1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug = -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr = FALSE;
86 int mips_flag_pdr = TRUE;
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
99 #define PIC_CALL_REG 25
107 #define ILLEGAL_REG (32)
109 #define AT mips_opts.at
111 extern int target_big_endian;
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
116 /* Ways in which an instruction can be "appended" to the output. */
118 /* Just add it normally. */
121 /* Add it normally and then add a nop. */
124 /* Turn an instruction with a delay slot into a "compact" version. */
127 /* Insert the instruction before the last one. */
131 /* Information about an instruction, including its format, operands
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
142 unsigned long insn_opcode;
144 /* The frag that contains the instruction. */
147 /* The offset into FRAG of the first instruction byte. */
150 /* The relocs associated with the instruction, if any. */
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
165 /* True if this instruction is cleared from history by unconditional
167 unsigned int cleared_p : 1;
170 /* The ABI to use. */
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
187 /* Whether or not we have code which can be put into a shared
189 static bfd_boolean mips_in_shared = TRUE;
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
195 struct mips_set_options
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
250 /* True if ".set sym32" is in effect. */
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
262 /* 1 if single-precision operations on odd-numbered registers are
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
280 static struct mips_set_options file_mips_opts =
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
289 /* This is similar to file_mips_opts, but for the current set of options. */
291 static struct mips_set_options mips_opts =
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
339 /* The argument of the -mtune= flag. The architecture for which we
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
353 || (ABI) == N64_ABI \
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
611 /* MIPS PIC level. */
613 enum mips_pic_level mips_pic;
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
619 /* 1 if trap instructions should used for overflow rather than break
621 static int mips_trap = 0;
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
631 /* Non-zero if any .set noreorder directives were used. */
633 static int mips_any_noreorder;
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
689 /* Chars that mean this number is a floating point constant */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
707 /* Information about an error that was found while assembling the current
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
737 static int auto_align = 1;
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
743 static offsetT mips_cprestore_offset = -1;
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
772 static int mips_optimize = 2;
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
784 /* The maximum number of NOPs needed for any purpose. */
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? µmips_nop32_insn \
815 : µmips_nop16_insn) \
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
827 static fragS *prev_nop_frag;
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
832 /* The number of nop instructions that we know we need in
834 static int prev_nop_frag_required;
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
853 struct mips_hi_fixup *next;
856 /* The section this fixup is in. */
860 /* The list of unmatched HI relocs. */
862 static struct mips_hi_fixup *mips_hi_fixup_list;
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
867 static fragS *prev_reloc_op_frag;
869 /* Map mips16 register numbers to normal MIPS register numbers. */
871 static const unsigned int mips16_to_32_reg_map[] =
873 16, 17, 2, 3, 4, 5, 6, 7
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
883 5, 5, 6, 4, 4, 4, 4, 4
885 static const unsigned int micromips_to_32_reg_h_map2[] =
887 6, 7, 7, 21, 22, 5, 6, 7
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
893 0, 17, 2, 3, 16, 18, 19, 20
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
908 NUM_FIX_VR4120_CLASSES
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
945 static int mips_relax_branch;
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
994 The frag's "opcode" points to the first fixup for relaxable code.
996 Relaxable macros are generated using a sequence such as:
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1001 ... generate second expansion ...
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1018 /* Branch without likely bit. If label is out of range, we turn:
1020 beq reg1, reg2, label
1030 with the following opcode replacements:
1037 bltzal <-> bgezal (with jal label instead of j label)
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1047 Branch likely. If label is out of range, we turn:
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1059 delay slot (executed only if branch taken)
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1068 delay slot (executed only if branch taken)
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1258 /* The symbol on which the choice of sequence depends. */
1262 /* Global variables used to decide whether a macro needs a warning. */
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1275 unsigned int sizes[2];
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1294 /* The first variant frag for this macro. */
1296 } mips_macro_warning;
1298 /* Prototypes for static functions. */
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *, asection *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1365 struct mips_cpu_info
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1385 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_NO_SMARTMIPS,
1427 OPTION_NO_MICROMIPS,
1430 OPTION_COMPAT_ARCH_BASE,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1450 OPTION_NO_FIX_VR4120,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1490 OPTION_MVXWORKS_PIC,
1493 OPTION_NO_ODD_SPREG,
1497 struct option md_longopts[] =
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1628 {NULL, no_argument, NULL, 0}
1630 size_t md_longopts_size = sizeof (md_longopts);
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1637 /* The name of the ASE, used in both the command-line and .set options. */
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1649 /* The command-line options that turn the ASE on and off. */
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1657 int micromips32_rev;
1658 int micromips64_rev;
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1705 OPTION_MT, OPTION_NO_MT,
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1755 static const pseudo_typeS mips_pseudo_table[] =
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1780 {"module", s_module, 0},
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1819 { "extern", ecoff_directive_extern, 0},
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1846 mips_address_bytes (void)
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1852 extern void pop_insert (const pseudo_typeS *);
1855 mips_pop_insert (void)
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1862 /* Symbols labelling the current insn. */
1864 struct insn_label_list
1866 struct insn_label_list *next;
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1878 mips_clear_insn_labels (void)
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1897 mips_mark_labels (void)
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1903 static char *expr_end;
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1908 static expressionS imm_expr;
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1923 static unsigned int forced_insn_length;
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1928 static bfd_boolean mips_assembling_insn;
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1933 static segT pdr_seg;
1935 /* The default target format to use. */
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1946 mips_target_format (void)
1948 switch (OUTPUT_FLAVOR)
1950 case bfd_target_elf_flavour:
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2005 mips_ase_mask (unsigned int flags)
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2066 mips_check_isa_supports_ases (void)
2068 unsigned int i, mask;
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2087 mask = mips_ase_mask (ase->flags);
2090 opts->ase |= ase->flags;
2094 /* Return the ASE called NAME, or null if none. */
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2114 return (mo->mask >> 16) == 0 ? 2 : 4;
2117 /* Return the length of MIPS16 instruction OPCODE. */
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2122 return (opcode >> 16) == 0 ? 2 : 4;
2125 /* Return the length of instruction INSN. */
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2146 insn->insn_opcode = mo->match;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2158 /* Get a list of all the operands in INSN. */
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2171 if (insn->insn_mo >= µmips_opcodes[0]
2172 && insn->insn_mo < µmips_opcodes[bfd_micromips_num_opcodes])
2173 return µmips_operands[insn->insn_mo - µmips_opcodes[0]];
2178 /* Get a description of operand OPNO of INSN. */
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2183 const struct mips_operand_array *operands;
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2188 return operands->operand[opno];
2191 /* Install UVAL as the value of OPERAND in INSN. */
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2200 /* Extract the value of OPERAND from INSN. */
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2206 return mips_extract_operand (operand, insn->insn_opcode);
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2212 mips_record_compressed_mode (void)
2214 segment_info_type *si;
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2223 /* Read a standard MIPS instruction from BUF. */
2225 static unsigned long
2226 read_insn (char *buf)
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2231 return bfd_getl32 ((bfd_byte *) buf);
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2238 write_insn (char *buf, unsigned int insn)
2240 md_number_to_chars (buf, insn, 4);
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2254 for (i = 0; i < length; i += 2)
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2260 insn |= bfd_getl16 ((char *) buf);
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2282 install_insn (const struct mips_cl_insn *insn)
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2308 install_insn (insn);
2311 /* Add INSN to the end of the output. */
2314 add_fixed_insn (struct mips_cl_insn *insn)
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2341 if (mips_relax.sequence != 2)
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2347 history[i] = history[i - n];
2353 /* Clear the error in insn_error. */
2356 clear_insn_error (void)
2358 memset (&insn_error, 0, sizeof (insn_error));
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2389 && strcmp (insn_error.msg, msg) != 0)
2392 insn_error.min_argnum += 1;
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2406 set_insn_error (int argnum, const char *msg)
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2415 set_insn_error_i (int argnum, const char *msg, int i)
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2434 /* Report the error in insn_error, which is against assembly code STR. */
2437 report_insn_error (const char *str)
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2441 switch (insn_error.format)
2448 as_bad (msg, insn_error.u.i, str);
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2456 free ((char *) msg);
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2464 init_vr4120_conflicts (void)
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2768 mips_prefer_vec_regno (unsigned int symval)
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2784 /* Terminate name. */
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2795 *symval_ptr = S_GET_VALUE (symbol);
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2815 unsigned int channels, symval, bit;
2817 /* Find end of name. */
2819 if (is_name_beginner (*e))
2821 while (is_part_of_name (*e))
2825 if (!mips_parse_register_1 (s, e, &symval))
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2849 *symval_ptr = symval;
2851 *channels_ptr = channels;
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2864 if (mips_parse_register (s, ®no, NULL))
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2876 as_warn (_("unrecognized register name `%s'"), *s);
2881 return regno <= RNUM_MASK;
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2896 *channels |= 1 << (3 - i);
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2907 /* A 4-bit XYZW channel mask. */
2910 /* A constant vector index, e.g. [1]. */
2913 /* A register vector index, e.g. [$2]. */
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2919 /* A (possibly relocated) expression. */
2922 /* A floating-point value. */
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2929 /* A doubled character, either "--" or "++". */
2932 /* The end of the operand list. */
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2949 /* The integer value of an OT_INTEGER_INDEX. */
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2954 unsigned int regno1;
2955 unsigned int regno2;
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2964 bfd_reloc_code_real_type relocs[3];
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2970 unsigned char data[8];
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2997 mips_parse_base_start (char *s)
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3007 SKIP_SPACE_TABS (s);
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3015 SKIP_SPACE_TABS (s);
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, ®no, &channels))
3024 mips_add_token (&token, OT_CHAR);
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3059 mips_parse_argument_token (char *s, char float_format)
3061 char *end, *save_in;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3076 mips_add_token (&token, OT_CHAR);
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, ®no1, &channels))
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3095 SKIP_SPACE_TABS (s);
3098 /* A register range. */
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, ®no2, NULL))
3103 set_insn_error (0, _("invalid register range"));
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3117 /* Check for a vector index. */
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3126 expressionS element;
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3131 set_insn_error (0, _("vector element must be constant"));
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3138 SKIP_SPACE_TABS (s);
3141 set_insn_error (0, _("missing `]'"));
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3160 set_insn_error (0, err);
3165 mips_add_token (&token, OT_FLOAT);
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3176 mips_add_token (&token, OT_INTEGER);
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3191 struct mips_operand_token token;
3193 SKIP_SPACE_TABS (s);
3196 s = mips_parse_argument_token (s, float_format);
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3203 SKIP_SPACE_TABS (s);
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3213 is_opcode_valid (const struct mips_opcode *mo)
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3220 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3245 if (fp_s && mips_opts.soft_float)
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode. */
3264 is_size_valid (const struct mips_opcode *mo)
3266 if (!mips_opts.micromips)
3269 if (mips_opts.insn32)
3271 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3276 if (!forced_insn_length)
3278 if (mo->pinfo == INSN_MACRO)
3280 return forced_insn_length == micromips_insn_length (mo);
3283 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3284 of the preceding instruction. Always TRUE in the standard MIPS mode.
3286 We don't accept macros in 16-bit delay slots to avoid a case where
3287 a macro expansion fails because it relies on a preceding 32-bit real
3288 instruction to have matched and does not handle the operands correctly.
3289 The only macros that may expand to 16-bit instructions are JAL that
3290 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3291 and BGT (that likewise cannot be placed in a delay slot) that decay to
3292 a NOP. In all these cases the macros precede any corresponding real
3293 instruction definitions in the opcode table, so they will match in the
3294 second pass where the size of the delay slot is ignored and therefore
3295 produce correct code. */
3298 is_delay_slot_valid (const struct mips_opcode *mo)
3300 if (!mips_opts.micromips)
3303 if (mo->pinfo == INSN_MACRO)
3304 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3305 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3306 && micromips_insn_length (mo) != 4)
3308 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3309 && micromips_insn_length (mo) != 2)
3315 /* For consistency checking, verify that all bits of OPCODE are specified
3316 either by the match/mask part of the instruction definition, or by the
3317 operand list. Also build up a list of operands in OPERANDS.
3319 INSN_BITS says which bits of the instruction are significant.
3320 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3321 provides the mips_operand description of each operand. DECODE_OPERAND
3322 is null for MIPS16 instructions. */
3325 validate_mips_insn (const struct mips_opcode *opcode,
3326 unsigned long insn_bits,
3327 const struct mips_operand *(*decode_operand) (const char *),
3328 struct mips_operand_array *operands)
3331 unsigned long used_bits, doubled, undefined, opno, mask;
3332 const struct mips_operand *operand;
3334 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3335 if ((mask & opcode->match) != opcode->match)
3337 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3338 opcode->name, opcode->args);
3343 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3344 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3345 for (s = opcode->args; *s; ++s)
3358 if (!decode_operand)
3359 operand = decode_mips16_operand (*s, FALSE);
3361 operand = decode_operand (s);
3362 if (!operand && opcode->pinfo != INSN_MACRO)
3364 as_bad (_("internal: unknown operand type: %s %s"),
3365 opcode->name, opcode->args);
3368 gas_assert (opno < MAX_OPERANDS);
3369 operands->operand[opno] = operand;
3370 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3372 used_bits = mips_insert_operand (operand, used_bits, -1);
3373 if (operand->type == OP_MDMX_IMM_REG)
3374 /* Bit 5 is the format selector (OB vs QH). The opcode table
3375 has separate entries for each format. */
3376 used_bits &= ~(1 << (operand->lsb + 5));
3377 if (operand->type == OP_ENTRY_EXIT_LIST)
3378 used_bits &= ~(mask & 0x700);
3380 /* Skip prefix characters. */
3381 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3386 doubled = used_bits & mask & insn_bits;
3389 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3390 " %s %s"), doubled, opcode->name, opcode->args);
3394 undefined = ~used_bits & insn_bits;
3395 if (opcode->pinfo != INSN_MACRO && undefined)
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3398 undefined, opcode->name, opcode->args);
3401 used_bits &= ~insn_bits;
3404 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3405 used_bits, opcode->name, opcode->args);
3411 /* The MIPS16 version of validate_mips_insn. */
3414 validate_mips16_insn (const struct mips_opcode *opcode,
3415 struct mips_operand_array *operands)
3417 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3419 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3420 instruction. Use TMP to describe the full instruction. */
3421 struct mips_opcode tmp;
3426 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3428 return validate_mips_insn (opcode, 0xffff, 0, operands);
3431 /* The microMIPS version of validate_mips_insn. */
3434 validate_micromips_insn (const struct mips_opcode *opc,
3435 struct mips_operand_array *operands)
3437 unsigned long insn_bits;
3438 unsigned long major;
3439 unsigned int length;
3441 if (opc->pinfo == INSN_MACRO)
3442 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3445 length = micromips_insn_length (opc);
3446 if (length != 2 && length != 4)
3448 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3449 "%s %s"), length, opc->name, opc->args);
3452 major = opc->match >> (10 + 8 * (length - 2));
3453 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3454 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3456 as_bad (_("internal error: bad microMIPS opcode "
3457 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3461 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3462 insn_bits = 1 << 4 * length;
3463 insn_bits <<= 4 * length;
3465 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3469 /* This function is called once, at assembler startup time. It should set up
3470 all the tables, etc. that the MD part of the assembler will need. */
3475 const char *retval = NULL;
3479 if (mips_pic != NO_PIC)
3481 if (g_switch_seen && g_switch_value != 0)
3482 as_bad (_("-G may not be used in position-independent code"));
3485 else if (mips_abicalls)
3487 if (g_switch_seen && g_switch_value != 0)
3488 as_bad (_("-G may not be used with abicalls"));
3492 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3493 as_warn (_("could not set architecture and machine"));
3495 op_hash = hash_new ();
3497 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3498 for (i = 0; i < NUMOPCODES;)
3500 const char *name = mips_opcodes[i].name;
3502 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3505 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3506 mips_opcodes[i].name, retval);
3507 /* Probably a memory allocation problem? Give up now. */
3508 as_fatal (_("broken assembler, no assembly attempted"));
3512 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3513 decode_mips_operand, &mips_operands[i]))
3515 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3517 create_insn (&nop_insn, mips_opcodes + i);
3518 if (mips_fix_loongson2f_nop)
3519 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3520 nop_insn.fixed_p = 1;
3524 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3527 mips16_op_hash = hash_new ();
3528 mips16_operands = XCNEWVEC (struct mips_operand_array,
3529 bfd_mips16_num_opcodes);
3532 while (i < bfd_mips16_num_opcodes)
3534 const char *name = mips16_opcodes[i].name;
3536 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3538 as_fatal (_("internal: can't hash `%s': %s"),
3539 mips16_opcodes[i].name, retval);
3542 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3544 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3546 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3547 mips16_nop_insn.fixed_p = 1;
3551 while (i < bfd_mips16_num_opcodes
3552 && strcmp (mips16_opcodes[i].name, name) == 0);
3555 micromips_op_hash = hash_new ();
3556 micromips_operands = XCNEWVEC (struct mips_operand_array,
3557 bfd_micromips_num_opcodes);
3560 while (i < bfd_micromips_num_opcodes)
3562 const char *name = micromips_opcodes[i].name;
3564 retval = hash_insert (micromips_op_hash, name,
3565 (void *) µmips_opcodes[i]);
3567 as_fatal (_("internal: can't hash `%s': %s"),
3568 micromips_opcodes[i].name, retval);
3571 struct mips_cl_insn *micromips_nop_insn;
3573 if (!validate_micromips_insn (µmips_opcodes[i],
3574 µmips_operands[i]))
3577 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3579 if (micromips_insn_length (micromips_opcodes + i) == 2)
3580 micromips_nop_insn = µmips_nop16_insn;
3581 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3582 micromips_nop_insn = µmips_nop32_insn;
3586 if (micromips_nop_insn->insn_mo == NULL
3587 && strcmp (name, "nop") == 0)
3589 create_insn (micromips_nop_insn, micromips_opcodes + i);
3590 micromips_nop_insn->fixed_p = 1;
3594 while (++i < bfd_micromips_num_opcodes
3595 && strcmp (micromips_opcodes[i].name, name) == 0);
3599 as_fatal (_("broken assembler, no assembly attempted"));
3601 /* We add all the general register names to the symbol table. This
3602 helps us detect invalid uses of them. */
3603 for (i = 0; reg_names[i].name; i++)
3604 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3605 reg_names[i].num, /* & RNUM_MASK, */
3606 &zero_address_frag));
3608 for (i = 0; reg_names_n32n64[i].name; i++)
3609 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3610 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3611 &zero_address_frag));
3613 for (i = 0; reg_names_o32[i].name; i++)
3614 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3615 reg_names_o32[i].num, /* & RNUM_MASK, */
3616 &zero_address_frag));
3618 for (i = 0; i < 32; i++)
3622 /* R5900 VU0 floating-point register. */
3623 sprintf (regname, "$vf%d", i);
3624 symbol_table_insert (symbol_new (regname, reg_section,
3625 RTYPE_VF | i, &zero_address_frag));
3627 /* R5900 VU0 integer register. */
3628 sprintf (regname, "$vi%d", i);
3629 symbol_table_insert (symbol_new (regname, reg_section,
3630 RTYPE_VI | i, &zero_address_frag));
3633 sprintf (regname, "$w%d", i);
3634 symbol_table_insert (symbol_new (regname, reg_section,
3635 RTYPE_MSA | i, &zero_address_frag));
3638 obstack_init (&mips_operand_tokens);
3640 mips_no_prev_insn ();
3643 mips_cprmask[0] = 0;
3644 mips_cprmask[1] = 0;
3645 mips_cprmask[2] = 0;
3646 mips_cprmask[3] = 0;
3648 /* set the default alignment for the text section (2**2) */
3649 record_alignment (text_section, 2);
3651 bfd_set_gp_size (stdoutput, g_switch_value);
3653 /* On a native system other than VxWorks, sections must be aligned
3654 to 16 byte boundaries. When configured for an embedded ELF
3655 target, we don't bother. */
3656 if (strncmp (TARGET_OS, "elf", 3) != 0
3657 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3659 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3660 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3661 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3664 /* Create a .reginfo section for register masks and a .mdebug
3665 section for debugging information. */
3673 subseg = now_subseg;
3675 /* The ABI says this section should be loaded so that the
3676 running program can access it. However, we don't load it
3677 if we are configured for an embedded target */
3678 flags = SEC_READONLY | SEC_DATA;
3679 if (strncmp (TARGET_OS, "elf", 3) != 0)
3680 flags |= SEC_ALLOC | SEC_LOAD;
3682 if (mips_abi != N64_ABI)
3684 sec = subseg_new (".reginfo", (subsegT) 0);
3686 bfd_set_section_flags (stdoutput, sec, flags);
3687 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3689 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3693 /* The 64-bit ABI uses a .MIPS.options section rather than
3694 .reginfo section. */
3695 sec = subseg_new (".MIPS.options", (subsegT) 0);
3696 bfd_set_section_flags (stdoutput, sec, flags);
3697 bfd_set_section_alignment (stdoutput, sec, 3);
3699 /* Set up the option header. */
3701 Elf_Internal_Options opthdr;
3704 opthdr.kind = ODK_REGINFO;
3705 opthdr.size = (sizeof (Elf_External_Options)
3706 + sizeof (Elf64_External_RegInfo));
3709 f = frag_more (sizeof (Elf_External_Options));
3710 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3711 (Elf_External_Options *) f);
3713 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3717 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3718 bfd_set_section_flags (stdoutput, sec,
3719 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3720 bfd_set_section_alignment (stdoutput, sec, 3);
3721 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3723 if (ECOFF_DEBUGGING)
3725 sec = subseg_new (".mdebug", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, sec,
3727 SEC_HAS_CONTENTS | SEC_READONLY);
3728 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3730 else if (mips_flag_pdr)
3732 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3734 SEC_READONLY | SEC_RELOC
3736 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3739 subseg_set (seg, subseg);
3742 if (mips_fix_vr4120)
3743 init_vr4120_conflicts ();
3747 fpabi_incompatible_with (int fpabi, const char *what)
3749 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3754 fpabi_requires (int fpabi, const char *what)
3756 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3760 /* Check -mabi and register sizes against the specified FP ABI. */
3762 check_fpabi (int fpabi)
3766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3767 if (file_mips_opts.soft_float)
3768 fpabi_incompatible_with (fpabi, "softfloat");
3769 else if (file_mips_opts.single_float)
3770 fpabi_incompatible_with (fpabi, "singlefloat");
3771 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3772 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3773 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3774 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3777 case Val_GNU_MIPS_ABI_FP_XX:
3778 if (mips_abi != O32_ABI)
3779 fpabi_requires (fpabi, "-mabi=32");
3780 else if (file_mips_opts.soft_float)
3781 fpabi_incompatible_with (fpabi, "softfloat");
3782 else if (file_mips_opts.single_float)
3783 fpabi_incompatible_with (fpabi, "singlefloat");
3784 else if (file_mips_opts.fp != 0)
3785 fpabi_requires (fpabi, "fp=xx");
3788 case Val_GNU_MIPS_ABI_FP_64A:
3789 case Val_GNU_MIPS_ABI_FP_64:
3790 if (mips_abi != O32_ABI)
3791 fpabi_requires (fpabi, "-mabi=32");
3792 else if (file_mips_opts.soft_float)
3793 fpabi_incompatible_with (fpabi, "softfloat");
3794 else if (file_mips_opts.single_float)
3795 fpabi_incompatible_with (fpabi, "singlefloat");
3796 else if (file_mips_opts.fp != 64)
3797 fpabi_requires (fpabi, "fp=64");
3798 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3799 fpabi_incompatible_with (fpabi, "nooddspreg");
3800 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3801 fpabi_requires (fpabi, "nooddspreg");
3804 case Val_GNU_MIPS_ABI_FP_SINGLE:
3805 if (file_mips_opts.soft_float)
3806 fpabi_incompatible_with (fpabi, "softfloat");
3807 else if (!file_mips_opts.single_float)
3808 fpabi_requires (fpabi, "singlefloat");
3811 case Val_GNU_MIPS_ABI_FP_SOFT:
3812 if (!file_mips_opts.soft_float)
3813 fpabi_requires (fpabi, "softfloat");
3816 case Val_GNU_MIPS_ABI_FP_OLD_64:
3817 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3818 Tag_GNU_MIPS_ABI_FP, fpabi);
3821 case Val_GNU_MIPS_ABI_FP_NAN2008:
3822 /* Silently ignore compatibility value. */
3826 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3827 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3832 /* Perform consistency checks on the current options. */
3835 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3837 /* Check the size of integer registers agrees with the ABI and ISA. */
3838 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3839 as_bad (_("`gp=64' used with a 32-bit processor"));
3841 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_bad (_("`gp=32' used with a 64-bit ABI"));
3844 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3845 as_bad (_("`gp=64' used with a 32-bit ABI"));
3847 /* Check the size of the float registers agrees with the ABI and ISA. */
3851 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3852 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3853 else if (opts->single_float == 1)
3854 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3857 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3858 as_bad (_("`fp=64' used with a 32-bit fpu"));
3860 && ABI_NEEDS_32BIT_REGS (mips_abi)
3861 && !ISA_HAS_MXHC1 (opts->isa))
3862 as_warn (_("`fp=64' used with a 32-bit ABI"));
3866 && ABI_NEEDS_64BIT_REGS (mips_abi))
3867 as_warn (_("`fp=32' used with a 64-bit ABI"));
3868 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3869 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3872 as_bad (_("Unknown size of floating point registers"));
3876 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3877 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3879 if (opts->micromips == 1 && opts->mips16 == 1)
3880 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3881 else if (ISA_IS_R6 (opts->isa)
3882 && (opts->micromips == 1
3883 || opts->mips16 == 1))
3884 as_fatal (_("`%s' cannot be used with `%s'"),
3885 opts->micromips ? "micromips" : "mips16",
3886 mips_cpu_info_from_isa (opts->isa)->name);
3888 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3889 as_fatal (_("branch relaxation is not supported in `%s'"),
3890 mips_cpu_info_from_isa (opts->isa)->name);
3893 /* Perform consistency checks on the module level options exactly once.
3894 This is a deferred check that happens:
3895 at the first .set directive
3896 or, at the first pseudo op that generates code (inc .dc.a)
3897 or, at the first instruction
3901 file_mips_check_options (void)
3903 const struct mips_cpu_info *arch_info = 0;
3905 if (file_mips_opts_checked)
3908 /* The following code determines the register size.
3909 Similar code was added to GCC 3.3 (see override_options() in
3910 config/mips/mips.c). The GAS and GCC code should be kept in sync
3911 as much as possible. */
3913 if (file_mips_opts.gp < 0)
3915 /* Infer the integer register size from the ABI and processor.
3916 Restrict ourselves to 32-bit registers if that's all the
3917 processor has, or if the ABI cannot handle 64-bit registers. */
3918 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3919 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3923 if (file_mips_opts.fp < 0)
3925 /* No user specified float register size.
3926 ??? GAS treats single-float processors as though they had 64-bit
3927 float registers (although it complains when double-precision
3928 instructions are used). As things stand, saying they have 32-bit
3929 registers would lead to spurious "register must be even" messages.
3930 So here we assume float registers are never smaller than the
3932 if (file_mips_opts.gp == 64)
3933 /* 64-bit integer registers implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else if ((file_mips_opts.ase & FP64_ASES)
3936 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3937 /* Handle ASEs that require 64-bit float registers, if possible. */
3938 file_mips_opts.fp = 64;
3939 else if (ISA_IS_R6 (mips_opts.isa))
3940 /* R6 implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3943 /* 32-bit float registers. */
3944 file_mips_opts.fp = 32;
3947 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3949 /* Disable operations on odd-numbered floating-point registers by default
3950 when using the FPXX ABI. */
3951 if (file_mips_opts.oddspreg < 0)
3953 if (file_mips_opts.fp == 0)
3954 file_mips_opts.oddspreg = 0;
3956 file_mips_opts.oddspreg = 1;
3959 /* End of GCC-shared inference code. */
3961 /* This flag is set when we have a 64-bit capable CPU but use only
3962 32-bit wide registers. Note that EABI does not use it. */
3963 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3964 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3965 || mips_abi == O32_ABI))
3968 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3969 as_bad (_("trap exception not supported at ISA 1"));
3971 /* If the selected architecture includes support for ASEs, enable
3972 generation of code for them. */
3973 if (file_mips_opts.mips16 == -1)
3974 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3975 if (file_mips_opts.micromips == -1)
3976 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3979 if (mips_nan2008 == -1)
3980 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3981 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3982 as_fatal (_("`%s' does not support legacy NaN"),
3983 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3985 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3986 being selected implicitly. */
3987 if (file_mips_opts.fp != 64)
3988 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3990 /* If the user didn't explicitly select or deselect a particular ASE,
3991 use the default setting for the CPU. */
3992 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3994 /* Set up the current options. These may change throughout assembly. */
3995 mips_opts = file_mips_opts;
3997 mips_check_isa_supports_ases ();
3998 mips_check_options (&file_mips_opts, TRUE);
3999 file_mips_opts_checked = TRUE;
4001 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4002 as_warn (_("could not set architecture and machine"));
4006 md_assemble (char *str)
4008 struct mips_cl_insn insn;
4009 bfd_reloc_code_real_type unused_reloc[3]
4010 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4012 file_mips_check_options ();
4014 imm_expr.X_op = O_absent;
4015 offset_expr.X_op = O_absent;
4016 offset_reloc[0] = BFD_RELOC_UNUSED;
4017 offset_reloc[1] = BFD_RELOC_UNUSED;
4018 offset_reloc[2] = BFD_RELOC_UNUSED;
4020 mips_mark_labels ();
4021 mips_assembling_insn = TRUE;
4022 clear_insn_error ();
4024 if (mips_opts.mips16)
4025 mips16_ip (str, &insn);
4028 mips_ip (str, &insn);
4029 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4030 str, insn.insn_opcode));
4034 report_insn_error (str);
4035 else if (insn.insn_mo->pinfo == INSN_MACRO)
4038 if (mips_opts.mips16)
4039 mips16_macro (&insn);
4046 if (offset_expr.X_op != O_absent)
4047 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4049 append_insn (&insn, NULL, unused_reloc, FALSE);
4052 mips_assembling_insn = FALSE;
4055 /* Convenience functions for abstracting away the differences between
4056 MIPS16 and non-MIPS16 relocations. */
4058 static inline bfd_boolean
4059 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4063 case BFD_RELOC_MIPS16_JMP:
4064 case BFD_RELOC_MIPS16_GPREL:
4065 case BFD_RELOC_MIPS16_GOT16:
4066 case BFD_RELOC_MIPS16_CALL16:
4067 case BFD_RELOC_MIPS16_HI16_S:
4068 case BFD_RELOC_MIPS16_HI16:
4069 case BFD_RELOC_MIPS16_LO16:
4070 case BFD_RELOC_MIPS16_16_PCREL_S1:
4078 static inline bfd_boolean
4079 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4083 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4084 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4085 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4086 case BFD_RELOC_MICROMIPS_GPREL16:
4087 case BFD_RELOC_MICROMIPS_JMP:
4088 case BFD_RELOC_MICROMIPS_HI16:
4089 case BFD_RELOC_MICROMIPS_HI16_S:
4090 case BFD_RELOC_MICROMIPS_LO16:
4091 case BFD_RELOC_MICROMIPS_LITERAL:
4092 case BFD_RELOC_MICROMIPS_GOT16:
4093 case BFD_RELOC_MICROMIPS_CALL16:
4094 case BFD_RELOC_MICROMIPS_GOT_HI16:
4095 case BFD_RELOC_MICROMIPS_GOT_LO16:
4096 case BFD_RELOC_MICROMIPS_CALL_HI16:
4097 case BFD_RELOC_MICROMIPS_CALL_LO16:
4098 case BFD_RELOC_MICROMIPS_SUB:
4099 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4100 case BFD_RELOC_MICROMIPS_GOT_OFST:
4101 case BFD_RELOC_MICROMIPS_GOT_DISP:
4102 case BFD_RELOC_MICROMIPS_HIGHEST:
4103 case BFD_RELOC_MICROMIPS_HIGHER:
4104 case BFD_RELOC_MICROMIPS_SCN_DISP:
4105 case BFD_RELOC_MICROMIPS_JALR:
4113 static inline bfd_boolean
4114 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4116 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4119 static inline bfd_boolean
4120 b_reloc_p (bfd_reloc_code_real_type reloc)
4122 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4123 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4124 || reloc == BFD_RELOC_16_PCREL_S2
4125 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4126 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4127 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4128 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4131 static inline bfd_boolean
4132 got16_reloc_p (bfd_reloc_code_real_type reloc)
4134 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4135 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4138 static inline bfd_boolean
4139 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4141 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4142 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4145 static inline bfd_boolean
4146 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4148 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4149 || reloc == BFD_RELOC_MICROMIPS_LO16);
4152 static inline bfd_boolean
4153 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4155 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4158 static inline bfd_boolean
4159 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4161 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4162 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4165 /* Return true if RELOC is a PC-relative relocation that does not have
4166 full address range. */
4168 static inline bfd_boolean
4169 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4173 case BFD_RELOC_16_PCREL_S2:
4174 case BFD_RELOC_MIPS16_16_PCREL_S1:
4175 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4176 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4177 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4178 case BFD_RELOC_MIPS_21_PCREL_S2:
4179 case BFD_RELOC_MIPS_26_PCREL_S2:
4180 case BFD_RELOC_MIPS_18_PCREL_S3:
4181 case BFD_RELOC_MIPS_19_PCREL_S2:
4184 case BFD_RELOC_32_PCREL:
4185 case BFD_RELOC_HI16_S_PCREL:
4186 case BFD_RELOC_LO16_PCREL:
4187 return HAVE_64BIT_ADDRESSES;
4194 /* Return true if the given relocation might need a matching %lo().
4195 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4196 need a matching %lo() when applied to local symbols. */
4198 static inline bfd_boolean
4199 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4201 return (HAVE_IN_PLACE_ADDENDS
4202 && (hi16_reloc_p (reloc)
4203 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4204 all GOT16 relocations evaluate to "G". */
4205 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4208 /* Return the type of %lo() reloc needed by RELOC, given that
4209 reloc_needs_lo_p. */
4211 static inline bfd_reloc_code_real_type
4212 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4214 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4215 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4219 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4222 static inline bfd_boolean
4223 fixup_has_matching_lo_p (fixS *fixp)
4225 return (fixp->fx_next != NULL
4226 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4227 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4228 && fixp->fx_offset == fixp->fx_next->fx_offset);
4231 /* Move all labels in LABELS to the current insertion point. TEXT_P
4232 says whether the labels refer to text or data. */
4235 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4237 struct insn_label_list *l;
4240 for (l = labels; l != NULL; l = l->next)
4242 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4243 symbol_set_frag (l->label, frag_now);
4244 val = (valueT) frag_now_fix ();
4245 /* MIPS16/microMIPS text labels are stored as odd. */
4246 if (text_p && HAVE_CODE_COMPRESSION)
4248 S_SET_VALUE (l->label, val);
4252 /* Move all labels in insn_labels to the current insertion point
4253 and treat them as text labels. */
4256 mips_move_text_labels (void)
4258 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4262 s_is_linkonce (symbolS *sym, segT from_seg)
4264 bfd_boolean linkonce = FALSE;
4265 segT symseg = S_GET_SEGMENT (sym);
4267 if (symseg != from_seg && !S_IS_LOCAL (sym))
4269 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4271 /* The GNU toolchain uses an extension for ELF: a section
4272 beginning with the magic string .gnu.linkonce is a
4273 linkonce section. */
4274 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4275 sizeof ".gnu.linkonce" - 1) == 0)
4281 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4282 linker to handle them specially, such as generating jalx instructions
4283 when needed. We also make them odd for the duration of the assembly,
4284 in order to generate the right sort of code. We will make them even
4285 in the adjust_symtab routine, while leaving them marked. This is
4286 convenient for the debugger and the disassembler. The linker knows
4287 to make them odd again. */
4290 mips_compressed_mark_label (symbolS *label)
4292 gas_assert (HAVE_CODE_COMPRESSION);
4294 if (mips_opts.mips16)
4295 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4297 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4298 if ((S_GET_VALUE (label) & 1) == 0
4299 /* Don't adjust the address if the label is global or weak, or
4300 in a link-once section, since we'll be emitting symbol reloc
4301 references to it which will be patched up by the linker, and
4302 the final value of the symbol may or may not be MIPS16/microMIPS. */
4303 && !S_IS_WEAK (label)
4304 && !S_IS_EXTERNAL (label)
4305 && !s_is_linkonce (label, now_seg))
4306 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4309 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4312 mips_compressed_mark_labels (void)
4314 struct insn_label_list *l;
4316 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4317 mips_compressed_mark_label (l->label);
4320 /* End the current frag. Make it a variant frag and record the
4324 relax_close_frag (void)
4326 mips_macro_warning.first_frag = frag_now;
4327 frag_var (rs_machine_dependent, 0, 0,
4328 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4329 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4331 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4332 mips_relax.first_fixup = 0;
4335 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4336 See the comment above RELAX_ENCODE for more details. */
4339 relax_start (symbolS *symbol)
4341 gas_assert (mips_relax.sequence == 0);
4342 mips_relax.sequence = 1;
4343 mips_relax.symbol = symbol;
4346 /* Start generating the second version of a relaxable sequence.
4347 See the comment above RELAX_ENCODE for more details. */
4352 gas_assert (mips_relax.sequence == 1);
4353 mips_relax.sequence = 2;
4356 /* End the current relaxable sequence. */
4361 gas_assert (mips_relax.sequence == 2);
4362 relax_close_frag ();
4363 mips_relax.sequence = 0;
4366 /* Return true if IP is a delayed branch or jump. */
4368 static inline bfd_boolean
4369 delayed_branch_p (const struct mips_cl_insn *ip)
4371 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4372 | INSN_COND_BRANCH_DELAY
4373 | INSN_COND_BRANCH_LIKELY)) != 0;
4376 /* Return true if IP is a compact branch or jump. */
4378 static inline bfd_boolean
4379 compact_branch_p (const struct mips_cl_insn *ip)
4381 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4382 | INSN2_COND_BRANCH)) != 0;
4385 /* Return true if IP is an unconditional branch or jump. */
4387 static inline bfd_boolean
4388 uncond_branch_p (const struct mips_cl_insn *ip)
4390 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4391 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4394 /* Return true if IP is a branch-likely instruction. */
4396 static inline bfd_boolean
4397 branch_likely_p (const struct mips_cl_insn *ip)
4399 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4402 /* Return the type of nop that should be used to fill the delay slot
4403 of delayed branch IP. */
4405 static struct mips_cl_insn *
4406 get_delay_slot_nop (const struct mips_cl_insn *ip)
4408 if (mips_opts.micromips
4409 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4410 return µmips_nop32_insn;
4414 /* Return a mask that has bit N set if OPCODE reads the register(s)
4418 insn_read_mask (const struct mips_opcode *opcode)
4420 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4423 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4427 insn_write_mask (const struct mips_opcode *opcode)
4429 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4432 /* Return a mask of the registers specified by operand OPERAND of INSN.
4433 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4437 operand_reg_mask (const struct mips_cl_insn *insn,
4438 const struct mips_operand *operand,
4439 unsigned int type_mask)
4441 unsigned int uval, vsel;
4443 switch (operand->type)
4450 case OP_ADDIUSP_INT:
4451 case OP_ENTRY_EXIT_LIST:
4452 case OP_REPEAT_DEST_REG:
4453 case OP_REPEAT_PREV_REG:
4456 case OP_VU0_MATCH_SUFFIX:
4461 case OP_OPTIONAL_REG:
4463 const struct mips_reg_operand *reg_op;
4465 reg_op = (const struct mips_reg_operand *) operand;
4466 if (!(type_mask & (1 << reg_op->reg_type)))
4468 uval = insn_extract_operand (insn, operand);
4469 return 1 << mips_decode_reg_operand (reg_op, uval);
4474 const struct mips_reg_pair_operand *pair_op;
4476 pair_op = (const struct mips_reg_pair_operand *) operand;
4477 if (!(type_mask & (1 << pair_op->reg_type)))
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4483 case OP_CLO_CLZ_DEST:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << (uval & 31)) | (1 << (uval >> 5));
4490 if (!(type_mask & (1 << OP_REG_GP)))
4492 uval = insn_extract_operand (insn, operand);
4493 gas_assert ((uval & 31) == (uval >> 5));
4494 return 1 << (uval & 31);
4497 case OP_NON_ZERO_REG:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4500 uval = insn_extract_operand (insn, operand);
4501 return 1 << (uval & 31);
4503 case OP_LWM_SWM_LIST:
4506 case OP_SAVE_RESTORE_LIST:
4509 case OP_MDMX_IMM_REG:
4510 if (!(type_mask & (1 << OP_REG_VEC)))
4512 uval = insn_extract_operand (insn, operand);
4514 if ((vsel & 0x18) == 0x18)
4516 return 1 << (uval & 31);
4519 if (!(type_mask & (1 << OP_REG_GP)))
4521 return 1 << insn_extract_operand (insn, operand);
4526 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4527 where bit N of OPNO_MASK is set if operand N should be included.
4528 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4532 insn_reg_mask (const struct mips_cl_insn *insn,
4533 unsigned int type_mask, unsigned int opno_mask)
4535 unsigned int opno, reg_mask;
4539 while (opno_mask != 0)
4542 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4549 /* Return the mask of core registers that IP reads. */
4552 gpr_read_mask (const struct mips_cl_insn *ip)
4554 unsigned long pinfo, pinfo2;
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_UDI)
4562 /* UDI instructions have traditionally been assumed to read RS
4564 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4565 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4567 if (pinfo & INSN_READ_GPR_24)
4569 if (pinfo2 & INSN2_READ_GPR_16)
4571 if (pinfo2 & INSN2_READ_SP)
4573 if (pinfo2 & INSN2_READ_GPR_31)
4575 /* Don't include register 0. */
4579 /* Return the mask of core registers that IP writes. */
4582 gpr_write_mask (const struct mips_cl_insn *ip)
4584 unsigned long pinfo, pinfo2;
4587 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4588 pinfo = ip->insn_mo->pinfo;
4589 pinfo2 = ip->insn_mo->pinfo2;
4590 if (pinfo & INSN_WRITE_GPR_24)
4592 if (pinfo & INSN_WRITE_GPR_31)
4594 if (pinfo & INSN_UDI)
4595 /* UDI instructions have traditionally been assumed to write to RD. */
4596 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4597 if (pinfo2 & INSN2_WRITE_SP)
4599 /* Don't include register 0. */
4603 /* Return the mask of floating-point registers that IP reads. */
4606 fpr_read_mask (const struct mips_cl_insn *ip)
4608 unsigned long pinfo;
4611 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4612 | (1 << OP_REG_MSA)),
4613 insn_read_mask (ip->insn_mo));
4614 pinfo = ip->insn_mo->pinfo;
4615 /* Conservatively treat all operands to an FP_D instruction are doubles.
4616 (This is overly pessimistic for things like cvt.d.s.) */
4617 if (FPR_SIZE != 64 && (pinfo & FP_D))
4622 /* Return the mask of floating-point registers that IP writes. */
4625 fpr_write_mask (const struct mips_cl_insn *ip)
4627 unsigned long pinfo;
4630 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4631 | (1 << OP_REG_MSA)),
4632 insn_write_mask (ip->insn_mo));
4633 pinfo = ip->insn_mo->pinfo;
4634 /* Conservatively treat all operands to an FP_D instruction are doubles.
4635 (This is overly pessimistic for things like cvt.s.d.) */
4636 if (FPR_SIZE != 64 && (pinfo & FP_D))
4641 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4642 Check whether that is allowed. */
4645 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4647 const char *s = insn->name;
4648 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4650 && mips_opts.oddspreg;
4652 if (insn->pinfo == INSN_MACRO)
4653 /* Let a macro pass, we'll catch it later when it is expanded. */
4656 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4657 otherwise it depends on oddspreg. */
4658 if ((insn->pinfo & FP_S)
4659 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4660 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4661 return FPR_SIZE == 32 || oddspreg;
4663 /* Allow odd registers for single-precision ops and double-precision if the
4664 floating-point registers are 64-bit wide. */
4665 switch (insn->pinfo & (FP_S | FP_D))
4671 return FPR_SIZE == 64;
4676 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4677 s = strchr (insn->name, '.');
4678 if (s != NULL && opnum == 2)
4679 s = strchr (s + 1, '.');
4680 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4683 return FPR_SIZE == 64;
4686 /* Information about an instruction argument that we're trying to match. */
4687 struct mips_arg_info
4689 /* The instruction so far. */
4690 struct mips_cl_insn *insn;
4692 /* The first unconsumed operand token. */
4693 struct mips_operand_token *token;
4695 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4698 /* The 1-based argument number, for error reporting. This does not
4699 count elided optional registers, etc.. */
4702 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4703 unsigned int last_regno;
4705 /* If the first operand was an OP_REG, this is the register that it
4706 specified, otherwise it is ILLEGAL_REG. */
4707 unsigned int dest_regno;
4709 /* The value of the last OP_INT operand. Only used for OP_MSB,
4710 where it gives the lsb position. */
4711 unsigned int last_op_int;
4713 /* If true, match routines should assume that no later instruction
4714 alternative matches and should therefore be as accommodating as
4715 possible. Match routines should not report errors if something
4716 is only invalid for !LAX_MATCH. */
4717 bfd_boolean lax_match;
4719 /* True if a reference to the current AT register was seen. */
4720 bfd_boolean seen_at;
4723 /* Record that the argument is out of range. */
4726 match_out_of_range (struct mips_arg_info *arg)
4728 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4731 /* Record that the argument isn't constant but needs to be. */
4734 match_not_constant (struct mips_arg_info *arg)
4736 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4740 /* Try to match an OT_CHAR token for character CH. Consume the token
4741 and return true on success, otherwise return false. */
4744 match_char (struct mips_arg_info *arg, char ch)
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4756 /* Try to get an expression from the next tokens in ARG. Consume the
4757 tokens and return true on success, storing the expression value in
4758 VALUE and relocation types in R. */
4761 match_expression (struct mips_arg_info *arg, expressionS *value,
4762 bfd_reloc_code_real_type *r)
4764 /* If the next token is a '(' that was parsed as being part of a base
4765 expression, assume we have an elided offset. The later match will fail
4766 if this turns out to be wrong. */
4767 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4769 value->X_op = O_constant;
4770 value->X_add_number = 0;
4771 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4775 /* Reject register-based expressions such as "0+$2" and "(($2))".
4776 For plain registers the default error seems more appropriate. */
4777 if (arg->token->type == OT_INTEGER
4778 && arg->token->u.integer.value.X_op == O_register)
4780 set_insn_error (arg->argnum, _("register value used as expression"));
4784 if (arg->token->type == OT_INTEGER)
4786 *value = arg->token->u.integer.value;
4787 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4793 (arg->argnum, _("operand %d must be an immediate expression"),
4798 /* Try to get a constant expression from the next tokens in ARG. Consume
4799 the tokens and return return true on success, storing the constant value
4800 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4804 match_const_int (struct mips_arg_info *arg, offsetT *value)
4807 bfd_reloc_code_real_type r[3];
4809 if (!match_expression (arg, &ex, r))
4812 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4813 *value = ex.X_add_number;
4816 match_not_constant (arg);
4822 /* Return the RTYPE_* flags for a register operand of type TYPE that
4823 appears in instruction OPCODE. */
4826 convert_reg_type (const struct mips_opcode *opcode,
4827 enum mips_reg_operand_type type)
4832 return RTYPE_NUM | RTYPE_GP;
4835 /* Allow vector register names for MDMX if the instruction is a 64-bit
4836 FPR load, store or move (including moves to and from GPRs). */
4837 if ((mips_opts.ase & ASE_MDMX)
4838 && (opcode->pinfo & FP_D)
4839 && (opcode->pinfo & (INSN_COPROC_MOVE
4840 | INSN_COPROC_MEMORY_DELAY
4843 | INSN_STORE_MEMORY)))
4844 return RTYPE_FPU | RTYPE_VEC;
4848 if (opcode->pinfo & (FP_D | FP_S))
4849 return RTYPE_CCC | RTYPE_FCC;
4853 if (opcode->membership & INSN_5400)
4855 return RTYPE_FPU | RTYPE_VEC;
4861 if (opcode->name[strlen (opcode->name) - 1] == '0')
4862 return RTYPE_NUM | RTYPE_CP0;
4869 return RTYPE_NUM | RTYPE_VI;
4872 return RTYPE_NUM | RTYPE_VF;
4874 case OP_REG_R5900_I:
4875 return RTYPE_R5900_I;
4877 case OP_REG_R5900_Q:
4878 return RTYPE_R5900_Q;
4880 case OP_REG_R5900_R:
4881 return RTYPE_R5900_R;
4883 case OP_REG_R5900_ACC:
4884 return RTYPE_R5900_ACC;
4889 case OP_REG_MSA_CTRL:
4895 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4898 check_regno (struct mips_arg_info *arg,
4899 enum mips_reg_operand_type type, unsigned int regno)
4901 if (AT && type == OP_REG_GP && regno == AT)
4902 arg->seen_at = TRUE;
4904 if (type == OP_REG_FP
4906 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4908 /* This was a warning prior to introducing O32 FPXX and FP64 support
4909 so maintain a warning for FP32 but raise an error for the new
4912 as_warn (_("float register should be even, was %d"), regno);
4914 as_bad (_("float register should be even, was %d"), regno);
4917 if (type == OP_REG_CCC)
4922 name = arg->insn->insn_mo->name;
4923 length = strlen (name);
4924 if ((regno & 1) != 0
4925 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4926 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4927 as_warn (_("condition code register should be even for %s, was %d"),
4930 if ((regno & 3) != 0
4931 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4932 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4937 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4938 a register of type TYPE. Return true on success, storing the register
4939 number in *REGNO and warning about any dubious uses. */
4942 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int symval, unsigned int *regno)
4945 if (type == OP_REG_VEC)
4946 symval = mips_prefer_vec_regno (symval);
4947 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4950 *regno = symval & RNUM_MASK;
4951 check_regno (arg, type, *regno);
4955 /* Try to interpret the next token in ARG as a register of type TYPE.
4956 Consume the token and return true on success, storing the register
4957 number in *REGNO. Return false on failure. */
4960 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4961 unsigned int *regno)
4963 if (arg->token->type == OT_REG
4964 && match_regno (arg, type, arg->token->u.regno, regno))
4972 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4973 Consume the token and return true on success, storing the register numbers
4974 in *REGNO1 and *REGNO2. Return false on failure. */
4977 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4978 unsigned int *regno1, unsigned int *regno2)
4980 if (match_reg (arg, type, regno1))
4985 if (arg->token->type == OT_REG_RANGE
4986 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4987 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4988 && *regno1 <= *regno2)
4996 /* OP_INT matcher. */
4999 match_int_operand (struct mips_arg_info *arg,
5000 const struct mips_operand *operand_base)
5002 const struct mips_int_operand *operand;
5004 int min_val, max_val, factor;
5007 operand = (const struct mips_int_operand *) operand_base;
5008 factor = 1 << operand->shift;
5009 min_val = mips_int_operand_min (operand);
5010 max_val = mips_int_operand_max (operand);
5012 if (operand_base->lsb == 0
5013 && operand_base->size == 16
5014 && operand->shift == 0
5015 && operand->bias == 0
5016 && (operand->max_val == 32767 || operand->max_val == 65535))
5018 /* The operand can be relocated. */
5019 if (!match_expression (arg, &offset_expr, offset_reloc))
5022 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5023 /* Relocation operators were used. Accept the arguent and
5024 leave the relocation value in offset_expr and offset_relocs
5025 for the caller to process. */
5028 if (offset_expr.X_op != O_constant)
5030 /* Accept non-constant operands if no later alternative matches,
5031 leaving it for the caller to process. */
5032 if (!arg->lax_match)
5034 offset_reloc[0] = BFD_RELOC_LO16;
5038 /* Clear the global state; we're going to install the operand
5040 sval = offset_expr.X_add_number;
5041 offset_expr.X_op = O_absent;
5043 /* For compatibility with older assemblers, we accept
5044 0x8000-0xffff as signed 16-bit numbers when only
5045 signed numbers are allowed. */
5048 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5049 if (!arg->lax_match && sval <= max_val)
5055 if (!match_const_int (arg, &sval))
5059 arg->last_op_int = sval;
5061 if (sval < min_val || sval > max_val || sval % factor)
5063 match_out_of_range (arg);
5067 uval = (unsigned int) sval >> operand->shift;
5068 uval -= operand->bias;
5070 /* Handle -mfix-cn63xxp1. */
5072 && mips_fix_cn63xxp1
5073 && !mips_opts.micromips
5074 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5089 /* The rest must be changed to 28. */
5094 insn_insert_operand (arg->insn, operand_base, uval);
5098 /* OP_MAPPED_INT matcher. */
5101 match_mapped_int_operand (struct mips_arg_info *arg,
5102 const struct mips_operand *operand_base)
5104 const struct mips_mapped_int_operand *operand;
5105 unsigned int uval, num_vals;
5108 operand = (const struct mips_mapped_int_operand *) operand_base;
5109 if (!match_const_int (arg, &sval))
5112 num_vals = 1 << operand_base->size;
5113 for (uval = 0; uval < num_vals; uval++)
5114 if (operand->int_map[uval] == sval)
5116 if (uval == num_vals)
5118 match_out_of_range (arg);
5122 insn_insert_operand (arg->insn, operand_base, uval);
5126 /* OP_MSB matcher. */
5129 match_msb_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5132 const struct mips_msb_operand *operand;
5133 int min_val, max_val, max_high;
5134 offsetT size, sval, high;
5136 operand = (const struct mips_msb_operand *) operand_base;
5137 min_val = operand->bias;
5138 max_val = min_val + (1 << operand_base->size) - 1;
5139 max_high = operand->opsize;
5141 if (!match_const_int (arg, &size))
5144 high = size + arg->last_op_int;
5145 sval = operand->add_lsb ? high : size;
5147 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5149 match_out_of_range (arg);
5152 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5156 /* OP_REG matcher. */
5159 match_reg_operand (struct mips_arg_info *arg,
5160 const struct mips_operand *operand_base)
5162 const struct mips_reg_operand *operand;
5163 unsigned int regno, uval, num_vals;
5165 operand = (const struct mips_reg_operand *) operand_base;
5166 if (!match_reg (arg, operand->reg_type, ®no))
5169 if (operand->reg_map)
5171 num_vals = 1 << operand->root.size;
5172 for (uval = 0; uval < num_vals; uval++)
5173 if (operand->reg_map[uval] == regno)
5175 if (num_vals == uval)
5181 arg->last_regno = regno;
5182 if (arg->opnum == 1)
5183 arg->dest_regno = regno;
5184 insn_insert_operand (arg->insn, operand_base, uval);
5188 /* OP_REG_PAIR matcher. */
5191 match_reg_pair_operand (struct mips_arg_info *arg,
5192 const struct mips_operand *operand_base)
5194 const struct mips_reg_pair_operand *operand;
5195 unsigned int regno1, regno2, uval, num_vals;
5197 operand = (const struct mips_reg_pair_operand *) operand_base;
5198 if (!match_reg (arg, operand->reg_type, ®no1)
5199 || !match_char (arg, ',')
5200 || !match_reg (arg, operand->reg_type, ®no2))
5203 num_vals = 1 << operand_base->size;
5204 for (uval = 0; uval < num_vals; uval++)
5205 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5207 if (uval == num_vals)
5210 insn_insert_operand (arg->insn, operand_base, uval);
5214 /* OP_PCREL matcher. The caller chooses the relocation type. */
5217 match_pcrel_operand (struct mips_arg_info *arg)
5219 bfd_reloc_code_real_type r[3];
5221 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5224 /* OP_PERF_REG matcher. */
5227 match_perf_reg_operand (struct mips_arg_info *arg,
5228 const struct mips_operand *operand)
5232 if (!match_const_int (arg, &sval))
5237 || (mips_opts.arch == CPU_R5900
5238 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5239 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5241 set_insn_error (arg->argnum, _("invalid performance register"));
5245 insn_insert_operand (arg->insn, operand, sval);
5249 /* OP_ADDIUSP matcher. */
5252 match_addiusp_operand (struct mips_arg_info *arg,
5253 const struct mips_operand *operand)
5258 if (!match_const_int (arg, &sval))
5263 match_out_of_range (arg);
5268 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5270 match_out_of_range (arg);
5274 uval = (unsigned int) sval;
5275 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5276 insn_insert_operand (arg->insn, operand, uval);
5280 /* OP_CLO_CLZ_DEST matcher. */
5283 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5284 const struct mips_operand *operand)
5288 if (!match_reg (arg, OP_REG_GP, ®no))
5291 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5295 /* OP_CHECK_PREV matcher. */
5298 match_check_prev_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand_base)
5301 const struct mips_check_prev_operand *operand;
5304 operand = (const struct mips_check_prev_operand *) operand_base;
5306 if (!match_reg (arg, OP_REG_GP, ®no))
5309 if (!operand->zero_ok && regno == 0)
5312 if ((operand->less_than_ok && regno < arg->last_regno)
5313 || (operand->greater_than_ok && regno > arg->last_regno)
5314 || (operand->equal_ok && regno == arg->last_regno))
5316 arg->last_regno = regno;
5317 insn_insert_operand (arg->insn, operand_base, regno);
5324 /* OP_SAME_RS_RT matcher. */
5327 match_same_rs_rt_operand (struct mips_arg_info *arg,
5328 const struct mips_operand *operand)
5332 if (!match_reg (arg, OP_REG_GP, ®no))
5337 set_insn_error (arg->argnum, _("the source register must not be $0"));
5341 arg->last_regno = regno;
5343 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5347 /* OP_LWM_SWM_LIST matcher. */
5350 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand)
5353 unsigned int reglist, sregs, ra, regno1, regno2;
5354 struct mips_arg_info reset;
5357 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5361 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5366 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5369 while (match_char (arg, ',')
5370 && match_reg_range (arg, OP_REG_GP, ®no1, ®no2));
5373 if (operand->size == 2)
5375 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5381 and any permutations of these. */
5382 if ((reglist & 0xfff1ffff) != 0x80010000)
5385 sregs = (reglist >> 17) & 7;
5390 /* The list must include at least one of ra and s0-sN,
5391 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5392 which are $23 and $30 respectively.) E.g.:
5400 and any permutations of these. */
5401 if ((reglist & 0x3f00ffff) != 0)
5404 ra = (reglist >> 27) & 0x10;
5405 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5408 if ((sregs & -sregs) != sregs)
5411 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5415 /* OP_ENTRY_EXIT_LIST matcher. */
5418 match_entry_exit_operand (struct mips_arg_info *arg,
5419 const struct mips_operand *operand)
5422 bfd_boolean is_exit;
5424 /* The format is the same for both ENTRY and EXIT, but the constraints
5426 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5427 mask = (is_exit ? 7 << 3 : 0);
5430 unsigned int regno1, regno2;
5431 bfd_boolean is_freg;
5433 if (match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5435 else if (match_reg_range (arg, OP_REG_FP, ®no1, ®no2))
5440 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5443 mask |= (5 + regno2) << 3;
5445 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5446 mask |= (regno2 - 3) << 3;
5447 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5448 mask |= (regno2 - 15) << 1;
5449 else if (regno1 == RA && regno2 == RA)
5454 while (match_char (arg, ','));
5456 insn_insert_operand (arg->insn, operand, mask);
5460 /* OP_SAVE_RESTORE_LIST matcher. */
5463 match_save_restore_list_operand (struct mips_arg_info *arg)
5465 unsigned int opcode, args, statics, sregs;
5466 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5469 opcode = arg->insn->insn_opcode;
5471 num_frame_sizes = 0;
5477 unsigned int regno1, regno2;
5479 if (arg->token->type == OT_INTEGER)
5481 /* Handle the frame size. */
5482 if (!match_const_int (arg, &frame_size))
5484 num_frame_sizes += 1;
5488 if (!match_reg_range (arg, OP_REG_GP, ®no1, ®no2))
5491 while (regno1 <= regno2)
5493 if (regno1 >= 4 && regno1 <= 7)
5495 if (num_frame_sizes == 0)
5497 args |= 1 << (regno1 - 4);
5499 /* statics $a0-$a3 */
5500 statics |= 1 << (regno1 - 4);
5502 else if (regno1 >= 16 && regno1 <= 23)
5504 sregs |= 1 << (regno1 - 16);
5505 else if (regno1 == 30)
5508 else if (regno1 == 31)
5509 /* Add $ra to insn. */
5519 while (match_char (arg, ','));
5521 /* Encode args/statics combination. */
5524 else if (args == 0xf)
5525 /* All $a0-$a3 are args. */
5526 opcode |= MIPS16_ALL_ARGS << 16;
5527 else if (statics == 0xf)
5528 /* All $a0-$a3 are statics. */
5529 opcode |= MIPS16_ALL_STATICS << 16;
5532 /* Count arg registers. */
5542 /* Count static registers. */
5544 while (statics & 0x8)
5546 statics = (statics << 1) & 0xf;
5552 /* Encode args/statics. */
5553 opcode |= ((num_args << 2) | num_statics) << 16;
5556 /* Encode $s0/$s1. */
5557 if (sregs & (1 << 0)) /* $s0 */
5559 if (sregs & (1 << 1)) /* $s1 */
5563 /* Encode $s2-$s8. */
5572 opcode |= num_sregs << 24;
5574 /* Encode frame size. */
5575 if (num_frame_sizes == 0)
5577 set_insn_error (arg->argnum, _("missing frame size"));
5580 if (num_frame_sizes > 1)
5582 set_insn_error (arg->argnum, _("frame size specified twice"));
5585 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5587 set_insn_error (arg->argnum, _("invalid frame size"));
5590 if (frame_size != 128 || (opcode >> 16) != 0)
5593 opcode |= (((frame_size & 0xf0) << 16)
5594 | (frame_size & 0x0f));
5597 /* Finally build the instruction. */
5598 if ((opcode >> 16) != 0 || frame_size == 0)
5599 opcode |= MIPS16_EXTEND;
5600 arg->insn->insn_opcode = opcode;
5604 /* OP_MDMX_IMM_REG matcher. */
5607 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5608 const struct mips_operand *operand)
5610 unsigned int regno, uval;
5612 const struct mips_opcode *opcode;
5614 /* The mips_opcode records whether this is an octobyte or quadhalf
5615 instruction. Start out with that bit in place. */
5616 opcode = arg->insn->insn_mo;
5617 uval = mips_extract_operand (operand, opcode->match);
5618 is_qh = (uval != 0);
5620 if (arg->token->type == OT_REG)
5622 if ((opcode->membership & INSN_5400)
5623 && strcmp (opcode->name, "rzu.ob") == 0)
5625 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5630 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, ®no))
5634 /* Check whether this is a vector register or a broadcast of
5635 a single element. */
5636 if (arg->token->type == OT_INTEGER_INDEX)
5638 if (arg->token->u.index > (is_qh ? 3 : 7))
5640 set_insn_error (arg->argnum, _("invalid element selector"));
5643 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5648 /* A full vector. */
5649 if ((opcode->membership & INSN_5400)
5650 && (strcmp (opcode->name, "sll.ob") == 0
5651 || strcmp (opcode->name, "srl.ob") == 0))
5653 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5659 uval |= MDMX_FMTSEL_VEC_QH << 5;
5661 uval |= MDMX_FMTSEL_VEC_OB << 5;
5669 if (!match_const_int (arg, &sval))
5671 if (sval < 0 || sval > 31)
5673 match_out_of_range (arg);
5676 uval |= (sval & 31);
5678 uval |= MDMX_FMTSEL_IMM_QH << 5;
5680 uval |= MDMX_FMTSEL_IMM_OB << 5;
5682 insn_insert_operand (arg->insn, operand, uval);
5686 /* OP_IMM_INDEX matcher. */
5689 match_imm_index_operand (struct mips_arg_info *arg,
5690 const struct mips_operand *operand)
5692 unsigned int max_val;
5694 if (arg->token->type != OT_INTEGER_INDEX)
5697 max_val = (1 << operand->size) - 1;
5698 if (arg->token->u.index > max_val)
5700 match_out_of_range (arg);
5703 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5708 /* OP_REG_INDEX matcher. */
5711 match_reg_index_operand (struct mips_arg_info *arg,
5712 const struct mips_operand *operand)
5716 if (arg->token->type != OT_REG_INDEX)
5719 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, ®no))
5722 insn_insert_operand (arg->insn, operand, regno);
5727 /* OP_PC matcher. */
5730 match_pc_operand (struct mips_arg_info *arg)
5732 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5740 /* OP_NON_ZERO_REG matcher. */
5743 match_non_zero_reg_operand (struct mips_arg_info *arg,
5744 const struct mips_operand *operand)
5748 if (!match_reg (arg, OP_REG_GP, ®no))
5754 arg->last_regno = regno;
5755 insn_insert_operand (arg->insn, operand, regno);
5759 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5760 register that we need to match. */
5763 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5767 return match_reg (arg, OP_REG_GP, ®no) && regno == other_regno;
5770 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5771 the length of the value in bytes (4 for float, 8 for double) and
5772 USING_GPRS says whether the destination is a GPR rather than an FPR.
5774 Return the constant in IMM and OFFSET as follows:
5776 - If the constant should be loaded via memory, set IMM to O_absent and
5777 OFFSET to the memory address.
5779 - Otherwise, if the constant should be loaded into two 32-bit registers,
5780 set IMM to the O_constant to load into the high register and OFFSET
5781 to the corresponding value for the low register.
5783 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5785 These constants only appear as the last operand in an instruction,
5786 and every instruction that accepts them in any variant accepts them
5787 in all variants. This means we don't have to worry about backing out
5788 any changes if the instruction does not match. We just match
5789 unconditionally and report an error if the constant is invalid. */
5792 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5793 expressionS *offset, int length, bfd_boolean using_gprs)
5798 const char *newname;
5799 unsigned char *data;
5801 /* Where the constant is placed is based on how the MIPS assembler
5804 length == 4 && using_gprs -- immediate value only
5805 length == 8 && using_gprs -- .rdata or immediate value
5806 length == 4 && !using_gprs -- .lit4 or immediate value
5807 length == 8 && !using_gprs -- .lit8 or immediate value
5809 The .lit4 and .lit8 sections are only used if permitted by the
5811 if (arg->token->type != OT_FLOAT)
5813 set_insn_error (arg->argnum, _("floating-point expression required"));
5817 gas_assert (arg->token->u.flt.length == length);
5818 data = arg->token->u.flt.data;
5821 /* Handle 32-bit constants for which an immediate value is best. */
5824 || g_switch_value < 4
5825 || (data[0] == 0 && data[1] == 0)
5826 || (data[2] == 0 && data[3] == 0)))
5828 imm->X_op = O_constant;
5829 if (!target_big_endian)
5830 imm->X_add_number = bfd_getl32 (data);
5832 imm->X_add_number = bfd_getb32 (data);
5833 offset->X_op = O_absent;
5837 /* Handle 64-bit constants for which an immediate value is best. */
5839 && !mips_disable_float_construction
5840 /* Constants can only be constructed in GPRs and copied to FPRs if the
5841 GPRs are at least as wide as the FPRs or MTHC1 is available.
5842 Unlike most tests for 32-bit floating-point registers this check
5843 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5844 permit 64-bit moves without MXHC1.
5845 Force the constant into memory otherwise. */
5848 || ISA_HAS_MXHC1 (mips_opts.isa)
5850 && ((data[0] == 0 && data[1] == 0)
5851 || (data[2] == 0 && data[3] == 0))
5852 && ((data[4] == 0 && data[5] == 0)
5853 || (data[6] == 0 && data[7] == 0)))
5855 /* The value is simple enough to load with a couple of instructions.
5856 If using 32-bit registers, set IMM to the high order 32 bits and
5857 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5859 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5861 imm->X_op = O_constant;
5862 offset->X_op = O_constant;
5863 if (!target_big_endian)
5865 imm->X_add_number = bfd_getl32 (data + 4);
5866 offset->X_add_number = bfd_getl32 (data);
5870 imm->X_add_number = bfd_getb32 (data);
5871 offset->X_add_number = bfd_getb32 (data + 4);
5873 if (offset->X_add_number == 0)
5874 offset->X_op = O_absent;
5878 imm->X_op = O_constant;
5879 if (!target_big_endian)
5880 imm->X_add_number = bfd_getl64 (data);
5882 imm->X_add_number = bfd_getb64 (data);
5883 offset->X_op = O_absent;
5888 /* Switch to the right section. */
5890 subseg = now_subseg;
5893 gas_assert (!using_gprs && g_switch_value >= 4);
5898 if (using_gprs || g_switch_value < 8)
5899 newname = RDATA_SECTION_NAME;
5904 new_seg = subseg_new (newname, (subsegT) 0);
5905 bfd_set_section_flags (stdoutput, new_seg,
5906 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5907 frag_align (length == 4 ? 2 : 3, 0, 0);
5908 if (strncmp (TARGET_OS, "elf", 3) != 0)
5909 record_alignment (new_seg, 4);
5911 record_alignment (new_seg, length == 4 ? 2 : 3);
5913 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5915 /* Set the argument to the current address in the section. */
5916 imm->X_op = O_absent;
5917 offset->X_op = O_symbol;
5918 offset->X_add_symbol = symbol_temp_new_now ();
5919 offset->X_add_number = 0;
5921 /* Put the floating point number into the section. */
5922 p = frag_more (length);
5923 memcpy (p, data, length);
5925 /* Switch back to the original section. */
5926 subseg_set (seg, subseg);
5930 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5934 match_vu0_suffix_operand (struct mips_arg_info *arg,
5935 const struct mips_operand *operand,
5936 bfd_boolean match_p)
5940 /* The operand can be an XYZW mask or a single 2-bit channel index
5941 (with X being 0). */
5942 gas_assert (operand->size == 2 || operand->size == 4);
5944 /* The suffix can be omitted when it is already part of the opcode. */
5945 if (arg->token->type != OT_CHANNELS)
5948 uval = arg->token->u.channels;
5949 if (operand->size == 2)
5951 /* Check that a single bit is set and convert it into a 2-bit index. */
5952 if ((uval & -uval) != uval)
5954 uval = 4 - ffs (uval);
5957 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5962 insn_insert_operand (arg->insn, operand, uval);
5966 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5967 of the argument text if the match is successful, otherwise return null. */
5970 match_operand (struct mips_arg_info *arg,
5971 const struct mips_operand *operand)
5973 switch (operand->type)
5976 return match_int_operand (arg, operand);
5979 return match_mapped_int_operand (arg, operand);
5982 return match_msb_operand (arg, operand);
5985 case OP_OPTIONAL_REG:
5986 return match_reg_operand (arg, operand);
5989 return match_reg_pair_operand (arg, operand);
5992 return match_pcrel_operand (arg);
5995 return match_perf_reg_operand (arg, operand);
5997 case OP_ADDIUSP_INT:
5998 return match_addiusp_operand (arg, operand);
6000 case OP_CLO_CLZ_DEST:
6001 return match_clo_clz_dest_operand (arg, operand);
6003 case OP_LWM_SWM_LIST:
6004 return match_lwm_swm_list_operand (arg, operand);
6006 case OP_ENTRY_EXIT_LIST:
6007 return match_entry_exit_operand (arg, operand);
6009 case OP_SAVE_RESTORE_LIST:
6010 return match_save_restore_list_operand (arg);
6012 case OP_MDMX_IMM_REG:
6013 return match_mdmx_imm_reg_operand (arg, operand);
6015 case OP_REPEAT_DEST_REG:
6016 return match_tied_reg_operand (arg, arg->dest_regno);
6018 case OP_REPEAT_PREV_REG:
6019 return match_tied_reg_operand (arg, arg->last_regno);
6022 return match_pc_operand (arg);
6025 return match_vu0_suffix_operand (arg, operand, FALSE);
6027 case OP_VU0_MATCH_SUFFIX:
6028 return match_vu0_suffix_operand (arg, operand, TRUE);
6031 return match_imm_index_operand (arg, operand);
6034 return match_reg_index_operand (arg, operand);
6037 return match_same_rs_rt_operand (arg, operand);
6040 return match_check_prev_operand (arg, operand);
6042 case OP_NON_ZERO_REG:
6043 return match_non_zero_reg_operand (arg, operand);
6048 /* ARG is the state after successfully matching an instruction.
6049 Issue any queued-up warnings. */
6052 check_completed_insn (struct mips_arg_info *arg)
6057 as_warn (_("used $at without \".set noat\""));
6059 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6063 /* Return true if modifying general-purpose register REG needs a delay. */
6066 reg_needs_delay (unsigned int reg)
6068 unsigned long prev_pinfo;
6070 prev_pinfo = history[0].insn_mo->pinfo;
6071 if (!mips_opts.noreorder
6072 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6073 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6074 && (gpr_write_mask (&history[0]) & (1 << reg)))
6080 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6081 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6082 by VR4120 errata. */
6085 classify_vr4120_insn (const char *name)
6087 if (strncmp (name, "macc", 4) == 0)
6088 return FIX_VR4120_MACC;
6089 if (strncmp (name, "dmacc", 5) == 0)
6090 return FIX_VR4120_DMACC;
6091 if (strncmp (name, "mult", 4) == 0)
6092 return FIX_VR4120_MULT;
6093 if (strncmp (name, "dmult", 5) == 0)
6094 return FIX_VR4120_DMULT;
6095 if (strstr (name, "div"))
6096 return FIX_VR4120_DIV;
6097 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6098 return FIX_VR4120_MTHILO;
6099 return NUM_FIX_VR4120_CLASSES;
6102 #define INSN_ERET 0x42000018
6103 #define INSN_DERET 0x4200001f
6104 #define INSN_DMULT 0x1c
6105 #define INSN_DMULTU 0x1d
6107 /* Return the number of instructions that must separate INSN1 and INSN2,
6108 where INSN1 is the earlier instruction. Return the worst-case value
6109 for any INSN2 if INSN2 is null. */
6112 insns_between (const struct mips_cl_insn *insn1,
6113 const struct mips_cl_insn *insn2)
6115 unsigned long pinfo1, pinfo2;
6118 /* If INFO2 is null, pessimistically assume that all flags are set for
6119 the second instruction. */
6120 pinfo1 = insn1->insn_mo->pinfo;
6121 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6123 /* For most targets, write-after-read dependencies on the HI and LO
6124 registers must be separated by at least two instructions. */
6125 if (!hilo_interlocks)
6127 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6129 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6133 /* If we're working around r7000 errata, there must be two instructions
6134 between an mfhi or mflo and any instruction that uses the result. */
6135 if (mips_7000_hilo_fix
6136 && !mips_opts.micromips
6137 && MF_HILO_INSN (pinfo1)
6138 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6141 /* If we're working around 24K errata, one instruction is required
6142 if an ERET or DERET is followed by a branch instruction. */
6143 if (mips_fix_24k && !mips_opts.micromips)
6145 if (insn1->insn_opcode == INSN_ERET
6146 || insn1->insn_opcode == INSN_DERET)
6149 || insn2->insn_opcode == INSN_ERET
6150 || insn2->insn_opcode == INSN_DERET
6151 || delayed_branch_p (insn2))
6156 /* If we're working around PMC RM7000 errata, there must be three
6157 nops between a dmult and a load instruction. */
6158 if (mips_fix_rm7000 && !mips_opts.micromips)
6160 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6161 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6163 if (pinfo2 & INSN_LOAD_MEMORY)
6168 /* If working around VR4120 errata, check for combinations that need
6169 a single intervening instruction. */
6170 if (mips_fix_vr4120 && !mips_opts.micromips)
6172 unsigned int class1, class2;
6174 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6175 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6179 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6180 if (vr4120_conflicts[class1] & (1 << class2))
6185 if (!HAVE_CODE_COMPRESSION)
6187 /* Check for GPR or coprocessor load delays. All such delays
6188 are on the RT register. */
6189 /* Itbl support may require additional care here. */
6190 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6191 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6193 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6197 /* Check for generic coprocessor hazards.
6199 This case is not handled very well. There is no special
6200 knowledge of CP0 handling, and the coprocessors other than
6201 the floating point unit are not distinguished at all. */
6202 /* Itbl support may require additional care here. FIXME!
6203 Need to modify this to include knowledge about
6204 user specified delays! */
6205 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6206 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6208 /* Handle cases where INSN1 writes to a known general coprocessor
6209 register. There must be a one instruction delay before INSN2
6210 if INSN2 reads that register, otherwise no delay is needed. */
6211 mask = fpr_write_mask (insn1);
6214 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6219 /* Read-after-write dependencies on the control registers
6220 require a two-instruction gap. */
6221 if ((pinfo1 & INSN_WRITE_COND_CODE)
6222 && (pinfo2 & INSN_READ_COND_CODE))
6225 /* We don't know exactly what INSN1 does. If INSN2 is
6226 also a coprocessor instruction, assume there must be
6227 a one instruction gap. */
6228 if (pinfo2 & INSN_COP)
6233 /* Check for read-after-write dependencies on the coprocessor
6234 control registers in cases where INSN1 does not need a general
6235 coprocessor delay. This means that INSN1 is a floating point
6236 comparison instruction. */
6237 /* Itbl support may require additional care here. */
6238 else if (!cop_interlocks
6239 && (pinfo1 & INSN_WRITE_COND_CODE)
6240 && (pinfo2 & INSN_READ_COND_CODE))
6244 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6245 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6247 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6248 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6249 || (insn2 && delayed_branch_p (insn2))))
6255 /* Return the number of nops that would be needed to work around the
6256 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6257 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6258 that are contained within the first IGNORE instructions of HIST. */
6261 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6262 const struct mips_cl_insn *insn)
6267 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6268 are not affected by the errata. */
6270 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6271 || strcmp (insn->insn_mo->name, "mtlo") == 0
6272 || strcmp (insn->insn_mo->name, "mthi") == 0))
6275 /* Search for the first MFLO or MFHI. */
6276 for (i = 0; i < MAX_VR4130_NOPS; i++)
6277 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6279 /* Extract the destination register. */
6280 mask = gpr_write_mask (&hist[i]);
6282 /* No nops are needed if INSN reads that register. */
6283 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6286 /* ...or if any of the intervening instructions do. */
6287 for (j = 0; j < i; j++)
6288 if (gpr_read_mask (&hist[j]) & mask)
6292 return MAX_VR4130_NOPS - i;
6297 #define BASE_REG_EQ(INSN1, INSN2) \
6298 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6299 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6301 /* Return the minimum alignment for this store instruction. */
6304 fix_24k_align_to (const struct mips_opcode *mo)
6306 if (strcmp (mo->name, "sh") == 0)
6309 if (strcmp (mo->name, "swc1") == 0
6310 || strcmp (mo->name, "swc2") == 0
6311 || strcmp (mo->name, "sw") == 0
6312 || strcmp (mo->name, "sc") == 0
6313 || strcmp (mo->name, "s.s") == 0)
6316 if (strcmp (mo->name, "sdc1") == 0
6317 || strcmp (mo->name, "sdc2") == 0
6318 || strcmp (mo->name, "s.d") == 0)
6325 struct fix_24k_store_info
6327 /* Immediate offset, if any, for this store instruction. */
6329 /* Alignment required by this store instruction. */
6331 /* True for register offsets. */
6332 int register_offset;
6335 /* Comparison function used by qsort. */
6338 fix_24k_sort (const void *a, const void *b)
6340 const struct fix_24k_store_info *pos1 = a;
6341 const struct fix_24k_store_info *pos2 = b;
6343 return (pos1->off - pos2->off);
6346 /* INSN is a store instruction. Try to record the store information
6347 in STINFO. Return false if the information isn't known. */
6350 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6351 const struct mips_cl_insn *insn)
6353 /* The instruction must have a known offset. */
6354 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6357 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6358 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6362 /* Return the number of nops that would be needed to work around the 24k
6363 "lost data on stores during refill" errata if instruction INSN
6364 immediately followed the 2 instructions described by HIST.
6365 Ignore hazards that are contained within the first IGNORE
6366 instructions of HIST.
6368 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6369 for the data cache refills and store data. The following describes
6370 the scenario where the store data could be lost.
6372 * A data cache miss, due to either a load or a store, causing fill
6373 data to be supplied by the memory subsystem
6374 * The first three doublewords of fill data are returned and written
6376 * A sequence of four stores occurs in consecutive cycles around the
6377 final doubleword of the fill:
6381 * Zero, One or more instructions
6384 The four stores A-D must be to different doublewords of the line that
6385 is being filled. The fourth instruction in the sequence above permits
6386 the fill of the final doubleword to be transferred from the FSB into
6387 the cache. In the sequence above, the stores may be either integer
6388 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6389 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6390 different doublewords on the line. If the floating point unit is
6391 running in 1:2 mode, it is not possible to create the sequence above
6392 using only floating point store instructions.
6394 In this case, the cache line being filled is incorrectly marked
6395 invalid, thereby losing the data from any store to the line that
6396 occurs between the original miss and the completion of the five
6397 cycle sequence shown above.
6399 The workarounds are:
6401 * Run the data cache in write-through mode.
6402 * Insert a non-store instruction between
6403 Store A and Store B or Store B and Store C. */
6406 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6407 const struct mips_cl_insn *insn)
6409 struct fix_24k_store_info pos[3];
6410 int align, i, base_offset;
6415 /* If the previous instruction wasn't a store, there's nothing to
6417 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6420 /* If the instructions after the previous one are unknown, we have
6421 to assume the worst. */
6425 /* Check whether we are dealing with three consecutive stores. */
6426 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6427 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6430 /* If we don't know the relationship between the store addresses,
6431 assume the worst. */
6432 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6433 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6436 if (!fix_24k_record_store_info (&pos[0], insn)
6437 || !fix_24k_record_store_info (&pos[1], &hist[0])
6438 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6441 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6443 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6444 X bytes and such that the base register + X is known to be aligned
6447 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6451 align = pos[0].align_to;
6452 base_offset = pos[0].off;
6453 for (i = 1; i < 3; i++)
6454 if (align < pos[i].align_to)
6456 align = pos[i].align_to;
6457 base_offset = pos[i].off;
6459 for (i = 0; i < 3; i++)
6460 pos[i].off -= base_offset;
6463 pos[0].off &= ~align + 1;
6464 pos[1].off &= ~align + 1;
6465 pos[2].off &= ~align + 1;
6467 /* If any two stores write to the same chunk, they also write to the
6468 same doubleword. The offsets are still sorted at this point. */
6469 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6472 /* A range of at least 9 bytes is needed for the stores to be in
6473 non-overlapping doublewords. */
6474 if (pos[2].off - pos[0].off <= 8)
6477 if (pos[2].off - pos[1].off >= 24
6478 || pos[1].off - pos[0].off >= 24
6479 || pos[2].off - pos[0].off >= 32)
6485 /* Return the number of nops that would be needed if instruction INSN
6486 immediately followed the MAX_NOPS instructions given by HIST,
6487 where HIST[0] is the most recent instruction. Ignore hazards
6488 between INSN and the first IGNORE instructions in HIST.
6490 If INSN is null, return the worse-case number of nops for any
6494 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6495 const struct mips_cl_insn *insn)
6497 int i, nops, tmp_nops;
6500 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6502 tmp_nops = insns_between (hist + i, insn) - i;
6503 if (tmp_nops > nops)
6507 if (mips_fix_vr4130 && !mips_opts.micromips)
6509 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6510 if (tmp_nops > nops)
6514 if (mips_fix_24k && !mips_opts.micromips)
6516 tmp_nops = nops_for_24k (ignore, hist, insn);
6517 if (tmp_nops > nops)
6524 /* The variable arguments provide NUM_INSNS extra instructions that
6525 might be added to HIST. Return the largest number of nops that
6526 would be needed after the extended sequence, ignoring hazards
6527 in the first IGNORE instructions. */
6530 nops_for_sequence (int num_insns, int ignore,
6531 const struct mips_cl_insn *hist, ...)
6534 struct mips_cl_insn buffer[MAX_NOPS];
6535 struct mips_cl_insn *cursor;
6538 va_start (args, hist);
6539 cursor = buffer + num_insns;
6540 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6541 while (cursor > buffer)
6542 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6544 nops = nops_for_insn (ignore, buffer, NULL);
6549 /* Like nops_for_insn, but if INSN is a branch, take into account the
6550 worst-case delay for the branch target. */
6553 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6554 const struct mips_cl_insn *insn)
6558 nops = nops_for_insn (ignore, hist, insn);
6559 if (delayed_branch_p (insn))
6561 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6562 hist, insn, get_delay_slot_nop (insn));
6563 if (tmp_nops > nops)
6566 else if (compact_branch_p (insn))
6568 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6569 if (tmp_nops > nops)
6575 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6578 fix_loongson2f_nop (struct mips_cl_insn * ip)
6580 gas_assert (!HAVE_CODE_COMPRESSION);
6581 if (strcmp (ip->insn_mo->name, "nop") == 0)
6582 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6585 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6586 jr target pc &= 'hffff_ffff_cfff_ffff. */
6589 fix_loongson2f_jump (struct mips_cl_insn * ip)
6591 gas_assert (!HAVE_CODE_COMPRESSION);
6592 if (strcmp (ip->insn_mo->name, "j") == 0
6593 || strcmp (ip->insn_mo->name, "jr") == 0
6594 || strcmp (ip->insn_mo->name, "jalr") == 0)
6602 sreg = EXTRACT_OPERAND (0, RS, *ip);
6603 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6606 ep.X_op = O_constant;
6607 ep.X_add_number = 0xcfff0000;
6608 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6609 ep.X_add_number = 0xffff;
6610 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6611 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6616 fix_loongson2f (struct mips_cl_insn * ip)
6618 if (mips_fix_loongson2f_nop)
6619 fix_loongson2f_nop (ip);
6621 if (mips_fix_loongson2f_jump)
6622 fix_loongson2f_jump (ip);
6625 /* IP is a branch that has a delay slot, and we need to fill it
6626 automatically. Return true if we can do that by swapping IP
6627 with the previous instruction.
6628 ADDRESS_EXPR is an operand of the instruction to be used with
6632 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6633 bfd_reloc_code_real_type *reloc_type)
6635 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6636 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6637 unsigned int fpr_read, prev_fpr_write;
6639 /* -O2 and above is required for this optimization. */
6640 if (mips_optimize < 2)
6643 /* If we have seen .set volatile or .set nomove, don't optimize. */
6644 if (mips_opts.nomove)
6647 /* We can't swap if the previous instruction's position is fixed. */
6648 if (history[0].fixed_p)
6651 /* If the previous previous insn was in a .set noreorder, we can't
6652 swap. Actually, the MIPS assembler will swap in this situation.
6653 However, gcc configured -with-gnu-as will generate code like
6661 in which we can not swap the bne and INSN. If gcc is not configured
6662 -with-gnu-as, it does not output the .set pseudo-ops. */
6663 if (history[1].noreorder_p)
6666 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6667 This means that the previous instruction was a 4-byte one anyhow. */
6668 if (mips_opts.mips16 && history[0].fixp[0])
6671 /* If the branch is itself the target of a branch, we can not swap.
6672 We cheat on this; all we check for is whether there is a label on
6673 this instruction. If there are any branches to anything other than
6674 a label, users must use .set noreorder. */
6675 if (seg_info (now_seg)->label_list)
6678 /* If the previous instruction is in a variant frag other than this
6679 branch's one, we cannot do the swap. This does not apply to
6680 MIPS16 code, which uses variant frags for different purposes. */
6681 if (!mips_opts.mips16
6683 && history[0].frag->fr_type == rs_machine_dependent)
6686 /* We do not swap with instructions that cannot architecturally
6687 be placed in a branch delay slot, such as SYNC or ERET. We
6688 also refrain from swapping with a trap instruction, since it
6689 complicates trap handlers to have the trap instruction be in
6691 prev_pinfo = history[0].insn_mo->pinfo;
6692 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6695 /* Check for conflicts between the branch and the instructions
6696 before the candidate delay slot. */
6697 if (nops_for_insn (0, history + 1, ip) > 0)
6700 /* Check for conflicts between the swapped sequence and the
6701 target of the branch. */
6702 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6705 /* If the branch reads a register that the previous
6706 instruction sets, we can not swap. */
6707 gpr_read = gpr_read_mask (ip);
6708 prev_gpr_write = gpr_write_mask (&history[0]);
6709 if (gpr_read & prev_gpr_write)
6712 fpr_read = fpr_read_mask (ip);
6713 prev_fpr_write = fpr_write_mask (&history[0]);
6714 if (fpr_read & prev_fpr_write)
6717 /* If the branch writes a register that the previous
6718 instruction sets, we can not swap. */
6719 gpr_write = gpr_write_mask (ip);
6720 if (gpr_write & prev_gpr_write)
6723 /* If the branch writes a register that the previous
6724 instruction reads, we can not swap. */
6725 prev_gpr_read = gpr_read_mask (&history[0]);
6726 if (gpr_write & prev_gpr_read)
6729 /* If one instruction sets a condition code and the
6730 other one uses a condition code, we can not swap. */
6731 pinfo = ip->insn_mo->pinfo;
6732 if ((pinfo & INSN_READ_COND_CODE)
6733 && (prev_pinfo & INSN_WRITE_COND_CODE))
6735 if ((pinfo & INSN_WRITE_COND_CODE)
6736 && (prev_pinfo & INSN_READ_COND_CODE))
6739 /* If the previous instruction uses the PC, we can not swap. */
6740 prev_pinfo2 = history[0].insn_mo->pinfo2;
6741 if (prev_pinfo2 & INSN2_READ_PC)
6744 /* If the previous instruction has an incorrect size for a fixed
6745 branch delay slot in microMIPS mode, we cannot swap. */
6746 pinfo2 = ip->insn_mo->pinfo2;
6747 if (mips_opts.micromips
6748 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6749 && insn_length (history) != 2)
6751 if (mips_opts.micromips
6752 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6753 && insn_length (history) != 4)
6756 /* On R5900 short loops need to be fixed by inserting a nop in
6757 the branch delay slots.
6758 A short loop can be terminated too early. */
6759 if (mips_opts.arch == CPU_R5900
6760 /* Check if instruction has a parameter, ignore "j $31". */
6761 && (address_expr != NULL)
6762 /* Parameter must be 16 bit. */
6763 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6764 /* Branch to same segment. */
6765 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6766 /* Branch to same code fragment. */
6767 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6768 /* Can only calculate branch offset if value is known. */
6769 && symbol_constant_p (address_expr->X_add_symbol)
6770 /* Check if branch is really conditional. */
6771 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6772 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6773 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6776 /* Check if loop is shorter than 6 instructions including
6777 branch and delay slot. */
6778 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6785 /* When the loop includes branches or jumps,
6786 it is not a short loop. */
6787 for (i = 0; i < (distance / 4); i++)
6789 if ((history[i].cleared_p)
6790 || delayed_branch_p (&history[i]))
6798 /* Insert nop after branch to fix short loop. */
6807 /* Decide how we should add IP to the instruction stream.
6808 ADDRESS_EXPR is an operand of the instruction to be used with
6811 static enum append_method
6812 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6813 bfd_reloc_code_real_type *reloc_type)
6815 /* The relaxed version of a macro sequence must be inherently
6817 if (mips_relax.sequence == 2)
6820 /* We must not dabble with instructions in a ".set noreorder" block. */
6821 if (mips_opts.noreorder)
6824 /* Otherwise, it's our responsibility to fill branch delay slots. */
6825 if (delayed_branch_p (ip))
6827 if (!branch_likely_p (ip)
6828 && can_swap_branch_p (ip, address_expr, reloc_type))
6831 if (mips_opts.mips16
6832 && ISA_SUPPORTS_MIPS16E
6833 && gpr_read_mask (ip) != 0)
6834 return APPEND_ADD_COMPACT;
6836 if (mips_opts.micromips
6837 && ((ip->insn_opcode & 0xffe0) == 0x4580
6838 || (!forced_insn_length
6839 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6840 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6841 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6842 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6843 return APPEND_ADD_COMPACT;
6845 return APPEND_ADD_WITH_NOP;
6851 /* IP is an instruction whose opcode we have just changed, END points
6852 to the end of the opcode table processed. Point IP->insn_mo to the
6853 new opcode's definition. */
6856 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6858 const struct mips_opcode *mo;
6860 for (mo = ip->insn_mo; mo < end; mo++)
6861 if (mo->pinfo != INSN_MACRO
6862 && (ip->insn_opcode & mo->mask) == mo->match)
6870 /* IP is a MIPS16 instruction whose opcode we have just changed.
6871 Point IP->insn_mo to the new opcode's definition. */
6874 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6876 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6879 /* IP is a microMIPS instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6883 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6885 find_altered_opcode (ip, µmips_opcodes[bfd_micromips_num_opcodes]);
6888 /* For microMIPS macros, we need to generate a local number label
6889 as the target of branches. */
6890 #define MICROMIPS_LABEL_CHAR '\037'
6891 static unsigned long micromips_target_label;
6892 static char micromips_target_name[32];
6895 micromips_label_name (void)
6897 char *p = micromips_target_name;
6898 char symbol_name_temporary[24];
6906 l = micromips_target_label;
6907 #ifdef LOCAL_LABEL_PREFIX
6908 *p++ = LOCAL_LABEL_PREFIX;
6911 *p++ = MICROMIPS_LABEL_CHAR;
6914 symbol_name_temporary[i++] = l % 10 + '0';
6919 *p++ = symbol_name_temporary[--i];
6922 return micromips_target_name;
6926 micromips_label_expr (expressionS *label_expr)
6928 label_expr->X_op = O_symbol;
6929 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6930 label_expr->X_add_number = 0;
6934 micromips_label_inc (void)
6936 micromips_target_label++;
6937 *micromips_target_name = '\0';
6941 micromips_add_label (void)
6945 s = colon (micromips_label_name ());
6946 micromips_label_inc ();
6947 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6950 /* If assembling microMIPS code, then return the microMIPS reloc
6951 corresponding to the requested one if any. Otherwise return
6952 the reloc unchanged. */
6954 static bfd_reloc_code_real_type
6955 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6957 static const bfd_reloc_code_real_type relocs[][2] =
6959 /* Keep sorted incrementally by the left-hand key. */
6960 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6961 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6962 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6963 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6964 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6965 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6966 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6967 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6968 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6969 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6970 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6971 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6972 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6973 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6974 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6975 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6976 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6977 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6978 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6979 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6980 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6981 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6982 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6983 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6984 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6985 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6986 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6988 bfd_reloc_code_real_type r;
6991 if (!mips_opts.micromips)
6993 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6999 return relocs[i][1];
7004 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7005 Return true on success, storing the resolved value in RESULT. */
7008 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7013 case BFD_RELOC_MIPS_HIGHEST:
7014 case BFD_RELOC_MICROMIPS_HIGHEST:
7015 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7018 case BFD_RELOC_MIPS_HIGHER:
7019 case BFD_RELOC_MICROMIPS_HIGHER:
7020 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7023 case BFD_RELOC_HI16_S:
7024 case BFD_RELOC_HI16_S_PCREL:
7025 case BFD_RELOC_MICROMIPS_HI16_S:
7026 case BFD_RELOC_MIPS16_HI16_S:
7027 *result = ((operand + 0x8000) >> 16) & 0xffff;
7030 case BFD_RELOC_HI16:
7031 case BFD_RELOC_MICROMIPS_HI16:
7032 case BFD_RELOC_MIPS16_HI16:
7033 *result = (operand >> 16) & 0xffff;
7036 case BFD_RELOC_LO16:
7037 case BFD_RELOC_LO16_PCREL:
7038 case BFD_RELOC_MICROMIPS_LO16:
7039 case BFD_RELOC_MIPS16_LO16:
7040 *result = operand & 0xffff;
7043 case BFD_RELOC_UNUSED:
7052 /* Output an instruction. IP is the instruction information.
7053 ADDRESS_EXPR is an operand of the instruction to be used with
7054 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7055 a macro expansion. */
7058 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7059 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7061 unsigned long prev_pinfo2, pinfo;
7062 bfd_boolean relaxed_branch = FALSE;
7063 enum append_method method;
7064 bfd_boolean relax32;
7067 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7068 fix_loongson2f (ip);
7070 file_ase_mips16 |= mips_opts.mips16;
7071 file_ase_micromips |= mips_opts.micromips;
7073 prev_pinfo2 = history[0].insn_mo->pinfo2;
7074 pinfo = ip->insn_mo->pinfo;
7076 /* Don't raise alarm about `nods' frags as they'll fill in the right
7077 kind of nop in relaxation if required. */
7078 if (mips_opts.micromips
7080 && !(history[0].frag
7081 && history[0].frag->fr_type == rs_machine_dependent
7082 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7083 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7084 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7085 && micromips_insn_length (ip->insn_mo) != 2)
7086 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7087 && micromips_insn_length (ip->insn_mo) != 4)))
7088 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7089 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7091 if (address_expr == NULL)
7093 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7094 && reloc_type[1] == BFD_RELOC_UNUSED
7095 && reloc_type[2] == BFD_RELOC_UNUSED
7096 && address_expr->X_op == O_constant)
7098 switch (*reloc_type)
7100 case BFD_RELOC_MIPS_JMP:
7104 /* Shift is 2, unusually, for microMIPS JALX. */
7105 shift = (mips_opts.micromips
7106 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7107 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7108 as_bad (_("jump to misaligned address (0x%lx)"),
7109 (unsigned long) address_expr->X_add_number);
7110 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7116 case BFD_RELOC_MIPS16_JMP:
7117 if ((address_expr->X_add_number & 3) != 0)
7118 as_bad (_("jump to misaligned address (0x%lx)"),
7119 (unsigned long) address_expr->X_add_number);
7121 (((address_expr->X_add_number & 0x7c0000) << 3)
7122 | ((address_expr->X_add_number & 0xf800000) >> 7)
7123 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7127 case BFD_RELOC_16_PCREL_S2:
7131 shift = mips_opts.micromips ? 1 : 2;
7132 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7133 as_bad (_("branch to misaligned address (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 if (!mips_relax_branch)
7137 if ((address_expr->X_add_number + (1 << (shift + 15)))
7138 & ~((1 << (shift + 16)) - 1))
7139 as_bad (_("branch address range overflow (0x%lx)"),
7140 (unsigned long) address_expr->X_add_number);
7141 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7147 case BFD_RELOC_MIPS_21_PCREL_S2:
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if ((address_expr->X_add_number + (1 << (shift + 20)))
7156 & ~((1 << (shift + 21)) - 1))
7157 as_bad (_("branch address range overflow (0x%lx)"),
7158 (unsigned long) address_expr->X_add_number);
7159 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7164 case BFD_RELOC_MIPS_26_PCREL_S2:
7169 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7170 as_bad (_("branch to misaligned address (0x%lx)"),
7171 (unsigned long) address_expr->X_add_number);
7172 if ((address_expr->X_add_number + (1 << (shift + 25)))
7173 & ~((1 << (shift + 26)) - 1))
7174 as_bad (_("branch address range overflow (0x%lx)"),
7175 (unsigned long) address_expr->X_add_number);
7176 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7185 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7188 ip->insn_opcode |= value & 0xffff;
7196 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7198 /* There are a lot of optimizations we could do that we don't.
7199 In particular, we do not, in general, reorder instructions.
7200 If you use gcc with optimization, it will reorder
7201 instructions and generally do much more optimization then we
7202 do here; repeating all that work in the assembler would only
7203 benefit hand written assembly code, and does not seem worth
7205 int nops = (mips_optimize == 0
7206 ? nops_for_insn (0, history, NULL)
7207 : nops_for_insn_or_target (0, history, ip));
7211 unsigned long old_frag_offset;
7214 old_frag = frag_now;
7215 old_frag_offset = frag_now_fix ();
7217 for (i = 0; i < nops; i++)
7218 add_fixed_insn (NOP_INSN);
7219 insert_into_history (0, nops, NOP_INSN);
7223 listing_prev_line ();
7224 /* We may be at the start of a variant frag. In case we
7225 are, make sure there is enough space for the frag
7226 after the frags created by listing_prev_line. The
7227 argument to frag_grow here must be at least as large
7228 as the argument to all other calls to frag_grow in
7229 this file. We don't have to worry about being in the
7230 middle of a variant frag, because the variants insert
7231 all needed nop instructions themselves. */
7235 mips_move_text_labels ();
7237 #ifndef NO_ECOFF_DEBUGGING
7238 if (ECOFF_DEBUGGING)
7239 ecoff_fix_loc (old_frag, old_frag_offset);
7243 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7247 /* Work out how many nops in prev_nop_frag are needed by IP,
7248 ignoring hazards generated by the first prev_nop_frag_since
7250 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7251 gas_assert (nops <= prev_nop_frag_holds);
7253 /* Enforce NOPS as a minimum. */
7254 if (nops > prev_nop_frag_required)
7255 prev_nop_frag_required = nops;
7257 if (prev_nop_frag_holds == prev_nop_frag_required)
7259 /* Settle for the current number of nops. Update the history
7260 accordingly (for the benefit of any future .set reorder code). */
7261 prev_nop_frag = NULL;
7262 insert_into_history (prev_nop_frag_since,
7263 prev_nop_frag_holds, NOP_INSN);
7267 /* Allow this instruction to replace one of the nops that was
7268 tentatively added to prev_nop_frag. */
7269 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7270 prev_nop_frag_holds--;
7271 prev_nop_frag_since++;
7275 method = get_append_method (ip, address_expr, reloc_type);
7276 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7278 dwarf2_emit_insn (0);
7279 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7280 so "move" the instruction address accordingly.
7282 Also, it doesn't seem appropriate for the assembler to reorder .loc
7283 entries. If this instruction is a branch that we are going to swap
7284 with the previous instruction, the two instructions should be
7285 treated as a unit, and the debug information for both instructions
7286 should refer to the start of the branch sequence. Using the
7287 current position is certainly wrong when swapping a 32-bit branch
7288 and a 16-bit delay slot, since the current position would then be
7289 in the middle of a branch. */
7290 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7292 relax32 = (mips_relax_branch
7293 /* Don't try branch relaxation within .set nomacro, or within
7294 .set noat if we use $at for PIC computations. If it turns
7295 out that the branch was out-of-range, we'll get an error. */
7296 && !mips_opts.warn_about_macros
7297 && (mips_opts.at || mips_pic == NO_PIC)
7298 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7299 as they have no complementing branches. */
7300 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7302 if (!HAVE_CODE_COMPRESSION
7305 && *reloc_type == BFD_RELOC_16_PCREL_S2
7306 && delayed_branch_p (ip))
7308 relaxed_branch = TRUE;
7309 add_relaxed_insn (ip, (relaxed_branch_length
7311 uncond_branch_p (ip) ? -1
7312 : branch_likely_p (ip) ? 1
7316 uncond_branch_p (ip),
7317 branch_likely_p (ip),
7318 pinfo & INSN_WRITE_GPR_31,
7320 address_expr->X_add_symbol,
7321 address_expr->X_add_number);
7322 *reloc_type = BFD_RELOC_UNUSED;
7324 else if (mips_opts.micromips
7326 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7327 || *reloc_type > BFD_RELOC_UNUSED)
7328 && (delayed_branch_p (ip) || compact_branch_p (ip))
7329 /* Don't try branch relaxation when users specify
7330 16-bit/32-bit instructions. */
7331 && !forced_insn_length)
7333 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7334 && *reloc_type > BFD_RELOC_UNUSED);
7335 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7336 int uncond = uncond_branch_p (ip) ? -1 : 0;
7337 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7338 int nods = method == APPEND_ADD_WITH_NOP;
7339 int al = pinfo & INSN_WRITE_GPR_31;
7340 int length32 = nods ? 8 : 4;
7342 gas_assert (address_expr != NULL);
7343 gas_assert (!mips_relax.sequence);
7345 relaxed_branch = TRUE;
7347 method = APPEND_ADD;
7349 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7350 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7351 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7352 uncond, compact, al, nods,
7354 address_expr->X_add_symbol,
7355 address_expr->X_add_number);
7356 *reloc_type = BFD_RELOC_UNUSED;
7358 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7363 /* We need to set up a variant frag. */
7364 gas_assert (address_expr != NULL);
7365 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7366 symbol created by `make_expr_symbol' may not get a necessary
7367 external relocation produced. */
7368 if (address_expr->X_op == O_symbol)
7370 symbol = address_expr->X_add_symbol;
7371 offset = address_expr->X_add_number;
7375 symbol = make_expr_symbol (address_expr);
7378 add_relaxed_insn (ip, 4, 0,
7380 (*reloc_type - BFD_RELOC_UNUSED,
7381 forced_insn_length == 2, forced_insn_length == 4,
7382 delayed_branch_p (&history[0]),
7383 history[0].mips16_absolute_jump_p),
7386 else if (mips_opts.mips16 && insn_length (ip) == 2)
7388 if (!delayed_branch_p (ip))
7389 /* Make sure there is enough room to swap this instruction with
7390 a following jump instruction. */
7392 add_fixed_insn (ip);
7396 if (mips_opts.mips16
7397 && mips_opts.noreorder
7398 && delayed_branch_p (&history[0]))
7399 as_warn (_("extended instruction in delay slot"));
7401 if (mips_relax.sequence)
7403 /* If we've reached the end of this frag, turn it into a variant
7404 frag and record the information for the instructions we've
7406 if (frag_room () < 4)
7407 relax_close_frag ();
7408 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7411 if (mips_relax.sequence != 2)
7413 if (mips_macro_warning.first_insn_sizes[0] == 0)
7414 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7415 mips_macro_warning.sizes[0] += insn_length (ip);
7416 mips_macro_warning.insns[0]++;
7418 if (mips_relax.sequence != 1)
7420 if (mips_macro_warning.first_insn_sizes[1] == 0)
7421 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7422 mips_macro_warning.sizes[1] += insn_length (ip);
7423 mips_macro_warning.insns[1]++;
7426 if (mips_opts.mips16)
7429 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7431 add_fixed_insn (ip);
7434 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7436 bfd_reloc_code_real_type final_type[3];
7437 reloc_howto_type *howto0;
7438 reloc_howto_type *howto;
7441 /* Perform any necessary conversion to microMIPS relocations
7442 and find out how many relocations there actually are. */
7443 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7444 final_type[i] = micromips_map_reloc (reloc_type[i]);
7446 /* In a compound relocation, it is the final (outermost)
7447 operator that determines the relocated field. */
7448 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7453 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7454 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7455 bfd_get_reloc_size (howto),
7457 howto0 && howto0->pc_relative,
7460 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7461 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7462 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7464 /* These relocations can have an addend that won't fit in
7465 4 octets for 64bit assembly. */
7467 && ! howto->partial_inplace
7468 && (reloc_type[0] == BFD_RELOC_16
7469 || reloc_type[0] == BFD_RELOC_32
7470 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7471 || reloc_type[0] == BFD_RELOC_GPREL16
7472 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7473 || reloc_type[0] == BFD_RELOC_GPREL32
7474 || reloc_type[0] == BFD_RELOC_64
7475 || reloc_type[0] == BFD_RELOC_CTOR
7476 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7477 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7478 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7479 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7480 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7481 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7482 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7483 || hi16_reloc_p (reloc_type[0])
7484 || lo16_reloc_p (reloc_type[0])))
7485 ip->fixp[0]->fx_no_overflow = 1;
7487 /* These relocations can have an addend that won't fit in 2 octets. */
7488 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7489 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7490 ip->fixp[0]->fx_no_overflow = 1;
7492 if (mips_relax.sequence)
7494 if (mips_relax.first_fixup == 0)
7495 mips_relax.first_fixup = ip->fixp[0];
7497 else if (reloc_needs_lo_p (*reloc_type))
7499 struct mips_hi_fixup *hi_fixup;
7501 /* Reuse the last entry if it already has a matching %lo. */
7502 hi_fixup = mips_hi_fixup_list;
7504 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7506 hi_fixup = XNEW (struct mips_hi_fixup);
7507 hi_fixup->next = mips_hi_fixup_list;
7508 mips_hi_fixup_list = hi_fixup;
7510 hi_fixup->fixp = ip->fixp[0];
7511 hi_fixup->seg = now_seg;
7514 /* Add fixups for the second and third relocations, if given.
7515 Note that the ABI allows the second relocation to be
7516 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7517 moment we only use RSS_UNDEF, but we could add support
7518 for the others if it ever becomes necessary. */
7519 for (i = 1; i < 3; i++)
7520 if (reloc_type[i] != BFD_RELOC_UNUSED)
7522 ip->fixp[i] = fix_new (ip->frag, ip->where,
7523 ip->fixp[0]->fx_size, NULL, 0,
7524 FALSE, final_type[i]);
7526 /* Use fx_tcbit to mark compound relocs. */
7527 ip->fixp[0]->fx_tcbit = 1;
7528 ip->fixp[i]->fx_tcbit = 1;
7532 /* Update the register mask information. */
7533 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7534 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7539 insert_into_history (0, 1, ip);
7542 case APPEND_ADD_WITH_NOP:
7544 struct mips_cl_insn *nop;
7546 insert_into_history (0, 1, ip);
7547 nop = get_delay_slot_nop (ip);
7548 add_fixed_insn (nop);
7549 insert_into_history (0, 1, nop);
7550 if (mips_relax.sequence)
7551 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7555 case APPEND_ADD_COMPACT:
7556 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7557 if (mips_opts.mips16)
7559 ip->insn_opcode |= 0x0080;
7560 find_altered_mips16_opcode (ip);
7562 /* Convert microMIPS instructions. */
7563 else if (mips_opts.micromips)
7566 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7567 ip->insn_opcode |= 0x0020;
7569 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7570 ip->insn_opcode = 0x40e00000;
7571 /* beqz16->beqzc, bnez16->bnezc */
7572 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7574 unsigned long regno;
7576 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7577 regno &= MICROMIPSOP_MASK_MD;
7578 regno = micromips_to_32_reg_d_map[regno];
7579 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7580 | (regno << MICROMIPSOP_SH_RS)
7581 | 0x40a00000) ^ 0x00400000;
7583 /* beqz->beqzc, bnez->bnezc */
7584 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7585 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7586 | ((ip->insn_opcode >> 7) & 0x00400000)
7587 | 0x40a00000) ^ 0x00400000;
7588 /* beq $0->beqzc, bne $0->bnezc */
7589 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7590 ip->insn_opcode = (((ip->insn_opcode >>
7591 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7592 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7593 | ((ip->insn_opcode >> 7) & 0x00400000)
7594 | 0x40a00000) ^ 0x00400000;
7597 find_altered_micromips_opcode (ip);
7602 insert_into_history (0, 1, ip);
7607 struct mips_cl_insn delay = history[0];
7609 if (relaxed_branch || delay.frag != ip->frag)
7611 /* Add the delay slot instruction to the end of the
7612 current frag and shrink the fixed part of the
7613 original frag. If the branch occupies the tail of
7614 the latter, move it backwards to cover the gap. */
7615 delay.frag->fr_fix -= branch_disp;
7616 if (delay.frag == ip->frag)
7617 move_insn (ip, ip->frag, ip->where - branch_disp);
7618 add_fixed_insn (&delay);
7622 /* If this is not a relaxed branch and we are in the
7623 same frag, then just swap the instructions. */
7624 move_insn (ip, delay.frag, delay.where);
7625 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7629 insert_into_history (0, 1, &delay);
7634 /* If we have just completed an unconditional branch, clear the history. */
7635 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7636 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7640 mips_no_prev_insn ();
7642 for (i = 0; i < ARRAY_SIZE (history); i++)
7643 history[i].cleared_p = 1;
7646 /* We need to emit a label at the end of branch-likely macros. */
7647 if (emit_branch_likely_macro)
7649 emit_branch_likely_macro = FALSE;
7650 micromips_add_label ();
7653 /* We just output an insn, so the next one doesn't have a label. */
7654 mips_clear_insn_labels ();
7657 /* Forget that there was any previous instruction or label.
7658 When BRANCH is true, the branch history is also flushed. */
7661 mips_no_prev_insn (void)
7663 prev_nop_frag = NULL;
7664 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7665 mips_clear_insn_labels ();
7668 /* This function must be called before we emit something other than
7669 instructions. It is like mips_no_prev_insn except that it inserts
7670 any NOPS that might be needed by previous instructions. */
7673 mips_emit_delays (void)
7675 if (! mips_opts.noreorder)
7677 int nops = nops_for_insn (0, history, NULL);
7681 add_fixed_insn (NOP_INSN);
7682 mips_move_text_labels ();
7685 mips_no_prev_insn ();
7688 /* Start a (possibly nested) noreorder block. */
7691 start_noreorder (void)
7693 if (mips_opts.noreorder == 0)
7698 /* None of the instructions before the .set noreorder can be moved. */
7699 for (i = 0; i < ARRAY_SIZE (history); i++)
7700 history[i].fixed_p = 1;
7702 /* Insert any nops that might be needed between the .set noreorder
7703 block and the previous instructions. We will later remove any
7704 nops that turn out not to be needed. */
7705 nops = nops_for_insn (0, history, NULL);
7708 if (mips_optimize != 0)
7710 /* Record the frag which holds the nop instructions, so
7711 that we can remove them if we don't need them. */
7712 frag_grow (nops * NOP_INSN_SIZE);
7713 prev_nop_frag = frag_now;
7714 prev_nop_frag_holds = nops;
7715 prev_nop_frag_required = 0;
7716 prev_nop_frag_since = 0;
7719 for (; nops > 0; --nops)
7720 add_fixed_insn (NOP_INSN);
7722 /* Move on to a new frag, so that it is safe to simply
7723 decrease the size of prev_nop_frag. */
7724 frag_wane (frag_now);
7726 mips_move_text_labels ();
7728 mips_mark_labels ();
7729 mips_clear_insn_labels ();
7731 mips_opts.noreorder++;
7732 mips_any_noreorder = 1;
7735 /* End a nested noreorder block. */
7738 end_noreorder (void)
7740 mips_opts.noreorder--;
7741 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7743 /* Commit to inserting prev_nop_frag_required nops and go back to
7744 handling nop insertion the .set reorder way. */
7745 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7747 insert_into_history (prev_nop_frag_since,
7748 prev_nop_frag_required, NOP_INSN);
7749 prev_nop_frag = NULL;
7753 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7754 higher bits unset. */
7757 normalize_constant_expr (expressionS *ex)
7759 if (ex->X_op == O_constant
7760 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7761 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7765 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7766 all higher bits unset. */
7769 normalize_address_expr (expressionS *ex)
7771 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7772 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7773 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7774 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7778 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7779 Return true if the match was successful.
7781 OPCODE_EXTRA is a value that should be ORed into the opcode
7782 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7783 there are more alternatives after OPCODE and SOFT_MATCH is
7784 as for mips_arg_info. */
7787 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7788 struct mips_operand_token *tokens, unsigned int opcode_extra,
7789 bfd_boolean lax_match, bfd_boolean complete_p)
7792 struct mips_arg_info arg;
7793 const struct mips_operand *operand;
7796 imm_expr.X_op = O_absent;
7797 offset_expr.X_op = O_absent;
7798 offset_reloc[0] = BFD_RELOC_UNUSED;
7799 offset_reloc[1] = BFD_RELOC_UNUSED;
7800 offset_reloc[2] = BFD_RELOC_UNUSED;
7802 create_insn (insn, opcode);
7803 /* When no opcode suffix is specified, assume ".xyzw". */
7804 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7805 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7807 insn->insn_opcode |= opcode_extra;
7808 memset (&arg, 0, sizeof (arg));
7812 arg.last_regno = ILLEGAL_REG;
7813 arg.dest_regno = ILLEGAL_REG;
7814 arg.lax_match = lax_match;
7815 for (args = opcode->args;; ++args)
7817 if (arg.token->type == OT_END)
7819 /* Handle unary instructions in which only one operand is given.
7820 The source is then the same as the destination. */
7821 if (arg.opnum == 1 && *args == ',')
7823 operand = (mips_opts.micromips
7824 ? decode_micromips_operand (args + 1)
7825 : decode_mips_operand (args + 1));
7826 if (operand && mips_optional_operand_p (operand))
7834 /* Treat elided base registers as $0. */
7835 if (strcmp (args, "(b)") == 0)
7843 /* The register suffix is optional. */
7848 /* Fail the match if there were too few operands. */
7852 /* Successful match. */
7855 clear_insn_error ();
7856 if (arg.dest_regno == arg.last_regno
7857 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7861 (0, _("source and destination must be different"));
7862 else if (arg.last_regno == 31)
7864 (0, _("a destination register must be supplied"));
7866 else if (arg.last_regno == 31
7867 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7868 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7869 set_insn_error (0, _("the source register must not be $31"));
7870 check_completed_insn (&arg);
7874 /* Fail the match if the line has too many operands. */
7878 /* Handle characters that need to match exactly. */
7879 if (*args == '(' || *args == ')' || *args == ',')
7881 if (match_char (&arg, *args))
7888 if (arg.token->type == OT_DOUBLE_CHAR
7889 && arg.token->u.ch == *args)
7897 /* Handle special macro operands. Work out the properties of
7906 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7910 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7919 *offset_reloc = BFD_RELOC_MIPS_JMP;
7923 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7927 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7933 if (!match_const_int (&arg, &imm_expr.X_add_number))
7935 imm_expr.X_op = O_constant;
7937 normalize_constant_expr (&imm_expr);
7941 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7943 /* Assume that the offset has been elided and that what
7944 we saw was a base register. The match will fail later
7945 if that assumption turns out to be wrong. */
7946 offset_expr.X_op = O_constant;
7947 offset_expr.X_add_number = 0;
7951 if (!match_expression (&arg, &offset_expr, offset_reloc))
7953 normalize_address_expr (&offset_expr);
7958 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7964 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7970 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7976 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7982 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7986 *offset_reloc = BFD_RELOC_MIPS_JMP;
7990 gas_assert (mips_opts.micromips);
7996 if (!forced_insn_length)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7999 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8001 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8007 operand = (mips_opts.micromips
8008 ? decode_micromips_operand (args)
8009 : decode_mips_operand (args));
8013 /* Skip prefixes. */
8014 if (*args == '+' || *args == 'm' || *args == '-')
8017 if (mips_optional_operand_p (operand)
8019 && (arg.token[0].type != OT_REG
8020 || arg.token[1].type == OT_END))
8022 /* Assume that the register has been elided and is the
8023 same as the first operand. */
8028 if (!match_operand (&arg, operand))
8033 /* Like match_insn, but for MIPS16. */
8036 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8037 struct mips_operand_token *tokens)
8040 const struct mips_operand *operand;
8041 const struct mips_operand *ext_operand;
8042 struct mips_arg_info arg;
8045 create_insn (insn, opcode);
8046 imm_expr.X_op = O_absent;
8047 offset_expr.X_op = O_absent;
8048 offset_reloc[0] = BFD_RELOC_UNUSED;
8049 offset_reloc[1] = BFD_RELOC_UNUSED;
8050 offset_reloc[2] = BFD_RELOC_UNUSED;
8053 memset (&arg, 0, sizeof (arg));
8057 arg.last_regno = ILLEGAL_REG;
8058 arg.dest_regno = ILLEGAL_REG;
8060 for (args = opcode->args;; ++args)
8064 if (arg.token->type == OT_END)
8068 /* Handle unary instructions in which only one operand is given.
8069 The source is then the same as the destination. */
8070 if (arg.opnum == 1 && *args == ',')
8072 operand = decode_mips16_operand (args[1], FALSE);
8073 if (operand && mips_optional_operand_p (operand))
8081 /* Fail the match if there were too few operands. */
8085 /* Successful match. Stuff the immediate value in now, if
8087 clear_insn_error ();
8088 if (opcode->pinfo == INSN_MACRO)
8090 gas_assert (relax_char == 0 || relax_char == 'p');
8091 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8094 && offset_expr.X_op == O_constant
8095 && calculate_reloc (*offset_reloc,
8096 offset_expr.X_add_number,
8099 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8100 forced_insn_length, &insn->insn_opcode);
8101 offset_expr.X_op = O_absent;
8102 *offset_reloc = BFD_RELOC_UNUSED;
8104 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8106 if (forced_insn_length == 2)
8107 set_insn_error (0, _("invalid unextended operand value"));
8108 forced_insn_length = 4;
8109 insn->insn_opcode |= MIPS16_EXTEND;
8111 else if (relax_char)
8112 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8114 check_completed_insn (&arg);
8118 /* Fail the match if the line has too many operands. */
8122 /* Handle characters that need to match exactly. */
8123 if (*args == '(' || *args == ')' || *args == ',')
8125 if (match_char (&arg, *args))
8143 if (!match_const_int (&arg, &imm_expr.X_add_number))
8145 imm_expr.X_op = O_constant;
8147 normalize_constant_expr (&imm_expr);
8152 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8153 insn->insn_opcode <<= 16;
8157 operand = decode_mips16_operand (c, FALSE);
8161 /* '6' is a special case. It is used for BREAK and SDBBP,
8162 whose operands are only meaningful to the software that decodes
8163 them. This means that there is no architectural reason why
8164 they cannot be prefixed by EXTEND, but in practice,
8165 exception handlers will only look at the instruction
8166 itself. We therefore allow '6' to be extended when
8167 disassembling but not when assembling. */
8168 if (operand->type != OP_PCREL && c != '6')
8170 ext_operand = decode_mips16_operand (c, TRUE);
8171 if (operand != ext_operand)
8173 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8175 offset_expr.X_op = O_constant;
8176 offset_expr.X_add_number = 0;
8181 /* We need the OT_INTEGER check because some MIPS16
8182 immediate variants are listed before the register ones. */
8183 if (arg.token->type != OT_INTEGER
8184 || !match_expression (&arg, &offset_expr, offset_reloc))
8187 /* '8' is used for SLTI(U) and has traditionally not
8188 been allowed to take relocation operators. */
8189 if (offset_reloc[0] != BFD_RELOC_UNUSED
8190 && (ext_operand->size != 16 || c == '8'))
8198 if (mips_optional_operand_p (operand)
8200 && (arg.token[0].type != OT_REG
8201 || arg.token[1].type == OT_END))
8203 /* Assume that the register has been elided and is the
8204 same as the first operand. */
8209 if (!match_operand (&arg, operand))
8214 /* Record that the current instruction is invalid for the current ISA. */
8217 match_invalid_for_isa (void)
8220 (0, _("opcode not supported on this processor: %s (%s)"),
8221 mips_cpu_info_from_arch (mips_opts.arch)->name,
8222 mips_cpu_info_from_isa (mips_opts.isa)->name);
8225 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8226 Return true if a definite match or failure was found, storing any match
8227 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8228 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8229 tried and failed to match under normal conditions and now want to try a
8230 more relaxed match. */
8233 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8234 const struct mips_opcode *past, struct mips_operand_token *tokens,
8235 int opcode_extra, bfd_boolean lax_match)
8237 const struct mips_opcode *opcode;
8238 const struct mips_opcode *invalid_delay_slot;
8239 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8241 /* Search for a match, ignoring alternatives that don't satisfy the
8242 current ISA or forced_length. */
8243 invalid_delay_slot = 0;
8244 seen_valid_for_isa = FALSE;
8245 seen_valid_for_size = FALSE;
8249 gas_assert (strcmp (opcode->name, first->name) == 0);
8250 if (is_opcode_valid (opcode))
8252 seen_valid_for_isa = TRUE;
8253 if (is_size_valid (opcode))
8255 bfd_boolean delay_slot_ok;
8257 seen_valid_for_size = TRUE;
8258 delay_slot_ok = is_delay_slot_valid (opcode);
8259 if (match_insn (insn, opcode, tokens, opcode_extra,
8260 lax_match, delay_slot_ok))
8264 if (!invalid_delay_slot)
8265 invalid_delay_slot = opcode;
8274 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8276 /* If the only matches we found had the wrong length for the delay slot,
8277 pick the first such match. We'll issue an appropriate warning later. */
8278 if (invalid_delay_slot)
8280 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8286 /* Handle the case where we didn't try to match an instruction because
8287 all the alternatives were incompatible with the current ISA. */
8288 if (!seen_valid_for_isa)
8290 match_invalid_for_isa ();
8294 /* Handle the case where we didn't try to match an instruction because
8295 all the alternatives were of the wrong size. */
8296 if (!seen_valid_for_size)
8298 if (mips_opts.insn32)
8299 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8302 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8303 8 * forced_insn_length);
8310 /* Like match_insns, but for MIPS16. */
8313 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8314 struct mips_operand_token *tokens)
8316 const struct mips_opcode *opcode;
8317 bfd_boolean seen_valid_for_isa;
8319 /* Search for a match, ignoring alternatives that don't satisfy the
8320 current ISA. There are no separate entries for extended forms so
8321 we deal with forced_length later. */
8322 seen_valid_for_isa = FALSE;
8326 gas_assert (strcmp (opcode->name, first->name) == 0);
8327 if (is_opcode_valid_16 (opcode))
8329 seen_valid_for_isa = TRUE;
8330 if (match_mips16_insn (insn, opcode, tokens))
8335 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8336 && strcmp (opcode->name, first->name) == 0);
8338 /* Handle the case where we didn't try to match an instruction because
8339 all the alternatives were incompatible with the current ISA. */
8340 if (!seen_valid_for_isa)
8342 match_invalid_for_isa ();
8349 /* Set up global variables for the start of a new macro. */
8354 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8355 memset (&mips_macro_warning.first_insn_sizes, 0,
8356 sizeof (mips_macro_warning.first_insn_sizes));
8357 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8358 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8359 && delayed_branch_p (&history[0]));
8361 && history[0].frag->fr_type == rs_machine_dependent
8362 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8363 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8364 mips_macro_warning.delay_slot_length = 0;
8366 switch (history[0].insn_mo->pinfo2
8367 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8369 case INSN2_BRANCH_DELAY_32BIT:
8370 mips_macro_warning.delay_slot_length = 4;
8372 case INSN2_BRANCH_DELAY_16BIT:
8373 mips_macro_warning.delay_slot_length = 2;
8376 mips_macro_warning.delay_slot_length = 0;
8379 mips_macro_warning.first_frag = NULL;
8382 /* Given that a macro is longer than one instruction or of the wrong size,
8383 return the appropriate warning for it. Return null if no warning is
8384 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8385 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8386 and RELAX_NOMACRO. */
8389 macro_warning (relax_substateT subtype)
8391 if (subtype & RELAX_DELAY_SLOT)
8392 return _("macro instruction expanded into multiple instructions"
8393 " in a branch delay slot");
8394 else if (subtype & RELAX_NOMACRO)
8395 return _("macro instruction expanded into multiple instructions");
8396 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8397 | RELAX_DELAY_SLOT_SIZE_SECOND))
8398 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8399 ? _("macro instruction expanded into a wrong size instruction"
8400 " in a 16-bit branch delay slot")
8401 : _("macro instruction expanded into a wrong size instruction"
8402 " in a 32-bit branch delay slot"));
8407 /* Finish up a macro. Emit warnings as appropriate. */
8412 /* Relaxation warning flags. */
8413 relax_substateT subtype = 0;
8415 /* Check delay slot size requirements. */
8416 if (mips_macro_warning.delay_slot_length == 2)
8417 subtype |= RELAX_DELAY_SLOT_16BIT;
8418 if (mips_macro_warning.delay_slot_length != 0)
8420 if (mips_macro_warning.delay_slot_length
8421 != mips_macro_warning.first_insn_sizes[0])
8422 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8423 if (mips_macro_warning.delay_slot_length
8424 != mips_macro_warning.first_insn_sizes[1])
8425 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8428 /* Check instruction count requirements. */
8429 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8431 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8432 subtype |= RELAX_SECOND_LONGER;
8433 if (mips_opts.warn_about_macros)
8434 subtype |= RELAX_NOMACRO;
8435 if (mips_macro_warning.delay_slot_p)
8436 subtype |= RELAX_DELAY_SLOT;
8439 /* If both alternatives fail to fill a delay slot correctly,
8440 emit the warning now. */
8441 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8442 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8447 s = subtype & (RELAX_DELAY_SLOT_16BIT
8448 | RELAX_DELAY_SLOT_SIZE_FIRST
8449 | RELAX_DELAY_SLOT_SIZE_SECOND);
8450 msg = macro_warning (s);
8452 as_warn ("%s", msg);
8456 /* If both implementations are longer than 1 instruction, then emit the
8458 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8463 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8464 msg = macro_warning (s);
8466 as_warn ("%s", msg);
8470 /* If any flags still set, then one implementation might need a warning
8471 and the other either will need one of a different kind or none at all.
8472 Pass any remaining flags over to relaxation. */
8473 if (mips_macro_warning.first_frag != NULL)
8474 mips_macro_warning.first_frag->fr_subtype |= subtype;
8477 /* Instruction operand formats used in macros that vary between
8478 standard MIPS and microMIPS code. */
8480 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8481 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8482 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8483 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8484 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8485 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8486 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8487 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8489 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8490 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8491 : cop12_fmt[mips_opts.micromips])
8492 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8493 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8494 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8495 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8496 : mem12_fmt[mips_opts.micromips])
8497 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8498 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8499 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8501 /* Read a macro's relocation codes from *ARGS and store them in *R.
8502 The first argument in *ARGS will be either the code for a single
8503 relocation or -1 followed by the three codes that make up a
8504 composite relocation. */
8507 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8511 next = va_arg (*args, int);
8513 r[0] = (bfd_reloc_code_real_type) next;
8516 for (i = 0; i < 3; i++)
8517 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8518 /* This function is only used for 16-bit relocation fields.
8519 To make the macro code simpler, treat an unrelocated value
8520 in the same way as BFD_RELOC_LO16. */
8521 if (r[0] == BFD_RELOC_UNUSED)
8522 r[0] = BFD_RELOC_LO16;
8526 /* Build an instruction created by a macro expansion. This is passed
8527 a pointer to the count of instructions created so far, an
8528 expression, the name of the instruction to build, an operand format
8529 string, and corresponding arguments. */
8532 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8534 const struct mips_opcode *mo = NULL;
8535 bfd_reloc_code_real_type r[3];
8536 const struct mips_opcode *amo;
8537 const struct mips_operand *operand;
8538 struct hash_control *hash;
8539 struct mips_cl_insn insn;
8543 va_start (args, fmt);
8545 if (mips_opts.mips16)
8547 mips16_macro_build (ep, name, fmt, &args);
8552 r[0] = BFD_RELOC_UNUSED;
8553 r[1] = BFD_RELOC_UNUSED;
8554 r[2] = BFD_RELOC_UNUSED;
8555 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8556 amo = (struct mips_opcode *) hash_find (hash, name);
8558 gas_assert (strcmp (name, amo->name) == 0);
8562 /* Search until we get a match for NAME. It is assumed here that
8563 macros will never generate MDMX, MIPS-3D, or MT instructions.
8564 We try to match an instruction that fulfils the branch delay
8565 slot instruction length requirement (if any) of the previous
8566 instruction. While doing this we record the first instruction
8567 seen that matches all the other conditions and use it anyway
8568 if the requirement cannot be met; we will issue an appropriate
8569 warning later on. */
8570 if (strcmp (fmt, amo->args) == 0
8571 && amo->pinfo != INSN_MACRO
8572 && is_opcode_valid (amo)
8573 && is_size_valid (amo))
8575 if (is_delay_slot_valid (amo))
8585 gas_assert (amo->name);
8587 while (strcmp (name, amo->name) == 0);
8590 create_insn (&insn, mo);
8603 macro_read_relocs (&args, r);
8604 gas_assert (*r == BFD_RELOC_GPREL16
8605 || *r == BFD_RELOC_MIPS_HIGHER
8606 || *r == BFD_RELOC_HI16_S
8607 || *r == BFD_RELOC_LO16
8608 || *r == BFD_RELOC_MIPS_GOT_OFST);
8612 macro_read_relocs (&args, r);
8616 macro_read_relocs (&args, r);
8617 gas_assert (ep != NULL
8618 && (ep->X_op == O_constant
8619 || (ep->X_op == O_symbol
8620 && (*r == BFD_RELOC_MIPS_HIGHEST
8621 || *r == BFD_RELOC_HI16_S
8622 || *r == BFD_RELOC_HI16
8623 || *r == BFD_RELOC_GPREL16
8624 || *r == BFD_RELOC_MIPS_GOT_HI16
8625 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8629 gas_assert (ep != NULL);
8632 * This allows macro() to pass an immediate expression for
8633 * creating short branches without creating a symbol.
8635 * We don't allow branch relaxation for these branches, as
8636 * they should only appear in ".set nomacro" anyway.
8638 if (ep->X_op == O_constant)
8640 /* For microMIPS we always use relocations for branches.
8641 So we should not resolve immediate values. */
8642 gas_assert (!mips_opts.micromips);
8644 if ((ep->X_add_number & 3) != 0)
8645 as_bad (_("branch to misaligned address (0x%lx)"),
8646 (unsigned long) ep->X_add_number);
8647 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8648 as_bad (_("branch address range overflow (0x%lx)"),
8649 (unsigned long) ep->X_add_number);
8650 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8654 *r = BFD_RELOC_16_PCREL_S2;
8658 gas_assert (ep != NULL);
8659 *r = BFD_RELOC_MIPS_JMP;
8663 operand = (mips_opts.micromips
8664 ? decode_micromips_operand (fmt)
8665 : decode_mips_operand (fmt));
8669 uval = va_arg (args, int);
8670 if (operand->type == OP_CLO_CLZ_DEST)
8671 uval |= (uval << 5);
8672 insn_insert_operand (&insn, operand, uval);
8674 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8680 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8682 append_insn (&insn, ep, r, TRUE);
8686 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8689 struct mips_opcode *mo;
8690 struct mips_cl_insn insn;
8691 const struct mips_operand *operand;
8692 bfd_reloc_code_real_type r[3]
8693 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8695 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8697 gas_assert (strcmp (name, mo->name) == 0);
8699 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8702 gas_assert (mo->name);
8703 gas_assert (strcmp (name, mo->name) == 0);
8706 create_insn (&insn, mo);
8744 gas_assert (ep != NULL);
8746 if (ep->X_op != O_constant)
8747 *r = (int) BFD_RELOC_UNUSED + c;
8748 else if (calculate_reloc (*r, ep->X_add_number, &value))
8750 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8752 *r = BFD_RELOC_UNUSED;
8758 operand = decode_mips16_operand (c, FALSE);
8762 insn_insert_operand (&insn, operand, va_arg (*args, int));
8767 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8769 append_insn (&insn, ep, r, TRUE);
8773 * Generate a "jalr" instruction with a relocation hint to the called
8774 * function. This occurs in NewABI PIC code.
8777 macro_build_jalr (expressionS *ep, int cprestore)
8779 static const bfd_reloc_code_real_type jalr_relocs[2]
8780 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8781 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8785 if (MIPS_JALR_HINT_P (ep))
8790 if (mips_opts.micromips)
8792 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8793 ? "jalr" : "jalrs");
8794 if (MIPS_JALR_HINT_P (ep)
8796 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8797 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8799 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8802 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8803 if (MIPS_JALR_HINT_P (ep))
8804 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8808 * Generate a "lui" instruction.
8811 macro_build_lui (expressionS *ep, int regnum)
8813 gas_assert (! mips_opts.mips16);
8815 if (ep->X_op != O_constant)
8817 gas_assert (ep->X_op == O_symbol);
8818 /* _gp_disp is a special case, used from s_cpload.
8819 __gnu_local_gp is used if mips_no_shared. */
8820 gas_assert (mips_pic == NO_PIC
8822 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8823 || (! mips_in_shared
8824 && strcmp (S_GET_NAME (ep->X_add_symbol),
8825 "__gnu_local_gp") == 0));
8828 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8831 /* Generate a sequence of instructions to do a load or store from a constant
8832 offset off of a base register (breg) into/from a target register (treg),
8833 using AT if necessary. */
8835 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8836 int treg, int breg, int dbl)
8838 gas_assert (ep->X_op == O_constant);
8840 /* Sign-extending 32-bit constants makes their handling easier. */
8842 normalize_constant_expr (ep);
8844 /* Right now, this routine can only handle signed 32-bit constants. */
8845 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8846 as_warn (_("operand overflow"));
8848 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8850 /* Signed 16-bit offset will fit in the op. Easy! */
8851 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8855 /* 32-bit offset, need multiple instructions and AT, like:
8856 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8857 addu $tempreg,$tempreg,$breg
8858 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8859 to handle the complete offset. */
8860 macro_build_lui (ep, AT);
8861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8862 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8865 as_bad (_("macro used $at after \".set noat\""));
8870 * Generates code to set the $at register to true (one)
8871 * if reg is less than the immediate expression.
8874 set_at (int reg, int unsignedp)
8876 if (imm_expr.X_add_number >= -0x8000
8877 && imm_expr.X_add_number < 0x8000)
8878 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8879 AT, reg, BFD_RELOC_LO16);
8882 load_register (AT, &imm_expr, GPR_SIZE == 64);
8883 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8887 /* Count the leading zeroes by performing a binary chop. This is a
8888 bulky bit of source, but performance is a LOT better for the
8889 majority of values than a simple loop to count the bits:
8890 for (lcnt = 0; (lcnt < 32); lcnt++)
8891 if ((v) & (1 << (31 - lcnt)))
8893 However it is not code size friendly, and the gain will drop a bit
8894 on certain cached systems.
8896 #define COUNT_TOP_ZEROES(v) \
8897 (((v) & ~0xffff) == 0 \
8898 ? ((v) & ~0xff) == 0 \
8899 ? ((v) & ~0xf) == 0 \
8900 ? ((v) & ~0x3) == 0 \
8901 ? ((v) & ~0x1) == 0 \
8906 : ((v) & ~0x7) == 0 \
8909 : ((v) & ~0x3f) == 0 \
8910 ? ((v) & ~0x1f) == 0 \
8913 : ((v) & ~0x7f) == 0 \
8916 : ((v) & ~0xfff) == 0 \
8917 ? ((v) & ~0x3ff) == 0 \
8918 ? ((v) & ~0x1ff) == 0 \
8921 : ((v) & ~0x7ff) == 0 \
8924 : ((v) & ~0x3fff) == 0 \
8925 ? ((v) & ~0x1fff) == 0 \
8928 : ((v) & ~0x7fff) == 0 \
8931 : ((v) & ~0xffffff) == 0 \
8932 ? ((v) & ~0xfffff) == 0 \
8933 ? ((v) & ~0x3ffff) == 0 \
8934 ? ((v) & ~0x1ffff) == 0 \
8937 : ((v) & ~0x7ffff) == 0 \
8940 : ((v) & ~0x3fffff) == 0 \
8941 ? ((v) & ~0x1fffff) == 0 \
8944 : ((v) & ~0x7fffff) == 0 \
8947 : ((v) & ~0xfffffff) == 0 \
8948 ? ((v) & ~0x3ffffff) == 0 \
8949 ? ((v) & ~0x1ffffff) == 0 \
8952 : ((v) & ~0x7ffffff) == 0 \
8955 : ((v) & ~0x3fffffff) == 0 \
8956 ? ((v) & ~0x1fffffff) == 0 \
8959 : ((v) & ~0x7fffffff) == 0 \
8964 * This routine generates the least number of instructions necessary to load
8965 * an absolute expression value into a register.
8968 load_register (int reg, expressionS *ep, int dbl)
8971 expressionS hi32, lo32;
8973 if (ep->X_op != O_big)
8975 gas_assert (ep->X_op == O_constant);
8977 /* Sign-extending 32-bit constants makes their handling easier. */
8979 normalize_constant_expr (ep);
8981 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8983 /* We can handle 16 bit signed values with an addiu to
8984 $zero. No need to ever use daddiu here, since $zero and
8985 the result are always correct in 32 bit mode. */
8986 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8989 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8991 /* We can handle 16 bit unsigned values with an ori to
8993 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8996 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8998 /* 32 bit values require an lui. */
8999 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9000 if ((ep->X_add_number & 0xffff) != 0)
9001 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9006 /* The value is larger than 32 bits. */
9008 if (!dbl || GPR_SIZE == 32)
9012 sprintf_vma (value, ep->X_add_number);
9013 as_bad (_("number (0x%s) larger than 32 bits"), value);
9014 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9018 if (ep->X_op != O_big)
9021 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9022 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9023 hi32.X_add_number &= 0xffffffff;
9025 lo32.X_add_number &= 0xffffffff;
9029 gas_assert (ep->X_add_number > 2);
9030 if (ep->X_add_number == 3)
9031 generic_bignum[3] = 0;
9032 else if (ep->X_add_number > 4)
9033 as_bad (_("number larger than 64 bits"));
9034 lo32.X_op = O_constant;
9035 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9036 hi32.X_op = O_constant;
9037 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9040 if (hi32.X_add_number == 0)
9045 unsigned long hi, lo;
9047 if (hi32.X_add_number == (offsetT) 0xffffffff)
9049 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9051 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9054 if (lo32.X_add_number & 0x80000000)
9056 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9057 if (lo32.X_add_number & 0xffff)
9058 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9063 /* Check for 16bit shifted constant. We know that hi32 is
9064 non-zero, so start the mask on the first bit of the hi32
9069 unsigned long himask, lomask;
9073 himask = 0xffff >> (32 - shift);
9074 lomask = (0xffff << shift) & 0xffffffff;
9078 himask = 0xffff << (shift - 32);
9081 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9082 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9086 tmp.X_op = O_constant;
9088 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9089 | (lo32.X_add_number >> shift));
9091 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9092 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9093 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9094 reg, reg, (shift >= 32) ? shift - 32 : shift);
9099 while (shift <= (64 - 16));
9101 /* Find the bit number of the lowest one bit, and store the
9102 shifted value in hi/lo. */
9103 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9104 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9108 while ((lo & 1) == 0)
9113 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9119 while ((hi & 1) == 0)
9128 /* Optimize if the shifted value is a (power of 2) - 1. */
9129 if ((hi == 0 && ((lo + 1) & lo) == 0)
9130 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9132 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9137 /* This instruction will set the register to be all
9139 tmp.X_op = O_constant;
9140 tmp.X_add_number = (offsetT) -1;
9141 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9145 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9146 reg, reg, (bit >= 32) ? bit - 32 : bit);
9148 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9149 reg, reg, (shift >= 32) ? shift - 32 : shift);
9154 /* Sign extend hi32 before calling load_register, because we can
9155 generally get better code when we load a sign extended value. */
9156 if ((hi32.X_add_number & 0x80000000) != 0)
9157 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9158 load_register (reg, &hi32, 0);
9161 if ((lo32.X_add_number & 0xffff0000) == 0)
9165 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9173 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9175 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9176 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9182 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9186 mid16.X_add_number >>= 16;
9187 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9188 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9191 if ((lo32.X_add_number & 0xffff) != 0)
9192 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9196 load_delay_nop (void)
9198 if (!gpr_interlocks)
9199 macro_build (NULL, "nop", "");
9202 /* Load an address into a register. */
9205 load_address (int reg, expressionS *ep, int *used_at)
9207 if (ep->X_op != O_constant
9208 && ep->X_op != O_symbol)
9210 as_bad (_("expression too complex"));
9211 ep->X_op = O_constant;
9214 if (ep->X_op == O_constant)
9216 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9220 if (mips_pic == NO_PIC)
9222 /* If this is a reference to a GP relative symbol, we want
9223 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9225 lui $reg,<sym> (BFD_RELOC_HI16_S)
9226 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9227 If we have an addend, we always use the latter form.
9229 With 64bit address space and a usable $at we want
9230 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9231 lui $at,<sym> (BFD_RELOC_HI16_S)
9232 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9233 daddiu $at,<sym> (BFD_RELOC_LO16)
9237 If $at is already in use, we use a path which is suboptimal
9238 on superscalar processors.
9239 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9240 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9242 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9244 daddiu $reg,<sym> (BFD_RELOC_LO16)
9246 For GP relative symbols in 64bit address space we can use
9247 the same sequence as in 32bit address space. */
9248 if (HAVE_64BIT_SYMBOLS)
9250 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9251 && !nopic_need_relax (ep->X_add_symbol, 1))
9253 relax_start (ep->X_add_symbol);
9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9255 mips_gp_register, BFD_RELOC_GPREL16);
9259 if (*used_at == 0 && mips_opts.at)
9261 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9262 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9263 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9264 BFD_RELOC_MIPS_HIGHER);
9265 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9266 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9267 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9272 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9273 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_HIGHER);
9275 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9276 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9277 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9278 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9281 if (mips_relax.sequence)
9286 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9287 && !nopic_need_relax (ep->X_add_symbol, 1))
9289 relax_start (ep->X_add_symbol);
9290 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9291 mips_gp_register, BFD_RELOC_GPREL16);
9294 macro_build_lui (ep, reg);
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9296 reg, reg, BFD_RELOC_LO16);
9297 if (mips_relax.sequence)
9301 else if (!mips_big_got)
9305 /* If this is a reference to an external symbol, we want
9306 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9308 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9310 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9311 If there is a constant, it must be added in after.
9313 If we have NewABI, we want
9314 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9315 unless we're referencing a global symbol with a non-zero
9316 offset, in which case cst must be added separately. */
9319 if (ep->X_add_number)
9321 ex.X_add_number = ep->X_add_number;
9322 ep->X_add_number = 0;
9323 relax_start (ep->X_add_symbol);
9324 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9325 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9326 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9327 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9328 ex.X_op = O_constant;
9329 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9330 reg, reg, BFD_RELOC_LO16);
9331 ep->X_add_number = ex.X_add_number;
9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9335 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9336 if (mips_relax.sequence)
9341 ex.X_add_number = ep->X_add_number;
9342 ep->X_add_number = 0;
9343 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9344 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9346 relax_start (ep->X_add_symbol);
9348 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9352 if (ex.X_add_number != 0)
9354 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9355 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9356 ex.X_op = O_constant;
9357 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9358 reg, reg, BFD_RELOC_LO16);
9362 else if (mips_big_got)
9366 /* This is the large GOT case. If this is a reference to an
9367 external symbol, we want
9368 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9370 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9372 Otherwise, for a reference to a local symbol in old ABI, we want
9373 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9375 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9376 If there is a constant, it must be added in after.
9378 In the NewABI, for local symbols, with or without offsets, we want:
9379 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9380 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9384 ex.X_add_number = ep->X_add_number;
9385 ep->X_add_number = 0;
9386 relax_start (ep->X_add_symbol);
9387 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9389 reg, reg, mips_gp_register);
9390 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9391 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9392 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9393 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9394 else if (ex.X_add_number)
9396 ex.X_op = O_constant;
9397 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9401 ep->X_add_number = ex.X_add_number;
9403 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9404 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9405 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9406 BFD_RELOC_MIPS_GOT_OFST);
9411 ex.X_add_number = ep->X_add_number;
9412 ep->X_add_number = 0;
9413 relax_start (ep->X_add_symbol);
9414 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9415 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9416 reg, reg, mips_gp_register);
9417 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9418 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9420 if (reg_needs_delay (mips_gp_register))
9422 /* We need a nop before loading from $gp. This special
9423 check is required because the lui which starts the main
9424 instruction stream does not refer to $gp, and so will not
9425 insert the nop which may be required. */
9426 macro_build (NULL, "nop", "");
9428 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9429 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9431 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9435 if (ex.X_add_number != 0)
9437 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9438 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9439 ex.X_op = O_constant;
9440 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9448 if (!mips_opts.at && *used_at == 1)
9449 as_bad (_("macro used $at after \".set noat\""));
9452 /* Move the contents of register SOURCE into register DEST. */
9455 move_register (int dest, int source)
9457 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9458 instruction specifically requires a 32-bit one. */
9459 if (mips_opts.micromips
9460 && !mips_opts.insn32
9461 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9462 macro_build (NULL, "move", "mp,mj", dest, source);
9464 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9467 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9468 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9469 The two alternatives are:
9471 Global symbol Local sybmol
9472 ------------- ------------
9473 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9475 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9477 load_got_offset emits the first instruction and add_got_offset
9478 emits the second for a 16-bit offset or add_got_offset_hilo emits
9479 a sequence to add a 32-bit offset using a scratch register. */
9482 load_got_offset (int dest, expressionS *local)
9487 global.X_add_number = 0;
9489 relax_start (local->X_add_symbol);
9490 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9491 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9493 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9494 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9499 add_got_offset (int dest, expressionS *local)
9503 global.X_op = O_constant;
9504 global.X_op_symbol = NULL;
9505 global.X_add_symbol = NULL;
9506 global.X_add_number = local->X_add_number;
9508 relax_start (local->X_add_symbol);
9509 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9510 dest, dest, BFD_RELOC_LO16);
9512 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9517 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9520 int hold_mips_optimize;
9522 global.X_op = O_constant;
9523 global.X_op_symbol = NULL;
9524 global.X_add_symbol = NULL;
9525 global.X_add_number = local->X_add_number;
9527 relax_start (local->X_add_symbol);
9528 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9530 /* Set mips_optimize around the lui instruction to avoid
9531 inserting an unnecessary nop after the lw. */
9532 hold_mips_optimize = mips_optimize;
9534 macro_build_lui (&global, tmp);
9535 mips_optimize = hold_mips_optimize;
9536 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9542 /* Emit a sequence of instructions to emulate a branch likely operation.
9543 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9544 is its complementing branch with the original condition negated.
9545 CALL is set if the original branch specified the link operation.
9546 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9548 Code like this is produced in the noreorder mode:
9553 delay slot (executed only if branch taken)
9561 delay slot (executed only if branch taken)
9564 In the reorder mode the delay slot would be filled with a nop anyway,
9565 so code produced is simply:
9570 This function is used when producing code for the microMIPS ASE that
9571 does not implement branch likely instructions in hardware. */
9574 macro_build_branch_likely (const char *br, const char *brneg,
9575 int call, expressionS *ep, const char *fmt,
9576 unsigned int sreg, unsigned int treg)
9578 int noreorder = mips_opts.noreorder;
9581 gas_assert (mips_opts.micromips);
9585 micromips_label_expr (&expr1);
9586 macro_build (&expr1, brneg, fmt, sreg, treg);
9587 macro_build (NULL, "nop", "");
9588 macro_build (ep, call ? "bal" : "b", "p");
9590 /* Set to true so that append_insn adds a label. */
9591 emit_branch_likely_macro = TRUE;
9595 macro_build (ep, br, fmt, sreg, treg);
9596 macro_build (NULL, "nop", "");
9601 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9602 the condition code tested. EP specifies the branch target. */
9605 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9632 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9635 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9636 the register tested. EP specifies the branch target. */
9639 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9641 const char *brneg = NULL;
9651 br = mips_opts.micromips ? "bgez" : "bgezl";
9655 gas_assert (mips_opts.micromips);
9656 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9664 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9671 br = mips_opts.micromips ? "blez" : "blezl";
9678 br = mips_opts.micromips ? "bltz" : "bltzl";
9682 gas_assert (mips_opts.micromips);
9683 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9690 if (mips_opts.micromips && brneg)
9691 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9693 macro_build (ep, br, "s,p", sreg);
9696 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9697 TREG as the registers tested. EP specifies the branch target. */
9700 macro_build_branch_rsrt (int type, expressionS *ep,
9701 unsigned int sreg, unsigned int treg)
9703 const char *brneg = NULL;
9715 br = mips_opts.micromips ? "beq" : "beql";
9724 br = mips_opts.micromips ? "bne" : "bnel";
9730 if (mips_opts.micromips && brneg)
9731 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9733 macro_build (ep, br, "s,t,p", sreg, treg);
9736 /* Return the high part that should be loaded in order to make the low
9737 part of VALUE accessible using an offset of OFFBITS bits. */
9740 offset_high_part (offsetT value, unsigned int offbits)
9747 bias = 1 << (offbits - 1);
9748 low_mask = bias * 2 - 1;
9749 return (value + bias) & ~low_mask;
9752 /* Return true if the value stored in offset_expr and offset_reloc
9753 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9754 amount that the caller wants to add without inducing overflow
9755 and ALIGN is the known alignment of the value in bytes. */
9758 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9762 /* Accept any relocation operator if overflow isn't a concern. */
9763 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9766 /* These relocations are guaranteed not to overflow in correct links. */
9767 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9768 || gprel16_reloc_p (*offset_reloc))
9771 if (offset_expr.X_op == O_constant
9772 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9773 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9780 * This routine implements the seemingly endless macro or synthesized
9781 * instructions and addressing modes in the mips assembly language. Many
9782 * of these macros are simple and are similar to each other. These could
9783 * probably be handled by some kind of table or grammar approach instead of
9784 * this verbose method. Others are not simple macros but are more like
9785 * optimizing code generation.
9786 * One interesting optimization is when several store macros appear
9787 * consecutively that would load AT with the upper half of the same address.
9788 * The ensuing load upper instructions are omitted. This implies some kind
9789 * of global optimization. We currently only optimize within a single macro.
9790 * For many of the load and store macros if the address is specified as a
9791 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9792 * first load register 'at' with zero and use it as the base register. The
9793 * mips assembler simply uses register $zero. Just one tiny optimization
9797 macro (struct mips_cl_insn *ip, char *str)
9799 const struct mips_operand_array *operands;
9800 unsigned int breg, i;
9801 unsigned int tempreg;
9804 expressionS label_expr;
9819 bfd_boolean large_offset;
9821 int hold_mips_optimize;
9823 unsigned int op[MAX_OPERANDS];
9825 gas_assert (! mips_opts.mips16);
9827 operands = insn_operands (ip);
9828 for (i = 0; i < MAX_OPERANDS; i++)
9829 if (operands->operand[i])
9830 op[i] = insn_extract_operand (ip, operands->operand[i]);
9834 mask = ip->insn_mo->mask;
9836 label_expr.X_op = O_constant;
9837 label_expr.X_op_symbol = NULL;
9838 label_expr.X_add_symbol = NULL;
9839 label_expr.X_add_number = 0;
9841 expr1.X_op = O_constant;
9842 expr1.X_op_symbol = NULL;
9843 expr1.X_add_symbol = NULL;
9844 expr1.X_add_number = 1;
9861 if (mips_opts.micromips)
9862 micromips_label_expr (&label_expr);
9864 label_expr.X_add_number = 8;
9865 macro_build (&label_expr, "bgez", "s,p", op[1]);
9867 macro_build (NULL, "nop", "");
9869 move_register (op[0], op[1]);
9870 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9871 if (mips_opts.micromips)
9872 micromips_add_label ();
9889 if (!mips_opts.micromips)
9891 if (imm_expr.X_add_number >= -0x200
9892 && imm_expr.X_add_number < 0x200)
9894 macro_build (NULL, s, "t,r,.", op[0], op[1],
9895 (int) imm_expr.X_add_number);
9904 if (imm_expr.X_add_number >= -0x8000
9905 && imm_expr.X_add_number < 0x8000)
9907 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9912 load_register (AT, &imm_expr, dbl);
9913 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9932 if (imm_expr.X_add_number >= 0
9933 && imm_expr.X_add_number < 0x10000)
9935 if (mask != M_NOR_I)
9936 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9939 macro_build (&imm_expr, "ori", "t,r,i",
9940 op[0], op[1], BFD_RELOC_LO16);
9941 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9947 load_register (AT, &imm_expr, GPR_SIZE == 64);
9948 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9952 switch (imm_expr.X_add_number)
9955 macro_build (NULL, "nop", "");
9958 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9962 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9963 (int) imm_expr.X_add_number);
9966 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9967 (unsigned long) imm_expr.X_add_number);
9976 gas_assert (mips_opts.micromips);
9977 macro_build_branch_ccl (mask, &offset_expr,
9978 EXTRACT_OPERAND (1, BCC, *ip));
9985 if (imm_expr.X_add_number == 0)
9991 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9996 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10001 /* Fall through. */
10004 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10005 else if (op[0] == 0)
10006 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10010 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10011 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10012 &offset_expr, AT, ZERO);
10022 macro_build_branch_rs (mask, &offset_expr, op[0]);
10027 /* Fall through. */
10029 /* Check for > max integer. */
10030 if (imm_expr.X_add_number >= GPR_SMAX)
10033 /* Result is always false. */
10035 macro_build (NULL, "nop", "");
10037 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10040 ++imm_expr.X_add_number;
10044 if (mask == M_BGEL_I)
10046 if (imm_expr.X_add_number == 0)
10048 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10049 &offset_expr, op[0]);
10052 if (imm_expr.X_add_number == 1)
10054 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10055 &offset_expr, op[0]);
10058 if (imm_expr.X_add_number <= GPR_SMIN)
10061 /* result is always true */
10062 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10063 macro_build (&offset_expr, "b", "p");
10068 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10069 &offset_expr, AT, ZERO);
10074 /* Fall through. */
10078 else if (op[0] == 0)
10079 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10080 &offset_expr, ZERO, op[1]);
10084 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10085 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10086 &offset_expr, AT, ZERO);
10092 /* Fall through. */
10096 && imm_expr.X_add_number == -1))
10098 ++imm_expr.X_add_number;
10102 if (mask == M_BGEUL_I)
10104 if (imm_expr.X_add_number == 0)
10106 else if (imm_expr.X_add_number == 1)
10107 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10108 &offset_expr, op[0], ZERO);
10113 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10114 &offset_expr, AT, ZERO);
10120 /* Fall through. */
10123 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10124 else if (op[0] == 0)
10125 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10129 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10130 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10131 &offset_expr, AT, ZERO);
10137 /* Fall through. */
10140 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10141 &offset_expr, op[0], ZERO);
10142 else if (op[0] == 0)
10147 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10148 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10149 &offset_expr, AT, ZERO);
10155 /* Fall through. */
10158 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10159 else if (op[0] == 0)
10160 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10164 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10165 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10166 &offset_expr, AT, ZERO);
10172 /* Fall through. */
10174 if (imm_expr.X_add_number >= GPR_SMAX)
10176 ++imm_expr.X_add_number;
10180 if (mask == M_BLTL_I)
10182 if (imm_expr.X_add_number == 0)
10183 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10184 else if (imm_expr.X_add_number == 1)
10185 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10190 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10191 &offset_expr, AT, ZERO);
10197 /* Fall through. */
10200 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10201 &offset_expr, op[0], ZERO);
10202 else if (op[0] == 0)
10207 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10208 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10209 &offset_expr, AT, ZERO);
10215 /* Fall through. */
10219 && imm_expr.X_add_number == -1))
10221 ++imm_expr.X_add_number;
10225 if (mask == M_BLTUL_I)
10227 if (imm_expr.X_add_number == 0)
10229 else if (imm_expr.X_add_number == 1)
10230 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10231 &offset_expr, op[0], ZERO);
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
10243 /* Fall through. */
10246 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10247 else if (op[0] == 0)
10248 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10252 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10253 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10254 &offset_expr, AT, ZERO);
10260 /* Fall through. */
10264 else if (op[0] == 0)
10265 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10266 &offset_expr, ZERO, op[1]);
10270 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10271 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10272 &offset_expr, AT, ZERO);
10278 /* Fall through. */
10284 /* Fall through. */
10290 as_warn (_("divide by zero"));
10292 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10294 macro_build (NULL, "break", BRK_FMT, 7);
10298 start_noreorder ();
10301 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10302 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10306 if (mips_opts.micromips)
10307 micromips_label_expr (&label_expr);
10309 label_expr.X_add_number = 8;
10310 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10311 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10312 macro_build (NULL, "break", BRK_FMT, 7);
10313 if (mips_opts.micromips)
10314 micromips_add_label ();
10316 expr1.X_add_number = -1;
10318 load_register (AT, &expr1, dbl);
10319 if (mips_opts.micromips)
10320 micromips_label_expr (&label_expr);
10322 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10323 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10326 expr1.X_add_number = 1;
10327 load_register (AT, &expr1, dbl);
10328 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10332 expr1.X_add_number = 0x80000000;
10333 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10337 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10338 /* We want to close the noreorder block as soon as possible, so
10339 that later insns are available for delay slot filling. */
10344 if (mips_opts.micromips)
10345 micromips_label_expr (&label_expr);
10347 label_expr.X_add_number = 8;
10348 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10349 macro_build (NULL, "nop", "");
10351 /* We want to close the noreorder block as soon as possible, so
10352 that later insns are available for delay slot filling. */
10355 macro_build (NULL, "break", BRK_FMT, 6);
10357 if (mips_opts.micromips)
10358 micromips_add_label ();
10359 macro_build (NULL, s, MFHL_FMT, op[0]);
10398 if (imm_expr.X_add_number == 0)
10400 as_warn (_("divide by zero"));
10402 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10404 macro_build (NULL, "break", BRK_FMT, 7);
10407 if (imm_expr.X_add_number == 1)
10409 if (strcmp (s2, "mflo") == 0)
10410 move_register (op[0], op[1]);
10412 move_register (op[0], ZERO);
10415 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10417 if (strcmp (s2, "mflo") == 0)
10418 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10420 move_register (op[0], ZERO);
10425 load_register (AT, &imm_expr, dbl);
10426 macro_build (NULL, s, "z,s,t", op[1], AT);
10427 macro_build (NULL, s2, MFHL_FMT, op[0]);
10446 start_noreorder ();
10449 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10450 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10451 /* We want to close the noreorder block as soon as possible, so
10452 that later insns are available for delay slot filling. */
10457 if (mips_opts.micromips)
10458 micromips_label_expr (&label_expr);
10460 label_expr.X_add_number = 8;
10461 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10462 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10464 /* We want to close the noreorder block as soon as possible, so
10465 that later insns are available for delay slot filling. */
10467 macro_build (NULL, "break", BRK_FMT, 7);
10468 if (mips_opts.micromips)
10469 micromips_add_label ();
10471 macro_build (NULL, s2, MFHL_FMT, op[0]);
10476 /* Fall through. */
10482 /* Fall through. */
10485 /* Load the address of a symbol into a register. If breg is not
10486 zero, we then add a base register to it. */
10489 if (dbl && GPR_SIZE == 32)
10490 as_warn (_("dla used to load 32-bit register; recommend using la "
10493 if (!dbl && HAVE_64BIT_OBJECTS)
10494 as_warn (_("la used to load 64-bit address; recommend using dla "
10497 if (small_offset_p (0, align, 16))
10499 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10500 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10504 if (mips_opts.at && (op[0] == breg))
10512 if (offset_expr.X_op != O_symbol
10513 && offset_expr.X_op != O_constant)
10515 as_bad (_("expression too complex"));
10516 offset_expr.X_op = O_constant;
10519 if (offset_expr.X_op == O_constant)
10520 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10521 else if (mips_pic == NO_PIC)
10523 /* If this is a reference to a GP relative symbol, we want
10524 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10526 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10527 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10528 If we have a constant, we need two instructions anyhow,
10529 so we may as well always use the latter form.
10531 With 64bit address space and a usable $at we want
10532 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10533 lui $at,<sym> (BFD_RELOC_HI16_S)
10534 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10535 daddiu $at,<sym> (BFD_RELOC_LO16)
10537 daddu $tempreg,$tempreg,$at
10539 If $at is already in use, we use a path which is suboptimal
10540 on superscalar processors.
10541 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10542 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10544 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10546 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10548 For GP relative symbols in 64bit address space we can use
10549 the same sequence as in 32bit address space. */
10550 if (HAVE_64BIT_SYMBOLS)
10552 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10553 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10555 relax_start (offset_expr.X_add_symbol);
10556 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10557 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10561 if (used_at == 0 && mips_opts.at)
10563 macro_build (&offset_expr, "lui", LUI_FMT,
10564 tempreg, BFD_RELOC_MIPS_HIGHEST);
10565 macro_build (&offset_expr, "lui", LUI_FMT,
10566 AT, BFD_RELOC_HI16_S);
10567 macro_build (&offset_expr, "daddiu", "t,r,j",
10568 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10569 macro_build (&offset_expr, "daddiu", "t,r,j",
10570 AT, AT, BFD_RELOC_LO16);
10571 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10572 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10577 macro_build (&offset_expr, "lui", LUI_FMT,
10578 tempreg, BFD_RELOC_MIPS_HIGHEST);
10579 macro_build (&offset_expr, "daddiu", "t,r,j",
10580 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10581 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10582 macro_build (&offset_expr, "daddiu", "t,r,j",
10583 tempreg, tempreg, BFD_RELOC_HI16_S);
10584 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10585 macro_build (&offset_expr, "daddiu", "t,r,j",
10586 tempreg, tempreg, BFD_RELOC_LO16);
10589 if (mips_relax.sequence)
10594 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10595 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10597 relax_start (offset_expr.X_add_symbol);
10598 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10599 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10602 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10603 as_bad (_("offset too large"));
10604 macro_build_lui (&offset_expr, tempreg);
10605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10606 tempreg, tempreg, BFD_RELOC_LO16);
10607 if (mips_relax.sequence)
10611 else if (!mips_big_got && !HAVE_NEWABI)
10613 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10615 /* If this is a reference to an external symbol, and there
10616 is no constant, we want
10617 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10618 or for lca or if tempreg is PIC_CALL_REG
10619 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10620 For a local symbol, we want
10621 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10623 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10625 If we have a small constant, and this is a reference to
10626 an external symbol, we want
10627 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10629 addiu $tempreg,$tempreg,<constant>
10630 For a local symbol, we want the same instruction
10631 sequence, but we output a BFD_RELOC_LO16 reloc on the
10634 If we have a large constant, and this is a reference to
10635 an external symbol, we want
10636 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10637 lui $at,<hiconstant>
10638 addiu $at,$at,<loconstant>
10639 addu $tempreg,$tempreg,$at
10640 For a local symbol, we want the same instruction
10641 sequence, but we output a BFD_RELOC_LO16 reloc on the
10645 if (offset_expr.X_add_number == 0)
10647 if (mips_pic == SVR4_PIC
10649 && (call || tempreg == PIC_CALL_REG))
10650 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10652 relax_start (offset_expr.X_add_symbol);
10653 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10654 lw_reloc_type, mips_gp_register);
10657 /* We're going to put in an addu instruction using
10658 tempreg, so we may as well insert the nop right
10663 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10664 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10666 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10667 tempreg, tempreg, BFD_RELOC_LO16);
10669 /* FIXME: If breg == 0, and the next instruction uses
10670 $tempreg, then if this variant case is used an extra
10671 nop will be generated. */
10673 else if (offset_expr.X_add_number >= -0x8000
10674 && offset_expr.X_add_number < 0x8000)
10676 load_got_offset (tempreg, &offset_expr);
10678 add_got_offset (tempreg, &offset_expr);
10682 expr1.X_add_number = offset_expr.X_add_number;
10683 offset_expr.X_add_number =
10684 SEXT_16BIT (offset_expr.X_add_number);
10685 load_got_offset (tempreg, &offset_expr);
10686 offset_expr.X_add_number = expr1.X_add_number;
10687 /* If we are going to add in a base register, and the
10688 target register and the base register are the same,
10689 then we are using AT as a temporary register. Since
10690 we want to load the constant into AT, we add our
10691 current AT (from the global offset table) and the
10692 register into the register now, and pretend we were
10693 not using a base register. */
10697 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10702 add_got_offset_hilo (tempreg, &offset_expr, AT);
10706 else if (!mips_big_got && HAVE_NEWABI)
10708 int add_breg_early = 0;
10710 /* If this is a reference to an external, and there is no
10711 constant, or local symbol (*), with or without a
10713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10714 or for lca or if tempreg is PIC_CALL_REG
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10717 If we have a small constant, and this is a reference to
10718 an external symbol, we want
10719 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10720 addiu $tempreg,$tempreg,<constant>
10722 If we have a large constant, and this is a reference to
10723 an external symbol, we want
10724 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10725 lui $at,<hiconstant>
10726 addiu $at,$at,<loconstant>
10727 addu $tempreg,$tempreg,$at
10729 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10730 local symbols, even though it introduces an additional
10733 if (offset_expr.X_add_number)
10735 expr1.X_add_number = offset_expr.X_add_number;
10736 offset_expr.X_add_number = 0;
10738 relax_start (offset_expr.X_add_symbol);
10739 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10740 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10742 if (expr1.X_add_number >= -0x8000
10743 && expr1.X_add_number < 0x8000)
10745 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10746 tempreg, tempreg, BFD_RELOC_LO16);
10748 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10752 /* If we are going to add in a base register, and the
10753 target register and the base register are the same,
10754 then we are using AT as a temporary register. Since
10755 we want to load the constant into AT, we add our
10756 current AT (from the global offset table) and the
10757 register into the register now, and pretend we were
10758 not using a base register. */
10763 gas_assert (tempreg == AT);
10764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10767 add_breg_early = 1;
10770 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10777 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10780 offset_expr.X_add_number = expr1.X_add_number;
10782 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10783 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10784 if (add_breg_early)
10786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10787 op[0], tempreg, breg);
10793 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10795 relax_start (offset_expr.X_add_symbol);
10796 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10797 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10799 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10800 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10805 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10806 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10809 else if (mips_big_got && !HAVE_NEWABI)
10812 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10813 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10814 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10816 /* This is the large GOT case. If this is a reference to an
10817 external symbol, and there is no constant, we want
10818 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10819 addu $tempreg,$tempreg,$gp
10820 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10821 or for lca or if tempreg is PIC_CALL_REG
10822 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10823 addu $tempreg,$tempreg,$gp
10824 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10825 For a local symbol, we want
10826 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10828 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10830 If we have a small constant, and this is a reference to
10831 an external symbol, we want
10832 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10833 addu $tempreg,$tempreg,$gp
10834 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10836 addiu $tempreg,$tempreg,<constant>
10837 For a local symbol, we want
10838 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10840 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10842 If we have a large constant, and this is a reference to
10843 an external symbol, we want
10844 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10845 addu $tempreg,$tempreg,$gp
10846 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10847 lui $at,<hiconstant>
10848 addiu $at,$at,<loconstant>
10849 addu $tempreg,$tempreg,$at
10850 For a local symbol, we want
10851 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10852 lui $at,<hiconstant>
10853 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10854 addu $tempreg,$tempreg,$at
10857 expr1.X_add_number = offset_expr.X_add_number;
10858 offset_expr.X_add_number = 0;
10859 relax_start (offset_expr.X_add_symbol);
10860 gpdelay = reg_needs_delay (mips_gp_register);
10861 if (expr1.X_add_number == 0 && breg == 0
10862 && (call || tempreg == PIC_CALL_REG))
10864 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10865 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10867 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10869 tempreg, tempreg, mips_gp_register);
10870 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10871 tempreg, lw_reloc_type, tempreg);
10872 if (expr1.X_add_number == 0)
10876 /* We're going to put in an addu instruction using
10877 tempreg, so we may as well insert the nop right
10882 else if (expr1.X_add_number >= -0x8000
10883 && expr1.X_add_number < 0x8000)
10886 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10887 tempreg, tempreg, BFD_RELOC_LO16);
10893 /* If we are going to add in a base register, and the
10894 target register and the base register are the same,
10895 then we are using AT as a temporary register. Since
10896 we want to load the constant into AT, we add our
10897 current AT (from the global offset table) and the
10898 register into the register now, and pretend we were
10899 not using a base register. */
10904 gas_assert (tempreg == AT);
10906 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10911 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10916 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10921 /* This is needed because this instruction uses $gp, but
10922 the first instruction on the main stream does not. */
10923 macro_build (NULL, "nop", "");
10926 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10927 local_reloc_type, mips_gp_register);
10928 if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10932 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10933 tempreg, tempreg, BFD_RELOC_LO16);
10934 /* FIXME: If add_number is 0, and there was no base
10935 register, the external symbol case ended with a load,
10936 so if the symbol turns out to not be external, and
10937 the next instruction uses tempreg, an unnecessary nop
10938 will be inserted. */
10944 /* We must add in the base register now, as in the
10945 external symbol case. */
10946 gas_assert (tempreg == AT);
10948 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10951 /* We set breg to 0 because we have arranged to add
10952 it in in both cases. */
10956 macro_build_lui (&expr1, AT);
10957 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10958 AT, AT, BFD_RELOC_LO16);
10959 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10960 tempreg, tempreg, AT);
10965 else if (mips_big_got && HAVE_NEWABI)
10967 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10968 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10969 int add_breg_early = 0;
10971 /* This is the large GOT case. If this is a reference to an
10972 external symbol, and there is no constant, we want
10973 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10974 add $tempreg,$tempreg,$gp
10975 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10976 or for lca or if tempreg is PIC_CALL_REG
10977 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10978 add $tempreg,$tempreg,$gp
10979 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10981 If we have a small constant, and this is a reference to
10982 an external symbol, we want
10983 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10984 add $tempreg,$tempreg,$gp
10985 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10986 addi $tempreg,$tempreg,<constant>
10988 If we have a large constant, and this is a reference to
10989 an external symbol, we want
10990 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10991 addu $tempreg,$tempreg,$gp
10992 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10993 lui $at,<hiconstant>
10994 addi $at,$at,<loconstant>
10995 add $tempreg,$tempreg,$at
10997 If we have NewABI, and we know it's a local symbol, we want
10998 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10999 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11000 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11002 relax_start (offset_expr.X_add_symbol);
11004 expr1.X_add_number = offset_expr.X_add_number;
11005 offset_expr.X_add_number = 0;
11007 if (expr1.X_add_number == 0 && breg == 0
11008 && (call || tempreg == PIC_CALL_REG))
11010 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11011 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11013 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11015 tempreg, tempreg, mips_gp_register);
11016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11017 tempreg, lw_reloc_type, tempreg);
11019 if (expr1.X_add_number == 0)
11021 else if (expr1.X_add_number >= -0x8000
11022 && expr1.X_add_number < 0x8000)
11024 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11025 tempreg, tempreg, BFD_RELOC_LO16);
11027 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11031 /* If we are going to add in a base register, and the
11032 target register and the base register are the same,
11033 then we are using AT as a temporary register. Since
11034 we want to load the constant into AT, we add our
11035 current AT (from the global offset table) and the
11036 register into the register now, and pretend we were
11037 not using a base register. */
11042 gas_assert (tempreg == AT);
11043 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11046 add_breg_early = 1;
11049 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11050 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11055 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11058 offset_expr.X_add_number = expr1.X_add_number;
11059 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11060 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11061 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11062 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11063 if (add_breg_early)
11065 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11066 op[0], tempreg, breg);
11076 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11080 gas_assert (!mips_opts.micromips);
11081 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11085 gas_assert (!mips_opts.micromips);
11086 macro_build (NULL, "c2", "C", 0x02);
11090 gas_assert (!mips_opts.micromips);
11091 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11095 gas_assert (!mips_opts.micromips);
11096 macro_build (NULL, "c2", "C", 3);
11100 gas_assert (!mips_opts.micromips);
11101 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11105 /* The j instruction may not be used in PIC code, since it
11106 requires an absolute address. We convert it to a b
11108 if (mips_pic == NO_PIC)
11109 macro_build (&offset_expr, "j", "a");
11111 macro_build (&offset_expr, "b", "p");
11114 /* The jal instructions must be handled as macros because when
11115 generating PIC code they expand to multi-instruction
11116 sequences. Normally they are simple instructions. */
11120 /* Fall through. */
11122 gas_assert (mips_opts.micromips);
11123 if (mips_opts.insn32)
11125 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11133 /* Fall through. */
11136 if (mips_pic == NO_PIC)
11138 s = jals ? "jalrs" : "jalr";
11139 if (mips_opts.micromips
11140 && !mips_opts.insn32
11142 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11143 macro_build (NULL, s, "mj", op[1]);
11145 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11149 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11150 && mips_cprestore_offset >= 0);
11152 if (op[1] != PIC_CALL_REG)
11153 as_warn (_("MIPS PIC call to register other than $25"));
11155 s = ((mips_opts.micromips
11156 && !mips_opts.insn32
11157 && (!mips_opts.noreorder || cprestore))
11158 ? "jalrs" : "jalr");
11159 if (mips_opts.micromips
11160 && !mips_opts.insn32
11162 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11163 macro_build (NULL, s, "mj", op[1]);
11165 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11166 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11168 if (mips_cprestore_offset < 0)
11169 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11172 if (!mips_frame_reg_valid)
11174 as_warn (_("no .frame pseudo-op used in PIC code"));
11175 /* Quiet this warning. */
11176 mips_frame_reg_valid = 1;
11178 if (!mips_cprestore_valid)
11180 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11181 /* Quiet this warning. */
11182 mips_cprestore_valid = 1;
11184 if (mips_opts.noreorder)
11185 macro_build (NULL, "nop", "");
11186 expr1.X_add_number = mips_cprestore_offset;
11187 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11190 HAVE_64BIT_ADDRESSES);
11198 gas_assert (mips_opts.micromips);
11199 if (mips_opts.insn32)
11201 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11205 /* Fall through. */
11207 if (mips_pic == NO_PIC)
11208 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11209 else if (mips_pic == SVR4_PIC)
11211 /* If this is a reference to an external symbol, and we are
11212 using a small GOT, we want
11213 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11217 lw $gp,cprestore($sp)
11218 The cprestore value is set using the .cprestore
11219 pseudo-op. If we are using a big GOT, we want
11220 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11222 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11226 lw $gp,cprestore($sp)
11227 If the symbol is not external, we want
11228 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11230 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11233 lw $gp,cprestore($sp)
11235 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11236 sequences above, minus nops, unless the symbol is local,
11237 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11243 relax_start (offset_expr.X_add_symbol);
11244 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11245 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11248 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11249 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11255 relax_start (offset_expr.X_add_symbol);
11256 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11257 BFD_RELOC_MIPS_CALL_HI16);
11258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11259 PIC_CALL_REG, mips_gp_register);
11260 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11261 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11264 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11265 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11267 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11268 PIC_CALL_REG, PIC_CALL_REG,
11269 BFD_RELOC_MIPS_GOT_OFST);
11273 macro_build_jalr (&offset_expr, 0);
11277 relax_start (offset_expr.X_add_symbol);
11280 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11281 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11290 gpdelay = reg_needs_delay (mips_gp_register);
11291 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11292 BFD_RELOC_MIPS_CALL_HI16);
11293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11294 PIC_CALL_REG, mips_gp_register);
11295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11296 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11301 macro_build (NULL, "nop", "");
11303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11304 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11307 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11308 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11310 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11312 if (mips_cprestore_offset < 0)
11313 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11316 if (!mips_frame_reg_valid)
11318 as_warn (_("no .frame pseudo-op used in PIC code"));
11319 /* Quiet this warning. */
11320 mips_frame_reg_valid = 1;
11322 if (!mips_cprestore_valid)
11324 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11325 /* Quiet this warning. */
11326 mips_cprestore_valid = 1;
11328 if (mips_opts.noreorder)
11329 macro_build (NULL, "nop", "");
11330 expr1.X_add_number = mips_cprestore_offset;
11331 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11334 HAVE_64BIT_ADDRESSES);
11338 else if (mips_pic == VXWORKS_PIC)
11339 as_bad (_("non-PIC jump used in PIC library"));
11446 gas_assert (!mips_opts.micromips);
11449 /* Itbl support may require additional care here. */
11455 /* Itbl support may require additional care here. */
11461 offbits = (mips_opts.micromips ? 12
11462 : ISA_IS_R6 (mips_opts.isa) ? 11
11464 /* Itbl support may require additional care here. */
11468 gas_assert (!mips_opts.micromips);
11471 /* Itbl support may require additional care here. */
11477 offbits = (mips_opts.micromips ? 12 : 16);
11482 offbits = (mips_opts.micromips ? 12 : 16);
11487 /* Itbl support may require additional care here. */
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 11
11496 /* Itbl support may require additional care here. */
11502 /* Itbl support may require additional care here. */
11508 /* Itbl support may require additional care here. */
11514 offbits = (mips_opts.micromips ? 12 : 16);
11519 offbits = (mips_opts.micromips ? 12 : 16);
11524 offbits = (mips_opts.micromips ? 12
11525 : ISA_IS_R6 (mips_opts.isa) ? 9
11531 offbits = (mips_opts.micromips ? 12
11532 : ISA_IS_R6 (mips_opts.isa) ? 9
11538 offbits = (mips_opts.micromips ? 12 : 16);
11541 gas_assert (mips_opts.micromips);
11548 gas_assert (mips_opts.micromips);
11555 gas_assert (mips_opts.micromips);
11561 gas_assert (mips_opts.micromips);
11568 /* We don't want to use $0 as tempreg. */
11569 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11572 tempreg = op[0] + lp;
11588 gas_assert (!mips_opts.micromips);
11591 /* Itbl support may require additional care here. */
11597 /* Itbl support may require additional care here. */
11603 offbits = (mips_opts.micromips ? 12
11604 : ISA_IS_R6 (mips_opts.isa) ? 11
11606 /* Itbl support may require additional care here. */
11610 gas_assert (!mips_opts.micromips);
11613 /* Itbl support may require additional care here. */
11619 offbits = (mips_opts.micromips ? 12 : 16);
11624 offbits = (mips_opts.micromips ? 12 : 16);
11629 offbits = (mips_opts.micromips ? 12
11630 : ISA_IS_R6 (mips_opts.isa) ? 9
11636 offbits = (mips_opts.micromips ? 12
11637 : ISA_IS_R6 (mips_opts.isa) ? 9
11642 fmt = (mips_opts.micromips ? "k,~(b)"
11643 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11645 offbits = (mips_opts.micromips ? 12
11646 : ISA_IS_R6 (mips_opts.isa) ? 9
11656 fmt = (mips_opts.micromips ? "k,~(b)"
11657 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11659 offbits = (mips_opts.micromips ? 12
11660 : ISA_IS_R6 (mips_opts.isa) ? 9
11672 /* Itbl support may require additional care here. */
11677 offbits = (mips_opts.micromips ? 12
11678 : ISA_IS_R6 (mips_opts.isa) ? 11
11680 /* Itbl support may require additional care here. */
11686 /* Itbl support may require additional care here. */
11690 gas_assert (!mips_opts.micromips);
11693 /* Itbl support may require additional care here. */
11699 offbits = (mips_opts.micromips ? 12 : 16);
11704 offbits = (mips_opts.micromips ? 12 : 16);
11707 gas_assert (mips_opts.micromips);
11713 gas_assert (mips_opts.micromips);
11719 gas_assert (mips_opts.micromips);
11725 gas_assert (mips_opts.micromips);
11734 if (small_offset_p (0, align, 16))
11736 /* The first case exists for M_LD_AB and M_SD_AB, which are
11737 macros for o32 but which should act like normal instructions
11740 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11741 offset_reloc[1], offset_reloc[2], breg);
11742 else if (small_offset_p (0, align, offbits))
11745 macro_build (NULL, s, fmt, op[0], breg);
11747 macro_build (NULL, s, fmt, op[0],
11748 (int) offset_expr.X_add_number, breg);
11754 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11755 tempreg, breg, -1, offset_reloc[0],
11756 offset_reloc[1], offset_reloc[2]);
11758 macro_build (NULL, s, fmt, op[0], tempreg);
11760 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11768 if (offset_expr.X_op != O_constant
11769 && offset_expr.X_op != O_symbol)
11771 as_bad (_("expression too complex"));
11772 offset_expr.X_op = O_constant;
11775 if (HAVE_32BIT_ADDRESSES
11776 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11780 sprintf_vma (value, offset_expr.X_add_number);
11781 as_bad (_("number (0x%s) larger than 32 bits"), value);
11784 /* A constant expression in PIC code can be handled just as it
11785 is in non PIC code. */
11786 if (offset_expr.X_op == O_constant)
11788 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11789 offbits == 0 ? 16 : offbits);
11790 offset_expr.X_add_number -= expr1.X_add_number;
11792 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11794 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11795 tempreg, tempreg, breg);
11798 if (offset_expr.X_add_number != 0)
11799 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11800 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11801 macro_build (NULL, s, fmt, op[0], tempreg);
11803 else if (offbits == 16)
11804 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11806 macro_build (NULL, s, fmt, op[0],
11807 (int) offset_expr.X_add_number, tempreg);
11809 else if (offbits != 16)
11811 /* The offset field is too narrow to be used for a low-part
11812 relocation, so load the whole address into the auxiliary
11814 load_address (tempreg, &offset_expr, &used_at);
11816 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11817 tempreg, tempreg, breg);
11819 macro_build (NULL, s, fmt, op[0], tempreg);
11821 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11823 else if (mips_pic == NO_PIC)
11825 /* If this is a reference to a GP relative symbol, and there
11826 is no base register, we want
11827 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11828 Otherwise, if there is no base register, we want
11829 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11830 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11831 If we have a constant, we need two instructions anyhow,
11832 so we always use the latter form.
11834 If we have a base register, and this is a reference to a
11835 GP relative symbol, we want
11836 addu $tempreg,$breg,$gp
11837 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11839 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11840 addu $tempreg,$tempreg,$breg
11841 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11842 With a constant we always use the latter case.
11844 With 64bit address space and no base register and $at usable,
11846 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11847 lui $at,<sym> (BFD_RELOC_HI16_S)
11848 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11851 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11852 If we have a base register, we want
11853 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11854 lui $at,<sym> (BFD_RELOC_HI16_S)
11855 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11859 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11861 Without $at we can't generate the optimal path for superscalar
11862 processors here since this would require two temporary registers.
11863 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11864 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11866 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11868 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11869 If we have a base register, we want
11870 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11871 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11873 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11875 daddu $tempreg,$tempreg,$breg
11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11878 For GP relative symbols in 64bit address space we can use
11879 the same sequence as in 32bit address space. */
11880 if (HAVE_64BIT_SYMBOLS)
11882 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11883 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11885 relax_start (offset_expr.X_add_symbol);
11888 macro_build (&offset_expr, s, fmt, op[0],
11889 BFD_RELOC_GPREL16, mips_gp_register);
11893 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11894 tempreg, breg, mips_gp_register);
11895 macro_build (&offset_expr, s, fmt, op[0],
11896 BFD_RELOC_GPREL16, tempreg);
11901 if (used_at == 0 && mips_opts.at)
11903 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11904 BFD_RELOC_MIPS_HIGHEST);
11905 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11907 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11908 tempreg, BFD_RELOC_MIPS_HIGHER);
11910 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11911 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11912 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11913 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11919 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11920 BFD_RELOC_MIPS_HIGHEST);
11921 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_MIPS_HIGHER);
11923 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11924 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11925 tempreg, BFD_RELOC_HI16_S);
11926 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11928 macro_build (NULL, "daddu", "d,v,t",
11929 tempreg, tempreg, breg);
11930 macro_build (&offset_expr, s, fmt, op[0],
11931 BFD_RELOC_LO16, tempreg);
11934 if (mips_relax.sequence)
11941 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11942 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11944 relax_start (offset_expr.X_add_symbol);
11945 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11949 macro_build_lui (&offset_expr, tempreg);
11950 macro_build (&offset_expr, s, fmt, op[0],
11951 BFD_RELOC_LO16, tempreg);
11952 if (mips_relax.sequence)
11957 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11958 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11960 relax_start (offset_expr.X_add_symbol);
11961 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11962 tempreg, breg, mips_gp_register);
11963 macro_build (&offset_expr, s, fmt, op[0],
11964 BFD_RELOC_GPREL16, tempreg);
11967 macro_build_lui (&offset_expr, tempreg);
11968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11969 tempreg, tempreg, breg);
11970 macro_build (&offset_expr, s, fmt, op[0],
11971 BFD_RELOC_LO16, tempreg);
11972 if (mips_relax.sequence)
11976 else if (!mips_big_got)
11978 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11980 /* If this is a reference to an external symbol, we want
11981 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11983 <op> op[0],0($tempreg)
11985 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11987 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11988 <op> op[0],0($tempreg)
11990 For NewABI, we want
11991 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11992 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11994 If there is a base register, we add it to $tempreg before
11995 the <op>. If there is a constant, we stick it in the
11996 <op> instruction. We don't handle constants larger than
11997 16 bits, because we have no way to load the upper 16 bits
11998 (actually, we could handle them for the subset of cases
11999 in which we are not using $at). */
12000 gas_assert (offset_expr.X_op == O_symbol);
12003 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12004 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12007 tempreg, tempreg, breg);
12008 macro_build (&offset_expr, s, fmt, op[0],
12009 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12012 expr1.X_add_number = offset_expr.X_add_number;
12013 offset_expr.X_add_number = 0;
12014 if (expr1.X_add_number < -0x8000
12015 || expr1.X_add_number >= 0x8000)
12016 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12017 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12018 lw_reloc_type, mips_gp_register);
12020 relax_start (offset_expr.X_add_symbol);
12022 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12023 tempreg, BFD_RELOC_LO16);
12026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12027 tempreg, tempreg, breg);
12028 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12030 else if (mips_big_got && !HAVE_NEWABI)
12034 /* If this is a reference to an external symbol, we want
12035 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12036 addu $tempreg,$tempreg,$gp
12037 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12038 <op> op[0],0($tempreg)
12040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12042 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12043 <op> op[0],0($tempreg)
12044 If there is a base register, we add it to $tempreg before
12045 the <op>. If there is a constant, we stick it in the
12046 <op> instruction. We don't handle constants larger than
12047 16 bits, because we have no way to load the upper 16 bits
12048 (actually, we could handle them for the subset of cases
12049 in which we are not using $at). */
12050 gas_assert (offset_expr.X_op == O_symbol);
12051 expr1.X_add_number = offset_expr.X_add_number;
12052 offset_expr.X_add_number = 0;
12053 if (expr1.X_add_number < -0x8000
12054 || expr1.X_add_number >= 0x8000)
12055 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12056 gpdelay = reg_needs_delay (mips_gp_register);
12057 relax_start (offset_expr.X_add_symbol);
12058 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12059 BFD_RELOC_MIPS_GOT_HI16);
12060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12063 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12066 macro_build (NULL, "nop", "");
12067 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12068 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12070 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12071 tempreg, BFD_RELOC_LO16);
12075 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12076 tempreg, tempreg, breg);
12077 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12079 else if (mips_big_got && HAVE_NEWABI)
12081 /* If this is a reference to an external symbol, we want
12082 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12083 add $tempreg,$tempreg,$gp
12084 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12085 <op> op[0],<ofst>($tempreg)
12086 Otherwise, for local symbols, we want:
12087 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12088 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12089 gas_assert (offset_expr.X_op == O_symbol);
12090 expr1.X_add_number = offset_expr.X_add_number;
12091 offset_expr.X_add_number = 0;
12092 if (expr1.X_add_number < -0x8000
12093 || expr1.X_add_number >= 0x8000)
12094 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12095 relax_start (offset_expr.X_add_symbol);
12096 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12097 BFD_RELOC_MIPS_GOT_HI16);
12098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12101 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12104 tempreg, tempreg, breg);
12105 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12108 offset_expr.X_add_number = expr1.X_add_number;
12109 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12110 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12113 tempreg, tempreg, breg);
12114 macro_build (&offset_expr, s, fmt, op[0],
12115 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12124 gas_assert (mips_opts.micromips);
12125 gas_assert (mips_opts.insn32);
12126 start_noreorder ();
12127 macro_build (NULL, "jr", "s", RA);
12128 expr1.X_add_number = op[0] << 2;
12129 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12134 gas_assert (mips_opts.micromips);
12135 gas_assert (mips_opts.insn32);
12136 macro_build (NULL, "jr", "s", op[0]);
12137 if (mips_opts.noreorder)
12138 macro_build (NULL, "nop", "");
12143 load_register (op[0], &imm_expr, 0);
12147 load_register (op[0], &imm_expr, 1);
12151 if (imm_expr.X_op == O_constant)
12154 load_register (AT, &imm_expr, 0);
12155 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12160 gas_assert (imm_expr.X_op == O_absent
12161 && offset_expr.X_op == O_symbol
12162 && strcmp (segment_name (S_GET_SEGMENT
12163 (offset_expr.X_add_symbol)),
12165 && offset_expr.X_add_number == 0);
12166 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12167 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12172 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12173 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12174 order 32 bits of the value and the low order 32 bits are either
12175 zero or in OFFSET_EXPR. */
12176 if (imm_expr.X_op == O_constant)
12178 if (GPR_SIZE == 64)
12179 load_register (op[0], &imm_expr, 1);
12184 if (target_big_endian)
12196 load_register (hreg, &imm_expr, 0);
12199 if (offset_expr.X_op == O_absent)
12200 move_register (lreg, 0);
12203 gas_assert (offset_expr.X_op == O_constant);
12204 load_register (lreg, &offset_expr, 0);
12210 gas_assert (imm_expr.X_op == O_absent);
12212 /* We know that sym is in the .rdata section. First we get the
12213 upper 16 bits of the address. */
12214 if (mips_pic == NO_PIC)
12216 macro_build_lui (&offset_expr, AT);
12221 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12222 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12226 /* Now we load the register(s). */
12227 if (GPR_SIZE == 64)
12230 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12231 BFD_RELOC_LO16, AT);
12236 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12237 BFD_RELOC_LO16, AT);
12240 /* FIXME: How in the world do we deal with the possible
12242 offset_expr.X_add_number += 4;
12243 macro_build (&offset_expr, "lw", "t,o(b)",
12244 op[0] + 1, BFD_RELOC_LO16, AT);
12250 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12251 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12252 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12253 the value and the low order 32 bits are either zero or in
12255 if (imm_expr.X_op == O_constant)
12258 load_register (AT, &imm_expr, FPR_SIZE == 64);
12259 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12260 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12263 if (ISA_HAS_MXHC1 (mips_opts.isa))
12264 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12265 else if (FPR_SIZE != 32)
12266 as_bad (_("Unable to generate `%s' compliant code "
12268 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12270 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12271 if (offset_expr.X_op == O_absent)
12272 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12275 gas_assert (offset_expr.X_op == O_constant);
12276 load_register (AT, &offset_expr, 0);
12277 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12283 gas_assert (imm_expr.X_op == O_absent
12284 && offset_expr.X_op == O_symbol
12285 && offset_expr.X_add_number == 0);
12286 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12287 if (strcmp (s, ".lit8") == 0)
12289 op[2] = mips_gp_register;
12290 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12291 offset_reloc[1] = BFD_RELOC_UNUSED;
12292 offset_reloc[2] = BFD_RELOC_UNUSED;
12296 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12298 if (mips_pic != NO_PIC)
12299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12300 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12303 /* FIXME: This won't work for a 64 bit address. */
12304 macro_build_lui (&offset_expr, AT);
12308 offset_reloc[0] = BFD_RELOC_LO16;
12309 offset_reloc[1] = BFD_RELOC_UNUSED;
12310 offset_reloc[2] = BFD_RELOC_UNUSED;
12317 * The MIPS assembler seems to check for X_add_number not
12318 * being double aligned and generating:
12319 * lui at,%hi(foo+1)
12321 * addiu at,at,%lo(foo+1)
12324 * But, the resulting address is the same after relocation so why
12325 * generate the extra instruction?
12327 /* Itbl support may require additional care here. */
12330 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12339 gas_assert (!mips_opts.micromips);
12340 /* Itbl support may require additional care here. */
12343 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12363 if (GPR_SIZE == 64)
12373 if (GPR_SIZE == 64)
12381 /* Even on a big endian machine $fn comes before $fn+1. We have
12382 to adjust when loading from memory. We set coproc if we must
12383 load $fn+1 first. */
12384 /* Itbl support may require additional care here. */
12385 if (!target_big_endian)
12389 if (small_offset_p (0, align, 16))
12392 if (!small_offset_p (4, align, 16))
12394 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12395 -1, offset_reloc[0], offset_reloc[1],
12397 expr1.X_add_number = 0;
12401 offset_reloc[0] = BFD_RELOC_LO16;
12402 offset_reloc[1] = BFD_RELOC_UNUSED;
12403 offset_reloc[2] = BFD_RELOC_UNUSED;
12405 if (strcmp (s, "lw") == 0 && op[0] == breg)
12407 ep->X_add_number += 4;
12408 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12409 offset_reloc[1], offset_reloc[2], breg);
12410 ep->X_add_number -= 4;
12411 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12412 offset_reloc[1], offset_reloc[2], breg);
12416 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12417 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12419 ep->X_add_number += 4;
12420 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12421 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12427 if (offset_expr.X_op != O_symbol
12428 && offset_expr.X_op != O_constant)
12430 as_bad (_("expression too complex"));
12431 offset_expr.X_op = O_constant;
12434 if (HAVE_32BIT_ADDRESSES
12435 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12439 sprintf_vma (value, offset_expr.X_add_number);
12440 as_bad (_("number (0x%s) larger than 32 bits"), value);
12443 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12445 /* If this is a reference to a GP relative symbol, we want
12446 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12447 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12448 If we have a base register, we use this
12450 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12451 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12452 If this is not a GP relative symbol, we want
12453 lui $at,<sym> (BFD_RELOC_HI16_S)
12454 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12455 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12456 If there is a base register, we add it to $at after the
12457 lui instruction. If there is a constant, we always use
12459 if (offset_expr.X_op == O_symbol
12460 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12461 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12463 relax_start (offset_expr.X_add_symbol);
12466 tempreg = mips_gp_register;
12470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12471 AT, breg, mips_gp_register);
12476 /* Itbl support may require additional care here. */
12477 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12478 BFD_RELOC_GPREL16, tempreg);
12479 offset_expr.X_add_number += 4;
12481 /* Set mips_optimize to 2 to avoid inserting an
12483 hold_mips_optimize = mips_optimize;
12485 /* Itbl support may require additional care here. */
12486 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12487 BFD_RELOC_GPREL16, tempreg);
12488 mips_optimize = hold_mips_optimize;
12492 offset_expr.X_add_number -= 4;
12495 if (offset_high_part (offset_expr.X_add_number, 16)
12496 != offset_high_part (offset_expr.X_add_number + 4, 16))
12498 load_address (AT, &offset_expr, &used_at);
12499 offset_expr.X_op = O_constant;
12500 offset_expr.X_add_number = 0;
12503 macro_build_lui (&offset_expr, AT);
12505 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12506 /* Itbl support may require additional care here. */
12507 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12508 BFD_RELOC_LO16, AT);
12509 /* FIXME: How do we handle overflow here? */
12510 offset_expr.X_add_number += 4;
12511 /* Itbl support may require additional care here. */
12512 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12513 BFD_RELOC_LO16, AT);
12514 if (mips_relax.sequence)
12517 else if (!mips_big_got)
12519 /* If this is a reference to an external symbol, we want
12520 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12523 <op> op[0]+1,4($at)
12525 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12527 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12528 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12529 If there is a base register we add it to $at before the
12530 lwc1 instructions. If there is a constant we include it
12531 in the lwc1 instructions. */
12533 expr1.X_add_number = offset_expr.X_add_number;
12534 if (expr1.X_add_number < -0x8000
12535 || expr1.X_add_number >= 0x8000 - 4)
12536 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12537 load_got_offset (AT, &offset_expr);
12540 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12542 /* Set mips_optimize to 2 to avoid inserting an undesired
12544 hold_mips_optimize = mips_optimize;
12547 /* Itbl support may require additional care here. */
12548 relax_start (offset_expr.X_add_symbol);
12549 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12550 BFD_RELOC_LO16, AT);
12551 expr1.X_add_number += 4;
12552 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12553 BFD_RELOC_LO16, AT);
12555 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12556 BFD_RELOC_LO16, AT);
12557 offset_expr.X_add_number += 4;
12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12559 BFD_RELOC_LO16, AT);
12562 mips_optimize = hold_mips_optimize;
12564 else if (mips_big_got)
12568 /* If this is a reference to an external symbol, we want
12569 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12571 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12574 <op> op[0]+1,4($at)
12576 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12578 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12579 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12580 If there is a base register we add it to $at before the
12581 lwc1 instructions. If there is a constant we include it
12582 in the lwc1 instructions. */
12584 expr1.X_add_number = offset_expr.X_add_number;
12585 offset_expr.X_add_number = 0;
12586 if (expr1.X_add_number < -0x8000
12587 || expr1.X_add_number >= 0x8000 - 4)
12588 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12589 gpdelay = reg_needs_delay (mips_gp_register);
12590 relax_start (offset_expr.X_add_symbol);
12591 macro_build (&offset_expr, "lui", LUI_FMT,
12592 AT, BFD_RELOC_MIPS_GOT_HI16);
12593 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12594 AT, AT, mips_gp_register);
12595 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12596 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12599 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12600 /* Itbl support may require additional care here. */
12601 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12602 BFD_RELOC_LO16, AT);
12603 expr1.X_add_number += 4;
12605 /* Set mips_optimize to 2 to avoid inserting an undesired
12607 hold_mips_optimize = mips_optimize;
12609 /* Itbl support may require additional care here. */
12610 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12611 BFD_RELOC_LO16, AT);
12612 mips_optimize = hold_mips_optimize;
12613 expr1.X_add_number -= 4;
12616 offset_expr.X_add_number = expr1.X_add_number;
12618 macro_build (NULL, "nop", "");
12619 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12620 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12624 /* Itbl support may require additional care here. */
12625 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12626 BFD_RELOC_LO16, AT);
12627 offset_expr.X_add_number += 4;
12629 /* Set mips_optimize to 2 to avoid inserting an undesired
12631 hold_mips_optimize = mips_optimize;
12633 /* Itbl support may require additional care here. */
12634 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12635 BFD_RELOC_LO16, AT);
12636 mips_optimize = hold_mips_optimize;
12650 gas_assert (!mips_opts.micromips);
12655 /* New code added to support COPZ instructions.
12656 This code builds table entries out of the macros in mip_opcodes.
12657 R4000 uses interlocks to handle coproc delays.
12658 Other chips (like the R3000) require nops to be inserted for delays.
12660 FIXME: Currently, we require that the user handle delays.
12661 In order to fill delay slots for non-interlocked chips,
12662 we must have a way to specify delays based on the coprocessor.
12663 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12664 What are the side-effects of the cop instruction?
12665 What cache support might we have and what are its effects?
12666 Both coprocessor & memory require delays. how long???
12667 What registers are read/set/modified?
12669 If an itbl is provided to interpret cop instructions,
12670 this knowledge can be encoded in the itbl spec. */
12684 gas_assert (!mips_opts.micromips);
12685 /* For now we just do C (same as Cz). The parameter will be
12686 stored in insn_opcode by mips_ip. */
12687 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12691 move_register (op[0], op[1]);
12695 gas_assert (mips_opts.micromips);
12696 gas_assert (mips_opts.insn32);
12697 move_register (micromips_to_32_reg_h_map1[op[0]],
12698 micromips_to_32_reg_m_map[op[1]]);
12699 move_register (micromips_to_32_reg_h_map2[op[0]],
12700 micromips_to_32_reg_n_map[op[2]]);
12705 /* Fall through. */
12707 if (mips_opts.arch == CPU_R5900)
12708 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12712 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12713 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12719 /* Fall through. */
12721 /* The MIPS assembler some times generates shifts and adds. I'm
12722 not trying to be that fancy. GCC should do this for us
12725 load_register (AT, &imm_expr, dbl);
12726 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12727 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12732 /* Fall through. */
12739 /* Fall through. */
12742 start_noreorder ();
12745 load_register (AT, &imm_expr, dbl);
12746 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12747 op[1], imm ? AT : op[2]);
12748 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12749 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12750 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12752 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12755 if (mips_opts.micromips)
12756 micromips_label_expr (&label_expr);
12758 label_expr.X_add_number = 8;
12759 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12760 macro_build (NULL, "nop", "");
12761 macro_build (NULL, "break", BRK_FMT, 6);
12762 if (mips_opts.micromips)
12763 micromips_add_label ();
12766 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12771 /* Fall through. */
12778 /* Fall through. */
12781 start_noreorder ();
12784 load_register (AT, &imm_expr, dbl);
12785 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12786 op[1], imm ? AT : op[2]);
12787 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12788 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12790 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12793 if (mips_opts.micromips)
12794 micromips_label_expr (&label_expr);
12796 label_expr.X_add_number = 8;
12797 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12798 macro_build (NULL, "nop", "");
12799 macro_build (NULL, "break", BRK_FMT, 6);
12800 if (mips_opts.micromips)
12801 micromips_add_label ();
12807 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12809 if (op[0] == op[1])
12816 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12817 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12821 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12822 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12823 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12824 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12828 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12830 if (op[0] == op[1])
12837 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12838 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12842 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12843 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12844 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12845 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12854 rot = imm_expr.X_add_number & 0x3f;
12855 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12857 rot = (64 - rot) & 0x3f;
12859 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12861 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12866 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12869 l = (rot < 0x20) ? "dsll" : "dsll32";
12870 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12873 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12874 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12875 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12883 rot = imm_expr.X_add_number & 0x1f;
12884 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12886 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12887 (32 - rot) & 0x1f);
12892 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12896 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12897 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12898 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12903 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12905 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12909 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12910 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12911 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12912 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12916 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12918 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12922 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12923 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12924 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12925 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12934 rot = imm_expr.X_add_number & 0x3f;
12935 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12938 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12940 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12945 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12948 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12949 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12952 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12953 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12954 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12962 rot = imm_expr.X_add_number & 0x1f;
12963 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12965 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12970 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12974 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12975 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12976 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12982 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12983 else if (op[2] == 0)
12984 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12987 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12988 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12993 if (imm_expr.X_add_number == 0)
12995 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13000 as_warn (_("instruction %s: result is always false"),
13001 ip->insn_mo->name);
13002 move_register (op[0], 0);
13005 if (CPU_HAS_SEQ (mips_opts.arch)
13006 && -512 <= imm_expr.X_add_number
13007 && imm_expr.X_add_number < 512)
13009 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13010 (int) imm_expr.X_add_number);
13013 if (imm_expr.X_add_number >= 0
13014 && imm_expr.X_add_number < 0x10000)
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13016 else if (imm_expr.X_add_number > -0x8000
13017 && imm_expr.X_add_number < 0)
13019 imm_expr.X_add_number = -imm_expr.X_add_number;
13020 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13021 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13023 else if (CPU_HAS_SEQ (mips_opts.arch))
13026 load_register (AT, &imm_expr, GPR_SIZE == 64);
13027 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13032 load_register (AT, &imm_expr, GPR_SIZE == 64);
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13036 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13039 case M_SGE: /* X >= Y <==> not (X < Y) */
13045 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13046 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13049 case M_SGE_I: /* X >= I <==> not (X < I) */
13051 if (imm_expr.X_add_number >= -0x8000
13052 && imm_expr.X_add_number < 0x8000)
13053 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13054 op[0], op[1], BFD_RELOC_LO16);
13057 load_register (AT, &imm_expr, GPR_SIZE == 64);
13058 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13062 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13065 case M_SGT: /* X > Y <==> Y < X */
13071 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13074 case M_SGT_I: /* X > I <==> I < X */
13081 load_register (AT, &imm_expr, GPR_SIZE == 64);
13082 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13085 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13091 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13095 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13102 load_register (AT, &imm_expr, GPR_SIZE == 64);
13103 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13104 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13108 if (imm_expr.X_add_number >= -0x8000
13109 && imm_expr.X_add_number < 0x8000)
13111 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13116 load_register (AT, &imm_expr, GPR_SIZE == 64);
13117 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13121 if (imm_expr.X_add_number >= -0x8000
13122 && imm_expr.X_add_number < 0x8000)
13124 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13129 load_register (AT, &imm_expr, GPR_SIZE == 64);
13130 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13135 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13136 else if (op[2] == 0)
13137 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13140 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13141 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13146 if (imm_expr.X_add_number == 0)
13148 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13153 as_warn (_("instruction %s: result is always true"),
13154 ip->insn_mo->name);
13155 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13156 op[0], 0, BFD_RELOC_LO16);
13159 if (CPU_HAS_SEQ (mips_opts.arch)
13160 && -512 <= imm_expr.X_add_number
13161 && imm_expr.X_add_number < 512)
13163 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13164 (int) imm_expr.X_add_number);
13167 if (imm_expr.X_add_number >= 0
13168 && imm_expr.X_add_number < 0x10000)
13170 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13173 else if (imm_expr.X_add_number > -0x8000
13174 && imm_expr.X_add_number < 0)
13176 imm_expr.X_add_number = -imm_expr.X_add_number;
13177 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13178 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13180 else if (CPU_HAS_SEQ (mips_opts.arch))
13183 load_register (AT, &imm_expr, GPR_SIZE == 64);
13184 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13189 load_register (AT, &imm_expr, GPR_SIZE == 64);
13190 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13193 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13208 if (!mips_opts.micromips)
13210 if (imm_expr.X_add_number > -0x200
13211 && imm_expr.X_add_number <= 0x200)
13213 macro_build (NULL, s, "t,r,.", op[0], op[1],
13214 (int) -imm_expr.X_add_number);
13223 if (imm_expr.X_add_number > -0x8000
13224 && imm_expr.X_add_number <= 0x8000)
13226 imm_expr.X_add_number = -imm_expr.X_add_number;
13227 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13232 load_register (AT, &imm_expr, dbl);
13233 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13255 load_register (AT, &imm_expr, GPR_SIZE == 64);
13256 macro_build (NULL, s, "s,t", op[0], AT);
13261 gas_assert (!mips_opts.micromips);
13262 gas_assert (mips_opts.isa == ISA_MIPS1);
13266 * Is the double cfc1 instruction a bug in the mips assembler;
13267 * or is there a reason for it?
13269 start_noreorder ();
13270 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13271 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13272 macro_build (NULL, "nop", "");
13273 expr1.X_add_number = 3;
13274 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13275 expr1.X_add_number = 2;
13276 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13277 macro_build (NULL, "ctc1", "t,G", AT, RA);
13278 macro_build (NULL, "nop", "");
13279 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13281 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13282 macro_build (NULL, "nop", "");
13299 offbits = (mips_opts.micromips ? 12 : 16);
13305 offbits = (mips_opts.micromips ? 12 : 16);
13317 offbits = (mips_opts.micromips ? 12 : 16);
13324 offbits = (mips_opts.micromips ? 12 : 16);
13330 large_offset = !small_offset_p (off, align, offbits);
13332 expr1.X_add_number = 0;
13337 if (small_offset_p (0, align, 16))
13338 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13339 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13342 load_address (tempreg, ep, &used_at);
13344 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13345 tempreg, tempreg, breg);
13347 offset_reloc[0] = BFD_RELOC_LO16;
13348 offset_reloc[1] = BFD_RELOC_UNUSED;
13349 offset_reloc[2] = BFD_RELOC_UNUSED;
13354 else if (!ust && op[0] == breg)
13365 if (!target_big_endian)
13366 ep->X_add_number += off;
13368 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13370 macro_build (ep, s, "t,o(b)", tempreg, -1,
13371 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13373 if (!target_big_endian)
13374 ep->X_add_number -= off;
13376 ep->X_add_number += off;
13378 macro_build (NULL, s2, "t,~(b)",
13379 tempreg, (int) ep->X_add_number, breg);
13381 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13382 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13384 /* If necessary, move the result in tempreg to the final destination. */
13385 if (!ust && op[0] != tempreg)
13387 /* Protect second load's delay slot. */
13389 move_register (op[0], tempreg);
13395 if (target_big_endian == ust)
13396 ep->X_add_number += off;
13397 tempreg = ust || large_offset ? op[0] : AT;
13398 macro_build (ep, s, "t,o(b)", tempreg, -1,
13399 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13401 /* For halfword transfers we need a temporary register to shuffle
13402 bytes. Unfortunately for M_USH_A we have none available before
13403 the next store as AT holds the base address. We deal with this
13404 case by clobbering TREG and then restoring it as with ULH. */
13405 tempreg = ust == large_offset ? op[0] : AT;
13407 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13409 if (target_big_endian == ust)
13410 ep->X_add_number -= off;
13412 ep->X_add_number += off;
13413 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13414 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13416 /* For M_USH_A re-retrieve the LSB. */
13417 if (ust && large_offset)
13419 if (target_big_endian)
13420 ep->X_add_number += off;
13422 ep->X_add_number -= off;
13423 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13424 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13426 /* For ULH and M_USH_A OR the LSB in. */
13427 if (!ust || large_offset)
13429 tempreg = !large_offset ? AT : op[0];
13430 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13431 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13436 /* FIXME: Check if this is one of the itbl macros, since they
13437 are added dynamically. */
13438 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13441 if (!mips_opts.at && used_at)
13442 as_bad (_("macro used $at after \".set noat\""));
13445 /* Implement macros in mips16 mode. */
13448 mips16_macro (struct mips_cl_insn *ip)
13450 const struct mips_operand_array *operands;
13455 const char *s, *s2, *s3;
13456 unsigned int op[MAX_OPERANDS];
13459 mask = ip->insn_mo->mask;
13461 operands = insn_operands (ip);
13462 for (i = 0; i < MAX_OPERANDS; i++)
13463 if (operands->operand[i])
13464 op[i] = insn_extract_operand (ip, operands->operand[i]);
13468 expr1.X_op = O_constant;
13469 expr1.X_op_symbol = NULL;
13470 expr1.X_add_symbol = NULL;
13471 expr1.X_add_number = 1;
13482 /* Fall through. */
13488 /* Fall through. */
13492 start_noreorder ();
13493 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13494 expr1.X_add_number = 2;
13495 macro_build (&expr1, "bnez", "x,p", op[2]);
13496 macro_build (NULL, "break", "6", 7);
13498 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13499 since that causes an overflow. We should do that as well,
13500 but I don't see how to do the comparisons without a temporary
13503 macro_build (NULL, s, "x", op[0]);
13522 start_noreorder ();
13523 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13524 expr1.X_add_number = 2;
13525 macro_build (&expr1, "bnez", "x,p", op[2]);
13526 macro_build (NULL, "break", "6", 7);
13528 macro_build (NULL, s2, "x", op[0]);
13533 /* Fall through. */
13535 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13536 macro_build (NULL, "mflo", "x", op[0]);
13544 imm_expr.X_add_number = -imm_expr.X_add_number;
13545 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13549 imm_expr.X_add_number = -imm_expr.X_add_number;
13550 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13554 imm_expr.X_add_number = -imm_expr.X_add_number;
13555 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13577 goto do_reverse_branch;
13581 goto do_reverse_branch;
13593 goto do_reverse_branch;
13604 macro_build (NULL, s, "x,y", op[0], op[1]);
13605 macro_build (&offset_expr, s2, "p");
13632 goto do_addone_branch_i;
13637 goto do_addone_branch_i;
13652 goto do_addone_branch_i;
13658 do_addone_branch_i:
13659 ++imm_expr.X_add_number;
13662 macro_build (&imm_expr, s, s3, op[0]);
13663 macro_build (&offset_expr, s2, "p");
13667 expr1.X_add_number = 0;
13668 macro_build (&expr1, "slti", "x,8", op[1]);
13669 if (op[0] != op[1])
13670 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13671 expr1.X_add_number = 2;
13672 macro_build (&expr1, "bteqz", "p");
13673 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13678 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13679 opcode bits in *OPCODE_EXTRA. */
13681 static struct mips_opcode *
13682 mips_lookup_insn (struct hash_control *hash, const char *start,
13683 ssize_t length, unsigned int *opcode_extra)
13685 char *name, *dot, *p;
13686 unsigned int mask, suffix;
13688 struct mips_opcode *insn;
13690 /* Make a copy of the instruction so that we can fiddle with it. */
13691 name = xstrndup (start, length);
13693 /* Look up the instruction as-is. */
13694 insn = (struct mips_opcode *) hash_find (hash, name);
13698 dot = strchr (name, '.');
13701 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13702 p = mips_parse_vu0_channels (dot + 1, &mask);
13703 if (*p == 0 && mask != 0)
13706 insn = (struct mips_opcode *) hash_find (hash, name);
13708 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13710 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13716 if (mips_opts.micromips)
13718 /* See if there's an instruction size override suffix,
13719 either `16' or `32', at the end of the mnemonic proper,
13720 that defines the operation, i.e. before the first `.'
13721 character if any. Strip it and retry. */
13722 opend = dot != NULL ? dot - name : length;
13723 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13725 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13731 memcpy (name + opend - 2, name + opend, length - opend + 1);
13732 insn = (struct mips_opcode *) hash_find (hash, name);
13735 forced_insn_length = suffix;
13747 /* Assemble an instruction into its binary format. If the instruction
13748 is a macro, set imm_expr and offset_expr to the values associated
13749 with "I" and "A" operands respectively. Otherwise store the value
13750 of the relocatable field (if any) in offset_expr. In both cases
13751 set offset_reloc to the relocation operators applied to offset_expr. */
13754 mips_ip (char *str, struct mips_cl_insn *insn)
13756 const struct mips_opcode *first, *past;
13757 struct hash_control *hash;
13760 struct mips_operand_token *tokens;
13761 unsigned int opcode_extra;
13763 if (mips_opts.micromips)
13765 hash = micromips_op_hash;
13766 past = µmips_opcodes[bfd_micromips_num_opcodes];
13771 past = &mips_opcodes[NUMOPCODES];
13773 forced_insn_length = 0;
13776 /* We first try to match an instruction up to a space or to the end. */
13777 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13780 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13783 set_insn_error (0, _("unrecognized opcode"));
13787 if (strcmp (first->name, "li.s") == 0)
13789 else if (strcmp (first->name, "li.d") == 0)
13793 tokens = mips_parse_arguments (str + end, format);
13797 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13798 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13799 set_insn_error (0, _("invalid operands"));
13801 obstack_free (&mips_operand_tokens, tokens);
13804 /* As for mips_ip, but used when assembling MIPS16 code.
13805 Also set forced_insn_length to the resulting instruction size in
13806 bytes if the user explicitly requested a small or extended instruction. */
13809 mips16_ip (char *str, struct mips_cl_insn *insn)
13812 struct mips_opcode *first;
13813 struct mips_operand_token *tokens;
13815 forced_insn_length = 0;
13817 for (s = str; ISLOWER (*s); ++s)
13831 if (s[1] == 't' && s[2] == ' ')
13833 forced_insn_length = 2;
13837 else if (s[1] == 'e' && s[2] == ' ')
13839 forced_insn_length = 4;
13843 /* Fall through. */
13845 set_insn_error (0, _("unrecognized opcode"));
13849 if (mips_opts.noautoextend && !forced_insn_length)
13850 forced_insn_length = 2;
13853 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13858 set_insn_error (0, _("unrecognized opcode"));
13862 tokens = mips_parse_arguments (s, 0);
13866 if (!match_mips16_insns (insn, first, tokens))
13867 set_insn_error (0, _("invalid operands"));
13869 obstack_free (&mips_operand_tokens, tokens);
13872 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13873 NBITS is the number of significant bits in VAL. */
13875 static unsigned long
13876 mips16_immed_extend (offsetT val, unsigned int nbits)
13881 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13884 else if (nbits == 15)
13886 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13891 extval = ((val & 0x1f) << 6) | (val & 0x20);
13894 return (extval << 16) | val;
13897 /* Like decode_mips16_operand, but require the operand to be defined and
13898 require it to be an integer. */
13900 static const struct mips_int_operand *
13901 mips16_immed_operand (int type, bfd_boolean extended_p)
13903 const struct mips_operand *operand;
13905 operand = decode_mips16_operand (type, extended_p);
13906 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13908 return (const struct mips_int_operand *) operand;
13911 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13914 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13915 bfd_reloc_code_real_type reloc, offsetT sval)
13917 int min_val, max_val;
13919 min_val = mips_int_operand_min (operand);
13920 max_val = mips_int_operand_max (operand);
13921 if (reloc != BFD_RELOC_UNUSED)
13924 sval = SEXT_16BIT (sval);
13929 return (sval >= min_val
13931 && (sval & ((1 << operand->shift) - 1)) == 0);
13934 /* Install immediate value VAL into MIPS16 instruction *INSN,
13935 extending it if necessary. The instruction in *INSN may
13936 already be extended.
13938 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13939 if none. In the former case, VAL is a 16-bit number with no
13940 defined signedness.
13942 TYPE is the type of the immediate field. USER_INSN_LENGTH
13943 is the length that the user requested, or 0 if none. */
13946 mips16_immed (const char *file, unsigned int line, int type,
13947 bfd_reloc_code_real_type reloc, offsetT val,
13948 unsigned int user_insn_length, unsigned long *insn)
13950 const struct mips_int_operand *operand;
13951 unsigned int uval, length;
13953 operand = mips16_immed_operand (type, FALSE);
13954 if (!mips16_immed_in_range_p (operand, reloc, val))
13956 /* We need an extended instruction. */
13957 if (user_insn_length == 2)
13958 as_bad_where (file, line, _("invalid unextended operand value"));
13960 *insn |= MIPS16_EXTEND;
13962 else if (user_insn_length == 4)
13964 /* The operand doesn't force an unextended instruction to be extended.
13965 Warn if the user wanted an extended instruction anyway. */
13966 *insn |= MIPS16_EXTEND;
13967 as_warn_where (file, line,
13968 _("extended operand requested but not required"));
13971 length = mips16_opcode_length (*insn);
13974 operand = mips16_immed_operand (type, TRUE);
13975 if (!mips16_immed_in_range_p (operand, reloc, val))
13976 as_bad_where (file, line,
13977 _("operand value out of range for instruction"));
13979 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13981 *insn = mips_insert_operand (&operand->root, *insn, uval);
13983 *insn |= mips16_immed_extend (uval, operand->root.size);
13986 struct percent_op_match
13989 bfd_reloc_code_real_type reloc;
13992 static const struct percent_op_match mips_percent_op[] =
13994 {"%lo", BFD_RELOC_LO16},
13995 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13996 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13997 {"%call16", BFD_RELOC_MIPS_CALL16},
13998 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13999 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14000 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14001 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14002 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14003 {"%got", BFD_RELOC_MIPS_GOT16},
14004 {"%gp_rel", BFD_RELOC_GPREL16},
14005 {"%half", BFD_RELOC_16},
14006 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14007 {"%higher", BFD_RELOC_MIPS_HIGHER},
14008 {"%neg", BFD_RELOC_MIPS_SUB},
14009 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14010 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14011 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14012 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14013 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14014 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14015 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14016 {"%hi", BFD_RELOC_HI16_S},
14017 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14018 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14021 static const struct percent_op_match mips16_percent_op[] =
14023 {"%lo", BFD_RELOC_MIPS16_LO16},
14024 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14025 {"%got", BFD_RELOC_MIPS16_GOT16},
14026 {"%call16", BFD_RELOC_MIPS16_CALL16},
14027 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14028 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14029 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14030 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14031 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14032 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14033 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14034 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14038 /* Return true if *STR points to a relocation operator. When returning true,
14039 move *STR over the operator and store its relocation code in *RELOC.
14040 Leave both *STR and *RELOC alone when returning false. */
14043 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14045 const struct percent_op_match *percent_op;
14048 if (mips_opts.mips16)
14050 percent_op = mips16_percent_op;
14051 limit = ARRAY_SIZE (mips16_percent_op);
14055 percent_op = mips_percent_op;
14056 limit = ARRAY_SIZE (mips_percent_op);
14059 for (i = 0; i < limit; i++)
14060 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14062 int len = strlen (percent_op[i].str);
14064 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14067 *str += strlen (percent_op[i].str);
14068 *reloc = percent_op[i].reloc;
14070 /* Check whether the output BFD supports this relocation.
14071 If not, issue an error and fall back on something safe. */
14072 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14074 as_bad (_("relocation %s isn't supported by the current ABI"),
14075 percent_op[i].str);
14076 *reloc = BFD_RELOC_UNUSED;
14084 /* Parse string STR as a 16-bit relocatable operand. Store the
14085 expression in *EP and the relocations in the array starting
14086 at RELOC. Return the number of relocation operators used.
14088 On exit, EXPR_END points to the first character after the expression. */
14091 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14094 bfd_reloc_code_real_type reversed_reloc[3];
14095 size_t reloc_index, i;
14096 int crux_depth, str_depth;
14099 /* Search for the start of the main expression, recoding relocations
14100 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14101 of the main expression and with CRUX_DEPTH containing the number
14102 of open brackets at that point. */
14109 crux_depth = str_depth;
14111 /* Skip over whitespace and brackets, keeping count of the number
14113 while (*str == ' ' || *str == '\t' || *str == '(')
14118 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14119 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14121 my_getExpression (ep, crux);
14124 /* Match every open bracket. */
14125 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14129 if (crux_depth > 0)
14130 as_bad (_("unclosed '('"));
14134 if (reloc_index != 0)
14136 prev_reloc_op_frag = frag_now;
14137 for (i = 0; i < reloc_index; i++)
14138 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14141 return reloc_index;
14145 my_getExpression (expressionS *ep, char *str)
14149 save_in = input_line_pointer;
14150 input_line_pointer = str;
14152 expr_end = input_line_pointer;
14153 input_line_pointer = save_in;
14157 md_atof (int type, char *litP, int *sizeP)
14159 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14163 md_number_to_chars (char *buf, valueT val, int n)
14165 if (target_big_endian)
14166 number_to_chars_bigendian (buf, val, n);
14168 number_to_chars_littleendian (buf, val, n);
14171 static int support_64bit_objects(void)
14173 const char **list, **l;
14176 list = bfd_target_list ();
14177 for (l = list; *l != NULL; l++)
14178 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14179 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14181 yes = (*l != NULL);
14186 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14187 NEW_VALUE. Warn if another value was already specified. Note:
14188 we have to defer parsing the -march and -mtune arguments in order
14189 to handle 'from-abi' correctly, since the ABI might be specified
14190 in a later argument. */
14193 mips_set_option_string (const char **string_ptr, const char *new_value)
14195 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14196 as_warn (_("a different %s was already specified, is now %s"),
14197 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14200 *string_ptr = new_value;
14204 md_parse_option (int c, const char *arg)
14208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14209 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14211 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14212 c == mips_ases[i].option_on);
14218 case OPTION_CONSTRUCT_FLOATS:
14219 mips_disable_float_construction = 0;
14222 case OPTION_NO_CONSTRUCT_FLOATS:
14223 mips_disable_float_construction = 1;
14235 target_big_endian = 1;
14239 target_big_endian = 0;
14245 else if (arg[0] == '0')
14247 else if (arg[0] == '1')
14257 mips_debug = atoi (arg);
14261 file_mips_opts.isa = ISA_MIPS1;
14265 file_mips_opts.isa = ISA_MIPS2;
14269 file_mips_opts.isa = ISA_MIPS3;
14273 file_mips_opts.isa = ISA_MIPS4;
14277 file_mips_opts.isa = ISA_MIPS5;
14280 case OPTION_MIPS32:
14281 file_mips_opts.isa = ISA_MIPS32;
14284 case OPTION_MIPS32R2:
14285 file_mips_opts.isa = ISA_MIPS32R2;
14288 case OPTION_MIPS32R3:
14289 file_mips_opts.isa = ISA_MIPS32R3;
14292 case OPTION_MIPS32R5:
14293 file_mips_opts.isa = ISA_MIPS32R5;
14296 case OPTION_MIPS32R6:
14297 file_mips_opts.isa = ISA_MIPS32R6;
14300 case OPTION_MIPS64R2:
14301 file_mips_opts.isa = ISA_MIPS64R2;
14304 case OPTION_MIPS64R3:
14305 file_mips_opts.isa = ISA_MIPS64R3;
14308 case OPTION_MIPS64R5:
14309 file_mips_opts.isa = ISA_MIPS64R5;
14312 case OPTION_MIPS64R6:
14313 file_mips_opts.isa = ISA_MIPS64R6;
14316 case OPTION_MIPS64:
14317 file_mips_opts.isa = ISA_MIPS64;
14321 mips_set_option_string (&mips_tune_string, arg);
14325 mips_set_option_string (&mips_arch_string, arg);
14329 mips_set_option_string (&mips_arch_string, "4650");
14330 mips_set_option_string (&mips_tune_string, "4650");
14333 case OPTION_NO_M4650:
14337 mips_set_option_string (&mips_arch_string, "4010");
14338 mips_set_option_string (&mips_tune_string, "4010");
14341 case OPTION_NO_M4010:
14345 mips_set_option_string (&mips_arch_string, "4100");
14346 mips_set_option_string (&mips_tune_string, "4100");
14349 case OPTION_NO_M4100:
14353 mips_set_option_string (&mips_arch_string, "3900");
14354 mips_set_option_string (&mips_tune_string, "3900");
14357 case OPTION_NO_M3900:
14360 case OPTION_MICROMIPS:
14361 if (file_mips_opts.mips16 == 1)
14363 as_bad (_("-mmicromips cannot be used with -mips16"));
14366 file_mips_opts.micromips = 1;
14367 mips_no_prev_insn ();
14370 case OPTION_NO_MICROMIPS:
14371 file_mips_opts.micromips = 0;
14372 mips_no_prev_insn ();
14375 case OPTION_MIPS16:
14376 if (file_mips_opts.micromips == 1)
14378 as_bad (_("-mips16 cannot be used with -micromips"));
14381 file_mips_opts.mips16 = 1;
14382 mips_no_prev_insn ();
14385 case OPTION_NO_MIPS16:
14386 file_mips_opts.mips16 = 0;
14387 mips_no_prev_insn ();
14390 case OPTION_FIX_24K:
14394 case OPTION_NO_FIX_24K:
14398 case OPTION_FIX_RM7000:
14399 mips_fix_rm7000 = 1;
14402 case OPTION_NO_FIX_RM7000:
14403 mips_fix_rm7000 = 0;
14406 case OPTION_FIX_LOONGSON2F_JUMP:
14407 mips_fix_loongson2f_jump = TRUE;
14410 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14411 mips_fix_loongson2f_jump = FALSE;
14414 case OPTION_FIX_LOONGSON2F_NOP:
14415 mips_fix_loongson2f_nop = TRUE;
14418 case OPTION_NO_FIX_LOONGSON2F_NOP:
14419 mips_fix_loongson2f_nop = FALSE;
14422 case OPTION_FIX_VR4120:
14423 mips_fix_vr4120 = 1;
14426 case OPTION_NO_FIX_VR4120:
14427 mips_fix_vr4120 = 0;
14430 case OPTION_FIX_VR4130:
14431 mips_fix_vr4130 = 1;
14434 case OPTION_NO_FIX_VR4130:
14435 mips_fix_vr4130 = 0;
14438 case OPTION_FIX_CN63XXP1:
14439 mips_fix_cn63xxp1 = TRUE;
14442 case OPTION_NO_FIX_CN63XXP1:
14443 mips_fix_cn63xxp1 = FALSE;
14446 case OPTION_RELAX_BRANCH:
14447 mips_relax_branch = 1;
14450 case OPTION_NO_RELAX_BRANCH:
14451 mips_relax_branch = 0;
14454 case OPTION_INSN32:
14455 file_mips_opts.insn32 = TRUE;
14458 case OPTION_NO_INSN32:
14459 file_mips_opts.insn32 = FALSE;
14462 case OPTION_MSHARED:
14463 mips_in_shared = TRUE;
14466 case OPTION_MNO_SHARED:
14467 mips_in_shared = FALSE;
14470 case OPTION_MSYM32:
14471 file_mips_opts.sym32 = TRUE;
14474 case OPTION_MNO_SYM32:
14475 file_mips_opts.sym32 = FALSE;
14478 /* When generating ELF code, we permit -KPIC and -call_shared to
14479 select SVR4_PIC, and -non_shared to select no PIC. This is
14480 intended to be compatible with Irix 5. */
14481 case OPTION_CALL_SHARED:
14482 mips_pic = SVR4_PIC;
14483 mips_abicalls = TRUE;
14486 case OPTION_CALL_NONPIC:
14488 mips_abicalls = TRUE;
14491 case OPTION_NON_SHARED:
14493 mips_abicalls = FALSE;
14496 /* The -xgot option tells the assembler to use 32 bit offsets
14497 when accessing the got in SVR4_PIC mode. It is for Irix
14504 g_switch_value = atoi (arg);
14508 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14511 mips_abi = O32_ABI;
14515 mips_abi = N32_ABI;
14519 mips_abi = N64_ABI;
14520 if (!support_64bit_objects())
14521 as_fatal (_("no compiled in support for 64 bit object file format"));
14525 file_mips_opts.gp = 32;
14529 file_mips_opts.gp = 64;
14533 file_mips_opts.fp = 32;
14537 file_mips_opts.fp = 0;
14541 file_mips_opts.fp = 64;
14544 case OPTION_ODD_SPREG:
14545 file_mips_opts.oddspreg = 1;
14548 case OPTION_NO_ODD_SPREG:
14549 file_mips_opts.oddspreg = 0;
14552 case OPTION_SINGLE_FLOAT:
14553 file_mips_opts.single_float = 1;
14556 case OPTION_DOUBLE_FLOAT:
14557 file_mips_opts.single_float = 0;
14560 case OPTION_SOFT_FLOAT:
14561 file_mips_opts.soft_float = 1;
14564 case OPTION_HARD_FLOAT:
14565 file_mips_opts.soft_float = 0;
14569 if (strcmp (arg, "32") == 0)
14570 mips_abi = O32_ABI;
14571 else if (strcmp (arg, "o64") == 0)
14572 mips_abi = O64_ABI;
14573 else if (strcmp (arg, "n32") == 0)
14574 mips_abi = N32_ABI;
14575 else if (strcmp (arg, "64") == 0)
14577 mips_abi = N64_ABI;
14578 if (! support_64bit_objects())
14579 as_fatal (_("no compiled in support for 64 bit object file "
14582 else if (strcmp (arg, "eabi") == 0)
14583 mips_abi = EABI_ABI;
14586 as_fatal (_("invalid abi -mabi=%s"), arg);
14591 case OPTION_M7000_HILO_FIX:
14592 mips_7000_hilo_fix = TRUE;
14595 case OPTION_MNO_7000_HILO_FIX:
14596 mips_7000_hilo_fix = FALSE;
14599 case OPTION_MDEBUG:
14600 mips_flag_mdebug = TRUE;
14603 case OPTION_NO_MDEBUG:
14604 mips_flag_mdebug = FALSE;
14608 mips_flag_pdr = TRUE;
14611 case OPTION_NO_PDR:
14612 mips_flag_pdr = FALSE;
14615 case OPTION_MVXWORKS_PIC:
14616 mips_pic = VXWORKS_PIC;
14620 if (strcmp (arg, "2008") == 0)
14622 else if (strcmp (arg, "legacy") == 0)
14626 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14635 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14640 /* Set up globals to tune for the ISA or processor described by INFO. */
14643 mips_set_tune (const struct mips_cpu_info *info)
14646 mips_tune = info->cpu;
14651 mips_after_parse_args (void)
14653 const struct mips_cpu_info *arch_info = 0;
14654 const struct mips_cpu_info *tune_info = 0;
14656 /* GP relative stuff not working for PE */
14657 if (strncmp (TARGET_OS, "pe", 2) == 0)
14659 if (g_switch_seen && g_switch_value != 0)
14660 as_bad (_("-G not supported in this configuration"));
14661 g_switch_value = 0;
14664 if (mips_abi == NO_ABI)
14665 mips_abi = MIPS_DEFAULT_ABI;
14667 /* The following code determines the architecture.
14668 Similar code was added to GCC 3.3 (see override_options() in
14669 config/mips/mips.c). The GAS and GCC code should be kept in sync
14670 as much as possible. */
14672 if (mips_arch_string != 0)
14673 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14675 if (file_mips_opts.isa != ISA_UNKNOWN)
14677 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14678 ISA level specified by -mipsN, while arch_info->isa contains
14679 the -march selection (if any). */
14680 if (arch_info != 0)
14682 /* -march takes precedence over -mipsN, since it is more descriptive.
14683 There's no harm in specifying both as long as the ISA levels
14685 if (file_mips_opts.isa != arch_info->isa)
14686 as_bad (_("-%s conflicts with the other architecture options,"
14687 " which imply -%s"),
14688 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14689 mips_cpu_info_from_isa (arch_info->isa)->name);
14692 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14695 if (arch_info == 0)
14697 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14698 gas_assert (arch_info);
14701 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14702 as_bad (_("-march=%s is not compatible with the selected ABI"),
14705 file_mips_opts.arch = arch_info->cpu;
14706 file_mips_opts.isa = arch_info->isa;
14708 /* Set up initial mips_opts state. */
14709 mips_opts = file_mips_opts;
14711 /* The register size inference code is now placed in
14712 file_mips_check_options. */
14714 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14716 if (mips_tune_string != 0)
14717 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14719 if (tune_info == 0)
14720 mips_set_tune (arch_info);
14722 mips_set_tune (tune_info);
14724 if (mips_flag_mdebug < 0)
14725 mips_flag_mdebug = 0;
14729 mips_init_after_args (void)
14731 /* initialize opcodes */
14732 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14733 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14737 md_pcrel_from (fixS *fixP)
14739 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14740 switch (fixP->fx_r_type)
14742 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14743 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14744 /* Return the address of the delay slot. */
14747 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14748 case BFD_RELOC_MICROMIPS_JMP:
14749 case BFD_RELOC_MIPS16_16_PCREL_S1:
14750 case BFD_RELOC_16_PCREL_S2:
14751 case BFD_RELOC_MIPS_21_PCREL_S2:
14752 case BFD_RELOC_MIPS_26_PCREL_S2:
14753 case BFD_RELOC_MIPS_JMP:
14754 /* Return the address of the delay slot. */
14757 case BFD_RELOC_MIPS_18_PCREL_S3:
14758 /* Return the aligned address of the doubleword containing
14759 the instruction. */
14767 /* This is called before the symbol table is processed. In order to
14768 work with gcc when using mips-tfile, we must keep all local labels.
14769 However, in other cases, we want to discard them. If we were
14770 called with -g, but we didn't see any debugging information, it may
14771 mean that gcc is smuggling debugging information through to
14772 mips-tfile, in which case we must generate all local labels. */
14775 mips_frob_file_before_adjust (void)
14777 #ifndef NO_ECOFF_DEBUGGING
14778 if (ECOFF_DEBUGGING
14780 && ! ecoff_debugging_seen)
14781 flag_keep_locals = 1;
14785 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14786 the corresponding LO16 reloc. This is called before md_apply_fix and
14787 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14788 relocation operators.
14790 For our purposes, a %lo() expression matches a %got() or %hi()
14793 (a) it refers to the same symbol; and
14794 (b) the offset applied in the %lo() expression is no lower than
14795 the offset applied in the %got() or %hi().
14797 (b) allows us to cope with code like:
14800 lh $4,%lo(foo+2)($4)
14802 ...which is legal on RELA targets, and has a well-defined behaviour
14803 if the user knows that adding 2 to "foo" will not induce a carry to
14806 When several %lo()s match a particular %got() or %hi(), we use the
14807 following rules to distinguish them:
14809 (1) %lo()s with smaller offsets are a better match than %lo()s with
14812 (2) %lo()s with no matching %got() or %hi() are better than those
14813 that already have a matching %got() or %hi().
14815 (3) later %lo()s are better than earlier %lo()s.
14817 These rules are applied in order.
14819 (1) means, among other things, that %lo()s with identical offsets are
14820 chosen if they exist.
14822 (2) means that we won't associate several high-part relocations with
14823 the same low-part relocation unless there's no alternative. Having
14824 several high parts for the same low part is a GNU extension; this rule
14825 allows careful users to avoid it.
14827 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14828 with the last high-part relocation being at the front of the list.
14829 It therefore makes sense to choose the last matching low-part
14830 relocation, all other things being equal. It's also easier
14831 to code that way. */
14834 mips_frob_file (void)
14836 struct mips_hi_fixup *l;
14837 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14839 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14841 segment_info_type *seginfo;
14842 bfd_boolean matched_lo_p;
14843 fixS **hi_pos, **lo_pos, **pos;
14845 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14847 /* If a GOT16 relocation turns out to be against a global symbol,
14848 there isn't supposed to be a matching LO. Ignore %gots against
14849 constants; we'll report an error for those later. */
14850 if (got16_reloc_p (l->fixp->fx_r_type)
14851 && !(l->fixp->fx_addsy
14852 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14855 /* Check quickly whether the next fixup happens to be a matching %lo. */
14856 if (fixup_has_matching_lo_p (l->fixp))
14859 seginfo = seg_info (l->seg);
14861 /* Set HI_POS to the position of this relocation in the chain.
14862 Set LO_POS to the position of the chosen low-part relocation.
14863 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14864 relocation that matches an immediately-preceding high-part
14868 matched_lo_p = FALSE;
14869 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14871 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14873 if (*pos == l->fixp)
14876 if ((*pos)->fx_r_type == looking_for_rtype
14877 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14878 && (*pos)->fx_offset >= l->fixp->fx_offset
14880 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14882 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14885 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14886 && fixup_has_matching_lo_p (*pos));
14889 /* If we found a match, remove the high-part relocation from its
14890 current position and insert it before the low-part relocation.
14891 Make the offsets match so that fixup_has_matching_lo_p()
14894 We don't warn about unmatched high-part relocations since some
14895 versions of gcc have been known to emit dead "lui ...%hi(...)"
14897 if (lo_pos != NULL)
14899 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14900 if (l->fixp->fx_next != *lo_pos)
14902 *hi_pos = l->fixp->fx_next;
14903 l->fixp->fx_next = *lo_pos;
14911 mips_force_relocation (fixS *fixp)
14913 if (generic_force_reloc (fixp))
14916 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14917 so that the linker relaxation can update targets. */
14918 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14919 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14920 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14923 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14924 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14925 microMIPS symbols so that we can do cross-mode branch diagnostics
14926 and BAL to JALX conversion by the linker. */
14927 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14928 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14929 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14931 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14934 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14935 if (ISA_IS_R6 (file_mips_opts.isa)
14936 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14937 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14938 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14939 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14940 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14941 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14942 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14948 /* Implement TC_FORCE_RELOCATION_ABS. */
14951 mips_force_relocation_abs (fixS *fixp)
14953 if (generic_force_reloc (fixp))
14956 /* These relocations do not have enough bits in the in-place addend
14957 to hold an arbitrary absolute section's offset. */
14958 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
14964 /* Read the instruction associated with RELOC from BUF. */
14966 static unsigned int
14967 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14969 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14970 return read_compressed_insn (buf, 4);
14972 return read_insn (buf);
14975 /* Write instruction INSN to BUF, given that it has been relocated
14979 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14980 unsigned long insn)
14982 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14983 write_compressed_insn (buf, insn, 4);
14985 write_insn (buf, insn);
14988 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
14989 to a symbol in another ISA mode, which cannot be converted to JALX. */
14992 fix_bad_cross_mode_jump_p (fixS *fixP)
14994 unsigned long opcode;
14998 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15001 other = S_GET_OTHER (fixP->fx_addsy);
15002 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15003 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15004 switch (fixP->fx_r_type)
15006 case BFD_RELOC_MIPS_JMP:
15007 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15008 case BFD_RELOC_MICROMIPS_JMP:
15009 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15015 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15016 jump to a symbol in the same ISA mode. */
15019 fix_bad_same_mode_jalx_p (fixS *fixP)
15021 unsigned long opcode;
15025 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15028 other = S_GET_OTHER (fixP->fx_addsy);
15029 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15030 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15031 switch (fixP->fx_r_type)
15033 case BFD_RELOC_MIPS_JMP:
15034 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15035 case BFD_RELOC_MIPS16_JMP:
15036 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15037 case BFD_RELOC_MICROMIPS_JMP:
15038 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15044 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15045 to a symbol whose value plus addend is not aligned according to the
15046 ultimate (after linker relaxation) jump instruction's immediate field
15047 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15048 regular MIPS code, to (1 << 2). */
15051 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15053 bfd_boolean micro_to_mips_p;
15057 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15060 other = S_GET_OTHER (fixP->fx_addsy);
15061 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15062 val += fixP->fx_offset;
15063 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15064 && !ELF_ST_IS_MICROMIPS (other));
15065 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15066 != ELF_ST_IS_COMPRESSED (other));
15069 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15070 to a symbol whose annotation indicates another ISA mode. For absolute
15071 symbols check the ISA bit instead.
15073 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15074 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15075 MIPS symbols and associated with BAL instructions as these instructions
15076 may be be converted to JALX by the linker. */
15079 fix_bad_cross_mode_branch_p (fixS *fixP)
15081 bfd_boolean absolute_p;
15082 unsigned long opcode;
15088 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15091 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15092 absolute_p = bfd_is_abs_section (symsec);
15094 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15095 other = S_GET_OTHER (fixP->fx_addsy);
15097 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15098 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15099 switch (fixP->fx_r_type)
15101 case BFD_RELOC_16_PCREL_S2:
15102 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15103 && opcode != 0x0411);
15104 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15105 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15106 && opcode != 0x4060);
15107 case BFD_RELOC_MIPS_21_PCREL_S2:
15108 case BFD_RELOC_MIPS_26_PCREL_S2:
15109 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15110 case BFD_RELOC_MIPS16_16_PCREL_S1:
15111 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15112 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15113 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15114 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15120 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15121 branch instruction pointed to by FIXP is not aligned according to the
15122 branch instruction's immediate field requirement. We need the addend
15123 to preserve the ISA bit and also the sum must not have bit 2 set. We
15124 must explicitly OR in the ISA bit from symbol annotation as the bit
15125 won't be set in the symbol's value then. */
15128 fix_bad_misaligned_branch_p (fixS *fixP)
15130 bfd_boolean absolute_p;
15137 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15140 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15141 absolute_p = bfd_is_abs_section (symsec);
15143 val = S_GET_VALUE (fixP->fx_addsy);
15144 other = S_GET_OTHER (fixP->fx_addsy);
15145 off = fixP->fx_offset;
15147 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15148 val |= ELF_ST_IS_COMPRESSED (other);
15150 return (val & 0x3) != isa_bit;
15153 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15154 and its calculated value VAL. */
15157 fix_validate_branch (fixS *fixP, valueT val)
15159 if (fixP->fx_done && (val & 0x3) != 0)
15160 as_bad_where (fixP->fx_file, fixP->fx_line,
15161 _("branch to misaligned address (0x%lx)"),
15162 (long) (val + md_pcrel_from (fixP)));
15163 else if (fix_bad_cross_mode_branch_p (fixP))
15164 as_bad_where (fixP->fx_file, fixP->fx_line,
15165 _("branch to a symbol in another ISA mode"));
15166 else if (fix_bad_misaligned_branch_p (fixP))
15167 as_bad_where (fixP->fx_file, fixP->fx_line,
15168 _("branch to misaligned address (0x%lx)"),
15169 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15170 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15171 as_bad_where (fixP->fx_file, fixP->fx_line,
15172 _("cannot encode misaligned addend "
15173 "in the relocatable field (0x%lx)"),
15174 (long) fixP->fx_offset);
15177 /* Apply a fixup to the object file. */
15180 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15183 unsigned long insn;
15184 reloc_howto_type *howto;
15186 if (fixP->fx_pcrel)
15187 switch (fixP->fx_r_type)
15189 case BFD_RELOC_16_PCREL_S2:
15190 case BFD_RELOC_MIPS16_16_PCREL_S1:
15191 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15192 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15193 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15194 case BFD_RELOC_32_PCREL:
15195 case BFD_RELOC_MIPS_21_PCREL_S2:
15196 case BFD_RELOC_MIPS_26_PCREL_S2:
15197 case BFD_RELOC_MIPS_18_PCREL_S3:
15198 case BFD_RELOC_MIPS_19_PCREL_S2:
15199 case BFD_RELOC_HI16_S_PCREL:
15200 case BFD_RELOC_LO16_PCREL:
15204 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15208 as_bad_where (fixP->fx_file, fixP->fx_line,
15209 _("PC-relative reference to a different section"));
15213 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15214 that have no MIPS ELF equivalent. */
15215 if (fixP->fx_r_type != BFD_RELOC_8)
15217 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15222 gas_assert (fixP->fx_size == 2
15223 || fixP->fx_size == 4
15224 || fixP->fx_r_type == BFD_RELOC_8
15225 || fixP->fx_r_type == BFD_RELOC_16
15226 || fixP->fx_r_type == BFD_RELOC_64
15227 || fixP->fx_r_type == BFD_RELOC_CTOR
15228 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15229 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15230 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15231 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15232 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15233 || fixP->fx_r_type == BFD_RELOC_NONE);
15235 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15237 /* Don't treat parts of a composite relocation as done. There are two
15240 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15241 should nevertheless be emitted if the first part is.
15243 (2) In normal usage, composite relocations are never assembly-time
15244 constants. The easiest way of dealing with the pathological
15245 exceptions is to generate a relocation against STN_UNDEF and
15246 leave everything up to the linker. */
15247 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15250 switch (fixP->fx_r_type)
15252 case BFD_RELOC_MIPS_TLS_GD:
15253 case BFD_RELOC_MIPS_TLS_LDM:
15254 case BFD_RELOC_MIPS_TLS_DTPREL32:
15255 case BFD_RELOC_MIPS_TLS_DTPREL64:
15256 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15257 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15258 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15259 case BFD_RELOC_MIPS_TLS_TPREL32:
15260 case BFD_RELOC_MIPS_TLS_TPREL64:
15261 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15262 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15263 case BFD_RELOC_MICROMIPS_TLS_GD:
15264 case BFD_RELOC_MICROMIPS_TLS_LDM:
15265 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15266 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15267 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15268 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15269 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15270 case BFD_RELOC_MIPS16_TLS_GD:
15271 case BFD_RELOC_MIPS16_TLS_LDM:
15272 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15273 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15274 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15275 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15276 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15277 if (fixP->fx_addsy)
15278 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15280 as_bad_where (fixP->fx_file, fixP->fx_line,
15281 _("TLS relocation against a constant"));
15284 case BFD_RELOC_MIPS_JMP:
15285 case BFD_RELOC_MIPS16_JMP:
15286 case BFD_RELOC_MICROMIPS_JMP:
15290 gas_assert (!fixP->fx_done);
15292 /* Shift is 2, unusually, for microMIPS JALX. */
15293 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15294 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15299 if (fix_bad_cross_mode_jump_p (fixP))
15300 as_bad_where (fixP->fx_file, fixP->fx_line,
15301 _("jump to a symbol in another ISA mode"));
15302 else if (fix_bad_same_mode_jalx_p (fixP))
15303 as_bad_where (fixP->fx_file, fixP->fx_line,
15304 _("JALX to a symbol in the same ISA mode"));
15305 else if (fix_bad_misaligned_jump_p (fixP, shift))
15306 as_bad_where (fixP->fx_file, fixP->fx_line,
15307 _("jump to misaligned address (0x%lx)"),
15308 (long) (S_GET_VALUE (fixP->fx_addsy)
15309 + fixP->fx_offset));
15310 else if (HAVE_IN_PLACE_ADDENDS
15311 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15312 as_bad_where (fixP->fx_file, fixP->fx_line,
15313 _("cannot encode misaligned addend "
15314 "in the relocatable field (0x%lx)"),
15315 (long) fixP->fx_offset);
15317 /* Fall through. */
15319 case BFD_RELOC_MIPS_SHIFT5:
15320 case BFD_RELOC_MIPS_SHIFT6:
15321 case BFD_RELOC_MIPS_GOT_DISP:
15322 case BFD_RELOC_MIPS_GOT_PAGE:
15323 case BFD_RELOC_MIPS_GOT_OFST:
15324 case BFD_RELOC_MIPS_SUB:
15325 case BFD_RELOC_MIPS_INSERT_A:
15326 case BFD_RELOC_MIPS_INSERT_B:
15327 case BFD_RELOC_MIPS_DELETE:
15328 case BFD_RELOC_MIPS_HIGHEST:
15329 case BFD_RELOC_MIPS_HIGHER:
15330 case BFD_RELOC_MIPS_SCN_DISP:
15331 case BFD_RELOC_MIPS_REL16:
15332 case BFD_RELOC_MIPS_RELGOT:
15333 case BFD_RELOC_MIPS_JALR:
15334 case BFD_RELOC_HI16:
15335 case BFD_RELOC_HI16_S:
15336 case BFD_RELOC_LO16:
15337 case BFD_RELOC_GPREL16:
15338 case BFD_RELOC_MIPS_LITERAL:
15339 case BFD_RELOC_MIPS_CALL16:
15340 case BFD_RELOC_MIPS_GOT16:
15341 case BFD_RELOC_GPREL32:
15342 case BFD_RELOC_MIPS_GOT_HI16:
15343 case BFD_RELOC_MIPS_GOT_LO16:
15344 case BFD_RELOC_MIPS_CALL_HI16:
15345 case BFD_RELOC_MIPS_CALL_LO16:
15346 case BFD_RELOC_HI16_S_PCREL:
15347 case BFD_RELOC_LO16_PCREL:
15348 case BFD_RELOC_MIPS16_GPREL:
15349 case BFD_RELOC_MIPS16_GOT16:
15350 case BFD_RELOC_MIPS16_CALL16:
15351 case BFD_RELOC_MIPS16_HI16:
15352 case BFD_RELOC_MIPS16_HI16_S:
15353 case BFD_RELOC_MIPS16_LO16:
15354 case BFD_RELOC_MICROMIPS_GOT_DISP:
15355 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15356 case BFD_RELOC_MICROMIPS_GOT_OFST:
15357 case BFD_RELOC_MICROMIPS_SUB:
15358 case BFD_RELOC_MICROMIPS_HIGHEST:
15359 case BFD_RELOC_MICROMIPS_HIGHER:
15360 case BFD_RELOC_MICROMIPS_SCN_DISP:
15361 case BFD_RELOC_MICROMIPS_JALR:
15362 case BFD_RELOC_MICROMIPS_HI16:
15363 case BFD_RELOC_MICROMIPS_HI16_S:
15364 case BFD_RELOC_MICROMIPS_LO16:
15365 case BFD_RELOC_MICROMIPS_GPREL16:
15366 case BFD_RELOC_MICROMIPS_LITERAL:
15367 case BFD_RELOC_MICROMIPS_CALL16:
15368 case BFD_RELOC_MICROMIPS_GOT16:
15369 case BFD_RELOC_MICROMIPS_GOT_HI16:
15370 case BFD_RELOC_MICROMIPS_GOT_LO16:
15371 case BFD_RELOC_MICROMIPS_CALL_HI16:
15372 case BFD_RELOC_MICROMIPS_CALL_LO16:
15373 case BFD_RELOC_MIPS_EH:
15378 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15380 insn = read_reloc_insn (buf, fixP->fx_r_type);
15381 if (mips16_reloc_p (fixP->fx_r_type))
15382 insn |= mips16_immed_extend (value, 16);
15384 insn |= (value & 0xffff);
15385 write_reloc_insn (buf, fixP->fx_r_type, insn);
15388 as_bad_where (fixP->fx_file, fixP->fx_line,
15389 _("unsupported constant in relocation"));
15394 /* This is handled like BFD_RELOC_32, but we output a sign
15395 extended value if we are only 32 bits. */
15398 if (8 <= sizeof (valueT))
15399 md_number_to_chars (buf, *valP, 8);
15404 if ((*valP & 0x80000000) != 0)
15408 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15409 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15414 case BFD_RELOC_RVA:
15416 case BFD_RELOC_32_PCREL:
15419 /* If we are deleting this reloc entry, we must fill in the
15420 value now. This can happen if we have a .word which is not
15421 resolved when it appears but is later defined. */
15423 md_number_to_chars (buf, *valP, fixP->fx_size);
15426 case BFD_RELOC_MIPS_21_PCREL_S2:
15427 fix_validate_branch (fixP, *valP);
15428 if (!fixP->fx_done)
15431 if (*valP + 0x400000 <= 0x7fffff)
15433 insn = read_insn (buf);
15434 insn |= (*valP >> 2) & 0x1fffff;
15435 write_insn (buf, insn);
15438 as_bad_where (fixP->fx_file, fixP->fx_line,
15439 _("branch out of range"));
15442 case BFD_RELOC_MIPS_26_PCREL_S2:
15443 fix_validate_branch (fixP, *valP);
15444 if (!fixP->fx_done)
15447 if (*valP + 0x8000000 <= 0xfffffff)
15449 insn = read_insn (buf);
15450 insn |= (*valP >> 2) & 0x3ffffff;
15451 write_insn (buf, insn);
15454 as_bad_where (fixP->fx_file, fixP->fx_line,
15455 _("branch out of range"));
15458 case BFD_RELOC_MIPS_18_PCREL_S3:
15459 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15460 as_bad_where (fixP->fx_file, fixP->fx_line,
15461 _("PC-relative access using misaligned symbol (%lx)"),
15462 (long) S_GET_VALUE (fixP->fx_addsy));
15463 if ((fixP->fx_offset & 0x7) != 0)
15464 as_bad_where (fixP->fx_file, fixP->fx_line,
15465 _("PC-relative access using misaligned offset (%lx)"),
15466 (long) fixP->fx_offset);
15467 if (!fixP->fx_done)
15470 if (*valP + 0x100000 <= 0x1fffff)
15472 insn = read_insn (buf);
15473 insn |= (*valP >> 3) & 0x3ffff;
15474 write_insn (buf, insn);
15477 as_bad_where (fixP->fx_file, fixP->fx_line,
15478 _("PC-relative access out of range"));
15481 case BFD_RELOC_MIPS_19_PCREL_S2:
15482 if ((*valP & 0x3) != 0)
15483 as_bad_where (fixP->fx_file, fixP->fx_line,
15484 _("PC-relative access to misaligned address (%lx)"),
15486 if (!fixP->fx_done)
15489 if (*valP + 0x100000 <= 0x1fffff)
15491 insn = read_insn (buf);
15492 insn |= (*valP >> 2) & 0x7ffff;
15493 write_insn (buf, insn);
15496 as_bad_where (fixP->fx_file, fixP->fx_line,
15497 _("PC-relative access out of range"));
15500 case BFD_RELOC_16_PCREL_S2:
15501 fix_validate_branch (fixP, *valP);
15503 /* We need to save the bits in the instruction since fixup_segment()
15504 might be deleting the relocation entry (i.e., a branch within
15505 the current segment). */
15506 if (! fixP->fx_done)
15509 /* Update old instruction data. */
15510 insn = read_insn (buf);
15512 if (*valP + 0x20000 <= 0x3ffff)
15514 insn |= (*valP >> 2) & 0xffff;
15515 write_insn (buf, insn);
15517 else if (mips_pic == NO_PIC
15519 && fixP->fx_frag->fr_address >= text_section->vma
15520 && (fixP->fx_frag->fr_address
15521 < text_section->vma + bfd_get_section_size (text_section))
15522 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15523 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15524 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15526 /* The branch offset is too large. If this is an
15527 unconditional branch, and we are not generating PIC code,
15528 we can convert it to an absolute jump instruction. */
15529 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15530 insn = 0x0c000000; /* jal */
15532 insn = 0x08000000; /* j */
15533 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15535 fixP->fx_addsy = section_symbol (text_section);
15536 *valP += md_pcrel_from (fixP);
15537 write_insn (buf, insn);
15541 /* If we got here, we have branch-relaxation disabled,
15542 and there's nothing we can do to fix this instruction
15543 without turning it into a longer sequence. */
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("branch out of range"));
15549 case BFD_RELOC_MIPS16_16_PCREL_S1:
15550 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15551 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15552 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15553 gas_assert (!fixP->fx_done);
15554 if (fix_bad_cross_mode_branch_p (fixP))
15555 as_bad_where (fixP->fx_file, fixP->fx_line,
15556 _("branch to a symbol in another ISA mode"));
15557 else if (fixP->fx_addsy
15558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15559 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15560 && (fixP->fx_offset & 0x1) != 0)
15561 as_bad_where (fixP->fx_file, fixP->fx_line,
15562 _("branch to misaligned address (0x%lx)"),
15563 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15564 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15565 as_bad_where (fixP->fx_file, fixP->fx_line,
15566 _("cannot encode misaligned addend "
15567 "in the relocatable field (0x%lx)"),
15568 (long) fixP->fx_offset);
15571 case BFD_RELOC_VTABLE_INHERIT:
15574 && !S_IS_DEFINED (fixP->fx_addsy)
15575 && !S_IS_WEAK (fixP->fx_addsy))
15576 S_SET_WEAK (fixP->fx_addsy);
15579 case BFD_RELOC_NONE:
15580 case BFD_RELOC_VTABLE_ENTRY:
15588 /* Remember value for tc_gen_reloc. */
15589 fixP->fx_addnumber = *valP;
15599 c = get_symbol_name (&name);
15600 p = (symbolS *) symbol_find_or_make (name);
15601 (void) restore_line_pointer (c);
15605 /* Align the current frag to a given power of two. If a particular
15606 fill byte should be used, FILL points to an integer that contains
15607 that byte, otherwise FILL is null.
15609 This function used to have the comment:
15611 The MIPS assembler also automatically adjusts any preceding label.
15613 The implementation therefore applied the adjustment to a maximum of
15614 one label. However, other label adjustments are applied to batches
15615 of labels, and adjusting just one caused problems when new labels
15616 were added for the sake of debugging or unwind information.
15617 We therefore adjust all preceding labels (given as LABELS) instead. */
15620 mips_align (int to, int *fill, struct insn_label_list *labels)
15622 mips_emit_delays ();
15623 mips_record_compressed_mode ();
15624 if (fill == NULL && subseg_text_p (now_seg))
15625 frag_align_code (to, 0);
15627 frag_align (to, fill ? *fill : 0, 0);
15628 record_alignment (now_seg, to);
15629 mips_move_labels (labels, FALSE);
15632 /* Align to a given power of two. .align 0 turns off the automatic
15633 alignment used by the data creating pseudo-ops. */
15636 s_align (int x ATTRIBUTE_UNUSED)
15638 int temp, fill_value, *fill_ptr;
15639 long max_alignment = 28;
15641 /* o Note that the assembler pulls down any immediately preceding label
15642 to the aligned address.
15643 o It's not documented but auto alignment is reinstated by
15644 a .align pseudo instruction.
15645 o Note also that after auto alignment is turned off the mips assembler
15646 issues an error on attempt to assemble an improperly aligned data item.
15649 temp = get_absolute_expression ();
15650 if (temp > max_alignment)
15651 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15654 as_warn (_("alignment negative, 0 assumed"));
15657 if (*input_line_pointer == ',')
15659 ++input_line_pointer;
15660 fill_value = get_absolute_expression ();
15661 fill_ptr = &fill_value;
15667 segment_info_type *si = seg_info (now_seg);
15668 struct insn_label_list *l = si->label_list;
15669 /* Auto alignment should be switched on by next section change. */
15671 mips_align (temp, fill_ptr, l);
15678 demand_empty_rest_of_line ();
15682 s_change_sec (int sec)
15686 /* The ELF backend needs to know that we are changing sections, so
15687 that .previous works correctly. We could do something like check
15688 for an obj_section_change_hook macro, but that might be confusing
15689 as it would not be appropriate to use it in the section changing
15690 functions in read.c, since obj-elf.c intercepts those. FIXME:
15691 This should be cleaner, somehow. */
15692 obj_elf_section_change_hook ();
15694 mips_emit_delays ();
15705 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15706 demand_empty_rest_of_line ();
15710 seg = subseg_new (RDATA_SECTION_NAME,
15711 (subsegT) get_absolute_expression ());
15712 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15713 | SEC_READONLY | SEC_RELOC
15715 if (strncmp (TARGET_OS, "elf", 3) != 0)
15716 record_alignment (seg, 4);
15717 demand_empty_rest_of_line ();
15721 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15722 bfd_set_section_flags (stdoutput, seg,
15723 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15724 if (strncmp (TARGET_OS, "elf", 3) != 0)
15725 record_alignment (seg, 4);
15726 demand_empty_rest_of_line ();
15730 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15731 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15732 if (strncmp (TARGET_OS, "elf", 3) != 0)
15733 record_alignment (seg, 4);
15734 demand_empty_rest_of_line ();
15742 s_change_section (int ignore ATTRIBUTE_UNUSED)
15745 char *section_name;
15750 int section_entry_size;
15751 int section_alignment;
15753 saved_ilp = input_line_pointer;
15754 endc = get_symbol_name (§ion_name);
15755 c = (endc == '"' ? input_line_pointer[1] : endc);
15757 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15759 /* Do we have .section Name<,"flags">? */
15760 if (c != ',' || (c == ',' && next_c == '"'))
15762 /* Just after name is now '\0'. */
15763 (void) restore_line_pointer (endc);
15764 input_line_pointer = saved_ilp;
15765 obj_elf_section (ignore);
15769 section_name = xstrdup (section_name);
15770 c = restore_line_pointer (endc);
15772 input_line_pointer++;
15774 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15776 section_type = get_absolute_expression ();
15780 if (*input_line_pointer++ == ',')
15781 section_flag = get_absolute_expression ();
15785 if (*input_line_pointer++ == ',')
15786 section_entry_size = get_absolute_expression ();
15788 section_entry_size = 0;
15790 if (*input_line_pointer++ == ',')
15791 section_alignment = get_absolute_expression ();
15793 section_alignment = 0;
15795 /* FIXME: really ignore? */
15796 (void) section_alignment;
15798 /* When using the generic form of .section (as implemented by obj-elf.c),
15799 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15800 traditionally had to fall back on the more common @progbits instead.
15802 There's nothing really harmful in this, since bfd will correct
15803 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15804 means that, for backwards compatibility, the special_section entries
15805 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15807 Even so, we shouldn't force users of the MIPS .section syntax to
15808 incorrectly label the sections as SHT_PROGBITS. The best compromise
15809 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15810 generic type-checking code. */
15811 if (section_type == SHT_MIPS_DWARF)
15812 section_type = SHT_PROGBITS;
15814 obj_elf_change_section (section_name, section_type, section_flag,
15815 section_entry_size, 0, 0, 0);
15817 if (now_seg->name != section_name)
15818 free (section_name);
15822 mips_enable_auto_align (void)
15828 s_cons (int log_size)
15830 segment_info_type *si = seg_info (now_seg);
15831 struct insn_label_list *l = si->label_list;
15833 mips_emit_delays ();
15834 if (log_size > 0 && auto_align)
15835 mips_align (log_size, 0, l);
15836 cons (1 << log_size);
15837 mips_clear_insn_labels ();
15841 s_float_cons (int type)
15843 segment_info_type *si = seg_info (now_seg);
15844 struct insn_label_list *l = si->label_list;
15846 mips_emit_delays ();
15851 mips_align (3, 0, l);
15853 mips_align (2, 0, l);
15857 mips_clear_insn_labels ();
15860 /* Handle .globl. We need to override it because on Irix 5 you are
15863 where foo is an undefined symbol, to mean that foo should be
15864 considered to be the address of a function. */
15867 s_mips_globl (int x ATTRIBUTE_UNUSED)
15876 c = get_symbol_name (&name);
15877 symbolP = symbol_find_or_make (name);
15878 S_SET_EXTERNAL (symbolP);
15880 *input_line_pointer = c;
15881 SKIP_WHITESPACE_AFTER_NAME ();
15883 /* On Irix 5, every global symbol that is not explicitly labelled as
15884 being a function is apparently labelled as being an object. */
15887 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15888 && (*input_line_pointer != ','))
15893 c = get_symbol_name (&secname);
15894 sec = bfd_get_section_by_name (stdoutput, secname);
15896 as_bad (_("%s: no such section"), secname);
15897 (void) restore_line_pointer (c);
15899 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15900 flag = BSF_FUNCTION;
15903 symbol_get_bfdsym (symbolP)->flags |= flag;
15905 c = *input_line_pointer;
15908 input_line_pointer++;
15909 SKIP_WHITESPACE ();
15910 if (is_end_of_line[(unsigned char) *input_line_pointer])
15916 demand_empty_rest_of_line ();
15920 s_option (int x ATTRIBUTE_UNUSED)
15925 c = get_symbol_name (&opt);
15929 /* FIXME: What does this mean? */
15931 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15935 i = atoi (opt + 3);
15936 if (i != 0 && i != 2)
15937 as_bad (_(".option pic%d not supported"), i);
15938 else if (mips_pic == VXWORKS_PIC)
15939 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15944 mips_pic = SVR4_PIC;
15945 mips_abicalls = TRUE;
15948 if (mips_pic == SVR4_PIC)
15950 if (g_switch_seen && g_switch_value != 0)
15951 as_warn (_("-G may not be used with SVR4 PIC code"));
15952 g_switch_value = 0;
15953 bfd_set_gp_size (stdoutput, 0);
15957 as_warn (_("unrecognized option \"%s\""), opt);
15959 (void) restore_line_pointer (c);
15960 demand_empty_rest_of_line ();
15963 /* This structure is used to hold a stack of .set values. */
15965 struct mips_option_stack
15967 struct mips_option_stack *next;
15968 struct mips_set_options options;
15971 static struct mips_option_stack *mips_opts_stack;
15973 /* Return status for .set/.module option handling. */
15975 enum code_option_type
15977 /* Unrecognized option. */
15978 OPTION_TYPE_BAD = -1,
15980 /* Ordinary option. */
15981 OPTION_TYPE_NORMAL,
15983 /* ISA changing option. */
15987 /* Handle common .set/.module options. Return status indicating option
15990 static enum code_option_type
15991 parse_code_option (char * name)
15993 bfd_boolean isa_set = FALSE;
15994 const struct mips_ase *ase;
15996 if (strncmp (name, "at=", 3) == 0)
15998 char *s = name + 3;
16000 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16001 as_bad (_("unrecognized register name `%s'"), s);
16003 else if (strcmp (name, "at") == 0)
16004 mips_opts.at = ATREG;
16005 else if (strcmp (name, "noat") == 0)
16006 mips_opts.at = ZERO;
16007 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16008 mips_opts.nomove = 0;
16009 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16010 mips_opts.nomove = 1;
16011 else if (strcmp (name, "bopt") == 0)
16012 mips_opts.nobopt = 0;
16013 else if (strcmp (name, "nobopt") == 0)
16014 mips_opts.nobopt = 1;
16015 else if (strcmp (name, "gp=32") == 0)
16017 else if (strcmp (name, "gp=64") == 0)
16019 else if (strcmp (name, "fp=32") == 0)
16021 else if (strcmp (name, "fp=xx") == 0)
16023 else if (strcmp (name, "fp=64") == 0)
16025 else if (strcmp (name, "softfloat") == 0)
16026 mips_opts.soft_float = 1;
16027 else if (strcmp (name, "hardfloat") == 0)
16028 mips_opts.soft_float = 0;
16029 else if (strcmp (name, "singlefloat") == 0)
16030 mips_opts.single_float = 1;
16031 else if (strcmp (name, "doublefloat") == 0)
16032 mips_opts.single_float = 0;
16033 else if (strcmp (name, "nooddspreg") == 0)
16034 mips_opts.oddspreg = 0;
16035 else if (strcmp (name, "oddspreg") == 0)
16036 mips_opts.oddspreg = 1;
16037 else if (strcmp (name, "mips16") == 0
16038 || strcmp (name, "MIPS-16") == 0)
16039 mips_opts.mips16 = 1;
16040 else if (strcmp (name, "nomips16") == 0
16041 || strcmp (name, "noMIPS-16") == 0)
16042 mips_opts.mips16 = 0;
16043 else if (strcmp (name, "micromips") == 0)
16044 mips_opts.micromips = 1;
16045 else if (strcmp (name, "nomicromips") == 0)
16046 mips_opts.micromips = 0;
16047 else if (name[0] == 'n'
16049 && (ase = mips_lookup_ase (name + 2)))
16050 mips_set_ase (ase, &mips_opts, FALSE);
16051 else if ((ase = mips_lookup_ase (name)))
16052 mips_set_ase (ase, &mips_opts, TRUE);
16053 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16055 /* Permit the user to change the ISA and architecture on the fly.
16056 Needless to say, misuse can cause serious problems. */
16057 if (strncmp (name, "arch=", 5) == 0)
16059 const struct mips_cpu_info *p;
16061 p = mips_parse_cpu ("internal use", name + 5);
16063 as_bad (_("unknown architecture %s"), name + 5);
16066 mips_opts.arch = p->cpu;
16067 mips_opts.isa = p->isa;
16071 else if (strncmp (name, "mips", 4) == 0)
16073 const struct mips_cpu_info *p;
16075 p = mips_parse_cpu ("internal use", name);
16077 as_bad (_("unknown ISA level %s"), name + 4);
16080 mips_opts.arch = p->cpu;
16081 mips_opts.isa = p->isa;
16086 as_bad (_("unknown ISA or architecture %s"), name);
16088 else if (strcmp (name, "autoextend") == 0)
16089 mips_opts.noautoextend = 0;
16090 else if (strcmp (name, "noautoextend") == 0)
16091 mips_opts.noautoextend = 1;
16092 else if (strcmp (name, "insn32") == 0)
16093 mips_opts.insn32 = TRUE;
16094 else if (strcmp (name, "noinsn32") == 0)
16095 mips_opts.insn32 = FALSE;
16096 else if (strcmp (name, "sym32") == 0)
16097 mips_opts.sym32 = TRUE;
16098 else if (strcmp (name, "nosym32") == 0)
16099 mips_opts.sym32 = FALSE;
16101 return OPTION_TYPE_BAD;
16103 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16106 /* Handle the .set pseudo-op. */
16109 s_mipsset (int x ATTRIBUTE_UNUSED)
16111 enum code_option_type type = OPTION_TYPE_NORMAL;
16112 char *name = input_line_pointer, ch;
16114 file_mips_check_options ();
16116 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16117 ++input_line_pointer;
16118 ch = *input_line_pointer;
16119 *input_line_pointer = '\0';
16121 if (strchr (name, ','))
16123 /* Generic ".set" directive; use the generic handler. */
16124 *input_line_pointer = ch;
16125 input_line_pointer = name;
16130 if (strcmp (name, "reorder") == 0)
16132 if (mips_opts.noreorder)
16135 else if (strcmp (name, "noreorder") == 0)
16137 if (!mips_opts.noreorder)
16138 start_noreorder ();
16140 else if (strcmp (name, "macro") == 0)
16141 mips_opts.warn_about_macros = 0;
16142 else if (strcmp (name, "nomacro") == 0)
16144 if (mips_opts.noreorder == 0)
16145 as_bad (_("`noreorder' must be set before `nomacro'"));
16146 mips_opts.warn_about_macros = 1;
16148 else if (strcmp (name, "gp=default") == 0)
16149 mips_opts.gp = file_mips_opts.gp;
16150 else if (strcmp (name, "fp=default") == 0)
16151 mips_opts.fp = file_mips_opts.fp;
16152 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16154 mips_opts.isa = file_mips_opts.isa;
16155 mips_opts.arch = file_mips_opts.arch;
16156 mips_opts.gp = file_mips_opts.gp;
16157 mips_opts.fp = file_mips_opts.fp;
16159 else if (strcmp (name, "push") == 0)
16161 struct mips_option_stack *s;
16163 s = XNEW (struct mips_option_stack);
16164 s->next = mips_opts_stack;
16165 s->options = mips_opts;
16166 mips_opts_stack = s;
16168 else if (strcmp (name, "pop") == 0)
16170 struct mips_option_stack *s;
16172 s = mips_opts_stack;
16174 as_bad (_(".set pop with no .set push"));
16177 /* If we're changing the reorder mode we need to handle
16178 delay slots correctly. */
16179 if (s->options.noreorder && ! mips_opts.noreorder)
16180 start_noreorder ();
16181 else if (! s->options.noreorder && mips_opts.noreorder)
16184 mips_opts = s->options;
16185 mips_opts_stack = s->next;
16191 type = parse_code_option (name);
16192 if (type == OPTION_TYPE_BAD)
16193 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16196 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16197 registers based on what is supported by the arch/cpu. */
16198 if (type == OPTION_TYPE_ISA)
16200 switch (mips_opts.isa)
16205 /* MIPS I cannot support FPXX. */
16207 /* fall-through. */
16214 if (mips_opts.fp != 0)
16230 if (mips_opts.fp != 0)
16232 if (mips_opts.arch == CPU_R5900)
16239 as_bad (_("unknown ISA level %s"), name + 4);
16244 mips_check_options (&mips_opts, FALSE);
16246 mips_check_isa_supports_ases ();
16247 *input_line_pointer = ch;
16248 demand_empty_rest_of_line ();
16251 /* Handle the .module pseudo-op. */
16254 s_module (int ignore ATTRIBUTE_UNUSED)
16256 char *name = input_line_pointer, ch;
16258 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16259 ++input_line_pointer;
16260 ch = *input_line_pointer;
16261 *input_line_pointer = '\0';
16263 if (!file_mips_opts_checked)
16265 if (parse_code_option (name) == OPTION_TYPE_BAD)
16266 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16268 /* Update module level settings from mips_opts. */
16269 file_mips_opts = mips_opts;
16272 as_bad (_(".module is not permitted after generating code"));
16274 *input_line_pointer = ch;
16275 demand_empty_rest_of_line ();
16278 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16279 .option pic2. It means to generate SVR4 PIC calls. */
16282 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16284 mips_pic = SVR4_PIC;
16285 mips_abicalls = TRUE;
16287 if (g_switch_seen && g_switch_value != 0)
16288 as_warn (_("-G may not be used with SVR4 PIC code"));
16289 g_switch_value = 0;
16291 bfd_set_gp_size (stdoutput, 0);
16292 demand_empty_rest_of_line ();
16295 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16296 PIC code. It sets the $gp register for the function based on the
16297 function address, which is in the register named in the argument.
16298 This uses a relocation against _gp_disp, which is handled specially
16299 by the linker. The result is:
16300 lui $gp,%hi(_gp_disp)
16301 addiu $gp,$gp,%lo(_gp_disp)
16302 addu $gp,$gp,.cpload argument
16303 The .cpload argument is normally $25 == $t9.
16305 The -mno-shared option changes this to:
16306 lui $gp,%hi(__gnu_local_gp)
16307 addiu $gp,$gp,%lo(__gnu_local_gp)
16308 and the argument is ignored. This saves an instruction, but the
16309 resulting code is not position independent; it uses an absolute
16310 address for __gnu_local_gp. Thus code assembled with -mno-shared
16311 can go into an ordinary executable, but not into a shared library. */
16314 s_cpload (int ignore ATTRIBUTE_UNUSED)
16320 file_mips_check_options ();
16322 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16323 .cpload is ignored. */
16324 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16330 if (mips_opts.mips16)
16332 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16333 ignore_rest_of_line ();
16337 /* .cpload should be in a .set noreorder section. */
16338 if (mips_opts.noreorder == 0)
16339 as_warn (_(".cpload not in noreorder section"));
16341 reg = tc_get_register (0);
16343 /* If we need to produce a 64-bit address, we are better off using
16344 the default instruction sequence. */
16345 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16347 ex.X_op = O_symbol;
16348 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16350 ex.X_op_symbol = NULL;
16351 ex.X_add_number = 0;
16353 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16354 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16356 mips_mark_labels ();
16357 mips_assembling_insn = TRUE;
16360 macro_build_lui (&ex, mips_gp_register);
16361 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16362 mips_gp_register, BFD_RELOC_LO16);
16364 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16365 mips_gp_register, reg);
16368 mips_assembling_insn = FALSE;
16369 demand_empty_rest_of_line ();
16372 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16373 .cpsetup $reg1, offset|$reg2, label
16375 If offset is given, this results in:
16376 sd $gp, offset($sp)
16377 lui $gp, %hi(%neg(%gp_rel(label)))
16378 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16379 daddu $gp, $gp, $reg1
16381 If $reg2 is given, this results in:
16383 lui $gp, %hi(%neg(%gp_rel(label)))
16384 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16385 daddu $gp, $gp, $reg1
16386 $reg1 is normally $25 == $t9.
16388 The -mno-shared option replaces the last three instructions with
16390 addiu $gp,$gp,%lo(_gp) */
16393 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16395 expressionS ex_off;
16396 expressionS ex_sym;
16399 file_mips_check_options ();
16401 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16402 We also need NewABI support. */
16403 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16409 if (mips_opts.mips16)
16411 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16412 ignore_rest_of_line ();
16416 reg1 = tc_get_register (0);
16417 SKIP_WHITESPACE ();
16418 if (*input_line_pointer != ',')
16420 as_bad (_("missing argument separator ',' for .cpsetup"));
16424 ++input_line_pointer;
16425 SKIP_WHITESPACE ();
16426 if (*input_line_pointer == '$')
16428 mips_cpreturn_register = tc_get_register (0);
16429 mips_cpreturn_offset = -1;
16433 mips_cpreturn_offset = get_absolute_expression ();
16434 mips_cpreturn_register = -1;
16436 SKIP_WHITESPACE ();
16437 if (*input_line_pointer != ',')
16439 as_bad (_("missing argument separator ',' for .cpsetup"));
16443 ++input_line_pointer;
16444 SKIP_WHITESPACE ();
16445 expression (&ex_sym);
16447 mips_mark_labels ();
16448 mips_assembling_insn = TRUE;
16451 if (mips_cpreturn_register == -1)
16453 ex_off.X_op = O_constant;
16454 ex_off.X_add_symbol = NULL;
16455 ex_off.X_op_symbol = NULL;
16456 ex_off.X_add_number = mips_cpreturn_offset;
16458 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16459 BFD_RELOC_LO16, SP);
16462 move_register (mips_cpreturn_register, mips_gp_register);
16464 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16466 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16467 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16470 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16471 mips_gp_register, -1, BFD_RELOC_GPREL16,
16472 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16475 mips_gp_register, reg1);
16481 ex.X_op = O_symbol;
16482 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16483 ex.X_op_symbol = NULL;
16484 ex.X_add_number = 0;
16486 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16487 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16489 macro_build_lui (&ex, mips_gp_register);
16490 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16491 mips_gp_register, BFD_RELOC_LO16);
16496 mips_assembling_insn = FALSE;
16497 demand_empty_rest_of_line ();
16501 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16503 file_mips_check_options ();
16505 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16506 .cplocal is ignored. */
16507 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16513 if (mips_opts.mips16)
16515 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16516 ignore_rest_of_line ();
16520 mips_gp_register = tc_get_register (0);
16521 demand_empty_rest_of_line ();
16524 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16525 offset from $sp. The offset is remembered, and after making a PIC
16526 call $gp is restored from that location. */
16529 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16533 file_mips_check_options ();
16535 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16536 .cprestore is ignored. */
16537 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16543 if (mips_opts.mips16)
16545 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16546 ignore_rest_of_line ();
16550 mips_cprestore_offset = get_absolute_expression ();
16551 mips_cprestore_valid = 1;
16553 ex.X_op = O_constant;
16554 ex.X_add_symbol = NULL;
16555 ex.X_op_symbol = NULL;
16556 ex.X_add_number = mips_cprestore_offset;
16558 mips_mark_labels ();
16559 mips_assembling_insn = TRUE;
16562 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16563 SP, HAVE_64BIT_ADDRESSES);
16566 mips_assembling_insn = FALSE;
16567 demand_empty_rest_of_line ();
16570 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16571 was given in the preceding .cpsetup, it results in:
16572 ld $gp, offset($sp)
16574 If a register $reg2 was given there, it results in:
16575 or $gp, $reg2, $0 */
16578 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16582 file_mips_check_options ();
16584 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16585 We also need NewABI support. */
16586 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16592 if (mips_opts.mips16)
16594 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16595 ignore_rest_of_line ();
16599 mips_mark_labels ();
16600 mips_assembling_insn = TRUE;
16603 if (mips_cpreturn_register == -1)
16605 ex.X_op = O_constant;
16606 ex.X_add_symbol = NULL;
16607 ex.X_op_symbol = NULL;
16608 ex.X_add_number = mips_cpreturn_offset;
16610 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16613 move_register (mips_gp_register, mips_cpreturn_register);
16617 mips_assembling_insn = FALSE;
16618 demand_empty_rest_of_line ();
16621 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16622 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16623 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16624 debug information or MIPS16 TLS. */
16627 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16628 bfd_reloc_code_real_type rtype)
16635 if (ex.X_op != O_symbol)
16637 as_bad (_("unsupported use of %s"), dirstr);
16638 ignore_rest_of_line ();
16641 p = frag_more (bytes);
16642 md_number_to_chars (p, 0, bytes);
16643 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16644 demand_empty_rest_of_line ();
16645 mips_clear_insn_labels ();
16648 /* Handle .dtprelword. */
16651 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16653 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16656 /* Handle .dtpreldword. */
16659 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16661 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16664 /* Handle .tprelword. */
16667 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16669 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16672 /* Handle .tpreldword. */
16675 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16677 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16680 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16681 code. It sets the offset to use in gp_rel relocations. */
16684 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16686 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16687 We also need NewABI support. */
16688 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16694 mips_gprel_offset = get_absolute_expression ();
16696 demand_empty_rest_of_line ();
16699 /* Handle the .gpword pseudo-op. This is used when generating PIC
16700 code. It generates a 32 bit GP relative reloc. */
16703 s_gpword (int ignore ATTRIBUTE_UNUSED)
16705 segment_info_type *si;
16706 struct insn_label_list *l;
16710 /* When not generating PIC code, this is treated as .word. */
16711 if (mips_pic != SVR4_PIC)
16717 si = seg_info (now_seg);
16718 l = si->label_list;
16719 mips_emit_delays ();
16721 mips_align (2, 0, l);
16724 mips_clear_insn_labels ();
16726 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16728 as_bad (_("unsupported use of .gpword"));
16729 ignore_rest_of_line ();
16733 md_number_to_chars (p, 0, 4);
16734 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16735 BFD_RELOC_GPREL32);
16737 demand_empty_rest_of_line ();
16741 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16743 segment_info_type *si;
16744 struct insn_label_list *l;
16748 /* When not generating PIC code, this is treated as .dword. */
16749 if (mips_pic != SVR4_PIC)
16755 si = seg_info (now_seg);
16756 l = si->label_list;
16757 mips_emit_delays ();
16759 mips_align (3, 0, l);
16762 mips_clear_insn_labels ();
16764 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16766 as_bad (_("unsupported use of .gpdword"));
16767 ignore_rest_of_line ();
16771 md_number_to_chars (p, 0, 8);
16772 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16773 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16775 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16776 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16777 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16779 demand_empty_rest_of_line ();
16782 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16783 tables. It generates a R_MIPS_EH reloc. */
16786 s_ehword (int ignore ATTRIBUTE_UNUSED)
16791 mips_emit_delays ();
16794 mips_clear_insn_labels ();
16796 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16798 as_bad (_("unsupported use of .ehword"));
16799 ignore_rest_of_line ();
16803 md_number_to_chars (p, 0, 4);
16804 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16805 BFD_RELOC_32_PCREL);
16807 demand_empty_rest_of_line ();
16810 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16811 tables in SVR4 PIC code. */
16814 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16818 file_mips_check_options ();
16820 /* This is ignored when not generating SVR4 PIC code. */
16821 if (mips_pic != SVR4_PIC)
16827 mips_mark_labels ();
16828 mips_assembling_insn = TRUE;
16830 /* Add $gp to the register named as an argument. */
16832 reg = tc_get_register (0);
16833 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16836 mips_assembling_insn = FALSE;
16837 demand_empty_rest_of_line ();
16840 /* Handle the .insn pseudo-op. This marks instruction labels in
16841 mips16/micromips mode. This permits the linker to handle them specially,
16842 such as generating jalx instructions when needed. We also make
16843 them odd for the duration of the assembly, in order to generate the
16844 right sort of code. We will make them even in the adjust_symtab
16845 routine, while leaving them marked. This is convenient for the
16846 debugger and the disassembler. The linker knows to make them odd
16850 s_insn (int ignore ATTRIBUTE_UNUSED)
16852 file_mips_check_options ();
16853 file_ase_mips16 |= mips_opts.mips16;
16854 file_ase_micromips |= mips_opts.micromips;
16856 mips_mark_labels ();
16858 demand_empty_rest_of_line ();
16861 /* Handle the .nan pseudo-op. */
16864 s_nan (int ignore ATTRIBUTE_UNUSED)
16866 static const char str_legacy[] = "legacy";
16867 static const char str_2008[] = "2008";
16870 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16872 if (i == sizeof (str_2008) - 1
16873 && memcmp (input_line_pointer, str_2008, i) == 0)
16875 else if (i == sizeof (str_legacy) - 1
16876 && memcmp (input_line_pointer, str_legacy, i) == 0)
16878 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16881 as_bad (_("`%s' does not support legacy NaN"),
16882 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16885 as_bad (_("bad .nan directive"));
16887 input_line_pointer += i;
16888 demand_empty_rest_of_line ();
16891 /* Handle a .stab[snd] directive. Ideally these directives would be
16892 implemented in a transparent way, so that removing them would not
16893 have any effect on the generated instructions. However, s_stab
16894 internally changes the section, so in practice we need to decide
16895 now whether the preceding label marks compressed code. We do not
16896 support changing the compression mode of a label after a .stab*
16897 directive, such as in:
16903 so the current mode wins. */
16906 s_mips_stab (int type)
16908 mips_mark_labels ();
16912 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16915 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16922 c = get_symbol_name (&name);
16923 symbolP = symbol_find_or_make (name);
16924 S_SET_WEAK (symbolP);
16925 *input_line_pointer = c;
16927 SKIP_WHITESPACE_AFTER_NAME ();
16929 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16931 if (S_IS_DEFINED (symbolP))
16933 as_bad (_("ignoring attempt to redefine symbol %s"),
16934 S_GET_NAME (symbolP));
16935 ignore_rest_of_line ();
16939 if (*input_line_pointer == ',')
16941 ++input_line_pointer;
16942 SKIP_WHITESPACE ();
16946 if (exp.X_op != O_symbol)
16948 as_bad (_("bad .weakext directive"));
16949 ignore_rest_of_line ();
16952 symbol_set_value_expression (symbolP, &exp);
16955 demand_empty_rest_of_line ();
16958 /* Parse a register string into a number. Called from the ECOFF code
16959 to parse .frame. The argument is non-zero if this is the frame
16960 register, so that we can record it in mips_frame_reg. */
16963 tc_get_register (int frame)
16967 SKIP_WHITESPACE ();
16968 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, ®))
16972 mips_frame_reg = reg != 0 ? reg : SP;
16973 mips_frame_reg_valid = 1;
16974 mips_cprestore_valid = 0;
16980 md_section_align (asection *seg, valueT addr)
16982 int align = bfd_get_section_alignment (stdoutput, seg);
16984 /* We don't need to align ELF sections to the full alignment.
16985 However, Irix 5 may prefer that we align them at least to a 16
16986 byte boundary. We don't bother to align the sections if we
16987 are targeted for an embedded system. */
16988 if (strncmp (TARGET_OS, "elf", 3) == 0)
16993 return ((addr + (1 << align) - 1) & -(1 << align));
16996 /* Utility routine, called from above as well. If called while the
16997 input file is still being read, it's only an approximation. (For
16998 example, a symbol may later become defined which appeared to be
16999 undefined earlier.) */
17002 nopic_need_relax (symbolS *sym, int before_relaxing)
17007 if (g_switch_value > 0)
17009 const char *symname;
17012 /* Find out whether this symbol can be referenced off the $gp
17013 register. It can be if it is smaller than the -G size or if
17014 it is in the .sdata or .sbss section. Certain symbols can
17015 not be referenced off the $gp, although it appears as though
17017 symname = S_GET_NAME (sym);
17018 if (symname != (const char *) NULL
17019 && (strcmp (symname, "eprol") == 0
17020 || strcmp (symname, "etext") == 0
17021 || strcmp (symname, "_gp") == 0
17022 || strcmp (symname, "edata") == 0
17023 || strcmp (symname, "_fbss") == 0
17024 || strcmp (symname, "_fdata") == 0
17025 || strcmp (symname, "_ftext") == 0
17026 || strcmp (symname, "end") == 0
17027 || strcmp (symname, "_gp_disp") == 0))
17029 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17031 #ifndef NO_ECOFF_DEBUGGING
17032 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17033 && (symbol_get_obj (sym)->ecoff_extern_size
17034 <= g_switch_value))
17036 /* We must defer this decision until after the whole
17037 file has been read, since there might be a .extern
17038 after the first use of this symbol. */
17039 || (before_relaxing
17040 #ifndef NO_ECOFF_DEBUGGING
17041 && symbol_get_obj (sym)->ecoff_extern_size == 0
17043 && S_GET_VALUE (sym) == 0)
17044 || (S_GET_VALUE (sym) != 0
17045 && S_GET_VALUE (sym) <= g_switch_value)))
17049 const char *segname;
17051 segname = segment_name (S_GET_SEGMENT (sym));
17052 gas_assert (strcmp (segname, ".lit8") != 0
17053 && strcmp (segname, ".lit4") != 0);
17054 change = (strcmp (segname, ".sdata") != 0
17055 && strcmp (segname, ".sbss") != 0
17056 && strncmp (segname, ".sdata.", 7) != 0
17057 && strncmp (segname, ".sbss.", 6) != 0
17058 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17059 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17064 /* We are not optimizing for the $gp register. */
17069 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17072 pic_need_relax (symbolS *sym, asection *segtype)
17076 /* Handle the case of a symbol equated to another symbol. */
17077 while (symbol_equated_reloc_p (sym))
17081 /* It's possible to get a loop here in a badly written program. */
17082 n = symbol_get_value_expression (sym)->X_add_symbol;
17088 if (symbol_section_p (sym))
17091 symsec = S_GET_SEGMENT (sym);
17093 /* This must duplicate the test in adjust_reloc_syms. */
17094 return (!bfd_is_und_section (symsec)
17095 && !bfd_is_abs_section (symsec)
17096 && !bfd_is_com_section (symsec)
17097 && !s_is_linkonce (sym, segtype)
17098 /* A global or weak symbol is treated as external. */
17099 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17103 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17104 extended opcode. SEC is the section the frag is in. */
17107 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17110 const struct mips_int_operand *operand;
17115 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17117 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17120 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17121 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17122 operand = mips16_immed_operand (type, FALSE);
17123 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17124 || (operand->root.type == OP_PCREL
17126 : !bfd_is_abs_section (symsec)))
17129 sym_frag = symbol_get_frag (fragp->fr_symbol);
17130 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17132 if (operand->root.type == OP_PCREL)
17134 const struct mips_pcrel_operand *pcrel_op;
17138 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17141 pcrel_op = (const struct mips_pcrel_operand *) operand;
17143 /* If the relax_marker of the symbol fragment differs from the
17144 relax_marker of this fragment, we have not yet adjusted the
17145 symbol fragment fr_address. We want to add in STRETCH in
17146 order to get a better estimate of the address. This
17147 particularly matters because of the shift bits. */
17149 && sym_frag->relax_marker != fragp->relax_marker)
17153 /* Adjust stretch for any alignment frag. Note that if have
17154 been expanding the earlier code, the symbol may be
17155 defined in what appears to be an earlier frag. FIXME:
17156 This doesn't handle the fr_subtype field, which specifies
17157 a maximum number of bytes to skip when doing an
17159 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17161 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17164 stretch = - ((- stretch)
17165 & ~ ((1 << (int) f->fr_offset) - 1));
17167 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17176 addr = fragp->fr_address + fragp->fr_fix;
17178 /* The base address rules are complicated. The base address of
17179 a branch is the following instruction. The base address of a
17180 PC relative load or add is the instruction itself, but if it
17181 is in a delay slot (in which case it can not be extended) use
17182 the address of the instruction whose delay slot it is in. */
17183 if (pcrel_op->include_isa_bit)
17187 /* If we are currently assuming that this frag should be
17188 extended, then, the current address is two bytes
17190 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17193 /* Ignore the low bit in the target, since it will be set
17194 for a text label. */
17197 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17199 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17202 val -= addr & -(1 << pcrel_op->align_log2);
17204 /* If any of the shifted bits are set, we must use an extended
17205 opcode. If the address depends on the size of this
17206 instruction, this can lead to a loop, so we arrange to always
17207 use an extended opcode. */
17208 if ((val & ((1 << operand->shift) - 1)) != 0)
17210 fragp->fr_subtype =
17211 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17215 /* If we are about to mark a frag as extended because the value
17216 is precisely the next value above maxtiny, then there is a
17217 chance of an infinite loop as in the following code:
17222 In this case when the la is extended, foo is 0x3fc bytes
17223 away, so the la can be shrunk, but then foo is 0x400 away, so
17224 the la must be extended. To avoid this loop, we mark the
17225 frag as extended if it was small, and is about to become
17226 extended with the next value above maxtiny. */
17227 maxtiny = mips_int_operand_max (operand);
17228 if (val == maxtiny + (1 << operand->shift)
17229 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17231 fragp->fr_subtype =
17232 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17237 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17240 /* Compute the length of a branch sequence, and adjust the
17241 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17242 worst-case length is computed, with UPDATE being used to indicate
17243 whether an unconditional (-1), branch-likely (+1) or regular (0)
17244 branch is to be computed. */
17246 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17248 bfd_boolean toofar;
17252 && S_IS_DEFINED (fragp->fr_symbol)
17253 && !S_IS_WEAK (fragp->fr_symbol)
17254 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17259 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17261 addr = fragp->fr_address + fragp->fr_fix + 4;
17265 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17268 /* If the symbol is not defined or it's in a different segment,
17269 we emit the long sequence. */
17272 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17274 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17275 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17276 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17277 RELAX_BRANCH_LINK (fragp->fr_subtype),
17283 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17286 if (mips_pic != NO_PIC)
17288 /* Additional space for PIC loading of target address. */
17290 if (mips_opts.isa == ISA_MIPS1)
17291 /* Additional space for $at-stabilizing nop. */
17295 /* If branch is conditional. */
17296 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17303 /* Get a FRAG's branch instruction delay slot size, either from the
17304 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17305 or SHORT_INSN_SIZE otherwise. */
17308 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17310 char *buf = fragp->fr_literal + fragp->fr_fix;
17313 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17315 return short_insn_size;
17318 /* Compute the length of a branch sequence, and adjust the
17319 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17320 worst-case length is computed, with UPDATE being used to indicate
17321 whether an unconditional (-1), or regular (0) branch is to be
17325 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17327 bfd_boolean insn32 = TRUE;
17328 bfd_boolean nods = TRUE;
17329 bfd_boolean al = TRUE;
17330 int short_insn_size;
17331 bfd_boolean toofar;
17336 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17337 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17338 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17340 short_insn_size = insn32 ? 4 : 2;
17343 && S_IS_DEFINED (fragp->fr_symbol)
17344 && !S_IS_WEAK (fragp->fr_symbol)
17345 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17350 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17351 /* Ignore the low bit in the target, since it will be set
17352 for a text label. */
17353 if ((val & 1) != 0)
17356 addr = fragp->fr_address + fragp->fr_fix + 4;
17360 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17363 /* If the symbol is not defined or it's in a different segment,
17364 we emit the long sequence. */
17367 if (fragp && update
17368 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17369 fragp->fr_subtype = (toofar
17370 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17371 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17376 bfd_boolean compact_known = fragp != NULL;
17377 bfd_boolean compact = FALSE;
17378 bfd_boolean uncond;
17382 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17383 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17386 uncond = update < 0;
17388 /* If label is out of range, we turn branch <br>:
17390 <br> label # 4 bytes
17397 # compact && (!PIC || insn32)
17400 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17401 length += short_insn_size;
17403 /* If assembling PIC code, we further turn:
17409 lw/ld at, %got(label)(gp) # 4 bytes
17410 d/addiu at, %lo(label) # 4 bytes
17411 jr/c at # 2/4 bytes
17413 if (mips_pic != NO_PIC)
17414 length += 4 + short_insn_size;
17416 /* Add an extra nop if the jump has no compact form and we need
17417 to fill the delay slot. */
17418 if ((mips_pic == NO_PIC || al) && nods)
17420 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17421 : short_insn_size);
17423 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17425 <brneg> 0f # 4 bytes
17426 nop # 2/4 bytes if !compact
17429 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17433 /* Add an extra nop to fill the delay slot. */
17434 gas_assert (fragp);
17435 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17441 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17442 bit accordingly. */
17445 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17447 bfd_boolean toofar;
17450 && S_IS_DEFINED (fragp->fr_symbol)
17451 && !S_IS_WEAK (fragp->fr_symbol)
17452 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17458 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17459 /* Ignore the low bit in the target, since it will be set
17460 for a text label. */
17461 if ((val & 1) != 0)
17464 /* Assume this is a 2-byte branch. */
17465 addr = fragp->fr_address + fragp->fr_fix + 2;
17467 /* We try to avoid the infinite loop by not adding 2 more bytes for
17472 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17474 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17475 else if (type == 'E')
17476 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17481 /* If the symbol is not defined or it's in a different segment,
17482 we emit a normal 32-bit branch. */
17485 if (fragp && update
17486 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17488 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17489 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17497 /* Estimate the size of a frag before relaxing. Unless this is the
17498 mips16, we are not really relaxing here, and the final size is
17499 encoded in the subtype information. For the mips16, we have to
17500 decide whether we are using an extended opcode or not. */
17503 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17507 if (RELAX_BRANCH_P (fragp->fr_subtype))
17510 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17512 return fragp->fr_var;
17515 if (RELAX_MIPS16_P (fragp->fr_subtype))
17516 /* We don't want to modify the EXTENDED bit here; it might get us
17517 into infinite loops. We change it only in mips_relax_frag(). */
17518 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17520 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17524 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17525 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17526 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17527 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17528 fragp->fr_var = length;
17533 if (mips_pic == NO_PIC)
17534 change = nopic_need_relax (fragp->fr_symbol, 0);
17535 else if (mips_pic == SVR4_PIC)
17536 change = pic_need_relax (fragp->fr_symbol, segtype);
17537 else if (mips_pic == VXWORKS_PIC)
17538 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17545 fragp->fr_subtype |= RELAX_USE_SECOND;
17546 return -RELAX_FIRST (fragp->fr_subtype);
17549 return -RELAX_SECOND (fragp->fr_subtype);
17552 /* This is called to see whether a reloc against a defined symbol
17553 should be converted into a reloc against a section. */
17556 mips_fix_adjustable (fixS *fixp)
17558 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17559 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17562 if (fixp->fx_addsy == NULL)
17565 /* Allow relocs used for EH tables. */
17566 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17569 /* If symbol SYM is in a mergeable section, relocations of the form
17570 SYM + 0 can usually be made section-relative. The mergeable data
17571 is then identified by the section offset rather than by the symbol.
17573 However, if we're generating REL LO16 relocations, the offset is split
17574 between the LO16 and parterning high part relocation. The linker will
17575 need to recalculate the complete offset in order to correctly identify
17578 The linker has traditionally not looked for the parterning high part
17579 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17580 placed anywhere. Rather than break backwards compatibility by changing
17581 this, it seems better not to force the issue, and instead keep the
17582 original symbol. This will work with either linker behavior. */
17583 if ((lo16_reloc_p (fixp->fx_r_type)
17584 || reloc_needs_lo_p (fixp->fx_r_type))
17585 && HAVE_IN_PLACE_ADDENDS
17586 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17589 /* There is no place to store an in-place offset for JALR relocations. */
17590 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17593 /* Likewise an in-range offset of limited PC-relative relocations may
17594 overflow the in-place relocatable field if recalculated against the
17595 start address of the symbol's containing section.
17597 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17598 section relative to allow linker relaxations to be performed later on. */
17599 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17600 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17603 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17604 to a floating-point stub. The same is true for non-R_MIPS16_26
17605 relocations against MIPS16 functions; in this case, the stub becomes
17606 the function's canonical address.
17608 Floating-point stubs are stored in unique .mips16.call.* or
17609 .mips16.fn.* sections. If a stub T for function F is in section S,
17610 the first relocation in section S must be against F; this is how the
17611 linker determines the target function. All relocations that might
17612 resolve to T must also be against F. We therefore have the following
17613 restrictions, which are given in an intentionally-redundant way:
17615 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17618 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17619 if that stub might be used.
17621 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17624 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17625 that stub might be used.
17627 There is a further restriction:
17629 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17630 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17631 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17632 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17633 against MIPS16 or microMIPS symbols because we need to keep the
17634 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17635 detection and JAL or BAL to JALX instruction conversion in the
17638 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17639 against a MIPS16 symbol. We deal with (5) by additionally leaving
17640 alone any jump and branch relocations against a microMIPS symbol.
17642 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17643 relocation against some symbol R, no relocation against R may be
17644 reduced. (Note that this deals with (2) as well as (1) because
17645 relocations against global symbols will never be reduced on ELF
17646 targets.) This approach is a little simpler than trying to detect
17647 stub sections, and gives the "all or nothing" per-symbol consistency
17648 that we have for MIPS16 symbols. */
17649 if (fixp->fx_subsy == NULL
17650 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17651 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17652 && (jmp_reloc_p (fixp->fx_r_type)
17653 || b_reloc_p (fixp->fx_r_type)))
17654 || *symbol_get_tc (fixp->fx_addsy)))
17660 /* Translate internal representation of relocation info to BFD target
17664 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17666 static arelent *retval[4];
17668 bfd_reloc_code_real_type code;
17670 memset (retval, 0, sizeof(retval));
17671 reloc = retval[0] = XCNEW (arelent);
17672 reloc->sym_ptr_ptr = XNEW (asymbol *);
17673 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17674 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17676 if (fixp->fx_pcrel)
17678 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17679 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17680 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17681 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17682 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17683 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17684 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17685 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17686 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17687 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17688 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17689 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17691 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17692 Relocations want only the symbol offset. */
17693 switch (fixp->fx_r_type)
17695 case BFD_RELOC_MIPS_18_PCREL_S3:
17696 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17699 reloc->addend = fixp->fx_addnumber + reloc->address;
17703 else if (HAVE_IN_PLACE_ADDENDS
17704 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17705 && (read_compressed_insn (fixp->fx_frag->fr_literal
17706 + fixp->fx_where, 4) >> 26) == 0x3c)
17708 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17709 addend accordingly. */
17710 reloc->addend = fixp->fx_addnumber >> 1;
17713 reloc->addend = fixp->fx_addnumber;
17715 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17716 entry to be used in the relocation's section offset. */
17717 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17719 reloc->address = reloc->addend;
17723 code = fixp->fx_r_type;
17725 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17726 if (reloc->howto == NULL)
17728 as_bad_where (fixp->fx_file, fixp->fx_line,
17729 _("cannot represent %s relocation in this object file"
17731 bfd_get_reloc_code_name (code));
17738 /* Relax a machine dependent frag. This returns the amount by which
17739 the current size of the frag should change. */
17742 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17744 if (RELAX_BRANCH_P (fragp->fr_subtype))
17746 offsetT old_var = fragp->fr_var;
17748 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17750 return fragp->fr_var - old_var;
17753 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17755 offsetT old_var = fragp->fr_var;
17756 offsetT new_var = 4;
17758 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17759 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17760 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17761 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17762 fragp->fr_var = new_var;
17764 return new_var - old_var;
17767 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17770 if (mips16_extended_frag (fragp, sec, stretch))
17772 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17774 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17779 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17781 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17788 /* Convert a machine dependent frag. */
17791 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17793 if (RELAX_BRANCH_P (fragp->fr_subtype))
17796 unsigned long insn;
17800 buf = fragp->fr_literal + fragp->fr_fix;
17801 insn = read_insn (buf);
17803 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17805 /* We generate a fixup instead of applying it right now
17806 because, if there are linker relaxations, we're going to
17807 need the relocations. */
17808 exp.X_op = O_symbol;
17809 exp.X_add_symbol = fragp->fr_symbol;
17810 exp.X_add_number = fragp->fr_offset;
17812 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17813 BFD_RELOC_16_PCREL_S2);
17814 fixp->fx_file = fragp->fr_file;
17815 fixp->fx_line = fragp->fr_line;
17817 buf = write_insn (buf, insn);
17823 as_warn_where (fragp->fr_file, fragp->fr_line,
17824 _("relaxed out-of-range branch into a jump"));
17826 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17829 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17831 /* Reverse the branch. */
17832 switch ((insn >> 28) & 0xf)
17835 if ((insn & 0xff000000) == 0x47000000
17836 || (insn & 0xff600000) == 0x45600000)
17838 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17839 reversed by tweaking bit 23. */
17840 insn ^= 0x00800000;
17844 /* bc[0-3][tf]l? instructions can have the condition
17845 reversed by tweaking a single TF bit, and their
17846 opcodes all have 0x4???????. */
17847 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17848 insn ^= 0x00010000;
17853 /* bltz 0x04000000 bgez 0x04010000
17854 bltzal 0x04100000 bgezal 0x04110000 */
17855 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17856 insn ^= 0x00010000;
17860 /* beq 0x10000000 bne 0x14000000
17861 blez 0x18000000 bgtz 0x1c000000 */
17862 insn ^= 0x04000000;
17870 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17872 /* Clear the and-link bit. */
17873 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17875 /* bltzal 0x04100000 bgezal 0x04110000
17876 bltzall 0x04120000 bgezall 0x04130000 */
17877 insn &= ~0x00100000;
17880 /* Branch over the branch (if the branch was likely) or the
17881 full jump (not likely case). Compute the offset from the
17882 current instruction to branch to. */
17883 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17887 /* How many bytes in instructions we've already emitted? */
17888 i = buf - fragp->fr_literal - fragp->fr_fix;
17889 /* How many bytes in instructions from here to the end? */
17890 i = fragp->fr_var - i;
17892 /* Convert to instruction count. */
17894 /* Branch counts from the next instruction. */
17897 /* Branch over the jump. */
17898 buf = write_insn (buf, insn);
17901 buf = write_insn (buf, 0);
17903 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17905 /* beql $0, $0, 2f */
17907 /* Compute the PC offset from the current instruction to
17908 the end of the variable frag. */
17909 /* How many bytes in instructions we've already emitted? */
17910 i = buf - fragp->fr_literal - fragp->fr_fix;
17911 /* How many bytes in instructions from here to the end? */
17912 i = fragp->fr_var - i;
17913 /* Convert to instruction count. */
17915 /* Don't decrement i, because we want to branch over the
17919 buf = write_insn (buf, insn);
17920 buf = write_insn (buf, 0);
17924 if (mips_pic == NO_PIC)
17927 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17928 ? 0x0c000000 : 0x08000000);
17929 exp.X_op = O_symbol;
17930 exp.X_add_symbol = fragp->fr_symbol;
17931 exp.X_add_number = fragp->fr_offset;
17933 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17934 FALSE, BFD_RELOC_MIPS_JMP);
17935 fixp->fx_file = fragp->fr_file;
17936 fixp->fx_line = fragp->fr_line;
17938 buf = write_insn (buf, insn);
17942 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17944 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17945 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17946 insn |= at << OP_SH_RT;
17947 exp.X_op = O_symbol;
17948 exp.X_add_symbol = fragp->fr_symbol;
17949 exp.X_add_number = fragp->fr_offset;
17951 if (fragp->fr_offset)
17953 exp.X_add_symbol = make_expr_symbol (&exp);
17954 exp.X_add_number = 0;
17957 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17958 FALSE, BFD_RELOC_MIPS_GOT16);
17959 fixp->fx_file = fragp->fr_file;
17960 fixp->fx_line = fragp->fr_line;
17962 buf = write_insn (buf, insn);
17964 if (mips_opts.isa == ISA_MIPS1)
17966 buf = write_insn (buf, 0);
17968 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17969 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17970 insn |= at << OP_SH_RS | at << OP_SH_RT;
17972 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17973 FALSE, BFD_RELOC_LO16);
17974 fixp->fx_file = fragp->fr_file;
17975 fixp->fx_line = fragp->fr_line;
17977 buf = write_insn (buf, insn);
17980 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17984 insn |= at << OP_SH_RS;
17986 buf = write_insn (buf, insn);
17990 fragp->fr_fix += fragp->fr_var;
17991 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17995 /* Relax microMIPS branches. */
17996 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17998 char *buf = fragp->fr_literal + fragp->fr_fix;
17999 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18000 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18001 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18002 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18003 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18004 bfd_boolean short_ds;
18005 unsigned long insn;
18009 exp.X_op = O_symbol;
18010 exp.X_add_symbol = fragp->fr_symbol;
18011 exp.X_add_number = fragp->fr_offset;
18013 fragp->fr_fix += fragp->fr_var;
18015 /* Handle 16-bit branches that fit or are forced to fit. */
18016 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18018 /* We generate a fixup instead of applying it right now,
18019 because if there is linker relaxation, we're going to
18020 need the relocations. */
18022 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18023 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18024 else if (type == 'E')
18025 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18026 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18030 fixp->fx_file = fragp->fr_file;
18031 fixp->fx_line = fragp->fr_line;
18033 /* These relocations can have an addend that won't fit in
18035 fixp->fx_no_overflow = 1;
18040 /* Handle 32-bit branches that fit or are forced to fit. */
18041 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18042 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18044 /* We generate a fixup instead of applying it right now,
18045 because if there is linker relaxation, we're going to
18046 need the relocations. */
18047 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18048 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18049 fixp->fx_file = fragp->fr_file;
18050 fixp->fx_line = fragp->fr_line;
18054 insn = read_compressed_insn (buf, 4);
18059 /* Check the short-delay-slot bit. */
18060 if (!al || (insn & 0x02000000) != 0)
18061 buf = write_compressed_insn (buf, 0x0c00, 2);
18063 buf = write_compressed_insn (buf, 0x00000000, 4);
18066 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18071 /* Relax 16-bit branches to 32-bit branches. */
18074 insn = read_compressed_insn (buf, 2);
18076 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18077 insn = 0x94000000; /* beq */
18078 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18080 unsigned long regno;
18082 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18083 regno = micromips_to_32_reg_d_map [regno];
18084 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18085 insn |= regno << MICROMIPSOP_SH_RS;
18090 /* Nothing else to do, just write it out. */
18091 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18092 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18094 buf = write_compressed_insn (buf, insn, 4);
18096 buf = write_compressed_insn (buf, 0x0c00, 2);
18097 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18102 insn = read_compressed_insn (buf, 4);
18104 /* Relax 32-bit branches to a sequence of instructions. */
18105 as_warn_where (fragp->fr_file, fragp->fr_line,
18106 _("relaxed out-of-range branch into a jump"));
18108 /* Set the short-delay-slot bit. */
18109 short_ds = !al || (insn & 0x02000000) != 0;
18111 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18115 /* Reverse the branch. */
18116 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18117 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18118 insn ^= 0x20000000;
18119 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18120 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18121 || (insn & 0xffe00000) == 0x40800000 /* blez */
18122 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18123 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18124 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18125 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18126 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18127 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18128 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18129 insn ^= 0x00400000;
18130 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18131 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18132 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18133 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18134 insn ^= 0x00200000;
18135 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18137 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18139 insn ^= 0x00800000;
18145 /* Clear the and-link and short-delay-slot bits. */
18146 gas_assert ((insn & 0xfda00000) == 0x40200000);
18148 /* bltzal 0x40200000 bgezal 0x40600000 */
18149 /* bltzals 0x42200000 bgezals 0x42600000 */
18150 insn &= ~0x02200000;
18153 /* Make a label at the end for use with the branch. */
18154 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18155 micromips_label_inc ();
18156 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18159 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18160 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18161 fixp->fx_file = fragp->fr_file;
18162 fixp->fx_line = fragp->fr_line;
18164 /* Branch over the jump. */
18165 buf = write_compressed_insn (buf, insn, 4);
18171 buf = write_compressed_insn (buf, 0x00000000, 4);
18173 buf = write_compressed_insn (buf, 0x0c00, 2);
18177 if (mips_pic == NO_PIC)
18179 unsigned long jal = (short_ds || nods
18180 ? 0x74000000 : 0xf4000000); /* jal/s */
18182 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18183 insn = al ? jal : 0xd4000000;
18185 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18186 BFD_RELOC_MICROMIPS_JMP);
18187 fixp->fx_file = fragp->fr_file;
18188 fixp->fx_line = fragp->fr_line;
18190 buf = write_compressed_insn (buf, insn, 4);
18192 if (compact || nods)
18196 buf = write_compressed_insn (buf, 0x00000000, 4);
18198 buf = write_compressed_insn (buf, 0x0c00, 2);
18203 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18205 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18206 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18207 insn |= at << MICROMIPSOP_SH_RT;
18209 if (exp.X_add_number)
18211 exp.X_add_symbol = make_expr_symbol (&exp);
18212 exp.X_add_number = 0;
18215 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18216 BFD_RELOC_MICROMIPS_GOT16);
18217 fixp->fx_file = fragp->fr_file;
18218 fixp->fx_line = fragp->fr_line;
18220 buf = write_compressed_insn (buf, insn, 4);
18222 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18223 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18224 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18226 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18227 BFD_RELOC_MICROMIPS_LO16);
18228 fixp->fx_file = fragp->fr_file;
18229 fixp->fx_line = fragp->fr_line;
18231 buf = write_compressed_insn (buf, insn, 4);
18236 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18237 insn |= at << MICROMIPSOP_SH_RS;
18239 buf = write_compressed_insn (buf, insn, 4);
18241 if (compact || nods)
18243 buf = write_compressed_insn (buf, 0x00000000, 4);
18247 /* jr/jrc/jalr/jalrs $at */
18248 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18249 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18251 insn = al ? jalr : jr;
18252 insn |= at << MICROMIPSOP_SH_MJ;
18254 buf = write_compressed_insn (buf, insn, 2);
18259 buf = write_compressed_insn (buf, 0x0c00, 2);
18261 buf = write_compressed_insn (buf, 0x00000000, 4);
18266 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18270 if (RELAX_MIPS16_P (fragp->fr_subtype))
18273 const struct mips_int_operand *operand;
18276 unsigned int user_length, length;
18277 bfd_boolean need_reloc;
18278 unsigned long insn;
18282 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18283 operand = mips16_immed_operand (type, FALSE);
18285 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18286 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18288 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18289 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18290 || (operand->root.type == OP_PCREL
18292 : !bfd_is_abs_section (symsec)));
18294 if (operand->root.type == OP_PCREL)
18296 const struct mips_pcrel_operand *pcrel_op;
18299 pcrel_op = (const struct mips_pcrel_operand *) operand;
18300 addr = fragp->fr_address + fragp->fr_fix;
18302 /* The rules for the base address of a PC relative reloc are
18303 complicated; see mips16_extended_frag. */
18304 if (pcrel_op->include_isa_bit)
18308 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18309 as_bad_where (fragp->fr_file, fragp->fr_line,
18310 _("branch to a symbol in another ISA mode"));
18311 else if ((fragp->fr_offset & 0x1) != 0)
18312 as_bad_where (fragp->fr_file, fragp->fr_line,
18313 _("branch to misaligned address (0x%lx)"),
18319 /* Ignore the low bit in the target, since it will be
18320 set for a text label. */
18323 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18325 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18328 addr &= -(1 << pcrel_op->align_log2);
18331 /* Make sure the section winds up with the alignment we have
18333 if (operand->shift > 0)
18334 record_alignment (asec, operand->shift);
18338 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18339 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18340 as_warn_where (fragp->fr_file, fragp->fr_line,
18341 _("extended instruction in delay slot"));
18343 buf = fragp->fr_literal + fragp->fr_fix;
18345 insn = read_compressed_insn (buf, 2);
18347 insn |= MIPS16_EXTEND;
18349 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18351 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18358 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18366 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18369 as_bad_where (fragp->fr_file, fragp->fr_line,
18370 _("unsupported relocation"));
18373 if (reloc != BFD_RELOC_NONE)
18377 exp.X_op = O_symbol;
18378 exp.X_add_symbol = fragp->fr_symbol;
18379 exp.X_add_number = fragp->fr_offset;
18381 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18384 fixp->fx_file = fragp->fr_file;
18385 fixp->fx_line = fragp->fr_line;
18387 /* These relocations can have an addend that won't fit
18389 fixp->fx_no_overflow = 1;
18393 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18394 BFD_RELOC_UNUSED, val, user_length, &insn);
18396 length = (ext ? 4 : 2);
18397 gas_assert (mips16_opcode_length (insn) == length);
18398 write_compressed_insn (buf, insn, length);
18399 fragp->fr_fix += length;
18403 relax_substateT subtype = fragp->fr_subtype;
18404 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18405 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18409 first = RELAX_FIRST (subtype);
18410 second = RELAX_SECOND (subtype);
18411 fixp = (fixS *) fragp->fr_opcode;
18413 /* If the delay slot chosen does not match the size of the instruction,
18414 then emit a warning. */
18415 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18416 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18421 s = subtype & (RELAX_DELAY_SLOT_16BIT
18422 | RELAX_DELAY_SLOT_SIZE_FIRST
18423 | RELAX_DELAY_SLOT_SIZE_SECOND);
18424 msg = macro_warning (s);
18426 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18430 /* Possibly emit a warning if we've chosen the longer option. */
18431 if (use_second == second_longer)
18437 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18438 msg = macro_warning (s);
18440 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18444 /* Go through all the fixups for the first sequence. Disable them
18445 (by marking them as done) if we're going to use the second
18446 sequence instead. */
18448 && fixp->fx_frag == fragp
18449 && fixp->fx_where < fragp->fr_fix - second)
18451 if (subtype & RELAX_USE_SECOND)
18453 fixp = fixp->fx_next;
18456 /* Go through the fixups for the second sequence. Disable them if
18457 we're going to use the first sequence, otherwise adjust their
18458 addresses to account for the relaxation. */
18459 while (fixp && fixp->fx_frag == fragp)
18461 if (subtype & RELAX_USE_SECOND)
18462 fixp->fx_where -= first;
18465 fixp = fixp->fx_next;
18468 /* Now modify the frag contents. */
18469 if (subtype & RELAX_USE_SECOND)
18473 start = fragp->fr_literal + fragp->fr_fix - first - second;
18474 memmove (start, start + first, second);
18475 fragp->fr_fix -= first;
18478 fragp->fr_fix -= second;
18482 /* This function is called after the relocs have been generated.
18483 We've been storing mips16 text labels as odd. Here we convert them
18484 back to even for the convenience of the debugger. */
18487 mips_frob_file_after_relocs (void)
18490 unsigned int count, i;
18492 syms = bfd_get_outsymbols (stdoutput);
18493 count = bfd_get_symcount (stdoutput);
18494 for (i = 0; i < count; i++, syms++)
18495 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18496 && ((*syms)->value & 1) != 0)
18498 (*syms)->value &= ~1;
18499 /* If the symbol has an odd size, it was probably computed
18500 incorrectly, so adjust that as well. */
18501 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18502 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18506 /* This function is called whenever a label is defined, including fake
18507 labels instantiated off the dot special symbol. It is used when
18508 handling branch delays; if a branch has a label, we assume we cannot
18509 move it. This also bumps the value of the symbol by 1 in compressed
18513 mips_record_label (symbolS *sym)
18515 segment_info_type *si = seg_info (now_seg);
18516 struct insn_label_list *l;
18518 if (free_insn_labels == NULL)
18519 l = XNEW (struct insn_label_list);
18522 l = free_insn_labels;
18523 free_insn_labels = l->next;
18527 l->next = si->label_list;
18528 si->label_list = l;
18531 /* This function is called as tc_frob_label() whenever a label is defined
18532 and adds a DWARF-2 record we only want for true labels. */
18535 mips_define_label (symbolS *sym)
18537 mips_record_label (sym);
18538 dwarf2_emit_label (sym);
18541 /* This function is called by tc_new_dot_label whenever a new dot symbol
18545 mips_add_dot_label (symbolS *sym)
18547 mips_record_label (sym);
18548 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18549 mips_compressed_mark_label (sym);
18552 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18553 static unsigned int
18554 mips_convert_ase_flags (int ase)
18556 unsigned int ext_ases = 0;
18559 ext_ases |= AFL_ASE_DSP;
18560 if (ase & ASE_DSPR2)
18561 ext_ases |= AFL_ASE_DSPR2;
18562 if (ase & ASE_DSPR3)
18563 ext_ases |= AFL_ASE_DSPR3;
18565 ext_ases |= AFL_ASE_EVA;
18567 ext_ases |= AFL_ASE_MCU;
18568 if (ase & ASE_MDMX)
18569 ext_ases |= AFL_ASE_MDMX;
18570 if (ase & ASE_MIPS3D)
18571 ext_ases |= AFL_ASE_MIPS3D;
18573 ext_ases |= AFL_ASE_MT;
18574 if (ase & ASE_SMARTMIPS)
18575 ext_ases |= AFL_ASE_SMARTMIPS;
18576 if (ase & ASE_VIRT)
18577 ext_ases |= AFL_ASE_VIRT;
18579 ext_ases |= AFL_ASE_MSA;
18581 ext_ases |= AFL_ASE_XPA;
18585 /* Some special processing for a MIPS ELF file. */
18588 mips_elf_final_processing (void)
18591 Elf_Internal_ABIFlags_v0 flags;
18595 switch (file_mips_opts.isa)
18598 flags.isa_level = 1;
18601 flags.isa_level = 2;
18604 flags.isa_level = 3;
18607 flags.isa_level = 4;
18610 flags.isa_level = 5;
18613 flags.isa_level = 32;
18617 flags.isa_level = 32;
18621 flags.isa_level = 32;
18625 flags.isa_level = 32;
18629 flags.isa_level = 32;
18633 flags.isa_level = 64;
18637 flags.isa_level = 64;
18641 flags.isa_level = 64;
18645 flags.isa_level = 64;
18649 flags.isa_level = 64;
18654 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18655 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18656 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18657 : (file_mips_opts.fp == 64) ? AFL_REG_64
18659 flags.cpr2_size = AFL_REG_NONE;
18660 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18661 Tag_GNU_MIPS_ABI_FP);
18662 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18663 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18664 if (file_ase_mips16)
18665 flags.ases |= AFL_ASE_MIPS16;
18666 if (file_ase_micromips)
18667 flags.ases |= AFL_ASE_MICROMIPS;
18669 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18670 || file_mips_opts.fp == 64)
18671 && file_mips_opts.oddspreg)
18672 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18675 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18676 ((Elf_External_ABIFlags_v0 *)
18679 /* Write out the register information. */
18680 if (mips_abi != N64_ABI)
18684 s.ri_gprmask = mips_gprmask;
18685 s.ri_cprmask[0] = mips_cprmask[0];
18686 s.ri_cprmask[1] = mips_cprmask[1];
18687 s.ri_cprmask[2] = mips_cprmask[2];
18688 s.ri_cprmask[3] = mips_cprmask[3];
18689 /* The gp_value field is set by the MIPS ELF backend. */
18691 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18692 ((Elf32_External_RegInfo *)
18693 mips_regmask_frag));
18697 Elf64_Internal_RegInfo s;
18699 s.ri_gprmask = mips_gprmask;
18701 s.ri_cprmask[0] = mips_cprmask[0];
18702 s.ri_cprmask[1] = mips_cprmask[1];
18703 s.ri_cprmask[2] = mips_cprmask[2];
18704 s.ri_cprmask[3] = mips_cprmask[3];
18705 /* The gp_value field is set by the MIPS ELF backend. */
18707 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18708 ((Elf64_External_RegInfo *)
18709 mips_regmask_frag));
18712 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18713 sort of BFD interface for this. */
18714 if (mips_any_noreorder)
18715 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18716 if (mips_pic != NO_PIC)
18718 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18719 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18722 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18724 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18725 defined at present; this might need to change in future. */
18726 if (file_ase_mips16)
18727 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18728 if (file_ase_micromips)
18729 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18730 if (file_mips_opts.ase & ASE_MDMX)
18731 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18733 /* Set the MIPS ELF ABI flags. */
18734 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18735 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18736 else if (mips_abi == O64_ABI)
18737 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18738 else if (mips_abi == EABI_ABI)
18740 if (file_mips_opts.gp == 64)
18741 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18743 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18745 else if (mips_abi == N32_ABI)
18746 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18748 /* Nothing to do for N64_ABI. */
18750 if (mips_32bitmode)
18751 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18753 if (mips_nan2008 == 1)
18754 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18756 /* 32 bit code with 64 bit FP registers. */
18757 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18758 Tag_GNU_MIPS_ABI_FP);
18759 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18760 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18763 typedef struct proc {
18765 symbolS *func_end_sym;
18766 unsigned long reg_mask;
18767 unsigned long reg_offset;
18768 unsigned long fpreg_mask;
18769 unsigned long fpreg_offset;
18770 unsigned long frame_offset;
18771 unsigned long frame_reg;
18772 unsigned long pc_reg;
18775 static procS cur_proc;
18776 static procS *cur_proc_ptr;
18777 static int numprocs;
18779 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18780 as "2", and a normal nop as "0". */
18782 #define NOP_OPCODE_MIPS 0
18783 #define NOP_OPCODE_MIPS16 1
18784 #define NOP_OPCODE_MICROMIPS 2
18787 mips_nop_opcode (void)
18789 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18790 return NOP_OPCODE_MICROMIPS;
18791 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18792 return NOP_OPCODE_MIPS16;
18794 return NOP_OPCODE_MIPS;
18797 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18798 32-bit microMIPS NOPs here (if applicable). */
18801 mips_handle_align (fragS *fragp)
18805 int bytes, size, excess;
18808 if (fragp->fr_type != rs_align_code)
18811 p = fragp->fr_literal + fragp->fr_fix;
18813 switch (nop_opcode)
18815 case NOP_OPCODE_MICROMIPS:
18816 opcode = micromips_nop32_insn.insn_opcode;
18819 case NOP_OPCODE_MIPS16:
18820 opcode = mips16_nop_insn.insn_opcode;
18823 case NOP_OPCODE_MIPS:
18825 opcode = nop_insn.insn_opcode;
18830 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18831 excess = bytes % size;
18833 /* Handle the leading part if we're not inserting a whole number of
18834 instructions, and make it the end of the fixed part of the frag.
18835 Try to fit in a short microMIPS NOP if applicable and possible,
18836 and use zeroes otherwise. */
18837 gas_assert (excess < 4);
18838 fragp->fr_fix += excess;
18843 /* Fall through. */
18845 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18847 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18851 /* Fall through. */
18854 /* Fall through. */
18859 md_number_to_chars (p, opcode, size);
18860 fragp->fr_var = size;
18869 if (*input_line_pointer == '-')
18871 ++input_line_pointer;
18874 if (!ISDIGIT (*input_line_pointer))
18875 as_bad (_("expected simple number"));
18876 if (input_line_pointer[0] == '0')
18878 if (input_line_pointer[1] == 'x')
18880 input_line_pointer += 2;
18881 while (ISXDIGIT (*input_line_pointer))
18884 val |= hex_value (*input_line_pointer++);
18886 return negative ? -val : val;
18890 ++input_line_pointer;
18891 while (ISDIGIT (*input_line_pointer))
18894 val |= *input_line_pointer++ - '0';
18896 return negative ? -val : val;
18899 if (!ISDIGIT (*input_line_pointer))
18901 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18902 *input_line_pointer, *input_line_pointer);
18903 as_warn (_("invalid number"));
18906 while (ISDIGIT (*input_line_pointer))
18909 val += *input_line_pointer++ - '0';
18911 return negative ? -val : val;
18914 /* The .file directive; just like the usual .file directive, but there
18915 is an initial number which is the ECOFF file index. In the non-ECOFF
18916 case .file implies DWARF-2. */
18919 s_mips_file (int x ATTRIBUTE_UNUSED)
18921 static int first_file_directive = 0;
18923 if (ECOFF_DEBUGGING)
18932 filename = dwarf2_directive_file (0);
18934 /* Versions of GCC up to 3.1 start files with a ".file"
18935 directive even for stabs output. Make sure that this
18936 ".file" is handled. Note that you need a version of GCC
18937 after 3.1 in order to support DWARF-2 on MIPS. */
18938 if (filename != NULL && ! first_file_directive)
18940 (void) new_logical_line (filename, -1);
18941 s_app_file_string (filename, 0);
18943 first_file_directive = 1;
18947 /* The .loc directive, implying DWARF-2. */
18950 s_mips_loc (int x ATTRIBUTE_UNUSED)
18952 if (!ECOFF_DEBUGGING)
18953 dwarf2_directive_loc (0);
18956 /* The .end directive. */
18959 s_mips_end (int x ATTRIBUTE_UNUSED)
18963 /* Following functions need their own .frame and .cprestore directives. */
18964 mips_frame_reg_valid = 0;
18965 mips_cprestore_valid = 0;
18967 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18970 demand_empty_rest_of_line ();
18975 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18976 as_warn (_(".end not in text section"));
18980 as_warn (_(".end directive without a preceding .ent directive"));
18981 demand_empty_rest_of_line ();
18987 gas_assert (S_GET_NAME (p));
18988 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18989 as_warn (_(".end symbol does not match .ent symbol"));
18991 if (debug_type == DEBUG_STABS)
18992 stabs_generate_asm_endfunc (S_GET_NAME (p),
18996 as_warn (_(".end directive missing or unknown symbol"));
18998 /* Create an expression to calculate the size of the function. */
18999 if (p && cur_proc_ptr)
19001 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19002 expressionS *exp = XNEW (expressionS);
19005 exp->X_op = O_subtract;
19006 exp->X_add_symbol = symbol_temp_new_now ();
19007 exp->X_op_symbol = p;
19008 exp->X_add_number = 0;
19010 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19013 /* Generate a .pdr section. */
19014 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19016 segT saved_seg = now_seg;
19017 subsegT saved_subseg = now_subseg;
19021 #ifdef md_flush_pending_output
19022 md_flush_pending_output ();
19025 gas_assert (pdr_seg);
19026 subseg_set (pdr_seg, 0);
19028 /* Write the symbol. */
19029 exp.X_op = O_symbol;
19030 exp.X_add_symbol = p;
19031 exp.X_add_number = 0;
19032 emit_expr (&exp, 4);
19034 fragp = frag_more (7 * 4);
19036 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19037 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19038 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19039 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19040 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19041 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19042 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19044 subseg_set (saved_seg, saved_subseg);
19047 cur_proc_ptr = NULL;
19050 /* The .aent and .ent directives. */
19053 s_mips_ent (int aent)
19057 symbolP = get_symbol ();
19058 if (*input_line_pointer == ',')
19059 ++input_line_pointer;
19060 SKIP_WHITESPACE ();
19061 if (ISDIGIT (*input_line_pointer)
19062 || *input_line_pointer == '-')
19065 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19066 as_warn (_(".ent or .aent not in text section"));
19068 if (!aent && cur_proc_ptr)
19069 as_warn (_("missing .end"));
19073 /* This function needs its own .frame and .cprestore directives. */
19074 mips_frame_reg_valid = 0;
19075 mips_cprestore_valid = 0;
19077 cur_proc_ptr = &cur_proc;
19078 memset (cur_proc_ptr, '\0', sizeof (procS));
19080 cur_proc_ptr->func_sym = symbolP;
19084 if (debug_type == DEBUG_STABS)
19085 stabs_generate_asm_func (S_GET_NAME (symbolP),
19086 S_GET_NAME (symbolP));
19089 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19091 demand_empty_rest_of_line ();
19094 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19095 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19096 s_mips_frame is used so that we can set the PDR information correctly.
19097 We can't use the ecoff routines because they make reference to the ecoff
19098 symbol table (in the mdebug section). */
19101 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19103 if (ECOFF_DEBUGGING)
19109 if (cur_proc_ptr == (procS *) NULL)
19111 as_warn (_(".frame outside of .ent"));
19112 demand_empty_rest_of_line ();
19116 cur_proc_ptr->frame_reg = tc_get_register (1);
19118 SKIP_WHITESPACE ();
19119 if (*input_line_pointer++ != ','
19120 || get_absolute_expression_and_terminator (&val) != ',')
19122 as_warn (_("bad .frame directive"));
19123 --input_line_pointer;
19124 demand_empty_rest_of_line ();
19128 cur_proc_ptr->frame_offset = val;
19129 cur_proc_ptr->pc_reg = tc_get_register (0);
19131 demand_empty_rest_of_line ();
19135 /* The .fmask and .mask directives. If the mdebug section is present
19136 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19137 embedded targets, s_mips_mask is used so that we can set the PDR
19138 information correctly. We can't use the ecoff routines because they
19139 make reference to the ecoff symbol table (in the mdebug section). */
19142 s_mips_mask (int reg_type)
19144 if (ECOFF_DEBUGGING)
19145 s_ignore (reg_type);
19150 if (cur_proc_ptr == (procS *) NULL)
19152 as_warn (_(".mask/.fmask outside of .ent"));
19153 demand_empty_rest_of_line ();
19157 if (get_absolute_expression_and_terminator (&mask) != ',')
19159 as_warn (_("bad .mask/.fmask directive"));
19160 --input_line_pointer;
19161 demand_empty_rest_of_line ();
19165 off = get_absolute_expression ();
19167 if (reg_type == 'F')
19169 cur_proc_ptr->fpreg_mask = mask;
19170 cur_proc_ptr->fpreg_offset = off;
19174 cur_proc_ptr->reg_mask = mask;
19175 cur_proc_ptr->reg_offset = off;
19178 demand_empty_rest_of_line ();
19182 /* A table describing all the processors gas knows about. Names are
19183 matched in the order listed.
19185 To ease comparison, please keep this table in the same order as
19186 gcc's mips_cpu_info_table[]. */
19187 static const struct mips_cpu_info mips_cpu_info_table[] =
19189 /* Entries for generic ISAs */
19190 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19191 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19192 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19193 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19194 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19195 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19196 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19197 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19198 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19199 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19200 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19201 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19202 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19203 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19204 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19207 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19208 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19209 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19212 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19215 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19216 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19217 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19218 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19219 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19220 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19221 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19222 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19223 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19224 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19225 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19226 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19227 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19228 /* ST Microelectronics Loongson 2E and 2F cores */
19229 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19230 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19233 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19234 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19235 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19236 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19237 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19238 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19239 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19240 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19241 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19242 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19243 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19244 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19245 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19246 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19247 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19250 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19251 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19252 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19253 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19255 /* MIPS 32 Release 2 */
19256 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19257 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19258 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19259 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19260 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19261 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19262 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19263 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19264 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19265 ISA_MIPS32R2, CPU_MIPS32R2 },
19266 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19267 ISA_MIPS32R2, CPU_MIPS32R2 },
19268 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19269 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19270 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19271 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19272 /* Deprecated forms of the above. */
19273 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19274 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19275 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19276 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19277 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19278 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19279 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19280 /* Deprecated forms of the above. */
19281 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19282 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19283 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19284 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19285 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19286 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19287 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19288 /* Deprecated forms of the above. */
19289 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19290 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19291 /* 34Kn is a 34kc without DSP. */
19292 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19293 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19294 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19295 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19296 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19297 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19298 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19299 /* Deprecated forms of the above. */
19300 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19301 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19302 /* 1004K cores are multiprocessor versions of the 34K. */
19303 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 /* interaptiv is the new name for 1004kf */
19308 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19311 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19312 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19313 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19316 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19317 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19318 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19319 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19321 /* Broadcom SB-1 CPU core */
19322 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19323 /* Broadcom SB-1A CPU core */
19324 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19326 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19328 /* MIPS 64 Release 2 */
19330 /* Cavium Networks Octeon CPU core */
19331 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19332 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19333 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19334 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19337 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19340 XLP is mostly like XLR, with the prominent exception that it is
19341 MIPS64R2 rather than MIPS64. */
19342 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19344 /* MIPS 64 Release 6 */
19345 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19346 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19349 { NULL, 0, 0, 0, 0 }
19353 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19354 with a final "000" replaced by "k". Ignore case.
19356 Note: this function is shared between GCC and GAS. */
19359 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19361 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19362 given++, canonical++;
19364 return ((*given == 0 && *canonical == 0)
19365 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19369 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19370 CPU name. We've traditionally allowed a lot of variation here.
19372 Note: this function is shared between GCC and GAS. */
19375 mips_matching_cpu_name_p (const char *canonical, const char *given)
19377 /* First see if the name matches exactly, or with a final "000"
19378 turned into "k". */
19379 if (mips_strict_matching_cpu_name_p (canonical, given))
19382 /* If not, try comparing based on numerical designation alone.
19383 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19384 if (TOLOWER (*given) == 'r')
19386 if (!ISDIGIT (*given))
19389 /* Skip over some well-known prefixes in the canonical name,
19390 hoping to find a number there too. */
19391 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19393 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19395 else if (TOLOWER (canonical[0]) == 'r')
19398 return mips_strict_matching_cpu_name_p (canonical, given);
19402 /* Parse an option that takes the name of a processor as its argument.
19403 OPTION is the name of the option and CPU_STRING is the argument.
19404 Return the corresponding processor enumeration if the CPU_STRING is
19405 recognized, otherwise report an error and return null.
19407 A similar function exists in GCC. */
19409 static const struct mips_cpu_info *
19410 mips_parse_cpu (const char *option, const char *cpu_string)
19412 const struct mips_cpu_info *p;
19414 /* 'from-abi' selects the most compatible architecture for the given
19415 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19416 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19417 version. Look first at the -mgp options, if given, otherwise base
19418 the choice on MIPS_DEFAULT_64BIT.
19420 Treat NO_ABI like the EABIs. One reason to do this is that the
19421 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19422 architecture. This code picks MIPS I for 'mips' and MIPS III for
19423 'mips64', just as we did in the days before 'from-abi'. */
19424 if (strcasecmp (cpu_string, "from-abi") == 0)
19426 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19427 return mips_cpu_info_from_isa (ISA_MIPS1);
19429 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19430 return mips_cpu_info_from_isa (ISA_MIPS3);
19432 if (file_mips_opts.gp >= 0)
19433 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19434 ? ISA_MIPS1 : ISA_MIPS3);
19436 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19441 /* 'default' has traditionally been a no-op. Probably not very useful. */
19442 if (strcasecmp (cpu_string, "default") == 0)
19445 for (p = mips_cpu_info_table; p->name != 0; p++)
19446 if (mips_matching_cpu_name_p (p->name, cpu_string))
19449 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19453 /* Return the canonical processor information for ISA (a member of the
19454 ISA_MIPS* enumeration). */
19456 static const struct mips_cpu_info *
19457 mips_cpu_info_from_isa (int isa)
19461 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19462 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19463 && isa == mips_cpu_info_table[i].isa)
19464 return (&mips_cpu_info_table[i]);
19469 static const struct mips_cpu_info *
19470 mips_cpu_info_from_arch (int arch)
19474 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19475 if (arch == mips_cpu_info_table[i].cpu)
19476 return (&mips_cpu_info_table[i]);
19482 show (FILE *stream, const char *string, int *col_p, int *first_p)
19486 fprintf (stream, "%24s", "");
19491 fprintf (stream, ", ");
19495 if (*col_p + strlen (string) > 72)
19497 fprintf (stream, "\n%24s", "");
19501 fprintf (stream, "%s", string);
19502 *col_p += strlen (string);
19508 md_show_usage (FILE *stream)
19513 fprintf (stream, _("\
19515 -EB generate big endian output\n\
19516 -EL generate little endian output\n\
19517 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19518 -G NUM allow referencing objects up to NUM bytes\n\
19519 implicitly with the gp register [default 8]\n"));
19520 fprintf (stream, _("\
19521 -mips1 generate MIPS ISA I instructions\n\
19522 -mips2 generate MIPS ISA II instructions\n\
19523 -mips3 generate MIPS ISA III instructions\n\
19524 -mips4 generate MIPS ISA IV instructions\n\
19525 -mips5 generate MIPS ISA V instructions\n\
19526 -mips32 generate MIPS32 ISA instructions\n\
19527 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19528 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19529 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19530 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19531 -mips64 generate MIPS64 ISA instructions\n\
19532 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19533 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19534 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19535 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19536 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19540 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19541 show (stream, mips_cpu_info_table[i].name, &column, &first);
19542 show (stream, "from-abi", &column, &first);
19543 fputc ('\n', stream);
19545 fprintf (stream, _("\
19546 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19547 -no-mCPU don't generate code specific to CPU.\n\
19548 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19552 show (stream, "3900", &column, &first);
19553 show (stream, "4010", &column, &first);
19554 show (stream, "4100", &column, &first);
19555 show (stream, "4650", &column, &first);
19556 fputc ('\n', stream);
19558 fprintf (stream, _("\
19559 -mips16 generate mips16 instructions\n\
19560 -no-mips16 do not generate mips16 instructions\n"));
19561 fprintf (stream, _("\
19562 -mmicromips generate microMIPS instructions\n\
19563 -mno-micromips do not generate microMIPS instructions\n"));
19564 fprintf (stream, _("\
19565 -msmartmips generate smartmips instructions\n\
19566 -mno-smartmips do not generate smartmips instructions\n"));
19567 fprintf (stream, _("\
19568 -mdsp generate DSP instructions\n\
19569 -mno-dsp do not generate DSP instructions\n"));
19570 fprintf (stream, _("\
19571 -mdspr2 generate DSP R2 instructions\n\
19572 -mno-dspr2 do not generate DSP R2 instructions\n"));
19573 fprintf (stream, _("\
19574 -mdspr3 generate DSP R3 instructions\n\
19575 -mno-dspr3 do not generate DSP R3 instructions\n"));
19576 fprintf (stream, _("\
19577 -mmt generate MT instructions\n\
19578 -mno-mt do not generate MT instructions\n"));
19579 fprintf (stream, _("\
19580 -mmcu generate MCU instructions\n\
19581 -mno-mcu do not generate MCU instructions\n"));
19582 fprintf (stream, _("\
19583 -mmsa generate MSA instructions\n\
19584 -mno-msa do not generate MSA instructions\n"));
19585 fprintf (stream, _("\
19586 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19587 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19588 fprintf (stream, _("\
19589 -mvirt generate Virtualization instructions\n\
19590 -mno-virt do not generate Virtualization instructions\n"));
19591 fprintf (stream, _("\
19592 -minsn32 only generate 32-bit microMIPS instructions\n\
19593 -mno-insn32 generate all microMIPS instructions\n"));
19594 fprintf (stream, _("\
19595 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19596 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19597 -mfix-vr4120 work around certain VR4120 errata\n\
19598 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19599 -mfix-24k insert a nop after ERET and DERET instructions\n\
19600 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19601 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19602 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19603 -msym32 assume all symbols have 32-bit values\n\
19604 -O0 remove unneeded NOPs, do not swap branches\n\
19605 -O remove unneeded NOPs and swap branches\n\
19606 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19607 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19608 fprintf (stream, _("\
19609 -mhard-float allow floating-point instructions\n\
19610 -msoft-float do not allow floating-point instructions\n\
19611 -msingle-float only allow 32-bit floating-point operations\n\
19612 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19613 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19614 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19615 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19619 show (stream, "legacy", &column, &first);
19620 show (stream, "2008", &column, &first);
19622 fputc ('\n', stream);
19624 fprintf (stream, _("\
19625 -KPIC, -call_shared generate SVR4 position independent code\n\
19626 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19627 -mvxworks-pic generate VxWorks position independent code\n\
19628 -non_shared do not generate code that can operate with DSOs\n\
19629 -xgot assume a 32 bit GOT\n\
19630 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19631 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19632 position dependent (non shared) code\n\
19633 -mabi=ABI create ABI conformant object file for:\n"));
19637 show (stream, "32", &column, &first);
19638 show (stream, "o64", &column, &first);
19639 show (stream, "n32", &column, &first);
19640 show (stream, "64", &column, &first);
19641 show (stream, "eabi", &column, &first);
19643 fputc ('\n', stream);
19645 fprintf (stream, _("\
19646 -32 create o32 ABI object file (default)\n\
19647 -n32 create n32 ABI object file\n\
19648 -64 create 64 ABI object file\n"));
19653 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19655 if (HAVE_64BIT_SYMBOLS)
19656 return dwarf2_format_64bit_irix;
19658 return dwarf2_format_32bit;
19663 mips_dwarf2_addr_size (void)
19665 if (HAVE_64BIT_OBJECTS)
19671 /* Standard calling conventions leave the CFA at SP on entry. */
19673 mips_cfi_frame_initial_instructions (void)
19675 cfi_add_CFA_def_cfa_register (SP);
19679 tc_mips_regname_to_dw2regnum (char *regname)
19681 unsigned int regnum = -1;
19684 if (reg_lookup (®name, RTYPE_GP | RTYPE_NUM, ®))
19690 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19691 Given a symbolic attribute NAME, return the proper integer value.
19692 Returns -1 if the attribute is not known. */
19695 mips_convert_symbolic_attribute (const char *name)
19697 static const struct
19702 attribute_table[] =
19704 #define T(tag) {#tag, tag}
19705 T (Tag_GNU_MIPS_ABI_FP),
19706 T (Tag_GNU_MIPS_ABI_MSA),
19714 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19715 if (streq (name, attribute_table[i].name))
19716 return attribute_table[i].tag;
19724 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19726 mips_emit_delays ();
19728 as_warn (_("missing .end at end of assembly"));
19730 /* Just in case no code was emitted, do the consistency check. */
19731 file_mips_check_options ();
19733 /* Set a floating-point ABI if the user did not. */
19734 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19736 /* Perform consistency checks on the floating-point ABI. */
19737 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19738 Tag_GNU_MIPS_ABI_FP);
19739 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19740 check_fpabi (fpabi);
19744 /* Soft-float gets precedence over single-float, the two options should
19745 not be used together so this should not matter. */
19746 if (file_mips_opts.soft_float == 1)
19747 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19748 /* Single-float gets precedence over all double_float cases. */
19749 else if (file_mips_opts.single_float == 1)
19750 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19753 switch (file_mips_opts.fp)
19756 if (file_mips_opts.gp == 32)
19757 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19760 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19763 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19764 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19765 else if (file_mips_opts.gp == 32)
19766 fpabi = Val_GNU_MIPS_ABI_FP_64;
19768 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19773 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19774 Tag_GNU_MIPS_ABI_FP, fpabi);
19778 /* Returns the relocation type required for a particular CFI encoding. */
19780 bfd_reloc_code_real_type
19781 mips_cfi_reloc_for_encoding (int encoding)
19783 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19784 return BFD_RELOC_32_PCREL;
19785 else return BFD_RELOC_NONE;