts = mips_opts;
15875 as_bad (_(".module is not permitted after generating code"));
15877 *input_line_pointer = ch;
15878 demand_empty_rest_of_line ();
15881 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15882 .option pic2. It means to generate SVR4 PIC calls. */
15885 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15887 mips_pic = SVR4_PIC;
15888 mips_abicalls = TRUE;
15890 if (g_switch_seen && g_switch_value != 0)
15891 as_warn (_("-G may not be used with SVR4 PIC code"));
15892 g_switch_value = 0;
15894 bfd_set_gp_size (stdoutput, 0);
15895 demand_empty_rest_of_line ();
15898 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15899 PIC code. It sets the $gp register for the function based on the
15900 function address, which is in the register named in the argument.
15901 This uses a relocation against _gp_disp, which is handled specially
15902 by the linker. The result is:
15903 lui $gp,%hi(_gp_disp)
15904 addiu $gp,$gp,%lo(_gp_disp)
15905 addu $gp,$gp,.cpload argument
15906 The .cpload argument is normally $25 == $t9.
15908 The -mno-shared option changes this to:
15909 lui $gp,%hi(__gnu_local_gp)
15910 addiu $gp,$gp,%lo(__gnu_local_gp)
15911 and the argument is ignored. This saves an instruction, but the
15912 resulting code is not position independent; it uses an absolute
15913 address for __gnu_local_gp. Thus code assembled with -mno-shared
15914 can go into an ordinary executable, but not into a shared library. */
15917 s_cpload (int ignore ATTRIBUTE_UNUSED)
15923 file_mips_check_options ();
15925 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15926 .cpload is ignored. */
15927 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15933 if (mips_opts.mips16)
15935 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15936 ignore_rest_of_line ();
15940 /* .cpload should be in a .set noreorder section. */
15941 if (mips_opts.noreorder == 0)
15942 as_warn (_(".cpload not in noreorder section"));
15944 reg = tc_get_register (0);
15946 /* If we need to produce a 64-bit address, we are better off using
15947 the default instruction sequence. */
15948 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15950 ex.X_op = O_symbol;
15951 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15953 ex.X_op_symbol = NULL;
15954 ex.X_add_number = 0;
15956 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15957 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15959 mips_mark_labels ();
15960 mips_assembling_insn = TRUE;
15963 macro_build_lui (&ex, mips_gp_register);
15964 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15965 mips_gp_register, BFD_RELOC_LO16);
15967 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15968 mips_gp_register, reg);
15971 mips_assembling_insn = FALSE;
15972 demand_empty_rest_of_line ();
15975 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15976 .cpsetup $reg1, offset|$reg2, label
15978 If offset is given, this results in:
15979 sd $gp, offset($sp)
15980 lui $gp, %hi(%neg(%gp_rel(label)))
15981 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15982 daddu $gp, $gp, $reg1
15984 If $reg2 is given, this results in:
15986 lui $gp, %hi(%neg(%gp_rel(label)))
15987 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15988 daddu $gp, $gp, $reg1
15989 $reg1 is normally $25 == $t9.
15991 The -mno-shared option replaces the last three instructions with
15993 addiu $gp,$gp,%lo(_gp) */
15996 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15998 expressionS ex_off;
15999 expressionS ex_sym;
16002 file_mips_check_options ();
16004 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16005 We also need NewABI support. */
16006 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16012 if (mips_opts.mips16)
16014 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16015 ignore_rest_of_line ();
16019 reg1 = tc_get_register (0);
16020 SKIP_WHITESPACE ();
16021 if (*input_line_pointer != ',')
16023 as_bad (_("missing argument separator ',' for .cpsetup"));
16027 ++input_line_pointer;
16028 SKIP_WHITESPACE ();
16029 if (*input_line_pointer == '$')
16031 mips_cpreturn_register = tc_get_register (0);
16032 mips_cpreturn_offset = -1;
16036 mips_cpreturn_offset = get_absolute_expression ();
16037 mips_cpreturn_register = -1;
16039 SKIP_WHITESPACE ();
16040 if (*input_line_pointer != ',')
16042 as_bad (_("missing argument separator ',' for .cpsetup"));
16046 ++input_line_pointer;
16047 SKIP_WHITESPACE ();
16048 expression (&ex_sym);
16050 mips_mark_labels ();
16051 mips_assembling_insn = TRUE;
16054 if (mips_cpreturn_register == -1)
16056 ex_off.X_op = O_constant;
16057 ex_off.X_add_symbol = NULL;
16058 ex_off.X_op_symbol = NULL;
16059 ex_off.X_add_number = mips_cpreturn_offset;
16061 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16062 BFD_RELOC_LO16, SP);
16065 move_register (mips_cpreturn_register, mips_gp_register);
16067 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16069 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16070 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16073 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16074 mips_gp_register, -1, BFD_RELOC_GPREL16,
16075 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16078 mips_gp_register, reg1);
16084 ex.X_op = O_symbol;
16085 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16086 ex.X_op_symbol = NULL;
16087 ex.X_add_number = 0;
16089 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16090 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16092 macro_build_lui (&ex, mips_gp_register);
16093 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16094 mips_gp_register, BFD_RELOC_LO16);
16099 mips_assembling_insn = FALSE;
16100 demand_empty_rest_of_line ();
16104 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16106 file_mips_check_options ();
16108 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16109 .cplocal is ignored. */
16110 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16116 if (mips_opts.mips16)
16118 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16119 ignore_rest_of_line ();
16123 mips_gp_register = tc_get_register (0);
16124 demand_empty_rest_of_line ();
16127 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16128 offset from $sp. The offset is remembered, and after making a PIC
16129 call $gp is restored from that location. */
16132 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16136 file_mips_check_options ();
16138 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16139 .cprestore is ignored. */
16140 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16146 if (mips_opts.mips16)
16148 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16149 ignore_rest_of_line ();
16153 mips_cprestore_offset = get_absolute_expression ();
16154 mips_cprestore_valid = 1;
16156 ex.X_op = O_constant;
16157 ex.X_add_symbol = NULL;
16158 ex.X_op_symbol = NULL;
16159 ex.X_add_number = mips_cprestore_offset;
16161 mips_mark_labels ();
16162 mips_assembling_insn = TRUE;
16165 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16166 SP, HAVE_64BIT_ADDRESSES);
16169 mips_assembling_insn = FALSE;
16170 demand_empty_rest_of_line ();
16173 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16174 was given in the preceding .cpsetup, it results in:
16175 ld $gp, offset($sp)
16177 If a register $reg2 was given there, it results in:
16178 or $gp, $reg2, $0 */
16181 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16185 file_mips_check_options ();
16187 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16188 We also need NewABI support. */
16189 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16195 if (mips_opts.mips16)
16197 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16198 ignore_rest_of_line ();
16202 mips_mark_labels ();
16203 mips_assembling_insn = TRUE;
16206 if (mips_cpreturn_register == -1)
16208 ex.X_op = O_constant;
16209 ex.X_add_symbol = NULL;
16210 ex.X_op_symbol = NULL;
16211 ex.X_add_number = mips_cpreturn_offset;
16213 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16216 move_register (mips_gp_register, mips_cpreturn_register);
16220 mips_assembling_insn = FALSE;
16221 demand_empty_rest_of_line ();
16224 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16225 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16226 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16227 debug information or MIPS16 TLS. */
16230 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16231 bfd_reloc_code_real_type rtype)
16238 if (ex.X_op != O_symbol)
16240 as_bad (_("unsupported use of %s"), dirstr);
16241 ignore_rest_of_line ();
16244 p = frag_more (bytes);
16245 md_number_to_chars (p, 0, bytes);
16246 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16247 demand_empty_rest_of_line ();
16248 mips_clear_insn_labels ();
16251 /* Handle .dtprelword. */
16254 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16256 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16259 /* Handle .dtpreldword. */
16262 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16264 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16267 /* Handle .tprelword. */
16270 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16272 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16275 /* Handle .tpreldword. */
16278 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16280 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16283 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16284 code. It sets the offset to use in gp_rel relocations. */
16287 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16289 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16290 We also need NewABI support. */
16291 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16297 mips_gprel_offset = get_absolute_expression ();
16299 demand_empty_rest_of_line ();
16302 /* Handle the .gpword pseudo-op. This is used when generating PIC
16303 code. It generates a 32 bit GP relative reloc. */
16306 s_gpword (int ignore ATTRIBUTE_UNUSED)
16308 segment_info_type *si;
16309 struct insn_label_list *l;
16313 /* When not generating PIC code, this is treated as .word. */
16314 if (mips_pic != SVR4_PIC)
16320 si = seg_info (now_seg);
16321 l = si->label_list;
16322 mips_emit_delays ();
16324 mips_align (2, 0, l);
16327 mips_clear_insn_labels ();
16329 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16331 as_bad (_("unsupported use of .gpword"));
16332 ignore_rest_of_line ();
16336 md_number_to_chars (p, 0, 4);
16337 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16338 BFD_RELOC_GPREL32);
16340 demand_empty_rest_of_line ();
16344 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16346 segment_info_type *si;
16347 struct insn_label_list *l;
16351 /* When not generating PIC code, this is treated as .dword. */
16352 if (mips_pic != SVR4_PIC)
16358 si = seg_info (now_seg);
16359 l = si->label_list;
16360 mips_emit_delays ();
16362 mips_align (3, 0, l);
16365 mips_clear_insn_labels ();
16367 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16369 as_bad (_("unsupported use of .gpdword"));
16370 ignore_rest_of_line ();
16374 md_number_to_chars (p, 0, 8);
16375 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16376 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16378 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16379 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16380 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16382 demand_empty_rest_of_line ();
16385 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16386 tables. It generates a R_MIPS_EH reloc. */
16389 s_ehword (int ignore ATTRIBUTE_UNUSED)
16394 mips_emit_delays ();
16397 mips_clear_insn_labels ();
16399 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16401 as_bad (_("unsupported use of .ehword"));
16402 ignore_rest_of_line ();
16406 md_number_to_chars (p, 0, 4);
16407 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16408 BFD_RELOC_32_PCREL);
16410 demand_empty_rest_of_line ();
16413 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16414 tables in SVR4 PIC code. */
16417 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16421 file_mips_check_options ();
16423 /* This is ignored when not generating SVR4 PIC code. */
16424 if (mips_pic != SVR4_PIC)
16430 mips_mark_labels ();
16431 mips_assembling_insn = TRUE;
16433 /* Add $gp to the register named as an argument. */
16435 reg = tc_get_register (0);
16436 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16439 mips_assembling_insn = FALSE;
16440 demand_empty_rest_of_line ();
16443 /* Handle the .insn pseudo-op. This marks instruction labels in
16444 mips16/micromips mode. This permits the linker to handle them specially,
16445 such as generating jalx instructions when needed. We also make
16446 them odd for the duration of the assembly, in order to generate the
16447 right sort of code. We will make them even in the adjust_symtab
16448 routine, while leaving them marked. This is convenient for the
16449 debugger and the disassembler. The linker knows to make them odd
16453 s_insn (int ignore ATTRIBUTE_UNUSED)
16455 file_mips_check_options ();
16456 file_ase_mips16 |= mips_opts.mips16;
16457 file_ase_micromips |= mips_opts.micromips;
16459 mips_mark_labels ();
16461 demand_empty_rest_of_line ();
16464 /* Handle the .nan pseudo-op. */
16467 s_nan (int ignore ATTRIBUTE_UNUSED)
16469 static const char str_legacy[] = "legacy";
16470 static const char str_2008[] = "2008";
16473 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16475 if (i == sizeof (str_2008) - 1
16476 && memcmp (input_line_pointer, str_2008, i) == 0)
16478 else if (i == sizeof (str_legacy) - 1
16479 && memcmp (input_line_pointer, str_legacy, i) == 0)
16481 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16484 as_bad (_("`%s' does not support legacy NaN"),
16485 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16488 as_bad (_("bad .nan directive"));
16490 input_line_pointer += i;
16491 demand_empty_rest_of_line ();
16494 /* Handle a .stab[snd] directive. Ideally these directives would be
16495 implemented in a transparent way, so that removing them would not
16496 have any effect on the generated instructions. However, s_stab
16497 internally changes the section, so in practice we need to decide
16498 now whether the preceding label marks compressed code. We do not
16499 support changing the compression mode of a label after a .stab*
16500 directive, such as in:
16506 so the current mode wins. */
16509 s_mips_stab (int type)
16511 mips_mark_labels ();
16515 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16518 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16525 c = get_symbol_name (&name);
16526 symbolP = symbol_find_or_make (name);
16527 S_SET_WEAK (symbolP);
16528 *input_line_pointer = c;
16530 SKIP_WHITESPACE_AFTER_NAME ();
16532 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16534 if (S_IS_DEFINED (symbolP))
16536 as_bad (_("ignoring attempt to redefine symbol %s"),
16537 S_GET_NAME (symbolP));
16538 ignore_rest_of_line ();
16542 if (*input_line_pointer == ',')
16544 ++input_line_pointer;
16545 SKIP_WHITESPACE ();
16549 if (exp.X_op != O_symbol)
16551 as_bad (_("bad .weakext directive"));
16552 ignore_rest_of_line ();
16555 symbol_set_value_expression (symbolP, &exp);
16558 demand_empty_rest_of_line ();
16561 /* Parse a register string into a number. Called from the ECOFF code
16562 to parse .frame. The argument is non-zero if this is the frame
16563 register, so that we can record it in mips_frame_reg. */
16566 tc_get_register (int frame)
16570 SKIP_WHITESPACE ();
16571 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
16575 mips_frame_reg = reg != 0 ? reg : SP;
16576 mips_frame_reg_valid = 1;
16577 mips_cprestore_valid = 0;
16583 md_section_align (asection *seg, valueT addr)
16585 int align = bfd_get_section_alignment (stdoutput, seg);
16587 /* We don't need to align ELF sections to the full alignment.
16588 However, Irix 5 may prefer that we align them at least to a 16
16589 byte boundary. We don't bother to align the sections if we
16590 are targeted for an embedded system. */
16591 if (strncmp (TARGET_OS, "elf", 3) == 0)
16596 return ((addr + (1 << align) - 1) & -(1 << align));
16599 /* Utility routine, called from above as well. If called while the
16600 input file is still being read, it's only an approximation. (For
16601 example, a symbol may later become defined which appeared to be
16602 undefined earlier.) */
16605 nopic_need_relax (symbolS *sym, int before_relaxing)
16610 if (g_switch_value > 0)
16612 const char *symname;
16615 /* Find out whether this symbol can be referenced off the $gp
16616 register. It can be if it is smaller than the -G size or if
16617 it is in the .sdata or .sbss section. Certain symbols can
16618 not be referenced off the $gp, although it appears as though
16620 symname = S_GET_NAME (sym);
16621 if (symname != (const char *) NULL
16622 && (strcmp (symname, "eprol") == 0
16623 || strcmp (symname, "etext") == 0
16624 || strcmp (symname, "_gp") == 0
16625 || strcmp (symname, "edata") == 0
16626 || strcmp (symname, "_fbss") == 0
16627 || strcmp (symname, "_fdata") == 0
16628 || strcmp (symname, "_ftext") == 0
16629 || strcmp (symname, "end") == 0
16630 || strcmp (symname, "_gp_disp") == 0))
16632 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16634 #ifndef NO_ECOFF_DEBUGGING
16635 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16636 && (symbol_get_obj (sym)->ecoff_extern_size
16637 <= g_switch_value))
16639 /* We must defer this decision until after the whole
16640 file has been read, since there might be a .extern
16641 after the first use of this symbol. */
16642 || (before_relaxing
16643 #ifndef NO_ECOFF_DEBUGGING
16644 && symbol_get_obj (sym)->ecoff_extern_size == 0
16646 && S_GET_VALUE (sym) == 0)
16647 || (S_GET_VALUE (sym) != 0
16648 && S_GET_VALUE (sym) <= g_switch_value)))
16652 const char *segname;
16654 segname = segment_name (S_GET_SEGMENT (sym));
16655 gas_assert (strcmp (segname, ".lit8") != 0
16656 && strcmp (segname, ".lit4") != 0);
16657 change = (strcmp (segname, ".sdata") != 0
16658 && strcmp (segname, ".sbss") != 0
16659 && strncmp (segname, ".sdata.", 7) != 0
16660 && strncmp (segname, ".sbss.", 6) != 0
16661 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16662 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16667 /* We are not optimizing for the $gp register. */
16672 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16675 pic_need_relax (symbolS *sym, asection *segtype)
16679 /* Handle the case of a symbol equated to another symbol. */
16680 while (symbol_equated_reloc_p (sym))
16684 /* It's possible to get a loop here in a badly written program. */
16685 n = symbol_get_value_expression (sym)->X_add_symbol;
16691 if (symbol_section_p (sym))
16694 symsec = S_GET_SEGMENT (sym);
16696 /* This must duplicate the test in adjust_reloc_syms. */
16697 return (!bfd_is_und_section (symsec)
16698 && !bfd_is_abs_section (symsec)
16699 && !bfd_is_com_section (symsec)
16700 && !s_is_linkonce (sym, segtype)
16701 /* A global or weak symbol is treated as external. */
16702 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16706 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16707 extended opcode. SEC is the section the frag is in. */
16710 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16713 const struct mips_int_operand *operand;
16718 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16720 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16723 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16724 operand = mips16_immed_operand (type, FALSE);
16726 sym_frag = symbol_get_frag (fragp->fr_symbol);
16727 val = S_GET_VALUE (fragp->fr_symbol);
16728 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16730 if (operand->root.type == OP_PCREL)
16732 const struct mips_pcrel_operand *pcrel_op;
16736 /* We won't have the section when we are called from
16737 mips_relax_frag. However, we will always have been called
16738 from md_estimate_size_before_relax first. If this is a
16739 branch to a different section, we mark it as such. If SEC is
16740 NULL, and the frag is not marked, then it must be a branch to
16741 the same section. */
16742 pcrel_op = (const struct mips_pcrel_operand *) operand;
16745 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16750 /* Must have been called from md_estimate_size_before_relax. */
16753 fragp->fr_subtype =
16754 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16756 /* FIXME: We should support this, and let the linker
16757 catch branches and loads that are out of range. */
16758 as_bad_where (fragp->fr_file, fragp->fr_line,
16759 _("unsupported PC relative reference to different section"));
16763 if (fragp != sym_frag && sym_frag->fr_address == 0)
16764 /* Assume non-extended on the first relaxation pass.
16765 The address we have calculated will be bogus if this is
16766 a forward branch to another frag, as the forward frag
16767 will have fr_address == 0. */
16771 /* In this case, we know for sure that the symbol fragment is in
16772 the same section. If the relax_marker of the symbol fragment
16773 differs from the relax_marker of this fragment, we have not
16774 yet adjusted the symbol fragment fr_address. We want to add
16775 in STRETCH in order to get a better estimate of the address.
16776 This particularly matters because of the shift bits. */
16778 && sym_frag->relax_marker != fragp->relax_marker)
16782 /* Adjust stretch for any alignment frag. Note that if have
16783 been expanding the earlier code, the symbol may be
16784 defined in what appears to be an earlier frag. FIXME:
16785 This doesn't handle the fr_subtype field, which specifies
16786 a maximum number of bytes to skip when doing an
16788 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16790 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16793 stretch = - ((- stretch)
16794 & ~ ((1 << (int) f->fr_offset) - 1));
16796 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16805 addr = fragp->fr_address + fragp->fr_fix;
16807 /* The base address rules are complicated. The base address of
16808 a branch is the following instruction. The base address of a
16809 PC relative load or add is the instruction itself, but if it
16810 is in a delay slot (in which case it can not be extended) use
16811 the address of the instruction whose delay slot it is in. */
16812 if (pcrel_op->include_isa_bit)
16816 /* If we are currently assuming that this frag should be
16817 extended, then, the current address is two bytes
16819 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16822 /* Ignore the low bit in the target, since it will be set
16823 for a text label. */
16826 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16828 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16831 val -= addr & -(1 << pcrel_op->align_log2);
16833 /* If any of the shifted bits are set, we must use an extended
16834 opcode. If the address depends on the size of this
16835 instruction, this can lead to a loop, so we arrange to always
16836 use an extended opcode. We only check this when we are in
16837 the main relaxation loop, when SEC is NULL. */
16838 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16840 fragp->fr_subtype =
16841 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16845 /* If we are about to mark a frag as extended because the value
16846 is precisely the next value above maxtiny, then there is a
16847 chance of an infinite loop as in the following code:
16852 In this case when the la is extended, foo is 0x3fc bytes
16853 away, so the la can be shrunk, but then foo is 0x400 away, so
16854 the la must be extended. To avoid this loop, we mark the
16855 frag as extended if it was small, and is about to become
16856 extended with the next value above maxtiny. */
16857 maxtiny = mips_int_operand_max (operand);
16858 if (val == maxtiny + (1 << operand->shift)
16859 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16862 fragp->fr_subtype =
16863 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16867 else if (symsec != absolute_section && sec != NULL)
16868 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16870 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16873 /* Compute the length of a branch sequence, and adjust the
16874 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16875 worst-case length is computed, with UPDATE being used to indicate
16876 whether an unconditional (-1), branch-likely (+1) or regular (0)
16877 branch is to be computed. */
16879 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16881 bfd_boolean toofar;
16885 && S_IS_DEFINED (fragp->fr_symbol)
16886 && !S_IS_WEAK (fragp->fr_symbol)
16887 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16892 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16894 addr = fragp->fr_address + fragp->fr_fix + 4;
16898 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16901 /* If the symbol is not defined or it's in a different segment,
16902 we emit the long sequence. */
16905 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16907 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16908 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16909 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16910 RELAX_BRANCH_LINK (fragp->fr_subtype),
16916 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16919 if (mips_pic != NO_PIC)
16921 /* Additional space for PIC loading of target address. */
16923 if (mips_opts.isa == ISA_MIPS1)
16924 /* Additional space for $at-stabilizing nop. */
16928 /* If branch is conditional. */
16929 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16936 /* Compute the length of a branch sequence, and adjust the
16937 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16938 worst-case length is computed, with UPDATE being used to indicate
16939 whether an unconditional (-1), or regular (0) branch is to be
16943 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16945 bfd_boolean toofar;
16949 && S_IS_DEFINED (fragp->fr_symbol)
16950 && !S_IS_WEAK (fragp->fr_symbol)
16951 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16956 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16957 /* Ignore the low bit in the target, since it will be set
16958 for a text label. */
16959 if ((val & 1) != 0)
16962 addr = fragp->fr_address + fragp->fr_fix + 4;
16966 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16969 /* If the symbol is not defined or it's in a different segment,
16970 we emit the long sequence. */
16973 if (fragp && update
16974 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16975 fragp->fr_subtype = (toofar
16976 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16977 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16982 bfd_boolean compact_known = fragp != NULL;
16983 bfd_boolean compact = FALSE;
16984 bfd_boolean uncond;
16987 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16989 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16991 uncond = update < 0;
16993 /* If label is out of range, we turn branch <br>:
16995 <br> label # 4 bytes
17001 nop # 2 bytes if compact && !PIC
17004 if (mips_pic == NO_PIC && (!compact_known || compact))
17007 /* If assembling PIC code, we further turn:
17013 lw/ld at, %got(label)(gp) # 4 bytes
17014 d/addiu at, %lo(label) # 4 bytes
17017 if (mips_pic != NO_PIC)
17020 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17022 <brneg> 0f # 4 bytes
17023 nop # 2 bytes if !compact
17026 length += (compact_known && compact) ? 4 : 6;
17032 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17033 bit accordingly. */
17036 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17038 bfd_boolean toofar;
17041 && S_IS_DEFINED (fragp->fr_symbol)
17042 && !S_IS_WEAK (fragp->fr_symbol)
17043 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17049 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17050 /* Ignore the low bit in the target, since it will be set
17051 for a text label. */
17052 if ((val & 1) != 0)
17055 /* Assume this is a 2-byte branch. */
17056 addr = fragp->fr_address + fragp->fr_fix + 2;
17058 /* We try to avoid the infinite loop by not adding 2 more bytes for
17063 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17065 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17066 else if (type == 'E')
17067 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17072 /* If the symbol is not defined or it's in a different segment,
17073 we emit a normal 32-bit branch. */
17076 if (fragp && update
17077 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17079 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17080 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17088 /* Estimate the size of a frag before relaxing. Unless this is the
17089 mips16, we are not really relaxing here, and the final size is
17090 encoded in the subtype information. For the mips16, we have to
17091 decide whether we are using an extended opcode or not. */
17094 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17098 if (RELAX_BRANCH_P (fragp->fr_subtype))
17101 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17103 return fragp->fr_var;
17106 if (RELAX_MIPS16_P (fragp->fr_subtype))
17107 /* We don't want to modify the EXTENDED bit here; it might get us
17108 into infinite loops. We change it only in mips_relax_frag(). */
17109 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17111 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17115 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17116 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17117 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17118 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17119 fragp->fr_var = length;
17124 if (mips_pic == NO_PIC)
17125 change = nopic_need_relax (fragp->fr_symbol, 0);
17126 else if (mips_pic == SVR4_PIC)
17127 change = pic_need_relax (fragp->fr_symbol, segtype);
17128 else if (mips_pic == VXWORKS_PIC)
17129 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17136 fragp->fr_subtype |= RELAX_USE_SECOND;
17137 return -RELAX_FIRST (fragp->fr_subtype);
17140 return -RELAX_SECOND (fragp->fr_subtype);
17143 /* This is called to see whether a reloc against a defined symbol
17144 should be converted into a reloc against a section. */
17147 mips_fix_adjustable (fixS *fixp)
17149 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17150 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17153 if (fixp->fx_addsy == NULL)
17156 /* Allow relocs used for EH tables. */
17157 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17160 /* If symbol SYM is in a mergeable section, relocations of the form
17161 SYM + 0 can usually be made section-relative. The mergeable data
17162 is then identified by the section offset rather than by the symbol.
17164 However, if we're generating REL LO16 relocations, the offset is split
17165 between the LO16 and parterning high part relocation. The linker will
17166 need to recalculate the complete offset in order to correctly identify
17169 The linker has traditionally not looked for the parterning high part
17170 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17171 placed anywhere. Rather than break backwards compatibility by changing
17172 this, it seems better not to force the issue, and instead keep the
17173 original symbol. This will work with either linker behavior. */
17174 if ((lo16_reloc_p (fixp->fx_r_type)
17175 || reloc_needs_lo_p (fixp->fx_r_type))
17176 && HAVE_IN_PLACE_ADDENDS
17177 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17180 /* There is no place to store an in-place offset for JALR relocations. */
17181 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17184 /* Likewise an in-range offset of limited PC-relative relocations may
17185 overflow the in-place relocatable field if recalculated against the
17186 start address of the symbol's containing section.
17188 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17189 section relative to allow linker relaxations to be performed later on. */
17190 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17191 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17194 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17195 to a floating-point stub. The same is true for non-R_MIPS16_26
17196 relocations against MIPS16 functions; in this case, the stub becomes
17197 the function's canonical address.
17199 Floating-point stubs are stored in unique .mips16.call.* or
17200 .mips16.fn.* sections. If a stub T for function F is in section S,
17201 the first relocation in section S must be against F; this is how the
17202 linker determines the target function. All relocations that might
17203 resolve to T must also be against F. We therefore have the following
17204 restrictions, which are given in an intentionally-redundant way:
17206 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17209 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17210 if that stub might be used.
17212 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17215 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17216 that stub might be used.
17218 There is a further restriction:
17220 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17221 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols because
17222 we need to keep the MIPS16 or microMIPS symbol for the purpose
17223 of converting JAL to JALX instructions in the linker.
17225 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17226 against a MIPS16 symbol. We deal with (5) by additionally leaving
17227 alone any jump relocations against a microMIPS symbol.
17229 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17230 relocation against some symbol R, no relocation against R may be
17231 reduced. (Note that this deals with (2) as well as (1) because
17232 relocations against global symbols will never be reduced on ELF
17233 targets.) This approach is a little simpler than trying to detect
17234 stub sections, and gives the "all or nothing" per-symbol consistency
17235 that we have for MIPS16 symbols. */
17236 if (fixp->fx_subsy == NULL
17237 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17238 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17239 && jmp_reloc_p (fixp->fx_r_type))
17240 || *symbol_get_tc (fixp->fx_addsy)))
17246 /* Translate internal representation of relocation info to BFD target
17250 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17252 static arelent *retval[4];
17254 bfd_reloc_code_real_type code;
17256 memset (retval, 0, sizeof(retval));
17257 reloc = retval[0] = XCNEW (arelent);
17258 reloc->sym_ptr_ptr = XNEW (asymbol *);
17259 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17260 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17262 if (fixp->fx_pcrel)
17264 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17265 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17266 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17267 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17268 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17269 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17270 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17271 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17272 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17273 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17274 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17276 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17277 Relocations want only the symbol offset. */
17278 switch (fixp->fx_r_type)
17280 case BFD_RELOC_MIPS_18_PCREL_S3:
17281 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17284 reloc->addend = fixp->fx_addnumber + reloc->address;
17288 else if (HAVE_IN_PLACE_ADDENDS
17289 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17290 && (read_compressed_insn (fixp->fx_frag->fr_literal
17291 + fixp->fx_where, 4) >> 26) == 0x3c)
17293 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17294 addend accordingly. */
17295 reloc->addend = fixp->fx_addnumber >> 1;
17298 reloc->addend = fixp->fx_addnumber;
17300 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17301 entry to be used in the relocation's section offset. */
17302 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17304 reloc->address = reloc->addend;
17308 code = fixp->fx_r_type;
17310 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17311 if (reloc->howto == NULL)
17313 as_bad_where (fixp->fx_file, fixp->fx_line,
17314 _("cannot represent %s relocation in this object file"
17316 bfd_get_reloc_code_name (code));
17323 /* Relax a machine dependent frag. This returns the amount by which
17324 the current size of the frag should change. */
17327 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17329 if (RELAX_BRANCH_P (fragp->fr_subtype))
17331 offsetT old_var = fragp->fr_var;
17333 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17335 return fragp->fr_var - old_var;
17338 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17340 offsetT old_var = fragp->fr_var;
17341 offsetT new_var = 4;
17343 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17344 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17345 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17346 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17347 fragp->fr_var = new_var;
17349 return new_var - old_var;
17352 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17355 if (mips16_extended_frag (fragp, NULL, stretch))
17357 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17359 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17364 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17366 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17373 /* Convert a machine dependent frag. */
17376 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17378 if (RELAX_BRANCH_P (fragp->fr_subtype))
17381 unsigned long insn;
17385 buf = fragp->fr_literal + fragp->fr_fix;
17386 insn = read_insn (buf);
17388 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17390 /* We generate a fixup instead of applying it right now
17391 because, if there are linker relaxations, we're going to
17392 need the relocations. */
17393 exp.X_op = O_symbol;
17394 exp.X_add_symbol = fragp->fr_symbol;
17395 exp.X_add_number = fragp->fr_offset;
17397 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17398 BFD_RELOC_16_PCREL_S2);
17399 fixp->fx_file = fragp->fr_file;
17400 fixp->fx_line = fragp->fr_line;
17402 buf = write_insn (buf, insn);
17408 as_warn_where (fragp->fr_file, fragp->fr_line,
17409 _("relaxed out-of-range branch into a jump"));
17411 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17414 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17416 /* Reverse the branch. */
17417 switch ((insn >> 28) & 0xf)
17420 if ((insn & 0xff000000) == 0x47000000
17421 || (insn & 0xff600000) == 0x45600000)
17423 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17424 reversed by tweaking bit 23. */
17425 insn ^= 0x00800000;
17429 /* bc[0-3][tf]l? instructions can have the condition
17430 reversed by tweaking a single TF bit, and their
17431 opcodes all have 0x4???????. */
17432 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17433 insn ^= 0x00010000;
17438 /* bltz 0x04000000 bgez 0x04010000
17439 bltzal 0x04100000 bgezal 0x04110000 */
17440 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17441 insn ^= 0x00010000;
17445 /* beq 0x10000000 bne 0x14000000
17446 blez 0x18000000 bgtz 0x1c000000 */
17447 insn ^= 0x04000000;
17455 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17457 /* Clear the and-link bit. */
17458 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17460 /* bltzal 0x04100000 bgezal 0x04110000
17461 bltzall 0x04120000 bgezall 0x04130000 */
17462 insn &= ~0x00100000;
17465 /* Branch over the branch (if the branch was likely) or the
17466 full jump (not likely case). Compute the offset from the
17467 current instruction to branch to. */
17468 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17472 /* How many bytes in instructions we've already emitted? */
17473 i = buf - fragp->fr_literal - fragp->fr_fix;
17474 /* How many bytes in instructions from here to the end? */
17475 i = fragp->fr_var - i;
17477 /* Convert to instruction count. */
17479 /* Branch counts from the next instruction. */
17482 /* Branch over the jump. */
17483 buf = write_insn (buf, insn);
17486 buf = write_insn (buf, 0);
17488 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17490 /* beql $0, $0, 2f */
17492 /* Compute the PC offset from the current instruction to
17493 the end of the variable frag. */
17494 /* How many bytes in instructions we've already emitted? */
17495 i = buf - fragp->fr_literal - fragp->fr_fix;
17496 /* How many bytes in instructions from here to the end? */
17497 i = fragp->fr_var - i;
17498 /* Convert to instruction count. */
17500 /* Don't decrement i, because we want to branch over the
17504 buf = write_insn (buf, insn);
17505 buf = write_insn (buf, 0);
17509 if (mips_pic == NO_PIC)
17512 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17513 ? 0x0c000000 : 0x08000000);
17514 exp.X_op = O_symbol;
17515 exp.X_add_symbol = fragp->fr_symbol;
17516 exp.X_add_number = fragp->fr_offset;
17518 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17519 FALSE, BFD_RELOC_MIPS_JMP);
17520 fixp->fx_file = fragp->fr_file;
17521 fixp->fx_line = fragp->fr_line;
17523 buf = write_insn (buf, insn);
17527 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17529 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17530 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17531 insn |= at << OP_SH_RT;
17532 exp.X_op = O_symbol;
17533 exp.X_add_symbol = fragp->fr_symbol;
17534 exp.X_add_number = fragp->fr_offset;
17536 if (fragp->fr_offset)
17538 exp.X_add_symbol = make_expr_symbol (&exp);
17539 exp.X_add_number = 0;
17542 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17543 FALSE, BFD_RELOC_MIPS_GOT16);
17544 fixp->fx_file = fragp->fr_file;
17545 fixp->fx_line = fragp->fr_line;
17547 buf = write_insn (buf, insn);
17549 if (mips_opts.isa == ISA_MIPS1)
17551 buf = write_insn (buf, 0);
17553 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17554 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17555 insn |= at << OP_SH_RS | at << OP_SH_RT;
17557 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17558 FALSE, BFD_RELOC_LO16);
17559 fixp->fx_file = fragp->fr_file;
17560 fixp->fx_line = fragp->fr_line;
17562 buf = write_insn (buf, insn);
17565 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17569 insn |= at << OP_SH_RS;
17571 buf = write_insn (buf, insn);
17575 fragp->fr_fix += fragp->fr_var;
17576 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17580 /* Relax microMIPS branches. */
17581 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17583 char *buf = fragp->fr_literal + fragp->fr_fix;
17584 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17585 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17586 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17587 bfd_boolean short_ds;
17588 unsigned long insn;
17592 exp.X_op = O_symbol;
17593 exp.X_add_symbol = fragp->fr_symbol;
17594 exp.X_add_number = fragp->fr_offset;
17596 fragp->fr_fix += fragp->fr_var;
17598 /* Handle 16-bit branches that fit or are forced to fit. */
17599 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17601 /* We generate a fixup instead of applying it right now,
17602 because if there is linker relaxation, we're going to
17603 need the relocations. */
17605 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17606 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17607 else if (type == 'E')
17608 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17609 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17613 fixp->fx_file = fragp->fr_file;
17614 fixp->fx_line = fragp->fr_line;
17616 /* These relocations can have an addend that won't fit in
17618 fixp->fx_no_overflow = 1;
17623 /* Handle 32-bit branches that fit or are forced to fit. */
17624 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17625 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17627 /* We generate a fixup instead of applying it right now,
17628 because if there is linker relaxation, we're going to
17629 need the relocations. */
17630 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17631 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17632 fixp->fx_file = fragp->fr_file;
17633 fixp->fx_line = fragp->fr_line;
17639 /* Relax 16-bit branches to 32-bit branches. */
17642 insn = read_compressed_insn (buf, 2);
17644 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17645 insn = 0x94000000; /* beq */
17646 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17648 unsigned long regno;
17650 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17651 regno = micromips_to_32_reg_d_map [regno];
17652 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17653 insn |= regno << MICROMIPSOP_SH_RS;
17658 /* Nothing else to do, just write it out. */
17659 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17660 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17662 buf = write_compressed_insn (buf, insn, 4);
17663 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17668 insn = read_compressed_insn (buf, 4);
17670 /* Relax 32-bit branches to a sequence of instructions. */
17671 as_warn_where (fragp->fr_file, fragp->fr_line,
17672 _("relaxed out-of-range branch into a jump"));
17674 /* Set the short-delay-slot bit. */
17675 short_ds = al && (insn & 0x02000000) != 0;
17677 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17681 /* Reverse the branch. */
17682 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17683 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17684 insn ^= 0x20000000;
17685 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17686 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17687 || (insn & 0xffe00000) == 0x40800000 /* blez */
17688 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17689 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17690 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17691 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17692 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17693 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17694 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17695 insn ^= 0x00400000;
17696 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17697 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17698 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17699 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17700 insn ^= 0x00200000;
17701 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17703 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17705 insn ^= 0x00800000;
17711 /* Clear the and-link and short-delay-slot bits. */
17712 gas_assert ((insn & 0xfda00000) == 0x40200000);
17714 /* bltzal 0x40200000 bgezal 0x40600000 */
17715 /* bltzals 0x42200000 bgezals 0x42600000 */
17716 insn &= ~0x02200000;
17719 /* Make a label at the end for use with the branch. */
17720 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17721 micromips_label_inc ();
17722 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17725 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17726 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17727 fixp->fx_file = fragp->fr_file;
17728 fixp->fx_line = fragp->fr_line;
17730 /* Branch over the jump. */
17731 buf = write_compressed_insn (buf, insn, 4);
17734 buf = write_compressed_insn (buf, 0x0c00, 2);
17737 if (mips_pic == NO_PIC)
17739 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17741 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17742 insn = al ? jal : 0xd4000000;
17744 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17745 BFD_RELOC_MICROMIPS_JMP);
17746 fixp->fx_file = fragp->fr_file;
17747 fixp->fx_line = fragp->fr_line;
17749 buf = write_compressed_insn (buf, insn, 4);
17752 buf = write_compressed_insn (buf, 0x0c00, 2);
17756 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17757 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17758 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17760 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17761 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17762 insn |= at << MICROMIPSOP_SH_RT;
17764 if (exp.X_add_number)
17766 exp.X_add_symbol = make_expr_symbol (&exp);
17767 exp.X_add_number = 0;
17770 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17771 BFD_RELOC_MICROMIPS_GOT16);
17772 fixp->fx_file = fragp->fr_file;
17773 fixp->fx_line = fragp->fr_line;
17775 buf = write_compressed_insn (buf, insn, 4);
17777 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17778 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17779 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17781 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17782 BFD_RELOC_MICROMIPS_LO16);
17783 fixp->fx_file = fragp->fr_file;
17784 fixp->fx_line = fragp->fr_line;
17786 buf = write_compressed_insn (buf, insn, 4);
17788 /* jr/jrc/jalr/jalrs $at */
17789 insn = al ? jalr : jr;
17790 insn |= at << MICROMIPSOP_SH_MJ;
17792 buf = write_compressed_insn (buf, insn, 2);
17795 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17799 if (RELAX_MIPS16_P (fragp->fr_subtype))
17802 const struct mips_int_operand *operand;
17805 unsigned int user_length, length;
17806 unsigned long insn;
17809 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17810 operand = mips16_immed_operand (type, FALSE);
17812 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17813 val = resolve_symbol_value (fragp->fr_symbol);
17814 if (operand->root.type == OP_PCREL)
17816 const struct mips_pcrel_operand *pcrel_op;
17819 pcrel_op = (const struct mips_pcrel_operand *) operand;
17820 addr = fragp->fr_address + fragp->fr_fix;
17822 /* The rules for the base address of a PC relative reloc are
17823 complicated; see mips16_extended_frag. */
17824 if (pcrel_op->include_isa_bit)
17829 /* Ignore the low bit in the target, since it will be
17830 set for a text label. */
17833 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17835 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17838 addr &= -(1 << pcrel_op->align_log2);
17841 /* Make sure the section winds up with the alignment we have
17843 if (operand->shift > 0)
17844 record_alignment (asec, operand->shift);
17848 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17849 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17850 as_warn_where (fragp->fr_file, fragp->fr_line,
17851 _("extended instruction in delay slot"));
17853 buf = fragp->fr_literal + fragp->fr_fix;
17855 insn = read_compressed_insn (buf, 2);
17857 insn |= MIPS16_EXTEND;
17859 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17861 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17866 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17867 BFD_RELOC_UNUSED, val, user_length, &insn);
17869 length = (ext ? 4 : 2);
17870 gas_assert (mips16_opcode_length (insn) == length);
17871 write_compressed_insn (buf, insn, length);
17872 fragp->fr_fix += length;
17876 relax_substateT subtype = fragp->fr_subtype;
17877 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17878 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17882 first = RELAX_FIRST (subtype);
17883 second = RELAX_SECOND (subtype);
17884 fixp = (fixS *) fragp->fr_opcode;
17886 /* If the delay slot chosen does not match the size of the instruction,
17887 then emit a warning. */
17888 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17889 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17894 s = subtype & (RELAX_DELAY_SLOT_16BIT
17895 | RELAX_DELAY_SLOT_SIZE_FIRST
17896 | RELAX_DELAY_SLOT_SIZE_SECOND);
17897 msg = macro_warning (s);
17899 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17903 /* Possibly emit a warning if we've chosen the longer option. */
17904 if (use_second == second_longer)
17910 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17911 msg = macro_warning (s);
17913 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17917 /* Go through all the fixups for the first sequence. Disable them
17918 (by marking them as done) if we're going to use the second
17919 sequence instead. */
17921 && fixp->fx_frag == fragp
17922 && fixp->fx_where < fragp->fr_fix - second)
17924 if (subtype & RELAX_USE_SECOND)
17926 fixp = fixp->fx_next;
17929 /* Go through the fixups for the second sequence. Disable them if
17930 we're going to use the first sequence, otherwise adjust their
17931 addresses to account for the relaxation. */
17932 while (fixp && fixp->fx_frag == fragp)
17934 if (subtype & RELAX_USE_SECOND)
17935 fixp->fx_where -= first;
17938 fixp = fixp->fx_next;
17941 /* Now modify the frag contents. */
17942 if (subtype & RELAX_USE_SECOND)
17946 start = fragp->fr_literal + fragp->fr_fix - first - second;
17947 memmove (start, start + first, second);
17948 fragp->fr_fix -= first;
17951 fragp->fr_fix -= second;
17955 /* This function is called after the relocs have been generated.
17956 We've been storing mips16 text labels as odd. Here we convert them
17957 back to even for the convenience of the debugger. */
17960 mips_frob_file_after_relocs (void)
17963 unsigned int count, i;
17965 syms = bfd_get_outsymbols (stdoutput);
17966 count = bfd_get_symcount (stdoutput);
17967 for (i = 0; i < count; i++, syms++)
17968 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17969 && ((*syms)->value & 1) != 0)
17971 (*syms)->value &= ~1;
17972 /* If the symbol has an odd size, it was probably computed
17973 incorrectly, so adjust that as well. */
17974 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17975 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17979 /* This function is called whenever a label is defined, including fake
17980 labels instantiated off the dot special symbol. It is used when
17981 handling branch delays; if a branch has a label, we assume we cannot
17982 move it. This also bumps the value of the symbol by 1 in compressed
17986 mips_record_label (symbolS *sym)
17988 segment_info_type *si = seg_info (now_seg);
17989 struct insn_label_list *l;
17991 if (free_insn_labels == NULL)
17992 l = XNEW (struct insn_label_list);
17995 l = free_insn_labels;
17996 free_insn_labels = l->next;
18000 l->next = si->label_list;
18001 si->label_list = l;
18004 /* This function is called as tc_frob_label() whenever a label is defined
18005 and adds a DWARF-2 record we only want for true labels. */
18008 mips_define_label (symbolS *sym)
18010 mips_record_label (sym);
18011 dwarf2_emit_label (sym);
18014 /* This function is called by tc_new_dot_label whenever a new dot symbol
18018 mips_add_dot_label (symbolS *sym)
18020 mips_record_label (sym);
18021 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18022 mips_compressed_mark_label (sym);
18025 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18026 static unsigned int
18027 mips_convert_ase_flags (int ase)
18029 unsigned int ext_ases = 0;
18032 ext_ases |= AFL_ASE_DSP;
18033 if (ase & ASE_DSPR2)
18034 ext_ases |= AFL_ASE_DSPR2;
18035 if (ase & ASE_DSPR3)
18036 ext_ases |= AFL_ASE_DSPR3;
18038 ext_ases |= AFL_ASE_EVA;
18040 ext_ases |= AFL_ASE_MCU;
18041 if (ase & ASE_MDMX)
18042 ext_ases |= AFL_ASE_MDMX;
18043 if (ase & ASE_MIPS3D)
18044 ext_ases |= AFL_ASE_MIPS3D;
18046 ext_ases |= AFL_ASE_MT;
18047 if (ase & ASE_SMARTMIPS)
18048 ext_ases |= AFL_ASE_SMARTMIPS;
18049 if (ase & ASE_VIRT)
18050 ext_ases |= AFL_ASE_VIRT;
18052 ext_ases |= AFL_ASE_MSA;
18054 ext_ases |= AFL_ASE_XPA;
18058 /* Some special processing for a MIPS ELF file. */
18061 mips_elf_final_processing (void)
18064 Elf_Internal_ABIFlags_v0 flags;
18068 switch (file_mips_opts.isa)
18071 flags.isa_level = 1;
18074 flags.isa_level = 2;
18077 flags.isa_level = 3;
18080 flags.isa_level = 4;
18083 flags.isa_level = 5;
18086 flags.isa_level = 32;
18090 flags.isa_level = 32;
18094 flags.isa_level = 32;
18098 flags.isa_level = 32;
18102 flags.isa_level = 32;
18106 flags.isa_level = 64;
18110 flags.isa_level = 64;
18114 flags.isa_level = 64;
18118 flags.isa_level = 64;
18122 flags.isa_level = 64;
18127 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18128 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18129 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18130 : (file_mips_opts.fp == 64) ? AFL_REG_64
18132 flags.cpr2_size = AFL_REG_NONE;
18133 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18134 Tag_GNU_MIPS_ABI_FP);
18135 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18136 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18137 if (file_ase_mips16)
18138 flags.ases |= AFL_ASE_MIPS16;
18139 if (file_ase_micromips)
18140 flags.ases |= AFL_ASE_MICROMIPS;
18142 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18143 || file_mips_opts.fp == 64)
18144 && file_mips_opts.oddspreg)
18145 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18148 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18149 ((Elf_External_ABIFlags_v0 *)
18152 /* Write out the register information. */
18153 if (mips_abi != N64_ABI)
18157 s.ri_gprmask = mips_gprmask;
18158 s.ri_cprmask[0] = mips_cprmask[0];
18159 s.ri_cprmask[1] = mips_cprmask[1];
18160 s.ri_cprmask[2] = mips_cprmask[2];
18161 s.ri_cprmask[3] = mips_cprmask[3];
18162 /* The gp_value field is set by the MIPS ELF backend. */
18164 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18165 ((Elf32_External_RegInfo *)
18166 mips_regmask_frag));
18170 Elf64_Internal_RegInfo s;
18172 s.ri_gprmask = mips_gprmask;
18174 s.ri_cprmask[0] = mips_cprmask[0];
18175 s.ri_cprmask[1] = mips_cprmask[1];
18176 s.ri_cprmask[2] = mips_cprmask[2];
18177 s.ri_cprmask[3] = mips_cprmask[3];
18178 /* The gp_value field is set by the MIPS ELF backend. */
18180 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18181 ((Elf64_External_RegInfo *)
18182 mips_regmask_frag));
18185 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18186 sort of BFD interface for this. */
18187 if (mips_any_noreorder)
18188 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18189 if (mips_pic != NO_PIC)
18191 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18192 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18195 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18197 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18198 defined at present; this might need to change in future. */
18199 if (file_ase_mips16)
18200 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18201 if (file_ase_micromips)
18202 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18203 if (file_mips_opts.ase & ASE_MDMX)
18204 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18206 /* Set the MIPS ELF ABI flags. */
18207 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18208 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18209 else if (mips_abi == O64_ABI)
18210 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18211 else if (mips_abi == EABI_ABI)
18213 if (file_mips_opts.gp == 64)
18214 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18216 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18218 else if (mips_abi == N32_ABI)
18219 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18221 /* Nothing to do for N64_ABI. */
18223 if (mips_32bitmode)
18224 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18226 if (mips_nan2008 == 1)
18227 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18229 /* 32 bit code with 64 bit FP registers. */
18230 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18231 Tag_GNU_MIPS_ABI_FP);
18232 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18233 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18236 typedef struct proc {
18238 symbolS *func_end_sym;
18239 unsigned long reg_mask;
18240 unsigned long reg_offset;
18241 unsigned long fpreg_mask;
18242 unsigned long fpreg_offset;
18243 unsigned long frame_offset;
18244 unsigned long frame_reg;
18245 unsigned long pc_reg;
18248 static procS cur_proc;
18249 static procS *cur_proc_ptr;
18250 static int numprocs;
18252 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18253 as "2", and a normal nop as "0". */
18255 #define NOP_OPCODE_MIPS 0
18256 #define NOP_OPCODE_MIPS16 1
18257 #define NOP_OPCODE_MICROMIPS 2
18260 mips_nop_opcode (void)
18262 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18263 return NOP_OPCODE_MICROMIPS;
18264 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18265 return NOP_OPCODE_MIPS16;
18267 return NOP_OPCODE_MIPS;
18270 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18271 32-bit microMIPS NOPs here (if applicable). */
18274 mips_handle_align (fragS *fragp)
18278 int bytes, size, excess;
18281 if (fragp->fr_type != rs_align_code)
18284 p = fragp->fr_literal + fragp->fr_fix;
18286 switch (nop_opcode)
18288 case NOP_OPCODE_MICROMIPS:
18289 opcode = micromips_nop32_insn.insn_opcode;
18292 case NOP_OPCODE_MIPS16:
18293 opcode = mips16_nop_insn.insn_opcode;
18296 case NOP_OPCODE_MIPS:
18298 opcode = nop_insn.insn_opcode;
18303 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18304 excess = bytes % size;
18306 /* Handle the leading part if we're not inserting a whole number of
18307 instructions, and make it the end of the fixed part of the frag.
18308 Try to fit in a short microMIPS NOP if applicable and possible,
18309 and use zeroes otherwise. */
18310 gas_assert (excess < 4);
18311 fragp->fr_fix += excess;
18316 /* Fall through. */
18318 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18320 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18324 /* Fall through. */
18327 /* Fall through. */
18332 md_number_to_chars (p, opcode, size);
18333 fragp->fr_var = size;
18342 if (*input_line_pointer == '-')
18344 ++input_line_pointer;
18347 if (!ISDIGIT (*input_line_pointer))
18348 as_bad (_("expected simple number"));
18349 if (input_line_pointer[0] == '0')
18351 if (input_line_pointer[1] == 'x')
18353 input_line_pointer += 2;
18354 while (ISXDIGIT (*input_line_pointer))
18357 val |= hex_value (*input_line_pointer++);
18359 return negative ? -val : val;
18363 ++input_line_pointer;
18364 while (ISDIGIT (*input_line_pointer))
18367 val |= *input_line_pointer++ - '0';
18369 return negative ? -val : val;
18372 if (!ISDIGIT (*input_line_pointer))
18374 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18375 *input_line_pointer, *input_line_pointer);
18376 as_warn (_("invalid number"));
18379 while (ISDIGIT (*input_line_pointer))
18382 val += *input_line_pointer++ - '0';
18384 return negative ? -val : val;
18387 /* The .file directive; just like the usual .file directive, but there
18388 is an initial number which is the ECOFF file index. In the non-ECOFF
18389 case .file implies DWARF-2. */
18392 s_mips_file (int x ATTRIBUTE_UNUSED)
18394 static int first_file_directive = 0;
18396 if (ECOFF_DEBUGGING)
18405 filename = dwarf2_directive_file (0);
18407 /* Versions of GCC up to 3.1 start files with a ".file"
18408 directive even for stabs output. Make sure that this
18409 ".file" is handled. Note that you need a version of GCC
18410 after 3.1 in order to support DWARF-2 on MIPS. */
18411 if (filename != NULL && ! first_file_directive)
18413 (void) new_logical_line (filename, -1);
18414 s_app_file_string (filename, 0);
18416 first_file_directive = 1;
18420 /* The .loc directive, implying DWARF-2. */
18423 s_mips_loc (int x ATTRIBUTE_UNUSED)
18425 if (!ECOFF_DEBUGGING)
18426 dwarf2_directive_loc (0);
18429 /* The .end directive. */
18432 s_mips_end (int x ATTRIBUTE_UNUSED)
18436 /* Following functions need their own .frame and .cprestore directives. */
18437 mips_frame_reg_valid = 0;
18438 mips_cprestore_valid = 0;
18440 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18443 demand_empty_rest_of_line ();
18448 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18449 as_warn (_(".end not in text section"));
18453 as_warn (_(".end directive without a preceding .ent directive"));
18454 demand_empty_rest_of_line ();
18460 gas_assert (S_GET_NAME (p));
18461 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18462 as_warn (_(".end symbol does not match .ent symbol"));
18464 if (debug_type == DEBUG_STABS)
18465 stabs_generate_asm_endfunc (S_GET_NAME (p),
18469 as_warn (_(".end directive missing or unknown symbol"));
18471 /* Create an expression to calculate the size of the function. */
18472 if (p && cur_proc_ptr)
18474 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18475 expressionS *exp = XNEW (expressionS);
18478 exp->X_op = O_subtract;
18479 exp->X_add_symbol = symbol_temp_new_now ();
18480 exp->X_op_symbol = p;
18481 exp->X_add_number = 0;
18483 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18486 /* Generate a .pdr section. */
18487 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18489 segT saved_seg = now_seg;
18490 subsegT saved_subseg = now_subseg;
18494 #ifdef md_flush_pending_output
18495 md_flush_pending_output ();
18498 gas_assert (pdr_seg);
18499 subseg_set (pdr_seg, 0);
18501 /* Write the symbol. */
18502 exp.X_op = O_symbol;
18503 exp.X_add_symbol = p;
18504 exp.X_add_number = 0;
18505 emit_expr (&exp, 4);
18507 fragp = frag_more (7 * 4);
18509 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18510 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18511 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18512 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18513 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18514 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18515 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18517 subseg_set (saved_seg, saved_subseg);
18520 cur_proc_ptr = NULL;
18523 /* The .aent and .ent directives. */
18526 s_mips_ent (int aent)
18530 symbolP = get_symbol ();
18531 if (*input_line_pointer == ',')
18532 ++input_line_pointer;
18533 SKIP_WHITESPACE ();
18534 if (ISDIGIT (*input_line_pointer)
18535 || *input_line_pointer == '-')
18538 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18539 as_warn (_(".ent or .aent not in text section"));
18541 if (!aent && cur_proc_ptr)
18542 as_warn (_("missing .end"));
18546 /* This function needs its own .frame and .cprestore directives. */
18547 mips_frame_reg_valid = 0;
18548 mips_cprestore_valid = 0;
18550 cur_proc_ptr = &cur_proc;
18551 memset (cur_proc_ptr, '\0', sizeof (procS));
18553 cur_proc_ptr->func_sym = symbolP;
18557 if (debug_type == DEBUG_STABS)
18558 stabs_generate_asm_func (S_GET_NAME (symbolP),
18559 S_GET_NAME (symbolP));
18562 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18564 demand_empty_rest_of_line ();
18567 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18568 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18569 s_mips_frame is used so that we can set the PDR information correctly.
18570 We can't use the ecoff routines because they make reference to the ecoff
18571 symbol table (in the mdebug section). */
18574 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18576 if (ECOFF_DEBUGGING)
18582 if (cur_proc_ptr == (procS *) NULL)
18584 as_warn (_(".frame outside of .ent"));
18585 demand_empty_rest_of_line ();
18589 cur_proc_ptr->frame_reg = tc_get_register (1);
18591 SKIP_WHITESPACE ();
18592 if (*input_line_pointer++ != ','
18593 || get_absolute_expression_and_terminator (&val) != ',')
18595 as_warn (_("bad .frame directive"));
18596 --input_line_pointer;
18597 demand_empty_rest_of_line ();
18601 cur_proc_ptr->frame_offset = val;
18602 cur_proc_ptr->pc_reg = tc_get_register (0);
18604 demand_empty_rest_of_line ();
18608 /* The .fmask and .mask directives. If the mdebug section is present
18609 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18610 embedded targets, s_mips_mask is used so that we can set the PDR
18611 information correctly. We can't use the ecoff routines because they
18612 make reference to the ecoff symbol table (in the mdebug section). */
18615 s_mips_mask (int reg_type)
18617 if (ECOFF_DEBUGGING)
18618 s_ignore (reg_type);
18623 if (cur_proc_ptr == (procS *) NULL)
18625 as_warn (_(".mask/.fmask outside of .ent"));
18626 demand_empty_rest_of_line ();
18630 if (get_absolute_expression_and_terminator (&mask) != ',')
18632 as_warn (_("bad .mask/.fmask directive"));
18633 --input_line_pointer;
18634 demand_empty_rest_of_line ();
18638 off = get_absolute_expression ();
18640 if (reg_type == 'F')
18642 cur_proc_ptr->fpreg_mask = mask;
18643 cur_proc_ptr->fpreg_offset = off;
18647 cur_proc_ptr->reg_mask = mask;
18648 cur_proc_ptr->reg_offset = off;
18651 demand_empty_rest_of_line ();
18655 /* A table describing all the processors gas knows about. Names are
18656 matched in the order listed.
18658 To ease comparison, please keep this table in the same order as
18659 gcc's mips_cpu_info_table[]. */
18660 static const struct mips_cpu_info mips_cpu_info_table[] =
18662 /* Entries for generic ISAs */
18663 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18664 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18665 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18666 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18667 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18668 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18669 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18671 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18672 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18673 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18674 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18675 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18676 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18677 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18680 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18681 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18682 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18685 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18688 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18689 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18690 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18691 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18692 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18693 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18694 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18695 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18696 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18697 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18698 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18699 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18700 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18701 /* ST Microelectronics Loongson 2E and 2F cores */
18702 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18703 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18706 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18707 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18708 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18709 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18710 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18711 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18712 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18713 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18714 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18715 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18716 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18717 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18718 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18719 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18720 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18723 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18724 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18725 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18726 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18728 /* MIPS 32 Release 2 */
18729 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18730 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18731 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18732 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18733 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18734 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18735 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18736 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18737 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18738 ISA_MIPS32R2, CPU_MIPS32R2 },
18739 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18740 ISA_MIPS32R2, CPU_MIPS32R2 },
18741 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18742 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18743 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18744 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18745 /* Deprecated forms of the above. */
18746 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18747 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18748 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18749 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18750 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18751 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18752 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18753 /* Deprecated forms of the above. */
18754 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18755 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18756 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18757 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18758 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18759 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18760 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18761 /* Deprecated forms of the above. */
18762 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18763 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18764 /* 34Kn is a 34kc without DSP. */
18765 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18766 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18767 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18768 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18769 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18770 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18771 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18772 /* Deprecated forms of the above. */
18773 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18774 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18775 /* 1004K cores are multiprocessor versions of the 34K. */
18776 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18777 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 /* interaptiv is the new name for 1004kf */
18781 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18783 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18784 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18785 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18786 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18789 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18790 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18791 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18792 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18794 /* Broadcom SB-1 CPU core */
18795 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18796 /* Broadcom SB-1A CPU core */
18797 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18799 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18801 /* MIPS 64 Release 2 */
18803 /* Cavium Networks Octeon CPU core */
18804 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18805 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18806 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18807 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18810 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18813 XLP is mostly like XLR, with the prominent exception that it is
18814 MIPS64R2 rather than MIPS64. */
18815 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18817 /* MIPS 64 Release 6 */
18818 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18819 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18822 { NULL, 0, 0, 0, 0 }
18826 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18827 with a final "000" replaced by "k". Ignore case.
18829 Note: this function is shared between GCC and GAS. */
18832 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18834 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18835 given++, canonical++;
18837 return ((*given == 0 && *canonical == 0)
18838 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18842 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18843 CPU name. We've traditionally allowed a lot of variation here.
18845 Note: this function is shared between GCC and GAS. */
18848 mips_matching_cpu_name_p (const char *canonical, const char *given)
18850 /* First see if the name matches exactly, or with a final "000"
18851 turned into "k". */
18852 if (mips_strict_matching_cpu_name_p (canonical, given))
18855 /* If not, try comparing based on numerical designation alone.
18856 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18857 if (TOLOWER (*given) == 'r')
18859 if (!ISDIGIT (*given))
18862 /* Skip over some well-known prefixes in the canonical name,
18863 hoping to find a number there too. */
18864 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18866 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18868 else if (TOLOWER (canonical[0]) == 'r')
18871 return mips_strict_matching_cpu_name_p (canonical, given);
18875 /* Parse an option that takes the name of a processor as its argument.
18876 OPTION is the name of the option and CPU_STRING is the argument.
18877 Return the corresponding processor enumeration if the CPU_STRING is
18878 recognized, otherwise report an error and return null.
18880 A similar function exists in GCC. */
18882 static const struct mips_cpu_info *
18883 mips_parse_cpu (const char *option, const char *cpu_string)
18885 const struct mips_cpu_info *p;
18887 /* 'from-abi' selects the most compatible architecture for the given
18888 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18889 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18890 version. Look first at the -mgp options, if given, otherwise base
18891 the choice on MIPS_DEFAULT_64BIT.
18893 Treat NO_ABI like the EABIs. One reason to do this is that the
18894 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18895 architecture. This code picks MIPS I for 'mips' and MIPS III for
18896 'mips64', just as we did in the days before 'from-abi'. */
18897 if (strcasecmp (cpu_string, "from-abi") == 0)
18899 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18900 return mips_cpu_info_from_isa (ISA_MIPS1);
18902 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18903 return mips_cpu_info_from_isa (ISA_MIPS3);
18905 if (file_mips_opts.gp >= 0)
18906 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18907 ? ISA_MIPS1 : ISA_MIPS3);
18909 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18914 /* 'default' has traditionally been a no-op. Probably not very useful. */
18915 if (strcasecmp (cpu_string, "default") == 0)
18918 for (p = mips_cpu_info_table; p->name != 0; p++)
18919 if (mips_matching_cpu_name_p (p->name, cpu_string))
18922 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18926 /* Return the canonical processor information for ISA (a member of the
18927 ISA_MIPS* enumeration). */
18929 static const struct mips_cpu_info *
18930 mips_cpu_info_from_isa (int isa)
18934 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18935 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18936 && isa == mips_cpu_info_table[i].isa)
18937 return (&mips_cpu_info_table[i]);
18942 static const struct mips_cpu_info *
18943 mips_cpu_info_from_arch (int arch)
18947 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18948 if (arch == mips_cpu_info_table[i].cpu)
18949 return (&mips_cpu_info_table[i]);
18955 show (FILE *stream, const char *string, int *col_p, int *first_p)
18959 fprintf (stream, "%24s", "");
18964 fprintf (stream, ", ");
18968 if (*col_p + strlen (string) > 72)
18970 fprintf (stream, "\n%24s", "");
18974 fprintf (stream, "%s", string);
18975 *col_p += strlen (string);
18981 md_show_usage (FILE *stream)
18986 fprintf (stream, _("\
18988 -EB generate big endian output\n\
18989 -EL generate little endian output\n\
18990 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18991 -G NUM allow referencing objects up to NUM bytes\n\
18992 implicitly with the gp register [default 8]\n"));
18993 fprintf (stream, _("\
18994 -mips1 generate MIPS ISA I instructions\n\
18995 -mips2 generate MIPS ISA II instructions\n\
18996 -mips3 generate MIPS ISA III instructions\n\
18997 -mips4 generate MIPS ISA IV instructions\n\
18998 -mips5 generate MIPS ISA V instructions\n\
18999 -mips32 generate MIPS32 ISA instructions\n\
19000 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19001 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19002 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19003 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19004 -mips64 generate MIPS64 ISA instructions\n\
19005 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19006 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19007 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19008 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19009 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19013 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19014 show (stream, mips_cpu_info_table[i].name, &column, &first);
19015 show (stream, "from-abi", &column, &first);
19016 fputc ('\n', stream);
19018 fprintf (stream, _("\
19019 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19020 -no-mCPU don't generate code specific to CPU.\n\
19021 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19025 show (stream, "3900", &column, &first);
19026 show (stream, "4010", &column, &first);
19027 show (stream, "4100", &column, &first);
19028 show (stream, "4650", &column, &first);
19029 fputc ('\n', stream);
19031 fprintf (stream, _("\
19032 -mips16 generate mips16 instructions\n\
19033 -no-mips16 do not generate mips16 instructions\n"));
19034 fprintf (stream, _("\
19035 -mmicromips generate microMIPS instructions\n\
19036 -mno-micromips do not generate microMIPS instructions\n"));
19037 fprintf (stream, _("\
19038 -msmartmips generate smartmips instructions\n\
19039 -mno-smartmips do not generate smartmips instructions\n"));
19040 fprintf (stream, _("\
19041 -mdsp generate DSP instructions\n\
19042 -mno-dsp do not generate DSP instructions\n"));
19043 fprintf (stream, _("\
19044 -mdspr2 generate DSP R2 instructions\n\
19045 -mno-dspr2 do not generate DSP R2 instructions\n"));
19046 fprintf (stream, _("\
19047 -mdspr3 generate DSP R3 instructions\n\
19048 -mno-dspr3 do not generate DSP R3 instructions\n"));
19049 fprintf (stream, _("\
19050 -mmt generate MT instructions\n\
19051 -mno-mt do not generate MT instructions\n"));
19052 fprintf (stream, _("\
19053 -mmcu generate MCU instructions\n\
19054 -mno-mcu do not generate MCU instructions\n"));
19055 fprintf (stream, _("\
19056 -mmsa generate MSA instructions\n\
19057 -mno-msa do not generate MSA instructions\n"));
19058 fprintf (stream, _("\
19059 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19060 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19061 fprintf (stream, _("\
19062 -mvirt generate Virtualization instructions\n\
19063 -mno-virt do not generate Virtualization instructions\n"));
19064 fprintf (stream, _("\
19065 -minsn32 only generate 32-bit microMIPS instructions\n\
19066 -mno-insn32 generate all microMIPS instructions\n"));
19067 fprintf (stream, _("\
19068 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19069 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19070 -mfix-vr4120 work around certain VR4120 errata\n\
19071 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19072 -mfix-24k insert a nop after ERET and DERET instructions\n\
19073 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19074 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19075 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19076 -msym32 assume all symbols have 32-bit values\n\
19077 -O0 remove unneeded NOPs, do not swap branches\n\
19078 -O remove unneeded NOPs and swap branches\n\
19079 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19080 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19081 fprintf (stream, _("\
19082 -mhard-float allow floating-point instructions\n\
19083 -msoft-float do not allow floating-point instructions\n\
19084 -msingle-float only allow 32-bit floating-point operations\n\
19085 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19086 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19087 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19088 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19092 show (stream, "legacy", &column, &first);
19093 show (stream, "2008", &column, &first);
19095 fputc ('\n', stream);
19097 fprintf (stream, _("\
19098 -KPIC, -call_shared generate SVR4 position independent code\n\
19099 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19100 -mvxworks-pic generate VxWorks position independent code\n\
19101 -non_shared do not generate code that can operate with DSOs\n\
19102 -xgot assume a 32 bit GOT\n\
19103 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19104 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19105 position dependent (non shared) code\n\
19106 -mabi=ABI create ABI conformant object file for:\n"));
19110 show (stream, "32", &column, &first);
19111 show (stream, "o64", &column, &first);
19112 show (stream, "n32", &column, &first);
19113 show (stream, "64", &column, &first);
19114 show (stream, "eabi", &column, &first);
19116 fputc ('\n', stream);
19118 fprintf (stream, _("\
19119 -32 create o32 ABI object file (default)\n\
19120 -n32 create n32 ABI object file\n\
19121 -64 create 64 ABI object file\n"));
19126 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19128 if (HAVE_64BIT_SYMBOLS)
19129 return dwarf2_format_64bit_irix;
19131 return dwarf2_format_32bit;
19136 mips_dwarf2_addr_size (void)
19138 if (HAVE_64BIT_OBJECTS)
19144 /* Standard calling conventions leave the CFA at SP on entry. */
19146 mips_cfi_frame_initial_instructions (void)
19148 cfi_add_CFA_def_cfa_register (SP);
19152 tc_mips_regname_to_dw2regnum (char *regname)
19154 unsigned int regnum = -1;
19157 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19163 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19164 Given a symbolic attribute NAME, return the proper integer value.
19165 Returns -1 if the attribute is not known. */
19168 mips_convert_symbolic_attribute (const char *name)
19170 static const struct
19175 attribute_table[] =
19177 #define T(tag) {#tag, tag}
19178 T (Tag_GNU_MIPS_ABI_FP),
19179 T (Tag_GNU_MIPS_ABI_MSA),
19187 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19188 if (streq (name, attribute_table[i].name))
19189 return attribute_table[i].tag;
19197 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19199 mips_emit_delays ();
19201 as_warn (_("missing .end at end of assembly"));
19203 /* Just in case no code was emitted, do the consistency check. */
19204 file_mips_check_options ();
19206 /* Set a floating-point ABI if the user did not. */
19207 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19209 /* Perform consistency checks on the floating-point ABI. */
19210 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19211 Tag_GNU_MIPS_ABI_FP);
19212 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19213 check_fpabi (fpabi);
19217 /* Soft-float gets precedence over single-float, the two options should
19218 not be used together so this should not matter. */
19219 if (file_mips_opts.soft_float == 1)
19220 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19221 /* Single-float gets precedence over all double_float cases. */
19222 else if (file_mips_opts.single_float == 1)
19223 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19226 switch (file_mips_opts.fp)
19229 if (file_mips_opts.gp == 32)
19230 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19233 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19236 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19237 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19238 else if (file_mips_opts.gp == 32)
19239 fpabi = Val_GNU_MIPS_ABI_FP_64;
19241 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19246 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19247 Tag_GNU_MIPS_ABI_FP, fpabi);
19251 /* Returns the relocation type required for a particular CFI encoding. */
19253 bfd_reloc_code_real_type
19254 mips_cfi_reloc_for_encoding (int encoding)
19256 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19257 return BFD_RELOC_32_PCREL;
19258 else return BFD_RELOC_NONE;