1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
10 This file is part of GAS.
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
32 #include "opcode/mips.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
38 #define DBG(x) printf x
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
61 /* Fix any of them that we actually care about. */
63 #define OUTPUT_FLAVOR mips_output_flavor()
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
75 int mips_flag_mdebug = -1;
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
81 int mips_flag_pdr = FALSE;
83 int mips_flag_pdr = TRUE;
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
95 #define PIC_CALL_REG 25
103 #define ILLEGAL_REG (32)
105 #define AT mips_opts.at
107 /* Allow override of standard little-endian ECOFF format. */
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 extern int target_big_endian;
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
124 /* Information about an instruction, including its format, operands
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
131 /* True if this is a mips16 instruction and if we want the extended
133 bfd_boolean use_extend;
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
142 /* The frag that contains the instruction. */
145 /* The offset into FRAG of the first instruction byte. */
148 /* The relocs associated with the instruction, if any. */
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
161 /* The ABI to use. */
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
178 /* Whether or not we have code which can be put into a shared
180 static bfd_boolean mips_in_shared = TRUE;
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
186 struct mips_set_options
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
237 /* True if ".set sym32" is in effect. */
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
266 static struct mips_set_options mips_opts =
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
348 /* The argument of the -mtune= flag. The architecture for which we
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
362 || (ABI) == N64_ABI \
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
538 /* MIPS PIC level. */
540 enum mips_pic_level mips_pic;
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
546 /* 1 if trap instructions should used for overflow rather than break
548 static int mips_trap = 0;
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
558 /* Non-zero if any .set noreorder directives were used. */
560 static int mips_any_noreorder;
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
613 /* Chars that mean this number is a floating point constant */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
623 static char *insn_error;
625 static int auto_align = 1;
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
631 static offsetT mips_cprestore_offset = -1;
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
660 static int mips_optimize = 2;
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
672 /* The maximum number of NOPs needed for any purpose. */
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
692 static fragS *prev_nop_frag;
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
697 /* The number of nop instructions that we know we need in
699 static int prev_nop_frag_required;
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
718 struct mips_hi_fixup *next;
721 /* The section this fixup is in. */
725 /* The list of unmatched HI relocs. */
727 static struct mips_hi_fixup *mips_hi_fixup_list;
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
732 static fragS *prev_reloc_op_frag;
734 /* Map normal MIPS register numbers to mips16 register numbers. */
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
746 /* Map mips16 register numbers to normal MIPS register numbers. */
748 static const unsigned int mips16_to_32_reg_map[] =
750 16, 17, 2, 3, 4, 5, 6, 7
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
763 NUM_FIX_VR4120_CLASSES
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
797 static int mips_relax_branch;
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
834 The frag's "opcode" points to the first fixup for relaxable code.
836 Relaxable macros are generated using a sequence such as:
838 relax_start (SYMBOL);
839 ... generate first expansion ...
841 ... generate second expansion ...
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
855 /* Branch without likely bit. If label is out of range, we turn:
857 beq reg1, reg2, label
867 with the following opcode replacements:
874 bltzal <-> bgezal (with jal label instead of j label)
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
884 Branch likely. If label is out of range, we turn:
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
896 delay slot (executed only if branch taken)
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
905 delay slot (executed only if branch taken)
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
925 | ((toofar) ? 1 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1038 /* The symbol on which the choice of sequence depends. */
1042 /* Global variables used to decide whether a macro needs a warning. */
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1051 unsigned int sizes[2];
1053 /* The first variant frag for this macro. */
1055 } mips_macro_warning;
1057 /* Prototypes for static functions. */
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 #ifdef LOSING_COMPILER
1076 static void macro2 (struct mips_cl_insn * ip);
1078 static void mips_ip (char *str, struct mips_cl_insn * ip);
1079 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1080 static void mips16_immed
1081 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1082 unsigned long *, bfd_boolean *, unsigned short *);
1083 static size_t my_getSmallExpression
1084 (expressionS *, bfd_reloc_code_real_type *, char *);
1085 static void my_getExpression (expressionS *, char *);
1086 static void s_align (int);
1087 static void s_change_sec (int);
1088 static void s_change_section (int);
1089 static void s_cons (int);
1090 static void s_float_cons (int);
1091 static void s_mips_globl (int);
1092 static void s_option (int);
1093 static void s_mipsset (int);
1094 static void s_abicalls (int);
1095 static void s_cpload (int);
1096 static void s_cpsetup (int);
1097 static void s_cplocal (int);
1098 static void s_cprestore (int);
1099 static void s_cpreturn (int);
1100 static void s_dtprelword (int);
1101 static void s_dtpreldword (int);
1102 static void s_gpvalue (int);
1103 static void s_gpword (int);
1104 static void s_gpdword (int);
1105 static void s_cpadd (int);
1106 static void s_insn (int);
1107 static void md_obj_begin (void);
1108 static void md_obj_end (void);
1109 static void s_mips_ent (int);
1110 static void s_mips_end (int);
1111 static void s_mips_frame (int);
1112 static void s_mips_mask (int reg_type);
1113 static void s_mips_stab (int);
1114 static void s_mips_weakext (int);
1115 static void s_mips_file (int);
1116 static void s_mips_loc (int);
1117 static bfd_boolean pic_need_relax (symbolS *, asection *);
1118 static int relaxed_branch_length (fragS *, asection *, int);
1119 static int validate_mips_insn (const struct mips_opcode *);
1121 /* Table and functions used to map between CPU/ISA names, and
1122 ISA levels, and CPU numbers. */
1124 struct mips_cpu_info
1126 const char *name; /* CPU or ISA name. */
1127 int flags; /* ASEs available, or ISA flag. */
1128 int isa; /* ISA level. */
1129 int cpu; /* CPU number (default CPU if ISA). */
1132 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1133 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1134 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1135 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1136 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1137 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1138 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1140 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1141 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1142 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1146 The following pseudo-ops from the Kane and Heinrich MIPS book
1147 should be defined here, but are currently unsupported: .alias,
1148 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1150 The following pseudo-ops from the Kane and Heinrich MIPS book are
1151 specific to the type of debugging information being generated, and
1152 should be defined by the object format: .aent, .begin, .bend,
1153 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1156 The following pseudo-ops from the Kane and Heinrich MIPS book are
1157 not MIPS CPU specific, but are also not specific to the object file
1158 format. This file is probably the best place to define them, but
1159 they are not currently supported: .asm0, .endr, .lab, .struct. */
1161 static const pseudo_typeS mips_pseudo_table[] =
1163 /* MIPS specific pseudo-ops. */
1164 {"option", s_option, 0},
1165 {"set", s_mipsset, 0},
1166 {"rdata", s_change_sec, 'r'},
1167 {"sdata", s_change_sec, 's'},
1168 {"livereg", s_ignore, 0},
1169 {"abicalls", s_abicalls, 0},
1170 {"cpload", s_cpload, 0},
1171 {"cpsetup", s_cpsetup, 0},
1172 {"cplocal", s_cplocal, 0},
1173 {"cprestore", s_cprestore, 0},
1174 {"cpreturn", s_cpreturn, 0},
1175 {"dtprelword", s_dtprelword, 0},
1176 {"dtpreldword", s_dtpreldword, 0},
1177 {"gpvalue", s_gpvalue, 0},
1178 {"gpword", s_gpword, 0},
1179 {"gpdword", s_gpdword, 0},
1180 {"cpadd", s_cpadd, 0},
1181 {"insn", s_insn, 0},
1183 /* Relatively generic pseudo-ops that happen to be used on MIPS
1185 {"asciiz", stringer, 8 + 1},
1186 {"bss", s_change_sec, 'b'},
1188 {"half", s_cons, 1},
1189 {"dword", s_cons, 3},
1190 {"weakext", s_mips_weakext, 0},
1191 {"origin", s_org, 0},
1192 {"repeat", s_rept, 0},
1194 /* For MIPS this is non-standard, but we define it for consistency. */
1195 {"sbss", s_change_sec, 'B'},
1197 /* These pseudo-ops are defined in read.c, but must be overridden
1198 here for one reason or another. */
1199 {"align", s_align, 0},
1200 {"byte", s_cons, 0},
1201 {"data", s_change_sec, 'd'},
1202 {"double", s_float_cons, 'd'},
1203 {"float", s_float_cons, 'f'},
1204 {"globl", s_mips_globl, 0},
1205 {"global", s_mips_globl, 0},
1206 {"hword", s_cons, 1},
1208 {"long", s_cons, 2},
1209 {"octa", s_cons, 4},
1210 {"quad", s_cons, 3},
1211 {"section", s_change_section, 0},
1212 {"short", s_cons, 1},
1213 {"single", s_float_cons, 'f'},
1214 {"stabn", s_mips_stab, 'n'},
1215 {"text", s_change_sec, 't'},
1216 {"word", s_cons, 2},
1218 { "extern", ecoff_directive_extern, 0},
1223 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1225 /* These pseudo-ops should be defined by the object file format.
1226 However, a.out doesn't support them, so we have versions here. */
1227 {"aent", s_mips_ent, 1},
1228 {"bgnb", s_ignore, 0},
1229 {"end", s_mips_end, 0},
1230 {"endb", s_ignore, 0},
1231 {"ent", s_mips_ent, 0},
1232 {"file", s_mips_file, 0},
1233 {"fmask", s_mips_mask, 'F'},
1234 {"frame", s_mips_frame, 0},
1235 {"loc", s_mips_loc, 0},
1236 {"mask", s_mips_mask, 'R'},
1237 {"verstamp", s_ignore, 0},
1241 extern void pop_insert (const pseudo_typeS *);
1244 mips_pop_insert (void)
1246 pop_insert (mips_pseudo_table);
1247 if (! ECOFF_DEBUGGING)
1248 pop_insert (mips_nonecoff_pseudo_table);
1251 /* Symbols labelling the current insn. */
1253 struct insn_label_list
1255 struct insn_label_list *next;
1259 static struct insn_label_list *free_insn_labels;
1260 #define label_list tc_segment_info_data.labels
1262 static void mips_clear_insn_labels (void);
1265 mips_clear_insn_labels (void)
1267 register struct insn_label_list **pl;
1268 segment_info_type *si;
1272 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1275 si = seg_info (now_seg);
1276 *pl = si->label_list;
1277 si->label_list = NULL;
1282 static char *expr_end;
1284 /* Expressions which appear in instructions. These are set by
1287 static expressionS imm_expr;
1288 static expressionS imm2_expr;
1289 static expressionS offset_expr;
1291 /* Relocs associated with imm_expr and offset_expr. */
1293 static bfd_reloc_code_real_type imm_reloc[3]
1294 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1295 static bfd_reloc_code_real_type offset_reloc[3]
1296 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1298 /* These are set by mips16_ip if an explicit extension is used. */
1300 static bfd_boolean mips16_small, mips16_ext;
1303 /* The pdr segment for per procedure frame/regmask info. Not used for
1306 static segT pdr_seg;
1309 /* The default target format to use. */
1312 mips_target_format (void)
1314 switch (OUTPUT_FLAVOR)
1316 case bfd_target_ecoff_flavour:
1317 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1318 case bfd_target_coff_flavour:
1320 case bfd_target_elf_flavour:
1322 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1323 return (target_big_endian
1324 ? "elf32-bigmips-vxworks"
1325 : "elf32-littlemips-vxworks");
1328 /* This is traditional mips. */
1329 return (target_big_endian
1330 ? (HAVE_64BIT_OBJECTS
1331 ? "elf64-tradbigmips"
1333 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1334 : (HAVE_64BIT_OBJECTS
1335 ? "elf64-tradlittlemips"
1337 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1339 return (target_big_endian
1340 ? (HAVE_64BIT_OBJECTS
1343 ? "elf32-nbigmips" : "elf32-bigmips"))
1344 : (HAVE_64BIT_OBJECTS
1345 ? "elf64-littlemips"
1347 ? "elf32-nlittlemips" : "elf32-littlemips")));
1355 /* Return the length of instruction INSN. */
1357 static inline unsigned int
1358 insn_length (const struct mips_cl_insn *insn)
1360 if (!mips_opts.mips16)
1362 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1365 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1368 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1373 insn->use_extend = FALSE;
1375 insn->insn_opcode = mo->match;
1378 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1379 insn->fixp[i] = NULL;
1380 insn->fixed_p = (mips_opts.noreorder > 0);
1381 insn->noreorder_p = (mips_opts.noreorder > 0);
1382 insn->mips16_absolute_jump_p = 0;
1385 /* Record the current MIPS16 mode in now_seg. */
1388 mips_record_mips16_mode (void)
1390 segment_info_type *si;
1392 si = seg_info (now_seg);
1393 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1394 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1397 /* Install INSN at the location specified by its "frag" and "where" fields. */
1400 install_insn (const struct mips_cl_insn *insn)
1402 char *f = insn->frag->fr_literal + insn->where;
1403 if (!mips_opts.mips16)
1404 md_number_to_chars (f, insn->insn_opcode, 4);
1405 else if (insn->mips16_absolute_jump_p)
1407 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1408 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1412 if (insn->use_extend)
1414 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1417 md_number_to_chars (f, insn->insn_opcode, 2);
1419 mips_record_mips16_mode ();
1422 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1423 and install the opcode in the new location. */
1426 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1431 insn->where = where;
1432 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1433 if (insn->fixp[i] != NULL)
1435 insn->fixp[i]->fx_frag = frag;
1436 insn->fixp[i]->fx_where = where;
1438 install_insn (insn);
1441 /* Add INSN to the end of the output. */
1444 add_fixed_insn (struct mips_cl_insn *insn)
1446 char *f = frag_more (insn_length (insn));
1447 move_insn (insn, frag_now, f - frag_now->fr_literal);
1450 /* Start a variant frag and move INSN to the start of the variant part,
1451 marking it as fixed. The other arguments are as for frag_var. */
1454 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1455 relax_substateT subtype, symbolS *symbol, offsetT offset)
1457 frag_grow (max_chars);
1458 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1460 frag_var (rs_machine_dependent, max_chars, var,
1461 subtype, symbol, offset, NULL);
1464 /* Insert N copies of INSN into the history buffer, starting at
1465 position FIRST. Neither FIRST nor N need to be clipped. */
1468 insert_into_history (unsigned int first, unsigned int n,
1469 const struct mips_cl_insn *insn)
1471 if (mips_relax.sequence != 2)
1475 for (i = ARRAY_SIZE (history); i-- > first;)
1477 history[i] = history[i - n];
1483 /* Emit a nop instruction, recording it in the history buffer. */
1488 add_fixed_insn (NOP_INSN);
1489 insert_into_history (0, 1, NOP_INSN);
1492 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1493 the idea is to make it obvious at a glance that each errata is
1497 init_vr4120_conflicts (void)
1499 #define CONFLICT(FIRST, SECOND) \
1500 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1502 /* Errata 21 - [D]DIV[U] after [D]MACC */
1503 CONFLICT (MACC, DIV);
1504 CONFLICT (DMACC, DIV);
1506 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1507 CONFLICT (DMULT, DMULT);
1508 CONFLICT (DMULT, DMACC);
1509 CONFLICT (DMACC, DMULT);
1510 CONFLICT (DMACC, DMACC);
1512 /* Errata 24 - MT{LO,HI} after [D]MACC */
1513 CONFLICT (MACC, MTHILO);
1514 CONFLICT (DMACC, MTHILO);
1516 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1517 instruction is executed immediately after a MACC or DMACC
1518 instruction, the result of [either instruction] is incorrect." */
1519 CONFLICT (MACC, MULT);
1520 CONFLICT (MACC, DMULT);
1521 CONFLICT (DMACC, MULT);
1522 CONFLICT (DMACC, DMULT);
1524 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1525 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1526 DDIV or DDIVU instruction, the result of the MACC or
1527 DMACC instruction is incorrect.". */
1528 CONFLICT (DMULT, MACC);
1529 CONFLICT (DMULT, DMACC);
1530 CONFLICT (DIV, MACC);
1531 CONFLICT (DIV, DMACC);
1541 #define RTYPE_MASK 0x1ff00
1542 #define RTYPE_NUM 0x00100
1543 #define RTYPE_FPU 0x00200
1544 #define RTYPE_FCC 0x00400
1545 #define RTYPE_VEC 0x00800
1546 #define RTYPE_GP 0x01000
1547 #define RTYPE_CP0 0x02000
1548 #define RTYPE_PC 0x04000
1549 #define RTYPE_ACC 0x08000
1550 #define RTYPE_CCC 0x10000
1551 #define RNUM_MASK 0x000ff
1552 #define RWARN 0x80000
1554 #define GENERIC_REGISTER_NUMBERS \
1555 {"$0", RTYPE_NUM | 0}, \
1556 {"$1", RTYPE_NUM | 1}, \
1557 {"$2", RTYPE_NUM | 2}, \
1558 {"$3", RTYPE_NUM | 3}, \
1559 {"$4", RTYPE_NUM | 4}, \
1560 {"$5", RTYPE_NUM | 5}, \
1561 {"$6", RTYPE_NUM | 6}, \
1562 {"$7", RTYPE_NUM | 7}, \
1563 {"$8", RTYPE_NUM | 8}, \
1564 {"$9", RTYPE_NUM | 9}, \
1565 {"$10", RTYPE_NUM | 10}, \
1566 {"$11", RTYPE_NUM | 11}, \
1567 {"$12", RTYPE_NUM | 12}, \
1568 {"$13", RTYPE_NUM | 13}, \
1569 {"$14", RTYPE_NUM | 14}, \
1570 {"$15", RTYPE_NUM | 15}, \
1571 {"$16", RTYPE_NUM | 16}, \
1572 {"$17", RTYPE_NUM | 17}, \
1573 {"$18", RTYPE_NUM | 18}, \
1574 {"$19", RTYPE_NUM | 19}, \
1575 {"$20", RTYPE_NUM | 20}, \
1576 {"$21", RTYPE_NUM | 21}, \
1577 {"$22", RTYPE_NUM | 22}, \
1578 {"$23", RTYPE_NUM | 23}, \
1579 {"$24", RTYPE_NUM | 24}, \
1580 {"$25", RTYPE_NUM | 25}, \
1581 {"$26", RTYPE_NUM | 26}, \
1582 {"$27", RTYPE_NUM | 27}, \
1583 {"$28", RTYPE_NUM | 28}, \
1584 {"$29", RTYPE_NUM | 29}, \
1585 {"$30", RTYPE_NUM | 30}, \
1586 {"$31", RTYPE_NUM | 31}
1588 #define FPU_REGISTER_NAMES \
1589 {"$f0", RTYPE_FPU | 0}, \
1590 {"$f1", RTYPE_FPU | 1}, \
1591 {"$f2", RTYPE_FPU | 2}, \
1592 {"$f3", RTYPE_FPU | 3}, \
1593 {"$f4", RTYPE_FPU | 4}, \
1594 {"$f5", RTYPE_FPU | 5}, \
1595 {"$f6", RTYPE_FPU | 6}, \
1596 {"$f7", RTYPE_FPU | 7}, \
1597 {"$f8", RTYPE_FPU | 8}, \
1598 {"$f9", RTYPE_FPU | 9}, \
1599 {"$f10", RTYPE_FPU | 10}, \
1600 {"$f11", RTYPE_FPU | 11}, \
1601 {"$f12", RTYPE_FPU | 12}, \
1602 {"$f13", RTYPE_FPU | 13}, \
1603 {"$f14", RTYPE_FPU | 14}, \
1604 {"$f15", RTYPE_FPU | 15}, \
1605 {"$f16", RTYPE_FPU | 16}, \
1606 {"$f17", RTYPE_FPU | 17}, \
1607 {"$f18", RTYPE_FPU | 18}, \
1608 {"$f19", RTYPE_FPU | 19}, \
1609 {"$f20", RTYPE_FPU | 20}, \
1610 {"$f21", RTYPE_FPU | 21}, \
1611 {"$f22", RTYPE_FPU | 22}, \
1612 {"$f23", RTYPE_FPU | 23}, \
1613 {"$f24", RTYPE_FPU | 24}, \
1614 {"$f25", RTYPE_FPU | 25}, \
1615 {"$f26", RTYPE_FPU | 26}, \
1616 {"$f27", RTYPE_FPU | 27}, \
1617 {"$f28", RTYPE_FPU | 28}, \
1618 {"$f29", RTYPE_FPU | 29}, \
1619 {"$f30", RTYPE_FPU | 30}, \
1620 {"$f31", RTYPE_FPU | 31}
1622 #define FPU_CONDITION_CODE_NAMES \
1623 {"$fcc0", RTYPE_FCC | 0}, \
1624 {"$fcc1", RTYPE_FCC | 1}, \
1625 {"$fcc2", RTYPE_FCC | 2}, \
1626 {"$fcc3", RTYPE_FCC | 3}, \
1627 {"$fcc4", RTYPE_FCC | 4}, \
1628 {"$fcc5", RTYPE_FCC | 5}, \
1629 {"$fcc6", RTYPE_FCC | 6}, \
1630 {"$fcc7", RTYPE_FCC | 7}
1632 #define COPROC_CONDITION_CODE_NAMES \
1633 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1634 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1635 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1636 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1637 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1638 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1639 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1640 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1642 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1643 {"$a4", RTYPE_GP | 8}, \
1644 {"$a5", RTYPE_GP | 9}, \
1645 {"$a6", RTYPE_GP | 10}, \
1646 {"$a7", RTYPE_GP | 11}, \
1647 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1648 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1649 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1650 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1651 {"$t0", RTYPE_GP | 12}, \
1652 {"$t1", RTYPE_GP | 13}, \
1653 {"$t2", RTYPE_GP | 14}, \
1654 {"$t3", RTYPE_GP | 15}
1656 #define O32_SYMBOLIC_REGISTER_NAMES \
1657 {"$t0", RTYPE_GP | 8}, \
1658 {"$t1", RTYPE_GP | 9}, \
1659 {"$t2", RTYPE_GP | 10}, \
1660 {"$t3", RTYPE_GP | 11}, \
1661 {"$t4", RTYPE_GP | 12}, \
1662 {"$t5", RTYPE_GP | 13}, \
1663 {"$t6", RTYPE_GP | 14}, \
1664 {"$t7", RTYPE_GP | 15}, \
1665 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1666 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1667 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1668 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1670 /* Remaining symbolic register names */
1671 #define SYMBOLIC_REGISTER_NAMES \
1672 {"$zero", RTYPE_GP | 0}, \
1673 {"$at", RTYPE_GP | 1}, \
1674 {"$AT", RTYPE_GP | 1}, \
1675 {"$v0", RTYPE_GP | 2}, \
1676 {"$v1", RTYPE_GP | 3}, \
1677 {"$a0", RTYPE_GP | 4}, \
1678 {"$a1", RTYPE_GP | 5}, \
1679 {"$a2", RTYPE_GP | 6}, \
1680 {"$a3", RTYPE_GP | 7}, \
1681 {"$s0", RTYPE_GP | 16}, \
1682 {"$s1", RTYPE_GP | 17}, \
1683 {"$s2", RTYPE_GP | 18}, \
1684 {"$s3", RTYPE_GP | 19}, \
1685 {"$s4", RTYPE_GP | 20}, \
1686 {"$s5", RTYPE_GP | 21}, \
1687 {"$s6", RTYPE_GP | 22}, \
1688 {"$s7", RTYPE_GP | 23}, \
1689 {"$t8", RTYPE_GP | 24}, \
1690 {"$t9", RTYPE_GP | 25}, \
1691 {"$k0", RTYPE_GP | 26}, \
1692 {"$kt0", RTYPE_GP | 26}, \
1693 {"$k1", RTYPE_GP | 27}, \
1694 {"$kt1", RTYPE_GP | 27}, \
1695 {"$gp", RTYPE_GP | 28}, \
1696 {"$sp", RTYPE_GP | 29}, \
1697 {"$s8", RTYPE_GP | 30}, \
1698 {"$fp", RTYPE_GP | 30}, \
1699 {"$ra", RTYPE_GP | 31}
1701 #define MIPS16_SPECIAL_REGISTER_NAMES \
1702 {"$pc", RTYPE_PC | 0}
1704 #define MDMX_VECTOR_REGISTER_NAMES \
1705 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1706 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1707 {"$v2", RTYPE_VEC | 2}, \
1708 {"$v3", RTYPE_VEC | 3}, \
1709 {"$v4", RTYPE_VEC | 4}, \
1710 {"$v5", RTYPE_VEC | 5}, \
1711 {"$v6", RTYPE_VEC | 6}, \
1712 {"$v7", RTYPE_VEC | 7}, \
1713 {"$v8", RTYPE_VEC | 8}, \
1714 {"$v9", RTYPE_VEC | 9}, \
1715 {"$v10", RTYPE_VEC | 10}, \
1716 {"$v11", RTYPE_VEC | 11}, \
1717 {"$v12", RTYPE_VEC | 12}, \
1718 {"$v13", RTYPE_VEC | 13}, \
1719 {"$v14", RTYPE_VEC | 14}, \
1720 {"$v15", RTYPE_VEC | 15}, \
1721 {"$v16", RTYPE_VEC | 16}, \
1722 {"$v17", RTYPE_VEC | 17}, \
1723 {"$v18", RTYPE_VEC | 18}, \
1724 {"$v19", RTYPE_VEC | 19}, \
1725 {"$v20", RTYPE_VEC | 20}, \
1726 {"$v21", RTYPE_VEC | 21}, \
1727 {"$v22", RTYPE_VEC | 22}, \
1728 {"$v23", RTYPE_VEC | 23}, \
1729 {"$v24", RTYPE_VEC | 24}, \
1730 {"$v25", RTYPE_VEC | 25}, \
1731 {"$v26", RTYPE_VEC | 26}, \
1732 {"$v27", RTYPE_VEC | 27}, \
1733 {"$v28", RTYPE_VEC | 28}, \
1734 {"$v29", RTYPE_VEC | 29}, \
1735 {"$v30", RTYPE_VEC | 30}, \
1736 {"$v31", RTYPE_VEC | 31}
1738 #define MIPS_DSP_ACCUMULATOR_NAMES \
1739 {"$ac0", RTYPE_ACC | 0}, \
1740 {"$ac1", RTYPE_ACC | 1}, \
1741 {"$ac2", RTYPE_ACC | 2}, \
1742 {"$ac3", RTYPE_ACC | 3}
1744 static const struct regname reg_names[] = {
1745 GENERIC_REGISTER_NUMBERS,
1747 FPU_CONDITION_CODE_NAMES,
1748 COPROC_CONDITION_CODE_NAMES,
1750 /* The $txx registers depends on the abi,
1751 these will be added later into the symbol table from
1752 one of the tables below once mips_abi is set after
1753 parsing of arguments from the command line. */
1754 SYMBOLIC_REGISTER_NAMES,
1756 MIPS16_SPECIAL_REGISTER_NAMES,
1757 MDMX_VECTOR_REGISTER_NAMES,
1758 MIPS_DSP_ACCUMULATOR_NAMES,
1762 static const struct regname reg_names_o32[] = {
1763 O32_SYMBOLIC_REGISTER_NAMES,
1767 static const struct regname reg_names_n32n64[] = {
1768 N32N64_SYMBOLIC_REGISTER_NAMES,
1773 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1780 /* Find end of name. */
1782 if (is_name_beginner (*e))
1784 while (is_part_of_name (*e))
1787 /* Terminate name. */
1791 /* Look for a register symbol. */
1792 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1794 int r = S_GET_VALUE (symbolP);
1796 reg = r & RNUM_MASK;
1797 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1798 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1799 reg = (r & RNUM_MASK) - 2;
1801 /* Else see if this is a register defined in an itbl entry. */
1802 else if ((types & RTYPE_GP) && itbl_have_entries)
1809 if (itbl_get_reg_val (n, &r))
1810 reg = r & RNUM_MASK;
1813 /* Advance to next token if a register was recognised. */
1816 else if (types & RWARN)
1817 as_warn (_("Unrecognized register name `%s'"), *s);
1825 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1826 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1829 is_opcode_valid (const struct mips_opcode *mo)
1831 int isa = mips_opts.isa;
1834 if (mips_opts.ase_mdmx)
1836 if (mips_opts.ase_dsp)
1838 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1840 if (mips_opts.ase_dspr2)
1842 if (mips_opts.ase_mt)
1844 if (mips_opts.ase_mips3d)
1846 if (mips_opts.ase_smartmips)
1847 isa |= INSN_SMARTMIPS;
1849 /* Don't accept instructions based on the ISA if the CPU does not implement
1850 all the coprocessor insns. */
1851 if (NO_ISA_COP (mips_opts.arch)
1852 && COP_INSN (mo->pinfo))
1855 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1858 /* Check whether the instruction or macro requires single-precision or
1859 double-precision floating-point support. Note that this information is
1860 stored differently in the opcode table for insns and macros. */
1861 if (mo->pinfo == INSN_MACRO)
1863 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1864 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1868 fp_s = mo->pinfo & FP_S;
1869 fp_d = mo->pinfo & FP_D;
1872 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1875 if (fp_s && mips_opts.soft_float)
1881 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1882 selected ISA and architecture. */
1885 is_opcode_valid_16 (const struct mips_opcode *mo)
1887 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1890 /* This function is called once, at assembler startup time. It should set up
1891 all the tables, etc. that the MD part of the assembler will need. */
1896 const char *retval = NULL;
1900 if (mips_pic != NO_PIC)
1902 if (g_switch_seen && g_switch_value != 0)
1903 as_bad (_("-G may not be used in position-independent code"));
1907 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1908 as_warn (_("Could not set architecture and machine"));
1910 op_hash = hash_new ();
1912 for (i = 0; i < NUMOPCODES;)
1914 const char *name = mips_opcodes[i].name;
1916 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1919 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1920 mips_opcodes[i].name, retval);
1921 /* Probably a memory allocation problem? Give up now. */
1922 as_fatal (_("Broken assembler. No assembly attempted."));
1926 if (mips_opcodes[i].pinfo != INSN_MACRO)
1928 if (!validate_mips_insn (&mips_opcodes[i]))
1930 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1932 create_insn (&nop_insn, mips_opcodes + i);
1933 if (mips_fix_loongson2f_nop)
1934 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1935 nop_insn.fixed_p = 1;
1940 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1943 mips16_op_hash = hash_new ();
1946 while (i < bfd_mips16_num_opcodes)
1948 const char *name = mips16_opcodes[i].name;
1950 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1952 as_fatal (_("internal: can't hash `%s': %s"),
1953 mips16_opcodes[i].name, retval);
1956 if (mips16_opcodes[i].pinfo != INSN_MACRO
1957 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1958 != mips16_opcodes[i].match))
1960 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1961 mips16_opcodes[i].name, mips16_opcodes[i].args);
1964 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1966 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1967 mips16_nop_insn.fixed_p = 1;
1971 while (i < bfd_mips16_num_opcodes
1972 && strcmp (mips16_opcodes[i].name, name) == 0);
1976 as_fatal (_("Broken assembler. No assembly attempted."));
1978 /* We add all the general register names to the symbol table. This
1979 helps us detect invalid uses of them. */
1980 for (i = 0; reg_names[i].name; i++)
1981 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1982 reg_names[i].num, /* & RNUM_MASK, */
1983 &zero_address_frag));
1985 for (i = 0; reg_names_n32n64[i].name; i++)
1986 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1987 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1988 &zero_address_frag));
1990 for (i = 0; reg_names_o32[i].name; i++)
1991 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1992 reg_names_o32[i].num, /* & RNUM_MASK, */
1993 &zero_address_frag));
1995 mips_no_prev_insn ();
1998 mips_cprmask[0] = 0;
1999 mips_cprmask[1] = 0;
2000 mips_cprmask[2] = 0;
2001 mips_cprmask[3] = 0;
2003 /* set the default alignment for the text section (2**2) */
2004 record_alignment (text_section, 2);
2006 bfd_set_gp_size (stdoutput, g_switch_value);
2011 /* On a native system other than VxWorks, sections must be aligned
2012 to 16 byte boundaries. When configured for an embedded ELF
2013 target, we don't bother. */
2014 if (strncmp (TARGET_OS, "elf", 3) != 0
2015 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2017 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2018 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2019 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2022 /* Create a .reginfo section for register masks and a .mdebug
2023 section for debugging information. */
2031 subseg = now_subseg;
2033 /* The ABI says this section should be loaded so that the
2034 running program can access it. However, we don't load it
2035 if we are configured for an embedded target */
2036 flags = SEC_READONLY | SEC_DATA;
2037 if (strncmp (TARGET_OS, "elf", 3) != 0)
2038 flags |= SEC_ALLOC | SEC_LOAD;
2040 if (mips_abi != N64_ABI)
2042 sec = subseg_new (".reginfo", (subsegT) 0);
2044 bfd_set_section_flags (stdoutput, sec, flags);
2045 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2047 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2051 /* The 64-bit ABI uses a .MIPS.options section rather than
2052 .reginfo section. */
2053 sec = subseg_new (".MIPS.options", (subsegT) 0);
2054 bfd_set_section_flags (stdoutput, sec, flags);
2055 bfd_set_section_alignment (stdoutput, sec, 3);
2057 /* Set up the option header. */
2059 Elf_Internal_Options opthdr;
2062 opthdr.kind = ODK_REGINFO;
2063 opthdr.size = (sizeof (Elf_External_Options)
2064 + sizeof (Elf64_External_RegInfo));
2067 f = frag_more (sizeof (Elf_External_Options));
2068 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2069 (Elf_External_Options *) f);
2071 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2075 if (ECOFF_DEBUGGING)
2077 sec = subseg_new (".mdebug", (subsegT) 0);
2078 (void) bfd_set_section_flags (stdoutput, sec,
2079 SEC_HAS_CONTENTS | SEC_READONLY);
2080 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2082 else if (mips_flag_pdr)
2084 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2085 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2086 SEC_READONLY | SEC_RELOC
2088 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2091 subseg_set (seg, subseg);
2094 #endif /* OBJ_ELF */
2096 if (! ECOFF_DEBUGGING)
2099 if (mips_fix_vr4120)
2100 init_vr4120_conflicts ();
2106 if (! ECOFF_DEBUGGING)
2111 md_assemble (char *str)
2113 struct mips_cl_insn insn;
2114 bfd_reloc_code_real_type unused_reloc[3]
2115 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2117 imm_expr.X_op = O_absent;
2118 imm2_expr.X_op = O_absent;
2119 offset_expr.X_op = O_absent;
2120 imm_reloc[0] = BFD_RELOC_UNUSED;
2121 imm_reloc[1] = BFD_RELOC_UNUSED;
2122 imm_reloc[2] = BFD_RELOC_UNUSED;
2123 offset_reloc[0] = BFD_RELOC_UNUSED;
2124 offset_reloc[1] = BFD_RELOC_UNUSED;
2125 offset_reloc[2] = BFD_RELOC_UNUSED;
2127 if (mips_opts.mips16)
2128 mips16_ip (str, &insn);
2131 mips_ip (str, &insn);
2132 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2133 str, insn.insn_opcode));
2138 as_bad ("%s `%s'", insn_error, str);
2142 if (insn.insn_mo->pinfo == INSN_MACRO)
2145 if (mips_opts.mips16)
2146 mips16_macro (&insn);
2153 if (imm_expr.X_op != O_absent)
2154 append_insn (&insn, &imm_expr, imm_reloc);
2155 else if (offset_expr.X_op != O_absent)
2156 append_insn (&insn, &offset_expr, offset_reloc);
2158 append_insn (&insn, NULL, unused_reloc);
2162 /* Convenience functions for abstracting away the differences between
2163 MIPS16 and non-MIPS16 relocations. */
2165 static inline bfd_boolean
2166 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2170 case BFD_RELOC_MIPS16_JMP:
2171 case BFD_RELOC_MIPS16_GPREL:
2172 case BFD_RELOC_MIPS16_GOT16:
2173 case BFD_RELOC_MIPS16_CALL16:
2174 case BFD_RELOC_MIPS16_HI16_S:
2175 case BFD_RELOC_MIPS16_HI16:
2176 case BFD_RELOC_MIPS16_LO16:
2184 static inline bfd_boolean
2185 got16_reloc_p (bfd_reloc_code_real_type reloc)
2187 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2190 static inline bfd_boolean
2191 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2193 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2196 static inline bfd_boolean
2197 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2199 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2202 /* Return true if the given relocation might need a matching %lo().
2203 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2204 need a matching %lo() when applied to local symbols. */
2206 static inline bfd_boolean
2207 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2209 return (HAVE_IN_PLACE_ADDENDS
2210 && (hi16_reloc_p (reloc)
2211 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2212 all GOT16 relocations evaluate to "G". */
2213 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2216 /* Return the type of %lo() reloc needed by RELOC, given that
2217 reloc_needs_lo_p. */
2219 static inline bfd_reloc_code_real_type
2220 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2222 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2225 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2228 static inline bfd_boolean
2229 fixup_has_matching_lo_p (fixS *fixp)
2231 return (fixp->fx_next != NULL
2232 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2233 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2234 && fixp->fx_offset == fixp->fx_next->fx_offset);
2237 /* See whether instruction IP reads register REG. CLASS is the type
2241 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2242 enum mips_regclass regclass)
2244 if (regclass == MIPS16_REG)
2246 gas_assert (mips_opts.mips16);
2247 reg = mips16_to_32_reg_map[reg];
2248 regclass = MIPS_GR_REG;
2251 /* Don't report on general register ZERO, since it never changes. */
2252 if (regclass == MIPS_GR_REG && reg == ZERO)
2255 if (regclass == MIPS_FP_REG)
2257 gas_assert (! mips_opts.mips16);
2258 /* If we are called with either $f0 or $f1, we must check $f0.
2259 This is not optimal, because it will introduce an unnecessary
2260 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2261 need to distinguish reading both $f0 and $f1 or just one of
2262 them. Note that we don't have to check the other way,
2263 because there is no instruction that sets both $f0 and $f1
2264 and requires a delay. */
2265 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2266 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2267 == (reg &~ (unsigned) 1)))
2269 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2270 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2271 == (reg &~ (unsigned) 1)))
2274 else if (! mips_opts.mips16)
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2277 && EXTRACT_OPERAND (RS, *ip) == reg)
2279 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2280 && EXTRACT_OPERAND (RT, *ip) == reg)
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2289 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2291 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2292 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2295 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2297 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2299 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2301 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2302 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2309 /* This function returns true if modifying a register requires a
2313 reg_needs_delay (unsigned int reg)
2315 unsigned long prev_pinfo;
2317 prev_pinfo = history[0].insn_mo->pinfo;
2318 if (! mips_opts.noreorder
2319 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2320 && ! gpr_interlocks)
2321 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2322 && ! cop_interlocks)))
2324 /* A load from a coprocessor or from memory. All load delays
2325 delay the use of general register rt for one instruction. */
2326 /* Itbl support may require additional care here. */
2327 know (prev_pinfo & INSN_WRITE_GPR_T);
2328 if (reg == EXTRACT_OPERAND (RT, history[0]))
2335 /* Move all labels in insn_labels to the current insertion point. */
2338 mips_move_labels (void)
2340 segment_info_type *si = seg_info (now_seg);
2341 struct insn_label_list *l;
2344 for (l = si->label_list; l != NULL; l = l->next)
2346 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2347 symbol_set_frag (l->label, frag_now);
2348 val = (valueT) frag_now_fix ();
2349 /* mips16 text labels are stored as odd. */
2350 if (mips_opts.mips16)
2352 S_SET_VALUE (l->label, val);
2357 s_is_linkonce (symbolS *sym, segT from_seg)
2359 bfd_boolean linkonce = FALSE;
2360 segT symseg = S_GET_SEGMENT (sym);
2362 if (symseg != from_seg && !S_IS_LOCAL (sym))
2364 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2367 /* The GNU toolchain uses an extension for ELF: a section
2368 beginning with the magic string .gnu.linkonce is a
2369 linkonce section. */
2370 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2371 sizeof ".gnu.linkonce" - 1) == 0)
2378 /* Mark instruction labels in mips16 mode. This permits the linker to
2379 handle them specially, such as generating jalx instructions when
2380 needed. We also make them odd for the duration of the assembly, in
2381 order to generate the right sort of code. We will make them even
2382 in the adjust_symtab routine, while leaving them marked. This is
2383 convenient for the debugger and the disassembler. The linker knows
2384 to make them odd again. */
2387 mips16_mark_labels (void)
2389 segment_info_type *si = seg_info (now_seg);
2390 struct insn_label_list *l;
2392 if (!mips_opts.mips16)
2395 for (l = si->label_list; l != NULL; l = l->next)
2397 symbolS *label = l->label;
2399 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2401 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2403 if ((S_GET_VALUE (label) & 1) == 0
2404 /* Don't adjust the address if the label is global or weak, or
2405 in a link-once section, since we'll be emitting symbol reloc
2406 references to it which will be patched up by the linker, and
2407 the final value of the symbol may or may not be MIPS16. */
2408 && ! S_IS_WEAK (label)
2409 && ! S_IS_EXTERNAL (label)
2410 && ! s_is_linkonce (label, now_seg))
2411 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2415 /* End the current frag. Make it a variant frag and record the
2419 relax_close_frag (void)
2421 mips_macro_warning.first_frag = frag_now;
2422 frag_var (rs_machine_dependent, 0, 0,
2423 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2424 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2426 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2427 mips_relax.first_fixup = 0;
2430 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2431 See the comment above RELAX_ENCODE for more details. */
2434 relax_start (symbolS *symbol)
2436 gas_assert (mips_relax.sequence == 0);
2437 mips_relax.sequence = 1;
2438 mips_relax.symbol = symbol;
2441 /* Start generating the second version of a relaxable sequence.
2442 See the comment above RELAX_ENCODE for more details. */
2447 gas_assert (mips_relax.sequence == 1);
2448 mips_relax.sequence = 2;
2451 /* End the current relaxable sequence. */
2456 gas_assert (mips_relax.sequence == 2);
2457 relax_close_frag ();
2458 mips_relax.sequence = 0;
2461 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2462 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2463 by VR4120 errata. */
2466 classify_vr4120_insn (const char *name)
2468 if (strncmp (name, "macc", 4) == 0)
2469 return FIX_VR4120_MACC;
2470 if (strncmp (name, "dmacc", 5) == 0)
2471 return FIX_VR4120_DMACC;
2472 if (strncmp (name, "mult", 4) == 0)
2473 return FIX_VR4120_MULT;
2474 if (strncmp (name, "dmult", 5) == 0)
2475 return FIX_VR4120_DMULT;
2476 if (strstr (name, "div"))
2477 return FIX_VR4120_DIV;
2478 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2479 return FIX_VR4120_MTHILO;
2480 return NUM_FIX_VR4120_CLASSES;
2483 #define INSN_ERET 0x42000018
2484 #define INSN_DERET 0x4200001f
2486 /* Return the number of instructions that must separate INSN1 and INSN2,
2487 where INSN1 is the earlier instruction. Return the worst-case value
2488 for any INSN2 if INSN2 is null. */
2491 insns_between (const struct mips_cl_insn *insn1,
2492 const struct mips_cl_insn *insn2)
2494 unsigned long pinfo1, pinfo2;
2496 /* This function needs to know which pinfo flags are set for INSN2
2497 and which registers INSN2 uses. The former is stored in PINFO2 and
2498 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2499 will have every flag set and INSN2_USES_REG will always return true. */
2500 pinfo1 = insn1->insn_mo->pinfo;
2501 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2503 #define INSN2_USES_REG(REG, CLASS) \
2504 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2506 /* For most targets, write-after-read dependencies on the HI and LO
2507 registers must be separated by at least two instructions. */
2508 if (!hilo_interlocks)
2510 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2512 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2516 /* If we're working around r7000 errata, there must be two instructions
2517 between an mfhi or mflo and any instruction that uses the result. */
2518 if (mips_7000_hilo_fix
2519 && MF_HILO_INSN (pinfo1)
2520 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2523 /* If we're working around 24K errata, one instruction is required
2524 if an ERET or DERET is followed by a branch instruction. */
2527 if (insn1->insn_opcode == INSN_ERET
2528 || insn1->insn_opcode == INSN_DERET)
2531 || insn2->insn_opcode == INSN_ERET
2532 || insn2->insn_opcode == INSN_DERET
2533 || (insn2->insn_mo->pinfo
2534 & (INSN_UNCOND_BRANCH_DELAY
2535 | INSN_COND_BRANCH_DELAY
2536 | INSN_COND_BRANCH_LIKELY)) != 0)
2541 /* If working around VR4120 errata, check for combinations that need
2542 a single intervening instruction. */
2543 if (mips_fix_vr4120)
2545 unsigned int class1, class2;
2547 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2548 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2552 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2553 if (vr4120_conflicts[class1] & (1 << class2))
2558 if (!mips_opts.mips16)
2560 /* Check for GPR or coprocessor load delays. All such delays
2561 are on the RT register. */
2562 /* Itbl support may require additional care here. */
2563 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2564 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2566 know (pinfo1 & INSN_WRITE_GPR_T);
2567 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2571 /* Check for generic coprocessor hazards.
2573 This case is not handled very well. There is no special
2574 knowledge of CP0 handling, and the coprocessors other than
2575 the floating point unit are not distinguished at all. */
2576 /* Itbl support may require additional care here. FIXME!
2577 Need to modify this to include knowledge about
2578 user specified delays! */
2579 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2580 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2582 /* Handle cases where INSN1 writes to a known general coprocessor
2583 register. There must be a one instruction delay before INSN2
2584 if INSN2 reads that register, otherwise no delay is needed. */
2585 if (pinfo1 & INSN_WRITE_FPR_T)
2587 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2590 else if (pinfo1 & INSN_WRITE_FPR_S)
2592 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2597 /* Read-after-write dependencies on the control registers
2598 require a two-instruction gap. */
2599 if ((pinfo1 & INSN_WRITE_COND_CODE)
2600 && (pinfo2 & INSN_READ_COND_CODE))
2603 /* We don't know exactly what INSN1 does. If INSN2 is
2604 also a coprocessor instruction, assume there must be
2605 a one instruction gap. */
2606 if (pinfo2 & INSN_COP)
2611 /* Check for read-after-write dependencies on the coprocessor
2612 control registers in cases where INSN1 does not need a general
2613 coprocessor delay. This means that INSN1 is a floating point
2614 comparison instruction. */
2615 /* Itbl support may require additional care here. */
2616 else if (!cop_interlocks
2617 && (pinfo1 & INSN_WRITE_COND_CODE)
2618 && (pinfo2 & INSN_READ_COND_CODE))
2622 #undef INSN2_USES_REG
2627 /* Return the number of nops that would be needed to work around the
2628 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2629 the MAX_VR4130_NOPS instructions described by HIST. */
2632 nops_for_vr4130 (const struct mips_cl_insn *hist,
2633 const struct mips_cl_insn *insn)
2637 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2638 are not affected by the errata. */
2640 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2641 || strcmp (insn->insn_mo->name, "mtlo") == 0
2642 || strcmp (insn->insn_mo->name, "mthi") == 0))
2645 /* Search for the first MFLO or MFHI. */
2646 for (i = 0; i < MAX_VR4130_NOPS; i++)
2647 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2649 /* Extract the destination register. */
2650 if (mips_opts.mips16)
2651 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2653 reg = EXTRACT_OPERAND (RD, hist[i]);
2655 /* No nops are needed if INSN reads that register. */
2656 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2659 /* ...or if any of the intervening instructions do. */
2660 for (j = 0; j < i; j++)
2661 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2664 return MAX_VR4130_NOPS - i;
2669 /* Return the number of nops that would be needed if instruction INSN
2670 immediately followed the MAX_NOPS instructions given by HIST,
2671 where HIST[0] is the most recent instruction. If INSN is null,
2672 return the worse-case number of nops for any instruction. */
2675 nops_for_insn (const struct mips_cl_insn *hist,
2676 const struct mips_cl_insn *insn)
2678 int i, nops, tmp_nops;
2681 for (i = 0; i < MAX_DELAY_NOPS; i++)
2683 tmp_nops = insns_between (hist + i, insn) - i;
2684 if (tmp_nops > nops)
2688 if (mips_fix_vr4130)
2690 tmp_nops = nops_for_vr4130 (hist, insn);
2691 if (tmp_nops > nops)
2698 /* The variable arguments provide NUM_INSNS extra instructions that
2699 might be added to HIST. Return the largest number of nops that
2700 would be needed after the extended sequence. */
2703 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2706 struct mips_cl_insn buffer[MAX_NOPS];
2707 struct mips_cl_insn *cursor;
2710 va_start (args, hist);
2711 cursor = buffer + num_insns;
2712 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2713 while (cursor > buffer)
2714 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2716 nops = nops_for_insn (buffer, NULL);
2721 /* Like nops_for_insn, but if INSN is a branch, take into account the
2722 worst-case delay for the branch target. */
2725 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2726 const struct mips_cl_insn *insn)
2730 nops = nops_for_insn (hist, insn);
2731 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2732 | INSN_COND_BRANCH_DELAY
2733 | INSN_COND_BRANCH_LIKELY))
2735 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2736 if (tmp_nops > nops)
2739 else if (mips_opts.mips16
2740 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2741 | MIPS16_INSN_COND_BRANCH)))
2743 tmp_nops = nops_for_sequence (1, hist, insn);
2744 if (tmp_nops > nops)
2750 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2753 fix_loongson2f_nop (struct mips_cl_insn * ip)
2755 if (strcmp (ip->insn_mo->name, "nop") == 0)
2756 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2759 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2760 jr target pc &= 'hffff_ffff_cfff_ffff. */
2763 fix_loongson2f_jump (struct mips_cl_insn * ip)
2765 if (strcmp (ip->insn_mo->name, "j") == 0
2766 || strcmp (ip->insn_mo->name, "jr") == 0
2767 || strcmp (ip->insn_mo->name, "jalr") == 0)
2775 sreg = EXTRACT_OPERAND (RS, *ip);
2776 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2779 ep.X_op = O_constant;
2780 ep.X_add_number = 0xcfff0000;
2781 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2782 ep.X_add_number = 0xffff;
2783 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2784 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2789 fix_loongson2f (struct mips_cl_insn * ip)
2791 if (mips_fix_loongson2f_nop)
2792 fix_loongson2f_nop (ip);
2794 if (mips_fix_loongson2f_jump)
2795 fix_loongson2f_jump (ip);
2798 /* Output an instruction. IP is the instruction information.
2799 ADDRESS_EXPR is an operand of the instruction to be used with
2803 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2804 bfd_reloc_code_real_type *reloc_type)
2806 unsigned long prev_pinfo, pinfo;
2807 relax_stateT prev_insn_frag_type = 0;
2808 bfd_boolean relaxed_branch = FALSE;
2809 segment_info_type *si = seg_info (now_seg);
2811 if (mips_fix_loongson2f)
2812 fix_loongson2f (ip);
2814 /* Mark instruction labels in mips16 mode. */
2815 mips16_mark_labels ();
2817 prev_pinfo = history[0].insn_mo->pinfo;
2818 pinfo = ip->insn_mo->pinfo;
2820 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2822 /* There are a lot of optimizations we could do that we don't.
2823 In particular, we do not, in general, reorder instructions.
2824 If you use gcc with optimization, it will reorder
2825 instructions and generally do much more optimization then we
2826 do here; repeating all that work in the assembler would only
2827 benefit hand written assembly code, and does not seem worth
2829 int nops = (mips_optimize == 0
2830 ? nops_for_insn (history, NULL)
2831 : nops_for_insn_or_target (history, ip));
2835 unsigned long old_frag_offset;
2838 old_frag = frag_now;
2839 old_frag_offset = frag_now_fix ();
2841 for (i = 0; i < nops; i++)
2846 listing_prev_line ();
2847 /* We may be at the start of a variant frag. In case we
2848 are, make sure there is enough space for the frag
2849 after the frags created by listing_prev_line. The
2850 argument to frag_grow here must be at least as large
2851 as the argument to all other calls to frag_grow in
2852 this file. We don't have to worry about being in the
2853 middle of a variant frag, because the variants insert
2854 all needed nop instructions themselves. */
2858 mips_move_labels ();
2860 #ifndef NO_ECOFF_DEBUGGING
2861 if (ECOFF_DEBUGGING)
2862 ecoff_fix_loc (old_frag, old_frag_offset);
2866 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2868 /* Work out how many nops in prev_nop_frag are needed by IP. */
2869 int nops = nops_for_insn_or_target (history, ip);
2870 gas_assert (nops <= prev_nop_frag_holds);
2872 /* Enforce NOPS as a minimum. */
2873 if (nops > prev_nop_frag_required)
2874 prev_nop_frag_required = nops;
2876 if (prev_nop_frag_holds == prev_nop_frag_required)
2878 /* Settle for the current number of nops. Update the history
2879 accordingly (for the benefit of any future .set reorder code). */
2880 prev_nop_frag = NULL;
2881 insert_into_history (prev_nop_frag_since,
2882 prev_nop_frag_holds, NOP_INSN);
2886 /* Allow this instruction to replace one of the nops that was
2887 tentatively added to prev_nop_frag. */
2888 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2889 prev_nop_frag_holds--;
2890 prev_nop_frag_since++;
2895 /* The value passed to dwarf2_emit_insn is the distance between
2896 the beginning of the current instruction and the address that
2897 should be recorded in the debug tables. For MIPS16 debug info
2898 we want to use ISA-encoded addresses, so we pass -1 for an
2899 address higher by one than the current. */
2900 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2903 /* Record the frag type before frag_var. */
2904 if (history[0].frag)
2905 prev_insn_frag_type = history[0].frag->fr_type;
2908 && *reloc_type == BFD_RELOC_16_PCREL_S2
2909 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2910 || pinfo & INSN_COND_BRANCH_LIKELY)
2911 && mips_relax_branch
2912 /* Don't try branch relaxation within .set nomacro, or within
2913 .set noat if we use $at for PIC computations. If it turns
2914 out that the branch was out-of-range, we'll get an error. */
2915 && !mips_opts.warn_about_macros
2916 && (mips_opts.at || mips_pic == NO_PIC)
2917 && !mips_opts.mips16)
2919 relaxed_branch = TRUE;
2920 add_relaxed_insn (ip, (relaxed_branch_length
2922 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2923 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2926 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2927 pinfo & INSN_COND_BRANCH_LIKELY,
2928 pinfo & INSN_WRITE_GPR_31,
2930 address_expr->X_add_symbol,
2931 address_expr->X_add_number);
2932 *reloc_type = BFD_RELOC_UNUSED;
2934 else if (*reloc_type > BFD_RELOC_UNUSED)
2936 /* We need to set up a variant frag. */
2937 gas_assert (mips_opts.mips16 && address_expr != NULL);
2938 add_relaxed_insn (ip, 4, 0,
2940 (*reloc_type - BFD_RELOC_UNUSED,
2941 mips16_small, mips16_ext,
2942 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2943 history[0].mips16_absolute_jump_p),
2944 make_expr_symbol (address_expr), 0);
2946 else if (mips_opts.mips16
2948 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2950 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2951 /* Make sure there is enough room to swap this instruction with
2952 a following jump instruction. */
2954 add_fixed_insn (ip);
2958 if (mips_opts.mips16
2959 && mips_opts.noreorder
2960 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2961 as_warn (_("extended instruction in delay slot"));
2963 if (mips_relax.sequence)
2965 /* If we've reached the end of this frag, turn it into a variant
2966 frag and record the information for the instructions we've
2968 if (frag_room () < 4)
2969 relax_close_frag ();
2970 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2973 if (mips_relax.sequence != 2)
2974 mips_macro_warning.sizes[0] += 4;
2975 if (mips_relax.sequence != 1)
2976 mips_macro_warning.sizes[1] += 4;
2978 if (mips_opts.mips16)
2981 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2983 add_fixed_insn (ip);
2986 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2988 if (address_expr->X_op == O_constant)
2992 switch (*reloc_type)
2995 ip->insn_opcode |= address_expr->X_add_number;
2998 case BFD_RELOC_MIPS_HIGHEST:
2999 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3000 ip->insn_opcode |= tmp & 0xffff;
3003 case BFD_RELOC_MIPS_HIGHER:
3004 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3005 ip->insn_opcode |= tmp & 0xffff;
3008 case BFD_RELOC_HI16_S:
3009 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3010 ip->insn_opcode |= tmp & 0xffff;
3013 case BFD_RELOC_HI16:
3014 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3017 case BFD_RELOC_UNUSED:
3018 case BFD_RELOC_LO16:
3019 case BFD_RELOC_MIPS_GOT_DISP:
3020 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3023 case BFD_RELOC_MIPS_JMP:
3024 if ((address_expr->X_add_number & 3) != 0)
3025 as_bad (_("jump to misaligned address (0x%lx)"),
3026 (unsigned long) address_expr->X_add_number);
3027 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3030 case BFD_RELOC_MIPS16_JMP:
3031 if ((address_expr->X_add_number & 3) != 0)
3032 as_bad (_("jump to misaligned address (0x%lx)"),
3033 (unsigned long) address_expr->X_add_number);
3035 (((address_expr->X_add_number & 0x7c0000) << 3)
3036 | ((address_expr->X_add_number & 0xf800000) >> 7)
3037 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3040 case BFD_RELOC_16_PCREL_S2:
3041 if ((address_expr->X_add_number & 3) != 0)
3042 as_bad (_("branch to misaligned address (0x%lx)"),
3043 (unsigned long) address_expr->X_add_number);
3044 if (mips_relax_branch)
3046 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3047 as_bad (_("branch address range overflow (0x%lx)"),
3048 (unsigned long) address_expr->X_add_number);
3049 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3056 else if (*reloc_type < BFD_RELOC_UNUSED)
3059 reloc_howto_type *howto;
3062 /* In a compound relocation, it is the final (outermost)
3063 operator that determines the relocated field. */
3064 for (i = 1; i < 3; i++)
3065 if (reloc_type[i] == BFD_RELOC_UNUSED)
3068 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3071 /* To reproduce this failure try assembling gas/testsuites/
3072 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3074 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3075 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3078 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3079 bfd_get_reloc_size (howto),
3081 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3084 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3085 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3086 && ip->fixp[0]->fx_addsy)
3087 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3089 /* These relocations can have an addend that won't fit in
3090 4 octets for 64bit assembly. */
3092 && ! howto->partial_inplace
3093 && (reloc_type[0] == BFD_RELOC_16
3094 || reloc_type[0] == BFD_RELOC_32
3095 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3096 || reloc_type[0] == BFD_RELOC_GPREL16
3097 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3098 || reloc_type[0] == BFD_RELOC_GPREL32
3099 || reloc_type[0] == BFD_RELOC_64
3100 || reloc_type[0] == BFD_RELOC_CTOR
3101 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3102 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3103 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3104 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3105 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3106 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3107 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3108 || hi16_reloc_p (reloc_type[0])
3109 || lo16_reloc_p (reloc_type[0])))
3110 ip->fixp[0]->fx_no_overflow = 1;
3112 if (mips_relax.sequence)
3114 if (mips_relax.first_fixup == 0)
3115 mips_relax.first_fixup = ip->fixp[0];
3117 else if (reloc_needs_lo_p (*reloc_type))
3119 struct mips_hi_fixup *hi_fixup;
3121 /* Reuse the last entry if it already has a matching %lo. */
3122 hi_fixup = mips_hi_fixup_list;
3124 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3126 hi_fixup = ((struct mips_hi_fixup *)
3127 xmalloc (sizeof (struct mips_hi_fixup)));
3128 hi_fixup->next = mips_hi_fixup_list;
3129 mips_hi_fixup_list = hi_fixup;
3131 hi_fixup->fixp = ip->fixp[0];
3132 hi_fixup->seg = now_seg;
3135 /* Add fixups for the second and third relocations, if given.
3136 Note that the ABI allows the second relocation to be
3137 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3138 moment we only use RSS_UNDEF, but we could add support
3139 for the others if it ever becomes necessary. */
3140 for (i = 1; i < 3; i++)
3141 if (reloc_type[i] != BFD_RELOC_UNUSED)
3143 ip->fixp[i] = fix_new (ip->frag, ip->where,
3144 ip->fixp[0]->fx_size, NULL, 0,
3145 FALSE, reloc_type[i]);
3147 /* Use fx_tcbit to mark compound relocs. */
3148 ip->fixp[0]->fx_tcbit = 1;
3149 ip->fixp[i]->fx_tcbit = 1;
3155 /* Update the register mask information. */
3156 if (! mips_opts.mips16)
3158 if (pinfo & INSN_WRITE_GPR_D)
3159 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3160 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3161 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3162 if (pinfo & INSN_READ_GPR_S)
3163 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3164 if (pinfo & INSN_WRITE_GPR_31)
3165 mips_gprmask |= 1 << RA;
3166 if (pinfo & INSN_WRITE_FPR_D)
3167 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3168 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3169 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3170 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3171 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3172 if ((pinfo & INSN_READ_FPR_R) != 0)
3173 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3174 if (pinfo & INSN_COP)
3176 /* We don't keep enough information to sort these cases out.
3177 The itbl support does keep this information however, although
3178 we currently don't support itbl fprmats as part of the cop
3179 instruction. May want to add this support in the future. */
3181 /* Never set the bit for $0, which is always zero. */
3182 mips_gprmask &= ~1 << 0;
3186 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3187 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3188 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3189 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3190 if (pinfo & MIPS16_INSN_WRITE_Z)
3191 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3192 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3193 mips_gprmask |= 1 << TREG;
3194 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3195 mips_gprmask |= 1 << SP;
3196 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3197 mips_gprmask |= 1 << RA;
3198 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3199 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3200 if (pinfo & MIPS16_INSN_READ_Z)
3201 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3202 if (pinfo & MIPS16_INSN_READ_GPR_X)
3203 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3206 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3208 /* Filling the branch delay slot is more complex. We try to
3209 switch the branch with the previous instruction, which we can
3210 do if the previous instruction does not set up a condition
3211 that the branch tests and if the branch is not itself the
3212 target of any branch. */
3213 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3214 || (pinfo & INSN_COND_BRANCH_DELAY))
3216 if (mips_optimize < 2
3217 /* If we have seen .set volatile or .set nomove, don't
3219 || mips_opts.nomove != 0
3220 /* We can't swap if the previous instruction's position
3222 || history[0].fixed_p
3223 /* If the previous previous insn was in a .set
3224 noreorder, we can't swap. Actually, the MIPS
3225 assembler will swap in this situation. However, gcc
3226 configured -with-gnu-as will generate code like
3232 in which we can not swap the bne and INSN. If gcc is
3233 not configured -with-gnu-as, it does not output the
3235 || history[1].noreorder_p
3236 /* If the branch is itself the target of a branch, we
3237 can not swap. We cheat on this; all we check for is
3238 whether there is a label on this instruction. If
3239 there are any branches to anything other than a
3240 label, users must use .set noreorder. */
3241 || si->label_list != NULL
3242 /* If the previous instruction is in a variant frag
3243 other than this branch's one, we cannot do the swap.
3244 This does not apply to the mips16, which uses variant
3245 frags for different purposes. */
3246 || (! mips_opts.mips16
3247 && prev_insn_frag_type == rs_machine_dependent)
3248 /* Check for conflicts between the branch and the instructions
3249 before the candidate delay slot. */
3250 || nops_for_insn (history + 1, ip) > 0
3251 /* Check for conflicts between the swapped sequence and the
3252 target of the branch. */
3253 || nops_for_sequence (2, history + 1, ip, history) > 0
3254 /* We do not swap with a trap instruction, since it
3255 complicates trap handlers to have the trap
3256 instruction be in a delay slot. */
3257 || (prev_pinfo & INSN_TRAP)
3258 /* If the branch reads a register that the previous
3259 instruction sets, we can not swap. */
3260 || (! mips_opts.mips16
3261 && (prev_pinfo & INSN_WRITE_GPR_T)
3262 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3264 || (! mips_opts.mips16
3265 && (prev_pinfo & INSN_WRITE_GPR_D)
3266 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3268 || (mips_opts.mips16
3269 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3271 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3273 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3275 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3277 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3279 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3281 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3282 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3283 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3284 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3285 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3286 && insn_uses_reg (ip,
3287 MIPS16OP_EXTRACT_REG32R
3288 (history[0].insn_opcode),
3290 /* If the branch writes a register that the previous
3291 instruction sets, we can not swap (we know that
3292 branches write only to RD or to $31). */
3293 || (! mips_opts.mips16
3294 && (prev_pinfo & INSN_WRITE_GPR_T)
3295 && (((pinfo & INSN_WRITE_GPR_D)
3296 && (EXTRACT_OPERAND (RT, history[0])
3297 == EXTRACT_OPERAND (RD, *ip)))
3298 || ((pinfo & INSN_WRITE_GPR_31)
3299 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3300 || (! mips_opts.mips16
3301 && (prev_pinfo & INSN_WRITE_GPR_D)
3302 && (((pinfo & INSN_WRITE_GPR_D)
3303 && (EXTRACT_OPERAND (RD, history[0])
3304 == EXTRACT_OPERAND (RD, *ip)))
3305 || ((pinfo & INSN_WRITE_GPR_31)
3306 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3307 || (mips_opts.mips16
3308 && (pinfo & MIPS16_INSN_WRITE_31)
3309 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3310 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3311 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3313 /* If the branch writes a register that the previous
3314 instruction reads, we can not swap (we know that
3315 branches only write to RD or to $31). */
3316 || (! mips_opts.mips16
3317 && (pinfo & INSN_WRITE_GPR_D)
3318 && insn_uses_reg (&history[0],
3319 EXTRACT_OPERAND (RD, *ip),
3321 || (! mips_opts.mips16
3322 && (pinfo & INSN_WRITE_GPR_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 || (mips_opts.mips16
3325 && (pinfo & MIPS16_INSN_WRITE_31)
3326 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3327 /* If one instruction sets a condition code and the
3328 other one uses a condition code, we can not swap. */
3329 || ((pinfo & INSN_READ_COND_CODE)
3330 && (prev_pinfo & INSN_WRITE_COND_CODE))
3331 || ((pinfo & INSN_WRITE_COND_CODE)
3332 && (prev_pinfo & INSN_READ_COND_CODE))
3333 /* If the previous instruction uses the PC, we can not
3335 || (mips_opts.mips16
3336 && (prev_pinfo & MIPS16_INSN_READ_PC))
3337 /* If the previous instruction had a fixup in mips16
3338 mode, we can not swap. This normally means that the
3339 previous instruction was a 4 byte branch anyhow. */
3340 || (mips_opts.mips16 && history[0].fixp[0])
3341 /* If the previous instruction is a sync, sync.l, or
3342 sync.p, we can not swap. */
3343 || (prev_pinfo & INSN_SYNC)
3344 /* If the previous instruction is an ERET or
3345 DERET, avoid the swap. */
3346 || (history[0].insn_opcode == INSN_ERET)
3347 || (history[0].insn_opcode == INSN_DERET))
3349 if (mips_opts.mips16
3350 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3351 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3352 && ISA_SUPPORTS_MIPS16E)
3354 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3355 ip->insn_opcode |= 0x0080;
3357 insert_into_history (0, 1, ip);
3361 /* We could do even better for unconditional branches to
3362 portions of this object file; we could pick up the
3363 instruction at the destination, put it in the delay
3364 slot, and bump the destination address. */
3365 insert_into_history (0, 1, ip);
3369 if (mips_relax.sequence)
3370 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3374 /* It looks like we can actually do the swap. */
3375 struct mips_cl_insn delay = history[0];
3376 if (mips_opts.mips16)
3378 know (delay.frag == ip->frag);
3379 move_insn (ip, delay.frag, delay.where);
3380 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3382 else if (relaxed_branch)
3384 /* Add the delay slot instruction to the end of the
3385 current frag and shrink the fixed part of the
3386 original frag. If the branch occupies the tail of
3387 the latter, move it backwards to cover the gap. */
3388 delay.frag->fr_fix -= 4;
3389 if (delay.frag == ip->frag)
3390 move_insn (ip, ip->frag, ip->where - 4);
3391 add_fixed_insn (&delay);
3395 move_insn (&delay, ip->frag, ip->where);
3396 move_insn (ip, history[0].frag, history[0].where);
3400 insert_into_history (0, 1, &delay);
3403 /* If that was an unconditional branch, forget the previous
3404 insn information. */
3405 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3407 mips_no_prev_insn ();
3410 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3412 /* We don't yet optimize a branch likely. What we should do
3413 is look at the target, copy the instruction found there
3414 into the delay slot, and increment the branch to jump to
3415 the next instruction. */
3416 insert_into_history (0, 1, ip);
3420 insert_into_history (0, 1, ip);
3423 insert_into_history (0, 1, ip);
3425 /* We just output an insn, so the next one doesn't have a label. */
3426 mips_clear_insn_labels ();
3429 /* Forget that there was any previous instruction or label. */
3432 mips_no_prev_insn (void)
3434 prev_nop_frag = NULL;
3435 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3436 mips_clear_insn_labels ();
3439 /* This function must be called before we emit something other than
3440 instructions. It is like mips_no_prev_insn except that it inserts
3441 any NOPS that might be needed by previous instructions. */
3444 mips_emit_delays (void)
3446 if (! mips_opts.noreorder)
3448 int nops = nops_for_insn (history, NULL);
3452 add_fixed_insn (NOP_INSN);
3453 mips_move_labels ();
3456 mips_no_prev_insn ();
3459 /* Start a (possibly nested) noreorder block. */
3462 start_noreorder (void)
3464 if (mips_opts.noreorder == 0)
3469 /* None of the instructions before the .set noreorder can be moved. */
3470 for (i = 0; i < ARRAY_SIZE (history); i++)
3471 history[i].fixed_p = 1;
3473 /* Insert any nops that might be needed between the .set noreorder
3474 block and the previous instructions. We will later remove any
3475 nops that turn out not to be needed. */
3476 nops = nops_for_insn (history, NULL);
3479 if (mips_optimize != 0)
3481 /* Record the frag which holds the nop instructions, so
3482 that we can remove them if we don't need them. */
3483 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3484 prev_nop_frag = frag_now;
3485 prev_nop_frag_holds = nops;
3486 prev_nop_frag_required = 0;
3487 prev_nop_frag_since = 0;
3490 for (; nops > 0; --nops)
3491 add_fixed_insn (NOP_INSN);
3493 /* Move on to a new frag, so that it is safe to simply
3494 decrease the size of prev_nop_frag. */
3495 frag_wane (frag_now);
3497 mips_move_labels ();
3499 mips16_mark_labels ();
3500 mips_clear_insn_labels ();
3502 mips_opts.noreorder++;
3503 mips_any_noreorder = 1;
3506 /* End a nested noreorder block. */
3509 end_noreorder (void)
3512 mips_opts.noreorder--;
3513 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3515 /* Commit to inserting prev_nop_frag_required nops and go back to
3516 handling nop insertion the .set reorder way. */
3517 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3518 * (mips_opts.mips16 ? 2 : 4));
3519 insert_into_history (prev_nop_frag_since,
3520 prev_nop_frag_required, NOP_INSN);
3521 prev_nop_frag = NULL;
3525 /* Set up global variables for the start of a new macro. */
3530 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3531 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3532 && (history[0].insn_mo->pinfo
3533 & (INSN_UNCOND_BRANCH_DELAY
3534 | INSN_COND_BRANCH_DELAY
3535 | INSN_COND_BRANCH_LIKELY)) != 0);
3538 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3539 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3540 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3543 macro_warning (relax_substateT subtype)
3545 if (subtype & RELAX_DELAY_SLOT)
3546 return _("Macro instruction expanded into multiple instructions"
3547 " in a branch delay slot");
3548 else if (subtype & RELAX_NOMACRO)
3549 return _("Macro instruction expanded into multiple instructions");
3554 /* Finish up a macro. Emit warnings as appropriate. */
3559 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3561 relax_substateT subtype;
3563 /* Set up the relaxation warning flags. */
3565 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3566 subtype |= RELAX_SECOND_LONGER;
3567 if (mips_opts.warn_about_macros)
3568 subtype |= RELAX_NOMACRO;
3569 if (mips_macro_warning.delay_slot_p)
3570 subtype |= RELAX_DELAY_SLOT;
3572 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3574 /* Either the macro has a single implementation or both
3575 implementations are longer than 4 bytes. Emit the
3577 const char *msg = macro_warning (subtype);
3579 as_warn ("%s", msg);
3583 /* One implementation might need a warning but the other
3584 definitely doesn't. */
3585 mips_macro_warning.first_frag->fr_subtype |= subtype;
3590 /* Read a macro's relocation codes from *ARGS and store them in *R.
3591 The first argument in *ARGS will be either the code for a single
3592 relocation or -1 followed by the three codes that make up a
3593 composite relocation. */
3596 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3600 next = va_arg (*args, int);
3602 r[0] = (bfd_reloc_code_real_type) next;
3604 for (i = 0; i < 3; i++)
3605 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3608 /* Build an instruction created by a macro expansion. This is passed
3609 a pointer to the count of instructions created so far, an
3610 expression, the name of the instruction to build, an operand format
3611 string, and corresponding arguments. */
3614 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3616 const struct mips_opcode *mo;
3617 struct mips_cl_insn insn;
3618 bfd_reloc_code_real_type r[3];
3621 va_start (args, fmt);
3623 if (mips_opts.mips16)
3625 mips16_macro_build (ep, name, fmt, &args);
3630 r[0] = BFD_RELOC_UNUSED;
3631 r[1] = BFD_RELOC_UNUSED;
3632 r[2] = BFD_RELOC_UNUSED;
3633 mo = (struct mips_opcode *) hash_find (op_hash, name);
3635 gas_assert (strcmp (name, mo->name) == 0);
3639 /* Search until we get a match for NAME. It is assumed here that
3640 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3641 if (strcmp (fmt, mo->args) == 0
3642 && mo->pinfo != INSN_MACRO
3643 && is_opcode_valid (mo))
3647 gas_assert (mo->name);
3648 gas_assert (strcmp (name, mo->name) == 0);
3651 create_insn (&insn, mo);
3669 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3674 /* Note that in the macro case, these arguments are already
3675 in MSB form. (When handling the instruction in the
3676 non-macro case, these arguments are sizes from which
3677 MSB values must be calculated.) */
3678 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3684 /* Note that in the macro case, these arguments are already
3685 in MSBD form. (When handling the instruction in the
3686 non-macro case, these arguments are sizes from which
3687 MSBD values must be calculated.) */
3688 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3692 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3701 INSERT_OPERAND (BP, insn, va_arg (args, int));
3707 INSERT_OPERAND (RT, insn, va_arg (args, int));
3711 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3716 INSERT_OPERAND (FT, insn, va_arg (args, int));
3722 INSERT_OPERAND (RD, insn, va_arg (args, int));
3727 int tmp = va_arg (args, int);
3729 INSERT_OPERAND (RT, insn, tmp);
3730 INSERT_OPERAND (RD, insn, tmp);
3736 INSERT_OPERAND (FS, insn, va_arg (args, int));
3743 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3747 INSERT_OPERAND (FD, insn, va_arg (args, int));
3751 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3755 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3759 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3766 INSERT_OPERAND (RS, insn, va_arg (args, int));
3772 macro_read_relocs (&args, r);
3773 gas_assert (*r == BFD_RELOC_GPREL16
3774 || *r == BFD_RELOC_MIPS_LITERAL
3775 || *r == BFD_RELOC_MIPS_HIGHER
3776 || *r == BFD_RELOC_HI16_S
3777 || *r == BFD_RELOC_LO16
3778 || *r == BFD_RELOC_MIPS_GOT16
3779 || *r == BFD_RELOC_MIPS_CALL16
3780 || *r == BFD_RELOC_MIPS_GOT_DISP
3781 || *r == BFD_RELOC_MIPS_GOT_PAGE
3782 || *r == BFD_RELOC_MIPS_GOT_OFST
3783 || *r == BFD_RELOC_MIPS_GOT_LO16
3784 || *r == BFD_RELOC_MIPS_CALL_LO16);
3788 macro_read_relocs (&args, r);
3789 gas_assert (ep != NULL
3790 && (ep->X_op == O_constant
3791 || (ep->X_op == O_symbol
3792 && (*r == BFD_RELOC_MIPS_HIGHEST
3793 || *r == BFD_RELOC_HI16_S
3794 || *r == BFD_RELOC_HI16
3795 || *r == BFD_RELOC_GPREL16
3796 || *r == BFD_RELOC_MIPS_GOT_HI16
3797 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3801 gas_assert (ep != NULL);
3804 * This allows macro() to pass an immediate expression for
3805 * creating short branches without creating a symbol.
3807 * We don't allow branch relaxation for these branches, as
3808 * they should only appear in ".set nomacro" anyway.
3810 if (ep->X_op == O_constant)
3812 if ((ep->X_add_number & 3) != 0)
3813 as_bad (_("branch to misaligned address (0x%lx)"),
3814 (unsigned long) ep->X_add_number);
3815 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3816 as_bad (_("branch address range overflow (0x%lx)"),
3817 (unsigned long) ep->X_add_number);
3818 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3822 *r = BFD_RELOC_16_PCREL_S2;
3826 gas_assert (ep != NULL);
3827 *r = BFD_RELOC_MIPS_JMP;
3831 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3835 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3844 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3846 append_insn (&insn, ep, r);
3850 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3853 struct mips_opcode *mo;
3854 struct mips_cl_insn insn;
3855 bfd_reloc_code_real_type r[3]
3856 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3858 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3860 gas_assert (strcmp (name, mo->name) == 0);
3862 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3865 gas_assert (mo->name);
3866 gas_assert (strcmp (name, mo->name) == 0);
3869 create_insn (&insn, mo);
3887 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3892 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3896 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3900 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3910 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3917 regno = va_arg (*args, int);
3918 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3919 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3940 gas_assert (ep != NULL);
3942 if (ep->X_op != O_constant)
3943 *r = (int) BFD_RELOC_UNUSED + c;
3946 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3947 FALSE, &insn.insn_opcode, &insn.use_extend,
3950 *r = BFD_RELOC_UNUSED;
3956 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3963 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3965 append_insn (&insn, ep, r);
3969 * Sign-extend 32-bit mode constants that have bit 31 set and all
3970 * higher bits unset.
3973 normalize_constant_expr (expressionS *ex)
3975 if (ex->X_op == O_constant
3976 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3977 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3982 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3983 * all higher bits unset.
3986 normalize_address_expr (expressionS *ex)
3988 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3989 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3990 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3991 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3996 * Generate a "jalr" instruction with a relocation hint to the called
3997 * function. This occurs in NewABI PIC code.
4000 macro_build_jalr (expressionS *ep)
4004 if (MIPS_JALR_HINT_P (ep))
4009 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4010 if (MIPS_JALR_HINT_P (ep))
4011 fix_new_exp (frag_now, f - frag_now->fr_literal,
4012 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4016 * Generate a "lui" instruction.
4019 macro_build_lui (expressionS *ep, int regnum)
4021 expressionS high_expr;
4022 const struct mips_opcode *mo;
4023 struct mips_cl_insn insn;
4024 bfd_reloc_code_real_type r[3]
4025 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4026 const char *name = "lui";
4027 const char *fmt = "t,u";
4029 gas_assert (! mips_opts.mips16);
4033 if (high_expr.X_op == O_constant)
4035 /* We can compute the instruction now without a relocation entry. */
4036 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4038 *r = BFD_RELOC_UNUSED;
4042 gas_assert (ep->X_op == O_symbol);
4043 /* _gp_disp is a special case, used from s_cpload.
4044 __gnu_local_gp is used if mips_no_shared. */
4045 gas_assert (mips_pic == NO_PIC
4047 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4048 || (! mips_in_shared
4049 && strcmp (S_GET_NAME (ep->X_add_symbol),
4050 "__gnu_local_gp") == 0));
4051 *r = BFD_RELOC_HI16_S;
4054 mo = hash_find (op_hash, name);
4055 gas_assert (strcmp (name, mo->name) == 0);
4056 gas_assert (strcmp (fmt, mo->args) == 0);
4057 create_insn (&insn, mo);
4059 insn.insn_opcode = insn.insn_mo->match;
4060 INSERT_OPERAND (RT, insn, regnum);
4061 if (*r == BFD_RELOC_UNUSED)
4063 insn.insn_opcode |= high_expr.X_add_number;
4064 append_insn (&insn, NULL, r);
4067 append_insn (&insn, &high_expr, r);
4070 /* Generate a sequence of instructions to do a load or store from a constant
4071 offset off of a base register (breg) into/from a target register (treg),
4072 using AT if necessary. */
4074 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4075 int treg, int breg, int dbl)
4077 gas_assert (ep->X_op == O_constant);
4079 /* Sign-extending 32-bit constants makes their handling easier. */
4081 normalize_constant_expr (ep);
4083 /* Right now, this routine can only handle signed 32-bit constants. */
4084 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4085 as_warn (_("operand overflow"));
4087 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4089 /* Signed 16-bit offset will fit in the op. Easy! */
4090 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4094 /* 32-bit offset, need multiple instructions and AT, like:
4095 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4096 addu $tempreg,$tempreg,$breg
4097 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4098 to handle the complete offset. */
4099 macro_build_lui (ep, AT);
4100 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4101 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4104 as_bad (_("Macro used $at after \".set noat\""));
4109 * Generates code to set the $at register to true (one)
4110 * if reg is less than the immediate expression.
4113 set_at (int reg, int unsignedp)
4115 if (imm_expr.X_op == O_constant
4116 && imm_expr.X_add_number >= -0x8000
4117 && imm_expr.X_add_number < 0x8000)
4118 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4119 AT, reg, BFD_RELOC_LO16);
4122 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4123 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4127 /* Warn if an expression is not a constant. */
4130 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4132 if (ex->X_op == O_big)
4133 as_bad (_("unsupported large constant"));
4134 else if (ex->X_op != O_constant)
4135 as_bad (_("Instruction %s requires absolute expression"),
4138 if (HAVE_32BIT_GPRS)
4139 normalize_constant_expr (ex);
4142 /* Count the leading zeroes by performing a binary chop. This is a
4143 bulky bit of source, but performance is a LOT better for the
4144 majority of values than a simple loop to count the bits:
4145 for (lcnt = 0; (lcnt < 32); lcnt++)
4146 if ((v) & (1 << (31 - lcnt)))
4148 However it is not code size friendly, and the gain will drop a bit
4149 on certain cached systems.
4151 #define COUNT_TOP_ZEROES(v) \
4152 (((v) & ~0xffff) == 0 \
4153 ? ((v) & ~0xff) == 0 \
4154 ? ((v) & ~0xf) == 0 \
4155 ? ((v) & ~0x3) == 0 \
4156 ? ((v) & ~0x1) == 0 \
4161 : ((v) & ~0x7) == 0 \
4164 : ((v) & ~0x3f) == 0 \
4165 ? ((v) & ~0x1f) == 0 \
4168 : ((v) & ~0x7f) == 0 \
4171 : ((v) & ~0xfff) == 0 \
4172 ? ((v) & ~0x3ff) == 0 \
4173 ? ((v) & ~0x1ff) == 0 \
4176 : ((v) & ~0x7ff) == 0 \
4179 : ((v) & ~0x3fff) == 0 \
4180 ? ((v) & ~0x1fff) == 0 \
4183 : ((v) & ~0x7fff) == 0 \
4186 : ((v) & ~0xffffff) == 0 \
4187 ? ((v) & ~0xfffff) == 0 \
4188 ? ((v) & ~0x3ffff) == 0 \
4189 ? ((v) & ~0x1ffff) == 0 \
4192 : ((v) & ~0x7ffff) == 0 \
4195 : ((v) & ~0x3fffff) == 0 \
4196 ? ((v) & ~0x1fffff) == 0 \
4199 : ((v) & ~0x7fffff) == 0 \
4202 : ((v) & ~0xfffffff) == 0 \
4203 ? ((v) & ~0x3ffffff) == 0 \
4204 ? ((v) & ~0x1ffffff) == 0 \
4207 : ((v) & ~0x7ffffff) == 0 \
4210 : ((v) & ~0x3fffffff) == 0 \
4211 ? ((v) & ~0x1fffffff) == 0 \
4214 : ((v) & ~0x7fffffff) == 0 \
4219 * This routine generates the least number of instructions necessary to load
4220 * an absolute expression value into a register.
4223 load_register (int reg, expressionS *ep, int dbl)
4226 expressionS hi32, lo32;
4228 if (ep->X_op != O_big)
4230 gas_assert (ep->X_op == O_constant);
4232 /* Sign-extending 32-bit constants makes their handling easier. */
4234 normalize_constant_expr (ep);
4236 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4238 /* We can handle 16 bit signed values with an addiu to
4239 $zero. No need to ever use daddiu here, since $zero and
4240 the result are always correct in 32 bit mode. */
4241 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4244 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4246 /* We can handle 16 bit unsigned values with an ori to
4248 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4251 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4253 /* 32 bit values require an lui. */
4254 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4255 if ((ep->X_add_number & 0xffff) != 0)
4256 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4261 /* The value is larger than 32 bits. */
4263 if (!dbl || HAVE_32BIT_GPRS)
4267 sprintf_vma (value, ep->X_add_number);
4268 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4269 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4273 if (ep->X_op != O_big)
4276 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4277 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4278 hi32.X_add_number &= 0xffffffff;
4280 lo32.X_add_number &= 0xffffffff;
4284 gas_assert (ep->X_add_number > 2);
4285 if (ep->X_add_number == 3)
4286 generic_bignum[3] = 0;
4287 else if (ep->X_add_number > 4)
4288 as_bad (_("Number larger than 64 bits"));
4289 lo32.X_op = O_constant;
4290 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4291 hi32.X_op = O_constant;
4292 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4295 if (hi32.X_add_number == 0)
4300 unsigned long hi, lo;
4302 if (hi32.X_add_number == (offsetT) 0xffffffff)
4304 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4306 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4309 if (lo32.X_add_number & 0x80000000)
4311 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4312 if (lo32.X_add_number & 0xffff)
4313 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4318 /* Check for 16bit shifted constant. We know that hi32 is
4319 non-zero, so start the mask on the first bit of the hi32
4324 unsigned long himask, lomask;
4328 himask = 0xffff >> (32 - shift);
4329 lomask = (0xffff << shift) & 0xffffffff;
4333 himask = 0xffff << (shift - 32);
4336 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4337 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4341 tmp.X_op = O_constant;
4343 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4344 | (lo32.X_add_number >> shift));
4346 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4347 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4348 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4349 reg, reg, (shift >= 32) ? shift - 32 : shift);
4354 while (shift <= (64 - 16));
4356 /* Find the bit number of the lowest one bit, and store the
4357 shifted value in hi/lo. */
4358 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4359 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4363 while ((lo & 1) == 0)
4368 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4374 while ((hi & 1) == 0)
4383 /* Optimize if the shifted value is a (power of 2) - 1. */
4384 if ((hi == 0 && ((lo + 1) & lo) == 0)
4385 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4387 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4392 /* This instruction will set the register to be all
4394 tmp.X_op = O_constant;
4395 tmp.X_add_number = (offsetT) -1;
4396 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4400 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4401 reg, reg, (bit >= 32) ? bit - 32 : bit);
4403 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4404 reg, reg, (shift >= 32) ? shift - 32 : shift);
4409 /* Sign extend hi32 before calling load_register, because we can
4410 generally get better code when we load a sign extended value. */
4411 if ((hi32.X_add_number & 0x80000000) != 0)
4412 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4413 load_register (reg, &hi32, 0);
4416 if ((lo32.X_add_number & 0xffff0000) == 0)
4420 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4428 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4430 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4431 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4437 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4441 mid16.X_add_number >>= 16;
4442 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4443 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4446 if ((lo32.X_add_number & 0xffff) != 0)
4447 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4451 load_delay_nop (void)
4453 if (!gpr_interlocks)
4454 macro_build (NULL, "nop", "");
4457 /* Load an address into a register. */
4460 load_address (int reg, expressionS *ep, int *used_at)
4462 if (ep->X_op != O_constant
4463 && ep->X_op != O_symbol)
4465 as_bad (_("expression too complex"));
4466 ep->X_op = O_constant;
4469 if (ep->X_op == O_constant)
4471 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4475 if (mips_pic == NO_PIC)
4477 /* If this is a reference to a GP relative symbol, we want
4478 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4480 lui $reg,<sym> (BFD_RELOC_HI16_S)
4481 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4482 If we have an addend, we always use the latter form.
4484 With 64bit address space and a usable $at we want
4485 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4486 lui $at,<sym> (BFD_RELOC_HI16_S)
4487 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4488 daddiu $at,<sym> (BFD_RELOC_LO16)
4492 If $at is already in use, we use a path which is suboptimal
4493 on superscalar processors.
4494 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4495 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4497 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4499 daddiu $reg,<sym> (BFD_RELOC_LO16)
4501 For GP relative symbols in 64bit address space we can use
4502 the same sequence as in 32bit address space. */
4503 if (HAVE_64BIT_SYMBOLS)
4505 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4506 && !nopic_need_relax (ep->X_add_symbol, 1))
4508 relax_start (ep->X_add_symbol);
4509 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4510 mips_gp_register, BFD_RELOC_GPREL16);
4514 if (*used_at == 0 && mips_opts.at)
4516 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4517 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4518 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4519 BFD_RELOC_MIPS_HIGHER);
4520 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4521 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4522 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4527 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4528 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4529 BFD_RELOC_MIPS_HIGHER);
4530 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4531 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4532 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4533 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4536 if (mips_relax.sequence)
4541 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4542 && !nopic_need_relax (ep->X_add_symbol, 1))
4544 relax_start (ep->X_add_symbol);
4545 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4546 mips_gp_register, BFD_RELOC_GPREL16);
4549 macro_build_lui (ep, reg);
4550 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4551 reg, reg, BFD_RELOC_LO16);
4552 if (mips_relax.sequence)
4556 else if (!mips_big_got)
4560 /* If this is a reference to an external symbol, we want
4561 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4563 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4565 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4566 If there is a constant, it must be added in after.
4568 If we have NewABI, we want
4569 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4570 unless we're referencing a global symbol with a non-zero
4571 offset, in which case cst must be added separately. */
4574 if (ep->X_add_number)
4576 ex.X_add_number = ep->X_add_number;
4577 ep->X_add_number = 0;
4578 relax_start (ep->X_add_symbol);
4579 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4580 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4581 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4583 ex.X_op = O_constant;
4584 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4585 reg, reg, BFD_RELOC_LO16);
4586 ep->X_add_number = ex.X_add_number;
4589 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4590 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4591 if (mips_relax.sequence)
4596 ex.X_add_number = ep->X_add_number;
4597 ep->X_add_number = 0;
4598 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4599 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4601 relax_start (ep->X_add_symbol);
4603 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4607 if (ex.X_add_number != 0)
4609 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4610 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4611 ex.X_op = O_constant;
4612 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4613 reg, reg, BFD_RELOC_LO16);
4617 else if (mips_big_got)
4621 /* This is the large GOT case. If this is a reference to an
4622 external symbol, we want
4623 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4625 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4627 Otherwise, for a reference to a local symbol in old ABI, we want
4628 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4630 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4631 If there is a constant, it must be added in after.
4633 In the NewABI, for local symbols, with or without offsets, we want:
4634 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4635 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4639 ex.X_add_number = ep->X_add_number;
4640 ep->X_add_number = 0;
4641 relax_start (ep->X_add_symbol);
4642 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4644 reg, reg, mips_gp_register);
4645 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4646 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4647 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4648 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4649 else if (ex.X_add_number)
4651 ex.X_op = O_constant;
4652 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4656 ep->X_add_number = ex.X_add_number;
4658 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4659 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4660 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4661 BFD_RELOC_MIPS_GOT_OFST);
4666 ex.X_add_number = ep->X_add_number;
4667 ep->X_add_number = 0;
4668 relax_start (ep->X_add_symbol);
4669 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4671 reg, reg, mips_gp_register);
4672 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4673 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4675 if (reg_needs_delay (mips_gp_register))
4677 /* We need a nop before loading from $gp. This special
4678 check is required because the lui which starts the main
4679 instruction stream does not refer to $gp, and so will not
4680 insert the nop which may be required. */
4681 macro_build (NULL, "nop", "");
4683 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4684 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4686 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4690 if (ex.X_add_number != 0)
4692 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4693 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4694 ex.X_op = O_constant;
4695 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4703 if (!mips_opts.at && *used_at == 1)
4704 as_bad (_("Macro used $at after \".set noat\""));
4707 /* Move the contents of register SOURCE into register DEST. */
4710 move_register (int dest, int source)
4712 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4716 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4717 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4718 The two alternatives are:
4720 Global symbol Local sybmol
4721 ------------- ------------
4722 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4724 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4726 load_got_offset emits the first instruction and add_got_offset
4727 emits the second for a 16-bit offset or add_got_offset_hilo emits
4728 a sequence to add a 32-bit offset using a scratch register. */
4731 load_got_offset (int dest, expressionS *local)
4736 global.X_add_number = 0;
4738 relax_start (local->X_add_symbol);
4739 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4742 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4743 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4748 add_got_offset (int dest, expressionS *local)
4752 global.X_op = O_constant;
4753 global.X_op_symbol = NULL;
4754 global.X_add_symbol = NULL;
4755 global.X_add_number = local->X_add_number;
4757 relax_start (local->X_add_symbol);
4758 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4759 dest, dest, BFD_RELOC_LO16);
4761 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4766 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4769 int hold_mips_optimize;
4771 global.X_op = O_constant;
4772 global.X_op_symbol = NULL;
4773 global.X_add_symbol = NULL;
4774 global.X_add_number = local->X_add_number;
4776 relax_start (local->X_add_symbol);
4777 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4779 /* Set mips_optimize around the lui instruction to avoid
4780 inserting an unnecessary nop after the lw. */
4781 hold_mips_optimize = mips_optimize;
4783 macro_build_lui (&global, tmp);
4784 mips_optimize = hold_mips_optimize;
4785 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4788 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4793 * This routine implements the seemingly endless macro or synthesized
4794 * instructions and addressing modes in the mips assembly language. Many
4795 * of these macros are simple and are similar to each other. These could
4796 * probably be handled by some kind of table or grammar approach instead of
4797 * this verbose method. Others are not simple macros but are more like
4798 * optimizing code generation.
4799 * One interesting optimization is when several store macros appear
4800 * consecutively that would load AT with the upper half of the same address.
4801 * The ensuing load upper instructions are ommited. This implies some kind
4802 * of global optimization. We currently only optimize within a single macro.
4803 * For many of the load and store macros if the address is specified as a
4804 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4805 * first load register 'at' with zero and use it as the base register. The
4806 * mips assembler simply uses register $zero. Just one tiny optimization
4810 macro (struct mips_cl_insn *ip)
4812 unsigned int treg, sreg, dreg, breg;
4813 unsigned int tempreg;
4828 bfd_reloc_code_real_type r;
4829 int hold_mips_optimize;
4831 gas_assert (! mips_opts.mips16);
4833 treg = (ip->insn_opcode >> 16) & 0x1f;
4834 dreg = (ip->insn_opcode >> 11) & 0x1f;
4835 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4836 mask = ip->insn_mo->mask;
4838 expr1.X_op = O_constant;
4839 expr1.X_op_symbol = NULL;
4840 expr1.X_add_symbol = NULL;
4841 expr1.X_add_number = 1;
4855 expr1.X_add_number = 8;
4856 macro_build (&expr1, "bgez", "s,p", sreg);
4858 macro_build (NULL, "nop", "", 0);
4860 move_register (dreg, sreg);
4861 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4884 if (imm_expr.X_op == O_constant
4885 && imm_expr.X_add_number >= -0x8000
4886 && imm_expr.X_add_number < 0x8000)
4888 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4892 load_register (AT, &imm_expr, dbl);
4893 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4912 if (imm_expr.X_op == O_constant
4913 && imm_expr.X_add_number >= 0
4914 && imm_expr.X_add_number < 0x10000)
4916 if (mask != M_NOR_I)
4917 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4920 macro_build (&imm_expr, "ori", "t,r,i",
4921 treg, sreg, BFD_RELOC_LO16);
4922 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4928 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4929 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4933 switch (imm_expr.X_add_number)
4936 macro_build (NULL, "nop", "");
4939 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4942 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4943 (int)imm_expr.X_add_number);
4962 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4964 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4968 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4969 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4977 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4982 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4986 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4987 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4993 /* check for > max integer */
4994 maxnum = 0x7fffffff;
4995 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5002 if (imm_expr.X_op == O_constant
5003 && imm_expr.X_add_number >= maxnum
5004 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5007 /* result is always false */
5009 macro_build (NULL, "nop", "", 0);
5011 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5014 if (imm_expr.X_op != O_constant)
5015 as_bad (_("Unsupported large constant"));
5016 ++imm_expr.X_add_number;
5020 if (mask == M_BGEL_I)
5022 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5024 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5027 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5029 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5032 maxnum = 0x7fffffff;
5033 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5040 maxnum = - maxnum - 1;
5041 if (imm_expr.X_op == O_constant
5042 && imm_expr.X_add_number <= maxnum
5043 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5046 /* result is always true */
5047 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5048 macro_build (&offset_expr, "b", "p");
5053 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5063 macro_build (&offset_expr, likely ? "beql" : "beq",
5068 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5069 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5077 && imm_expr.X_op == O_constant
5078 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5080 if (imm_expr.X_op != O_constant)
5081 as_bad (_("Unsupported large constant"));
5082 ++imm_expr.X_add_number;
5086 if (mask == M_BGEUL_I)
5088 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5090 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5092 macro_build (&offset_expr, likely ? "bnel" : "bne",
5098 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5106 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5111 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5115 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5116 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5124 macro_build (&offset_expr, likely ? "bnel" : "bne",
5131 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5132 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5140 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5145 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5149 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5150 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5156 maxnum = 0x7fffffff;
5157 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5164 if (imm_expr.X_op == O_constant
5165 && imm_expr.X_add_number >= maxnum
5166 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5168 if (imm_expr.X_op != O_constant)
5169 as_bad (_("Unsupported large constant"));
5170 ++imm_expr.X_add_number;
5174 if (mask == M_BLTL_I)
5176 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5178 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5181 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5183 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5188 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5196 macro_build (&offset_expr, likely ? "beql" : "beq",
5203 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5204 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5212 && imm_expr.X_op == O_constant
5213 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5215 if (imm_expr.X_op != O_constant)
5216 as_bad (_("Unsupported large constant"));
5217 ++imm_expr.X_add_number;
5221 if (mask == M_BLTUL_I)
5223 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5225 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5227 macro_build (&offset_expr, likely ? "beql" : "beq",
5233 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5241 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5246 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5250 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5251 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5261 macro_build (&offset_expr, likely ? "bnel" : "bne",
5266 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5267 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5275 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5277 as_bad (_("Unsupported large constant"));
5282 pos = (unsigned long) imm_expr.X_add_number;
5283 size = (unsigned long) imm2_expr.X_add_number;
5288 as_bad (_("Improper position (%lu)"), pos);
5291 if (size == 0 || size > 64
5292 || (pos + size - 1) > 63)
5294 as_bad (_("Improper extract size (%lu, position %lu)"),
5299 if (size <= 32 && pos < 32)
5304 else if (size <= 32)
5314 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5323 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5325 as_bad (_("Unsupported large constant"));
5330 pos = (unsigned long) imm_expr.X_add_number;
5331 size = (unsigned long) imm2_expr.X_add_number;
5336 as_bad (_("Improper position (%lu)"), pos);
5339 if (size == 0 || size > 64
5340 || (pos + size - 1) > 63)
5342 as_bad (_("Improper insert size (%lu, position %lu)"),
5347 if (pos < 32 && (pos + size - 1) < 32)
5362 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5363 (int) (pos + size - 1));
5379 as_warn (_("Divide by zero."));
5381 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5383 macro_build (NULL, "break", "c", 7);
5390 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5395 expr1.X_add_number = 8;
5396 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5397 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5398 macro_build (NULL, "break", "c", 7);
5400 expr1.X_add_number = -1;
5402 load_register (AT, &expr1, dbl);
5403 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5404 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5407 expr1.X_add_number = 1;
5408 load_register (AT, &expr1, dbl);
5409 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5413 expr1.X_add_number = 0x80000000;
5414 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5418 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5419 /* We want to close the noreorder block as soon as possible, so
5420 that later insns are available for delay slot filling. */
5425 expr1.X_add_number = 8;
5426 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5427 macro_build (NULL, "nop", "", 0);
5429 /* We want to close the noreorder block as soon as possible, so
5430 that later insns are available for delay slot filling. */
5433 macro_build (NULL, "break", "c", 6);
5435 macro_build (NULL, s, "d", dreg);
5474 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5476 as_warn (_("Divide by zero."));
5478 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5480 macro_build (NULL, "break", "c", 7);
5483 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5485 if (strcmp (s2, "mflo") == 0)
5486 move_register (dreg, sreg);
5488 move_register (dreg, 0);
5491 if (imm_expr.X_op == O_constant
5492 && imm_expr.X_add_number == -1
5493 && s[strlen (s) - 1] != 'u')
5495 if (strcmp (s2, "mflo") == 0)
5497 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5500 move_register (dreg, 0);
5505 load_register (AT, &imm_expr, dbl);
5506 macro_build (NULL, s, "z,s,t", sreg, AT);
5507 macro_build (NULL, s2, "d", dreg);
5529 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5530 macro_build (NULL, s, "z,s,t", sreg, treg);
5531 /* We want to close the noreorder block as soon as possible, so
5532 that later insns are available for delay slot filling. */
5537 expr1.X_add_number = 8;
5538 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5539 macro_build (NULL, s, "z,s,t", sreg, treg);
5541 /* We want to close the noreorder block as soon as possible, so
5542 that later insns are available for delay slot filling. */
5544 macro_build (NULL, "break", "c", 7);
5546 macro_build (NULL, s2, "d", dreg);
5558 /* Load the address of a symbol into a register. If breg is not
5559 zero, we then add a base register to it. */
5561 if (dbl && HAVE_32BIT_GPRS)
5562 as_warn (_("dla used to load 32-bit register"));
5564 if (! dbl && HAVE_64BIT_OBJECTS)
5565 as_warn (_("la used to load 64-bit address"));
5567 if (offset_expr.X_op == O_constant
5568 && offset_expr.X_add_number >= -0x8000
5569 && offset_expr.X_add_number < 0x8000)
5571 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5572 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5576 if (mips_opts.at && (treg == breg))
5586 if (offset_expr.X_op != O_symbol
5587 && offset_expr.X_op != O_constant)
5589 as_bad (_("expression too complex"));
5590 offset_expr.X_op = O_constant;
5593 if (offset_expr.X_op == O_constant)
5594 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5595 else if (mips_pic == NO_PIC)
5597 /* If this is a reference to a GP relative symbol, we want
5598 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5600 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5601 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5602 If we have a constant, we need two instructions anyhow,
5603 so we may as well always use the latter form.
5605 With 64bit address space and a usable $at we want
5606 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5607 lui $at,<sym> (BFD_RELOC_HI16_S)
5608 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5609 daddiu $at,<sym> (BFD_RELOC_LO16)
5611 daddu $tempreg,$tempreg,$at
5613 If $at is already in use, we use a path which is suboptimal
5614 on superscalar processors.
5615 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5616 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5618 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5620 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5622 For GP relative symbols in 64bit address space we can use
5623 the same sequence as in 32bit address space. */
5624 if (HAVE_64BIT_SYMBOLS)
5626 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5627 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5629 relax_start (offset_expr.X_add_symbol);
5630 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5631 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5635 if (used_at == 0 && mips_opts.at)
5637 macro_build (&offset_expr, "lui", "t,u",
5638 tempreg, BFD_RELOC_MIPS_HIGHEST);
5639 macro_build (&offset_expr, "lui", "t,u",
5640 AT, BFD_RELOC_HI16_S);
5641 macro_build (&offset_expr, "daddiu", "t,r,j",
5642 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5643 macro_build (&offset_expr, "daddiu", "t,r,j",
5644 AT, AT, BFD_RELOC_LO16);
5645 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5646 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5651 macro_build (&offset_expr, "lui", "t,u",
5652 tempreg, BFD_RELOC_MIPS_HIGHEST);
5653 macro_build (&offset_expr, "daddiu", "t,r,j",
5654 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5655 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5656 macro_build (&offset_expr, "daddiu", "t,r,j",
5657 tempreg, tempreg, BFD_RELOC_HI16_S);
5658 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5659 macro_build (&offset_expr, "daddiu", "t,r,j",
5660 tempreg, tempreg, BFD_RELOC_LO16);
5663 if (mips_relax.sequence)
5668 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5669 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5671 relax_start (offset_expr.X_add_symbol);
5672 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5673 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5676 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5677 as_bad (_("offset too large"));
5678 macro_build_lui (&offset_expr, tempreg);
5679 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5680 tempreg, tempreg, BFD_RELOC_LO16);
5681 if (mips_relax.sequence)
5685 else if (!mips_big_got && !HAVE_NEWABI)
5687 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5689 /* If this is a reference to an external symbol, and there
5690 is no constant, we want
5691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5692 or for lca or if tempreg is PIC_CALL_REG
5693 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5694 For a local symbol, we want
5695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5697 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5699 If we have a small constant, and this is a reference to
5700 an external symbol, we want
5701 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5703 addiu $tempreg,$tempreg,<constant>
5704 For a local symbol, we want the same instruction
5705 sequence, but we output a BFD_RELOC_LO16 reloc on the
5708 If we have a large constant, and this is a reference to
5709 an external symbol, we want
5710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5711 lui $at,<hiconstant>
5712 addiu $at,$at,<loconstant>
5713 addu $tempreg,$tempreg,$at
5714 For a local symbol, we want the same instruction
5715 sequence, but we output a BFD_RELOC_LO16 reloc on the
5719 if (offset_expr.X_add_number == 0)
5721 if (mips_pic == SVR4_PIC
5723 && (call || tempreg == PIC_CALL_REG))
5724 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5726 relax_start (offset_expr.X_add_symbol);
5727 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5728 lw_reloc_type, mips_gp_register);
5731 /* We're going to put in an addu instruction using
5732 tempreg, so we may as well insert the nop right
5737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5738 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5740 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5741 tempreg, tempreg, BFD_RELOC_LO16);
5743 /* FIXME: If breg == 0, and the next instruction uses
5744 $tempreg, then if this variant case is used an extra
5745 nop will be generated. */
5747 else if (offset_expr.X_add_number >= -0x8000
5748 && offset_expr.X_add_number < 0x8000)
5750 load_got_offset (tempreg, &offset_expr);
5752 add_got_offset (tempreg, &offset_expr);
5756 expr1.X_add_number = offset_expr.X_add_number;
5757 offset_expr.X_add_number =
5758 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5759 load_got_offset (tempreg, &offset_expr);
5760 offset_expr.X_add_number = expr1.X_add_number;
5761 /* If we are going to add in a base register, and the
5762 target register and the base register are the same,
5763 then we are using AT as a temporary register. Since
5764 we want to load the constant into AT, we add our
5765 current AT (from the global offset table) and the
5766 register into the register now, and pretend we were
5767 not using a base register. */
5771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5776 add_got_offset_hilo (tempreg, &offset_expr, AT);
5780 else if (!mips_big_got && HAVE_NEWABI)
5782 int add_breg_early = 0;
5784 /* If this is a reference to an external, and there is no
5785 constant, or local symbol (*), with or without a
5787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5788 or for lca or if tempreg is PIC_CALL_REG
5789 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5791 If we have a small constant, and this is a reference to
5792 an external symbol, we want
5793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5794 addiu $tempreg,$tempreg,<constant>
5796 If we have a large constant, and this is a reference to
5797 an external symbol, we want
5798 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5799 lui $at,<hiconstant>
5800 addiu $at,$at,<loconstant>
5801 addu $tempreg,$tempreg,$at
5803 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5804 local symbols, even though it introduces an additional
5807 if (offset_expr.X_add_number)
5809 expr1.X_add_number = offset_expr.X_add_number;
5810 offset_expr.X_add_number = 0;
5812 relax_start (offset_expr.X_add_symbol);
5813 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5814 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5816 if (expr1.X_add_number >= -0x8000
5817 && expr1.X_add_number < 0x8000)
5819 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5820 tempreg, tempreg, BFD_RELOC_LO16);
5822 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5824 /* If we are going to add in a base register, and the
5825 target register and the base register are the same,
5826 then we are using AT as a temporary register. Since
5827 we want to load the constant into AT, we add our
5828 current AT (from the global offset table) and the
5829 register into the register now, and pretend we were
5830 not using a base register. */
5835 gas_assert (tempreg == AT);
5836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5842 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5843 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5849 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5852 offset_expr.X_add_number = expr1.X_add_number;
5854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, tempreg, breg);
5865 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5867 relax_start (offset_expr.X_add_symbol);
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5878 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5881 else if (mips_big_got && !HAVE_NEWABI)
5884 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5885 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5886 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5888 /* This is the large GOT case. If this is a reference to an
5889 external symbol, and there is no constant, we want
5890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5891 addu $tempreg,$tempreg,$gp
5892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5893 or for lca or if tempreg is PIC_CALL_REG
5894 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5895 addu $tempreg,$tempreg,$gp
5896 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5897 For a local symbol, we want
5898 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5900 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5902 If we have a small constant, and this is a reference to
5903 an external symbol, we want
5904 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5905 addu $tempreg,$tempreg,$gp
5906 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5908 addiu $tempreg,$tempreg,<constant>
5909 For a local symbol, we want
5910 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5912 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5914 If we have a large constant, and this is a reference to
5915 an external symbol, we want
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5919 lui $at,<hiconstant>
5920 addiu $at,$at,<loconstant>
5921 addu $tempreg,$tempreg,$at
5922 For a local symbol, we want
5923 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5924 lui $at,<hiconstant>
5925 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5926 addu $tempreg,$tempreg,$at
5929 expr1.X_add_number = offset_expr.X_add_number;
5930 offset_expr.X_add_number = 0;
5931 relax_start (offset_expr.X_add_symbol);
5932 gpdelay = reg_needs_delay (mips_gp_register);
5933 if (expr1.X_add_number == 0 && breg == 0
5934 && (call || tempreg == PIC_CALL_REG))
5936 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5937 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5939 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5941 tempreg, tempreg, mips_gp_register);
5942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5943 tempreg, lw_reloc_type, tempreg);
5944 if (expr1.X_add_number == 0)
5948 /* We're going to put in an addu instruction using
5949 tempreg, so we may as well insert the nop right
5954 else if (expr1.X_add_number >= -0x8000
5955 && expr1.X_add_number < 0x8000)
5958 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5959 tempreg, tempreg, BFD_RELOC_LO16);
5963 /* If we are going to add in a base register, and the
5964 target register and the base register are the same,
5965 then we are using AT as a temporary register. Since
5966 we want to load the constant into AT, we add our
5967 current AT (from the global offset table) and the
5968 register into the register now, and pretend we were
5969 not using a base register. */
5974 gas_assert (tempreg == AT);
5976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5981 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5986 offset_expr.X_add_number =
5987 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5992 /* This is needed because this instruction uses $gp, but
5993 the first instruction on the main stream does not. */
5994 macro_build (NULL, "nop", "");
5997 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5998 local_reloc_type, mips_gp_register);
5999 if (expr1.X_add_number >= -0x8000
6000 && expr1.X_add_number < 0x8000)
6003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6004 tempreg, tempreg, BFD_RELOC_LO16);
6005 /* FIXME: If add_number is 0, and there was no base
6006 register, the external symbol case ended with a load,
6007 so if the symbol turns out to not be external, and
6008 the next instruction uses tempreg, an unnecessary nop
6009 will be inserted. */
6015 /* We must add in the base register now, as in the
6016 external symbol case. */
6017 gas_assert (tempreg == AT);
6019 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6022 /* We set breg to 0 because we have arranged to add
6023 it in in both cases. */
6027 macro_build_lui (&expr1, AT);
6028 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6029 AT, AT, BFD_RELOC_LO16);
6030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6031 tempreg, tempreg, AT);
6036 else if (mips_big_got && HAVE_NEWABI)
6038 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6039 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6040 int add_breg_early = 0;
6042 /* This is the large GOT case. If this is a reference to an
6043 external symbol, and there is no constant, we want
6044 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6045 add $tempreg,$tempreg,$gp
6046 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6047 or for lca or if tempreg is PIC_CALL_REG
6048 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6049 add $tempreg,$tempreg,$gp
6050 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6052 If we have a small constant, and this is a reference to
6053 an external symbol, we want
6054 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6055 add $tempreg,$tempreg,$gp
6056 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6057 addi $tempreg,$tempreg,<constant>
6059 If we have a large constant, and this is a reference to
6060 an external symbol, we want
6061 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6062 addu $tempreg,$tempreg,$gp
6063 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6064 lui $at,<hiconstant>
6065 addi $at,$at,<loconstant>
6066 add $tempreg,$tempreg,$at
6068 If we have NewABI, and we know it's a local symbol, we want
6069 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6070 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6071 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6073 relax_start (offset_expr.X_add_symbol);
6075 expr1.X_add_number = offset_expr.X_add_number;
6076 offset_expr.X_add_number = 0;
6078 if (expr1.X_add_number == 0 && breg == 0
6079 && (call || tempreg == PIC_CALL_REG))
6081 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6082 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6084 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6086 tempreg, tempreg, mips_gp_register);
6087 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6088 tempreg, lw_reloc_type, tempreg);
6090 if (expr1.X_add_number == 0)
6092 else if (expr1.X_add_number >= -0x8000
6093 && expr1.X_add_number < 0x8000)
6095 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6096 tempreg, tempreg, BFD_RELOC_LO16);
6098 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6100 /* If we are going to add in a base register, and the
6101 target register and the base register are the same,
6102 then we are using AT as a temporary register. Since
6103 we want to load the constant into AT, we add our
6104 current AT (from the global offset table) and the
6105 register into the register now, and pretend we were
6106 not using a base register. */
6111 gas_assert (tempreg == AT);
6112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6118 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6124 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6127 offset_expr.X_add_number = expr1.X_add_number;
6128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6129 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6130 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6131 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6135 treg, tempreg, breg);
6145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6150 unsigned long temp = (treg << 16) | (0x01);
6151 macro_build (NULL, "c2", "C", temp);
6153 /* AT is not used, just return */
6158 unsigned long temp = (0x02);
6159 macro_build (NULL, "c2", "C", temp);
6161 /* AT is not used, just return */
6166 unsigned long temp = (treg << 16) | (0x02);
6167 macro_build (NULL, "c2", "C", temp);
6169 /* AT is not used, just return */
6173 macro_build (NULL, "c2", "C", 3);
6174 /* AT is not used, just return */
6179 unsigned long temp = (treg << 16) | 0x03;
6180 macro_build (NULL, "c2", "C", temp);
6182 /* AT is not used, just return */
6186 /* The j instruction may not be used in PIC code, since it
6187 requires an absolute address. We convert it to a b
6189 if (mips_pic == NO_PIC)
6190 macro_build (&offset_expr, "j", "a");
6192 macro_build (&offset_expr, "b", "p");
6195 /* The jal instructions must be handled as macros because when
6196 generating PIC code they expand to multi-instruction
6197 sequences. Normally they are simple instructions. */
6202 if (mips_pic == NO_PIC)
6203 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6206 if (sreg != PIC_CALL_REG)
6207 as_warn (_("MIPS PIC call to register other than $25"));
6209 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6210 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6212 if (mips_cprestore_offset < 0)
6213 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6216 if (! mips_frame_reg_valid)
6218 as_warn (_("No .frame pseudo-op used in PIC code"));
6219 /* Quiet this warning. */
6220 mips_frame_reg_valid = 1;
6222 if (! mips_cprestore_valid)
6224 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6225 /* Quiet this warning. */
6226 mips_cprestore_valid = 1;
6228 if (mips_opts.noreorder)
6229 macro_build (NULL, "nop", "");
6230 expr1.X_add_number = mips_cprestore_offset;
6231 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6234 HAVE_64BIT_ADDRESSES);
6242 if (mips_pic == NO_PIC)
6243 macro_build (&offset_expr, "jal", "a");
6244 else if (mips_pic == SVR4_PIC)
6246 /* If this is a reference to an external symbol, and we are
6247 using a small GOT, we want
6248 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6252 lw $gp,cprestore($sp)
6253 The cprestore value is set using the .cprestore
6254 pseudo-op. If we are using a big GOT, we want
6255 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6257 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6261 lw $gp,cprestore($sp)
6262 If the symbol is not external, we want
6263 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6265 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6268 lw $gp,cprestore($sp)
6270 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6271 sequences above, minus nops, unless the symbol is local,
6272 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6278 relax_start (offset_expr.X_add_symbol);
6279 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6280 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6283 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6284 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6290 relax_start (offset_expr.X_add_symbol);
6291 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6292 BFD_RELOC_MIPS_CALL_HI16);
6293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6294 PIC_CALL_REG, mips_gp_register);
6295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6296 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6300 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6302 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6303 PIC_CALL_REG, PIC_CALL_REG,
6304 BFD_RELOC_MIPS_GOT_OFST);
6308 macro_build_jalr (&offset_expr);
6312 relax_start (offset_expr.X_add_symbol);
6315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6325 gpdelay = reg_needs_delay (mips_gp_register);
6326 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6327 BFD_RELOC_MIPS_CALL_HI16);
6328 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6329 PIC_CALL_REG, mips_gp_register);
6330 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6331 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6336 macro_build (NULL, "nop", "");
6338 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6339 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6342 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6343 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6345 macro_build_jalr (&offset_expr);
6347 if (mips_cprestore_offset < 0)
6348 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6351 if (! mips_frame_reg_valid)
6353 as_warn (_("No .frame pseudo-op used in PIC code"));
6354 /* Quiet this warning. */
6355 mips_frame_reg_valid = 1;
6357 if (! mips_cprestore_valid)
6359 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6360 /* Quiet this warning. */
6361 mips_cprestore_valid = 1;
6363 if (mips_opts.noreorder)
6364 macro_build (NULL, "nop", "");
6365 expr1.X_add_number = mips_cprestore_offset;
6366 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6369 HAVE_64BIT_ADDRESSES);
6373 else if (mips_pic == VXWORKS_PIC)
6374 as_bad (_("Non-PIC jump used in PIC library"));
6397 /* Itbl support may require additional care here. */
6402 /* Itbl support may require additional care here. */
6407 /* Itbl support may require additional care here. */
6412 /* Itbl support may require additional care here. */
6425 /* Itbl support may require additional care here. */
6430 /* Itbl support may require additional care here. */
6435 /* Itbl support may require additional care here. */
6455 if (breg == treg || coproc || lr)
6476 /* Itbl support may require additional care here. */
6481 /* Itbl support may require additional care here. */
6486 /* Itbl support may require additional care here. */
6491 /* Itbl support may require additional care here. */
6512 /* Itbl support may require additional care here. */
6516 /* Itbl support may require additional care here. */
6521 /* Itbl support may require additional care here. */
6534 && NO_ISA_COP (mips_opts.arch)
6535 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6537 as_bad (_("opcode not supported on this processor: %s"),
6538 mips_cpu_info_from_arch (mips_opts.arch)->name);
6542 /* Itbl support may require additional care here. */
6543 if (mask == M_LWC1_AB
6544 || mask == M_SWC1_AB
6545 || mask == M_LDC1_AB
6546 || mask == M_SDC1_AB
6550 else if (mask == M_CACHE_AB)
6557 if (offset_expr.X_op != O_constant
6558 && offset_expr.X_op != O_symbol)
6560 as_bad (_("expression too complex"));
6561 offset_expr.X_op = O_constant;
6564 if (HAVE_32BIT_ADDRESSES
6565 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6569 sprintf_vma (value, offset_expr.X_add_number);
6570 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6573 /* A constant expression in PIC code can be handled just as it
6574 is in non PIC code. */
6575 if (offset_expr.X_op == O_constant)
6577 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6578 & ~(bfd_vma) 0xffff);
6579 normalize_address_expr (&expr1);
6580 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6583 tempreg, tempreg, breg);
6584 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6586 else if (mips_pic == NO_PIC)
6588 /* If this is a reference to a GP relative symbol, and there
6589 is no base register, we want
6590 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6591 Otherwise, if there is no base register, we want
6592 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6593 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6594 If we have a constant, we need two instructions anyhow,
6595 so we always use the latter form.
6597 If we have a base register, and this is a reference to a
6598 GP relative symbol, we want
6599 addu $tempreg,$breg,$gp
6600 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6602 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6603 addu $tempreg,$tempreg,$breg
6604 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6605 With a constant we always use the latter case.
6607 With 64bit address space and no base register and $at usable,
6609 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6610 lui $at,<sym> (BFD_RELOC_HI16_S)
6611 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6614 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6615 If we have a base register, we want
6616 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6617 lui $at,<sym> (BFD_RELOC_HI16_S)
6618 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6624 Without $at we can't generate the optimal path for superscalar
6625 processors here since this would require two temporary registers.
6626 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6627 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6629 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6631 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6632 If we have a base register, we want
6633 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6634 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6636 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6638 daddu $tempreg,$tempreg,$breg
6639 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6641 For GP relative symbols in 64bit address space we can use
6642 the same sequence as in 32bit address space. */
6643 if (HAVE_64BIT_SYMBOLS)
6645 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6646 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6648 relax_start (offset_expr.X_add_symbol);
6651 macro_build (&offset_expr, s, fmt, treg,
6652 BFD_RELOC_GPREL16, mips_gp_register);
6656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6657 tempreg, breg, mips_gp_register);
6658 macro_build (&offset_expr, s, fmt, treg,
6659 BFD_RELOC_GPREL16, tempreg);
6664 if (used_at == 0 && mips_opts.at)
6666 macro_build (&offset_expr, "lui", "t,u", tempreg,
6667 BFD_RELOC_MIPS_HIGHEST);
6668 macro_build (&offset_expr, "lui", "t,u", AT,
6670 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6671 tempreg, BFD_RELOC_MIPS_HIGHER);
6673 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6674 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6675 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6676 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6682 macro_build (&offset_expr, "lui", "t,u", tempreg,
6683 BFD_RELOC_MIPS_HIGHEST);
6684 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6685 tempreg, BFD_RELOC_MIPS_HIGHER);
6686 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6687 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6688 tempreg, BFD_RELOC_HI16_S);
6689 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6691 macro_build (NULL, "daddu", "d,v,t",
6692 tempreg, tempreg, breg);
6693 macro_build (&offset_expr, s, fmt, treg,
6694 BFD_RELOC_LO16, tempreg);
6697 if (mips_relax.sequence)
6704 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6705 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6707 relax_start (offset_expr.X_add_symbol);
6708 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6712 macro_build_lui (&offset_expr, tempreg);
6713 macro_build (&offset_expr, s, fmt, treg,
6714 BFD_RELOC_LO16, tempreg);
6715 if (mips_relax.sequence)
6720 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6721 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6723 relax_start (offset_expr.X_add_symbol);
6724 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6725 tempreg, breg, mips_gp_register);
6726 macro_build (&offset_expr, s, fmt, treg,
6727 BFD_RELOC_GPREL16, tempreg);
6730 macro_build_lui (&offset_expr, tempreg);
6731 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6732 tempreg, tempreg, breg);
6733 macro_build (&offset_expr, s, fmt, treg,
6734 BFD_RELOC_LO16, tempreg);
6735 if (mips_relax.sequence)
6739 else if (!mips_big_got)
6741 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6743 /* If this is a reference to an external symbol, we want
6744 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6746 <op> $treg,0($tempreg)
6748 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6750 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6751 <op> $treg,0($tempreg)
6754 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6755 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6757 If there is a base register, we add it to $tempreg before
6758 the <op>. If there is a constant, we stick it in the
6759 <op> instruction. We don't handle constants larger than
6760 16 bits, because we have no way to load the upper 16 bits
6761 (actually, we could handle them for the subset of cases
6762 in which we are not using $at). */
6763 gas_assert (offset_expr.X_op == O_symbol);
6766 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6767 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6770 tempreg, tempreg, breg);
6771 macro_build (&offset_expr, s, fmt, treg,
6772 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6775 expr1.X_add_number = offset_expr.X_add_number;
6776 offset_expr.X_add_number = 0;
6777 if (expr1.X_add_number < -0x8000
6778 || expr1.X_add_number >= 0x8000)
6779 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6781 lw_reloc_type, mips_gp_register);
6783 relax_start (offset_expr.X_add_symbol);
6785 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6786 tempreg, BFD_RELOC_LO16);
6789 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6790 tempreg, tempreg, breg);
6791 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6793 else if (mips_big_got && !HAVE_NEWABI)
6797 /* If this is a reference to an external symbol, we want
6798 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6799 addu $tempreg,$tempreg,$gp
6800 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6801 <op> $treg,0($tempreg)
6803 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6805 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6806 <op> $treg,0($tempreg)
6807 If there is a base register, we add it to $tempreg before
6808 the <op>. If there is a constant, we stick it in the
6809 <op> instruction. We don't handle constants larger than
6810 16 bits, because we have no way to load the upper 16 bits
6811 (actually, we could handle them for the subset of cases
6812 in which we are not using $at). */
6813 gas_assert (offset_expr.X_op == O_symbol);
6814 expr1.X_add_number = offset_expr.X_add_number;
6815 offset_expr.X_add_number = 0;
6816 if (expr1.X_add_number < -0x8000
6817 || expr1.X_add_number >= 0x8000)
6818 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6819 gpdelay = reg_needs_delay (mips_gp_register);
6820 relax_start (offset_expr.X_add_symbol);
6821 macro_build (&offset_expr, "lui", "t,u", tempreg,
6822 BFD_RELOC_MIPS_GOT_HI16);
6823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6825 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6826 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6829 macro_build (NULL, "nop", "");
6830 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6831 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6833 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6834 tempreg, BFD_RELOC_LO16);
6838 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6839 tempreg, tempreg, breg);
6840 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6842 else if (mips_big_got && HAVE_NEWABI)
6844 /* If this is a reference to an external symbol, we want
6845 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6846 add $tempreg,$tempreg,$gp
6847 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6848 <op> $treg,<ofst>($tempreg)
6849 Otherwise, for local symbols, we want:
6850 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6851 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6852 gas_assert (offset_expr.X_op == O_symbol);
6853 expr1.X_add_number = offset_expr.X_add_number;
6854 offset_expr.X_add_number = 0;
6855 if (expr1.X_add_number < -0x8000
6856 || expr1.X_add_number >= 0x8000)
6857 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6858 relax_start (offset_expr.X_add_symbol);
6859 macro_build (&offset_expr, "lui", "t,u", tempreg,
6860 BFD_RELOC_MIPS_GOT_HI16);
6861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6864 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6867 tempreg, tempreg, breg);
6868 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6871 offset_expr.X_add_number = expr1.X_add_number;
6872 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6873 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6876 tempreg, tempreg, breg);
6877 macro_build (&offset_expr, s, fmt, treg,
6878 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6888 load_register (treg, &imm_expr, 0);
6892 load_register (treg, &imm_expr, 1);
6896 if (imm_expr.X_op == O_constant)
6899 load_register (AT, &imm_expr, 0);
6900 macro_build (NULL, "mtc1", "t,G", AT, treg);
6905 gas_assert (offset_expr.X_op == O_symbol
6906 && strcmp (segment_name (S_GET_SEGMENT
6907 (offset_expr.X_add_symbol)),
6909 && offset_expr.X_add_number == 0);
6910 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6911 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6916 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6917 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6918 order 32 bits of the value and the low order 32 bits are either
6919 zero or in OFFSET_EXPR. */
6920 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6922 if (HAVE_64BIT_GPRS)
6923 load_register (treg, &imm_expr, 1);
6928 if (target_big_endian)
6940 load_register (hreg, &imm_expr, 0);
6943 if (offset_expr.X_op == O_absent)
6944 move_register (lreg, 0);
6947 gas_assert (offset_expr.X_op == O_constant);
6948 load_register (lreg, &offset_expr, 0);
6955 /* We know that sym is in the .rdata section. First we get the
6956 upper 16 bits of the address. */
6957 if (mips_pic == NO_PIC)
6959 macro_build_lui (&offset_expr, AT);
6964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6965 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6969 /* Now we load the register(s). */
6970 if (HAVE_64BIT_GPRS)
6973 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6978 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6981 /* FIXME: How in the world do we deal with the possible
6983 offset_expr.X_add_number += 4;
6984 macro_build (&offset_expr, "lw", "t,o(b)",
6985 treg + 1, BFD_RELOC_LO16, AT);
6991 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6992 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6993 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6994 the value and the low order 32 bits are either zero or in
6996 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6999 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7000 if (HAVE_64BIT_FPRS)
7002 gas_assert (HAVE_64BIT_GPRS);
7003 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7007 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7008 if (offset_expr.X_op == O_absent)
7009 macro_build (NULL, "mtc1", "t,G", 0, treg);
7012 gas_assert (offset_expr.X_op == O_constant);
7013 load_register (AT, &offset_expr, 0);
7014 macro_build (NULL, "mtc1", "t,G", AT, treg);
7020 gas_assert (offset_expr.X_op == O_symbol
7021 && offset_expr.X_add_number == 0);
7022 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7023 if (strcmp (s, ".lit8") == 0)
7025 if (mips_opts.isa != ISA_MIPS1)
7027 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7028 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7031 breg = mips_gp_register;
7032 r = BFD_RELOC_MIPS_LITERAL;
7037 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7039 if (mips_pic != NO_PIC)
7040 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7041 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7044 /* FIXME: This won't work for a 64 bit address. */
7045 macro_build_lui (&offset_expr, AT);
7048 if (mips_opts.isa != ISA_MIPS1)
7050 macro_build (&offset_expr, "ldc1", "T,o(b)",
7051 treg, BFD_RELOC_LO16, AT);
7060 /* Even on a big endian machine $fn comes before $fn+1. We have
7061 to adjust when loading from memory. */
7064 gas_assert (mips_opts.isa == ISA_MIPS1);
7065 macro_build (&offset_expr, "lwc1", "T,o(b)",
7066 target_big_endian ? treg + 1 : treg, r, breg);
7067 /* FIXME: A possible overflow which I don't know how to deal
7069 offset_expr.X_add_number += 4;
7070 macro_build (&offset_expr, "lwc1", "T,o(b)",
7071 target_big_endian ? treg : treg + 1, r, breg);
7076 * The MIPS assembler seems to check for X_add_number not
7077 * being double aligned and generating:
7080 * addiu at,at,%lo(foo+1)
7083 * But, the resulting address is the same after relocation so why
7084 * generate the extra instruction?
7086 /* Itbl support may require additional care here. */
7088 if (mips_opts.isa != ISA_MIPS1)
7099 if (mips_opts.isa != ISA_MIPS1)
7107 /* Itbl support may require additional care here. */
7112 if (HAVE_64BIT_GPRS)
7123 if (HAVE_64BIT_GPRS)
7133 if (offset_expr.X_op != O_symbol
7134 && offset_expr.X_op != O_constant)
7136 as_bad (_("expression too complex"));
7137 offset_expr.X_op = O_constant;
7140 if (HAVE_32BIT_ADDRESSES
7141 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7145 sprintf_vma (value, offset_expr.X_add_number);
7146 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7149 /* Even on a big endian machine $fn comes before $fn+1. We have
7150 to adjust when loading from memory. We set coproc if we must
7151 load $fn+1 first. */
7152 /* Itbl support may require additional care here. */
7153 if (! target_big_endian)
7156 if (mips_pic == NO_PIC
7157 || offset_expr.X_op == O_constant)
7159 /* If this is a reference to a GP relative symbol, we want
7160 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7161 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7162 If we have a base register, we use this
7164 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7165 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7166 If this is not a GP relative symbol, we want
7167 lui $at,<sym> (BFD_RELOC_HI16_S)
7168 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7169 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7170 If there is a base register, we add it to $at after the
7171 lui instruction. If there is a constant, we always use
7173 if (offset_expr.X_op == O_symbol
7174 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7175 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7177 relax_start (offset_expr.X_add_symbol);
7180 tempreg = mips_gp_register;
7184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7185 AT, breg, mips_gp_register);
7190 /* Itbl support may require additional care here. */
7191 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7192 BFD_RELOC_GPREL16, tempreg);
7193 offset_expr.X_add_number += 4;
7195 /* Set mips_optimize to 2 to avoid inserting an
7197 hold_mips_optimize = mips_optimize;
7199 /* Itbl support may require additional care here. */
7200 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7201 BFD_RELOC_GPREL16, tempreg);
7202 mips_optimize = hold_mips_optimize;
7206 offset_expr.X_add_number -= 4;
7209 macro_build_lui (&offset_expr, AT);
7211 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7212 /* Itbl support may require additional care here. */
7213 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7214 BFD_RELOC_LO16, AT);
7215 /* FIXME: How do we handle overflow here? */
7216 offset_expr.X_add_number += 4;
7217 /* Itbl support may require additional care here. */
7218 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7219 BFD_RELOC_LO16, AT);
7220 if (mips_relax.sequence)
7223 else if (!mips_big_got)
7225 /* If this is a reference to an external symbol, we want
7226 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7231 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7233 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7234 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7235 If there is a base register we add it to $at before the
7236 lwc1 instructions. If there is a constant we include it
7237 in the lwc1 instructions. */
7239 expr1.X_add_number = offset_expr.X_add_number;
7240 if (expr1.X_add_number < -0x8000
7241 || expr1.X_add_number >= 0x8000 - 4)
7242 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7243 load_got_offset (AT, &offset_expr);
7246 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7248 /* Set mips_optimize to 2 to avoid inserting an undesired
7250 hold_mips_optimize = mips_optimize;
7253 /* Itbl support may require additional care here. */
7254 relax_start (offset_expr.X_add_symbol);
7255 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7256 BFD_RELOC_LO16, AT);
7257 expr1.X_add_number += 4;
7258 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7259 BFD_RELOC_LO16, AT);
7261 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7262 BFD_RELOC_LO16, AT);
7263 offset_expr.X_add_number += 4;
7264 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7265 BFD_RELOC_LO16, AT);
7268 mips_optimize = hold_mips_optimize;
7270 else if (mips_big_got)
7274 /* If this is a reference to an external symbol, we want
7275 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7277 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7282 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7284 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7285 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7286 If there is a base register we add it to $at before the
7287 lwc1 instructions. If there is a constant we include it
7288 in the lwc1 instructions. */
7290 expr1.X_add_number = offset_expr.X_add_number;
7291 offset_expr.X_add_number = 0;
7292 if (expr1.X_add_number < -0x8000
7293 || expr1.X_add_number >= 0x8000 - 4)
7294 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7295 gpdelay = reg_needs_delay (mips_gp_register);
7296 relax_start (offset_expr.X_add_symbol);
7297 macro_build (&offset_expr, "lui", "t,u",
7298 AT, BFD_RELOC_MIPS_GOT_HI16);
7299 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7300 AT, AT, mips_gp_register);
7301 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7302 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7305 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7306 /* Itbl support may require additional care here. */
7307 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7308 BFD_RELOC_LO16, AT);
7309 expr1.X_add_number += 4;
7311 /* Set mips_optimize to 2 to avoid inserting an undesired
7313 hold_mips_optimize = mips_optimize;
7315 /* Itbl support may require additional care here. */
7316 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7317 BFD_RELOC_LO16, AT);
7318 mips_optimize = hold_mips_optimize;
7319 expr1.X_add_number -= 4;
7322 offset_expr.X_add_number = expr1.X_add_number;
7324 macro_build (NULL, "nop", "");
7325 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7326 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7330 /* Itbl support may require additional care here. */
7331 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7332 BFD_RELOC_LO16, AT);
7333 offset_expr.X_add_number += 4;
7335 /* Set mips_optimize to 2 to avoid inserting an undesired
7337 hold_mips_optimize = mips_optimize;
7339 /* Itbl support may require additional care here. */
7340 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7341 BFD_RELOC_LO16, AT);
7342 mips_optimize = hold_mips_optimize;
7351 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7354 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7356 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7357 if (!HAVE_64BIT_GPRS)
7359 offset_expr.X_add_number += 4;
7360 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7361 BFD_RELOC_LO16, breg);
7365 /* New code added to support COPZ instructions.
7366 This code builds table entries out of the macros in mip_opcodes.
7367 R4000 uses interlocks to handle coproc delays.
7368 Other chips (like the R3000) require nops to be inserted for delays.
7370 FIXME: Currently, we require that the user handle delays.
7371 In order to fill delay slots for non-interlocked chips,
7372 we must have a way to specify delays based on the coprocessor.
7373 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7374 What are the side-effects of the cop instruction?
7375 What cache support might we have and what are its effects?
7376 Both coprocessor & memory require delays. how long???
7377 What registers are read/set/modified?
7379 If an itbl is provided to interpret cop instructions,
7380 this knowledge can be encoded in the itbl spec. */
7394 if (NO_ISA_COP (mips_opts.arch)
7395 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7397 as_bad (_("opcode not supported on this processor: %s"),
7398 mips_cpu_info_from_arch (mips_opts.arch)->name);
7402 /* For now we just do C (same as Cz). The parameter will be
7403 stored in insn_opcode by mips_ip. */
7404 macro_build (NULL, s, "C", ip->insn_opcode);
7408 move_register (dreg, sreg);
7411 #ifdef LOSING_COMPILER
7413 /* Try and see if this is a new itbl instruction.
7414 This code builds table entries out of the macros in mip_opcodes.
7415 FIXME: For now we just assemble the expression and pass it's
7416 value along as a 32-bit immediate.
7417 We may want to have the assembler assemble this value,
7418 so that we gain the assembler's knowledge of delay slots,
7420 Would it be more efficient to use mask (id) here? */
7421 if (itbl_have_entries
7422 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7424 s = ip->insn_mo->name;
7426 coproc = ITBL_DECODE_PNUM (immed_expr);;
7427 macro_build (&immed_expr, s, "C");
7433 if (!mips_opts.at && used_at)
7434 as_bad (_("Macro used $at after \".set noat\""));
7438 macro2 (struct mips_cl_insn *ip)
7440 unsigned int treg, sreg, dreg, breg;
7441 unsigned int tempreg;
7455 bfd_reloc_code_real_type r;
7457 treg = (ip->insn_opcode >> 16) & 0x1f;
7458 dreg = (ip->insn_opcode >> 11) & 0x1f;
7459 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7460 mask = ip->insn_mo->mask;
7462 expr1.X_op = O_constant;
7463 expr1.X_op_symbol = NULL;
7464 expr1.X_add_symbol = NULL;
7465 expr1.X_add_number = 1;
7469 #endif /* LOSING_COMPILER */
7474 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7475 macro_build (NULL, "mflo", "d", dreg);
7481 /* The MIPS assembler some times generates shifts and adds. I'm
7482 not trying to be that fancy. GCC should do this for us
7485 load_register (AT, &imm_expr, dbl);
7486 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7487 macro_build (NULL, "mflo", "d", dreg);
7503 load_register (AT, &imm_expr, dbl);
7504 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7505 macro_build (NULL, "mflo", "d", dreg);
7506 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7507 macro_build (NULL, "mfhi", "d", AT);
7509 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7512 expr1.X_add_number = 8;
7513 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7514 macro_build (NULL, "nop", "", 0);
7515 macro_build (NULL, "break", "c", 6);
7518 macro_build (NULL, "mflo", "d", dreg);
7534 load_register (AT, &imm_expr, dbl);
7535 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7536 sreg, imm ? AT : treg);
7537 macro_build (NULL, "mfhi", "d", AT);
7538 macro_build (NULL, "mflo", "d", dreg);
7540 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7543 expr1.X_add_number = 8;
7544 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7545 macro_build (NULL, "nop", "", 0);
7546 macro_build (NULL, "break", "c", 6);
7552 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7563 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7564 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7568 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7569 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7570 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7571 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7575 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7586 macro_build (NULL, "negu", "d,w", tempreg, treg);
7587 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7591 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7592 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7593 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7594 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7603 if (imm_expr.X_op != O_constant)
7604 as_bad (_("Improper rotate count"));
7605 rot = imm_expr.X_add_number & 0x3f;
7606 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7608 rot = (64 - rot) & 0x3f;
7610 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7612 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7617 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7620 l = (rot < 0x20) ? "dsll" : "dsll32";
7621 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7624 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7625 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7626 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7634 if (imm_expr.X_op != O_constant)
7635 as_bad (_("Improper rotate count"));
7636 rot = imm_expr.X_add_number & 0x1f;
7637 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7639 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7644 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7648 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7649 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7650 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7655 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7657 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7661 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7662 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7663 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7664 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7668 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7670 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7674 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7675 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7676 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7677 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7686 if (imm_expr.X_op != O_constant)
7687 as_bad (_("Improper rotate count"));
7688 rot = imm_expr.X_add_number & 0x3f;
7689 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7692 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7694 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7699 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7702 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7703 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7706 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7707 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7708 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7716 if (imm_expr.X_op != O_constant)
7717 as_bad (_("Improper rotate count"));
7718 rot = imm_expr.X_add_number & 0x1f;
7719 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7721 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7726 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7730 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7731 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7732 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7737 gas_assert (mips_opts.isa == ISA_MIPS1);
7738 /* Even on a big endian machine $fn comes before $fn+1. We have
7739 to adjust when storing to memory. */
7740 macro_build (&offset_expr, "swc1", "T,o(b)",
7741 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7742 offset_expr.X_add_number += 4;
7743 macro_build (&offset_expr, "swc1", "T,o(b)",
7744 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7749 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7751 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7754 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7755 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7760 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7762 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7767 as_warn (_("Instruction %s: result is always false"),
7769 move_register (dreg, 0);
7772 if (CPU_HAS_SEQ (mips_opts.arch)
7773 && -512 <= imm_expr.X_add_number
7774 && imm_expr.X_add_number < 512)
7776 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7777 (int) imm_expr.X_add_number);
7780 if (imm_expr.X_op == O_constant
7781 && imm_expr.X_add_number >= 0
7782 && imm_expr.X_add_number < 0x10000)
7784 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7786 else if (imm_expr.X_op == O_constant
7787 && imm_expr.X_add_number > -0x8000
7788 && imm_expr.X_add_number < 0)
7790 imm_expr.X_add_number = -imm_expr.X_add_number;
7791 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7792 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7794 else if (CPU_HAS_SEQ (mips_opts.arch))
7797 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7798 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7803 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7804 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7807 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7810 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7816 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7817 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7820 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7822 if (imm_expr.X_op == O_constant
7823 && imm_expr.X_add_number >= -0x8000
7824 && imm_expr.X_add_number < 0x8000)
7826 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7827 dreg, sreg, BFD_RELOC_LO16);
7831 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7832 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7836 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7839 case M_SGT: /* sreg > treg <==> treg < sreg */
7845 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7848 case M_SGT_I: /* sreg > I <==> I < sreg */
7855 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7856 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7859 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7865 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7866 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7869 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7876 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7877 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7878 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7882 if (imm_expr.X_op == O_constant
7883 && imm_expr.X_add_number >= -0x8000
7884 && imm_expr.X_add_number < 0x8000)
7886 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7890 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7891 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7895 if (imm_expr.X_op == O_constant
7896 && imm_expr.X_add_number >= -0x8000
7897 && imm_expr.X_add_number < 0x8000)
7899 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7904 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7905 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7910 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7912 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7915 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7916 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7921 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7923 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7928 as_warn (_("Instruction %s: result is always true"),
7930 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7931 dreg, 0, BFD_RELOC_LO16);
7934 if (CPU_HAS_SEQ (mips_opts.arch)
7935 && -512 <= imm_expr.X_add_number
7936 && imm_expr.X_add_number < 512)
7938 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7939 (int) imm_expr.X_add_number);
7942 if (imm_expr.X_op == O_constant
7943 && imm_expr.X_add_number >= 0
7944 && imm_expr.X_add_number < 0x10000)
7946 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7948 else if (imm_expr.X_op == O_constant
7949 && imm_expr.X_add_number > -0x8000
7950 && imm_expr.X_add_number < 0)
7952 imm_expr.X_add_number = -imm_expr.X_add_number;
7953 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7954 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7956 else if (CPU_HAS_SEQ (mips_opts.arch))
7959 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7960 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7965 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7966 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7969 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7975 if (imm_expr.X_op == O_constant
7976 && imm_expr.X_add_number > -0x8000
7977 && imm_expr.X_add_number <= 0x8000)
7979 imm_expr.X_add_number = -imm_expr.X_add_number;
7980 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7981 dreg, sreg, BFD_RELOC_LO16);
7985 load_register (AT, &imm_expr, dbl);
7986 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7992 if (imm_expr.X_op == O_constant
7993 && imm_expr.X_add_number > -0x8000
7994 && imm_expr.X_add_number <= 0x8000)
7996 imm_expr.X_add_number = -imm_expr.X_add_number;
7997 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7998 dreg, sreg, BFD_RELOC_LO16);
8002 load_register (AT, &imm_expr, dbl);
8003 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8025 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8026 macro_build (NULL, s, "s,t", sreg, AT);
8031 gas_assert (mips_opts.isa == ISA_MIPS1);
8033 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8034 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8037 * Is the double cfc1 instruction a bug in the mips assembler;
8038 * or is there a reason for it?
8041 macro_build (NULL, "cfc1", "t,G", treg, RA);
8042 macro_build (NULL, "cfc1", "t,G", treg, RA);
8043 macro_build (NULL, "nop", "");
8044 expr1.X_add_number = 3;
8045 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8046 expr1.X_add_number = 2;
8047 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8048 macro_build (NULL, "ctc1", "t,G", AT, RA);
8049 macro_build (NULL, "nop", "");
8050 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8052 macro_build (NULL, "ctc1", "t,G", treg, RA);
8053 macro_build (NULL, "nop", "");
8064 if (offset_expr.X_add_number >= 0x7fff)
8065 as_bad (_("operand overflow"));
8066 if (! target_big_endian)
8067 ++offset_expr.X_add_number;
8068 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8069 if (! target_big_endian)
8070 --offset_expr.X_add_number;
8072 ++offset_expr.X_add_number;
8073 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8074 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8075 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8088 if (offset_expr.X_add_number >= 0x8000 - off)
8089 as_bad (_("operand overflow"));
8097 if (! target_big_endian)
8098 offset_expr.X_add_number += off;
8099 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8100 if (! target_big_endian)
8101 offset_expr.X_add_number -= off;
8103 offset_expr.X_add_number += off;
8104 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8106 /* If necessary, move the result in tempreg the final destination. */
8107 if (treg == tempreg)
8109 /* Protect second load's delay slot. */
8111 move_register (treg, tempreg);
8125 load_address (AT, &offset_expr, &used_at);
8127 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8128 if (! target_big_endian)
8129 expr1.X_add_number = off;
8131 expr1.X_add_number = 0;
8132 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8133 if (! target_big_endian)
8134 expr1.X_add_number = 0;
8136 expr1.X_add_number = off;
8137 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8143 load_address (AT, &offset_expr, &used_at);
8145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8146 if (target_big_endian)
8147 expr1.X_add_number = 0;
8148 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8149 treg, BFD_RELOC_LO16, AT);
8150 if (target_big_endian)
8151 expr1.X_add_number = 1;
8153 expr1.X_add_number = 0;
8154 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8155 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8156 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8161 if (offset_expr.X_add_number >= 0x7fff)
8162 as_bad (_("operand overflow"));
8163 if (target_big_endian)
8164 ++offset_expr.X_add_number;
8165 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8166 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8167 if (target_big_endian)
8168 --offset_expr.X_add_number;
8170 ++offset_expr.X_add_number;
8171 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8184 if (offset_expr.X_add_number >= 0x8000 - off)
8185 as_bad (_("operand overflow"));
8186 if (! target_big_endian)
8187 offset_expr.X_add_number += off;
8188 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8189 if (! target_big_endian)
8190 offset_expr.X_add_number -= off;
8192 offset_expr.X_add_number += off;
8193 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8207 load_address (AT, &offset_expr, &used_at);
8209 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8210 if (! target_big_endian)
8211 expr1.X_add_number = off;
8213 expr1.X_add_number = 0;
8214 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8215 if (! target_big_endian)
8216 expr1.X_add_number = 0;
8218 expr1.X_add_number = off;
8219 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8224 load_address (AT, &offset_expr, &used_at);
8226 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8227 if (! target_big_endian)
8228 expr1.X_add_number = 0;
8229 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8230 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8231 if (! target_big_endian)
8232 expr1.X_add_number = 1;
8234 expr1.X_add_number = 0;
8235 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8236 if (! target_big_endian)
8237 expr1.X_add_number = 0;
8239 expr1.X_add_number = 1;
8240 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8241 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8242 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8246 /* FIXME: Check if this is one of the itbl macros, since they
8247 are added dynamically. */
8248 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8251 if (!mips_opts.at && used_at)
8252 as_bad (_("Macro used $at after \".set noat\""));
8255 /* Implement macros in mips16 mode. */
8258 mips16_macro (struct mips_cl_insn *ip)
8261 int xreg, yreg, zreg, tmp;
8264 const char *s, *s2, *s3;
8266 mask = ip->insn_mo->mask;
8268 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8269 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8270 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8272 expr1.X_op = O_constant;
8273 expr1.X_op_symbol = NULL;
8274 expr1.X_add_symbol = NULL;
8275 expr1.X_add_number = 1;
8295 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8296 expr1.X_add_number = 2;
8297 macro_build (&expr1, "bnez", "x,p", yreg);
8298 macro_build (NULL, "break", "6", 7);
8300 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8301 since that causes an overflow. We should do that as well,
8302 but I don't see how to do the comparisons without a temporary
8305 macro_build (NULL, s, "x", zreg);
8325 macro_build (NULL, s, "0,x,y", xreg, yreg);
8326 expr1.X_add_number = 2;
8327 macro_build (&expr1, "bnez", "x,p", yreg);
8328 macro_build (NULL, "break", "6", 7);
8330 macro_build (NULL, s2, "x", zreg);
8336 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8337 macro_build (NULL, "mflo", "x", zreg);
8345 if (imm_expr.X_op != O_constant)
8346 as_bad (_("Unsupported large constant"));
8347 imm_expr.X_add_number = -imm_expr.X_add_number;
8348 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8352 if (imm_expr.X_op != O_constant)
8353 as_bad (_("Unsupported large constant"));
8354 imm_expr.X_add_number = -imm_expr.X_add_number;
8355 macro_build (&imm_expr, "addiu", "x,k", xreg);
8359 if (imm_expr.X_op != O_constant)
8360 as_bad (_("Unsupported large constant"));
8361 imm_expr.X_add_number = -imm_expr.X_add_number;
8362 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8384 goto do_reverse_branch;
8388 goto do_reverse_branch;
8400 goto do_reverse_branch;
8411 macro_build (NULL, s, "x,y", xreg, yreg);
8412 macro_build (&offset_expr, s2, "p");
8439 goto do_addone_branch_i;
8444 goto do_addone_branch_i;
8459 goto do_addone_branch_i;
8466 if (imm_expr.X_op != O_constant)
8467 as_bad (_("Unsupported large constant"));
8468 ++imm_expr.X_add_number;
8471 macro_build (&imm_expr, s, s3, xreg);
8472 macro_build (&offset_expr, s2, "p");
8476 expr1.X_add_number = 0;
8477 macro_build (&expr1, "slti", "x,8", yreg);
8479 move_register (xreg, yreg);
8480 expr1.X_add_number = 2;
8481 macro_build (&expr1, "bteqz", "p");
8482 macro_build (NULL, "neg", "x,w", xreg, xreg);
8486 /* For consistency checking, verify that all bits are specified either
8487 by the match/mask part of the instruction definition, or by the
8490 validate_mips_insn (const struct mips_opcode *opc)
8492 const char *p = opc->args;
8494 unsigned long used_bits = opc->mask;
8496 if ((used_bits & opc->match) != opc->match)
8498 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8499 opc->name, opc->args);
8502 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8512 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8513 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8514 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8515 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8516 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8517 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8518 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8519 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8520 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8521 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8522 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8523 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8524 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8526 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8527 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8528 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8529 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8530 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8531 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8532 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8533 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8534 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8535 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8538 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8539 c, opc->name, opc->args);
8543 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8544 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8546 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8547 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8548 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8549 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8551 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8552 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8554 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8555 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8557 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8558 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8559 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8560 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8561 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8562 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8563 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8564 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8565 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8566 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8567 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8568 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8569 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8570 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8571 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8572 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8573 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8575 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8576 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8577 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8578 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8580 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8581 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8582 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8583 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8584 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8585 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8586 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8587 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8588 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8591 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8592 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8593 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8594 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8595 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8598 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8599 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8600 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8601 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8602 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8603 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8604 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8605 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8606 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8607 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8608 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8609 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8610 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8611 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8612 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8613 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8614 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8615 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8617 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8618 c, opc->name, opc->args);
8622 if (used_bits != 0xffffffff)
8624 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8625 ~used_bits & 0xffffffff, opc->name, opc->args);
8631 /* UDI immediates. */
8639 static const struct mips_immed mips_immed[] = {
8640 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8641 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8642 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8643 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8647 /* Check whether an odd floating-point register is allowed. */
8649 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8651 const char *s = insn->name;
8653 if (insn->pinfo == INSN_MACRO)
8654 /* Let a macro pass, we'll catch it later when it is expanded. */
8657 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8659 /* Allow odd registers for single-precision ops. */
8660 switch (insn->pinfo & (FP_S | FP_D))
8664 return 1; /* both single precision - ok */
8666 return 0; /* both double precision - fail */
8671 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8672 s = strchr (insn->name, '.');
8674 s = s != NULL ? strchr (s + 1, '.') : NULL;
8675 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8678 /* Single-precision coprocessor loads and moves are OK too. */
8679 if ((insn->pinfo & FP_S)
8680 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8681 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8687 /* This routine assembles an instruction into its binary format. As a
8688 side effect, it sets one of the global variables imm_reloc or
8689 offset_reloc to the type of relocation to do if one of the operands
8690 is an address expression. */
8693 mips_ip (char *str, struct mips_cl_insn *ip)
8698 struct mips_opcode *insn;
8701 unsigned int lastregno = 0;
8702 unsigned int lastpos = 0;
8703 unsigned int limlo, limhi;
8706 offsetT min_range, max_range;
8712 /* If the instruction contains a '.', we first try to match an instruction
8713 including the '.'. Then we try again without the '.'. */
8715 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8718 /* If we stopped on whitespace, then replace the whitespace with null for
8719 the call to hash_find. Save the character we replaced just in case we
8720 have to re-parse the instruction. */
8727 insn = (struct mips_opcode *) hash_find (op_hash, str);
8729 /* If we didn't find the instruction in the opcode table, try again, but
8730 this time with just the instruction up to, but not including the
8734 /* Restore the character we overwrite above (if any). */
8738 /* Scan up to the first '.' or whitespace. */
8740 *s != '\0' && *s != '.' && !ISSPACE (*s);
8744 /* If we did not find a '.', then we can quit now. */
8747 insn_error = _("unrecognized opcode");
8751 /* Lookup the instruction in the hash table. */
8753 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8755 insn_error = _("unrecognized opcode");
8765 gas_assert (strcmp (insn->name, str) == 0);
8767 ok = is_opcode_valid (insn);
8770 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8771 && strcmp (insn->name, insn[1].name) == 0)
8780 static char buf[100];
8782 _("opcode not supported on this processor: %s (%s)"),
8783 mips_cpu_info_from_arch (mips_opts.arch)->name,
8784 mips_cpu_info_from_isa (mips_opts.isa)->name);
8793 create_insn (ip, insn);
8796 lastregno = 0xffffffff;
8797 for (args = insn->args;; ++args)
8801 s += strspn (s, " \t");
8805 case '\0': /* end of args */
8810 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8811 my_getExpression (&imm_expr, s);
8812 check_absolute_expr (ip, &imm_expr);
8813 if ((unsigned long) imm_expr.X_add_number != 1
8814 && (unsigned long) imm_expr.X_add_number != 3)
8816 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8817 (unsigned long) imm_expr.X_add_number);
8819 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8820 imm_expr.X_op = O_absent;
8824 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8825 my_getExpression (&imm_expr, s);
8826 check_absolute_expr (ip, &imm_expr);
8827 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8829 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8830 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8832 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8833 imm_expr.X_op = O_absent;
8837 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8838 my_getExpression (&imm_expr, s);
8839 check_absolute_expr (ip, &imm_expr);
8840 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8842 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8843 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8845 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8846 imm_expr.X_op = O_absent;
8850 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8851 my_getExpression (&imm_expr, s);
8852 check_absolute_expr (ip, &imm_expr);
8853 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8855 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8856 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8858 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8859 imm_expr.X_op = O_absent;
8863 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8864 my_getExpression (&imm_expr, s);
8865 check_absolute_expr (ip, &imm_expr);
8866 if (imm_expr.X_add_number & ~OP_MASK_RS)
8868 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8869 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8871 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8872 imm_expr.X_op = O_absent;
8876 case '7': /* four dsp accumulators in bits 11,12 */
8877 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8878 s[3] >= '0' && s[3] <= '3')
8882 INSERT_OPERAND (DSPACC, *ip, regno);
8886 as_bad (_("Invalid dsp acc register"));
8889 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8890 my_getExpression (&imm_expr, s);
8891 check_absolute_expr (ip, &imm_expr);
8892 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8894 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8896 (unsigned long) imm_expr.X_add_number);
8898 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8899 imm_expr.X_op = O_absent;
8903 case '9': /* four dsp accumulators in bits 21,22 */
8904 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8905 s[3] >= '0' && s[3] <= '3')
8909 INSERT_OPERAND (DSPACC_S, *ip, regno);
8913 as_bad (_("Invalid dsp acc register"));
8916 case '0': /* dsp 6-bit signed immediate in bit 20 */
8917 my_getExpression (&imm_expr, s);
8918 check_absolute_expr (ip, &imm_expr);
8919 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8920 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8921 if (imm_expr.X_add_number < min_range ||
8922 imm_expr.X_add_number > max_range)
8924 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8925 (long) min_range, (long) max_range,
8926 (long) imm_expr.X_add_number);
8928 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8929 imm_expr.X_op = O_absent;
8933 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8934 my_getExpression (&imm_expr, s);
8935 check_absolute_expr (ip, &imm_expr);
8936 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8938 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8940 (unsigned long) imm_expr.X_add_number);
8942 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8943 imm_expr.X_op = O_absent;
8947 case ':': /* dsp 7-bit signed immediate in bit 19 */
8948 my_getExpression (&imm_expr, s);
8949 check_absolute_expr (ip, &imm_expr);
8950 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8951 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8952 if (imm_expr.X_add_number < min_range ||
8953 imm_expr.X_add_number > max_range)
8955 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8956 (long) min_range, (long) max_range,
8957 (long) imm_expr.X_add_number);
8959 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8960 imm_expr.X_op = O_absent;
8964 case '@': /* dsp 10-bit signed immediate in bit 16 */
8965 my_getExpression (&imm_expr, s);
8966 check_absolute_expr (ip, &imm_expr);
8967 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8968 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8969 if (imm_expr.X_add_number < min_range ||
8970 imm_expr.X_add_number > max_range)
8972 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8973 (long) min_range, (long) max_range,
8974 (long) imm_expr.X_add_number);
8976 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8977 imm_expr.X_op = O_absent;
8981 case '!': /* MT usermode flag bit. */
8982 my_getExpression (&imm_expr, s);
8983 check_absolute_expr (ip, &imm_expr);
8984 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8985 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8986 (unsigned long) imm_expr.X_add_number);
8987 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8988 imm_expr.X_op = O_absent;
8992 case '$': /* MT load high flag bit. */
8993 my_getExpression (&imm_expr, s);
8994 check_absolute_expr (ip, &imm_expr);
8995 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8996 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8997 (unsigned long) imm_expr.X_add_number);
8998 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8999 imm_expr.X_op = O_absent;
9003 case '*': /* four dsp accumulators in bits 18,19 */
9004 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9005 s[3] >= '0' && s[3] <= '3')
9009 INSERT_OPERAND (MTACC_T, *ip, regno);
9013 as_bad (_("Invalid dsp/smartmips acc register"));
9016 case '&': /* four dsp accumulators in bits 13,14 */
9017 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9018 s[3] >= '0' && s[3] <= '3')
9022 INSERT_OPERAND (MTACC_D, *ip, regno);
9026 as_bad (_("Invalid dsp/smartmips acc register"));
9038 INSERT_OPERAND (RS, *ip, lastregno);
9042 INSERT_OPERAND (RT, *ip, lastregno);
9046 INSERT_OPERAND (FT, *ip, lastregno);
9050 INSERT_OPERAND (FS, *ip, lastregno);
9056 /* Handle optional base register.
9057 Either the base register is omitted or
9058 we must have a left paren. */
9059 /* This is dependent on the next operand specifier
9060 is a base register specification. */
9061 gas_assert (args[1] == 'b' || args[1] == '5'
9062 || args[1] == '-' || args[1] == '4');
9066 case ')': /* these must match exactly */
9073 case '+': /* Opcode extension character. */
9076 case '1': /* UDI immediates. */
9081 const struct mips_immed *imm = mips_immed;
9083 while (imm->type && imm->type != *args)
9087 my_getExpression (&imm_expr, s);
9088 check_absolute_expr (ip, &imm_expr);
9089 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9091 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9092 imm->desc ? imm->desc : ip->insn_mo->name,
9093 (unsigned long) imm_expr.X_add_number,
9094 (unsigned long) imm_expr.X_add_number);
9095 imm_expr.X_add_number &= imm->mask;
9097 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9099 imm_expr.X_op = O_absent;
9104 case 'A': /* ins/ext position, becomes LSB. */
9113 my_getExpression (&imm_expr, s);
9114 check_absolute_expr (ip, &imm_expr);
9115 if ((unsigned long) imm_expr.X_add_number < limlo
9116 || (unsigned long) imm_expr.X_add_number > limhi)
9118 as_bad (_("Improper position (%lu)"),
9119 (unsigned long) imm_expr.X_add_number);
9120 imm_expr.X_add_number = limlo;
9122 lastpos = imm_expr.X_add_number;
9123 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9124 imm_expr.X_op = O_absent;
9128 case 'B': /* ins size, becomes MSB. */
9137 my_getExpression (&imm_expr, s);
9138 check_absolute_expr (ip, &imm_expr);
9139 /* Check for negative input so that small negative numbers
9140 will not succeed incorrectly. The checks against
9141 (pos+size) transitively check "size" itself,
9142 assuming that "pos" is reasonable. */
9143 if ((long) imm_expr.X_add_number < 0
9144 || ((unsigned long) imm_expr.X_add_number
9146 || ((unsigned long) imm_expr.X_add_number
9149 as_bad (_("Improper insert size (%lu, position %lu)"),
9150 (unsigned long) imm_expr.X_add_number,
9151 (unsigned long) lastpos);
9152 imm_expr.X_add_number = limlo - lastpos;
9154 INSERT_OPERAND (INSMSB, *ip,
9155 lastpos + imm_expr.X_add_number - 1);
9156 imm_expr.X_op = O_absent;
9160 case 'C': /* ext size, becomes MSBD. */
9173 my_getExpression (&imm_expr, s);
9174 check_absolute_expr (ip, &imm_expr);
9175 /* Check for negative input so that small negative numbers
9176 will not succeed incorrectly. The checks against
9177 (pos+size) transitively check "size" itself,
9178 assuming that "pos" is reasonable. */
9179 if ((long) imm_expr.X_add_number < 0
9180 || ((unsigned long) imm_expr.X_add_number
9182 || ((unsigned long) imm_expr.X_add_number
9185 as_bad (_("Improper extract size (%lu, position %lu)"),
9186 (unsigned long) imm_expr.X_add_number,
9187 (unsigned long) lastpos);
9188 imm_expr.X_add_number = limlo - lastpos;
9190 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9191 imm_expr.X_op = O_absent;
9196 /* +D is for disassembly only; never match. */
9200 /* "+I" is like "I", except that imm2_expr is used. */
9201 my_getExpression (&imm2_expr, s);
9202 if (imm2_expr.X_op != O_big
9203 && imm2_expr.X_op != O_constant)
9204 insn_error = _("absolute expression required");
9205 if (HAVE_32BIT_GPRS)
9206 normalize_constant_expr (&imm2_expr);
9210 case 'T': /* Coprocessor register. */
9211 /* +T is for disassembly only; never match. */
9214 case 't': /* Coprocessor register number. */
9215 if (s[0] == '$' && ISDIGIT (s[1]))
9225 while (ISDIGIT (*s));
9227 as_bad (_("Invalid register number (%d)"), regno);
9230 INSERT_OPERAND (RT, *ip, regno);
9235 as_bad (_("Invalid coprocessor 0 register number"));
9239 /* bbit[01] and bbit[01]32 bit index. Give error if index
9240 is not in the valid range. */
9241 my_getExpression (&imm_expr, s);
9242 check_absolute_expr (ip, &imm_expr);
9243 if ((unsigned) imm_expr.X_add_number > 31)
9245 as_bad (_("Improper bit index (%lu)"),
9246 (unsigned long) imm_expr.X_add_number);
9247 imm_expr.X_add_number = 0;
9249 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9250 imm_expr.X_op = O_absent;
9255 /* bbit[01] bit index when bbit is used but we generate
9256 bbit[01]32 because the index is over 32. Move to the
9257 next candidate if index is not in the valid range. */
9258 my_getExpression (&imm_expr, s);
9259 check_absolute_expr (ip, &imm_expr);
9260 if ((unsigned) imm_expr.X_add_number < 32
9261 || (unsigned) imm_expr.X_add_number > 63)
9263 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9264 imm_expr.X_op = O_absent;
9269 /* cins, cins32, exts and exts32 position field. Give error
9270 if it's not in the valid range. */
9271 my_getExpression (&imm_expr, s);
9272 check_absolute_expr (ip, &imm_expr);
9273 if ((unsigned) imm_expr.X_add_number > 31)
9275 as_bad (_("Improper position (%lu)"),
9276 (unsigned long) imm_expr.X_add_number);
9277 imm_expr.X_add_number = 0;
9279 /* Make the pos explicit to simplify +S. */
9280 lastpos = imm_expr.X_add_number + 32;
9281 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9282 imm_expr.X_op = O_absent;
9287 /* cins, cins32, exts and exts32 position field. Move to
9288 the next candidate if it's not in the valid range. */
9289 my_getExpression (&imm_expr, s);
9290 check_absolute_expr (ip, &imm_expr);
9291 if ((unsigned) imm_expr.X_add_number < 32
9292 || (unsigned) imm_expr.X_add_number > 63)
9294 lastpos = imm_expr.X_add_number;
9295 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9296 imm_expr.X_op = O_absent;
9301 /* cins and exts length-minus-one field. */
9302 my_getExpression (&imm_expr, s);
9303 check_absolute_expr (ip, &imm_expr);
9304 if ((unsigned long) imm_expr.X_add_number > 31)
9306 as_bad (_("Improper size (%lu)"),
9307 (unsigned long) imm_expr.X_add_number);
9308 imm_expr.X_add_number = 0;
9310 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9311 imm_expr.X_op = O_absent;
9316 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9317 length-minus-one field. */
9318 my_getExpression (&imm_expr, s);
9319 check_absolute_expr (ip, &imm_expr);
9320 if ((long) imm_expr.X_add_number < 0
9321 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9323 as_bad (_("Improper size (%lu)"),
9324 (unsigned long) imm_expr.X_add_number);
9325 imm_expr.X_add_number = 0;
9327 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9328 imm_expr.X_op = O_absent;
9333 /* seqi/snei immediate field. */
9334 my_getExpression (&imm_expr, s);
9335 check_absolute_expr (ip, &imm_expr);
9336 if ((long) imm_expr.X_add_number < -512
9337 || (long) imm_expr.X_add_number >= 512)
9339 as_bad (_("Improper immediate (%ld)"),
9340 (long) imm_expr.X_add_number);
9341 imm_expr.X_add_number = 0;
9343 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9344 imm_expr.X_op = O_absent;
9349 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9350 *args, insn->name, insn->args);
9351 /* Further processing is fruitless. */
9356 case '<': /* must be at least one digit */
9358 * According to the manual, if the shift amount is greater
9359 * than 31 or less than 0, then the shift amount should be
9360 * mod 32. In reality the mips assembler issues an error.
9361 * We issue a warning and mask out all but the low 5 bits.
9363 my_getExpression (&imm_expr, s);
9364 check_absolute_expr (ip, &imm_expr);
9365 if ((unsigned long) imm_expr.X_add_number > 31)
9366 as_warn (_("Improper shift amount (%lu)"),
9367 (unsigned long) imm_expr.X_add_number);
9368 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9369 imm_expr.X_op = O_absent;
9373 case '>': /* shift amount minus 32 */
9374 my_getExpression (&imm_expr, s);
9375 check_absolute_expr (ip, &imm_expr);
9376 if ((unsigned long) imm_expr.X_add_number < 32
9377 || (unsigned long) imm_expr.X_add_number > 63)
9379 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9380 imm_expr.X_op = O_absent;
9384 case 'k': /* cache code */
9385 case 'h': /* prefx code */
9386 case '1': /* sync type */
9387 my_getExpression (&imm_expr, s);
9388 check_absolute_expr (ip, &imm_expr);
9389 if ((unsigned long) imm_expr.X_add_number > 31)
9390 as_warn (_("Invalid value for `%s' (%lu)"),
9392 (unsigned long) imm_expr.X_add_number);
9395 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9396 switch (imm_expr.X_add_number)
9405 case 31: /* These are ok. */
9408 default: /* The rest must be changed to 28. */
9409 imm_expr.X_add_number = 28;
9412 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9414 else if (*args == 'h')
9415 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9417 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9418 imm_expr.X_op = O_absent;
9422 case 'c': /* break code */
9423 my_getExpression (&imm_expr, s);
9424 check_absolute_expr (ip, &imm_expr);
9425 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9426 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9428 (unsigned long) imm_expr.X_add_number);
9429 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9430 imm_expr.X_op = O_absent;
9434 case 'q': /* lower break code */
9435 my_getExpression (&imm_expr, s);
9436 check_absolute_expr (ip, &imm_expr);
9437 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9438 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9440 (unsigned long) imm_expr.X_add_number);
9441 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9442 imm_expr.X_op = O_absent;
9446 case 'B': /* 20-bit syscall/break code. */
9447 my_getExpression (&imm_expr, s);
9448 check_absolute_expr (ip, &imm_expr);
9449 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9450 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9452 (unsigned long) imm_expr.X_add_number);
9453 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9454 imm_expr.X_op = O_absent;
9458 case 'C': /* Coprocessor code */
9459 my_getExpression (&imm_expr, s);
9460 check_absolute_expr (ip, &imm_expr);
9461 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9463 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9464 (unsigned long) imm_expr.X_add_number);
9465 imm_expr.X_add_number &= OP_MASK_COPZ;
9467 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9468 imm_expr.X_op = O_absent;
9472 case 'J': /* 19-bit wait code. */
9473 my_getExpression (&imm_expr, s);
9474 check_absolute_expr (ip, &imm_expr);
9475 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9477 as_warn (_("Illegal 19-bit code (%lu)"),
9478 (unsigned long) imm_expr.X_add_number);
9479 imm_expr.X_add_number &= OP_MASK_CODE19;
9481 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9482 imm_expr.X_op = O_absent;
9486 case 'P': /* Performance register. */
9487 my_getExpression (&imm_expr, s);
9488 check_absolute_expr (ip, &imm_expr);
9489 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9490 as_warn (_("Invalid performance register (%lu)"),
9491 (unsigned long) imm_expr.X_add_number);
9492 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9493 imm_expr.X_op = O_absent;
9497 case 'G': /* Coprocessor destination register. */
9498 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9499 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, ®no);
9501 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
9502 INSERT_OPERAND (RD, *ip, regno);
9511 case 'b': /* base register */
9512 case 'd': /* destination register */
9513 case 's': /* source register */
9514 case 't': /* target register */
9515 case 'r': /* both target and source */
9516 case 'v': /* both dest and source */
9517 case 'w': /* both dest and target */
9518 case 'E': /* coprocessor target register */
9519 case 'K': /* 'rdhwr' destination register */
9520 case 'x': /* ignore register name */
9521 case 'z': /* must be zero register */
9522 case 'U': /* destination register (clo/clz). */
9523 case 'g': /* coprocessor destination register */
9525 if (*args == 'E' || *args == 'K')
9526 ok = reg_lookup (&s, RTYPE_NUM, ®no);
9529 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no);
9530 if (regno == AT && mips_opts.at)
9532 if (mips_opts.at == ATREG)
9533 as_warn (_("used $at without \".set noat\""));
9535 as_warn (_("used $%u with \".set at=$%u\""),
9536 regno, mips_opts.at);
9546 if (c == 'r' || c == 'v' || c == 'w')
9553 /* 'z' only matches $0. */
9554 if (c == 'z' && regno != 0)
9557 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9559 if (regno == lastregno)
9561 insn_error = _("source and destination must be different");
9564 if (regno == 31 && lastregno == 0xffffffff)
9566 insn_error = _("a destination register must be supplied");
9570 /* Now that we have assembled one operand, we use the args string
9571 * to figure out where it goes in the instruction. */
9578 INSERT_OPERAND (RS, *ip, regno);
9584 INSERT_OPERAND (RD, *ip, regno);
9587 INSERT_OPERAND (RD, *ip, regno);
9588 INSERT_OPERAND (RT, *ip, regno);
9593 INSERT_OPERAND (RT, *ip, regno);
9596 /* This case exists because on the r3000 trunc
9597 expands into a macro which requires a gp
9598 register. On the r6000 or r4000 it is
9599 assembled into a single instruction which
9600 ignores the register. Thus the insn version
9601 is MIPS_ISA2 and uses 'x', and the macro
9602 version is MIPS_ISA1 and uses 't'. */
9605 /* This case is for the div instruction, which
9606 acts differently if the destination argument
9607 is $0. This only matches $0, and is checked
9608 outside the switch. */
9611 /* Itbl operand; not yet implemented. FIXME ?? */
9613 /* What about all other operands like 'i', which
9614 can be specified in the opcode table? */
9623 INSERT_OPERAND (RS, *ip, lastregno);
9626 INSERT_OPERAND (RT, *ip, lastregno);
9631 case 'O': /* MDMX alignment immediate constant. */
9632 my_getExpression (&imm_expr, s);
9633 check_absolute_expr (ip, &imm_expr);
9634 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9635 as_warn (_("Improper align amount (%ld), using low bits"),
9636 (long) imm_expr.X_add_number);
9637 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9638 imm_expr.X_op = O_absent;
9642 case 'Q': /* MDMX vector, element sel, or const. */
9645 /* MDMX Immediate. */
9646 my_getExpression (&imm_expr, s);
9647 check_absolute_expr (ip, &imm_expr);
9648 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9649 as_warn (_("Invalid MDMX Immediate (%ld)"),
9650 (long) imm_expr.X_add_number);
9651 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9652 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9653 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9655 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9656 imm_expr.X_op = O_absent;
9660 /* Not MDMX Immediate. Fall through. */
9661 case 'X': /* MDMX destination register. */
9662 case 'Y': /* MDMX source register. */
9663 case 'Z': /* MDMX target register. */
9665 case 'D': /* floating point destination register */
9666 case 'S': /* floating point source register */
9667 case 'T': /* floating point target register */
9668 case 'R': /* floating point source register */
9673 || (mips_opts.ase_mdmx
9674 && (ip->insn_mo->pinfo & FP_D)
9675 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9676 | INSN_COPROC_MEMORY_DELAY
9677 | INSN_LOAD_COPROC_DELAY
9678 | INSN_LOAD_MEMORY_DELAY
9679 | INSN_STORE_MEMORY))))
9682 if (reg_lookup (&s, rtype, ®no))
9684 if ((regno & 1) != 0
9686 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9687 as_warn (_("Float register should be even, was %d"),
9695 if (c == 'V' || c == 'W')
9706 INSERT_OPERAND (FD, *ip, regno);
9711 INSERT_OPERAND (FS, *ip, regno);
9714 /* This is like 'Z', but also needs to fix the MDMX
9715 vector/scalar select bits. Note that the
9716 scalar immediate case is handled above. */
9719 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9720 int max_el = (is_qh ? 3 : 7);
9722 my_getExpression(&imm_expr, s);
9723 check_absolute_expr (ip, &imm_expr);
9725 if (imm_expr.X_add_number > max_el)
9726 as_bad (_("Bad element selector %ld"),
9727 (long) imm_expr.X_add_number);
9728 imm_expr.X_add_number &= max_el;
9729 ip->insn_opcode |= (imm_expr.X_add_number
9732 imm_expr.X_op = O_absent;
9734 as_warn (_("Expecting ']' found '%s'"), s);
9740 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9741 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9744 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9751 INSERT_OPERAND (FT, *ip, regno);
9754 INSERT_OPERAND (FR, *ip, regno);
9764 INSERT_OPERAND (FS, *ip, lastregno);
9767 INSERT_OPERAND (FT, *ip, lastregno);
9773 my_getExpression (&imm_expr, s);
9774 if (imm_expr.X_op != O_big
9775 && imm_expr.X_op != O_constant)
9776 insn_error = _("absolute expression required");
9777 if (HAVE_32BIT_GPRS)
9778 normalize_constant_expr (&imm_expr);
9783 my_getExpression (&offset_expr, s);
9784 normalize_address_expr (&offset_expr);
9785 *imm_reloc = BFD_RELOC_32;
9798 unsigned char temp[8];
9800 unsigned int length;
9805 /* These only appear as the last operand in an
9806 instruction, and every instruction that accepts
9807 them in any variant accepts them in all variants.
9808 This means we don't have to worry about backing out
9809 any changes if the instruction does not match.
9811 The difference between them is the size of the
9812 floating point constant and where it goes. For 'F'
9813 and 'L' the constant is 64 bits; for 'f' and 'l' it
9814 is 32 bits. Where the constant is placed is based
9815 on how the MIPS assembler does things:
9818 f -- immediate value
9821 The .lit4 and .lit8 sections are only used if
9822 permitted by the -G argument.
9824 The code below needs to know whether the target register
9825 is 32 or 64 bits wide. It relies on the fact 'f' and
9826 'F' are used with GPR-based instructions and 'l' and
9827 'L' are used with FPR-based instructions. */
9829 f64 = *args == 'F' || *args == 'L';
9830 using_gprs = *args == 'F' || *args == 'f';
9832 save_in = input_line_pointer;
9833 input_line_pointer = s;
9834 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9836 s = input_line_pointer;
9837 input_line_pointer = save_in;
9838 if (err != NULL && *err != '\0')
9840 as_bad (_("Bad floating point constant: %s"), err);
9841 memset (temp, '\0', sizeof temp);
9842 length = f64 ? 8 : 4;
9845 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9849 && (g_switch_value < 4
9850 || (temp[0] == 0 && temp[1] == 0)
9851 || (temp[2] == 0 && temp[3] == 0))))
9853 imm_expr.X_op = O_constant;
9854 if (! target_big_endian)
9855 imm_expr.X_add_number = bfd_getl32 (temp);
9857 imm_expr.X_add_number = bfd_getb32 (temp);
9860 && ! mips_disable_float_construction
9861 /* Constants can only be constructed in GPRs and
9862 copied to FPRs if the GPRs are at least as wide
9863 as the FPRs. Force the constant into memory if
9864 we are using 64-bit FPRs but the GPRs are only
9867 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9868 && ((temp[0] == 0 && temp[1] == 0)
9869 || (temp[2] == 0 && temp[3] == 0))
9870 && ((temp[4] == 0 && temp[5] == 0)
9871 || (temp[6] == 0 && temp[7] == 0)))
9873 /* The value is simple enough to load with a couple of
9874 instructions. If using 32-bit registers, set
9875 imm_expr to the high order 32 bits and offset_expr to
9876 the low order 32 bits. Otherwise, set imm_expr to
9877 the entire 64 bit constant. */
9878 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9880 imm_expr.X_op = O_constant;
9881 offset_expr.X_op = O_constant;
9882 if (! target_big_endian)
9884 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9885 offset_expr.X_add_number = bfd_getl32 (temp);
9889 imm_expr.X_add_number = bfd_getb32 (temp);
9890 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9892 if (offset_expr.X_add_number == 0)
9893 offset_expr.X_op = O_absent;
9895 else if (sizeof (imm_expr.X_add_number) > 4)
9897 imm_expr.X_op = O_constant;
9898 if (! target_big_endian)
9899 imm_expr.X_add_number = bfd_getl64 (temp);
9901 imm_expr.X_add_number = bfd_getb64 (temp);
9905 imm_expr.X_op = O_big;
9906 imm_expr.X_add_number = 4;
9907 if (! target_big_endian)
9909 generic_bignum[0] = bfd_getl16 (temp);
9910 generic_bignum[1] = bfd_getl16 (temp + 2);
9911 generic_bignum[2] = bfd_getl16 (temp + 4);
9912 generic_bignum[3] = bfd_getl16 (temp + 6);
9916 generic_bignum[0] = bfd_getb16 (temp + 6);
9917 generic_bignum[1] = bfd_getb16 (temp + 4);
9918 generic_bignum[2] = bfd_getb16 (temp + 2);
9919 generic_bignum[3] = bfd_getb16 (temp);
9925 const char *newname;
9928 /* Switch to the right section. */
9930 subseg = now_subseg;
9933 default: /* unused default case avoids warnings. */
9935 newname = RDATA_SECTION_NAME;
9936 if (g_switch_value >= 8)
9940 newname = RDATA_SECTION_NAME;
9943 gas_assert (g_switch_value >= 4);
9947 new_seg = subseg_new (newname, (subsegT) 0);
9949 bfd_set_section_flags (stdoutput, new_seg,
9954 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9955 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9956 record_alignment (new_seg, 4);
9958 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9960 as_bad (_("Can't use floating point insn in this section"));
9962 /* Set the argument to the current address in the
9964 offset_expr.X_op = O_symbol;
9965 offset_expr.X_add_symbol = symbol_temp_new_now ();
9966 offset_expr.X_add_number = 0;
9968 /* Put the floating point number into the section. */
9969 p = frag_more ((int) length);
9970 memcpy (p, temp, length);
9972 /* Switch back to the original section. */
9973 subseg_set (seg, subseg);
9978 case 'i': /* 16 bit unsigned immediate */
9979 case 'j': /* 16 bit signed immediate */
9980 *imm_reloc = BFD_RELOC_LO16;
9981 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9984 offsetT minval, maxval;
9986 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9987 && strcmp (insn->name, insn[1].name) == 0);
9989 /* If the expression was written as an unsigned number,
9990 only treat it as signed if there are no more
9994 && sizeof (imm_expr.X_add_number) <= 4
9995 && imm_expr.X_op == O_constant
9996 && imm_expr.X_add_number < 0
9997 && imm_expr.X_unsigned
10001 /* For compatibility with older assemblers, we accept
10002 0x8000-0xffff as signed 16-bit numbers when only
10003 signed numbers are allowed. */
10005 minval = 0, maxval = 0xffff;
10007 minval = -0x8000, maxval = 0x7fff;
10009 minval = -0x8000, maxval = 0xffff;
10011 if (imm_expr.X_op != O_constant
10012 || imm_expr.X_add_number < minval
10013 || imm_expr.X_add_number > maxval)
10017 if (imm_expr.X_op == O_constant
10018 || imm_expr.X_op == O_big)
10019 as_bad (_("expression out of range"));
10025 case 'o': /* 16 bit offset */
10026 /* Check whether there is only a single bracketed expression
10027 left. If so, it must be the base register and the
10028 constant must be zero. */
10029 if (*s == '(' && strchr (s + 1, '(') == 0)
10031 offset_expr.X_op = O_constant;
10032 offset_expr.X_add_number = 0;
10036 /* If this value won't fit into a 16 bit offset, then go
10037 find a macro that will generate the 32 bit offset
10039 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10040 && (offset_expr.X_op != O_constant
10041 || offset_expr.X_add_number >= 0x8000
10042 || offset_expr.X_add_number < -0x8000))
10048 case 'p': /* pc relative offset */
10049 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10050 my_getExpression (&offset_expr, s);
10054 case 'u': /* upper 16 bits */
10055 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10056 && imm_expr.X_op == O_constant
10057 && (imm_expr.X_add_number < 0
10058 || imm_expr.X_add_number >= 0x10000))
10059 as_bad (_("lui expression not in range 0..65535"));
10063 case 'a': /* 26 bit address */
10064 my_getExpression (&offset_expr, s);
10066 *offset_reloc = BFD_RELOC_MIPS_JMP;
10069 case 'N': /* 3 bit branch condition code */
10070 case 'M': /* 3 bit compare condition code */
10072 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10073 rtype |= RTYPE_FCC;
10074 if (!reg_lookup (&s, rtype, ®no))
10076 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10077 || strcmp(str + strlen(str) - 5, "any2f") == 0
10078 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10079 && (regno & 1) != 0)
10080 as_warn (_("Condition code register should be even for %s, was %d"),
10082 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10083 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10084 && (regno & 3) != 0)
10085 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10088 INSERT_OPERAND (BCC, *ip, regno);
10090 INSERT_OPERAND (CCC, *ip, regno);
10094 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10105 while (ISDIGIT (*s));
10108 c = 8; /* Invalid sel value. */
10111 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10112 ip->insn_opcode |= c;
10116 /* Must be at least one digit. */
10117 my_getExpression (&imm_expr, s);
10118 check_absolute_expr (ip, &imm_expr);
10120 if ((unsigned long) imm_expr.X_add_number
10121 > (unsigned long) OP_MASK_VECBYTE)
10123 as_bad (_("bad byte vector index (%ld)"),
10124 (long) imm_expr.X_add_number);
10125 imm_expr.X_add_number = 0;
10128 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10129 imm_expr.X_op = O_absent;
10134 my_getExpression (&imm_expr, s);
10135 check_absolute_expr (ip, &imm_expr);
10137 if ((unsigned long) imm_expr.X_add_number
10138 > (unsigned long) OP_MASK_VECALIGN)
10140 as_bad (_("bad byte vector index (%ld)"),
10141 (long) imm_expr.X_add_number);
10142 imm_expr.X_add_number = 0;
10145 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10146 imm_expr.X_op = O_absent;
10151 as_bad (_("bad char = '%c'\n"), *args);
10156 /* Args don't match. */
10157 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10158 !strcmp (insn->name, insn[1].name))
10162 insn_error = _("illegal operands");
10166 *(--argsStart) = save_c;
10167 insn_error = _("illegal operands");
10172 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10174 /* This routine assembles an instruction into its binary format when
10175 assembling for the mips16. As a side effect, it sets one of the
10176 global variables imm_reloc or offset_reloc to the type of
10177 relocation to do if one of the operands is an address expression.
10178 It also sets mips16_small and mips16_ext if the user explicitly
10179 requested a small or extended instruction. */
10182 mips16_ip (char *str, struct mips_cl_insn *ip)
10186 struct mips_opcode *insn;
10188 unsigned int regno;
10189 unsigned int lastregno = 0;
10195 mips16_small = FALSE;
10196 mips16_ext = FALSE;
10198 for (s = str; ISLOWER (*s); ++s)
10210 if (s[1] == 't' && s[2] == ' ')
10213 mips16_small = TRUE;
10217 else if (s[1] == 'e' && s[2] == ' ')
10224 /* Fall through. */
10226 insn_error = _("unknown opcode");
10230 if (mips_opts.noautoextend && ! mips16_ext)
10231 mips16_small = TRUE;
10233 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10235 insn_error = _("unrecognized opcode");
10244 gas_assert (strcmp (insn->name, str) == 0);
10246 ok = is_opcode_valid_16 (insn);
10249 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10250 && strcmp (insn->name, insn[1].name) == 0)
10259 static char buf[100];
10261 _("opcode not supported on this processor: %s (%s)"),
10262 mips_cpu_info_from_arch (mips_opts.arch)->name,
10263 mips_cpu_info_from_isa (mips_opts.isa)->name);
10270 create_insn (ip, insn);
10271 imm_expr.X_op = O_absent;
10272 imm_reloc[0] = BFD_RELOC_UNUSED;
10273 imm_reloc[1] = BFD_RELOC_UNUSED;
10274 imm_reloc[2] = BFD_RELOC_UNUSED;
10275 imm2_expr.X_op = O_absent;
10276 offset_expr.X_op = O_absent;
10277 offset_reloc[0] = BFD_RELOC_UNUSED;
10278 offset_reloc[1] = BFD_RELOC_UNUSED;
10279 offset_reloc[2] = BFD_RELOC_UNUSED;
10280 for (args = insn->args; 1; ++args)
10287 /* In this switch statement we call break if we did not find
10288 a match, continue if we did find a match, or return if we
10297 /* Stuff the immediate value in now, if we can. */
10298 if (imm_expr.X_op == O_constant
10299 && *imm_reloc > BFD_RELOC_UNUSED
10300 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10301 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10302 && insn->pinfo != INSN_MACRO)
10306 switch (*offset_reloc)
10308 case BFD_RELOC_MIPS16_HI16_S:
10309 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10312 case BFD_RELOC_MIPS16_HI16:
10313 tmp = imm_expr.X_add_number >> 16;
10316 case BFD_RELOC_MIPS16_LO16:
10317 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10321 case BFD_RELOC_UNUSED:
10322 tmp = imm_expr.X_add_number;
10328 *offset_reloc = BFD_RELOC_UNUSED;
10330 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10331 tmp, TRUE, mips16_small,
10332 mips16_ext, &ip->insn_opcode,
10333 &ip->use_extend, &ip->extend);
10334 imm_expr.X_op = O_absent;
10335 *imm_reloc = BFD_RELOC_UNUSED;
10349 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10352 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10368 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10370 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10374 /* Fall through. */
10385 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, ®no))
10387 if (c == 'v' || c == 'w')
10390 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10392 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10403 if (c == 'v' || c == 'w')
10405 regno = mips16_to_32_reg_map[lastregno];
10419 regno = mips32_to_16_reg_map[regno];
10424 regno = ILLEGAL_REG;
10429 regno = ILLEGAL_REG;
10434 regno = ILLEGAL_REG;
10439 if (regno == AT && mips_opts.at)
10441 if (mips_opts.at == ATREG)
10442 as_warn (_("used $at without \".set noat\""));
10444 as_warn (_("used $%u with \".set at=$%u\""),
10445 regno, mips_opts.at);
10453 if (regno == ILLEGAL_REG)
10460 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10464 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10467 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10470 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10476 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10479 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10480 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10490 if (strncmp (s, "$pc", 3) == 0)
10507 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10510 if (imm_expr.X_op != O_constant)
10513 ip->use_extend = TRUE;
10518 /* We need to relax this instruction. */
10519 *offset_reloc = *imm_reloc;
10520 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10525 *imm_reloc = BFD_RELOC_UNUSED;
10526 /* Fall through. */
10533 my_getExpression (&imm_expr, s);
10534 if (imm_expr.X_op == O_register)
10536 /* What we thought was an expression turned out to
10539 if (s[0] == '(' && args[1] == '(')
10541 /* It looks like the expression was omitted
10542 before a register indirection, which means
10543 that the expression is implicitly zero. We
10544 still set up imm_expr, so that we handle
10545 explicit extensions correctly. */
10546 imm_expr.X_op = O_constant;
10547 imm_expr.X_add_number = 0;
10548 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10555 /* We need to relax this instruction. */
10556 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10565 /* We use offset_reloc rather than imm_reloc for the PC
10566 relative operands. This lets macros with both
10567 immediate and address operands work correctly. */
10568 my_getExpression (&offset_expr, s);
10570 if (offset_expr.X_op == O_register)
10573 /* We need to relax this instruction. */
10574 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10578 case '6': /* break code */
10579 my_getExpression (&imm_expr, s);
10580 check_absolute_expr (ip, &imm_expr);
10581 if ((unsigned long) imm_expr.X_add_number > 63)
10582 as_warn (_("Invalid value for `%s' (%lu)"),
10584 (unsigned long) imm_expr.X_add_number);
10585 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10586 imm_expr.X_op = O_absent;
10590 case 'a': /* 26 bit address */
10591 my_getExpression (&offset_expr, s);
10593 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10594 ip->insn_opcode <<= 16;
10597 case 'l': /* register list for entry macro */
10598 case 'L': /* register list for exit macro */
10608 unsigned int freg, reg1, reg2;
10610 while (*s == ' ' || *s == ',')
10612 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
10614 else if (reg_lookup (&s, RTYPE_FPU, ®1))
10618 as_bad (_("can't parse register list"));
10628 if (!reg_lookup (&s, freg ? RTYPE_FPU
10629 : (RTYPE_GP | RTYPE_NUM), ®2))
10631 as_bad (_("invalid register list"));
10635 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10637 mask &= ~ (7 << 3);
10640 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10642 mask &= ~ (7 << 3);
10645 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10646 mask |= (reg2 - 3) << 3;
10647 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10648 mask |= (reg2 - 15) << 1;
10649 else if (reg1 == RA && reg2 == RA)
10653 as_bad (_("invalid register list"));
10657 /* The mask is filled in in the opcode table for the
10658 benefit of the disassembler. We remove it before
10659 applying the actual mask. */
10660 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10661 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10665 case 'm': /* Register list for save insn. */
10666 case 'M': /* Register list for restore insn. */
10669 int framesz = 0, seen_framesz = 0;
10670 int nargs = 0, statics = 0, sregs = 0;
10674 unsigned int reg1, reg2;
10676 SKIP_SPACE_TABS (s);
10679 SKIP_SPACE_TABS (s);
10681 my_getExpression (&imm_expr, s);
10682 if (imm_expr.X_op == O_constant)
10684 /* Handle the frame size. */
10687 as_bad (_("more than one frame size in list"));
10691 framesz = imm_expr.X_add_number;
10692 imm_expr.X_op = O_absent;
10697 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®1))
10699 as_bad (_("can't parse register list"));
10711 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, ®2)
10714 as_bad (_("can't parse register list"));
10719 while (reg1 <= reg2)
10721 if (reg1 >= 4 && reg1 <= 7)
10725 nargs |= 1 << (reg1 - 4);
10727 /* statics $a0-$a3 */
10728 statics |= 1 << (reg1 - 4);
10730 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10733 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10735 else if (reg1 == 31)
10737 /* Add $ra to insn. */
10742 as_bad (_("unexpected register in list"));
10750 /* Encode args/statics combination. */
10751 if (nargs & statics)
10752 as_bad (_("arg/static registers overlap"));
10753 else if (nargs == 0xf)
10754 /* All $a0-$a3 are args. */
10755 opcode |= MIPS16_ALL_ARGS << 16;
10756 else if (statics == 0xf)
10757 /* All $a0-$a3 are statics. */
10758 opcode |= MIPS16_ALL_STATICS << 16;
10761 int narg = 0, nstat = 0;
10763 /* Count arg registers. */
10764 while (nargs & 0x1)
10770 as_bad (_("invalid arg register list"));
10772 /* Count static registers. */
10773 while (statics & 0x8)
10775 statics = (statics << 1) & 0xf;
10779 as_bad (_("invalid static register list"));
10781 /* Encode args/statics. */
10782 opcode |= ((narg << 2) | nstat) << 16;
10785 /* Encode $s0/$s1. */
10786 if (sregs & (1 << 0)) /* $s0 */
10788 if (sregs & (1 << 1)) /* $s1 */
10794 /* Count regs $s2-$s8. */
10802 as_bad (_("invalid static register list"));
10803 /* Encode $s2-$s8. */
10804 opcode |= nsreg << 24;
10807 /* Encode frame size. */
10809 as_bad (_("missing frame size"));
10810 else if ((framesz & 7) != 0 || framesz < 0
10811 || framesz > 0xff * 8)
10812 as_bad (_("invalid frame size"));
10813 else if (framesz != 128 || (opcode >> 16) != 0)
10816 opcode |= (((framesz & 0xf0) << 16)
10817 | (framesz & 0x0f));
10820 /* Finally build the instruction. */
10821 if ((opcode >> 16) != 0 || framesz == 0)
10823 ip->use_extend = TRUE;
10824 ip->extend = opcode >> 16;
10826 ip->insn_opcode |= opcode & 0x7f;
10830 case 'e': /* extend code */
10831 my_getExpression (&imm_expr, s);
10832 check_absolute_expr (ip, &imm_expr);
10833 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10835 as_warn (_("Invalid value for `%s' (%lu)"),
10837 (unsigned long) imm_expr.X_add_number);
10838 imm_expr.X_add_number &= 0x7ff;
10840 ip->insn_opcode |= imm_expr.X_add_number;
10841 imm_expr.X_op = O_absent;
10851 /* Args don't match. */
10852 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10853 strcmp (insn->name, insn[1].name) == 0)
10860 insn_error = _("illegal operands");
10866 /* This structure holds information we know about a mips16 immediate
10869 struct mips16_immed_operand
10871 /* The type code used in the argument string in the opcode table. */
10873 /* The number of bits in the short form of the opcode. */
10875 /* The number of bits in the extended form of the opcode. */
10877 /* The amount by which the short form is shifted when it is used;
10878 for example, the sw instruction has a shift count of 2. */
10880 /* The amount by which the short form is shifted when it is stored
10881 into the instruction code. */
10883 /* Non-zero if the short form is unsigned. */
10885 /* Non-zero if the extended form is unsigned. */
10887 /* Non-zero if the value is PC relative. */
10891 /* The mips16 immediate operand types. */
10893 static const struct mips16_immed_operand mips16_immed_operands[] =
10895 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10896 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10897 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10898 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10899 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10900 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10901 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10902 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10903 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10904 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10905 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10906 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10907 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10908 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10909 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10910 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10911 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10912 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10913 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10914 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10915 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10918 #define MIPS16_NUM_IMMED \
10919 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10921 /* Handle a mips16 instruction with an immediate value. This or's the
10922 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10923 whether an extended value is needed; if one is needed, it sets
10924 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10925 If SMALL is true, an unextended opcode was explicitly requested.
10926 If EXT is true, an extended opcode was explicitly requested. If
10927 WARN is true, warn if EXT does not match reality. */
10930 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10931 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10932 unsigned long *insn, bfd_boolean *use_extend,
10933 unsigned short *extend)
10935 const struct mips16_immed_operand *op;
10936 int mintiny, maxtiny;
10937 bfd_boolean needext;
10939 op = mips16_immed_operands;
10940 while (op->type != type)
10943 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10948 if (type == '<' || type == '>' || type == '[' || type == ']')
10951 maxtiny = 1 << op->nbits;
10956 maxtiny = (1 << op->nbits) - 1;
10961 mintiny = - (1 << (op->nbits - 1));
10962 maxtiny = (1 << (op->nbits - 1)) - 1;
10965 /* Branch offsets have an implicit 0 in the lowest bit. */
10966 if (type == 'p' || type == 'q')
10969 if ((val & ((1 << op->shift) - 1)) != 0
10970 || val < (mintiny << op->shift)
10971 || val > (maxtiny << op->shift))
10976 if (warn && ext && ! needext)
10977 as_warn_where (file, line,
10978 _("extended operand requested but not required"));
10979 if (small && needext)
10980 as_bad_where (file, line, _("invalid unextended operand value"));
10982 if (small || (! ext && ! needext))
10986 *use_extend = FALSE;
10987 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10988 insnval <<= op->op_shift;
10993 long minext, maxext;
10999 maxext = (1 << op->extbits) - 1;
11003 minext = - (1 << (op->extbits - 1));
11004 maxext = (1 << (op->extbits - 1)) - 1;
11006 if (val < minext || val > maxext)
11007 as_bad_where (file, line,
11008 _("operand value out of range for instruction"));
11010 *use_extend = TRUE;
11011 if (op->extbits == 16)
11013 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11016 else if (op->extbits == 15)
11018 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11023 extval = ((val & 0x1f) << 6) | (val & 0x20);
11027 *extend = (unsigned short) extval;
11032 struct percent_op_match
11035 bfd_reloc_code_real_type reloc;
11038 static const struct percent_op_match mips_percent_op[] =
11040 {"%lo", BFD_RELOC_LO16},
11042 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11043 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11044 {"%call16", BFD_RELOC_MIPS_CALL16},
11045 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11046 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11047 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11048 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11049 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11050 {"%got", BFD_RELOC_MIPS_GOT16},
11051 {"%gp_rel", BFD_RELOC_GPREL16},
11052 {"%half", BFD_RELOC_16},
11053 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11054 {"%higher", BFD_RELOC_MIPS_HIGHER},
11055 {"%neg", BFD_RELOC_MIPS_SUB},
11056 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11057 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11058 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11059 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11060 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11061 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11062 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11064 {"%hi", BFD_RELOC_HI16_S}
11067 static const struct percent_op_match mips16_percent_op[] =
11069 {"%lo", BFD_RELOC_MIPS16_LO16},
11070 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11071 {"%got", BFD_RELOC_MIPS16_GOT16},
11072 {"%call16", BFD_RELOC_MIPS16_CALL16},
11073 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11077 /* Return true if *STR points to a relocation operator. When returning true,
11078 move *STR over the operator and store its relocation code in *RELOC.
11079 Leave both *STR and *RELOC alone when returning false. */
11082 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11084 const struct percent_op_match *percent_op;
11087 if (mips_opts.mips16)
11089 percent_op = mips16_percent_op;
11090 limit = ARRAY_SIZE (mips16_percent_op);
11094 percent_op = mips_percent_op;
11095 limit = ARRAY_SIZE (mips_percent_op);
11098 for (i = 0; i < limit; i++)
11099 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11101 int len = strlen (percent_op[i].str);
11103 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11106 *str += strlen (percent_op[i].str);
11107 *reloc = percent_op[i].reloc;
11109 /* Check whether the output BFD supports this relocation.
11110 If not, issue an error and fall back on something safe. */
11111 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11113 as_bad (_("relocation %s isn't supported by the current ABI"),
11114 percent_op[i].str);
11115 *reloc = BFD_RELOC_UNUSED;
11123 /* Parse string STR as a 16-bit relocatable operand. Store the
11124 expression in *EP and the relocations in the array starting
11125 at RELOC. Return the number of relocation operators used.
11127 On exit, EXPR_END points to the first character after the expression. */
11130 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11133 bfd_reloc_code_real_type reversed_reloc[3];
11134 size_t reloc_index, i;
11135 int crux_depth, str_depth;
11138 /* Search for the start of the main expression, recoding relocations
11139 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11140 of the main expression and with CRUX_DEPTH containing the number
11141 of open brackets at that point. */
11148 crux_depth = str_depth;
11150 /* Skip over whitespace and brackets, keeping count of the number
11152 while (*str == ' ' || *str == '\t' || *str == '(')
11157 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11158 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11160 my_getExpression (ep, crux);
11163 /* Match every open bracket. */
11164 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11168 if (crux_depth > 0)
11169 as_bad (_("unclosed '('"));
11173 if (reloc_index != 0)
11175 prev_reloc_op_frag = frag_now;
11176 for (i = 0; i < reloc_index; i++)
11177 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11180 return reloc_index;
11184 my_getExpression (expressionS *ep, char *str)
11189 save_in = input_line_pointer;
11190 input_line_pointer = str;
11192 expr_end = input_line_pointer;
11193 input_line_pointer = save_in;
11195 /* If we are in mips16 mode, and this is an expression based on `.',
11196 then we bump the value of the symbol by 1 since that is how other
11197 text symbols are handled. We don't bother to handle complex
11198 expressions, just `.' plus or minus a constant. */
11199 if (mips_opts.mips16
11200 && ep->X_op == O_symbol
11201 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11202 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11203 && symbol_get_frag (ep->X_add_symbol) == frag_now
11204 && symbol_constant_p (ep->X_add_symbol)
11205 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11206 S_SET_VALUE (ep->X_add_symbol, val + 1);
11210 md_atof (int type, char *litP, int *sizeP)
11212 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11216 md_number_to_chars (char *buf, valueT val, int n)
11218 if (target_big_endian)
11219 number_to_chars_bigendian (buf, val, n);
11221 number_to_chars_littleendian (buf, val, n);
11225 static int support_64bit_objects(void)
11227 const char **list, **l;
11230 list = bfd_target_list ();
11231 for (l = list; *l != NULL; l++)
11233 /* This is traditional mips */
11234 if (strcmp (*l, "elf64-tradbigmips") == 0
11235 || strcmp (*l, "elf64-tradlittlemips") == 0)
11237 if (strcmp (*l, "elf64-bigmips") == 0
11238 || strcmp (*l, "elf64-littlemips") == 0)
11241 yes = (*l != NULL);
11245 #endif /* OBJ_ELF */
11247 const char *md_shortopts = "O::g::G:";
11251 OPTION_MARCH = OPTION_MD_BASE,
11273 OPTION_NO_SMARTMIPS,
11276 OPTION_COMPAT_ARCH_BASE,
11285 OPTION_M7000_HILO_FIX,
11286 OPTION_MNO_7000_HILO_FIX,
11289 OPTION_FIX_LOONGSON2F_JUMP,
11290 OPTION_NO_FIX_LOONGSON2F_JUMP,
11291 OPTION_FIX_LOONGSON2F_NOP,
11292 OPTION_NO_FIX_LOONGSON2F_NOP,
11294 OPTION_NO_FIX_VR4120,
11296 OPTION_NO_FIX_VR4130,
11297 OPTION_FIX_CN63XXP1,
11298 OPTION_NO_FIX_CN63XXP1,
11305 OPTION_CONSTRUCT_FLOATS,
11306 OPTION_NO_CONSTRUCT_FLOATS,
11309 OPTION_RELAX_BRANCH,
11310 OPTION_NO_RELAX_BRANCH,
11317 OPTION_SINGLE_FLOAT,
11318 OPTION_DOUBLE_FLOAT,
11321 OPTION_CALL_SHARED,
11322 OPTION_CALL_NONPIC,
11332 OPTION_MVXWORKS_PIC,
11333 #endif /* OBJ_ELF */
11337 struct option md_longopts[] =
11339 /* Options which specify architecture. */
11340 {"march", required_argument, NULL, OPTION_MARCH},
11341 {"mtune", required_argument, NULL, OPTION_MTUNE},
11342 {"mips0", no_argument, NULL, OPTION_MIPS1},
11343 {"mips1", no_argument, NULL, OPTION_MIPS1},
11344 {"mips2", no_argument, NULL, OPTION_MIPS2},
11345 {"mips3", no_argument, NULL, OPTION_MIPS3},
11346 {"mips4", no_argument, NULL, OPTION_MIPS4},
11347 {"mips5", no_argument, NULL, OPTION_MIPS5},
11348 {"mips32", no_argument, NULL, OPTION_MIPS32},
11349 {"mips64", no_argument, NULL, OPTION_MIPS64},
11350 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11351 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11353 /* Options which specify Application Specific Extensions (ASEs). */
11354 {"mips16", no_argument, NULL, OPTION_MIPS16},
11355 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11356 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11357 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11358 {"mdmx", no_argument, NULL, OPTION_MDMX},
11359 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11360 {"mdsp", no_argument, NULL, OPTION_DSP},
11361 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11362 {"mmt", no_argument, NULL, OPTION_MT},
11363 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11364 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11365 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11366 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11367 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11369 /* Old-style architecture options. Don't add more of these. */
11370 {"m4650", no_argument, NULL, OPTION_M4650},
11371 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11372 {"m4010", no_argument, NULL, OPTION_M4010},
11373 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11374 {"m4100", no_argument, NULL, OPTION_M4100},
11375 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11376 {"m3900", no_argument, NULL, OPTION_M3900},
11377 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11379 /* Options which enable bug fixes. */
11380 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11381 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11382 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11383 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11384 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11385 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11386 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11387 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11388 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11389 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11390 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11391 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11392 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11393 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11394 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11396 /* Miscellaneous options. */
11397 {"trap", no_argument, NULL, OPTION_TRAP},
11398 {"no-break", no_argument, NULL, OPTION_TRAP},
11399 {"break", no_argument, NULL, OPTION_BREAK},
11400 {"no-trap", no_argument, NULL, OPTION_BREAK},
11401 {"EB", no_argument, NULL, OPTION_EB},
11402 {"EL", no_argument, NULL, OPTION_EL},
11403 {"mfp32", no_argument, NULL, OPTION_FP32},
11404 {"mgp32", no_argument, NULL, OPTION_GP32},
11405 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11406 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11407 {"mfp64", no_argument, NULL, OPTION_FP64},
11408 {"mgp64", no_argument, NULL, OPTION_GP64},
11409 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11410 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11411 {"mshared", no_argument, NULL, OPTION_MSHARED},
11412 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11413 {"msym32", no_argument, NULL, OPTION_MSYM32},
11414 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11415 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11416 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11417 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11418 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11420 /* Strictly speaking this next option is ELF specific,
11421 but we allow it for other ports as well in order to
11422 make testing easier. */
11423 {"32", no_argument, NULL, OPTION_32},
11425 /* ELF-specific options. */
11427 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11428 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11429 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11430 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11431 {"xgot", no_argument, NULL, OPTION_XGOT},
11432 {"mabi", required_argument, NULL, OPTION_MABI},
11433 {"n32", no_argument, NULL, OPTION_N32},
11434 {"64", no_argument, NULL, OPTION_64},
11435 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11436 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11437 {"mpdr", no_argument, NULL, OPTION_PDR},
11438 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11439 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11440 #endif /* OBJ_ELF */
11442 {NULL, no_argument, NULL, 0}
11444 size_t md_longopts_size = sizeof (md_longopts);
11446 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11447 NEW_VALUE. Warn if another value was already specified. Note:
11448 we have to defer parsing the -march and -mtune arguments in order
11449 to handle 'from-abi' correctly, since the ABI might be specified
11450 in a later argument. */
11453 mips_set_option_string (const char **string_ptr, const char *new_value)
11455 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11456 as_warn (_("A different %s was already specified, is now %s"),
11457 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11460 *string_ptr = new_value;
11464 md_parse_option (int c, char *arg)
11468 case OPTION_CONSTRUCT_FLOATS:
11469 mips_disable_float_construction = 0;
11472 case OPTION_NO_CONSTRUCT_FLOATS:
11473 mips_disable_float_construction = 1;
11485 target_big_endian = 1;
11489 target_big_endian = 0;
11495 else if (arg[0] == '0')
11497 else if (arg[0] == '1')
11507 mips_debug = atoi (arg);
11511 file_mips_isa = ISA_MIPS1;
11515 file_mips_isa = ISA_MIPS2;
11519 file_mips_isa = ISA_MIPS3;
11523 file_mips_isa = ISA_MIPS4;
11527 file_mips_isa = ISA_MIPS5;
11530 case OPTION_MIPS32:
11531 file_mips_isa = ISA_MIPS32;
11534 case OPTION_MIPS32R2:
11535 file_mips_isa = ISA_MIPS32R2;
11538 case OPTION_MIPS64R2:
11539 file_mips_isa = ISA_MIPS64R2;
11542 case OPTION_MIPS64:
11543 file_mips_isa = ISA_MIPS64;
11547 mips_set_option_string (&mips_tune_string, arg);
11551 mips_set_option_string (&mips_arch_string, arg);
11555 mips_set_option_string (&mips_arch_string, "4650");
11556 mips_set_option_string (&mips_tune_string, "4650");
11559 case OPTION_NO_M4650:
11563 mips_set_option_string (&mips_arch_string, "4010");
11564 mips_set_option_string (&mips_tune_string, "4010");
11567 case OPTION_NO_M4010:
11571 mips_set_option_string (&mips_arch_string, "4100");
11572 mips_set_option_string (&mips_tune_string, "4100");
11575 case OPTION_NO_M4100:
11579 mips_set_option_string (&mips_arch_string, "3900");
11580 mips_set_option_string (&mips_tune_string, "3900");
11583 case OPTION_NO_M3900:
11587 mips_opts.ase_mdmx = 1;
11590 case OPTION_NO_MDMX:
11591 mips_opts.ase_mdmx = 0;
11595 mips_opts.ase_dsp = 1;
11596 mips_opts.ase_dspr2 = 0;
11599 case OPTION_NO_DSP:
11600 mips_opts.ase_dsp = 0;
11601 mips_opts.ase_dspr2 = 0;
11605 mips_opts.ase_dspr2 = 1;
11606 mips_opts.ase_dsp = 1;
11609 case OPTION_NO_DSPR2:
11610 mips_opts.ase_dspr2 = 0;
11611 mips_opts.ase_dsp = 0;
11615 mips_opts.ase_mt = 1;
11619 mips_opts.ase_mt = 0;
11622 case OPTION_MIPS16:
11623 mips_opts.mips16 = 1;
11624 mips_no_prev_insn ();
11627 case OPTION_NO_MIPS16:
11628 mips_opts.mips16 = 0;
11629 mips_no_prev_insn ();
11632 case OPTION_MIPS3D:
11633 mips_opts.ase_mips3d = 1;
11636 case OPTION_NO_MIPS3D:
11637 mips_opts.ase_mips3d = 0;
11640 case OPTION_SMARTMIPS:
11641 mips_opts.ase_smartmips = 1;
11644 case OPTION_NO_SMARTMIPS:
11645 mips_opts.ase_smartmips = 0;
11648 case OPTION_FIX_24K:
11652 case OPTION_NO_FIX_24K:
11656 case OPTION_FIX_LOONGSON2F_JUMP:
11657 mips_fix_loongson2f_jump = TRUE;
11660 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11661 mips_fix_loongson2f_jump = FALSE;
11664 case OPTION_FIX_LOONGSON2F_NOP:
11665 mips_fix_loongson2f_nop = TRUE;
11668 case OPTION_NO_FIX_LOONGSON2F_NOP:
11669 mips_fix_loongson2f_nop = FALSE;
11672 case OPTION_FIX_VR4120:
11673 mips_fix_vr4120 = 1;
11676 case OPTION_NO_FIX_VR4120:
11677 mips_fix_vr4120 = 0;
11680 case OPTION_FIX_VR4130:
11681 mips_fix_vr4130 = 1;
11684 case OPTION_NO_FIX_VR4130:
11685 mips_fix_vr4130 = 0;
11688 case OPTION_FIX_CN63XXP1:
11689 mips_fix_cn63xxp1 = TRUE;
11692 case OPTION_NO_FIX_CN63XXP1:
11693 mips_fix_cn63xxp1 = FALSE;
11696 case OPTION_RELAX_BRANCH:
11697 mips_relax_branch = 1;
11700 case OPTION_NO_RELAX_BRANCH:
11701 mips_relax_branch = 0;
11704 case OPTION_MSHARED:
11705 mips_in_shared = TRUE;
11708 case OPTION_MNO_SHARED:
11709 mips_in_shared = FALSE;
11712 case OPTION_MSYM32:
11713 mips_opts.sym32 = TRUE;
11716 case OPTION_MNO_SYM32:
11717 mips_opts.sym32 = FALSE;
11721 /* When generating ELF code, we permit -KPIC and -call_shared to
11722 select SVR4_PIC, and -non_shared to select no PIC. This is
11723 intended to be compatible with Irix 5. */
11724 case OPTION_CALL_SHARED:
11727 as_bad (_("-call_shared is supported only for ELF format"));
11730 mips_pic = SVR4_PIC;
11731 mips_abicalls = TRUE;
11734 case OPTION_CALL_NONPIC:
11737 as_bad (_("-call_nonpic is supported only for ELF format"));
11741 mips_abicalls = TRUE;
11744 case OPTION_NON_SHARED:
11747 as_bad (_("-non_shared is supported only for ELF format"));
11751 mips_abicalls = FALSE;
11754 /* The -xgot option tells the assembler to use 32 bit offsets
11755 when accessing the got in SVR4_PIC mode. It is for Irix
11760 #endif /* OBJ_ELF */
11763 g_switch_value = atoi (arg);
11767 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11771 mips_abi = O32_ABI;
11772 /* We silently ignore -32 for non-ELF targets. This greatly
11773 simplifies the construction of the MIPS GAS test cases. */
11780 as_bad (_("-n32 is supported for ELF format only"));
11783 mips_abi = N32_ABI;
11789 as_bad (_("-64 is supported for ELF format only"));
11792 mips_abi = N64_ABI;
11793 if (!support_64bit_objects())
11794 as_fatal (_("No compiled in support for 64 bit object file format"));
11796 #endif /* OBJ_ELF */
11799 file_mips_gp32 = 1;
11803 file_mips_gp32 = 0;
11807 file_mips_fp32 = 1;
11811 file_mips_fp32 = 0;
11814 case OPTION_SINGLE_FLOAT:
11815 file_mips_single_float = 1;
11818 case OPTION_DOUBLE_FLOAT:
11819 file_mips_single_float = 0;
11822 case OPTION_SOFT_FLOAT:
11823 file_mips_soft_float = 1;
11826 case OPTION_HARD_FLOAT:
11827 file_mips_soft_float = 0;
11834 as_bad (_("-mabi is supported for ELF format only"));
11837 if (strcmp (arg, "32") == 0)
11838 mips_abi = O32_ABI;
11839 else if (strcmp (arg, "o64") == 0)
11840 mips_abi = O64_ABI;
11841 else if (strcmp (arg, "n32") == 0)
11842 mips_abi = N32_ABI;
11843 else if (strcmp (arg, "64") == 0)
11845 mips_abi = N64_ABI;
11846 if (! support_64bit_objects())
11847 as_fatal (_("No compiled in support for 64 bit object file "
11850 else if (strcmp (arg, "eabi") == 0)
11851 mips_abi = EABI_ABI;
11854 as_fatal (_("invalid abi -mabi=%s"), arg);
11858 #endif /* OBJ_ELF */
11860 case OPTION_M7000_HILO_FIX:
11861 mips_7000_hilo_fix = TRUE;
11864 case OPTION_MNO_7000_HILO_FIX:
11865 mips_7000_hilo_fix = FALSE;
11869 case OPTION_MDEBUG:
11870 mips_flag_mdebug = TRUE;
11873 case OPTION_NO_MDEBUG:
11874 mips_flag_mdebug = FALSE;
11878 mips_flag_pdr = TRUE;
11881 case OPTION_NO_PDR:
11882 mips_flag_pdr = FALSE;
11885 case OPTION_MVXWORKS_PIC:
11886 mips_pic = VXWORKS_PIC;
11888 #endif /* OBJ_ELF */
11894 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11899 /* Set up globals to generate code for the ISA or processor
11900 described by INFO. */
11903 mips_set_architecture (const struct mips_cpu_info *info)
11907 file_mips_arch = info->cpu;
11908 mips_opts.arch = info->cpu;
11909 mips_opts.isa = info->isa;
11914 /* Likewise for tuning. */
11917 mips_set_tune (const struct mips_cpu_info *info)
11920 mips_tune = info->cpu;
11925 mips_after_parse_args (void)
11927 const struct mips_cpu_info *arch_info = 0;
11928 const struct mips_cpu_info *tune_info = 0;
11930 /* GP relative stuff not working for PE */
11931 if (strncmp (TARGET_OS, "pe", 2) == 0)
11933 if (g_switch_seen && g_switch_value != 0)
11934 as_bad (_("-G not supported in this configuration."));
11935 g_switch_value = 0;
11938 if (mips_abi == NO_ABI)
11939 mips_abi = MIPS_DEFAULT_ABI;
11941 /* The following code determines the architecture and register size.
11942 Similar code was added to GCC 3.3 (see override_options() in
11943 config/mips/mips.c). The GAS and GCC code should be kept in sync
11944 as much as possible. */
11946 if (mips_arch_string != 0)
11947 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11949 if (file_mips_isa != ISA_UNKNOWN)
11951 /* Handle -mipsN. At this point, file_mips_isa contains the
11952 ISA level specified by -mipsN, while arch_info->isa contains
11953 the -march selection (if any). */
11954 if (arch_info != 0)
11956 /* -march takes precedence over -mipsN, since it is more descriptive.
11957 There's no harm in specifying both as long as the ISA levels
11959 if (file_mips_isa != arch_info->isa)
11960 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11961 mips_cpu_info_from_isa (file_mips_isa)->name,
11962 mips_cpu_info_from_isa (arch_info->isa)->name);
11965 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11968 if (arch_info == 0)
11969 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11971 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11972 as_bad (_("-march=%s is not compatible with the selected ABI"),
11975 mips_set_architecture (arch_info);
11977 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11978 if (mips_tune_string != 0)
11979 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11981 if (tune_info == 0)
11982 mips_set_tune (arch_info);
11984 mips_set_tune (tune_info);
11986 if (file_mips_gp32 >= 0)
11988 /* The user specified the size of the integer registers. Make sure
11989 it agrees with the ABI and ISA. */
11990 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11991 as_bad (_("-mgp64 used with a 32-bit processor"));
11992 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11993 as_bad (_("-mgp32 used with a 64-bit ABI"));
11994 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11995 as_bad (_("-mgp64 used with a 32-bit ABI"));
11999 /* Infer the integer register size from the ABI and processor.
12000 Restrict ourselves to 32-bit registers if that's all the
12001 processor has, or if the ABI cannot handle 64-bit registers. */
12002 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12003 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12006 switch (file_mips_fp32)
12010 /* No user specified float register size.
12011 ??? GAS treats single-float processors as though they had 64-bit
12012 float registers (although it complains when double-precision
12013 instructions are used). As things stand, saying they have 32-bit
12014 registers would lead to spurious "register must be even" messages.
12015 So here we assume float registers are never smaller than the
12017 if (file_mips_gp32 == 0)
12018 /* 64-bit integer registers implies 64-bit float registers. */
12019 file_mips_fp32 = 0;
12020 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12021 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12022 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12023 file_mips_fp32 = 0;
12025 /* 32-bit float registers. */
12026 file_mips_fp32 = 1;
12029 /* The user specified the size of the float registers. Check if it
12030 agrees with the ABI and ISA. */
12032 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12033 as_bad (_("-mfp64 used with a 32-bit fpu"));
12034 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12035 && !ISA_HAS_MXHC1 (mips_opts.isa))
12036 as_warn (_("-mfp64 used with a 32-bit ABI"));
12039 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12040 as_warn (_("-mfp32 used with a 64-bit ABI"));
12044 /* End of GCC-shared inference code. */
12046 /* This flag is set when we have a 64-bit capable CPU but use only
12047 32-bit wide registers. Note that EABI does not use it. */
12048 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12049 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12050 || mips_abi == O32_ABI))
12051 mips_32bitmode = 1;
12053 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12054 as_bad (_("trap exception not supported at ISA 1"));
12056 /* If the selected architecture includes support for ASEs, enable
12057 generation of code for them. */
12058 if (mips_opts.mips16 == -1)
12059 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12060 if (mips_opts.ase_mips3d == -1)
12061 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12062 && file_mips_fp32 == 0) ? 1 : 0;
12063 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12064 as_bad (_("-mfp32 used with -mips3d"));
12066 if (mips_opts.ase_mdmx == -1)
12067 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12068 && file_mips_fp32 == 0) ? 1 : 0;
12069 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12070 as_bad (_("-mfp32 used with -mdmx"));
12072 if (mips_opts.ase_smartmips == -1)
12073 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12074 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12075 as_warn (_("%s ISA does not support SmartMIPS"),
12076 mips_cpu_info_from_isa (mips_opts.isa)->name);
12078 if (mips_opts.ase_dsp == -1)
12079 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12080 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12081 as_warn (_("%s ISA does not support DSP ASE"),
12082 mips_cpu_info_from_isa (mips_opts.isa)->name);
12084 if (mips_opts.ase_dspr2 == -1)
12086 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12087 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12089 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12090 as_warn (_("%s ISA does not support DSP R2 ASE"),
12091 mips_cpu_info_from_isa (mips_opts.isa)->name);
12093 if (mips_opts.ase_mt == -1)
12094 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12095 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12096 as_warn (_("%s ISA does not support MT ASE"),
12097 mips_cpu_info_from_isa (mips_opts.isa)->name);
12099 file_mips_isa = mips_opts.isa;
12100 file_ase_mips16 = mips_opts.mips16;
12101 file_ase_mips3d = mips_opts.ase_mips3d;
12102 file_ase_mdmx = mips_opts.ase_mdmx;
12103 file_ase_smartmips = mips_opts.ase_smartmips;
12104 file_ase_dsp = mips_opts.ase_dsp;
12105 file_ase_dspr2 = mips_opts.ase_dspr2;
12106 file_ase_mt = mips_opts.ase_mt;
12107 mips_opts.gp32 = file_mips_gp32;
12108 mips_opts.fp32 = file_mips_fp32;
12109 mips_opts.soft_float = file_mips_soft_float;
12110 mips_opts.single_float = file_mips_single_float;
12112 if (mips_flag_mdebug < 0)
12114 #ifdef OBJ_MAYBE_ECOFF
12115 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12116 mips_flag_mdebug = 1;
12118 #endif /* OBJ_MAYBE_ECOFF */
12119 mips_flag_mdebug = 0;
12124 mips_init_after_args (void)
12126 /* initialize opcodes */
12127 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12128 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12132 md_pcrel_from (fixS *fixP)
12134 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12135 switch (fixP->fx_r_type)
12137 case BFD_RELOC_16_PCREL_S2:
12138 case BFD_RELOC_MIPS_JMP:
12139 /* Return the address of the delay slot. */
12142 /* We have no relocation type for PC relative MIPS16 instructions. */
12143 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12144 as_bad_where (fixP->fx_file, fixP->fx_line,
12145 _("PC relative MIPS16 instruction references a different section"));
12150 /* This is called before the symbol table is processed. In order to
12151 work with gcc when using mips-tfile, we must keep all local labels.
12152 However, in other cases, we want to discard them. If we were
12153 called with -g, but we didn't see any debugging information, it may
12154 mean that gcc is smuggling debugging information through to
12155 mips-tfile, in which case we must generate all local labels. */
12158 mips_frob_file_before_adjust (void)
12160 #ifndef NO_ECOFF_DEBUGGING
12161 if (ECOFF_DEBUGGING
12163 && ! ecoff_debugging_seen)
12164 flag_keep_locals = 1;
12168 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12169 the corresponding LO16 reloc. This is called before md_apply_fix and
12170 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12171 relocation operators.
12173 For our purposes, a %lo() expression matches a %got() or %hi()
12176 (a) it refers to the same symbol; and
12177 (b) the offset applied in the %lo() expression is no lower than
12178 the offset applied in the %got() or %hi().
12180 (b) allows us to cope with code like:
12183 lh $4,%lo(foo+2)($4)
12185 ...which is legal on RELA targets, and has a well-defined behaviour
12186 if the user knows that adding 2 to "foo" will not induce a carry to
12189 When several %lo()s match a particular %got() or %hi(), we use the
12190 following rules to distinguish them:
12192 (1) %lo()s with smaller offsets are a better match than %lo()s with
12195 (2) %lo()s with no matching %got() or %hi() are better than those
12196 that already have a matching %got() or %hi().
12198 (3) later %lo()s are better than earlier %lo()s.
12200 These rules are applied in order.
12202 (1) means, among other things, that %lo()s with identical offsets are
12203 chosen if they exist.
12205 (2) means that we won't associate several high-part relocations with
12206 the same low-part relocation unless there's no alternative. Having
12207 several high parts for the same low part is a GNU extension; this rule
12208 allows careful users to avoid it.
12210 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12211 with the last high-part relocation being at the front of the list.
12212 It therefore makes sense to choose the last matching low-part
12213 relocation, all other things being equal. It's also easier
12214 to code that way. */
12217 mips_frob_file (void)
12219 struct mips_hi_fixup *l;
12220 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12222 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12224 segment_info_type *seginfo;
12225 bfd_boolean matched_lo_p;
12226 fixS **hi_pos, **lo_pos, **pos;
12228 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12230 /* If a GOT16 relocation turns out to be against a global symbol,
12231 there isn't supposed to be a matching LO. */
12232 if (got16_reloc_p (l->fixp->fx_r_type)
12233 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12236 /* Check quickly whether the next fixup happens to be a matching %lo. */
12237 if (fixup_has_matching_lo_p (l->fixp))
12240 seginfo = seg_info (l->seg);
12242 /* Set HI_POS to the position of this relocation in the chain.
12243 Set LO_POS to the position of the chosen low-part relocation.
12244 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12245 relocation that matches an immediately-preceding high-part
12249 matched_lo_p = FALSE;
12250 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12252 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12254 if (*pos == l->fixp)
12257 if ((*pos)->fx_r_type == looking_for_rtype
12258 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12259 && (*pos)->fx_offset >= l->fixp->fx_offset
12261 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12263 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12266 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12267 && fixup_has_matching_lo_p (*pos));
12270 /* If we found a match, remove the high-part relocation from its
12271 current position and insert it before the low-part relocation.
12272 Make the offsets match so that fixup_has_matching_lo_p()
12275 We don't warn about unmatched high-part relocations since some
12276 versions of gcc have been known to emit dead "lui ...%hi(...)"
12278 if (lo_pos != NULL)
12280 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12281 if (l->fixp->fx_next != *lo_pos)
12283 *hi_pos = l->fixp->fx_next;
12284 l->fixp->fx_next = *lo_pos;
12291 /* We may have combined relocations without symbols in the N32/N64 ABI.
12292 We have to prevent gas from dropping them. */
12295 mips_force_relocation (fixS *fixp)
12297 if (generic_force_reloc (fixp))
12301 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12302 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12303 || hi16_reloc_p (fixp->fx_r_type)
12304 || lo16_reloc_p (fixp->fx_r_type)))
12310 /* Apply a fixup to the object file. */
12313 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12317 reloc_howto_type *howto;
12319 /* We ignore generic BFD relocations we don't know about. */
12320 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12324 gas_assert (fixP->fx_size == 4
12325 || fixP->fx_r_type == BFD_RELOC_16
12326 || fixP->fx_r_type == BFD_RELOC_64
12327 || fixP->fx_r_type == BFD_RELOC_CTOR
12328 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12329 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12330 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12331 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12333 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12335 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12337 /* Don't treat parts of a composite relocation as done. There are two
12340 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12341 should nevertheless be emitted if the first part is.
12343 (2) In normal usage, composite relocations are never assembly-time
12344 constants. The easiest way of dealing with the pathological
12345 exceptions is to generate a relocation against STN_UNDEF and
12346 leave everything up to the linker. */
12347 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12350 switch (fixP->fx_r_type)
12352 case BFD_RELOC_MIPS_TLS_GD:
12353 case BFD_RELOC_MIPS_TLS_LDM:
12354 case BFD_RELOC_MIPS_TLS_DTPREL32:
12355 case BFD_RELOC_MIPS_TLS_DTPREL64:
12356 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12357 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12358 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12359 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12360 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12361 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12364 case BFD_RELOC_MIPS_JMP:
12365 case BFD_RELOC_MIPS_SHIFT5:
12366 case BFD_RELOC_MIPS_SHIFT6:
12367 case BFD_RELOC_MIPS_GOT_DISP:
12368 case BFD_RELOC_MIPS_GOT_PAGE:
12369 case BFD_RELOC_MIPS_GOT_OFST:
12370 case BFD_RELOC_MIPS_SUB:
12371 case BFD_RELOC_MIPS_INSERT_A:
12372 case BFD_RELOC_MIPS_INSERT_B:
12373 case BFD_RELOC_MIPS_DELETE:
12374 case BFD_RELOC_MIPS_HIGHEST:
12375 case BFD_RELOC_MIPS_HIGHER:
12376 case BFD_RELOC_MIPS_SCN_DISP:
12377 case BFD_RELOC_MIPS_REL16:
12378 case BFD_RELOC_MIPS_RELGOT:
12379 case BFD_RELOC_MIPS_JALR:
12380 case BFD_RELOC_HI16:
12381 case BFD_RELOC_HI16_S:
12382 case BFD_RELOC_GPREL16:
12383 case BFD_RELOC_MIPS_LITERAL:
12384 case BFD_RELOC_MIPS_CALL16:
12385 case BFD_RELOC_MIPS_GOT16:
12386 case BFD_RELOC_GPREL32:
12387 case BFD_RELOC_MIPS_GOT_HI16:
12388 case BFD_RELOC_MIPS_GOT_LO16:
12389 case BFD_RELOC_MIPS_CALL_HI16:
12390 case BFD_RELOC_MIPS_CALL_LO16:
12391 case BFD_RELOC_MIPS16_GPREL:
12392 case BFD_RELOC_MIPS16_GOT16:
12393 case BFD_RELOC_MIPS16_CALL16:
12394 case BFD_RELOC_MIPS16_HI16:
12395 case BFD_RELOC_MIPS16_HI16_S:
12396 case BFD_RELOC_MIPS16_JMP:
12397 /* Nothing needed to do. The value comes from the reloc entry. */
12401 /* This is handled like BFD_RELOC_32, but we output a sign
12402 extended value if we are only 32 bits. */
12405 if (8 <= sizeof (valueT))
12406 md_number_to_chars ((char *) buf, *valP, 8);
12411 if ((*valP & 0x80000000) != 0)
12415 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12417 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12423 case BFD_RELOC_RVA:
12426 /* If we are deleting this reloc entry, we must fill in the
12427 value now. This can happen if we have a .word which is not
12428 resolved when it appears but is later defined. */
12430 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12433 case BFD_RELOC_LO16:
12434 case BFD_RELOC_MIPS16_LO16:
12435 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12436 may be safe to remove, but if so it's not obvious. */
12437 /* When handling an embedded PIC switch statement, we can wind
12438 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12441 if (*valP + 0x8000 > 0xffff)
12442 as_bad_where (fixP->fx_file, fixP->fx_line,
12443 _("relocation overflow"));
12444 if (target_big_endian)
12446 md_number_to_chars ((char *) buf, *valP, 2);
12450 case BFD_RELOC_16_PCREL_S2:
12451 if ((*valP & 0x3) != 0)
12452 as_bad_where (fixP->fx_file, fixP->fx_line,
12453 _("Branch to misaligned address (%lx)"), (long) *valP);
12455 /* We need to save the bits in the instruction since fixup_segment()
12456 might be deleting the relocation entry (i.e., a branch within
12457 the current segment). */
12458 if (! fixP->fx_done)
12461 /* Update old instruction data. */
12462 if (target_big_endian)
12463 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12465 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12467 if (*valP + 0x20000 <= 0x3ffff)
12469 insn |= (*valP >> 2) & 0xffff;
12470 md_number_to_chars ((char *) buf, insn, 4);
12472 else if (mips_pic == NO_PIC
12474 && fixP->fx_frag->fr_address >= text_section->vma
12475 && (fixP->fx_frag->fr_address
12476 < text_section->vma + bfd_get_section_size (text_section))
12477 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12478 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12479 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12481 /* The branch offset is too large. If this is an
12482 unconditional branch, and we are not generating PIC code,
12483 we can convert it to an absolute jump instruction. */
12484 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12485 insn = 0x0c000000; /* jal */
12487 insn = 0x08000000; /* j */
12488 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12490 fixP->fx_addsy = section_symbol (text_section);
12491 *valP += md_pcrel_from (fixP);
12492 md_number_to_chars ((char *) buf, insn, 4);
12496 /* If we got here, we have branch-relaxation disabled,
12497 and there's nothing we can do to fix this instruction
12498 without turning it into a longer sequence. */
12499 as_bad_where (fixP->fx_file, fixP->fx_line,
12500 _("Branch out of range"));
12504 case BFD_RELOC_VTABLE_INHERIT:
12507 && !S_IS_DEFINED (fixP->fx_addsy)
12508 && !S_IS_WEAK (fixP->fx_addsy))
12509 S_SET_WEAK (fixP->fx_addsy);
12512 case BFD_RELOC_VTABLE_ENTRY:
12520 /* Remember value for tc_gen_reloc. */
12521 fixP->fx_addnumber = *valP;
12531 name = input_line_pointer;
12532 c = get_symbol_end ();
12533 p = (symbolS *) symbol_find_or_make (name);
12534 *input_line_pointer = c;
12538 /* Align the current frag to a given power of two. If a particular
12539 fill byte should be used, FILL points to an integer that contains
12540 that byte, otherwise FILL is null.
12542 The MIPS assembler also automatically adjusts any preceding
12546 mips_align (int to, int *fill, symbolS *label)
12548 mips_emit_delays ();
12549 mips_record_mips16_mode ();
12550 if (fill == NULL && subseg_text_p (now_seg))
12551 frag_align_code (to, 0);
12553 frag_align (to, fill ? *fill : 0, 0);
12554 record_alignment (now_seg, to);
12557 gas_assert (S_GET_SEGMENT (label) == now_seg);
12558 symbol_set_frag (label, frag_now);
12559 S_SET_VALUE (label, (valueT) frag_now_fix ());
12563 /* Align to a given power of two. .align 0 turns off the automatic
12564 alignment used by the data creating pseudo-ops. */
12567 s_align (int x ATTRIBUTE_UNUSED)
12569 int temp, fill_value, *fill_ptr;
12570 long max_alignment = 28;
12572 /* o Note that the assembler pulls down any immediately preceding label
12573 to the aligned address.
12574 o It's not documented but auto alignment is reinstated by
12575 a .align pseudo instruction.
12576 o Note also that after auto alignment is turned off the mips assembler
12577 issues an error on attempt to assemble an improperly aligned data item.
12580 temp = get_absolute_expression ();
12581 if (temp > max_alignment)
12582 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12585 as_warn (_("Alignment negative: 0 assumed."));
12588 if (*input_line_pointer == ',')
12590 ++input_line_pointer;
12591 fill_value = get_absolute_expression ();
12592 fill_ptr = &fill_value;
12598 segment_info_type *si = seg_info (now_seg);
12599 struct insn_label_list *l = si->label_list;
12600 /* Auto alignment should be switched on by next section change. */
12602 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12609 demand_empty_rest_of_line ();
12613 s_change_sec (int sec)
12618 /* The ELF backend needs to know that we are changing sections, so
12619 that .previous works correctly. We could do something like check
12620 for an obj_section_change_hook macro, but that might be confusing
12621 as it would not be appropriate to use it in the section changing
12622 functions in read.c, since obj-elf.c intercepts those. FIXME:
12623 This should be cleaner, somehow. */
12625 obj_elf_section_change_hook ();
12628 mips_emit_delays ();
12639 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12640 demand_empty_rest_of_line ();
12644 seg = subseg_new (RDATA_SECTION_NAME,
12645 (subsegT) get_absolute_expression ());
12648 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12649 | SEC_READONLY | SEC_RELOC
12651 if (strncmp (TARGET_OS, "elf", 3) != 0)
12652 record_alignment (seg, 4);
12654 demand_empty_rest_of_line ();
12658 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12661 bfd_set_section_flags (stdoutput, seg,
12662 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12663 if (strncmp (TARGET_OS, "elf", 3) != 0)
12664 record_alignment (seg, 4);
12666 demand_empty_rest_of_line ();
12670 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12673 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12674 if (strncmp (TARGET_OS, "elf", 3) != 0)
12675 record_alignment (seg, 4);
12677 demand_empty_rest_of_line ();
12685 s_change_section (int ignore ATTRIBUTE_UNUSED)
12688 char *section_name;
12693 int section_entry_size;
12694 int section_alignment;
12699 section_name = input_line_pointer;
12700 c = get_symbol_end ();
12702 next_c = *(input_line_pointer + 1);
12704 /* Do we have .section Name<,"flags">? */
12705 if (c != ',' || (c == ',' && next_c == '"'))
12707 /* just after name is now '\0'. */
12708 *input_line_pointer = c;
12709 input_line_pointer = section_name;
12710 obj_elf_section (ignore);
12713 input_line_pointer++;
12715 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12717 section_type = get_absolute_expression ();
12720 if (*input_line_pointer++ == ',')
12721 section_flag = get_absolute_expression ();
12724 if (*input_line_pointer++ == ',')
12725 section_entry_size = get_absolute_expression ();
12727 section_entry_size = 0;
12728 if (*input_line_pointer++ == ',')
12729 section_alignment = get_absolute_expression ();
12731 section_alignment = 0;
12732 /* FIXME: really ignore? */
12733 (void) section_alignment;
12735 section_name = xstrdup (section_name);
12737 /* When using the generic form of .section (as implemented by obj-elf.c),
12738 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12739 traditionally had to fall back on the more common @progbits instead.
12741 There's nothing really harmful in this, since bfd will correct
12742 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12743 means that, for backwards compatibility, the special_section entries
12744 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12746 Even so, we shouldn't force users of the MIPS .section syntax to
12747 incorrectly label the sections as SHT_PROGBITS. The best compromise
12748 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12749 generic type-checking code. */
12750 if (section_type == SHT_MIPS_DWARF)
12751 section_type = SHT_PROGBITS;
12753 obj_elf_change_section (section_name, section_type, section_flag,
12754 section_entry_size, 0, 0, 0);
12756 if (now_seg->name != section_name)
12757 free (section_name);
12758 #endif /* OBJ_ELF */
12762 mips_enable_auto_align (void)
12768 s_cons (int log_size)
12770 segment_info_type *si = seg_info (now_seg);
12771 struct insn_label_list *l = si->label_list;
12774 label = l != NULL ? l->label : NULL;
12775 mips_emit_delays ();
12776 if (log_size > 0 && auto_align)
12777 mips_align (log_size, 0, label);
12778 mips_clear_insn_labels ();
12779 cons (1 << log_size);
12783 s_float_cons (int type)
12785 segment_info_type *si = seg_info (now_seg);
12786 struct insn_label_list *l = si->label_list;
12789 label = l != NULL ? l->label : NULL;
12791 mips_emit_delays ();
12796 mips_align (3, 0, label);
12798 mips_align (2, 0, label);
12801 mips_clear_insn_labels ();
12806 /* Handle .globl. We need to override it because on Irix 5 you are
12809 where foo is an undefined symbol, to mean that foo should be
12810 considered to be the address of a function. */
12813 s_mips_globl (int x ATTRIBUTE_UNUSED)
12822 name = input_line_pointer;
12823 c = get_symbol_end ();
12824 symbolP = symbol_find_or_make (name);
12825 S_SET_EXTERNAL (symbolP);
12827 *input_line_pointer = c;
12828 SKIP_WHITESPACE ();
12830 /* On Irix 5, every global symbol that is not explicitly labelled as
12831 being a function is apparently labelled as being an object. */
12834 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12835 && (*input_line_pointer != ','))
12840 secname = input_line_pointer;
12841 c = get_symbol_end ();
12842 sec = bfd_get_section_by_name (stdoutput, secname);
12844 as_bad (_("%s: no such section"), secname);
12845 *input_line_pointer = c;
12847 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12848 flag = BSF_FUNCTION;
12851 symbol_get_bfdsym (symbolP)->flags |= flag;
12853 c = *input_line_pointer;
12856 input_line_pointer++;
12857 SKIP_WHITESPACE ();
12858 if (is_end_of_line[(unsigned char) *input_line_pointer])
12864 demand_empty_rest_of_line ();
12868 s_option (int x ATTRIBUTE_UNUSED)
12873 opt = input_line_pointer;
12874 c = get_symbol_end ();
12878 /* FIXME: What does this mean? */
12880 else if (strncmp (opt, "pic", 3) == 0)
12884 i = atoi (opt + 3);
12889 mips_pic = SVR4_PIC;
12890 mips_abicalls = TRUE;
12893 as_bad (_(".option pic%d not supported"), i);
12895 if (mips_pic == SVR4_PIC)
12897 if (g_switch_seen && g_switch_value != 0)
12898 as_warn (_("-G may not be used with SVR4 PIC code"));
12899 g_switch_value = 0;
12900 bfd_set_gp_size (stdoutput, 0);
12904 as_warn (_("Unrecognized option \"%s\""), opt);
12906 *input_line_pointer = c;
12907 demand_empty_rest_of_line ();
12910 /* This structure is used to hold a stack of .set values. */
12912 struct mips_option_stack
12914 struct mips_option_stack *next;
12915 struct mips_set_options options;
12918 static struct mips_option_stack *mips_opts_stack;
12920 /* Handle the .set pseudo-op. */
12923 s_mipsset (int x ATTRIBUTE_UNUSED)
12925 char *name = input_line_pointer, ch;
12927 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12928 ++input_line_pointer;
12929 ch = *input_line_pointer;
12930 *input_line_pointer = '\0';
12932 if (strcmp (name, "reorder") == 0)
12934 if (mips_opts.noreorder)
12937 else if (strcmp (name, "noreorder") == 0)
12939 if (!mips_opts.noreorder)
12940 start_noreorder ();
12942 else if (strncmp (name, "at=", 3) == 0)
12944 char *s = name + 3;
12946 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12947 as_bad (_("Unrecognized register name `%s'"), s);
12949 else if (strcmp (name, "at") == 0)
12951 mips_opts.at = ATREG;
12953 else if (strcmp (name, "noat") == 0)
12955 mips_opts.at = ZERO;
12957 else if (strcmp (name, "macro") == 0)
12959 mips_opts.warn_about_macros = 0;
12961 else if (strcmp (name, "nomacro") == 0)
12963 if (mips_opts.noreorder == 0)
12964 as_bad (_("`noreorder' must be set before `nomacro'"));
12965 mips_opts.warn_about_macros = 1;
12967 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12969 mips_opts.nomove = 0;
12971 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12973 mips_opts.nomove = 1;
12975 else if (strcmp (name, "bopt") == 0)
12977 mips_opts.nobopt = 0;
12979 else if (strcmp (name, "nobopt") == 0)
12981 mips_opts.nobopt = 1;
12983 else if (strcmp (name, "gp=default") == 0)
12984 mips_opts.gp32 = file_mips_gp32;
12985 else if (strcmp (name, "gp=32") == 0)
12986 mips_opts.gp32 = 1;
12987 else if (strcmp (name, "gp=64") == 0)
12989 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12990 as_warn (_("%s isa does not support 64-bit registers"),
12991 mips_cpu_info_from_isa (mips_opts.isa)->name);
12992 mips_opts.gp32 = 0;
12994 else if (strcmp (name, "fp=default") == 0)
12995 mips_opts.fp32 = file_mips_fp32;
12996 else if (strcmp (name, "fp=32") == 0)
12997 mips_opts.fp32 = 1;
12998 else if (strcmp (name, "fp=64") == 0)
13000 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13001 as_warn (_("%s isa does not support 64-bit floating point registers"),
13002 mips_cpu_info_from_isa (mips_opts.isa)->name);
13003 mips_opts.fp32 = 0;
13005 else if (strcmp (name, "softfloat") == 0)
13006 mips_opts.soft_float = 1;
13007 else if (strcmp (name, "hardfloat") == 0)
13008 mips_opts.soft_float = 0;
13009 else if (strcmp (name, "singlefloat") == 0)
13010 mips_opts.single_float = 1;
13011 else if (strcmp (name, "doublefloat") == 0)
13012 mips_opts.single_float = 0;
13013 else if (strcmp (name, "mips16") == 0
13014 || strcmp (name, "MIPS-16") == 0)
13015 mips_opts.mips16 = 1;
13016 else if (strcmp (name, "nomips16") == 0
13017 || strcmp (name, "noMIPS-16") == 0)
13018 mips_opts.mips16 = 0;
13019 else if (strcmp (name, "smartmips") == 0)
13021 if (!ISA_SUPPORTS_SMARTMIPS)
13022 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13023 mips_cpu_info_from_isa (mips_opts.isa)->name);
13024 mips_opts.ase_smartmips = 1;
13026 else if (strcmp (name, "nosmartmips") == 0)
13027 mips_opts.ase_smartmips = 0;
13028 else if (strcmp (name, "mips3d") == 0)
13029 mips_opts.ase_mips3d = 1;
13030 else if (strcmp (name, "nomips3d") == 0)
13031 mips_opts.ase_mips3d = 0;
13032 else if (strcmp (name, "mdmx") == 0)
13033 mips_opts.ase_mdmx = 1;
13034 else if (strcmp (name, "nomdmx") == 0)
13035 mips_opts.ase_mdmx = 0;
13036 else if (strcmp (name, "dsp") == 0)
13038 if (!ISA_SUPPORTS_DSP_ASE)
13039 as_warn (_("%s ISA does not support DSP ASE"),
13040 mips_cpu_info_from_isa (mips_opts.isa)->name);
13041 mips_opts.ase_dsp = 1;
13042 mips_opts.ase_dspr2 = 0;
13044 else if (strcmp (name, "nodsp") == 0)
13046 mips_opts.ase_dsp = 0;
13047 mips_opts.ase_dspr2 = 0;
13049 else if (strcmp (name, "dspr2") == 0)
13051 if (!ISA_SUPPORTS_DSPR2_ASE)
13052 as_warn (_("%s ISA does not support DSP R2 ASE"),
13053 mips_cpu_info_from_isa (mips_opts.isa)->name);
13054 mips_opts.ase_dspr2 = 1;
13055 mips_opts.ase_dsp = 1;
13057 else if (strcmp (name, "nodspr2") == 0)
13059 mips_opts.ase_dspr2 = 0;
13060 mips_opts.ase_dsp = 0;
13062 else if (strcmp (name, "mt") == 0)
13064 if (!ISA_SUPPORTS_MT_ASE)
13065 as_warn (_("%s ISA does not support MT ASE"),
13066 mips_cpu_info_from_isa (mips_opts.isa)->name);
13067 mips_opts.ase_mt = 1;
13069 else if (strcmp (name, "nomt") == 0)
13070 mips_opts.ase_mt = 0;
13071 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13075 /* Permit the user to change the ISA and architecture on the fly.
13076 Needless to say, misuse can cause serious problems. */
13077 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13080 mips_opts.isa = file_mips_isa;
13081 mips_opts.arch = file_mips_arch;
13083 else if (strncmp (name, "arch=", 5) == 0)
13085 const struct mips_cpu_info *p;
13087 p = mips_parse_cpu("internal use", name + 5);
13089 as_bad (_("unknown architecture %s"), name + 5);
13092 mips_opts.arch = p->cpu;
13093 mips_opts.isa = p->isa;
13096 else if (strncmp (name, "mips", 4) == 0)
13098 const struct mips_cpu_info *p;
13100 p = mips_parse_cpu("internal use", name);
13102 as_bad (_("unknown ISA level %s"), name + 4);
13105 mips_opts.arch = p->cpu;
13106 mips_opts.isa = p->isa;
13110 as_bad (_("unknown ISA or architecture %s"), name);
13112 switch (mips_opts.isa)
13120 mips_opts.gp32 = 1;
13121 mips_opts.fp32 = 1;
13128 mips_opts.gp32 = 0;
13129 mips_opts.fp32 = 0;
13132 as_bad (_("unknown ISA level %s"), name + 4);
13137 mips_opts.gp32 = file_mips_gp32;
13138 mips_opts.fp32 = file_mips_fp32;
13141 else if (strcmp (name, "autoextend") == 0)
13142 mips_opts.noautoextend = 0;
13143 else if (strcmp (name, "noautoextend") == 0)
13144 mips_opts.noautoextend = 1;
13145 else if (strcmp (name, "push") == 0)
13147 struct mips_option_stack *s;
13149 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13150 s->next = mips_opts_stack;
13151 s->options = mips_opts;
13152 mips_opts_stack = s;
13154 else if (strcmp (name, "pop") == 0)
13156 struct mips_option_stack *s;
13158 s = mips_opts_stack;
13160 as_bad (_(".set pop with no .set push"));
13163 /* If we're changing the reorder mode we need to handle
13164 delay slots correctly. */
13165 if (s->options.noreorder && ! mips_opts.noreorder)
13166 start_noreorder ();
13167 else if (! s->options.noreorder && mips_opts.noreorder)
13170 mips_opts = s->options;
13171 mips_opts_stack = s->next;
13175 else if (strcmp (name, "sym32") == 0)
13176 mips_opts.sym32 = TRUE;
13177 else if (strcmp (name, "nosym32") == 0)
13178 mips_opts.sym32 = FALSE;
13179 else if (strchr (name, ','))
13181 /* Generic ".set" directive; use the generic handler. */
13182 *input_line_pointer = ch;
13183 input_line_pointer = name;
13189 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13191 *input_line_pointer = ch;
13192 demand_empty_rest_of_line ();
13195 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13196 .option pic2. It means to generate SVR4 PIC calls. */
13199 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13201 mips_pic = SVR4_PIC;
13202 mips_abicalls = TRUE;
13204 if (g_switch_seen && g_switch_value != 0)
13205 as_warn (_("-G may not be used with SVR4 PIC code"));
13206 g_switch_value = 0;
13208 bfd_set_gp_size (stdoutput, 0);
13209 demand_empty_rest_of_line ();
13212 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13213 PIC code. It sets the $gp register for the function based on the
13214 function address, which is in the register named in the argument.
13215 This uses a relocation against _gp_disp, which is handled specially
13216 by the linker. The result is:
13217 lui $gp,%hi(_gp_disp)
13218 addiu $gp,$gp,%lo(_gp_disp)
13219 addu $gp,$gp,.cpload argument
13220 The .cpload argument is normally $25 == $t9.
13222 The -mno-shared option changes this to:
13223 lui $gp,%hi(__gnu_local_gp)
13224 addiu $gp,$gp,%lo(__gnu_local_gp)
13225 and the argument is ignored. This saves an instruction, but the
13226 resulting code is not position independent; it uses an absolute
13227 address for __gnu_local_gp. Thus code assembled with -mno-shared
13228 can go into an ordinary executable, but not into a shared library. */
13231 s_cpload (int ignore ATTRIBUTE_UNUSED)
13237 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13238 .cpload is ignored. */
13239 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13245 /* .cpload should be in a .set noreorder section. */
13246 if (mips_opts.noreorder == 0)
13247 as_warn (_(".cpload not in noreorder section"));
13249 reg = tc_get_register (0);
13251 /* If we need to produce a 64-bit address, we are better off using
13252 the default instruction sequence. */
13253 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13255 ex.X_op = O_symbol;
13256 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13258 ex.X_op_symbol = NULL;
13259 ex.X_add_number = 0;
13261 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13262 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13265 macro_build_lui (&ex, mips_gp_register);
13266 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13267 mips_gp_register, BFD_RELOC_LO16);
13269 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13270 mips_gp_register, reg);
13273 demand_empty_rest_of_line ();
13276 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13277 .cpsetup $reg1, offset|$reg2, label
13279 If offset is given, this results in:
13280 sd $gp, offset($sp)
13281 lui $gp, %hi(%neg(%gp_rel(label)))
13282 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13283 daddu $gp, $gp, $reg1
13285 If $reg2 is given, this results in:
13286 daddu $reg2, $gp, $0
13287 lui $gp, %hi(%neg(%gp_rel(label)))
13288 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13289 daddu $gp, $gp, $reg1
13290 $reg1 is normally $25 == $t9.
13292 The -mno-shared option replaces the last three instructions with
13294 addiu $gp,$gp,%lo(_gp) */
13297 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13299 expressionS ex_off;
13300 expressionS ex_sym;
13303 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13304 We also need NewABI support. */
13305 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13311 reg1 = tc_get_register (0);
13312 SKIP_WHITESPACE ();
13313 if (*input_line_pointer != ',')
13315 as_bad (_("missing argument separator ',' for .cpsetup"));
13319 ++input_line_pointer;
13320 SKIP_WHITESPACE ();
13321 if (*input_line_pointer == '$')
13323 mips_cpreturn_register = tc_get_register (0);
13324 mips_cpreturn_offset = -1;
13328 mips_cpreturn_offset = get_absolute_expression ();
13329 mips_cpreturn_register = -1;
13331 SKIP_WHITESPACE ();
13332 if (*input_line_pointer != ',')
13334 as_bad (_("missing argument separator ',' for .cpsetup"));
13338 ++input_line_pointer;
13339 SKIP_WHITESPACE ();
13340 expression (&ex_sym);
13343 if (mips_cpreturn_register == -1)
13345 ex_off.X_op = O_constant;
13346 ex_off.X_add_symbol = NULL;
13347 ex_off.X_op_symbol = NULL;
13348 ex_off.X_add_number = mips_cpreturn_offset;
13350 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13351 BFD_RELOC_LO16, SP);
13354 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13355 mips_gp_register, 0);
13357 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13359 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13360 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13363 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13364 mips_gp_register, -1, BFD_RELOC_GPREL16,
13365 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13367 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13368 mips_gp_register, reg1);
13374 ex.X_op = O_symbol;
13375 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13376 ex.X_op_symbol = NULL;
13377 ex.X_add_number = 0;
13379 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13380 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13382 macro_build_lui (&ex, mips_gp_register);
13383 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13384 mips_gp_register, BFD_RELOC_LO16);
13389 demand_empty_rest_of_line ();
13393 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13395 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13396 .cplocal is ignored. */
13397 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13403 mips_gp_register = tc_get_register (0);
13404 demand_empty_rest_of_line ();
13407 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13408 offset from $sp. The offset is remembered, and after making a PIC
13409 call $gp is restored from that location. */
13412 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13416 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13417 .cprestore is ignored. */
13418 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13424 mips_cprestore_offset = get_absolute_expression ();
13425 mips_cprestore_valid = 1;
13427 ex.X_op = O_constant;
13428 ex.X_add_symbol = NULL;
13429 ex.X_op_symbol = NULL;
13430 ex.X_add_number = mips_cprestore_offset;
13433 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13434 SP, HAVE_64BIT_ADDRESSES);
13437 demand_empty_rest_of_line ();
13440 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13441 was given in the preceding .cpsetup, it results in:
13442 ld $gp, offset($sp)
13444 If a register $reg2 was given there, it results in:
13445 daddu $gp, $reg2, $0 */
13448 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13452 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13453 We also need NewABI support. */
13454 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13461 if (mips_cpreturn_register == -1)
13463 ex.X_op = O_constant;
13464 ex.X_add_symbol = NULL;
13465 ex.X_op_symbol = NULL;
13466 ex.X_add_number = mips_cpreturn_offset;
13468 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13471 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13472 mips_cpreturn_register, 0);
13475 demand_empty_rest_of_line ();
13478 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13479 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13480 use in DWARF debug information. */
13483 s_dtprel_internal (size_t bytes)
13490 if (ex.X_op != O_symbol)
13492 as_bad (_("Unsupported use of %s"), (bytes == 8
13495 ignore_rest_of_line ();
13498 p = frag_more (bytes);
13499 md_number_to_chars (p, 0, bytes);
13500 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13502 ? BFD_RELOC_MIPS_TLS_DTPREL64
13503 : BFD_RELOC_MIPS_TLS_DTPREL32));
13505 demand_empty_rest_of_line ();
13508 /* Handle .dtprelword. */
13511 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13513 s_dtprel_internal (4);
13516 /* Handle .dtpreldword. */
13519 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13521 s_dtprel_internal (8);
13524 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13525 code. It sets the offset to use in gp_rel relocations. */
13528 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13530 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13531 We also need NewABI support. */
13532 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13538 mips_gprel_offset = get_absolute_expression ();
13540 demand_empty_rest_of_line ();
13543 /* Handle the .gpword pseudo-op. This is used when generating PIC
13544 code. It generates a 32 bit GP relative reloc. */
13547 s_gpword (int ignore ATTRIBUTE_UNUSED)
13549 segment_info_type *si;
13550 struct insn_label_list *l;
13555 /* When not generating PIC code, this is treated as .word. */
13556 if (mips_pic != SVR4_PIC)
13562 si = seg_info (now_seg);
13563 l = si->label_list;
13564 label = l != NULL ? l->label : NULL;
13565 mips_emit_delays ();
13567 mips_align (2, 0, label);
13568 mips_clear_insn_labels ();
13572 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13574 as_bad (_("Unsupported use of .gpword"));
13575 ignore_rest_of_line ();
13579 md_number_to_chars (p, 0, 4);
13580 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13581 BFD_RELOC_GPREL32);
13583 demand_empty_rest_of_line ();
13587 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13589 segment_info_type *si;
13590 struct insn_label_list *l;
13595 /* When not generating PIC code, this is treated as .dword. */
13596 if (mips_pic != SVR4_PIC)
13602 si = seg_info (now_seg);
13603 l = si->label_list;
13604 label = l != NULL ? l->label : NULL;
13605 mips_emit_delays ();
13607 mips_align (3, 0, label);
13608 mips_clear_insn_labels ();
13612 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13614 as_bad (_("Unsupported use of .gpdword"));
13615 ignore_rest_of_line ();
13619 md_number_to_chars (p, 0, 8);
13620 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13621 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13623 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13624 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13625 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13627 demand_empty_rest_of_line ();
13630 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13631 tables in SVR4 PIC code. */
13634 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13638 /* This is ignored when not generating SVR4 PIC code. */
13639 if (mips_pic != SVR4_PIC)
13645 /* Add $gp to the register named as an argument. */
13647 reg = tc_get_register (0);
13648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13651 demand_empty_rest_of_line ();
13654 /* Handle the .insn pseudo-op. This marks instruction labels in
13655 mips16 mode. This permits the linker to handle them specially,
13656 such as generating jalx instructions when needed. We also make
13657 them odd for the duration of the assembly, in order to generate the
13658 right sort of code. We will make them even in the adjust_symtab
13659 routine, while leaving them marked. This is convenient for the
13660 debugger and the disassembler. The linker knows to make them odd
13664 s_insn (int ignore ATTRIBUTE_UNUSED)
13666 mips16_mark_labels ();
13668 demand_empty_rest_of_line ();
13671 /* Handle a .stabn directive. We need these in order to mark a label
13672 as being a mips16 text label correctly. Sometimes the compiler
13673 will emit a label, followed by a .stabn, and then switch sections.
13674 If the label and .stabn are in mips16 mode, then the label is
13675 really a mips16 text label. */
13678 s_mips_stab (int type)
13681 mips16_mark_labels ();
13686 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13689 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13696 name = input_line_pointer;
13697 c = get_symbol_end ();
13698 symbolP = symbol_find_or_make (name);
13699 S_SET_WEAK (symbolP);
13700 *input_line_pointer = c;
13702 SKIP_WHITESPACE ();
13704 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13706 if (S_IS_DEFINED (symbolP))
13708 as_bad (_("ignoring attempt to redefine symbol %s"),
13709 S_GET_NAME (symbolP));
13710 ignore_rest_of_line ();
13714 if (*input_line_pointer == ',')
13716 ++input_line_pointer;
13717 SKIP_WHITESPACE ();
13721 if (exp.X_op != O_symbol)
13723 as_bad (_("bad .weakext directive"));
13724 ignore_rest_of_line ();
13727 symbol_set_value_expression (symbolP, &exp);
13730 demand_empty_rest_of_line ();
13733 /* Parse a register string into a number. Called from the ECOFF code
13734 to parse .frame. The argument is non-zero if this is the frame
13735 register, so that we can record it in mips_frame_reg. */
13738 tc_get_register (int frame)
13742 SKIP_WHITESPACE ();
13743 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
13747 mips_frame_reg = reg != 0 ? reg : SP;
13748 mips_frame_reg_valid = 1;
13749 mips_cprestore_valid = 0;
13755 md_section_align (asection *seg, valueT addr)
13757 int align = bfd_get_section_alignment (stdoutput, seg);
13761 /* We don't need to align ELF sections to the full alignment.
13762 However, Irix 5 may prefer that we align them at least to a 16
13763 byte boundary. We don't bother to align the sections if we
13764 are targeted for an embedded system. */
13765 if (strncmp (TARGET_OS, "elf", 3) == 0)
13771 return ((addr + (1 << align) - 1) & (-1 << align));
13774 /* Utility routine, called from above as well. If called while the
13775 input file is still being read, it's only an approximation. (For
13776 example, a symbol may later become defined which appeared to be
13777 undefined earlier.) */
13780 nopic_need_relax (symbolS *sym, int before_relaxing)
13785 if (g_switch_value > 0)
13787 const char *symname;
13790 /* Find out whether this symbol can be referenced off the $gp
13791 register. It can be if it is smaller than the -G size or if
13792 it is in the .sdata or .sbss section. Certain symbols can
13793 not be referenced off the $gp, although it appears as though
13795 symname = S_GET_NAME (sym);
13796 if (symname != (const char *) NULL
13797 && (strcmp (symname, "eprol") == 0
13798 || strcmp (symname, "etext") == 0
13799 || strcmp (symname, "_gp") == 0
13800 || strcmp (symname, "edata") == 0
13801 || strcmp (symname, "_fbss") == 0
13802 || strcmp (symname, "_fdata") == 0
13803 || strcmp (symname, "_ftext") == 0
13804 || strcmp (symname, "end") == 0
13805 || strcmp (symname, "_gp_disp") == 0))
13807 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13809 #ifndef NO_ECOFF_DEBUGGING
13810 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13811 && (symbol_get_obj (sym)->ecoff_extern_size
13812 <= g_switch_value))
13814 /* We must defer this decision until after the whole
13815 file has been read, since there might be a .extern
13816 after the first use of this symbol. */
13817 || (before_relaxing
13818 #ifndef NO_ECOFF_DEBUGGING
13819 && symbol_get_obj (sym)->ecoff_extern_size == 0
13821 && S_GET_VALUE (sym) == 0)
13822 || (S_GET_VALUE (sym) != 0
13823 && S_GET_VALUE (sym) <= g_switch_value)))
13827 const char *segname;
13829 segname = segment_name (S_GET_SEGMENT (sym));
13830 gas_assert (strcmp (segname, ".lit8") != 0
13831 && strcmp (segname, ".lit4") != 0);
13832 change = (strcmp (segname, ".sdata") != 0
13833 && strcmp (segname, ".sbss") != 0
13834 && strncmp (segname, ".sdata.", 7) != 0
13835 && strncmp (segname, ".sbss.", 6) != 0
13836 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13837 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13842 /* We are not optimizing for the $gp register. */
13847 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13850 pic_need_relax (symbolS *sym, asection *segtype)
13854 /* Handle the case of a symbol equated to another symbol. */
13855 while (symbol_equated_reloc_p (sym))
13859 /* It's possible to get a loop here in a badly written program. */
13860 n = symbol_get_value_expression (sym)->X_add_symbol;
13866 if (symbol_section_p (sym))
13869 symsec = S_GET_SEGMENT (sym);
13871 /* This must duplicate the test in adjust_reloc_syms. */
13872 return (symsec != &bfd_und_section
13873 && symsec != &bfd_abs_section
13874 && !bfd_is_com_section (symsec)
13875 && !s_is_linkonce (sym, segtype)
13877 /* A global or weak symbol is treated as external. */
13878 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13884 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13885 extended opcode. SEC is the section the frag is in. */
13888 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13891 const struct mips16_immed_operand *op;
13893 int mintiny, maxtiny;
13897 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13899 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13902 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13903 op = mips16_immed_operands;
13904 while (op->type != type)
13907 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13912 if (type == '<' || type == '>' || type == '[' || type == ']')
13915 maxtiny = 1 << op->nbits;
13920 maxtiny = (1 << op->nbits) - 1;
13925 mintiny = - (1 << (op->nbits - 1));
13926 maxtiny = (1 << (op->nbits - 1)) - 1;
13929 sym_frag = symbol_get_frag (fragp->fr_symbol);
13930 val = S_GET_VALUE (fragp->fr_symbol);
13931 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13937 /* We won't have the section when we are called from
13938 mips_relax_frag. However, we will always have been called
13939 from md_estimate_size_before_relax first. If this is a
13940 branch to a different section, we mark it as such. If SEC is
13941 NULL, and the frag is not marked, then it must be a branch to
13942 the same section. */
13945 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13950 /* Must have been called from md_estimate_size_before_relax. */
13953 fragp->fr_subtype =
13954 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13956 /* FIXME: We should support this, and let the linker
13957 catch branches and loads that are out of range. */
13958 as_bad_where (fragp->fr_file, fragp->fr_line,
13959 _("unsupported PC relative reference to different section"));
13963 if (fragp != sym_frag && sym_frag->fr_address == 0)
13964 /* Assume non-extended on the first relaxation pass.
13965 The address we have calculated will be bogus if this is
13966 a forward branch to another frag, as the forward frag
13967 will have fr_address == 0. */
13971 /* In this case, we know for sure that the symbol fragment is in
13972 the same section. If the relax_marker of the symbol fragment
13973 differs from the relax_marker of this fragment, we have not
13974 yet adjusted the symbol fragment fr_address. We want to add
13975 in STRETCH in order to get a better estimate of the address.
13976 This particularly matters because of the shift bits. */
13978 && sym_frag->relax_marker != fragp->relax_marker)
13982 /* Adjust stretch for any alignment frag. Note that if have
13983 been expanding the earlier code, the symbol may be
13984 defined in what appears to be an earlier frag. FIXME:
13985 This doesn't handle the fr_subtype field, which specifies
13986 a maximum number of bytes to skip when doing an
13988 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13990 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13993 stretch = - ((- stretch)
13994 & ~ ((1 << (int) f->fr_offset) - 1));
13996 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14005 addr = fragp->fr_address + fragp->fr_fix;
14007 /* The base address rules are complicated. The base address of
14008 a branch is the following instruction. The base address of a
14009 PC relative load or add is the instruction itself, but if it
14010 is in a delay slot (in which case it can not be extended) use
14011 the address of the instruction whose delay slot it is in. */
14012 if (type == 'p' || type == 'q')
14016 /* If we are currently assuming that this frag should be
14017 extended, then, the current address is two bytes
14019 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14022 /* Ignore the low bit in the target, since it will be set
14023 for a text label. */
14024 if ((val & 1) != 0)
14027 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14029 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14032 val -= addr & ~ ((1 << op->shift) - 1);
14034 /* Branch offsets have an implicit 0 in the lowest bit. */
14035 if (type == 'p' || type == 'q')
14038 /* If any of the shifted bits are set, we must use an extended
14039 opcode. If the address depends on the size of this
14040 instruction, this can lead to a loop, so we arrange to always
14041 use an extended opcode. We only check this when we are in
14042 the main relaxation loop, when SEC is NULL. */
14043 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14045 fragp->fr_subtype =
14046 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14050 /* If we are about to mark a frag as extended because the value
14051 is precisely maxtiny + 1, then there is a chance of an
14052 infinite loop as in the following code:
14057 In this case when the la is extended, foo is 0x3fc bytes
14058 away, so the la can be shrunk, but then foo is 0x400 away, so
14059 the la must be extended. To avoid this loop, we mark the
14060 frag as extended if it was small, and is about to become
14061 extended with a value of maxtiny + 1. */
14062 if (val == ((maxtiny + 1) << op->shift)
14063 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14066 fragp->fr_subtype =
14067 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14071 else if (symsec != absolute_section && sec != NULL)
14072 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14074 if ((val & ((1 << op->shift) - 1)) != 0
14075 || val < (mintiny << op->shift)
14076 || val > (maxtiny << op->shift))
14082 /* Compute the length of a branch sequence, and adjust the
14083 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14084 worst-case length is computed, with UPDATE being used to indicate
14085 whether an unconditional (-1), branch-likely (+1) or regular (0)
14086 branch is to be computed. */
14088 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14090 bfd_boolean toofar;
14094 && S_IS_DEFINED (fragp->fr_symbol)
14095 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14100 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14102 addr = fragp->fr_address + fragp->fr_fix + 4;
14106 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14109 /* If the symbol is not defined or it's in a different segment,
14110 assume the user knows what's going on and emit a short
14116 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14118 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14119 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14120 RELAX_BRANCH_LINK (fragp->fr_subtype),
14126 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14129 if (mips_pic != NO_PIC)
14131 /* Additional space for PIC loading of target address. */
14133 if (mips_opts.isa == ISA_MIPS1)
14134 /* Additional space for $at-stabilizing nop. */
14138 /* If branch is conditional. */
14139 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14146 /* Estimate the size of a frag before relaxing. Unless this is the
14147 mips16, we are not really relaxing here, and the final size is
14148 encoded in the subtype information. For the mips16, we have to
14149 decide whether we are using an extended opcode or not. */
14152 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14156 if (RELAX_BRANCH_P (fragp->fr_subtype))
14159 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14161 return fragp->fr_var;
14164 if (RELAX_MIPS16_P (fragp->fr_subtype))
14165 /* We don't want to modify the EXTENDED bit here; it might get us
14166 into infinite loops. We change it only in mips_relax_frag(). */
14167 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14169 if (mips_pic == NO_PIC)
14170 change = nopic_need_relax (fragp->fr_symbol, 0);
14171 else if (mips_pic == SVR4_PIC)
14172 change = pic_need_relax (fragp->fr_symbol, segtype);
14173 else if (mips_pic == VXWORKS_PIC)
14174 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14181 fragp->fr_subtype |= RELAX_USE_SECOND;
14182 return -RELAX_FIRST (fragp->fr_subtype);
14185 return -RELAX_SECOND (fragp->fr_subtype);
14188 /* This is called to see whether a reloc against a defined symbol
14189 should be converted into a reloc against a section. */
14192 mips_fix_adjustable (fixS *fixp)
14194 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14195 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14198 if (fixp->fx_addsy == NULL)
14201 /* If symbol SYM is in a mergeable section, relocations of the form
14202 SYM + 0 can usually be made section-relative. The mergeable data
14203 is then identified by the section offset rather than by the symbol.
14205 However, if we're generating REL LO16 relocations, the offset is split
14206 between the LO16 and parterning high part relocation. The linker will
14207 need to recalculate the complete offset in order to correctly identify
14210 The linker has traditionally not looked for the parterning high part
14211 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14212 placed anywhere. Rather than break backwards compatibility by changing
14213 this, it seems better not to force the issue, and instead keep the
14214 original symbol. This will work with either linker behavior. */
14215 if ((lo16_reloc_p (fixp->fx_r_type)
14216 || reloc_needs_lo_p (fixp->fx_r_type))
14217 && HAVE_IN_PLACE_ADDENDS
14218 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14221 /* There is no place to store an in-place offset for JALR relocations. */
14222 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14226 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14227 to a floating-point stub. The same is true for non-R_MIPS16_26
14228 relocations against MIPS16 functions; in this case, the stub becomes
14229 the function's canonical address.
14231 Floating-point stubs are stored in unique .mips16.call.* or
14232 .mips16.fn.* sections. If a stub T for function F is in section S,
14233 the first relocation in section S must be against F; this is how the
14234 linker determines the target function. All relocations that might
14235 resolve to T must also be against F. We therefore have the following
14236 restrictions, which are given in an intentionally-redundant way:
14238 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14241 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14242 if that stub might be used.
14244 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14247 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14248 that stub might be used.
14250 There is a further restriction:
14252 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14253 on targets with in-place addends; the relocation field cannot
14254 encode the low bit.
14256 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14257 against a MIPS16 symbol.
14259 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14260 relocation against some symbol R, no relocation against R may be
14261 reduced. (Note that this deals with (2) as well as (1) because
14262 relocations against global symbols will never be reduced on ELF
14263 targets.) This approach is a little simpler than trying to detect
14264 stub sections, and gives the "all or nothing" per-symbol consistency
14265 that we have for MIPS16 symbols. */
14267 && fixp->fx_subsy == NULL
14268 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14269 || *symbol_get_tc (fixp->fx_addsy)))
14276 /* Translate internal representation of relocation info to BFD target
14280 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14282 static arelent *retval[4];
14284 bfd_reloc_code_real_type code;
14286 memset (retval, 0, sizeof(retval));
14287 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14288 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14289 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14290 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14292 if (fixp->fx_pcrel)
14294 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14296 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14297 Relocations want only the symbol offset. */
14298 reloc->addend = fixp->fx_addnumber + reloc->address;
14301 /* A gruesome hack which is a result of the gruesome gas
14302 reloc handling. What's worse, for COFF (as opposed to
14303 ECOFF), we might need yet another copy of reloc->address.
14304 See bfd_install_relocation. */
14305 reloc->addend += reloc->address;
14309 reloc->addend = fixp->fx_addnumber;
14311 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14312 entry to be used in the relocation's section offset. */
14313 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14315 reloc->address = reloc->addend;
14319 code = fixp->fx_r_type;
14321 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14322 if (reloc->howto == NULL)
14324 as_bad_where (fixp->fx_file, fixp->fx_line,
14325 _("Can not represent %s relocation in this object file format"),
14326 bfd_get_reloc_code_name (code));
14333 /* Relax a machine dependent frag. This returns the amount by which
14334 the current size of the frag should change. */
14337 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14339 if (RELAX_BRANCH_P (fragp->fr_subtype))
14341 offsetT old_var = fragp->fr_var;
14343 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14345 return fragp->fr_var - old_var;
14348 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14351 if (mips16_extended_frag (fragp, NULL, stretch))
14353 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14355 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14360 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14362 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14369 /* Convert a machine dependent frag. */
14372 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14374 if (RELAX_BRANCH_P (fragp->fr_subtype))
14377 unsigned long insn;
14381 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14383 if (target_big_endian)
14384 insn = bfd_getb32 (buf);
14386 insn = bfd_getl32 (buf);
14388 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14390 /* We generate a fixup instead of applying it right now
14391 because, if there are linker relaxations, we're going to
14392 need the relocations. */
14393 exp.X_op = O_symbol;
14394 exp.X_add_symbol = fragp->fr_symbol;
14395 exp.X_add_number = fragp->fr_offset;
14397 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14398 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14399 fixp->fx_file = fragp->fr_file;
14400 fixp->fx_line = fragp->fr_line;
14402 md_number_to_chars ((char *) buf, insn, 4);
14409 as_warn_where (fragp->fr_file, fragp->fr_line,
14410 _("relaxed out-of-range branch into a jump"));
14412 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14415 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14417 /* Reverse the branch. */
14418 switch ((insn >> 28) & 0xf)
14421 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14422 have the condition reversed by tweaking a single
14423 bit, and their opcodes all have 0x4???????. */
14424 gas_assert ((insn & 0xf1000000) == 0x41000000);
14425 insn ^= 0x00010000;
14429 /* bltz 0x04000000 bgez 0x04010000
14430 bltzal 0x04100000 bgezal 0x04110000 */
14431 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14432 insn ^= 0x00010000;
14436 /* beq 0x10000000 bne 0x14000000
14437 blez 0x18000000 bgtz 0x1c000000 */
14438 insn ^= 0x04000000;
14446 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14448 /* Clear the and-link bit. */
14449 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14451 /* bltzal 0x04100000 bgezal 0x04110000
14452 bltzall 0x04120000 bgezall 0x04130000 */
14453 insn &= ~0x00100000;
14456 /* Branch over the branch (if the branch was likely) or the
14457 full jump (not likely case). Compute the offset from the
14458 current instruction to branch to. */
14459 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14463 /* How many bytes in instructions we've already emitted? */
14464 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14465 /* How many bytes in instructions from here to the end? */
14466 i = fragp->fr_var - i;
14468 /* Convert to instruction count. */
14470 /* Branch counts from the next instruction. */
14473 /* Branch over the jump. */
14474 md_number_to_chars ((char *) buf, insn, 4);
14478 md_number_to_chars ((char *) buf, 0, 4);
14481 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14483 /* beql $0, $0, 2f */
14485 /* Compute the PC offset from the current instruction to
14486 the end of the variable frag. */
14487 /* How many bytes in instructions we've already emitted? */
14488 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14489 /* How many bytes in instructions from here to the end? */
14490 i = fragp->fr_var - i;
14491 /* Convert to instruction count. */
14493 /* Don't decrement i, because we want to branch over the
14497 md_number_to_chars ((char *) buf, insn, 4);
14500 md_number_to_chars ((char *) buf, 0, 4);
14505 if (mips_pic == NO_PIC)
14508 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14509 ? 0x0c000000 : 0x08000000);
14510 exp.X_op = O_symbol;
14511 exp.X_add_symbol = fragp->fr_symbol;
14512 exp.X_add_number = fragp->fr_offset;
14514 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14515 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14516 fixp->fx_file = fragp->fr_file;
14517 fixp->fx_line = fragp->fr_line;
14519 md_number_to_chars ((char *) buf, insn, 4);
14524 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14525 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14526 exp.X_op = O_symbol;
14527 exp.X_add_symbol = fragp->fr_symbol;
14528 exp.X_add_number = fragp->fr_offset;
14530 if (fragp->fr_offset)
14532 exp.X_add_symbol = make_expr_symbol (&exp);
14533 exp.X_add_number = 0;
14536 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14537 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14538 fixp->fx_file = fragp->fr_file;
14539 fixp->fx_line = fragp->fr_line;
14541 md_number_to_chars ((char *) buf, insn, 4);
14544 if (mips_opts.isa == ISA_MIPS1)
14547 md_number_to_chars ((char *) buf, 0, 4);
14551 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14552 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14554 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14555 4, &exp, FALSE, BFD_RELOC_LO16);
14556 fixp->fx_file = fragp->fr_file;
14557 fixp->fx_line = fragp->fr_line;
14559 md_number_to_chars ((char *) buf, insn, 4);
14563 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14568 md_number_to_chars ((char *) buf, insn, 4);
14573 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14574 + fragp->fr_fix + fragp->fr_var);
14576 fragp->fr_fix += fragp->fr_var;
14581 if (RELAX_MIPS16_P (fragp->fr_subtype))
14584 const struct mips16_immed_operand *op;
14585 bfd_boolean small, ext;
14588 unsigned long insn;
14589 bfd_boolean use_extend;
14590 unsigned short extend;
14592 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14593 op = mips16_immed_operands;
14594 while (op->type != type)
14597 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14608 resolve_symbol_value (fragp->fr_symbol);
14609 val = S_GET_VALUE (fragp->fr_symbol);
14614 addr = fragp->fr_address + fragp->fr_fix;
14616 /* The rules for the base address of a PC relative reloc are
14617 complicated; see mips16_extended_frag. */
14618 if (type == 'p' || type == 'q')
14623 /* Ignore the low bit in the target, since it will be
14624 set for a text label. */
14625 if ((val & 1) != 0)
14628 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14630 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14633 addr &= ~ (addressT) ((1 << op->shift) - 1);
14636 /* Make sure the section winds up with the alignment we have
14639 record_alignment (asec, op->shift);
14643 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14644 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14645 as_warn_where (fragp->fr_file, fragp->fr_line,
14646 _("extended instruction in delay slot"));
14648 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14650 if (target_big_endian)
14651 insn = bfd_getb16 (buf);
14653 insn = bfd_getl16 (buf);
14655 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14656 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14657 small, ext, &insn, &use_extend, &extend);
14661 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14662 fragp->fr_fix += 2;
14666 md_number_to_chars ((char *) buf, insn, 2);
14667 fragp->fr_fix += 2;
14675 first = RELAX_FIRST (fragp->fr_subtype);
14676 second = RELAX_SECOND (fragp->fr_subtype);
14677 fixp = (fixS *) fragp->fr_opcode;
14679 /* Possibly emit a warning if we've chosen the longer option. */
14680 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14681 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14683 const char *msg = macro_warning (fragp->fr_subtype);
14685 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14688 /* Go through all the fixups for the first sequence. Disable them
14689 (by marking them as done) if we're going to use the second
14690 sequence instead. */
14692 && fixp->fx_frag == fragp
14693 && fixp->fx_where < fragp->fr_fix - second)
14695 if (fragp->fr_subtype & RELAX_USE_SECOND)
14697 fixp = fixp->fx_next;
14700 /* Go through the fixups for the second sequence. Disable them if
14701 we're going to use the first sequence, otherwise adjust their
14702 addresses to account for the relaxation. */
14703 while (fixp && fixp->fx_frag == fragp)
14705 if (fragp->fr_subtype & RELAX_USE_SECOND)
14706 fixp->fx_where -= first;
14709 fixp = fixp->fx_next;
14712 /* Now modify the frag contents. */
14713 if (fragp->fr_subtype & RELAX_USE_SECOND)
14717 start = fragp->fr_literal + fragp->fr_fix - first - second;
14718 memmove (start, start + first, second);
14719 fragp->fr_fix -= first;
14722 fragp->fr_fix -= second;
14728 /* This function is called after the relocs have been generated.
14729 We've been storing mips16 text labels as odd. Here we convert them
14730 back to even for the convenience of the debugger. */
14733 mips_frob_file_after_relocs (void)
14736 unsigned int count, i;
14741 syms = bfd_get_outsymbols (stdoutput);
14742 count = bfd_get_symcount (stdoutput);
14743 for (i = 0; i < count; i++, syms++)
14745 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14746 && ((*syms)->value & 1) != 0)
14748 (*syms)->value &= ~1;
14749 /* If the symbol has an odd size, it was probably computed
14750 incorrectly, so adjust that as well. */
14751 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14752 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14759 /* This function is called whenever a label is defined. It is used
14760 when handling branch delays; if a branch has a label, we assume we
14761 can not move it. */
14764 mips_define_label (symbolS *sym)
14766 segment_info_type *si = seg_info (now_seg);
14767 struct insn_label_list *l;
14769 if (free_insn_labels == NULL)
14770 l = (struct insn_label_list *) xmalloc (sizeof *l);
14773 l = free_insn_labels;
14774 free_insn_labels = l->next;
14778 l->next = si->label_list;
14779 si->label_list = l;
14782 dwarf2_emit_label (sym);
14786 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14788 /* Some special processing for a MIPS ELF file. */
14791 mips_elf_final_processing (void)
14793 /* Write out the register information. */
14794 if (mips_abi != N64_ABI)
14798 s.ri_gprmask = mips_gprmask;
14799 s.ri_cprmask[0] = mips_cprmask[0];
14800 s.ri_cprmask[1] = mips_cprmask[1];
14801 s.ri_cprmask[2] = mips_cprmask[2];
14802 s.ri_cprmask[3] = mips_cprmask[3];
14803 /* The gp_value field is set by the MIPS ELF backend. */
14805 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14806 ((Elf32_External_RegInfo *)
14807 mips_regmask_frag));
14811 Elf64_Internal_RegInfo s;
14813 s.ri_gprmask = mips_gprmask;
14815 s.ri_cprmask[0] = mips_cprmask[0];
14816 s.ri_cprmask[1] = mips_cprmask[1];
14817 s.ri_cprmask[2] = mips_cprmask[2];
14818 s.ri_cprmask[3] = mips_cprmask[3];
14819 /* The gp_value field is set by the MIPS ELF backend. */
14821 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14822 ((Elf64_External_RegInfo *)
14823 mips_regmask_frag));
14826 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14827 sort of BFD interface for this. */
14828 if (mips_any_noreorder)
14829 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14830 if (mips_pic != NO_PIC)
14832 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14833 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14836 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14838 /* Set MIPS ELF flags for ASEs. */
14839 /* We may need to define a new flag for DSP ASE, and set this flag when
14840 file_ase_dsp is true. */
14841 /* Same for DSP R2. */
14842 /* We may need to define a new flag for MT ASE, and set this flag when
14843 file_ase_mt is true. */
14844 if (file_ase_mips16)
14845 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14846 #if 0 /* XXX FIXME */
14847 if (file_ase_mips3d)
14848 elf_elfheader (stdoutput)->e_flags |= ???;
14851 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14853 /* Set the MIPS ELF ABI flags. */
14854 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14855 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14856 else if (mips_abi == O64_ABI)
14857 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14858 else if (mips_abi == EABI_ABI)
14860 if (!file_mips_gp32)
14861 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14863 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14865 else if (mips_abi == N32_ABI)
14866 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14868 /* Nothing to do for N64_ABI. */
14870 if (mips_32bitmode)
14871 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14873 #if 0 /* XXX FIXME */
14874 /* 32 bit code with 64 bit FP registers. */
14875 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14876 elf_elfheader (stdoutput)->e_flags |= ???;
14880 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14882 typedef struct proc {
14884 symbolS *func_end_sym;
14885 unsigned long reg_mask;
14886 unsigned long reg_offset;
14887 unsigned long fpreg_mask;
14888 unsigned long fpreg_offset;
14889 unsigned long frame_offset;
14890 unsigned long frame_reg;
14891 unsigned long pc_reg;
14894 static procS cur_proc;
14895 static procS *cur_proc_ptr;
14896 static int numprocs;
14898 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14902 mips_nop_opcode (void)
14904 return seg_info (now_seg)->tc_segment_info_data.mips16;
14907 /* Fill in an rs_align_code fragment. This only needs to do something
14908 for MIPS16 code, where 0 is not a nop. */
14911 mips_handle_align (fragS *fragp)
14914 int bytes, size, excess;
14917 if (fragp->fr_type != rs_align_code)
14920 p = fragp->fr_literal + fragp->fr_fix;
14923 opcode = mips16_nop_insn.insn_opcode;
14928 opcode = nop_insn.insn_opcode;
14932 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14933 excess = bytes % size;
14936 /* If we're not inserting a whole number of instructions,
14937 pad the end of the fixed part of the frag with zeros. */
14938 memset (p, 0, excess);
14940 fragp->fr_fix += excess;
14943 md_number_to_chars (p, opcode, size);
14944 fragp->fr_var = size;
14948 md_obj_begin (void)
14955 /* Check for premature end, nesting errors, etc. */
14957 as_warn (_("missing .end at end of assembly"));
14966 if (*input_line_pointer == '-')
14968 ++input_line_pointer;
14971 if (!ISDIGIT (*input_line_pointer))
14972 as_bad (_("expected simple number"));
14973 if (input_line_pointer[0] == '0')
14975 if (input_line_pointer[1] == 'x')
14977 input_line_pointer += 2;
14978 while (ISXDIGIT (*input_line_pointer))
14981 val |= hex_value (*input_line_pointer++);
14983 return negative ? -val : val;
14987 ++input_line_pointer;
14988 while (ISDIGIT (*input_line_pointer))
14991 val |= *input_line_pointer++ - '0';
14993 return negative ? -val : val;
14996 if (!ISDIGIT (*input_line_pointer))
14998 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14999 *input_line_pointer, *input_line_pointer);
15000 as_warn (_("invalid number"));
15003 while (ISDIGIT (*input_line_pointer))
15006 val += *input_line_pointer++ - '0';
15008 return negative ? -val : val;
15011 /* The .file directive; just like the usual .file directive, but there
15012 is an initial number which is the ECOFF file index. In the non-ECOFF
15013 case .file implies DWARF-2. */
15016 s_mips_file (int x ATTRIBUTE_UNUSED)
15018 static int first_file_directive = 0;
15020 if (ECOFF_DEBUGGING)
15029 filename = dwarf2_directive_file (0);
15031 /* Versions of GCC up to 3.1 start files with a ".file"
15032 directive even for stabs output. Make sure that this
15033 ".file" is handled. Note that you need a version of GCC
15034 after 3.1 in order to support DWARF-2 on MIPS. */
15035 if (filename != NULL && ! first_file_directive)
15037 (void) new_logical_line (filename, -1);
15038 s_app_file_string (filename, 0);
15040 first_file_directive = 1;
15044 /* The .loc directive, implying DWARF-2. */
15047 s_mips_loc (int x ATTRIBUTE_UNUSED)
15049 if (!ECOFF_DEBUGGING)
15050 dwarf2_directive_loc (0);
15053 /* The .end directive. */
15056 s_mips_end (int x ATTRIBUTE_UNUSED)
15060 /* Following functions need their own .frame and .cprestore directives. */
15061 mips_frame_reg_valid = 0;
15062 mips_cprestore_valid = 0;
15064 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15067 demand_empty_rest_of_line ();
15072 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15073 as_warn (_(".end not in text section"));
15077 as_warn (_(".end directive without a preceding .ent directive."));
15078 demand_empty_rest_of_line ();
15084 gas_assert (S_GET_NAME (p));
15085 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15086 as_warn (_(".end symbol does not match .ent symbol."));
15088 if (debug_type == DEBUG_STABS)
15089 stabs_generate_asm_endfunc (S_GET_NAME (p),
15093 as_warn (_(".end directive missing or unknown symbol"));
15096 /* Create an expression to calculate the size of the function. */
15097 if (p && cur_proc_ptr)
15099 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15100 expressionS *exp = xmalloc (sizeof (expressionS));
15103 exp->X_op = O_subtract;
15104 exp->X_add_symbol = symbol_temp_new_now ();
15105 exp->X_op_symbol = p;
15106 exp->X_add_number = 0;
15108 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15111 /* Generate a .pdr section. */
15112 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15114 segT saved_seg = now_seg;
15115 subsegT saved_subseg = now_subseg;
15119 #ifdef md_flush_pending_output
15120 md_flush_pending_output ();
15123 gas_assert (pdr_seg);
15124 subseg_set (pdr_seg, 0);
15126 /* Write the symbol. */
15127 exp.X_op = O_symbol;
15128 exp.X_add_symbol = p;
15129 exp.X_add_number = 0;
15130 emit_expr (&exp, 4);
15132 fragp = frag_more (7 * 4);
15134 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15135 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15136 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15137 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15138 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15139 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15140 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15142 subseg_set (saved_seg, saved_subseg);
15144 #endif /* OBJ_ELF */
15146 cur_proc_ptr = NULL;
15149 /* The .aent and .ent directives. */
15152 s_mips_ent (int aent)
15156 symbolP = get_symbol ();
15157 if (*input_line_pointer == ',')
15158 ++input_line_pointer;
15159 SKIP_WHITESPACE ();
15160 if (ISDIGIT (*input_line_pointer)
15161 || *input_line_pointer == '-')
15164 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15165 as_warn (_(".ent or .aent not in text section."));
15167 if (!aent && cur_proc_ptr)
15168 as_warn (_("missing .end"));
15172 /* This function needs its own .frame and .cprestore directives. */
15173 mips_frame_reg_valid = 0;
15174 mips_cprestore_valid = 0;
15176 cur_proc_ptr = &cur_proc;
15177 memset (cur_proc_ptr, '\0', sizeof (procS));
15179 cur_proc_ptr->func_sym = symbolP;
15183 if (debug_type == DEBUG_STABS)
15184 stabs_generate_asm_func (S_GET_NAME (symbolP),
15185 S_GET_NAME (symbolP));
15188 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15190 demand_empty_rest_of_line ();
15193 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15194 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15195 s_mips_frame is used so that we can set the PDR information correctly.
15196 We can't use the ecoff routines because they make reference to the ecoff
15197 symbol table (in the mdebug section). */
15200 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15203 if (IS_ELF && !ECOFF_DEBUGGING)
15207 if (cur_proc_ptr == (procS *) NULL)
15209 as_warn (_(".frame outside of .ent"));
15210 demand_empty_rest_of_line ();
15214 cur_proc_ptr->frame_reg = tc_get_register (1);
15216 SKIP_WHITESPACE ();
15217 if (*input_line_pointer++ != ','
15218 || get_absolute_expression_and_terminator (&val) != ',')
15220 as_warn (_("Bad .frame directive"));
15221 --input_line_pointer;
15222 demand_empty_rest_of_line ();
15226 cur_proc_ptr->frame_offset = val;
15227 cur_proc_ptr->pc_reg = tc_get_register (0);
15229 demand_empty_rest_of_line ();
15232 #endif /* OBJ_ELF */
15236 /* The .fmask and .mask directives. If the mdebug section is present
15237 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15238 embedded targets, s_mips_mask is used so that we can set the PDR
15239 information correctly. We can't use the ecoff routines because they
15240 make reference to the ecoff symbol table (in the mdebug section). */
15243 s_mips_mask (int reg_type)
15246 if (IS_ELF && !ECOFF_DEBUGGING)
15250 if (cur_proc_ptr == (procS *) NULL)
15252 as_warn (_(".mask/.fmask outside of .ent"));
15253 demand_empty_rest_of_line ();
15257 if (get_absolute_expression_and_terminator (&mask) != ',')
15259 as_warn (_("Bad .mask/.fmask directive"));
15260 --input_line_pointer;
15261 demand_empty_rest_of_line ();
15265 off = get_absolute_expression ();
15267 if (reg_type == 'F')
15269 cur_proc_ptr->fpreg_mask = mask;
15270 cur_proc_ptr->fpreg_offset = off;
15274 cur_proc_ptr->reg_mask = mask;
15275 cur_proc_ptr->reg_offset = off;
15278 demand_empty_rest_of_line ();
15281 #endif /* OBJ_ELF */
15282 s_ignore (reg_type);
15285 /* A table describing all the processors gas knows about. Names are
15286 matched in the order listed.
15288 To ease comparison, please keep this table in the same order as
15289 gcc's mips_cpu_info_table[]. */
15290 static const struct mips_cpu_info mips_cpu_info_table[] =
15292 /* Entries for generic ISAs */
15293 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15294 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15295 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15296 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15297 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15298 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15299 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15300 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15301 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15304 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15305 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15306 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15309 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15312 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15313 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15314 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15315 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15316 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15317 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15318 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15319 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15320 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15321 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15322 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15323 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15324 /* ST Microelectronics Loongson 2E and 2F cores */
15325 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15326 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15329 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15330 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15331 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15332 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15333 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15334 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15335 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15336 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15337 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15338 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15339 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15340 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15341 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15342 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15343 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15346 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15347 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15348 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15349 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15351 /* MIPS 32 Release 2 */
15352 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15353 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15354 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15355 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15356 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15357 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15358 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15359 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15360 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15361 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15362 /* Deprecated forms of the above. */
15363 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15364 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15365 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15366 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15367 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15368 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15369 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15370 /* Deprecated forms of the above. */
15371 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15372 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15373 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15374 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15375 ISA_MIPS32R2, CPU_MIPS32R2 },
15376 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15377 ISA_MIPS32R2, CPU_MIPS32R2 },
15378 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15379 ISA_MIPS32R2, CPU_MIPS32R2 },
15380 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15381 ISA_MIPS32R2, CPU_MIPS32R2 },
15382 /* Deprecated forms of the above. */
15383 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15384 ISA_MIPS32R2, CPU_MIPS32R2 },
15385 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15386 ISA_MIPS32R2, CPU_MIPS32R2 },
15387 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15388 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15389 ISA_MIPS32R2, CPU_MIPS32R2 },
15390 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15391 ISA_MIPS32R2, CPU_MIPS32R2 },
15392 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15393 ISA_MIPS32R2, CPU_MIPS32R2 },
15394 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15395 ISA_MIPS32R2, CPU_MIPS32R2 },
15396 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15397 ISA_MIPS32R2, CPU_MIPS32R2 },
15398 /* Deprecated forms of the above. */
15399 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15400 ISA_MIPS32R2, CPU_MIPS32R2 },
15401 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15402 ISA_MIPS32R2, CPU_MIPS32R2 },
15403 /* 1004K cores are multiprocessor versions of the 34K. */
15404 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15405 ISA_MIPS32R2, CPU_MIPS32R2 },
15406 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15407 ISA_MIPS32R2, CPU_MIPS32R2 },
15408 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15409 ISA_MIPS32R2, CPU_MIPS32R2 },
15410 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15411 ISA_MIPS32R2, CPU_MIPS32R2 },
15414 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15415 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15416 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15417 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15419 /* Broadcom SB-1 CPU core */
15420 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15421 ISA_MIPS64, CPU_SB1 },
15422 /* Broadcom SB-1A CPU core */
15423 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15424 ISA_MIPS64, CPU_SB1 },
15426 /* MIPS 64 Release 2 */
15428 /* Cavium Networks Octeon CPU core */
15429 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15432 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15439 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15440 with a final "000" replaced by "k". Ignore case.
15442 Note: this function is shared between GCC and GAS. */
15445 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15447 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15448 given++, canonical++;
15450 return ((*given == 0 && *canonical == 0)
15451 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15455 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15456 CPU name. We've traditionally allowed a lot of variation here.
15458 Note: this function is shared between GCC and GAS. */
15461 mips_matching_cpu_name_p (const char *canonical, const char *given)
15463 /* First see if the name matches exactly, or with a final "000"
15464 turned into "k". */
15465 if (mips_strict_matching_cpu_name_p (canonical, given))
15468 /* If not, try comparing based on numerical designation alone.
15469 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15470 if (TOLOWER (*given) == 'r')
15472 if (!ISDIGIT (*given))
15475 /* Skip over some well-known prefixes in the canonical name,
15476 hoping to find a number there too. */
15477 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15479 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15481 else if (TOLOWER (canonical[0]) == 'r')
15484 return mips_strict_matching_cpu_name_p (canonical, given);
15488 /* Parse an option that takes the name of a processor as its argument.
15489 OPTION is the name of the option and CPU_STRING is the argument.
15490 Return the corresponding processor enumeration if the CPU_STRING is
15491 recognized, otherwise report an error and return null.
15493 A similar function exists in GCC. */
15495 static const struct mips_cpu_info *
15496 mips_parse_cpu (const char *option, const char *cpu_string)
15498 const struct mips_cpu_info *p;
15500 /* 'from-abi' selects the most compatible architecture for the given
15501 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15502 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15503 version. Look first at the -mgp options, if given, otherwise base
15504 the choice on MIPS_DEFAULT_64BIT.
15506 Treat NO_ABI like the EABIs. One reason to do this is that the
15507 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15508 architecture. This code picks MIPS I for 'mips' and MIPS III for
15509 'mips64', just as we did in the days before 'from-abi'. */
15510 if (strcasecmp (cpu_string, "from-abi") == 0)
15512 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15513 return mips_cpu_info_from_isa (ISA_MIPS1);
15515 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15516 return mips_cpu_info_from_isa (ISA_MIPS3);
15518 if (file_mips_gp32 >= 0)
15519 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15521 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15526 /* 'default' has traditionally been a no-op. Probably not very useful. */
15527 if (strcasecmp (cpu_string, "default") == 0)
15530 for (p = mips_cpu_info_table; p->name != 0; p++)
15531 if (mips_matching_cpu_name_p (p->name, cpu_string))
15534 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15538 /* Return the canonical processor information for ISA (a member of the
15539 ISA_MIPS* enumeration). */
15541 static const struct mips_cpu_info *
15542 mips_cpu_info_from_isa (int isa)
15546 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15547 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15548 && isa == mips_cpu_info_table[i].isa)
15549 return (&mips_cpu_info_table[i]);
15554 static const struct mips_cpu_info *
15555 mips_cpu_info_from_arch (int arch)
15559 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15560 if (arch == mips_cpu_info_table[i].cpu)
15561 return (&mips_cpu_info_table[i]);
15567 show (FILE *stream, const char *string, int *col_p, int *first_p)
15571 fprintf (stream, "%24s", "");
15576 fprintf (stream, ", ");
15580 if (*col_p + strlen (string) > 72)
15582 fprintf (stream, "\n%24s", "");
15586 fprintf (stream, "%s", string);
15587 *col_p += strlen (string);
15593 md_show_usage (FILE *stream)
15598 fprintf (stream, _("\
15600 -EB generate big endian output\n\
15601 -EL generate little endian output\n\
15602 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15603 -G NUM allow referencing objects up to NUM bytes\n\
15604 implicitly with the gp register [default 8]\n"));
15605 fprintf (stream, _("\
15606 -mips1 generate MIPS ISA I instructions\n\
15607 -mips2 generate MIPS ISA II instructions\n\
15608 -mips3 generate MIPS ISA III instructions\n\
15609 -mips4 generate MIPS ISA IV instructions\n\
15610 -mips5 generate MIPS ISA V instructions\n\
15611 -mips32 generate MIPS32 ISA instructions\n\
15612 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15613 -mips64 generate MIPS64 ISA instructions\n\
15614 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15615 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15619 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15620 show (stream, mips_cpu_info_table[i].name, &column, &first);
15621 show (stream, "from-abi", &column, &first);
15622 fputc ('\n', stream);
15624 fprintf (stream, _("\
15625 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15626 -no-mCPU don't generate code specific to CPU.\n\
15627 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15631 show (stream, "3900", &column, &first);
15632 show (stream, "4010", &column, &first);
15633 show (stream, "4100", &column, &first);
15634 show (stream, "4650", &column, &first);
15635 fputc ('\n', stream);
15637 fprintf (stream, _("\
15638 -mips16 generate mips16 instructions\n\
15639 -no-mips16 do not generate mips16 instructions\n"));
15640 fprintf (stream, _("\
15641 -msmartmips generate smartmips instructions\n\
15642 -mno-smartmips do not generate smartmips instructions\n"));
15643 fprintf (stream, _("\
15644 -mdsp generate DSP instructions\n\
15645 -mno-dsp do not generate DSP instructions\n"));
15646 fprintf (stream, _("\
15647 -mdspr2 generate DSP R2 instructions\n\
15648 -mno-dspr2 do not generate DSP R2 instructions\n"));
15649 fprintf (stream, _("\
15650 -mmt generate MT instructions\n\
15651 -mno-mt do not generate MT instructions\n"));
15652 fprintf (stream, _("\
15653 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15654 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15655 -mfix-vr4120 work around certain VR4120 errata\n\
15656 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15657 -mfix-24k insert a nop after ERET and DERET instructions\n\
15658 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15659 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15660 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15661 -msym32 assume all symbols have 32-bit values\n\
15662 -O0 remove unneeded NOPs, do not swap branches\n\
15663 -O remove unneeded NOPs and swap branches\n\
15664 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15665 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15666 fprintf (stream, _("\
15667 -mhard-float allow floating-point instructions\n\
15668 -msoft-float do not allow floating-point instructions\n\
15669 -msingle-float only allow 32-bit floating-point operations\n\
15670 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15671 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15674 fprintf (stream, _("\
15675 -KPIC, -call_shared generate SVR4 position independent code\n\
15676 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15677 -mvxworks-pic generate VxWorks position independent code\n\
15678 -non_shared do not generate code that can operate with DSOs\n\
15679 -xgot assume a 32 bit GOT\n\
15680 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15681 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15682 position dependent (non shared) code\n\
15683 -mabi=ABI create ABI conformant object file for:\n"));
15687 show (stream, "32", &column, &first);
15688 show (stream, "o64", &column, &first);
15689 show (stream, "n32", &column, &first);
15690 show (stream, "64", &column, &first);
15691 show (stream, "eabi", &column, &first);
15693 fputc ('\n', stream);
15695 fprintf (stream, _("\
15696 -32 create o32 ABI object file (default)\n\
15697 -n32 create n32 ABI object file\n\
15698 -64 create 64 ABI object file\n"));
15704 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15706 if (HAVE_64BIT_SYMBOLS)
15707 return dwarf2_format_64bit_irix;
15709 return dwarf2_format_32bit;
15714 mips_dwarf2_addr_size (void)
15716 if (HAVE_64BIT_OBJECTS)
15722 /* Standard calling conventions leave the CFA at SP on entry. */
15724 mips_cfi_frame_initial_instructions (void)
15726 cfi_add_CFA_def_cfa_register (SP);
15730 tc_mips_regname_to_dw2regnum (char *regname)
15732 unsigned int regnum = -1;
15735 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))