1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
38 #define DBG(x) printf x
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
61 /* Fix any of them that we actually care about. */
63 #define OUTPUT_FLAVOR mips_output_flavor()
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
81 int mips_flag_pdr = FALSE;
83 int mips_flag_pdr = TRUE;
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
97 #define PIC_CALL_REG 25
105 #define ILLEGAL_REG (32)
107 #define AT mips_opts.at
109 /* Allow override of standard little-endian ECOFF format. */
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
115 extern int target_big_endian;
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
126 /* Ways in which an instruction can be "appended" to the output. */
128 /* Just add it normally. */
131 /* Add it normally and then add a nop. */
134 /* Turn an instruction with a delay slot into a "compact" version. */
137 /* Insert the instruction before the last one. */
141 /* Information about an instruction, including its format, operands
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
148 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
149 a copy of INSN_MO->match with the operands filled in. If we have
150 decided to use an extended MIPS16 instruction, this includes the
152 unsigned long insn_opcode;
154 /* The frag that contains the instruction. */
157 /* The offset into FRAG of the first instruction byte. */
160 /* The relocs associated with the instruction, if any. */
163 /* True if this entry cannot be moved from its current position. */
164 unsigned int fixed_p : 1;
166 /* True if this instruction occurred in a .set noreorder block. */
167 unsigned int noreorder_p : 1;
169 /* True for mips16 instructions that jump to an absolute address. */
170 unsigned int mips16_absolute_jump_p : 1;
172 /* True if this instruction is complete. */
173 unsigned int complete_p : 1;
175 /* True if this instruction is cleared from history by unconditional
177 unsigned int cleared_p : 1;
180 /* The ABI to use. */
191 /* MIPS ABI we are using for this output file. */
192 static enum mips_abi_level mips_abi = NO_ABI;
194 /* Whether or not we have code that can call pic code. */
195 int mips_abicalls = FALSE;
197 /* Whether or not we have code which can be put into a shared
199 static bfd_boolean mips_in_shared = TRUE;
201 /* This is the set of options which may be modified by the .set
202 pseudo-op. We use a struct so that .set push and .set pop are more
205 struct mips_set_options
207 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
208 if it has not been initialized. Changed by `.set mipsN', and the
209 -mipsN command line option, and the default CPU. */
211 /* Enabled Application Specific Extensions (ASEs). These are set to -1
212 if they have not been initialized. Changed by `.set <asename>', by
213 command line options, and based on the default architecture. */
221 /* Whether we are assembling for the mips16 processor. 0 if we are
222 not, 1 if we are, and -1 if the value has not been initialized.
223 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
224 -nomips16 command line options, and the default CPU. */
226 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
227 1 if we are, and -1 if the value has not been initialized. Changed
228 by `.set micromips' and `.set nomicromips', and the -mmicromips
229 and -mno-micromips command line options, and the default CPU. */
231 /* Non-zero if we should not reorder instructions. Changed by `.set
232 reorder' and `.set noreorder'. */
234 /* Non-zero if we should not permit the register designated "assembler
235 temporary" to be used in instructions. The value is the register
236 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
237 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
239 /* Non-zero if we should warn when a macro instruction expands into
240 more than one machine instruction. Changed by `.set nomacro' and
242 int warn_about_macros;
243 /* Non-zero if we should not move instructions. Changed by `.set
244 move', `.set volatile', `.set nomove', and `.set novolatile'. */
246 /* Non-zero if we should not optimize branches by moving the target
247 of the branch into the delay slot. Actually, we don't perform
248 this optimization anyhow. Changed by `.set bopt' and `.set
251 /* Non-zero if we should not autoextend mips16 instructions.
252 Changed by `.set autoextend' and `.set noautoextend'. */
254 /* Restrict general purpose registers and floating point registers
255 to 32 bit. This is initially determined when -mgp32 or -mfp32
256 is passed but can changed if the assembler code uses .set mipsN. */
259 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
260 command line option, and the default CPU. */
262 /* True if ".set sym32" is in effect. */
264 /* True if floating-point operations are not allowed. Changed by .set
265 softfloat or .set hardfloat, by command line options -msoft-float or
266 -mhard-float. The default is false. */
267 bfd_boolean soft_float;
269 /* True if only single-precision floating-point operations are allowed.
270 Changed by .set singlefloat or .set doublefloat, command-line options
271 -msingle-float or -mdouble-float. The default is false. */
272 bfd_boolean single_float;
275 /* This is the struct we use to hold the current set of options. Note
276 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
277 -1 to indicate that they have not been initialized. */
279 /* True if -mgp32 was passed. */
280 static int file_mips_gp32 = -1;
282 /* True if -mfp32 was passed. */
283 static int file_mips_fp32 = -1;
285 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
286 static int file_mips_soft_float = 0;
288 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
289 static int file_mips_single_float = 0;
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
294 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
295 /* ase_mcu */ -1, /* mips16 */ -1, /* micromips */ -1, /* noreorder */ 0,
296 /* at */ ATREG, /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
297 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
298 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
301 /* These variables are filled in with the masks of registers used.
302 The object format code reads them and puts them in the appropriate
304 unsigned long mips_gprmask;
305 unsigned long mips_cprmask[4];
307 /* MIPS ISA we are using for this output file. */
308 static int file_mips_isa = ISA_UNKNOWN;
310 /* True if any MIPS16 code was produced. */
311 static int file_ase_mips16;
313 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
314 || mips_opts.isa == ISA_MIPS32R2 \
315 || mips_opts.isa == ISA_MIPS64 \
316 || mips_opts.isa == ISA_MIPS64R2)
318 /* True if any microMIPS code was produced. */
319 static int file_ase_micromips;
321 /* True if we want to create R_MIPS_JALR for jalr $25. */
323 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
325 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
326 because there's no place for any addend, the only acceptable
327 expression is a bare symbol. */
328 #define MIPS_JALR_HINT_P(EXPR) \
329 (!HAVE_IN_PLACE_ADDENDS \
330 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
333 /* True if -mips3d was passed or implied by arguments passed on the
334 command line (e.g., by -march). */
335 static int file_ase_mips3d;
337 /* True if -mdmx was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mdmx;
341 /* True if -msmartmips was passed or implied by arguments passed on the
342 command line (e.g., by -march). */
343 static int file_ase_smartmips;
345 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
346 || mips_opts.isa == ISA_MIPS32R2)
348 /* True if -mdsp was passed or implied by arguments passed on the
349 command line (e.g., by -march). */
350 static int file_ase_dsp;
352 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
353 || mips_opts.isa == ISA_MIPS64R2 \
354 || mips_opts.micromips)
356 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
358 /* True if -mdspr2 was passed or implied by arguments passed on the
359 command line (e.g., by -march). */
360 static int file_ase_dspr2;
362 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
363 || mips_opts.isa == ISA_MIPS64R2 \
364 || mips_opts.micromips)
366 /* True if -mmt was passed or implied by arguments passed on the
367 command line (e.g., by -march). */
368 static int file_ase_mt;
370 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
371 || mips_opts.isa == ISA_MIPS64R2)
373 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
374 || mips_opts.isa == ISA_MIPS64R2 \
375 || mips_opts.micromips)
377 /* The argument of the -march= flag. The architecture we are assembling. */
378 static int file_mips_arch = CPU_UNKNOWN;
379 static const char *mips_arch_string;
381 /* The argument of the -mtune= flag. The architecture for which we
383 static int mips_tune = CPU_UNKNOWN;
384 static const char *mips_tune_string;
386 /* True when generating 32-bit code for a 64-bit processor. */
387 static int mips_32bitmode = 0;
389 /* True if the given ABI requires 32-bit registers. */
390 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
392 /* Likewise 64-bit registers. */
393 #define ABI_NEEDS_64BIT_REGS(ABI) \
395 || (ABI) == N64_ABI \
398 /* Return true if ISA supports 64 bit wide gp registers. */
399 #define ISA_HAS_64BIT_REGS(ISA) \
400 ((ISA) == ISA_MIPS3 \
401 || (ISA) == ISA_MIPS4 \
402 || (ISA) == ISA_MIPS5 \
403 || (ISA) == ISA_MIPS64 \
404 || (ISA) == ISA_MIPS64R2)
406 /* Return true if ISA supports 64 bit wide float registers. */
407 #define ISA_HAS_64BIT_FPRS(ISA) \
408 ((ISA) == ISA_MIPS3 \
409 || (ISA) == ISA_MIPS4 \
410 || (ISA) == ISA_MIPS5 \
411 || (ISA) == ISA_MIPS32R2 \
412 || (ISA) == ISA_MIPS64 \
413 || (ISA) == ISA_MIPS64R2)
415 /* Return true if ISA supports 64-bit right rotate (dror et al.)
417 #define ISA_HAS_DROR(ISA) \
418 ((ISA) == ISA_MIPS64R2 \
419 || (mips_opts.micromips \
420 && ISA_HAS_64BIT_REGS (ISA)) \
423 /* Return true if ISA supports 32-bit right rotate (ror et al.)
425 #define ISA_HAS_ROR(ISA) \
426 ((ISA) == ISA_MIPS32R2 \
427 || (ISA) == ISA_MIPS64R2 \
428 || mips_opts.ase_smartmips \
429 || mips_opts.micromips \
432 /* Return true if ISA supports single-precision floats in odd registers. */
433 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
434 ((ISA) == ISA_MIPS32 \
435 || (ISA) == ISA_MIPS32R2 \
436 || (ISA) == ISA_MIPS64 \
437 || (ISA) == ISA_MIPS64R2)
439 /* Return true if ISA supports move to/from high part of a 64-bit
440 floating-point register. */
441 #define ISA_HAS_MXHC1(ISA) \
442 ((ISA) == ISA_MIPS32R2 \
443 || (ISA) == ISA_MIPS64R2)
445 #define HAVE_32BIT_GPRS \
446 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
448 #define HAVE_32BIT_FPRS \
449 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
451 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
452 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
454 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
456 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
458 /* True if relocations are stored in-place. */
459 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
461 /* The ABI-derived address size. */
462 #define HAVE_64BIT_ADDRESSES \
463 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
464 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
466 /* The size of symbolic constants (i.e., expressions of the form
467 "SYMBOL" or "SYMBOL + OFFSET"). */
468 #define HAVE_32BIT_SYMBOLS \
469 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
470 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
472 /* Addresses are loaded in different ways, depending on the address size
473 in use. The n32 ABI Documentation also mandates the use of additions
474 with overflow checking, but existing implementations don't follow it. */
475 #define ADDRESS_ADD_INSN \
476 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
478 #define ADDRESS_ADDI_INSN \
479 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
481 #define ADDRESS_LOAD_INSN \
482 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
484 #define ADDRESS_STORE_INSN \
485 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
487 /* Return true if the given CPU supports the MIPS16 ASE. */
488 #define CPU_HAS_MIPS16(cpu) \
489 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
490 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
492 /* Return true if the given CPU supports the microMIPS ASE. */
493 #define CPU_HAS_MICROMIPS(cpu) 0
495 /* True if CPU has a dror instruction. */
496 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
498 /* True if CPU has a ror instruction. */
499 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
501 /* True if CPU is in the Octeon family */
502 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
504 /* True if CPU has seq/sne and seqi/snei instructions. */
505 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
507 /* True, if CPU has support for ldc1 and sdc1. */
508 #define CPU_HAS_LDC1_SDC1(CPU) \
509 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
511 /* True if mflo and mfhi can be immediately followed by instructions
512 which write to the HI and LO registers.
514 According to MIPS specifications, MIPS ISAs I, II, and III need
515 (at least) two instructions between the reads of HI/LO and
516 instructions which write them, and later ISAs do not. Contradicting
517 the MIPS specifications, some MIPS IV processor user manuals (e.g.
518 the UM for the NEC Vr5000) document needing the instructions between
519 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
520 MIPS64 and later ISAs to have the interlocks, plus any specific
521 earlier-ISA CPUs for which CPU documentation declares that the
522 instructions are really interlocked. */
523 #define hilo_interlocks \
524 (mips_opts.isa == ISA_MIPS32 \
525 || mips_opts.isa == ISA_MIPS32R2 \
526 || mips_opts.isa == ISA_MIPS64 \
527 || mips_opts.isa == ISA_MIPS64R2 \
528 || mips_opts.arch == CPU_R4010 \
529 || mips_opts.arch == CPU_R5900 \
530 || mips_opts.arch == CPU_R10000 \
531 || mips_opts.arch == CPU_R12000 \
532 || mips_opts.arch == CPU_R14000 \
533 || mips_opts.arch == CPU_R16000 \
534 || mips_opts.arch == CPU_RM7000 \
535 || mips_opts.arch == CPU_VR5500 \
536 || mips_opts.micromips \
539 /* Whether the processor uses hardware interlocks to protect reads
540 from the GPRs after they are loaded from memory, and thus does not
541 require nops to be inserted. This applies to instructions marked
542 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
543 level I and microMIPS mode instructions are always interlocked. */
544 #define gpr_interlocks \
545 (mips_opts.isa != ISA_MIPS1 \
546 || mips_opts.arch == CPU_R3900 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.micromips \
551 /* Whether the processor uses hardware interlocks to avoid delays
552 required by coprocessor instructions, and thus does not require
553 nops to be inserted. This applies to instructions marked
554 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
555 between instructions marked INSN_WRITE_COND_CODE and ones marked
556 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
557 levels I, II, and III and microMIPS mode instructions are always
559 /* Itbl support may require additional care here. */
560 #define cop_interlocks \
561 ((mips_opts.isa != ISA_MIPS1 \
562 && mips_opts.isa != ISA_MIPS2 \
563 && mips_opts.isa != ISA_MIPS3) \
564 || mips_opts.arch == CPU_R4300 \
565 || mips_opts.micromips \
568 /* Whether the processor uses hardware interlocks to protect reads
569 from coprocessor registers after they are loaded from memory, and
570 thus does not require nops to be inserted. This applies to
571 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
572 requires at MIPS ISA level I and microMIPS mode instructions are
573 always interlocked. */
574 #define cop_mem_interlocks \
575 (mips_opts.isa != ISA_MIPS1 \
576 || mips_opts.micromips \
579 /* Is this a mfhi or mflo instruction? */
580 #define MF_HILO_INSN(PINFO) \
581 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
583 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
584 has been selected. This implies, in particular, that addresses of text
585 labels have their LSB set. */
586 #define HAVE_CODE_COMPRESSION \
587 ((mips_opts.mips16 | mips_opts.micromips) != 0)
589 /* MIPS PIC level. */
591 enum mips_pic_level mips_pic;
593 /* 1 if we should generate 32 bit offsets from the $gp register in
594 SVR4_PIC mode. Currently has no meaning in other modes. */
595 static int mips_big_got = 0;
597 /* 1 if trap instructions should used for overflow rather than break
599 static int mips_trap = 0;
601 /* 1 if double width floating point constants should not be constructed
602 by assembling two single width halves into two single width floating
603 point registers which just happen to alias the double width destination
604 register. On some architectures this aliasing can be disabled by a bit
605 in the status register, and the setting of this bit cannot be determined
606 automatically at assemble time. */
607 static int mips_disable_float_construction;
609 /* Non-zero if any .set noreorder directives were used. */
611 static int mips_any_noreorder;
613 /* Non-zero if nops should be inserted when the register referenced in
614 an mfhi/mflo instruction is read in the next two instructions. */
615 static int mips_7000_hilo_fix;
617 /* The size of objects in the small data section. */
618 static unsigned int g_switch_value = 8;
619 /* Whether the -G option was used. */
620 static int g_switch_seen = 0;
625 /* If we can determine in advance that GP optimization won't be
626 possible, we can skip the relaxation stuff that tries to produce
627 GP-relative references. This makes delay slot optimization work
630 This function can only provide a guess, but it seems to work for
631 gcc output. It needs to guess right for gcc, otherwise gcc
632 will put what it thinks is a GP-relative instruction in a branch
635 I don't know if a fix is needed for the SVR4_PIC mode. I've only
636 fixed it for the non-PIC mode. KR 95/04/07 */
637 static int nopic_need_relax (symbolS *, int);
639 /* handle of the OPCODE hash table */
640 static struct hash_control *op_hash = NULL;
642 /* The opcode hash table we use for the mips16. */
643 static struct hash_control *mips16_op_hash = NULL;
645 /* The opcode hash table we use for the microMIPS ASE. */
646 static struct hash_control *micromips_op_hash = NULL;
648 /* This array holds the chars that always start a comment. If the
649 pre-processor is disabled, these aren't very useful */
650 const char comment_chars[] = "#";
652 /* This array holds the chars that only start a comment at the beginning of
653 a line. If the line seems to have the form '# 123 filename'
654 .line and .file directives will appear in the pre-processed output */
655 /* Note that input_file.c hand checks for '#' at the beginning of the
656 first line of the input file. This is because the compiler outputs
657 #NO_APP at the beginning of its output. */
658 /* Also note that C style comments are always supported. */
659 const char line_comment_chars[] = "#";
661 /* This array holds machine specific line separator characters. */
662 const char line_separator_chars[] = ";";
664 /* Chars that can be used to separate mant from exp in floating point nums */
665 const char EXP_CHARS[] = "eE";
667 /* Chars that mean this number is a floating point constant */
670 const char FLT_CHARS[] = "rRsSfFdDxXpP";
672 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
673 changed in read.c . Ideally it shouldn't have to know about it at all,
674 but nothing is ideal around here.
677 static char *insn_error;
679 static int auto_align = 1;
681 /* When outputting SVR4 PIC code, the assembler needs to know the
682 offset in the stack frame from which to restore the $gp register.
683 This is set by the .cprestore pseudo-op, and saved in this
685 static offsetT mips_cprestore_offset = -1;
687 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
688 more optimizations, it can use a register value instead of a memory-saved
689 offset and even an other register than $gp as global pointer. */
690 static offsetT mips_cpreturn_offset = -1;
691 static int mips_cpreturn_register = -1;
692 static int mips_gp_register = GP;
693 static int mips_gprel_offset = 0;
695 /* Whether mips_cprestore_offset has been set in the current function
696 (or whether it has already been warned about, if not). */
697 static int mips_cprestore_valid = 0;
699 /* This is the register which holds the stack frame, as set by the
700 .frame pseudo-op. This is needed to implement .cprestore. */
701 static int mips_frame_reg = SP;
703 /* Whether mips_frame_reg has been set in the current function
704 (or whether it has already been warned about, if not). */
705 static int mips_frame_reg_valid = 0;
707 /* To output NOP instructions correctly, we need to keep information
708 about the previous two instructions. */
710 /* Whether we are optimizing. The default value of 2 means to remove
711 unneeded NOPs and swap branch instructions when possible. A value
712 of 1 means to not swap branches. A value of 0 means to always
714 static int mips_optimize = 2;
716 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
717 equivalent to seeing no -g option at all. */
718 static int mips_debug = 0;
720 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
721 #define MAX_VR4130_NOPS 4
723 /* The maximum number of NOPs needed to fill delay slots. */
724 #define MAX_DELAY_NOPS 2
726 /* The maximum number of NOPs needed for any purpose. */
729 /* A list of previous instructions, with index 0 being the most recent.
730 We need to look back MAX_NOPS instructions when filling delay slots
731 or working around processor errata. We need to look back one
732 instruction further if we're thinking about using history[0] to
733 fill a branch delay slot. */
734 static struct mips_cl_insn history[1 + MAX_NOPS];
736 /* Nop instructions used by emit_nop. */
737 static struct mips_cl_insn nop_insn;
738 static struct mips_cl_insn mips16_nop_insn;
739 static struct mips_cl_insn micromips_nop16_insn;
740 static struct mips_cl_insn micromips_nop32_insn;
742 /* The appropriate nop for the current mode. */
743 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
744 : (mips_opts.micromips ? µmips_nop16_insn : &nop_insn))
746 /* The size of NOP_INSN in bytes. */
747 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
749 /* If this is set, it points to a frag holding nop instructions which
750 were inserted before the start of a noreorder section. If those
751 nops turn out to be unnecessary, the size of the frag can be
753 static fragS *prev_nop_frag;
755 /* The number of nop instructions we created in prev_nop_frag. */
756 static int prev_nop_frag_holds;
758 /* The number of nop instructions that we know we need in
760 static int prev_nop_frag_required;
762 /* The number of instructions we've seen since prev_nop_frag. */
763 static int prev_nop_frag_since;
765 /* For ECOFF and ELF, relocations against symbols are done in two
766 parts, with a HI relocation and a LO relocation. Each relocation
767 has only 16 bits of space to store an addend. This means that in
768 order for the linker to handle carries correctly, it must be able
769 to locate both the HI and the LO relocation. This means that the
770 relocations must appear in order in the relocation table.
772 In order to implement this, we keep track of each unmatched HI
773 relocation. We then sort them so that they immediately precede the
774 corresponding LO relocation. */
779 struct mips_hi_fixup *next;
782 /* The section this fixup is in. */
786 /* The list of unmatched HI relocs. */
788 static struct mips_hi_fixup *mips_hi_fixup_list;
790 /* The frag containing the last explicit relocation operator.
791 Null if explicit relocations have not been used. */
793 static fragS *prev_reloc_op_frag;
795 /* Map normal MIPS register numbers to mips16 register numbers. */
797 #define X ILLEGAL_REG
798 static const int mips32_to_16_reg_map[] =
800 X, X, 2, 3, 4, 5, 6, 7,
801 X, X, X, X, X, X, X, X,
802 0, 1, X, X, X, X, X, X,
803 X, X, X, X, X, X, X, X
807 /* Map mips16 register numbers to normal MIPS register numbers. */
809 static const unsigned int mips16_to_32_reg_map[] =
811 16, 17, 2, 3, 4, 5, 6, 7
814 /* Map normal MIPS register numbers to microMIPS register numbers. */
816 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
817 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
818 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
819 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
820 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
821 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
822 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
824 #define X ILLEGAL_REG
825 /* reg type h: 4, 5, 6. */
826 static const int mips32_to_micromips_reg_h_map[] =
828 X, X, X, X, 4, 5, 6, X,
829 X, X, X, X, X, X, X, X,
830 X, X, X, X, X, X, X, X,
831 X, X, X, X, X, X, X, X
834 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
835 static const int mips32_to_micromips_reg_m_map[] =
837 0, X, 2, 3, X, X, X, X,
838 X, X, X, X, X, X, X, X,
839 4, 1, 5, 6, 7, X, X, X,
840 X, X, X, X, X, X, X, X
843 /* reg type q: 0, 2-7. 17. */
844 static const int mips32_to_micromips_reg_q_map[] =
846 0, X, 2, 3, 4, 5, 6, 7,
847 X, X, X, X, X, X, X, X,
848 X, 1, X, X, X, X, X, X,
849 X, X, X, X, X, X, X, X
852 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
855 /* Map microMIPS register numbers to normal MIPS register numbers. */
857 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
858 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
859 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
860 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
861 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
862 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
864 /* The microMIPS registers with type h. */
865 static const unsigned int micromips_to_32_reg_h_map[] =
867 5, 5, 6, 4, 4, 4, 4, 4
870 /* The microMIPS registers with type i. */
871 static const unsigned int micromips_to_32_reg_i_map[] =
873 6, 7, 7, 21, 22, 5, 6, 7
876 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
878 /* The microMIPS registers with type m. */
879 static const unsigned int micromips_to_32_reg_m_map[] =
881 0, 17, 2, 3, 16, 18, 19, 20
884 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
886 /* The microMIPS registers with type q. */
887 static const unsigned int micromips_to_32_reg_q_map[] =
889 0, 17, 2, 3, 4, 5, 6, 7
892 /* microMIPS imm type B. */
893 static const int micromips_imm_b_map[] =
895 1, 4, 8, 12, 16, 20, 24, -1
898 /* microMIPS imm type C. */
899 static const int micromips_imm_c_map[] =
901 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
904 /* Classifies the kind of instructions we're interested in when
905 implementing -mfix-vr4120. */
906 enum fix_vr4120_class
914 NUM_FIX_VR4120_CLASSES
917 /* ...likewise -mfix-loongson2f-jump. */
918 static bfd_boolean mips_fix_loongson2f_jump;
920 /* ...likewise -mfix-loongson2f-nop. */
921 static bfd_boolean mips_fix_loongson2f_nop;
923 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
924 static bfd_boolean mips_fix_loongson2f;
926 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
927 there must be at least one other instruction between an instruction
928 of type X and an instruction of type Y. */
929 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
931 /* True if -mfix-vr4120 is in force. */
932 static int mips_fix_vr4120;
934 /* ...likewise -mfix-vr4130. */
935 static int mips_fix_vr4130;
937 /* ...likewise -mfix-24k. */
938 static int mips_fix_24k;
940 /* ...likewise -mfix-cn63xxp1 */
941 static bfd_boolean mips_fix_cn63xxp1;
943 /* We don't relax branches by default, since this causes us to expand
944 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
945 fail to compute the offset before expanding the macro to the most
946 efficient expansion. */
948 static int mips_relax_branch;
950 /* The expansion of many macros depends on the type of symbol that
951 they refer to. For example, when generating position-dependent code,
952 a macro that refers to a symbol may have two different expansions,
953 one which uses GP-relative addresses and one which uses absolute
954 addresses. When generating SVR4-style PIC, a macro may have
955 different expansions for local and global symbols.
957 We handle these situations by generating both sequences and putting
958 them in variant frags. In position-dependent code, the first sequence
959 will be the GP-relative one and the second sequence will be the
960 absolute one. In SVR4 PIC, the first sequence will be for global
961 symbols and the second will be for local symbols.
963 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
964 SECOND are the lengths of the two sequences in bytes. These fields
965 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
966 the subtype has the following flags:
969 Set if it has been decided that we should use the second
970 sequence instead of the first.
973 Set in the first variant frag if the macro's second implementation
974 is longer than its first. This refers to the macro as a whole,
975 not an individual relaxation.
978 Set in the first variant frag if the macro appeared in a .set nomacro
979 block and if one alternative requires a warning but the other does not.
982 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
985 RELAX_DELAY_SLOT_16BIT
986 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
989 RELAX_DELAY_SLOT_SIZE_FIRST
990 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
991 the macro is of the wrong size for the branch delay slot.
993 RELAX_DELAY_SLOT_SIZE_SECOND
994 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
995 the macro is of the wrong size for the branch delay slot.
997 The frag's "opcode" points to the first fixup for relaxable code.
999 Relaxable macros are generated using a sequence such as:
1001 relax_start (SYMBOL);
1002 ... generate first expansion ...
1004 ... generate second expansion ...
1007 The code and fixups for the unwanted alternative are discarded
1008 by md_convert_frag. */
1009 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1011 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1012 #define RELAX_SECOND(X) ((X) & 0xff)
1013 #define RELAX_USE_SECOND 0x10000
1014 #define RELAX_SECOND_LONGER 0x20000
1015 #define RELAX_NOMACRO 0x40000
1016 #define RELAX_DELAY_SLOT 0x80000
1017 #define RELAX_DELAY_SLOT_16BIT 0x100000
1018 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1019 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1021 /* Branch without likely bit. If label is out of range, we turn:
1023 beq reg1, reg2, label
1033 with the following opcode replacements:
1040 bltzal <-> bgezal (with jal label instead of j label)
1042 Even though keeping the delay slot instruction in the delay slot of
1043 the branch would be more efficient, it would be very tricky to do
1044 correctly, because we'd have to introduce a variable frag *after*
1045 the delay slot instruction, and expand that instead. Let's do it
1046 the easy way for now, even if the branch-not-taken case now costs
1047 one additional instruction. Out-of-range branches are not supposed
1048 to be common, anyway.
1050 Branch likely. If label is out of range, we turn:
1052 beql reg1, reg2, label
1053 delay slot (annulled if branch not taken)
1062 delay slot (executed only if branch taken)
1065 It would be possible to generate a shorter sequence by losing the
1066 likely bit, generating something like:
1071 delay slot (executed only if branch taken)
1083 bltzall -> bgezal (with jal label instead of j label)
1084 bgezall -> bltzal (ditto)
1087 but it's not clear that it would actually improve performance. */
1088 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1089 ((relax_substateT) \
1092 | ((toofar) ? 0x20 : 0) \
1093 | ((link) ? 0x40 : 0) \
1094 | ((likely) ? 0x80 : 0) \
1095 | ((uncond) ? 0x100 : 0)))
1096 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1097 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1098 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1099 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1100 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1101 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1103 /* For mips16 code, we use an entirely different form of relaxation.
1104 mips16 supports two versions of most instructions which take
1105 immediate values: a small one which takes some small value, and a
1106 larger one which takes a 16 bit value. Since branches also follow
1107 this pattern, relaxing these values is required.
1109 We can assemble both mips16 and normal MIPS code in a single
1110 object. Therefore, we need to support this type of relaxation at
1111 the same time that we support the relaxation described above. We
1112 use the high bit of the subtype field to distinguish these cases.
1114 The information we store for this type of relaxation is the
1115 argument code found in the opcode file for this relocation, whether
1116 the user explicitly requested a small or extended form, and whether
1117 the relocation is in a jump or jal delay slot. That tells us the
1118 size of the value, and how it should be stored. We also store
1119 whether the fragment is considered to be extended or not. We also
1120 store whether this is known to be a branch to a different section,
1121 whether we have tried to relax this frag yet, and whether we have
1122 ever extended a PC relative fragment because of a shift count. */
1123 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1126 | ((small) ? 0x100 : 0) \
1127 | ((ext) ? 0x200 : 0) \
1128 | ((dslot) ? 0x400 : 0) \
1129 | ((jal_dslot) ? 0x800 : 0))
1130 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1131 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1132 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1133 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1134 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1135 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1136 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1137 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1138 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1139 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1140 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1141 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1143 /* For microMIPS code, we use relaxation similar to one we use for
1144 MIPS16 code. Some instructions that take immediate values support
1145 two encodings: a small one which takes some small value, and a
1146 larger one which takes a 16 bit value. As some branches also follow
1147 this pattern, relaxing these values is required.
1149 We can assemble both microMIPS and normal MIPS code in a single
1150 object. Therefore, we need to support this type of relaxation at
1151 the same time that we support the relaxation described above. We
1152 use one of the high bits of the subtype field to distinguish these
1155 The information we store for this type of relaxation is the argument
1156 code found in the opcode file for this relocation, the register
1157 selected as the assembler temporary, whether the branch is
1158 unconditional, whether it is compact, whether it stores the link
1159 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1160 branches to a sequence of instructions is enabled, and whether the
1161 displacement of a branch is too large to fit as an immediate argument
1162 of a 16-bit and a 32-bit branch, respectively. */
1163 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1164 relax32, toofar16, toofar32) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((uncond) ? 0x2000 : 0) \
1169 | ((compact) ? 0x4000 : 0) \
1170 | ((link) ? 0x8000 : 0) \
1171 | ((relax32) ? 0x10000 : 0) \
1172 | ((toofar16) ? 0x20000 : 0) \
1173 | ((toofar32) ? 0x40000 : 0))
1174 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1175 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1176 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1177 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1178 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1179 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1180 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1182 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1185 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1186 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1187 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1189 /* Sign-extend 16-bit value X. */
1190 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1192 /* Is the given value a sign-extended 32-bit value? */
1193 #define IS_SEXT_32BIT_NUM(x) \
1194 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1195 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1197 /* Is the given value a sign-extended 16-bit value? */
1198 #define IS_SEXT_16BIT_NUM(x) \
1199 (((x) &~ (offsetT) 0x7fff) == 0 \
1200 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1202 /* Is the given value a sign-extended 12-bit value? */
1203 #define IS_SEXT_12BIT_NUM(x) \
1204 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1206 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1207 #define IS_ZEXT_32BIT_NUM(x) \
1208 (((x) &~ (offsetT) 0xffffffff) == 0 \
1209 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1212 VALUE << SHIFT. VALUE is evaluated exactly once. */
1213 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1214 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1215 | (((VALUE) & (MASK)) << (SHIFT)))
1217 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1219 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1220 (((STRUCT) >> (SHIFT)) & (MASK))
1222 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1223 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1225 include/opcode/mips.h specifies operand fields using the macros
1226 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1227 with "MIPS16OP" instead of "OP". */
1228 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1231 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1232 OP_MASK_##FIELD, OP_SH_##FIELD); \
1234 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1235 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1237 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1238 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1239 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1241 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1242 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1244 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1245 : EXTRACT_BITS ((INSN).insn_opcode, \
1246 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1247 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1248 EXTRACT_BITS ((INSN).insn_opcode, \
1249 MIPS16OP_MASK_##FIELD, \
1250 MIPS16OP_SH_##FIELD)
1252 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1253 #define MIPS16_EXTEND (0xf000U << 16)
1255 /* Whether or not we are emitting a branch-likely macro. */
1256 static bfd_boolean emit_branch_likely_macro = FALSE;
1258 /* Global variables used when generating relaxable macros. See the
1259 comment above RELAX_ENCODE for more details about how relaxation
1262 /* 0 if we're not emitting a relaxable macro.
1263 1 if we're emitting the first of the two relaxation alternatives.
1264 2 if we're emitting the second alternative. */
1267 /* The first relaxable fixup in the current frag. (In other words,
1268 the first fixup that refers to relaxable code.) */
1271 /* sizes[0] says how many bytes of the first alternative are stored in
1272 the current frag. Likewise sizes[1] for the second alternative. */
1273 unsigned int sizes[2];
1275 /* The symbol on which the choice of sequence depends. */
1279 /* Global variables used to decide whether a macro needs a warning. */
1281 /* True if the macro is in a branch delay slot. */
1282 bfd_boolean delay_slot_p;
1284 /* Set to the length in bytes required if the macro is in a delay slot
1285 that requires a specific length of instruction, otherwise zero. */
1286 unsigned int delay_slot_length;
1288 /* For relaxable macros, sizes[0] is the length of the first alternative
1289 in bytes and sizes[1] is the length of the second alternative.
1290 For non-relaxable macros, both elements give the length of the
1292 unsigned int sizes[2];
1294 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1295 instruction of the first alternative in bytes and first_insn_sizes[1]
1296 is the length of the first instruction of the second alternative.
1297 For non-relaxable macros, both elements give the length of the first
1298 instruction in bytes.
1300 Set to zero if we haven't yet seen the first instruction. */
1301 unsigned int first_insn_sizes[2];
1303 /* For relaxable macros, insns[0] is the number of instructions for the
1304 first alternative and insns[1] is the number of instructions for the
1307 For non-relaxable macros, both elements give the number of
1308 instructions for the macro. */
1309 unsigned int insns[2];
1311 /* The first variant frag for this macro. */
1313 } mips_macro_warning;
1315 /* Prototypes for static functions. */
1317 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1319 static void append_insn
1320 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1321 bfd_boolean expansionp);
1322 static void mips_no_prev_insn (void);
1323 static void macro_build (expressionS *, const char *, const char *, ...);
1324 static void mips16_macro_build
1325 (expressionS *, const char *, const char *, va_list *);
1326 static void load_register (int, expressionS *, int);
1327 static void macro_start (void);
1328 static void macro_end (void);
1329 static void macro (struct mips_cl_insn * ip);
1330 static void mips16_macro (struct mips_cl_insn * ip);
1331 static void mips_ip (char *str, struct mips_cl_insn * ip);
1332 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1333 static void mips16_immed
1334 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1335 unsigned int, unsigned long *);
1336 static size_t my_getSmallExpression
1337 (expressionS *, bfd_reloc_code_real_type *, char *);
1338 static void my_getExpression (expressionS *, char *);
1339 static void s_align (int);
1340 static void s_change_sec (int);
1341 static void s_change_section (int);
1342 static void s_cons (int);
1343 static void s_float_cons (int);
1344 static void s_mips_globl (int);
1345 static void s_option (int);
1346 static void s_mipsset (int);
1347 static void s_abicalls (int);
1348 static void s_cpload (int);
1349 static void s_cpsetup (int);
1350 static void s_cplocal (int);
1351 static void s_cprestore (int);
1352 static void s_cpreturn (int);
1353 static void s_dtprelword (int);
1354 static void s_dtpreldword (int);
1355 static void s_tprelword (int);
1356 static void s_tpreldword (int);
1357 static void s_gpvalue (int);
1358 static void s_gpword (int);
1359 static void s_gpdword (int);
1360 static void s_cpadd (int);
1361 static void s_insn (int);
1362 static void md_obj_begin (void);
1363 static void md_obj_end (void);
1364 static void s_mips_ent (int);
1365 static void s_mips_end (int);
1366 static void s_mips_frame (int);
1367 static void s_mips_mask (int reg_type);
1368 static void s_mips_stab (int);
1369 static void s_mips_weakext (int);
1370 static void s_mips_file (int);
1371 static void s_mips_loc (int);
1372 static bfd_boolean pic_need_relax (symbolS *, asection *);
1373 static int relaxed_branch_length (fragS *, asection *, int);
1374 static int validate_mips_insn (const struct mips_opcode *);
1375 static int validate_micromips_insn (const struct mips_opcode *);
1376 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1377 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1379 /* Table and functions used to map between CPU/ISA names, and
1380 ISA levels, and CPU numbers. */
1382 struct mips_cpu_info
1384 const char *name; /* CPU or ISA name. */
1385 int flags; /* ASEs available, or ISA flag. */
1386 int isa; /* ISA level. */
1387 int cpu; /* CPU number (default CPU if ISA). */
1390 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1391 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1392 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1393 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1394 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1395 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1396 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1397 #define MIPS_CPU_ASE_MCU 0x0080 /* CPU implements MCU ASE */
1399 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1400 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1401 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1405 The following pseudo-ops from the Kane and Heinrich MIPS book
1406 should be defined here, but are currently unsupported: .alias,
1407 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1409 The following pseudo-ops from the Kane and Heinrich MIPS book are
1410 specific to the type of debugging information being generated, and
1411 should be defined by the object format: .aent, .begin, .bend,
1412 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1415 The following pseudo-ops from the Kane and Heinrich MIPS book are
1416 not MIPS CPU specific, but are also not specific to the object file
1417 format. This file is probably the best place to define them, but
1418 they are not currently supported: .asm0, .endr, .lab, .struct. */
1420 static const pseudo_typeS mips_pseudo_table[] =
1422 /* MIPS specific pseudo-ops. */
1423 {"option", s_option, 0},
1424 {"set", s_mipsset, 0},
1425 {"rdata", s_change_sec, 'r'},
1426 {"sdata", s_change_sec, 's'},
1427 {"livereg", s_ignore, 0},
1428 {"abicalls", s_abicalls, 0},
1429 {"cpload", s_cpload, 0},
1430 {"cpsetup", s_cpsetup, 0},
1431 {"cplocal", s_cplocal, 0},
1432 {"cprestore", s_cprestore, 0},
1433 {"cpreturn", s_cpreturn, 0},
1434 {"dtprelword", s_dtprelword, 0},
1435 {"dtpreldword", s_dtpreldword, 0},
1436 {"tprelword", s_tprelword, 0},
1437 {"tpreldword", s_tpreldword, 0},
1438 {"gpvalue", s_gpvalue, 0},
1439 {"gpword", s_gpword, 0},
1440 {"gpdword", s_gpdword, 0},
1441 {"cpadd", s_cpadd, 0},
1442 {"insn", s_insn, 0},
1444 /* Relatively generic pseudo-ops that happen to be used on MIPS
1446 {"asciiz", stringer, 8 + 1},
1447 {"bss", s_change_sec, 'b'},
1449 {"half", s_cons, 1},
1450 {"dword", s_cons, 3},
1451 {"weakext", s_mips_weakext, 0},
1452 {"origin", s_org, 0},
1453 {"repeat", s_rept, 0},
1455 /* For MIPS this is non-standard, but we define it for consistency. */
1456 {"sbss", s_change_sec, 'B'},
1458 /* These pseudo-ops are defined in read.c, but must be overridden
1459 here for one reason or another. */
1460 {"align", s_align, 0},
1461 {"byte", s_cons, 0},
1462 {"data", s_change_sec, 'd'},
1463 {"double", s_float_cons, 'd'},
1464 {"float", s_float_cons, 'f'},
1465 {"globl", s_mips_globl, 0},
1466 {"global", s_mips_globl, 0},
1467 {"hword", s_cons, 1},
1469 {"long", s_cons, 2},
1470 {"octa", s_cons, 4},
1471 {"quad", s_cons, 3},
1472 {"section", s_change_section, 0},
1473 {"short", s_cons, 1},
1474 {"single", s_float_cons, 'f'},
1475 {"stabn", s_mips_stab, 'n'},
1476 {"text", s_change_sec, 't'},
1477 {"word", s_cons, 2},
1479 { "extern", ecoff_directive_extern, 0},
1484 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1486 /* These pseudo-ops should be defined by the object file format.
1487 However, a.out doesn't support them, so we have versions here. */
1488 {"aent", s_mips_ent, 1},
1489 {"bgnb", s_ignore, 0},
1490 {"end", s_mips_end, 0},
1491 {"endb", s_ignore, 0},
1492 {"ent", s_mips_ent, 0},
1493 {"file", s_mips_file, 0},
1494 {"fmask", s_mips_mask, 'F'},
1495 {"frame", s_mips_frame, 0},
1496 {"loc", s_mips_loc, 0},
1497 {"mask", s_mips_mask, 'R'},
1498 {"verstamp", s_ignore, 0},
1502 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1503 purpose of the `.dc.a' internal pseudo-op. */
1506 mips_address_bytes (void)
1508 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1511 extern void pop_insert (const pseudo_typeS *);
1514 mips_pop_insert (void)
1516 pop_insert (mips_pseudo_table);
1517 if (! ECOFF_DEBUGGING)
1518 pop_insert (mips_nonecoff_pseudo_table);
1521 /* Symbols labelling the current insn. */
1523 struct insn_label_list
1525 struct insn_label_list *next;
1529 static struct insn_label_list *free_insn_labels;
1530 #define label_list tc_segment_info_data.labels
1532 static void mips_clear_insn_labels (void);
1533 static void mips_mark_labels (void);
1534 static void mips_compressed_mark_labels (void);
1537 mips_clear_insn_labels (void)
1539 register struct insn_label_list **pl;
1540 segment_info_type *si;
1544 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1547 si = seg_info (now_seg);
1548 *pl = si->label_list;
1549 si->label_list = NULL;
1553 /* Mark instruction labels in MIPS16/microMIPS mode. */
1556 mips_mark_labels (void)
1558 if (HAVE_CODE_COMPRESSION)
1559 mips_compressed_mark_labels ();
1562 static char *expr_end;
1564 /* Expressions which appear in instructions. These are set by
1567 static expressionS imm_expr;
1568 static expressionS imm2_expr;
1569 static expressionS offset_expr;
1571 /* Relocs associated with imm_expr and offset_expr. */
1573 static bfd_reloc_code_real_type imm_reloc[3]
1574 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1575 static bfd_reloc_code_real_type offset_reloc[3]
1576 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1578 /* This is set to the resulting size of the instruction to be produced
1579 by mips16_ip if an explicit extension is used or by mips_ip if an
1580 explicit size is supplied. */
1582 static unsigned int forced_insn_length;
1584 /* True if we are assembling an instruction. All dot symbols defined during
1585 this time should be treated as code labels. */
1587 static bfd_boolean mips_assembling_insn;
1590 /* The pdr segment for per procedure frame/regmask info. Not used for
1593 static segT pdr_seg;
1596 /* The default target format to use. */
1598 #if defined (TE_FreeBSD)
1599 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1600 #elif defined (TE_TMIPS)
1601 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1603 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1607 mips_target_format (void)
1609 switch (OUTPUT_FLAVOR)
1611 case bfd_target_ecoff_flavour:
1612 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1613 case bfd_target_coff_flavour:
1615 case bfd_target_elf_flavour:
1617 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1618 return (target_big_endian
1619 ? "elf32-bigmips-vxworks"
1620 : "elf32-littlemips-vxworks");
1622 return (target_big_endian
1623 ? (HAVE_64BIT_OBJECTS
1624 ? ELF_TARGET ("elf64-", "big")
1626 ? ELF_TARGET ("elf32-n", "big")
1627 : ELF_TARGET ("elf32-", "big")))
1628 : (HAVE_64BIT_OBJECTS
1629 ? ELF_TARGET ("elf64-", "little")
1631 ? ELF_TARGET ("elf32-n", "little")
1632 : ELF_TARGET ("elf32-", "little"))));
1639 /* Return the length of a microMIPS instruction in bytes. If bits of
1640 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1641 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1642 major opcode) will require further modifications to the opcode
1645 static inline unsigned int
1646 micromips_insn_length (const struct mips_opcode *mo)
1648 return (mo->mask >> 16) == 0 ? 2 : 4;
1651 /* Return the length of MIPS16 instruction OPCODE. */
1653 static inline unsigned int
1654 mips16_opcode_length (unsigned long opcode)
1656 return (opcode >> 16) == 0 ? 2 : 4;
1659 /* Return the length of instruction INSN. */
1661 static inline unsigned int
1662 insn_length (const struct mips_cl_insn *insn)
1664 if (mips_opts.micromips)
1665 return micromips_insn_length (insn->insn_mo);
1666 else if (mips_opts.mips16)
1667 return mips16_opcode_length (insn->insn_opcode);
1672 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1675 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1680 insn->insn_opcode = mo->match;
1683 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1684 insn->fixp[i] = NULL;
1685 insn->fixed_p = (mips_opts.noreorder > 0);
1686 insn->noreorder_p = (mips_opts.noreorder > 0);
1687 insn->mips16_absolute_jump_p = 0;
1688 insn->complete_p = 0;
1689 insn->cleared_p = 0;
1692 /* Record the current MIPS16/microMIPS mode in now_seg. */
1695 mips_record_compressed_mode (void)
1697 segment_info_type *si;
1699 si = seg_info (now_seg);
1700 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1701 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1702 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1703 si->tc_segment_info_data.micromips = mips_opts.micromips;
1706 /* Read a standard MIPS instruction from BUF. */
1708 static unsigned long
1709 read_insn (char *buf)
1711 if (target_big_endian)
1712 return bfd_getb32 ((bfd_byte *) buf);
1714 return bfd_getl32 ((bfd_byte *) buf);
1717 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
1721 write_insn (char *buf, unsigned int insn)
1723 md_number_to_chars (buf, insn, 4);
1727 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
1728 has length LENGTH. */
1730 static unsigned long
1731 read_compressed_insn (char *buf, unsigned int length)
1737 for (i = 0; i < length; i += 2)
1740 if (target_big_endian)
1741 insn |= bfd_getb16 ((char *) buf);
1743 insn |= bfd_getl16 ((char *) buf);
1749 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
1750 instruction is LENGTH bytes long. Return a pointer to the next byte. */
1753 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
1757 for (i = 0; i < length; i += 2)
1758 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
1759 return buf + length;
1762 /* Install INSN at the location specified by its "frag" and "where" fields. */
1765 install_insn (const struct mips_cl_insn *insn)
1767 char *f = insn->frag->fr_literal + insn->where;
1768 if (HAVE_CODE_COMPRESSION)
1769 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1771 write_insn (f, insn->insn_opcode);
1772 mips_record_compressed_mode ();
1775 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1776 and install the opcode in the new location. */
1779 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1784 insn->where = where;
1785 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1786 if (insn->fixp[i] != NULL)
1788 insn->fixp[i]->fx_frag = frag;
1789 insn->fixp[i]->fx_where = where;
1791 install_insn (insn);
1794 /* Add INSN to the end of the output. */
1797 add_fixed_insn (struct mips_cl_insn *insn)
1799 char *f = frag_more (insn_length (insn));
1800 move_insn (insn, frag_now, f - frag_now->fr_literal);
1803 /* Start a variant frag and move INSN to the start of the variant part,
1804 marking it as fixed. The other arguments are as for frag_var. */
1807 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1808 relax_substateT subtype, symbolS *symbol, offsetT offset)
1810 frag_grow (max_chars);
1811 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1813 frag_var (rs_machine_dependent, max_chars, var,
1814 subtype, symbol, offset, NULL);
1817 /* Insert N copies of INSN into the history buffer, starting at
1818 position FIRST. Neither FIRST nor N need to be clipped. */
1821 insert_into_history (unsigned int first, unsigned int n,
1822 const struct mips_cl_insn *insn)
1824 if (mips_relax.sequence != 2)
1828 for (i = ARRAY_SIZE (history); i-- > first;)
1830 history[i] = history[i - n];
1836 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1837 the idea is to make it obvious at a glance that each errata is
1841 init_vr4120_conflicts (void)
1843 #define CONFLICT(FIRST, SECOND) \
1844 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1846 /* Errata 21 - [D]DIV[U] after [D]MACC */
1847 CONFLICT (MACC, DIV);
1848 CONFLICT (DMACC, DIV);
1850 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1851 CONFLICT (DMULT, DMULT);
1852 CONFLICT (DMULT, DMACC);
1853 CONFLICT (DMACC, DMULT);
1854 CONFLICT (DMACC, DMACC);
1856 /* Errata 24 - MT{LO,HI} after [D]MACC */
1857 CONFLICT (MACC, MTHILO);
1858 CONFLICT (DMACC, MTHILO);
1860 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1861 instruction is executed immediately after a MACC or DMACC
1862 instruction, the result of [either instruction] is incorrect." */
1863 CONFLICT (MACC, MULT);
1864 CONFLICT (MACC, DMULT);
1865 CONFLICT (DMACC, MULT);
1866 CONFLICT (DMACC, DMULT);
1868 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1869 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1870 DDIV or DDIVU instruction, the result of the MACC or
1871 DMACC instruction is incorrect.". */
1872 CONFLICT (DMULT, MACC);
1873 CONFLICT (DMULT, DMACC);
1874 CONFLICT (DIV, MACC);
1875 CONFLICT (DIV, DMACC);
1885 #define RTYPE_MASK 0x1ff00
1886 #define RTYPE_NUM 0x00100
1887 #define RTYPE_FPU 0x00200
1888 #define RTYPE_FCC 0x00400
1889 #define RTYPE_VEC 0x00800
1890 #define RTYPE_GP 0x01000
1891 #define RTYPE_CP0 0x02000
1892 #define RTYPE_PC 0x04000
1893 #define RTYPE_ACC 0x08000
1894 #define RTYPE_CCC 0x10000
1895 #define RNUM_MASK 0x000ff
1896 #define RWARN 0x80000
1898 #define GENERIC_REGISTER_NUMBERS \
1899 {"$0", RTYPE_NUM | 0}, \
1900 {"$1", RTYPE_NUM | 1}, \
1901 {"$2", RTYPE_NUM | 2}, \
1902 {"$3", RTYPE_NUM | 3}, \
1903 {"$4", RTYPE_NUM | 4}, \
1904 {"$5", RTYPE_NUM | 5}, \
1905 {"$6", RTYPE_NUM | 6}, \
1906 {"$7", RTYPE_NUM | 7}, \
1907 {"$8", RTYPE_NUM | 8}, \
1908 {"$9", RTYPE_NUM | 9}, \
1909 {"$10", RTYPE_NUM | 10}, \
1910 {"$11", RTYPE_NUM | 11}, \
1911 {"$12", RTYPE_NUM | 12}, \
1912 {"$13", RTYPE_NUM | 13}, \
1913 {"$14", RTYPE_NUM | 14}, \
1914 {"$15", RTYPE_NUM | 15}, \
1915 {"$16", RTYPE_NUM | 16}, \
1916 {"$17", RTYPE_NUM | 17}, \
1917 {"$18", RTYPE_NUM | 18}, \
1918 {"$19", RTYPE_NUM | 19}, \
1919 {"$20", RTYPE_NUM | 20}, \
1920 {"$21", RTYPE_NUM | 21}, \
1921 {"$22", RTYPE_NUM | 22}, \
1922 {"$23", RTYPE_NUM | 23}, \
1923 {"$24", RTYPE_NUM | 24}, \
1924 {"$25", RTYPE_NUM | 25}, \
1925 {"$26", RTYPE_NUM | 26}, \
1926 {"$27", RTYPE_NUM | 27}, \
1927 {"$28", RTYPE_NUM | 28}, \
1928 {"$29", RTYPE_NUM | 29}, \
1929 {"$30", RTYPE_NUM | 30}, \
1930 {"$31", RTYPE_NUM | 31}
1932 #define FPU_REGISTER_NAMES \
1933 {"$f0", RTYPE_FPU | 0}, \
1934 {"$f1", RTYPE_FPU | 1}, \
1935 {"$f2", RTYPE_FPU | 2}, \
1936 {"$f3", RTYPE_FPU | 3}, \
1937 {"$f4", RTYPE_FPU | 4}, \
1938 {"$f5", RTYPE_FPU | 5}, \
1939 {"$f6", RTYPE_FPU | 6}, \
1940 {"$f7", RTYPE_FPU | 7}, \
1941 {"$f8", RTYPE_FPU | 8}, \
1942 {"$f9", RTYPE_FPU | 9}, \
1943 {"$f10", RTYPE_FPU | 10}, \
1944 {"$f11", RTYPE_FPU | 11}, \
1945 {"$f12", RTYPE_FPU | 12}, \
1946 {"$f13", RTYPE_FPU | 13}, \
1947 {"$f14", RTYPE_FPU | 14}, \
1948 {"$f15", RTYPE_FPU | 15}, \
1949 {"$f16", RTYPE_FPU | 16}, \
1950 {"$f17", RTYPE_FPU | 17}, \
1951 {"$f18", RTYPE_FPU | 18}, \
1952 {"$f19", RTYPE_FPU | 19}, \
1953 {"$f20", RTYPE_FPU | 20}, \
1954 {"$f21", RTYPE_FPU | 21}, \
1955 {"$f22", RTYPE_FPU | 22}, \
1956 {"$f23", RTYPE_FPU | 23}, \
1957 {"$f24", RTYPE_FPU | 24}, \
1958 {"$f25", RTYPE_FPU | 25}, \
1959 {"$f26", RTYPE_FPU | 26}, \
1960 {"$f27", RTYPE_FPU | 27}, \
1961 {"$f28", RTYPE_FPU | 28}, \
1962 {"$f29", RTYPE_FPU | 29}, \
1963 {"$f30", RTYPE_FPU | 30}, \
1964 {"$f31", RTYPE_FPU | 31}
1966 #define FPU_CONDITION_CODE_NAMES \
1967 {"$fcc0", RTYPE_FCC | 0}, \
1968 {"$fcc1", RTYPE_FCC | 1}, \
1969 {"$fcc2", RTYPE_FCC | 2}, \
1970 {"$fcc3", RTYPE_FCC | 3}, \
1971 {"$fcc4", RTYPE_FCC | 4}, \
1972 {"$fcc5", RTYPE_FCC | 5}, \
1973 {"$fcc6", RTYPE_FCC | 6}, \
1974 {"$fcc7", RTYPE_FCC | 7}
1976 #define COPROC_CONDITION_CODE_NAMES \
1977 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1978 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1979 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1980 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1981 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1982 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1983 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1984 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1986 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1987 {"$a4", RTYPE_GP | 8}, \
1988 {"$a5", RTYPE_GP | 9}, \
1989 {"$a6", RTYPE_GP | 10}, \
1990 {"$a7", RTYPE_GP | 11}, \
1991 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1992 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1993 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1994 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1995 {"$t0", RTYPE_GP | 12}, \
1996 {"$t1", RTYPE_GP | 13}, \
1997 {"$t2", RTYPE_GP | 14}, \
1998 {"$t3", RTYPE_GP | 15}
2000 #define O32_SYMBOLIC_REGISTER_NAMES \
2001 {"$t0", RTYPE_GP | 8}, \
2002 {"$t1", RTYPE_GP | 9}, \
2003 {"$t2", RTYPE_GP | 10}, \
2004 {"$t3", RTYPE_GP | 11}, \
2005 {"$t4", RTYPE_GP | 12}, \
2006 {"$t5", RTYPE_GP | 13}, \
2007 {"$t6", RTYPE_GP | 14}, \
2008 {"$t7", RTYPE_GP | 15}, \
2009 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2010 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2011 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2012 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2014 /* Remaining symbolic register names */
2015 #define SYMBOLIC_REGISTER_NAMES \
2016 {"$zero", RTYPE_GP | 0}, \
2017 {"$at", RTYPE_GP | 1}, \
2018 {"$AT", RTYPE_GP | 1}, \
2019 {"$v0", RTYPE_GP | 2}, \
2020 {"$v1", RTYPE_GP | 3}, \
2021 {"$a0", RTYPE_GP | 4}, \
2022 {"$a1", RTYPE_GP | 5}, \
2023 {"$a2", RTYPE_GP | 6}, \
2024 {"$a3", RTYPE_GP | 7}, \
2025 {"$s0", RTYPE_GP | 16}, \
2026 {"$s1", RTYPE_GP | 17}, \
2027 {"$s2", RTYPE_GP | 18}, \
2028 {"$s3", RTYPE_GP | 19}, \
2029 {"$s4", RTYPE_GP | 20}, \
2030 {"$s5", RTYPE_GP | 21}, \
2031 {"$s6", RTYPE_GP | 22}, \
2032 {"$s7", RTYPE_GP | 23}, \
2033 {"$t8", RTYPE_GP | 24}, \
2034 {"$t9", RTYPE_GP | 25}, \
2035 {"$k0", RTYPE_GP | 26}, \
2036 {"$kt0", RTYPE_GP | 26}, \
2037 {"$k1", RTYPE_GP | 27}, \
2038 {"$kt1", RTYPE_GP | 27}, \
2039 {"$gp", RTYPE_GP | 28}, \
2040 {"$sp", RTYPE_GP | 29}, \
2041 {"$s8", RTYPE_GP | 30}, \
2042 {"$fp", RTYPE_GP | 30}, \
2043 {"$ra", RTYPE_GP | 31}
2045 #define MIPS16_SPECIAL_REGISTER_NAMES \
2046 {"$pc", RTYPE_PC | 0}
2048 #define MDMX_VECTOR_REGISTER_NAMES \
2049 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2050 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2051 {"$v2", RTYPE_VEC | 2}, \
2052 {"$v3", RTYPE_VEC | 3}, \
2053 {"$v4", RTYPE_VEC | 4}, \
2054 {"$v5", RTYPE_VEC | 5}, \
2055 {"$v6", RTYPE_VEC | 6}, \
2056 {"$v7", RTYPE_VEC | 7}, \
2057 {"$v8", RTYPE_VEC | 8}, \
2058 {"$v9", RTYPE_VEC | 9}, \
2059 {"$v10", RTYPE_VEC | 10}, \
2060 {"$v11", RTYPE_VEC | 11}, \
2061 {"$v12", RTYPE_VEC | 12}, \
2062 {"$v13", RTYPE_VEC | 13}, \
2063 {"$v14", RTYPE_VEC | 14}, \
2064 {"$v15", RTYPE_VEC | 15}, \
2065 {"$v16", RTYPE_VEC | 16}, \
2066 {"$v17", RTYPE_VEC | 17}, \
2067 {"$v18", RTYPE_VEC | 18}, \
2068 {"$v19", RTYPE_VEC | 19}, \
2069 {"$v20", RTYPE_VEC | 20}, \
2070 {"$v21", RTYPE_VEC | 21}, \
2071 {"$v22", RTYPE_VEC | 22}, \
2072 {"$v23", RTYPE_VEC | 23}, \
2073 {"$v24", RTYPE_VEC | 24}, \
2074 {"$v25", RTYPE_VEC | 25}, \
2075 {"$v26", RTYPE_VEC | 26}, \
2076 {"$v27", RTYPE_VEC | 27}, \
2077 {"$v28", RTYPE_VEC | 28}, \
2078 {"$v29", RTYPE_VEC | 29}, \
2079 {"$v30", RTYPE_VEC | 30}, \
2080 {"$v31", RTYPE_VEC | 31}
2082 #define MIPS_DSP_ACCUMULATOR_NAMES \
2083 {"$ac0", RTYPE_ACC | 0}, \
2084 {"$ac1", RTYPE_ACC | 1}, \
2085 {"$ac2", RTYPE_ACC | 2}, \
2086 {"$ac3", RTYPE_ACC | 3}
2088 static const struct regname reg_names[] = {
2089 GENERIC_REGISTER_NUMBERS,
2091 FPU_CONDITION_CODE_NAMES,
2092 COPROC_CONDITION_CODE_NAMES,
2094 /* The $txx registers depends on the abi,
2095 these will be added later into the symbol table from
2096 one of the tables below once mips_abi is set after
2097 parsing of arguments from the command line. */
2098 SYMBOLIC_REGISTER_NAMES,
2100 MIPS16_SPECIAL_REGISTER_NAMES,
2101 MDMX_VECTOR_REGISTER_NAMES,
2102 MIPS_DSP_ACCUMULATOR_NAMES,
2106 static const struct regname reg_names_o32[] = {
2107 O32_SYMBOLIC_REGISTER_NAMES,
2111 static const struct regname reg_names_n32n64[] = {
2112 N32N64_SYMBOLIC_REGISTER_NAMES,
2116 /* Check if S points at a valid register specifier according to TYPES.
2117 If so, then return 1, advance S to consume the specifier and store
2118 the register's number in REGNOP, otherwise return 0. */
2121 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2128 /* Find end of name. */
2130 if (is_name_beginner (*e))
2132 while (is_part_of_name (*e))
2135 /* Terminate name. */
2139 /* Look for a register symbol. */
2140 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2142 int r = S_GET_VALUE (symbolP);
2144 reg = r & RNUM_MASK;
2145 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2146 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2147 reg = (r & RNUM_MASK) - 2;
2149 /* Else see if this is a register defined in an itbl entry. */
2150 else if ((types & RTYPE_GP) && itbl_have_entries)
2157 if (itbl_get_reg_val (n, &r))
2158 reg = r & RNUM_MASK;
2161 /* Advance to next token if a register was recognised. */
2164 else if (types & RWARN)
2165 as_warn (_("Unrecognized register name `%s'"), *s);
2173 /* Check if S points at a valid register list according to TYPES.
2174 If so, then return 1, advance S to consume the list and store
2175 the registers present on the list as a bitmask of ones in REGLISTP,
2176 otherwise return 0. A valid list comprises a comma-separated
2177 enumeration of valid single registers and/or dash-separated
2178 contiguous register ranges as determined by their numbers.
2180 As a special exception if one of s0-s7 registers is specified as
2181 the range's lower delimiter and s8 (fp) is its upper one, then no
2182 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2183 are selected; they have to be listed separately if needed. */
2186 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2188 unsigned int reglist = 0;
2189 unsigned int lastregno;
2190 bfd_boolean ok = TRUE;
2191 unsigned int regmask;
2192 char *s_endlist = *s;
2196 while (reg_lookup (s, types, ®no))
2202 ok = reg_lookup (s, types, &lastregno);
2203 if (ok && lastregno < regno)
2209 if (lastregno == FP && regno >= S0 && regno <= S7)
2214 regmask = 1 << lastregno;
2215 regmask = (regmask << 1) - 1;
2216 regmask ^= (1 << regno) - 1;
2230 *reglistp = reglist;
2231 return ok && reglist != 0;
2234 /* Return TRUE if opcode MO is valid on the currently selected ISA and
2235 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2238 is_opcode_valid (const struct mips_opcode *mo)
2240 int isa = mips_opts.isa;
2243 if (mips_opts.ase_mdmx)
2245 if (mips_opts.ase_dsp)
2247 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
2249 if (mips_opts.ase_dspr2)
2251 if (mips_opts.ase_mt)
2253 if (mips_opts.ase_mips3d)
2255 if (mips_opts.ase_smartmips)
2256 isa |= INSN_SMARTMIPS;
2257 if (mips_opts.ase_mcu)
2260 if (!opcode_is_member (mo, isa, mips_opts.arch))
2263 /* Check whether the instruction or macro requires single-precision or
2264 double-precision floating-point support. Note that this information is
2265 stored differently in the opcode table for insns and macros. */
2266 if (mo->pinfo == INSN_MACRO)
2268 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2269 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2273 fp_s = mo->pinfo & FP_S;
2274 fp_d = mo->pinfo & FP_D;
2277 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2280 if (fp_s && mips_opts.soft_float)
2286 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2287 selected ISA and architecture. */
2290 is_opcode_valid_16 (const struct mips_opcode *mo)
2292 return opcode_is_member (mo, mips_opts.isa, mips_opts.arch);
2295 /* Return TRUE if the size of the microMIPS opcode MO matches one
2296 explicitly requested. Always TRUE in the standard MIPS mode. */
2299 is_size_valid (const struct mips_opcode *mo)
2301 if (!mips_opts.micromips)
2304 if (!forced_insn_length)
2306 if (mo->pinfo == INSN_MACRO)
2308 return forced_insn_length == micromips_insn_length (mo);
2311 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2312 of the preceding instruction. Always TRUE in the standard MIPS mode.
2314 We don't accept macros in 16-bit delay slots to avoid a case where
2315 a macro expansion fails because it relies on a preceding 32-bit real
2316 instruction to have matched and does not handle the operands correctly.
2317 The only macros that may expand to 16-bit instructions are JAL that
2318 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2319 and BGT (that likewise cannot be placed in a delay slot) that decay to
2320 a NOP. In all these cases the macros precede any corresponding real
2321 instruction definitions in the opcode table, so they will match in the
2322 second pass where the size of the delay slot is ignored and therefore
2323 produce correct code. */
2326 is_delay_slot_valid (const struct mips_opcode *mo)
2328 if (!mips_opts.micromips)
2331 if (mo->pinfo == INSN_MACRO)
2332 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2333 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2334 && micromips_insn_length (mo) != 4)
2336 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2337 && micromips_insn_length (mo) != 2)
2343 /* This function is called once, at assembler startup time. It should set up
2344 all the tables, etc. that the MD part of the assembler will need. */
2349 const char *retval = NULL;
2353 if (mips_pic != NO_PIC)
2355 if (g_switch_seen && g_switch_value != 0)
2356 as_bad (_("-G may not be used in position-independent code"));
2360 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2361 as_warn (_("Could not set architecture and machine"));
2363 op_hash = hash_new ();
2365 for (i = 0; i < NUMOPCODES;)
2367 const char *name = mips_opcodes[i].name;
2369 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2372 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2373 mips_opcodes[i].name, retval);
2374 /* Probably a memory allocation problem? Give up now. */
2375 as_fatal (_("Broken assembler. No assembly attempted."));
2379 if (mips_opcodes[i].pinfo != INSN_MACRO)
2381 if (!validate_mips_insn (&mips_opcodes[i]))
2383 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2385 create_insn (&nop_insn, mips_opcodes + i);
2386 if (mips_fix_loongson2f_nop)
2387 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2388 nop_insn.fixed_p = 1;
2393 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2396 mips16_op_hash = hash_new ();
2399 while (i < bfd_mips16_num_opcodes)
2401 const char *name = mips16_opcodes[i].name;
2403 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2405 as_fatal (_("internal: can't hash `%s': %s"),
2406 mips16_opcodes[i].name, retval);
2409 if (mips16_opcodes[i].pinfo != INSN_MACRO
2410 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2411 != mips16_opcodes[i].match))
2413 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2414 mips16_opcodes[i].name, mips16_opcodes[i].args);
2417 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2419 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2420 mips16_nop_insn.fixed_p = 1;
2424 while (i < bfd_mips16_num_opcodes
2425 && strcmp (mips16_opcodes[i].name, name) == 0);
2428 micromips_op_hash = hash_new ();
2431 while (i < bfd_micromips_num_opcodes)
2433 const char *name = micromips_opcodes[i].name;
2435 retval = hash_insert (micromips_op_hash, name,
2436 (void *) µmips_opcodes[i]);
2438 as_fatal (_("internal: can't hash `%s': %s"),
2439 micromips_opcodes[i].name, retval);
2441 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2443 struct mips_cl_insn *micromips_nop_insn;
2445 if (!validate_micromips_insn (µmips_opcodes[i]))
2448 if (micromips_insn_length (micromips_opcodes + i) == 2)
2449 micromips_nop_insn = µmips_nop16_insn;
2450 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2451 micromips_nop_insn = µmips_nop32_insn;
2455 if (micromips_nop_insn->insn_mo == NULL
2456 && strcmp (name, "nop") == 0)
2458 create_insn (micromips_nop_insn, micromips_opcodes + i);
2459 micromips_nop_insn->fixed_p = 1;
2462 while (++i < bfd_micromips_num_opcodes
2463 && strcmp (micromips_opcodes[i].name, name) == 0);
2467 as_fatal (_("Broken assembler. No assembly attempted."));
2469 /* We add all the general register names to the symbol table. This
2470 helps us detect invalid uses of them. */
2471 for (i = 0; reg_names[i].name; i++)
2472 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2473 reg_names[i].num, /* & RNUM_MASK, */
2474 &zero_address_frag));
2476 for (i = 0; reg_names_n32n64[i].name; i++)
2477 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2478 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2479 &zero_address_frag));
2481 for (i = 0; reg_names_o32[i].name; i++)
2482 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2483 reg_names_o32[i].num, /* & RNUM_MASK, */
2484 &zero_address_frag));
2486 mips_no_prev_insn ();
2489 mips_cprmask[0] = 0;
2490 mips_cprmask[1] = 0;
2491 mips_cprmask[2] = 0;
2492 mips_cprmask[3] = 0;
2494 /* set the default alignment for the text section (2**2) */
2495 record_alignment (text_section, 2);
2497 bfd_set_gp_size (stdoutput, g_switch_value);
2502 /* On a native system other than VxWorks, sections must be aligned
2503 to 16 byte boundaries. When configured for an embedded ELF
2504 target, we don't bother. */
2505 if (strncmp (TARGET_OS, "elf", 3) != 0
2506 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2508 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2509 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2510 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2513 /* Create a .reginfo section for register masks and a .mdebug
2514 section for debugging information. */
2522 subseg = now_subseg;
2524 /* The ABI says this section should be loaded so that the
2525 running program can access it. However, we don't load it
2526 if we are configured for an embedded target */
2527 flags = SEC_READONLY | SEC_DATA;
2528 if (strncmp (TARGET_OS, "elf", 3) != 0)
2529 flags |= SEC_ALLOC | SEC_LOAD;
2531 if (mips_abi != N64_ABI)
2533 sec = subseg_new (".reginfo", (subsegT) 0);
2535 bfd_set_section_flags (stdoutput, sec, flags);
2536 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2538 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2542 /* The 64-bit ABI uses a .MIPS.options section rather than
2543 .reginfo section. */
2544 sec = subseg_new (".MIPS.options", (subsegT) 0);
2545 bfd_set_section_flags (stdoutput, sec, flags);
2546 bfd_set_section_alignment (stdoutput, sec, 3);
2548 /* Set up the option header. */
2550 Elf_Internal_Options opthdr;
2553 opthdr.kind = ODK_REGINFO;
2554 opthdr.size = (sizeof (Elf_External_Options)
2555 + sizeof (Elf64_External_RegInfo));
2558 f = frag_more (sizeof (Elf_External_Options));
2559 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2560 (Elf_External_Options *) f);
2562 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2566 if (ECOFF_DEBUGGING)
2568 sec = subseg_new (".mdebug", (subsegT) 0);
2569 (void) bfd_set_section_flags (stdoutput, sec,
2570 SEC_HAS_CONTENTS | SEC_READONLY);
2571 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2573 else if (mips_flag_pdr)
2575 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2576 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2577 SEC_READONLY | SEC_RELOC
2579 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2582 subseg_set (seg, subseg);
2585 #endif /* OBJ_ELF */
2587 if (! ECOFF_DEBUGGING)
2590 if (mips_fix_vr4120)
2591 init_vr4120_conflicts ();
2597 mips_emit_delays ();
2598 if (! ECOFF_DEBUGGING)
2603 md_assemble (char *str)
2605 struct mips_cl_insn insn;
2606 bfd_reloc_code_real_type unused_reloc[3]
2607 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2609 imm_expr.X_op = O_absent;
2610 imm2_expr.X_op = O_absent;
2611 offset_expr.X_op = O_absent;
2612 imm_reloc[0] = BFD_RELOC_UNUSED;
2613 imm_reloc[1] = BFD_RELOC_UNUSED;
2614 imm_reloc[2] = BFD_RELOC_UNUSED;
2615 offset_reloc[0] = BFD_RELOC_UNUSED;
2616 offset_reloc[1] = BFD_RELOC_UNUSED;
2617 offset_reloc[2] = BFD_RELOC_UNUSED;
2619 mips_mark_labels ();
2620 mips_assembling_insn = TRUE;
2622 if (mips_opts.mips16)
2623 mips16_ip (str, &insn);
2626 mips_ip (str, &insn);
2627 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2628 str, insn.insn_opcode));
2632 as_bad ("%s `%s'", insn_error, str);
2633 else if (insn.insn_mo->pinfo == INSN_MACRO)
2636 if (mips_opts.mips16)
2637 mips16_macro (&insn);
2644 if (imm_expr.X_op != O_absent)
2645 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2646 else if (offset_expr.X_op != O_absent)
2647 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2649 append_insn (&insn, NULL, unused_reloc, FALSE);
2652 mips_assembling_insn = FALSE;
2655 /* Convenience functions for abstracting away the differences between
2656 MIPS16 and non-MIPS16 relocations. */
2658 static inline bfd_boolean
2659 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2663 case BFD_RELOC_MIPS16_JMP:
2664 case BFD_RELOC_MIPS16_GPREL:
2665 case BFD_RELOC_MIPS16_GOT16:
2666 case BFD_RELOC_MIPS16_CALL16:
2667 case BFD_RELOC_MIPS16_HI16_S:
2668 case BFD_RELOC_MIPS16_HI16:
2669 case BFD_RELOC_MIPS16_LO16:
2677 static inline bfd_boolean
2678 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2682 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2683 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2684 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2685 case BFD_RELOC_MICROMIPS_GPREL16:
2686 case BFD_RELOC_MICROMIPS_JMP:
2687 case BFD_RELOC_MICROMIPS_HI16:
2688 case BFD_RELOC_MICROMIPS_HI16_S:
2689 case BFD_RELOC_MICROMIPS_LO16:
2690 case BFD_RELOC_MICROMIPS_LITERAL:
2691 case BFD_RELOC_MICROMIPS_GOT16:
2692 case BFD_RELOC_MICROMIPS_CALL16:
2693 case BFD_RELOC_MICROMIPS_GOT_HI16:
2694 case BFD_RELOC_MICROMIPS_GOT_LO16:
2695 case BFD_RELOC_MICROMIPS_CALL_HI16:
2696 case BFD_RELOC_MICROMIPS_CALL_LO16:
2697 case BFD_RELOC_MICROMIPS_SUB:
2698 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2699 case BFD_RELOC_MICROMIPS_GOT_OFST:
2700 case BFD_RELOC_MICROMIPS_GOT_DISP:
2701 case BFD_RELOC_MICROMIPS_HIGHEST:
2702 case BFD_RELOC_MICROMIPS_HIGHER:
2703 case BFD_RELOC_MICROMIPS_SCN_DISP:
2704 case BFD_RELOC_MICROMIPS_JALR:
2712 static inline bfd_boolean
2713 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2715 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2718 static inline bfd_boolean
2719 got16_reloc_p (bfd_reloc_code_real_type reloc)
2721 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2722 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2725 static inline bfd_boolean
2726 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2728 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2729 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2732 static inline bfd_boolean
2733 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2735 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2736 || reloc == BFD_RELOC_MICROMIPS_LO16);
2739 static inline bfd_boolean
2740 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2742 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2745 /* Return true if the given relocation might need a matching %lo().
2746 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2747 need a matching %lo() when applied to local symbols. */
2749 static inline bfd_boolean
2750 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2752 return (HAVE_IN_PLACE_ADDENDS
2753 && (hi16_reloc_p (reloc)
2754 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2755 all GOT16 relocations evaluate to "G". */
2756 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2759 /* Return the type of %lo() reloc needed by RELOC, given that
2760 reloc_needs_lo_p. */
2762 static inline bfd_reloc_code_real_type
2763 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2765 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2766 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2770 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2773 static inline bfd_boolean
2774 fixup_has_matching_lo_p (fixS *fixp)
2776 return (fixp->fx_next != NULL
2777 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2778 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2779 && fixp->fx_offset == fixp->fx_next->fx_offset);
2782 /* This function returns true if modifying a register requires a
2786 reg_needs_delay (unsigned int reg)
2788 unsigned long prev_pinfo;
2790 prev_pinfo = history[0].insn_mo->pinfo;
2791 if (! mips_opts.noreorder
2792 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2793 && ! gpr_interlocks)
2794 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2795 && ! cop_interlocks)))
2797 /* A load from a coprocessor or from memory. All load delays
2798 delay the use of general register rt for one instruction. */
2799 /* Itbl support may require additional care here. */
2800 know (prev_pinfo & INSN_WRITE_GPR_T);
2801 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
2808 /* Move all labels in LABELS to the current insertion point. TEXT_P
2809 says whether the labels refer to text or data. */
2812 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
2814 struct insn_label_list *l;
2817 for (l = labels; l != NULL; l = l->next)
2819 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2820 symbol_set_frag (l->label, frag_now);
2821 val = (valueT) frag_now_fix ();
2822 /* MIPS16/microMIPS text labels are stored as odd. */
2823 if (text_p && HAVE_CODE_COMPRESSION)
2825 S_SET_VALUE (l->label, val);
2829 /* Move all labels in insn_labels to the current insertion point
2830 and treat them as text labels. */
2833 mips_move_text_labels (void)
2835 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
2839 s_is_linkonce (symbolS *sym, segT from_seg)
2841 bfd_boolean linkonce = FALSE;
2842 segT symseg = S_GET_SEGMENT (sym);
2844 if (symseg != from_seg && !S_IS_LOCAL (sym))
2846 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2849 /* The GNU toolchain uses an extension for ELF: a section
2850 beginning with the magic string .gnu.linkonce is a
2851 linkonce section. */
2852 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2853 sizeof ".gnu.linkonce" - 1) == 0)
2860 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
2861 linker to handle them specially, such as generating jalx instructions
2862 when needed. We also make them odd for the duration of the assembly,
2863 in order to generate the right sort of code. We will make them even
2864 in the adjust_symtab routine, while leaving them marked. This is
2865 convenient for the debugger and the disassembler. The linker knows
2866 to make them odd again. */
2869 mips_compressed_mark_label (symbolS *label)
2871 gas_assert (HAVE_CODE_COMPRESSION);
2873 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2876 if (mips_opts.mips16)
2877 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2879 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
2882 if ((S_GET_VALUE (label) & 1) == 0
2883 /* Don't adjust the address if the label is global or weak, or
2884 in a link-once section, since we'll be emitting symbol reloc
2885 references to it which will be patched up by the linker, and
2886 the final value of the symbol may or may not be MIPS16/microMIPS. */
2887 && !S_IS_WEAK (label)
2888 && !S_IS_EXTERNAL (label)
2889 && !s_is_linkonce (label, now_seg))
2890 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2893 /* Mark preceding MIPS16 or microMIPS instruction labels. */
2896 mips_compressed_mark_labels (void)
2898 struct insn_label_list *l;
2900 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
2901 mips_compressed_mark_label (l->label);
2904 /* End the current frag. Make it a variant frag and record the
2908 relax_close_frag (void)
2910 mips_macro_warning.first_frag = frag_now;
2911 frag_var (rs_machine_dependent, 0, 0,
2912 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2913 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2915 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2916 mips_relax.first_fixup = 0;
2919 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2920 See the comment above RELAX_ENCODE for more details. */
2923 relax_start (symbolS *symbol)
2925 gas_assert (mips_relax.sequence == 0);
2926 mips_relax.sequence = 1;
2927 mips_relax.symbol = symbol;
2930 /* Start generating the second version of a relaxable sequence.
2931 See the comment above RELAX_ENCODE for more details. */
2936 gas_assert (mips_relax.sequence == 1);
2937 mips_relax.sequence = 2;
2940 /* End the current relaxable sequence. */
2945 gas_assert (mips_relax.sequence == 2);
2946 relax_close_frag ();
2947 mips_relax.sequence = 0;
2950 /* Return true if IP is a delayed branch or jump. */
2952 static inline bfd_boolean
2953 delayed_branch_p (const struct mips_cl_insn *ip)
2955 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2956 | INSN_COND_BRANCH_DELAY
2957 | INSN_COND_BRANCH_LIKELY)) != 0;
2960 /* Return true if IP is a compact branch or jump. */
2962 static inline bfd_boolean
2963 compact_branch_p (const struct mips_cl_insn *ip)
2965 if (mips_opts.mips16)
2966 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2967 | MIPS16_INSN_COND_BRANCH)) != 0;
2969 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
2970 | INSN2_COND_BRANCH)) != 0;
2973 /* Return true if IP is an unconditional branch or jump. */
2975 static inline bfd_boolean
2976 uncond_branch_p (const struct mips_cl_insn *ip)
2978 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
2979 || (mips_opts.mips16
2980 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
2981 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
2984 /* Return true if IP is a branch-likely instruction. */
2986 static inline bfd_boolean
2987 branch_likely_p (const struct mips_cl_insn *ip)
2989 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
2992 /* Return the type of nop that should be used to fill the delay slot
2993 of delayed branch IP. */
2995 static struct mips_cl_insn *
2996 get_delay_slot_nop (const struct mips_cl_insn *ip)
2998 if (mips_opts.micromips
2999 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3000 return µmips_nop32_insn;
3004 /* Return the mask of core registers that IP reads or writes. */
3007 gpr_mod_mask (const struct mips_cl_insn *ip)
3009 unsigned long pinfo2;
3013 pinfo2 = ip->insn_mo->pinfo2;
3014 if (mips_opts.micromips)
3016 if (pinfo2 & INSN2_MOD_GPR_MD)
3017 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3018 if (pinfo2 & INSN2_MOD_GPR_MF)
3019 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3020 if (pinfo2 & INSN2_MOD_SP)
3026 /* Return the mask of core registers that IP reads. */
3029 gpr_read_mask (const struct mips_cl_insn *ip)
3031 unsigned long pinfo, pinfo2;
3034 mask = gpr_mod_mask (ip);
3035 pinfo = ip->insn_mo->pinfo;
3036 pinfo2 = ip->insn_mo->pinfo2;
3037 if (mips_opts.mips16)
3039 if (pinfo & MIPS16_INSN_READ_X)
3040 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3041 if (pinfo & MIPS16_INSN_READ_Y)
3042 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3043 if (pinfo & MIPS16_INSN_READ_T)
3045 if (pinfo & MIPS16_INSN_READ_SP)
3047 if (pinfo & MIPS16_INSN_READ_31)
3049 if (pinfo & MIPS16_INSN_READ_Z)
3050 mask |= 1 << (mips16_to_32_reg_map
3051 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3052 if (pinfo & MIPS16_INSN_READ_GPR_X)
3053 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3057 if (pinfo2 & INSN2_READ_GPR_D)
3058 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3059 if (pinfo & INSN_READ_GPR_T)
3060 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3061 if (pinfo & INSN_READ_GPR_S)
3062 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3063 if (pinfo2 & INSN2_READ_GP)
3065 if (pinfo2 & INSN2_READ_GPR_31)
3067 if (pinfo2 & INSN2_READ_GPR_Z)
3068 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3070 if (mips_opts.micromips)
3072 if (pinfo2 & INSN2_READ_GPR_MC)
3073 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3074 if (pinfo2 & INSN2_READ_GPR_ME)
3075 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3076 if (pinfo2 & INSN2_READ_GPR_MG)
3077 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3078 if (pinfo2 & INSN2_READ_GPR_MJ)
3079 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3080 if (pinfo2 & INSN2_READ_GPR_MMN)
3082 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3083 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3085 if (pinfo2 & INSN2_READ_GPR_MP)
3086 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3087 if (pinfo2 & INSN2_READ_GPR_MQ)
3088 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3090 /* Don't include register 0. */
3094 /* Return the mask of core registers that IP writes. */
3097 gpr_write_mask (const struct mips_cl_insn *ip)
3099 unsigned long pinfo, pinfo2;
3102 mask = gpr_mod_mask (ip);
3103 pinfo = ip->insn_mo->pinfo;
3104 pinfo2 = ip->insn_mo->pinfo2;
3105 if (mips_opts.mips16)
3107 if (pinfo & MIPS16_INSN_WRITE_X)
3108 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3109 if (pinfo & MIPS16_INSN_WRITE_Y)
3110 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3111 if (pinfo & MIPS16_INSN_WRITE_Z)
3112 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3113 if (pinfo & MIPS16_INSN_WRITE_T)
3115 if (pinfo & MIPS16_INSN_WRITE_SP)
3117 if (pinfo & MIPS16_INSN_WRITE_31)
3119 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3120 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3124 if (pinfo & INSN_WRITE_GPR_D)
3125 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3126 if (pinfo & INSN_WRITE_GPR_T)
3127 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3128 if (pinfo & INSN_WRITE_GPR_S)
3129 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3130 if (pinfo & INSN_WRITE_GPR_31)
3132 if (pinfo2 & INSN2_WRITE_GPR_Z)
3133 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3135 if (mips_opts.micromips)
3137 if (pinfo2 & INSN2_WRITE_GPR_MB)
3138 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3139 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3141 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3142 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3144 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3145 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3146 if (pinfo2 & INSN2_WRITE_GPR_MP)
3147 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3149 /* Don't include register 0. */
3153 /* Return the mask of floating-point registers that IP reads. */
3156 fpr_read_mask (const struct mips_cl_insn *ip)
3158 unsigned long pinfo, pinfo2;
3162 pinfo = ip->insn_mo->pinfo;
3163 pinfo2 = ip->insn_mo->pinfo2;
3164 if (!mips_opts.mips16)
3166 if (pinfo2 & INSN2_READ_FPR_D)
3167 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3168 if (pinfo & INSN_READ_FPR_S)
3169 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3170 if (pinfo & INSN_READ_FPR_T)
3171 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3172 if (pinfo & INSN_READ_FPR_R)
3173 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3174 if (pinfo2 & INSN2_READ_FPR_Z)
3175 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3177 /* Conservatively treat all operands to an FP_D instruction are doubles.
3178 (This is overly pessimistic for things like cvt.d.s.) */
3179 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3184 /* Return the mask of floating-point registers that IP writes. */
3187 fpr_write_mask (const struct mips_cl_insn *ip)
3189 unsigned long pinfo, pinfo2;
3193 pinfo = ip->insn_mo->pinfo;
3194 pinfo2 = ip->insn_mo->pinfo2;
3195 if (!mips_opts.mips16)
3197 if (pinfo & INSN_WRITE_FPR_D)
3198 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3199 if (pinfo & INSN_WRITE_FPR_S)
3200 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3201 if (pinfo & INSN_WRITE_FPR_T)
3202 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3203 if (pinfo2 & INSN2_WRITE_FPR_Z)
3204 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3206 /* Conservatively treat all operands to an FP_D instruction are doubles.
3207 (This is overly pessimistic for things like cvt.s.d.) */
3208 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3213 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3214 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3215 by VR4120 errata. */
3218 classify_vr4120_insn (const char *name)
3220 if (strncmp (name, "macc", 4) == 0)
3221 return FIX_VR4120_MACC;
3222 if (strncmp (name, "dmacc", 5) == 0)
3223 return FIX_VR4120_DMACC;
3224 if (strncmp (name, "mult", 4) == 0)
3225 return FIX_VR4120_MULT;
3226 if (strncmp (name, "dmult", 5) == 0)
3227 return FIX_VR4120_DMULT;
3228 if (strstr (name, "div"))
3229 return FIX_VR4120_DIV;
3230 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3231 return FIX_VR4120_MTHILO;
3232 return NUM_FIX_VR4120_CLASSES;
3235 #define INSN_ERET 0x42000018
3236 #define INSN_DERET 0x4200001f
3238 /* Return the number of instructions that must separate INSN1 and INSN2,
3239 where INSN1 is the earlier instruction. Return the worst-case value
3240 for any INSN2 if INSN2 is null. */
3243 insns_between (const struct mips_cl_insn *insn1,
3244 const struct mips_cl_insn *insn2)
3246 unsigned long pinfo1, pinfo2;
3249 /* This function needs to know which pinfo flags are set for INSN2
3250 and which registers INSN2 uses. The former is stored in PINFO2 and
3251 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3252 will have every flag set and INSN2_USES_GPR will always return true. */
3253 pinfo1 = insn1->insn_mo->pinfo;
3254 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3256 #define INSN2_USES_GPR(REG) \
3257 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3259 /* For most targets, write-after-read dependencies on the HI and LO
3260 registers must be separated by at least two instructions. */
3261 if (!hilo_interlocks)
3263 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3265 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3269 /* If we're working around r7000 errata, there must be two instructions
3270 between an mfhi or mflo and any instruction that uses the result. */
3271 if (mips_7000_hilo_fix
3272 && !mips_opts.micromips
3273 && MF_HILO_INSN (pinfo1)
3274 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3277 /* If we're working around 24K errata, one instruction is required
3278 if an ERET or DERET is followed by a branch instruction. */
3279 if (mips_fix_24k && !mips_opts.micromips)
3281 if (insn1->insn_opcode == INSN_ERET
3282 || insn1->insn_opcode == INSN_DERET)
3285 || insn2->insn_opcode == INSN_ERET
3286 || insn2->insn_opcode == INSN_DERET
3287 || delayed_branch_p (insn2))
3292 /* If working around VR4120 errata, check for combinations that need
3293 a single intervening instruction. */
3294 if (mips_fix_vr4120 && !mips_opts.micromips)
3296 unsigned int class1, class2;
3298 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3299 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3303 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3304 if (vr4120_conflicts[class1] & (1 << class2))
3309 if (!HAVE_CODE_COMPRESSION)
3311 /* Check for GPR or coprocessor load delays. All such delays
3312 are on the RT register. */
3313 /* Itbl support may require additional care here. */
3314 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3315 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3317 know (pinfo1 & INSN_WRITE_GPR_T);
3318 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3322 /* Check for generic coprocessor hazards.
3324 This case is not handled very well. There is no special
3325 knowledge of CP0 handling, and the coprocessors other than
3326 the floating point unit are not distinguished at all. */
3327 /* Itbl support may require additional care here. FIXME!
3328 Need to modify this to include knowledge about
3329 user specified delays! */
3330 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3331 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3333 /* Handle cases where INSN1 writes to a known general coprocessor
3334 register. There must be a one instruction delay before INSN2
3335 if INSN2 reads that register, otherwise no delay is needed. */
3336 mask = fpr_write_mask (insn1);
3339 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3344 /* Read-after-write dependencies on the control registers
3345 require a two-instruction gap. */
3346 if ((pinfo1 & INSN_WRITE_COND_CODE)
3347 && (pinfo2 & INSN_READ_COND_CODE))
3350 /* We don't know exactly what INSN1 does. If INSN2 is
3351 also a coprocessor instruction, assume there must be
3352 a one instruction gap. */
3353 if (pinfo2 & INSN_COP)
3358 /* Check for read-after-write dependencies on the coprocessor
3359 control registers in cases where INSN1 does not need a general
3360 coprocessor delay. This means that INSN1 is a floating point
3361 comparison instruction. */
3362 /* Itbl support may require additional care here. */
3363 else if (!cop_interlocks
3364 && (pinfo1 & INSN_WRITE_COND_CODE)
3365 && (pinfo2 & INSN_READ_COND_CODE))
3369 #undef INSN2_USES_GPR
3374 /* Return the number of nops that would be needed to work around the
3375 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3376 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3377 that are contained within the first IGNORE instructions of HIST. */
3380 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3381 const struct mips_cl_insn *insn)
3386 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3387 are not affected by the errata. */
3389 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3390 || strcmp (insn->insn_mo->name, "mtlo") == 0
3391 || strcmp (insn->insn_mo->name, "mthi") == 0))
3394 /* Search for the first MFLO or MFHI. */
3395 for (i = 0; i < MAX_VR4130_NOPS; i++)
3396 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3398 /* Extract the destination register. */
3399 mask = gpr_write_mask (&hist[i]);
3401 /* No nops are needed if INSN reads that register. */
3402 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3405 /* ...or if any of the intervening instructions do. */
3406 for (j = 0; j < i; j++)
3407 if (gpr_read_mask (&hist[j]) & mask)
3411 return MAX_VR4130_NOPS - i;
3416 #define BASE_REG_EQ(INSN1, INSN2) \
3417 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3418 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3420 /* Return the minimum alignment for this store instruction. */
3423 fix_24k_align_to (const struct mips_opcode *mo)
3425 if (strcmp (mo->name, "sh") == 0)
3428 if (strcmp (mo->name, "swc1") == 0
3429 || strcmp (mo->name, "swc2") == 0
3430 || strcmp (mo->name, "sw") == 0
3431 || strcmp (mo->name, "sc") == 0
3432 || strcmp (mo->name, "s.s") == 0)
3435 if (strcmp (mo->name, "sdc1") == 0
3436 || strcmp (mo->name, "sdc2") == 0
3437 || strcmp (mo->name, "s.d") == 0)
3444 struct fix_24k_store_info
3446 /* Immediate offset, if any, for this store instruction. */
3448 /* Alignment required by this store instruction. */
3450 /* True for register offsets. */
3451 int register_offset;
3454 /* Comparison function used by qsort. */
3457 fix_24k_sort (const void *a, const void *b)
3459 const struct fix_24k_store_info *pos1 = a;
3460 const struct fix_24k_store_info *pos2 = b;
3462 return (pos1->off - pos2->off);
3465 /* INSN is a store instruction. Try to record the store information
3466 in STINFO. Return false if the information isn't known. */
3469 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3470 const struct mips_cl_insn *insn)
3472 /* The instruction must have a known offset. */
3473 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3476 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3477 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3481 /* Return the number of nops that would be needed to work around the 24k
3482 "lost data on stores during refill" errata if instruction INSN
3483 immediately followed the 2 instructions described by HIST.
3484 Ignore hazards that are contained within the first IGNORE
3485 instructions of HIST.
3487 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3488 for the data cache refills and store data. The following describes
3489 the scenario where the store data could be lost.
3491 * A data cache miss, due to either a load or a store, causing fill
3492 data to be supplied by the memory subsystem
3493 * The first three doublewords of fill data are returned and written
3495 * A sequence of four stores occurs in consecutive cycles around the
3496 final doubleword of the fill:
3500 * Zero, One or more instructions
3503 The four stores A-D must be to different doublewords of the line that
3504 is being filled. The fourth instruction in the sequence above permits
3505 the fill of the final doubleword to be transferred from the FSB into
3506 the cache. In the sequence above, the stores may be either integer
3507 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3508 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3509 different doublewords on the line. If the floating point unit is
3510 running in 1:2 mode, it is not possible to create the sequence above
3511 using only floating point store instructions.
3513 In this case, the cache line being filled is incorrectly marked
3514 invalid, thereby losing the data from any store to the line that
3515 occurs between the original miss and the completion of the five
3516 cycle sequence shown above.
3518 The workarounds are:
3520 * Run the data cache in write-through mode.
3521 * Insert a non-store instruction between
3522 Store A and Store B or Store B and Store C. */
3525 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3526 const struct mips_cl_insn *insn)
3528 struct fix_24k_store_info pos[3];
3529 int align, i, base_offset;
3534 /* If the previous instruction wasn't a store, there's nothing to
3536 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3539 /* If the instructions after the previous one are unknown, we have
3540 to assume the worst. */
3544 /* Check whether we are dealing with three consecutive stores. */
3545 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3546 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3549 /* If we don't know the relationship between the store addresses,
3550 assume the worst. */
3551 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3552 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3555 if (!fix_24k_record_store_info (&pos[0], insn)
3556 || !fix_24k_record_store_info (&pos[1], &hist[0])
3557 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3560 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3562 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3563 X bytes and such that the base register + X is known to be aligned
3566 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3570 align = pos[0].align_to;
3571 base_offset = pos[0].off;
3572 for (i = 1; i < 3; i++)
3573 if (align < pos[i].align_to)
3575 align = pos[i].align_to;
3576 base_offset = pos[i].off;
3578 for (i = 0; i < 3; i++)
3579 pos[i].off -= base_offset;
3582 pos[0].off &= ~align + 1;
3583 pos[1].off &= ~align + 1;
3584 pos[2].off &= ~align + 1;
3586 /* If any two stores write to the same chunk, they also write to the
3587 same doubleword. The offsets are still sorted at this point. */
3588 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3591 /* A range of at least 9 bytes is needed for the stores to be in
3592 non-overlapping doublewords. */
3593 if (pos[2].off - pos[0].off <= 8)
3596 if (pos[2].off - pos[1].off >= 24
3597 || pos[1].off - pos[0].off >= 24
3598 || pos[2].off - pos[0].off >= 32)
3604 /* Return the number of nops that would be needed if instruction INSN
3605 immediately followed the MAX_NOPS instructions given by HIST,
3606 where HIST[0] is the most recent instruction. Ignore hazards
3607 between INSN and the first IGNORE instructions in HIST.
3609 If INSN is null, return the worse-case number of nops for any
3613 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3614 const struct mips_cl_insn *insn)
3616 int i, nops, tmp_nops;
3619 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3621 tmp_nops = insns_between (hist + i, insn) - i;
3622 if (tmp_nops > nops)
3626 if (mips_fix_vr4130 && !mips_opts.micromips)
3628 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3629 if (tmp_nops > nops)
3633 if (mips_fix_24k && !mips_opts.micromips)
3635 tmp_nops = nops_for_24k (ignore, hist, insn);
3636 if (tmp_nops > nops)
3643 /* The variable arguments provide NUM_INSNS extra instructions that
3644 might be added to HIST. Return the largest number of nops that
3645 would be needed after the extended sequence, ignoring hazards
3646 in the first IGNORE instructions. */
3649 nops_for_sequence (int num_insns, int ignore,
3650 const struct mips_cl_insn *hist, ...)
3653 struct mips_cl_insn buffer[MAX_NOPS];
3654 struct mips_cl_insn *cursor;
3657 va_start (args, hist);
3658 cursor = buffer + num_insns;
3659 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3660 while (cursor > buffer)
3661 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3663 nops = nops_for_insn (ignore, buffer, NULL);
3668 /* Like nops_for_insn, but if INSN is a branch, take into account the
3669 worst-case delay for the branch target. */
3672 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3673 const struct mips_cl_insn *insn)
3677 nops = nops_for_insn (ignore, hist, insn);
3678 if (delayed_branch_p (insn))
3680 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3681 hist, insn, get_delay_slot_nop (insn));
3682 if (tmp_nops > nops)
3685 else if (compact_branch_p (insn))
3687 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3688 if (tmp_nops > nops)
3694 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3697 fix_loongson2f_nop (struct mips_cl_insn * ip)
3699 gas_assert (!HAVE_CODE_COMPRESSION);
3700 if (strcmp (ip->insn_mo->name, "nop") == 0)
3701 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3704 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3705 jr target pc &= 'hffff_ffff_cfff_ffff. */
3708 fix_loongson2f_jump (struct mips_cl_insn * ip)
3710 gas_assert (!HAVE_CODE_COMPRESSION);
3711 if (strcmp (ip->insn_mo->name, "j") == 0
3712 || strcmp (ip->insn_mo->name, "jr") == 0
3713 || strcmp (ip->insn_mo->name, "jalr") == 0)
3721 sreg = EXTRACT_OPERAND (0, RS, *ip);
3722 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3725 ep.X_op = O_constant;
3726 ep.X_add_number = 0xcfff0000;
3727 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3728 ep.X_add_number = 0xffff;
3729 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3730 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3735 fix_loongson2f (struct mips_cl_insn * ip)
3737 if (mips_fix_loongson2f_nop)
3738 fix_loongson2f_nop (ip);
3740 if (mips_fix_loongson2f_jump)
3741 fix_loongson2f_jump (ip);
3744 /* IP is a branch that has a delay slot, and we need to fill it
3745 automatically. Return true if we can do that by swapping IP
3746 with the previous instruction.
3747 ADDRESS_EXPR is an operand of the instruction to be used with
3751 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
3752 bfd_reloc_code_real_type *reloc_type)
3754 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3755 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3757 /* -O2 and above is required for this optimization. */
3758 if (mips_optimize < 2)
3761 /* If we have seen .set volatile or .set nomove, don't optimize. */
3762 if (mips_opts.nomove)
3765 /* We can't swap if the previous instruction's position is fixed. */
3766 if (history[0].fixed_p)
3769 /* If the previous previous insn was in a .set noreorder, we can't
3770 swap. Actually, the MIPS assembler will swap in this situation.
3771 However, gcc configured -with-gnu-as will generate code like
3779 in which we can not swap the bne and INSN. If gcc is not configured
3780 -with-gnu-as, it does not output the .set pseudo-ops. */
3781 if (history[1].noreorder_p)
3784 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
3785 This means that the previous instruction was a 4-byte one anyhow. */
3786 if (mips_opts.mips16 && history[0].fixp[0])
3789 /* If the branch is itself the target of a branch, we can not swap.
3790 We cheat on this; all we check for is whether there is a label on
3791 this instruction. If there are any branches to anything other than
3792 a label, users must use .set noreorder. */
3793 if (seg_info (now_seg)->label_list)
3796 /* If the previous instruction is in a variant frag other than this
3797 branch's one, we cannot do the swap. This does not apply to
3798 MIPS16 code, which uses variant frags for different purposes. */
3799 if (!mips_opts.mips16
3801 && history[0].frag->fr_type == rs_machine_dependent)
3804 /* We do not swap with instructions that cannot architecturally
3805 be placed in a branch delay slot, such as SYNC or ERET. We
3806 also refrain from swapping with a trap instruction, since it
3807 complicates trap handlers to have the trap instruction be in
3809 prev_pinfo = history[0].insn_mo->pinfo;
3810 if (prev_pinfo & INSN_NO_DELAY_SLOT)
3813 /* Check for conflicts between the branch and the instructions
3814 before the candidate delay slot. */
3815 if (nops_for_insn (0, history + 1, ip) > 0)
3818 /* Check for conflicts between the swapped sequence and the
3819 target of the branch. */
3820 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
3823 /* If the branch reads a register that the previous
3824 instruction sets, we can not swap. */
3825 gpr_read = gpr_read_mask (ip);
3826 prev_gpr_write = gpr_write_mask (&history[0]);
3827 if (gpr_read & prev_gpr_write)
3830 /* If the branch writes a register that the previous
3831 instruction sets, we can not swap. */
3832 gpr_write = gpr_write_mask (ip);
3833 if (gpr_write & prev_gpr_write)
3836 /* If the branch writes a register that the previous
3837 instruction reads, we can not swap. */
3838 prev_gpr_read = gpr_read_mask (&history[0]);
3839 if (gpr_write & prev_gpr_read)
3842 /* If one instruction sets a condition code and the
3843 other one uses a condition code, we can not swap. */
3844 pinfo = ip->insn_mo->pinfo;
3845 if ((pinfo & INSN_READ_COND_CODE)
3846 && (prev_pinfo & INSN_WRITE_COND_CODE))
3848 if ((pinfo & INSN_WRITE_COND_CODE)
3849 && (prev_pinfo & INSN_READ_COND_CODE))
3852 /* If the previous instruction uses the PC, we can not swap. */
3853 prev_pinfo2 = history[0].insn_mo->pinfo2;
3854 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
3856 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
3859 /* If the previous instruction has an incorrect size for a fixed
3860 branch delay slot in microMIPS mode, we cannot swap. */
3861 pinfo2 = ip->insn_mo->pinfo2;
3862 if (mips_opts.micromips
3863 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
3864 && insn_length (history) != 2)
3866 if (mips_opts.micromips
3867 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
3868 && insn_length (history) != 4)
3871 /* On R5900 short loops need to be fixed by inserting a nop in
3872 the branch delay slots.
3873 A short loop can be terminated too early. */
3874 if (mips_opts.arch == CPU_R5900
3875 /* Check if instruction has a parameter, ignore "j $31". */
3876 && (address_expr != NULL)
3877 /* Parameter must be 16 bit. */
3878 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
3879 /* Branch to same segment. */
3880 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
3881 /* Branch to same code fragment. */
3882 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
3883 /* Can only calculate branch offset if value is known. */
3884 && symbol_constant_p(address_expr->X_add_symbol)
3885 /* Check if branch is really conditional. */
3886 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
3887 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
3888 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
3891 /* Check if loop is shorter than 6 instructions including
3892 branch and delay slot. */
3893 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
3900 /* When the loop includes branches or jumps,
3901 it is not a short loop. */
3902 for (i = 0; i < (distance / 4); i++)
3904 if ((history[i].cleared_p)
3905 || delayed_branch_p(&history[i]))
3913 /* Insert nop after branch to fix short loop. */
3922 /* Decide how we should add IP to the instruction stream.
3923 ADDRESS_EXPR is an operand of the instruction to be used with
3926 static enum append_method
3927 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
3928 bfd_reloc_code_real_type *reloc_type)
3930 unsigned long pinfo;
3932 /* The relaxed version of a macro sequence must be inherently
3934 if (mips_relax.sequence == 2)
3937 /* We must not dabble with instructions in a ".set norerorder" block. */
3938 if (mips_opts.noreorder)
3941 /* Otherwise, it's our responsibility to fill branch delay slots. */
3942 if (delayed_branch_p (ip))
3944 if (!branch_likely_p (ip)
3945 && can_swap_branch_p (ip, address_expr, reloc_type))
3948 pinfo = ip->insn_mo->pinfo;
3949 if (mips_opts.mips16
3950 && ISA_SUPPORTS_MIPS16E
3951 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
3952 return APPEND_ADD_COMPACT;
3954 return APPEND_ADD_WITH_NOP;
3960 /* IP is a MIPS16 instruction whose opcode we have just changed.
3961 Point IP->insn_mo to the new opcode's definition. */
3964 find_altered_mips16_opcode (struct mips_cl_insn *ip)
3966 const struct mips_opcode *mo, *end;
3968 end = &mips16_opcodes[bfd_mips16_num_opcodes];
3969 for (mo = ip->insn_mo; mo < end; mo++)
3970 if ((ip->insn_opcode & mo->mask) == mo->match)
3978 /* For microMIPS macros, we need to generate a local number label
3979 as the target of branches. */
3980 #define MICROMIPS_LABEL_CHAR '\037'
3981 static unsigned long micromips_target_label;
3982 static char micromips_target_name[32];
3985 micromips_label_name (void)
3987 char *p = micromips_target_name;
3988 char symbol_name_temporary[24];
3996 l = micromips_target_label;
3997 #ifdef LOCAL_LABEL_PREFIX
3998 *p++ = LOCAL_LABEL_PREFIX;
4001 *p++ = MICROMIPS_LABEL_CHAR;
4004 symbol_name_temporary[i++] = l % 10 + '0';
4009 *p++ = symbol_name_temporary[--i];
4012 return micromips_target_name;
4016 micromips_label_expr (expressionS *label_expr)
4018 label_expr->X_op = O_symbol;
4019 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
4020 label_expr->X_add_number = 0;
4024 micromips_label_inc (void)
4026 micromips_target_label++;
4027 *micromips_target_name = '\0';
4031 micromips_add_label (void)
4035 s = colon (micromips_label_name ());
4036 micromips_label_inc ();
4037 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
4039 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
4045 /* If assembling microMIPS code, then return the microMIPS reloc
4046 corresponding to the requested one if any. Otherwise return
4047 the reloc unchanged. */
4049 static bfd_reloc_code_real_type
4050 micromips_map_reloc (bfd_reloc_code_real_type reloc)
4052 static const bfd_reloc_code_real_type relocs[][2] =
4054 /* Keep sorted incrementally by the left-hand key. */
4055 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
4056 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
4057 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
4058 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
4059 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
4060 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
4061 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
4062 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
4063 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
4064 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
4065 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
4066 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
4067 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
4068 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
4069 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
4070 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
4071 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
4072 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
4073 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
4074 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
4075 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
4076 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
4077 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
4078 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
4079 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
4080 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
4081 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
4083 bfd_reloc_code_real_type r;
4086 if (!mips_opts.micromips)
4088 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4094 return relocs[i][1];
4099 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
4100 Return true on success, storing the resolved value in RESULT. */
4103 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
4108 case BFD_RELOC_MIPS_HIGHEST:
4109 case BFD_RELOC_MICROMIPS_HIGHEST:
4110 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
4113 case BFD_RELOC_MIPS_HIGHER:
4114 case BFD_RELOC_MICROMIPS_HIGHER:
4115 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
4118 case BFD_RELOC_HI16_S:
4119 case BFD_RELOC_MICROMIPS_HI16_S:
4120 case BFD_RELOC_MIPS16_HI16_S:
4121 *result = ((operand + 0x8000) >> 16) & 0xffff;
4124 case BFD_RELOC_HI16:
4125 case BFD_RELOC_MICROMIPS_HI16:
4126 case BFD_RELOC_MIPS16_HI16:
4127 *result = (operand >> 16) & 0xffff;
4130 case BFD_RELOC_LO16:
4131 case BFD_RELOC_MICROMIPS_LO16:
4132 case BFD_RELOC_MIPS16_LO16:
4133 *result = operand & 0xffff;
4136 case BFD_RELOC_UNUSED:
4145 /* Output an instruction. IP is the instruction information.
4146 ADDRESS_EXPR is an operand of the instruction to be used with
4147 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4148 a macro expansion. */
4151 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4152 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4154 unsigned long prev_pinfo2, pinfo;
4155 bfd_boolean relaxed_branch = FALSE;
4156 enum append_method method;
4157 bfd_boolean relax32;
4160 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4161 fix_loongson2f (ip);
4163 file_ase_mips16 |= mips_opts.mips16;
4164 file_ase_micromips |= mips_opts.micromips;
4166 prev_pinfo2 = history[0].insn_mo->pinfo2;
4167 pinfo = ip->insn_mo->pinfo;
4169 if (mips_opts.micromips
4171 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4172 && micromips_insn_length (ip->insn_mo) != 2)
4173 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4174 && micromips_insn_length (ip->insn_mo) != 4)))
4175 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4176 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4178 if (address_expr == NULL)
4180 else if (reloc_type[0] <= BFD_RELOC_UNUSED
4181 && reloc_type[1] == BFD_RELOC_UNUSED
4182 && reloc_type[2] == BFD_RELOC_UNUSED
4183 && address_expr->X_op == O_constant)
4185 switch (*reloc_type)
4187 case BFD_RELOC_MIPS_JMP:
4191 shift = mips_opts.micromips ? 1 : 2;
4192 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4193 as_bad (_("jump to misaligned address (0x%lx)"),
4194 (unsigned long) address_expr->X_add_number);
4195 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4201 case BFD_RELOC_MIPS16_JMP:
4202 if ((address_expr->X_add_number & 3) != 0)
4203 as_bad (_("jump to misaligned address (0x%lx)"),
4204 (unsigned long) address_expr->X_add_number);
4206 (((address_expr->X_add_number & 0x7c0000) << 3)
4207 | ((address_expr->X_add_number & 0xf800000) >> 7)
4208 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4212 case BFD_RELOC_16_PCREL_S2:
4216 shift = mips_opts.micromips ? 1 : 2;
4217 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4218 as_bad (_("branch to misaligned address (0x%lx)"),
4219 (unsigned long) address_expr->X_add_number);
4220 if (!mips_relax_branch)
4222 if ((address_expr->X_add_number + (1 << (shift + 15)))
4223 & ~((1 << (shift + 16)) - 1))
4224 as_bad (_("branch address range overflow (0x%lx)"),
4225 (unsigned long) address_expr->X_add_number);
4226 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4236 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
4239 ip->insn_opcode |= value & 0xffff;
4247 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4249 /* There are a lot of optimizations we could do that we don't.
4250 In particular, we do not, in general, reorder instructions.
4251 If you use gcc with optimization, it will reorder
4252 instructions and generally do much more optimization then we
4253 do here; repeating all that work in the assembler would only
4254 benefit hand written assembly code, and does not seem worth
4256 int nops = (mips_optimize == 0
4257 ? nops_for_insn (0, history, NULL)
4258 : nops_for_insn_or_target (0, history, ip));
4262 unsigned long old_frag_offset;
4265 old_frag = frag_now;
4266 old_frag_offset = frag_now_fix ();
4268 for (i = 0; i < nops; i++)
4269 add_fixed_insn (NOP_INSN);
4270 insert_into_history (0, nops, NOP_INSN);
4274 listing_prev_line ();
4275 /* We may be at the start of a variant frag. In case we
4276 are, make sure there is enough space for the frag
4277 after the frags created by listing_prev_line. The
4278 argument to frag_grow here must be at least as large
4279 as the argument to all other calls to frag_grow in
4280 this file. We don't have to worry about being in the
4281 middle of a variant frag, because the variants insert
4282 all needed nop instructions themselves. */
4286 mips_move_text_labels ();
4288 #ifndef NO_ECOFF_DEBUGGING
4289 if (ECOFF_DEBUGGING)
4290 ecoff_fix_loc (old_frag, old_frag_offset);
4294 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4298 /* Work out how many nops in prev_nop_frag are needed by IP,
4299 ignoring hazards generated by the first prev_nop_frag_since
4301 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4302 gas_assert (nops <= prev_nop_frag_holds);
4304 /* Enforce NOPS as a minimum. */
4305 if (nops > prev_nop_frag_required)
4306 prev_nop_frag_required = nops;
4308 if (prev_nop_frag_holds == prev_nop_frag_required)
4310 /* Settle for the current number of nops. Update the history
4311 accordingly (for the benefit of any future .set reorder code). */
4312 prev_nop_frag = NULL;
4313 insert_into_history (prev_nop_frag_since,
4314 prev_nop_frag_holds, NOP_INSN);
4318 /* Allow this instruction to replace one of the nops that was
4319 tentatively added to prev_nop_frag. */
4320 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4321 prev_nop_frag_holds--;
4322 prev_nop_frag_since++;
4326 method = get_append_method (ip, address_expr, reloc_type);
4327 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4330 /* The value passed to dwarf2_emit_insn is the distance between
4331 the beginning of the current instruction and the address that
4332 should be recorded in the debug tables. This is normally the
4335 For MIPS16/microMIPS debug info we want to use ISA-encoded
4336 addresses, so we use -1 for an address higher by one than the
4339 If the instruction produced is a branch that we will swap with
4340 the preceding instruction, then we add the displacement by which
4341 the branch will be moved backwards. This is more appropriate
4342 and for MIPS16/microMIPS code also prevents a debugger from
4343 placing a breakpoint in the middle of the branch (and corrupting
4344 code if software breakpoints are used). */
4345 dwarf2_emit_insn ((HAVE_CODE_COMPRESSION ? -1 : 0) + branch_disp);
4348 relax32 = (mips_relax_branch
4349 /* Don't try branch relaxation within .set nomacro, or within
4350 .set noat if we use $at for PIC computations. If it turns
4351 out that the branch was out-of-range, we'll get an error. */
4352 && !mips_opts.warn_about_macros
4353 && (mips_opts.at || mips_pic == NO_PIC)
4354 /* Don't relax BPOSGE32/64 as they have no complementing
4356 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP)));
4358 if (!HAVE_CODE_COMPRESSION
4361 && *reloc_type == BFD_RELOC_16_PCREL_S2
4362 && delayed_branch_p (ip))
4364 relaxed_branch = TRUE;
4365 add_relaxed_insn (ip, (relaxed_branch_length
4367 uncond_branch_p (ip) ? -1
4368 : branch_likely_p (ip) ? 1
4372 uncond_branch_p (ip),
4373 branch_likely_p (ip),
4374 pinfo & INSN_WRITE_GPR_31,
4376 address_expr->X_add_symbol,
4377 address_expr->X_add_number);
4378 *reloc_type = BFD_RELOC_UNUSED;
4380 else if (mips_opts.micromips
4382 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4383 || *reloc_type > BFD_RELOC_UNUSED)
4384 && (delayed_branch_p (ip) || compact_branch_p (ip))
4385 /* Don't try branch relaxation when users specify
4386 16-bit/32-bit instructions. */
4387 && !forced_insn_length)
4389 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4390 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4391 int uncond = uncond_branch_p (ip) ? -1 : 0;
4392 int compact = compact_branch_p (ip);
4393 int al = pinfo & INSN_WRITE_GPR_31;
4396 gas_assert (address_expr != NULL);
4397 gas_assert (!mips_relax.sequence);
4399 relaxed_branch = TRUE;
4400 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4401 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4402 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4404 address_expr->X_add_symbol,
4405 address_expr->X_add_number);
4406 *reloc_type = BFD_RELOC_UNUSED;
4408 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4410 /* We need to set up a variant frag. */
4411 gas_assert (address_expr != NULL);
4412 add_relaxed_insn (ip, 4, 0,
4414 (*reloc_type - BFD_RELOC_UNUSED,
4415 forced_insn_length == 2, forced_insn_length == 4,
4416 delayed_branch_p (&history[0]),
4417 history[0].mips16_absolute_jump_p),
4418 make_expr_symbol (address_expr), 0);
4420 else if (mips_opts.mips16 && insn_length (ip) == 2)
4422 if (!delayed_branch_p (ip))
4423 /* Make sure there is enough room to swap this instruction with
4424 a following jump instruction. */
4426 add_fixed_insn (ip);
4430 if (mips_opts.mips16
4431 && mips_opts.noreorder
4432 && delayed_branch_p (&history[0]))
4433 as_warn (_("extended instruction in delay slot"));
4435 if (mips_relax.sequence)
4437 /* If we've reached the end of this frag, turn it into a variant
4438 frag and record the information for the instructions we've
4440 if (frag_room () < 4)
4441 relax_close_frag ();
4442 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4445 if (mips_relax.sequence != 2)
4447 if (mips_macro_warning.first_insn_sizes[0] == 0)
4448 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4449 mips_macro_warning.sizes[0] += insn_length (ip);
4450 mips_macro_warning.insns[0]++;
4452 if (mips_relax.sequence != 1)
4454 if (mips_macro_warning.first_insn_sizes[1] == 0)
4455 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4456 mips_macro_warning.sizes[1] += insn_length (ip);
4457 mips_macro_warning.insns[1]++;
4460 if (mips_opts.mips16)
4463 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4465 add_fixed_insn (ip);
4468 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4470 bfd_reloc_code_real_type final_type[3];
4471 reloc_howto_type *howto0;
4472 reloc_howto_type *howto;
4475 /* Perform any necessary conversion to microMIPS relocations
4476 and find out how many relocations there actually are. */
4477 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4478 final_type[i] = micromips_map_reloc (reloc_type[i]);
4480 /* In a compound relocation, it is the final (outermost)
4481 operator that determines the relocated field. */
4482 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4486 /* To reproduce this failure try assembling gas/testsuites/
4487 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4489 as_bad (_("Unsupported MIPS relocation number %d"),
4491 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4495 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4496 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4497 bfd_get_reloc_size (howto),
4499 howto0 && howto0->pc_relative,
4502 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4503 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4504 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4506 /* These relocations can have an addend that won't fit in
4507 4 octets for 64bit assembly. */
4509 && ! howto->partial_inplace
4510 && (reloc_type[0] == BFD_RELOC_16
4511 || reloc_type[0] == BFD_RELOC_32
4512 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4513 || reloc_type[0] == BFD_RELOC_GPREL16
4514 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4515 || reloc_type[0] == BFD_RELOC_GPREL32
4516 || reloc_type[0] == BFD_RELOC_64
4517 || reloc_type[0] == BFD_RELOC_CTOR
4518 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4519 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4520 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4521 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4522 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4523 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4524 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4525 || hi16_reloc_p (reloc_type[0])
4526 || lo16_reloc_p (reloc_type[0])))
4527 ip->fixp[0]->fx_no_overflow = 1;
4529 /* These relocations can have an addend that won't fit in 2 octets. */
4530 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
4531 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
4532 ip->fixp[0]->fx_no_overflow = 1;
4534 if (mips_relax.sequence)
4536 if (mips_relax.first_fixup == 0)
4537 mips_relax.first_fixup = ip->fixp[0];
4539 else if (reloc_needs_lo_p (*reloc_type))
4541 struct mips_hi_fixup *hi_fixup;
4543 /* Reuse the last entry if it already has a matching %lo. */
4544 hi_fixup = mips_hi_fixup_list;
4546 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4548 hi_fixup = ((struct mips_hi_fixup *)
4549 xmalloc (sizeof (struct mips_hi_fixup)));
4550 hi_fixup->next = mips_hi_fixup_list;
4551 mips_hi_fixup_list = hi_fixup;
4553 hi_fixup->fixp = ip->fixp[0];
4554 hi_fixup->seg = now_seg;
4557 /* Add fixups for the second and third relocations, if given.
4558 Note that the ABI allows the second relocation to be
4559 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4560 moment we only use RSS_UNDEF, but we could add support
4561 for the others if it ever becomes necessary. */
4562 for (i = 1; i < 3; i++)
4563 if (reloc_type[i] != BFD_RELOC_UNUSED)
4565 ip->fixp[i] = fix_new (ip->frag, ip->where,
4566 ip->fixp[0]->fx_size, NULL, 0,
4567 FALSE, final_type[i]);
4569 /* Use fx_tcbit to mark compound relocs. */
4570 ip->fixp[0]->fx_tcbit = 1;
4571 ip->fixp[i]->fx_tcbit = 1;
4576 /* Update the register mask information. */
4577 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4578 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4583 insert_into_history (0, 1, ip);
4586 case APPEND_ADD_WITH_NOP:
4588 struct mips_cl_insn *nop;
4590 insert_into_history (0, 1, ip);
4591 nop = get_delay_slot_nop (ip);
4592 add_fixed_insn (nop);
4593 insert_into_history (0, 1, nop);
4594 if (mips_relax.sequence)
4595 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4599 case APPEND_ADD_COMPACT:
4600 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4601 gas_assert (mips_opts.mips16);
4602 ip->insn_opcode |= 0x0080;
4603 find_altered_mips16_opcode (ip);
4605 insert_into_history (0, 1, ip);
4610 struct mips_cl_insn delay = history[0];
4611 if (mips_opts.mips16)
4613 know (delay.frag == ip->frag);
4614 move_insn (ip, delay.frag, delay.where);
4615 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4617 else if (relaxed_branch || delay.frag != ip->frag)
4619 /* Add the delay slot instruction to the end of the
4620 current frag and shrink the fixed part of the
4621 original frag. If the branch occupies the tail of
4622 the latter, move it backwards to cover the gap. */
4623 delay.frag->fr_fix -= branch_disp;
4624 if (delay.frag == ip->frag)
4625 move_insn (ip, ip->frag, ip->where - branch_disp);
4626 add_fixed_insn (&delay);
4630 move_insn (&delay, ip->frag,
4631 ip->where - branch_disp + insn_length (ip));
4632 move_insn (ip, history[0].frag, history[0].where);
4636 insert_into_history (0, 1, &delay);
4641 /* If we have just completed an unconditional branch, clear the history. */
4642 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4643 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4647 mips_no_prev_insn ();
4649 for (i = 0; i < ARRAY_SIZE (history); i++)
4651 history[i].cleared_p = 1;
4655 /* We need to emit a label at the end of branch-likely macros. */
4656 if (emit_branch_likely_macro)
4658 emit_branch_likely_macro = FALSE;
4659 micromips_add_label ();
4662 /* We just output an insn, so the next one doesn't have a label. */
4663 mips_clear_insn_labels ();
4666 /* Forget that there was any previous instruction or label.
4667 When BRANCH is true, the branch history is also flushed. */
4670 mips_no_prev_insn (void)
4672 prev_nop_frag = NULL;
4673 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4674 mips_clear_insn_labels ();
4677 /* This function must be called before we emit something other than
4678 instructions. It is like mips_no_prev_insn except that it inserts
4679 any NOPS that might be needed by previous instructions. */
4682 mips_emit_delays (void)
4684 if (! mips_opts.noreorder)
4686 int nops = nops_for_insn (0, history, NULL);
4690 add_fixed_insn (NOP_INSN);
4691 mips_move_text_labels ();
4694 mips_no_prev_insn ();
4697 /* Start a (possibly nested) noreorder block. */
4700 start_noreorder (void)
4702 if (mips_opts.noreorder == 0)
4707 /* None of the instructions before the .set noreorder can be moved. */
4708 for (i = 0; i < ARRAY_SIZE (history); i++)
4709 history[i].fixed_p = 1;
4711 /* Insert any nops that might be needed between the .set noreorder
4712 block and the previous instructions. We will later remove any
4713 nops that turn out not to be needed. */
4714 nops = nops_for_insn (0, history, NULL);
4717 if (mips_optimize != 0)
4719 /* Record the frag which holds the nop instructions, so
4720 that we can remove them if we don't need them. */
4721 frag_grow (nops * NOP_INSN_SIZE);
4722 prev_nop_frag = frag_now;
4723 prev_nop_frag_holds = nops;
4724 prev_nop_frag_required = 0;
4725 prev_nop_frag_since = 0;
4728 for (; nops > 0; --nops)
4729 add_fixed_insn (NOP_INSN);
4731 /* Move on to a new frag, so that it is safe to simply
4732 decrease the size of prev_nop_frag. */
4733 frag_wane (frag_now);
4735 mips_move_text_labels ();
4737 mips_mark_labels ();
4738 mips_clear_insn_labels ();
4740 mips_opts.noreorder++;
4741 mips_any_noreorder = 1;
4744 /* End a nested noreorder block. */
4747 end_noreorder (void)
4749 mips_opts.noreorder--;
4750 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4752 /* Commit to inserting prev_nop_frag_required nops and go back to
4753 handling nop insertion the .set reorder way. */
4754 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4756 insert_into_history (prev_nop_frag_since,
4757 prev_nop_frag_required, NOP_INSN);
4758 prev_nop_frag = NULL;
4762 /* Set up global variables for the start of a new macro. */
4767 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4768 memset (&mips_macro_warning.first_insn_sizes, 0,
4769 sizeof (mips_macro_warning.first_insn_sizes));
4770 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4771 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4772 && delayed_branch_p (&history[0]));
4773 switch (history[0].insn_mo->pinfo2
4774 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4776 case INSN2_BRANCH_DELAY_32BIT:
4777 mips_macro_warning.delay_slot_length = 4;
4779 case INSN2_BRANCH_DELAY_16BIT:
4780 mips_macro_warning.delay_slot_length = 2;
4783 mips_macro_warning.delay_slot_length = 0;
4786 mips_macro_warning.first_frag = NULL;
4789 /* Given that a macro is longer than one instruction or of the wrong size,
4790 return the appropriate warning for it. Return null if no warning is
4791 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
4792 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
4793 and RELAX_NOMACRO. */
4796 macro_warning (relax_substateT subtype)
4798 if (subtype & RELAX_DELAY_SLOT)
4799 return _("Macro instruction expanded into multiple instructions"
4800 " in a branch delay slot");
4801 else if (subtype & RELAX_NOMACRO)
4802 return _("Macro instruction expanded into multiple instructions");
4803 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
4804 | RELAX_DELAY_SLOT_SIZE_SECOND))
4805 return ((subtype & RELAX_DELAY_SLOT_16BIT)
4806 ? _("Macro instruction expanded into a wrong size instruction"
4807 " in a 16-bit branch delay slot")
4808 : _("Macro instruction expanded into a wrong size instruction"
4809 " in a 32-bit branch delay slot"));
4814 /* Finish up a macro. Emit warnings as appropriate. */
4819 /* Relaxation warning flags. */
4820 relax_substateT subtype = 0;
4822 /* Check delay slot size requirements. */
4823 if (mips_macro_warning.delay_slot_length == 2)
4824 subtype |= RELAX_DELAY_SLOT_16BIT;
4825 if (mips_macro_warning.delay_slot_length != 0)
4827 if (mips_macro_warning.delay_slot_length
4828 != mips_macro_warning.first_insn_sizes[0])
4829 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
4830 if (mips_macro_warning.delay_slot_length
4831 != mips_macro_warning.first_insn_sizes[1])
4832 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
4835 /* Check instruction count requirements. */
4836 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
4838 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
4839 subtype |= RELAX_SECOND_LONGER;
4840 if (mips_opts.warn_about_macros)
4841 subtype |= RELAX_NOMACRO;
4842 if (mips_macro_warning.delay_slot_p)
4843 subtype |= RELAX_DELAY_SLOT;
4846 /* If both alternatives fail to fill a delay slot correctly,
4847 emit the warning now. */
4848 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
4849 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
4854 s = subtype & (RELAX_DELAY_SLOT_16BIT
4855 | RELAX_DELAY_SLOT_SIZE_FIRST
4856 | RELAX_DELAY_SLOT_SIZE_SECOND);
4857 msg = macro_warning (s);
4859 as_warn ("%s", msg);
4863 /* If both implementations are longer than 1 instruction, then emit the
4865 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
4870 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
4871 msg = macro_warning (s);
4873 as_warn ("%s", msg);
4877 /* If any flags still set, then one implementation might need a warning
4878 and the other either will need one of a different kind or none at all.
4879 Pass any remaining flags over to relaxation. */
4880 if (mips_macro_warning.first_frag != NULL)
4881 mips_macro_warning.first_frag->fr_subtype |= subtype;
4884 /* Instruction operand formats used in macros that vary between
4885 standard MIPS and microMIPS code. */
4887 static const char * const brk_fmt[2] = { "c", "mF" };
4888 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
4889 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
4890 static const char * const lui_fmt[2] = { "t,u", "s,u" };
4891 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
4892 static const char * const mfhl_fmt[2] = { "d", "mj" };
4893 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
4894 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
4896 #define BRK_FMT (brk_fmt[mips_opts.micromips])
4897 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
4898 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
4899 #define LUI_FMT (lui_fmt[mips_opts.micromips])
4900 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
4901 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
4902 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
4903 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
4905 /* Read a macro's relocation codes from *ARGS and store them in *R.
4906 The first argument in *ARGS will be either the code for a single
4907 relocation or -1 followed by the three codes that make up a
4908 composite relocation. */
4911 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
4915 next = va_arg (*args, int);
4917 r[0] = (bfd_reloc_code_real_type) next;
4919 for (i = 0; i < 3; i++)
4920 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
4923 /* Build an instruction created by a macro expansion. This is passed
4924 a pointer to the count of instructions created so far, an
4925 expression, the name of the instruction to build, an operand format
4926 string, and corresponding arguments. */
4929 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
4931 const struct mips_opcode *mo = NULL;
4932 bfd_reloc_code_real_type r[3];
4933 const struct mips_opcode *amo;
4934 struct hash_control *hash;
4935 struct mips_cl_insn insn;
4938 va_start (args, fmt);
4940 if (mips_opts.mips16)
4942 mips16_macro_build (ep, name, fmt, &args);
4947 r[0] = BFD_RELOC_UNUSED;
4948 r[1] = BFD_RELOC_UNUSED;
4949 r[2] = BFD_RELOC_UNUSED;
4950 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
4951 amo = (struct mips_opcode *) hash_find (hash, name);
4953 gas_assert (strcmp (name, amo->name) == 0);
4957 /* Search until we get a match for NAME. It is assumed here that
4958 macros will never generate MDMX, MIPS-3D, or MT instructions.
4959 We try to match an instruction that fulfils the branch delay
4960 slot instruction length requirement (if any) of the previous
4961 instruction. While doing this we record the first instruction
4962 seen that matches all the other conditions and use it anyway
4963 if the requirement cannot be met; we will issue an appropriate
4964 warning later on. */
4965 if (strcmp (fmt, amo->args) == 0
4966 && amo->pinfo != INSN_MACRO
4967 && is_opcode_valid (amo)
4968 && is_size_valid (amo))
4970 if (is_delay_slot_valid (amo))
4980 gas_assert (amo->name);
4982 while (strcmp (name, amo->name) == 0);
4985 create_insn (&insn, mo);
5003 INSERT_OPERAND (mips_opts.micromips,
5004 EXTLSB, insn, va_arg (args, int));
5009 /* Note that in the macro case, these arguments are already
5010 in MSB form. (When handling the instruction in the
5011 non-macro case, these arguments are sizes from which
5012 MSB values must be calculated.) */
5013 INSERT_OPERAND (mips_opts.micromips,
5014 INSMSB, insn, va_arg (args, int));
5020 /* Note that in the macro case, these arguments are already
5021 in MSBD form. (When handling the instruction in the
5022 non-macro case, these arguments are sizes from which
5023 MSBD values must be calculated.) */
5024 INSERT_OPERAND (mips_opts.micromips,
5025 EXTMSBD, insn, va_arg (args, int));
5029 gas_assert (!mips_opts.micromips);
5030 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
5039 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
5043 gas_assert (mips_opts.micromips);
5047 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
5051 gas_assert (!mips_opts.micromips);
5052 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
5056 gas_assert (!mips_opts.micromips);
5058 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
5062 if (mips_opts.micromips)
5063 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
5065 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
5069 gas_assert (!mips_opts.micromips);
5071 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
5075 gas_assert (!mips_opts.micromips);
5077 int tmp = va_arg (args, int);
5079 INSERT_OPERAND (0, RT, insn, tmp);
5080 INSERT_OPERAND (0, RD, insn, tmp);
5086 gas_assert (!mips_opts.micromips);
5087 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
5094 INSERT_OPERAND (mips_opts.micromips,
5095 SHAMT, insn, va_arg (args, int));
5099 gas_assert (!mips_opts.micromips);
5100 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
5104 gas_assert (!mips_opts.micromips);
5105 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
5109 gas_assert (!mips_opts.micromips);
5110 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
5114 gas_assert (!mips_opts.micromips);
5115 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
5122 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5127 macro_read_relocs (&args, r);
5128 gas_assert (*r == BFD_RELOC_GPREL16
5129 || *r == BFD_RELOC_MIPS_HIGHER
5130 || *r == BFD_RELOC_HI16_S
5131 || *r == BFD_RELOC_LO16
5132 || *r == BFD_RELOC_MIPS_GOT_OFST);
5136 macro_read_relocs (&args, r);
5140 macro_read_relocs (&args, r);
5141 gas_assert (ep != NULL
5142 && (ep->X_op == O_constant
5143 || (ep->X_op == O_symbol
5144 && (*r == BFD_RELOC_MIPS_HIGHEST
5145 || *r == BFD_RELOC_HI16_S
5146 || *r == BFD_RELOC_HI16
5147 || *r == BFD_RELOC_GPREL16
5148 || *r == BFD_RELOC_MIPS_GOT_HI16
5149 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5153 gas_assert (ep != NULL);
5156 * This allows macro() to pass an immediate expression for
5157 * creating short branches without creating a symbol.
5159 * We don't allow branch relaxation for these branches, as
5160 * they should only appear in ".set nomacro" anyway.
5162 if (ep->X_op == O_constant)
5164 /* For microMIPS we always use relocations for branches.
5165 So we should not resolve immediate values. */
5166 gas_assert (!mips_opts.micromips);
5168 if ((ep->X_add_number & 3) != 0)
5169 as_bad (_("branch to misaligned address (0x%lx)"),
5170 (unsigned long) ep->X_add_number);
5171 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5172 as_bad (_("branch address range overflow (0x%lx)"),
5173 (unsigned long) ep->X_add_number);
5174 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5178 *r = BFD_RELOC_16_PCREL_S2;
5182 gas_assert (ep != NULL);
5183 *r = BFD_RELOC_MIPS_JMP;
5187 gas_assert (!mips_opts.micromips);
5188 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5192 INSERT_OPERAND (mips_opts.micromips,
5193 CACHE, insn, va_arg (args, unsigned long));
5197 gas_assert (mips_opts.micromips);
5198 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5202 gas_assert (mips_opts.micromips);
5203 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5207 INSERT_OPERAND (mips_opts.micromips,
5208 3BITPOS, insn, va_arg (args, unsigned int));
5212 INSERT_OPERAND (mips_opts.micromips,
5213 OFFSET12, insn, va_arg (args, unsigned long));
5217 gas_assert (mips_opts.micromips);
5218 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5221 case 'm': /* Opcode extension character. */
5222 gas_assert (mips_opts.micromips);
5226 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5230 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5234 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5248 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5250 append_insn (&insn, ep, r, TRUE);
5254 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5257 struct mips_opcode *mo;
5258 struct mips_cl_insn insn;
5259 bfd_reloc_code_real_type r[3]
5260 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5262 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5264 gas_assert (strcmp (name, mo->name) == 0);
5266 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5269 gas_assert (mo->name);
5270 gas_assert (strcmp (name, mo->name) == 0);
5273 create_insn (&insn, mo);
5291 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5296 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5300 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5304 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5314 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5321 regno = va_arg (*args, int);
5322 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5323 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5346 gas_assert (ep != NULL);
5348 if (ep->X_op != O_constant)
5349 *r = (int) BFD_RELOC_UNUSED + c;
5350 else if (calculate_reloc (*r, ep->X_add_number, &value))
5352 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
5354 *r = BFD_RELOC_UNUSED;
5360 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5367 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5369 append_insn (&insn, ep, r, TRUE);
5373 * Sign-extend 32-bit mode constants that have bit 31 set and all
5374 * higher bits unset.
5377 normalize_constant_expr (expressionS *ex)
5379 if (ex->X_op == O_constant
5380 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5381 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5386 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5387 * all higher bits unset.
5390 normalize_address_expr (expressionS *ex)
5392 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5393 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5394 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5395 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5400 * Generate a "jalr" instruction with a relocation hint to the called
5401 * function. This occurs in NewABI PIC code.
5404 macro_build_jalr (expressionS *ep, int cprestore)
5406 static const bfd_reloc_code_real_type jalr_relocs[2]
5407 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5408 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5412 if (MIPS_JALR_HINT_P (ep))
5417 if (mips_opts.micromips)
5419 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5420 if (MIPS_JALR_HINT_P (ep)
5421 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5422 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5424 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5427 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5428 if (MIPS_JALR_HINT_P (ep))
5429 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5433 * Generate a "lui" instruction.
5436 macro_build_lui (expressionS *ep, int regnum)
5438 gas_assert (! mips_opts.mips16);
5440 if (ep->X_op != O_constant)
5442 gas_assert (ep->X_op == O_symbol);
5443 /* _gp_disp is a special case, used from s_cpload.
5444 __gnu_local_gp is used if mips_no_shared. */
5445 gas_assert (mips_pic == NO_PIC
5447 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5448 || (! mips_in_shared
5449 && strcmp (S_GET_NAME (ep->X_add_symbol),
5450 "__gnu_local_gp") == 0));
5453 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5456 /* Generate a sequence of instructions to do a load or store from a constant
5457 offset off of a base register (breg) into/from a target register (treg),
5458 using AT if necessary. */
5460 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5461 int treg, int breg, int dbl)
5463 gas_assert (ep->X_op == O_constant);
5465 /* Sign-extending 32-bit constants makes their handling easier. */
5467 normalize_constant_expr (ep);
5469 /* Right now, this routine can only handle signed 32-bit constants. */
5470 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5471 as_warn (_("operand overflow"));
5473 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5475 /* Signed 16-bit offset will fit in the op. Easy! */
5476 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5480 /* 32-bit offset, need multiple instructions and AT, like:
5481 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5482 addu $tempreg,$tempreg,$breg
5483 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5484 to handle the complete offset. */
5485 macro_build_lui (ep, AT);
5486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5487 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5490 as_bad (_("Macro used $at after \".set noat\""));
5495 * Generates code to set the $at register to true (one)
5496 * if reg is less than the immediate expression.
5499 set_at (int reg, int unsignedp)
5501 if (imm_expr.X_op == O_constant
5502 && imm_expr.X_add_number >= -0x8000
5503 && imm_expr.X_add_number < 0x8000)
5504 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5505 AT, reg, BFD_RELOC_LO16);
5508 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5509 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5513 /* Warn if an expression is not a constant. */
5516 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5518 if (ex->X_op == O_big)
5519 as_bad (_("unsupported large constant"));
5520 else if (ex->X_op != O_constant)
5521 as_bad (_("Instruction %s requires absolute expression"),
5524 if (HAVE_32BIT_GPRS)
5525 normalize_constant_expr (ex);
5528 /* Count the leading zeroes by performing a binary chop. This is a
5529 bulky bit of source, but performance is a LOT better for the
5530 majority of values than a simple loop to count the bits:
5531 for (lcnt = 0; (lcnt < 32); lcnt++)
5532 if ((v) & (1 << (31 - lcnt)))
5534 However it is not code size friendly, and the gain will drop a bit
5535 on certain cached systems.
5537 #define COUNT_TOP_ZEROES(v) \
5538 (((v) & ~0xffff) == 0 \
5539 ? ((v) & ~0xff) == 0 \
5540 ? ((v) & ~0xf) == 0 \
5541 ? ((v) & ~0x3) == 0 \
5542 ? ((v) & ~0x1) == 0 \
5547 : ((v) & ~0x7) == 0 \
5550 : ((v) & ~0x3f) == 0 \
5551 ? ((v) & ~0x1f) == 0 \
5554 : ((v) & ~0x7f) == 0 \
5557 : ((v) & ~0xfff) == 0 \
5558 ? ((v) & ~0x3ff) == 0 \
5559 ? ((v) & ~0x1ff) == 0 \
5562 : ((v) & ~0x7ff) == 0 \
5565 : ((v) & ~0x3fff) == 0 \
5566 ? ((v) & ~0x1fff) == 0 \
5569 : ((v) & ~0x7fff) == 0 \
5572 : ((v) & ~0xffffff) == 0 \
5573 ? ((v) & ~0xfffff) == 0 \
5574 ? ((v) & ~0x3ffff) == 0 \
5575 ? ((v) & ~0x1ffff) == 0 \
5578 : ((v) & ~0x7ffff) == 0 \
5581 : ((v) & ~0x3fffff) == 0 \
5582 ? ((v) & ~0x1fffff) == 0 \
5585 : ((v) & ~0x7fffff) == 0 \
5588 : ((v) & ~0xfffffff) == 0 \
5589 ? ((v) & ~0x3ffffff) == 0 \
5590 ? ((v) & ~0x1ffffff) == 0 \
5593 : ((v) & ~0x7ffffff) == 0 \
5596 : ((v) & ~0x3fffffff) == 0 \
5597 ? ((v) & ~0x1fffffff) == 0 \
5600 : ((v) & ~0x7fffffff) == 0 \
5605 * This routine generates the least number of instructions necessary to load
5606 * an absolute expression value into a register.
5609 load_register (int reg, expressionS *ep, int dbl)
5612 expressionS hi32, lo32;
5614 if (ep->X_op != O_big)
5616 gas_assert (ep->X_op == O_constant);
5618 /* Sign-extending 32-bit constants makes their handling easier. */
5620 normalize_constant_expr (ep);
5622 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5624 /* We can handle 16 bit signed values with an addiu to
5625 $zero. No need to ever use daddiu here, since $zero and
5626 the result are always correct in 32 bit mode. */
5627 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5630 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5632 /* We can handle 16 bit unsigned values with an ori to
5634 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5637 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5639 /* 32 bit values require an lui. */
5640 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5641 if ((ep->X_add_number & 0xffff) != 0)
5642 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5647 /* The value is larger than 32 bits. */
5649 if (!dbl || HAVE_32BIT_GPRS)
5653 sprintf_vma (value, ep->X_add_number);
5654 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5655 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5659 if (ep->X_op != O_big)
5662 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5663 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5664 hi32.X_add_number &= 0xffffffff;
5666 lo32.X_add_number &= 0xffffffff;
5670 gas_assert (ep->X_add_number > 2);
5671 if (ep->X_add_number == 3)
5672 generic_bignum[3] = 0;
5673 else if (ep->X_add_number > 4)
5674 as_bad (_("Number larger than 64 bits"));
5675 lo32.X_op = O_constant;
5676 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5677 hi32.X_op = O_constant;
5678 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5681 if (hi32.X_add_number == 0)
5686 unsigned long hi, lo;
5688 if (hi32.X_add_number == (offsetT) 0xffffffff)
5690 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5692 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5695 if (lo32.X_add_number & 0x80000000)
5697 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5698 if (lo32.X_add_number & 0xffff)
5699 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5704 /* Check for 16bit shifted constant. We know that hi32 is
5705 non-zero, so start the mask on the first bit of the hi32
5710 unsigned long himask, lomask;
5714 himask = 0xffff >> (32 - shift);
5715 lomask = (0xffff << shift) & 0xffffffff;
5719 himask = 0xffff << (shift - 32);
5722 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5723 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5727 tmp.X_op = O_constant;
5729 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5730 | (lo32.X_add_number >> shift));
5732 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5733 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5734 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5735 reg, reg, (shift >= 32) ? shift - 32 : shift);
5740 while (shift <= (64 - 16));
5742 /* Find the bit number of the lowest one bit, and store the
5743 shifted value in hi/lo. */
5744 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5745 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5749 while ((lo & 1) == 0)
5754 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5760 while ((hi & 1) == 0)
5769 /* Optimize if the shifted value is a (power of 2) - 1. */
5770 if ((hi == 0 && ((lo + 1) & lo) == 0)
5771 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5773 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5778 /* This instruction will set the register to be all
5780 tmp.X_op = O_constant;
5781 tmp.X_add_number = (offsetT) -1;
5782 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5786 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5787 reg, reg, (bit >= 32) ? bit - 32 : bit);
5789 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
5790 reg, reg, (shift >= 32) ? shift - 32 : shift);
5795 /* Sign extend hi32 before calling load_register, because we can
5796 generally get better code when we load a sign extended value. */
5797 if ((hi32.X_add_number & 0x80000000) != 0)
5798 hi32.X_add_number |= ~(offsetT) 0xffffffff;
5799 load_register (reg, &hi32, 0);
5802 if ((lo32.X_add_number & 0xffff0000) == 0)
5806 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
5814 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
5816 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5817 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
5823 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
5827 mid16.X_add_number >>= 16;
5828 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5829 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5832 if ((lo32.X_add_number & 0xffff) != 0)
5833 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5837 load_delay_nop (void)
5839 if (!gpr_interlocks)
5840 macro_build (NULL, "nop", "");
5843 /* Load an address into a register. */
5846 load_address (int reg, expressionS *ep, int *used_at)
5848 if (ep->X_op != O_constant
5849 && ep->X_op != O_symbol)
5851 as_bad (_("expression too complex"));
5852 ep->X_op = O_constant;
5855 if (ep->X_op == O_constant)
5857 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
5861 if (mips_pic == NO_PIC)
5863 /* If this is a reference to a GP relative symbol, we want
5864 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
5866 lui $reg,<sym> (BFD_RELOC_HI16_S)
5867 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5868 If we have an addend, we always use the latter form.
5870 With 64bit address space and a usable $at we want
5871 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5872 lui $at,<sym> (BFD_RELOC_HI16_S)
5873 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5874 daddiu $at,<sym> (BFD_RELOC_LO16)
5878 If $at is already in use, we use a path which is suboptimal
5879 on superscalar processors.
5880 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5881 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5883 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
5885 daddiu $reg,<sym> (BFD_RELOC_LO16)
5887 For GP relative symbols in 64bit address space we can use
5888 the same sequence as in 32bit address space. */
5889 if (HAVE_64BIT_SYMBOLS)
5891 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5892 && !nopic_need_relax (ep->X_add_symbol, 1))
5894 relax_start (ep->X_add_symbol);
5895 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5896 mips_gp_register, BFD_RELOC_GPREL16);
5900 if (*used_at == 0 && mips_opts.at)
5902 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5903 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
5904 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5905 BFD_RELOC_MIPS_HIGHER);
5906 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
5907 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
5908 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
5913 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5914 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5915 BFD_RELOC_MIPS_HIGHER);
5916 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5917 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
5918 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5919 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
5922 if (mips_relax.sequence)
5927 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5928 && !nopic_need_relax (ep->X_add_symbol, 1))
5930 relax_start (ep->X_add_symbol);
5931 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5932 mips_gp_register, BFD_RELOC_GPREL16);
5935 macro_build_lui (ep, reg);
5936 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
5937 reg, reg, BFD_RELOC_LO16);
5938 if (mips_relax.sequence)
5942 else if (!mips_big_got)
5946 /* If this is a reference to an external symbol, we want
5947 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5949 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5951 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5952 If there is a constant, it must be added in after.
5954 If we have NewABI, we want
5955 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5956 unless we're referencing a global symbol with a non-zero
5957 offset, in which case cst must be added separately. */
5960 if (ep->X_add_number)
5962 ex.X_add_number = ep->X_add_number;
5963 ep->X_add_number = 0;
5964 relax_start (ep->X_add_symbol);
5965 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5966 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5967 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5968 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5969 ex.X_op = O_constant;
5970 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5971 reg, reg, BFD_RELOC_LO16);
5972 ep->X_add_number = ex.X_add_number;
5975 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5976 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5977 if (mips_relax.sequence)
5982 ex.X_add_number = ep->X_add_number;
5983 ep->X_add_number = 0;
5984 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5985 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5987 relax_start (ep->X_add_symbol);
5989 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5993 if (ex.X_add_number != 0)
5995 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5996 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5997 ex.X_op = O_constant;
5998 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5999 reg, reg, BFD_RELOC_LO16);
6003 else if (mips_big_got)
6007 /* This is the large GOT case. If this is a reference to an
6008 external symbol, we want
6009 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6011 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
6013 Otherwise, for a reference to a local symbol in old ABI, we want
6014 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6016 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6017 If there is a constant, it must be added in after.
6019 In the NewABI, for local symbols, with or without offsets, we want:
6020 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6021 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6025 ex.X_add_number = ep->X_add_number;
6026 ep->X_add_number = 0;
6027 relax_start (ep->X_add_symbol);
6028 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6029 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6030 reg, reg, mips_gp_register);
6031 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6032 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6033 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6034 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6035 else if (ex.X_add_number)
6037 ex.X_op = O_constant;
6038 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6042 ep->X_add_number = ex.X_add_number;
6044 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6045 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6046 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6047 BFD_RELOC_MIPS_GOT_OFST);
6052 ex.X_add_number = ep->X_add_number;
6053 ep->X_add_number = 0;
6054 relax_start (ep->X_add_symbol);
6055 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6056 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6057 reg, reg, mips_gp_register);
6058 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6059 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6061 if (reg_needs_delay (mips_gp_register))
6063 /* We need a nop before loading from $gp. This special
6064 check is required because the lui which starts the main
6065 instruction stream does not refer to $gp, and so will not
6066 insert the nop which may be required. */
6067 macro_build (NULL, "nop", "");
6069 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6070 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6072 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6076 if (ex.X_add_number != 0)
6078 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6079 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6080 ex.X_op = O_constant;
6081 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6089 if (!mips_opts.at && *used_at == 1)
6090 as_bad (_("Macro used $at after \".set noat\""));
6093 /* Move the contents of register SOURCE into register DEST. */
6096 move_register (int dest, int source)
6098 /* Prefer to use a 16-bit microMIPS instruction unless the previous
6099 instruction specifically requires a 32-bit one. */
6100 if (mips_opts.micromips
6101 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
6102 macro_build (NULL, "move", "mp,mj", dest, source);
6104 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
6108 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
6109 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
6110 The two alternatives are:
6112 Global symbol Local sybmol
6113 ------------- ------------
6114 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
6116 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
6118 load_got_offset emits the first instruction and add_got_offset
6119 emits the second for a 16-bit offset or add_got_offset_hilo emits
6120 a sequence to add a 32-bit offset using a scratch register. */
6123 load_got_offset (int dest, expressionS *local)
6128 global.X_add_number = 0;
6130 relax_start (local->X_add_symbol);
6131 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6132 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6134 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6135 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6140 add_got_offset (int dest, expressionS *local)
6144 global.X_op = O_constant;
6145 global.X_op_symbol = NULL;
6146 global.X_add_symbol = NULL;
6147 global.X_add_number = local->X_add_number;
6149 relax_start (local->X_add_symbol);
6150 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6151 dest, dest, BFD_RELOC_LO16);
6153 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6158 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6161 int hold_mips_optimize;
6163 global.X_op = O_constant;
6164 global.X_op_symbol = NULL;
6165 global.X_add_symbol = NULL;
6166 global.X_add_number = local->X_add_number;
6168 relax_start (local->X_add_symbol);
6169 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6171 /* Set mips_optimize around the lui instruction to avoid
6172 inserting an unnecessary nop after the lw. */
6173 hold_mips_optimize = mips_optimize;
6175 macro_build_lui (&global, tmp);
6176 mips_optimize = hold_mips_optimize;
6177 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6180 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6183 /* Emit a sequence of instructions to emulate a branch likely operation.
6184 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6185 is its complementing branch with the original condition negated.
6186 CALL is set if the original branch specified the link operation.
6187 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6189 Code like this is produced in the noreorder mode:
6194 delay slot (executed only if branch taken)
6202 delay slot (executed only if branch taken)
6205 In the reorder mode the delay slot would be filled with a nop anyway,
6206 so code produced is simply:
6211 This function is used when producing code for the microMIPS ASE that
6212 does not implement branch likely instructions in hardware. */
6215 macro_build_branch_likely (const char *br, const char *brneg,
6216 int call, expressionS *ep, const char *fmt,
6217 unsigned int sreg, unsigned int treg)
6219 int noreorder = mips_opts.noreorder;
6222 gas_assert (mips_opts.micromips);
6226 micromips_label_expr (&expr1);
6227 macro_build (&expr1, brneg, fmt, sreg, treg);
6228 macro_build (NULL, "nop", "");
6229 macro_build (ep, call ? "bal" : "b", "p");
6231 /* Set to true so that append_insn adds a label. */
6232 emit_branch_likely_macro = TRUE;
6236 macro_build (ep, br, fmt, sreg, treg);
6237 macro_build (NULL, "nop", "");
6242 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6243 the condition code tested. EP specifies the branch target. */
6246 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6273 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6276 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6277 the register tested. EP specifies the branch target. */
6280 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6282 const char *brneg = NULL;
6292 br = mips_opts.micromips ? "bgez" : "bgezl";
6296 gas_assert (mips_opts.micromips);
6305 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6312 br = mips_opts.micromips ? "blez" : "blezl";
6319 br = mips_opts.micromips ? "bltz" : "bltzl";
6323 gas_assert (mips_opts.micromips);
6331 if (mips_opts.micromips && brneg)
6332 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6334 macro_build (ep, br, "s,p", sreg);
6337 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6338 TREG as the registers tested. EP specifies the branch target. */
6341 macro_build_branch_rsrt (int type, expressionS *ep,
6342 unsigned int sreg, unsigned int treg)
6344 const char *brneg = NULL;
6356 br = mips_opts.micromips ? "beq" : "beql";
6365 br = mips_opts.micromips ? "bne" : "bnel";
6371 if (mips_opts.micromips && brneg)
6372 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6374 macro_build (ep, br, "s,t,p", sreg, treg);
6379 * This routine implements the seemingly endless macro or synthesized
6380 * instructions and addressing modes in the mips assembly language. Many
6381 * of these macros are simple and are similar to each other. These could
6382 * probably be handled by some kind of table or grammar approach instead of
6383 * this verbose method. Others are not simple macros but are more like
6384 * optimizing code generation.
6385 * One interesting optimization is when several store macros appear
6386 * consecutively that would load AT with the upper half of the same address.
6387 * The ensuing load upper instructions are ommited. This implies some kind
6388 * of global optimization. We currently only optimize within a single macro.
6389 * For many of the load and store macros if the address is specified as a
6390 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6391 * first load register 'at' with zero and use it as the base register. The
6392 * mips assembler simply uses register $zero. Just one tiny optimization
6396 macro (struct mips_cl_insn *ip)
6398 unsigned int treg, sreg, dreg, breg;
6399 unsigned int tempreg;
6402 expressionS label_expr;
6421 bfd_reloc_code_real_type r;
6422 int hold_mips_optimize;
6424 gas_assert (! mips_opts.mips16);
6426 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6427 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6428 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6429 mask = ip->insn_mo->mask;
6431 label_expr.X_op = O_constant;
6432 label_expr.X_op_symbol = NULL;
6433 label_expr.X_add_symbol = NULL;
6434 label_expr.X_add_number = 0;
6436 expr1.X_op = O_constant;
6437 expr1.X_op_symbol = NULL;
6438 expr1.X_add_symbol = NULL;
6439 expr1.X_add_number = 1;
6454 if (mips_opts.micromips)
6455 micromips_label_expr (&label_expr);
6457 label_expr.X_add_number = 8;
6458 macro_build (&label_expr, "bgez", "s,p", sreg);
6460 macro_build (NULL, "nop", "");
6462 move_register (dreg, sreg);
6463 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6464 if (mips_opts.micromips)
6465 micromips_add_label ();
6482 if (!mips_opts.micromips)
6484 if (imm_expr.X_op == O_constant
6485 && imm_expr.X_add_number >= -0x200
6486 && imm_expr.X_add_number < 0x200)
6488 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6497 if (imm_expr.X_op == O_constant
6498 && imm_expr.X_add_number >= -0x8000
6499 && imm_expr.X_add_number < 0x8000)
6501 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6506 load_register (AT, &imm_expr, dbl);
6507 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6526 if (imm_expr.X_op == O_constant
6527 && imm_expr.X_add_number >= 0
6528 && imm_expr.X_add_number < 0x10000)
6530 if (mask != M_NOR_I)
6531 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6534 macro_build (&imm_expr, "ori", "t,r,i",
6535 treg, sreg, BFD_RELOC_LO16);
6536 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6542 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6543 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6547 switch (imm_expr.X_add_number)
6550 macro_build (NULL, "nop", "");
6553 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6557 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6558 (int) imm_expr.X_add_number);
6561 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6562 (unsigned long) imm_expr.X_add_number);
6571 gas_assert (mips_opts.micromips);
6572 macro_build_branch_ccl (mask, &offset_expr,
6573 EXTRACT_OPERAND (1, BCC, *ip));
6580 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6586 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6591 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6598 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6600 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6604 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6605 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6606 &offset_expr, AT, ZERO);
6616 macro_build_branch_rs (mask, &offset_expr, sreg);
6622 /* Check for > max integer. */
6623 maxnum = 0x7fffffff;
6624 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6631 if (imm_expr.X_op == O_constant
6632 && imm_expr.X_add_number >= maxnum
6633 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6636 /* Result is always false. */
6638 macro_build (NULL, "nop", "");
6640 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6643 if (imm_expr.X_op != O_constant)
6644 as_bad (_("Unsupported large constant"));
6645 ++imm_expr.X_add_number;
6649 if (mask == M_BGEL_I)
6651 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6653 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6654 &offset_expr, sreg);
6657 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6659 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6660 &offset_expr, sreg);
6663 maxnum = 0x7fffffff;
6664 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6671 maxnum = - maxnum - 1;
6672 if (imm_expr.X_op == O_constant
6673 && imm_expr.X_add_number <= maxnum
6674 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6677 /* result is always true */
6678 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6679 macro_build (&offset_expr, "b", "p");
6684 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6685 &offset_expr, AT, ZERO);
6694 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6695 &offset_expr, ZERO, treg);
6699 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6700 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6701 &offset_expr, AT, ZERO);
6710 && imm_expr.X_op == O_constant
6711 && imm_expr.X_add_number == -1))
6713 if (imm_expr.X_op != O_constant)
6714 as_bad (_("Unsupported large constant"));
6715 ++imm_expr.X_add_number;
6719 if (mask == M_BGEUL_I)
6721 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6723 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6724 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6725 &offset_expr, sreg, ZERO);
6730 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6731 &offset_expr, AT, ZERO);
6739 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6741 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6745 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6746 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6747 &offset_expr, AT, ZERO);
6755 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6756 &offset_expr, sreg, ZERO);
6762 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6763 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6764 &offset_expr, AT, ZERO);
6772 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6774 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6778 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6779 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6780 &offset_expr, AT, ZERO);
6787 maxnum = 0x7fffffff;
6788 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6795 if (imm_expr.X_op == O_constant
6796 && imm_expr.X_add_number >= maxnum
6797 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6799 if (imm_expr.X_op != O_constant)
6800 as_bad (_("Unsupported large constant"));
6801 ++imm_expr.X_add_number;
6805 if (mask == M_BLTL_I)
6807 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6808 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6809 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6810 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6815 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6816 &offset_expr, AT, ZERO);
6824 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6825 &offset_expr, sreg, ZERO);
6831 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6832 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6833 &offset_expr, AT, ZERO);
6842 && imm_expr.X_op == O_constant
6843 && imm_expr.X_add_number == -1))
6845 if (imm_expr.X_op != O_constant)
6846 as_bad (_("Unsupported large constant"));
6847 ++imm_expr.X_add_number;
6851 if (mask == M_BLTUL_I)
6853 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6855 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6856 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6857 &offset_expr, sreg, ZERO);
6862 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6863 &offset_expr, AT, ZERO);
6871 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6873 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
6877 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6878 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6879 &offset_expr, AT, ZERO);
6889 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6890 &offset_expr, ZERO, treg);
6894 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6895 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6896 &offset_expr, AT, ZERO);
6902 /* Use unsigned arithmetic. */
6906 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6908 as_bad (_("Unsupported large constant"));
6913 pos = imm_expr.X_add_number;
6914 size = imm2_expr.X_add_number;
6919 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6922 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6924 as_bad (_("Improper extract size (%lu, position %lu)"),
6925 (unsigned long) size, (unsigned long) pos);
6929 if (size <= 32 && pos < 32)
6934 else if (size <= 32)
6944 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6951 /* Use unsigned arithmetic. */
6955 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6957 as_bad (_("Unsupported large constant"));
6962 pos = imm_expr.X_add_number;
6963 size = imm2_expr.X_add_number;
6968 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6971 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6973 as_bad (_("Improper insert size (%lu, position %lu)"),
6974 (unsigned long) size, (unsigned long) pos);
6978 if (pos < 32 && (pos + size - 1) < 32)
6993 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6994 (int) (pos + size - 1));
7010 as_warn (_("Divide by zero."));
7012 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7014 macro_build (NULL, "break", BRK_FMT, 7);
7021 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7022 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7026 if (mips_opts.micromips)
7027 micromips_label_expr (&label_expr);
7029 label_expr.X_add_number = 8;
7030 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7031 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7032 macro_build (NULL, "break", BRK_FMT, 7);
7033 if (mips_opts.micromips)
7034 micromips_add_label ();
7036 expr1.X_add_number = -1;
7038 load_register (AT, &expr1, dbl);
7039 if (mips_opts.micromips)
7040 micromips_label_expr (&label_expr);
7042 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
7043 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
7046 expr1.X_add_number = 1;
7047 load_register (AT, &expr1, dbl);
7048 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
7052 expr1.X_add_number = 0x80000000;
7053 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
7057 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
7058 /* We want to close the noreorder block as soon as possible, so
7059 that later insns are available for delay slot filling. */
7064 if (mips_opts.micromips)
7065 micromips_label_expr (&label_expr);
7067 label_expr.X_add_number = 8;
7068 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
7069 macro_build (NULL, "nop", "");
7071 /* We want to close the noreorder block as soon as possible, so
7072 that later insns are available for delay slot filling. */
7075 macro_build (NULL, "break", BRK_FMT, 6);
7077 if (mips_opts.micromips)
7078 micromips_add_label ();
7079 macro_build (NULL, s, MFHL_FMT, dreg);
7118 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7120 as_warn (_("Divide by zero."));
7122 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7124 macro_build (NULL, "break", BRK_FMT, 7);
7127 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7129 if (strcmp (s2, "mflo") == 0)
7130 move_register (dreg, sreg);
7132 move_register (dreg, ZERO);
7135 if (imm_expr.X_op == O_constant
7136 && imm_expr.X_add_number == -1
7137 && s[strlen (s) - 1] != 'u')
7139 if (strcmp (s2, "mflo") == 0)
7141 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7144 move_register (dreg, ZERO);
7149 load_register (AT, &imm_expr, dbl);
7150 macro_build (NULL, s, "z,s,t", sreg, AT);
7151 macro_build (NULL, s2, MFHL_FMT, dreg);
7173 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7174 macro_build (NULL, s, "z,s,t", sreg, treg);
7175 /* We want to close the noreorder block as soon as possible, so
7176 that later insns are available for delay slot filling. */
7181 if (mips_opts.micromips)
7182 micromips_label_expr (&label_expr);
7184 label_expr.X_add_number = 8;
7185 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7186 macro_build (NULL, s, "z,s,t", sreg, treg);
7188 /* We want to close the noreorder block as soon as possible, so
7189 that later insns are available for delay slot filling. */
7191 macro_build (NULL, "break", BRK_FMT, 7);
7192 if (mips_opts.micromips)
7193 micromips_add_label ();
7195 macro_build (NULL, s2, MFHL_FMT, dreg);
7207 /* Load the address of a symbol into a register. If breg is not
7208 zero, we then add a base register to it. */
7210 if (dbl && HAVE_32BIT_GPRS)
7211 as_warn (_("dla used to load 32-bit register"));
7213 if (!dbl && HAVE_64BIT_OBJECTS)
7214 as_warn (_("la used to load 64-bit address"));
7216 if (offset_expr.X_op == O_constant
7217 && offset_expr.X_add_number >= -0x8000
7218 && offset_expr.X_add_number < 0x8000)
7220 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7221 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7225 if (mips_opts.at && (treg == breg))
7235 if (offset_expr.X_op != O_symbol
7236 && offset_expr.X_op != O_constant)
7238 as_bad (_("Expression too complex"));
7239 offset_expr.X_op = O_constant;
7242 if (offset_expr.X_op == O_constant)
7243 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7244 else if (mips_pic == NO_PIC)
7246 /* If this is a reference to a GP relative symbol, we want
7247 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7249 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7250 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7251 If we have a constant, we need two instructions anyhow,
7252 so we may as well always use the latter form.
7254 With 64bit address space and a usable $at we want
7255 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7256 lui $at,<sym> (BFD_RELOC_HI16_S)
7257 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7258 daddiu $at,<sym> (BFD_RELOC_LO16)
7260 daddu $tempreg,$tempreg,$at
7262 If $at is already in use, we use a path which is suboptimal
7263 on superscalar processors.
7264 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7265 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7267 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7269 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7271 For GP relative symbols in 64bit address space we can use
7272 the same sequence as in 32bit address space. */
7273 if (HAVE_64BIT_SYMBOLS)
7275 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7276 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7278 relax_start (offset_expr.X_add_symbol);
7279 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7280 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7284 if (used_at == 0 && mips_opts.at)
7286 macro_build (&offset_expr, "lui", LUI_FMT,
7287 tempreg, BFD_RELOC_MIPS_HIGHEST);
7288 macro_build (&offset_expr, "lui", LUI_FMT,
7289 AT, BFD_RELOC_HI16_S);
7290 macro_build (&offset_expr, "daddiu", "t,r,j",
7291 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7292 macro_build (&offset_expr, "daddiu", "t,r,j",
7293 AT, AT, BFD_RELOC_LO16);
7294 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7295 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7300 macro_build (&offset_expr, "lui", LUI_FMT,
7301 tempreg, BFD_RELOC_MIPS_HIGHEST);
7302 macro_build (&offset_expr, "daddiu", "t,r,j",
7303 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7304 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7305 macro_build (&offset_expr, "daddiu", "t,r,j",
7306 tempreg, tempreg, BFD_RELOC_HI16_S);
7307 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7308 macro_build (&offset_expr, "daddiu", "t,r,j",
7309 tempreg, tempreg, BFD_RELOC_LO16);
7312 if (mips_relax.sequence)
7317 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7318 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7320 relax_start (offset_expr.X_add_symbol);
7321 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7322 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7325 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7326 as_bad (_("Offset too large"));
7327 macro_build_lui (&offset_expr, tempreg);
7328 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7329 tempreg, tempreg, BFD_RELOC_LO16);
7330 if (mips_relax.sequence)
7334 else if (!mips_big_got && !HAVE_NEWABI)
7336 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7338 /* If this is a reference to an external symbol, and there
7339 is no constant, we want
7340 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7341 or for lca or if tempreg is PIC_CALL_REG
7342 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7343 For a local symbol, we want
7344 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7346 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7348 If we have a small constant, and this is a reference to
7349 an external symbol, we want
7350 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7352 addiu $tempreg,$tempreg,<constant>
7353 For a local symbol, we want the same instruction
7354 sequence, but we output a BFD_RELOC_LO16 reloc on the
7357 If we have a large constant, and this is a reference to
7358 an external symbol, we want
7359 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7360 lui $at,<hiconstant>
7361 addiu $at,$at,<loconstant>
7362 addu $tempreg,$tempreg,$at
7363 For a local symbol, we want the same instruction
7364 sequence, but we output a BFD_RELOC_LO16 reloc on the
7368 if (offset_expr.X_add_number == 0)
7370 if (mips_pic == SVR4_PIC
7372 && (call || tempreg == PIC_CALL_REG))
7373 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7375 relax_start (offset_expr.X_add_symbol);
7376 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7377 lw_reloc_type, mips_gp_register);
7380 /* We're going to put in an addu instruction using
7381 tempreg, so we may as well insert the nop right
7386 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7387 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7389 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7390 tempreg, tempreg, BFD_RELOC_LO16);
7392 /* FIXME: If breg == 0, and the next instruction uses
7393 $tempreg, then if this variant case is used an extra
7394 nop will be generated. */
7396 else if (offset_expr.X_add_number >= -0x8000
7397 && offset_expr.X_add_number < 0x8000)
7399 load_got_offset (tempreg, &offset_expr);
7401 add_got_offset (tempreg, &offset_expr);
7405 expr1.X_add_number = offset_expr.X_add_number;
7406 offset_expr.X_add_number =
7407 SEXT_16BIT (offset_expr.X_add_number);
7408 load_got_offset (tempreg, &offset_expr);
7409 offset_expr.X_add_number = expr1.X_add_number;
7410 /* If we are going to add in a base register, and the
7411 target register and the base register are the same,
7412 then we are using AT as a temporary register. Since
7413 we want to load the constant into AT, we add our
7414 current AT (from the global offset table) and the
7415 register into the register now, and pretend we were
7416 not using a base register. */
7420 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7425 add_got_offset_hilo (tempreg, &offset_expr, AT);
7429 else if (!mips_big_got && HAVE_NEWABI)
7431 int add_breg_early = 0;
7433 /* If this is a reference to an external, and there is no
7434 constant, or local symbol (*), with or without a
7436 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7437 or for lca or if tempreg is PIC_CALL_REG
7438 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7440 If we have a small constant, and this is a reference to
7441 an external symbol, we want
7442 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7443 addiu $tempreg,$tempreg,<constant>
7445 If we have a large constant, and this is a reference to
7446 an external symbol, we want
7447 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7448 lui $at,<hiconstant>
7449 addiu $at,$at,<loconstant>
7450 addu $tempreg,$tempreg,$at
7452 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7453 local symbols, even though it introduces an additional
7456 if (offset_expr.X_add_number)
7458 expr1.X_add_number = offset_expr.X_add_number;
7459 offset_expr.X_add_number = 0;
7461 relax_start (offset_expr.X_add_symbol);
7462 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7463 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7465 if (expr1.X_add_number >= -0x8000
7466 && expr1.X_add_number < 0x8000)
7468 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7469 tempreg, tempreg, BFD_RELOC_LO16);
7471 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7473 /* If we are going to add in a base register, and the
7474 target register and the base register are the same,
7475 then we are using AT as a temporary register. Since
7476 we want to load the constant into AT, we add our
7477 current AT (from the global offset table) and the
7478 register into the register now, and pretend we were
7479 not using a base register. */
7484 gas_assert (tempreg == AT);
7485 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7491 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7492 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7498 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7501 offset_expr.X_add_number = expr1.X_add_number;
7503 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7504 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7507 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7508 treg, tempreg, breg);
7514 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7516 relax_start (offset_expr.X_add_symbol);
7517 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7518 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7520 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7521 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7526 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7527 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7530 else if (mips_big_got && !HAVE_NEWABI)
7533 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7534 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7535 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7537 /* This is the large GOT case. If this is a reference to an
7538 external symbol, and there is no constant, we want
7539 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7540 addu $tempreg,$tempreg,$gp
7541 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7542 or for lca or if tempreg is PIC_CALL_REG
7543 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7544 addu $tempreg,$tempreg,$gp
7545 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7546 For a local symbol, we want
7547 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7549 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7551 If we have a small constant, and this is a reference to
7552 an external symbol, we want
7553 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7554 addu $tempreg,$tempreg,$gp
7555 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7557 addiu $tempreg,$tempreg,<constant>
7558 For a local symbol, we want
7559 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7561 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7563 If we have a large constant, and this is a reference to
7564 an external symbol, we want
7565 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7566 addu $tempreg,$tempreg,$gp
7567 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7568 lui $at,<hiconstant>
7569 addiu $at,$at,<loconstant>
7570 addu $tempreg,$tempreg,$at
7571 For a local symbol, we want
7572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7573 lui $at,<hiconstant>
7574 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7575 addu $tempreg,$tempreg,$at
7578 expr1.X_add_number = offset_expr.X_add_number;
7579 offset_expr.X_add_number = 0;
7580 relax_start (offset_expr.X_add_symbol);
7581 gpdelay = reg_needs_delay (mips_gp_register);
7582 if (expr1.X_add_number == 0 && breg == 0
7583 && (call || tempreg == PIC_CALL_REG))
7585 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7586 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7588 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7589 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7590 tempreg, tempreg, mips_gp_register);
7591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7592 tempreg, lw_reloc_type, tempreg);
7593 if (expr1.X_add_number == 0)
7597 /* We're going to put in an addu instruction using
7598 tempreg, so we may as well insert the nop right
7603 else if (expr1.X_add_number >= -0x8000
7604 && expr1.X_add_number < 0x8000)
7607 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7608 tempreg, tempreg, BFD_RELOC_LO16);
7612 /* If we are going to add in a base register, and the
7613 target register and the base register are the same,
7614 then we are using AT as a temporary register. Since
7615 we want to load the constant into AT, we add our
7616 current AT (from the global offset table) and the
7617 register into the register now, and pretend we were
7618 not using a base register. */
7623 gas_assert (tempreg == AT);
7625 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7630 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7631 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7635 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7640 /* This is needed because this instruction uses $gp, but
7641 the first instruction on the main stream does not. */
7642 macro_build (NULL, "nop", "");
7645 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7646 local_reloc_type, mips_gp_register);
7647 if (expr1.X_add_number >= -0x8000
7648 && expr1.X_add_number < 0x8000)
7651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7652 tempreg, tempreg, BFD_RELOC_LO16);
7653 /* FIXME: If add_number is 0, and there was no base
7654 register, the external symbol case ended with a load,
7655 so if the symbol turns out to not be external, and
7656 the next instruction uses tempreg, an unnecessary nop
7657 will be inserted. */
7663 /* We must add in the base register now, as in the
7664 external symbol case. */
7665 gas_assert (tempreg == AT);
7667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7670 /* We set breg to 0 because we have arranged to add
7671 it in in both cases. */
7675 macro_build_lui (&expr1, AT);
7676 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7677 AT, AT, BFD_RELOC_LO16);
7678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7679 tempreg, tempreg, AT);
7684 else if (mips_big_got && HAVE_NEWABI)
7686 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7687 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7688 int add_breg_early = 0;
7690 /* This is the large GOT case. If this is a reference to an
7691 external symbol, and there is no constant, we want
7692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7693 add $tempreg,$tempreg,$gp
7694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7695 or for lca or if tempreg is PIC_CALL_REG
7696 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7697 add $tempreg,$tempreg,$gp
7698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7700 If we have a small constant, and this is a reference to
7701 an external symbol, we want
7702 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7703 add $tempreg,$tempreg,$gp
7704 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7705 addi $tempreg,$tempreg,<constant>
7707 If we have a large constant, and this is a reference to
7708 an external symbol, we want
7709 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7710 addu $tempreg,$tempreg,$gp
7711 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7712 lui $at,<hiconstant>
7713 addi $at,$at,<loconstant>
7714 add $tempreg,$tempreg,$at
7716 If we have NewABI, and we know it's a local symbol, we want
7717 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7718 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7719 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7721 relax_start (offset_expr.X_add_symbol);
7723 expr1.X_add_number = offset_expr.X_add_number;
7724 offset_expr.X_add_number = 0;
7726 if (expr1.X_add_number == 0 && breg == 0
7727 && (call || tempreg == PIC_CALL_REG))
7729 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7730 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7732 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7733 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7734 tempreg, tempreg, mips_gp_register);
7735 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7736 tempreg, lw_reloc_type, tempreg);
7738 if (expr1.X_add_number == 0)
7740 else if (expr1.X_add_number >= -0x8000
7741 && expr1.X_add_number < 0x8000)
7743 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7744 tempreg, tempreg, BFD_RELOC_LO16);
7746 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7748 /* If we are going to add in a base register, and the
7749 target register and the base register are the same,
7750 then we are using AT as a temporary register. Since
7751 we want to load the constant into AT, we add our
7752 current AT (from the global offset table) and the
7753 register into the register now, and pretend we were
7754 not using a base register. */
7759 gas_assert (tempreg == AT);
7760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7766 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7772 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7775 offset_expr.X_add_number = expr1.X_add_number;
7776 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7777 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7778 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7779 tempreg, BFD_RELOC_MIPS_GOT_OFST);
7782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7783 treg, tempreg, breg);
7793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
7797 gas_assert (!mips_opts.micromips);
7799 unsigned long temp = (treg << 16) | (0x01);
7800 macro_build (NULL, "c2", "C", temp);
7805 gas_assert (!mips_opts.micromips);
7807 unsigned long temp = (0x02);
7808 macro_build (NULL, "c2", "C", temp);
7813 gas_assert (!mips_opts.micromips);
7815 unsigned long temp = (treg << 16) | (0x02);
7816 macro_build (NULL, "c2", "C", temp);
7821 gas_assert (!mips_opts.micromips);
7822 macro_build (NULL, "c2", "C", 3);
7826 gas_assert (!mips_opts.micromips);
7828 unsigned long temp = (treg << 16) | 0x03;
7829 macro_build (NULL, "c2", "C", temp);
7834 /* The j instruction may not be used in PIC code, since it
7835 requires an absolute address. We convert it to a b
7837 if (mips_pic == NO_PIC)
7838 macro_build (&offset_expr, "j", "a");
7840 macro_build (&offset_expr, "b", "p");
7843 /* The jal instructions must be handled as macros because when
7844 generating PIC code they expand to multi-instruction
7845 sequences. Normally they are simple instructions. */
7850 gas_assert (mips_opts.micromips);
7858 if (mips_pic == NO_PIC)
7860 s = jals ? "jalrs" : "jalr";
7861 if (mips_opts.micromips
7863 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7864 macro_build (NULL, s, "mj", sreg);
7866 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7870 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
7871 && mips_cprestore_offset >= 0);
7873 if (sreg != PIC_CALL_REG)
7874 as_warn (_("MIPS PIC call to register other than $25"));
7876 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
7877 ? "jalrs" : "jalr");
7878 if (mips_opts.micromips
7880 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7881 macro_build (NULL, s, "mj", sreg);
7883 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7884 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
7886 if (mips_cprestore_offset < 0)
7887 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7890 if (!mips_frame_reg_valid)
7892 as_warn (_("No .frame pseudo-op used in PIC code"));
7893 /* Quiet this warning. */
7894 mips_frame_reg_valid = 1;
7896 if (!mips_cprestore_valid)
7898 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7899 /* Quiet this warning. */
7900 mips_cprestore_valid = 1;
7902 if (mips_opts.noreorder)
7903 macro_build (NULL, "nop", "");
7904 expr1.X_add_number = mips_cprestore_offset;
7905 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7908 HAVE_64BIT_ADDRESSES);
7916 gas_assert (mips_opts.micromips);
7920 if (mips_pic == NO_PIC)
7921 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
7922 else if (mips_pic == SVR4_PIC)
7924 /* If this is a reference to an external symbol, and we are
7925 using a small GOT, we want
7926 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7930 lw $gp,cprestore($sp)
7931 The cprestore value is set using the .cprestore
7932 pseudo-op. If we are using a big GOT, we want
7933 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7935 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
7939 lw $gp,cprestore($sp)
7940 If the symbol is not external, we want
7941 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7943 addiu $25,$25,<sym> (BFD_RELOC_LO16)
7946 lw $gp,cprestore($sp)
7948 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
7949 sequences above, minus nops, unless the symbol is local,
7950 which enables us to use GOT_PAGE/GOT_OFST (big got) or
7956 relax_start (offset_expr.X_add_symbol);
7957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7958 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7962 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
7968 relax_start (offset_expr.X_add_symbol);
7969 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7970 BFD_RELOC_MIPS_CALL_HI16);
7971 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7972 PIC_CALL_REG, mips_gp_register);
7973 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7974 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7977 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7978 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
7980 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7981 PIC_CALL_REG, PIC_CALL_REG,
7982 BFD_RELOC_MIPS_GOT_OFST);
7986 macro_build_jalr (&offset_expr, 0);
7990 relax_start (offset_expr.X_add_symbol);
7993 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7994 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8003 gpdelay = reg_needs_delay (mips_gp_register);
8004 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8005 BFD_RELOC_MIPS_CALL_HI16);
8006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8007 PIC_CALL_REG, mips_gp_register);
8008 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8009 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8014 macro_build (NULL, "nop", "");
8016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8017 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
8020 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8021 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
8023 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
8025 if (mips_cprestore_offset < 0)
8026 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8029 if (!mips_frame_reg_valid)
8031 as_warn (_("No .frame pseudo-op used in PIC code"));
8032 /* Quiet this warning. */
8033 mips_frame_reg_valid = 1;
8035 if (!mips_cprestore_valid)
8037 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8038 /* Quiet this warning. */
8039 mips_cprestore_valid = 1;
8041 if (mips_opts.noreorder)
8042 macro_build (NULL, "nop", "");
8043 expr1.X_add_number = mips_cprestore_offset;
8044 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8047 HAVE_64BIT_ADDRESSES);
8051 else if (mips_pic == VXWORKS_PIC)
8052 as_bad (_("Non-PIC jump used in PIC library"));
8062 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8070 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8101 gas_assert (!mips_opts.micromips);
8104 /* Itbl support may require additional care here. */
8111 /* Itbl support may require additional care here. */
8119 off12 = mips_opts.micromips;
8120 /* Itbl support may require additional care here. */
8125 gas_assert (!mips_opts.micromips);
8128 /* Itbl support may require additional care here. */
8136 off12 = mips_opts.micromips;
8143 off12 = mips_opts.micromips;
8149 /* Itbl support may require additional care here. */
8157 off12 = mips_opts.micromips;
8158 /* Itbl support may require additional care here. */
8165 /* Itbl support may require additional care here. */
8173 off12 = mips_opts.micromips;
8180 off12 = mips_opts.micromips;
8187 off12 = mips_opts.micromips;
8194 off12 = mips_opts.micromips;
8201 off12 = mips_opts.micromips;
8206 gas_assert (mips_opts.micromips);
8215 gas_assert (mips_opts.micromips);
8224 gas_assert (mips_opts.micromips);
8232 gas_assert (mips_opts.micromips);
8239 if (breg == treg + lp)
8242 tempreg = treg + lp;
8262 gas_assert (!mips_opts.micromips);
8265 /* Itbl support may require additional care here. */
8272 /* Itbl support may require additional care here. */
8280 off12 = mips_opts.micromips;
8281 /* Itbl support may require additional care here. */
8286 gas_assert (!mips_opts.micromips);
8289 /* Itbl support may require additional care here. */
8297 off12 = mips_opts.micromips;
8304 off12 = mips_opts.micromips;
8311 off12 = mips_opts.micromips;
8318 off12 = mips_opts.micromips;
8324 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8325 off12 = mips_opts.micromips;
8331 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8332 off12 = mips_opts.micromips;
8339 /* Itbl support may require additional care here. */
8346 off12 = mips_opts.micromips;
8347 /* Itbl support may require additional care here. */
8352 gas_assert (!mips_opts.micromips);
8355 /* Itbl support may require additional care here. */
8363 off12 = mips_opts.micromips;
8370 off12 = mips_opts.micromips;
8375 gas_assert (mips_opts.micromips);
8383 gas_assert (mips_opts.micromips);
8391 gas_assert (mips_opts.micromips);
8399 gas_assert (mips_opts.micromips);
8408 if (offset_expr.X_op != O_constant
8409 && offset_expr.X_op != O_symbol)
8411 as_bad (_("Expression too complex"));
8412 offset_expr.X_op = O_constant;
8415 if (HAVE_32BIT_ADDRESSES
8416 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8420 sprintf_vma (value, offset_expr.X_add_number);
8421 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8424 /* A constant expression in PIC code can be handled just as it
8425 is in non PIC code. */
8426 if (offset_expr.X_op == O_constant)
8430 expr1.X_add_number = offset_expr.X_add_number;
8431 normalize_address_expr (&expr1);
8432 if (!off12 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8434 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8435 & ~(bfd_vma) 0xffff);
8438 else if (off12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8440 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8441 & ~(bfd_vma) 0xfff);
8446 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8448 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8449 tempreg, tempreg, breg);
8454 if (offset_expr.X_add_number == 0)
8457 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8458 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8459 macro_build (NULL, s, fmt, treg, tempreg);
8462 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8464 macro_build (NULL, s, fmt,
8465 treg, (unsigned long) offset_expr.X_add_number, breg);
8467 else if (off12 || off0)
8469 /* A 12-bit or 0-bit offset field is too narrow to be used
8470 for a low-part relocation, so load the whole address into
8471 the auxillary register. In the case of "A(b)" addresses,
8472 we first load absolute address "A" into the register and
8473 then add base register "b". In the case of "o(b)" addresses,
8474 we simply need to add 16-bit offset "o" to base register "b", and
8475 offset_reloc already contains the relocations associated
8479 load_address (tempreg, &offset_expr, &used_at);
8481 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8482 tempreg, tempreg, breg);
8485 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8487 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8488 expr1.X_add_number = 0;
8490 macro_build (NULL, s, fmt, treg, tempreg);
8492 macro_build (NULL, s, fmt,
8493 treg, (unsigned long) expr1.X_add_number, tempreg);
8495 else if (mips_pic == NO_PIC)
8497 /* If this is a reference to a GP relative symbol, and there
8498 is no base register, we want
8499 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8500 Otherwise, if there is no base register, we want
8501 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8502 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8503 If we have a constant, we need two instructions anyhow,
8504 so we always use the latter form.
8506 If we have a base register, and this is a reference to a
8507 GP relative symbol, we want
8508 addu $tempreg,$breg,$gp
8509 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8511 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8512 addu $tempreg,$tempreg,$breg
8513 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8514 With a constant we always use the latter case.
8516 With 64bit address space and no base register and $at usable,
8518 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8519 lui $at,<sym> (BFD_RELOC_HI16_S)
8520 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8523 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8524 If we have a base register, we want
8525 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8526 lui $at,<sym> (BFD_RELOC_HI16_S)
8527 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8531 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8533 Without $at we can't generate the optimal path for superscalar
8534 processors here since this would require two temporary registers.
8535 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8536 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8538 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8540 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8541 If we have a base register, we want
8542 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8543 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8545 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8547 daddu $tempreg,$tempreg,$breg
8548 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8550 For GP relative symbols in 64bit address space we can use
8551 the same sequence as in 32bit address space. */
8552 if (HAVE_64BIT_SYMBOLS)
8554 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8555 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8557 relax_start (offset_expr.X_add_symbol);
8560 macro_build (&offset_expr, s, fmt, treg,
8561 BFD_RELOC_GPREL16, mips_gp_register);
8565 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8566 tempreg, breg, mips_gp_register);
8567 macro_build (&offset_expr, s, fmt, treg,
8568 BFD_RELOC_GPREL16, tempreg);
8573 if (used_at == 0 && mips_opts.at)
8575 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8576 BFD_RELOC_MIPS_HIGHEST);
8577 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8579 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8580 tempreg, BFD_RELOC_MIPS_HIGHER);
8582 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8583 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8584 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8585 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8591 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8592 BFD_RELOC_MIPS_HIGHEST);
8593 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8594 tempreg, BFD_RELOC_MIPS_HIGHER);
8595 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8596 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8597 tempreg, BFD_RELOC_HI16_S);
8598 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8600 macro_build (NULL, "daddu", "d,v,t",
8601 tempreg, tempreg, breg);
8602 macro_build (&offset_expr, s, fmt, treg,
8603 BFD_RELOC_LO16, tempreg);
8606 if (mips_relax.sequence)
8613 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8614 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8616 relax_start (offset_expr.X_add_symbol);
8617 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8621 macro_build_lui (&offset_expr, tempreg);
8622 macro_build (&offset_expr, s, fmt, treg,
8623 BFD_RELOC_LO16, tempreg);
8624 if (mips_relax.sequence)
8629 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8630 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8632 relax_start (offset_expr.X_add_symbol);
8633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8634 tempreg, breg, mips_gp_register);
8635 macro_build (&offset_expr, s, fmt, treg,
8636 BFD_RELOC_GPREL16, tempreg);
8639 macro_build_lui (&offset_expr, tempreg);
8640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8641 tempreg, tempreg, breg);
8642 macro_build (&offset_expr, s, fmt, treg,
8643 BFD_RELOC_LO16, tempreg);
8644 if (mips_relax.sequence)
8648 else if (!mips_big_got)
8650 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8652 /* If this is a reference to an external symbol, we want
8653 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8655 <op> $treg,0($tempreg)
8657 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8659 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8660 <op> $treg,0($tempreg)
8663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8664 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
8666 If there is a base register, we add it to $tempreg before
8667 the <op>. If there is a constant, we stick it in the
8668 <op> instruction. We don't handle constants larger than
8669 16 bits, because we have no way to load the upper 16 bits
8670 (actually, we could handle them for the subset of cases
8671 in which we are not using $at). */
8672 gas_assert (offset_expr.X_op == O_symbol);
8675 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8676 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8679 tempreg, tempreg, breg);
8680 macro_build (&offset_expr, s, fmt, treg,
8681 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8684 expr1.X_add_number = offset_expr.X_add_number;
8685 offset_expr.X_add_number = 0;
8686 if (expr1.X_add_number < -0x8000
8687 || expr1.X_add_number >= 0x8000)
8688 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8689 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8690 lw_reloc_type, mips_gp_register);
8692 relax_start (offset_expr.X_add_symbol);
8694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8695 tempreg, BFD_RELOC_LO16);
8698 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8699 tempreg, tempreg, breg);
8700 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8702 else if (mips_big_got && !HAVE_NEWABI)
8706 /* If this is a reference to an external symbol, we want
8707 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8708 addu $tempreg,$tempreg,$gp
8709 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8710 <op> $treg,0($tempreg)
8712 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8714 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8715 <op> $treg,0($tempreg)
8716 If there is a base register, we add it to $tempreg before
8717 the <op>. If there is a constant, we stick it in the
8718 <op> instruction. We don't handle constants larger than
8719 16 bits, because we have no way to load the upper 16 bits
8720 (actually, we could handle them for the subset of cases
8721 in which we are not using $at). */
8722 gas_assert (offset_expr.X_op == O_symbol);
8723 expr1.X_add_number = offset_expr.X_add_number;
8724 offset_expr.X_add_number = 0;
8725 if (expr1.X_add_number < -0x8000
8726 || expr1.X_add_number >= 0x8000)
8727 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8728 gpdelay = reg_needs_delay (mips_gp_register);
8729 relax_start (offset_expr.X_add_symbol);
8730 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8731 BFD_RELOC_MIPS_GOT_HI16);
8732 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8735 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8738 macro_build (NULL, "nop", "");
8739 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8742 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8743 tempreg, BFD_RELOC_LO16);
8747 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8748 tempreg, tempreg, breg);
8749 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8751 else if (mips_big_got && HAVE_NEWABI)
8753 /* If this is a reference to an external symbol, we want
8754 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8755 add $tempreg,$tempreg,$gp
8756 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8757 <op> $treg,<ofst>($tempreg)
8758 Otherwise, for local symbols, we want:
8759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8760 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
8761 gas_assert (offset_expr.X_op == O_symbol);
8762 expr1.X_add_number = offset_expr.X_add_number;
8763 offset_expr.X_add_number = 0;
8764 if (expr1.X_add_number < -0x8000
8765 || expr1.X_add_number >= 0x8000)
8766 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8767 relax_start (offset_expr.X_add_symbol);
8768 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8769 BFD_RELOC_MIPS_GOT_HI16);
8770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8772 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8773 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8775 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8776 tempreg, tempreg, breg);
8777 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8780 offset_expr.X_add_number = expr1.X_add_number;
8781 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8782 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8784 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8785 tempreg, tempreg, breg);
8786 macro_build (&offset_expr, s, fmt, treg,
8787 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8797 load_register (treg, &imm_expr, 0);
8801 load_register (treg, &imm_expr, 1);
8805 if (imm_expr.X_op == O_constant)
8808 load_register (AT, &imm_expr, 0);
8809 macro_build (NULL, "mtc1", "t,G", AT, treg);
8814 gas_assert (offset_expr.X_op == O_symbol
8815 && strcmp (segment_name (S_GET_SEGMENT
8816 (offset_expr.X_add_symbol)),
8818 && offset_expr.X_add_number == 0);
8819 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
8820 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8825 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
8826 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
8827 order 32 bits of the value and the low order 32 bits are either
8828 zero or in OFFSET_EXPR. */
8829 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8831 if (HAVE_64BIT_GPRS)
8832 load_register (treg, &imm_expr, 1);
8837 if (target_big_endian)
8849 load_register (hreg, &imm_expr, 0);
8852 if (offset_expr.X_op == O_absent)
8853 move_register (lreg, 0);
8856 gas_assert (offset_expr.X_op == O_constant);
8857 load_register (lreg, &offset_expr, 0);
8864 /* We know that sym is in the .rdata section. First we get the
8865 upper 16 bits of the address. */
8866 if (mips_pic == NO_PIC)
8868 macro_build_lui (&offset_expr, AT);
8873 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8874 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8878 /* Now we load the register(s). */
8879 if (HAVE_64BIT_GPRS)
8882 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8887 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8890 /* FIXME: How in the world do we deal with the possible
8892 offset_expr.X_add_number += 4;
8893 macro_build (&offset_expr, "lw", "t,o(b)",
8894 treg + 1, BFD_RELOC_LO16, AT);
8900 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
8901 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
8902 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
8903 the value and the low order 32 bits are either zero or in
8905 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8908 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
8909 if (HAVE_64BIT_FPRS)
8911 gas_assert (HAVE_64BIT_GPRS);
8912 macro_build (NULL, "dmtc1", "t,S", AT, treg);
8916 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
8917 if (offset_expr.X_op == O_absent)
8918 macro_build (NULL, "mtc1", "t,G", 0, treg);
8921 gas_assert (offset_expr.X_op == O_constant);
8922 load_register (AT, &offset_expr, 0);
8923 macro_build (NULL, "mtc1", "t,G", AT, treg);
8929 gas_assert (offset_expr.X_op == O_symbol
8930 && offset_expr.X_add_number == 0);
8931 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
8932 if (strcmp (s, ".lit8") == 0)
8934 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
8936 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
8937 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8940 breg = mips_gp_register;
8941 r = BFD_RELOC_MIPS_LITERAL;
8946 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8948 if (mips_pic != NO_PIC)
8949 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8950 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8953 /* FIXME: This won't work for a 64 bit address. */
8954 macro_build_lui (&offset_expr, AT);
8957 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
8959 macro_build (&offset_expr, "ldc1", "T,o(b)",
8960 treg, BFD_RELOC_LO16, AT);
8969 /* Even on a big endian machine $fn comes before $fn+1. We have
8970 to adjust when loading from memory. */
8973 gas_assert (!mips_opts.micromips);
8974 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
8975 macro_build (&offset_expr, "lwc1", "T,o(b)",
8976 target_big_endian ? treg + 1 : treg, r, breg);
8977 /* FIXME: A possible overflow which I don't know how to deal
8979 offset_expr.X_add_number += 4;
8980 macro_build (&offset_expr, "lwc1", "T,o(b)",
8981 target_big_endian ? treg : treg + 1, r, breg);
8985 gas_assert (!mips_opts.micromips);
8986 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
8987 /* Even on a big endian machine $fn comes before $fn+1. We have
8988 to adjust when storing to memory. */
8989 macro_build (&offset_expr, "swc1", "T,o(b)",
8990 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
8991 offset_expr.X_add_number += 4;
8992 macro_build (&offset_expr, "swc1", "T,o(b)",
8993 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
8997 gas_assert (!mips_opts.micromips);
8999 * The MIPS assembler seems to check for X_add_number not
9000 * being double aligned and generating:
9003 * addiu at,at,%lo(foo+1)
9006 * But, the resulting address is the same after relocation so why
9007 * generate the extra instruction?
9009 /* Itbl support may require additional care here. */
9012 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9021 gas_assert (!mips_opts.micromips);
9022 /* Itbl support may require additional care here. */
9025 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9045 if (HAVE_64BIT_GPRS)
9055 if (HAVE_64BIT_GPRS)
9063 if (offset_expr.X_op != O_symbol
9064 && offset_expr.X_op != O_constant)
9066 as_bad (_("Expression too complex"));
9067 offset_expr.X_op = O_constant;
9070 if (HAVE_32BIT_ADDRESSES
9071 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9075 sprintf_vma (value, offset_expr.X_add_number);
9076 as_bad (_("Number (0x%s) larger than 32 bits"), value);
9079 /* Even on a big endian machine $fn comes before $fn+1. We have
9080 to adjust when loading from memory. We set coproc if we must
9081 load $fn+1 first. */
9082 /* Itbl support may require additional care here. */
9083 if (!target_big_endian)
9086 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
9088 /* If this is a reference to a GP relative symbol, we want
9089 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
9090 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
9091 If we have a base register, we use this
9093 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
9094 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
9095 If this is not a GP relative symbol, we want
9096 lui $at,<sym> (BFD_RELOC_HI16_S)
9097 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9098 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9099 If there is a base register, we add it to $at after the
9100 lui instruction. If there is a constant, we always use
9102 if (offset_expr.X_op == O_symbol
9103 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9104 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9106 relax_start (offset_expr.X_add_symbol);
9109 tempreg = mips_gp_register;
9113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9114 AT, breg, mips_gp_register);
9119 /* Itbl support may require additional care here. */
9120 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9121 BFD_RELOC_GPREL16, tempreg);
9122 offset_expr.X_add_number += 4;
9124 /* Set mips_optimize to 2 to avoid inserting an
9126 hold_mips_optimize = mips_optimize;
9128 /* Itbl support may require additional care here. */
9129 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9130 BFD_RELOC_GPREL16, tempreg);
9131 mips_optimize = hold_mips_optimize;
9135 offset_expr.X_add_number -= 4;
9138 macro_build_lui (&offset_expr, AT);
9140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9141 /* Itbl support may require additional care here. */
9142 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9143 BFD_RELOC_LO16, AT);
9144 /* FIXME: How do we handle overflow here? */
9145 offset_expr.X_add_number += 4;
9146 /* Itbl support may require additional care here. */
9147 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9148 BFD_RELOC_LO16, AT);
9149 if (mips_relax.sequence)
9152 else if (!mips_big_got)
9154 /* If this is a reference to an external symbol, we want
9155 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9160 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9162 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9163 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9164 If there is a base register we add it to $at before the
9165 lwc1 instructions. If there is a constant we include it
9166 in the lwc1 instructions. */
9168 expr1.X_add_number = offset_expr.X_add_number;
9169 if (expr1.X_add_number < -0x8000
9170 || expr1.X_add_number >= 0x8000 - 4)
9171 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9172 load_got_offset (AT, &offset_expr);
9175 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9177 /* Set mips_optimize to 2 to avoid inserting an undesired
9179 hold_mips_optimize = mips_optimize;
9182 /* Itbl support may require additional care here. */
9183 relax_start (offset_expr.X_add_symbol);
9184 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9185 BFD_RELOC_LO16, AT);
9186 expr1.X_add_number += 4;
9187 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9188 BFD_RELOC_LO16, AT);
9190 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9191 BFD_RELOC_LO16, AT);
9192 offset_expr.X_add_number += 4;
9193 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9194 BFD_RELOC_LO16, AT);
9197 mips_optimize = hold_mips_optimize;
9199 else if (mips_big_got)
9203 /* If this is a reference to an external symbol, we want
9204 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9206 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9211 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9213 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9214 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9215 If there is a base register we add it to $at before the
9216 lwc1 instructions. If there is a constant we include it
9217 in the lwc1 instructions. */
9219 expr1.X_add_number = offset_expr.X_add_number;
9220 offset_expr.X_add_number = 0;
9221 if (expr1.X_add_number < -0x8000
9222 || expr1.X_add_number >= 0x8000 - 4)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 gpdelay = reg_needs_delay (mips_gp_register);
9225 relax_start (offset_expr.X_add_symbol);
9226 macro_build (&offset_expr, "lui", LUI_FMT,
9227 AT, BFD_RELOC_MIPS_GOT_HI16);
9228 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9229 AT, AT, mips_gp_register);
9230 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9231 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9234 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9235 /* Itbl support may require additional care here. */
9236 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9237 BFD_RELOC_LO16, AT);
9238 expr1.X_add_number += 4;
9240 /* Set mips_optimize to 2 to avoid inserting an undesired
9242 hold_mips_optimize = mips_optimize;
9244 /* Itbl support may require additional care here. */
9245 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9246 BFD_RELOC_LO16, AT);
9247 mips_optimize = hold_mips_optimize;
9248 expr1.X_add_number -= 4;
9251 offset_expr.X_add_number = expr1.X_add_number;
9253 macro_build (NULL, "nop", "");
9254 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9255 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9259 /* Itbl support may require additional care here. */
9260 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9261 BFD_RELOC_LO16, AT);
9262 offset_expr.X_add_number += 4;
9264 /* Set mips_optimize to 2 to avoid inserting an undesired
9266 hold_mips_optimize = mips_optimize;
9268 /* Itbl support may require additional care here. */
9269 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9270 BFD_RELOC_LO16, AT);
9271 mips_optimize = hold_mips_optimize;
9280 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9283 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9285 macro_build (&offset_expr, s, "t,o(b)", treg,
9286 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9288 if (!HAVE_64BIT_GPRS)
9290 offset_expr.X_add_number += 4;
9291 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9292 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9313 /* New code added to support COPZ instructions.
9314 This code builds table entries out of the macros in mip_opcodes.
9315 R4000 uses interlocks to handle coproc delays.
9316 Other chips (like the R3000) require nops to be inserted for delays.
9318 FIXME: Currently, we require that the user handle delays.
9319 In order to fill delay slots for non-interlocked chips,
9320 we must have a way to specify delays based on the coprocessor.
9321 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9322 What are the side-effects of the cop instruction?
9323 What cache support might we have and what are its effects?
9324 Both coprocessor & memory require delays. how long???
9325 What registers are read/set/modified?
9327 If an itbl is provided to interpret cop instructions,
9328 this knowledge can be encoded in the itbl spec. */
9342 gas_assert (!mips_opts.micromips);
9343 /* For now we just do C (same as Cz). The parameter will be
9344 stored in insn_opcode by mips_ip. */
9345 macro_build (NULL, s, "C", ip->insn_opcode);
9349 move_register (dreg, sreg);
9355 if (mips_opts.arch == CPU_R5900)
9357 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
9361 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9362 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9369 /* The MIPS assembler some times generates shifts and adds. I'm
9370 not trying to be that fancy. GCC should do this for us
9373 load_register (AT, &imm_expr, dbl);
9374 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9375 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9391 load_register (AT, &imm_expr, dbl);
9392 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9393 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9394 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9395 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9397 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9400 if (mips_opts.micromips)
9401 micromips_label_expr (&label_expr);
9403 label_expr.X_add_number = 8;
9404 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9405 macro_build (NULL, "nop", "");
9406 macro_build (NULL, "break", BRK_FMT, 6);
9407 if (mips_opts.micromips)
9408 micromips_add_label ();
9411 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9427 load_register (AT, &imm_expr, dbl);
9428 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9429 sreg, imm ? AT : treg);
9430 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9431 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9433 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9436 if (mips_opts.micromips)
9437 micromips_label_expr (&label_expr);
9439 label_expr.X_add_number = 8;
9440 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9441 macro_build (NULL, "nop", "");
9442 macro_build (NULL, "break", BRK_FMT, 6);
9443 if (mips_opts.micromips)
9444 micromips_add_label ();
9450 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9461 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9462 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9466 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9467 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9468 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9469 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9473 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9484 macro_build (NULL, "negu", "d,w", tempreg, treg);
9485 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9489 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9490 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9491 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9492 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9501 if (imm_expr.X_op != O_constant)
9502 as_bad (_("Improper rotate count"));
9503 rot = imm_expr.X_add_number & 0x3f;
9504 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9506 rot = (64 - rot) & 0x3f;
9508 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9510 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9515 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9518 l = (rot < 0x20) ? "dsll" : "dsll32";
9519 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9522 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9523 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9524 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9532 if (imm_expr.X_op != O_constant)
9533 as_bad (_("Improper rotate count"));
9534 rot = imm_expr.X_add_number & 0x1f;
9535 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9537 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9542 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9546 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9547 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9548 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9553 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9555 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9559 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9560 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9561 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9562 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9566 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9568 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9572 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9573 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9574 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9575 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9584 if (imm_expr.X_op != O_constant)
9585 as_bad (_("Improper rotate count"));
9586 rot = imm_expr.X_add_number & 0x3f;
9587 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9590 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9592 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9597 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9600 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9601 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9604 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9605 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9606 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9614 if (imm_expr.X_op != O_constant)
9615 as_bad (_("Improper rotate count"));
9616 rot = imm_expr.X_add_number & 0x1f;
9617 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9619 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9624 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9628 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9629 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9630 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9636 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9638 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9641 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9642 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9647 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9649 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9654 as_warn (_("Instruction %s: result is always false"),
9656 move_register (dreg, 0);
9659 if (CPU_HAS_SEQ (mips_opts.arch)
9660 && -512 <= imm_expr.X_add_number
9661 && imm_expr.X_add_number < 512)
9663 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
9664 (int) imm_expr.X_add_number);
9667 if (imm_expr.X_op == O_constant
9668 && imm_expr.X_add_number >= 0
9669 && imm_expr.X_add_number < 0x10000)
9671 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9673 else if (imm_expr.X_op == O_constant
9674 && imm_expr.X_add_number > -0x8000
9675 && imm_expr.X_add_number < 0)
9677 imm_expr.X_add_number = -imm_expr.X_add_number;
9678 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9679 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9681 else if (CPU_HAS_SEQ (mips_opts.arch))
9684 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9685 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
9690 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9691 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9694 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9697 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
9703 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
9704 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9707 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
9709 if (imm_expr.X_op == O_constant
9710 && imm_expr.X_add_number >= -0x8000
9711 && imm_expr.X_add_number < 0x8000)
9713 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
9714 dreg, sreg, BFD_RELOC_LO16);
9718 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9719 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
9723 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9726 case M_SGT: /* sreg > treg <==> treg < sreg */
9732 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9735 case M_SGT_I: /* sreg > I <==> I < sreg */
9742 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9743 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9746 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
9752 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9753 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9756 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
9763 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9764 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9765 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9769 if (imm_expr.X_op == O_constant
9770 && imm_expr.X_add_number >= -0x8000
9771 && imm_expr.X_add_number < 0x8000)
9773 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9777 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9778 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
9782 if (imm_expr.X_op == O_constant
9783 && imm_expr.X_add_number >= -0x8000
9784 && imm_expr.X_add_number < 0x8000)
9786 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
9791 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9792 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
9797 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
9799 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9802 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9803 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9808 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9810 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9815 as_warn (_("Instruction %s: result is always true"),
9817 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
9818 dreg, 0, BFD_RELOC_LO16);
9821 if (CPU_HAS_SEQ (mips_opts.arch)
9822 && -512 <= imm_expr.X_add_number
9823 && imm_expr.X_add_number < 512)
9825 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
9826 (int) imm_expr.X_add_number);
9829 if (imm_expr.X_op == O_constant
9830 && imm_expr.X_add_number >= 0
9831 && imm_expr.X_add_number < 0x10000)
9833 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9835 else if (imm_expr.X_op == O_constant
9836 && imm_expr.X_add_number > -0x8000
9837 && imm_expr.X_add_number < 0)
9839 imm_expr.X_add_number = -imm_expr.X_add_number;
9840 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9841 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9843 else if (CPU_HAS_SEQ (mips_opts.arch))
9846 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9847 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
9852 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9853 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9856 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9871 if (!mips_opts.micromips)
9873 if (imm_expr.X_op == O_constant
9874 && imm_expr.X_add_number > -0x200
9875 && imm_expr.X_add_number <= 0x200)
9877 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
9886 if (imm_expr.X_op == O_constant
9887 && imm_expr.X_add_number > -0x8000
9888 && imm_expr.X_add_number <= 0x8000)
9890 imm_expr.X_add_number = -imm_expr.X_add_number;
9891 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9896 load_register (AT, &imm_expr, dbl);
9897 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
9919 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9920 macro_build (NULL, s, "s,t", sreg, AT);
9925 gas_assert (!mips_opts.micromips);
9926 gas_assert (mips_opts.isa == ISA_MIPS1);
9928 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
9929 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
9932 * Is the double cfc1 instruction a bug in the mips assembler;
9933 * or is there a reason for it?
9936 macro_build (NULL, "cfc1", "t,G", treg, RA);
9937 macro_build (NULL, "cfc1", "t,G", treg, RA);
9938 macro_build (NULL, "nop", "");
9939 expr1.X_add_number = 3;
9940 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
9941 expr1.X_add_number = 2;
9942 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
9943 macro_build (NULL, "ctc1", "t,G", AT, RA);
9944 macro_build (NULL, "nop", "");
9945 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
9947 macro_build (NULL, "ctc1", "t,G", treg, RA);
9948 macro_build (NULL, "nop", "");
9971 off12 = mips_opts.micromips;
9979 off12 = mips_opts.micromips;
9995 off12 = mips_opts.micromips;
10004 off12 = mips_opts.micromips;
10009 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
10010 as_bad (_("Operand overflow"));
10013 expr1.X_add_number = 0;
10018 load_address (tempreg, ep, &used_at);
10020 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10021 tempreg, tempreg, breg);
10027 && (offset_expr.X_op != O_constant
10028 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
10029 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
10033 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
10034 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10039 else if (!ust && treg == breg)
10050 if (!target_big_endian)
10051 ep->X_add_number += off;
10053 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10055 macro_build (NULL, s, "t,~(b)",
10056 tempreg, (unsigned long) ep->X_add_number, breg);
10058 if (!target_big_endian)
10059 ep->X_add_number -= off;
10061 ep->X_add_number += off;
10063 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10065 macro_build (NULL, s2, "t,~(b)",
10066 tempreg, (unsigned long) ep->X_add_number, breg);
10068 /* If necessary, move the result in tempreg to the final destination. */
10069 if (!ust && treg != tempreg)
10071 /* Protect second load's delay slot. */
10073 move_register (treg, tempreg);
10079 if (target_big_endian == ust)
10080 ep->X_add_number += off;
10081 tempreg = ust || ab ? treg : AT;
10082 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10084 /* For halfword transfers we need a temporary register to shuffle
10085 bytes. Unfortunately for M_USH_A we have none available before
10086 the next store as AT holds the base address. We deal with this
10087 case by clobbering TREG and then restoring it as with ULH. */
10088 tempreg = ust == ab ? treg : AT;
10090 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
10092 if (target_big_endian == ust)
10093 ep->X_add_number -= off;
10095 ep->X_add_number += off;
10096 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10098 /* For M_USH_A re-retrieve the LSB. */
10101 if (target_big_endian)
10102 ep->X_add_number += off;
10104 ep->X_add_number -= off;
10105 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
10107 /* For ULH and M_USH_A OR the LSB in. */
10110 tempreg = !ab ? AT : treg;
10111 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
10112 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
10117 /* FIXME: Check if this is one of the itbl macros, since they
10118 are added dynamically. */
10119 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
10122 if (!mips_opts.at && used_at)
10123 as_bad (_("Macro used $at after \".set noat\""));
10126 /* Implement macros in mips16 mode. */
10129 mips16_macro (struct mips_cl_insn *ip)
10132 int xreg, yreg, zreg, tmp;
10135 const char *s, *s2, *s3;
10137 mask = ip->insn_mo->mask;
10139 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
10140 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
10141 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
10143 expr1.X_op = O_constant;
10144 expr1.X_op_symbol = NULL;
10145 expr1.X_add_symbol = NULL;
10146 expr1.X_add_number = 1;
10165 start_noreorder ();
10166 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10167 expr1.X_add_number = 2;
10168 macro_build (&expr1, "bnez", "x,p", yreg);
10169 macro_build (NULL, "break", "6", 7);
10171 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10172 since that causes an overflow. We should do that as well,
10173 but I don't see how to do the comparisons without a temporary
10176 macro_build (NULL, s, "x", zreg);
10195 start_noreorder ();
10196 macro_build (NULL, s, "0,x,y", xreg, yreg);
10197 expr1.X_add_number = 2;
10198 macro_build (&expr1, "bnez", "x,p", yreg);
10199 macro_build (NULL, "break", "6", 7);
10201 macro_build (NULL, s2, "x", zreg);
10207 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10208 macro_build (NULL, "mflo", "x", zreg);
10216 if (imm_expr.X_op != O_constant)
10217 as_bad (_("Unsupported large constant"));
10218 imm_expr.X_add_number = -imm_expr.X_add_number;
10219 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10223 if (imm_expr.X_op != O_constant)
10224 as_bad (_("Unsupported large constant"));
10225 imm_expr.X_add_number = -imm_expr.X_add_number;
10226 macro_build (&imm_expr, "addiu", "x,k", xreg);
10230 if (imm_expr.X_op != O_constant)
10231 as_bad (_("Unsupported large constant"));
10232 imm_expr.X_add_number = -imm_expr.X_add_number;
10233 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10255 goto do_reverse_branch;
10259 goto do_reverse_branch;
10271 goto do_reverse_branch;
10282 macro_build (NULL, s, "x,y", xreg, yreg);
10283 macro_build (&offset_expr, s2, "p");
10310 goto do_addone_branch_i;
10315 goto do_addone_branch_i;
10330 goto do_addone_branch_i;
10336 do_addone_branch_i:
10337 if (imm_expr.X_op != O_constant)
10338 as_bad (_("Unsupported large constant"));
10339 ++imm_expr.X_add_number;
10342 macro_build (&imm_expr, s, s3, xreg);
10343 macro_build (&offset_expr, s2, "p");
10347 expr1.X_add_number = 0;
10348 macro_build (&expr1, "slti", "x,8", yreg);
10350 move_register (xreg, yreg);
10351 expr1.X_add_number = 2;
10352 macro_build (&expr1, "bteqz", "p");
10353 macro_build (NULL, "neg", "x,w", xreg, xreg);
10357 /* For consistency checking, verify that all bits are specified either
10358 by the match/mask part of the instruction definition, or by the
10361 validate_mips_insn (const struct mips_opcode *opc)
10363 const char *p = opc->args;
10365 unsigned long used_bits = opc->mask;
10367 if ((used_bits & opc->match) != opc->match)
10369 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10370 opc->name, opc->args);
10373 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10383 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10384 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10385 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10386 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10387 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10388 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10389 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10390 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10391 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10392 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10393 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10394 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10395 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10397 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10398 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10399 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10400 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10401 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10402 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10403 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10404 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10405 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10406 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10407 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10408 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10409 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10410 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10411 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10414 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10415 c, opc->name, opc->args);
10419 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10420 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10422 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10423 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10424 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10425 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10427 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10428 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10430 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10431 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10433 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10434 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10435 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10436 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10437 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10438 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10439 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10440 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10441 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10442 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10443 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10444 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10445 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10446 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10447 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10448 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10449 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10451 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10452 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10453 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10454 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10456 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10457 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10458 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10459 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10460 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10461 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10462 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10463 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10464 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10467 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10468 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10469 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10470 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10471 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10474 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10475 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10476 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10477 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10478 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10479 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10480 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10481 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10482 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10483 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10484 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10485 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10486 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10487 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10488 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10489 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10490 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10491 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10492 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10493 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10495 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10496 c, opc->name, opc->args);
10500 if (used_bits != 0xffffffff)
10502 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10503 ~used_bits & 0xffffffff, opc->name, opc->args);
10509 /* For consistency checking, verify that the length implied matches the
10510 major opcode and that all bits are specified either by the match/mask
10511 part of the instruction definition, or by the operand list. */
10514 validate_micromips_insn (const struct mips_opcode *opc)
10516 unsigned long match = opc->match;
10517 unsigned long mask = opc->mask;
10518 const char *p = opc->args;
10519 unsigned long insn_bits;
10520 unsigned long used_bits;
10521 unsigned long major;
10522 unsigned int length;
10526 if ((mask & match) != match)
10528 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10529 opc->name, opc->args);
10532 length = micromips_insn_length (opc);
10533 if (length != 2 && length != 4)
10535 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10536 "%s %s"), length, opc->name, opc->args);
10539 major = match >> (10 + 8 * (length - 2));
10540 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10541 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10543 as_bad (_("Internal error: bad microMIPS opcode "
10544 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10548 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10549 insn_bits = 1 << 4 * length;
10550 insn_bits <<= 4 * length;
10553 #define USE_BITS(field) \
10554 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10565 case 'A': USE_BITS (EXTLSB); break;
10566 case 'B': USE_BITS (INSMSB); break;
10567 case 'C': USE_BITS (EXTMSBD); break;
10568 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10569 case 'E': USE_BITS (EXTLSB); break;
10570 case 'F': USE_BITS (INSMSB); break;
10571 case 'G': USE_BITS (EXTMSBD); break;
10572 case 'H': USE_BITS (EXTMSBD); break;
10574 as_bad (_("Internal error: bad mips opcode "
10575 "(unknown extension operand type `%c%c'): %s %s"),
10576 e, c, opc->name, opc->args);
10584 case 'A': USE_BITS (IMMA); break;
10585 case 'B': USE_BITS (IMMB); break;
10586 case 'C': USE_BITS (IMMC); break;
10587 case 'D': USE_BITS (IMMD); break;
10588 case 'E': USE_BITS (IMME); break;
10589 case 'F': USE_BITS (IMMF); break;
10590 case 'G': USE_BITS (IMMG); break;
10591 case 'H': USE_BITS (IMMH); break;
10592 case 'I': USE_BITS (IMMI); break;
10593 case 'J': USE_BITS (IMMJ); break;
10594 case 'L': USE_BITS (IMML); break;
10595 case 'M': USE_BITS (IMMM); break;
10596 case 'N': USE_BITS (IMMN); break;
10597 case 'O': USE_BITS (IMMO); break;
10598 case 'P': USE_BITS (IMMP); break;
10599 case 'Q': USE_BITS (IMMQ); break;
10600 case 'U': USE_BITS (IMMU); break;
10601 case 'W': USE_BITS (IMMW); break;
10602 case 'X': USE_BITS (IMMX); break;
10603 case 'Y': USE_BITS (IMMY); break;
10606 case 'b': USE_BITS (MB); break;
10607 case 'c': USE_BITS (MC); break;
10608 case 'd': USE_BITS (MD); break;
10609 case 'e': USE_BITS (ME); break;
10610 case 'f': USE_BITS (MF); break;
10611 case 'g': USE_BITS (MG); break;
10612 case 'h': USE_BITS (MH); break;
10613 case 'i': USE_BITS (MI); break;
10614 case 'j': USE_BITS (MJ); break;
10615 case 'l': USE_BITS (ML); break;
10616 case 'm': USE_BITS (MM); break;
10617 case 'n': USE_BITS (MN); break;
10618 case 'p': USE_BITS (MP); break;
10619 case 'q': USE_BITS (MQ); break;
10627 as_bad (_("Internal error: bad mips opcode "
10628 "(unknown extension operand type `%c%c'): %s %s"),
10629 e, c, opc->name, opc->args);
10633 case '.': USE_BITS (OFFSET10); break;
10634 case '1': USE_BITS (STYPE); break;
10635 case '2': USE_BITS (BP); break;
10636 case '3': USE_BITS (SA3); break;
10637 case '4': USE_BITS (SA4); break;
10638 case '5': USE_BITS (IMM8); break;
10639 case '6': USE_BITS (RS); break;
10640 case '7': USE_BITS (DSPACC); break;
10641 case '8': USE_BITS (WRDSP); break;
10642 case '0': USE_BITS (DSPSFT); break;
10643 case '<': USE_BITS (SHAMT); break;
10644 case '>': USE_BITS (SHAMT); break;
10645 case '@': USE_BITS (IMM10); break;
10646 case 'B': USE_BITS (CODE10); break;
10647 case 'C': USE_BITS (COPZ); break;
10648 case 'D': USE_BITS (FD); break;
10649 case 'E': USE_BITS (RT); break;
10650 case 'G': USE_BITS (RS); break;
10651 case 'H': USE_BITS (SEL); break;
10652 case 'K': USE_BITS (RS); break;
10653 case 'M': USE_BITS (CCC); break;
10654 case 'N': USE_BITS (BCC); break;
10655 case 'R': USE_BITS (FR); break;
10656 case 'S': USE_BITS (FS); break;
10657 case 'T': USE_BITS (FT); break;
10658 case 'V': USE_BITS (FS); break;
10659 case '\\': USE_BITS (3BITPOS); break;
10660 case '^': USE_BITS (RD); break;
10661 case 'a': USE_BITS (TARGET); break;
10662 case 'b': USE_BITS (RS); break;
10663 case 'c': USE_BITS (CODE); break;
10664 case 'd': USE_BITS (RD); break;
10665 case 'h': USE_BITS (PREFX); break;
10666 case 'i': USE_BITS (IMMEDIATE); break;
10667 case 'j': USE_BITS (DELTA); break;
10668 case 'k': USE_BITS (CACHE); break;
10669 case 'n': USE_BITS (RT); break;
10670 case 'o': USE_BITS (DELTA); break;
10671 case 'p': USE_BITS (DELTA); break;
10672 case 'q': USE_BITS (CODE2); break;
10673 case 'r': USE_BITS (RS); break;
10674 case 's': USE_BITS (RS); break;
10675 case 't': USE_BITS (RT); break;
10676 case 'u': USE_BITS (IMMEDIATE); break;
10677 case 'v': USE_BITS (RS); break;
10678 case 'w': USE_BITS (RT); break;
10679 case 'y': USE_BITS (RS3); break;
10681 case '|': USE_BITS (TRAP); break;
10682 case '~': USE_BITS (OFFSET12); break;
10684 as_bad (_("Internal error: bad microMIPS opcode "
10685 "(unknown operand type `%c'): %s %s"),
10686 c, opc->name, opc->args);
10690 if (used_bits != insn_bits)
10692 if (~used_bits & insn_bits)
10693 as_bad (_("Internal error: bad microMIPS opcode "
10694 "(bits 0x%lx undefined): %s %s"),
10695 ~used_bits & insn_bits, opc->name, opc->args);
10696 if (used_bits & ~insn_bits)
10697 as_bad (_("Internal error: bad microMIPS opcode "
10698 "(bits 0x%lx defined): %s %s"),
10699 used_bits & ~insn_bits, opc->name, opc->args);
10705 /* UDI immediates. */
10706 struct mips_immed {
10708 unsigned int shift;
10709 unsigned long mask;
10713 static const struct mips_immed mips_immed[] = {
10714 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
10715 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
10716 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
10717 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
10721 /* Check whether an odd floating-point register is allowed. */
10723 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
10725 const char *s = insn->name;
10727 if (insn->pinfo == INSN_MACRO)
10728 /* Let a macro pass, we'll catch it later when it is expanded. */
10731 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || (mips_opts.arch == CPU_R5900))
10733 /* Allow odd registers for single-precision ops. */
10734 switch (insn->pinfo & (FP_S | FP_D))
10738 return 1; /* both single precision - ok */
10740 return 0; /* both double precision - fail */
10745 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
10746 s = strchr (insn->name, '.');
10748 s = s != NULL ? strchr (s + 1, '.') : NULL;
10749 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
10752 /* Single-precision coprocessor loads and moves are OK too. */
10753 if ((insn->pinfo & FP_S)
10754 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
10755 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
10761 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
10762 taking bits from BIT up. */
10764 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
10766 return (ep->X_op == O_constant
10767 && (ep->X_add_number & ((1 << bit) - 1)) == 0
10768 && ep->X_add_number >= min << bit
10769 && ep->X_add_number < max << bit);
10772 /* This routine assembles an instruction into its binary format. As a
10773 side effect, it sets one of the global variables imm_reloc or
10774 offset_reloc to the type of relocation to do if one of the operands
10775 is an address expression. */
10778 mips_ip (char *str, struct mips_cl_insn *ip)
10780 bfd_boolean wrong_delay_slot_insns = FALSE;
10781 bfd_boolean need_delay_slot_ok = TRUE;
10782 struct mips_opcode *firstinsn = NULL;
10783 const struct mips_opcode *past;
10784 struct hash_control *hash;
10788 struct mips_opcode *insn;
10790 unsigned int regno;
10791 unsigned int lastregno;
10792 unsigned int destregno = 0;
10793 unsigned int lastpos = 0;
10794 unsigned int limlo, limhi;
10796 offsetT min_range, max_range;
10800 unsigned int rtype;
10806 if (mips_opts.micromips)
10808 hash = micromips_op_hash;
10809 past = µmips_opcodes[bfd_micromips_num_opcodes];
10814 past = &mips_opcodes[NUMOPCODES];
10816 forced_insn_length = 0;
10819 /* We first try to match an instruction up to a space or to the end. */
10820 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
10823 /* Make a copy of the instruction so that we can fiddle with it. */
10824 name = alloca (end + 1);
10825 memcpy (name, str, end);
10830 insn = (struct mips_opcode *) hash_find (hash, name);
10832 if (insn != NULL || !mips_opts.micromips)
10834 if (forced_insn_length)
10837 /* See if there's an instruction size override suffix,
10838 either `16' or `32', at the end of the mnemonic proper,
10839 that defines the operation, i.e. before the first `.'
10840 character if any. Strip it and retry. */
10841 dot = strchr (name, '.');
10842 opend = dot != NULL ? dot - name : end;
10845 if (name[opend - 2] == '1' && name[opend - 1] == '6')
10846 forced_insn_length = 2;
10847 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
10848 forced_insn_length = 4;
10851 memcpy (name + opend - 2, name + opend, end - opend + 1);
10855 insn_error = _("Unrecognized opcode");
10859 /* For microMIPS instructions placed in a fixed-length branch delay slot
10860 we make up to two passes over the relevant fragment of the opcode
10861 table. First we try instructions that meet the delay slot's length
10862 requirement. If none matched, then we retry with the remaining ones
10863 and if one matches, then we use it and then issue an appropriate
10864 warning later on. */
10865 argsStart = s = str + end;
10868 bfd_boolean delay_slot_ok;
10869 bfd_boolean size_ok;
10872 gas_assert (strcmp (insn->name, name) == 0);
10874 ok = is_opcode_valid (insn);
10875 size_ok = is_size_valid (insn);
10876 delay_slot_ok = is_delay_slot_valid (insn);
10877 if (!delay_slot_ok && !wrong_delay_slot_insns)
10880 wrong_delay_slot_insns = TRUE;
10882 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
10884 static char buf[256];
10886 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
10891 if (wrong_delay_slot_insns && need_delay_slot_ok)
10893 gas_assert (firstinsn);
10894 need_delay_slot_ok = FALSE;
10904 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
10905 mips_cpu_info_from_arch (mips_opts.arch)->name,
10906 mips_cpu_info_from_isa (mips_opts.isa)->name);
10908 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
10909 8 * forced_insn_length);
10915 create_insn (ip, insn);
10918 lastregno = 0xffffffff;
10919 for (args = insn->args;; ++args)
10923 s += strspn (s, " \t");
10927 case '\0': /* end of args */
10933 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
10934 code) or 14 (for microMIPS code). */
10935 my_getExpression (&imm_expr, s);
10936 check_absolute_expr (ip, &imm_expr);
10937 if ((unsigned long) imm_expr.X_add_number != 1
10938 && (unsigned long) imm_expr.X_add_number != 3)
10940 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
10941 (unsigned long) imm_expr.X_add_number);
10943 INSERT_OPERAND (mips_opts.micromips,
10944 BP, *ip, imm_expr.X_add_number);
10945 imm_expr.X_op = O_absent;
10950 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
10951 code) or 21 (for microMIPS code). */
10953 unsigned long mask = (mips_opts.micromips
10954 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
10956 my_getExpression (&imm_expr, s);
10957 check_absolute_expr (ip, &imm_expr);
10958 if ((unsigned long) imm_expr.X_add_number > mask)
10959 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10960 mask, (unsigned long) imm_expr.X_add_number);
10961 INSERT_OPERAND (mips_opts.micromips,
10962 SA3, *ip, imm_expr.X_add_number);
10963 imm_expr.X_op = O_absent;
10969 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
10970 code) or 21 (for microMIPS code). */
10972 unsigned long mask = (mips_opts.micromips
10973 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
10975 my_getExpression (&imm_expr, s);
10976 check_absolute_expr (ip, &imm_expr);
10977 if ((unsigned long) imm_expr.X_add_number > mask)
10978 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10979 mask, (unsigned long) imm_expr.X_add_number);
10980 INSERT_OPERAND (mips_opts.micromips,
10981 SA4, *ip, imm_expr.X_add_number);
10982 imm_expr.X_op = O_absent;
10988 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
10989 code) or 16 (for microMIPS code). */
10991 unsigned long mask = (mips_opts.micromips
10992 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
10994 my_getExpression (&imm_expr, s);
10995 check_absolute_expr (ip, &imm_expr);
10996 if ((unsigned long) imm_expr.X_add_number > mask)
10997 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10998 mask, (unsigned long) imm_expr.X_add_number);
10999 INSERT_OPERAND (mips_opts.micromips,
11000 IMM8, *ip, imm_expr.X_add_number);
11001 imm_expr.X_op = O_absent;
11007 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
11008 code) or 21 (for microMIPS code). */
11010 unsigned long mask = (mips_opts.micromips
11011 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
11013 my_getExpression (&imm_expr, s);
11014 check_absolute_expr (ip, &imm_expr);
11015 if ((unsigned long) imm_expr.X_add_number > mask)
11016 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11017 mask, (unsigned long) imm_expr.X_add_number);
11018 INSERT_OPERAND (mips_opts.micromips,
11019 RS, *ip, imm_expr.X_add_number);
11020 imm_expr.X_op = O_absent;
11025 case '7': /* Four DSP accumulators in bits 11,12. */
11026 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11027 && s[3] >= '0' && s[3] <= '3')
11029 regno = s[3] - '0';
11031 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
11035 as_bad (_("Invalid dsp acc register"));
11039 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
11040 code) or 14 (for microMIPS code). */
11042 unsigned long mask = (mips_opts.micromips
11043 ? MICROMIPSOP_MASK_WRDSP
11046 my_getExpression (&imm_expr, s);
11047 check_absolute_expr (ip, &imm_expr);
11048 if ((unsigned long) imm_expr.X_add_number > mask)
11049 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11050 mask, (unsigned long) imm_expr.X_add_number);
11051 INSERT_OPERAND (mips_opts.micromips,
11052 WRDSP, *ip, imm_expr.X_add_number);
11053 imm_expr.X_op = O_absent;
11058 case '9': /* Four DSP accumulators in bits 21,22. */
11059 gas_assert (!mips_opts.micromips);
11060 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11061 && s[3] >= '0' && s[3] <= '3')
11063 regno = s[3] - '0';
11065 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
11069 as_bad (_("Invalid dsp acc register"));
11073 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
11074 code) or 20 (for microMIPS code). */
11076 long mask = (mips_opts.micromips
11077 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
11079 my_getExpression (&imm_expr, s);
11080 check_absolute_expr (ip, &imm_expr);
11081 min_range = -((mask + 1) >> 1);
11082 max_range = ((mask + 1) >> 1) - 1;
11083 if (imm_expr.X_add_number < min_range
11084 || imm_expr.X_add_number > max_range)
11085 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11086 (long) min_range, (long) max_range,
11087 (long) imm_expr.X_add_number);
11088 INSERT_OPERAND (mips_opts.micromips,
11089 DSPSFT, *ip, imm_expr.X_add_number);
11090 imm_expr.X_op = O_absent;
11095 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
11096 gas_assert (!mips_opts.micromips);
11097 my_getExpression (&imm_expr, s);
11098 check_absolute_expr (ip, &imm_expr);
11099 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
11101 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11103 (unsigned long) imm_expr.X_add_number);
11105 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
11106 imm_expr.X_op = O_absent;
11110 case ':': /* DSP 7-bit signed immediate in bit 19. */
11111 gas_assert (!mips_opts.micromips);
11112 my_getExpression (&imm_expr, s);
11113 check_absolute_expr (ip, &imm_expr);
11114 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
11115 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
11116 if (imm_expr.X_add_number < min_range ||
11117 imm_expr.X_add_number > max_range)
11119 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11120 (long) min_range, (long) max_range,
11121 (long) imm_expr.X_add_number);
11123 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
11124 imm_expr.X_op = O_absent;
11128 case '@': /* DSP 10-bit signed immediate in bit 16. */
11130 long mask = (mips_opts.micromips
11131 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
11133 my_getExpression (&imm_expr, s);
11134 check_absolute_expr (ip, &imm_expr);
11135 min_range = -((mask + 1) >> 1);
11136 max_range = ((mask + 1) >> 1) - 1;
11137 if (imm_expr.X_add_number < min_range
11138 || imm_expr.X_add_number > max_range)
11139 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11140 (long) min_range, (long) max_range,
11141 (long) imm_expr.X_add_number);
11142 INSERT_OPERAND (mips_opts.micromips,
11143 IMM10, *ip, imm_expr.X_add_number);
11144 imm_expr.X_op = O_absent;
11149 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11150 gas_assert (mips_opts.micromips);
11151 my_getExpression (&imm_expr, s);
11152 check_absolute_expr (ip, &imm_expr);
11153 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11154 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11155 MICROMIPSOP_MASK_RD,
11156 (unsigned long) imm_expr.X_add_number);
11157 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11158 imm_expr.X_op = O_absent;
11162 case '!': /* MT usermode flag bit. */
11163 gas_assert (!mips_opts.micromips);
11164 my_getExpression (&imm_expr, s);
11165 check_absolute_expr (ip, &imm_expr);
11166 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11167 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11168 (unsigned long) imm_expr.X_add_number);
11169 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11170 imm_expr.X_op = O_absent;
11174 case '$': /* MT load high flag bit. */
11175 gas_assert (!mips_opts.micromips);
11176 my_getExpression (&imm_expr, s);
11177 check_absolute_expr (ip, &imm_expr);
11178 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11179 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11180 (unsigned long) imm_expr.X_add_number);
11181 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11182 imm_expr.X_op = O_absent;
11186 case '*': /* Four DSP accumulators in bits 18,19. */
11187 gas_assert (!mips_opts.micromips);
11188 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11189 s[3] >= '0' && s[3] <= '3')
11191 regno = s[3] - '0';
11193 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11197 as_bad (_("Invalid dsp/smartmips acc register"));
11200 case '&': /* Four DSP accumulators in bits 13,14. */
11201 gas_assert (!mips_opts.micromips);
11202 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11203 s[3] >= '0' && s[3] <= '3')
11205 regno = s[3] - '0';
11207 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11211 as_bad (_("Invalid dsp/smartmips acc register"));
11214 case '\\': /* 3-bit bit position. */
11216 unsigned long mask = (mips_opts.micromips
11217 ? MICROMIPSOP_MASK_3BITPOS
11218 : OP_MASK_3BITPOS);
11220 my_getExpression (&imm_expr, s);
11221 check_absolute_expr (ip, &imm_expr);
11222 if ((unsigned long) imm_expr.X_add_number > mask)
11223 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11225 mask, (unsigned long) imm_expr.X_add_number);
11226 INSERT_OPERAND (mips_opts.micromips,
11227 3BITPOS, *ip, imm_expr.X_add_number);
11228 imm_expr.X_op = O_absent;
11242 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11246 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11250 gas_assert (!mips_opts.micromips);
11251 INSERT_OPERAND (0, FT, *ip, lastregno);
11255 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11261 /* Handle optional base register.
11262 Either the base register is omitted or
11263 we must have a left paren. */
11264 /* This is dependent on the next operand specifier
11265 is a base register specification. */
11266 gas_assert (args[1] == 'b'
11267 || (mips_opts.micromips
11269 && (args[2] == 'l' || args[2] == 'n'
11270 || args[2] == 's' || args[2] == 'a')));
11271 if (*s == '\0' && args[1] == 'b')
11273 /* Fall through. */
11275 case ')': /* These must match exactly. */
11280 case '[': /* These must match exactly. */
11282 gas_assert (!mips_opts.micromips);
11287 case '+': /* Opcode extension character. */
11290 case '1': /* UDI immediates. */
11294 gas_assert (!mips_opts.micromips);
11296 const struct mips_immed *imm = mips_immed;
11298 while (imm->type && imm->type != *args)
11302 my_getExpression (&imm_expr, s);
11303 check_absolute_expr (ip, &imm_expr);
11304 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11306 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11307 imm->desc ? imm->desc : ip->insn_mo->name,
11308 (unsigned long) imm_expr.X_add_number,
11309 (unsigned long) imm_expr.X_add_number);
11310 imm_expr.X_add_number &= imm->mask;
11312 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11314 imm_expr.X_op = O_absent;
11319 case 'A': /* ins/ext position, becomes LSB. */
11328 my_getExpression (&imm_expr, s);
11329 check_absolute_expr (ip, &imm_expr);
11330 if ((unsigned long) imm_expr.X_add_number < limlo
11331 || (unsigned long) imm_expr.X_add_number > limhi)
11333 as_bad (_("Improper position (%lu)"),
11334 (unsigned long) imm_expr.X_add_number);
11335 imm_expr.X_add_number = limlo;
11337 lastpos = imm_expr.X_add_number;
11338 INSERT_OPERAND (mips_opts.micromips,
11339 EXTLSB, *ip, imm_expr.X_add_number);
11340 imm_expr.X_op = O_absent;
11344 case 'B': /* ins size, becomes MSB. */
11353 my_getExpression (&imm_expr, s);
11354 check_absolute_expr (ip, &imm_expr);
11355 /* Check for negative input so that small negative numbers
11356 will not succeed incorrectly. The checks against
11357 (pos+size) transitively check "size" itself,
11358 assuming that "pos" is reasonable. */
11359 if ((long) imm_expr.X_add_number < 0
11360 || ((unsigned long) imm_expr.X_add_number
11362 || ((unsigned long) imm_expr.X_add_number
11363 + lastpos) > limhi)
11365 as_bad (_("Improper insert size (%lu, position %lu)"),
11366 (unsigned long) imm_expr.X_add_number,
11367 (unsigned long) lastpos);
11368 imm_expr.X_add_number = limlo - lastpos;
11370 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11371 lastpos + imm_expr.X_add_number - 1);
11372 imm_expr.X_op = O_absent;
11376 case 'C': /* ext size, becomes MSBD. */
11389 my_getExpression (&imm_expr, s);
11390 check_absolute_expr (ip, &imm_expr);
11391 /* Check for negative input so that small negative numbers
11392 will not succeed incorrectly. The checks against
11393 (pos+size) transitively check "size" itself,
11394 assuming that "pos" is reasonable. */
11395 if ((long) imm_expr.X_add_number < 0
11396 || ((unsigned long) imm_expr.X_add_number
11398 || ((unsigned long) imm_expr.X_add_number
11399 + lastpos) > limhi)
11401 as_bad (_("Improper extract size (%lu, position %lu)"),
11402 (unsigned long) imm_expr.X_add_number,
11403 (unsigned long) lastpos);
11404 imm_expr.X_add_number = limlo - lastpos;
11406 INSERT_OPERAND (mips_opts.micromips,
11407 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11408 imm_expr.X_op = O_absent;
11413 /* +D is for disassembly only; never match. */
11417 /* "+I" is like "I", except that imm2_expr is used. */
11418 my_getExpression (&imm2_expr, s);
11419 if (imm2_expr.X_op != O_big
11420 && imm2_expr.X_op != O_constant)
11421 insn_error = _("absolute expression required");
11422 if (HAVE_32BIT_GPRS)
11423 normalize_constant_expr (&imm2_expr);
11427 case 'T': /* Coprocessor register. */
11428 gas_assert (!mips_opts.micromips);
11429 /* +T is for disassembly only; never match. */
11432 case 't': /* Coprocessor register number. */
11433 gas_assert (!mips_opts.micromips);
11434 if (s[0] == '$' && ISDIGIT (s[1]))
11444 while (ISDIGIT (*s));
11446 as_bad (_("Invalid register number (%d)"), regno);
11449 INSERT_OPERAND (0, RT, *ip, regno);
11454 as_bad (_("Invalid coprocessor 0 register number"));
11458 /* bbit[01] and bbit[01]32 bit index. Give error if index
11459 is not in the valid range. */
11460 gas_assert (!mips_opts.micromips);
11461 my_getExpression (&imm_expr, s);
11462 check_absolute_expr (ip, &imm_expr);
11463 if ((unsigned) imm_expr.X_add_number > 31)
11465 as_bad (_("Improper bit index (%lu)"),
11466 (unsigned long) imm_expr.X_add_number);
11467 imm_expr.X_add_number = 0;
11469 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11470 imm_expr.X_op = O_absent;
11475 /* bbit[01] bit index when bbit is used but we generate
11476 bbit[01]32 because the index is over 32. Move to the
11477 next candidate if index is not in the valid range. */
11478 gas_assert (!mips_opts.micromips);
11479 my_getExpression (&imm_expr, s);
11480 check_absolute_expr (ip, &imm_expr);
11481 if ((unsigned) imm_expr.X_add_number < 32
11482 || (unsigned) imm_expr.X_add_number > 63)
11484 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11485 imm_expr.X_op = O_absent;
11490 /* cins, cins32, exts and exts32 position field. Give error
11491 if it's not in the valid range. */
11492 gas_assert (!mips_opts.micromips);
11493 my_getExpression (&imm_expr, s);
11494 check_absolute_expr (ip, &imm_expr);
11495 if ((unsigned) imm_expr.X_add_number > 31)
11497 as_bad (_("Improper position (%lu)"),
11498 (unsigned long) imm_expr.X_add_number);
11499 imm_expr.X_add_number = 0;
11501 /* Make the pos explicit to simplify +S. */
11502 lastpos = imm_expr.X_add_number + 32;
11503 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11504 imm_expr.X_op = O_absent;
11509 /* cins, cins32, exts and exts32 position field. Move to
11510 the next candidate if it's not in the valid range. */
11511 gas_assert (!mips_opts.micromips);
11512 my_getExpression (&imm_expr, s);
11513 check_absolute_expr (ip, &imm_expr);
11514 if ((unsigned) imm_expr.X_add_number < 32
11515 || (unsigned) imm_expr.X_add_number > 63)
11517 lastpos = imm_expr.X_add_number;
11518 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11519 imm_expr.X_op = O_absent;
11524 /* cins and exts length-minus-one field. */
11525 gas_assert (!mips_opts.micromips);
11526 my_getExpression (&imm_expr, s);
11527 check_absolute_expr (ip, &imm_expr);
11528 if ((unsigned long) imm_expr.X_add_number > 31)
11530 as_bad (_("Improper size (%lu)"),
11531 (unsigned long) imm_expr.X_add_number);
11532 imm_expr.X_add_number = 0;
11534 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11535 imm_expr.X_op = O_absent;
11540 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11541 length-minus-one field. */
11542 gas_assert (!mips_opts.micromips);
11543 my_getExpression (&imm_expr, s);
11544 check_absolute_expr (ip, &imm_expr);
11545 if ((long) imm_expr.X_add_number < 0
11546 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11548 as_bad (_("Improper size (%lu)"),
11549 (unsigned long) imm_expr.X_add_number);
11550 imm_expr.X_add_number = 0;
11552 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11553 imm_expr.X_op = O_absent;
11558 /* seqi/snei immediate field. */
11559 gas_assert (!mips_opts.micromips);
11560 my_getExpression (&imm_expr, s);
11561 check_absolute_expr (ip, &imm_expr);
11562 if ((long) imm_expr.X_add_number < -512
11563 || (long) imm_expr.X_add_number >= 512)
11565 as_bad (_("Improper immediate (%ld)"),
11566 (long) imm_expr.X_add_number);
11567 imm_expr.X_add_number = 0;
11569 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11570 imm_expr.X_op = O_absent;
11574 case 'a': /* 8-bit signed offset in bit 6 */
11575 gas_assert (!mips_opts.micromips);
11576 my_getExpression (&imm_expr, s);
11577 check_absolute_expr (ip, &imm_expr);
11578 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11579 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11580 if (imm_expr.X_add_number < min_range
11581 || imm_expr.X_add_number > max_range)
11583 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11584 (long) min_range, (long) max_range,
11585 (long) imm_expr.X_add_number);
11587 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11588 imm_expr.X_op = O_absent;
11592 case 'b': /* 8-bit signed offset in bit 3 */
11593 gas_assert (!mips_opts.micromips);
11594 my_getExpression (&imm_expr, s);
11595 check_absolute_expr (ip, &imm_expr);
11596 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11597 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11598 if (imm_expr.X_add_number < min_range
11599 || imm_expr.X_add_number > max_range)
11601 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11602 (long) min_range, (long) max_range,
11603 (long) imm_expr.X_add_number);
11605 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11606 imm_expr.X_op = O_absent;
11610 case 'c': /* 9-bit signed offset in bit 6 */
11611 gas_assert (!mips_opts.micromips);
11612 my_getExpression (&imm_expr, s);
11613 check_absolute_expr (ip, &imm_expr);
11614 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11615 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11616 /* We check the offset range before adjusted. */
11619 if (imm_expr.X_add_number < min_range
11620 || imm_expr.X_add_number > max_range)
11622 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11623 (long) min_range, (long) max_range,
11624 (long) imm_expr.X_add_number);
11626 if (imm_expr.X_add_number & 0xf)
11628 as_bad (_("Offset not 16 bytes alignment (%ld)"),
11629 (long) imm_expr.X_add_number);
11631 /* Right shift 4 bits to adjust the offset operand. */
11632 INSERT_OPERAND (0, OFFSET_C, *ip,
11633 imm_expr.X_add_number >> 4);
11634 imm_expr.X_op = O_absent;
11639 gas_assert (!mips_opts.micromips);
11640 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
11642 if (regno == AT && mips_opts.at)
11644 if (mips_opts.at == ATREG)
11645 as_warn (_("used $at without \".set noat\""));
11647 as_warn (_("used $%u with \".set at=$%u\""),
11648 regno, mips_opts.at);
11650 INSERT_OPERAND (0, RZ, *ip, regno);
11654 gas_assert (!mips_opts.micromips);
11655 if (!reg_lookup (&s, RTYPE_FPU, ®no))
11657 INSERT_OPERAND (0, FZ, *ip, regno);
11661 as_bad (_("Internal error: bad %s opcode "
11662 "(unknown extension operand type `+%c'): %s %s"),
11663 mips_opts.micromips ? "microMIPS" : "MIPS",
11664 *args, insn->name, insn->args);
11665 /* Further processing is fruitless. */
11670 case '.': /* 10-bit offset. */
11671 gas_assert (mips_opts.micromips);
11672 case '~': /* 12-bit offset. */
11674 int shift = *args == '.' ? 9 : 11;
11677 /* Check whether there is only a single bracketed expression
11678 left. If so, it must be the base register and the
11679 constant must be zero. */
11680 if (*s == '(' && strchr (s + 1, '(') == 0)
11683 /* If this value won't fit into the offset, then go find
11684 a macro that will generate a 16- or 32-bit offset code
11686 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
11687 if ((i == 0 && (imm_expr.X_op != O_constant
11688 || imm_expr.X_add_number >= 1 << shift
11689 || imm_expr.X_add_number < -1 << shift))
11692 imm_expr.X_op = O_absent;
11696 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
11698 INSERT_OPERAND (mips_opts.micromips,
11699 OFFSET12, *ip, imm_expr.X_add_number);
11700 imm_expr.X_op = O_absent;
11705 case '<': /* must be at least one digit */
11707 * According to the manual, if the shift amount is greater
11708 * than 31 or less than 0, then the shift amount should be
11709 * mod 32. In reality the mips assembler issues an error.
11710 * We issue a warning and mask out all but the low 5 bits.
11712 my_getExpression (&imm_expr, s);
11713 check_absolute_expr (ip, &imm_expr);
11714 if ((unsigned long) imm_expr.X_add_number > 31)
11715 as_warn (_("Improper shift amount (%lu)"),
11716 (unsigned long) imm_expr.X_add_number);
11717 INSERT_OPERAND (mips_opts.micromips,
11718 SHAMT, *ip, imm_expr.X_add_number);
11719 imm_expr.X_op = O_absent;
11723 case '>': /* shift amount minus 32 */
11724 my_getExpression (&imm_expr, s);
11725 check_absolute_expr (ip, &imm_expr);
11726 if ((unsigned long) imm_expr.X_add_number < 32
11727 || (unsigned long) imm_expr.X_add_number > 63)
11729 INSERT_OPERAND (mips_opts.micromips,
11730 SHAMT, *ip, imm_expr.X_add_number - 32);
11731 imm_expr.X_op = O_absent;
11735 case 'k': /* CACHE code. */
11736 case 'h': /* PREFX code. */
11737 case '1': /* SYNC type. */
11738 my_getExpression (&imm_expr, s);
11739 check_absolute_expr (ip, &imm_expr);
11740 if ((unsigned long) imm_expr.X_add_number > 31)
11741 as_warn (_("Invalid value for `%s' (%lu)"),
11743 (unsigned long) imm_expr.X_add_number);
11747 if (mips_fix_cn63xxp1
11748 && !mips_opts.micromips
11749 && strcmp ("pref", insn->name) == 0)
11750 switch (imm_expr.X_add_number)
11759 case 31: /* These are ok. */
11762 default: /* The rest must be changed to 28. */
11763 imm_expr.X_add_number = 28;
11766 INSERT_OPERAND (mips_opts.micromips,
11767 CACHE, *ip, imm_expr.X_add_number);
11770 INSERT_OPERAND (mips_opts.micromips,
11771 PREFX, *ip, imm_expr.X_add_number);
11774 INSERT_OPERAND (mips_opts.micromips,
11775 STYPE, *ip, imm_expr.X_add_number);
11778 imm_expr.X_op = O_absent;
11782 case 'c': /* BREAK code. */
11784 unsigned long mask = (mips_opts.micromips
11785 ? MICROMIPSOP_MASK_CODE
11788 my_getExpression (&imm_expr, s);
11789 check_absolute_expr (ip, &imm_expr);
11790 if ((unsigned long) imm_expr.X_add_number > mask)
11791 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11793 mask, (unsigned long) imm_expr.X_add_number);
11794 INSERT_OPERAND (mips_opts.micromips,
11795 CODE, *ip, imm_expr.X_add_number);
11796 imm_expr.X_op = O_absent;
11801 case 'q': /* Lower BREAK code. */
11803 unsigned long mask = (mips_opts.micromips
11804 ? MICROMIPSOP_MASK_CODE2
11807 my_getExpression (&imm_expr, s);
11808 check_absolute_expr (ip, &imm_expr);
11809 if ((unsigned long) imm_expr.X_add_number > mask)
11810 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
11812 mask, (unsigned long) imm_expr.X_add_number);
11813 INSERT_OPERAND (mips_opts.micromips,
11814 CODE2, *ip, imm_expr.X_add_number);
11815 imm_expr.X_op = O_absent;
11820 case 'B': /* 20- or 10-bit syscall/break/wait code. */
11822 unsigned long mask = (mips_opts.micromips
11823 ? MICROMIPSOP_MASK_CODE10
11826 my_getExpression (&imm_expr, s);
11827 check_absolute_expr (ip, &imm_expr);
11828 if ((unsigned long) imm_expr.X_add_number > mask)
11829 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11831 mask, (unsigned long) imm_expr.X_add_number);
11832 if (mips_opts.micromips)
11833 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
11835 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
11836 imm_expr.X_op = O_absent;
11841 case 'C': /* 25- or 23-bit coprocessor code. */
11843 unsigned long mask = (mips_opts.micromips
11844 ? MICROMIPSOP_MASK_COPZ
11847 my_getExpression (&imm_expr, s);
11848 check_absolute_expr (ip, &imm_expr);
11849 if ((unsigned long) imm_expr.X_add_number > mask)
11850 as_warn (_("Coproccesor code > %u bits (%lu)"),
11851 mips_opts.micromips ? 23U : 25U,
11852 (unsigned long) imm_expr.X_add_number);
11853 INSERT_OPERAND (mips_opts.micromips,
11854 COPZ, *ip, imm_expr.X_add_number);
11855 imm_expr.X_op = O_absent;
11860 case 'J': /* 19-bit WAIT code. */
11861 gas_assert (!mips_opts.micromips);
11862 my_getExpression (&imm_expr, s);
11863 check_absolute_expr (ip, &imm_expr);
11864 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
11866 as_warn (_("Illegal 19-bit code (%lu)"),
11867 (unsigned long) imm_expr.X_add_number);
11868 imm_expr.X_add_number &= OP_MASK_CODE19;
11870 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
11871 imm_expr.X_op = O_absent;
11875 case 'P': /* Performance register. */
11876 gas_assert (!mips_opts.micromips);
11877 my_getExpression (&imm_expr, s);
11878 check_absolute_expr (ip, &imm_expr);
11879 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
11880 as_warn (_("Invalid performance register (%lu)"),
11881 (unsigned long) imm_expr.X_add_number);
11882 if (imm_expr.X_add_number != 0 && mips_opts.arch == CPU_R5900
11883 && (!strcmp(insn->name,"mfps") || !strcmp(insn->name,"mtps")))
11884 as_warn (_("Invalid performance register (%lu)"),
11885 (unsigned long) imm_expr.X_add_number);
11886 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
11887 imm_expr.X_op = O_absent;
11891 case 'G': /* Coprocessor destination register. */
11893 unsigned long opcode = ip->insn_opcode;
11894 unsigned long mask;
11895 unsigned int types;
11898 if (mips_opts.micromips)
11900 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
11901 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
11902 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
11906 case 0x000000fc: /* mfc0 */
11907 case 0x000002fc: /* mtc0 */
11908 case 0x580000fc: /* dmfc0 */
11909 case 0x580002fc: /* dmtc0 */
11919 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
11920 cop0 = opcode == OP_OP_COP0;
11922 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
11923 ok = reg_lookup (&s, types, ®no);
11924 if (mips_opts.micromips)
11925 INSERT_OPERAND (1, RS, *ip, regno);
11927 INSERT_OPERAND (0, RD, *ip, regno);
11936 case 'y': /* ALNV.PS source register. */
11937 gas_assert (mips_opts.micromips);
11939 case 'x': /* Ignore register name. */
11940 case 'U': /* Destination register (CLO/CLZ). */
11941 case 'g': /* Coprocessor destination register. */
11942 gas_assert (!mips_opts.micromips);
11943 case 'b': /* Base register. */
11944 case 'd': /* Destination register. */
11945 case 's': /* Source register. */
11946 case 't': /* Target register. */
11947 case 'r': /* Both target and source. */
11948 case 'v': /* Both dest and source. */
11949 case 'w': /* Both dest and target. */
11950 case 'E': /* Coprocessor target register. */
11951 case 'K': /* RDHWR destination register. */
11952 case 'z': /* Must be zero register. */
11955 if (*args == 'E' || *args == 'K')
11956 ok = reg_lookup (&s, RTYPE_NUM, ®no);
11959 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
11960 if (regno == AT && mips_opts.at)
11962 if (mips_opts.at == ATREG)
11963 as_warn (_("Used $at without \".set noat\""));
11965 as_warn (_("Used $%u with \".set at=$%u\""),
11966 regno, mips_opts.at);
11976 if (c == 'r' || c == 'v' || c == 'w')
11983 /* 'z' only matches $0. */
11984 if (c == 'z' && regno != 0)
11987 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
11989 if (regno == lastregno)
11992 = _("Source and destination must be different");
11995 if (regno == 31 && lastregno == 0xffffffff)
11998 = _("A destination register must be supplied");
12002 /* Now that we have assembled one operand, we use the args
12003 string to figure out where it goes in the instruction. */
12010 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
12014 if (mips_opts.micromips)
12015 INSERT_OPERAND (1, RS, *ip, regno);
12017 INSERT_OPERAND (0, RD, *ip, regno);
12022 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
12026 gas_assert (!mips_opts.micromips);
12027 INSERT_OPERAND (0, RD, *ip, regno);
12028 INSERT_OPERAND (0, RT, *ip, regno);
12034 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
12038 gas_assert (mips_opts.micromips);
12039 INSERT_OPERAND (1, RS3, *ip, regno);
12043 /* This case exists because on the r3000 trunc
12044 expands into a macro which requires a gp
12045 register. On the r6000 or r4000 it is
12046 assembled into a single instruction which
12047 ignores the register. Thus the insn version
12048 is MIPS_ISA2 and uses 'x', and the macro
12049 version is MIPS_ISA1 and uses 't'. */
12053 /* This case is for the div instruction, which
12054 acts differently if the destination argument
12055 is $0. This only matches $0, and is checked
12056 outside the switch. */
12066 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
12070 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
12075 case 'O': /* MDMX alignment immediate constant. */
12076 gas_assert (!mips_opts.micromips);
12077 my_getExpression (&imm_expr, s);
12078 check_absolute_expr (ip, &imm_expr);
12079 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
12080 as_warn (_("Improper align amount (%ld), using low bits"),
12081 (long) imm_expr.X_add_number);
12082 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
12083 imm_expr.X_op = O_absent;
12087 case 'Q': /* MDMX vector, element sel, or const. */
12090 /* MDMX Immediate. */
12091 gas_assert (!mips_opts.micromips);
12092 my_getExpression (&imm_expr, s);
12093 check_absolute_expr (ip, &imm_expr);
12094 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
12095 as_warn (_("Invalid MDMX Immediate (%ld)"),
12096 (long) imm_expr.X_add_number);
12097 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
12098 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12099 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
12101 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
12102 imm_expr.X_op = O_absent;
12106 /* Not MDMX Immediate. Fall through. */
12107 case 'X': /* MDMX destination register. */
12108 case 'Y': /* MDMX source register. */
12109 case 'Z': /* MDMX target register. */
12112 gas_assert (!mips_opts.micromips);
12113 case 'D': /* Floating point destination register. */
12114 case 'S': /* Floating point source register. */
12115 case 'T': /* Floating point target register. */
12116 case 'R': /* Floating point source register. */
12120 || (mips_opts.ase_mdmx
12121 && (ip->insn_mo->pinfo & FP_D)
12122 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
12123 | INSN_COPROC_MEMORY_DELAY
12124 | INSN_LOAD_COPROC_DELAY
12125 | INSN_LOAD_MEMORY_DELAY
12126 | INSN_STORE_MEMORY))))
12127 rtype |= RTYPE_VEC;
12129 if (reg_lookup (&s, rtype, ®no))
12131 if ((regno & 1) != 0
12133 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
12134 as_warn (_("Float register should be even, was %d"),
12142 if (c == 'V' || c == 'W')
12153 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12159 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12163 /* This is like 'Z', but also needs to fix the MDMX
12164 vector/scalar select bits. Note that the
12165 scalar immediate case is handled above. */
12168 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12169 int max_el = (is_qh ? 3 : 7);
12171 my_getExpression(&imm_expr, s);
12172 check_absolute_expr (ip, &imm_expr);
12174 if (imm_expr.X_add_number > max_el)
12175 as_bad (_("Bad element selector %ld"),
12176 (long) imm_expr.X_add_number);
12177 imm_expr.X_add_number &= max_el;
12178 ip->insn_opcode |= (imm_expr.X_add_number
12181 imm_expr.X_op = O_absent;
12183 as_warn (_("Expecting ']' found '%s'"), s);
12189 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12190 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12193 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12196 /* Fall through. */
12200 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12204 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12214 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12218 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12224 my_getExpression (&imm_expr, s);
12225 if (imm_expr.X_op != O_big
12226 && imm_expr.X_op != O_constant)
12227 insn_error = _("absolute expression required");
12228 if (HAVE_32BIT_GPRS)
12229 normalize_constant_expr (&imm_expr);
12234 my_getExpression (&offset_expr, s);
12235 normalize_address_expr (&offset_expr);
12236 *imm_reloc = BFD_RELOC_32;
12249 unsigned char temp[8];
12251 unsigned int length;
12256 /* These only appear as the last operand in an
12257 instruction, and every instruction that accepts
12258 them in any variant accepts them in all variants.
12259 This means we don't have to worry about backing out
12260 any changes if the instruction does not match.
12262 The difference between them is the size of the
12263 floating point constant and where it goes. For 'F'
12264 and 'L' the constant is 64 bits; for 'f' and 'l' it
12265 is 32 bits. Where the constant is placed is based
12266 on how the MIPS assembler does things:
12269 f -- immediate value
12272 The .lit4 and .lit8 sections are only used if
12273 permitted by the -G argument.
12275 The code below needs to know whether the target register
12276 is 32 or 64 bits wide. It relies on the fact 'f' and
12277 'F' are used with GPR-based instructions and 'l' and
12278 'L' are used with FPR-based instructions. */
12280 f64 = *args == 'F' || *args == 'L';
12281 using_gprs = *args == 'F' || *args == 'f';
12283 save_in = input_line_pointer;
12284 input_line_pointer = s;
12285 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12287 s = input_line_pointer;
12288 input_line_pointer = save_in;
12289 if (err != NULL && *err != '\0')
12291 as_bad (_("Bad floating point constant: %s"), err);
12292 memset (temp, '\0', sizeof temp);
12293 length = f64 ? 8 : 4;
12296 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12300 && (g_switch_value < 4
12301 || (temp[0] == 0 && temp[1] == 0)
12302 || (temp[2] == 0 && temp[3] == 0))))
12304 imm_expr.X_op = O_constant;
12305 if (!target_big_endian)
12306 imm_expr.X_add_number = bfd_getl32 (temp);
12308 imm_expr.X_add_number = bfd_getb32 (temp);
12310 else if (length > 4
12311 && !mips_disable_float_construction
12312 /* Constants can only be constructed in GPRs and
12313 copied to FPRs if the GPRs are at least as wide
12314 as the FPRs. Force the constant into memory if
12315 we are using 64-bit FPRs but the GPRs are only
12318 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12319 && ((temp[0] == 0 && temp[1] == 0)
12320 || (temp[2] == 0 && temp[3] == 0))
12321 && ((temp[4] == 0 && temp[5] == 0)
12322 || (temp[6] == 0 && temp[7] == 0)))
12324 /* The value is simple enough to load with a couple of
12325 instructions. If using 32-bit registers, set
12326 imm_expr to the high order 32 bits and offset_expr to
12327 the low order 32 bits. Otherwise, set imm_expr to
12328 the entire 64 bit constant. */
12329 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12331 imm_expr.X_op = O_constant;
12332 offset_expr.X_op = O_constant;
12333 if (!target_big_endian)
12335 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12336 offset_expr.X_add_number = bfd_getl32 (temp);
12340 imm_expr.X_add_number = bfd_getb32 (temp);
12341 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12343 if (offset_expr.X_add_number == 0)
12344 offset_expr.X_op = O_absent;
12346 else if (sizeof (imm_expr.X_add_number) > 4)
12348 imm_expr.X_op = O_constant;
12349 if (!target_big_endian)
12350 imm_expr.X_add_number = bfd_getl64 (temp);
12352 imm_expr.X_add_number = bfd_getb64 (temp);
12356 imm_expr.X_op = O_big;
12357 imm_expr.X_add_number = 4;
12358 if (!target_big_endian)
12360 generic_bignum[0] = bfd_getl16 (temp);
12361 generic_bignum[1] = bfd_getl16 (temp + 2);
12362 generic_bignum[2] = bfd_getl16 (temp + 4);
12363 generic_bignum[3] = bfd_getl16 (temp + 6);
12367 generic_bignum[0] = bfd_getb16 (temp + 6);
12368 generic_bignum[1] = bfd_getb16 (temp + 4);
12369 generic_bignum[2] = bfd_getb16 (temp + 2);
12370 generic_bignum[3] = bfd_getb16 (temp);
12376 const char *newname;
12379 /* Switch to the right section. */
12381 subseg = now_subseg;
12384 default: /* unused default case avoids warnings. */
12386 newname = RDATA_SECTION_NAME;
12387 if (g_switch_value >= 8)
12391 newname = RDATA_SECTION_NAME;
12394 gas_assert (g_switch_value >= 4);
12398 new_seg = subseg_new (newname, (subsegT) 0);
12400 bfd_set_section_flags (stdoutput, new_seg,
12405 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12406 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12407 record_alignment (new_seg, 4);
12409 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12410 if (seg == now_seg)
12411 as_bad (_("Can't use floating point insn in this section"));
12413 /* Set the argument to the current address in the
12415 offset_expr.X_op = O_symbol;
12416 offset_expr.X_add_symbol = symbol_temp_new_now ();
12417 offset_expr.X_add_number = 0;
12419 /* Put the floating point number into the section. */
12420 p = frag_more ((int) length);
12421 memcpy (p, temp, length);
12423 /* Switch back to the original section. */
12424 subseg_set (seg, subseg);
12429 case 'i': /* 16-bit unsigned immediate. */
12430 case 'j': /* 16-bit signed immediate. */
12431 *imm_reloc = BFD_RELOC_LO16;
12432 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12435 offsetT minval, maxval;
12437 more = (insn + 1 < past
12438 && strcmp (insn->name, insn[1].name) == 0);
12440 /* If the expression was written as an unsigned number,
12441 only treat it as signed if there are no more
12445 && sizeof (imm_expr.X_add_number) <= 4
12446 && imm_expr.X_op == O_constant
12447 && imm_expr.X_add_number < 0
12448 && imm_expr.X_unsigned
12449 && HAVE_64BIT_GPRS)
12452 /* For compatibility with older assemblers, we accept
12453 0x8000-0xffff as signed 16-bit numbers when only
12454 signed numbers are allowed. */
12456 minval = 0, maxval = 0xffff;
12458 minval = -0x8000, maxval = 0x7fff;
12460 minval = -0x8000, maxval = 0xffff;
12462 if (imm_expr.X_op != O_constant
12463 || imm_expr.X_add_number < minval
12464 || imm_expr.X_add_number > maxval)
12468 if (imm_expr.X_op == O_constant
12469 || imm_expr.X_op == O_big)
12470 as_bad (_("Expression out of range"));
12476 case 'o': /* 16-bit offset. */
12477 offset_reloc[0] = BFD_RELOC_LO16;
12478 offset_reloc[1] = BFD_RELOC_UNUSED;
12479 offset_reloc[2] = BFD_RELOC_UNUSED;
12481 /* Check whether there is only a single bracketed expression
12482 left. If so, it must be the base register and the
12483 constant must be zero. */
12484 if (*s == '(' && strchr (s + 1, '(') == 0)
12486 offset_expr.X_op = O_constant;
12487 offset_expr.X_add_number = 0;
12491 /* If this value won't fit into a 16 bit offset, then go
12492 find a macro that will generate the 32 bit offset
12494 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12495 && (offset_expr.X_op != O_constant
12496 || offset_expr.X_add_number >= 0x8000
12497 || offset_expr.X_add_number < -0x8000))
12503 case 'p': /* PC-relative offset. */
12504 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12505 my_getExpression (&offset_expr, s);
12509 case 'u': /* Upper 16 bits. */
12510 *imm_reloc = BFD_RELOC_LO16;
12511 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12512 && imm_expr.X_op == O_constant
12513 && (imm_expr.X_add_number < 0
12514 || imm_expr.X_add_number >= 0x10000))
12515 as_bad (_("lui expression (%lu) not in range 0..65535"),
12516 (unsigned long) imm_expr.X_add_number);
12520 case 'a': /* 26-bit address. */
12521 *offset_reloc = BFD_RELOC_MIPS_JMP;
12522 my_getExpression (&offset_expr, s);
12526 case 'N': /* 3-bit branch condition code. */
12527 case 'M': /* 3-bit compare condition code. */
12529 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12530 rtype |= RTYPE_FCC;
12531 if (!reg_lookup (&s, rtype, ®no))
12533 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12534 || strcmp (str + strlen (str) - 5, "any2f") == 0
12535 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12536 && (regno & 1) != 0)
12537 as_warn (_("Condition code register should be even for %s, "
12540 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12541 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12542 && (regno & 3) != 0)
12543 as_warn (_("Condition code register should be 0 or 4 for %s, "
12547 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12549 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12553 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12564 while (ISDIGIT (*s));
12567 c = 8; /* Invalid sel value. */
12570 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12571 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12575 gas_assert (!mips_opts.micromips);
12576 /* Must be at least one digit. */
12577 my_getExpression (&imm_expr, s);
12578 check_absolute_expr (ip, &imm_expr);
12580 if ((unsigned long) imm_expr.X_add_number
12581 > (unsigned long) OP_MASK_VECBYTE)
12583 as_bad (_("bad byte vector index (%ld)"),
12584 (long) imm_expr.X_add_number);
12585 imm_expr.X_add_number = 0;
12588 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12589 imm_expr.X_op = O_absent;
12594 gas_assert (!mips_opts.micromips);
12595 my_getExpression (&imm_expr, s);
12596 check_absolute_expr (ip, &imm_expr);
12598 if ((unsigned long) imm_expr.X_add_number
12599 > (unsigned long) OP_MASK_VECALIGN)
12601 as_bad (_("bad byte vector index (%ld)"),
12602 (long) imm_expr.X_add_number);
12603 imm_expr.X_add_number = 0;
12606 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
12607 imm_expr.X_op = O_absent;
12611 case 'm': /* Opcode extension character. */
12612 gas_assert (mips_opts.micromips);
12617 if (strncmp (s, "$pc", 3) == 0)
12645 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
12646 if (regno == AT && mips_opts.at)
12648 if (mips_opts.at == ATREG)
12649 as_warn (_("Used $at without \".set noat\""));
12651 as_warn (_("Used $%u with \".set at=$%u\""),
12652 regno, mips_opts.at);
12658 gas_assert (args[1] == ',');
12664 gas_assert (args[1] == ',');
12666 continue; /* Nothing to do. */
12672 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
12674 if (regno == lastregno)
12677 = _("Source and destination must be different");
12680 if (regno == 31 && lastregno == 0xffffffff)
12683 = _("A destination register must be supplied");
12694 gas_assert (args[1] == ',');
12701 gas_assert (args[1] == ',');
12704 continue; /* Nothing to do. */
12708 /* Make sure regno is the same as lastregno. */
12709 if (c == 't' && regno != lastregno)
12712 /* Make sure regno is the same as destregno. */
12713 if (c == 'x' && regno != destregno)
12716 /* We need to save regno, before regno maps to the
12717 microMIPS register encoding. */
12727 regno = ILLEGAL_REG;
12731 regno = mips32_to_micromips_reg_b_map[regno];
12735 regno = mips32_to_micromips_reg_c_map[regno];
12739 regno = mips32_to_micromips_reg_d_map[regno];
12743 regno = mips32_to_micromips_reg_e_map[regno];
12747 regno = mips32_to_micromips_reg_f_map[regno];
12751 regno = mips32_to_micromips_reg_g_map[regno];
12755 regno = mips32_to_micromips_reg_h_map[regno];
12759 switch (EXTRACT_OPERAND (1, MI, *ip))
12764 else if (regno == 22)
12766 else if (regno == 5)
12768 else if (regno == 6)
12770 else if (regno == 7)
12773 regno = ILLEGAL_REG;
12779 else if (regno == 7)
12782 regno = ILLEGAL_REG;
12789 regno = ILLEGAL_REG;
12793 regno = ILLEGAL_REG;
12799 regno = mips32_to_micromips_reg_l_map[regno];
12803 regno = mips32_to_micromips_reg_m_map[regno];
12807 regno = mips32_to_micromips_reg_n_map[regno];
12811 regno = mips32_to_micromips_reg_q_map[regno];
12816 regno = ILLEGAL_REG;
12821 regno = ILLEGAL_REG;
12826 regno = ILLEGAL_REG;
12829 case 'j': /* Do nothing. */
12839 if (regno == ILLEGAL_REG)
12845 INSERT_OPERAND (1, MB, *ip, regno);
12849 INSERT_OPERAND (1, MC, *ip, regno);
12853 INSERT_OPERAND (1, MD, *ip, regno);
12857 INSERT_OPERAND (1, ME, *ip, regno);
12861 INSERT_OPERAND (1, MF, *ip, regno);
12865 INSERT_OPERAND (1, MG, *ip, regno);
12869 INSERT_OPERAND (1, MH, *ip, regno);
12873 INSERT_OPERAND (1, MI, *ip, regno);
12877 INSERT_OPERAND (1, MJ, *ip, regno);
12881 INSERT_OPERAND (1, ML, *ip, regno);
12885 INSERT_OPERAND (1, MM, *ip, regno);
12889 INSERT_OPERAND (1, MN, *ip, regno);
12893 INSERT_OPERAND (1, MP, *ip, regno);
12897 INSERT_OPERAND (1, MQ, *ip, regno);
12900 case 'a': /* Do nothing. */
12901 case 's': /* Do nothing. */
12902 case 't': /* Do nothing. */
12903 case 'x': /* Do nothing. */
12904 case 'y': /* Do nothing. */
12905 case 'z': /* Do nothing. */
12915 bfd_reloc_code_real_type r[3];
12919 /* Check whether there is only a single bracketed
12920 expression left. If so, it must be the base register
12921 and the constant must be zero. */
12922 if (*s == '(' && strchr (s + 1, '(') == 0)
12924 INSERT_OPERAND (1, IMMA, *ip, 0);
12928 if (my_getSmallExpression (&ep, r, s) > 0
12929 || !expr_const_in_range (&ep, -64, 64, 2))
12932 imm = ep.X_add_number >> 2;
12933 INSERT_OPERAND (1, IMMA, *ip, imm);
12940 bfd_reloc_code_real_type r[3];
12944 if (my_getSmallExpression (&ep, r, s) > 0
12945 || ep.X_op != O_constant)
12948 for (imm = 0; imm < 8; imm++)
12949 if (micromips_imm_b_map[imm] == ep.X_add_number)
12954 INSERT_OPERAND (1, IMMB, *ip, imm);
12961 bfd_reloc_code_real_type r[3];
12965 if (my_getSmallExpression (&ep, r, s) > 0
12966 || ep.X_op != O_constant)
12969 for (imm = 0; imm < 16; imm++)
12970 if (micromips_imm_c_map[imm] == ep.X_add_number)
12975 INSERT_OPERAND (1, IMMC, *ip, imm);
12980 case 'D': /* pc relative offset */
12981 case 'E': /* pc relative offset */
12982 my_getExpression (&offset_expr, s);
12983 if (offset_expr.X_op == O_register)
12986 if (!forced_insn_length)
12987 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12989 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12991 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
12997 bfd_reloc_code_real_type r[3];
13001 if (my_getSmallExpression (&ep, r, s) > 0
13002 || !expr_const_in_range (&ep, 0, 16, 0))
13005 imm = ep.X_add_number;
13006 INSERT_OPERAND (1, IMMF, *ip, imm);
13013 bfd_reloc_code_real_type r[3];
13017 /* Check whether there is only a single bracketed
13018 expression left. If so, it must be the base register
13019 and the constant must be zero. */
13020 if (*s == '(' && strchr (s + 1, '(') == 0)
13022 INSERT_OPERAND (1, IMMG, *ip, 0);
13026 if (my_getSmallExpression (&ep, r, s) > 0
13027 || !expr_const_in_range (&ep, -1, 15, 0))
13030 imm = ep.X_add_number & 15;
13031 INSERT_OPERAND (1, IMMG, *ip, imm);
13038 bfd_reloc_code_real_type r[3];
13042 /* Check whether there is only a single bracketed
13043 expression left. If so, it must be the base register
13044 and the constant must be zero. */
13045 if (*s == '(' && strchr (s + 1, '(') == 0)
13047 INSERT_OPERAND (1, IMMH, *ip, 0);
13051 if (my_getSmallExpression (&ep, r, s) > 0
13052 || !expr_const_in_range (&ep, 0, 16, 1))
13055 imm = ep.X_add_number >> 1;
13056 INSERT_OPERAND (1, IMMH, *ip, imm);
13063 bfd_reloc_code_real_type r[3];
13067 if (my_getSmallExpression (&ep, r, s) > 0
13068 || !expr_const_in_range (&ep, -1, 127, 0))
13071 imm = ep.X_add_number & 127;
13072 INSERT_OPERAND (1, IMMI, *ip, imm);
13079 bfd_reloc_code_real_type r[3];
13083 /* Check whether there is only a single bracketed
13084 expression left. If so, it must be the base register
13085 and the constant must be zero. */
13086 if (*s == '(' && strchr (s + 1, '(') == 0)
13088 INSERT_OPERAND (1, IMMJ, *ip, 0);
13092 if (my_getSmallExpression (&ep, r, s) > 0
13093 || !expr_const_in_range (&ep, 0, 16, 2))
13096 imm = ep.X_add_number >> 2;
13097 INSERT_OPERAND (1, IMMJ, *ip, imm);
13104 bfd_reloc_code_real_type r[3];
13108 /* Check whether there is only a single bracketed
13109 expression left. If so, it must be the base register
13110 and the constant must be zero. */
13111 if (*s == '(' && strchr (s + 1, '(') == 0)
13113 INSERT_OPERAND (1, IMML, *ip, 0);
13117 if (my_getSmallExpression (&ep, r, s) > 0
13118 || !expr_const_in_range (&ep, 0, 16, 0))
13121 imm = ep.X_add_number;
13122 INSERT_OPERAND (1, IMML, *ip, imm);
13129 bfd_reloc_code_real_type r[3];
13133 if (my_getSmallExpression (&ep, r, s) > 0
13134 || !expr_const_in_range (&ep, 1, 9, 0))
13137 imm = ep.X_add_number & 7;
13138 INSERT_OPERAND (1, IMMM, *ip, imm);
13143 case 'N': /* Register list for lwm and swm. */
13145 /* A comma-separated list of registers and/or
13146 dash-separated contiguous ranges including
13147 both ra and a set of one or more registers
13148 starting at s0 up to s3 which have to be
13155 and any permutations of these. */
13156 unsigned int reglist;
13159 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, ®list))
13162 if ((reglist & 0xfff1ffff) != 0x80010000)
13165 reglist = (reglist >> 17) & 7;
13167 if ((reglist & -reglist) != reglist)
13170 imm = ffs (reglist) - 1;
13171 INSERT_OPERAND (1, IMMN, *ip, imm);
13175 case 'O': /* sdbbp 4-bit code. */
13177 bfd_reloc_code_real_type r[3];
13181 if (my_getSmallExpression (&ep, r, s) > 0
13182 || !expr_const_in_range (&ep, 0, 16, 0))
13185 imm = ep.X_add_number;
13186 INSERT_OPERAND (1, IMMO, *ip, imm);
13193 bfd_reloc_code_real_type r[3];
13197 if (my_getSmallExpression (&ep, r, s) > 0
13198 || !expr_const_in_range (&ep, 0, 32, 2))
13201 imm = ep.X_add_number >> 2;
13202 INSERT_OPERAND (1, IMMP, *ip, imm);
13209 bfd_reloc_code_real_type r[3];
13213 if (my_getSmallExpression (&ep, r, s) > 0
13214 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13217 imm = ep.X_add_number >> 2;
13218 INSERT_OPERAND (1, IMMQ, *ip, imm);
13225 bfd_reloc_code_real_type r[3];
13229 /* Check whether there is only a single bracketed
13230 expression left. If so, it must be the base register
13231 and the constant must be zero. */
13232 if (*s == '(' && strchr (s + 1, '(') == 0)
13234 INSERT_OPERAND (1, IMMU, *ip, 0);
13238 if (my_getSmallExpression (&ep, r, s) > 0
13239 || !expr_const_in_range (&ep, 0, 32, 2))
13242 imm = ep.X_add_number >> 2;
13243 INSERT_OPERAND (1, IMMU, *ip, imm);
13250 bfd_reloc_code_real_type r[3];
13254 if (my_getSmallExpression (&ep, r, s) > 0
13255 || !expr_const_in_range (&ep, 0, 64, 2))
13258 imm = ep.X_add_number >> 2;
13259 INSERT_OPERAND (1, IMMW, *ip, imm);
13266 bfd_reloc_code_real_type r[3];
13270 if (my_getSmallExpression (&ep, r, s) > 0
13271 || !expr_const_in_range (&ep, -8, 8, 0))
13274 imm = ep.X_add_number;
13275 INSERT_OPERAND (1, IMMX, *ip, imm);
13282 bfd_reloc_code_real_type r[3];
13286 if (my_getSmallExpression (&ep, r, s) > 0
13287 || expr_const_in_range (&ep, -2, 2, 2)
13288 || !expr_const_in_range (&ep, -258, 258, 2))
13291 imm = ep.X_add_number >> 2;
13292 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13293 INSERT_OPERAND (1, IMMY, *ip, imm);
13300 bfd_reloc_code_real_type r[3];
13303 if (my_getSmallExpression (&ep, r, s) > 0
13304 || !expr_const_in_range (&ep, 0, 1, 0))
13311 as_bad (_("Internal error: bad microMIPS opcode "
13312 "(unknown extension operand type `m%c'): %s %s"),
13313 *args, insn->name, insn->args);
13314 /* Further processing is fruitless. */
13319 case 'n': /* Register list for 32-bit lwm and swm. */
13320 gas_assert (mips_opts.micromips);
13322 /* A comma-separated list of registers and/or
13323 dash-separated contiguous ranges including
13324 at least one of ra and a set of one or more
13325 registers starting at s0 up to s7 and then
13326 s8 which have to be consecutive, e.g.:
13334 and any permutations of these. */
13335 unsigned int reglist;
13339 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, ®list))
13342 if ((reglist & 0x3f00ffff) != 0)
13345 ra = (reglist >> 27) & 0x10;
13346 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13348 if ((reglist & -reglist) != reglist)
13351 imm = (ffs (reglist) - 1) | ra;
13352 INSERT_OPERAND (1, RT, *ip, imm);
13353 imm_expr.X_op = O_absent;
13357 case '|': /* 4-bit trap code. */
13358 gas_assert (mips_opts.micromips);
13359 my_getExpression (&imm_expr, s);
13360 check_absolute_expr (ip, &imm_expr);
13361 if ((unsigned long) imm_expr.X_add_number
13362 > MICROMIPSOP_MASK_TRAP)
13363 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13364 (unsigned long) imm_expr.X_add_number,
13365 ip->insn_mo->name);
13366 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13367 imm_expr.X_op = O_absent;
13372 as_bad (_("Bad char = '%c'\n"), *args);
13377 /* Args don't match. */
13379 insn_error = _("Illegal operands");
13380 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13385 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13387 gas_assert (firstinsn);
13388 need_delay_slot_ok = FALSE;
13397 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13399 /* This routine assembles an instruction into its binary format when
13400 assembling for the mips16. As a side effect, it sets one of the
13401 global variables imm_reloc or offset_reloc to the type of relocation
13402 to do if one of the operands is an address expression. It also sets
13403 forced_insn_length to the resulting instruction size in bytes if the
13404 user explicitly requested a small or extended instruction. */
13407 mips16_ip (char *str, struct mips_cl_insn *ip)
13411 struct mips_opcode *insn;
13413 unsigned int regno;
13414 unsigned int lastregno = 0;
13420 forced_insn_length = 0;
13422 for (s = str; ISLOWER (*s); ++s)
13434 if (s[1] == 't' && s[2] == ' ')
13437 forced_insn_length = 2;
13441 else if (s[1] == 'e' && s[2] == ' ')
13444 forced_insn_length = 4;
13448 /* Fall through. */
13450 insn_error = _("unknown opcode");
13454 if (mips_opts.noautoextend && !forced_insn_length)
13455 forced_insn_length = 2;
13457 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13459 insn_error = _("unrecognized opcode");
13468 gas_assert (strcmp (insn->name, str) == 0);
13470 ok = is_opcode_valid_16 (insn);
13473 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13474 && strcmp (insn->name, insn[1].name) == 0)
13483 static char buf[100];
13485 _("Opcode not supported on this processor: %s (%s)"),
13486 mips_cpu_info_from_arch (mips_opts.arch)->name,
13487 mips_cpu_info_from_isa (mips_opts.isa)->name);
13494 create_insn (ip, insn);
13495 imm_expr.X_op = O_absent;
13496 imm_reloc[0] = BFD_RELOC_UNUSED;
13497 imm_reloc[1] = BFD_RELOC_UNUSED;
13498 imm_reloc[2] = BFD_RELOC_UNUSED;
13499 imm2_expr.X_op = O_absent;
13500 offset_expr.X_op = O_absent;
13501 offset_reloc[0] = BFD_RELOC_UNUSED;
13502 offset_reloc[1] = BFD_RELOC_UNUSED;
13503 offset_reloc[2] = BFD_RELOC_UNUSED;
13504 for (args = insn->args; 1; ++args)
13511 /* In this switch statement we call break if we did not find
13512 a match, continue if we did find a match, or return if we
13523 /* Stuff the immediate value in now, if we can. */
13524 if (imm_expr.X_op == O_constant
13525 && *imm_reloc > BFD_RELOC_UNUSED
13526 && insn->pinfo != INSN_MACRO
13527 && calculate_reloc (*offset_reloc,
13528 imm_expr.X_add_number, &value))
13530 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13531 *offset_reloc, value, forced_insn_length,
13533 imm_expr.X_op = O_absent;
13534 *imm_reloc = BFD_RELOC_UNUSED;
13535 *offset_reloc = BFD_RELOC_UNUSED;
13549 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13552 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13568 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13570 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13574 /* Fall through. */
13585 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
13587 if (c == 'v' || c == 'w')
13590 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13592 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13603 if (c == 'v' || c == 'w')
13605 regno = mips16_to_32_reg_map[lastregno];
13619 regno = mips32_to_16_reg_map[regno];
13624 regno = ILLEGAL_REG;
13629 regno = ILLEGAL_REG;
13634 regno = ILLEGAL_REG;
13639 if (regno == AT && mips_opts.at)
13641 if (mips_opts.at == ATREG)
13642 as_warn (_("used $at without \".set noat\""));
13644 as_warn (_("used $%u with \".set at=$%u\""),
13645 regno, mips_opts.at);
13653 if (regno == ILLEGAL_REG)
13660 MIPS16_INSERT_OPERAND (RX, *ip, regno);
13664 MIPS16_INSERT_OPERAND (RY, *ip, regno);
13667 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
13670 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
13676 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
13679 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
13680 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
13690 if (strncmp (s, "$pc", 3) == 0)
13707 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
13710 if (imm_expr.X_op != O_constant)
13712 forced_insn_length = 4;
13713 ip->insn_opcode |= MIPS16_EXTEND;
13717 /* We need to relax this instruction. */
13718 *offset_reloc = *imm_reloc;
13719 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13724 *imm_reloc = BFD_RELOC_UNUSED;
13725 /* Fall through. */
13732 my_getExpression (&imm_expr, s);
13733 if (imm_expr.X_op == O_register)
13735 /* What we thought was an expression turned out to
13738 if (s[0] == '(' && args[1] == '(')
13740 /* It looks like the expression was omitted
13741 before a register indirection, which means
13742 that the expression is implicitly zero. We
13743 still set up imm_expr, so that we handle
13744 explicit extensions correctly. */
13745 imm_expr.X_op = O_constant;
13746 imm_expr.X_add_number = 0;
13747 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13754 /* We need to relax this instruction. */
13755 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13764 /* We use offset_reloc rather than imm_reloc for the PC
13765 relative operands. This lets macros with both
13766 immediate and address operands work correctly. */
13767 my_getExpression (&offset_expr, s);
13769 if (offset_expr.X_op == O_register)
13772 /* We need to relax this instruction. */
13773 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13777 case '6': /* break code */
13778 my_getExpression (&imm_expr, s);
13779 check_absolute_expr (ip, &imm_expr);
13780 if ((unsigned long) imm_expr.X_add_number > 63)
13781 as_warn (_("Invalid value for `%s' (%lu)"),
13783 (unsigned long) imm_expr.X_add_number);
13784 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
13785 imm_expr.X_op = O_absent;
13789 case 'a': /* 26 bit address */
13790 my_getExpression (&offset_expr, s);
13792 *offset_reloc = BFD_RELOC_MIPS16_JMP;
13793 ip->insn_opcode <<= 16;
13796 case 'l': /* register list for entry macro */
13797 case 'L': /* register list for exit macro */
13807 unsigned int freg, reg1, reg2;
13809 while (*s == ' ' || *s == ',')
13811 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
13813 else if (reg_lookup (&s, RTYPE_FPU, ®1))
13817 as_bad (_("can't parse register list"));
13827 if (!reg_lookup (&s, freg ? RTYPE_FPU
13828 : (RTYPE_GP | RTYPE_NUM), ®2))
13830 as_bad (_("invalid register list"));
13834 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
13836 mask &= ~ (7 << 3);
13839 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
13841 mask &= ~ (7 << 3);
13844 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
13845 mask |= (reg2 - 3) << 3;
13846 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
13847 mask |= (reg2 - 15) << 1;
13848 else if (reg1 == RA && reg2 == RA)
13852 as_bad (_("invalid register list"));
13856 /* The mask is filled in in the opcode table for the
13857 benefit of the disassembler. We remove it before
13858 applying the actual mask. */
13859 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
13860 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
13864 case 'm': /* Register list for save insn. */
13865 case 'M': /* Register list for restore insn. */
13867 int opcode = ip->insn_opcode;
13868 int framesz = 0, seen_framesz = 0;
13869 int nargs = 0, statics = 0, sregs = 0;
13873 unsigned int reg1, reg2;
13875 SKIP_SPACE_TABS (s);
13878 SKIP_SPACE_TABS (s);
13880 my_getExpression (&imm_expr, s);
13881 if (imm_expr.X_op == O_constant)
13883 /* Handle the frame size. */
13886 as_bad (_("more than one frame size in list"));
13890 framesz = imm_expr.X_add_number;
13891 imm_expr.X_op = O_absent;
13896 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
13898 as_bad (_("can't parse register list"));
13910 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®2)
13913 as_bad (_("can't parse register list"));
13918 while (reg1 <= reg2)
13920 if (reg1 >= 4 && reg1 <= 7)
13924 nargs |= 1 << (reg1 - 4);
13926 /* statics $a0-$a3 */
13927 statics |= 1 << (reg1 - 4);
13929 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
13932 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
13934 else if (reg1 == 31)
13936 /* Add $ra to insn. */
13941 as_bad (_("unexpected register in list"));
13949 /* Encode args/statics combination. */
13950 if (nargs & statics)
13951 as_bad (_("arg/static registers overlap"));
13952 else if (nargs == 0xf)
13953 /* All $a0-$a3 are args. */
13954 opcode |= MIPS16_ALL_ARGS << 16;
13955 else if (statics == 0xf)
13956 /* All $a0-$a3 are statics. */
13957 opcode |= MIPS16_ALL_STATICS << 16;
13960 int narg = 0, nstat = 0;
13962 /* Count arg registers. */
13963 while (nargs & 0x1)
13969 as_bad (_("invalid arg register list"));
13971 /* Count static registers. */
13972 while (statics & 0x8)
13974 statics = (statics << 1) & 0xf;
13978 as_bad (_("invalid static register list"));
13980 /* Encode args/statics. */
13981 opcode |= ((narg << 2) | nstat) << 16;
13984 /* Encode $s0/$s1. */
13985 if (sregs & (1 << 0)) /* $s0 */
13987 if (sregs & (1 << 1)) /* $s1 */
13993 /* Count regs $s2-$s8. */
14001 as_bad (_("invalid static register list"));
14002 /* Encode $s2-$s8. */
14003 opcode |= nsreg << 24;
14006 /* Encode frame size. */
14008 as_bad (_("missing frame size"));
14009 else if ((framesz & 7) != 0 || framesz < 0
14010 || framesz > 0xff * 8)
14011 as_bad (_("invalid frame size"));
14012 else if (framesz != 128 || (opcode >> 16) != 0)
14015 opcode |= (((framesz & 0xf0) << 16)
14016 | (framesz & 0x0f));
14019 /* Finally build the instruction. */
14020 if ((opcode >> 16) != 0 || framesz == 0)
14021 opcode |= MIPS16_EXTEND;
14022 ip->insn_opcode = opcode;
14026 case 'e': /* extend code */
14027 my_getExpression (&imm_expr, s);
14028 check_absolute_expr (ip, &imm_expr);
14029 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
14031 as_warn (_("Invalid value for `%s' (%lu)"),
14033 (unsigned long) imm_expr.X_add_number);
14034 imm_expr.X_add_number &= 0x7ff;
14036 ip->insn_opcode |= imm_expr.X_add_number;
14037 imm_expr.X_op = O_absent;
14047 /* Args don't match. */
14048 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
14049 strcmp (insn->name, insn[1].name) == 0)
14056 insn_error = _("illegal operands");
14062 /* This structure holds information we know about a mips16 immediate
14065 struct mips16_immed_operand
14067 /* The type code used in the argument string in the opcode table. */
14069 /* The number of bits in the short form of the opcode. */
14071 /* The number of bits in the extended form of the opcode. */
14073 /* The amount by which the short form is shifted when it is used;
14074 for example, the sw instruction has a shift count of 2. */
14076 /* The amount by which the short form is shifted when it is stored
14077 into the instruction code. */
14079 /* Non-zero if the short form is unsigned. */
14081 /* Non-zero if the extended form is unsigned. */
14083 /* Non-zero if the value is PC relative. */
14087 /* The mips16 immediate operand types. */
14089 static const struct mips16_immed_operand mips16_immed_operands[] =
14091 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14092 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14093 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14094 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14095 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
14096 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
14097 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
14098 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
14099 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
14100 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
14101 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
14102 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
14103 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
14104 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
14105 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
14106 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
14107 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14108 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14109 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
14110 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
14111 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
14114 #define MIPS16_NUM_IMMED \
14115 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
14117 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14118 NBITS is the number of significant bits in VAL. */
14120 static unsigned long
14121 mips16_immed_extend (offsetT val, unsigned int nbits)
14126 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14129 else if (nbits == 15)
14131 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14136 extval = ((val & 0x1f) << 6) | (val & 0x20);
14139 return (extval << 16) | val;
14142 /* Install immediate value VAL into MIPS16 instruction *INSN,
14143 extending it if necessary. The instruction in *INSN may
14144 already be extended.
14146 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14147 if none. In the former case, VAL is a 16-bit number with no
14148 defined signedness.
14150 TYPE is the type of the immediate field. USER_INSN_LENGTH
14151 is the length that the user requested, or 0 if none. */
14154 mips16_immed (char *file, unsigned int line, int type,
14155 bfd_reloc_code_real_type reloc, offsetT val,
14156 unsigned int user_insn_length, unsigned long *insn)
14158 const struct mips16_immed_operand *op;
14159 int mintiny, maxtiny;
14161 op = mips16_immed_operands;
14162 while (op->type != type)
14165 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14170 if (type == '<' || type == '>' || type == '[' || type == ']')
14173 maxtiny = 1 << op->nbits;
14178 maxtiny = (1 << op->nbits) - 1;
14180 if (reloc != BFD_RELOC_UNUSED)
14185 mintiny = - (1 << (op->nbits - 1));
14186 maxtiny = (1 << (op->nbits - 1)) - 1;
14187 if (reloc != BFD_RELOC_UNUSED)
14188 val = SEXT_16BIT (val);
14191 /* Branch offsets have an implicit 0 in the lowest bit. */
14192 if (type == 'p' || type == 'q')
14195 if ((val & ((1 << op->shift) - 1)) != 0
14196 || val < (mintiny << op->shift)
14197 || val > (maxtiny << op->shift))
14199 /* We need an extended instruction. */
14200 if (user_insn_length == 2)
14201 as_bad_where (file, line, _("invalid unextended operand value"));
14203 *insn |= MIPS16_EXTEND;
14205 else if (user_insn_length == 4)
14207 /* The operand doesn't force an unextended instruction to be extended.
14208 Warn if the user wanted an extended instruction anyway. */
14209 *insn |= MIPS16_EXTEND;
14210 as_warn_where (file, line,
14211 _("extended operand requested but not required"));
14214 if (mips16_opcode_length (*insn) == 2)
14218 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14219 insnval <<= op->op_shift;
14224 long minext, maxext;
14226 if (reloc == BFD_RELOC_UNUSED)
14231 maxext = (1 << op->extbits) - 1;
14235 minext = - (1 << (op->extbits - 1));
14236 maxext = (1 << (op->extbits - 1)) - 1;
14238 if (val < minext || val > maxext)
14239 as_bad_where (file, line,
14240 _("operand value out of range for instruction"));
14243 *insn |= mips16_immed_extend (val, op->extbits);
14247 struct percent_op_match
14250 bfd_reloc_code_real_type reloc;
14253 static const struct percent_op_match mips_percent_op[] =
14255 {"%lo", BFD_RELOC_LO16},
14257 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14258 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14259 {"%call16", BFD_RELOC_MIPS_CALL16},
14260 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14261 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14262 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14263 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14264 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14265 {"%got", BFD_RELOC_MIPS_GOT16},
14266 {"%gp_rel", BFD_RELOC_GPREL16},
14267 {"%half", BFD_RELOC_16},
14268 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14269 {"%higher", BFD_RELOC_MIPS_HIGHER},
14270 {"%neg", BFD_RELOC_MIPS_SUB},
14271 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14272 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14273 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14274 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14275 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14276 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14277 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14279 {"%hi", BFD_RELOC_HI16_S}
14282 static const struct percent_op_match mips16_percent_op[] =
14284 {"%lo", BFD_RELOC_MIPS16_LO16},
14285 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14286 {"%got", BFD_RELOC_MIPS16_GOT16},
14287 {"%call16", BFD_RELOC_MIPS16_CALL16},
14288 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14289 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14290 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14291 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14292 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14293 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14294 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14295 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14299 /* Return true if *STR points to a relocation operator. When returning true,
14300 move *STR over the operator and store its relocation code in *RELOC.
14301 Leave both *STR and *RELOC alone when returning false. */
14304 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14306 const struct percent_op_match *percent_op;
14309 if (mips_opts.mips16)
14311 percent_op = mips16_percent_op;
14312 limit = ARRAY_SIZE (mips16_percent_op);
14316 percent_op = mips_percent_op;
14317 limit = ARRAY_SIZE (mips_percent_op);
14320 for (i = 0; i < limit; i++)
14321 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14323 int len = strlen (percent_op[i].str);
14325 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14328 *str += strlen (percent_op[i].str);
14329 *reloc = percent_op[i].reloc;
14331 /* Check whether the output BFD supports this relocation.
14332 If not, issue an error and fall back on something safe. */
14333 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14335 as_bad (_("relocation %s isn't supported by the current ABI"),
14336 percent_op[i].str);
14337 *reloc = BFD_RELOC_UNUSED;
14345 /* Parse string STR as a 16-bit relocatable operand. Store the
14346 expression in *EP and the relocations in the array starting
14347 at RELOC. Return the number of relocation operators used.
14349 On exit, EXPR_END points to the first character after the expression. */
14352 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14355 bfd_reloc_code_real_type reversed_reloc[3];
14356 size_t reloc_index, i;
14357 int crux_depth, str_depth;
14360 /* Search for the start of the main expression, recoding relocations
14361 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14362 of the main expression and with CRUX_DEPTH containing the number
14363 of open brackets at that point. */
14370 crux_depth = str_depth;
14372 /* Skip over whitespace and brackets, keeping count of the number
14374 while (*str == ' ' || *str == '\t' || *str == '(')
14379 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14380 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14382 my_getExpression (ep, crux);
14385 /* Match every open bracket. */
14386 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14390 if (crux_depth > 0)
14391 as_bad (_("unclosed '('"));
14395 if (reloc_index != 0)
14397 prev_reloc_op_frag = frag_now;
14398 for (i = 0; i < reloc_index; i++)
14399 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14402 return reloc_index;
14406 my_getExpression (expressionS *ep, char *str)
14410 save_in = input_line_pointer;
14411 input_line_pointer = str;
14413 expr_end = input_line_pointer;
14414 input_line_pointer = save_in;
14418 md_atof (int type, char *litP, int *sizeP)
14420 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14424 md_number_to_chars (char *buf, valueT val, int n)
14426 if (target_big_endian)
14427 number_to_chars_bigendian (buf, val, n);
14429 number_to_chars_littleendian (buf, val, n);
14433 static int support_64bit_objects(void)
14435 const char **list, **l;
14438 list = bfd_target_list ();
14439 for (l = list; *l != NULL; l++)
14440 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14441 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14443 yes = (*l != NULL);
14447 #endif /* OBJ_ELF */
14449 const char *md_shortopts = "O::g::G:";
14453 OPTION_MARCH = OPTION_MD_BASE,
14475 OPTION_NO_SMARTMIPS,
14479 OPTION_NO_MICROMIPS,
14482 OPTION_COMPAT_ARCH_BASE,
14491 OPTION_M7000_HILO_FIX,
14492 OPTION_MNO_7000_HILO_FIX,
14495 OPTION_FIX_LOONGSON2F_JUMP,
14496 OPTION_NO_FIX_LOONGSON2F_JUMP,
14497 OPTION_FIX_LOONGSON2F_NOP,
14498 OPTION_NO_FIX_LOONGSON2F_NOP,
14500 OPTION_NO_FIX_VR4120,
14502 OPTION_NO_FIX_VR4130,
14503 OPTION_FIX_CN63XXP1,
14504 OPTION_NO_FIX_CN63XXP1,
14511 OPTION_CONSTRUCT_FLOATS,
14512 OPTION_NO_CONSTRUCT_FLOATS,
14515 OPTION_RELAX_BRANCH,
14516 OPTION_NO_RELAX_BRANCH,
14523 OPTION_SINGLE_FLOAT,
14524 OPTION_DOUBLE_FLOAT,
14527 OPTION_CALL_SHARED,
14528 OPTION_CALL_NONPIC,
14538 OPTION_MVXWORKS_PIC,
14539 #endif /* OBJ_ELF */
14543 struct option md_longopts[] =
14545 /* Options which specify architecture. */
14546 {"march", required_argument, NULL, OPTION_MARCH},
14547 {"mtune", required_argument, NULL, OPTION_MTUNE},
14548 {"mips0", no_argument, NULL, OPTION_MIPS1},
14549 {"mips1", no_argument, NULL, OPTION_MIPS1},
14550 {"mips2", no_argument, NULL, OPTION_MIPS2},
14551 {"mips3", no_argument, NULL, OPTION_MIPS3},
14552 {"mips4", no_argument, NULL, OPTION_MIPS4},
14553 {"mips5", no_argument, NULL, OPTION_MIPS5},
14554 {"mips32", no_argument, NULL, OPTION_MIPS32},
14555 {"mips64", no_argument, NULL, OPTION_MIPS64},
14556 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
14557 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
14559 /* Options which specify Application Specific Extensions (ASEs). */
14560 {"mips16", no_argument, NULL, OPTION_MIPS16},
14561 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
14562 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
14563 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
14564 {"mdmx", no_argument, NULL, OPTION_MDMX},
14565 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
14566 {"mdsp", no_argument, NULL, OPTION_DSP},
14567 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
14568 {"mmt", no_argument, NULL, OPTION_MT},
14569 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
14570 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
14571 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
14572 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
14573 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
14574 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
14575 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
14576 {"mmcu", no_argument, NULL, OPTION_MCU},
14577 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
14579 /* Old-style architecture options. Don't add more of these. */
14580 {"m4650", no_argument, NULL, OPTION_M4650},
14581 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
14582 {"m4010", no_argument, NULL, OPTION_M4010},
14583 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
14584 {"m4100", no_argument, NULL, OPTION_M4100},
14585 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
14586 {"m3900", no_argument, NULL, OPTION_M3900},
14587 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
14589 /* Options which enable bug fixes. */
14590 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
14591 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14592 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14593 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
14594 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
14595 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
14596 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
14597 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
14598 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
14599 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
14600 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
14601 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
14602 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
14603 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
14604 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
14606 /* Miscellaneous options. */
14607 {"trap", no_argument, NULL, OPTION_TRAP},
14608 {"no-break", no_argument, NULL, OPTION_TRAP},
14609 {"break", no_argument, NULL, OPTION_BREAK},
14610 {"no-trap", no_argument, NULL, OPTION_BREAK},
14611 {"EB", no_argument, NULL, OPTION_EB},
14612 {"EL", no_argument, NULL, OPTION_EL},
14613 {"mfp32", no_argument, NULL, OPTION_FP32},
14614 {"mgp32", no_argument, NULL, OPTION_GP32},
14615 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
14616 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
14617 {"mfp64", no_argument, NULL, OPTION_FP64},
14618 {"mgp64", no_argument, NULL, OPTION_GP64},
14619 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
14620 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
14621 {"mshared", no_argument, NULL, OPTION_MSHARED},
14622 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
14623 {"msym32", no_argument, NULL, OPTION_MSYM32},
14624 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
14625 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
14626 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
14627 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
14628 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
14630 /* Strictly speaking this next option is ELF specific,
14631 but we allow it for other ports as well in order to
14632 make testing easier. */
14633 {"32", no_argument, NULL, OPTION_32},
14635 /* ELF-specific options. */
14637 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
14638 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
14639 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
14640 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
14641 {"xgot", no_argument, NULL, OPTION_XGOT},
14642 {"mabi", required_argument, NULL, OPTION_MABI},
14643 {"n32", no_argument, NULL, OPTION_N32},
14644 {"64", no_argument, NULL, OPTION_64},
14645 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
14646 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
14647 {"mpdr", no_argument, NULL, OPTION_PDR},
14648 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
14649 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
14650 #endif /* OBJ_ELF */
14652 {NULL, no_argument, NULL, 0}
14654 size_t md_longopts_size = sizeof (md_longopts);
14656 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14657 NEW_VALUE. Warn if another value was already specified. Note:
14658 we have to defer parsing the -march and -mtune arguments in order
14659 to handle 'from-abi' correctly, since the ABI might be specified
14660 in a later argument. */
14663 mips_set_option_string (const char **string_ptr, const char *new_value)
14665 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14666 as_warn (_("A different %s was already specified, is now %s"),
14667 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14670 *string_ptr = new_value;
14674 md_parse_option (int c, char *arg)
14678 case OPTION_CONSTRUCT_FLOATS:
14679 mips_disable_float_construction = 0;
14682 case OPTION_NO_CONSTRUCT_FLOATS:
14683 mips_disable_float_construction = 1;
14695 target_big_endian = 1;
14699 target_big_endian = 0;
14705 else if (arg[0] == '0')
14707 else if (arg[0] == '1')
14717 mips_debug = atoi (arg);
14721 file_mips_isa = ISA_MIPS1;
14725 file_mips_isa = ISA_MIPS2;
14729 file_mips_isa = ISA_MIPS3;
14733 file_mips_isa = ISA_MIPS4;
14737 file_mips_isa = ISA_MIPS5;
14740 case OPTION_MIPS32:
14741 file_mips_isa = ISA_MIPS32;
14744 case OPTION_MIPS32R2:
14745 file_mips_isa = ISA_MIPS32R2;
14748 case OPTION_MIPS64R2:
14749 file_mips_isa = ISA_MIPS64R2;
14752 case OPTION_MIPS64:
14753 file_mips_isa = ISA_MIPS64;
14757 mips_set_option_string (&mips_tune_string, arg);
14761 mips_set_option_string (&mips_arch_string, arg);
14765 mips_set_option_string (&mips_arch_string, "4650");
14766 mips_set_option_string (&mips_tune_string, "4650");
14769 case OPTION_NO_M4650:
14773 mips_set_option_string (&mips_arch_string, "4010");
14774 mips_set_option_string (&mips_tune_string, "4010");
14777 case OPTION_NO_M4010:
14781 mips_set_option_string (&mips_arch_string, "4100");
14782 mips_set_option_string (&mips_tune_string, "4100");
14785 case OPTION_NO_M4100:
14789 mips_set_option_string (&mips_arch_string, "3900");
14790 mips_set_option_string (&mips_tune_string, "3900");
14793 case OPTION_NO_M3900:
14797 mips_opts.ase_mdmx = 1;
14800 case OPTION_NO_MDMX:
14801 mips_opts.ase_mdmx = 0;
14805 mips_opts.ase_dsp = 1;
14806 mips_opts.ase_dspr2 = 0;
14809 case OPTION_NO_DSP:
14810 mips_opts.ase_dsp = 0;
14811 mips_opts.ase_dspr2 = 0;
14815 mips_opts.ase_dspr2 = 1;
14816 mips_opts.ase_dsp = 1;
14819 case OPTION_NO_DSPR2:
14820 mips_opts.ase_dspr2 = 0;
14821 mips_opts.ase_dsp = 0;
14825 mips_opts.ase_mt = 1;
14829 mips_opts.ase_mt = 0;
14833 mips_opts.ase_mcu = 1;
14836 case OPTION_NO_MCU:
14837 mips_opts.ase_mcu = 0;
14840 case OPTION_MICROMIPS:
14841 if (mips_opts.mips16 == 1)
14843 as_bad (_("-mmicromips cannot be used with -mips16"));
14846 mips_opts.micromips = 1;
14847 mips_no_prev_insn ();
14850 case OPTION_NO_MICROMIPS:
14851 mips_opts.micromips = 0;
14852 mips_no_prev_insn ();
14855 case OPTION_MIPS16:
14856 if (mips_opts.micromips == 1)
14858 as_bad (_("-mips16 cannot be used with -micromips"));
14861 mips_opts.mips16 = 1;
14862 mips_no_prev_insn ();
14865 case OPTION_NO_MIPS16:
14866 mips_opts.mips16 = 0;
14867 mips_no_prev_insn ();
14870 case OPTION_MIPS3D:
14871 mips_opts.ase_mips3d = 1;
14874 case OPTION_NO_MIPS3D:
14875 mips_opts.ase_mips3d = 0;
14878 case OPTION_SMARTMIPS:
14879 mips_opts.ase_smartmips = 1;
14882 case OPTION_NO_SMARTMIPS:
14883 mips_opts.ase_smartmips = 0;
14886 case OPTION_FIX_24K:
14890 case OPTION_NO_FIX_24K:
14894 case OPTION_FIX_LOONGSON2F_JUMP:
14895 mips_fix_loongson2f_jump = TRUE;
14898 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14899 mips_fix_loongson2f_jump = FALSE;
14902 case OPTION_FIX_LOONGSON2F_NOP:
14903 mips_fix_loongson2f_nop = TRUE;
14906 case OPTION_NO_FIX_LOONGSON2F_NOP:
14907 mips_fix_loongson2f_nop = FALSE;
14910 case OPTION_FIX_VR4120:
14911 mips_fix_vr4120 = 1;
14914 case OPTION_NO_FIX_VR4120:
14915 mips_fix_vr4120 = 0;
14918 case OPTION_FIX_VR4130:
14919 mips_fix_vr4130 = 1;
14922 case OPTION_NO_FIX_VR4130:
14923 mips_fix_vr4130 = 0;
14926 case OPTION_FIX_CN63XXP1:
14927 mips_fix_cn63xxp1 = TRUE;
14930 case OPTION_NO_FIX_CN63XXP1:
14931 mips_fix_cn63xxp1 = FALSE;
14934 case OPTION_RELAX_BRANCH:
14935 mips_relax_branch = 1;
14938 case OPTION_NO_RELAX_BRANCH:
14939 mips_relax_branch = 0;
14942 case OPTION_MSHARED:
14943 mips_in_shared = TRUE;
14946 case OPTION_MNO_SHARED:
14947 mips_in_shared = FALSE;
14950 case OPTION_MSYM32:
14951 mips_opts.sym32 = TRUE;
14954 case OPTION_MNO_SYM32:
14955 mips_opts.sym32 = FALSE;
14959 /* When generating ELF code, we permit -KPIC and -call_shared to
14960 select SVR4_PIC, and -non_shared to select no PIC. This is
14961 intended to be compatible with Irix 5. */
14962 case OPTION_CALL_SHARED:
14965 as_bad (_("-call_shared is supported only for ELF format"));
14968 mips_pic = SVR4_PIC;
14969 mips_abicalls = TRUE;
14972 case OPTION_CALL_NONPIC:
14975 as_bad (_("-call_nonpic is supported only for ELF format"));
14979 mips_abicalls = TRUE;
14982 case OPTION_NON_SHARED:
14985 as_bad (_("-non_shared is supported only for ELF format"));
14989 mips_abicalls = FALSE;
14992 /* The -xgot option tells the assembler to use 32 bit offsets
14993 when accessing the got in SVR4_PIC mode. It is for Irix
14998 #endif /* OBJ_ELF */
15001 g_switch_value = atoi (arg);
15005 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15009 mips_abi = O32_ABI;
15010 /* We silently ignore -32 for non-ELF targets. This greatly
15011 simplifies the construction of the MIPS GAS test cases. */
15018 as_bad (_("-n32 is supported for ELF format only"));
15021 mips_abi = N32_ABI;
15027 as_bad (_("-64 is supported for ELF format only"));
15030 mips_abi = N64_ABI;
15031 if (!support_64bit_objects())
15032 as_fatal (_("No compiled in support for 64 bit object file format"));
15034 #endif /* OBJ_ELF */
15037 file_mips_gp32 = 1;
15041 file_mips_gp32 = 0;
15045 file_mips_fp32 = 1;
15049 file_mips_fp32 = 0;
15052 case OPTION_SINGLE_FLOAT:
15053 file_mips_single_float = 1;
15056 case OPTION_DOUBLE_FLOAT:
15057 file_mips_single_float = 0;
15060 case OPTION_SOFT_FLOAT:
15061 file_mips_soft_float = 1;
15064 case OPTION_HARD_FLOAT:
15065 file_mips_soft_float = 0;
15072 as_bad (_("-mabi is supported for ELF format only"));
15075 if (strcmp (arg, "32") == 0)
15076 mips_abi = O32_ABI;
15077 else if (strcmp (arg, "o64") == 0)
15078 mips_abi = O64_ABI;
15079 else if (strcmp (arg, "n32") == 0)
15080 mips_abi = N32_ABI;
15081 else if (strcmp (arg, "64") == 0)
15083 mips_abi = N64_ABI;
15084 if (! support_64bit_objects())
15085 as_fatal (_("No compiled in support for 64 bit object file "
15088 else if (strcmp (arg, "eabi") == 0)
15089 mips_abi = EABI_ABI;
15092 as_fatal (_("invalid abi -mabi=%s"), arg);
15096 #endif /* OBJ_ELF */
15098 case OPTION_M7000_HILO_FIX:
15099 mips_7000_hilo_fix = TRUE;
15102 case OPTION_MNO_7000_HILO_FIX:
15103 mips_7000_hilo_fix = FALSE;
15107 case OPTION_MDEBUG:
15108 mips_flag_mdebug = TRUE;
15111 case OPTION_NO_MDEBUG:
15112 mips_flag_mdebug = FALSE;
15116 mips_flag_pdr = TRUE;
15119 case OPTION_NO_PDR:
15120 mips_flag_pdr = FALSE;
15123 case OPTION_MVXWORKS_PIC:
15124 mips_pic = VXWORKS_PIC;
15126 #endif /* OBJ_ELF */
15132 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15137 /* Set up globals to generate code for the ISA or processor
15138 described by INFO. */
15141 mips_set_architecture (const struct mips_cpu_info *info)
15145 file_mips_arch = info->cpu;
15146 mips_opts.arch = info->cpu;
15147 mips_opts.isa = info->isa;
15152 /* Likewise for tuning. */
15155 mips_set_tune (const struct mips_cpu_info *info)
15158 mips_tune = info->cpu;
15163 mips_after_parse_args (void)
15165 const struct mips_cpu_info *arch_info = 0;
15166 const struct mips_cpu_info *tune_info = 0;
15168 /* GP relative stuff not working for PE */
15169 if (strncmp (TARGET_OS, "pe", 2) == 0)
15171 if (g_switch_seen && g_switch_value != 0)
15172 as_bad (_("-G not supported in this configuration."));
15173 g_switch_value = 0;
15176 if (mips_abi == NO_ABI)
15177 mips_abi = MIPS_DEFAULT_ABI;
15179 /* The following code determines the architecture and register size.
15180 Similar code was added to GCC 3.3 (see override_options() in
15181 config/mips/mips.c). The GAS and GCC code should be kept in sync
15182 as much as possible. */
15184 if (mips_arch_string != 0)
15185 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15187 if (file_mips_isa != ISA_UNKNOWN)
15189 /* Handle -mipsN. At this point, file_mips_isa contains the
15190 ISA level specified by -mipsN, while arch_info->isa contains
15191 the -march selection (if any). */
15192 if (arch_info != 0)
15194 /* -march takes precedence over -mipsN, since it is more descriptive.
15195 There's no harm in specifying both as long as the ISA levels
15197 if (file_mips_isa != arch_info->isa)
15198 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15199 mips_cpu_info_from_isa (file_mips_isa)->name,
15200 mips_cpu_info_from_isa (arch_info->isa)->name);
15203 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15206 if (arch_info == 0)
15208 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15209 gas_assert (arch_info);
15212 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15213 as_bad (_("-march=%s is not compatible with the selected ABI"),
15216 mips_set_architecture (arch_info);
15218 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15219 if (mips_tune_string != 0)
15220 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15222 if (tune_info == 0)
15223 mips_set_tune (arch_info);
15225 mips_set_tune (tune_info);
15227 if (file_mips_gp32 >= 0)
15229 /* The user specified the size of the integer registers. Make sure
15230 it agrees with the ABI and ISA. */
15231 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15232 as_bad (_("-mgp64 used with a 32-bit processor"));
15233 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15234 as_bad (_("-mgp32 used with a 64-bit ABI"));
15235 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15236 as_bad (_("-mgp64 used with a 32-bit ABI"));
15240 /* Infer the integer register size from the ABI and processor.
15241 Restrict ourselves to 32-bit registers if that's all the
15242 processor has, or if the ABI cannot handle 64-bit registers. */
15243 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15244 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15247 switch (file_mips_fp32)
15251 /* No user specified float register size.
15252 ??? GAS treats single-float processors as though they had 64-bit
15253 float registers (although it complains when double-precision
15254 instructions are used). As things stand, saying they have 32-bit
15255 registers would lead to spurious "register must be even" messages.
15256 So here we assume float registers are never smaller than the
15258 if (file_mips_gp32 == 0)
15259 /* 64-bit integer registers implies 64-bit float registers. */
15260 file_mips_fp32 = 0;
15261 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
15262 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15263 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15264 file_mips_fp32 = 0;
15266 /* 32-bit float registers. */
15267 file_mips_fp32 = 1;
15270 /* The user specified the size of the float registers. Check if it
15271 agrees with the ABI and ISA. */
15273 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15274 as_bad (_("-mfp64 used with a 32-bit fpu"));
15275 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15276 && !ISA_HAS_MXHC1 (mips_opts.isa))
15277 as_warn (_("-mfp64 used with a 32-bit ABI"));
15280 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15281 as_warn (_("-mfp32 used with a 64-bit ABI"));
15285 /* End of GCC-shared inference code. */
15287 /* This flag is set when we have a 64-bit capable CPU but use only
15288 32-bit wide registers. Note that EABI does not use it. */
15289 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15290 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15291 || mips_abi == O32_ABI))
15292 mips_32bitmode = 1;
15294 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15295 as_bad (_("trap exception not supported at ISA 1"));
15297 /* If the selected architecture includes support for ASEs, enable
15298 generation of code for them. */
15299 if (mips_opts.mips16 == -1)
15300 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15301 if (mips_opts.micromips == -1)
15302 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15303 if (mips_opts.ase_mips3d == -1)
15304 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
15305 && file_mips_fp32 == 0) ? 1 : 0;
15306 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
15307 as_bad (_("-mfp32 used with -mips3d"));
15309 if (mips_opts.ase_mdmx == -1)
15310 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
15311 && file_mips_fp32 == 0) ? 1 : 0;
15312 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
15313 as_bad (_("-mfp32 used with -mdmx"));
15315 if (mips_opts.ase_smartmips == -1)
15316 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
15317 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
15318 as_warn (_("%s ISA does not support SmartMIPS"),
15319 mips_cpu_info_from_isa (mips_opts.isa)->name);
15321 if (mips_opts.ase_dsp == -1)
15322 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15323 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
15324 as_warn (_("%s ISA does not support DSP ASE"),
15325 mips_cpu_info_from_isa (mips_opts.isa)->name);
15327 if (mips_opts.ase_dspr2 == -1)
15329 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
15330 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15332 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
15333 as_warn (_("%s ISA does not support DSP R2 ASE"),
15334 mips_cpu_info_from_isa (mips_opts.isa)->name);
15336 if (mips_opts.ase_mt == -1)
15337 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
15338 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
15339 as_warn (_("%s ISA does not support MT ASE"),
15340 mips_cpu_info_from_isa (mips_opts.isa)->name);
15342 if (mips_opts.ase_mcu == -1)
15343 mips_opts.ase_mcu = (arch_info->flags & MIPS_CPU_ASE_MCU) ? 1 : 0;
15344 if (mips_opts.ase_mcu && !ISA_SUPPORTS_MCU_ASE)
15345 as_warn (_("%s ISA does not support MCU ASE"),
15346 mips_cpu_info_from_isa (mips_opts.isa)->name);
15348 file_mips_isa = mips_opts.isa;
15349 file_ase_mips3d = mips_opts.ase_mips3d;
15350 file_ase_mdmx = mips_opts.ase_mdmx;
15351 file_ase_smartmips = mips_opts.ase_smartmips;
15352 file_ase_dsp = mips_opts.ase_dsp;
15353 file_ase_dspr2 = mips_opts.ase_dspr2;
15354 file_ase_mt = mips_opts.ase_mt;
15355 mips_opts.gp32 = file_mips_gp32;
15356 mips_opts.fp32 = file_mips_fp32;
15357 mips_opts.soft_float = file_mips_soft_float;
15358 mips_opts.single_float = file_mips_single_float;
15360 if (mips_flag_mdebug < 0)
15362 #ifdef OBJ_MAYBE_ECOFF
15363 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15364 mips_flag_mdebug = 1;
15366 #endif /* OBJ_MAYBE_ECOFF */
15367 mips_flag_mdebug = 0;
15372 mips_init_after_args (void)
15374 /* initialize opcodes */
15375 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15376 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15380 md_pcrel_from (fixS *fixP)
15382 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15383 switch (fixP->fx_r_type)
15385 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15386 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15387 /* Return the address of the delay slot. */
15390 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15391 case BFD_RELOC_MICROMIPS_JMP:
15392 case BFD_RELOC_16_PCREL_S2:
15393 case BFD_RELOC_MIPS_JMP:
15394 /* Return the address of the delay slot. */
15398 /* We have no relocation type for PC relative MIPS16 instructions. */
15399 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15400 as_bad_where (fixP->fx_file, fixP->fx_line,
15401 _("PC relative MIPS16 instruction references a different section"));
15406 /* This is called before the symbol table is processed. In order to
15407 work with gcc when using mips-tfile, we must keep all local labels.
15408 However, in other cases, we want to discard them. If we were
15409 called with -g, but we didn't see any debugging information, it may
15410 mean that gcc is smuggling debugging information through to
15411 mips-tfile, in which case we must generate all local labels. */
15414 mips_frob_file_before_adjust (void)
15416 #ifndef NO_ECOFF_DEBUGGING
15417 if (ECOFF_DEBUGGING
15419 && ! ecoff_debugging_seen)
15420 flag_keep_locals = 1;
15424 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15425 the corresponding LO16 reloc. This is called before md_apply_fix and
15426 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15427 relocation operators.
15429 For our purposes, a %lo() expression matches a %got() or %hi()
15432 (a) it refers to the same symbol; and
15433 (b) the offset applied in the %lo() expression is no lower than
15434 the offset applied in the %got() or %hi().
15436 (b) allows us to cope with code like:
15439 lh $4,%lo(foo+2)($4)
15441 ...which is legal on RELA targets, and has a well-defined behaviour
15442 if the user knows that adding 2 to "foo" will not induce a carry to
15445 When several %lo()s match a particular %got() or %hi(), we use the
15446 following rules to distinguish them:
15448 (1) %lo()s with smaller offsets are a better match than %lo()s with
15451 (2) %lo()s with no matching %got() or %hi() are better than those
15452 that already have a matching %got() or %hi().
15454 (3) later %lo()s are better than earlier %lo()s.
15456 These rules are applied in order.
15458 (1) means, among other things, that %lo()s with identical offsets are
15459 chosen if they exist.
15461 (2) means that we won't associate several high-part relocations with
15462 the same low-part relocation unless there's no alternative. Having
15463 several high parts for the same low part is a GNU extension; this rule
15464 allows careful users to avoid it.
15466 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15467 with the last high-part relocation being at the front of the list.
15468 It therefore makes sense to choose the last matching low-part
15469 relocation, all other things being equal. It's also easier
15470 to code that way. */
15473 mips_frob_file (void)
15475 struct mips_hi_fixup *l;
15476 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15478 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15480 segment_info_type *seginfo;
15481 bfd_boolean matched_lo_p;
15482 fixS **hi_pos, **lo_pos, **pos;
15484 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15486 /* If a GOT16 relocation turns out to be against a global symbol,
15487 there isn't supposed to be a matching LO. Ignore %gots against
15488 constants; we'll report an error for those later. */
15489 if (got16_reloc_p (l->fixp->fx_r_type)
15490 && !(l->fixp->fx_addsy
15491 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
15494 /* Check quickly whether the next fixup happens to be a matching %lo. */
15495 if (fixup_has_matching_lo_p (l->fixp))
15498 seginfo = seg_info (l->seg);
15500 /* Set HI_POS to the position of this relocation in the chain.
15501 Set LO_POS to the position of the chosen low-part relocation.
15502 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15503 relocation that matches an immediately-preceding high-part
15507 matched_lo_p = FALSE;
15508 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15510 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15512 if (*pos == l->fixp)
15515 if ((*pos)->fx_r_type == looking_for_rtype
15516 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15517 && (*pos)->fx_offset >= l->fixp->fx_offset
15519 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15521 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15524 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15525 && fixup_has_matching_lo_p (*pos));
15528 /* If we found a match, remove the high-part relocation from its
15529 current position and insert it before the low-part relocation.
15530 Make the offsets match so that fixup_has_matching_lo_p()
15533 We don't warn about unmatched high-part relocations since some
15534 versions of gcc have been known to emit dead "lui ...%hi(...)"
15536 if (lo_pos != NULL)
15538 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15539 if (l->fixp->fx_next != *lo_pos)
15541 *hi_pos = l->fixp->fx_next;
15542 l->fixp->fx_next = *lo_pos;
15550 mips_force_relocation (fixS *fixp)
15552 if (generic_force_reloc (fixp))
15555 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15556 so that the linker relaxation can update targets. */
15557 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15558 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15559 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15565 /* Read the instruction associated with RELOC from BUF. */
15567 static unsigned int
15568 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15570 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15571 return read_compressed_insn (buf, 4);
15573 return read_insn (buf);
15576 /* Write instruction INSN to BUF, given that it has been relocated
15580 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15581 unsigned long insn)
15583 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15584 write_compressed_insn (buf, insn, 4);
15586 write_insn (buf, insn);
15589 /* Apply a fixup to the object file. */
15592 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15595 unsigned long insn;
15596 reloc_howto_type *howto;
15598 /* We ignore generic BFD relocations we don't know about. */
15599 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15603 gas_assert (fixP->fx_size == 2
15604 || fixP->fx_size == 4
15605 || fixP->fx_r_type == BFD_RELOC_16
15606 || fixP->fx_r_type == BFD_RELOC_64
15607 || fixP->fx_r_type == BFD_RELOC_CTOR
15608 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15609 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15610 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15611 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15612 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15614 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15616 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15617 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15618 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15619 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
15621 /* Don't treat parts of a composite relocation as done. There are two
15624 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15625 should nevertheless be emitted if the first part is.
15627 (2) In normal usage, composite relocations are never assembly-time
15628 constants. The easiest way of dealing with the pathological
15629 exceptions is to generate a relocation against STN_UNDEF and
15630 leave everything up to the linker. */
15631 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15634 switch (fixP->fx_r_type)
15636 case BFD_RELOC_MIPS_TLS_GD:
15637 case BFD_RELOC_MIPS_TLS_LDM:
15638 case BFD_RELOC_MIPS_TLS_DTPREL32:
15639 case BFD_RELOC_MIPS_TLS_DTPREL64:
15640 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15641 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15642 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15643 case BFD_RELOC_MIPS_TLS_TPREL32:
15644 case BFD_RELOC_MIPS_TLS_TPREL64:
15645 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15646 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15647 case BFD_RELOC_MICROMIPS_TLS_GD:
15648 case BFD_RELOC_MICROMIPS_TLS_LDM:
15649 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15650 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15651 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15652 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15653 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15654 case BFD_RELOC_MIPS16_TLS_GD:
15655 case BFD_RELOC_MIPS16_TLS_LDM:
15656 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15657 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15658 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15659 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15660 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15661 if (!fixP->fx_addsy)
15663 as_bad_where (fixP->fx_file, fixP->fx_line,
15664 _("TLS relocation against a constant"));
15667 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15670 case BFD_RELOC_MIPS_JMP:
15671 case BFD_RELOC_MIPS_SHIFT5:
15672 case BFD_RELOC_MIPS_SHIFT6:
15673 case BFD_RELOC_MIPS_GOT_DISP:
15674 case BFD_RELOC_MIPS_GOT_PAGE:
15675 case BFD_RELOC_MIPS_GOT_OFST:
15676 case BFD_RELOC_MIPS_SUB:
15677 case BFD_RELOC_MIPS_INSERT_A:
15678 case BFD_RELOC_MIPS_INSERT_B:
15679 case BFD_RELOC_MIPS_DELETE:
15680 case BFD_RELOC_MIPS_HIGHEST:
15681 case BFD_RELOC_MIPS_HIGHER:
15682 case BFD_RELOC_MIPS_SCN_DISP:
15683 case BFD_RELOC_MIPS_REL16:
15684 case BFD_RELOC_MIPS_RELGOT:
15685 case BFD_RELOC_MIPS_JALR:
15686 case BFD_RELOC_HI16:
15687 case BFD_RELOC_HI16_S:
15688 case BFD_RELOC_LO16:
15689 case BFD_RELOC_GPREL16:
15690 case BFD_RELOC_MIPS_LITERAL:
15691 case BFD_RELOC_MIPS_CALL16:
15692 case BFD_RELOC_MIPS_GOT16:
15693 case BFD_RELOC_GPREL32:
15694 case BFD_RELOC_MIPS_GOT_HI16:
15695 case BFD_RELOC_MIPS_GOT_LO16:
15696 case BFD_RELOC_MIPS_CALL_HI16:
15697 case BFD_RELOC_MIPS_CALL_LO16:
15698 case BFD_RELOC_MIPS16_GPREL:
15699 case BFD_RELOC_MIPS16_GOT16:
15700 case BFD_RELOC_MIPS16_CALL16:
15701 case BFD_RELOC_MIPS16_HI16:
15702 case BFD_RELOC_MIPS16_HI16_S:
15703 case BFD_RELOC_MIPS16_LO16:
15704 case BFD_RELOC_MIPS16_JMP:
15705 case BFD_RELOC_MICROMIPS_JMP:
15706 case BFD_RELOC_MICROMIPS_GOT_DISP:
15707 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15708 case BFD_RELOC_MICROMIPS_GOT_OFST:
15709 case BFD_RELOC_MICROMIPS_SUB:
15710 case BFD_RELOC_MICROMIPS_HIGHEST:
15711 case BFD_RELOC_MICROMIPS_HIGHER:
15712 case BFD_RELOC_MICROMIPS_SCN_DISP:
15713 case BFD_RELOC_MICROMIPS_JALR:
15714 case BFD_RELOC_MICROMIPS_HI16:
15715 case BFD_RELOC_MICROMIPS_HI16_S:
15716 case BFD_RELOC_MICROMIPS_LO16:
15717 case BFD_RELOC_MICROMIPS_GPREL16:
15718 case BFD_RELOC_MICROMIPS_LITERAL:
15719 case BFD_RELOC_MICROMIPS_CALL16:
15720 case BFD_RELOC_MICROMIPS_GOT16:
15721 case BFD_RELOC_MICROMIPS_GOT_HI16:
15722 case BFD_RELOC_MICROMIPS_GOT_LO16:
15723 case BFD_RELOC_MICROMIPS_CALL_HI16:
15724 case BFD_RELOC_MICROMIPS_CALL_LO16:
15729 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15731 insn = read_reloc_insn (buf, fixP->fx_r_type);
15732 if (mips16_reloc_p (fixP->fx_r_type))
15733 insn |= mips16_immed_extend (value, 16);
15735 insn |= (value & 0xffff);
15736 write_reloc_insn (buf, fixP->fx_r_type, insn);
15739 as_bad_where (fixP->fx_file, fixP->fx_line,
15740 _("Unsupported constant in relocation"));
15745 /* This is handled like BFD_RELOC_32, but we output a sign
15746 extended value if we are only 32 bits. */
15749 if (8 <= sizeof (valueT))
15750 md_number_to_chars (buf, *valP, 8);
15755 if ((*valP & 0x80000000) != 0)
15759 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15760 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15765 case BFD_RELOC_RVA:
15768 /* If we are deleting this reloc entry, we must fill in the
15769 value now. This can happen if we have a .word which is not
15770 resolved when it appears but is later defined. */
15772 md_number_to_chars (buf, *valP, fixP->fx_size);
15775 case BFD_RELOC_16_PCREL_S2:
15776 if ((*valP & 0x3) != 0)
15777 as_bad_where (fixP->fx_file, fixP->fx_line,
15778 _("Branch to misaligned address (%lx)"), (long) *valP);
15780 /* We need to save the bits in the instruction since fixup_segment()
15781 might be deleting the relocation entry (i.e., a branch within
15782 the current segment). */
15783 if (! fixP->fx_done)
15786 /* Update old instruction data. */
15787 insn = read_insn (buf);
15789 if (*valP + 0x20000 <= 0x3ffff)
15791 insn |= (*valP >> 2) & 0xffff;
15792 write_insn (buf, insn);
15794 else if (mips_pic == NO_PIC
15796 && fixP->fx_frag->fr_address >= text_section->vma
15797 && (fixP->fx_frag->fr_address
15798 < text_section->vma + bfd_get_section_size (text_section))
15799 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15800 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15801 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15803 /* The branch offset is too large. If this is an
15804 unconditional branch, and we are not generating PIC code,
15805 we can convert it to an absolute jump instruction. */
15806 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15807 insn = 0x0c000000; /* jal */
15809 insn = 0x08000000; /* j */
15810 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15812 fixP->fx_addsy = section_symbol (text_section);
15813 *valP += md_pcrel_from (fixP);
15814 write_insn (buf, insn);
15818 /* If we got here, we have branch-relaxation disabled,
15819 and there's nothing we can do to fix this instruction
15820 without turning it into a longer sequence. */
15821 as_bad_where (fixP->fx_file, fixP->fx_line,
15822 _("Branch out of range"));
15826 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15827 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15828 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15829 /* We adjust the offset back to even. */
15830 if ((*valP & 0x1) != 0)
15833 if (! fixP->fx_done)
15836 /* Should never visit here, because we keep the relocation. */
15840 case BFD_RELOC_VTABLE_INHERIT:
15843 && !S_IS_DEFINED (fixP->fx_addsy)
15844 && !S_IS_WEAK (fixP->fx_addsy))
15845 S_SET_WEAK (fixP->fx_addsy);
15848 case BFD_RELOC_VTABLE_ENTRY:
15856 /* Remember value for tc_gen_reloc. */
15857 fixP->fx_addnumber = *valP;
15867 name = input_line_pointer;
15868 c = get_symbol_end ();
15869 p = (symbolS *) symbol_find_or_make (name);
15870 *input_line_pointer = c;
15874 /* Align the current frag to a given power of two. If a particular
15875 fill byte should be used, FILL points to an integer that contains
15876 that byte, otherwise FILL is null.
15878 This function used to have the comment:
15880 The MIPS assembler also automatically adjusts any preceding label.
15882 The implementation therefore applied the adjustment to a maximum of
15883 one label. However, other label adjustments are applied to batches
15884 of labels, and adjusting just one caused problems when new labels
15885 were added for the sake of debugging or unwind information.
15886 We therefore adjust all preceding labels (given as LABELS) instead. */
15889 mips_align (int to, int *fill, struct insn_label_list *labels)
15891 mips_emit_delays ();
15892 mips_record_compressed_mode ();
15893 if (fill == NULL && subseg_text_p (now_seg))
15894 frag_align_code (to, 0);
15896 frag_align (to, fill ? *fill : 0, 0);
15897 record_alignment (now_seg, to);
15898 mips_move_labels (labels, FALSE);
15901 /* Align to a given power of two. .align 0 turns off the automatic
15902 alignment used by the data creating pseudo-ops. */
15905 s_align (int x ATTRIBUTE_UNUSED)
15907 int temp, fill_value, *fill_ptr;
15908 long max_alignment = 28;
15910 /* o Note that the assembler pulls down any immediately preceding label
15911 to the aligned address.
15912 o It's not documented but auto alignment is reinstated by
15913 a .align pseudo instruction.
15914 o Note also that after auto alignment is turned off the mips assembler
15915 issues an error on attempt to assemble an improperly aligned data item.
15918 temp = get_absolute_expression ();
15919 if (temp > max_alignment)
15920 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
15923 as_warn (_("Alignment negative: 0 assumed."));
15926 if (*input_line_pointer == ',')
15928 ++input_line_pointer;
15929 fill_value = get_absolute_expression ();
15930 fill_ptr = &fill_value;
15936 segment_info_type *si = seg_info (now_seg);
15937 struct insn_label_list *l = si->label_list;
15938 /* Auto alignment should be switched on by next section change. */
15940 mips_align (temp, fill_ptr, l);
15947 demand_empty_rest_of_line ();
15951 s_change_sec (int sec)
15956 /* The ELF backend needs to know that we are changing sections, so
15957 that .previous works correctly. We could do something like check
15958 for an obj_section_change_hook macro, but that might be confusing
15959 as it would not be appropriate to use it in the section changing
15960 functions in read.c, since obj-elf.c intercepts those. FIXME:
15961 This should be cleaner, somehow. */
15963 obj_elf_section_change_hook ();
15966 mips_emit_delays ();
15977 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15978 demand_empty_rest_of_line ();
15982 seg = subseg_new (RDATA_SECTION_NAME,
15983 (subsegT) get_absolute_expression ());
15986 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15987 | SEC_READONLY | SEC_RELOC
15989 if (strncmp (TARGET_OS, "elf", 3) != 0)
15990 record_alignment (seg, 4);
15992 demand_empty_rest_of_line ();
15996 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15999 bfd_set_section_flags (stdoutput, seg,
16000 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16001 if (strncmp (TARGET_OS, "elf", 3) != 0)
16002 record_alignment (seg, 4);
16004 demand_empty_rest_of_line ();
16008 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16011 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16012 if (strncmp (TARGET_OS, "elf", 3) != 0)
16013 record_alignment (seg, 4);
16015 demand_empty_rest_of_line ();
16023 s_change_section (int ignore ATTRIBUTE_UNUSED)
16026 char *section_name;
16031 int section_entry_size;
16032 int section_alignment;
16037 section_name = input_line_pointer;
16038 c = get_symbol_end ();
16040 next_c = *(input_line_pointer + 1);
16042 /* Do we have .section Name<,"flags">? */
16043 if (c != ',' || (c == ',' && next_c == '"'))
16045 /* just after name is now '\0'. */
16046 *input_line_pointer = c;
16047 input_line_pointer = section_name;
16048 obj_elf_section (ignore);
16051 input_line_pointer++;
16053 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16055 section_type = get_absolute_expression ();
16058 if (*input_line_pointer++ == ',')
16059 section_flag = get_absolute_expression ();
16062 if (*input_line_pointer++ == ',')
16063 section_entry_size = get_absolute_expression ();
16065 section_entry_size = 0;
16066 if (*input_line_pointer++ == ',')
16067 section_alignment = get_absolute_expression ();
16069 section_alignment = 0;
16070 /* FIXME: really ignore? */
16071 (void) section_alignment;
16073 section_name = xstrdup (section_name);
16075 /* When using the generic form of .section (as implemented by obj-elf.c),
16076 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16077 traditionally had to fall back on the more common @progbits instead.
16079 There's nothing really harmful in this, since bfd will correct
16080 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16081 means that, for backwards compatibility, the special_section entries
16082 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16084 Even so, we shouldn't force users of the MIPS .section syntax to
16085 incorrectly label the sections as SHT_PROGBITS. The best compromise
16086 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16087 generic type-checking code. */
16088 if (section_type == SHT_MIPS_DWARF)
16089 section_type = SHT_PROGBITS;
16091 obj_elf_change_section (section_name, section_type, section_flag,
16092 section_entry_size, 0, 0, 0);
16094 if (now_seg->name != section_name)
16095 free (section_name);
16096 #endif /* OBJ_ELF */
16100 mips_enable_auto_align (void)
16106 s_cons (int log_size)
16108 segment_info_type *si = seg_info (now_seg);
16109 struct insn_label_list *l = si->label_list;
16111 mips_emit_delays ();
16112 if (log_size > 0 && auto_align)
16113 mips_align (log_size, 0, l);
16114 cons (1 << log_size);
16115 mips_clear_insn_labels ();
16119 s_float_cons (int type)
16121 segment_info_type *si = seg_info (now_seg);
16122 struct insn_label_list *l = si->label_list;
16124 mips_emit_delays ();
16129 mips_align (3, 0, l);
16131 mips_align (2, 0, l);
16135 mips_clear_insn_labels ();
16138 /* Handle .globl. We need to override it because on Irix 5 you are
16141 where foo is an undefined symbol, to mean that foo should be
16142 considered to be the address of a function. */
16145 s_mips_globl (int x ATTRIBUTE_UNUSED)
16154 name = input_line_pointer;
16155 c = get_symbol_end ();
16156 symbolP = symbol_find_or_make (name);
16157 S_SET_EXTERNAL (symbolP);
16159 *input_line_pointer = c;
16160 SKIP_WHITESPACE ();
16162 /* On Irix 5, every global symbol that is not explicitly labelled as
16163 being a function is apparently labelled as being an object. */
16166 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16167 && (*input_line_pointer != ','))
16172 secname = input_line_pointer;
16173 c = get_symbol_end ();
16174 sec = bfd_get_section_by_name (stdoutput, secname);
16176 as_bad (_("%s: no such section"), secname);
16177 *input_line_pointer = c;
16179 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16180 flag = BSF_FUNCTION;
16183 symbol_get_bfdsym (symbolP)->flags |= flag;
16185 c = *input_line_pointer;
16188 input_line_pointer++;
16189 SKIP_WHITESPACE ();
16190 if (is_end_of_line[(unsigned char) *input_line_pointer])
16196 demand_empty_rest_of_line ();
16200 s_option (int x ATTRIBUTE_UNUSED)
16205 opt = input_line_pointer;
16206 c = get_symbol_end ();
16210 /* FIXME: What does this mean? */
16212 else if (strncmp (opt, "pic", 3) == 0)
16216 i = atoi (opt + 3);
16221 mips_pic = SVR4_PIC;
16222 mips_abicalls = TRUE;
16225 as_bad (_(".option pic%d not supported"), i);
16227 if (mips_pic == SVR4_PIC)
16229 if (g_switch_seen && g_switch_value != 0)
16230 as_warn (_("-G may not be used with SVR4 PIC code"));
16231 g_switch_value = 0;
16232 bfd_set_gp_size (stdoutput, 0);
16236 as_warn (_("Unrecognized option \"%s\""), opt);
16238 *input_line_pointer = c;
16239 demand_empty_rest_of_line ();
16242 /* This structure is used to hold a stack of .set values. */
16244 struct mips_option_stack
16246 struct mips_option_stack *next;
16247 struct mips_set_options options;
16250 static struct mips_option_stack *mips_opts_stack;
16252 /* Handle the .set pseudo-op. */
16255 s_mipsset (int x ATTRIBUTE_UNUSED)
16257 char *name = input_line_pointer, ch;
16259 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16260 ++input_line_pointer;
16261 ch = *input_line_pointer;
16262 *input_line_pointer = '\0';
16264 if (strcmp (name, "reorder") == 0)
16266 if (mips_opts.noreorder)
16269 else if (strcmp (name, "noreorder") == 0)
16271 if (!mips_opts.noreorder)
16272 start_noreorder ();
16274 else if (strncmp (name, "at=", 3) == 0)
16276 char *s = name + 3;
16278 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16279 as_bad (_("Unrecognized register name `%s'"), s);
16281 else if (strcmp (name, "at") == 0)
16283 mips_opts.at = ATREG;
16285 else if (strcmp (name, "noat") == 0)
16287 mips_opts.at = ZERO;
16289 else if (strcmp (name, "macro") == 0)
16291 mips_opts.warn_about_macros = 0;
16293 else if (strcmp (name, "nomacro") == 0)
16295 if (mips_opts.noreorder == 0)
16296 as_bad (_("`noreorder' must be set before `nomacro'"));
16297 mips_opts.warn_about_macros = 1;
16299 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16301 mips_opts.nomove = 0;
16303 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16305 mips_opts.nomove = 1;
16307 else if (strcmp (name, "bopt") == 0)
16309 mips_opts.nobopt = 0;
16311 else if (strcmp (name, "nobopt") == 0)
16313 mips_opts.nobopt = 1;
16315 else if (strcmp (name, "gp=default") == 0)
16316 mips_opts.gp32 = file_mips_gp32;
16317 else if (strcmp (name, "gp=32") == 0)
16318 mips_opts.gp32 = 1;
16319 else if (strcmp (name, "gp=64") == 0)
16321 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16322 as_warn (_("%s isa does not support 64-bit registers"),
16323 mips_cpu_info_from_isa (mips_opts.isa)->name);
16324 mips_opts.gp32 = 0;
16326 else if (strcmp (name, "fp=default") == 0)
16327 mips_opts.fp32 = file_mips_fp32;
16328 else if (strcmp (name, "fp=32") == 0)
16329 mips_opts.fp32 = 1;
16330 else if (strcmp (name, "fp=64") == 0)
16332 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16333 as_warn (_("%s isa does not support 64-bit floating point registers"),
16334 mips_cpu_info_from_isa (mips_opts.isa)->name);
16335 mips_opts.fp32 = 0;
16337 else if (strcmp (name, "softfloat") == 0)
16338 mips_opts.soft_float = 1;
16339 else if (strcmp (name, "hardfloat") == 0)
16340 mips_opts.soft_float = 0;
16341 else if (strcmp (name, "singlefloat") == 0)
16342 mips_opts.single_float = 1;
16343 else if (strcmp (name, "doublefloat") == 0)
16344 mips_opts.single_float = 0;
16345 else if (strcmp (name, "mips16") == 0
16346 || strcmp (name, "MIPS-16") == 0)
16348 if (mips_opts.micromips == 1)
16349 as_fatal (_("`mips16' cannot be used with `micromips'"));
16350 mips_opts.mips16 = 1;
16352 else if (strcmp (name, "nomips16") == 0
16353 || strcmp (name, "noMIPS-16") == 0)
16354 mips_opts.mips16 = 0;
16355 else if (strcmp (name, "micromips") == 0)
16357 if (mips_opts.mips16 == 1)
16358 as_fatal (_("`micromips' cannot be used with `mips16'"));
16359 mips_opts.micromips = 1;
16361 else if (strcmp (name, "nomicromips") == 0)
16362 mips_opts.micromips = 0;
16363 else if (strcmp (name, "smartmips") == 0)
16365 if (!ISA_SUPPORTS_SMARTMIPS)
16366 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16367 mips_cpu_info_from_isa (mips_opts.isa)->name);
16368 mips_opts.ase_smartmips = 1;
16370 else if (strcmp (name, "nosmartmips") == 0)
16371 mips_opts.ase_smartmips = 0;
16372 else if (strcmp (name, "mips3d") == 0)
16373 mips_opts.ase_mips3d = 1;
16374 else if (strcmp (name, "nomips3d") == 0)
16375 mips_opts.ase_mips3d = 0;
16376 else if (strcmp (name, "mdmx") == 0)
16377 mips_opts.ase_mdmx = 1;
16378 else if (strcmp (name, "nomdmx") == 0)
16379 mips_opts.ase_mdmx = 0;
16380 else if (strcmp (name, "dsp") == 0)
16382 if (!ISA_SUPPORTS_DSP_ASE)
16383 as_warn (_("%s ISA does not support DSP ASE"),
16384 mips_cpu_info_from_isa (mips_opts.isa)->name);
16385 mips_opts.ase_dsp = 1;
16386 mips_opts.ase_dspr2 = 0;
16388 else if (strcmp (name, "nodsp") == 0)
16390 mips_opts.ase_dsp = 0;
16391 mips_opts.ase_dspr2 = 0;
16393 else if (strcmp (name, "dspr2") == 0)
16395 if (!ISA_SUPPORTS_DSPR2_ASE)
16396 as_warn (_("%s ISA does not support DSP R2 ASE"),
16397 mips_cpu_info_from_isa (mips_opts.isa)->name);
16398 mips_opts.ase_dspr2 = 1;
16399 mips_opts.ase_dsp = 1;
16401 else if (strcmp (name, "nodspr2") == 0)
16403 mips_opts.ase_dspr2 = 0;
16404 mips_opts.ase_dsp = 0;
16406 else if (strcmp (name, "mt") == 0)
16408 if (!ISA_SUPPORTS_MT_ASE)
16409 as_warn (_("%s ISA does not support MT ASE"),
16410 mips_cpu_info_from_isa (mips_opts.isa)->name);
16411 mips_opts.ase_mt = 1;
16413 else if (strcmp (name, "nomt") == 0)
16414 mips_opts.ase_mt = 0;
16415 else if (strcmp (name, "mcu") == 0)
16416 mips_opts.ase_mcu = 1;
16417 else if (strcmp (name, "nomcu") == 0)
16418 mips_opts.ase_mcu = 0;
16419 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16423 /* Permit the user to change the ISA and architecture on the fly.
16424 Needless to say, misuse can cause serious problems. */
16425 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16428 mips_opts.isa = file_mips_isa;
16429 mips_opts.arch = file_mips_arch;
16431 else if (strncmp (name, "arch=", 5) == 0)
16433 const struct mips_cpu_info *p;
16435 p = mips_parse_cpu("internal use", name + 5);
16437 as_bad (_("unknown architecture %s"), name + 5);
16440 mips_opts.arch = p->cpu;
16441 mips_opts.isa = p->isa;
16444 else if (strncmp (name, "mips", 4) == 0)
16446 const struct mips_cpu_info *p;
16448 p = mips_parse_cpu("internal use", name);
16450 as_bad (_("unknown ISA level %s"), name + 4);
16453 mips_opts.arch = p->cpu;
16454 mips_opts.isa = p->isa;
16458 as_bad (_("unknown ISA or architecture %s"), name);
16460 switch (mips_opts.isa)
16468 mips_opts.gp32 = 1;
16469 mips_opts.fp32 = 1;
16476 mips_opts.gp32 = 0;
16477 if (mips_opts.arch == CPU_R5900)
16479 mips_opts.fp32 = 1;
16483 mips_opts.fp32 = 0;
16487 as_bad (_("unknown ISA level %s"), name + 4);
16492 mips_opts.gp32 = file_mips_gp32;
16493 mips_opts.fp32 = file_mips_fp32;
16496 else if (strcmp (name, "autoextend") == 0)
16497 mips_opts.noautoextend = 0;
16498 else if (strcmp (name, "noautoextend") == 0)
16499 mips_opts.noautoextend = 1;
16500 else if (strcmp (name, "push") == 0)
16502 struct mips_option_stack *s;
16504 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16505 s->next = mips_opts_stack;
16506 s->options = mips_opts;
16507 mips_opts_stack = s;
16509 else if (strcmp (name, "pop") == 0)
16511 struct mips_option_stack *s;
16513 s = mips_opts_stack;
16515 as_bad (_(".set pop with no .set push"));
16518 /* If we're changing the reorder mode we need to handle
16519 delay slots correctly. */
16520 if (s->options.noreorder && ! mips_opts.noreorder)
16521 start_noreorder ();
16522 else if (! s->options.noreorder && mips_opts.noreorder)
16525 mips_opts = s->options;
16526 mips_opts_stack = s->next;
16530 else if (strcmp (name, "sym32") == 0)
16531 mips_opts.sym32 = TRUE;
16532 else if (strcmp (name, "nosym32") == 0)
16533 mips_opts.sym32 = FALSE;
16534 else if (strchr (name, ','))
16536 /* Generic ".set" directive; use the generic handler. */
16537 *input_line_pointer = ch;
16538 input_line_pointer = name;
16544 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16546 *input_line_pointer = ch;
16547 demand_empty_rest_of_line ();
16550 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16551 .option pic2. It means to generate SVR4 PIC calls. */
16554 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16556 mips_pic = SVR4_PIC;
16557 mips_abicalls = TRUE;
16559 if (g_switch_seen && g_switch_value != 0)
16560 as_warn (_("-G may not be used with SVR4 PIC code"));
16561 g_switch_value = 0;
16563 bfd_set_gp_size (stdoutput, 0);
16564 demand_empty_rest_of_line ();
16567 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16568 PIC code. It sets the $gp register for the function based on the
16569 function address, which is in the register named in the argument.
16570 This uses a relocation against _gp_disp, which is handled specially
16571 by the linker. The result is:
16572 lui $gp,%hi(_gp_disp)
16573 addiu $gp,$gp,%lo(_gp_disp)
16574 addu $gp,$gp,.cpload argument
16575 The .cpload argument is normally $25 == $t9.
16577 The -mno-shared option changes this to:
16578 lui $gp,%hi(__gnu_local_gp)
16579 addiu $gp,$gp,%lo(__gnu_local_gp)
16580 and the argument is ignored. This saves an instruction, but the
16581 resulting code is not position independent; it uses an absolute
16582 address for __gnu_local_gp. Thus code assembled with -mno-shared
16583 can go into an ordinary executable, but not into a shared library. */
16586 s_cpload (int ignore ATTRIBUTE_UNUSED)
16592 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16593 .cpload is ignored. */
16594 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16600 if (mips_opts.mips16)
16602 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16603 ignore_rest_of_line ();
16607 /* .cpload should be in a .set noreorder section. */
16608 if (mips_opts.noreorder == 0)
16609 as_warn (_(".cpload not in noreorder section"));
16611 reg = tc_get_register (0);
16613 /* If we need to produce a 64-bit address, we are better off using
16614 the default instruction sequence. */
16615 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16617 ex.X_op = O_symbol;
16618 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16620 ex.X_op_symbol = NULL;
16621 ex.X_add_number = 0;
16623 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16624 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16627 macro_build_lui (&ex, mips_gp_register);
16628 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16629 mips_gp_register, BFD_RELOC_LO16);
16631 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16632 mips_gp_register, reg);
16635 demand_empty_rest_of_line ();
16638 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16639 .cpsetup $reg1, offset|$reg2, label
16641 If offset is given, this results in:
16642 sd $gp, offset($sp)
16643 lui $gp, %hi(%neg(%gp_rel(label)))
16644 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16645 daddu $gp, $gp, $reg1
16647 If $reg2 is given, this results in:
16648 daddu $reg2, $gp, $0
16649 lui $gp, %hi(%neg(%gp_rel(label)))
16650 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16651 daddu $gp, $gp, $reg1
16652 $reg1 is normally $25 == $t9.
16654 The -mno-shared option replaces the last three instructions with
16656 addiu $gp,$gp,%lo(_gp) */
16659 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16661 expressionS ex_off;
16662 expressionS ex_sym;
16665 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16666 We also need NewABI support. */
16667 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16673 if (mips_opts.mips16)
16675 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16676 ignore_rest_of_line ();
16680 reg1 = tc_get_register (0);
16681 SKIP_WHITESPACE ();
16682 if (*input_line_pointer != ',')
16684 as_bad (_("missing argument separator ',' for .cpsetup"));
16688 ++input_line_pointer;
16689 SKIP_WHITESPACE ();
16690 if (*input_line_pointer == '$')
16692 mips_cpreturn_register = tc_get_register (0);
16693 mips_cpreturn_offset = -1;
16697 mips_cpreturn_offset = get_absolute_expression ();
16698 mips_cpreturn_register = -1;
16700 SKIP_WHITESPACE ();
16701 if (*input_line_pointer != ',')
16703 as_bad (_("missing argument separator ',' for .cpsetup"));
16707 ++input_line_pointer;
16708 SKIP_WHITESPACE ();
16709 expression (&ex_sym);
16712 if (mips_cpreturn_register == -1)
16714 ex_off.X_op = O_constant;
16715 ex_off.X_add_symbol = NULL;
16716 ex_off.X_op_symbol = NULL;
16717 ex_off.X_add_number = mips_cpreturn_offset;
16719 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16720 BFD_RELOC_LO16, SP);
16723 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16724 mips_gp_register, 0);
16726 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16728 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16729 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16732 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16733 mips_gp_register, -1, BFD_RELOC_GPREL16,
16734 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16736 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16737 mips_gp_register, reg1);
16743 ex.X_op = O_symbol;
16744 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16745 ex.X_op_symbol = NULL;
16746 ex.X_add_number = 0;
16748 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16749 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16751 macro_build_lui (&ex, mips_gp_register);
16752 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16753 mips_gp_register, BFD_RELOC_LO16);
16758 demand_empty_rest_of_line ();
16762 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16764 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16765 .cplocal is ignored. */
16766 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16772 if (mips_opts.mips16)
16774 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16775 ignore_rest_of_line ();
16779 mips_gp_register = tc_get_register (0);
16780 demand_empty_rest_of_line ();
16783 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16784 offset from $sp. The offset is remembered, and after making a PIC
16785 call $gp is restored from that location. */
16788 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16792 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16793 .cprestore is ignored. */
16794 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16800 if (mips_opts.mips16)
16802 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16803 ignore_rest_of_line ();
16807 mips_cprestore_offset = get_absolute_expression ();
16808 mips_cprestore_valid = 1;
16810 ex.X_op = O_constant;
16811 ex.X_add_symbol = NULL;
16812 ex.X_op_symbol = NULL;
16813 ex.X_add_number = mips_cprestore_offset;
16816 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16817 SP, HAVE_64BIT_ADDRESSES);
16820 demand_empty_rest_of_line ();
16823 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16824 was given in the preceding .cpsetup, it results in:
16825 ld $gp, offset($sp)
16827 If a register $reg2 was given there, it results in:
16828 daddu $gp, $reg2, $0 */
16831 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16835 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16836 We also need NewABI support. */
16837 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16843 if (mips_opts.mips16)
16845 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16846 ignore_rest_of_line ();
16851 if (mips_cpreturn_register == -1)
16853 ex.X_op = O_constant;
16854 ex.X_add_symbol = NULL;
16855 ex.X_op_symbol = NULL;
16856 ex.X_add_number = mips_cpreturn_offset;
16858 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16861 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16862 mips_cpreturn_register, 0);
16865 demand_empty_rest_of_line ();
16868 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16869 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16870 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16871 debug information or MIPS16 TLS. */
16874 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16875 bfd_reloc_code_real_type rtype)
16882 if (ex.X_op != O_symbol)
16884 as_bad (_("Unsupported use of %s"), dirstr);
16885 ignore_rest_of_line ();
16888 p = frag_more (bytes);
16889 md_number_to_chars (p, 0, bytes);
16890 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16891 demand_empty_rest_of_line ();
16892 mips_clear_insn_labels ();
16895 /* Handle .dtprelword. */
16898 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16900 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16903 /* Handle .dtpreldword. */
16906 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16908 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16911 /* Handle .tprelword. */
16914 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16916 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16919 /* Handle .tpreldword. */
16922 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16924 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16927 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16928 code. It sets the offset to use in gp_rel relocations. */
16931 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16933 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16934 We also need NewABI support. */
16935 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16941 mips_gprel_offset = get_absolute_expression ();
16943 demand_empty_rest_of_line ();
16946 /* Handle the .gpword pseudo-op. This is used when generating PIC
16947 code. It generates a 32 bit GP relative reloc. */
16950 s_gpword (int ignore ATTRIBUTE_UNUSED)
16952 segment_info_type *si;
16953 struct insn_label_list *l;
16957 /* When not generating PIC code, this is treated as .word. */
16958 if (mips_pic != SVR4_PIC)
16964 si = seg_info (now_seg);
16965 l = si->label_list;
16966 mips_emit_delays ();
16968 mips_align (2, 0, l);
16971 mips_clear_insn_labels ();
16973 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16975 as_bad (_("Unsupported use of .gpword"));
16976 ignore_rest_of_line ();
16980 md_number_to_chars (p, 0, 4);
16981 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16982 BFD_RELOC_GPREL32);
16984 demand_empty_rest_of_line ();
16988 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16990 segment_info_type *si;
16991 struct insn_label_list *l;
16995 /* When not generating PIC code, this is treated as .dword. */
16996 if (mips_pic != SVR4_PIC)
17002 si = seg_info (now_seg);
17003 l = si->label_list;
17004 mips_emit_delays ();
17006 mips_align (3, 0, l);
17009 mips_clear_insn_labels ();
17011 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17013 as_bad (_("Unsupported use of .gpdword"));
17014 ignore_rest_of_line ();
17018 md_number_to_chars (p, 0, 8);
17019 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17020 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17022 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17023 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17024 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17026 demand_empty_rest_of_line ();
17029 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17030 tables in SVR4 PIC code. */
17033 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17037 /* This is ignored when not generating SVR4 PIC code. */
17038 if (mips_pic != SVR4_PIC)
17044 /* Add $gp to the register named as an argument. */
17046 reg = tc_get_register (0);
17047 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17050 demand_empty_rest_of_line ();
17053 /* Handle the .insn pseudo-op. This marks instruction labels in
17054 mips16/micromips mode. This permits the linker to handle them specially,
17055 such as generating jalx instructions when needed. We also make
17056 them odd for the duration of the assembly, in order to generate the
17057 right sort of code. We will make them even in the adjust_symtab
17058 routine, while leaving them marked. This is convenient for the
17059 debugger and the disassembler. The linker knows to make them odd
17063 s_insn (int ignore ATTRIBUTE_UNUSED)
17065 mips_mark_labels ();
17067 demand_empty_rest_of_line ();
17070 /* Handle a .stabn directive. We need these in order to mark a label
17071 as being a mips16 text label correctly. Sometimes the compiler
17072 will emit a label, followed by a .stabn, and then switch sections.
17073 If the label and .stabn are in mips16 mode, then the label is
17074 really a mips16 text label. */
17077 s_mips_stab (int type)
17080 mips_mark_labels ();
17085 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17088 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17095 name = input_line_pointer;
17096 c = get_symbol_end ();
17097 symbolP = symbol_find_or_make (name);
17098 S_SET_WEAK (symbolP);
17099 *input_line_pointer = c;
17101 SKIP_WHITESPACE ();
17103 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17105 if (S_IS_DEFINED (symbolP))
17107 as_bad (_("ignoring attempt to redefine symbol %s"),
17108 S_GET_NAME (symbolP));
17109 ignore_rest_of_line ();
17113 if (*input_line_pointer == ',')
17115 ++input_line_pointer;
17116 SKIP_WHITESPACE ();
17120 if (exp.X_op != O_symbol)
17122 as_bad (_("bad .weakext directive"));
17123 ignore_rest_of_line ();
17126 symbol_set_value_expression (symbolP, &exp);
17129 demand_empty_rest_of_line ();
17132 /* Parse a register string into a number. Called from the ECOFF code
17133 to parse .frame. The argument is non-zero if this is the frame
17134 register, so that we can record it in mips_frame_reg. */
17137 tc_get_register (int frame)
17141 SKIP_WHITESPACE ();
17142 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
17146 mips_frame_reg = reg != 0 ? reg : SP;
17147 mips_frame_reg_valid = 1;
17148 mips_cprestore_valid = 0;
17154 md_section_align (asection *seg, valueT addr)
17156 int align = bfd_get_section_alignment (stdoutput, seg);
17160 /* We don't need to align ELF sections to the full alignment.
17161 However, Irix 5 may prefer that we align them at least to a 16
17162 byte boundary. We don't bother to align the sections if we
17163 are targeted for an embedded system. */
17164 if (strncmp (TARGET_OS, "elf", 3) == 0)
17170 return ((addr + (1 << align) - 1) & (-1 << align));
17173 /* Utility routine, called from above as well. If called while the
17174 input file is still being read, it's only an approximation. (For
17175 example, a symbol may later become defined which appeared to be
17176 undefined earlier.) */
17179 nopic_need_relax (symbolS *sym, int before_relaxing)
17184 if (g_switch_value > 0)
17186 const char *symname;
17189 /* Find out whether this symbol can be referenced off the $gp
17190 register. It can be if it is smaller than the -G size or if
17191 it is in the .sdata or .sbss section. Certain symbols can
17192 not be referenced off the $gp, although it appears as though
17194 symname = S_GET_NAME (sym);
17195 if (symname != (const char *) NULL
17196 && (strcmp (symname, "eprol") == 0
17197 || strcmp (symname, "etext") == 0
17198 || strcmp (symname, "_gp") == 0
17199 || strcmp (symname, "edata") == 0
17200 || strcmp (symname, "_fbss") == 0
17201 || strcmp (symname, "_fdata") == 0
17202 || strcmp (symname, "_ftext") == 0
17203 || strcmp (symname, "end") == 0
17204 || strcmp (symname, "_gp_disp") == 0))
17206 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17208 #ifndef NO_ECOFF_DEBUGGING
17209 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17210 && (symbol_get_obj (sym)->ecoff_extern_size
17211 <= g_switch_value))
17213 /* We must defer this decision until after the whole
17214 file has been read, since there might be a .extern
17215 after the first use of this symbol. */
17216 || (before_relaxing
17217 #ifndef NO_ECOFF_DEBUGGING
17218 && symbol_get_obj (sym)->ecoff_extern_size == 0
17220 && S_GET_VALUE (sym) == 0)
17221 || (S_GET_VALUE (sym) != 0
17222 && S_GET_VALUE (sym) <= g_switch_value)))
17226 const char *segname;
17228 segname = segment_name (S_GET_SEGMENT (sym));
17229 gas_assert (strcmp (segname, ".lit8") != 0
17230 && strcmp (segname, ".lit4") != 0);
17231 change = (strcmp (segname, ".sdata") != 0
17232 && strcmp (segname, ".sbss") != 0
17233 && strncmp (segname, ".sdata.", 7) != 0
17234 && strncmp (segname, ".sbss.", 6) != 0
17235 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17236 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17241 /* We are not optimizing for the $gp register. */
17246 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17249 pic_need_relax (symbolS *sym, asection *segtype)
17253 /* Handle the case of a symbol equated to another symbol. */
17254 while (symbol_equated_reloc_p (sym))
17258 /* It's possible to get a loop here in a badly written program. */
17259 n = symbol_get_value_expression (sym)->X_add_symbol;
17265 if (symbol_section_p (sym))
17268 symsec = S_GET_SEGMENT (sym);
17270 /* This must duplicate the test in adjust_reloc_syms. */
17271 return (!bfd_is_und_section (symsec)
17272 && !bfd_is_abs_section (symsec)
17273 && !bfd_is_com_section (symsec)
17274 && !s_is_linkonce (sym, segtype)
17276 /* A global or weak symbol is treated as external. */
17277 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17283 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17284 extended opcode. SEC is the section the frag is in. */
17287 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17290 const struct mips16_immed_operand *op;
17292 int mintiny, maxtiny;
17296 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17298 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17301 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17302 op = mips16_immed_operands;
17303 while (op->type != type)
17306 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17311 if (type == '<' || type == '>' || type == '[' || type == ']')
17314 maxtiny = 1 << op->nbits;
17319 maxtiny = (1 << op->nbits) - 1;
17324 mintiny = - (1 << (op->nbits - 1));
17325 maxtiny = (1 << (op->nbits - 1)) - 1;
17328 sym_frag = symbol_get_frag (fragp->fr_symbol);
17329 val = S_GET_VALUE (fragp->fr_symbol);
17330 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17336 /* We won't have the section when we are called from
17337 mips_relax_frag. However, we will always have been called
17338 from md_estimate_size_before_relax first. If this is a
17339 branch to a different section, we mark it as such. If SEC is
17340 NULL, and the frag is not marked, then it must be a branch to
17341 the same section. */
17344 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17349 /* Must have been called from md_estimate_size_before_relax. */
17352 fragp->fr_subtype =
17353 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17355 /* FIXME: We should support this, and let the linker
17356 catch branches and loads that are out of range. */
17357 as_bad_where (fragp->fr_file, fragp->fr_line,
17358 _("unsupported PC relative reference to different section"));
17362 if (fragp != sym_frag && sym_frag->fr_address == 0)
17363 /* Assume non-extended on the first relaxation pass.
17364 The address we have calculated will be bogus if this is
17365 a forward branch to another frag, as the forward frag
17366 will have fr_address == 0. */
17370 /* In this case, we know for sure that the symbol fragment is in
17371 the same section. If the relax_marker of the symbol fragment
17372 differs from the relax_marker of this fragment, we have not
17373 yet adjusted the symbol fragment fr_address. We want to add
17374 in STRETCH in order to get a better estimate of the address.
17375 This particularly matters because of the shift bits. */
17377 && sym_frag->relax_marker != fragp->relax_marker)
17381 /* Adjust stretch for any alignment frag. Note that if have
17382 been expanding the earlier code, the symbol may be
17383 defined in what appears to be an earlier frag. FIXME:
17384 This doesn't handle the fr_subtype field, which specifies
17385 a maximum number of bytes to skip when doing an
17387 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17389 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17392 stretch = - ((- stretch)
17393 & ~ ((1 << (int) f->fr_offset) - 1));
17395 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17404 addr = fragp->fr_address + fragp->fr_fix;
17406 /* The base address rules are complicated. The base address of
17407 a branch is the following instruction. The base address of a
17408 PC relative load or add is the instruction itself, but if it
17409 is in a delay slot (in which case it can not be extended) use
17410 the address of the instruction whose delay slot it is in. */
17411 if (type == 'p' || type == 'q')
17415 /* If we are currently assuming that this frag should be
17416 extended, then, the current address is two bytes
17418 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17421 /* Ignore the low bit in the target, since it will be set
17422 for a text label. */
17423 if ((val & 1) != 0)
17426 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17428 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17431 val -= addr & ~ ((1 << op->shift) - 1);
17433 /* Branch offsets have an implicit 0 in the lowest bit. */
17434 if (type == 'p' || type == 'q')
17437 /* If any of the shifted bits are set, we must use an extended
17438 opcode. If the address depends on the size of this
17439 instruction, this can lead to a loop, so we arrange to always
17440 use an extended opcode. We only check this when we are in
17441 the main relaxation loop, when SEC is NULL. */
17442 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17444 fragp->fr_subtype =
17445 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17449 /* If we are about to mark a frag as extended because the value
17450 is precisely maxtiny + 1, then there is a chance of an
17451 infinite loop as in the following code:
17456 In this case when the la is extended, foo is 0x3fc bytes
17457 away, so the la can be shrunk, but then foo is 0x400 away, so
17458 the la must be extended. To avoid this loop, we mark the
17459 frag as extended if it was small, and is about to become
17460 extended with a value of maxtiny + 1. */
17461 if (val == ((maxtiny + 1) << op->shift)
17462 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17465 fragp->fr_subtype =
17466 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17470 else if (symsec != absolute_section && sec != NULL)
17471 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17473 if ((val & ((1 << op->shift) - 1)) != 0
17474 || val < (mintiny << op->shift)
17475 || val > (maxtiny << op->shift))
17481 /* Compute the length of a branch sequence, and adjust the
17482 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17483 worst-case length is computed, with UPDATE being used to indicate
17484 whether an unconditional (-1), branch-likely (+1) or regular (0)
17485 branch is to be computed. */
17487 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17489 bfd_boolean toofar;
17493 && S_IS_DEFINED (fragp->fr_symbol)
17494 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17499 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17501 addr = fragp->fr_address + fragp->fr_fix + 4;
17505 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17508 /* If the symbol is not defined or it's in a different segment,
17509 assume the user knows what's going on and emit a short
17515 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17517 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17518 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17519 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17520 RELAX_BRANCH_LINK (fragp->fr_subtype),
17526 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17529 if (mips_pic != NO_PIC)
17531 /* Additional space for PIC loading of target address. */
17533 if (mips_opts.isa == ISA_MIPS1)
17534 /* Additional space for $at-stabilizing nop. */
17538 /* If branch is conditional. */
17539 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17546 /* Compute the length of a branch sequence, and adjust the
17547 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17548 worst-case length is computed, with UPDATE being used to indicate
17549 whether an unconditional (-1), or regular (0) branch is to be
17553 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17555 bfd_boolean toofar;
17559 && S_IS_DEFINED (fragp->fr_symbol)
17560 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17565 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17566 /* Ignore the low bit in the target, since it will be set
17567 for a text label. */
17568 if ((val & 1) != 0)
17571 addr = fragp->fr_address + fragp->fr_fix + 4;
17575 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17578 /* If the symbol is not defined or it's in a different segment,
17579 assume the user knows what's going on and emit a short
17585 if (fragp && update
17586 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17587 fragp->fr_subtype = (toofar
17588 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17589 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17594 bfd_boolean compact_known = fragp != NULL;
17595 bfd_boolean compact = FALSE;
17596 bfd_boolean uncond;
17599 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17601 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17603 uncond = update < 0;
17605 /* If label is out of range, we turn branch <br>:
17607 <br> label # 4 bytes
17613 nop # 2 bytes if compact && !PIC
17616 if (mips_pic == NO_PIC && (!compact_known || compact))
17619 /* If assembling PIC code, we further turn:
17625 lw/ld at, %got(label)(gp) # 4 bytes
17626 d/addiu at, %lo(label) # 4 bytes
17629 if (mips_pic != NO_PIC)
17632 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17634 <brneg> 0f # 4 bytes
17635 nop # 2 bytes if !compact
17638 length += (compact_known && compact) ? 4 : 6;
17644 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17645 bit accordingly. */
17648 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17650 bfd_boolean toofar;
17653 && S_IS_DEFINED (fragp->fr_symbol)
17654 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17660 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17661 /* Ignore the low bit in the target, since it will be set
17662 for a text label. */
17663 if ((val & 1) != 0)
17666 /* Assume this is a 2-byte branch. */
17667 addr = fragp->fr_address + fragp->fr_fix + 2;
17669 /* We try to avoid the infinite loop by not adding 2 more bytes for
17674 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17676 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17677 else if (type == 'E')
17678 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17683 /* If the symbol is not defined or it's in a different segment,
17684 we emit a normal 32-bit branch. */
17687 if (fragp && update
17688 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17690 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17691 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17699 /* Estimate the size of a frag before relaxing. Unless this is the
17700 mips16, we are not really relaxing here, and the final size is
17701 encoded in the subtype information. For the mips16, we have to
17702 decide whether we are using an extended opcode or not. */
17705 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17709 if (RELAX_BRANCH_P (fragp->fr_subtype))
17712 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17714 return fragp->fr_var;
17717 if (RELAX_MIPS16_P (fragp->fr_subtype))
17718 /* We don't want to modify the EXTENDED bit here; it might get us
17719 into infinite loops. We change it only in mips_relax_frag(). */
17720 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17722 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17726 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17727 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17728 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17729 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17730 fragp->fr_var = length;
17735 if (mips_pic == NO_PIC)
17736 change = nopic_need_relax (fragp->fr_symbol, 0);
17737 else if (mips_pic == SVR4_PIC)
17738 change = pic_need_relax (fragp->fr_symbol, segtype);
17739 else if (mips_pic == VXWORKS_PIC)
17740 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17747 fragp->fr_subtype |= RELAX_USE_SECOND;
17748 return -RELAX_FIRST (fragp->fr_subtype);
17751 return -RELAX_SECOND (fragp->fr_subtype);
17754 /* This is called to see whether a reloc against a defined symbol
17755 should be converted into a reloc against a section. */
17758 mips_fix_adjustable (fixS *fixp)
17760 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17761 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17764 if (fixp->fx_addsy == NULL)
17767 /* If symbol SYM is in a mergeable section, relocations of the form
17768 SYM + 0 can usually be made section-relative. The mergeable data
17769 is then identified by the section offset rather than by the symbol.
17771 However, if we're generating REL LO16 relocations, the offset is split
17772 between the LO16 and parterning high part relocation. The linker will
17773 need to recalculate the complete offset in order to correctly identify
17776 The linker has traditionally not looked for the parterning high part
17777 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17778 placed anywhere. Rather than break backwards compatibility by changing
17779 this, it seems better not to force the issue, and instead keep the
17780 original symbol. This will work with either linker behavior. */
17781 if ((lo16_reloc_p (fixp->fx_r_type)
17782 || reloc_needs_lo_p (fixp->fx_r_type))
17783 && HAVE_IN_PLACE_ADDENDS
17784 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17787 /* There is no place to store an in-place offset for JALR relocations.
17788 Likewise an in-range offset of PC-relative relocations may overflow
17789 the in-place relocatable field if recalculated against the start
17790 address of the symbol's containing section. */
17791 if (HAVE_IN_PLACE_ADDENDS
17792 && (fixp->fx_pcrel || jalr_reloc_p (fixp->fx_r_type)))
17796 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17797 to a floating-point stub. The same is true for non-R_MIPS16_26
17798 relocations against MIPS16 functions; in this case, the stub becomes
17799 the function's canonical address.
17801 Floating-point stubs are stored in unique .mips16.call.* or
17802 .mips16.fn.* sections. If a stub T for function F is in section S,
17803 the first relocation in section S must be against F; this is how the
17804 linker determines the target function. All relocations that might
17805 resolve to T must also be against F. We therefore have the following
17806 restrictions, which are given in an intentionally-redundant way:
17808 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17811 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17812 if that stub might be used.
17814 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17817 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17818 that stub might be used.
17820 There is a further restriction:
17822 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17823 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17824 targets with in-place addends; the relocation field cannot
17825 encode the low bit.
17827 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17828 against a MIPS16 symbol. We deal with (5) by by not reducing any
17829 such relocations on REL targets.
17831 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17832 relocation against some symbol R, no relocation against R may be
17833 reduced. (Note that this deals with (2) as well as (1) because
17834 relocations against global symbols will never be reduced on ELF
17835 targets.) This approach is a little simpler than trying to detect
17836 stub sections, and gives the "all or nothing" per-symbol consistency
17837 that we have for MIPS16 symbols. */
17839 && fixp->fx_subsy == NULL
17840 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17841 || *symbol_get_tc (fixp->fx_addsy)
17842 || (HAVE_IN_PLACE_ADDENDS
17843 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17844 && jmp_reloc_p (fixp->fx_r_type))))
17851 /* Translate internal representation of relocation info to BFD target
17855 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17857 static arelent *retval[4];
17859 bfd_reloc_code_real_type code;
17861 memset (retval, 0, sizeof(retval));
17862 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17863 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17864 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17865 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17867 if (fixp->fx_pcrel)
17869 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17870 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17871 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17872 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
17874 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17875 Relocations want only the symbol offset. */
17876 reloc->addend = fixp->fx_addnumber + reloc->address;
17879 /* A gruesome hack which is a result of the gruesome gas
17880 reloc handling. What's worse, for COFF (as opposed to
17881 ECOFF), we might need yet another copy of reloc->address.
17882 See bfd_install_relocation. */
17883 reloc->addend += reloc->address;
17887 reloc->addend = fixp->fx_addnumber;
17889 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17890 entry to be used in the relocation's section offset. */
17891 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17893 reloc->address = reloc->addend;
17897 code = fixp->fx_r_type;
17899 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17900 if (reloc->howto == NULL)
17902 as_bad_where (fixp->fx_file, fixp->fx_line,
17903 _("Can not represent %s relocation in this object file format"),
17904 bfd_get_reloc_code_name (code));
17911 /* Relax a machine dependent frag. This returns the amount by which
17912 the current size of the frag should change. */
17915 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17917 if (RELAX_BRANCH_P (fragp->fr_subtype))
17919 offsetT old_var = fragp->fr_var;
17921 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17923 return fragp->fr_var - old_var;
17926 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17928 offsetT old_var = fragp->fr_var;
17929 offsetT new_var = 4;
17931 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17932 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17933 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17934 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17935 fragp->fr_var = new_var;
17937 return new_var - old_var;
17940 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17943 if (mips16_extended_frag (fragp, NULL, stretch))
17945 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17947 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17952 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17954 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17961 /* Convert a machine dependent frag. */
17964 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17966 if (RELAX_BRANCH_P (fragp->fr_subtype))
17969 unsigned long insn;
17973 buf = fragp->fr_literal + fragp->fr_fix;
17974 insn = read_insn (buf);
17976 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17978 /* We generate a fixup instead of applying it right now
17979 because, if there are linker relaxations, we're going to
17980 need the relocations. */
17981 exp.X_op = O_symbol;
17982 exp.X_add_symbol = fragp->fr_symbol;
17983 exp.X_add_number = fragp->fr_offset;
17985 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17986 BFD_RELOC_16_PCREL_S2);
17987 fixp->fx_file = fragp->fr_file;
17988 fixp->fx_line = fragp->fr_line;
17990 buf = write_insn (buf, insn);
17996 as_warn_where (fragp->fr_file, fragp->fr_line,
17997 _("Relaxed out-of-range branch into a jump"));
17999 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18002 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18004 /* Reverse the branch. */
18005 switch ((insn >> 28) & 0xf)
18008 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
18009 have the condition reversed by tweaking a single
18010 bit, and their opcodes all have 0x4???????. */
18011 gas_assert ((insn & 0xf1000000) == 0x41000000);
18012 insn ^= 0x00010000;
18016 /* bltz 0x04000000 bgez 0x04010000
18017 bltzal 0x04100000 bgezal 0x04110000 */
18018 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18019 insn ^= 0x00010000;
18023 /* beq 0x10000000 bne 0x14000000
18024 blez 0x18000000 bgtz 0x1c000000 */
18025 insn ^= 0x04000000;
18033 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18035 /* Clear the and-link bit. */
18036 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18038 /* bltzal 0x04100000 bgezal 0x04110000
18039 bltzall 0x04120000 bgezall 0x04130000 */
18040 insn &= ~0x00100000;
18043 /* Branch over the branch (if the branch was likely) or the
18044 full jump (not likely case). Compute the offset from the
18045 current instruction to branch to. */
18046 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18050 /* How many bytes in instructions we've already emitted? */
18051 i = buf - fragp->fr_literal - fragp->fr_fix;
18052 /* How many bytes in instructions from here to the end? */
18053 i = fragp->fr_var - i;
18055 /* Convert to instruction count. */
18057 /* Branch counts from the next instruction. */
18060 /* Branch over the jump. */
18061 buf = write_insn (buf, insn);
18064 buf = write_insn (buf, 0);
18066 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18068 /* beql $0, $0, 2f */
18070 /* Compute the PC offset from the current instruction to
18071 the end of the variable frag. */
18072 /* How many bytes in instructions we've already emitted? */
18073 i = buf - fragp->fr_literal - fragp->fr_fix;
18074 /* How many bytes in instructions from here to the end? */
18075 i = fragp->fr_var - i;
18076 /* Convert to instruction count. */
18078 /* Don't decrement i, because we want to branch over the
18082 buf = write_insn (buf, insn);
18083 buf = write_insn (buf, 0);
18087 if (mips_pic == NO_PIC)
18090 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18091 ? 0x0c000000 : 0x08000000);
18092 exp.X_op = O_symbol;
18093 exp.X_add_symbol = fragp->fr_symbol;
18094 exp.X_add_number = fragp->fr_offset;
18096 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18097 FALSE, BFD_RELOC_MIPS_JMP);
18098 fixp->fx_file = fragp->fr_file;
18099 fixp->fx_line = fragp->fr_line;
18101 buf = write_insn (buf, insn);
18105 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18107 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18108 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18109 insn |= at << OP_SH_RT;
18110 exp.X_op = O_symbol;
18111 exp.X_add_symbol = fragp->fr_symbol;
18112 exp.X_add_number = fragp->fr_offset;
18114 if (fragp->fr_offset)
18116 exp.X_add_symbol = make_expr_symbol (&exp);
18117 exp.X_add_number = 0;
18120 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18121 FALSE, BFD_RELOC_MIPS_GOT16);
18122 fixp->fx_file = fragp->fr_file;
18123 fixp->fx_line = fragp->fr_line;
18125 buf = write_insn (buf, insn);
18127 if (mips_opts.isa == ISA_MIPS1)
18129 buf = write_insn (buf, 0);
18131 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18132 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18133 insn |= at << OP_SH_RS | at << OP_SH_RT;
18135 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18136 FALSE, BFD_RELOC_LO16);
18137 fixp->fx_file = fragp->fr_file;
18138 fixp->fx_line = fragp->fr_line;
18140 buf = write_insn (buf, insn);
18143 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18147 insn |= at << OP_SH_RS;
18149 buf = write_insn (buf, insn);
18153 fragp->fr_fix += fragp->fr_var;
18154 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18158 /* Relax microMIPS branches. */
18159 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18161 char *buf = fragp->fr_literal + fragp->fr_fix;
18162 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18163 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18164 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18165 bfd_boolean short_ds;
18166 unsigned long insn;
18170 exp.X_op = O_symbol;
18171 exp.X_add_symbol = fragp->fr_symbol;
18172 exp.X_add_number = fragp->fr_offset;
18174 fragp->fr_fix += fragp->fr_var;
18176 /* Handle 16-bit branches that fit or are forced to fit. */
18177 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18179 /* We generate a fixup instead of applying it right now,
18180 because if there is linker relaxation, we're going to
18181 need the relocations. */
18183 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18184 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18185 else if (type == 'E')
18186 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18187 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18191 fixp->fx_file = fragp->fr_file;
18192 fixp->fx_line = fragp->fr_line;
18194 /* These relocations can have an addend that won't fit in
18196 fixp->fx_no_overflow = 1;
18201 /* Handle 32-bit branches that fit or are forced to fit. */
18202 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18203 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18205 /* We generate a fixup instead of applying it right now,
18206 because if there is linker relaxation, we're going to
18207 need the relocations. */
18208 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18209 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18210 fixp->fx_file = fragp->fr_file;
18211 fixp->fx_line = fragp->fr_line;
18217 /* Relax 16-bit branches to 32-bit branches. */
18220 insn = read_compressed_insn (buf, 2);
18222 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18223 insn = 0x94000000; /* beq */
18224 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18226 unsigned long regno;
18228 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18229 regno = micromips_to_32_reg_d_map [regno];
18230 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18231 insn |= regno << MICROMIPSOP_SH_RS;
18236 /* Nothing else to do, just write it out. */
18237 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18238 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18240 buf = write_compressed_insn (buf, insn, 4);
18241 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18246 insn = read_compressed_insn (buf, 4);
18248 /* Relax 32-bit branches to a sequence of instructions. */
18249 as_warn_where (fragp->fr_file, fragp->fr_line,
18250 _("Relaxed out-of-range branch into a jump"));
18252 /* Set the short-delay-slot bit. */
18253 short_ds = al && (insn & 0x02000000) != 0;
18255 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18259 /* Reverse the branch. */
18260 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18261 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18262 insn ^= 0x20000000;
18263 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18264 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18265 || (insn & 0xffe00000) == 0x40800000 /* blez */
18266 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18267 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18268 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18269 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18270 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18271 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18272 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18273 insn ^= 0x00400000;
18274 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18275 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18276 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18277 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18278 insn ^= 0x00200000;
18284 /* Clear the and-link and short-delay-slot bits. */
18285 gas_assert ((insn & 0xfda00000) == 0x40200000);
18287 /* bltzal 0x40200000 bgezal 0x40600000 */
18288 /* bltzals 0x42200000 bgezals 0x42600000 */
18289 insn &= ~0x02200000;
18292 /* Make a label at the end for use with the branch. */
18293 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18294 micromips_label_inc ();
18295 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18297 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18301 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18302 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18303 fixp->fx_file = fragp->fr_file;
18304 fixp->fx_line = fragp->fr_line;
18306 /* Branch over the jump. */
18307 buf = write_compressed_insn (buf, insn, 4);
18310 buf = write_compressed_insn (buf, 0x0c00, 2);
18313 if (mips_pic == NO_PIC)
18315 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18317 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18318 insn = al ? jal : 0xd4000000;
18320 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18321 BFD_RELOC_MICROMIPS_JMP);
18322 fixp->fx_file = fragp->fr_file;
18323 fixp->fx_line = fragp->fr_line;
18325 buf = write_compressed_insn (buf, insn, 4);
18328 buf = write_compressed_insn (buf, 0x0c00, 2);
18332 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18333 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18334 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18336 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18337 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18338 insn |= at << MICROMIPSOP_SH_RT;
18340 if (exp.X_add_number)
18342 exp.X_add_symbol = make_expr_symbol (&exp);
18343 exp.X_add_number = 0;
18346 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18347 BFD_RELOC_MICROMIPS_GOT16);
18348 fixp->fx_file = fragp->fr_file;
18349 fixp->fx_line = fragp->fr_line;
18351 buf = write_compressed_insn (buf, insn, 4);
18353 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18354 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18355 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18357 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18358 BFD_RELOC_MICROMIPS_LO16);
18359 fixp->fx_file = fragp->fr_file;
18360 fixp->fx_line = fragp->fr_line;
18362 buf = write_compressed_insn (buf, insn, 4);
18364 /* jr/jrc/jalr/jalrs $at */
18365 insn = al ? jalr : jr;
18366 insn |= at << MICROMIPSOP_SH_MJ;
18368 buf = write_compressed_insn (buf, insn, 2);
18371 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18375 if (RELAX_MIPS16_P (fragp->fr_subtype))
18378 const struct mips16_immed_operand *op;
18381 unsigned int user_length, length;
18382 unsigned long insn;
18385 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18386 op = mips16_immed_operands;
18387 while (op->type != type)
18390 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18391 val = resolve_symbol_value (fragp->fr_symbol);
18396 addr = fragp->fr_address + fragp->fr_fix;
18398 /* The rules for the base address of a PC relative reloc are
18399 complicated; see mips16_extended_frag. */
18400 if (type == 'p' || type == 'q')
18405 /* Ignore the low bit in the target, since it will be
18406 set for a text label. */
18407 if ((val & 1) != 0)
18410 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18412 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18415 addr &= ~ (addressT) ((1 << op->shift) - 1);
18418 /* Make sure the section winds up with the alignment we have
18421 record_alignment (asec, op->shift);
18425 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18426 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18427 as_warn_where (fragp->fr_file, fragp->fr_line,
18428 _("extended instruction in delay slot"));
18430 buf = fragp->fr_literal + fragp->fr_fix;
18432 insn = read_compressed_insn (buf, 2);
18434 insn |= MIPS16_EXTEND;
18436 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18438 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18443 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18444 BFD_RELOC_UNUSED, val, user_length, &insn);
18446 length = (ext ? 4 : 2);
18447 gas_assert (mips16_opcode_length (insn) == length);
18448 write_compressed_insn (buf, insn, length);
18449 fragp->fr_fix += length;
18453 relax_substateT subtype = fragp->fr_subtype;
18454 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18455 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18459 first = RELAX_FIRST (subtype);
18460 second = RELAX_SECOND (subtype);
18461 fixp = (fixS *) fragp->fr_opcode;
18463 /* If the delay slot chosen does not match the size of the instruction,
18464 then emit a warning. */
18465 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18466 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18471 s = subtype & (RELAX_DELAY_SLOT_16BIT
18472 | RELAX_DELAY_SLOT_SIZE_FIRST
18473 | RELAX_DELAY_SLOT_SIZE_SECOND);
18474 msg = macro_warning (s);
18476 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18480 /* Possibly emit a warning if we've chosen the longer option. */
18481 if (use_second == second_longer)
18487 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18488 msg = macro_warning (s);
18490 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18494 /* Go through all the fixups for the first sequence. Disable them
18495 (by marking them as done) if we're going to use the second
18496 sequence instead. */
18498 && fixp->fx_frag == fragp
18499 && fixp->fx_where < fragp->fr_fix - second)
18501 if (subtype & RELAX_USE_SECOND)
18503 fixp = fixp->fx_next;
18506 /* Go through the fixups for the second sequence. Disable them if
18507 we're going to use the first sequence, otherwise adjust their
18508 addresses to account for the relaxation. */
18509 while (fixp && fixp->fx_frag == fragp)
18511 if (subtype & RELAX_USE_SECOND)
18512 fixp->fx_where -= first;
18515 fixp = fixp->fx_next;
18518 /* Now modify the frag contents. */
18519 if (subtype & RELAX_USE_SECOND)
18523 start = fragp->fr_literal + fragp->fr_fix - first - second;
18524 memmove (start, start + first, second);
18525 fragp->fr_fix -= first;
18528 fragp->fr_fix -= second;
18534 /* This function is called after the relocs have been generated.
18535 We've been storing mips16 text labels as odd. Here we convert them
18536 back to even for the convenience of the debugger. */
18539 mips_frob_file_after_relocs (void)
18542 unsigned int count, i;
18547 syms = bfd_get_outsymbols (stdoutput);
18548 count = bfd_get_symcount (stdoutput);
18549 for (i = 0; i < count; i++, syms++)
18550 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18551 && ((*syms)->value & 1) != 0)
18553 (*syms)->value &= ~1;
18554 /* If the symbol has an odd size, it was probably computed
18555 incorrectly, so adjust that as well. */
18556 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18557 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18563 /* This function is called whenever a label is defined, including fake
18564 labels instantiated off the dot special symbol. It is used when
18565 handling branch delays; if a branch has a label, we assume we cannot
18566 move it. This also bumps the value of the symbol by 1 in compressed
18570 mips_record_label (symbolS *sym)
18572 segment_info_type *si = seg_info (now_seg);
18573 struct insn_label_list *l;
18575 if (free_insn_labels == NULL)
18576 l = (struct insn_label_list *) xmalloc (sizeof *l);
18579 l = free_insn_labels;
18580 free_insn_labels = l->next;
18584 l->next = si->label_list;
18585 si->label_list = l;
18588 /* This function is called as tc_frob_label() whenever a label is defined
18589 and adds a DWARF-2 record we only want for true labels. */
18592 mips_define_label (symbolS *sym)
18594 mips_record_label (sym);
18596 dwarf2_emit_label (sym);
18600 /* This function is called by tc_new_dot_label whenever a new dot symbol
18604 mips_add_dot_label (symbolS *sym)
18606 mips_record_label (sym);
18607 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18608 mips_compressed_mark_label (sym);
18611 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18613 /* Some special processing for a MIPS ELF file. */
18616 mips_elf_final_processing (void)
18618 /* Write out the register information. */
18619 if (mips_abi != N64_ABI)
18623 s.ri_gprmask = mips_gprmask;
18624 s.ri_cprmask[0] = mips_cprmask[0];
18625 s.ri_cprmask[1] = mips_cprmask[1];
18626 s.ri_cprmask[2] = mips_cprmask[2];
18627 s.ri_cprmask[3] = mips_cprmask[3];
18628 /* The gp_value field is set by the MIPS ELF backend. */
18630 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18631 ((Elf32_External_RegInfo *)
18632 mips_regmask_frag));
18636 Elf64_Internal_RegInfo s;
18638 s.ri_gprmask = mips_gprmask;
18640 s.ri_cprmask[0] = mips_cprmask[0];
18641 s.ri_cprmask[1] = mips_cprmask[1];
18642 s.ri_cprmask[2] = mips_cprmask[2];
18643 s.ri_cprmask[3] = mips_cprmask[3];
18644 /* The gp_value field is set by the MIPS ELF backend. */
18646 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18647 ((Elf64_External_RegInfo *)
18648 mips_regmask_frag));
18651 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18652 sort of BFD interface for this. */
18653 if (mips_any_noreorder)
18654 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18655 if (mips_pic != NO_PIC)
18657 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18658 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18661 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18663 /* Set MIPS ELF flags for ASEs. */
18664 /* We may need to define a new flag for DSP ASE, and set this flag when
18665 file_ase_dsp is true. */
18666 /* Same for DSP R2. */
18667 /* We may need to define a new flag for MT ASE, and set this flag when
18668 file_ase_mt is true. */
18669 if (file_ase_mips16)
18670 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18671 if (file_ase_micromips)
18672 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18673 #if 0 /* XXX FIXME */
18674 if (file_ase_mips3d)
18675 elf_elfheader (stdoutput)->e_flags |= ???;
18678 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18680 /* Set the MIPS ELF ABI flags. */
18681 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18682 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18683 else if (mips_abi == O64_ABI)
18684 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18685 else if (mips_abi == EABI_ABI)
18687 if (!file_mips_gp32)
18688 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18690 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18692 else if (mips_abi == N32_ABI)
18693 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18695 /* Nothing to do for N64_ABI. */
18697 if (mips_32bitmode)
18698 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18700 #if 0 /* XXX FIXME */
18701 /* 32 bit code with 64 bit FP registers. */
18702 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18703 elf_elfheader (stdoutput)->e_flags |= ???;
18707 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18709 typedef struct proc {
18711 symbolS *func_end_sym;
18712 unsigned long reg_mask;
18713 unsigned long reg_offset;
18714 unsigned long fpreg_mask;
18715 unsigned long fpreg_offset;
18716 unsigned long frame_offset;
18717 unsigned long frame_reg;
18718 unsigned long pc_reg;
18721 static procS cur_proc;
18722 static procS *cur_proc_ptr;
18723 static int numprocs;
18725 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18726 as "2", and a normal nop as "0". */
18728 #define NOP_OPCODE_MIPS 0
18729 #define NOP_OPCODE_MIPS16 1
18730 #define NOP_OPCODE_MICROMIPS 2
18733 mips_nop_opcode (void)
18735 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18736 return NOP_OPCODE_MICROMIPS;
18737 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18738 return NOP_OPCODE_MIPS16;
18740 return NOP_OPCODE_MIPS;
18743 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18744 32-bit microMIPS NOPs here (if applicable). */
18747 mips_handle_align (fragS *fragp)
18751 int bytes, size, excess;
18754 if (fragp->fr_type != rs_align_code)
18757 p = fragp->fr_literal + fragp->fr_fix;
18759 switch (nop_opcode)
18761 case NOP_OPCODE_MICROMIPS:
18762 opcode = micromips_nop32_insn.insn_opcode;
18765 case NOP_OPCODE_MIPS16:
18766 opcode = mips16_nop_insn.insn_opcode;
18769 case NOP_OPCODE_MIPS:
18771 opcode = nop_insn.insn_opcode;
18776 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18777 excess = bytes % size;
18779 /* Handle the leading part if we're not inserting a whole number of
18780 instructions, and make it the end of the fixed part of the frag.
18781 Try to fit in a short microMIPS NOP if applicable and possible,
18782 and use zeroes otherwise. */
18783 gas_assert (excess < 4);
18784 fragp->fr_fix += excess;
18789 /* Fall through. */
18791 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18793 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18797 /* Fall through. */
18800 /* Fall through. */
18805 md_number_to_chars (p, opcode, size);
18806 fragp->fr_var = size;
18810 md_obj_begin (void)
18817 /* Check for premature end, nesting errors, etc. */
18819 as_warn (_("missing .end at end of assembly"));
18828 if (*input_line_pointer == '-')
18830 ++input_line_pointer;
18833 if (!ISDIGIT (*input_line_pointer))
18834 as_bad (_("expected simple number"));
18835 if (input_line_pointer[0] == '0')
18837 if (input_line_pointer[1] == 'x')
18839 input_line_pointer += 2;
18840 while (ISXDIGIT (*input_line_pointer))
18843 val |= hex_value (*input_line_pointer++);
18845 return negative ? -val : val;
18849 ++input_line_pointer;
18850 while (ISDIGIT (*input_line_pointer))
18853 val |= *input_line_pointer++ - '0';
18855 return negative ? -val : val;
18858 if (!ISDIGIT (*input_line_pointer))
18860 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18861 *input_line_pointer, *input_line_pointer);
18862 as_warn (_("invalid number"));
18865 while (ISDIGIT (*input_line_pointer))
18868 val += *input_line_pointer++ - '0';
18870 return negative ? -val : val;
18873 /* The .file directive; just like the usual .file directive, but there
18874 is an initial number which is the ECOFF file index. In the non-ECOFF
18875 case .file implies DWARF-2. */
18878 s_mips_file (int x ATTRIBUTE_UNUSED)
18880 static int first_file_directive = 0;
18882 if (ECOFF_DEBUGGING)
18891 filename = dwarf2_directive_file (0);
18893 /* Versions of GCC up to 3.1 start files with a ".file"
18894 directive even for stabs output. Make sure that this
18895 ".file" is handled. Note that you need a version of GCC
18896 after 3.1 in order to support DWARF-2 on MIPS. */
18897 if (filename != NULL && ! first_file_directive)
18899 (void) new_logical_line (filename, -1);
18900 s_app_file_string (filename, 0);
18902 first_file_directive = 1;
18906 /* The .loc directive, implying DWARF-2. */
18909 s_mips_loc (int x ATTRIBUTE_UNUSED)
18911 if (!ECOFF_DEBUGGING)
18912 dwarf2_directive_loc (0);
18915 /* The .end directive. */
18918 s_mips_end (int x ATTRIBUTE_UNUSED)
18922 /* Following functions need their own .frame and .cprestore directives. */
18923 mips_frame_reg_valid = 0;
18924 mips_cprestore_valid = 0;
18926 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18929 demand_empty_rest_of_line ();
18934 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18935 as_warn (_(".end not in text section"));
18939 as_warn (_(".end directive without a preceding .ent directive."));
18940 demand_empty_rest_of_line ();
18946 gas_assert (S_GET_NAME (p));
18947 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18948 as_warn (_(".end symbol does not match .ent symbol."));
18950 if (debug_type == DEBUG_STABS)
18951 stabs_generate_asm_endfunc (S_GET_NAME (p),
18955 as_warn (_(".end directive missing or unknown symbol"));
18958 /* Create an expression to calculate the size of the function. */
18959 if (p && cur_proc_ptr)
18961 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18962 expressionS *exp = xmalloc (sizeof (expressionS));
18965 exp->X_op = O_subtract;
18966 exp->X_add_symbol = symbol_temp_new_now ();
18967 exp->X_op_symbol = p;
18968 exp->X_add_number = 0;
18970 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18973 /* Generate a .pdr section. */
18974 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
18976 segT saved_seg = now_seg;
18977 subsegT saved_subseg = now_subseg;
18981 #ifdef md_flush_pending_output
18982 md_flush_pending_output ();
18985 gas_assert (pdr_seg);
18986 subseg_set (pdr_seg, 0);
18988 /* Write the symbol. */
18989 exp.X_op = O_symbol;
18990 exp.X_add_symbol = p;
18991 exp.X_add_number = 0;
18992 emit_expr (&exp, 4);
18994 fragp = frag_more (7 * 4);
18996 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18997 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18998 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18999 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19000 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19001 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19002 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19004 subseg_set (saved_seg, saved_subseg);
19006 #endif /* OBJ_ELF */
19008 cur_proc_ptr = NULL;
19011 /* The .aent and .ent directives. */
19014 s_mips_ent (int aent)
19018 symbolP = get_symbol ();
19019 if (*input_line_pointer == ',')
19020 ++input_line_pointer;
19021 SKIP_WHITESPACE ();
19022 if (ISDIGIT (*input_line_pointer)
19023 || *input_line_pointer == '-')
19026 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19027 as_warn (_(".ent or .aent not in text section."));
19029 if (!aent && cur_proc_ptr)
19030 as_warn (_("missing .end"));
19034 /* This function needs its own .frame and .cprestore directives. */
19035 mips_frame_reg_valid = 0;
19036 mips_cprestore_valid = 0;
19038 cur_proc_ptr = &cur_proc;
19039 memset (cur_proc_ptr, '\0', sizeof (procS));
19041 cur_proc_ptr->func_sym = symbolP;
19045 if (debug_type == DEBUG_STABS)
19046 stabs_generate_asm_func (S_GET_NAME (symbolP),
19047 S_GET_NAME (symbolP));
19050 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19052 demand_empty_rest_of_line ();
19055 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19056 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19057 s_mips_frame is used so that we can set the PDR information correctly.
19058 We can't use the ecoff routines because they make reference to the ecoff
19059 symbol table (in the mdebug section). */
19062 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19065 if (IS_ELF && !ECOFF_DEBUGGING)
19069 if (cur_proc_ptr == (procS *) NULL)
19071 as_warn (_(".frame outside of .ent"));
19072 demand_empty_rest_of_line ();
19076 cur_proc_ptr->frame_reg = tc_get_register (1);
19078 SKIP_WHITESPACE ();
19079 if (*input_line_pointer++ != ','
19080 || get_absolute_expression_and_terminator (&val) != ',')
19082 as_warn (_("Bad .frame directive"));
19083 --input_line_pointer;
19084 demand_empty_rest_of_line ();
19088 cur_proc_ptr->frame_offset = val;
19089 cur_proc_ptr->pc_reg = tc_get_register (0);
19091 demand_empty_rest_of_line ();
19094 #endif /* OBJ_ELF */
19098 /* The .fmask and .mask directives. If the mdebug section is present
19099 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19100 embedded targets, s_mips_mask is used so that we can set the PDR
19101 information correctly. We can't use the ecoff routines because they
19102 make reference to the ecoff symbol table (in the mdebug section). */
19105 s_mips_mask (int reg_type)
19108 if (IS_ELF && !ECOFF_DEBUGGING)
19112 if (cur_proc_ptr == (procS *) NULL)
19114 as_warn (_(".mask/.fmask outside of .ent"));
19115 demand_empty_rest_of_line ();
19119 if (get_absolute_expression_and_terminator (&mask) != ',')
19121 as_warn (_("Bad .mask/.fmask directive"));
19122 --input_line_pointer;
19123 demand_empty_rest_of_line ();
19127 off = get_absolute_expression ();
19129 if (reg_type == 'F')
19131 cur_proc_ptr->fpreg_mask = mask;
19132 cur_proc_ptr->fpreg_offset = off;
19136 cur_proc_ptr->reg_mask = mask;
19137 cur_proc_ptr->reg_offset = off;
19140 demand_empty_rest_of_line ();
19143 #endif /* OBJ_ELF */
19144 s_ignore (reg_type);
19147 /* A table describing all the processors gas knows about. Names are
19148 matched in the order listed.
19150 To ease comparison, please keep this table in the same order as
19151 gcc's mips_cpu_info_table[]. */
19152 static const struct mips_cpu_info mips_cpu_info_table[] =
19154 /* Entries for generic ISAs */
19155 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
19156 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
19157 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
19158 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
19159 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
19160 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
19161 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
19162 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
19163 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
19166 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
19167 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
19168 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
19171 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
19174 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
19175 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
19176 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
19177 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
19178 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
19179 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
19180 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
19181 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
19182 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
19183 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
19184 { "orion", 0, ISA_MIPS3, CPU_R4600 },
19185 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
19186 { "r5900", 0, ISA_MIPS3, CPU_R5900 },
19187 /* ST Microelectronics Loongson 2E and 2F cores */
19188 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
19189 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
19192 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
19193 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
19194 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
19195 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
19196 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
19197 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
19198 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
19199 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
19200 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
19201 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
19202 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
19203 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
19204 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
19205 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
19206 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
19209 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
19210 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
19211 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
19212 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19214 /* MIPS 32 Release 2 */
19215 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19216 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19217 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19218 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19219 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19220 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19221 { "m14k", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19222 { "m14kc", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19223 { "m14ke", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19224 ISA_MIPS32R2, CPU_MIPS32R2 },
19225 { "m14kec", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19226 ISA_MIPS32R2, CPU_MIPS32R2 },
19227 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19228 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19229 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19230 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19231 /* Deprecated forms of the above. */
19232 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19233 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19234 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19235 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19236 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19237 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19238 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19239 /* Deprecated forms of the above. */
19240 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19241 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19242 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19243 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19244 ISA_MIPS32R2, CPU_MIPS32R2 },
19245 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19246 ISA_MIPS32R2, CPU_MIPS32R2 },
19247 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19248 ISA_MIPS32R2, CPU_MIPS32R2 },
19249 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19250 ISA_MIPS32R2, CPU_MIPS32R2 },
19251 /* Deprecated forms of the above. */
19252 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19253 ISA_MIPS32R2, CPU_MIPS32R2 },
19254 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19255 ISA_MIPS32R2, CPU_MIPS32R2 },
19256 /* 34Kn is a 34kc without DSP. */
19257 { "34kn", MIPS_CPU_ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19258 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19259 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19260 ISA_MIPS32R2, CPU_MIPS32R2 },
19261 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19262 ISA_MIPS32R2, CPU_MIPS32R2 },
19263 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19264 ISA_MIPS32R2, CPU_MIPS32R2 },
19265 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19266 ISA_MIPS32R2, CPU_MIPS32R2 },
19267 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19268 ISA_MIPS32R2, CPU_MIPS32R2 },
19269 /* Deprecated forms of the above. */
19270 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19271 ISA_MIPS32R2, CPU_MIPS32R2 },
19272 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19273 ISA_MIPS32R2, CPU_MIPS32R2 },
19274 /* 1004K cores are multiprocessor versions of the 34K. */
19275 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19276 ISA_MIPS32R2, CPU_MIPS32R2 },
19277 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19278 ISA_MIPS32R2, CPU_MIPS32R2 },
19279 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19280 ISA_MIPS32R2, CPU_MIPS32R2 },
19281 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19282 ISA_MIPS32R2, CPU_MIPS32R2 },
19285 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
19286 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
19287 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19288 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19290 /* Broadcom SB-1 CPU core */
19291 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19292 ISA_MIPS64, CPU_SB1 },
19293 /* Broadcom SB-1A CPU core */
19294 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19295 ISA_MIPS64, CPU_SB1 },
19297 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
19299 /* MIPS 64 Release 2 */
19301 /* Cavium Networks Octeon CPU core */
19302 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
19303 { "octeon+", 0, ISA_MIPS64R2, CPU_OCTEONP },
19304 { "octeon2", 0, ISA_MIPS64R2, CPU_OCTEON2 },
19307 { "xlr", 0, ISA_MIPS64, CPU_XLR },
19310 XLP is mostly like XLR, with the prominent exception that it is
19311 MIPS64R2 rather than MIPS64. */
19312 { "xlp", 0, ISA_MIPS64R2, CPU_XLR },
19319 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19320 with a final "000" replaced by "k". Ignore case.
19322 Note: this function is shared between GCC and GAS. */
19325 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19327 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19328 given++, canonical++;
19330 return ((*given == 0 && *canonical == 0)
19331 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19335 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19336 CPU name. We've traditionally allowed a lot of variation here.
19338 Note: this function is shared between GCC and GAS. */
19341 mips_matching_cpu_name_p (const char *canonical, const char *given)
19343 /* First see if the name matches exactly, or with a final "000"
19344 turned into "k". */
19345 if (mips_strict_matching_cpu_name_p (canonical, given))
19348 /* If not, try comparing based on numerical designation alone.
19349 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19350 if (TOLOWER (*given) == 'r')
19352 if (!ISDIGIT (*given))
19355 /* Skip over some well-known prefixes in the canonical name,
19356 hoping to find a number there too. */
19357 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19359 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19361 else if (TOLOWER (canonical[0]) == 'r')
19364 return mips_strict_matching_cpu_name_p (canonical, given);
19368 /* Parse an option that takes the name of a processor as its argument.
19369 OPTION is the name of the option and CPU_STRING is the argument.
19370 Return the corresponding processor enumeration if the CPU_STRING is
19371 recognized, otherwise report an error and return null.
19373 A similar function exists in GCC. */
19375 static const struct mips_cpu_info *
19376 mips_parse_cpu (const char *option, const char *cpu_string)
19378 const struct mips_cpu_info *p;
19380 /* 'from-abi' selects the most compatible architecture for the given
19381 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19382 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19383 version. Look first at the -mgp options, if given, otherwise base
19384 the choice on MIPS_DEFAULT_64BIT.
19386 Treat NO_ABI like the EABIs. One reason to do this is that the
19387 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19388 architecture. This code picks MIPS I for 'mips' and MIPS III for
19389 'mips64', just as we did in the days before 'from-abi'. */
19390 if (strcasecmp (cpu_string, "from-abi") == 0)
19392 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19393 return mips_cpu_info_from_isa (ISA_MIPS1);
19395 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19396 return mips_cpu_info_from_isa (ISA_MIPS3);
19398 if (file_mips_gp32 >= 0)
19399 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19401 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19406 /* 'default' has traditionally been a no-op. Probably not very useful. */
19407 if (strcasecmp (cpu_string, "default") == 0)
19410 for (p = mips_cpu_info_table; p->name != 0; p++)
19411 if (mips_matching_cpu_name_p (p->name, cpu_string))
19414 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19418 /* Return the canonical processor information for ISA (a member of the
19419 ISA_MIPS* enumeration). */
19421 static const struct mips_cpu_info *
19422 mips_cpu_info_from_isa (int isa)
19426 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19427 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19428 && isa == mips_cpu_info_table[i].isa)
19429 return (&mips_cpu_info_table[i]);
19434 static const struct mips_cpu_info *
19435 mips_cpu_info_from_arch (int arch)
19439 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19440 if (arch == mips_cpu_info_table[i].cpu)
19441 return (&mips_cpu_info_table[i]);
19447 show (FILE *stream, const char *string, int *col_p, int *first_p)
19451 fprintf (stream, "%24s", "");
19456 fprintf (stream, ", ");
19460 if (*col_p + strlen (string) > 72)
19462 fprintf (stream, "\n%24s", "");
19466 fprintf (stream, "%s", string);
19467 *col_p += strlen (string);
19473 md_show_usage (FILE *stream)
19478 fprintf (stream, _("\
19480 -EB generate big endian output\n\
19481 -EL generate little endian output\n\
19482 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19483 -G NUM allow referencing objects up to NUM bytes\n\
19484 implicitly with the gp register [default 8]\n"));
19485 fprintf (stream, _("\
19486 -mips1 generate MIPS ISA I instructions\n\
19487 -mips2 generate MIPS ISA II instructions\n\
19488 -mips3 generate MIPS ISA III instructions\n\
19489 -mips4 generate MIPS ISA IV instructions\n\
19490 -mips5 generate MIPS ISA V instructions\n\
19491 -mips32 generate MIPS32 ISA instructions\n\
19492 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19493 -mips64 generate MIPS64 ISA instructions\n\
19494 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19495 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19499 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19500 show (stream, mips_cpu_info_table[i].name, &column, &first);
19501 show (stream, "from-abi", &column, &first);
19502 fputc ('\n', stream);
19504 fprintf (stream, _("\
19505 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19506 -no-mCPU don't generate code specific to CPU.\n\
19507 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19511 show (stream, "3900", &column, &first);
19512 show (stream, "4010", &column, &first);
19513 show (stream, "4100", &column, &first);
19514 show (stream, "4650", &column, &first);
19515 fputc ('\n', stream);
19517 fprintf (stream, _("\
19518 -mips16 generate mips16 instructions\n\
19519 -no-mips16 do not generate mips16 instructions\n"));
19520 fprintf (stream, _("\
19521 -mmicromips generate microMIPS instructions\n\
19522 -mno-micromips do not generate microMIPS instructions\n"));
19523 fprintf (stream, _("\
19524 -msmartmips generate smartmips instructions\n\
19525 -mno-smartmips do not generate smartmips instructions\n"));
19526 fprintf (stream, _("\
19527 -mdsp generate DSP instructions\n\
19528 -mno-dsp do not generate DSP instructions\n"));
19529 fprintf (stream, _("\
19530 -mdspr2 generate DSP R2 instructions\n\
19531 -mno-dspr2 do not generate DSP R2 instructions\n"));
19532 fprintf (stream, _("\
19533 -mmt generate MT instructions\n\
19534 -mno-mt do not generate MT instructions\n"));
19535 fprintf (stream, _("\
19536 -mmcu generate MCU instructions\n\
19537 -mno-mcu do not generate MCU instructions\n"));
19538 fprintf (stream, _("\
19539 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19540 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19541 -mfix-vr4120 work around certain VR4120 errata\n\
19542 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19543 -mfix-24k insert a nop after ERET and DERET instructions\n\
19544 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19545 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19546 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19547 -msym32 assume all symbols have 32-bit values\n\
19548 -O0 remove unneeded NOPs, do not swap branches\n\
19549 -O remove unneeded NOPs and swap branches\n\
19550 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19551 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19552 fprintf (stream, _("\
19553 -mhard-float allow floating-point instructions\n\
19554 -msoft-float do not allow floating-point instructions\n\
19555 -msingle-float only allow 32-bit floating-point operations\n\
19556 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19557 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
19560 fprintf (stream, _("\
19561 -KPIC, -call_shared generate SVR4 position independent code\n\
19562 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19563 -mvxworks-pic generate VxWorks position independent code\n\
19564 -non_shared do not generate code that can operate with DSOs\n\
19565 -xgot assume a 32 bit GOT\n\
19566 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19567 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19568 position dependent (non shared) code\n\
19569 -mabi=ABI create ABI conformant object file for:\n"));
19573 show (stream, "32", &column, &first);
19574 show (stream, "o64", &column, &first);
19575 show (stream, "n32", &column, &first);
19576 show (stream, "64", &column, &first);
19577 show (stream, "eabi", &column, &first);
19579 fputc ('\n', stream);
19581 fprintf (stream, _("\
19582 -32 create o32 ABI object file (default)\n\
19583 -n32 create n32 ABI object file\n\
19584 -64 create 64 ABI object file\n"));
19590 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19592 if (HAVE_64BIT_SYMBOLS)
19593 return dwarf2_format_64bit_irix;
19595 return dwarf2_format_32bit;
19600 mips_dwarf2_addr_size (void)
19602 if (HAVE_64BIT_OBJECTS)
19608 /* Standard calling conventions leave the CFA at SP on entry. */
19610 mips_cfi_frame_initial_instructions (void)
19612 cfi_add_CFA_def_cfa_register (SP);
19616 tc_mips_regname_to_dw2regnum (char *regname)
19618 unsigned int regnum = -1;
19621 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))