1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug = -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr = FALSE;
86 int mips_flag_pdr = TRUE;
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
99 #define PIC_CALL_REG 25
107 #define ILLEGAL_REG (32)
109 #define AT mips_opts.at
111 extern int target_big_endian;
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
116 /* Ways in which an instruction can be "appended" to the output. */
118 /* Just add it normally. */
121 /* Add it normally and then add a nop. */
124 /* Turn an instruction with a delay slot into a "compact" version. */
127 /* Insert the instruction before the last one. */
131 /* Information about an instruction, including its format, operands
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
142 unsigned long insn_opcode;
144 /* The frag that contains the instruction. */
147 /* The offset into FRAG of the first instruction byte. */
150 /* The relocs associated with the instruction, if any. */
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
165 /* True if this instruction is cleared from history by unconditional
167 unsigned int cleared_p : 1;
170 /* The ABI to use. */
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
187 /* Whether or not we have code which can be put into a shared
189 static bfd_boolean mips_in_shared = TRUE;
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
195 struct mips_set_options
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
250 /* True if ".set sym32" is in effect. */
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
262 /* 1 if single-precision operations on odd-numbered registers are
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
280 static struct mips_set_options file_mips_opts =
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
289 /* This is similar to file_mips_opts, but for the current set of options. */
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
339 /* The argument of the -mtune= flag. The architecture for which we
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
353 || (ABI) == N64_ABI \
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
611 /* MIPS PIC level. */
613 enum mips_pic_level mips_pic;
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
619 /* 1 if trap instructions should used for overflow rather than break
621 static int mips_trap = 0;
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
631 /* Non-zero if any .set noreorder directives were used. */
633 static int mips_any_noreorder;
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
689 /* Chars that mean this number is a floating point constant */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
707 /* Information about an error that was found while assembling the current
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
737 static int auto_align = 1;
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
743 static offsetT mips_cprestore_offset = -1;
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
772 static int mips_optimize = 2;
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
784 /* The maximum number of NOPs needed for any purpose. */
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
827 static fragS *prev_nop_frag;
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
832 /* The number of nop instructions that we know we need in
834 static int prev_nop_frag_required;
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
853 struct mips_hi_fixup *next;
856 /* The section this fixup is in. */
860 /* The list of unmatched HI relocs. */
862 static struct mips_hi_fixup *mips_hi_fixup_list;
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
867 static fragS *prev_reloc_op_frag;
869 /* Map mips16 register numbers to normal MIPS register numbers. */
871 static const unsigned int mips16_to_32_reg_map[] =
873 16, 17, 2, 3, 4, 5, 6, 7
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
883 5, 5, 6, 4, 4, 4, 4, 4
885 static const unsigned int micromips_to_32_reg_h_map2[] =
887 6, 7, 7, 21, 22, 5, 6, 7
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
893 0, 17, 2, 3, 16, 18, 19, 20
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
908 NUM_FIX_VR4120_CLASSES
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
945 static int mips_relax_branch;
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
994 The frag's "opcode" points to the first fixup for relaxable code.
996 Relaxable macros are generated using a sequence such as:
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1001 ... generate second expansion ...
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1018 /* Branch without likely bit. If label is out of range, we turn:
1020 beq reg1, reg2, label
1030 with the following opcode replacements:
1037 bltzal <-> bgezal (with jal label instead of j label)
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1047 Branch likely. If label is out of range, we turn:
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1059 delay slot (executed only if branch taken)
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1068 delay slot (executed only if branch taken)
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1251 /* The symbol on which the choice of sequence depends. */
1255 /* Global variables used to decide whether a macro needs a warning. */
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1268 unsigned int sizes[2];
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1287 /* The first variant frag for this macro. */
1289 } mips_macro_warning;
1291 /* Prototypes for static functions. */
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1358 struct mips_cpu_info
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1378 OPTION_MARCH = OPTION_MD_BASE,
1410 OPTION_NO_SMARTMIPS,
1418 OPTION_NO_MICROMIPS,
1421 OPTION_COMPAT_ARCH_BASE,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_VR4120,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1481 OPTION_MVXWORKS_PIC,
1484 OPTION_NO_ODD_SPREG,
1488 struct option md_longopts[] =
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1617 {NULL, no_argument, NULL, 0}
1619 size_t md_longopts_size = sizeof (md_longopts);
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1626 /* The name of the ASE, used in both the command-line and .set options. */
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1638 /* The command-line options that turn the ASE on and off. */
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1646 int micromips32_rev;
1647 int micromips64_rev;
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1689 OPTION_MT, OPTION_NO_MT,
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1739 static const pseudo_typeS mips_pseudo_table[] =
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1764 {"module", s_module, 0},
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1803 { "extern", ecoff_directive_extern, 0},
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1830 mips_address_bytes (void)
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1836 extern void pop_insert (const pseudo_typeS *);
1839 mips_pop_insert (void)
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1846 /* Symbols labelling the current insn. */
1848 struct insn_label_list
1850 struct insn_label_list *next;
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1862 mips_clear_insn_labels (void)
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1881 mips_mark_labels (void)
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1887 static char *expr_end;
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1892 static expressionS imm_expr;
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1907 static unsigned int forced_insn_length;
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1912 static bfd_boolean mips_assembling_insn;
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1917 static segT pdr_seg;
1919 /* The default target format to use. */
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1930 mips_target_format (void)
1932 switch (OUTPUT_FLAVOR)
1934 case bfd_target_elf_flavour:
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1989 mips_ase_mask (unsigned int flags)
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2050 mips_check_isa_supports_ases (void)
2052 unsigned int i, mask;
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2071 mask = mips_ase_mask (ase->flags);
2074 opts->ase |= ase->flags;
2078 /* Return the ASE called NAME, or null if none. */
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2101 /* Return the length of MIPS16 instruction OPCODE. */
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2106 return (opcode >> 16) == 0 ? 2 : 4;
2109 /* Return the length of instruction INSN. */
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2130 insn->insn_opcode = mo->match;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2142 /* Get a list of all the operands in INSN. */
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2155 if (insn->insn_mo >= µmips_opcodes[0]
2156 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2157 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2162 /* Get a description of operand OPNO of INSN. */
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2167 const struct mips_operand_array *operands;
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2172 return operands->operand[opno];
2175 /* Install UVAL as the value of OPERAND in INSN. */
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184 /* Extract the value of OPERAND from INSN. */
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2190 return mips_extract_operand (operand, insn->insn_opcode);
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2196 mips_record_compressed_mode (void)
2198 segment_info_type *si;
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2207 /* Read a standard MIPS instruction from BUF. */
2209 static unsigned long
2210 read_insn (char *buf)
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2215 return bfd_getl32 ((bfd_byte *) buf);
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2222 write_insn (char *buf, unsigned int insn)
2224 md_number_to_chars (buf, insn, 4);
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2238 for (i = 0; i < length; i += 2)
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2244 insn |= bfd_getl16 ((char *) buf);
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2266 install_insn (const struct mips_cl_insn *insn)
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2292 install_insn (insn);
2295 /* Add INSN to the end of the output. */
2298 add_fixed_insn (struct mips_cl_insn *insn)
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2325 if (mips_relax.sequence != 2)
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2331 history[i] = history[i - n];
2337 /* Clear the error in insn_error. */
2340 clear_insn_error (void)
2342 memset (&insn_error, 0, sizeof (insn_error));
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2373 && strcmp (insn_error.msg, msg) != 0)
2376 insn_error.min_argnum += 1;
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2390 set_insn_error (int argnum, const char *msg)
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2399 set_insn_error_i (int argnum, const char *msg, int i)
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2418 /* Report the error in insn_error, which is against assembly code STR. */
2421 report_insn_error (const char *str)
2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2425 switch (insn_error.format)
2432 as_bad (msg, insn_error.u.i, str);
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 free ((char *) msg);
2443 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2448 init_vr4120_conflicts (void)
2450 #define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2492 #define RNUM_MASK 0x00000ff
2493 #define RTYPE_MASK 0x0ffff00
2494 #define RTYPE_NUM 0x0000100
2495 #define RTYPE_FPU 0x0000200
2496 #define RTYPE_FCC 0x0000400
2497 #define RTYPE_VEC 0x0000800
2498 #define RTYPE_GP 0x0001000
2499 #define RTYPE_CP0 0x0002000
2500 #define RTYPE_PC 0x0004000
2501 #define RTYPE_ACC 0x0008000
2502 #define RTYPE_CCC 0x0010000
2503 #define RTYPE_VI 0x0020000
2504 #define RTYPE_VF 0x0040000
2505 #define RTYPE_R5900_I 0x0080000
2506 #define RTYPE_R5900_Q 0x0100000
2507 #define RTYPE_R5900_R 0x0200000
2508 #define RTYPE_R5900_ACC 0x0400000
2509 #define RTYPE_MSA 0x0800000
2510 #define RWARN 0x8000000
2512 #define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
2544 {"$31", RTYPE_NUM | 31}
2546 #define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2580 #define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2590 #define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2614 #define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2628 /* Remaining symbolic register names */
2629 #define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2659 #define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2662 #define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2696 #define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2699 #define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2702 #define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2705 #define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2708 #define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2714 static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
2722 one of the tables below once mips_abi is set after
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2736 static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2741 static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2746 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
2752 mips_prefer_vec_regno (unsigned int symval)
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2759 /* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
2763 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2768 /* Terminate name. */
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2779 *symval_ptr = S_GET_VALUE (symbol);
2783 /* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2794 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2799 unsigned int channels, symval, bit;
2801 /* Find end of name. */
2803 if (is_name_beginner (*e))
2805 while (is_part_of_name (*e))
2809 if (!mips_parse_register_1 (s, e, &symval))
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2833 *symval_ptr = symval;
2835 *channels_ptr = channels;
2839 /* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2844 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2848 if (mips_parse_register (s, ®no, NULL))
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2860 as_warn (_("unrecognized register name `%s'"), *s);
2865 return regno <= RNUM_MASK;
2868 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2872 mips_parse_vu0_channels (char *s, unsigned int *channels)
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2880 *channels |= 1 << (3 - i);
2886 /* Token types for parsed operand lists. */
2887 enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2891 /* A 4-bit XYZW channel mask. */
2894 /* A constant vector index, e.g. [1]. */
2897 /* A register vector index, e.g. [$2]. */
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2903 /* A (possibly relocated) expression. */
2906 /* A floating-point value. */
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2913 /* A doubled character, either "--" or "++". */
2916 /* The end of the operand list. */
2920 /* A parsed operand token. */
2921 struct mips_operand_token
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2933 /* The integer value of an OT_INTEGER_INDEX. */
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 unsigned int regno1;
2939 unsigned int regno2;
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2948 bfd_reloc_code_real_type relocs[3];
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2954 unsigned char data[8];
2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2963 /* An obstack used to construct lists of mips_operand_tokens. */
2964 static struct obstack mips_operand_tokens;
2966 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2969 mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2976 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2981 mips_parse_base_start (char *s)
2983 struct mips_operand_token token;
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
2991 SKIP_SPACE_TABS (s);
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2999 SKIP_SPACE_TABS (s);
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, ®no, &channels))
3008 mips_add_token (&token, OT_CHAR);
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3037 /* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3043 mips_parse_argument_token (char *s, char float_format)
3045 char *end, *save_in;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3060 mips_add_token (&token, OT_CHAR);
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, ®no1, &channels))
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3079 SKIP_SPACE_TABS (s);
3082 /* A register range. */
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, ®no2, NULL))
3087 set_insn_error (0, _("invalid register range"));
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3101 /* Check for a vector index. */
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3110 expressionS element;
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3115 set_insn_error (0, _("vector element must be constant"));
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3122 SKIP_SPACE_TABS (s);
3125 set_insn_error (0, _("missing `]'"));
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3144 set_insn_error (0, err);
3149 mips_add_token (&token, OT_FLOAT);
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3160 mips_add_token (&token, OT_INTEGER);
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3175 struct mips_operand_token token;
3177 SKIP_SPACE_TABS (s);
3180 s = mips_parse_argument_token (s, float_format);
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3187 SKIP_SPACE_TABS (s);
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3197 is_opcode_valid (const struct mips_opcode *mo)
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3229 if (fp_s && mips_opts.soft_float)
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3248 is_size_valid (const struct mips_opcode *mo)
3250 if (!mips_opts.micromips)
3253 if (mips_opts.insn32)
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3260 if (!forced_insn_length)
3262 if (mo->pinfo == INSN_MACRO)
3264 return forced_insn_length == micromips_insn_length (mo);
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3284 if (!mips_opts.micromips)
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3370 doubled = used_bits & mask & insn_bits;
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3385 used_bits &= ~insn_bits;
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3395 /* The MIPS16 version of validate_mips_insn. */
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3415 /* The microMIPS version of validate_mips_insn. */
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3459 const char *retval = NULL;
3463 if (mips_pic != NO_PIC)
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3469 else if (mips_abicalls)
3471 if (g_switch_seen && g_switch_value != 0)
3472 as_bad (_("-G may not be used with abicalls"));
3476 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3477 as_warn (_("could not set architecture and machine"));
3479 op_hash = hash_new ();
3481 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3482 for (i = 0; i < NUMOPCODES;)
3484 const char *name = mips_opcodes[i].name;
3486 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3489 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3490 mips_opcodes[i].name, retval);
3491 /* Probably a memory allocation problem? Give up now. */
3492 as_fatal (_("broken assembler, no assembly attempted"));
3496 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3497 decode_mips_operand, &mips_operands[i]))
3499 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3501 create_insn (&nop_insn, mips_opcodes + i);
3502 if (mips_fix_loongson2f_nop)
3503 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3504 nop_insn.fixed_p = 1;
3508 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3511 mips16_op_hash = hash_new ();
3512 mips16_operands = XCNEWVEC (struct mips_operand_array,
3513 bfd_mips16_num_opcodes);
3516 while (i < bfd_mips16_num_opcodes)
3518 const char *name = mips16_opcodes[i].name;
3520 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3522 as_fatal (_("internal: can't hash `%s': %s"),
3523 mips16_opcodes[i].name, retval);
3526 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3528 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3530 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3531 mips16_nop_insn.fixed_p = 1;
3535 while (i < bfd_mips16_num_opcodes
3536 && strcmp (mips16_opcodes[i].name, name) == 0);
3539 micromips_op_hash = hash_new ();
3540 micromips_operands = XCNEWVEC (struct mips_operand_array,
3541 bfd_micromips_num_opcodes);
3544 while (i < bfd_micromips_num_opcodes)
3546 const char *name = micromips_opcodes[i].name;
3548 retval = hash_insert (micromips_op_hash, name,
3549 (void *) µmips_opcodes[i]);
3551 as_fatal (_("internal: can't hash `%s': %s"),
3552 micromips_opcodes[i].name, retval);
3555 struct mips_cl_insn *micromips_nop_insn;
3557 if (!validate_micromips_insn (µmips_opcodes[i],
3558 µmips_operands[i]))
3561 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3563 if (micromips_insn_length (micromips_opcodes + i) == 2)
3564 micromips_nop_insn = µmips_nop16_insn;
3565 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3566 micromips_nop_insn = µmips_nop32_insn;
3570 if (micromips_nop_insn->insn_mo == NULL
3571 && strcmp (name, "nop") == 0)
3573 create_insn (micromips_nop_insn, micromips_opcodes + i);
3574 micromips_nop_insn->fixed_p = 1;
3578 while (++i < bfd_micromips_num_opcodes
3579 && strcmp (micromips_opcodes[i].name, name) == 0);
3583 as_fatal (_("broken assembler, no assembly attempted"));
3585 /* We add all the general register names to the symbol table. This
3586 helps us detect invalid uses of them. */
3587 for (i = 0; reg_names[i].name; i++)
3588 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3589 reg_names[i].num, /* & RNUM_MASK, */
3590 &zero_address_frag));
3592 for (i = 0; reg_names_n32n64[i].name; i++)
3593 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3594 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3595 &zero_address_frag));
3597 for (i = 0; reg_names_o32[i].name; i++)
3598 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3599 reg_names_o32[i].num, /* & RNUM_MASK, */
3600 &zero_address_frag));
3602 for (i = 0; i < 32; i++)
3606 /* R5900 VU0 floating-point register. */
3607 sprintf (regname, "$vf%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VF | i, &zero_address_frag));
3611 /* R5900 VU0 integer register. */
3612 sprintf (regname, "$vi%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_VI | i, &zero_address_frag));
3617 sprintf (regname, "$w%d", i);
3618 symbol_table_insert (symbol_new (regname, reg_section,
3619 RTYPE_MSA | i, &zero_address_frag));
3622 obstack_init (&mips_operand_tokens);
3624 mips_no_prev_insn ();
3627 mips_cprmask[0] = 0;
3628 mips_cprmask[1] = 0;
3629 mips_cprmask[2] = 0;
3630 mips_cprmask[3] = 0;
3632 /* set the default alignment for the text section (2**2) */
3633 record_alignment (text_section, 2);
3635 bfd_set_gp_size (stdoutput, g_switch_value);
3637 /* On a native system other than VxWorks, sections must be aligned
3638 to 16 byte boundaries. When configured for an embedded ELF
3639 target, we don't bother. */
3640 if (strncmp (TARGET_OS, "elf", 3) != 0
3641 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3643 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3648 /* Create a .reginfo section for register masks and a .mdebug
3649 section for debugging information. */
3657 subseg = now_subseg;
3659 /* The ABI says this section should be loaded so that the
3660 running program can access it. However, we don't load it
3661 if we are configured for an embedded target */
3662 flags = SEC_READONLY | SEC_DATA;
3663 if (strncmp (TARGET_OS, "elf", 3) != 0)
3664 flags |= SEC_ALLOC | SEC_LOAD;
3666 if (mips_abi != N64_ABI)
3668 sec = subseg_new (".reginfo", (subsegT) 0);
3670 bfd_set_section_flags (stdoutput, sec, flags);
3671 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3673 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3677 /* The 64-bit ABI uses a .MIPS.options section rather than
3678 .reginfo section. */
3679 sec = subseg_new (".MIPS.options", (subsegT) 0);
3680 bfd_set_section_flags (stdoutput, sec, flags);
3681 bfd_set_section_alignment (stdoutput, sec, 3);
3683 /* Set up the option header. */
3685 Elf_Internal_Options opthdr;
3688 opthdr.kind = ODK_REGINFO;
3689 opthdr.size = (sizeof (Elf_External_Options)
3690 + sizeof (Elf64_External_RegInfo));
3693 f = frag_more (sizeof (Elf_External_Options));
3694 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3695 (Elf_External_Options *) f);
3697 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3701 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3702 bfd_set_section_flags (stdoutput, sec,
3703 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3707 if (ECOFF_DEBUGGING)
3709 sec = subseg_new (".mdebug", (subsegT) 0);
3710 (void) bfd_set_section_flags (stdoutput, sec,
3711 SEC_HAS_CONTENTS | SEC_READONLY);
3712 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3714 else if (mips_flag_pdr)
3716 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3717 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3718 SEC_READONLY | SEC_RELOC
3720 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3723 subseg_set (seg, subseg);
3726 if (mips_fix_vr4120)
3727 init_vr4120_conflicts ();
3731 fpabi_incompatible_with (int fpabi, const char *what)
3733 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3734 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3738 fpabi_requires (int fpabi, const char *what)
3740 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3741 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 /* Check -mabi and register sizes against the specified FP ABI. */
3746 check_fpabi (int fpabi)
3750 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3751 if (file_mips_opts.soft_float)
3752 fpabi_incompatible_with (fpabi, "softfloat");
3753 else if (file_mips_opts.single_float)
3754 fpabi_incompatible_with (fpabi, "singlefloat");
3755 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3756 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3757 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3758 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3761 case Val_GNU_MIPS_ABI_FP_XX:
3762 if (mips_abi != O32_ABI)
3763 fpabi_requires (fpabi, "-mabi=32");
3764 else if (file_mips_opts.soft_float)
3765 fpabi_incompatible_with (fpabi, "softfloat");
3766 else if (file_mips_opts.single_float)
3767 fpabi_incompatible_with (fpabi, "singlefloat");
3768 else if (file_mips_opts.fp != 0)
3769 fpabi_requires (fpabi, "fp=xx");
3772 case Val_GNU_MIPS_ABI_FP_64A:
3773 case Val_GNU_MIPS_ABI_FP_64:
3774 if (mips_abi != O32_ABI)
3775 fpabi_requires (fpabi, "-mabi=32");
3776 else if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
3780 else if (file_mips_opts.fp != 64)
3781 fpabi_requires (fpabi, "fp=64");
3782 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3783 fpabi_incompatible_with (fpabi, "nooddspreg");
3784 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3785 fpabi_requires (fpabi, "nooddspreg");
3788 case Val_GNU_MIPS_ABI_FP_SINGLE:
3789 if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (!file_mips_opts.single_float)
3792 fpabi_requires (fpabi, "singlefloat");
3795 case Val_GNU_MIPS_ABI_FP_SOFT:
3796 if (!file_mips_opts.soft_float)
3797 fpabi_requires (fpabi, "softfloat");
3800 case Val_GNU_MIPS_ABI_FP_OLD_64:
3801 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3802 Tag_GNU_MIPS_ABI_FP, fpabi);
3805 case Val_GNU_MIPS_ABI_FP_NAN2008:
3806 /* Silently ignore compatibility value. */
3810 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3811 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3816 /* Perform consistency checks on the current options. */
3819 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3821 /* Check the size of integer registers agrees with the ABI and ISA. */
3822 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3823 as_bad (_("`gp=64' used with a 32-bit processor"));
3825 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3826 as_bad (_("`gp=32' used with a 64-bit ABI"));
3828 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3829 as_bad (_("`gp=64' used with a 32-bit ABI"));
3831 /* Check the size of the float registers agrees with the ABI and ISA. */
3835 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3836 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3837 else if (opts->single_float == 1)
3838 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3841 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3842 as_bad (_("`fp=64' used with a 32-bit fpu"));
3844 && ABI_NEEDS_32BIT_REGS (mips_abi)
3845 && !ISA_HAS_MXHC1 (opts->isa))
3846 as_warn (_("`fp=64' used with a 32-bit ABI"));
3850 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_warn (_("`fp=32' used with a 64-bit ABI"));
3852 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3853 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3856 as_bad (_("Unknown size of floating point registers"));
3860 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3861 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3863 if (opts->micromips == 1 && opts->mips16 == 1)
3864 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3865 else if (ISA_IS_R6 (opts->isa)
3866 && (opts->micromips == 1
3867 || opts->mips16 == 1))
3868 as_fatal (_("`%s' cannot be used with `%s'"),
3869 opts->micromips ? "micromips" : "mips16",
3870 mips_cpu_info_from_isa (opts->isa)->name);
3872 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3873 as_fatal (_("branch relaxation is not supported in `%s'"),
3874 mips_cpu_info_from_isa (opts->isa)->name);
3877 /* Perform consistency checks on the module level options exactly once.
3878 This is a deferred check that happens:
3879 at the first .set directive
3880 or, at the first pseudo op that generates code (inc .dc.a)
3881 or, at the first instruction
3885 file_mips_check_options (void)
3887 const struct mips_cpu_info *arch_info = 0;
3889 if (file_mips_opts_checked)
3892 /* The following code determines the register size.
3893 Similar code was added to GCC 3.3 (see override_options() in
3894 config/mips/mips.c). The GAS and GCC code should be kept in sync
3895 as much as possible. */
3897 if (file_mips_opts.gp < 0)
3899 /* Infer the integer register size from the ABI and processor.
3900 Restrict ourselves to 32-bit registers if that's all the
3901 processor has, or if the ABI cannot handle 64-bit registers. */
3902 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3903 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3907 if (file_mips_opts.fp < 0)
3909 /* No user specified float register size.
3910 ??? GAS treats single-float processors as though they had 64-bit
3911 float registers (although it complains when double-precision
3912 instructions are used). As things stand, saying they have 32-bit
3913 registers would lead to spurious "register must be even" messages.
3914 So here we assume float registers are never smaller than the
3916 if (file_mips_opts.gp == 64)
3917 /* 64-bit integer registers implies 64-bit float registers. */
3918 file_mips_opts.fp = 64;
3919 else if ((file_mips_opts.ase & FP64_ASES)
3920 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3921 /* Handle ASEs that require 64-bit float registers, if possible. */
3922 file_mips_opts.fp = 64;
3923 else if (ISA_IS_R6 (mips_opts.isa))
3924 /* R6 implies 64-bit float registers. */
3925 file_mips_opts.fp = 64;
3927 /* 32-bit float registers. */
3928 file_mips_opts.fp = 32;
3931 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3933 /* Disable operations on odd-numbered floating-point registers by default
3934 when using the FPXX ABI. */
3935 if (file_mips_opts.oddspreg < 0)
3937 if (file_mips_opts.fp == 0)
3938 file_mips_opts.oddspreg = 0;
3940 file_mips_opts.oddspreg = 1;
3943 /* End of GCC-shared inference code. */
3945 /* This flag is set when we have a 64-bit capable CPU but use only
3946 32-bit wide registers. Note that EABI does not use it. */
3947 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3948 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3949 || mips_abi == O32_ABI))
3952 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3953 as_bad (_("trap exception not supported at ISA 1"));
3955 /* If the selected architecture includes support for ASEs, enable
3956 generation of code for them. */
3957 if (file_mips_opts.mips16 == -1)
3958 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3959 if (file_mips_opts.micromips == -1)
3960 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3963 if (mips_nan2008 == -1)
3964 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3965 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3966 as_fatal (_("`%s' does not support legacy NaN"),
3967 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3969 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3970 being selected implicitly. */
3971 if (file_mips_opts.fp != 64)
3972 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3974 /* If the user didn't explicitly select or deselect a particular ASE,
3975 use the default setting for the CPU. */
3976 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3978 /* Set up the current options. These may change throughout assembly. */
3979 mips_opts = file_mips_opts;
3981 mips_check_isa_supports_ases ();
3982 mips_check_options (&file_mips_opts, TRUE);
3983 file_mips_opts_checked = TRUE;
3985 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3986 as_warn (_("could not set architecture and machine"));
3990 md_assemble (char *str)
3992 struct mips_cl_insn insn;
3993 bfd_reloc_code_real_type unused_reloc[3]
3994 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3996 file_mips_check_options ();
3998 imm_expr.X_op = O_absent;
3999 offset_expr.X_op = O_absent;
4000 offset_reloc[0] = BFD_RELOC_UNUSED;
4001 offset_reloc[1] = BFD_RELOC_UNUSED;
4002 offset_reloc[2] = BFD_RELOC_UNUSED;
4004 mips_mark_labels ();
4005 mips_assembling_insn = TRUE;
4006 clear_insn_error ();
4008 if (mips_opts.mips16)
4009 mips16_ip (str, &insn);
4012 mips_ip (str, &insn);
4013 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4014 str, insn.insn_opcode));
4018 report_insn_error (str);
4019 else if (insn.insn_mo->pinfo == INSN_MACRO)
4022 if (mips_opts.mips16)
4023 mips16_macro (&insn);
4030 if (offset_expr.X_op != O_absent)
4031 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4033 append_insn (&insn, NULL, unused_reloc, FALSE);
4036 mips_assembling_insn = FALSE;
4039 /* Convenience functions for abstracting away the differences between
4040 MIPS16 and non-MIPS16 relocations. */
4042 static inline bfd_boolean
4043 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4047 case BFD_RELOC_MIPS16_JMP:
4048 case BFD_RELOC_MIPS16_GPREL:
4049 case BFD_RELOC_MIPS16_GOT16:
4050 case BFD_RELOC_MIPS16_CALL16:
4051 case BFD_RELOC_MIPS16_HI16_S:
4052 case BFD_RELOC_MIPS16_HI16:
4053 case BFD_RELOC_MIPS16_LO16:
4061 static inline bfd_boolean
4062 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4066 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_GPREL16:
4070 case BFD_RELOC_MICROMIPS_JMP:
4071 case BFD_RELOC_MICROMIPS_HI16:
4072 case BFD_RELOC_MICROMIPS_HI16_S:
4073 case BFD_RELOC_MICROMIPS_LO16:
4074 case BFD_RELOC_MICROMIPS_LITERAL:
4075 case BFD_RELOC_MICROMIPS_GOT16:
4076 case BFD_RELOC_MICROMIPS_CALL16:
4077 case BFD_RELOC_MICROMIPS_GOT_HI16:
4078 case BFD_RELOC_MICROMIPS_GOT_LO16:
4079 case BFD_RELOC_MICROMIPS_CALL_HI16:
4080 case BFD_RELOC_MICROMIPS_CALL_LO16:
4081 case BFD_RELOC_MICROMIPS_SUB:
4082 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4083 case BFD_RELOC_MICROMIPS_GOT_OFST:
4084 case BFD_RELOC_MICROMIPS_GOT_DISP:
4085 case BFD_RELOC_MICROMIPS_HIGHEST:
4086 case BFD_RELOC_MICROMIPS_HIGHER:
4087 case BFD_RELOC_MICROMIPS_SCN_DISP:
4088 case BFD_RELOC_MICROMIPS_JALR:
4096 static inline bfd_boolean
4097 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4099 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4102 static inline bfd_boolean
4103 got16_reloc_p (bfd_reloc_code_real_type reloc)
4105 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4106 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4109 static inline bfd_boolean
4110 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4112 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4113 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4116 static inline bfd_boolean
4117 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4119 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4120 || reloc == BFD_RELOC_MICROMIPS_LO16);
4123 static inline bfd_boolean
4124 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4126 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4129 static inline bfd_boolean
4130 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4132 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4133 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4136 /* Return true if RELOC is a PC-relative relocation that does not have
4137 full address range. */
4139 static inline bfd_boolean
4140 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4144 case BFD_RELOC_16_PCREL_S2:
4145 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4148 case BFD_RELOC_MIPS_21_PCREL_S2:
4149 case BFD_RELOC_MIPS_26_PCREL_S2:
4150 case BFD_RELOC_MIPS_18_PCREL_S3:
4151 case BFD_RELOC_MIPS_19_PCREL_S2:
4154 case BFD_RELOC_32_PCREL:
4155 case BFD_RELOC_HI16_S_PCREL:
4156 case BFD_RELOC_LO16_PCREL:
4157 return HAVE_64BIT_ADDRESSES;
4164 /* Return true if the given relocation might need a matching %lo().
4165 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4166 need a matching %lo() when applied to local symbols. */
4168 static inline bfd_boolean
4169 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4171 return (HAVE_IN_PLACE_ADDENDS
4172 && (hi16_reloc_p (reloc)
4173 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4174 all GOT16 relocations evaluate to "G". */
4175 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4178 /* Return the type of %lo() reloc needed by RELOC, given that
4179 reloc_needs_lo_p. */
4181 static inline bfd_reloc_code_real_type
4182 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4184 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4185 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4189 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4192 static inline bfd_boolean
4193 fixup_has_matching_lo_p (fixS *fixp)
4195 return (fixp->fx_next != NULL
4196 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4197 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4198 && fixp->fx_offset == fixp->fx_next->fx_offset);
4201 /* Move all labels in LABELS to the current insertion point. TEXT_P
4202 says whether the labels refer to text or data. */
4205 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4207 struct insn_label_list *l;
4210 for (l = labels; l != NULL; l = l->next)
4212 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4213 symbol_set_frag (l->label, frag_now);
4214 val = (valueT) frag_now_fix ();
4215 /* MIPS16/microMIPS text labels are stored as odd. */
4216 if (text_p && HAVE_CODE_COMPRESSION)
4218 S_SET_VALUE (l->label, val);
4222 /* Move all labels in insn_labels to the current insertion point
4223 and treat them as text labels. */
4226 mips_move_text_labels (void)
4228 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4232 s_is_linkonce (symbolS *sym, segT from_seg)
4234 bfd_boolean linkonce = FALSE;
4235 segT symseg = S_GET_SEGMENT (sym);
4237 if (symseg != from_seg && !S_IS_LOCAL (sym))
4239 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4241 /* The GNU toolchain uses an extension for ELF: a section
4242 beginning with the magic string .gnu.linkonce is a
4243 linkonce section. */
4244 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4245 sizeof ".gnu.linkonce" - 1) == 0)
4251 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4252 linker to handle them specially, such as generating jalx instructions
4253 when needed. We also make them odd for the duration of the assembly,
4254 in order to generate the right sort of code. We will make them even
4255 in the adjust_symtab routine, while leaving them marked. This is
4256 convenient for the debugger and the disassembler. The linker knows
4257 to make them odd again. */
4260 mips_compressed_mark_label (symbolS *label)
4262 gas_assert (HAVE_CODE_COMPRESSION);
4264 if (mips_opts.mips16)
4265 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4267 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4268 if ((S_GET_VALUE (label) & 1) == 0
4269 /* Don't adjust the address if the label is global or weak, or
4270 in a link-once section, since we'll be emitting symbol reloc
4271 references to it which will be patched up by the linker, and
4272 the final value of the symbol may or may not be MIPS16/microMIPS. */
4273 && !S_IS_WEAK (label)
4274 && !S_IS_EXTERNAL (label)
4275 && !s_is_linkonce (label, now_seg))
4276 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4279 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4282 mips_compressed_mark_labels (void)
4284 struct insn_label_list *l;
4286 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4287 mips_compressed_mark_label (l->label);
4290 /* End the current frag. Make it a variant frag and record the
4294 relax_close_frag (void)
4296 mips_macro_warning.first_frag = frag_now;
4297 frag_var (rs_machine_dependent, 0, 0,
4298 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4299 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4301 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4302 mips_relax.first_fixup = 0;
4305 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4306 See the comment above RELAX_ENCODE for more details. */
4309 relax_start (symbolS *symbol)
4311 gas_assert (mips_relax.sequence == 0);
4312 mips_relax.sequence = 1;
4313 mips_relax.symbol = symbol;
4316 /* Start generating the second version of a relaxable sequence.
4317 See the comment above RELAX_ENCODE for more details. */
4322 gas_assert (mips_relax.sequence == 1);
4323 mips_relax.sequence = 2;
4326 /* End the current relaxable sequence. */
4331 gas_assert (mips_relax.sequence == 2);
4332 relax_close_frag ();
4333 mips_relax.sequence = 0;
4336 /* Return true if IP is a delayed branch or jump. */
4338 static inline bfd_boolean
4339 delayed_branch_p (const struct mips_cl_insn *ip)
4341 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)) != 0;
4346 /* Return true if IP is a compact branch or jump. */
4348 static inline bfd_boolean
4349 compact_branch_p (const struct mips_cl_insn *ip)
4351 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4352 | INSN2_COND_BRANCH)) != 0;
4355 /* Return true if IP is an unconditional branch or jump. */
4357 static inline bfd_boolean
4358 uncond_branch_p (const struct mips_cl_insn *ip)
4360 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4361 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4364 /* Return true if IP is a branch-likely instruction. */
4366 static inline bfd_boolean
4367 branch_likely_p (const struct mips_cl_insn *ip)
4369 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4372 /* Return the type of nop that should be used to fill the delay slot
4373 of delayed branch IP. */
4375 static struct mips_cl_insn *
4376 get_delay_slot_nop (const struct mips_cl_insn *ip)
4378 if (mips_opts.micromips
4379 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4380 return µmips_nop32_insn;
4384 /* Return a mask that has bit N set if OPCODE reads the register(s)
4388 insn_read_mask (const struct mips_opcode *opcode)
4390 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4393 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4397 insn_write_mask (const struct mips_opcode *opcode)
4399 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4402 /* Return a mask of the registers specified by operand OPERAND of INSN.
4403 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4407 operand_reg_mask (const struct mips_cl_insn *insn,
4408 const struct mips_operand *operand,
4409 unsigned int type_mask)
4411 unsigned int uval, vsel;
4413 switch (operand->type)
4420 case OP_ADDIUSP_INT:
4421 case OP_ENTRY_EXIT_LIST:
4422 case OP_REPEAT_DEST_REG:
4423 case OP_REPEAT_PREV_REG:
4426 case OP_VU0_MATCH_SUFFIX:
4431 case OP_OPTIONAL_REG:
4433 const struct mips_reg_operand *reg_op;
4435 reg_op = (const struct mips_reg_operand *) operand;
4436 if (!(type_mask & (1 << reg_op->reg_type)))
4438 uval = insn_extract_operand (insn, operand);
4439 return 1 << mips_decode_reg_operand (reg_op, uval);
4444 const struct mips_reg_pair_operand *pair_op;
4446 pair_op = (const struct mips_reg_pair_operand *) operand;
4447 if (!(type_mask & (1 << pair_op->reg_type)))
4449 uval = insn_extract_operand (insn, operand);
4450 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4453 case OP_CLO_CLZ_DEST:
4454 if (!(type_mask & (1 << OP_REG_GP)))
4456 uval = insn_extract_operand (insn, operand);
4457 return (1 << (uval & 31)) | (1 << (uval >> 5));
4460 if (!(type_mask & (1 << OP_REG_GP)))
4462 uval = insn_extract_operand (insn, operand);
4463 gas_assert ((uval & 31) == (uval >> 5));
4464 return 1 << (uval & 31);
4467 case OP_NON_ZERO_REG:
4468 if (!(type_mask & (1 << OP_REG_GP)))
4470 uval = insn_extract_operand (insn, operand);
4471 return 1 << (uval & 31);
4473 case OP_LWM_SWM_LIST:
4476 case OP_SAVE_RESTORE_LIST:
4479 case OP_MDMX_IMM_REG:
4480 if (!(type_mask & (1 << OP_REG_VEC)))
4482 uval = insn_extract_operand (insn, operand);
4484 if ((vsel & 0x18) == 0x18)
4486 return 1 << (uval & 31);
4489 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 1 << insn_extract_operand (insn, operand);
4496 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4497 where bit N of OPNO_MASK is set if operand N should be included.
4498 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4502 insn_reg_mask (const struct mips_cl_insn *insn,
4503 unsigned int type_mask, unsigned int opno_mask)
4505 unsigned int opno, reg_mask;
4509 while (opno_mask != 0)
4512 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4519 /* Return the mask of core registers that IP reads. */
4522 gpr_read_mask (const struct mips_cl_insn *ip)
4524 unsigned long pinfo, pinfo2;
4527 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4528 pinfo = ip->insn_mo->pinfo;
4529 pinfo2 = ip->insn_mo->pinfo2;
4530 if (pinfo & INSN_UDI)
4532 /* UDI instructions have traditionally been assumed to read RS
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4537 if (pinfo & INSN_READ_GPR_24)
4539 if (pinfo2 & INSN2_READ_GPR_16)
4541 if (pinfo2 & INSN2_READ_SP)
4543 if (pinfo2 & INSN2_READ_GPR_31)
4545 /* Don't include register 0. */
4549 /* Return the mask of core registers that IP writes. */
4552 gpr_write_mask (const struct mips_cl_insn *ip)
4554 unsigned long pinfo, pinfo2;
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_WRITE_GPR_24)
4562 if (pinfo & INSN_WRITE_GPR_31)
4564 if (pinfo & INSN_UDI)
4565 /* UDI instructions have traditionally been assumed to write to RD. */
4566 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4567 if (pinfo2 & INSN2_WRITE_SP)
4569 /* Don't include register 0. */
4573 /* Return the mask of floating-point registers that IP reads. */
4576 fpr_read_mask (const struct mips_cl_insn *ip)
4578 unsigned long pinfo;
4581 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4582 | (1 << OP_REG_MSA)),
4583 insn_read_mask (ip->insn_mo));
4584 pinfo = ip->insn_mo->pinfo;
4585 /* Conservatively treat all operands to an FP_D instruction are doubles.
4586 (This is overly pessimistic for things like cvt.d.s.) */
4587 if (FPR_SIZE != 64 && (pinfo & FP_D))
4592 /* Return the mask of floating-point registers that IP writes. */
4595 fpr_write_mask (const struct mips_cl_insn *ip)
4597 unsigned long pinfo;
4600 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4601 | (1 << OP_REG_MSA)),
4602 insn_write_mask (ip->insn_mo));
4603 pinfo = ip->insn_mo->pinfo;
4604 /* Conservatively treat all operands to an FP_D instruction are doubles.
4605 (This is overly pessimistic for things like cvt.s.d.) */
4606 if (FPR_SIZE != 64 && (pinfo & FP_D))
4611 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4612 Check whether that is allowed. */
4615 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4617 const char *s = insn->name;
4618 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4620 && mips_opts.oddspreg;
4622 if (insn->pinfo == INSN_MACRO)
4623 /* Let a macro pass, we'll catch it later when it is expanded. */
4626 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4627 otherwise it depends on oddspreg. */
4628 if ((insn->pinfo & FP_S)
4629 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4630 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4631 return FPR_SIZE == 32 || oddspreg;
4633 /* Allow odd registers for single-precision ops and double-precision if the
4634 floating-point registers are 64-bit wide. */
4635 switch (insn->pinfo & (FP_S | FP_D))
4641 return FPR_SIZE == 64;
4646 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4647 s = strchr (insn->name, '.');
4648 if (s != NULL && opnum == 2)
4649 s = strchr (s + 1, '.');
4650 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4653 return FPR_SIZE == 64;
4656 /* Information about an instruction argument that we're trying to match. */
4657 struct mips_arg_info
4659 /* The instruction so far. */
4660 struct mips_cl_insn *insn;
4662 /* The first unconsumed operand token. */
4663 struct mips_operand_token *token;
4665 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4668 /* The 1-based argument number, for error reporting. This does not
4669 count elided optional registers, etc.. */
4672 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4673 unsigned int last_regno;
4675 /* If the first operand was an OP_REG, this is the register that it
4676 specified, otherwise it is ILLEGAL_REG. */
4677 unsigned int dest_regno;
4679 /* The value of the last OP_INT operand. Only used for OP_MSB,
4680 where it gives the lsb position. */
4681 unsigned int last_op_int;
4683 /* If true, match routines should assume that no later instruction
4684 alternative matches and should therefore be as accomodating as
4685 possible. Match routines should not report errors if something
4686 is only invalid for !LAX_MATCH. */
4687 bfd_boolean lax_match;
4689 /* True if a reference to the current AT register was seen. */
4690 bfd_boolean seen_at;
4693 /* Record that the argument is out of range. */
4696 match_out_of_range (struct mips_arg_info *arg)
4698 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4701 /* Record that the argument isn't constant but needs to be. */
4704 match_not_constant (struct mips_arg_info *arg)
4706 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4710 /* Try to match an OT_CHAR token for character CH. Consume the token
4711 and return true on success, otherwise return false. */
4714 match_char (struct mips_arg_info *arg, char ch)
4716 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 /* Try to get an expression from the next tokens in ARG. Consume the
4727 tokens and return true on success, storing the expression value in
4728 VALUE and relocation types in R. */
4731 match_expression (struct mips_arg_info *arg, expressionS *value,
4732 bfd_reloc_code_real_type *r)
4734 /* If the next token is a '(' that was parsed as being part of a base
4735 expression, assume we have an elided offset. The later match will fail
4736 if this turns out to be wrong. */
4737 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4739 value->X_op = O_constant;
4740 value->X_add_number = 0;
4741 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4745 /* Reject register-based expressions such as "0+$2" and "(($2))".
4746 For plain registers the default error seems more appropriate. */
4747 if (arg->token->type == OT_INTEGER
4748 && arg->token->u.integer.value.X_op == O_register)
4750 set_insn_error (arg->argnum, _("register value used as expression"));
4754 if (arg->token->type == OT_INTEGER)
4756 *value = arg->token->u.integer.value;
4757 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4763 (arg->argnum, _("operand %d must be an immediate expression"),
4768 /* Try to get a constant expression from the next tokens in ARG. Consume
4769 the tokens and return return true on success, storing the constant value
4770 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4774 match_const_int (struct mips_arg_info *arg, offsetT *value)
4777 bfd_reloc_code_real_type r[3];
4779 if (!match_expression (arg, &ex, r))
4782 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4783 *value = ex.X_add_number;
4786 match_not_constant (arg);
4792 /* Return the RTYPE_* flags for a register operand of type TYPE that
4793 appears in instruction OPCODE. */
4796 convert_reg_type (const struct mips_opcode *opcode,
4797 enum mips_reg_operand_type type)
4802 return RTYPE_NUM | RTYPE_GP;
4805 /* Allow vector register names for MDMX if the instruction is a 64-bit
4806 FPR load, store or move (including moves to and from GPRs). */
4807 if ((mips_opts.ase & ASE_MDMX)
4808 && (opcode->pinfo & FP_D)
4809 && (opcode->pinfo & (INSN_COPROC_MOVE
4810 | INSN_COPROC_MEMORY_DELAY
4813 | INSN_STORE_MEMORY)))
4814 return RTYPE_FPU | RTYPE_VEC;
4818 if (opcode->pinfo & (FP_D | FP_S))
4819 return RTYPE_CCC | RTYPE_FCC;
4823 if (opcode->membership & INSN_5400)
4825 return RTYPE_FPU | RTYPE_VEC;
4831 if (opcode->name[strlen (opcode->name) - 1] == '0')
4832 return RTYPE_NUM | RTYPE_CP0;
4839 return RTYPE_NUM | RTYPE_VI;
4842 return RTYPE_NUM | RTYPE_VF;
4844 case OP_REG_R5900_I:
4845 return RTYPE_R5900_I;
4847 case OP_REG_R5900_Q:
4848 return RTYPE_R5900_Q;
4850 case OP_REG_R5900_R:
4851 return RTYPE_R5900_R;
4853 case OP_REG_R5900_ACC:
4854 return RTYPE_R5900_ACC;
4859 case OP_REG_MSA_CTRL:
4865 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4868 check_regno (struct mips_arg_info *arg,
4869 enum mips_reg_operand_type type, unsigned int regno)
4871 if (AT && type == OP_REG_GP && regno == AT)
4872 arg->seen_at = TRUE;
4874 if (type == OP_REG_FP
4876 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4878 /* This was a warning prior to introducing O32 FPXX and FP64 support
4879 so maintain a warning for FP32 but raise an error for the new
4882 as_warn (_("float register should be even, was %d"), regno);
4884 as_bad (_("float register should be even, was %d"), regno);
4887 if (type == OP_REG_CCC)
4892 name = arg->insn->insn_mo->name;
4893 length = strlen (name);
4894 if ((regno & 1) != 0
4895 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4896 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4897 as_warn (_("condition code register should be even for %s, was %d"),
4900 if ((regno & 3) != 0
4901 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4902 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4907 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4908 a register of type TYPE. Return true on success, storing the register
4909 number in *REGNO and warning about any dubious uses. */
4912 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4913 unsigned int symval, unsigned int *regno)
4915 if (type == OP_REG_VEC)
4916 symval = mips_prefer_vec_regno (symval);
4917 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4920 *regno = symval & RNUM_MASK;
4921 check_regno (arg, type, *regno);
4925 /* Try to interpret the next token in ARG as a register of type TYPE.
4926 Consume the token and return true on success, storing the register
4927 number in *REGNO. Return false on failure. */
4930 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4931 unsigned int *regno)
4933 if (arg->token->type == OT_REG
4934 && match_regno (arg, type, arg->token->u.regno, regno))
4942 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4943 Consume the token and return true on success, storing the register numbers
4944 in *REGNO1 and *REGNO2. Return false on failure. */
4947 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4948 unsigned int *regno1, unsigned int *regno2)
4950 if (match_reg (arg, type, regno1))
4955 if (arg->token->type == OT_REG_RANGE
4956 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4957 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4958 && *regno1 <= *regno2)
4966 /* OP_INT matcher. */
4969 match_int_operand (struct mips_arg_info *arg,
4970 const struct mips_operand *operand_base)
4972 const struct mips_int_operand *operand;
4974 int min_val, max_val, factor;
4977 operand = (const struct mips_int_operand *) operand_base;
4978 factor = 1 << operand->shift;
4979 min_val = mips_int_operand_min (operand);
4980 max_val = mips_int_operand_max (operand);
4982 if (operand_base->lsb == 0
4983 && operand_base->size == 16
4984 && operand->shift == 0
4985 && operand->bias == 0
4986 && (operand->max_val == 32767 || operand->max_val == 65535))
4988 /* The operand can be relocated. */
4989 if (!match_expression (arg, &offset_expr, offset_reloc))
4992 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4993 /* Relocation operators were used. Accept the arguent and
4994 leave the relocation value in offset_expr and offset_relocs
4995 for the caller to process. */
4998 if (offset_expr.X_op != O_constant)
5000 /* Accept non-constant operands if no later alternative matches,
5001 leaving it for the caller to process. */
5002 if (!arg->lax_match)
5004 offset_reloc[0] = BFD_RELOC_LO16;
5008 /* Clear the global state; we're going to install the operand
5010 sval = offset_expr.X_add_number;
5011 offset_expr.X_op = O_absent;
5013 /* For compatibility with older assemblers, we accept
5014 0x8000-0xffff as signed 16-bit numbers when only
5015 signed numbers are allowed. */
5018 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5019 if (!arg->lax_match && sval <= max_val)
5025 if (!match_const_int (arg, &sval))
5029 arg->last_op_int = sval;
5031 if (sval < min_val || sval > max_val || sval % factor)
5033 match_out_of_range (arg);
5037 uval = (unsigned int) sval >> operand->shift;
5038 uval -= operand->bias;
5040 /* Handle -mfix-cn63xxp1. */
5042 && mips_fix_cn63xxp1
5043 && !mips_opts.micromips
5044 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5059 /* The rest must be changed to 28. */
5064 insn_insert_operand (arg->insn, operand_base, uval);
5068 /* OP_MAPPED_INT matcher. */
5071 match_mapped_int_operand (struct mips_arg_info *arg,
5072 const struct mips_operand *operand_base)
5074 const struct mips_mapped_int_operand *operand;
5075 unsigned int uval, num_vals;
5078 operand = (const struct mips_mapped_int_operand *) operand_base;
5079 if (!match_const_int (arg, &sval))
5082 num_vals = 1 << operand_base->size;
5083 for (uval = 0; uval < num_vals; uval++)
5084 if (operand->int_map[uval] == sval)
5086 if (uval == num_vals)
5088 match_out_of_range (arg);
5092 insn_insert_operand (arg->insn, operand_base, uval);
5096 /* OP_MSB matcher. */
5099 match_msb_operand (struct mips_arg_info *arg,
5100 const struct mips_operand *operand_base)
5102 const struct mips_msb_operand *operand;
5103 int min_val, max_val, max_high;
5104 offsetT size, sval, high;
5106 operand = (const struct mips_msb_operand *) operand_base;
5107 min_val = operand->bias;
5108 max_val = min_val + (1 << operand_base->size) - 1;
5109 max_high = operand->opsize;
5111 if (!match_const_int (arg, &size))
5114 high = size + arg->last_op_int;
5115 sval = operand->add_lsb ? high : size;
5117 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5119 match_out_of_range (arg);
5122 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5126 /* OP_REG matcher. */
5129 match_reg_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5132 const struct mips_reg_operand *operand;
5133 unsigned int regno, uval, num_vals;
5135 operand = (const struct mips_reg_operand *) operand_base;
5136 if (!match_reg (arg, operand->reg_type, ®no))
5139 if (operand->reg_map)
5141 num_vals = 1 << operand->root.size;
5142 for (uval = 0; uval < num_vals; uval++)
5143 if (operand->reg_map[uval] == regno)
5145 if (num_vals == uval)
5151 arg->last_regno = regno;
5152 if (arg->opnum == 1)
5153 arg->dest_regno = regno;
5154 insn_insert_operand (arg->insn, operand_base, uval);
5158 /* OP_REG_PAIR matcher. */
5161 match_reg_pair_operand (struct mips_arg_info *arg,
5162 const struct mips_operand *operand_base)
5164 const struct mips_reg_pair_operand *operand;
5165 unsigned int regno1, regno2, uval, num_vals;
5167 operand = (const struct mips_reg_pair_operand *) operand_base;
5168 if (!match_reg (arg, operand->reg_type, ®no1)
5169 || !match_char (arg, ',')
5170 || !match_reg (arg, operand->reg_type, ®no2))
5173 num_vals = 1 << operand_base->size;
5174 for (uval = 0; uval < num_vals; uval++)
5175 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5177 if (uval == num_vals)
5180 insn_insert_operand (arg->insn, operand_base, uval);
5184 /* OP_PCREL matcher. The caller chooses the relocation type. */
5187 match_pcrel_operand (struct mips_arg_info *arg)
5189 bfd_reloc_code_real_type r[3];
5191 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5194 /* OP_PERF_REG matcher. */
5197 match_perf_reg_operand (struct mips_arg_info *arg,
5198 const struct mips_operand *operand)
5202 if (!match_const_int (arg, &sval))
5207 || (mips_opts.arch == CPU_R5900
5208 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5209 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5211 set_insn_error (arg->argnum, _("invalid performance register"));
5215 insn_insert_operand (arg->insn, operand, sval);
5219 /* OP_ADDIUSP matcher. */
5222 match_addiusp_operand (struct mips_arg_info *arg,
5223 const struct mips_operand *operand)
5228 if (!match_const_int (arg, &sval))
5233 match_out_of_range (arg);
5238 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5240 match_out_of_range (arg);
5244 uval = (unsigned int) sval;
5245 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5246 insn_insert_operand (arg->insn, operand, uval);
5250 /* OP_CLO_CLZ_DEST matcher. */
5253 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5254 const struct mips_operand *operand)
5258 if (!match_reg (arg, OP_REG_GP, ®no))
5261 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5265 /* OP_CHECK_PREV matcher. */
5268 match_check_prev_operand (struct mips_arg_info *arg,
5269 const struct mips_operand *operand_base)
5271 const struct mips_check_prev_operand *operand;
5274 operand = (const struct mips_check_prev_operand *) operand_base;
5276 if (!match_reg (arg, OP_REG_GP, ®no))
5279 if (!operand->zero_ok && regno == 0)
5282 if ((operand->less_than_ok && regno < arg->last_regno)
5283 || (operand->greater_than_ok && regno > arg->last_regno)
5284 || (operand->equal_ok && regno == arg->last_regno))
5286 arg->last_regno = regno;
5287 insn_insert_operand (arg->insn, operand_base, regno);
5294 /* OP_SAME_RS_RT matcher. */
5297 match_same_rs_rt_operand (struct mips_arg_info *arg,
5298 const struct mips_operand *operand)
5302 if (!match_reg (arg, OP_REG_GP, ®no))
5307 set_insn_error (arg->argnum, _("the source register must not be $0"));
5311 arg->last_regno = regno;
5313 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5317 /* OP_LWM_SWM_LIST matcher. */
5320 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5323 unsigned int reglist, sregs, ra, regno1, regno2;
5324 struct mips_arg_info reset;
5327 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5331 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5336 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5339 while (match_char (arg, ',')
5340 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5343 if (operand->size == 2)
5345 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5351 and any permutations of these. */
5352 if ((reglist & 0xfff1ffff) != 0x80010000)
5355 sregs = (reglist >> 17) & 7;
5360 /* The list must include at least one of ra and s0-sN,
5361 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5362 which are $23 and $30 respectively.) E.g.:
5370 and any permutations of these. */
5371 if ((reglist & 0x3f00ffff) != 0)
5374 ra = (reglist >> 27) & 0x10;
5375 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5378 if ((sregs & -sregs) != sregs)
5381 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5385 /* OP_ENTRY_EXIT_LIST matcher. */
5388 match_entry_exit_operand (struct mips_arg_info *arg,
5389 const struct mips_operand *operand)
5392 bfd_boolean is_exit;
5394 /* The format is the same for both ENTRY and EXIT, but the constraints
5396 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5397 mask = (is_exit ? 7 << 3 : 0);
5400 unsigned int regno1, regno2;
5401 bfd_boolean is_freg;
5403 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5405 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5410 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5413 mask |= (5 + regno2) << 3;
5415 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5416 mask |= (regno2 - 3) << 3;
5417 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5418 mask |= (regno2 - 15) << 1;
5419 else if (regno1 == RA && regno2 == RA)
5424 while (match_char (arg, ','));
5426 insn_insert_operand (arg->insn, operand, mask);
5430 /* OP_SAVE_RESTORE_LIST matcher. */
5433 match_save_restore_list_operand (struct mips_arg_info *arg)
5435 unsigned int opcode, args, statics, sregs;
5436 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5439 opcode = arg->insn->insn_opcode;
5441 num_frame_sizes = 0;
5447 unsigned int regno1, regno2;
5449 if (arg->token->type == OT_INTEGER)
5451 /* Handle the frame size. */
5452 if (!match_const_int (arg, &frame_size))
5454 num_frame_sizes += 1;
5458 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5461 while (regno1 <= regno2)
5463 if (regno1 >= 4 && regno1 <= 7)
5465 if (num_frame_sizes == 0)
5467 args |= 1 << (regno1 - 4);
5469 /* statics $a0-$a3 */
5470 statics |= 1 << (regno1 - 4);
5472 else if (regno1 >= 16 && regno1 <= 23)
5474 sregs |= 1 << (regno1 - 16);
5475 else if (regno1 == 30)
5478 else if (regno1 == 31)
5479 /* Add $ra to insn. */
5489 while (match_char (arg, ','));
5491 /* Encode args/statics combination. */
5494 else if (args == 0xf)
5495 /* All $a0-$a3 are args. */
5496 opcode |= MIPS16_ALL_ARGS << 16;
5497 else if (statics == 0xf)
5498 /* All $a0-$a3 are statics. */
5499 opcode |= MIPS16_ALL_STATICS << 16;
5502 /* Count arg registers. */
5512 /* Count static registers. */
5514 while (statics & 0x8)
5516 statics = (statics << 1) & 0xf;
5522 /* Encode args/statics. */
5523 opcode |= ((num_args << 2) | num_statics) << 16;
5526 /* Encode $s0/$s1. */
5527 if (sregs & (1 << 0)) /* $s0 */
5529 if (sregs & (1 << 1)) /* $s1 */
5533 /* Encode $s2-$s8. */
5542 opcode |= num_sregs << 24;
5544 /* Encode frame size. */
5545 if (num_frame_sizes == 0)
5547 set_insn_error (arg->argnum, _("missing frame size"));
5550 if (num_frame_sizes > 1)
5552 set_insn_error (arg->argnum, _("frame size specified twice"));
5555 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5557 set_insn_error (arg->argnum, _("invalid frame size"));
5560 if (frame_size != 128 || (opcode >> 16) != 0)
5563 opcode |= (((frame_size & 0xf0) << 16)
5564 | (frame_size & 0x0f));
5567 /* Finally build the instruction. */
5568 if ((opcode >> 16) != 0 || frame_size == 0)
5569 opcode |= MIPS16_EXTEND;
5570 arg->insn->insn_opcode = opcode;
5574 /* OP_MDMX_IMM_REG matcher. */
5577 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5578 const struct mips_operand *operand)
5580 unsigned int regno, uval;
5582 const struct mips_opcode *opcode;
5584 /* The mips_opcode records whether this is an octobyte or quadhalf
5585 instruction. Start out with that bit in place. */
5586 opcode = arg->insn->insn_mo;
5587 uval = mips_extract_operand (operand, opcode->match);
5588 is_qh = (uval != 0);
5590 if (arg->token->type == OT_REG)
5592 if ((opcode->membership & INSN_5400)
5593 && strcmp (opcode->name, "rzu.ob") == 0)
5595 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5600 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5604 /* Check whether this is a vector register or a broadcast of
5605 a single element. */
5606 if (arg->token->type == OT_INTEGER_INDEX)
5608 if (arg->token->u.index > (is_qh ? 3 : 7))
5610 set_insn_error (arg->argnum, _("invalid element selector"));
5613 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5618 /* A full vector. */
5619 if ((opcode->membership & INSN_5400)
5620 && (strcmp (opcode->name, "sll.ob") == 0
5621 || strcmp (opcode->name, "srl.ob") == 0))
5623 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5629 uval |= MDMX_FMTSEL_VEC_QH << 5;
5631 uval |= MDMX_FMTSEL_VEC_OB << 5;
5639 if (!match_const_int (arg, &sval))
5641 if (sval < 0 || sval > 31)
5643 match_out_of_range (arg);
5646 uval |= (sval & 31);
5648 uval |= MDMX_FMTSEL_IMM_QH << 5;
5650 uval |= MDMX_FMTSEL_IMM_OB << 5;
5652 insn_insert_operand (arg->insn, operand, uval);
5656 /* OP_IMM_INDEX matcher. */
5659 match_imm_index_operand (struct mips_arg_info *arg,
5660 const struct mips_operand *operand)
5662 unsigned int max_val;
5664 if (arg->token->type != OT_INTEGER_INDEX)
5667 max_val = (1 << operand->size) - 1;
5668 if (arg->token->u.index > max_val)
5670 match_out_of_range (arg);
5673 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5678 /* OP_REG_INDEX matcher. */
5681 match_reg_index_operand (struct mips_arg_info *arg,
5682 const struct mips_operand *operand)
5686 if (arg->token->type != OT_REG_INDEX)
5689 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5692 insn_insert_operand (arg->insn, operand, regno);
5697 /* OP_PC matcher. */
5700 match_pc_operand (struct mips_arg_info *arg)
5702 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5710 /* OP_NON_ZERO_REG matcher. */
5713 match_non_zero_reg_operand (struct mips_arg_info *arg,
5714 const struct mips_operand *operand)
5718 if (!match_reg (arg, OP_REG_GP, ®no))
5724 arg->last_regno = regno;
5725 insn_insert_operand (arg->insn, operand, regno);
5729 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5730 register that we need to match. */
5733 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5737 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5740 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5741 the length of the value in bytes (4 for float, 8 for double) and
5742 USING_GPRS says whether the destination is a GPR rather than an FPR.
5744 Return the constant in IMM and OFFSET as follows:
5746 - If the constant should be loaded via memory, set IMM to O_absent and
5747 OFFSET to the memory address.
5749 - Otherwise, if the constant should be loaded into two 32-bit registers,
5750 set IMM to the O_constant to load into the high register and OFFSET
5751 to the corresponding value for the low register.
5753 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5755 These constants only appear as the last operand in an instruction,
5756 and every instruction that accepts them in any variant accepts them
5757 in all variants. This means we don't have to worry about backing out
5758 any changes if the instruction does not match. We just match
5759 unconditionally and report an error if the constant is invalid. */
5762 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5763 expressionS *offset, int length, bfd_boolean using_gprs)
5768 const char *newname;
5769 unsigned char *data;
5771 /* Where the constant is placed is based on how the MIPS assembler
5774 length == 4 && using_gprs -- immediate value only
5775 length == 8 && using_gprs -- .rdata or immediate value
5776 length == 4 && !using_gprs -- .lit4 or immediate value
5777 length == 8 && !using_gprs -- .lit8 or immediate value
5779 The .lit4 and .lit8 sections are only used if permitted by the
5781 if (arg->token->type != OT_FLOAT)
5783 set_insn_error (arg->argnum, _("floating-point expression required"));
5787 gas_assert (arg->token->u.flt.length == length);
5788 data = arg->token->u.flt.data;
5791 /* Handle 32-bit constants for which an immediate value is best. */
5794 || g_switch_value < 4
5795 || (data[0] == 0 && data[1] == 0)
5796 || (data[2] == 0 && data[3] == 0)))
5798 imm->X_op = O_constant;
5799 if (!target_big_endian)
5800 imm->X_add_number = bfd_getl32 (data);
5802 imm->X_add_number = bfd_getb32 (data);
5803 offset->X_op = O_absent;
5807 /* Handle 64-bit constants for which an immediate value is best. */
5809 && !mips_disable_float_construction
5810 /* Constants can only be constructed in GPRs and copied to FPRs if the
5811 GPRs are at least as wide as the FPRs or MTHC1 is available.
5812 Unlike most tests for 32-bit floating-point registers this check
5813 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5814 permit 64-bit moves without MXHC1.
5815 Force the constant into memory otherwise. */
5818 || ISA_HAS_MXHC1 (mips_opts.isa)
5820 && ((data[0] == 0 && data[1] == 0)
5821 || (data[2] == 0 && data[3] == 0))
5822 && ((data[4] == 0 && data[5] == 0)
5823 || (data[6] == 0 && data[7] == 0)))
5825 /* The value is simple enough to load with a couple of instructions.
5826 If using 32-bit registers, set IMM to the high order 32 bits and
5827 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5829 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5831 imm->X_op = O_constant;
5832 offset->X_op = O_constant;
5833 if (!target_big_endian)
5835 imm->X_add_number = bfd_getl32 (data + 4);
5836 offset->X_add_number = bfd_getl32 (data);
5840 imm->X_add_number = bfd_getb32 (data);
5841 offset->X_add_number = bfd_getb32 (data + 4);
5843 if (offset->X_add_number == 0)
5844 offset->X_op = O_absent;
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl64 (data);
5852 imm->X_add_number = bfd_getb64 (data);
5853 offset->X_op = O_absent;
5858 /* Switch to the right section. */
5860 subseg = now_subseg;
5863 gas_assert (!using_gprs && g_switch_value >= 4);
5868 if (using_gprs || g_switch_value < 8)
5869 newname = RDATA_SECTION_NAME;
5874 new_seg = subseg_new (newname, (subsegT) 0);
5875 bfd_set_section_flags (stdoutput, new_seg,
5876 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5877 frag_align (length == 4 ? 2 : 3, 0, 0);
5878 if (strncmp (TARGET_OS, "elf", 3) != 0)
5879 record_alignment (new_seg, 4);
5881 record_alignment (new_seg, length == 4 ? 2 : 3);
5883 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5885 /* Set the argument to the current address in the section. */
5886 imm->X_op = O_absent;
5887 offset->X_op = O_symbol;
5888 offset->X_add_symbol = symbol_temp_new_now ();
5889 offset->X_add_number = 0;
5891 /* Put the floating point number into the section. */
5892 p = frag_more (length);
5893 memcpy (p, data, length);
5895 /* Switch back to the original section. */
5896 subseg_set (seg, subseg);
5900 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5904 match_vu0_suffix_operand (struct mips_arg_info *arg,
5905 const struct mips_operand *operand,
5906 bfd_boolean match_p)
5910 /* The operand can be an XYZW mask or a single 2-bit channel index
5911 (with X being 0). */
5912 gas_assert (operand->size == 2 || operand->size == 4);
5914 /* The suffix can be omitted when it is already part of the opcode. */
5915 if (arg->token->type != OT_CHANNELS)
5918 uval = arg->token->u.channels;
5919 if (operand->size == 2)
5921 /* Check that a single bit is set and convert it into a 2-bit index. */
5922 if ((uval & -uval) != uval)
5924 uval = 4 - ffs (uval);
5927 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5932 insn_insert_operand (arg->insn, operand, uval);
5936 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5937 of the argument text if the match is successful, otherwise return null. */
5940 match_operand (struct mips_arg_info *arg,
5941 const struct mips_operand *operand)
5943 switch (operand->type)
5946 return match_int_operand (arg, operand);
5949 return match_mapped_int_operand (arg, operand);
5952 return match_msb_operand (arg, operand);
5955 case OP_OPTIONAL_REG:
5956 return match_reg_operand (arg, operand);
5959 return match_reg_pair_operand (arg, operand);
5962 return match_pcrel_operand (arg);
5965 return match_perf_reg_operand (arg, operand);
5967 case OP_ADDIUSP_INT:
5968 return match_addiusp_operand (arg, operand);
5970 case OP_CLO_CLZ_DEST:
5971 return match_clo_clz_dest_operand (arg, operand);
5973 case OP_LWM_SWM_LIST:
5974 return match_lwm_swm_list_operand (arg, operand);
5976 case OP_ENTRY_EXIT_LIST:
5977 return match_entry_exit_operand (arg, operand);
5979 case OP_SAVE_RESTORE_LIST:
5980 return match_save_restore_list_operand (arg);
5982 case OP_MDMX_IMM_REG:
5983 return match_mdmx_imm_reg_operand (arg, operand);
5985 case OP_REPEAT_DEST_REG:
5986 return match_tied_reg_operand (arg, arg->dest_regno);
5988 case OP_REPEAT_PREV_REG:
5989 return match_tied_reg_operand (arg, arg->last_regno);
5992 return match_pc_operand (arg);
5995 return match_vu0_suffix_operand (arg, operand, FALSE);
5997 case OP_VU0_MATCH_SUFFIX:
5998 return match_vu0_suffix_operand (arg, operand, TRUE);
6001 return match_imm_index_operand (arg, operand);
6004 return match_reg_index_operand (arg, operand);
6007 return match_same_rs_rt_operand (arg, operand);
6010 return match_check_prev_operand (arg, operand);
6012 case OP_NON_ZERO_REG:
6013 return match_non_zero_reg_operand (arg, operand);
6018 /* ARG is the state after successfully matching an instruction.
6019 Issue any queued-up warnings. */
6022 check_completed_insn (struct mips_arg_info *arg)
6027 as_warn (_("used $at without \".set noat\""));
6029 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6033 /* Return true if modifying general-purpose register REG needs a delay. */
6036 reg_needs_delay (unsigned int reg)
6038 unsigned long prev_pinfo;
6040 prev_pinfo = history[0].insn_mo->pinfo;
6041 if (!mips_opts.noreorder
6042 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6043 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6044 && (gpr_write_mask (&history[0]) & (1 << reg)))
6050 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6051 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6052 by VR4120 errata. */
6055 classify_vr4120_insn (const char *name)
6057 if (strncmp (name, "macc", 4) == 0)
6058 return FIX_VR4120_MACC;
6059 if (strncmp (name, "dmacc", 5) == 0)
6060 return FIX_VR4120_DMACC;
6061 if (strncmp (name, "mult", 4) == 0)
6062 return FIX_VR4120_MULT;
6063 if (strncmp (name, "dmult", 5) == 0)
6064 return FIX_VR4120_DMULT;
6065 if (strstr (name, "div"))
6066 return FIX_VR4120_DIV;
6067 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6068 return FIX_VR4120_MTHILO;
6069 return NUM_FIX_VR4120_CLASSES;
6072 #define INSN_ERET 0x42000018
6073 #define INSN_DERET 0x4200001f
6074 #define INSN_DMULT 0x1c
6075 #define INSN_DMULTU 0x1d
6077 /* Return the number of instructions that must separate INSN1 and INSN2,
6078 where INSN1 is the earlier instruction. Return the worst-case value
6079 for any INSN2 if INSN2 is null. */
6082 insns_between (const struct mips_cl_insn *insn1,
6083 const struct mips_cl_insn *insn2)
6085 unsigned long pinfo1, pinfo2;
6088 /* If INFO2 is null, pessimistically assume that all flags are set for
6089 the second instruction. */
6090 pinfo1 = insn1->insn_mo->pinfo;
6091 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6093 /* For most targets, write-after-read dependencies on the HI and LO
6094 registers must be separated by at least two instructions. */
6095 if (!hilo_interlocks)
6097 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6099 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6103 /* If we're working around r7000 errata, there must be two instructions
6104 between an mfhi or mflo and any instruction that uses the result. */
6105 if (mips_7000_hilo_fix
6106 && !mips_opts.micromips
6107 && MF_HILO_INSN (pinfo1)
6108 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6111 /* If we're working around 24K errata, one instruction is required
6112 if an ERET or DERET is followed by a branch instruction. */
6113 if (mips_fix_24k && !mips_opts.micromips)
6115 if (insn1->insn_opcode == INSN_ERET
6116 || insn1->insn_opcode == INSN_DERET)
6119 || insn2->insn_opcode == INSN_ERET
6120 || insn2->insn_opcode == INSN_DERET
6121 || delayed_branch_p (insn2))
6126 /* If we're working around PMC RM7000 errata, there must be three
6127 nops between a dmult and a load instruction. */
6128 if (mips_fix_rm7000 && !mips_opts.micromips)
6130 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6131 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6133 if (pinfo2 & INSN_LOAD_MEMORY)
6138 /* If working around VR4120 errata, check for combinations that need
6139 a single intervening instruction. */
6140 if (mips_fix_vr4120 && !mips_opts.micromips)
6142 unsigned int class1, class2;
6144 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6145 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6149 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6150 if (vr4120_conflicts[class1] & (1 << class2))
6155 if (!HAVE_CODE_COMPRESSION)
6157 /* Check for GPR or coprocessor load delays. All such delays
6158 are on the RT register. */
6159 /* Itbl support may require additional care here. */
6160 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6161 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6163 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6167 /* Check for generic coprocessor hazards.
6169 This case is not handled very well. There is no special
6170 knowledge of CP0 handling, and the coprocessors other than
6171 the floating point unit are not distinguished at all. */
6172 /* Itbl support may require additional care here. FIXME!
6173 Need to modify this to include knowledge about
6174 user specified delays! */
6175 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6176 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6178 /* Handle cases where INSN1 writes to a known general coprocessor
6179 register. There must be a one instruction delay before INSN2
6180 if INSN2 reads that register, otherwise no delay is needed. */
6181 mask = fpr_write_mask (insn1);
6184 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6189 /* Read-after-write dependencies on the control registers
6190 require a two-instruction gap. */
6191 if ((pinfo1 & INSN_WRITE_COND_CODE)
6192 && (pinfo2 & INSN_READ_COND_CODE))
6195 /* We don't know exactly what INSN1 does. If INSN2 is
6196 also a coprocessor instruction, assume there must be
6197 a one instruction gap. */
6198 if (pinfo2 & INSN_COP)
6203 /* Check for read-after-write dependencies on the coprocessor
6204 control registers in cases where INSN1 does not need a general
6205 coprocessor delay. This means that INSN1 is a floating point
6206 comparison instruction. */
6207 /* Itbl support may require additional care here. */
6208 else if (!cop_interlocks
6209 && (pinfo1 & INSN_WRITE_COND_CODE)
6210 && (pinfo2 & INSN_READ_COND_CODE))
6214 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6215 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6217 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6218 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6219 || (insn2 && delayed_branch_p (insn2))))
6225 /* Return the number of nops that would be needed to work around the
6226 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6227 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6228 that are contained within the first IGNORE instructions of HIST. */
6231 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6232 const struct mips_cl_insn *insn)
6237 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6238 are not affected by the errata. */
6240 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6241 || strcmp (insn->insn_mo->name, "mtlo") == 0
6242 || strcmp (insn->insn_mo->name, "mthi") == 0))
6245 /* Search for the first MFLO or MFHI. */
6246 for (i = 0; i < MAX_VR4130_NOPS; i++)
6247 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6249 /* Extract the destination register. */
6250 mask = gpr_write_mask (&hist[i]);
6252 /* No nops are needed if INSN reads that register. */
6253 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6256 /* ...or if any of the intervening instructions do. */
6257 for (j = 0; j < i; j++)
6258 if (gpr_read_mask (&hist[j]) & mask)
6262 return MAX_VR4130_NOPS - i;
6267 #define BASE_REG_EQ(INSN1, INSN2) \
6268 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6269 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6271 /* Return the minimum alignment for this store instruction. */
6274 fix_24k_align_to (const struct mips_opcode *mo)
6276 if (strcmp (mo->name, "sh") == 0)
6279 if (strcmp (mo->name, "swc1") == 0
6280 || strcmp (mo->name, "swc2") == 0
6281 || strcmp (mo->name, "sw") == 0
6282 || strcmp (mo->name, "sc") == 0
6283 || strcmp (mo->name, "s.s") == 0)
6286 if (strcmp (mo->name, "sdc1") == 0
6287 || strcmp (mo->name, "sdc2") == 0
6288 || strcmp (mo->name, "s.d") == 0)
6295 struct fix_24k_store_info
6297 /* Immediate offset, if any, for this store instruction. */
6299 /* Alignment required by this store instruction. */
6301 /* True for register offsets. */
6302 int register_offset;
6305 /* Comparison function used by qsort. */
6308 fix_24k_sort (const void *a, const void *b)
6310 const struct fix_24k_store_info *pos1 = a;
6311 const struct fix_24k_store_info *pos2 = b;
6313 return (pos1->off - pos2->off);
6316 /* INSN is a store instruction. Try to record the store information
6317 in STINFO. Return false if the information isn't known. */
6320 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6321 const struct mips_cl_insn *insn)
6323 /* The instruction must have a known offset. */
6324 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6327 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6328 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6332 /* Return the number of nops that would be needed to work around the 24k
6333 "lost data on stores during refill" errata if instruction INSN
6334 immediately followed the 2 instructions described by HIST.
6335 Ignore hazards that are contained within the first IGNORE
6336 instructions of HIST.
6338 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6339 for the data cache refills and store data. The following describes
6340 the scenario where the store data could be lost.
6342 * A data cache miss, due to either a load or a store, causing fill
6343 data to be supplied by the memory subsystem
6344 * The first three doublewords of fill data are returned and written
6346 * A sequence of four stores occurs in consecutive cycles around the
6347 final doubleword of the fill:
6351 * Zero, One or more instructions
6354 The four stores A-D must be to different doublewords of the line that
6355 is being filled. The fourth instruction in the sequence above permits
6356 the fill of the final doubleword to be transferred from the FSB into
6357 the cache. In the sequence above, the stores may be either integer
6358 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6359 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6360 different doublewords on the line. If the floating point unit is
6361 running in 1:2 mode, it is not possible to create the sequence above
6362 using only floating point store instructions.
6364 In this case, the cache line being filled is incorrectly marked
6365 invalid, thereby losing the data from any store to the line that
6366 occurs between the original miss and the completion of the five
6367 cycle sequence shown above.
6369 The workarounds are:
6371 * Run the data cache in write-through mode.
6372 * Insert a non-store instruction between
6373 Store A and Store B or Store B and Store C. */
6376 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6377 const struct mips_cl_insn *insn)
6379 struct fix_24k_store_info pos[3];
6380 int align, i, base_offset;
6385 /* If the previous instruction wasn't a store, there's nothing to
6387 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6390 /* If the instructions after the previous one are unknown, we have
6391 to assume the worst. */
6395 /* Check whether we are dealing with three consecutive stores. */
6396 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6397 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6400 /* If we don't know the relationship between the store addresses,
6401 assume the worst. */
6402 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6403 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6406 if (!fix_24k_record_store_info (&pos[0], insn)
6407 || !fix_24k_record_store_info (&pos[1], &hist[0])
6408 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6411 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6413 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6414 X bytes and such that the base register + X is known to be aligned
6417 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6421 align = pos[0].align_to;
6422 base_offset = pos[0].off;
6423 for (i = 1; i < 3; i++)
6424 if (align < pos[i].align_to)
6426 align = pos[i].align_to;
6427 base_offset = pos[i].off;
6429 for (i = 0; i < 3; i++)
6430 pos[i].off -= base_offset;
6433 pos[0].off &= ~align + 1;
6434 pos[1].off &= ~align + 1;
6435 pos[2].off &= ~align + 1;
6437 /* If any two stores write to the same chunk, they also write to the
6438 same doubleword. The offsets are still sorted at this point. */
6439 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6442 /* A range of at least 9 bytes is needed for the stores to be in
6443 non-overlapping doublewords. */
6444 if (pos[2].off - pos[0].off <= 8)
6447 if (pos[2].off - pos[1].off >= 24
6448 || pos[1].off - pos[0].off >= 24
6449 || pos[2].off - pos[0].off >= 32)
6455 /* Return the number of nops that would be needed if instruction INSN
6456 immediately followed the MAX_NOPS instructions given by HIST,
6457 where HIST[0] is the most recent instruction. Ignore hazards
6458 between INSN and the first IGNORE instructions in HIST.
6460 If INSN is null, return the worse-case number of nops for any
6464 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6465 const struct mips_cl_insn *insn)
6467 int i, nops, tmp_nops;
6470 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6472 tmp_nops = insns_between (hist + i, insn) - i;
6473 if (tmp_nops > nops)
6477 if (mips_fix_vr4130 && !mips_opts.micromips)
6479 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6480 if (tmp_nops > nops)
6484 if (mips_fix_24k && !mips_opts.micromips)
6486 tmp_nops = nops_for_24k (ignore, hist, insn);
6487 if (tmp_nops > nops)
6494 /* The variable arguments provide NUM_INSNS extra instructions that
6495 might be added to HIST. Return the largest number of nops that
6496 would be needed after the extended sequence, ignoring hazards
6497 in the first IGNORE instructions. */
6500 nops_for_sequence (int num_insns, int ignore,
6501 const struct mips_cl_insn *hist, ...)
6504 struct mips_cl_insn buffer[MAX_NOPS];
6505 struct mips_cl_insn *cursor;
6508 va_start (args, hist);
6509 cursor = buffer + num_insns;
6510 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6511 while (cursor > buffer)
6512 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6514 nops = nops_for_insn (ignore, buffer, NULL);
6519 /* Like nops_for_insn, but if INSN is a branch, take into account the
6520 worst-case delay for the branch target. */
6523 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6524 const struct mips_cl_insn *insn)
6528 nops = nops_for_insn (ignore, hist, insn);
6529 if (delayed_branch_p (insn))
6531 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6532 hist, insn, get_delay_slot_nop (insn));
6533 if (tmp_nops > nops)
6536 else if (compact_branch_p (insn))
6538 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6539 if (tmp_nops > nops)
6545 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6548 fix_loongson2f_nop (struct mips_cl_insn * ip)
6550 gas_assert (!HAVE_CODE_COMPRESSION);
6551 if (strcmp (ip->insn_mo->name, "nop") == 0)
6552 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6555 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6556 jr target pc &= 'hffff_ffff_cfff_ffff. */
6559 fix_loongson2f_jump (struct mips_cl_insn * ip)
6561 gas_assert (!HAVE_CODE_COMPRESSION);
6562 if (strcmp (ip->insn_mo->name, "j") == 0
6563 || strcmp (ip->insn_mo->name, "jr") == 0
6564 || strcmp (ip->insn_mo->name, "jalr") == 0)
6572 sreg = EXTRACT_OPERAND (0, RS, *ip);
6573 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6576 ep.X_op = O_constant;
6577 ep.X_add_number = 0xcfff0000;
6578 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6579 ep.X_add_number = 0xffff;
6580 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6581 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6586 fix_loongson2f (struct mips_cl_insn * ip)
6588 if (mips_fix_loongson2f_nop)
6589 fix_loongson2f_nop (ip);
6591 if (mips_fix_loongson2f_jump)
6592 fix_loongson2f_jump (ip);
6595 /* IP is a branch that has a delay slot, and we need to fill it
6596 automatically. Return true if we can do that by swapping IP
6597 with the previous instruction.
6598 ADDRESS_EXPR is an operand of the instruction to be used with
6602 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6603 bfd_reloc_code_real_type *reloc_type)
6605 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6606 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6607 unsigned int fpr_read, prev_fpr_write;
6609 /* -O2 and above is required for this optimization. */
6610 if (mips_optimize < 2)
6613 /* If we have seen .set volatile or .set nomove, don't optimize. */
6614 if (mips_opts.nomove)
6617 /* We can't swap if the previous instruction's position is fixed. */
6618 if (history[0].fixed_p)
6621 /* If the previous previous insn was in a .set noreorder, we can't
6622 swap. Actually, the MIPS assembler will swap in this situation.
6623 However, gcc configured -with-gnu-as will generate code like
6631 in which we can not swap the bne and INSN. If gcc is not configured
6632 -with-gnu-as, it does not output the .set pseudo-ops. */
6633 if (history[1].noreorder_p)
6636 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6637 This means that the previous instruction was a 4-byte one anyhow. */
6638 if (mips_opts.mips16 && history[0].fixp[0])
6641 /* If the branch is itself the target of a branch, we can not swap.
6642 We cheat on this; all we check for is whether there is a label on
6643 this instruction. If there are any branches to anything other than
6644 a label, users must use .set noreorder. */
6645 if (seg_info (now_seg)->label_list)
6648 /* If the previous instruction is in a variant frag other than this
6649 branch's one, we cannot do the swap. This does not apply to
6650 MIPS16 code, which uses variant frags for different purposes. */
6651 if (!mips_opts.mips16
6653 && history[0].frag->fr_type == rs_machine_dependent)
6656 /* We do not swap with instructions that cannot architecturally
6657 be placed in a branch delay slot, such as SYNC or ERET. We
6658 also refrain from swapping with a trap instruction, since it
6659 complicates trap handlers to have the trap instruction be in
6661 prev_pinfo = history[0].insn_mo->pinfo;
6662 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6665 /* Check for conflicts between the branch and the instructions
6666 before the candidate delay slot. */
6667 if (nops_for_insn (0, history + 1, ip) > 0)
6670 /* Check for conflicts between the swapped sequence and the
6671 target of the branch. */
6672 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6675 /* If the branch reads a register that the previous
6676 instruction sets, we can not swap. */
6677 gpr_read = gpr_read_mask (ip);
6678 prev_gpr_write = gpr_write_mask (&history[0]);
6679 if (gpr_read & prev_gpr_write)
6682 fpr_read = fpr_read_mask (ip);
6683 prev_fpr_write = fpr_write_mask (&history[0]);
6684 if (fpr_read & prev_fpr_write)
6687 /* If the branch writes a register that the previous
6688 instruction sets, we can not swap. */
6689 gpr_write = gpr_write_mask (ip);
6690 if (gpr_write & prev_gpr_write)
6693 /* If the branch writes a register that the previous
6694 instruction reads, we can not swap. */
6695 prev_gpr_read = gpr_read_mask (&history[0]);
6696 if (gpr_write & prev_gpr_read)
6699 /* If one instruction sets a condition code and the
6700 other one uses a condition code, we can not swap. */
6701 pinfo = ip->insn_mo->pinfo;
6702 if ((pinfo & INSN_READ_COND_CODE)
6703 && (prev_pinfo & INSN_WRITE_COND_CODE))
6705 if ((pinfo & INSN_WRITE_COND_CODE)
6706 && (prev_pinfo & INSN_READ_COND_CODE))
6709 /* If the previous instruction uses the PC, we can not swap. */
6710 prev_pinfo2 = history[0].insn_mo->pinfo2;
6711 if (prev_pinfo2 & INSN2_READ_PC)
6714 /* If the previous instruction has an incorrect size for a fixed
6715 branch delay slot in microMIPS mode, we cannot swap. */
6716 pinfo2 = ip->insn_mo->pinfo2;
6717 if (mips_opts.micromips
6718 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6719 && insn_length (history) != 2)
6721 if (mips_opts.micromips
6722 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6723 && insn_length (history) != 4)
6726 /* On R5900 short loops need to be fixed by inserting a nop in
6727 the branch delay slots.
6728 A short loop can be terminated too early. */
6729 if (mips_opts.arch == CPU_R5900
6730 /* Check if instruction has a parameter, ignore "j $31". */
6731 && (address_expr != NULL)
6732 /* Parameter must be 16 bit. */
6733 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6734 /* Branch to same segment. */
6735 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6736 /* Branch to same code fragment. */
6737 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6738 /* Can only calculate branch offset if value is known. */
6739 && symbol_constant_p (address_expr->X_add_symbol)
6740 /* Check if branch is really conditional. */
6741 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6746 /* Check if loop is shorter than 6 instructions including
6747 branch and delay slot. */
6748 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6755 /* When the loop includes branches or jumps,
6756 it is not a short loop. */
6757 for (i = 0; i < (distance / 4); i++)
6759 if ((history[i].cleared_p)
6760 || delayed_branch_p (&history[i]))
6768 /* Insert nop after branch to fix short loop. */
6777 /* Decide how we should add IP to the instruction stream.
6778 ADDRESS_EXPR is an operand of the instruction to be used with
6781 static enum append_method
6782 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6783 bfd_reloc_code_real_type *reloc_type)
6785 /* The relaxed version of a macro sequence must be inherently
6787 if (mips_relax.sequence == 2)
6790 /* We must not dabble with instructions in a ".set norerorder" block. */
6791 if (mips_opts.noreorder)
6794 /* Otherwise, it's our responsibility to fill branch delay slots. */
6795 if (delayed_branch_p (ip))
6797 if (!branch_likely_p (ip)
6798 && can_swap_branch_p (ip, address_expr, reloc_type))
6801 if (mips_opts.mips16
6802 && ISA_SUPPORTS_MIPS16E
6803 && gpr_read_mask (ip) != 0)
6804 return APPEND_ADD_COMPACT;
6806 return APPEND_ADD_WITH_NOP;
6812 /* IP is a MIPS16 instruction whose opcode we have just changed.
6813 Point IP->insn_mo to the new opcode's definition. */
6816 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6818 const struct mips_opcode *mo, *end;
6820 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6821 for (mo = ip->insn_mo; mo < end; mo++)
6822 if ((ip->insn_opcode & mo->mask) == mo->match)
6830 /* For microMIPS macros, we need to generate a local number label
6831 as the target of branches. */
6832 #define MICROMIPS_LABEL_CHAR '\037'
6833 static unsigned long micromips_target_label;
6834 static char micromips_target_name[32];
6837 micromips_label_name (void)
6839 char *p = micromips_target_name;
6840 char symbol_name_temporary[24];
6848 l = micromips_target_label;
6849 #ifdef LOCAL_LABEL_PREFIX
6850 *p++ = LOCAL_LABEL_PREFIX;
6853 *p++ = MICROMIPS_LABEL_CHAR;
6856 symbol_name_temporary[i++] = l % 10 + '0';
6861 *p++ = symbol_name_temporary[--i];
6864 return micromips_target_name;
6868 micromips_label_expr (expressionS *label_expr)
6870 label_expr->X_op = O_symbol;
6871 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6872 label_expr->X_add_number = 0;
6876 micromips_label_inc (void)
6878 micromips_target_label++;
6879 *micromips_target_name = '\0';
6883 micromips_add_label (void)
6887 s = colon (micromips_label_name ());
6888 micromips_label_inc ();
6889 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6892 /* If assembling microMIPS code, then return the microMIPS reloc
6893 corresponding to the requested one if any. Otherwise return
6894 the reloc unchanged. */
6896 static bfd_reloc_code_real_type
6897 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6899 static const bfd_reloc_code_real_type relocs[][2] =
6901 /* Keep sorted incrementally by the left-hand key. */
6902 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6903 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6904 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6905 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6906 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6907 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6908 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6909 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6910 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6911 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6912 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6913 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6914 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6915 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6916 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6917 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6918 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6919 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6920 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6921 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6922 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6923 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6926 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6927 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6928 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6930 bfd_reloc_code_real_type r;
6933 if (!mips_opts.micromips)
6935 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6941 return relocs[i][1];
6946 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6947 Return true on success, storing the resolved value in RESULT. */
6950 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6955 case BFD_RELOC_MIPS_HIGHEST:
6956 case BFD_RELOC_MICROMIPS_HIGHEST:
6957 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6960 case BFD_RELOC_MIPS_HIGHER:
6961 case BFD_RELOC_MICROMIPS_HIGHER:
6962 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6965 case BFD_RELOC_HI16_S:
6966 case BFD_RELOC_MICROMIPS_HI16_S:
6967 case BFD_RELOC_MIPS16_HI16_S:
6968 *result = ((operand + 0x8000) >> 16) & 0xffff;
6971 case BFD_RELOC_HI16:
6972 case BFD_RELOC_MICROMIPS_HI16:
6973 case BFD_RELOC_MIPS16_HI16:
6974 *result = (operand >> 16) & 0xffff;
6977 case BFD_RELOC_LO16:
6978 case BFD_RELOC_MICROMIPS_LO16:
6979 case BFD_RELOC_MIPS16_LO16:
6980 *result = operand & 0xffff;
6983 case BFD_RELOC_UNUSED:
6992 /* Output an instruction. IP is the instruction information.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
6994 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6995 a macro expansion. */
6998 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6999 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7001 unsigned long prev_pinfo2, pinfo;
7002 bfd_boolean relaxed_branch = FALSE;
7003 enum append_method method;
7004 bfd_boolean relax32;
7007 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7008 fix_loongson2f (ip);
7010 file_ase_mips16 |= mips_opts.mips16;
7011 file_ase_micromips |= mips_opts.micromips;
7013 prev_pinfo2 = history[0].insn_mo->pinfo2;
7014 pinfo = ip->insn_mo->pinfo;
7016 if (mips_opts.micromips
7018 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7019 && micromips_insn_length (ip->insn_mo) != 2)
7020 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7021 && micromips_insn_length (ip->insn_mo) != 4)))
7022 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7023 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7025 if (address_expr == NULL)
7027 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7028 && reloc_type[1] == BFD_RELOC_UNUSED
7029 && reloc_type[2] == BFD_RELOC_UNUSED
7030 && address_expr->X_op == O_constant)
7032 switch (*reloc_type)
7034 case BFD_RELOC_MIPS_JMP:
7038 shift = mips_opts.micromips ? 1 : 2;
7039 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7040 as_bad (_("jump to misaligned address (0x%lx)"),
7041 (unsigned long) address_expr->X_add_number);
7042 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7048 case BFD_RELOC_MIPS16_JMP:
7049 if ((address_expr->X_add_number & 3) != 0)
7050 as_bad (_("jump to misaligned address (0x%lx)"),
7051 (unsigned long) address_expr->X_add_number);
7053 (((address_expr->X_add_number & 0x7c0000) << 3)
7054 | ((address_expr->X_add_number & 0xf800000) >> 7)
7055 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7059 case BFD_RELOC_16_PCREL_S2:
7063 shift = mips_opts.micromips ? 1 : 2;
7064 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7065 as_bad (_("branch to misaligned address (0x%lx)"),
7066 (unsigned long) address_expr->X_add_number);
7067 if (!mips_relax_branch)
7069 if ((address_expr->X_add_number + (1 << (shift + 15)))
7070 & ~((1 << (shift + 16)) - 1))
7071 as_bad (_("branch address range overflow (0x%lx)"),
7072 (unsigned long) address_expr->X_add_number);
7073 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7079 case BFD_RELOC_MIPS_21_PCREL_S2:
7084 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7085 as_bad (_("branch to misaligned address (0x%lx)"),
7086 (unsigned long) address_expr->X_add_number);
7087 if ((address_expr->X_add_number + (1 << (shift + 20)))
7088 & ~((1 << (shift + 21)) - 1))
7089 as_bad (_("branch address range overflow (0x%lx)"),
7090 (unsigned long) address_expr->X_add_number);
7091 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7096 case BFD_RELOC_MIPS_26_PCREL_S2:
7101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7102 as_bad (_("branch to misaligned address (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 if ((address_expr->X_add_number + (1 << (shift + 25)))
7105 & ~((1 << (shift + 26)) - 1))
7106 as_bad (_("branch address range overflow (0x%lx)"),
7107 (unsigned long) address_expr->X_add_number);
7108 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7117 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7120 ip->insn_opcode |= value & 0xffff;
7128 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7130 /* There are a lot of optimizations we could do that we don't.
7131 In particular, we do not, in general, reorder instructions.
7132 If you use gcc with optimization, it will reorder
7133 instructions and generally do much more optimization then we
7134 do here; repeating all that work in the assembler would only
7135 benefit hand written assembly code, and does not seem worth
7137 int nops = (mips_optimize == 0
7138 ? nops_for_insn (0, history, NULL)
7139 : nops_for_insn_or_target (0, history, ip));
7143 unsigned long old_frag_offset;
7146 old_frag = frag_now;
7147 old_frag_offset = frag_now_fix ();
7149 for (i = 0; i < nops; i++)
7150 add_fixed_insn (NOP_INSN);
7151 insert_into_history (0, nops, NOP_INSN);
7155 listing_prev_line ();
7156 /* We may be at the start of a variant frag. In case we
7157 are, make sure there is enough space for the frag
7158 after the frags created by listing_prev_line. The
7159 argument to frag_grow here must be at least as large
7160 as the argument to all other calls to frag_grow in
7161 this file. We don't have to worry about being in the
7162 middle of a variant frag, because the variants insert
7163 all needed nop instructions themselves. */
7167 mips_move_text_labels ();
7169 #ifndef NO_ECOFF_DEBUGGING
7170 if (ECOFF_DEBUGGING)
7171 ecoff_fix_loc (old_frag, old_frag_offset);
7175 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7179 /* Work out how many nops in prev_nop_frag are needed by IP,
7180 ignoring hazards generated by the first prev_nop_frag_since
7182 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7183 gas_assert (nops <= prev_nop_frag_holds);
7185 /* Enforce NOPS as a minimum. */
7186 if (nops > prev_nop_frag_required)
7187 prev_nop_frag_required = nops;
7189 if (prev_nop_frag_holds == prev_nop_frag_required)
7191 /* Settle for the current number of nops. Update the history
7192 accordingly (for the benefit of any future .set reorder code). */
7193 prev_nop_frag = NULL;
7194 insert_into_history (prev_nop_frag_since,
7195 prev_nop_frag_holds, NOP_INSN);
7199 /* Allow this instruction to replace one of the nops that was
7200 tentatively added to prev_nop_frag. */
7201 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7202 prev_nop_frag_holds--;
7203 prev_nop_frag_since++;
7207 method = get_append_method (ip, address_expr, reloc_type);
7208 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7210 dwarf2_emit_insn (0);
7211 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7212 so "move" the instruction address accordingly.
7214 Also, it doesn't seem appropriate for the assembler to reorder .loc
7215 entries. If this instruction is a branch that we are going to swap
7216 with the previous instruction, the two instructions should be
7217 treated as a unit, and the debug information for both instructions
7218 should refer to the start of the branch sequence. Using the
7219 current position is certainly wrong when swapping a 32-bit branch
7220 and a 16-bit delay slot, since the current position would then be
7221 in the middle of a branch. */
7222 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7224 relax32 = (mips_relax_branch
7225 /* Don't try branch relaxation within .set nomacro, or within
7226 .set noat if we use $at for PIC computations. If it turns
7227 out that the branch was out-of-range, we'll get an error. */
7228 && !mips_opts.warn_about_macros
7229 && (mips_opts.at || mips_pic == NO_PIC)
7230 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7231 as they have no complementing branches. */
7232 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7234 if (!HAVE_CODE_COMPRESSION
7237 && *reloc_type == BFD_RELOC_16_PCREL_S2
7238 && delayed_branch_p (ip))
7240 relaxed_branch = TRUE;
7241 add_relaxed_insn (ip, (relaxed_branch_length
7243 uncond_branch_p (ip) ? -1
7244 : branch_likely_p (ip) ? 1
7248 uncond_branch_p (ip),
7249 branch_likely_p (ip),
7250 pinfo & INSN_WRITE_GPR_31,
7252 address_expr->X_add_symbol,
7253 address_expr->X_add_number);
7254 *reloc_type = BFD_RELOC_UNUSED;
7256 else if (mips_opts.micromips
7258 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7259 || *reloc_type > BFD_RELOC_UNUSED)
7260 && (delayed_branch_p (ip) || compact_branch_p (ip))
7261 /* Don't try branch relaxation when users specify
7262 16-bit/32-bit instructions. */
7263 && !forced_insn_length)
7265 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7266 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7267 int uncond = uncond_branch_p (ip) ? -1 : 0;
7268 int compact = compact_branch_p (ip);
7269 int al = pinfo & INSN_WRITE_GPR_31;
7272 gas_assert (address_expr != NULL);
7273 gas_assert (!mips_relax.sequence);
7275 relaxed_branch = TRUE;
7276 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7277 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7278 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7280 address_expr->X_add_symbol,
7281 address_expr->X_add_number);
7282 *reloc_type = BFD_RELOC_UNUSED;
7284 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7286 /* We need to set up a variant frag. */
7287 gas_assert (address_expr != NULL);
7288 add_relaxed_insn (ip, 4, 0,
7290 (*reloc_type - BFD_RELOC_UNUSED,
7291 forced_insn_length == 2, forced_insn_length == 4,
7292 delayed_branch_p (&history[0]),
7293 history[0].mips16_absolute_jump_p),
7294 make_expr_symbol (address_expr), 0);
7296 else if (mips_opts.mips16 && insn_length (ip) == 2)
7298 if (!delayed_branch_p (ip))
7299 /* Make sure there is enough room to swap this instruction with
7300 a following jump instruction. */
7302 add_fixed_insn (ip);
7306 if (mips_opts.mips16
7307 && mips_opts.noreorder
7308 && delayed_branch_p (&history[0]))
7309 as_warn (_("extended instruction in delay slot"));
7311 if (mips_relax.sequence)
7313 /* If we've reached the end of this frag, turn it into a variant
7314 frag and record the information for the instructions we've
7316 if (frag_room () < 4)
7317 relax_close_frag ();
7318 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7321 if (mips_relax.sequence != 2)
7323 if (mips_macro_warning.first_insn_sizes[0] == 0)
7324 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7325 mips_macro_warning.sizes[0] += insn_length (ip);
7326 mips_macro_warning.insns[0]++;
7328 if (mips_relax.sequence != 1)
7330 if (mips_macro_warning.first_insn_sizes[1] == 0)
7331 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7332 mips_macro_warning.sizes[1] += insn_length (ip);
7333 mips_macro_warning.insns[1]++;
7336 if (mips_opts.mips16)
7339 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7341 add_fixed_insn (ip);
7344 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7346 bfd_reloc_code_real_type final_type[3];
7347 reloc_howto_type *howto0;
7348 reloc_howto_type *howto;
7351 /* Perform any necessary conversion to microMIPS relocations
7352 and find out how many relocations there actually are. */
7353 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7354 final_type[i] = micromips_map_reloc (reloc_type[i]);
7356 /* In a compound relocation, it is the final (outermost)
7357 operator that determines the relocated field. */
7358 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7363 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7364 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7365 bfd_get_reloc_size (howto),
7367 howto0 && howto0->pc_relative,
7370 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7371 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7372 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7374 /* These relocations can have an addend that won't fit in
7375 4 octets for 64bit assembly. */
7377 && ! howto->partial_inplace
7378 && (reloc_type[0] == BFD_RELOC_16
7379 || reloc_type[0] == BFD_RELOC_32
7380 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7381 || reloc_type[0] == BFD_RELOC_GPREL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7383 || reloc_type[0] == BFD_RELOC_GPREL32
7384 || reloc_type[0] == BFD_RELOC_64
7385 || reloc_type[0] == BFD_RELOC_CTOR
7386 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7389 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7390 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7392 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7393 || hi16_reloc_p (reloc_type[0])
7394 || lo16_reloc_p (reloc_type[0])))
7395 ip->fixp[0]->fx_no_overflow = 1;
7397 /* These relocations can have an addend that won't fit in 2 octets. */
7398 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7399 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7400 ip->fixp[0]->fx_no_overflow = 1;
7402 if (mips_relax.sequence)
7404 if (mips_relax.first_fixup == 0)
7405 mips_relax.first_fixup = ip->fixp[0];
7407 else if (reloc_needs_lo_p (*reloc_type))
7409 struct mips_hi_fixup *hi_fixup;
7411 /* Reuse the last entry if it already has a matching %lo. */
7412 hi_fixup = mips_hi_fixup_list;
7414 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7416 hi_fixup = XNEW (struct mips_hi_fixup);
7417 hi_fixup->next = mips_hi_fixup_list;
7418 mips_hi_fixup_list = hi_fixup;
7420 hi_fixup->fixp = ip->fixp[0];
7421 hi_fixup->seg = now_seg;
7424 /* Add fixups for the second and third relocations, if given.
7425 Note that the ABI allows the second relocation to be
7426 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7427 moment we only use RSS_UNDEF, but we could add support
7428 for the others if it ever becomes necessary. */
7429 for (i = 1; i < 3; i++)
7430 if (reloc_type[i] != BFD_RELOC_UNUSED)
7432 ip->fixp[i] = fix_new (ip->frag, ip->where,
7433 ip->fixp[0]->fx_size, NULL, 0,
7434 FALSE, final_type[i]);
7436 /* Use fx_tcbit to mark compound relocs. */
7437 ip->fixp[0]->fx_tcbit = 1;
7438 ip->fixp[i]->fx_tcbit = 1;
7443 /* Update the register mask information. */
7444 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7445 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7450 insert_into_history (0, 1, ip);
7453 case APPEND_ADD_WITH_NOP:
7455 struct mips_cl_insn *nop;
7457 insert_into_history (0, 1, ip);
7458 nop = get_delay_slot_nop (ip);
7459 add_fixed_insn (nop);
7460 insert_into_history (0, 1, nop);
7461 if (mips_relax.sequence)
7462 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7466 case APPEND_ADD_COMPACT:
7467 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7468 gas_assert (mips_opts.mips16);
7469 ip->insn_opcode |= 0x0080;
7470 find_altered_mips16_opcode (ip);
7472 insert_into_history (0, 1, ip);
7477 struct mips_cl_insn delay = history[0];
7478 if (mips_opts.mips16)
7480 know (delay.frag == ip->frag);
7481 move_insn (ip, delay.frag, delay.where);
7482 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7484 else if (relaxed_branch || delay.frag != ip->frag)
7486 /* Add the delay slot instruction to the end of the
7487 current frag and shrink the fixed part of the
7488 original frag. If the branch occupies the tail of
7489 the latter, move it backwards to cover the gap. */
7490 delay.frag->fr_fix -= branch_disp;
7491 if (delay.frag == ip->frag)
7492 move_insn (ip, ip->frag, ip->where - branch_disp);
7493 add_fixed_insn (&delay);
7497 move_insn (&delay, ip->frag,
7498 ip->where - branch_disp + insn_length (ip));
7499 move_insn (ip, history[0].frag, history[0].where);
7503 insert_into_history (0, 1, &delay);
7508 /* If we have just completed an unconditional branch, clear the history. */
7509 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7510 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7514 mips_no_prev_insn ();
7516 for (i = 0; i < ARRAY_SIZE (history); i++)
7517 history[i].cleared_p = 1;
7520 /* We need to emit a label at the end of branch-likely macros. */
7521 if (emit_branch_likely_macro)
7523 emit_branch_likely_macro = FALSE;
7524 micromips_add_label ();
7527 /* We just output an insn, so the next one doesn't have a label. */
7528 mips_clear_insn_labels ();
7531 /* Forget that there was any previous instruction or label.
7532 When BRANCH is true, the branch history is also flushed. */
7535 mips_no_prev_insn (void)
7537 prev_nop_frag = NULL;
7538 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7539 mips_clear_insn_labels ();
7542 /* This function must be called before we emit something other than
7543 instructions. It is like mips_no_prev_insn except that it inserts
7544 any NOPS that might be needed by previous instructions. */
7547 mips_emit_delays (void)
7549 if (! mips_opts.noreorder)
7551 int nops = nops_for_insn (0, history, NULL);
7555 add_fixed_insn (NOP_INSN);
7556 mips_move_text_labels ();
7559 mips_no_prev_insn ();
7562 /* Start a (possibly nested) noreorder block. */
7565 start_noreorder (void)
7567 if (mips_opts.noreorder == 0)
7572 /* None of the instructions before the .set noreorder can be moved. */
7573 for (i = 0; i < ARRAY_SIZE (history); i++)
7574 history[i].fixed_p = 1;
7576 /* Insert any nops that might be needed between the .set noreorder
7577 block and the previous instructions. We will later remove any
7578 nops that turn out not to be needed. */
7579 nops = nops_for_insn (0, history, NULL);
7582 if (mips_optimize != 0)
7584 /* Record the frag which holds the nop instructions, so
7585 that we can remove them if we don't need them. */
7586 frag_grow (nops * NOP_INSN_SIZE);
7587 prev_nop_frag = frag_now;
7588 prev_nop_frag_holds = nops;
7589 prev_nop_frag_required = 0;
7590 prev_nop_frag_since = 0;
7593 for (; nops > 0; --nops)
7594 add_fixed_insn (NOP_INSN);
7596 /* Move on to a new frag, so that it is safe to simply
7597 decrease the size of prev_nop_frag. */
7598 frag_wane (frag_now);
7600 mips_move_text_labels ();
7602 mips_mark_labels ();
7603 mips_clear_insn_labels ();
7605 mips_opts.noreorder++;
7606 mips_any_noreorder = 1;
7609 /* End a nested noreorder block. */
7612 end_noreorder (void)
7614 mips_opts.noreorder--;
7615 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7617 /* Commit to inserting prev_nop_frag_required nops and go back to
7618 handling nop insertion the .set reorder way. */
7619 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7621 insert_into_history (prev_nop_frag_since,
7622 prev_nop_frag_required, NOP_INSN);
7623 prev_nop_frag = NULL;
7627 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7628 higher bits unset. */
7631 normalize_constant_expr (expressionS *ex)
7633 if (ex->X_op == O_constant
7634 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7635 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7639 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7640 all higher bits unset. */
7643 normalize_address_expr (expressionS *ex)
7645 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7646 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7652 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7653 Return true if the match was successful.
7655 OPCODE_EXTRA is a value that should be ORed into the opcode
7656 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7657 there are more alternatives after OPCODE and SOFT_MATCH is
7658 as for mips_arg_info. */
7661 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7662 struct mips_operand_token *tokens, unsigned int opcode_extra,
7663 bfd_boolean lax_match, bfd_boolean complete_p)
7666 struct mips_arg_info arg;
7667 const struct mips_operand *operand;
7670 imm_expr.X_op = O_absent;
7671 offset_expr.X_op = O_absent;
7672 offset_reloc[0] = BFD_RELOC_UNUSED;
7673 offset_reloc[1] = BFD_RELOC_UNUSED;
7674 offset_reloc[2] = BFD_RELOC_UNUSED;
7676 create_insn (insn, opcode);
7677 /* When no opcode suffix is specified, assume ".xyzw". */
7678 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7679 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7681 insn->insn_opcode |= opcode_extra;
7682 memset (&arg, 0, sizeof (arg));
7686 arg.last_regno = ILLEGAL_REG;
7687 arg.dest_regno = ILLEGAL_REG;
7688 arg.lax_match = lax_match;
7689 for (args = opcode->args;; ++args)
7691 if (arg.token->type == OT_END)
7693 /* Handle unary instructions in which only one operand is given.
7694 The source is then the same as the destination. */
7695 if (arg.opnum == 1 && *args == ',')
7697 operand = (mips_opts.micromips
7698 ? decode_micromips_operand (args + 1)
7699 : decode_mips_operand (args + 1));
7700 if (operand && mips_optional_operand_p (operand))
7708 /* Treat elided base registers as $0. */
7709 if (strcmp (args, "(b)") == 0)
7717 /* The register suffix is optional. */
7722 /* Fail the match if there were too few operands. */
7726 /* Successful match. */
7729 clear_insn_error ();
7730 if (arg.dest_regno == arg.last_regno
7731 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7735 (0, _("source and destination must be different"));
7736 else if (arg.last_regno == 31)
7738 (0, _("a destination register must be supplied"));
7740 else if (arg.last_regno == 31
7741 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7742 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7743 set_insn_error (0, _("the source register must not be $31"));
7744 check_completed_insn (&arg);
7748 /* Fail the match if the line has too many operands. */
7752 /* Handle characters that need to match exactly. */
7753 if (*args == '(' || *args == ')' || *args == ',')
7755 if (match_char (&arg, *args))
7762 if (arg.token->type == OT_DOUBLE_CHAR
7763 && arg.token->u.ch == *args)
7771 /* Handle special macro operands. Work out the properties of
7780 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7784 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7793 *offset_reloc = BFD_RELOC_MIPS_JMP;
7797 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7801 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7807 if (!match_const_int (&arg, &imm_expr.X_add_number))
7809 imm_expr.X_op = O_constant;
7811 normalize_constant_expr (&imm_expr);
7815 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7817 /* Assume that the offset has been elided and that what
7818 we saw was a base register. The match will fail later
7819 if that assumption turns out to be wrong. */
7820 offset_expr.X_op = O_constant;
7821 offset_expr.X_add_number = 0;
7825 if (!match_expression (&arg, &offset_expr, offset_reloc))
7827 normalize_address_expr (&offset_expr);
7832 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7838 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7844 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7850 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7856 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7860 *offset_reloc = BFD_RELOC_MIPS_JMP;
7864 gas_assert (mips_opts.micromips);
7870 if (!forced_insn_length)
7871 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7873 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7875 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7881 operand = (mips_opts.micromips
7882 ? decode_micromips_operand (args)
7883 : decode_mips_operand (args));
7887 /* Skip prefixes. */
7888 if (*args == '+' || *args == 'm' || *args == '-')
7891 if (mips_optional_operand_p (operand)
7893 && (arg.token[0].type != OT_REG
7894 || arg.token[1].type == OT_END))
7896 /* Assume that the register has been elided and is the
7897 same as the first operand. */
7902 if (!match_operand (&arg, operand))
7907 /* Like match_insn, but for MIPS16. */
7910 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7911 struct mips_operand_token *tokens)
7914 const struct mips_operand *operand;
7915 const struct mips_operand *ext_operand;
7916 struct mips_arg_info arg;
7919 create_insn (insn, opcode);
7920 imm_expr.X_op = O_absent;
7921 offset_expr.X_op = O_absent;
7922 offset_reloc[0] = BFD_RELOC_UNUSED;
7923 offset_reloc[1] = BFD_RELOC_UNUSED;
7924 offset_reloc[2] = BFD_RELOC_UNUSED;
7927 memset (&arg, 0, sizeof (arg));
7931 arg.last_regno = ILLEGAL_REG;
7932 arg.dest_regno = ILLEGAL_REG;
7934 for (args = opcode->args;; ++args)
7938 if (arg.token->type == OT_END)
7942 /* Handle unary instructions in which only one operand is given.
7943 The source is then the same as the destination. */
7944 if (arg.opnum == 1 && *args == ',')
7946 operand = decode_mips16_operand (args[1], FALSE);
7947 if (operand && mips_optional_operand_p (operand))
7955 /* Fail the match if there were too few operands. */
7959 /* Successful match. Stuff the immediate value in now, if
7961 clear_insn_error ();
7962 if (opcode->pinfo == INSN_MACRO)
7964 gas_assert (relax_char == 0 || relax_char == 'p');
7965 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7968 && offset_expr.X_op == O_constant
7969 && calculate_reloc (*offset_reloc,
7970 offset_expr.X_add_number,
7973 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7974 forced_insn_length, &insn->insn_opcode);
7975 offset_expr.X_op = O_absent;
7976 *offset_reloc = BFD_RELOC_UNUSED;
7978 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7980 if (forced_insn_length == 2)
7981 set_insn_error (0, _("invalid unextended operand value"));
7982 forced_insn_length = 4;
7983 insn->insn_opcode |= MIPS16_EXTEND;
7985 else if (relax_char)
7986 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7988 check_completed_insn (&arg);
7992 /* Fail the match if the line has too many operands. */
7996 /* Handle characters that need to match exactly. */
7997 if (*args == '(' || *args == ')' || *args == ',')
7999 if (match_char (&arg, *args))
8017 if (!match_const_int (&arg, &imm_expr.X_add_number))
8019 imm_expr.X_op = O_constant;
8021 normalize_constant_expr (&imm_expr);
8026 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8027 insn->insn_opcode <<= 16;
8031 operand = decode_mips16_operand (c, FALSE);
8035 /* '6' is a special case. It is used for BREAK and SDBBP,
8036 whose operands are only meaningful to the software that decodes
8037 them. This means that there is no architectural reason why
8038 they cannot be prefixed by EXTEND, but in practice,
8039 exception handlers will only look at the instruction
8040 itself. We therefore allow '6' to be extended when
8041 disassembling but not when assembling. */
8042 if (operand->type != OP_PCREL && c != '6')
8044 ext_operand = decode_mips16_operand (c, TRUE);
8045 if (operand != ext_operand)
8047 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8049 offset_expr.X_op = O_constant;
8050 offset_expr.X_add_number = 0;
8055 /* We need the OT_INTEGER check because some MIPS16
8056 immediate variants are listed before the register ones. */
8057 if (arg.token->type != OT_INTEGER
8058 || !match_expression (&arg, &offset_expr, offset_reloc))
8061 /* '8' is used for SLTI(U) and has traditionally not
8062 been allowed to take relocation operators. */
8063 if (offset_reloc[0] != BFD_RELOC_UNUSED
8064 && (ext_operand->size != 16 || c == '8'))
8072 if (mips_optional_operand_p (operand)
8074 && (arg.token[0].type != OT_REG
8075 || arg.token[1].type == OT_END))
8077 /* Assume that the register has been elided and is the
8078 same as the first operand. */
8083 if (!match_operand (&arg, operand))
8088 /* Record that the current instruction is invalid for the current ISA. */
8091 match_invalid_for_isa (void)
8094 (0, _("opcode not supported on this processor: %s (%s)"),
8095 mips_cpu_info_from_arch (mips_opts.arch)->name,
8096 mips_cpu_info_from_isa (mips_opts.isa)->name);
8099 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8100 Return true if a definite match or failure was found, storing any match
8101 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8102 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8103 tried and failed to match under normal conditions and now want to try a
8104 more relaxed match. */
8107 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8108 const struct mips_opcode *past, struct mips_operand_token *tokens,
8109 int opcode_extra, bfd_boolean lax_match)
8111 const struct mips_opcode *opcode;
8112 const struct mips_opcode *invalid_delay_slot;
8113 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8115 /* Search for a match, ignoring alternatives that don't satisfy the
8116 current ISA or forced_length. */
8117 invalid_delay_slot = 0;
8118 seen_valid_for_isa = FALSE;
8119 seen_valid_for_size = FALSE;
8123 gas_assert (strcmp (opcode->name, first->name) == 0);
8124 if (is_opcode_valid (opcode))
8126 seen_valid_for_isa = TRUE;
8127 if (is_size_valid (opcode))
8129 bfd_boolean delay_slot_ok;
8131 seen_valid_for_size = TRUE;
8132 delay_slot_ok = is_delay_slot_valid (opcode);
8133 if (match_insn (insn, opcode, tokens, opcode_extra,
8134 lax_match, delay_slot_ok))
8138 if (!invalid_delay_slot)
8139 invalid_delay_slot = opcode;
8148 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8150 /* If the only matches we found had the wrong length for the delay slot,
8151 pick the first such match. We'll issue an appropriate warning later. */
8152 if (invalid_delay_slot)
8154 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were incompatible with the current ISA. */
8162 if (!seen_valid_for_isa)
8164 match_invalid_for_isa ();
8168 /* Handle the case where we didn't try to match an instruction because
8169 all the alternatives were of the wrong size. */
8170 if (!seen_valid_for_size)
8172 if (mips_opts.insn32)
8173 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8176 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8177 8 * forced_insn_length);
8184 /* Like match_insns, but for MIPS16. */
8187 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8188 struct mips_operand_token *tokens)
8190 const struct mips_opcode *opcode;
8191 bfd_boolean seen_valid_for_isa;
8193 /* Search for a match, ignoring alternatives that don't satisfy the
8194 current ISA. There are no separate entries for extended forms so
8195 we deal with forced_length later. */
8196 seen_valid_for_isa = FALSE;
8200 gas_assert (strcmp (opcode->name, first->name) == 0);
8201 if (is_opcode_valid_16 (opcode))
8203 seen_valid_for_isa = TRUE;
8204 if (match_mips16_insn (insn, opcode, tokens))
8209 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8210 && strcmp (opcode->name, first->name) == 0);
8212 /* Handle the case where we didn't try to match an instruction because
8213 all the alternatives were incompatible with the current ISA. */
8214 if (!seen_valid_for_isa)
8216 match_invalid_for_isa ();
8223 /* Set up global variables for the start of a new macro. */
8228 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8229 memset (&mips_macro_warning.first_insn_sizes, 0,
8230 sizeof (mips_macro_warning.first_insn_sizes));
8231 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8232 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8233 && delayed_branch_p (&history[0]));
8234 switch (history[0].insn_mo->pinfo2
8235 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8237 case INSN2_BRANCH_DELAY_32BIT:
8238 mips_macro_warning.delay_slot_length = 4;
8240 case INSN2_BRANCH_DELAY_16BIT:
8241 mips_macro_warning.delay_slot_length = 2;
8244 mips_macro_warning.delay_slot_length = 0;
8247 mips_macro_warning.first_frag = NULL;
8250 /* Given that a macro is longer than one instruction or of the wrong size,
8251 return the appropriate warning for it. Return null if no warning is
8252 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8253 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8254 and RELAX_NOMACRO. */
8257 macro_warning (relax_substateT subtype)
8259 if (subtype & RELAX_DELAY_SLOT)
8260 return _("macro instruction expanded into multiple instructions"
8261 " in a branch delay slot");
8262 else if (subtype & RELAX_NOMACRO)
8263 return _("macro instruction expanded into multiple instructions");
8264 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8265 | RELAX_DELAY_SLOT_SIZE_SECOND))
8266 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8267 ? _("macro instruction expanded into a wrong size instruction"
8268 " in a 16-bit branch delay slot")
8269 : _("macro instruction expanded into a wrong size instruction"
8270 " in a 32-bit branch delay slot"));
8275 /* Finish up a macro. Emit warnings as appropriate. */
8280 /* Relaxation warning flags. */
8281 relax_substateT subtype = 0;
8283 /* Check delay slot size requirements. */
8284 if (mips_macro_warning.delay_slot_length == 2)
8285 subtype |= RELAX_DELAY_SLOT_16BIT;
8286 if (mips_macro_warning.delay_slot_length != 0)
8288 if (mips_macro_warning.delay_slot_length
8289 != mips_macro_warning.first_insn_sizes[0])
8290 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8291 if (mips_macro_warning.delay_slot_length
8292 != mips_macro_warning.first_insn_sizes[1])
8293 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8296 /* Check instruction count requirements. */
8297 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8299 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8300 subtype |= RELAX_SECOND_LONGER;
8301 if (mips_opts.warn_about_macros)
8302 subtype |= RELAX_NOMACRO;
8303 if (mips_macro_warning.delay_slot_p)
8304 subtype |= RELAX_DELAY_SLOT;
8307 /* If both alternatives fail to fill a delay slot correctly,
8308 emit the warning now. */
8309 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8310 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8315 s = subtype & (RELAX_DELAY_SLOT_16BIT
8316 | RELAX_DELAY_SLOT_SIZE_FIRST
8317 | RELAX_DELAY_SLOT_SIZE_SECOND);
8318 msg = macro_warning (s);
8320 as_warn ("%s", msg);
8324 /* If both implementations are longer than 1 instruction, then emit the
8326 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8331 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8332 msg = macro_warning (s);
8334 as_warn ("%s", msg);
8338 /* If any flags still set, then one implementation might need a warning
8339 and the other either will need one of a different kind or none at all.
8340 Pass any remaining flags over to relaxation. */
8341 if (mips_macro_warning.first_frag != NULL)
8342 mips_macro_warning.first_frag->fr_subtype |= subtype;
8345 /* Instruction operand formats used in macros that vary between
8346 standard MIPS and microMIPS code. */
8348 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8349 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8350 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8351 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8352 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8353 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8354 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8355 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8357 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8358 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8359 : cop12_fmt[mips_opts.micromips])
8360 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8361 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8362 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8363 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8364 : mem12_fmt[mips_opts.micromips])
8365 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8366 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8367 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8369 /* Read a macro's relocation codes from *ARGS and store them in *R.
8370 The first argument in *ARGS will be either the code for a single
8371 relocation or -1 followed by the three codes that make up a
8372 composite relocation. */
8375 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8379 next = va_arg (*args, int);
8381 r[0] = (bfd_reloc_code_real_type) next;
8384 for (i = 0; i < 3; i++)
8385 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8386 /* This function is only used for 16-bit relocation fields.
8387 To make the macro code simpler, treat an unrelocated value
8388 in the same way as BFD_RELOC_LO16. */
8389 if (r[0] == BFD_RELOC_UNUSED)
8390 r[0] = BFD_RELOC_LO16;
8394 /* Build an instruction created by a macro expansion. This is passed
8395 a pointer to the count of instructions created so far, an
8396 expression, the name of the instruction to build, an operand format
8397 string, and corresponding arguments. */
8400 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8402 const struct mips_opcode *mo = NULL;
8403 bfd_reloc_code_real_type r[3];
8404 const struct mips_opcode *amo;
8405 const struct mips_operand *operand;
8406 struct hash_control *hash;
8407 struct mips_cl_insn insn;
8411 va_start (args, fmt);
8413 if (mips_opts.mips16)
8415 mips16_macro_build (ep, name, fmt, &args);
8420 r[0] = BFD_RELOC_UNUSED;
8421 r[1] = BFD_RELOC_UNUSED;
8422 r[2] = BFD_RELOC_UNUSED;
8423 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8424 amo = (struct mips_opcode *) hash_find (hash, name);
8426 gas_assert (strcmp (name, amo->name) == 0);
8430 /* Search until we get a match for NAME. It is assumed here that
8431 macros will never generate MDMX, MIPS-3D, or MT instructions.
8432 We try to match an instruction that fulfils the branch delay
8433 slot instruction length requirement (if any) of the previous
8434 instruction. While doing this we record the first instruction
8435 seen that matches all the other conditions and use it anyway
8436 if the requirement cannot be met; we will issue an appropriate
8437 warning later on. */
8438 if (strcmp (fmt, amo->args) == 0
8439 && amo->pinfo != INSN_MACRO
8440 && is_opcode_valid (amo)
8441 && is_size_valid (amo))
8443 if (is_delay_slot_valid (amo))
8453 gas_assert (amo->name);
8455 while (strcmp (name, amo->name) == 0);
8458 create_insn (&insn, mo);
8471 macro_read_relocs (&args, r);
8472 gas_assert (*r == BFD_RELOC_GPREL16
8473 || *r == BFD_RELOC_MIPS_HIGHER
8474 || *r == BFD_RELOC_HI16_S
8475 || *r == BFD_RELOC_LO16
8476 || *r == BFD_RELOC_MIPS_GOT_OFST);
8480 macro_read_relocs (&args, r);
8484 macro_read_relocs (&args, r);
8485 gas_assert (ep != NULL
8486 && (ep->X_op == O_constant
8487 || (ep->X_op == O_symbol
8488 && (*r == BFD_RELOC_MIPS_HIGHEST
8489 || *r == BFD_RELOC_HI16_S
8490 || *r == BFD_RELOC_HI16
8491 || *r == BFD_RELOC_GPREL16
8492 || *r == BFD_RELOC_MIPS_GOT_HI16
8493 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8497 gas_assert (ep != NULL);
8500 * This allows macro() to pass an immediate expression for
8501 * creating short branches without creating a symbol.
8503 * We don't allow branch relaxation for these branches, as
8504 * they should only appear in ".set nomacro" anyway.
8506 if (ep->X_op == O_constant)
8508 /* For microMIPS we always use relocations for branches.
8509 So we should not resolve immediate values. */
8510 gas_assert (!mips_opts.micromips);
8512 if ((ep->X_add_number & 3) != 0)
8513 as_bad (_("branch to misaligned address (0x%lx)"),
8514 (unsigned long) ep->X_add_number);
8515 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8516 as_bad (_("branch address range overflow (0x%lx)"),
8517 (unsigned long) ep->X_add_number);
8518 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8522 *r = BFD_RELOC_16_PCREL_S2;
8526 gas_assert (ep != NULL);
8527 *r = BFD_RELOC_MIPS_JMP;
8531 operand = (mips_opts.micromips
8532 ? decode_micromips_operand (fmt)
8533 : decode_mips_operand (fmt));
8537 uval = va_arg (args, int);
8538 if (operand->type == OP_CLO_CLZ_DEST)
8539 uval |= (uval << 5);
8540 insn_insert_operand (&insn, operand, uval);
8542 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8548 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8550 append_insn (&insn, ep, r, TRUE);
8554 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8557 struct mips_opcode *mo;
8558 struct mips_cl_insn insn;
8559 const struct mips_operand *operand;
8560 bfd_reloc_code_real_type r[3]
8561 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8563 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8565 gas_assert (strcmp (name, mo->name) == 0);
8567 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8570 gas_assert (mo->name);
8571 gas_assert (strcmp (name, mo->name) == 0);
8574 create_insn (&insn, mo);
8612 gas_assert (ep != NULL);
8614 if (ep->X_op != O_constant)
8615 *r = (int) BFD_RELOC_UNUSED + c;
8616 else if (calculate_reloc (*r, ep->X_add_number, &value))
8618 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8620 *r = BFD_RELOC_UNUSED;
8626 operand = decode_mips16_operand (c, FALSE);
8630 insn_insert_operand (&insn, operand, va_arg (*args, int));
8635 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8637 append_insn (&insn, ep, r, TRUE);
8641 * Generate a "jalr" instruction with a relocation hint to the called
8642 * function. This occurs in NewABI PIC code.
8645 macro_build_jalr (expressionS *ep, int cprestore)
8647 static const bfd_reloc_code_real_type jalr_relocs[2]
8648 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8649 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8653 if (MIPS_JALR_HINT_P (ep))
8658 if (mips_opts.micromips)
8660 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8661 ? "jalr" : "jalrs");
8662 if (MIPS_JALR_HINT_P (ep)
8664 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8665 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8667 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8670 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8671 if (MIPS_JALR_HINT_P (ep))
8672 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8676 * Generate a "lui" instruction.
8679 macro_build_lui (expressionS *ep, int regnum)
8681 gas_assert (! mips_opts.mips16);
8683 if (ep->X_op != O_constant)
8685 gas_assert (ep->X_op == O_symbol);
8686 /* _gp_disp is a special case, used from s_cpload.
8687 __gnu_local_gp is used if mips_no_shared. */
8688 gas_assert (mips_pic == NO_PIC
8690 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8691 || (! mips_in_shared
8692 && strcmp (S_GET_NAME (ep->X_add_symbol),
8693 "__gnu_local_gp") == 0));
8696 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8699 /* Generate a sequence of instructions to do a load or store from a constant
8700 offset off of a base register (breg) into/from a target register (treg),
8701 using AT if necessary. */
8703 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8704 int treg, int breg, int dbl)
8706 gas_assert (ep->X_op == O_constant);
8708 /* Sign-extending 32-bit constants makes their handling easier. */
8710 normalize_constant_expr (ep);
8712 /* Right now, this routine can only handle signed 32-bit constants. */
8713 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8714 as_warn (_("operand overflow"));
8716 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8718 /* Signed 16-bit offset will fit in the op. Easy! */
8719 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8723 /* 32-bit offset, need multiple instructions and AT, like:
8724 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8725 addu $tempreg,$tempreg,$breg
8726 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8727 to handle the complete offset. */
8728 macro_build_lui (ep, AT);
8729 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8733 as_bad (_("macro used $at after \".set noat\""));
8738 * Generates code to set the $at register to true (one)
8739 * if reg is less than the immediate expression.
8742 set_at (int reg, int unsignedp)
8744 if (imm_expr.X_add_number >= -0x8000
8745 && imm_expr.X_add_number < 0x8000)
8746 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8747 AT, reg, BFD_RELOC_LO16);
8750 load_register (AT, &imm_expr, GPR_SIZE == 64);
8751 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8755 /* Count the leading zeroes by performing a binary chop. This is a
8756 bulky bit of source, but performance is a LOT better for the
8757 majority of values than a simple loop to count the bits:
8758 for (lcnt = 0; (lcnt < 32); lcnt++)
8759 if ((v) & (1 << (31 - lcnt)))
8761 However it is not code size friendly, and the gain will drop a bit
8762 on certain cached systems.
8764 #define COUNT_TOP_ZEROES(v) \
8765 (((v) & ~0xffff) == 0 \
8766 ? ((v) & ~0xff) == 0 \
8767 ? ((v) & ~0xf) == 0 \
8768 ? ((v) & ~0x3) == 0 \
8769 ? ((v) & ~0x1) == 0 \
8774 : ((v) & ~0x7) == 0 \
8777 : ((v) & ~0x3f) == 0 \
8778 ? ((v) & ~0x1f) == 0 \
8781 : ((v) & ~0x7f) == 0 \
8784 : ((v) & ~0xfff) == 0 \
8785 ? ((v) & ~0x3ff) == 0 \
8786 ? ((v) & ~0x1ff) == 0 \
8789 : ((v) & ~0x7ff) == 0 \
8792 : ((v) & ~0x3fff) == 0 \
8793 ? ((v) & ~0x1fff) == 0 \
8796 : ((v) & ~0x7fff) == 0 \
8799 : ((v) & ~0xffffff) == 0 \
8800 ? ((v) & ~0xfffff) == 0 \
8801 ? ((v) & ~0x3ffff) == 0 \
8802 ? ((v) & ~0x1ffff) == 0 \
8805 : ((v) & ~0x7ffff) == 0 \
8808 : ((v) & ~0x3fffff) == 0 \
8809 ? ((v) & ~0x1fffff) == 0 \
8812 : ((v) & ~0x7fffff) == 0 \
8815 : ((v) & ~0xfffffff) == 0 \
8816 ? ((v) & ~0x3ffffff) == 0 \
8817 ? ((v) & ~0x1ffffff) == 0 \
8820 : ((v) & ~0x7ffffff) == 0 \
8823 : ((v) & ~0x3fffffff) == 0 \
8824 ? ((v) & ~0x1fffffff) == 0 \
8827 : ((v) & ~0x7fffffff) == 0 \
8832 * This routine generates the least number of instructions necessary to load
8833 * an absolute expression value into a register.
8836 load_register (int reg, expressionS *ep, int dbl)
8839 expressionS hi32, lo32;
8841 if (ep->X_op != O_big)
8843 gas_assert (ep->X_op == O_constant);
8845 /* Sign-extending 32-bit constants makes their handling easier. */
8847 normalize_constant_expr (ep);
8849 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8851 /* We can handle 16 bit signed values with an addiu to
8852 $zero. No need to ever use daddiu here, since $zero and
8853 the result are always correct in 32 bit mode. */
8854 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8857 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8859 /* We can handle 16 bit unsigned values with an ori to
8861 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8864 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8866 /* 32 bit values require an lui. */
8867 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8868 if ((ep->X_add_number & 0xffff) != 0)
8869 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8874 /* The value is larger than 32 bits. */
8876 if (!dbl || GPR_SIZE == 32)
8880 sprintf_vma (value, ep->X_add_number);
8881 as_bad (_("number (0x%s) larger than 32 bits"), value);
8882 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8886 if (ep->X_op != O_big)
8889 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number &= 0xffffffff;
8893 lo32.X_add_number &= 0xffffffff;
8897 gas_assert (ep->X_add_number > 2);
8898 if (ep->X_add_number == 3)
8899 generic_bignum[3] = 0;
8900 else if (ep->X_add_number > 4)
8901 as_bad (_("number larger than 64 bits"));
8902 lo32.X_op = O_constant;
8903 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8904 hi32.X_op = O_constant;
8905 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8908 if (hi32.X_add_number == 0)
8913 unsigned long hi, lo;
8915 if (hi32.X_add_number == (offsetT) 0xffffffff)
8917 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8919 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8922 if (lo32.X_add_number & 0x80000000)
8924 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8925 if (lo32.X_add_number & 0xffff)
8926 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8931 /* Check for 16bit shifted constant. We know that hi32 is
8932 non-zero, so start the mask on the first bit of the hi32
8937 unsigned long himask, lomask;
8941 himask = 0xffff >> (32 - shift);
8942 lomask = (0xffff << shift) & 0xffffffff;
8946 himask = 0xffff << (shift - 32);
8949 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8950 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8954 tmp.X_op = O_constant;
8956 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8957 | (lo32.X_add_number >> shift));
8959 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8960 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8961 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8962 reg, reg, (shift >= 32) ? shift - 32 : shift);
8967 while (shift <= (64 - 16));
8969 /* Find the bit number of the lowest one bit, and store the
8970 shifted value in hi/lo. */
8971 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8972 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8976 while ((lo & 1) == 0)
8981 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8987 while ((hi & 1) == 0)
8996 /* Optimize if the shifted value is a (power of 2) - 1. */
8997 if ((hi == 0 && ((lo + 1) & lo) == 0)
8998 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9000 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9005 /* This instruction will set the register to be all
9007 tmp.X_op = O_constant;
9008 tmp.X_add_number = (offsetT) -1;
9009 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9013 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9014 reg, reg, (bit >= 32) ? bit - 32 : bit);
9016 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9017 reg, reg, (shift >= 32) ? shift - 32 : shift);
9022 /* Sign extend hi32 before calling load_register, because we can
9023 generally get better code when we load a sign extended value. */
9024 if ((hi32.X_add_number & 0x80000000) != 0)
9025 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9026 load_register (reg, &hi32, 0);
9029 if ((lo32.X_add_number & 0xffff0000) == 0)
9033 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9041 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9043 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9044 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9050 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9054 mid16.X_add_number >>= 16;
9055 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9056 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9059 if ((lo32.X_add_number & 0xffff) != 0)
9060 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9064 load_delay_nop (void)
9066 if (!gpr_interlocks)
9067 macro_build (NULL, "nop", "");
9070 /* Load an address into a register. */
9073 load_address (int reg, expressionS *ep, int *used_at)
9075 if (ep->X_op != O_constant
9076 && ep->X_op != O_symbol)
9078 as_bad (_("expression too complex"));
9079 ep->X_op = O_constant;
9082 if (ep->X_op == O_constant)
9084 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9088 if (mips_pic == NO_PIC)
9090 /* If this is a reference to a GP relative symbol, we want
9091 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9093 lui $reg,<sym> (BFD_RELOC_HI16_S)
9094 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9095 If we have an addend, we always use the latter form.
9097 With 64bit address space and a usable $at we want
9098 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9099 lui $at,<sym> (BFD_RELOC_HI16_S)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 daddiu $at,<sym> (BFD_RELOC_LO16)
9105 If $at is already in use, we use a path which is suboptimal
9106 on superscalar processors.
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9112 daddiu $reg,<sym> (BFD_RELOC_LO16)
9114 For GP relative symbols in 64bit address space we can use
9115 the same sequence as in 32bit address space. */
9116 if (HAVE_64BIT_SYMBOLS)
9118 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9119 && !nopic_need_relax (ep->X_add_symbol, 1))
9121 relax_start (ep->X_add_symbol);
9122 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9123 mips_gp_register, BFD_RELOC_GPREL16);
9127 if (*used_at == 0 && mips_opts.at)
9129 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9130 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9131 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9132 BFD_RELOC_MIPS_HIGHER);
9133 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9134 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9135 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9141 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9142 BFD_RELOC_MIPS_HIGHER);
9143 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9144 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9145 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9146 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9149 if (mips_relax.sequence)
9154 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9155 && !nopic_need_relax (ep->X_add_symbol, 1))
9157 relax_start (ep->X_add_symbol);
9158 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9159 mips_gp_register, BFD_RELOC_GPREL16);
9162 macro_build_lui (ep, reg);
9163 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9164 reg, reg, BFD_RELOC_LO16);
9165 if (mips_relax.sequence)
9169 else if (!mips_big_got)
9173 /* If this is a reference to an external symbol, we want
9174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9176 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9178 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9179 If there is a constant, it must be added in after.
9181 If we have NewABI, we want
9182 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9183 unless we're referencing a global symbol with a non-zero
9184 offset, in which case cst must be added separately. */
9187 if (ep->X_add_number)
9189 ex.X_add_number = ep->X_add_number;
9190 ep->X_add_number = 0;
9191 relax_start (ep->X_add_symbol);
9192 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9193 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9194 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9195 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9196 ex.X_op = O_constant;
9197 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9198 reg, reg, BFD_RELOC_LO16);
9199 ep->X_add_number = ex.X_add_number;
9202 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9203 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9204 if (mips_relax.sequence)
9209 ex.X_add_number = ep->X_add_number;
9210 ep->X_add_number = 0;
9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9212 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9214 relax_start (ep->X_add_symbol);
9216 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9220 if (ex.X_add_number != 0)
9222 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 ex.X_op = O_constant;
9225 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9226 reg, reg, BFD_RELOC_LO16);
9230 else if (mips_big_got)
9234 /* This is the large GOT case. If this is a reference to an
9235 external symbol, we want
9236 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9238 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9240 Otherwise, for a reference to a local symbol in old ABI, we want
9241 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9243 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9244 If there is a constant, it must be added in after.
9246 In the NewABI, for local symbols, with or without offsets, we want:
9247 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9248 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9252 ex.X_add_number = ep->X_add_number;
9253 ep->X_add_number = 0;
9254 relax_start (ep->X_add_symbol);
9255 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9256 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9257 reg, reg, mips_gp_register);
9258 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9259 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 else if (ex.X_add_number)
9264 ex.X_op = O_constant;
9265 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9269 ep->X_add_number = ex.X_add_number;
9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9272 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9273 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_GOT_OFST);
9279 ex.X_add_number = ep->X_add_number;
9280 ep->X_add_number = 0;
9281 relax_start (ep->X_add_symbol);
9282 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9283 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9284 reg, reg, mips_gp_register);
9285 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9286 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9288 if (reg_needs_delay (mips_gp_register))
9290 /* We need a nop before loading from $gp. This special
9291 check is required because the lui which starts the main
9292 instruction stream does not refer to $gp, and so will not
9293 insert the nop which may be required. */
9294 macro_build (NULL, "nop", "");
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9297 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9299 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9303 if (ex.X_add_number != 0)
9305 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9306 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9307 ex.X_op = O_constant;
9308 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9316 if (!mips_opts.at && *used_at == 1)
9317 as_bad (_("macro used $at after \".set noat\""));
9320 /* Move the contents of register SOURCE into register DEST. */
9323 move_register (int dest, int source)
9325 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9326 instruction specifically requires a 32-bit one. */
9327 if (mips_opts.micromips
9328 && !mips_opts.insn32
9329 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9330 macro_build (NULL, "move", "mp,mj", dest, source);
9332 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9335 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9336 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9337 The two alternatives are:
9339 Global symbol Local sybmol
9340 ------------- ------------
9341 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9343 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9345 load_got_offset emits the first instruction and add_got_offset
9346 emits the second for a 16-bit offset or add_got_offset_hilo emits
9347 a sequence to add a 32-bit offset using a scratch register. */
9350 load_got_offset (int dest, expressionS *local)
9355 global.X_add_number = 0;
9357 relax_start (local->X_add_symbol);
9358 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9361 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9362 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9367 add_got_offset (int dest, expressionS *local)
9371 global.X_op = O_constant;
9372 global.X_op_symbol = NULL;
9373 global.X_add_symbol = NULL;
9374 global.X_add_number = local->X_add_number;
9376 relax_start (local->X_add_symbol);
9377 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9378 dest, dest, BFD_RELOC_LO16);
9380 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9385 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9388 int hold_mips_optimize;
9390 global.X_op = O_constant;
9391 global.X_op_symbol = NULL;
9392 global.X_add_symbol = NULL;
9393 global.X_add_number = local->X_add_number;
9395 relax_start (local->X_add_symbol);
9396 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9398 /* Set mips_optimize around the lui instruction to avoid
9399 inserting an unnecessary nop after the lw. */
9400 hold_mips_optimize = mips_optimize;
9402 macro_build_lui (&global, tmp);
9403 mips_optimize = hold_mips_optimize;
9404 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9410 /* Emit a sequence of instructions to emulate a branch likely operation.
9411 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9412 is its complementing branch with the original condition negated.
9413 CALL is set if the original branch specified the link operation.
9414 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9416 Code like this is produced in the noreorder mode:
9421 delay slot (executed only if branch taken)
9429 delay slot (executed only if branch taken)
9432 In the reorder mode the delay slot would be filled with a nop anyway,
9433 so code produced is simply:
9438 This function is used when producing code for the microMIPS ASE that
9439 does not implement branch likely instructions in hardware. */
9442 macro_build_branch_likely (const char *br, const char *brneg,
9443 int call, expressionS *ep, const char *fmt,
9444 unsigned int sreg, unsigned int treg)
9446 int noreorder = mips_opts.noreorder;
9449 gas_assert (mips_opts.micromips);
9453 micromips_label_expr (&expr1);
9454 macro_build (&expr1, brneg, fmt, sreg, treg);
9455 macro_build (NULL, "nop", "");
9456 macro_build (ep, call ? "bal" : "b", "p");
9458 /* Set to true so that append_insn adds a label. */
9459 emit_branch_likely_macro = TRUE;
9463 macro_build (ep, br, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9469 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9470 the condition code tested. EP specifies the branch target. */
9473 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9500 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9503 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9504 the register tested. EP specifies the branch target. */
9507 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9509 const char *brneg = NULL;
9519 br = mips_opts.micromips ? "bgez" : "bgezl";
9523 gas_assert (mips_opts.micromips);
9524 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9532 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9539 br = mips_opts.micromips ? "blez" : "blezl";
9546 br = mips_opts.micromips ? "bltz" : "bltzl";
9550 gas_assert (mips_opts.micromips);
9551 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9558 if (mips_opts.micromips && brneg)
9559 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9561 macro_build (ep, br, "s,p", sreg);
9564 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9565 TREG as the registers tested. EP specifies the branch target. */
9568 macro_build_branch_rsrt (int type, expressionS *ep,
9569 unsigned int sreg, unsigned int treg)
9571 const char *brneg = NULL;
9583 br = mips_opts.micromips ? "beq" : "beql";
9592 br = mips_opts.micromips ? "bne" : "bnel";
9598 if (mips_opts.micromips && brneg)
9599 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9601 macro_build (ep, br, "s,t,p", sreg, treg);
9604 /* Return the high part that should be loaded in order to make the low
9605 part of VALUE accessible using an offset of OFFBITS bits. */
9608 offset_high_part (offsetT value, unsigned int offbits)
9615 bias = 1 << (offbits - 1);
9616 low_mask = bias * 2 - 1;
9617 return (value + bias) & ~low_mask;
9620 /* Return true if the value stored in offset_expr and offset_reloc
9621 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9622 amount that the caller wants to add without inducing overflow
9623 and ALIGN is the known alignment of the value in bytes. */
9626 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9630 /* Accept any relocation operator if overflow isn't a concern. */
9631 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9634 /* These relocations are guaranteed not to overflow in correct links. */
9635 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9636 || gprel16_reloc_p (*offset_reloc))
9639 if (offset_expr.X_op == O_constant
9640 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9641 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9648 * This routine implements the seemingly endless macro or synthesized
9649 * instructions and addressing modes in the mips assembly language. Many
9650 * of these macros are simple and are similar to each other. These could
9651 * probably be handled by some kind of table or grammar approach instead of
9652 * this verbose method. Others are not simple macros but are more like
9653 * optimizing code generation.
9654 * One interesting optimization is when several store macros appear
9655 * consecutively that would load AT with the upper half of the same address.
9656 * The ensuing load upper instructions are ommited. This implies some kind
9657 * of global optimization. We currently only optimize within a single macro.
9658 * For many of the load and store macros if the address is specified as a
9659 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9660 * first load register 'at' with zero and use it as the base register. The
9661 * mips assembler simply uses register $zero. Just one tiny optimization
9665 macro (struct mips_cl_insn *ip, char *str)
9667 const struct mips_operand_array *operands;
9668 unsigned int breg, i;
9669 unsigned int tempreg;
9672 expressionS label_expr;
9687 bfd_boolean large_offset;
9689 int hold_mips_optimize;
9691 unsigned int op[MAX_OPERANDS];
9693 gas_assert (! mips_opts.mips16);
9695 operands = insn_operands (ip);
9696 for (i = 0; i < MAX_OPERANDS; i++)
9697 if (operands->operand[i])
9698 op[i] = insn_extract_operand (ip, operands->operand[i]);
9702 mask = ip->insn_mo->mask;
9704 label_expr.X_op = O_constant;
9705 label_expr.X_op_symbol = NULL;
9706 label_expr.X_add_symbol = NULL;
9707 label_expr.X_add_number = 0;
9709 expr1.X_op = O_constant;
9710 expr1.X_op_symbol = NULL;
9711 expr1.X_add_symbol = NULL;
9712 expr1.X_add_number = 1;
9728 if (mips_opts.micromips)
9729 micromips_label_expr (&label_expr);
9731 label_expr.X_add_number = 8;
9732 macro_build (&label_expr, "bgez", "s,p", op[1]);
9734 macro_build (NULL, "nop", "");
9736 move_register (op[0], op[1]);
9737 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9738 if (mips_opts.micromips)
9739 micromips_add_label ();
9756 if (!mips_opts.micromips)
9758 if (imm_expr.X_add_number >= -0x200
9759 && imm_expr.X_add_number < 0x200)
9761 macro_build (NULL, s, "t,r,.", op[0], op[1],
9762 (int) imm_expr.X_add_number);
9771 if (imm_expr.X_add_number >= -0x8000
9772 && imm_expr.X_add_number < 0x8000)
9774 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9779 load_register (AT, &imm_expr, dbl);
9780 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9799 if (imm_expr.X_add_number >= 0
9800 && imm_expr.X_add_number < 0x10000)
9802 if (mask != M_NOR_I)
9803 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9806 macro_build (&imm_expr, "ori", "t,r,i",
9807 op[0], op[1], BFD_RELOC_LO16);
9808 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9814 load_register (AT, &imm_expr, GPR_SIZE == 64);
9815 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9819 switch (imm_expr.X_add_number)
9822 macro_build (NULL, "nop", "");
9825 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9829 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9830 (int) imm_expr.X_add_number);
9833 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9834 (unsigned long) imm_expr.X_add_number);
9843 gas_assert (mips_opts.micromips);
9844 macro_build_branch_ccl (mask, &offset_expr,
9845 EXTRACT_OPERAND (1, BCC, *ip));
9852 if (imm_expr.X_add_number == 0)
9858 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9863 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9870 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9871 else if (op[0] == 0)
9872 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9876 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9877 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9878 &offset_expr, AT, ZERO);
9888 macro_build_branch_rs (mask, &offset_expr, op[0]);
9894 /* Check for > max integer. */
9895 if (imm_expr.X_add_number >= GPR_SMAX)
9898 /* Result is always false. */
9900 macro_build (NULL, "nop", "");
9902 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9905 ++imm_expr.X_add_number;
9909 if (mask == M_BGEL_I)
9911 if (imm_expr.X_add_number == 0)
9913 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9914 &offset_expr, op[0]);
9917 if (imm_expr.X_add_number == 1)
9919 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9920 &offset_expr, op[0]);
9923 if (imm_expr.X_add_number <= GPR_SMIN)
9926 /* result is always true */
9927 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9928 macro_build (&offset_expr, "b", "p");
9933 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9934 &offset_expr, AT, ZERO);
9942 else if (op[0] == 0)
9943 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9944 &offset_expr, ZERO, op[1]);
9948 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9949 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9950 &offset_expr, AT, ZERO);
9959 && imm_expr.X_add_number == -1))
9961 ++imm_expr.X_add_number;
9965 if (mask == M_BGEUL_I)
9967 if (imm_expr.X_add_number == 0)
9969 else if (imm_expr.X_add_number == 1)
9970 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9971 &offset_expr, op[0], ZERO);
9976 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9977 &offset_expr, AT, ZERO);
9985 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9986 else if (op[0] == 0)
9987 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9991 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9992 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9993 &offset_expr, AT, ZERO);
10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10002 &offset_expr, op[0], ZERO);
10003 else if (op[0] == 0)
10008 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10009 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10010 &offset_expr, AT, ZERO);
10018 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10019 else if (op[0] == 0)
10020 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10024 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10025 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10026 &offset_expr, AT, ZERO);
10033 if (imm_expr.X_add_number >= GPR_SMAX)
10035 ++imm_expr.X_add_number;
10039 if (mask == M_BLTL_I)
10041 if (imm_expr.X_add_number == 0)
10042 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10043 else if (imm_expr.X_add_number == 1)
10044 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10049 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10050 &offset_expr, AT, ZERO);
10058 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10059 &offset_expr, op[0], ZERO);
10060 else if (op[0] == 0)
10065 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
10076 && imm_expr.X_add_number == -1))
10078 ++imm_expr.X_add_number;
10082 if (mask == M_BLTUL_I)
10084 if (imm_expr.X_add_number == 0)
10086 else if (imm_expr.X_add_number == 1)
10087 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10088 &offset_expr, op[0], ZERO);
10093 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10094 &offset_expr, AT, ZERO);
10102 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10103 else if (op[0] == 0)
10104 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10108 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10109 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10110 &offset_expr, AT, ZERO);
10119 else if (op[0] == 0)
10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10121 &offset_expr, ZERO, op[1]);
10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10126 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10127 &offset_expr, AT, ZERO);
10143 as_warn (_("divide by zero"));
10145 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10147 macro_build (NULL, "break", BRK_FMT, 7);
10151 start_noreorder ();
10154 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10155 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10159 if (mips_opts.micromips)
10160 micromips_label_expr (&label_expr);
10162 label_expr.X_add_number = 8;
10163 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10165 macro_build (NULL, "break", BRK_FMT, 7);
10166 if (mips_opts.micromips)
10167 micromips_add_label ();
10169 expr1.X_add_number = -1;
10171 load_register (AT, &expr1, dbl);
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10175 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10176 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10179 expr1.X_add_number = 1;
10180 load_register (AT, &expr1, dbl);
10181 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10185 expr1.X_add_number = 0x80000000;
10186 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10190 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10191 /* We want to close the noreorder block as soon as possible, so
10192 that later insns are available for delay slot filling. */
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10200 label_expr.X_add_number = 8;
10201 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10202 macro_build (NULL, "nop", "");
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
10208 macro_build (NULL, "break", BRK_FMT, 6);
10210 if (mips_opts.micromips)
10211 micromips_add_label ();
10212 macro_build (NULL, s, MFHL_FMT, op[0]);
10251 if (imm_expr.X_add_number == 0)
10253 as_warn (_("divide by zero"));
10255 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10257 macro_build (NULL, "break", BRK_FMT, 7);
10260 if (imm_expr.X_add_number == 1)
10262 if (strcmp (s2, "mflo") == 0)
10263 move_register (op[0], op[1]);
10265 move_register (op[0], ZERO);
10268 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10270 if (strcmp (s2, "mflo") == 0)
10271 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10273 move_register (op[0], ZERO);
10278 load_register (AT, &imm_expr, dbl);
10279 macro_build (NULL, s, "z,s,t", op[1], AT);
10280 macro_build (NULL, s2, MFHL_FMT, op[0]);
10299 start_noreorder ();
10302 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10303 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10304 /* We want to close the noreorder block as soon as possible, so
10305 that later insns are available for delay slot filling. */
10310 if (mips_opts.micromips)
10311 micromips_label_expr (&label_expr);
10313 label_expr.X_add_number = 8;
10314 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10315 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
10320 macro_build (NULL, "break", BRK_FMT, 7);
10321 if (mips_opts.micromips)
10322 micromips_add_label ();
10324 macro_build (NULL, s2, MFHL_FMT, op[0]);
10336 /* Load the address of a symbol into a register. If breg is not
10337 zero, we then add a base register to it. */
10340 if (dbl && GPR_SIZE == 32)
10341 as_warn (_("dla used to load 32-bit register; recommend using la "
10344 if (!dbl && HAVE_64BIT_OBJECTS)
10345 as_warn (_("la used to load 64-bit address; recommend using dla "
10348 if (small_offset_p (0, align, 16))
10350 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10351 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10355 if (mips_opts.at && (op[0] == breg))
10363 if (offset_expr.X_op != O_symbol
10364 && offset_expr.X_op != O_constant)
10366 as_bad (_("expression too complex"));
10367 offset_expr.X_op = O_constant;
10370 if (offset_expr.X_op == O_constant)
10371 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10372 else if (mips_pic == NO_PIC)
10374 /* If this is a reference to a GP relative symbol, we want
10375 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10377 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10378 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10379 If we have a constant, we need two instructions anyhow,
10380 so we may as well always use the latter form.
10382 With 64bit address space and a usable $at we want
10383 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10384 lui $at,<sym> (BFD_RELOC_HI16_S)
10385 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10386 daddiu $at,<sym> (BFD_RELOC_LO16)
10388 daddu $tempreg,$tempreg,$at
10390 If $at is already in use, we use a path which is suboptimal
10391 on superscalar processors.
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10397 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10399 For GP relative symbols in 64bit address space we can use
10400 the same sequence as in 32bit address space. */
10401 if (HAVE_64BIT_SYMBOLS)
10403 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10404 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10406 relax_start (offset_expr.X_add_symbol);
10407 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10408 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10412 if (used_at == 0 && mips_opts.at)
10414 macro_build (&offset_expr, "lui", LUI_FMT,
10415 tempreg, BFD_RELOC_MIPS_HIGHEST);
10416 macro_build (&offset_expr, "lui", LUI_FMT,
10417 AT, BFD_RELOC_HI16_S);
10418 macro_build (&offset_expr, "daddiu", "t,r,j",
10419 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10420 macro_build (&offset_expr, "daddiu", "t,r,j",
10421 AT, AT, BFD_RELOC_LO16);
10422 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10423 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10428 macro_build (&offset_expr, "lui", LUI_FMT,
10429 tempreg, BFD_RELOC_MIPS_HIGHEST);
10430 macro_build (&offset_expr, "daddiu", "t,r,j",
10431 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 tempreg, tempreg, BFD_RELOC_HI16_S);
10435 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10436 macro_build (&offset_expr, "daddiu", "t,r,j",
10437 tempreg, tempreg, BFD_RELOC_LO16);
10440 if (mips_relax.sequence)
10445 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10446 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10448 relax_start (offset_expr.X_add_symbol);
10449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10450 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10453 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10454 as_bad (_("offset too large"));
10455 macro_build_lui (&offset_expr, tempreg);
10456 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_LO16);
10458 if (mips_relax.sequence)
10462 else if (!mips_big_got && !HAVE_NEWABI)
10464 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10466 /* If this is a reference to an external symbol, and there
10467 is no constant, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10469 or for lca or if tempreg is PIC_CALL_REG
10470 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10471 For a local symbol, we want
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10474 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10476 If we have a small constant, and this is a reference to
10477 an external symbol, we want
10478 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10480 addiu $tempreg,$tempreg,<constant>
10481 For a local symbol, we want the same instruction
10482 sequence, but we output a BFD_RELOC_LO16 reloc on the
10485 If we have a large constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 lui $at,<hiconstant>
10489 addiu $at,$at,<loconstant>
10490 addu $tempreg,$tempreg,$at
10491 For a local symbol, we want the same instruction
10492 sequence, but we output a BFD_RELOC_LO16 reloc on the
10496 if (offset_expr.X_add_number == 0)
10498 if (mips_pic == SVR4_PIC
10500 && (call || tempreg == PIC_CALL_REG))
10501 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10503 relax_start (offset_expr.X_add_symbol);
10504 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10505 lw_reloc_type, mips_gp_register);
10508 /* We're going to put in an addu instruction using
10509 tempreg, so we may as well insert the nop right
10514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10515 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10517 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10518 tempreg, tempreg, BFD_RELOC_LO16);
10520 /* FIXME: If breg == 0, and the next instruction uses
10521 $tempreg, then if this variant case is used an extra
10522 nop will be generated. */
10524 else if (offset_expr.X_add_number >= -0x8000
10525 && offset_expr.X_add_number < 0x8000)
10527 load_got_offset (tempreg, &offset_expr);
10529 add_got_offset (tempreg, &offset_expr);
10533 expr1.X_add_number = offset_expr.X_add_number;
10534 offset_expr.X_add_number =
10535 SEXT_16BIT (offset_expr.X_add_number);
10536 load_got_offset (tempreg, &offset_expr);
10537 offset_expr.X_add_number = expr1.X_add_number;
10538 /* If we are going to add in a base register, and the
10539 target register and the base register are the same,
10540 then we are using AT as a temporary register. Since
10541 we want to load the constant into AT, we add our
10542 current AT (from the global offset table) and the
10543 register into the register now, and pretend we were
10544 not using a base register. */
10548 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10553 add_got_offset_hilo (tempreg, &offset_expr, AT);
10557 else if (!mips_big_got && HAVE_NEWABI)
10559 int add_breg_early = 0;
10561 /* If this is a reference to an external, and there is no
10562 constant, or local symbol (*), with or without a
10564 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10565 or for lca or if tempreg is PIC_CALL_REG
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10568 If we have a small constant, and this is a reference to
10569 an external symbol, we want
10570 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10571 addiu $tempreg,$tempreg,<constant>
10573 If we have a large constant, and this is a reference to
10574 an external symbol, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10576 lui $at,<hiconstant>
10577 addiu $at,$at,<loconstant>
10578 addu $tempreg,$tempreg,$at
10580 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10581 local symbols, even though it introduces an additional
10584 if (offset_expr.X_add_number)
10586 expr1.X_add_number = offset_expr.X_add_number;
10587 offset_expr.X_add_number = 0;
10589 relax_start (offset_expr.X_add_symbol);
10590 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10591 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10593 if (expr1.X_add_number >= -0x8000
10594 && expr1.X_add_number < 0x8000)
10596 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10597 tempreg, tempreg, BFD_RELOC_LO16);
10599 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10603 /* If we are going to add in a base register, and the
10604 target register and the base register are the same,
10605 then we are using AT as a temporary register. Since
10606 we want to load the constant into AT, we add our
10607 current AT (from the global offset table) and the
10608 register into the register now, and pretend we were
10609 not using a base register. */
10614 gas_assert (tempreg == AT);
10615 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10618 add_breg_early = 1;
10621 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10628 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10631 offset_expr.X_add_number = expr1.X_add_number;
10633 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10634 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10635 if (add_breg_early)
10637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10638 op[0], tempreg, breg);
10644 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10646 relax_start (offset_expr.X_add_symbol);
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10651 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10660 else if (mips_big_got && !HAVE_NEWABI)
10663 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10664 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10665 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10667 /* This is the large GOT case. If this is a reference to an
10668 external symbol, and there is no constant, we want
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10672 or for lca or if tempreg is PIC_CALL_REG
10673 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10674 addu $tempreg,$tempreg,$gp
10675 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10676 For a local symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10679 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10681 If we have a small constant, and this is a reference to
10682 an external symbol, we want
10683 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10684 addu $tempreg,$tempreg,$gp
10685 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10687 addiu $tempreg,$tempreg,<constant>
10688 For a local symbol, we want
10689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10693 If we have a large constant, and this is a reference to
10694 an external symbol, we want
10695 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10696 addu $tempreg,$tempreg,$gp
10697 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10698 lui $at,<hiconstant>
10699 addiu $at,$at,<loconstant>
10700 addu $tempreg,$tempreg,$at
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10703 lui $at,<hiconstant>
10704 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10705 addu $tempreg,$tempreg,$at
10708 expr1.X_add_number = offset_expr.X_add_number;
10709 offset_expr.X_add_number = 0;
10710 relax_start (offset_expr.X_add_symbol);
10711 gpdelay = reg_needs_delay (mips_gp_register);
10712 if (expr1.X_add_number == 0 && breg == 0
10713 && (call || tempreg == PIC_CALL_REG))
10715 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10716 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10718 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10719 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10720 tempreg, tempreg, mips_gp_register);
10721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10722 tempreg, lw_reloc_type, tempreg);
10723 if (expr1.X_add_number == 0)
10727 /* We're going to put in an addu instruction using
10728 tempreg, so we may as well insert the nop right
10733 else if (expr1.X_add_number >= -0x8000
10734 && expr1.X_add_number < 0x8000)
10737 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10738 tempreg, tempreg, BFD_RELOC_LO16);
10744 /* If we are going to add in a base register, and the
10745 target register and the base register are the same,
10746 then we are using AT as a temporary register. Since
10747 we want to load the constant into AT, we add our
10748 current AT (from the global offset table) and the
10749 register into the register now, and pretend we were
10750 not using a base register. */
10755 gas_assert (tempreg == AT);
10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10762 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10767 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10772 /* This is needed because this instruction uses $gp, but
10773 the first instruction on the main stream does not. */
10774 macro_build (NULL, "nop", "");
10777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10778 local_reloc_type, mips_gp_register);
10779 if (expr1.X_add_number >= -0x8000
10780 && expr1.X_add_number < 0x8000)
10783 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10784 tempreg, tempreg, BFD_RELOC_LO16);
10785 /* FIXME: If add_number is 0, and there was no base
10786 register, the external symbol case ended with a load,
10787 so if the symbol turns out to not be external, and
10788 the next instruction uses tempreg, an unnecessary nop
10789 will be inserted. */
10795 /* We must add in the base register now, as in the
10796 external symbol case. */
10797 gas_assert (tempreg == AT);
10799 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10802 /* We set breg to 0 because we have arranged to add
10803 it in in both cases. */
10807 macro_build_lui (&expr1, AT);
10808 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10809 AT, AT, BFD_RELOC_LO16);
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 tempreg, tempreg, AT);
10816 else if (mips_big_got && HAVE_NEWABI)
10818 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10819 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10820 int add_breg_early = 0;
10822 /* This is the large GOT case. If this is a reference to an
10823 external symbol, and there is no constant, we want
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10827 or for lca or if tempreg is PIC_CALL_REG
10828 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10829 add $tempreg,$tempreg,$gp
10830 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10832 If we have a small constant, and this is a reference to
10833 an external symbol, we want
10834 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10835 add $tempreg,$tempreg,$gp
10836 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10837 addi $tempreg,$tempreg,<constant>
10839 If we have a large constant, and this is a reference to
10840 an external symbol, we want
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10842 addu $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10844 lui $at,<hiconstant>
10845 addi $at,$at,<loconstant>
10846 add $tempreg,$tempreg,$at
10848 If we have NewABI, and we know it's a local symbol, we want
10849 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10850 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10851 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10853 relax_start (offset_expr.X_add_symbol);
10855 expr1.X_add_number = offset_expr.X_add_number;
10856 offset_expr.X_add_number = 0;
10858 if (expr1.X_add_number == 0 && breg == 0
10859 && (call || tempreg == PIC_CALL_REG))
10861 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10862 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10864 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10866 tempreg, tempreg, mips_gp_register);
10867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10868 tempreg, lw_reloc_type, tempreg);
10870 if (expr1.X_add_number == 0)
10872 else if (expr1.X_add_number >= -0x8000
10873 && expr1.X_add_number < 0x8000)
10875 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10876 tempreg, tempreg, BFD_RELOC_LO16);
10878 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10882 /* If we are going to add in a base register, and the
10883 target register and the base register are the same,
10884 then we are using AT as a temporary register. Since
10885 we want to load the constant into AT, we add our
10886 current AT (from the global offset table) and the
10887 register into the register now, and pretend we were
10888 not using a base register. */
10893 gas_assert (tempreg == AT);
10894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10897 add_breg_early = 1;
10900 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10906 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10909 offset_expr.X_add_number = expr1.X_add_number;
10910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10911 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10913 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10914 if (add_breg_early)
10916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10917 op[0], tempreg, breg);
10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10931 gas_assert (!mips_opts.micromips);
10932 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10936 gas_assert (!mips_opts.micromips);
10937 macro_build (NULL, "c2", "C", 0x02);
10941 gas_assert (!mips_opts.micromips);
10942 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10946 gas_assert (!mips_opts.micromips);
10947 macro_build (NULL, "c2", "C", 3);
10951 gas_assert (!mips_opts.micromips);
10952 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10956 /* The j instruction may not be used in PIC code, since it
10957 requires an absolute address. We convert it to a b
10959 if (mips_pic == NO_PIC)
10960 macro_build (&offset_expr, "j", "a");
10962 macro_build (&offset_expr, "b", "p");
10965 /* The jal instructions must be handled as macros because when
10966 generating PIC code they expand to multi-instruction
10967 sequences. Normally they are simple instructions. */
10971 /* Fall through. */
10973 gas_assert (mips_opts.micromips);
10974 if (mips_opts.insn32)
10976 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10984 /* Fall through. */
10987 if (mips_pic == NO_PIC)
10989 s = jals ? "jalrs" : "jalr";
10990 if (mips_opts.micromips
10991 && !mips_opts.insn32
10993 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10994 macro_build (NULL, s, "mj", op[1]);
10996 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11000 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11001 && mips_cprestore_offset >= 0);
11003 if (op[1] != PIC_CALL_REG)
11004 as_warn (_("MIPS PIC call to register other than $25"));
11006 s = ((mips_opts.micromips
11007 && !mips_opts.insn32
11008 && (!mips_opts.noreorder || cprestore))
11009 ? "jalrs" : "jalr");
11010 if (mips_opts.micromips
11011 && !mips_opts.insn32
11013 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11014 macro_build (NULL, s, "mj", op[1]);
11016 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11017 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11019 if (mips_cprestore_offset < 0)
11020 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11023 if (!mips_frame_reg_valid)
11025 as_warn (_("no .frame pseudo-op used in PIC code"));
11026 /* Quiet this warning. */
11027 mips_frame_reg_valid = 1;
11029 if (!mips_cprestore_valid)
11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11032 /* Quiet this warning. */
11033 mips_cprestore_valid = 1;
11035 if (mips_opts.noreorder)
11036 macro_build (NULL, "nop", "");
11037 expr1.X_add_number = mips_cprestore_offset;
11038 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11041 HAVE_64BIT_ADDRESSES);
11049 gas_assert (mips_opts.micromips);
11050 if (mips_opts.insn32)
11052 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11056 /* Fall through. */
11058 if (mips_pic == NO_PIC)
11059 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11060 else if (mips_pic == SVR4_PIC)
11062 /* If this is a reference to an external symbol, and we are
11063 using a small GOT, we want
11064 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11068 lw $gp,cprestore($sp)
11069 The cprestore value is set using the .cprestore
11070 pseudo-op. If we are using a big GOT, we want
11071 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11073 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11077 lw $gp,cprestore($sp)
11078 If the symbol is not external, we want
11079 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11081 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11084 lw $gp,cprestore($sp)
11086 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11087 sequences above, minus nops, unless the symbol is local,
11088 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11094 relax_start (offset_expr.X_add_symbol);
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11100 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11106 relax_start (offset_expr.X_add_symbol);
11107 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11108 BFD_RELOC_MIPS_CALL_HI16);
11109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11110 PIC_CALL_REG, mips_gp_register);
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11115 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11116 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11118 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11119 PIC_CALL_REG, PIC_CALL_REG,
11120 BFD_RELOC_MIPS_GOT_OFST);
11124 macro_build_jalr (&offset_expr, 0);
11128 relax_start (offset_expr.X_add_symbol);
11131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11132 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11141 gpdelay = reg_needs_delay (mips_gp_register);
11142 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11143 BFD_RELOC_MIPS_CALL_HI16);
11144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11145 PIC_CALL_REG, mips_gp_register);
11146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11147 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11152 macro_build (NULL, "nop", "");
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11155 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11158 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11159 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11161 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11163 if (mips_cprestore_offset < 0)
11164 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11167 if (!mips_frame_reg_valid)
11169 as_warn (_("no .frame pseudo-op used in PIC code"));
11170 /* Quiet this warning. */
11171 mips_frame_reg_valid = 1;
11173 if (!mips_cprestore_valid)
11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11176 /* Quiet this warning. */
11177 mips_cprestore_valid = 1;
11179 if (mips_opts.noreorder)
11180 macro_build (NULL, "nop", "");
11181 expr1.X_add_number = mips_cprestore_offset;
11182 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11185 HAVE_64BIT_ADDRESSES);
11189 else if (mips_pic == VXWORKS_PIC)
11190 as_bad (_("non-PIC jump used in PIC library"));
11297 gas_assert (!mips_opts.micromips);
11300 /* Itbl support may require additional care here. */
11306 /* Itbl support may require additional care here. */
11312 offbits = (mips_opts.micromips ? 12
11313 : ISA_IS_R6 (mips_opts.isa) ? 11
11315 /* Itbl support may require additional care here. */
11319 gas_assert (!mips_opts.micromips);
11322 /* Itbl support may require additional care here. */
11328 offbits = (mips_opts.micromips ? 12 : 16);
11333 offbits = (mips_opts.micromips ? 12 : 16);
11338 /* Itbl support may require additional care here. */
11344 offbits = (mips_opts.micromips ? 12
11345 : ISA_IS_R6 (mips_opts.isa) ? 11
11347 /* Itbl support may require additional care here. */
11353 /* Itbl support may require additional care here. */
11359 /* Itbl support may require additional care here. */
11365 offbits = (mips_opts.micromips ? 12 : 16);
11370 offbits = (mips_opts.micromips ? 12 : 16);
11375 offbits = (mips_opts.micromips ? 12
11376 : ISA_IS_R6 (mips_opts.isa) ? 9
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 9
11389 offbits = (mips_opts.micromips ? 12 : 16);
11392 gas_assert (mips_opts.micromips);
11399 gas_assert (mips_opts.micromips);
11406 gas_assert (mips_opts.micromips);
11412 gas_assert (mips_opts.micromips);
11419 /* We don't want to use $0 as tempreg. */
11420 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11423 tempreg = op[0] + lp;
11439 gas_assert (!mips_opts.micromips);
11442 /* Itbl support may require additional care here. */
11448 /* Itbl support may require additional care here. */
11454 offbits = (mips_opts.micromips ? 12
11455 : ISA_IS_R6 (mips_opts.isa) ? 11
11457 /* Itbl support may require additional care here. */
11461 gas_assert (!mips_opts.micromips);
11464 /* Itbl support may require additional care here. */
11470 offbits = (mips_opts.micromips ? 12 : 16);
11475 offbits = (mips_opts.micromips ? 12 : 16);
11480 offbits = (mips_opts.micromips ? 12
11481 : ISA_IS_R6 (mips_opts.isa) ? 9
11487 offbits = (mips_opts.micromips ? 12
11488 : ISA_IS_R6 (mips_opts.isa) ? 9
11493 fmt = (mips_opts.micromips ? "k,~(b)"
11494 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11507 fmt = (mips_opts.micromips ? "k,~(b)"
11508 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11510 offbits = (mips_opts.micromips ? 12
11511 : ISA_IS_R6 (mips_opts.isa) ? 9
11523 /* Itbl support may require additional care here. */
11528 offbits = (mips_opts.micromips ? 12
11529 : ISA_IS_R6 (mips_opts.isa) ? 11
11531 /* Itbl support may require additional care here. */
11537 /* Itbl support may require additional care here. */
11541 gas_assert (!mips_opts.micromips);
11544 /* Itbl support may require additional care here. */
11550 offbits = (mips_opts.micromips ? 12 : 16);
11555 offbits = (mips_opts.micromips ? 12 : 16);
11558 gas_assert (mips_opts.micromips);
11564 gas_assert (mips_opts.micromips);
11570 gas_assert (mips_opts.micromips);
11576 gas_assert (mips_opts.micromips);
11585 if (small_offset_p (0, align, 16))
11587 /* The first case exists for M_LD_AB and M_SD_AB, which are
11588 macros for o32 but which should act like normal instructions
11591 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11592 offset_reloc[1], offset_reloc[2], breg);
11593 else if (small_offset_p (0, align, offbits))
11596 macro_build (NULL, s, fmt, op[0], breg);
11598 macro_build (NULL, s, fmt, op[0],
11599 (int) offset_expr.X_add_number, breg);
11605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11606 tempreg, breg, -1, offset_reloc[0],
11607 offset_reloc[1], offset_reloc[2]);
11609 macro_build (NULL, s, fmt, op[0], tempreg);
11611 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11619 if (offset_expr.X_op != O_constant
11620 && offset_expr.X_op != O_symbol)
11622 as_bad (_("expression too complex"));
11623 offset_expr.X_op = O_constant;
11626 if (HAVE_32BIT_ADDRESSES
11627 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11631 sprintf_vma (value, offset_expr.X_add_number);
11632 as_bad (_("number (0x%s) larger than 32 bits"), value);
11635 /* A constant expression in PIC code can be handled just as it
11636 is in non PIC code. */
11637 if (offset_expr.X_op == O_constant)
11639 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11640 offbits == 0 ? 16 : offbits);
11641 offset_expr.X_add_number -= expr1.X_add_number;
11643 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11646 tempreg, tempreg, breg);
11649 if (offset_expr.X_add_number != 0)
11650 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11651 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11652 macro_build (NULL, s, fmt, op[0], tempreg);
11654 else if (offbits == 16)
11655 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11657 macro_build (NULL, s, fmt, op[0],
11658 (int) offset_expr.X_add_number, tempreg);
11660 else if (offbits != 16)
11662 /* The offset field is too narrow to be used for a low-part
11663 relocation, so load the whole address into the auxillary
11665 load_address (tempreg, &offset_expr, &used_at);
11667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11668 tempreg, tempreg, breg);
11670 macro_build (NULL, s, fmt, op[0], tempreg);
11672 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11674 else if (mips_pic == NO_PIC)
11676 /* If this is a reference to a GP relative symbol, and there
11677 is no base register, we want
11678 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11679 Otherwise, if there is no base register, we want
11680 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11681 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11682 If we have a constant, we need two instructions anyhow,
11683 so we always use the latter form.
11685 If we have a base register, and this is a reference to a
11686 GP relative symbol, we want
11687 addu $tempreg,$breg,$gp
11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11690 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11691 addu $tempreg,$tempreg,$breg
11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11693 With a constant we always use the latter case.
11695 With 64bit address space and no base register and $at usable,
11697 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11698 lui $at,<sym> (BFD_RELOC_HI16_S)
11699 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11702 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11703 If we have a base register, we want
11704 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11705 lui $at,<sym> (BFD_RELOC_HI16_S)
11706 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11710 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11712 Without $at we can't generate the optimal path for superscalar
11713 processors here since this would require two temporary registers.
11714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720 If we have a base register, we want
11721 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11722 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11724 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11726 daddu $tempreg,$tempreg,$breg
11727 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11729 For GP relative symbols in 64bit address space we can use
11730 the same sequence as in 32bit address space. */
11731 if (HAVE_64BIT_SYMBOLS)
11733 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11734 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11736 relax_start (offset_expr.X_add_symbol);
11739 macro_build (&offset_expr, s, fmt, op[0],
11740 BFD_RELOC_GPREL16, mips_gp_register);
11744 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11745 tempreg, breg, mips_gp_register);
11746 macro_build (&offset_expr, s, fmt, op[0],
11747 BFD_RELOC_GPREL16, tempreg);
11752 if (used_at == 0 && mips_opts.at)
11754 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11755 BFD_RELOC_MIPS_HIGHEST);
11756 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11758 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11759 tempreg, BFD_RELOC_MIPS_HIGHER);
11761 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11762 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11763 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11764 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11770 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11771 BFD_RELOC_MIPS_HIGHEST);
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_MIPS_HIGHER);
11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11775 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11776 tempreg, BFD_RELOC_HI16_S);
11777 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11779 macro_build (NULL, "daddu", "d,v,t",
11780 tempreg, tempreg, breg);
11781 macro_build (&offset_expr, s, fmt, op[0],
11782 BFD_RELOC_LO16, tempreg);
11785 if (mips_relax.sequence)
11792 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11793 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11795 relax_start (offset_expr.X_add_symbol);
11796 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11800 macro_build_lui (&offset_expr, tempreg);
11801 macro_build (&offset_expr, s, fmt, op[0],
11802 BFD_RELOC_LO16, tempreg);
11803 if (mips_relax.sequence)
11808 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11809 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11811 relax_start (offset_expr.X_add_symbol);
11812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11813 tempreg, breg, mips_gp_register);
11814 macro_build (&offset_expr, s, fmt, op[0],
11815 BFD_RELOC_GPREL16, tempreg);
11818 macro_build_lui (&offset_expr, tempreg);
11819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11820 tempreg, tempreg, breg);
11821 macro_build (&offset_expr, s, fmt, op[0],
11822 BFD_RELOC_LO16, tempreg);
11823 if (mips_relax.sequence)
11827 else if (!mips_big_got)
11829 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11831 /* If this is a reference to an external symbol, we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 <op> op[0],0($tempreg)
11836 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11838 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11839 <op> op[0],0($tempreg)
11841 For NewABI, we want
11842 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11843 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11845 If there is a base register, we add it to $tempreg before
11846 the <op>. If there is a constant, we stick it in the
11847 <op> instruction. We don't handle constants larger than
11848 16 bits, because we have no way to load the upper 16 bits
11849 (actually, we could handle them for the subset of cases
11850 in which we are not using $at). */
11851 gas_assert (offset_expr.X_op == O_symbol);
11854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11855 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 macro_build (&offset_expr, s, fmt, op[0],
11860 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11863 expr1.X_add_number = offset_expr.X_add_number;
11864 offset_expr.X_add_number = 0;
11865 if (expr1.X_add_number < -0x8000
11866 || expr1.X_add_number >= 0x8000)
11867 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11869 lw_reloc_type, mips_gp_register);
11871 relax_start (offset_expr.X_add_symbol);
11873 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11874 tempreg, BFD_RELOC_LO16);
11877 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11878 tempreg, tempreg, breg);
11879 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11881 else if (mips_big_got && !HAVE_NEWABI)
11885 /* If this is a reference to an external symbol, we want
11886 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11887 addu $tempreg,$tempreg,$gp
11888 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11889 <op> op[0],0($tempreg)
11891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11893 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11894 <op> op[0],0($tempreg)
11895 If there is a base register, we add it to $tempreg before
11896 the <op>. If there is a constant, we stick it in the
11897 <op> instruction. We don't handle constants larger than
11898 16 bits, because we have no way to load the upper 16 bits
11899 (actually, we could handle them for the subset of cases
11900 in which we are not using $at). */
11901 gas_assert (offset_expr.X_op == O_symbol);
11902 expr1.X_add_number = offset_expr.X_add_number;
11903 offset_expr.X_add_number = 0;
11904 if (expr1.X_add_number < -0x8000
11905 || expr1.X_add_number >= 0x8000)
11906 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11907 gpdelay = reg_needs_delay (mips_gp_register);
11908 relax_start (offset_expr.X_add_symbol);
11909 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11910 BFD_RELOC_MIPS_GOT_HI16);
11911 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11913 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11914 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11917 macro_build (NULL, "nop", "");
11918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11919 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_LO16);
11926 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11927 tempreg, tempreg, breg);
11928 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11930 else if (mips_big_got && HAVE_NEWABI)
11932 /* If this is a reference to an external symbol, we want
11933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11934 add $tempreg,$tempreg,$gp
11935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11936 <op> op[0],<ofst>($tempreg)
11937 Otherwise, for local symbols, we want:
11938 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11939 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11940 gas_assert (offset_expr.X_op == O_symbol);
11941 expr1.X_add_number = offset_expr.X_add_number;
11942 offset_expr.X_add_number = 0;
11943 if (expr1.X_add_number < -0x8000
11944 || expr1.X_add_number >= 0x8000)
11945 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11946 relax_start (offset_expr.X_add_symbol);
11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11948 BFD_RELOC_MIPS_GOT_HI16);
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11955 tempreg, tempreg, breg);
11956 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11959 offset_expr.X_add_number = expr1.X_add_number;
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11964 tempreg, tempreg, breg);
11965 macro_build (&offset_expr, s, fmt, op[0],
11966 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11975 gas_assert (mips_opts.micromips);
11976 gas_assert (mips_opts.insn32);
11977 start_noreorder ();
11978 macro_build (NULL, "jr", "s", RA);
11979 expr1.X_add_number = op[0] << 2;
11980 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11985 gas_assert (mips_opts.micromips);
11986 gas_assert (mips_opts.insn32);
11987 macro_build (NULL, "jr", "s", op[0]);
11988 if (mips_opts.noreorder)
11989 macro_build (NULL, "nop", "");
11994 load_register (op[0], &imm_expr, 0);
11998 load_register (op[0], &imm_expr, 1);
12002 if (imm_expr.X_op == O_constant)
12005 load_register (AT, &imm_expr, 0);
12006 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12011 gas_assert (imm_expr.X_op == O_absent
12012 && offset_expr.X_op == O_symbol
12013 && strcmp (segment_name (S_GET_SEGMENT
12014 (offset_expr.X_add_symbol)),
12016 && offset_expr.X_add_number == 0);
12017 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12018 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12023 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12024 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12025 order 32 bits of the value and the low order 32 bits are either
12026 zero or in OFFSET_EXPR. */
12027 if (imm_expr.X_op == O_constant)
12029 if (GPR_SIZE == 64)
12030 load_register (op[0], &imm_expr, 1);
12035 if (target_big_endian)
12047 load_register (hreg, &imm_expr, 0);
12050 if (offset_expr.X_op == O_absent)
12051 move_register (lreg, 0);
12054 gas_assert (offset_expr.X_op == O_constant);
12055 load_register (lreg, &offset_expr, 0);
12061 gas_assert (imm_expr.X_op == O_absent);
12063 /* We know that sym is in the .rdata section. First we get the
12064 upper 16 bits of the address. */
12065 if (mips_pic == NO_PIC)
12067 macro_build_lui (&offset_expr, AT);
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12073 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12077 /* Now we load the register(s). */
12078 if (GPR_SIZE == 64)
12081 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12082 BFD_RELOC_LO16, AT);
12087 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12088 BFD_RELOC_LO16, AT);
12091 /* FIXME: How in the world do we deal with the possible
12093 offset_expr.X_add_number += 4;
12094 macro_build (&offset_expr, "lw", "t,o(b)",
12095 op[0] + 1, BFD_RELOC_LO16, AT);
12101 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12102 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12103 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12104 the value and the low order 32 bits are either zero or in
12106 if (imm_expr.X_op == O_constant)
12109 load_register (AT, &imm_expr, FPR_SIZE == 64);
12110 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12111 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12114 if (ISA_HAS_MXHC1 (mips_opts.isa))
12115 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12116 else if (FPR_SIZE != 32)
12117 as_bad (_("Unable to generate `%s' compliant code "
12119 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12121 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12122 if (offset_expr.X_op == O_absent)
12123 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12126 gas_assert (offset_expr.X_op == O_constant);
12127 load_register (AT, &offset_expr, 0);
12128 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12134 gas_assert (imm_expr.X_op == O_absent
12135 && offset_expr.X_op == O_symbol
12136 && offset_expr.X_add_number == 0);
12137 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12138 if (strcmp (s, ".lit8") == 0)
12140 op[2] = mips_gp_register;
12141 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12142 offset_reloc[1] = BFD_RELOC_UNUSED;
12143 offset_reloc[2] = BFD_RELOC_UNUSED;
12147 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12149 if (mips_pic != NO_PIC)
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12151 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12154 /* FIXME: This won't work for a 64 bit address. */
12155 macro_build_lui (&offset_expr, AT);
12159 offset_reloc[0] = BFD_RELOC_LO16;
12160 offset_reloc[1] = BFD_RELOC_UNUSED;
12161 offset_reloc[2] = BFD_RELOC_UNUSED;
12168 * The MIPS assembler seems to check for X_add_number not
12169 * being double aligned and generating:
12170 * lui at,%hi(foo+1)
12172 * addiu at,at,%lo(foo+1)
12175 * But, the resulting address is the same after relocation so why
12176 * generate the extra instruction?
12178 /* Itbl support may require additional care here. */
12181 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12190 gas_assert (!mips_opts.micromips);
12191 /* Itbl support may require additional care here. */
12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12214 if (GPR_SIZE == 64)
12224 if (GPR_SIZE == 64)
12232 /* Even on a big endian machine $fn comes before $fn+1. We have
12233 to adjust when loading from memory. We set coproc if we must
12234 load $fn+1 first. */
12235 /* Itbl support may require additional care here. */
12236 if (!target_big_endian)
12240 if (small_offset_p (0, align, 16))
12243 if (!small_offset_p (4, align, 16))
12245 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12246 -1, offset_reloc[0], offset_reloc[1],
12248 expr1.X_add_number = 0;
12252 offset_reloc[0] = BFD_RELOC_LO16;
12253 offset_reloc[1] = BFD_RELOC_UNUSED;
12254 offset_reloc[2] = BFD_RELOC_UNUSED;
12256 if (strcmp (s, "lw") == 0 && op[0] == breg)
12258 ep->X_add_number += 4;
12259 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12260 offset_reloc[1], offset_reloc[2], breg);
12261 ep->X_add_number -= 4;
12262 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12263 offset_reloc[1], offset_reloc[2], breg);
12267 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 ep->X_add_number += 4;
12271 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12272 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12278 if (offset_expr.X_op != O_symbol
12279 && offset_expr.X_op != O_constant)
12281 as_bad (_("expression too complex"));
12282 offset_expr.X_op = O_constant;
12285 if (HAVE_32BIT_ADDRESSES
12286 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12290 sprintf_vma (value, offset_expr.X_add_number);
12291 as_bad (_("number (0x%s) larger than 32 bits"), value);
12294 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12296 /* If this is a reference to a GP relative symbol, we want
12297 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12299 If we have a base register, we use this
12301 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12303 If this is not a GP relative symbol, we want
12304 lui $at,<sym> (BFD_RELOC_HI16_S)
12305 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12306 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12307 If there is a base register, we add it to $at after the
12308 lui instruction. If there is a constant, we always use
12310 if (offset_expr.X_op == O_symbol
12311 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12312 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12314 relax_start (offset_expr.X_add_symbol);
12317 tempreg = mips_gp_register;
12321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12322 AT, breg, mips_gp_register);
12327 /* Itbl support may require additional care here. */
12328 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12329 BFD_RELOC_GPREL16, tempreg);
12330 offset_expr.X_add_number += 4;
12332 /* Set mips_optimize to 2 to avoid inserting an
12334 hold_mips_optimize = mips_optimize;
12336 /* Itbl support may require additional care here. */
12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12338 BFD_RELOC_GPREL16, tempreg);
12339 mips_optimize = hold_mips_optimize;
12343 offset_expr.X_add_number -= 4;
12346 if (offset_high_part (offset_expr.X_add_number, 16)
12347 != offset_high_part (offset_expr.X_add_number + 4, 16))
12349 load_address (AT, &offset_expr, &used_at);
12350 offset_expr.X_op = O_constant;
12351 offset_expr.X_add_number = 0;
12354 macro_build_lui (&offset_expr, AT);
12356 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12357 /* Itbl support may require additional care here. */
12358 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12359 BFD_RELOC_LO16, AT);
12360 /* FIXME: How do we handle overflow here? */
12361 offset_expr.X_add_number += 4;
12362 /* Itbl support may require additional care here. */
12363 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12364 BFD_RELOC_LO16, AT);
12365 if (mips_relax.sequence)
12368 else if (!mips_big_got)
12370 /* If this is a reference to an external symbol, we want
12371 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12374 <op> op[0]+1,4($at)
12376 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12378 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12379 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12380 If there is a base register we add it to $at before the
12381 lwc1 instructions. If there is a constant we include it
12382 in the lwc1 instructions. */
12384 expr1.X_add_number = offset_expr.X_add_number;
12385 if (expr1.X_add_number < -0x8000
12386 || expr1.X_add_number >= 0x8000 - 4)
12387 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12388 load_got_offset (AT, &offset_expr);
12391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12393 /* Set mips_optimize to 2 to avoid inserting an undesired
12395 hold_mips_optimize = mips_optimize;
12398 /* Itbl support may require additional care here. */
12399 relax_start (offset_expr.X_add_symbol);
12400 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12401 BFD_RELOC_LO16, AT);
12402 expr1.X_add_number += 4;
12403 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12404 BFD_RELOC_LO16, AT);
12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12407 BFD_RELOC_LO16, AT);
12408 offset_expr.X_add_number += 4;
12409 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12410 BFD_RELOC_LO16, AT);
12413 mips_optimize = hold_mips_optimize;
12415 else if (mips_big_got)
12419 /* If this is a reference to an external symbol, we want
12420 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12422 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12425 <op> op[0]+1,4($at)
12427 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12429 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12430 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12431 If there is a base register we add it to $at before the
12432 lwc1 instructions. If there is a constant we include it
12433 in the lwc1 instructions. */
12435 expr1.X_add_number = offset_expr.X_add_number;
12436 offset_expr.X_add_number = 0;
12437 if (expr1.X_add_number < -0x8000
12438 || expr1.X_add_number >= 0x8000 - 4)
12439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12440 gpdelay = reg_needs_delay (mips_gp_register);
12441 relax_start (offset_expr.X_add_symbol);
12442 macro_build (&offset_expr, "lui", LUI_FMT,
12443 AT, BFD_RELOC_MIPS_GOT_HI16);
12444 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12445 AT, AT, mips_gp_register);
12446 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12447 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12451 /* Itbl support may require additional care here. */
12452 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12453 BFD_RELOC_LO16, AT);
12454 expr1.X_add_number += 4;
12456 /* Set mips_optimize to 2 to avoid inserting an undesired
12458 hold_mips_optimize = mips_optimize;
12460 /* Itbl support may require additional care here. */
12461 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12462 BFD_RELOC_LO16, AT);
12463 mips_optimize = hold_mips_optimize;
12464 expr1.X_add_number -= 4;
12467 offset_expr.X_add_number = expr1.X_add_number;
12469 macro_build (NULL, "nop", "");
12470 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12471 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12475 /* Itbl support may require additional care here. */
12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12477 BFD_RELOC_LO16, AT);
12478 offset_expr.X_add_number += 4;
12480 /* Set mips_optimize to 2 to avoid inserting an undesired
12482 hold_mips_optimize = mips_optimize;
12484 /* Itbl support may require additional care here. */
12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12486 BFD_RELOC_LO16, AT);
12487 mips_optimize = hold_mips_optimize;
12501 gas_assert (!mips_opts.micromips);
12506 /* New code added to support COPZ instructions.
12507 This code builds table entries out of the macros in mip_opcodes.
12508 R4000 uses interlocks to handle coproc delays.
12509 Other chips (like the R3000) require nops to be inserted for delays.
12511 FIXME: Currently, we require that the user handle delays.
12512 In order to fill delay slots for non-interlocked chips,
12513 we must have a way to specify delays based on the coprocessor.
12514 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12515 What are the side-effects of the cop instruction?
12516 What cache support might we have and what are its effects?
12517 Both coprocessor & memory require delays. how long???
12518 What registers are read/set/modified?
12520 If an itbl is provided to interpret cop instructions,
12521 this knowledge can be encoded in the itbl spec. */
12535 gas_assert (!mips_opts.micromips);
12536 /* For now we just do C (same as Cz). The parameter will be
12537 stored in insn_opcode by mips_ip. */
12538 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12542 move_register (op[0], op[1]);
12546 gas_assert (mips_opts.micromips);
12547 gas_assert (mips_opts.insn32);
12548 move_register (micromips_to_32_reg_h_map1[op[0]],
12549 micromips_to_32_reg_m_map[op[1]]);
12550 move_register (micromips_to_32_reg_h_map2[op[0]],
12551 micromips_to_32_reg_n_map[op[2]]);
12557 if (mips_opts.arch == CPU_R5900)
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12562 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12563 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12570 /* The MIPS assembler some times generates shifts and adds. I'm
12571 not trying to be that fancy. GCC should do this for us
12574 load_register (AT, &imm_expr, dbl);
12575 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12589 start_noreorder ();
12592 load_register (AT, &imm_expr, dbl);
12593 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12594 op[1], imm ? AT : op[2]);
12595 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12596 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12597 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12599 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12602 if (mips_opts.micromips)
12603 micromips_label_expr (&label_expr);
12605 label_expr.X_add_number = 8;
12606 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12607 macro_build (NULL, "nop", "");
12608 macro_build (NULL, "break", BRK_FMT, 6);
12609 if (mips_opts.micromips)
12610 micromips_add_label ();
12613 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12626 start_noreorder ();
12629 load_register (AT, &imm_expr, dbl);
12630 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12631 op[1], imm ? AT : op[2]);
12632 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12635 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12638 if (mips_opts.micromips)
12639 micromips_label_expr (&label_expr);
12641 label_expr.X_add_number = 8;
12642 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12643 macro_build (NULL, "nop", "");
12644 macro_build (NULL, "break", BRK_FMT, 6);
12645 if (mips_opts.micromips)
12646 micromips_add_label ();
12652 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12654 if (op[0] == op[1])
12661 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12662 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12666 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12667 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12668 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12669 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12673 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12675 if (op[0] == op[1])
12682 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12683 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12687 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12688 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12689 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12690 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12699 rot = imm_expr.X_add_number & 0x3f;
12700 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12702 rot = (64 - rot) & 0x3f;
12704 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12706 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12711 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12714 l = (rot < 0x20) ? "dsll" : "dsll32";
12715 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12718 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12719 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12720 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12728 rot = imm_expr.X_add_number & 0x1f;
12729 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12731 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12732 (32 - rot) & 0x1f);
12737 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12741 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12742 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12743 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12748 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12750 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12754 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12755 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12756 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12757 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12761 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12763 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12767 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12779 rot = imm_expr.X_add_number & 0x3f;
12780 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12783 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12785 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12790 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12793 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12794 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12797 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12798 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12799 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12807 rot = imm_expr.X_add_number & 0x1f;
12808 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12810 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12815 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12819 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12820 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12821 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12827 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12828 else if (op[2] == 0)
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12832 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12833 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12838 if (imm_expr.X_add_number == 0)
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12845 as_warn (_("instruction %s: result is always false"),
12846 ip->insn_mo->name);
12847 move_register (op[0], 0);
12850 if (CPU_HAS_SEQ (mips_opts.arch)
12851 && -512 <= imm_expr.X_add_number
12852 && imm_expr.X_add_number < 512)
12854 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12855 (int) imm_expr.X_add_number);
12858 if (imm_expr.X_add_number >= 0
12859 && imm_expr.X_add_number < 0x10000)
12860 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12861 else if (imm_expr.X_add_number > -0x8000
12862 && imm_expr.X_add_number < 0)
12864 imm_expr.X_add_number = -imm_expr.X_add_number;
12865 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12866 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12868 else if (CPU_HAS_SEQ (mips_opts.arch))
12871 load_register (AT, &imm_expr, GPR_SIZE == 64);
12872 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12877 load_register (AT, &imm_expr, GPR_SIZE == 64);
12878 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12881 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12884 case M_SGE: /* X >= Y <==> not (X < Y) */
12890 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12891 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12894 case M_SGE_I: /* X >= I <==> not (X < I) */
12896 if (imm_expr.X_add_number >= -0x8000
12897 && imm_expr.X_add_number < 0x8000)
12898 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12899 op[0], op[1], BFD_RELOC_LO16);
12902 load_register (AT, &imm_expr, GPR_SIZE == 64);
12903 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12907 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12910 case M_SGT: /* X > Y <==> Y < X */
12916 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12919 case M_SGT_I: /* X > I <==> I < X */
12926 load_register (AT, &imm_expr, GPR_SIZE == 64);
12927 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12930 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12936 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12937 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12940 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12947 load_register (AT, &imm_expr, GPR_SIZE == 64);
12948 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12949 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12953 if (imm_expr.X_add_number >= -0x8000
12954 && imm_expr.X_add_number < 0x8000)
12956 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12961 load_register (AT, &imm_expr, GPR_SIZE == 64);
12962 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12966 if (imm_expr.X_add_number >= -0x8000
12967 && imm_expr.X_add_number < 0x8000)
12969 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
12975 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12980 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12981 else if (op[2] == 0)
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12985 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12986 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12991 if (imm_expr.X_add_number == 0)
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12998 as_warn (_("instruction %s: result is always true"),
12999 ip->insn_mo->name);
13000 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13001 op[0], 0, BFD_RELOC_LO16);
13004 if (CPU_HAS_SEQ (mips_opts.arch)
13005 && -512 <= imm_expr.X_add_number
13006 && imm_expr.X_add_number < 512)
13008 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13009 (int) imm_expr.X_add_number);
13012 if (imm_expr.X_add_number >= 0
13013 && imm_expr.X_add_number < 0x10000)
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13018 else if (imm_expr.X_add_number > -0x8000
13019 && imm_expr.X_add_number < 0)
13021 imm_expr.X_add_number = -imm_expr.X_add_number;
13022 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13023 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13025 else if (CPU_HAS_SEQ (mips_opts.arch))
13028 load_register (AT, &imm_expr, GPR_SIZE == 64);
13029 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13034 load_register (AT, &imm_expr, GPR_SIZE == 64);
13035 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13038 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13053 if (!mips_opts.micromips)
13055 if (imm_expr.X_add_number > -0x200
13056 && imm_expr.X_add_number <= 0x200)
13058 macro_build (NULL, s, "t,r,.", op[0], op[1],
13059 (int) -imm_expr.X_add_number);
13068 if (imm_expr.X_add_number > -0x8000
13069 && imm_expr.X_add_number <= 0x8000)
13071 imm_expr.X_add_number = -imm_expr.X_add_number;
13072 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13077 load_register (AT, &imm_expr, dbl);
13078 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13100 load_register (AT, &imm_expr, GPR_SIZE == 64);
13101 macro_build (NULL, s, "s,t", op[0], AT);
13106 gas_assert (!mips_opts.micromips);
13107 gas_assert (mips_opts.isa == ISA_MIPS1);
13111 * Is the double cfc1 instruction a bug in the mips assembler;
13112 * or is there a reason for it?
13114 start_noreorder ();
13115 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "nop", "");
13118 expr1.X_add_number = 3;
13119 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13120 expr1.X_add_number = 2;
13121 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13122 macro_build (NULL, "ctc1", "t,G", AT, RA);
13123 macro_build (NULL, "nop", "");
13124 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13126 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13127 macro_build (NULL, "nop", "");
13144 offbits = (mips_opts.micromips ? 12 : 16);
13150 offbits = (mips_opts.micromips ? 12 : 16);
13162 offbits = (mips_opts.micromips ? 12 : 16);
13169 offbits = (mips_opts.micromips ? 12 : 16);
13175 large_offset = !small_offset_p (off, align, offbits);
13177 expr1.X_add_number = 0;
13182 if (small_offset_p (0, align, 16))
13183 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13184 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13187 load_address (tempreg, ep, &used_at);
13189 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13190 tempreg, tempreg, breg);
13192 offset_reloc[0] = BFD_RELOC_LO16;
13193 offset_reloc[1] = BFD_RELOC_UNUSED;
13194 offset_reloc[2] = BFD_RELOC_UNUSED;
13199 else if (!ust && op[0] == breg)
13210 if (!target_big_endian)
13211 ep->X_add_number += off;
13213 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13215 macro_build (ep, s, "t,o(b)", tempreg, -1,
13216 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13218 if (!target_big_endian)
13219 ep->X_add_number -= off;
13221 ep->X_add_number += off;
13223 macro_build (NULL, s2, "t,~(b)",
13224 tempreg, (int) ep->X_add_number, breg);
13226 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13229 /* If necessary, move the result in tempreg to the final destination. */
13230 if (!ust && op[0] != tempreg)
13232 /* Protect second load's delay slot. */
13234 move_register (op[0], tempreg);
13240 if (target_big_endian == ust)
13241 ep->X_add_number += off;
13242 tempreg = ust || large_offset ? op[0] : AT;
13243 macro_build (ep, s, "t,o(b)", tempreg, -1,
13244 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13246 /* For halfword transfers we need a temporary register to shuffle
13247 bytes. Unfortunately for M_USH_A we have none available before
13248 the next store as AT holds the base address. We deal with this
13249 case by clobbering TREG and then restoring it as with ULH. */
13250 tempreg = ust == large_offset ? op[0] : AT;
13252 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13254 if (target_big_endian == ust)
13255 ep->X_add_number -= off;
13257 ep->X_add_number += off;
13258 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13259 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13261 /* For M_USH_A re-retrieve the LSB. */
13262 if (ust && large_offset)
13264 if (target_big_endian)
13265 ep->X_add_number += off;
13267 ep->X_add_number -= off;
13268 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13269 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13271 /* For ULH and M_USH_A OR the LSB in. */
13272 if (!ust || large_offset)
13274 tempreg = !large_offset ? AT : op[0];
13275 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13276 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13281 /* FIXME: Check if this is one of the itbl macros, since they
13282 are added dynamically. */
13283 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13286 if (!mips_opts.at && used_at)
13287 as_bad (_("macro used $at after \".set noat\""));
13290 /* Implement macros in mips16 mode. */
13293 mips16_macro (struct mips_cl_insn *ip)
13295 const struct mips_operand_array *operands;
13300 const char *s, *s2, *s3;
13301 unsigned int op[MAX_OPERANDS];
13304 mask = ip->insn_mo->mask;
13306 operands = insn_operands (ip);
13307 for (i = 0; i < MAX_OPERANDS; i++)
13308 if (operands->operand[i])
13309 op[i] = insn_extract_operand (ip, operands->operand[i]);
13313 expr1.X_op = O_constant;
13314 expr1.X_op_symbol = NULL;
13315 expr1.X_add_symbol = NULL;
13316 expr1.X_add_number = 1;
13335 start_noreorder ();
13336 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13337 expr1.X_add_number = 2;
13338 macro_build (&expr1, "bnez", "x,p", op[2]);
13339 macro_build (NULL, "break", "6", 7);
13341 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13342 since that causes an overflow. We should do that as well,
13343 but I don't see how to do the comparisons without a temporary
13346 macro_build (NULL, s, "x", op[0]);
13365 start_noreorder ();
13366 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13367 expr1.X_add_number = 2;
13368 macro_build (&expr1, "bnez", "x,p", op[2]);
13369 macro_build (NULL, "break", "6", 7);
13371 macro_build (NULL, s2, "x", op[0]);
13377 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13378 macro_build (NULL, "mflo", "x", op[0]);
13386 imm_expr.X_add_number = -imm_expr.X_add_number;
13387 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13391 imm_expr.X_add_number = -imm_expr.X_add_number;
13392 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13396 imm_expr.X_add_number = -imm_expr.X_add_number;
13397 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13419 goto do_reverse_branch;
13423 goto do_reverse_branch;
13435 goto do_reverse_branch;
13446 macro_build (NULL, s, "x,y", op[0], op[1]);
13447 macro_build (&offset_expr, s2, "p");
13474 goto do_addone_branch_i;
13479 goto do_addone_branch_i;
13494 goto do_addone_branch_i;
13500 do_addone_branch_i:
13501 ++imm_expr.X_add_number;
13504 macro_build (&imm_expr, s, s3, op[0]);
13505 macro_build (&offset_expr, s2, "p");
13509 expr1.X_add_number = 0;
13510 macro_build (&expr1, "slti", "x,8", op[1]);
13511 if (op[0] != op[1])
13512 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13513 expr1.X_add_number = 2;
13514 macro_build (&expr1, "bteqz", "p");
13515 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13520 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13521 opcode bits in *OPCODE_EXTRA. */
13523 static struct mips_opcode *
13524 mips_lookup_insn (struct hash_control *hash, const char *start,
13525 ssize_t length, unsigned int *opcode_extra)
13527 char *name, *dot, *p;
13528 unsigned int mask, suffix;
13530 struct mips_opcode *insn;
13532 /* Make a copy of the instruction so that we can fiddle with it. */
13533 name = xstrndup (start, length);
13535 /* Look up the instruction as-is. */
13536 insn = (struct mips_opcode *) hash_find (hash, name);
13540 dot = strchr (name, '.');
13543 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13544 p = mips_parse_vu0_channels (dot + 1, &mask);
13545 if (*p == 0 && mask != 0)
13548 insn = (struct mips_opcode *) hash_find (hash, name);
13550 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13552 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13558 if (mips_opts.micromips)
13560 /* See if there's an instruction size override suffix,
13561 either `16' or `32', at the end of the mnemonic proper,
13562 that defines the operation, i.e. before the first `.'
13563 character if any. Strip it and retry. */
13564 opend = dot != NULL ? dot - name : length;
13565 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13567 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13573 memcpy (name + opend - 2, name + opend, length - opend + 1);
13574 insn = (struct mips_opcode *) hash_find (hash, name);
13577 forced_insn_length = suffix;
13589 /* Assemble an instruction into its binary format. If the instruction
13590 is a macro, set imm_expr and offset_expr to the values associated
13591 with "I" and "A" operands respectively. Otherwise store the value
13592 of the relocatable field (if any) in offset_expr. In both cases
13593 set offset_reloc to the relocation operators applied to offset_expr. */
13596 mips_ip (char *str, struct mips_cl_insn *insn)
13598 const struct mips_opcode *first, *past;
13599 struct hash_control *hash;
13602 struct mips_operand_token *tokens;
13603 unsigned int opcode_extra;
13605 if (mips_opts.micromips)
13607 hash = micromips_op_hash;
13608 past = µmips_opcodes[bfd_micromips_num_opcodes];
13613 past = &mips_opcodes[NUMOPCODES];
13615 forced_insn_length = 0;
13618 /* We first try to match an instruction up to a space or to the end. */
13619 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13622 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13625 set_insn_error (0, _("unrecognized opcode"));
13629 if (strcmp (first->name, "li.s") == 0)
13631 else if (strcmp (first->name, "li.d") == 0)
13635 tokens = mips_parse_arguments (str + end, format);
13639 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13640 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13641 set_insn_error (0, _("invalid operands"));
13643 obstack_free (&mips_operand_tokens, tokens);
13646 /* As for mips_ip, but used when assembling MIPS16 code.
13647 Also set forced_insn_length to the resulting instruction size in
13648 bytes if the user explicitly requested a small or extended instruction. */
13651 mips16_ip (char *str, struct mips_cl_insn *insn)
13654 struct mips_opcode *first;
13655 struct mips_operand_token *tokens;
13657 forced_insn_length = 0;
13659 for (s = str; ISLOWER (*s); ++s)
13673 if (s[1] == 't' && s[2] == ' ')
13675 forced_insn_length = 2;
13679 else if (s[1] == 'e' && s[2] == ' ')
13681 forced_insn_length = 4;
13685 /* Fall through. */
13687 set_insn_error (0, _("unrecognized opcode"));
13691 if (mips_opts.noautoextend && !forced_insn_length)
13692 forced_insn_length = 2;
13695 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13700 set_insn_error (0, _("unrecognized opcode"));
13704 tokens = mips_parse_arguments (s, 0);
13708 if (!match_mips16_insns (insn, first, tokens))
13709 set_insn_error (0, _("invalid operands"));
13711 obstack_free (&mips_operand_tokens, tokens);
13714 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13715 NBITS is the number of significant bits in VAL. */
13717 static unsigned long
13718 mips16_immed_extend (offsetT val, unsigned int nbits)
13723 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13726 else if (nbits == 15)
13728 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13733 extval = ((val & 0x1f) << 6) | (val & 0x20);
13736 return (extval << 16) | val;
13739 /* Like decode_mips16_operand, but require the operand to be defined and
13740 require it to be an integer. */
13742 static const struct mips_int_operand *
13743 mips16_immed_operand (int type, bfd_boolean extended_p)
13745 const struct mips_operand *operand;
13747 operand = decode_mips16_operand (type, extended_p);
13748 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13750 return (const struct mips_int_operand *) operand;
13753 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13756 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13757 bfd_reloc_code_real_type reloc, offsetT sval)
13759 int min_val, max_val;
13761 min_val = mips_int_operand_min (operand);
13762 max_val = mips_int_operand_max (operand);
13763 if (reloc != BFD_RELOC_UNUSED)
13766 sval = SEXT_16BIT (sval);
13771 return (sval >= min_val
13773 && (sval & ((1 << operand->shift) - 1)) == 0);
13776 /* Install immediate value VAL into MIPS16 instruction *INSN,
13777 extending it if necessary. The instruction in *INSN may
13778 already be extended.
13780 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13781 if none. In the former case, VAL is a 16-bit number with no
13782 defined signedness.
13784 TYPE is the type of the immediate field. USER_INSN_LENGTH
13785 is the length that the user requested, or 0 if none. */
13788 mips16_immed (const char *file, unsigned int line, int type,
13789 bfd_reloc_code_real_type reloc, offsetT val,
13790 unsigned int user_insn_length, unsigned long *insn)
13792 const struct mips_int_operand *operand;
13793 unsigned int uval, length;
13795 operand = mips16_immed_operand (type, FALSE);
13796 if (!mips16_immed_in_range_p (operand, reloc, val))
13798 /* We need an extended instruction. */
13799 if (user_insn_length == 2)
13800 as_bad_where (file, line, _("invalid unextended operand value"));
13802 *insn |= MIPS16_EXTEND;
13804 else if (user_insn_length == 4)
13806 /* The operand doesn't force an unextended instruction to be extended.
13807 Warn if the user wanted an extended instruction anyway. */
13808 *insn |= MIPS16_EXTEND;
13809 as_warn_where (file, line,
13810 _("extended operand requested but not required"));
13813 length = mips16_opcode_length (*insn);
13816 operand = mips16_immed_operand (type, TRUE);
13817 if (!mips16_immed_in_range_p (operand, reloc, val))
13818 as_bad_where (file, line,
13819 _("operand value out of range for instruction"));
13821 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13823 *insn = mips_insert_operand (&operand->root, *insn, uval);
13825 *insn |= mips16_immed_extend (uval, operand->root.size);
13828 struct percent_op_match
13831 bfd_reloc_code_real_type reloc;
13834 static const struct percent_op_match mips_percent_op[] =
13836 {"%lo", BFD_RELOC_LO16},
13837 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13838 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13839 {"%call16", BFD_RELOC_MIPS_CALL16},
13840 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13841 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13842 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13843 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13844 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13845 {"%got", BFD_RELOC_MIPS_GOT16},
13846 {"%gp_rel", BFD_RELOC_GPREL16},
13847 {"%half", BFD_RELOC_16},
13848 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13849 {"%higher", BFD_RELOC_MIPS_HIGHER},
13850 {"%neg", BFD_RELOC_MIPS_SUB},
13851 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13852 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13853 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13854 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13855 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13856 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13857 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13858 {"%hi", BFD_RELOC_HI16_S},
13859 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13860 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13863 static const struct percent_op_match mips16_percent_op[] =
13865 {"%lo", BFD_RELOC_MIPS16_LO16},
13866 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13867 {"%got", BFD_RELOC_MIPS16_GOT16},
13868 {"%call16", BFD_RELOC_MIPS16_CALL16},
13869 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13870 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13871 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13872 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13873 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13874 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13875 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13876 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13880 /* Return true if *STR points to a relocation operator. When returning true,
13881 move *STR over the operator and store its relocation code in *RELOC.
13882 Leave both *STR and *RELOC alone when returning false. */
13885 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13887 const struct percent_op_match *percent_op;
13890 if (mips_opts.mips16)
13892 percent_op = mips16_percent_op;
13893 limit = ARRAY_SIZE (mips16_percent_op);
13897 percent_op = mips_percent_op;
13898 limit = ARRAY_SIZE (mips_percent_op);
13901 for (i = 0; i < limit; i++)
13902 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13904 int len = strlen (percent_op[i].str);
13906 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13909 *str += strlen (percent_op[i].str);
13910 *reloc = percent_op[i].reloc;
13912 /* Check whether the output BFD supports this relocation.
13913 If not, issue an error and fall back on something safe. */
13914 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13916 as_bad (_("relocation %s isn't supported by the current ABI"),
13917 percent_op[i].str);
13918 *reloc = BFD_RELOC_UNUSED;
13926 /* Parse string STR as a 16-bit relocatable operand. Store the
13927 expression in *EP and the relocations in the array starting
13928 at RELOC. Return the number of relocation operators used.
13930 On exit, EXPR_END points to the first character after the expression. */
13933 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13936 bfd_reloc_code_real_type reversed_reloc[3];
13937 size_t reloc_index, i;
13938 int crux_depth, str_depth;
13941 /* Search for the start of the main expression, recoding relocations
13942 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13943 of the main expression and with CRUX_DEPTH containing the number
13944 of open brackets at that point. */
13951 crux_depth = str_depth;
13953 /* Skip over whitespace and brackets, keeping count of the number
13955 while (*str == ' ' || *str == '\t' || *str == '(')
13960 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13961 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13963 my_getExpression (ep, crux);
13966 /* Match every open bracket. */
13967 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13971 if (crux_depth > 0)
13972 as_bad (_("unclosed '('"));
13976 if (reloc_index != 0)
13978 prev_reloc_op_frag = frag_now;
13979 for (i = 0; i < reloc_index; i++)
13980 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13983 return reloc_index;
13987 my_getExpression (expressionS *ep, char *str)
13991 save_in = input_line_pointer;
13992 input_line_pointer = str;
13994 expr_end = input_line_pointer;
13995 input_line_pointer = save_in;
13999 md_atof (int type, char *litP, int *sizeP)
14001 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14005 md_number_to_chars (char *buf, valueT val, int n)
14007 if (target_big_endian)
14008 number_to_chars_bigendian (buf, val, n);
14010 number_to_chars_littleendian (buf, val, n);
14013 static int support_64bit_objects(void)
14015 const char **list, **l;
14018 list = bfd_target_list ();
14019 for (l = list; *l != NULL; l++)
14020 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14021 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14023 yes = (*l != NULL);
14028 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14029 NEW_VALUE. Warn if another value was already specified. Note:
14030 we have to defer parsing the -march and -mtune arguments in order
14031 to handle 'from-abi' correctly, since the ABI might be specified
14032 in a later argument. */
14035 mips_set_option_string (const char **string_ptr, const char *new_value)
14037 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14038 as_warn (_("a different %s was already specified, is now %s"),
14039 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14042 *string_ptr = new_value;
14046 md_parse_option (int c, const char *arg)
14050 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14051 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14053 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14054 c == mips_ases[i].option_on);
14060 case OPTION_CONSTRUCT_FLOATS:
14061 mips_disable_float_construction = 0;
14064 case OPTION_NO_CONSTRUCT_FLOATS:
14065 mips_disable_float_construction = 1;
14077 target_big_endian = 1;
14081 target_big_endian = 0;
14087 else if (arg[0] == '0')
14089 else if (arg[0] == '1')
14099 mips_debug = atoi (arg);
14103 file_mips_opts.isa = ISA_MIPS1;
14107 file_mips_opts.isa = ISA_MIPS2;
14111 file_mips_opts.isa = ISA_MIPS3;
14115 file_mips_opts.isa = ISA_MIPS4;
14119 file_mips_opts.isa = ISA_MIPS5;
14122 case OPTION_MIPS32:
14123 file_mips_opts.isa = ISA_MIPS32;
14126 case OPTION_MIPS32R2:
14127 file_mips_opts.isa = ISA_MIPS32R2;
14130 case OPTION_MIPS32R3:
14131 file_mips_opts.isa = ISA_MIPS32R3;
14134 case OPTION_MIPS32R5:
14135 file_mips_opts.isa = ISA_MIPS32R5;
14138 case OPTION_MIPS32R6:
14139 file_mips_opts.isa = ISA_MIPS32R6;
14142 case OPTION_MIPS64R2:
14143 file_mips_opts.isa = ISA_MIPS64R2;
14146 case OPTION_MIPS64R3:
14147 file_mips_opts.isa = ISA_MIPS64R3;
14150 case OPTION_MIPS64R5:
14151 file_mips_opts.isa = ISA_MIPS64R5;
14154 case OPTION_MIPS64R6:
14155 file_mips_opts.isa = ISA_MIPS64R6;
14158 case OPTION_MIPS64:
14159 file_mips_opts.isa = ISA_MIPS64;
14163 mips_set_option_string (&mips_tune_string, arg);
14167 mips_set_option_string (&mips_arch_string, arg);
14171 mips_set_option_string (&mips_arch_string, "4650");
14172 mips_set_option_string (&mips_tune_string, "4650");
14175 case OPTION_NO_M4650:
14179 mips_set_option_string (&mips_arch_string, "4010");
14180 mips_set_option_string (&mips_tune_string, "4010");
14183 case OPTION_NO_M4010:
14187 mips_set_option_string (&mips_arch_string, "4100");
14188 mips_set_option_string (&mips_tune_string, "4100");
14191 case OPTION_NO_M4100:
14195 mips_set_option_string (&mips_arch_string, "3900");
14196 mips_set_option_string (&mips_tune_string, "3900");
14199 case OPTION_NO_M3900:
14202 case OPTION_MICROMIPS:
14203 if (file_mips_opts.mips16 == 1)
14205 as_bad (_("-mmicromips cannot be used with -mips16"));
14208 file_mips_opts.micromips = 1;
14209 mips_no_prev_insn ();
14212 case OPTION_NO_MICROMIPS:
14213 file_mips_opts.micromips = 0;
14214 mips_no_prev_insn ();
14217 case OPTION_MIPS16:
14218 if (file_mips_opts.micromips == 1)
14220 as_bad (_("-mips16 cannot be used with -micromips"));
14223 file_mips_opts.mips16 = 1;
14224 mips_no_prev_insn ();
14227 case OPTION_NO_MIPS16:
14228 file_mips_opts.mips16 = 0;
14229 mips_no_prev_insn ();
14232 case OPTION_FIX_24K:
14236 case OPTION_NO_FIX_24K:
14240 case OPTION_FIX_RM7000:
14241 mips_fix_rm7000 = 1;
14244 case OPTION_NO_FIX_RM7000:
14245 mips_fix_rm7000 = 0;
14248 case OPTION_FIX_LOONGSON2F_JUMP:
14249 mips_fix_loongson2f_jump = TRUE;
14252 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14253 mips_fix_loongson2f_jump = FALSE;
14256 case OPTION_FIX_LOONGSON2F_NOP:
14257 mips_fix_loongson2f_nop = TRUE;
14260 case OPTION_NO_FIX_LOONGSON2F_NOP:
14261 mips_fix_loongson2f_nop = FALSE;
14264 case OPTION_FIX_VR4120:
14265 mips_fix_vr4120 = 1;
14268 case OPTION_NO_FIX_VR4120:
14269 mips_fix_vr4120 = 0;
14272 case OPTION_FIX_VR4130:
14273 mips_fix_vr4130 = 1;
14276 case OPTION_NO_FIX_VR4130:
14277 mips_fix_vr4130 = 0;
14280 case OPTION_FIX_CN63XXP1:
14281 mips_fix_cn63xxp1 = TRUE;
14284 case OPTION_NO_FIX_CN63XXP1:
14285 mips_fix_cn63xxp1 = FALSE;
14288 case OPTION_RELAX_BRANCH:
14289 mips_relax_branch = 1;
14292 case OPTION_NO_RELAX_BRANCH:
14293 mips_relax_branch = 0;
14296 case OPTION_INSN32:
14297 file_mips_opts.insn32 = TRUE;
14300 case OPTION_NO_INSN32:
14301 file_mips_opts.insn32 = FALSE;
14304 case OPTION_MSHARED:
14305 mips_in_shared = TRUE;
14308 case OPTION_MNO_SHARED:
14309 mips_in_shared = FALSE;
14312 case OPTION_MSYM32:
14313 file_mips_opts.sym32 = TRUE;
14316 case OPTION_MNO_SYM32:
14317 file_mips_opts.sym32 = FALSE;
14320 /* When generating ELF code, we permit -KPIC and -call_shared to
14321 select SVR4_PIC, and -non_shared to select no PIC. This is
14322 intended to be compatible with Irix 5. */
14323 case OPTION_CALL_SHARED:
14324 mips_pic = SVR4_PIC;
14325 mips_abicalls = TRUE;
14328 case OPTION_CALL_NONPIC:
14330 mips_abicalls = TRUE;
14333 case OPTION_NON_SHARED:
14335 mips_abicalls = FALSE;
14338 /* The -xgot option tells the assembler to use 32 bit offsets
14339 when accessing the got in SVR4_PIC mode. It is for Irix
14346 g_switch_value = atoi (arg);
14350 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14353 mips_abi = O32_ABI;
14357 mips_abi = N32_ABI;
14361 mips_abi = N64_ABI;
14362 if (!support_64bit_objects())
14363 as_fatal (_("no compiled in support for 64 bit object file format"));
14367 file_mips_opts.gp = 32;
14371 file_mips_opts.gp = 64;
14375 file_mips_opts.fp = 32;
14379 file_mips_opts.fp = 0;
14383 file_mips_opts.fp = 64;
14386 case OPTION_ODD_SPREG:
14387 file_mips_opts.oddspreg = 1;
14390 case OPTION_NO_ODD_SPREG:
14391 file_mips_opts.oddspreg = 0;
14394 case OPTION_SINGLE_FLOAT:
14395 file_mips_opts.single_float = 1;
14398 case OPTION_DOUBLE_FLOAT:
14399 file_mips_opts.single_float = 0;
14402 case OPTION_SOFT_FLOAT:
14403 file_mips_opts.soft_float = 1;
14406 case OPTION_HARD_FLOAT:
14407 file_mips_opts.soft_float = 0;
14411 if (strcmp (arg, "32") == 0)
14412 mips_abi = O32_ABI;
14413 else if (strcmp (arg, "o64") == 0)
14414 mips_abi = O64_ABI;
14415 else if (strcmp (arg, "n32") == 0)
14416 mips_abi = N32_ABI;
14417 else if (strcmp (arg, "64") == 0)
14419 mips_abi = N64_ABI;
14420 if (! support_64bit_objects())
14421 as_fatal (_("no compiled in support for 64 bit object file "
14424 else if (strcmp (arg, "eabi") == 0)
14425 mips_abi = EABI_ABI;
14428 as_fatal (_("invalid abi -mabi=%s"), arg);
14433 case OPTION_M7000_HILO_FIX:
14434 mips_7000_hilo_fix = TRUE;
14437 case OPTION_MNO_7000_HILO_FIX:
14438 mips_7000_hilo_fix = FALSE;
14441 case OPTION_MDEBUG:
14442 mips_flag_mdebug = TRUE;
14445 case OPTION_NO_MDEBUG:
14446 mips_flag_mdebug = FALSE;
14450 mips_flag_pdr = TRUE;
14453 case OPTION_NO_PDR:
14454 mips_flag_pdr = FALSE;
14457 case OPTION_MVXWORKS_PIC:
14458 mips_pic = VXWORKS_PIC;
14462 if (strcmp (arg, "2008") == 0)
14464 else if (strcmp (arg, "legacy") == 0)
14468 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14477 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14482 /* Set up globals to tune for the ISA or processor described by INFO. */
14485 mips_set_tune (const struct mips_cpu_info *info)
14488 mips_tune = info->cpu;
14493 mips_after_parse_args (void)
14495 const struct mips_cpu_info *arch_info = 0;
14496 const struct mips_cpu_info *tune_info = 0;
14498 /* GP relative stuff not working for PE */
14499 if (strncmp (TARGET_OS, "pe", 2) == 0)
14501 if (g_switch_seen && g_switch_value != 0)
14502 as_bad (_("-G not supported in this configuration"));
14503 g_switch_value = 0;
14506 if (mips_abi == NO_ABI)
14507 mips_abi = MIPS_DEFAULT_ABI;
14509 /* The following code determines the architecture.
14510 Similar code was added to GCC 3.3 (see override_options() in
14511 config/mips/mips.c). The GAS and GCC code should be kept in sync
14512 as much as possible. */
14514 if (mips_arch_string != 0)
14515 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14517 if (file_mips_opts.isa != ISA_UNKNOWN)
14519 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14520 ISA level specified by -mipsN, while arch_info->isa contains
14521 the -march selection (if any). */
14522 if (arch_info != 0)
14524 /* -march takes precedence over -mipsN, since it is more descriptive.
14525 There's no harm in specifying both as long as the ISA levels
14527 if (file_mips_opts.isa != arch_info->isa)
14528 as_bad (_("-%s conflicts with the other architecture options,"
14529 " which imply -%s"),
14530 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14531 mips_cpu_info_from_isa (arch_info->isa)->name);
14534 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14537 if (arch_info == 0)
14539 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14540 gas_assert (arch_info);
14543 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14544 as_bad (_("-march=%s is not compatible with the selected ABI"),
14547 file_mips_opts.arch = arch_info->cpu;
14548 file_mips_opts.isa = arch_info->isa;
14550 /* Set up initial mips_opts state. */
14551 mips_opts = file_mips_opts;
14553 /* The register size inference code is now placed in
14554 file_mips_check_options. */
14556 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14558 if (mips_tune_string != 0)
14559 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14561 if (tune_info == 0)
14562 mips_set_tune (arch_info);
14564 mips_set_tune (tune_info);
14566 if (mips_flag_mdebug < 0)
14567 mips_flag_mdebug = 0;
14571 mips_init_after_args (void)
14573 /* initialize opcodes */
14574 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14575 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14579 md_pcrel_from (fixS *fixP)
14581 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14582 switch (fixP->fx_r_type)
14584 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14585 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14586 /* Return the address of the delay slot. */
14589 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14590 case BFD_RELOC_MICROMIPS_JMP:
14591 case BFD_RELOC_16_PCREL_S2:
14592 case BFD_RELOC_MIPS_21_PCREL_S2:
14593 case BFD_RELOC_MIPS_26_PCREL_S2:
14594 case BFD_RELOC_MIPS_JMP:
14595 /* Return the address of the delay slot. */
14603 /* This is called before the symbol table is processed. In order to
14604 work with gcc when using mips-tfile, we must keep all local labels.
14605 However, in other cases, we want to discard them. If we were
14606 called with -g, but we didn't see any debugging information, it may
14607 mean that gcc is smuggling debugging information through to
14608 mips-tfile, in which case we must generate all local labels. */
14611 mips_frob_file_before_adjust (void)
14613 #ifndef NO_ECOFF_DEBUGGING
14614 if (ECOFF_DEBUGGING
14616 && ! ecoff_debugging_seen)
14617 flag_keep_locals = 1;
14621 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14622 the corresponding LO16 reloc. This is called before md_apply_fix and
14623 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14624 relocation operators.
14626 For our purposes, a %lo() expression matches a %got() or %hi()
14629 (a) it refers to the same symbol; and
14630 (b) the offset applied in the %lo() expression is no lower than
14631 the offset applied in the %got() or %hi().
14633 (b) allows us to cope with code like:
14636 lh $4,%lo(foo+2)($4)
14638 ...which is legal on RELA targets, and has a well-defined behaviour
14639 if the user knows that adding 2 to "foo" will not induce a carry to
14642 When several %lo()s match a particular %got() or %hi(), we use the
14643 following rules to distinguish them:
14645 (1) %lo()s with smaller offsets are a better match than %lo()s with
14648 (2) %lo()s with no matching %got() or %hi() are better than those
14649 that already have a matching %got() or %hi().
14651 (3) later %lo()s are better than earlier %lo()s.
14653 These rules are applied in order.
14655 (1) means, among other things, that %lo()s with identical offsets are
14656 chosen if they exist.
14658 (2) means that we won't associate several high-part relocations with
14659 the same low-part relocation unless there's no alternative. Having
14660 several high parts for the same low part is a GNU extension; this rule
14661 allows careful users to avoid it.
14663 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14664 with the last high-part relocation being at the front of the list.
14665 It therefore makes sense to choose the last matching low-part
14666 relocation, all other things being equal. It's also easier
14667 to code that way. */
14670 mips_frob_file (void)
14672 struct mips_hi_fixup *l;
14673 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14675 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14677 segment_info_type *seginfo;
14678 bfd_boolean matched_lo_p;
14679 fixS **hi_pos, **lo_pos, **pos;
14681 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14683 /* If a GOT16 relocation turns out to be against a global symbol,
14684 there isn't supposed to be a matching LO. Ignore %gots against
14685 constants; we'll report an error for those later. */
14686 if (got16_reloc_p (l->fixp->fx_r_type)
14687 && !(l->fixp->fx_addsy
14688 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14691 /* Check quickly whether the next fixup happens to be a matching %lo. */
14692 if (fixup_has_matching_lo_p (l->fixp))
14695 seginfo = seg_info (l->seg);
14697 /* Set HI_POS to the position of this relocation in the chain.
14698 Set LO_POS to the position of the chosen low-part relocation.
14699 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14700 relocation that matches an immediately-preceding high-part
14704 matched_lo_p = FALSE;
14705 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14707 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14709 if (*pos == l->fixp)
14712 if ((*pos)->fx_r_type == looking_for_rtype
14713 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14714 && (*pos)->fx_offset >= l->fixp->fx_offset
14716 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14718 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14721 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14722 && fixup_has_matching_lo_p (*pos));
14725 /* If we found a match, remove the high-part relocation from its
14726 current position and insert it before the low-part relocation.
14727 Make the offsets match so that fixup_has_matching_lo_p()
14730 We don't warn about unmatched high-part relocations since some
14731 versions of gcc have been known to emit dead "lui ...%hi(...)"
14733 if (lo_pos != NULL)
14735 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14736 if (l->fixp->fx_next != *lo_pos)
14738 *hi_pos = l->fixp->fx_next;
14739 l->fixp->fx_next = *lo_pos;
14747 mips_force_relocation (fixS *fixp)
14749 if (generic_force_reloc (fixp))
14752 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14753 so that the linker relaxation can update targets. */
14754 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14755 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14756 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14759 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14760 if (ISA_IS_R6 (mips_opts.isa)
14761 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14763 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14767 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14773 /* Read the instruction associated with RELOC from BUF. */
14775 static unsigned int
14776 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14778 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14779 return read_compressed_insn (buf, 4);
14781 return read_insn (buf);
14784 /* Write instruction INSN to BUF, given that it has been relocated
14788 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14789 unsigned long insn)
14791 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14792 write_compressed_insn (buf, insn, 4);
14794 write_insn (buf, insn);
14797 /* Apply a fixup to the object file. */
14800 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14803 unsigned long insn;
14804 reloc_howto_type *howto;
14806 if (fixP->fx_pcrel)
14807 switch (fixP->fx_r_type)
14809 case BFD_RELOC_16_PCREL_S2:
14810 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14811 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14812 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14813 case BFD_RELOC_32_PCREL:
14814 case BFD_RELOC_MIPS_21_PCREL_S2:
14815 case BFD_RELOC_MIPS_26_PCREL_S2:
14816 case BFD_RELOC_MIPS_18_PCREL_S3:
14817 case BFD_RELOC_MIPS_19_PCREL_S2:
14818 case BFD_RELOC_HI16_S_PCREL:
14819 case BFD_RELOC_LO16_PCREL:
14823 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14827 as_bad_where (fixP->fx_file, fixP->fx_line,
14828 _("PC-relative reference to a different section"));
14832 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14833 that have no MIPS ELF equivalent. */
14834 if (fixP->fx_r_type != BFD_RELOC_8)
14836 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14841 gas_assert (fixP->fx_size == 2
14842 || fixP->fx_size == 4
14843 || fixP->fx_r_type == BFD_RELOC_8
14844 || fixP->fx_r_type == BFD_RELOC_16
14845 || fixP->fx_r_type == BFD_RELOC_64
14846 || fixP->fx_r_type == BFD_RELOC_CTOR
14847 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14848 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14849 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14850 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14851 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14852 || fixP->fx_r_type == BFD_RELOC_NONE);
14854 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14856 /* Don't treat parts of a composite relocation as done. There are two
14859 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14860 should nevertheless be emitted if the first part is.
14862 (2) In normal usage, composite relocations are never assembly-time
14863 constants. The easiest way of dealing with the pathological
14864 exceptions is to generate a relocation against STN_UNDEF and
14865 leave everything up to the linker. */
14866 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14869 switch (fixP->fx_r_type)
14871 case BFD_RELOC_MIPS_TLS_GD:
14872 case BFD_RELOC_MIPS_TLS_LDM:
14873 case BFD_RELOC_MIPS_TLS_DTPREL32:
14874 case BFD_RELOC_MIPS_TLS_DTPREL64:
14875 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14876 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14877 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14878 case BFD_RELOC_MIPS_TLS_TPREL32:
14879 case BFD_RELOC_MIPS_TLS_TPREL64:
14880 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14881 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14882 case BFD_RELOC_MICROMIPS_TLS_GD:
14883 case BFD_RELOC_MICROMIPS_TLS_LDM:
14884 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14885 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14886 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14887 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14888 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14889 case BFD_RELOC_MIPS16_TLS_GD:
14890 case BFD_RELOC_MIPS16_TLS_LDM:
14891 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14892 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14893 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14894 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14895 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14896 if (!fixP->fx_addsy)
14898 as_bad_where (fixP->fx_file, fixP->fx_line,
14899 _("TLS relocation against a constant"));
14902 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14905 case BFD_RELOC_MIPS_JMP:
14906 case BFD_RELOC_MIPS_SHIFT5:
14907 case BFD_RELOC_MIPS_SHIFT6:
14908 case BFD_RELOC_MIPS_GOT_DISP:
14909 case BFD_RELOC_MIPS_GOT_PAGE:
14910 case BFD_RELOC_MIPS_GOT_OFST:
14911 case BFD_RELOC_MIPS_SUB:
14912 case BFD_RELOC_MIPS_INSERT_A:
14913 case BFD_RELOC_MIPS_INSERT_B:
14914 case BFD_RELOC_MIPS_DELETE:
14915 case BFD_RELOC_MIPS_HIGHEST:
14916 case BFD_RELOC_MIPS_HIGHER:
14917 case BFD_RELOC_MIPS_SCN_DISP:
14918 case BFD_RELOC_MIPS_REL16:
14919 case BFD_RELOC_MIPS_RELGOT:
14920 case BFD_RELOC_MIPS_JALR:
14921 case BFD_RELOC_HI16:
14922 case BFD_RELOC_HI16_S:
14923 case BFD_RELOC_LO16:
14924 case BFD_RELOC_GPREL16:
14925 case BFD_RELOC_MIPS_LITERAL:
14926 case BFD_RELOC_MIPS_CALL16:
14927 case BFD_RELOC_MIPS_GOT16:
14928 case BFD_RELOC_GPREL32:
14929 case BFD_RELOC_MIPS_GOT_HI16:
14930 case BFD_RELOC_MIPS_GOT_LO16:
14931 case BFD_RELOC_MIPS_CALL_HI16:
14932 case BFD_RELOC_MIPS_CALL_LO16:
14933 case BFD_RELOC_MIPS16_GPREL:
14934 case BFD_RELOC_MIPS16_GOT16:
14935 case BFD_RELOC_MIPS16_CALL16:
14936 case BFD_RELOC_MIPS16_HI16:
14937 case BFD_RELOC_MIPS16_HI16_S:
14938 case BFD_RELOC_MIPS16_LO16:
14939 case BFD_RELOC_MIPS16_JMP:
14940 case BFD_RELOC_MICROMIPS_JMP:
14941 case BFD_RELOC_MICROMIPS_GOT_DISP:
14942 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14943 case BFD_RELOC_MICROMIPS_GOT_OFST:
14944 case BFD_RELOC_MICROMIPS_SUB:
14945 case BFD_RELOC_MICROMIPS_HIGHEST:
14946 case BFD_RELOC_MICROMIPS_HIGHER:
14947 case BFD_RELOC_MICROMIPS_SCN_DISP:
14948 case BFD_RELOC_MICROMIPS_JALR:
14949 case BFD_RELOC_MICROMIPS_HI16:
14950 case BFD_RELOC_MICROMIPS_HI16_S:
14951 case BFD_RELOC_MICROMIPS_LO16:
14952 case BFD_RELOC_MICROMIPS_GPREL16:
14953 case BFD_RELOC_MICROMIPS_LITERAL:
14954 case BFD_RELOC_MICROMIPS_CALL16:
14955 case BFD_RELOC_MICROMIPS_GOT16:
14956 case BFD_RELOC_MICROMIPS_GOT_HI16:
14957 case BFD_RELOC_MICROMIPS_GOT_LO16:
14958 case BFD_RELOC_MICROMIPS_CALL_HI16:
14959 case BFD_RELOC_MICROMIPS_CALL_LO16:
14960 case BFD_RELOC_MIPS_EH:
14965 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14967 insn = read_reloc_insn (buf, fixP->fx_r_type);
14968 if (mips16_reloc_p (fixP->fx_r_type))
14969 insn |= mips16_immed_extend (value, 16);
14971 insn |= (value & 0xffff);
14972 write_reloc_insn (buf, fixP->fx_r_type, insn);
14975 as_bad_where (fixP->fx_file, fixP->fx_line,
14976 _("unsupported constant in relocation"));
14981 /* This is handled like BFD_RELOC_32, but we output a sign
14982 extended value if we are only 32 bits. */
14985 if (8 <= sizeof (valueT))
14986 md_number_to_chars (buf, *valP, 8);
14991 if ((*valP & 0x80000000) != 0)
14995 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14996 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15001 case BFD_RELOC_RVA:
15003 case BFD_RELOC_32_PCREL:
15006 /* If we are deleting this reloc entry, we must fill in the
15007 value now. This can happen if we have a .word which is not
15008 resolved when it appears but is later defined. */
15010 md_number_to_chars (buf, *valP, fixP->fx_size);
15013 case BFD_RELOC_MIPS_21_PCREL_S2:
15014 case BFD_RELOC_MIPS_26_PCREL_S2:
15015 if ((*valP & 0x3) != 0)
15016 as_bad_where (fixP->fx_file, fixP->fx_line,
15017 _("branch to misaligned address (%lx)"), (long) *valP);
15019 gas_assert (!fixP->fx_done);
15022 case BFD_RELOC_MIPS_18_PCREL_S3:
15023 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15024 as_bad_where (fixP->fx_file, fixP->fx_line,
15025 _("PC-relative access using misaligned symbol (%lx)"),
15026 (long) S_GET_VALUE (fixP->fx_addsy));
15027 if ((fixP->fx_offset & 0x7) != 0)
15028 as_bad_where (fixP->fx_file, fixP->fx_line,
15029 _("PC-relative access using misaligned offset (%lx)"),
15030 (long) fixP->fx_offset);
15032 gas_assert (!fixP->fx_done);
15035 case BFD_RELOC_MIPS_19_PCREL_S2:
15036 if ((*valP & 0x3) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access to misaligned address (%lx)"),
15039 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15041 gas_assert (!fixP->fx_done);
15044 case BFD_RELOC_HI16_S_PCREL:
15045 case BFD_RELOC_LO16_PCREL:
15046 gas_assert (!fixP->fx_done);
15049 case BFD_RELOC_16_PCREL_S2:
15050 if ((*valP & 0x3) != 0)
15051 as_bad_where (fixP->fx_file, fixP->fx_line,
15052 _("branch to misaligned address (%lx)"), (long) *valP);
15054 /* We need to save the bits in the instruction since fixup_segment()
15055 might be deleting the relocation entry (i.e., a branch within
15056 the current segment). */
15057 if (! fixP->fx_done)
15060 /* Update old instruction data. */
15061 insn = read_insn (buf);
15063 if (*valP + 0x20000 <= 0x3ffff)
15065 insn |= (*valP >> 2) & 0xffff;
15066 write_insn (buf, insn);
15068 else if (mips_pic == NO_PIC
15070 && fixP->fx_frag->fr_address >= text_section->vma
15071 && (fixP->fx_frag->fr_address
15072 < text_section->vma + bfd_get_section_size (text_section))
15073 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15074 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15075 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15077 /* The branch offset is too large. If this is an
15078 unconditional branch, and we are not generating PIC code,
15079 we can convert it to an absolute jump instruction. */
15080 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15081 insn = 0x0c000000; /* jal */
15083 insn = 0x08000000; /* j */
15084 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15086 fixP->fx_addsy = section_symbol (text_section);
15087 *valP += md_pcrel_from (fixP);
15088 write_insn (buf, insn);
15092 /* If we got here, we have branch-relaxation disabled,
15093 and there's nothing we can do to fix this instruction
15094 without turning it into a longer sequence. */
15095 as_bad_where (fixP->fx_file, fixP->fx_line,
15096 _("branch out of range"));
15100 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15101 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15102 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15103 /* We adjust the offset back to even. */
15104 if ((*valP & 0x1) != 0)
15107 if (! fixP->fx_done)
15110 /* Should never visit here, because we keep the relocation. */
15114 case BFD_RELOC_VTABLE_INHERIT:
15117 && !S_IS_DEFINED (fixP->fx_addsy)
15118 && !S_IS_WEAK (fixP->fx_addsy))
15119 S_SET_WEAK (fixP->fx_addsy);
15122 case BFD_RELOC_NONE:
15123 case BFD_RELOC_VTABLE_ENTRY:
15131 /* Remember value for tc_gen_reloc. */
15132 fixP->fx_addnumber = *valP;
15142 c = get_symbol_name (&name);
15143 p = (symbolS *) symbol_find_or_make (name);
15144 (void) restore_line_pointer (c);
15148 /* Align the current frag to a given power of two. If a particular
15149 fill byte should be used, FILL points to an integer that contains
15150 that byte, otherwise FILL is null.
15152 This function used to have the comment:
15154 The MIPS assembler also automatically adjusts any preceding label.
15156 The implementation therefore applied the adjustment to a maximum of
15157 one label. However, other label adjustments are applied to batches
15158 of labels, and adjusting just one caused problems when new labels
15159 were added for the sake of debugging or unwind information.
15160 We therefore adjust all preceding labels (given as LABELS) instead. */
15163 mips_align (int to, int *fill, struct insn_label_list *labels)
15165 mips_emit_delays ();
15166 mips_record_compressed_mode ();
15167 if (fill == NULL && subseg_text_p (now_seg))
15168 frag_align_code (to, 0);
15170 frag_align (to, fill ? *fill : 0, 0);
15171 record_alignment (now_seg, to);
15172 mips_move_labels (labels, FALSE);
15175 /* Align to a given power of two. .align 0 turns off the automatic
15176 alignment used by the data creating pseudo-ops. */
15179 s_align (int x ATTRIBUTE_UNUSED)
15181 int temp, fill_value, *fill_ptr;
15182 long max_alignment = 28;
15184 /* o Note that the assembler pulls down any immediately preceding label
15185 to the aligned address.
15186 o It's not documented but auto alignment is reinstated by
15187 a .align pseudo instruction.
15188 o Note also that after auto alignment is turned off the mips assembler
15189 issues an error on attempt to assemble an improperly aligned data item.
15192 temp = get_absolute_expression ();
15193 if (temp > max_alignment)
15194 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15197 as_warn (_("alignment negative, 0 assumed"));
15200 if (*input_line_pointer == ',')
15202 ++input_line_pointer;
15203 fill_value = get_absolute_expression ();
15204 fill_ptr = &fill_value;
15210 segment_info_type *si = seg_info (now_seg);
15211 struct insn_label_list *l = si->label_list;
15212 /* Auto alignment should be switched on by next section change. */
15214 mips_align (temp, fill_ptr, l);
15221 demand_empty_rest_of_line ();
15225 s_change_sec (int sec)
15229 /* The ELF backend needs to know that we are changing sections, so
15230 that .previous works correctly. We could do something like check
15231 for an obj_section_change_hook macro, but that might be confusing
15232 as it would not be appropriate to use it in the section changing
15233 functions in read.c, since obj-elf.c intercepts those. FIXME:
15234 This should be cleaner, somehow. */
15235 obj_elf_section_change_hook ();
15237 mips_emit_delays ();
15248 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15249 demand_empty_rest_of_line ();
15253 seg = subseg_new (RDATA_SECTION_NAME,
15254 (subsegT) get_absolute_expression ());
15255 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15256 | SEC_READONLY | SEC_RELOC
15258 if (strncmp (TARGET_OS, "elf", 3) != 0)
15259 record_alignment (seg, 4);
15260 demand_empty_rest_of_line ();
15264 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15265 bfd_set_section_flags (stdoutput, seg,
15266 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
15269 demand_empty_rest_of_line ();
15273 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15274 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15275 if (strncmp (TARGET_OS, "elf", 3) != 0)
15276 record_alignment (seg, 4);
15277 demand_empty_rest_of_line ();
15285 s_change_section (int ignore ATTRIBUTE_UNUSED)
15288 char *section_name;
15293 int section_entry_size;
15294 int section_alignment;
15296 saved_ilp = input_line_pointer;
15297 endc = get_symbol_name (§ion_name);
15298 c = (endc == '"' ? input_line_pointer[1] : endc);
15300 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15302 /* Do we have .section Name<,"flags">? */
15303 if (c != ',' || (c == ',' && next_c == '"'))
15305 /* Just after name is now '\0'. */
15306 (void) restore_line_pointer (endc);
15307 input_line_pointer = saved_ilp;
15308 obj_elf_section (ignore);
15312 section_name = xstrdup (section_name);
15313 c = restore_line_pointer (endc);
15315 input_line_pointer++;
15317 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15319 section_type = get_absolute_expression ();
15323 if (*input_line_pointer++ == ',')
15324 section_flag = get_absolute_expression ();
15328 if (*input_line_pointer++ == ',')
15329 section_entry_size = get_absolute_expression ();
15331 section_entry_size = 0;
15333 if (*input_line_pointer++ == ',')
15334 section_alignment = get_absolute_expression ();
15336 section_alignment = 0;
15338 /* FIXME: really ignore? */
15339 (void) section_alignment;
15341 /* When using the generic form of .section (as implemented by obj-elf.c),
15342 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15343 traditionally had to fall back on the more common @progbits instead.
15345 There's nothing really harmful in this, since bfd will correct
15346 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15347 means that, for backwards compatibility, the special_section entries
15348 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15350 Even so, we shouldn't force users of the MIPS .section syntax to
15351 incorrectly label the sections as SHT_PROGBITS. The best compromise
15352 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15353 generic type-checking code. */
15354 if (section_type == SHT_MIPS_DWARF)
15355 section_type = SHT_PROGBITS;
15357 obj_elf_change_section (section_name, section_type, section_flag,
15358 section_entry_size, 0, 0, 0);
15360 if (now_seg->name != section_name)
15361 free (section_name);
15365 mips_enable_auto_align (void)
15371 s_cons (int log_size)
15373 segment_info_type *si = seg_info (now_seg);
15374 struct insn_label_list *l = si->label_list;
15376 mips_emit_delays ();
15377 if (log_size > 0 && auto_align)
15378 mips_align (log_size, 0, l);
15379 cons (1 << log_size);
15380 mips_clear_insn_labels ();
15384 s_float_cons (int type)
15386 segment_info_type *si = seg_info (now_seg);
15387 struct insn_label_list *l = si->label_list;
15389 mips_emit_delays ();
15394 mips_align (3, 0, l);
15396 mips_align (2, 0, l);
15400 mips_clear_insn_labels ();
15403 /* Handle .globl. We need to override it because on Irix 5 you are
15406 where foo is an undefined symbol, to mean that foo should be
15407 considered to be the address of a function. */
15410 s_mips_globl (int x ATTRIBUTE_UNUSED)
15419 c = get_symbol_name (&name);
15420 symbolP = symbol_find_or_make (name);
15421 S_SET_EXTERNAL (symbolP);
15423 *input_line_pointer = c;
15424 SKIP_WHITESPACE_AFTER_NAME ();
15426 /* On Irix 5, every global symbol that is not explicitly labelled as
15427 being a function is apparently labelled as being an object. */
15430 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15431 && (*input_line_pointer != ','))
15436 c = get_symbol_name (&secname);
15437 sec = bfd_get_section_by_name (stdoutput, secname);
15439 as_bad (_("%s: no such section"), secname);
15440 (void) restore_line_pointer (c);
15442 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15443 flag = BSF_FUNCTION;
15446 symbol_get_bfdsym (symbolP)->flags |= flag;
15448 c = *input_line_pointer;
15451 input_line_pointer++;
15452 SKIP_WHITESPACE ();
15453 if (is_end_of_line[(unsigned char) *input_line_pointer])
15459 demand_empty_rest_of_line ();
15463 s_option (int x ATTRIBUTE_UNUSED)
15468 c = get_symbol_name (&opt);
15472 /* FIXME: What does this mean? */
15474 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15478 i = atoi (opt + 3);
15479 if (i != 0 && i != 2)
15480 as_bad (_(".option pic%d not supported"), i);
15481 else if (mips_pic == VXWORKS_PIC)
15482 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15487 mips_pic = SVR4_PIC;
15488 mips_abicalls = TRUE;
15491 if (mips_pic == SVR4_PIC)
15493 if (g_switch_seen && g_switch_value != 0)
15494 as_warn (_("-G may not be used with SVR4 PIC code"));
15495 g_switch_value = 0;
15496 bfd_set_gp_size (stdoutput, 0);
15500 as_warn (_("unrecognized option \"%s\""), opt);
15502 (void) restore_line_pointer (c);
15503 demand_empty_rest_of_line ();
15506 /* This structure is used to hold a stack of .set values. */
15508 struct mips_option_stack
15510 struct mips_option_stack *next;
15511 struct mips_set_options options;
15514 static struct mips_option_stack *mips_opts_stack;
15516 /* Return status for .set/.module option handling. */
15518 enum code_option_type
15520 /* Unrecognized option. */
15521 OPTION_TYPE_BAD = -1,
15523 /* Ordinary option. */
15524 OPTION_TYPE_NORMAL,
15526 /* ISA changing option. */
15530 /* Handle common .set/.module options. Return status indicating option
15533 static enum code_option_type
15534 parse_code_option (char * name)
15536 bfd_boolean isa_set = FALSE;
15537 const struct mips_ase *ase;
15539 if (strncmp (name, "at=", 3) == 0)
15541 char *s = name + 3;
15543 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15544 as_bad (_("unrecognized register name `%s'"), s);
15546 else if (strcmp (name, "at") == 0)
15547 mips_opts.at = ATREG;
15548 else if (strcmp (name, "noat") == 0)
15549 mips_opts.at = ZERO;
15550 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15551 mips_opts.nomove = 0;
15552 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15553 mips_opts.nomove = 1;
15554 else if (strcmp (name, "bopt") == 0)
15555 mips_opts.nobopt = 0;
15556 else if (strcmp (name, "nobopt") == 0)
15557 mips_opts.nobopt = 1;
15558 else if (strcmp (name, "gp=32") == 0)
15560 else if (strcmp (name, "gp=64") == 0)
15562 else if (strcmp (name, "fp=32") == 0)
15564 else if (strcmp (name, "fp=xx") == 0)
15566 else if (strcmp (name, "fp=64") == 0)
15568 else if (strcmp (name, "softfloat") == 0)
15569 mips_opts.soft_float = 1;
15570 else if (strcmp (name, "hardfloat") == 0)
15571 mips_opts.soft_float = 0;
15572 else if (strcmp (name, "singlefloat") == 0)
15573 mips_opts.single_float = 1;
15574 else if (strcmp (name, "doublefloat") == 0)
15575 mips_opts.single_float = 0;
15576 else if (strcmp (name, "nooddspreg") == 0)
15577 mips_opts.oddspreg = 0;
15578 else if (strcmp (name, "oddspreg") == 0)
15579 mips_opts.oddspreg = 1;
15580 else if (strcmp (name, "mips16") == 0
15581 || strcmp (name, "MIPS-16") == 0)
15582 mips_opts.mips16 = 1;
15583 else if (strcmp (name, "nomips16") == 0
15584 || strcmp (name, "noMIPS-16") == 0)
15585 mips_opts.mips16 = 0;
15586 else if (strcmp (name, "micromips") == 0)
15587 mips_opts.micromips = 1;
15588 else if (strcmp (name, "nomicromips") == 0)
15589 mips_opts.micromips = 0;
15590 else if (name[0] == 'n'
15592 && (ase = mips_lookup_ase (name + 2)))
15593 mips_set_ase (ase, &mips_opts, FALSE);
15594 else if ((ase = mips_lookup_ase (name)))
15595 mips_set_ase (ase, &mips_opts, TRUE);
15596 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15598 /* Permit the user to change the ISA and architecture on the fly.
15599 Needless to say, misuse can cause serious problems. */
15600 if (strncmp (name, "arch=", 5) == 0)
15602 const struct mips_cpu_info *p;
15604 p = mips_parse_cpu ("internal use", name + 5);
15606 as_bad (_("unknown architecture %s"), name + 5);
15609 mips_opts.arch = p->cpu;
15610 mips_opts.isa = p->isa;
15614 else if (strncmp (name, "mips", 4) == 0)
15616 const struct mips_cpu_info *p;
15618 p = mips_parse_cpu ("internal use", name);
15620 as_bad (_("unknown ISA level %s"), name + 4);
15623 mips_opts.arch = p->cpu;
15624 mips_opts.isa = p->isa;
15629 as_bad (_("unknown ISA or architecture %s"), name);
15631 else if (strcmp (name, "autoextend") == 0)
15632 mips_opts.noautoextend = 0;
15633 else if (strcmp (name, "noautoextend") == 0)
15634 mips_opts.noautoextend = 1;
15635 else if (strcmp (name, "insn32") == 0)
15636 mips_opts.insn32 = TRUE;
15637 else if (strcmp (name, "noinsn32") == 0)
15638 mips_opts.insn32 = FALSE;
15639 else if (strcmp (name, "sym32") == 0)
15640 mips_opts.sym32 = TRUE;
15641 else if (strcmp (name, "nosym32") == 0)
15642 mips_opts.sym32 = FALSE;
15644 return OPTION_TYPE_BAD;
15646 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15649 /* Handle the .set pseudo-op. */
15652 s_mipsset (int x ATTRIBUTE_UNUSED)
15654 enum code_option_type type = OPTION_TYPE_NORMAL;
15655 char *name = input_line_pointer, ch;
15657 file_mips_check_options ();
15659 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15660 ++input_line_pointer;
15661 ch = *input_line_pointer;
15662 *input_line_pointer = '\0';
15664 if (strchr (name, ','))
15666 /* Generic ".set" directive; use the generic handler. */
15667 *input_line_pointer = ch;
15668 input_line_pointer = name;
15673 if (strcmp (name, "reorder") == 0)
15675 if (mips_opts.noreorder)
15678 else if (strcmp (name, "noreorder") == 0)
15680 if (!mips_opts.noreorder)
15681 start_noreorder ();
15683 else if (strcmp (name, "macro") == 0)
15684 mips_opts.warn_about_macros = 0;
15685 else if (strcmp (name, "nomacro") == 0)
15687 if (mips_opts.noreorder == 0)
15688 as_bad (_("`noreorder' must be set before `nomacro'"));
15689 mips_opts.warn_about_macros = 1;
15691 else if (strcmp (name, "gp=default") == 0)
15692 mips_opts.gp = file_mips_opts.gp;
15693 else if (strcmp (name, "fp=default") == 0)
15694 mips_opts.fp = file_mips_opts.fp;
15695 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15697 mips_opts.isa = file_mips_opts.isa;
15698 mips_opts.arch = file_mips_opts.arch;
15699 mips_opts.gp = file_mips_opts.gp;
15700 mips_opts.fp = file_mips_opts.fp;
15702 else if (strcmp (name, "push") == 0)
15704 struct mips_option_stack *s;
15706 s = XNEW (struct mips_option_stack);
15707 s->next = mips_opts_stack;
15708 s->options = mips_opts;
15709 mips_opts_stack = s;
15711 else if (strcmp (name, "pop") == 0)
15713 struct mips_option_stack *s;
15715 s = mips_opts_stack;
15717 as_bad (_(".set pop with no .set push"));
15720 /* If we're changing the reorder mode we need to handle
15721 delay slots correctly. */
15722 if (s->options.noreorder && ! mips_opts.noreorder)
15723 start_noreorder ();
15724 else if (! s->options.noreorder && mips_opts.noreorder)
15727 mips_opts = s->options;
15728 mips_opts_stack = s->next;
15734 type = parse_code_option (name);
15735 if (type == OPTION_TYPE_BAD)
15736 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15739 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15740 registers based on what is supported by the arch/cpu. */
15741 if (type == OPTION_TYPE_ISA)
15743 switch (mips_opts.isa)
15748 /* MIPS I cannot support FPXX. */
15750 /* fall-through. */
15757 if (mips_opts.fp != 0)
15773 if (mips_opts.fp != 0)
15775 if (mips_opts.arch == CPU_R5900)
15782 as_bad (_("unknown ISA level %s"), name + 4);
15787 mips_check_options (&mips_opts, FALSE);
15789 mips_check_isa_supports_ases ();
15790 *input_line_pointer = ch;
15791 demand_empty_rest_of_line ();
15794 /* Handle the .module pseudo-op. */
15797 s_module (int ignore ATTRIBUTE_UNUSED)
15799 char *name = input_line_pointer, ch;
15801 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15802 ++input_line_pointer;
15803 ch = *input_line_pointer;
15804 *input_line_pointer = '\0';
15806 if (!file_mips_opts_checked)
15808 if (parse_code_option (name) == OPTION_TYPE_BAD)
15809 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15811 /* Update module level settings from mips_opts. */
15812 file_mips_opts = mips_opts;
15815 as_bad (_(".module is not permitted after generating code"));
15817 *input_line_pointer = ch;
15818 demand_empty_rest_of_line ();
15821 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15822 .option pic2. It means to generate SVR4 PIC calls. */
15825 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15827 mips_pic = SVR4_PIC;
15828 mips_abicalls = TRUE;
15830 if (g_switch_seen && g_switch_value != 0)
15831 as_warn (_("-G may not be used with SVR4 PIC code"));
15832 g_switch_value = 0;
15834 bfd_set_gp_size (stdoutput, 0);
15835 demand_empty_rest_of_line ();
15838 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15839 PIC code. It sets the $gp register for the function based on the
15840 function address, which is in the register named in the argument.
15841 This uses a relocation against _gp_disp, which is handled specially
15842 by the linker. The result is:
15843 lui $gp,%hi(_gp_disp)
15844 addiu $gp,$gp,%lo(_gp_disp)
15845 addu $gp,$gp,.cpload argument
15846 The .cpload argument is normally $25 == $t9.
15848 The -mno-shared option changes this to:
15849 lui $gp,%hi(__gnu_local_gp)
15850 addiu $gp,$gp,%lo(__gnu_local_gp)
15851 and the argument is ignored. This saves an instruction, but the
15852 resulting code is not position independent; it uses an absolute
15853 address for __gnu_local_gp. Thus code assembled with -mno-shared
15854 can go into an ordinary executable, but not into a shared library. */
15857 s_cpload (int ignore ATTRIBUTE_UNUSED)
15863 file_mips_check_options ();
15865 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15866 .cpload is ignored. */
15867 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15873 if (mips_opts.mips16)
15875 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15876 ignore_rest_of_line ();
15880 /* .cpload should be in a .set noreorder section. */
15881 if (mips_opts.noreorder == 0)
15882 as_warn (_(".cpload not in noreorder section"));
15884 reg = tc_get_register (0);
15886 /* If we need to produce a 64-bit address, we are better off using
15887 the default instruction sequence. */
15888 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15890 ex.X_op = O_symbol;
15891 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15893 ex.X_op_symbol = NULL;
15894 ex.X_add_number = 0;
15896 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15897 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15899 mips_mark_labels ();
15900 mips_assembling_insn = TRUE;
15903 macro_build_lui (&ex, mips_gp_register);
15904 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15905 mips_gp_register, BFD_RELOC_LO16);
15907 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15908 mips_gp_register, reg);
15911 mips_assembling_insn = FALSE;
15912 demand_empty_rest_of_line ();
15915 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15916 .cpsetup $reg1, offset|$reg2, label
15918 If offset is given, this results in:
15919 sd $gp, offset($sp)
15920 lui $gp, %hi(%neg(%gp_rel(label)))
15921 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15922 daddu $gp, $gp, $reg1
15924 If $reg2 is given, this results in:
15926 lui $gp, %hi(%neg(%gp_rel(label)))
15927 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15928 daddu $gp, $gp, $reg1
15929 $reg1 is normally $25 == $t9.
15931 The -mno-shared option replaces the last three instructions with
15933 addiu $gp,$gp,%lo(_gp) */
15936 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15938 expressionS ex_off;
15939 expressionS ex_sym;
15942 file_mips_check_options ();
15944 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15945 We also need NewABI support. */
15946 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15952 if (mips_opts.mips16)
15954 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15955 ignore_rest_of_line ();
15959 reg1 = tc_get_register (0);
15960 SKIP_WHITESPACE ();
15961 if (*input_line_pointer != ',')
15963 as_bad (_("missing argument separator ',' for .cpsetup"));
15967 ++input_line_pointer;
15968 SKIP_WHITESPACE ();
15969 if (*input_line_pointer == '$')
15971 mips_cpreturn_register = tc_get_register (0);
15972 mips_cpreturn_offset = -1;
15976 mips_cpreturn_offset = get_absolute_expression ();
15977 mips_cpreturn_register = -1;
15979 SKIP_WHITESPACE ();
15980 if (*input_line_pointer != ',')
15982 as_bad (_("missing argument separator ',' for .cpsetup"));
15986 ++input_line_pointer;
15987 SKIP_WHITESPACE ();
15988 expression (&ex_sym);
15990 mips_mark_labels ();
15991 mips_assembling_insn = TRUE;
15994 if (mips_cpreturn_register == -1)
15996 ex_off.X_op = O_constant;
15997 ex_off.X_add_symbol = NULL;
15998 ex_off.X_op_symbol = NULL;
15999 ex_off.X_add_number = mips_cpreturn_offset;
16001 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16002 BFD_RELOC_LO16, SP);
16005 move_register (mips_cpreturn_register, mips_gp_register);
16007 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16009 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16010 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16013 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16014 mips_gp_register, -1, BFD_RELOC_GPREL16,
16015 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16017 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16018 mips_gp_register, reg1);
16024 ex.X_op = O_symbol;
16025 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16026 ex.X_op_symbol = NULL;
16027 ex.X_add_number = 0;
16029 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16030 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16032 macro_build_lui (&ex, mips_gp_register);
16033 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16034 mips_gp_register, BFD_RELOC_LO16);
16039 mips_assembling_insn = FALSE;
16040 demand_empty_rest_of_line ();
16044 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16046 file_mips_check_options ();
16048 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16049 .cplocal is ignored. */
16050 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16056 if (mips_opts.mips16)
16058 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16059 ignore_rest_of_line ();
16063 mips_gp_register = tc_get_register (0);
16064 demand_empty_rest_of_line ();
16067 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16068 offset from $sp. The offset is remembered, and after making a PIC
16069 call $gp is restored from that location. */
16072 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16076 file_mips_check_options ();
16078 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16079 .cprestore is ignored. */
16080 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16086 if (mips_opts.mips16)
16088 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16089 ignore_rest_of_line ();
16093 mips_cprestore_offset = get_absolute_expression ();
16094 mips_cprestore_valid = 1;
16096 ex.X_op = O_constant;
16097 ex.X_add_symbol = NULL;
16098 ex.X_op_symbol = NULL;
16099 ex.X_add_number = mips_cprestore_offset;
16101 mips_mark_labels ();
16102 mips_assembling_insn = TRUE;
16105 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16106 SP, HAVE_64BIT_ADDRESSES);
16109 mips_assembling_insn = FALSE;
16110 demand_empty_rest_of_line ();
16113 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16114 was given in the preceding .cpsetup, it results in:
16115 ld $gp, offset($sp)
16117 If a register $reg2 was given there, it results in:
16118 or $gp, $reg2, $0 */
16121 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16125 file_mips_check_options ();
16127 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16128 We also need NewABI support. */
16129 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16135 if (mips_opts.mips16)
16137 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16138 ignore_rest_of_line ();
16142 mips_mark_labels ();
16143 mips_assembling_insn = TRUE;
16146 if (mips_cpreturn_register == -1)
16148 ex.X_op = O_constant;
16149 ex.X_add_symbol = NULL;
16150 ex.X_op_symbol = NULL;
16151 ex.X_add_number = mips_cpreturn_offset;
16153 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16156 move_register (mips_gp_register, mips_cpreturn_register);
16160 mips_assembling_insn = FALSE;
16161 demand_empty_rest_of_line ();
16164 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16165 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16166 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16167 debug information or MIPS16 TLS. */
16170 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16171 bfd_reloc_code_real_type rtype)
16178 if (ex.X_op != O_symbol)
16180 as_bad (_("unsupported use of %s"), dirstr);
16181 ignore_rest_of_line ();
16184 p = frag_more (bytes);
16185 md_number_to_chars (p, 0, bytes);
16186 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16187 demand_empty_rest_of_line ();
16188 mips_clear_insn_labels ();
16191 /* Handle .dtprelword. */
16194 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16196 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16199 /* Handle .dtpreldword. */
16202 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16204 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16207 /* Handle .tprelword. */
16210 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16212 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16215 /* Handle .tpreldword. */
16218 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16220 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16223 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16224 code. It sets the offset to use in gp_rel relocations. */
16227 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16229 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16230 We also need NewABI support. */
16231 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16237 mips_gprel_offset = get_absolute_expression ();
16239 demand_empty_rest_of_line ();
16242 /* Handle the .gpword pseudo-op. This is used when generating PIC
16243 code. It generates a 32 bit GP relative reloc. */
16246 s_gpword (int ignore ATTRIBUTE_UNUSED)
16248 segment_info_type *si;
16249 struct insn_label_list *l;
16253 /* When not generating PIC code, this is treated as .word. */
16254 if (mips_pic != SVR4_PIC)
16260 si = seg_info (now_seg);
16261 l = si->label_list;
16262 mips_emit_delays ();
16264 mips_align (2, 0, l);
16267 mips_clear_insn_labels ();
16269 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16271 as_bad (_("unsupported use of .gpword"));
16272 ignore_rest_of_line ();
16276 md_number_to_chars (p, 0, 4);
16277 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16278 BFD_RELOC_GPREL32);
16280 demand_empty_rest_of_line ();
16284 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16286 segment_info_type *si;
16287 struct insn_label_list *l;
16291 /* When not generating PIC code, this is treated as .dword. */
16292 if (mips_pic != SVR4_PIC)
16298 si = seg_info (now_seg);
16299 l = si->label_list;
16300 mips_emit_delays ();
16302 mips_align (3, 0, l);
16305 mips_clear_insn_labels ();
16307 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16309 as_bad (_("unsupported use of .gpdword"));
16310 ignore_rest_of_line ();
16314 md_number_to_chars (p, 0, 8);
16315 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16316 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16318 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16319 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16320 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16322 demand_empty_rest_of_line ();
16325 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16326 tables. It generates a R_MIPS_EH reloc. */
16329 s_ehword (int ignore ATTRIBUTE_UNUSED)
16334 mips_emit_delays ();
16337 mips_clear_insn_labels ();
16339 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16341 as_bad (_("unsupported use of .ehword"));
16342 ignore_rest_of_line ();
16346 md_number_to_chars (p, 0, 4);
16347 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16348 BFD_RELOC_32_PCREL);
16350 demand_empty_rest_of_line ();
16353 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16354 tables in SVR4 PIC code. */
16357 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16361 file_mips_check_options ();
16363 /* This is ignored when not generating SVR4 PIC code. */
16364 if (mips_pic != SVR4_PIC)
16370 mips_mark_labels ();
16371 mips_assembling_insn = TRUE;
16373 /* Add $gp to the register named as an argument. */
16375 reg = tc_get_register (0);
16376 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16379 mips_assembling_insn = FALSE;
16380 demand_empty_rest_of_line ();
16383 /* Handle the .insn pseudo-op. This marks instruction labels in
16384 mips16/micromips mode. This permits the linker to handle them specially,
16385 such as generating jalx instructions when needed. We also make
16386 them odd for the duration of the assembly, in order to generate the
16387 right sort of code. We will make them even in the adjust_symtab
16388 routine, while leaving them marked. This is convenient for the
16389 debugger and the disassembler. The linker knows to make them odd
16393 s_insn (int ignore ATTRIBUTE_UNUSED)
16395 file_mips_check_options ();
16396 file_ase_mips16 |= mips_opts.mips16;
16397 file_ase_micromips |= mips_opts.micromips;
16399 mips_mark_labels ();
16401 demand_empty_rest_of_line ();
16404 /* Handle the .nan pseudo-op. */
16407 s_nan (int ignore ATTRIBUTE_UNUSED)
16409 static const char str_legacy[] = "legacy";
16410 static const char str_2008[] = "2008";
16413 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16415 if (i == sizeof (str_2008) - 1
16416 && memcmp (input_line_pointer, str_2008, i) == 0)
16418 else if (i == sizeof (str_legacy) - 1
16419 && memcmp (input_line_pointer, str_legacy, i) == 0)
16421 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16424 as_bad (_("`%s' does not support legacy NaN"),
16425 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16428 as_bad (_("bad .nan directive"));
16430 input_line_pointer += i;
16431 demand_empty_rest_of_line ();
16434 /* Handle a .stab[snd] directive. Ideally these directives would be
16435 implemented in a transparent way, so that removing them would not
16436 have any effect on the generated instructions. However, s_stab
16437 internally changes the section, so in practice we need to decide
16438 now whether the preceding label marks compressed code. We do not
16439 support changing the compression mode of a label after a .stab*
16440 directive, such as in:
16446 so the current mode wins. */
16449 s_mips_stab (int type)
16451 mips_mark_labels ();
16455 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16458 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16465 c = get_symbol_name (&name);
16466 symbolP = symbol_find_or_make (name);
16467 S_SET_WEAK (symbolP);
16468 *input_line_pointer = c;
16470 SKIP_WHITESPACE_AFTER_NAME ();
16472 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16474 if (S_IS_DEFINED (symbolP))
16476 as_bad (_("ignoring attempt to redefine symbol %s"),
16477 S_GET_NAME (symbolP));
16478 ignore_rest_of_line ();
16482 if (*input_line_pointer == ',')
16484 ++input_line_pointer;
16485 SKIP_WHITESPACE ();
16489 if (exp.X_op != O_symbol)
16491 as_bad (_("bad .weakext directive"));
16492 ignore_rest_of_line ();
16495 symbol_set_value_expression (symbolP, &exp);
16498 demand_empty_rest_of_line ();
16501 /* Parse a register string into a number. Called from the ECOFF code
16502 to parse .frame. The argument is non-zero if this is the frame
16503 register, so that we can record it in mips_frame_reg. */
16506 tc_get_register (int frame)
16510 SKIP_WHITESPACE ();
16511 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
16515 mips_frame_reg = reg != 0 ? reg : SP;
16516 mips_frame_reg_valid = 1;
16517 mips_cprestore_valid = 0;
16523 md_section_align (asection *seg, valueT addr)
16525 int align = bfd_get_section_alignment (stdoutput, seg);
16527 /* We don't need to align ELF sections to the full alignment.
16528 However, Irix 5 may prefer that we align them at least to a 16
16529 byte boundary. We don't bother to align the sections if we
16530 are targeted for an embedded system. */
16531 if (strncmp (TARGET_OS, "elf", 3) == 0)
16536 return ((addr + (1 << align) - 1) & -(1 << align));
16539 /* Utility routine, called from above as well. If called while the
16540 input file is still being read, it's only an approximation. (For
16541 example, a symbol may later become defined which appeared to be
16542 undefined earlier.) */
16545 nopic_need_relax (symbolS *sym, int before_relaxing)
16550 if (g_switch_value > 0)
16552 const char *symname;
16555 /* Find out whether this symbol can be referenced off the $gp
16556 register. It can be if it is smaller than the -G size or if
16557 it is in the .sdata or .sbss section. Certain symbols can
16558 not be referenced off the $gp, although it appears as though
16560 symname = S_GET_NAME (sym);
16561 if (symname != (const char *) NULL
16562 && (strcmp (symname, "eprol") == 0
16563 || strcmp (symname, "etext") == 0
16564 || strcmp (symname, "_gp") == 0
16565 || strcmp (symname, "edata") == 0
16566 || strcmp (symname, "_fbss") == 0
16567 || strcmp (symname, "_fdata") == 0
16568 || strcmp (symname, "_ftext") == 0
16569 || strcmp (symname, "end") == 0
16570 || strcmp (symname, "_gp_disp") == 0))
16572 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16574 #ifndef NO_ECOFF_DEBUGGING
16575 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16576 && (symbol_get_obj (sym)->ecoff_extern_size
16577 <= g_switch_value))
16579 /* We must defer this decision until after the whole
16580 file has been read, since there might be a .extern
16581 after the first use of this symbol. */
16582 || (before_relaxing
16583 #ifndef NO_ECOFF_DEBUGGING
16584 && symbol_get_obj (sym)->ecoff_extern_size == 0
16586 && S_GET_VALUE (sym) == 0)
16587 || (S_GET_VALUE (sym) != 0
16588 && S_GET_VALUE (sym) <= g_switch_value)))
16592 const char *segname;
16594 segname = segment_name (S_GET_SEGMENT (sym));
16595 gas_assert (strcmp (segname, ".lit8") != 0
16596 && strcmp (segname, ".lit4") != 0);
16597 change = (strcmp (segname, ".sdata") != 0
16598 && strcmp (segname, ".sbss") != 0
16599 && strncmp (segname, ".sdata.", 7) != 0
16600 && strncmp (segname, ".sbss.", 6) != 0
16601 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16602 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16607 /* We are not optimizing for the $gp register. */
16612 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16615 pic_need_relax (symbolS *sym, asection *segtype)
16619 /* Handle the case of a symbol equated to another symbol. */
16620 while (symbol_equated_reloc_p (sym))
16624 /* It's possible to get a loop here in a badly written program. */
16625 n = symbol_get_value_expression (sym)->X_add_symbol;
16631 if (symbol_section_p (sym))
16634 symsec = S_GET_SEGMENT (sym);
16636 /* This must duplicate the test in adjust_reloc_syms. */
16637 return (!bfd_is_und_section (symsec)
16638 && !bfd_is_abs_section (symsec)
16639 && !bfd_is_com_section (symsec)
16640 && !s_is_linkonce (sym, segtype)
16641 /* A global or weak symbol is treated as external. */
16642 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16646 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16647 extended opcode. SEC is the section the frag is in. */
16650 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16653 const struct mips_int_operand *operand;
16658 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16660 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16663 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16664 operand = mips16_immed_operand (type, FALSE);
16666 sym_frag = symbol_get_frag (fragp->fr_symbol);
16667 val = S_GET_VALUE (fragp->fr_symbol);
16668 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16670 if (operand->root.type == OP_PCREL)
16672 const struct mips_pcrel_operand *pcrel_op;
16676 /* We won't have the section when we are called from
16677 mips_relax_frag. However, we will always have been called
16678 from md_estimate_size_before_relax first. If this is a
16679 branch to a different section, we mark it as such. If SEC is
16680 NULL, and the frag is not marked, then it must be a branch to
16681 the same section. */
16682 pcrel_op = (const struct mips_pcrel_operand *) operand;
16685 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16690 /* Must have been called from md_estimate_size_before_relax. */
16693 fragp->fr_subtype =
16694 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16696 /* FIXME: We should support this, and let the linker
16697 catch branches and loads that are out of range. */
16698 as_bad_where (fragp->fr_file, fragp->fr_line,
16699 _("unsupported PC relative reference to different section"));
16703 if (fragp != sym_frag && sym_frag->fr_address == 0)
16704 /* Assume non-extended on the first relaxation pass.
16705 The address we have calculated will be bogus if this is
16706 a forward branch to another frag, as the forward frag
16707 will have fr_address == 0. */
16711 /* In this case, we know for sure that the symbol fragment is in
16712 the same section. If the relax_marker of the symbol fragment
16713 differs from the relax_marker of this fragment, we have not
16714 yet adjusted the symbol fragment fr_address. We want to add
16715 in STRETCH in order to get a better estimate of the address.
16716 This particularly matters because of the shift bits. */
16718 && sym_frag->relax_marker != fragp->relax_marker)
16722 /* Adjust stretch for any alignment frag. Note that if have
16723 been expanding the earlier code, the symbol may be
16724 defined in what appears to be an earlier frag. FIXME:
16725 This doesn't handle the fr_subtype field, which specifies
16726 a maximum number of bytes to skip when doing an
16728 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16730 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16733 stretch = - ((- stretch)
16734 & ~ ((1 << (int) f->fr_offset) - 1));
16736 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16745 addr = fragp->fr_address + fragp->fr_fix;
16747 /* The base address rules are complicated. The base address of
16748 a branch is the following instruction. The base address of a
16749 PC relative load or add is the instruction itself, but if it
16750 is in a delay slot (in which case it can not be extended) use
16751 the address of the instruction whose delay slot it is in. */
16752 if (pcrel_op->include_isa_bit)
16756 /* If we are currently assuming that this frag should be
16757 extended, then, the current address is two bytes
16759 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16762 /* Ignore the low bit in the target, since it will be set
16763 for a text label. */
16766 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16768 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16771 val -= addr & -(1 << pcrel_op->align_log2);
16773 /* If any of the shifted bits are set, we must use an extended
16774 opcode. If the address depends on the size of this
16775 instruction, this can lead to a loop, so we arrange to always
16776 use an extended opcode. We only check this when we are in
16777 the main relaxation loop, when SEC is NULL. */
16778 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16780 fragp->fr_subtype =
16781 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16785 /* If we are about to mark a frag as extended because the value
16786 is precisely the next value above maxtiny, then there is a
16787 chance of an infinite loop as in the following code:
16792 In this case when the la is extended, foo is 0x3fc bytes
16793 away, so the la can be shrunk, but then foo is 0x400 away, so
16794 the la must be extended. To avoid this loop, we mark the
16795 frag as extended if it was small, and is about to become
16796 extended with the next value above maxtiny. */
16797 maxtiny = mips_int_operand_max (operand);
16798 if (val == maxtiny + (1 << operand->shift)
16799 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16802 fragp->fr_subtype =
16803 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16807 else if (symsec != absolute_section && sec != NULL)
16808 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16810 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16813 /* Compute the length of a branch sequence, and adjust the
16814 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16815 worst-case length is computed, with UPDATE being used to indicate
16816 whether an unconditional (-1), branch-likely (+1) or regular (0)
16817 branch is to be computed. */
16819 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16821 bfd_boolean toofar;
16825 && S_IS_DEFINED (fragp->fr_symbol)
16826 && !S_IS_WEAK (fragp->fr_symbol)
16827 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16832 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16834 addr = fragp->fr_address + fragp->fr_fix + 4;
16838 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16841 /* If the symbol is not defined or it's in a different segment,
16842 we emit the long sequence. */
16845 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16847 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16848 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16849 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16850 RELAX_BRANCH_LINK (fragp->fr_subtype),
16856 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16859 if (mips_pic != NO_PIC)
16861 /* Additional space for PIC loading of target address. */
16863 if (mips_opts.isa == ISA_MIPS1)
16864 /* Additional space for $at-stabilizing nop. */
16868 /* If branch is conditional. */
16869 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16876 /* Compute the length of a branch sequence, and adjust the
16877 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16878 worst-case length is computed, with UPDATE being used to indicate
16879 whether an unconditional (-1), or regular (0) branch is to be
16883 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16885 bfd_boolean toofar;
16889 && S_IS_DEFINED (fragp->fr_symbol)
16890 && !S_IS_WEAK (fragp->fr_symbol)
16891 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16896 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16897 /* Ignore the low bit in the target, since it will be set
16898 for a text label. */
16899 if ((val & 1) != 0)
16902 addr = fragp->fr_address + fragp->fr_fix + 4;
16906 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16909 /* If the symbol is not defined or it's in a different segment,
16910 we emit the long sequence. */
16913 if (fragp && update
16914 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16915 fragp->fr_subtype = (toofar
16916 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16917 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16922 bfd_boolean compact_known = fragp != NULL;
16923 bfd_boolean compact = FALSE;
16924 bfd_boolean uncond;
16927 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16929 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16931 uncond = update < 0;
16933 /* If label is out of range, we turn branch <br>:
16935 <br> label # 4 bytes
16941 nop # 2 bytes if compact && !PIC
16944 if (mips_pic == NO_PIC && (!compact_known || compact))
16947 /* If assembling PIC code, we further turn:
16953 lw/ld at, %got(label)(gp) # 4 bytes
16954 d/addiu at, %lo(label) # 4 bytes
16957 if (mips_pic != NO_PIC)
16960 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16962 <brneg> 0f # 4 bytes
16963 nop # 2 bytes if !compact
16966 length += (compact_known && compact) ? 4 : 6;
16972 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16973 bit accordingly. */
16976 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16978 bfd_boolean toofar;
16981 && S_IS_DEFINED (fragp->fr_symbol)
16982 && !S_IS_WEAK (fragp->fr_symbol)
16983 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16989 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16990 /* Ignore the low bit in the target, since it will be set
16991 for a text label. */
16992 if ((val & 1) != 0)
16995 /* Assume this is a 2-byte branch. */
16996 addr = fragp->fr_address + fragp->fr_fix + 2;
16998 /* We try to avoid the infinite loop by not adding 2 more bytes for
17003 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17005 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17006 else if (type == 'E')
17007 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17012 /* If the symbol is not defined or it's in a different segment,
17013 we emit a normal 32-bit branch. */
17016 if (fragp && update
17017 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17019 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17020 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17028 /* Estimate the size of a frag before relaxing. Unless this is the
17029 mips16, we are not really relaxing here, and the final size is
17030 encoded in the subtype information. For the mips16, we have to
17031 decide whether we are using an extended opcode or not. */
17034 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17038 if (RELAX_BRANCH_P (fragp->fr_subtype))
17041 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17043 return fragp->fr_var;
17046 if (RELAX_MIPS16_P (fragp->fr_subtype))
17047 /* We don't want to modify the EXTENDED bit here; it might get us
17048 into infinite loops. We change it only in mips_relax_frag(). */
17049 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17051 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17055 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17056 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17057 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17058 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17059 fragp->fr_var = length;
17064 if (mips_pic == NO_PIC)
17065 change = nopic_need_relax (fragp->fr_symbol, 0);
17066 else if (mips_pic == SVR4_PIC)
17067 change = pic_need_relax (fragp->fr_symbol, segtype);
17068 else if (mips_pic == VXWORKS_PIC)
17069 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17076 fragp->fr_subtype |= RELAX_USE_SECOND;
17077 return -RELAX_FIRST (fragp->fr_subtype);
17080 return -RELAX_SECOND (fragp->fr_subtype);
17083 /* This is called to see whether a reloc against a defined symbol
17084 should be converted into a reloc against a section. */
17087 mips_fix_adjustable (fixS *fixp)
17089 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17090 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17093 if (fixp->fx_addsy == NULL)
17096 /* Allow relocs used for EH tables. */
17097 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17100 /* If symbol SYM is in a mergeable section, relocations of the form
17101 SYM + 0 can usually be made section-relative. The mergeable data
17102 is then identified by the section offset rather than by the symbol.
17104 However, if we're generating REL LO16 relocations, the offset is split
17105 between the LO16 and parterning high part relocation. The linker will
17106 need to recalculate the complete offset in order to correctly identify
17109 The linker has traditionally not looked for the parterning high part
17110 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17111 placed anywhere. Rather than break backwards compatibility by changing
17112 this, it seems better not to force the issue, and instead keep the
17113 original symbol. This will work with either linker behavior. */
17114 if ((lo16_reloc_p (fixp->fx_r_type)
17115 || reloc_needs_lo_p (fixp->fx_r_type))
17116 && HAVE_IN_PLACE_ADDENDS
17117 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17120 /* There is no place to store an in-place offset for JALR relocations.
17121 Likewise an in-range offset of limited PC-relative relocations may
17122 overflow the in-place relocatable field if recalculated against the
17123 start address of the symbol's containing section.
17125 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17126 section relative to allow linker relaxations to be performed later on. */
17127 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17128 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17129 || jalr_reloc_p (fixp->fx_r_type)))
17132 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17133 to a floating-point stub. The same is true for non-R_MIPS16_26
17134 relocations against MIPS16 functions; in this case, the stub becomes
17135 the function's canonical address.
17137 Floating-point stubs are stored in unique .mips16.call.* or
17138 .mips16.fn.* sections. If a stub T for function F is in section S,
17139 the first relocation in section S must be against F; this is how the
17140 linker determines the target function. All relocations that might
17141 resolve to T must also be against F. We therefore have the following
17142 restrictions, which are given in an intentionally-redundant way:
17144 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17147 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17148 if that stub might be used.
17150 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17153 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17154 that stub might be used.
17156 There is a further restriction:
17158 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17159 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17160 targets with in-place addends; the relocation field cannot
17161 encode the low bit.
17163 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17164 against a MIPS16 symbol. We deal with (5) by by not reducing any
17165 such relocations on REL targets.
17167 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17168 relocation against some symbol R, no relocation against R may be
17169 reduced. (Note that this deals with (2) as well as (1) because
17170 relocations against global symbols will never be reduced on ELF
17171 targets.) This approach is a little simpler than trying to detect
17172 stub sections, and gives the "all or nothing" per-symbol consistency
17173 that we have for MIPS16 symbols. */
17174 if (fixp->fx_subsy == NULL
17175 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17176 || *symbol_get_tc (fixp->fx_addsy)
17177 || (HAVE_IN_PLACE_ADDENDS
17178 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17179 && jmp_reloc_p (fixp->fx_r_type))))
17185 /* Translate internal representation of relocation info to BFD target
17189 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17191 static arelent *retval[4];
17193 bfd_reloc_code_real_type code;
17195 memset (retval, 0, sizeof(retval));
17196 reloc = retval[0] = XCNEW (arelent);
17197 reloc->sym_ptr_ptr = XNEW (asymbol *);
17198 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17199 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17201 if (fixp->fx_pcrel)
17203 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17204 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17205 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17206 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17207 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17208 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17209 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17210 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17211 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17212 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17213 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17215 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17216 Relocations want only the symbol offset. */
17217 reloc->addend = fixp->fx_addnumber + reloc->address;
17220 reloc->addend = fixp->fx_addnumber;
17222 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17223 entry to be used in the relocation's section offset. */
17224 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17226 reloc->address = reloc->addend;
17230 code = fixp->fx_r_type;
17232 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17233 if (reloc->howto == NULL)
17235 as_bad_where (fixp->fx_file, fixp->fx_line,
17236 _("cannot represent %s relocation in this object file"
17238 bfd_get_reloc_code_name (code));
17245 /* Relax a machine dependent frag. This returns the amount by which
17246 the current size of the frag should change. */
17249 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17251 if (RELAX_BRANCH_P (fragp->fr_subtype))
17253 offsetT old_var = fragp->fr_var;
17255 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17257 return fragp->fr_var - old_var;
17260 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17262 offsetT old_var = fragp->fr_var;
17263 offsetT new_var = 4;
17265 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17266 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17267 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17268 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17269 fragp->fr_var = new_var;
17271 return new_var - old_var;
17274 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17277 if (mips16_extended_frag (fragp, NULL, stretch))
17279 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17281 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17286 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17288 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17295 /* Convert a machine dependent frag. */
17298 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17300 if (RELAX_BRANCH_P (fragp->fr_subtype))
17303 unsigned long insn;
17307 buf = fragp->fr_literal + fragp->fr_fix;
17308 insn = read_insn (buf);
17310 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17312 /* We generate a fixup instead of applying it right now
17313 because, if there are linker relaxations, we're going to
17314 need the relocations. */
17315 exp.X_op = O_symbol;
17316 exp.X_add_symbol = fragp->fr_symbol;
17317 exp.X_add_number = fragp->fr_offset;
17319 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17320 BFD_RELOC_16_PCREL_S2);
17321 fixp->fx_file = fragp->fr_file;
17322 fixp->fx_line = fragp->fr_line;
17324 buf = write_insn (buf, insn);
17330 as_warn_where (fragp->fr_file, fragp->fr_line,
17331 _("relaxed out-of-range branch into a jump"));
17333 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17336 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17338 /* Reverse the branch. */
17339 switch ((insn >> 28) & 0xf)
17342 if ((insn & 0xff000000) == 0x47000000
17343 || (insn & 0xff600000) == 0x45600000)
17345 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17346 reversed by tweaking bit 23. */
17347 insn ^= 0x00800000;
17351 /* bc[0-3][tf]l? instructions can have the condition
17352 reversed by tweaking a single TF bit, and their
17353 opcodes all have 0x4???????. */
17354 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17355 insn ^= 0x00010000;
17360 /* bltz 0x04000000 bgez 0x04010000
17361 bltzal 0x04100000 bgezal 0x04110000 */
17362 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17363 insn ^= 0x00010000;
17367 /* beq 0x10000000 bne 0x14000000
17368 blez 0x18000000 bgtz 0x1c000000 */
17369 insn ^= 0x04000000;
17377 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17379 /* Clear the and-link bit. */
17380 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17382 /* bltzal 0x04100000 bgezal 0x04110000
17383 bltzall 0x04120000 bgezall 0x04130000 */
17384 insn &= ~0x00100000;
17387 /* Branch over the branch (if the branch was likely) or the
17388 full jump (not likely case). Compute the offset from the
17389 current instruction to branch to. */
17390 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17394 /* How many bytes in instructions we've already emitted? */
17395 i = buf - fragp->fr_literal - fragp->fr_fix;
17396 /* How many bytes in instructions from here to the end? */
17397 i = fragp->fr_var - i;
17399 /* Convert to instruction count. */
17401 /* Branch counts from the next instruction. */
17404 /* Branch over the jump. */
17405 buf = write_insn (buf, insn);
17408 buf = write_insn (buf, 0);
17410 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17412 /* beql $0, $0, 2f */
17414 /* Compute the PC offset from the current instruction to
17415 the end of the variable frag. */
17416 /* How many bytes in instructions we've already emitted? */
17417 i = buf - fragp->fr_literal - fragp->fr_fix;
17418 /* How many bytes in instructions from here to the end? */
17419 i = fragp->fr_var - i;
17420 /* Convert to instruction count. */
17422 /* Don't decrement i, because we want to branch over the
17426 buf = write_insn (buf, insn);
17427 buf = write_insn (buf, 0);
17431 if (mips_pic == NO_PIC)
17434 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17435 ? 0x0c000000 : 0x08000000);
17436 exp.X_op = O_symbol;
17437 exp.X_add_symbol = fragp->fr_symbol;
17438 exp.X_add_number = fragp->fr_offset;
17440 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17441 FALSE, BFD_RELOC_MIPS_JMP);
17442 fixp->fx_file = fragp->fr_file;
17443 fixp->fx_line = fragp->fr_line;
17445 buf = write_insn (buf, insn);
17449 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17451 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17452 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17453 insn |= at << OP_SH_RT;
17454 exp.X_op = O_symbol;
17455 exp.X_add_symbol = fragp->fr_symbol;
17456 exp.X_add_number = fragp->fr_offset;
17458 if (fragp->fr_offset)
17460 exp.X_add_symbol = make_expr_symbol (&exp);
17461 exp.X_add_number = 0;
17464 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17465 FALSE, BFD_RELOC_MIPS_GOT16);
17466 fixp->fx_file = fragp->fr_file;
17467 fixp->fx_line = fragp->fr_line;
17469 buf = write_insn (buf, insn);
17471 if (mips_opts.isa == ISA_MIPS1)
17473 buf = write_insn (buf, 0);
17475 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17476 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17477 insn |= at << OP_SH_RS | at << OP_SH_RT;
17479 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17480 FALSE, BFD_RELOC_LO16);
17481 fixp->fx_file = fragp->fr_file;
17482 fixp->fx_line = fragp->fr_line;
17484 buf = write_insn (buf, insn);
17487 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17491 insn |= at << OP_SH_RS;
17493 buf = write_insn (buf, insn);
17497 fragp->fr_fix += fragp->fr_var;
17498 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17502 /* Relax microMIPS branches. */
17503 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17505 char *buf = fragp->fr_literal + fragp->fr_fix;
17506 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17507 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17508 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17509 bfd_boolean short_ds;
17510 unsigned long insn;
17514 exp.X_op = O_symbol;
17515 exp.X_add_symbol = fragp->fr_symbol;
17516 exp.X_add_number = fragp->fr_offset;
17518 fragp->fr_fix += fragp->fr_var;
17520 /* Handle 16-bit branches that fit or are forced to fit. */
17521 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17523 /* We generate a fixup instead of applying it right now,
17524 because if there is linker relaxation, we're going to
17525 need the relocations. */
17527 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17528 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17529 else if (type == 'E')
17530 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17531 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17535 fixp->fx_file = fragp->fr_file;
17536 fixp->fx_line = fragp->fr_line;
17538 /* These relocations can have an addend that won't fit in
17540 fixp->fx_no_overflow = 1;
17545 /* Handle 32-bit branches that fit or are forced to fit. */
17546 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17547 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17549 /* We generate a fixup instead of applying it right now,
17550 because if there is linker relaxation, we're going to
17551 need the relocations. */
17552 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17553 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17554 fixp->fx_file = fragp->fr_file;
17555 fixp->fx_line = fragp->fr_line;
17561 /* Relax 16-bit branches to 32-bit branches. */
17564 insn = read_compressed_insn (buf, 2);
17566 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17567 insn = 0x94000000; /* beq */
17568 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17570 unsigned long regno;
17572 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17573 regno = micromips_to_32_reg_d_map [regno];
17574 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17575 insn |= regno << MICROMIPSOP_SH_RS;
17580 /* Nothing else to do, just write it out. */
17581 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17582 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17584 buf = write_compressed_insn (buf, insn, 4);
17585 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17590 insn = read_compressed_insn (buf, 4);
17592 /* Relax 32-bit branches to a sequence of instructions. */
17593 as_warn_where (fragp->fr_file, fragp->fr_line,
17594 _("relaxed out-of-range branch into a jump"));
17596 /* Set the short-delay-slot bit. */
17597 short_ds = al && (insn & 0x02000000) != 0;
17599 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17603 /* Reverse the branch. */
17604 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17605 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17606 insn ^= 0x20000000;
17607 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17608 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17609 || (insn & 0xffe00000) == 0x40800000 /* blez */
17610 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17611 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17612 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17613 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17614 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17615 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17616 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17617 insn ^= 0x00400000;
17618 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17619 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17620 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17621 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17622 insn ^= 0x00200000;
17623 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17625 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17627 insn ^= 0x00800000;
17633 /* Clear the and-link and short-delay-slot bits. */
17634 gas_assert ((insn & 0xfda00000) == 0x40200000);
17636 /* bltzal 0x40200000 bgezal 0x40600000 */
17637 /* bltzals 0x42200000 bgezals 0x42600000 */
17638 insn &= ~0x02200000;
17641 /* Make a label at the end for use with the branch. */
17642 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17643 micromips_label_inc ();
17644 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17647 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17648 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17649 fixp->fx_file = fragp->fr_file;
17650 fixp->fx_line = fragp->fr_line;
17652 /* Branch over the jump. */
17653 buf = write_compressed_insn (buf, insn, 4);
17656 buf = write_compressed_insn (buf, 0x0c00, 2);
17659 if (mips_pic == NO_PIC)
17661 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17663 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17664 insn = al ? jal : 0xd4000000;
17666 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17667 BFD_RELOC_MICROMIPS_JMP);
17668 fixp->fx_file = fragp->fr_file;
17669 fixp->fx_line = fragp->fr_line;
17671 buf = write_compressed_insn (buf, insn, 4);
17674 buf = write_compressed_insn (buf, 0x0c00, 2);
17678 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17679 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17680 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17682 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17683 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17684 insn |= at << MICROMIPSOP_SH_RT;
17686 if (exp.X_add_number)
17688 exp.X_add_symbol = make_expr_symbol (&exp);
17689 exp.X_add_number = 0;
17692 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17693 BFD_RELOC_MICROMIPS_GOT16);
17694 fixp->fx_file = fragp->fr_file;
17695 fixp->fx_line = fragp->fr_line;
17697 buf = write_compressed_insn (buf, insn, 4);
17699 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17700 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17701 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17703 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17704 BFD_RELOC_MICROMIPS_LO16);
17705 fixp->fx_file = fragp->fr_file;
17706 fixp->fx_line = fragp->fr_line;
17708 buf = write_compressed_insn (buf, insn, 4);
17710 /* jr/jrc/jalr/jalrs $at */
17711 insn = al ? jalr : jr;
17712 insn |= at << MICROMIPSOP_SH_MJ;
17714 buf = write_compressed_insn (buf, insn, 2);
17717 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17721 if (RELAX_MIPS16_P (fragp->fr_subtype))
17724 const struct mips_int_operand *operand;
17727 unsigned int user_length, length;
17728 unsigned long insn;
17731 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17732 operand = mips16_immed_operand (type, FALSE);
17734 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17735 val = resolve_symbol_value (fragp->fr_symbol);
17736 if (operand->root.type == OP_PCREL)
17738 const struct mips_pcrel_operand *pcrel_op;
17741 pcrel_op = (const struct mips_pcrel_operand *) operand;
17742 addr = fragp->fr_address + fragp->fr_fix;
17744 /* The rules for the base address of a PC relative reloc are
17745 complicated; see mips16_extended_frag. */
17746 if (pcrel_op->include_isa_bit)
17751 /* Ignore the low bit in the target, since it will be
17752 set for a text label. */
17755 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17757 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17760 addr &= -(1 << pcrel_op->align_log2);
17763 /* Make sure the section winds up with the alignment we have
17765 if (operand->shift > 0)
17766 record_alignment (asec, operand->shift);
17770 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17771 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17772 as_warn_where (fragp->fr_file, fragp->fr_line,
17773 _("extended instruction in delay slot"));
17775 buf = fragp->fr_literal + fragp->fr_fix;
17777 insn = read_compressed_insn (buf, 2);
17779 insn |= MIPS16_EXTEND;
17781 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17783 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17788 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17789 BFD_RELOC_UNUSED, val, user_length, &insn);
17791 length = (ext ? 4 : 2);
17792 gas_assert (mips16_opcode_length (insn) == length);
17793 write_compressed_insn (buf, insn, length);
17794 fragp->fr_fix += length;
17798 relax_substateT subtype = fragp->fr_subtype;
17799 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17800 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17804 first = RELAX_FIRST (subtype);
17805 second = RELAX_SECOND (subtype);
17806 fixp = (fixS *) fragp->fr_opcode;
17808 /* If the delay slot chosen does not match the size of the instruction,
17809 then emit a warning. */
17810 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17811 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17816 s = subtype & (RELAX_DELAY_SLOT_16BIT
17817 | RELAX_DELAY_SLOT_SIZE_FIRST
17818 | RELAX_DELAY_SLOT_SIZE_SECOND);
17819 msg = macro_warning (s);
17821 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17825 /* Possibly emit a warning if we've chosen the longer option. */
17826 if (use_second == second_longer)
17832 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17833 msg = macro_warning (s);
17835 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17839 /* Go through all the fixups for the first sequence. Disable them
17840 (by marking them as done) if we're going to use the second
17841 sequence instead. */
17843 && fixp->fx_frag == fragp
17844 && fixp->fx_where < fragp->fr_fix - second)
17846 if (subtype & RELAX_USE_SECOND)
17848 fixp = fixp->fx_next;
17851 /* Go through the fixups for the second sequence. Disable them if
17852 we're going to use the first sequence, otherwise adjust their
17853 addresses to account for the relaxation. */
17854 while (fixp && fixp->fx_frag == fragp)
17856 if (subtype & RELAX_USE_SECOND)
17857 fixp->fx_where -= first;
17860 fixp = fixp->fx_next;
17863 /* Now modify the frag contents. */
17864 if (subtype & RELAX_USE_SECOND)
17868 start = fragp->fr_literal + fragp->fr_fix - first - second;
17869 memmove (start, start + first, second);
17870 fragp->fr_fix -= first;
17873 fragp->fr_fix -= second;
17877 /* This function is called after the relocs have been generated.
17878 We've been storing mips16 text labels as odd. Here we convert them
17879 back to even for the convenience of the debugger. */
17882 mips_frob_file_after_relocs (void)
17885 unsigned int count, i;
17887 syms = bfd_get_outsymbols (stdoutput);
17888 count = bfd_get_symcount (stdoutput);
17889 for (i = 0; i < count; i++, syms++)
17890 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17891 && ((*syms)->value & 1) != 0)
17893 (*syms)->value &= ~1;
17894 /* If the symbol has an odd size, it was probably computed
17895 incorrectly, so adjust that as well. */
17896 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17897 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17901 /* This function is called whenever a label is defined, including fake
17902 labels instantiated off the dot special symbol. It is used when
17903 handling branch delays; if a branch has a label, we assume we cannot
17904 move it. This also bumps the value of the symbol by 1 in compressed
17908 mips_record_label (symbolS *sym)
17910 segment_info_type *si = seg_info (now_seg);
17911 struct insn_label_list *l;
17913 if (free_insn_labels == NULL)
17914 l = XNEW (struct insn_label_list);
17917 l = free_insn_labels;
17918 free_insn_labels = l->next;
17922 l->next = si->label_list;
17923 si->label_list = l;
17926 /* This function is called as tc_frob_label() whenever a label is defined
17927 and adds a DWARF-2 record we only want for true labels. */
17930 mips_define_label (symbolS *sym)
17932 mips_record_label (sym);
17933 dwarf2_emit_label (sym);
17936 /* This function is called by tc_new_dot_label whenever a new dot symbol
17940 mips_add_dot_label (symbolS *sym)
17942 mips_record_label (sym);
17943 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17944 mips_compressed_mark_label (sym);
17947 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17948 static unsigned int
17949 mips_convert_ase_flags (int ase)
17951 unsigned int ext_ases = 0;
17954 ext_ases |= AFL_ASE_DSP;
17955 if (ase & ASE_DSPR2)
17956 ext_ases |= AFL_ASE_DSPR2;
17958 ext_ases |= AFL_ASE_EVA;
17960 ext_ases |= AFL_ASE_MCU;
17961 if (ase & ASE_MDMX)
17962 ext_ases |= AFL_ASE_MDMX;
17963 if (ase & ASE_MIPS3D)
17964 ext_ases |= AFL_ASE_MIPS3D;
17966 ext_ases |= AFL_ASE_MT;
17967 if (ase & ASE_SMARTMIPS)
17968 ext_ases |= AFL_ASE_SMARTMIPS;
17969 if (ase & ASE_VIRT)
17970 ext_ases |= AFL_ASE_VIRT;
17972 ext_ases |= AFL_ASE_MSA;
17974 ext_ases |= AFL_ASE_XPA;
17978 /* Some special processing for a MIPS ELF file. */
17981 mips_elf_final_processing (void)
17984 Elf_Internal_ABIFlags_v0 flags;
17988 switch (file_mips_opts.isa)
17991 flags.isa_level = 1;
17994 flags.isa_level = 2;
17997 flags.isa_level = 3;
18000 flags.isa_level = 4;
18003 flags.isa_level = 5;
18006 flags.isa_level = 32;
18010 flags.isa_level = 32;
18014 flags.isa_level = 32;
18018 flags.isa_level = 32;
18022 flags.isa_level = 32;
18026 flags.isa_level = 64;
18030 flags.isa_level = 64;
18034 flags.isa_level = 64;
18038 flags.isa_level = 64;
18042 flags.isa_level = 64;
18047 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18048 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18049 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18050 : (file_mips_opts.fp == 64) ? AFL_REG_64
18052 flags.cpr2_size = AFL_REG_NONE;
18053 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18054 Tag_GNU_MIPS_ABI_FP);
18055 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18056 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18057 if (file_ase_mips16)
18058 flags.ases |= AFL_ASE_MIPS16;
18059 if (file_ase_micromips)
18060 flags.ases |= AFL_ASE_MICROMIPS;
18062 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18063 || file_mips_opts.fp == 64)
18064 && file_mips_opts.oddspreg)
18065 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18068 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18069 ((Elf_External_ABIFlags_v0 *)
18072 /* Write out the register information. */
18073 if (mips_abi != N64_ABI)
18077 s.ri_gprmask = mips_gprmask;
18078 s.ri_cprmask[0] = mips_cprmask[0];
18079 s.ri_cprmask[1] = mips_cprmask[1];
18080 s.ri_cprmask[2] = mips_cprmask[2];
18081 s.ri_cprmask[3] = mips_cprmask[3];
18082 /* The gp_value field is set by the MIPS ELF backend. */
18084 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18085 ((Elf32_External_RegInfo *)
18086 mips_regmask_frag));
18090 Elf64_Internal_RegInfo s;
18092 s.ri_gprmask = mips_gprmask;
18094 s.ri_cprmask[0] = mips_cprmask[0];
18095 s.ri_cprmask[1] = mips_cprmask[1];
18096 s.ri_cprmask[2] = mips_cprmask[2];
18097 s.ri_cprmask[3] = mips_cprmask[3];
18098 /* The gp_value field is set by the MIPS ELF backend. */
18100 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18101 ((Elf64_External_RegInfo *)
18102 mips_regmask_frag));
18105 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18106 sort of BFD interface for this. */
18107 if (mips_any_noreorder)
18108 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18109 if (mips_pic != NO_PIC)
18111 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18112 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18115 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18117 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18118 defined at present; this might need to change in future. */
18119 if (file_ase_mips16)
18120 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18121 if (file_ase_micromips)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18123 if (file_mips_opts.ase & ASE_MDMX)
18124 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18126 /* Set the MIPS ELF ABI flags. */
18127 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18128 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18129 else if (mips_abi == O64_ABI)
18130 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18131 else if (mips_abi == EABI_ABI)
18133 if (file_mips_opts.gp == 64)
18134 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18136 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18138 else if (mips_abi == N32_ABI)
18139 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18141 /* Nothing to do for N64_ABI. */
18143 if (mips_32bitmode)
18144 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18146 if (mips_nan2008 == 1)
18147 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18149 /* 32 bit code with 64 bit FP registers. */
18150 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18151 Tag_GNU_MIPS_ABI_FP);
18152 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18153 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18156 typedef struct proc {
18158 symbolS *func_end_sym;
18159 unsigned long reg_mask;
18160 unsigned long reg_offset;
18161 unsigned long fpreg_mask;
18162 unsigned long fpreg_offset;
18163 unsigned long frame_offset;
18164 unsigned long frame_reg;
18165 unsigned long pc_reg;
18168 static procS cur_proc;
18169 static procS *cur_proc_ptr;
18170 static int numprocs;
18172 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18173 as "2", and a normal nop as "0". */
18175 #define NOP_OPCODE_MIPS 0
18176 #define NOP_OPCODE_MIPS16 1
18177 #define NOP_OPCODE_MICROMIPS 2
18180 mips_nop_opcode (void)
18182 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18183 return NOP_OPCODE_MICROMIPS;
18184 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18185 return NOP_OPCODE_MIPS16;
18187 return NOP_OPCODE_MIPS;
18190 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18191 32-bit microMIPS NOPs here (if applicable). */
18194 mips_handle_align (fragS *fragp)
18198 int bytes, size, excess;
18201 if (fragp->fr_type != rs_align_code)
18204 p = fragp->fr_literal + fragp->fr_fix;
18206 switch (nop_opcode)
18208 case NOP_OPCODE_MICROMIPS:
18209 opcode = micromips_nop32_insn.insn_opcode;
18212 case NOP_OPCODE_MIPS16:
18213 opcode = mips16_nop_insn.insn_opcode;
18216 case NOP_OPCODE_MIPS:
18218 opcode = nop_insn.insn_opcode;
18223 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18224 excess = bytes % size;
18226 /* Handle the leading part if we're not inserting a whole number of
18227 instructions, and make it the end of the fixed part of the frag.
18228 Try to fit in a short microMIPS NOP if applicable and possible,
18229 and use zeroes otherwise. */
18230 gas_assert (excess < 4);
18231 fragp->fr_fix += excess;
18236 /* Fall through. */
18238 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18240 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18244 /* Fall through. */
18247 /* Fall through. */
18252 md_number_to_chars (p, opcode, size);
18253 fragp->fr_var = size;
18262 if (*input_line_pointer == '-')
18264 ++input_line_pointer;
18267 if (!ISDIGIT (*input_line_pointer))
18268 as_bad (_("expected simple number"));
18269 if (input_line_pointer[0] == '0')
18271 if (input_line_pointer[1] == 'x')
18273 input_line_pointer += 2;
18274 while (ISXDIGIT (*input_line_pointer))
18277 val |= hex_value (*input_line_pointer++);
18279 return negative ? -val : val;
18283 ++input_line_pointer;
18284 while (ISDIGIT (*input_line_pointer))
18287 val |= *input_line_pointer++ - '0';
18289 return negative ? -val : val;
18292 if (!ISDIGIT (*input_line_pointer))
18294 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18295 *input_line_pointer, *input_line_pointer);
18296 as_warn (_("invalid number"));
18299 while (ISDIGIT (*input_line_pointer))
18302 val += *input_line_pointer++ - '0';
18304 return negative ? -val : val;
18307 /* The .file directive; just like the usual .file directive, but there
18308 is an initial number which is the ECOFF file index. In the non-ECOFF
18309 case .file implies DWARF-2. */
18312 s_mips_file (int x ATTRIBUTE_UNUSED)
18314 static int first_file_directive = 0;
18316 if (ECOFF_DEBUGGING)
18325 filename = dwarf2_directive_file (0);
18327 /* Versions of GCC up to 3.1 start files with a ".file"
18328 directive even for stabs output. Make sure that this
18329 ".file" is handled. Note that you need a version of GCC
18330 after 3.1 in order to support DWARF-2 on MIPS. */
18331 if (filename != NULL && ! first_file_directive)
18333 (void) new_logical_line (filename, -1);
18334 s_app_file_string (filename, 0);
18336 first_file_directive = 1;
18340 /* The .loc directive, implying DWARF-2. */
18343 s_mips_loc (int x ATTRIBUTE_UNUSED)
18345 if (!ECOFF_DEBUGGING)
18346 dwarf2_directive_loc (0);
18349 /* The .end directive. */
18352 s_mips_end (int x ATTRIBUTE_UNUSED)
18356 /* Following functions need their own .frame and .cprestore directives. */
18357 mips_frame_reg_valid = 0;
18358 mips_cprestore_valid = 0;
18360 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18363 demand_empty_rest_of_line ();
18368 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18369 as_warn (_(".end not in text section"));
18373 as_warn (_(".end directive without a preceding .ent directive"));
18374 demand_empty_rest_of_line ();
18380 gas_assert (S_GET_NAME (p));
18381 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18382 as_warn (_(".end symbol does not match .ent symbol"));
18384 if (debug_type == DEBUG_STABS)
18385 stabs_generate_asm_endfunc (S_GET_NAME (p),
18389 as_warn (_(".end directive missing or unknown symbol"));
18391 /* Create an expression to calculate the size of the function. */
18392 if (p && cur_proc_ptr)
18394 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18395 expressionS *exp = XNEW (expressionS);
18398 exp->X_op = O_subtract;
18399 exp->X_add_symbol = symbol_temp_new_now ();
18400 exp->X_op_symbol = p;
18401 exp->X_add_number = 0;
18403 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18406 /* Generate a .pdr section. */
18407 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18409 segT saved_seg = now_seg;
18410 subsegT saved_subseg = now_subseg;
18414 #ifdef md_flush_pending_output
18415 md_flush_pending_output ();
18418 gas_assert (pdr_seg);
18419 subseg_set (pdr_seg, 0);
18421 /* Write the symbol. */
18422 exp.X_op = O_symbol;
18423 exp.X_add_symbol = p;
18424 exp.X_add_number = 0;
18425 emit_expr (&exp, 4);
18427 fragp = frag_more (7 * 4);
18429 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18430 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18431 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18432 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18433 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18434 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18435 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18437 subseg_set (saved_seg, saved_subseg);
18440 cur_proc_ptr = NULL;
18443 /* The .aent and .ent directives. */
18446 s_mips_ent (int aent)
18450 symbolP = get_symbol ();
18451 if (*input_line_pointer == ',')
18452 ++input_line_pointer;
18453 SKIP_WHITESPACE ();
18454 if (ISDIGIT (*input_line_pointer)
18455 || *input_line_pointer == '-')
18458 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18459 as_warn (_(".ent or .aent not in text section"));
18461 if (!aent && cur_proc_ptr)
18462 as_warn (_("missing .end"));
18466 /* This function needs its own .frame and .cprestore directives. */
18467 mips_frame_reg_valid = 0;
18468 mips_cprestore_valid = 0;
18470 cur_proc_ptr = &cur_proc;
18471 memset (cur_proc_ptr, '\0', sizeof (procS));
18473 cur_proc_ptr->func_sym = symbolP;
18477 if (debug_type == DEBUG_STABS)
18478 stabs_generate_asm_func (S_GET_NAME (symbolP),
18479 S_GET_NAME (symbolP));
18482 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18484 demand_empty_rest_of_line ();
18487 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18488 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18489 s_mips_frame is used so that we can set the PDR information correctly.
18490 We can't use the ecoff routines because they make reference to the ecoff
18491 symbol table (in the mdebug section). */
18494 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18496 if (ECOFF_DEBUGGING)
18502 if (cur_proc_ptr == (procS *) NULL)
18504 as_warn (_(".frame outside of .ent"));
18505 demand_empty_rest_of_line ();
18509 cur_proc_ptr->frame_reg = tc_get_register (1);
18511 SKIP_WHITESPACE ();
18512 if (*input_line_pointer++ != ','
18513 || get_absolute_expression_and_terminator (&val) != ',')
18515 as_warn (_("bad .frame directive"));
18516 --input_line_pointer;
18517 demand_empty_rest_of_line ();
18521 cur_proc_ptr->frame_offset = val;
18522 cur_proc_ptr->pc_reg = tc_get_register (0);
18524 demand_empty_rest_of_line ();
18528 /* The .fmask and .mask directives. If the mdebug section is present
18529 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18530 embedded targets, s_mips_mask is used so that we can set the PDR
18531 information correctly. We can't use the ecoff routines because they
18532 make reference to the ecoff symbol table (in the mdebug section). */
18535 s_mips_mask (int reg_type)
18537 if (ECOFF_DEBUGGING)
18538 s_ignore (reg_type);
18543 if (cur_proc_ptr == (procS *) NULL)
18545 as_warn (_(".mask/.fmask outside of .ent"));
18546 demand_empty_rest_of_line ();
18550 if (get_absolute_expression_and_terminator (&mask) != ',')
18552 as_warn (_("bad .mask/.fmask directive"));
18553 --input_line_pointer;
18554 demand_empty_rest_of_line ();
18558 off = get_absolute_expression ();
18560 if (reg_type == 'F')
18562 cur_proc_ptr->fpreg_mask = mask;
18563 cur_proc_ptr->fpreg_offset = off;
18567 cur_proc_ptr->reg_mask = mask;
18568 cur_proc_ptr->reg_offset = off;
18571 demand_empty_rest_of_line ();
18575 /* A table describing all the processors gas knows about. Names are
18576 matched in the order listed.
18578 To ease comparison, please keep this table in the same order as
18579 gcc's mips_cpu_info_table[]. */
18580 static const struct mips_cpu_info mips_cpu_info_table[] =
18582 /* Entries for generic ISAs */
18583 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18584 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18585 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18586 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18587 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18588 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18589 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18590 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18591 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18592 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18593 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18594 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18595 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18596 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18597 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18600 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18601 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18602 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18605 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18608 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18609 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18610 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18611 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18612 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18613 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18614 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18615 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18616 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18617 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18618 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18619 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18620 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18621 /* ST Microelectronics Loongson 2E and 2F cores */
18622 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18623 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18626 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18627 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18628 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18629 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18630 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18631 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18632 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18633 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18634 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18635 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18636 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18637 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18638 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18639 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18640 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18643 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18644 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18645 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18646 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18648 /* MIPS 32 Release 2 */
18649 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18651 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18658 ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18660 ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 /* Deprecated forms of the above. */
18666 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18669 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 /* Deprecated forms of the above. */
18674 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18677 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18679 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18680 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18681 /* Deprecated forms of the above. */
18682 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18684 /* 34Kn is a 34kc without DSP. */
18685 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18686 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18687 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18688 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18690 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18692 /* Deprecated forms of the above. */
18693 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18695 /* 1004K cores are multiprocessor versions of the 34K. */
18696 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18697 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18698 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18700 /* interaptiv is the new name for 1004kf */
18701 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18703 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18704 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18705 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18706 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18709 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18710 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18711 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18712 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18714 /* Broadcom SB-1 CPU core */
18715 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18716 /* Broadcom SB-1A CPU core */
18717 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18719 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18721 /* MIPS 64 Release 2 */
18723 /* Cavium Networks Octeon CPU core */
18724 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18725 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18726 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18727 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18730 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18733 XLP is mostly like XLR, with the prominent exception that it is
18734 MIPS64R2 rather than MIPS64. */
18735 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18738 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18741 { NULL, 0, 0, 0, 0 }
18745 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18746 with a final "000" replaced by "k". Ignore case.
18748 Note: this function is shared between GCC and GAS. */
18751 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18753 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18754 given++, canonical++;
18756 return ((*given == 0 && *canonical == 0)
18757 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18761 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18762 CPU name. We've traditionally allowed a lot of variation here.
18764 Note: this function is shared between GCC and GAS. */
18767 mips_matching_cpu_name_p (const char *canonical, const char *given)
18769 /* First see if the name matches exactly, or with a final "000"
18770 turned into "k". */
18771 if (mips_strict_matching_cpu_name_p (canonical, given))
18774 /* If not, try comparing based on numerical designation alone.
18775 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18776 if (TOLOWER (*given) == 'r')
18778 if (!ISDIGIT (*given))
18781 /* Skip over some well-known prefixes in the canonical name,
18782 hoping to find a number there too. */
18783 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18785 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18787 else if (TOLOWER (canonical[0]) == 'r')
18790 return mips_strict_matching_cpu_name_p (canonical, given);
18794 /* Parse an option that takes the name of a processor as its argument.
18795 OPTION is the name of the option and CPU_STRING is the argument.
18796 Return the corresponding processor enumeration if the CPU_STRING is
18797 recognized, otherwise report an error and return null.
18799 A similar function exists in GCC. */
18801 static const struct mips_cpu_info *
18802 mips_parse_cpu (const char *option, const char *cpu_string)
18804 const struct mips_cpu_info *p;
18806 /* 'from-abi' selects the most compatible architecture for the given
18807 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18808 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18809 version. Look first at the -mgp options, if given, otherwise base
18810 the choice on MIPS_DEFAULT_64BIT.
18812 Treat NO_ABI like the EABIs. One reason to do this is that the
18813 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18814 architecture. This code picks MIPS I for 'mips' and MIPS III for
18815 'mips64', just as we did in the days before 'from-abi'. */
18816 if (strcasecmp (cpu_string, "from-abi") == 0)
18818 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18819 return mips_cpu_info_from_isa (ISA_MIPS1);
18821 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18822 return mips_cpu_info_from_isa (ISA_MIPS3);
18824 if (file_mips_opts.gp >= 0)
18825 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18826 ? ISA_MIPS1 : ISA_MIPS3);
18828 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18833 /* 'default' has traditionally been a no-op. Probably not very useful. */
18834 if (strcasecmp (cpu_string, "default") == 0)
18837 for (p = mips_cpu_info_table; p->name != 0; p++)
18838 if (mips_matching_cpu_name_p (p->name, cpu_string))
18841 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18845 /* Return the canonical processor information for ISA (a member of the
18846 ISA_MIPS* enumeration). */
18848 static const struct mips_cpu_info *
18849 mips_cpu_info_from_isa (int isa)
18853 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18854 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18855 && isa == mips_cpu_info_table[i].isa)
18856 return (&mips_cpu_info_table[i]);
18861 static const struct mips_cpu_info *
18862 mips_cpu_info_from_arch (int arch)
18866 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18867 if (arch == mips_cpu_info_table[i].cpu)
18868 return (&mips_cpu_info_table[i]);
18874 show (FILE *stream, const char *string, int *col_p, int *first_p)
18878 fprintf (stream, "%24s", "");
18883 fprintf (stream, ", ");
18887 if (*col_p + strlen (string) > 72)
18889 fprintf (stream, "\n%24s", "");
18893 fprintf (stream, "%s", string);
18894 *col_p += strlen (string);
18900 md_show_usage (FILE *stream)
18905 fprintf (stream, _("\
18907 -EB generate big endian output\n\
18908 -EL generate little endian output\n\
18909 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18910 -G NUM allow referencing objects up to NUM bytes\n\
18911 implicitly with the gp register [default 8]\n"));
18912 fprintf (stream, _("\
18913 -mips1 generate MIPS ISA I instructions\n\
18914 -mips2 generate MIPS ISA II instructions\n\
18915 -mips3 generate MIPS ISA III instructions\n\
18916 -mips4 generate MIPS ISA IV instructions\n\
18917 -mips5 generate MIPS ISA V instructions\n\
18918 -mips32 generate MIPS32 ISA instructions\n\
18919 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18920 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18921 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18922 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18923 -mips64 generate MIPS64 ISA instructions\n\
18924 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18925 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18926 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18927 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18928 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18932 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18933 show (stream, mips_cpu_info_table[i].name, &column, &first);
18934 show (stream, "from-abi", &column, &first);
18935 fputc ('\n', stream);
18937 fprintf (stream, _("\
18938 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18939 -no-mCPU don't generate code specific to CPU.\n\
18940 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18944 show (stream, "3900", &column, &first);
18945 show (stream, "4010", &column, &first);
18946 show (stream, "4100", &column, &first);
18947 show (stream, "4650", &column, &first);
18948 fputc ('\n', stream);
18950 fprintf (stream, _("\
18951 -mips16 generate mips16 instructions\n\
18952 -no-mips16 do not generate mips16 instructions\n"));
18953 fprintf (stream, _("\
18954 -mmicromips generate microMIPS instructions\n\
18955 -mno-micromips do not generate microMIPS instructions\n"));
18956 fprintf (stream, _("\
18957 -msmartmips generate smartmips instructions\n\
18958 -mno-smartmips do not generate smartmips instructions\n"));
18959 fprintf (stream, _("\
18960 -mdsp generate DSP instructions\n\
18961 -mno-dsp do not generate DSP instructions\n"));
18962 fprintf (stream, _("\
18963 -mdspr2 generate DSP R2 instructions\n\
18964 -mno-dspr2 do not generate DSP R2 instructions\n"));
18965 fprintf (stream, _("\
18966 -mmt generate MT instructions\n\
18967 -mno-mt do not generate MT instructions\n"));
18968 fprintf (stream, _("\
18969 -mmcu generate MCU instructions\n\
18970 -mno-mcu do not generate MCU instructions\n"));
18971 fprintf (stream, _("\
18972 -mmsa generate MSA instructions\n\
18973 -mno-msa do not generate MSA instructions\n"));
18974 fprintf (stream, _("\
18975 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18976 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18977 fprintf (stream, _("\
18978 -mvirt generate Virtualization instructions\n\
18979 -mno-virt do not generate Virtualization instructions\n"));
18980 fprintf (stream, _("\
18981 -minsn32 only generate 32-bit microMIPS instructions\n\
18982 -mno-insn32 generate all microMIPS instructions\n"));
18983 fprintf (stream, _("\
18984 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18985 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18986 -mfix-vr4120 work around certain VR4120 errata\n\
18987 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18988 -mfix-24k insert a nop after ERET and DERET instructions\n\
18989 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18990 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18991 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18992 -msym32 assume all symbols have 32-bit values\n\
18993 -O0 remove unneeded NOPs, do not swap branches\n\
18994 -O remove unneeded NOPs and swap branches\n\
18995 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18996 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18997 fprintf (stream, _("\
18998 -mhard-float allow floating-point instructions\n\
18999 -msoft-float do not allow floating-point instructions\n\
19000 -msingle-float only allow 32-bit floating-point operations\n\
19001 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19002 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19003 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19004 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19008 show (stream, "legacy", &column, &first);
19009 show (stream, "2008", &column, &first);
19011 fputc ('\n', stream);
19013 fprintf (stream, _("\
19014 -KPIC, -call_shared generate SVR4 position independent code\n\
19015 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19016 -mvxworks-pic generate VxWorks position independent code\n\
19017 -non_shared do not generate code that can operate with DSOs\n\
19018 -xgot assume a 32 bit GOT\n\
19019 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19020 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19021 position dependent (non shared) code\n\
19022 -mabi=ABI create ABI conformant object file for:\n"));
19026 show (stream, "32", &column, &first);
19027 show (stream, "o64", &column, &first);
19028 show (stream, "n32", &column, &first);
19029 show (stream, "64", &column, &first);
19030 show (stream, "eabi", &column, &first);
19032 fputc ('\n', stream);
19034 fprintf (stream, _("\
19035 -32 create o32 ABI object file (default)\n\
19036 -n32 create n32 ABI object file\n\
19037 -64 create 64 ABI object file\n"));
19042 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19044 if (HAVE_64BIT_SYMBOLS)
19045 return dwarf2_format_64bit_irix;
19047 return dwarf2_format_32bit;
19052 mips_dwarf2_addr_size (void)
19054 if (HAVE_64BIT_OBJECTS)
19060 /* Standard calling conventions leave the CFA at SP on entry. */
19062 mips_cfi_frame_initial_instructions (void)
19064 cfi_add_CFA_def_cfa_register (SP);
19068 tc_mips_regname_to_dw2regnum (char *regname)
19070 unsigned int regnum = -1;
19073 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19079 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19080 Given a symbolic attribute NAME, return the proper integer value.
19081 Returns -1 if the attribute is not known. */
19084 mips_convert_symbolic_attribute (const char *name)
19086 static const struct
19091 attribute_table[] =
19093 #define T(tag) {#tag, tag}
19094 T (Tag_GNU_MIPS_ABI_FP),
19095 T (Tag_GNU_MIPS_ABI_MSA),
19103 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19104 if (streq (name, attribute_table[i].name))
19105 return attribute_table[i].tag;
19113 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19115 mips_emit_delays ();
19117 as_warn (_("missing .end at end of assembly"));
19119 /* Just in case no code was emitted, do the consistency check. */
19120 file_mips_check_options ();
19122 /* Set a floating-point ABI if the user did not. */
19123 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19125 /* Perform consistency checks on the floating-point ABI. */
19126 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19127 Tag_GNU_MIPS_ABI_FP);
19128 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19129 check_fpabi (fpabi);
19133 /* Soft-float gets precedence over single-float, the two options should
19134 not be used together so this should not matter. */
19135 if (file_mips_opts.soft_float == 1)
19136 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19137 /* Single-float gets precedence over all double_float cases. */
19138 else if (file_mips_opts.single_float == 1)
19139 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19142 switch (file_mips_opts.fp)
19145 if (file_mips_opts.gp == 32)
19146 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19149 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19152 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19153 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19154 else if (file_mips_opts.gp == 32)
19155 fpabi = Val_GNU_MIPS_ABI_FP_64;
19157 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19162 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19163 Tag_GNU_MIPS_ABI_FP, fpabi);
19167 /* Returns the relocation type required for a particular CFI encoding. */
19169 bfd_reloc_code_real_type
19170 mips_cfi_reloc_for_encoding (int encoding)
19172 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19173 return BFD_RELOC_32_PCREL;
19174 else return BFD_RELOC_NONE;