1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
31 #include "safe-ctype.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
55 #define DEFAULT_ARCH "i386"
60 #define INLINE __inline__
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
81 static void pe_directive_secrel PARAMS ((int));
83 static void signed_cons PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void swap_imm_operands PARAMS ((void));
93 static void optimize_imm PARAMS ((void));
94 static void optimize_disp PARAMS ((void));
95 static int match_template PARAMS ((void));
96 static int check_string PARAMS ((void));
97 static int process_suffix PARAMS ((void));
98 static int check_byte_reg PARAMS ((void));
99 static int check_long_reg PARAMS ((void));
100 static int check_qword_reg PARAMS ((void));
101 static int check_word_reg PARAMS ((void));
102 static int finalize_imm PARAMS ((void));
103 static int process_operands PARAMS ((void));
104 static const seg_entry *build_modrm_byte PARAMS ((void));
105 static void output_insn PARAMS ((void));
106 static void output_branch PARAMS ((void));
107 static void output_jump PARAMS ((void));
108 static void output_interseg_jump PARAMS ((void));
109 static void output_imm PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 static void output_disp PARAMS ((fragS *insn_start_frag,
112 offsetT insn_start_off));
114 static void s_bss PARAMS ((int));
116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
117 static void handle_large_common (int small ATTRIBUTE_UNUSED);
120 static const char *default_arch = DEFAULT_ARCH;
122 /* 'md_assemble ()' gathers together information and puts it into a
129 const reg_entry *regs;
134 /* TM holds the template for the insn were currently assembling. */
137 /* SUFFIX holds the instruction mnemonic suffix if given.
138 (e.g. 'l' for 'movl') */
141 /* OPERANDS gives the number of given operands. */
142 unsigned int operands;
144 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
145 of given register, displacement, memory operands and immediate
147 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
149 /* TYPES [i] is the type (see above #defines) which tells us how to
150 use OP[i] for the corresponding operand. */
151 unsigned int types[MAX_OPERANDS];
153 /* Displacement expression, immediate expression, or register for each
155 union i386_op op[MAX_OPERANDS];
157 /* Flags for operands. */
158 unsigned int flags[MAX_OPERANDS];
159 #define Operand_PCrel 1
161 /* Relocation type for operand */
162 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
164 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
165 the base index byte below. */
166 const reg_entry *base_reg;
167 const reg_entry *index_reg;
168 unsigned int log2_scale_factor;
170 /* SEG gives the seg_entries of this insn. They are zero unless
171 explicit segment overrides are given. */
172 const seg_entry *seg[2];
174 /* PREFIX holds all the given prefix opcodes (usually null).
175 PREFIXES is the number of prefix opcodes. */
176 unsigned int prefixes;
177 unsigned char prefix[MAX_PREFIXES];
179 /* RM and SIB are the modrm byte and the sib byte where the
180 addressing modes of this insn are encoded. */
187 typedef struct _i386_insn i386_insn;
189 /* List of chars besides those in app.c:symbol_chars that can start an
190 operand. Used to prevent the scrubber eating vital white-space. */
191 const char extra_symbol_chars[] = "*%-(["
200 #if (defined (TE_I386AIX) \
201 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
202 && !defined (TE_GNU) \
203 && !defined (TE_LINUX) \
204 && !defined (TE_NETWARE) \
205 && !defined (TE_FreeBSD) \
206 && !defined (TE_NetBSD)))
207 /* This array holds the chars that always start a comment. If the
208 pre-processor is disabled, these aren't very useful. The option
209 --divide will remove '/' from this list. */
210 const char *i386_comment_chars = "#/";
211 #define SVR4_COMMENT_CHARS 1
212 #define PREFIX_SEPARATOR '\\'
215 const char *i386_comment_chars = "#";
216 #define PREFIX_SEPARATOR '/'
219 /* This array holds the chars that only start a comment at the beginning of
220 a line. If the line seems to have the form '# 123 filename'
221 .line and .file directives will appear in the pre-processed output.
222 Note that input_file.c hand checks for '#' at the beginning of the
223 first line of the input file. This is because the compiler outputs
224 #NO_APP at the beginning of its output.
225 Also note that comments started like this one will always work if
226 '/' isn't otherwise defined. */
227 const char line_comment_chars[] = "#/";
229 const char line_separator_chars[] = ";";
231 /* Chars that can be used to separate mant from exp in floating point
233 const char EXP_CHARS[] = "eE";
235 /* Chars that mean this number is a floating point constant
238 const char FLT_CHARS[] = "fFdDxX";
240 /* Tables for lexical analysis. */
241 static char mnemonic_chars[256];
242 static char register_chars[256];
243 static char operand_chars[256];
244 static char identifier_chars[256];
245 static char digit_chars[256];
247 /* Lexical macros. */
248 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
249 #define is_operand_char(x) (operand_chars[(unsigned char) x])
250 #define is_register_char(x) (register_chars[(unsigned char) x])
251 #define is_space_char(x) ((x) == ' ')
252 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
253 #define is_digit_char(x) (digit_chars[(unsigned char) x])
255 /* All non-digit non-letter characters that may occur in an operand. */
256 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
258 /* md_assemble() always leaves the strings it's passed unaltered. To
259 effect this we maintain a stack of saved characters that we've smashed
260 with '\0's (indicating end of strings for various sub-fields of the
261 assembler instruction). */
262 static char save_stack[32];
263 static char *save_stack_p;
264 #define END_STRING_AND_SAVE(s) \
265 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
266 #define RESTORE_END_STRING(s) \
267 do { *(s) = *--save_stack_p; } while (0)
269 /* The instruction we're assembling. */
272 /* Possible templates for current insn. */
273 static const templates *current_templates;
275 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
276 static expressionS disp_expressions[2], im_expressions[2];
278 /* Current operand we are working on. */
279 static int this_operand;
281 /* We support four different modes. FLAG_CODE variable is used to distinguish
288 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
290 static enum flag_code flag_code;
291 static unsigned int object_64bit;
292 static int use_rela_relocations = 0;
294 /* The names used to print error messages. */
295 static const char *flag_code_names[] =
302 /* 1 for intel syntax,
304 static int intel_syntax = 0;
306 /* 1 if register prefix % not required. */
307 static int allow_naked_reg = 0;
309 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
310 leave, push, and pop instructions so that gcc has the same stack
311 frame as in 32 bit mode. */
312 static char stackop_size = '\0';
314 /* Non-zero to optimize code alignment. */
315 int optimize_align_code = 1;
317 /* Non-zero to quieten some warnings. */
318 static int quiet_warnings = 0;
321 static const char *cpu_arch_name = NULL;
322 static const char *cpu_sub_arch_name = NULL;
324 /* CPU feature flags. */
325 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
327 /* If we have selected a cpu we are generating instructions for. */
328 static int cpu_arch_tune_set = 0;
330 /* Cpu we are generating instructions for. */
331 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
333 /* CPU feature flags of cpu we are generating instructions for. */
334 static unsigned int cpu_arch_tune_flags = 0;
336 /* CPU instruction set architecture used. */
337 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
339 /* CPU feature flags of instruction set architecture used. */
340 static unsigned int cpu_arch_isa_flags = 0;
342 /* If set, conditional jumps are not automatically promoted to handle
343 larger than a byte offset. */
344 static unsigned int no_cond_jump_promotion = 0;
346 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
347 static symbolS *GOT_symbol;
349 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
350 unsigned int x86_dwarf2_return_column;
352 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
353 int x86_cie_data_alignment;
355 /* Interface to relax_segment.
356 There are 3 major relax states for 386 jump insns because the
357 different types of jumps add different sizes to frags when we're
358 figuring out what sort of jump to choose to reach a given label. */
361 #define UNCOND_JUMP 0
363 #define COND_JUMP86 2
368 #define SMALL16 (SMALL | CODE16)
370 #define BIG16 (BIG | CODE16)
374 #define INLINE __inline__
380 #define ENCODE_RELAX_STATE(type, size) \
381 ((relax_substateT) (((type) << 2) | (size)))
382 #define TYPE_FROM_RELAX_STATE(s) \
384 #define DISP_SIZE_FROM_RELAX_STATE(s) \
385 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
387 /* This table is used by relax_frag to promote short jumps to long
388 ones where necessary. SMALL (short) jumps may be promoted to BIG
389 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
390 don't allow a short jump in a 32 bit code segment to be promoted to
391 a 16 bit offset jump because it's slower (requires data size
392 prefix), and doesn't work, unless the destination is in the bottom
393 64k of the code segment (The top 16 bits of eip are zeroed). */
395 const relax_typeS md_relax_table[] =
398 1) most positive reach of this state,
399 2) most negative reach of this state,
400 3) how many bytes this mode will have in the variable part of the frag
401 4) which index into the table to try if we can't fit into this one. */
403 /* UNCOND_JUMP states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
406 /* dword jmp adds 4 bytes to frag:
407 0 extra opcode bytes, 4 displacement bytes. */
409 /* word jmp adds 2 byte2 to frag:
410 0 extra opcode bytes, 2 displacement bytes. */
413 /* COND_JUMP states. */
414 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
415 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
416 /* dword conditionals adds 5 bytes to frag:
417 1 extra opcode byte, 4 displacement bytes. */
419 /* word conditionals add 3 bytes to frag:
420 1 extra opcode byte, 2 displacement bytes. */
423 /* COND_JUMP86 states. */
424 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
425 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
426 /* dword conditionals adds 5 bytes to frag:
427 1 extra opcode byte, 4 displacement bytes. */
429 /* word conditionals add 4 bytes to frag:
430 1 displacement byte and a 3 byte long branch insn. */
434 static const arch_entry cpu_arch[] =
436 {"generic32", PROCESSOR_GENERIC32,
437 Cpu186|Cpu286|Cpu386},
438 {"generic64", PROCESSOR_GENERIC64,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
440 |CpuMMX2|CpuSSE|CpuSSE2},
441 {"i8086", PROCESSOR_UNKNOWN,
443 {"i186", PROCESSOR_UNKNOWN,
445 {"i286", PROCESSOR_UNKNOWN,
447 {"i386", PROCESSOR_GENERIC32,
448 Cpu186|Cpu286|Cpu386},
449 {"i486", PROCESSOR_I486,
450 Cpu186|Cpu286|Cpu386|Cpu486},
451 {"i586", PROCESSOR_PENTIUM,
452 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
453 {"i686", PROCESSOR_PENTIUMPRO,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
455 {"pentium", PROCESSOR_PENTIUM,
456 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
457 {"pentiumpro",PROCESSOR_PENTIUMPRO,
458 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
459 {"pentiumii", PROCESSOR_PENTIUMPRO,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
461 {"pentiumiii",PROCESSOR_PENTIUMPRO,
462 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
463 {"pentium4", PROCESSOR_PENTIUM4,
464 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
465 |CpuMMX2|CpuSSE|CpuSSE2},
466 {"prescott", PROCESSOR_NOCONA,
467 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
468 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
469 {"nocona", PROCESSOR_NOCONA,
470 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
471 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
472 {"yonah", PROCESSOR_CORE,
473 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
474 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
475 {"core", PROCESSOR_CORE,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
477 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
478 {"merom", PROCESSOR_CORE2,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
480 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
481 {"core2", PROCESSOR_CORE2,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
483 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
486 {"k6_2", PROCESSOR_K6,
487 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
488 {"athlon", PROCESSOR_ATHLON,
489 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
490 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
491 {"sledgehammer", PROCESSOR_K8,
492 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
493 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
494 {"opteron", PROCESSOR_K8,
495 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
496 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
498 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
499 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
500 {"amdfam10", PROCESSOR_AMDFAM10,
501 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
502 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
504 {".mmx", PROCESSOR_UNKNOWN,
506 {".sse", PROCESSOR_UNKNOWN,
507 CpuMMX|CpuMMX2|CpuSSE},
508 {".sse2", PROCESSOR_UNKNOWN,
509 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
510 {".sse3", PROCESSOR_UNKNOWN,
511 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
512 {".ssse3", PROCESSOR_UNKNOWN,
513 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
514 {".3dnow", PROCESSOR_UNKNOWN,
516 {".3dnowa", PROCESSOR_UNKNOWN,
517 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
518 {".padlock", PROCESSOR_UNKNOWN,
520 {".pacifica", PROCESSOR_UNKNOWN,
522 {".svme", PROCESSOR_UNKNOWN,
524 {".sse4a", PROCESSOR_UNKNOWN,
525 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
526 {".abm", PROCESSOR_UNKNOWN,
530 const pseudo_typeS md_pseudo_table[] =
532 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
533 {"align", s_align_bytes, 0},
535 {"align", s_align_ptwo, 0},
537 {"arch", set_cpu_arch, 0},
541 {"ffloat", float_cons, 'f'},
542 {"dfloat", float_cons, 'd'},
543 {"tfloat", float_cons, 'x'},
545 {"slong", signed_cons, 4},
546 {"noopt", s_ignore, 0},
547 {"optim", s_ignore, 0},
548 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
549 {"code16", set_code_flag, CODE_16BIT},
550 {"code32", set_code_flag, CODE_32BIT},
551 {"code64", set_code_flag, CODE_64BIT},
552 {"intel_syntax", set_intel_syntax, 1},
553 {"att_syntax", set_intel_syntax, 0},
554 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
555 {"largecomm", handle_large_common, 0},
557 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
558 {"loc", dwarf2_directive_loc, 0},
559 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
562 {"secrel32", pe_directive_secrel, 0},
567 /* For interface with expression (). */
568 extern char *input_line_pointer;
570 /* Hash table for instruction mnemonic lookup. */
571 static struct hash_control *op_hash;
573 /* Hash table for register lookup. */
574 static struct hash_control *reg_hash;
577 i386_align_code (fragP, count)
581 /* Various efficient no-op patterns for aligning code labels.
582 Note: Don't try to assemble the instructions in the comments.
583 0L and 0w are not legal. */
584 static const char f32_1[] =
586 static const char f32_2[] =
587 {0x66,0x90}; /* xchg %ax,%ax */
588 static const char f32_3[] =
589 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
590 static const char f32_4[] =
591 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
592 static const char f32_5[] =
594 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
595 static const char f32_6[] =
596 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
597 static const char f32_7[] =
598 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
599 static const char f32_8[] =
601 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
602 static const char f32_9[] =
603 {0x89,0xf6, /* movl %esi,%esi */
604 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
605 static const char f32_10[] =
606 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_11[] =
609 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_12[] =
612 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
613 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
614 static const char f32_13[] =
615 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
616 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
617 static const char f32_14[] =
618 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
619 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
620 static const char f32_15[] =
621 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
622 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
623 static const char f16_3[] =
624 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
625 static const char f16_4[] =
626 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
627 static const char f16_5[] =
629 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
630 static const char f16_6[] =
631 {0x89,0xf6, /* mov %si,%si */
632 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
633 static const char f16_7[] =
634 {0x8d,0x74,0x00, /* lea 0(%si),%si */
635 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
636 static const char f16_8[] =
637 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
638 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
639 static const char *const f32_patt[] = {
640 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
641 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
643 static const char *const f16_patt[] = {
644 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
645 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
648 static const char alt_3[] =
650 /* nopl 0(%[re]ax) */
651 static const char alt_4[] =
652 {0x0f,0x1f,0x40,0x00};
653 /* nopl 0(%[re]ax,%[re]ax,1) */
654 static const char alt_5[] =
655 {0x0f,0x1f,0x44,0x00,0x00};
656 /* nopw 0(%[re]ax,%[re]ax,1) */
657 static const char alt_6[] =
658 {0x66,0x0f,0x1f,0x44,0x00,0x00};
659 /* nopl 0L(%[re]ax) */
660 static const char alt_7[] =
661 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
662 /* nopl 0L(%[re]ax,%[re]ax,1) */
663 static const char alt_8[] =
664 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
665 /* nopw 0L(%[re]ax,%[re]ax,1) */
666 static const char alt_9[] =
667 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
668 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
669 static const char alt_10[] =
670 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
672 nopw %cs:0L(%[re]ax,%[re]ax,1) */
673 static const char alt_long_11[] =
675 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
678 nopw %cs:0L(%[re]ax,%[re]ax,1) */
679 static const char alt_long_12[] =
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
686 nopw %cs:0L(%[re]ax,%[re]ax,1) */
687 static const char alt_long_13[] =
691 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
696 nopw %cs:0L(%[re]ax,%[re]ax,1) */
697 static const char alt_long_14[] =
702 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
708 nopw %cs:0L(%[re]ax,%[re]ax,1) */
709 static const char alt_long_15[] =
715 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
716 /* nopl 0(%[re]ax,%[re]ax,1)
717 nopw 0(%[re]ax,%[re]ax,1) */
718 static const char alt_short_11[] =
719 {0x0f,0x1f,0x44,0x00,0x00,
720 0x66,0x0f,0x1f,0x44,0x00,0x00};
721 /* nopw 0(%[re]ax,%[re]ax,1)
722 nopw 0(%[re]ax,%[re]ax,1) */
723 static const char alt_short_12[] =
724 {0x66,0x0f,0x1f,0x44,0x00,0x00,
725 0x66,0x0f,0x1f,0x44,0x00,0x00};
726 /* nopw 0(%[re]ax,%[re]ax,1)
728 static const char alt_short_13[] =
729 {0x66,0x0f,0x1f,0x44,0x00,0x00,
730 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
733 static const char alt_short_14[] =
734 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
735 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
737 nopl 0L(%[re]ax,%[re]ax,1) */
738 static const char alt_short_15[] =
739 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
740 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
741 static const char *const alt_short_patt[] = {
742 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
743 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
744 alt_short_14, alt_short_15
746 static const char *const alt_long_patt[] = {
747 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
748 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
749 alt_long_14, alt_long_15
752 if (count <= 0 || count > 15)
755 /* We need to decide which NOP sequence to use for 32bit and
756 64bit. When -mtune= is used:
758 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
759 f32_patt will be used.
760 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with 0x66 prefix will be used.
761 3. For PROCESSOR_CORE2, alt_long_patt will be used.
762 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
763 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
764 and PROCESSOR_GENERIC64, alt_short_patt will be used.
766 When -mtune= isn't used, alt_short_patt will be used if
767 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
769 When -march= or .arch is used, we can't use anything beyond
770 cpu_arch_isa_flags. */
772 if (flag_code == CODE_16BIT)
774 memcpy (fragP->fr_literal + fragP->fr_fix,
775 f16_patt[count - 1], count);
777 /* Adjust jump offset. */
778 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
780 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
783 int nnops = (count + 3) / 4;
784 int len = count / nnops;
785 int remains = count - nnops * len;
788 /* The recommended way to pad 64bit code is to use NOPs preceded
789 by maximally four 0x66 prefixes. Balance the size of nops. */
790 for (i = 0; i < remains; i++)
792 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
793 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
796 for (; i < nnops; i++)
798 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
799 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
805 const char *const *patt = NULL;
807 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
809 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
810 switch (cpu_arch_tune)
812 case PROCESSOR_UNKNOWN:
813 /* We use cpu_arch_isa_flags to check if we SHOULD
814 optimize for Cpu686. */
815 if ((cpu_arch_isa_flags & Cpu686) != 0)
816 patt = alt_short_patt;
820 case PROCESSOR_CORE2:
821 patt = alt_long_patt;
823 case PROCESSOR_PENTIUMPRO:
824 case PROCESSOR_PENTIUM4:
825 case PROCESSOR_NOCONA:
828 case PROCESSOR_ATHLON:
830 case PROCESSOR_GENERIC64:
831 case PROCESSOR_AMDFAM10:
832 patt = alt_short_patt;
835 case PROCESSOR_PENTIUM:
836 case PROCESSOR_GENERIC32:
843 switch (cpu_arch_tune)
845 case PROCESSOR_UNKNOWN:
846 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
847 PROCESSOR_UNKNOWN. */
852 case PROCESSOR_PENTIUM:
853 case PROCESSOR_PENTIUMPRO:
854 case PROCESSOR_PENTIUM4:
855 case PROCESSOR_NOCONA:
858 case PROCESSOR_ATHLON:
860 case PROCESSOR_AMDFAM10:
861 case PROCESSOR_GENERIC32:
862 /* We use cpu_arch_isa_flags to check if we CAN optimize
864 if ((cpu_arch_isa_flags & Cpu686) != 0)
865 patt = alt_short_patt;
869 case PROCESSOR_CORE2:
870 if ((cpu_arch_isa_flags & Cpu686) != 0)
871 patt = alt_long_patt;
875 case PROCESSOR_GENERIC64:
876 patt = alt_short_patt;
881 memcpy (fragP->fr_literal + fragP->fr_fix,
882 patt[count - 1], count);
884 fragP->fr_var = count;
887 static INLINE unsigned int
888 mode_from_disp_size (t)
891 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
895 fits_in_signed_byte (num)
898 return (num >= -128) && (num <= 127);
902 fits_in_unsigned_byte (num)
905 return (num & 0xff) == num;
909 fits_in_unsigned_word (num)
912 return (num & 0xffff) == num;
916 fits_in_signed_word (num)
919 return (-32768 <= num) && (num <= 32767);
922 fits_in_signed_long (num)
923 offsetT num ATTRIBUTE_UNUSED;
928 return (!(((offsetT) -1 << 31) & num)
929 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
931 } /* fits_in_signed_long() */
933 fits_in_unsigned_long (num)
934 offsetT num ATTRIBUTE_UNUSED;
939 return (num & (((offsetT) 2 << 31) - 1)) == num;
941 } /* fits_in_unsigned_long() */
944 smallest_imm_type (num)
947 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
949 /* This code is disabled on the 486 because all the Imm1 forms
950 in the opcode table are slower on the i486. They're the
951 versions with the implicitly specified single-position
952 displacement, which has another syntax if you really want to
955 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
957 return (fits_in_signed_byte (num)
958 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
959 : fits_in_unsigned_byte (num)
960 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
961 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
962 ? (Imm16 | Imm32 | Imm32S | Imm64)
963 : fits_in_signed_long (num)
964 ? (Imm32 | Imm32S | Imm64)
965 : fits_in_unsigned_long (num)
971 offset_in_range (val, size)
979 case 1: mask = ((addressT) 1 << 8) - 1; break;
980 case 2: mask = ((addressT) 1 << 16) - 1; break;
981 case 4: mask = ((addressT) 2 << 31) - 1; break;
983 case 8: mask = ((addressT) 2 << 63) - 1; break;
988 /* If BFD64, sign extend val. */
989 if (!use_rela_relocations)
990 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
991 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
993 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
995 char buf1[40], buf2[40];
997 sprint_value (buf1, val);
998 sprint_value (buf2, val & mask);
999 as_warn (_("%s shortened to %s"), buf1, buf2);
1004 /* Returns 0 if attempting to add a prefix where one from the same
1005 class already exists, 1 if non rep/repne added, 2 if rep/repne
1009 unsigned int prefix;
1014 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1015 && flag_code == CODE_64BIT)
1017 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
1018 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
1019 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
1030 case CS_PREFIX_OPCODE:
1031 case DS_PREFIX_OPCODE:
1032 case ES_PREFIX_OPCODE:
1033 case FS_PREFIX_OPCODE:
1034 case GS_PREFIX_OPCODE:
1035 case SS_PREFIX_OPCODE:
1039 case REPNE_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1043 case LOCK_PREFIX_OPCODE:
1051 case ADDR_PREFIX_OPCODE:
1055 case DATA_PREFIX_OPCODE:
1059 if (i.prefix[q] != 0)
1067 i.prefix[q] |= prefix;
1070 as_bad (_("same type of prefix used twice"));
1076 set_code_flag (value)
1080 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1081 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1082 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1084 as_bad (_("64bit mode not supported on this CPU."));
1086 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1088 as_bad (_("32bit mode not supported on this CPU."));
1090 stackop_size = '\0';
1094 set_16bit_gcc_code_flag (new_code_flag)
1097 flag_code = new_code_flag;
1098 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1099 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1100 stackop_size = LONG_MNEM_SUFFIX;
1104 set_intel_syntax (syntax_flag)
1107 /* Find out if register prefixing is specified. */
1108 int ask_naked_reg = 0;
1111 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1113 char *string = input_line_pointer;
1114 int e = get_symbol_end ();
1116 if (strcmp (string, "prefix") == 0)
1118 else if (strcmp (string, "noprefix") == 0)
1121 as_bad (_("bad argument to syntax directive."));
1122 *input_line_pointer = e;
1124 demand_empty_rest_of_line ();
1126 intel_syntax = syntax_flag;
1128 if (ask_naked_reg == 0)
1129 allow_naked_reg = (intel_syntax
1130 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1132 allow_naked_reg = (ask_naked_reg < 0);
1134 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1135 identifier_chars['$'] = intel_syntax ? '$' : 0;
1139 set_cpu_arch (dummy)
1140 int dummy ATTRIBUTE_UNUSED;
1144 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1146 char *string = input_line_pointer;
1147 int e = get_symbol_end ();
1150 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1152 if (strcmp (string, cpu_arch[i].name) == 0)
1156 cpu_arch_name = cpu_arch[i].name;
1157 cpu_sub_arch_name = NULL;
1158 cpu_arch_flags = (cpu_arch[i].flags
1159 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
1160 cpu_arch_isa = cpu_arch[i].type;
1161 cpu_arch_isa_flags = cpu_arch[i].flags;
1162 if (!cpu_arch_tune_set)
1164 cpu_arch_tune = cpu_arch_isa;
1165 cpu_arch_tune_flags = cpu_arch_isa_flags;
1169 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1171 cpu_sub_arch_name = cpu_arch[i].name;
1172 cpu_arch_flags |= cpu_arch[i].flags;
1174 *input_line_pointer = e;
1175 demand_empty_rest_of_line ();
1179 if (i >= ARRAY_SIZE (cpu_arch))
1180 as_bad (_("no such architecture: `%s'"), string);
1182 *input_line_pointer = e;
1185 as_bad (_("missing cpu architecture"));
1187 no_cond_jump_promotion = 0;
1188 if (*input_line_pointer == ','
1189 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1191 char *string = ++input_line_pointer;
1192 int e = get_symbol_end ();
1194 if (strcmp (string, "nojumps") == 0)
1195 no_cond_jump_promotion = 1;
1196 else if (strcmp (string, "jumps") == 0)
1199 as_bad (_("no such architecture modifier: `%s'"), string);
1201 *input_line_pointer = e;
1204 demand_empty_rest_of_line ();
1210 if (!strcmp (default_arch, "x86_64"))
1211 return bfd_mach_x86_64;
1212 else if (!strcmp (default_arch, "i386"))
1213 return bfd_mach_i386_i386;
1215 as_fatal (_("Unknown architecture"));
1221 const char *hash_err;
1223 /* Initialize op_hash hash table. */
1224 op_hash = hash_new ();
1227 const template *optab;
1228 templates *core_optab;
1230 /* Setup for loop. */
1232 core_optab = (templates *) xmalloc (sizeof (templates));
1233 core_optab->start = optab;
1238 if (optab->name == NULL
1239 || strcmp (optab->name, (optab - 1)->name) != 0)
1241 /* different name --> ship out current template list;
1242 add to hash table; & begin anew. */
1243 core_optab->end = optab;
1244 hash_err = hash_insert (op_hash,
1249 as_fatal (_("Internal Error: Can't hash %s: %s"),
1253 if (optab->name == NULL)
1255 core_optab = (templates *) xmalloc (sizeof (templates));
1256 core_optab->start = optab;
1261 /* Initialize reg_hash hash table. */
1262 reg_hash = hash_new ();
1264 const reg_entry *regtab;
1266 for (regtab = i386_regtab;
1267 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
1270 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1272 as_fatal (_("Internal Error: Can't hash %s: %s"),
1278 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1283 for (c = 0; c < 256; c++)
1288 mnemonic_chars[c] = c;
1289 register_chars[c] = c;
1290 operand_chars[c] = c;
1292 else if (ISLOWER (c))
1294 mnemonic_chars[c] = c;
1295 register_chars[c] = c;
1296 operand_chars[c] = c;
1298 else if (ISUPPER (c))
1300 mnemonic_chars[c] = TOLOWER (c);
1301 register_chars[c] = mnemonic_chars[c];
1302 operand_chars[c] = c;
1305 if (ISALPHA (c) || ISDIGIT (c))
1306 identifier_chars[c] = c;
1309 identifier_chars[c] = c;
1310 operand_chars[c] = c;
1315 identifier_chars['@'] = '@';
1318 identifier_chars['?'] = '?';
1319 operand_chars['?'] = '?';
1321 digit_chars['-'] = '-';
1322 mnemonic_chars['-'] = '-';
1323 identifier_chars['_'] = '_';
1324 identifier_chars['.'] = '.';
1326 for (p = operand_special_chars; *p != '\0'; p++)
1327 operand_chars[(unsigned char) *p] = *p;
1330 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1333 record_alignment (text_section, 2);
1334 record_alignment (data_section, 2);
1335 record_alignment (bss_section, 2);
1339 if (flag_code == CODE_64BIT)
1341 x86_dwarf2_return_column = 16;
1342 x86_cie_data_alignment = -8;
1346 x86_dwarf2_return_column = 8;
1347 x86_cie_data_alignment = -4;
1352 i386_print_statistics (file)
1355 hash_print_statistics (file, "i386 opcode", op_hash);
1356 hash_print_statistics (file, "i386 register", reg_hash);
1361 /* Debugging routines for md_assemble. */
1362 static void pi PARAMS ((char *, i386_insn *));
1363 static void pte PARAMS ((template *));
1364 static void pt PARAMS ((unsigned int));
1365 static void pe PARAMS ((expressionS *));
1366 static void ps PARAMS ((symbolS *));
1375 fprintf (stdout, "%s: template ", line);
1377 fprintf (stdout, " address: base %s index %s scale %x\n",
1378 x->base_reg ? x->base_reg->reg_name : "none",
1379 x->index_reg ? x->index_reg->reg_name : "none",
1380 x->log2_scale_factor);
1381 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1382 x->rm.mode, x->rm.reg, x->rm.regmem);
1383 fprintf (stdout, " sib: base %x index %x scale %x\n",
1384 x->sib.base, x->sib.index, x->sib.scale);
1385 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1386 (x->rex & REX_MODE64) != 0,
1387 (x->rex & REX_EXTX) != 0,
1388 (x->rex & REX_EXTY) != 0,
1389 (x->rex & REX_EXTZ) != 0);
1390 for (i = 0; i < x->operands; i++)
1392 fprintf (stdout, " #%d: ", i + 1);
1394 fprintf (stdout, "\n");
1396 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1397 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1398 if (x->types[i] & Imm)
1400 if (x->types[i] & Disp)
1401 pe (x->op[i].disps);
1410 fprintf (stdout, " %d operands ", t->operands);
1411 fprintf (stdout, "opcode %x ", t->base_opcode);
1412 if (t->extension_opcode != None)
1413 fprintf (stdout, "ext %x ", t->extension_opcode);
1414 if (t->opcode_modifier & D)
1415 fprintf (stdout, "D");
1416 if (t->opcode_modifier & W)
1417 fprintf (stdout, "W");
1418 fprintf (stdout, "\n");
1419 for (i = 0; i < t->operands; i++)
1421 fprintf (stdout, " #%d type ", i + 1);
1422 pt (t->operand_types[i]);
1423 fprintf (stdout, "\n");
1431 fprintf (stdout, " operation %d\n", e->X_op);
1432 fprintf (stdout, " add_number %ld (%lx)\n",
1433 (long) e->X_add_number, (long) e->X_add_number);
1434 if (e->X_add_symbol)
1436 fprintf (stdout, " add_symbol ");
1437 ps (e->X_add_symbol);
1438 fprintf (stdout, "\n");
1442 fprintf (stdout, " op_symbol ");
1443 ps (e->X_op_symbol);
1444 fprintf (stdout, "\n");
1452 fprintf (stdout, "%s type %s%s",
1454 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1455 segment_name (S_GET_SEGMENT (s)));
1458 static struct type_name
1463 const type_names[] =
1476 { BaseIndex, "BaseIndex" },
1480 { Disp32S, "d32s" },
1482 { InOutPortReg, "InOutPortReg" },
1483 { ShiftCount, "ShiftCount" },
1484 { Control, "control reg" },
1485 { Test, "test reg" },
1486 { Debug, "debug reg" },
1487 { FloatReg, "FReg" },
1488 { FloatAcc, "FAcc" },
1492 { JumpAbsolute, "Jump Absolute" },
1503 const struct type_name *ty;
1505 for (ty = type_names; ty->mask; ty++)
1507 fprintf (stdout, "%s, ", ty->tname);
1511 #endif /* DEBUG386 */
1513 static bfd_reloc_code_real_type
1514 reloc (unsigned int size,
1517 bfd_reloc_code_real_type other)
1519 if (other != NO_RELOC)
1521 reloc_howto_type *reloc;
1526 case BFD_RELOC_X86_64_GOT32:
1527 return BFD_RELOC_X86_64_GOT64;
1529 case BFD_RELOC_X86_64_PLTOFF64:
1530 return BFD_RELOC_X86_64_PLTOFF64;
1532 case BFD_RELOC_X86_64_GOTPC32:
1533 other = BFD_RELOC_X86_64_GOTPC64;
1535 case BFD_RELOC_X86_64_GOTPCREL:
1536 other = BFD_RELOC_X86_64_GOTPCREL64;
1538 case BFD_RELOC_X86_64_TPOFF32:
1539 other = BFD_RELOC_X86_64_TPOFF64;
1541 case BFD_RELOC_X86_64_DTPOFF32:
1542 other = BFD_RELOC_X86_64_DTPOFF64;
1548 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1549 if (size == 4 && flag_code != CODE_64BIT)
1552 reloc = bfd_reloc_type_lookup (stdoutput, other);
1554 as_bad (_("unknown relocation (%u)"), other);
1555 else if (size != bfd_get_reloc_size (reloc))
1556 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1557 bfd_get_reloc_size (reloc),
1559 else if (pcrel && !reloc->pc_relative)
1560 as_bad (_("non-pc-relative relocation for pc-relative field"));
1561 else if ((reloc->complain_on_overflow == complain_overflow_signed
1563 || (reloc->complain_on_overflow == complain_overflow_unsigned
1565 as_bad (_("relocated field and relocation type differ in signedness"));
1574 as_bad (_("there are no unsigned pc-relative relocations"));
1577 case 1: return BFD_RELOC_8_PCREL;
1578 case 2: return BFD_RELOC_16_PCREL;
1579 case 4: return BFD_RELOC_32_PCREL;
1580 case 8: return BFD_RELOC_64_PCREL;
1582 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1589 case 4: return BFD_RELOC_X86_64_32S;
1594 case 1: return BFD_RELOC_8;
1595 case 2: return BFD_RELOC_16;
1596 case 4: return BFD_RELOC_32;
1597 case 8: return BFD_RELOC_64;
1599 as_bad (_("cannot do %s %u byte relocation"),
1600 sign > 0 ? "signed" : "unsigned", size);
1604 return BFD_RELOC_NONE;
1607 /* Here we decide which fixups can be adjusted to make them relative to
1608 the beginning of the section instead of the symbol. Basically we need
1609 to make sure that the dynamic relocations are done correctly, so in
1610 some cases we force the original symbol to be used. */
1613 tc_i386_fix_adjustable (fixP)
1614 fixS *fixP ATTRIBUTE_UNUSED;
1616 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1620 /* Don't adjust pc-relative references to merge sections in 64-bit
1622 if (use_rela_relocations
1623 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1627 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1628 and changed later by validate_fix. */
1629 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1630 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1633 /* adjust_reloc_syms doesn't know about the GOT. */
1634 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1635 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1636 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1637 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1638 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1639 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1640 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1641 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1642 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1643 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1644 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1645 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1646 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1647 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1648 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1649 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1650 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1651 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1652 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1653 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1654 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1655 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1656 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1657 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1658 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1659 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1660 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1661 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1667 static int intel_float_operand PARAMS ((const char *mnemonic));
1670 intel_float_operand (mnemonic)
1671 const char *mnemonic;
1673 /* Note that the value returned is meaningful only for opcodes with (memory)
1674 operands, hence the code here is free to improperly handle opcodes that
1675 have no operands (for better performance and smaller code). */
1677 if (mnemonic[0] != 'f')
1678 return 0; /* non-math */
1680 switch (mnemonic[1])
1682 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1683 the fs segment override prefix not currently handled because no
1684 call path can make opcodes without operands get here */
1686 return 2 /* integer op */;
1688 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1689 return 3; /* fldcw/fldenv */
1692 if (mnemonic[2] != 'o' /* fnop */)
1693 return 3; /* non-waiting control op */
1696 if (mnemonic[2] == 's')
1697 return 3; /* frstor/frstpm */
1700 if (mnemonic[2] == 'a')
1701 return 3; /* fsave */
1702 if (mnemonic[2] == 't')
1704 switch (mnemonic[3])
1706 case 'c': /* fstcw */
1707 case 'd': /* fstdw */
1708 case 'e': /* fstenv */
1709 case 's': /* fsts[gw] */
1715 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1716 return 0; /* fxsave/fxrstor are not really math ops */
1723 /* This is the guts of the machine-dependent assembler. LINE points to a
1724 machine dependent instruction. This function is supposed to emit
1725 the frags/bytes it assembles to. */
1732 char mnemonic[MAX_MNEM_SIZE];
1734 /* Initialize globals. */
1735 memset (&i, '\0', sizeof (i));
1736 for (j = 0; j < MAX_OPERANDS; j++)
1737 i.reloc[j] = NO_RELOC;
1738 memset (disp_expressions, '\0', sizeof (disp_expressions));
1739 memset (im_expressions, '\0', sizeof (im_expressions));
1740 save_stack_p = save_stack;
1742 /* First parse an instruction mnemonic & call i386_operand for the operands.
1743 We assume that the scrubber has arranged it so that line[0] is the valid
1744 start of a (possibly prefixed) mnemonic. */
1746 line = parse_insn (line, mnemonic);
1750 line = parse_operands (line, mnemonic);
1754 /* The order of the immediates should be reversed
1755 for 2 immediates extrq and insertq instructions */
1756 if ((i.imm_operands == 2) &&
1757 ((strcmp (mnemonic, "extrq") == 0)
1758 || (strcmp (mnemonic, "insertq") == 0)))
1760 swap_imm_operands ();
1761 /* "extrq" and insertq" are the only two instructions whose operands
1762 have to be reversed even though they have two immediate operands.
1768 /* Now we've parsed the mnemonic into a set of templates, and have the
1769 operands at hand. */
1771 /* All intel opcodes have reversed operands except for "bound" and
1772 "enter". We also don't reverse intersegment "jmp" and "call"
1773 instructions with 2 immediate operands so that the immediate segment
1774 precedes the offset, as it does when in AT&T mode. */
1775 if (intel_syntax && i.operands > 1
1776 && (strcmp (mnemonic, "bound") != 0)
1777 && (strcmp (mnemonic, "invlpga") != 0)
1778 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1784 /* Don't optimize displacement for movabs since it only takes 64bit
1787 && (flag_code != CODE_64BIT
1788 || strcmp (mnemonic, "movabs") != 0))
1791 /* Next, we find a template that matches the given insn,
1792 making sure the overlap of the given operands types is consistent
1793 with the template operand types. */
1795 if (!match_template ())
1800 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1802 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1803 i.tm.base_opcode ^= FloatR;
1805 /* Zap movzx and movsx suffix. The suffix may have been set from
1806 "word ptr" or "byte ptr" on the source operand, but we'll use
1807 the suffix later to choose the destination register. */
1808 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1810 if (i.reg_operands < 2
1812 && (~i.tm.opcode_modifier
1819 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1825 if (i.tm.opcode_modifier & FWait)
1826 if (!add_prefix (FWAIT_OPCODE))
1829 /* Check string instruction segment overrides. */
1830 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1832 if (!check_string ())
1836 if (!process_suffix ())
1839 /* Make still unresolved immediate matches conform to size of immediate
1840 given in i.suffix. */
1841 if (!finalize_imm ())
1844 if (i.types[0] & Imm1)
1845 i.imm_operands = 0; /* kludge for shift insns. */
1846 if (i.types[0] & ImplicitRegister)
1848 if (i.types[1] & ImplicitRegister)
1850 if (i.types[2] & ImplicitRegister)
1853 if (i.tm.opcode_modifier & ImmExt)
1857 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1859 /* Streaming SIMD extensions 3 Instructions have the fixed
1860 operands with an opcode suffix which is coded in the same
1861 place as an 8-bit immediate field would be. Here we check
1862 those operands and remove them afterwards. */
1865 for (x = 0; x < i.operands; x++)
1866 if (i.op[x].regs->reg_num != x)
1867 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1868 i.op[x].regs->reg_name, x + 1, i.tm.name);
1872 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1873 opcode suffix which is coded in the same place as an 8-bit
1874 immediate field would be. Here we fake an 8-bit immediate
1875 operand from the opcode suffix stored in tm.extension_opcode. */
1877 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1879 exp = &im_expressions[i.imm_operands++];
1880 i.op[i.operands].imms = exp;
1881 i.types[i.operands++] = Imm8;
1882 exp->X_op = O_constant;
1883 exp->X_add_number = i.tm.extension_opcode;
1884 i.tm.extension_opcode = None;
1887 /* For insns with operands there are more diddles to do to the opcode. */
1890 if (!process_operands ())
1893 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1895 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1896 as_warn (_("translating to `%sp'"), i.tm.name);
1899 /* Handle conversion of 'int $3' --> special int3 insn. */
1900 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1902 i.tm.base_opcode = INT3_OPCODE;
1906 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1907 && i.op[0].disps->X_op == O_constant)
1909 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1910 the absolute address given by the constant. Since ix86 jumps and
1911 calls are pc relative, we need to generate a reloc. */
1912 i.op[0].disps->X_add_symbol = &abs_symbol;
1913 i.op[0].disps->X_op = O_symbol;
1916 if ((i.tm.opcode_modifier & Rex64) != 0)
1917 i.rex |= REX_MODE64;
1919 /* For 8 bit registers we need an empty rex prefix. Also if the
1920 instruction already has a prefix, we need to convert old
1921 registers to new ones. */
1923 if (((i.types[0] & Reg8) != 0
1924 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1925 || ((i.types[1] & Reg8) != 0
1926 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1927 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1932 i.rex |= REX_OPCODE;
1933 for (x = 0; x < 2; x++)
1935 /* Look for 8 bit operand that uses old registers. */
1936 if ((i.types[x] & Reg8) != 0
1937 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1939 /* In case it is "hi" register, give up. */
1940 if (i.op[x].regs->reg_num > 3)
1941 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1942 i.op[x].regs->reg_name);
1944 /* Otherwise it is equivalent to the extended register.
1945 Since the encoding doesn't change this is merely
1946 cosmetic cleanup for debug output. */
1948 i.op[x].regs = i.op[x].regs + 8;
1954 add_prefix (REX_OPCODE | i.rex);
1956 /* We are ready to output the insn. */
1961 parse_insn (line, mnemonic)
1966 char *token_start = l;
1971 /* Non-zero if we found a prefix only acceptable with string insns. */
1972 const char *expecting_string_instruction = NULL;
1977 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1980 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1982 as_bad (_("no such instruction: `%s'"), token_start);
1987 if (!is_space_char (*l)
1988 && *l != END_OF_INSN
1990 || (*l != PREFIX_SEPARATOR
1993 as_bad (_("invalid character %s in mnemonic"),
1994 output_invalid (*l));
1997 if (token_start == l)
1999 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2000 as_bad (_("expecting prefix; got nothing"));
2002 as_bad (_("expecting mnemonic; got nothing"));
2006 /* Look up instruction (or prefix) via hash table. */
2007 current_templates = hash_find (op_hash, mnemonic);
2009 if (*l != END_OF_INSN
2010 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2011 && current_templates
2012 && (current_templates->start->opcode_modifier & IsPrefix))
2014 if (current_templates->start->cpu_flags
2015 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
2017 as_bad ((flag_code != CODE_64BIT
2018 ? _("`%s' is only supported in 64-bit mode")
2019 : _("`%s' is not supported in 64-bit mode")),
2020 current_templates->start->name);
2023 /* If we are in 16-bit mode, do not allow addr16 or data16.
2024 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2025 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2026 && flag_code != CODE_64BIT
2027 && (((current_templates->start->opcode_modifier & Size32) != 0)
2028 ^ (flag_code == CODE_16BIT)))
2030 as_bad (_("redundant %s prefix"),
2031 current_templates->start->name);
2034 /* Add prefix, checking for repeated prefixes. */
2035 switch (add_prefix (current_templates->start->base_opcode))
2040 expecting_string_instruction = current_templates->start->name;
2043 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2050 if (!current_templates)
2052 /* See if we can get a match by trimming off a suffix. */
2055 case WORD_MNEM_SUFFIX:
2056 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2057 i.suffix = SHORT_MNEM_SUFFIX;
2059 case BYTE_MNEM_SUFFIX:
2060 case QWORD_MNEM_SUFFIX:
2061 i.suffix = mnem_p[-1];
2063 current_templates = hash_find (op_hash, mnemonic);
2065 case SHORT_MNEM_SUFFIX:
2066 case LONG_MNEM_SUFFIX:
2069 i.suffix = mnem_p[-1];
2071 current_templates = hash_find (op_hash, mnemonic);
2079 if (intel_float_operand (mnemonic) == 1)
2080 i.suffix = SHORT_MNEM_SUFFIX;
2082 i.suffix = LONG_MNEM_SUFFIX;
2084 current_templates = hash_find (op_hash, mnemonic);
2088 if (!current_templates)
2090 as_bad (_("no such instruction: `%s'"), token_start);
2095 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2097 /* Check for a branch hint. We allow ",pt" and ",pn" for
2098 predict taken and predict not taken respectively.
2099 I'm not sure that branch hints actually do anything on loop
2100 and jcxz insns (JumpByte) for current Pentium4 chips. They
2101 may work in the future and it doesn't hurt to accept them
2103 if (l[0] == ',' && l[1] == 'p')
2107 if (!add_prefix (DS_PREFIX_OPCODE))
2111 else if (l[2] == 'n')
2113 if (!add_prefix (CS_PREFIX_OPCODE))
2119 /* Any other comma loses. */
2122 as_bad (_("invalid character %s in mnemonic"),
2123 output_invalid (*l));
2127 /* Check if instruction is supported on specified architecture. */
2129 for (t = current_templates->start; t < current_templates->end; ++t)
2131 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2132 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2134 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2137 if (!(supported & 2))
2139 as_bad (flag_code == CODE_64BIT
2140 ? _("`%s' is not supported in 64-bit mode")
2141 : _("`%s' is only supported in 64-bit mode"),
2142 current_templates->start->name);
2145 if (!(supported & 1))
2147 as_warn (_("`%s' is not supported on `%s%s'"),
2148 current_templates->start->name,
2150 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2152 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2154 as_warn (_("use .code16 to ensure correct addressing mode"));
2157 /* Check for rep/repne without a string instruction. */
2158 if (expecting_string_instruction)
2160 static templates override;
2162 for (t = current_templates->start; t < current_templates->end; ++t)
2163 if (t->opcode_modifier & IsString)
2165 if (t >= current_templates->end)
2167 as_bad (_("expecting string instruction after `%s'"),
2168 expecting_string_instruction);
2171 for (override.start = t; t < current_templates->end; ++t)
2172 if (!(t->opcode_modifier & IsString))
2175 current_templates = &override;
2182 parse_operands (l, mnemonic)
2184 const char *mnemonic;
2188 /* 1 if operand is pending after ','. */
2189 unsigned int expecting_operand = 0;
2191 /* Non-zero if operand parens not balanced. */
2192 unsigned int paren_not_balanced;
2194 while (*l != END_OF_INSN)
2196 /* Skip optional white space before operand. */
2197 if (is_space_char (*l))
2199 if (!is_operand_char (*l) && *l != END_OF_INSN)
2201 as_bad (_("invalid character %s before operand %d"),
2202 output_invalid (*l),
2206 token_start = l; /* after white space */
2207 paren_not_balanced = 0;
2208 while (paren_not_balanced || *l != ',')
2210 if (*l == END_OF_INSN)
2212 if (paren_not_balanced)
2215 as_bad (_("unbalanced parenthesis in operand %d."),
2218 as_bad (_("unbalanced brackets in operand %d."),
2223 break; /* we are done */
2225 else if (!is_operand_char (*l) && !is_space_char (*l))
2227 as_bad (_("invalid character %s in operand %d"),
2228 output_invalid (*l),
2235 ++paren_not_balanced;
2237 --paren_not_balanced;
2242 ++paren_not_balanced;
2244 --paren_not_balanced;
2248 if (l != token_start)
2249 { /* Yes, we've read in another operand. */
2250 unsigned int operand_ok;
2251 this_operand = i.operands++;
2252 if (i.operands > MAX_OPERANDS)
2254 as_bad (_("spurious operands; (%d operands/instruction max)"),
2258 /* Now parse operand adding info to 'i' as we go along. */
2259 END_STRING_AND_SAVE (l);
2263 i386_intel_operand (token_start,
2264 intel_float_operand (mnemonic));
2266 operand_ok = i386_operand (token_start);
2268 RESTORE_END_STRING (l);
2274 if (expecting_operand)
2276 expecting_operand_after_comma:
2277 as_bad (_("expecting operand after ','; got nothing"));
2282 as_bad (_("expecting operand before ','; got nothing"));
2287 /* Now *l must be either ',' or END_OF_INSN. */
2290 if (*++l == END_OF_INSN)
2292 /* Just skip it, if it's \n complain. */
2293 goto expecting_operand_after_comma;
2295 expecting_operand = 1;
2302 swap_imm_operands ()
2304 union i386_op temp_op;
2305 unsigned int temp_type;
2306 enum bfd_reloc_code_real temp_reloc;
2310 temp_type = i.types[xchg2];
2311 i.types[xchg2] = i.types[xchg1];
2312 i.types[xchg1] = temp_type;
2313 temp_op = i.op[xchg2];
2314 i.op[xchg2] = i.op[xchg1];
2315 i.op[xchg1] = temp_op;
2316 temp_reloc = i.reloc[xchg2];
2317 i.reloc[xchg2] = i.reloc[xchg1];
2318 i.reloc[xchg1] = temp_reloc;
2325 union i386_op temp_op;
2326 unsigned int temp_type;
2327 enum bfd_reloc_code_real temp_reloc;
2331 if (i.operands == 4)
2332 /* There will be two exchanges in a 4 operand instruction.
2333 First exchange is the done inside this block.(1st and 4rth operand)
2334 The next exchange is done outside this block.(2nd and 3rd operand) */
2338 temp_type = i.types[xchg2];
2339 i.types[xchg2] = i.types[xchg1];
2340 i.types[xchg1] = temp_type;
2341 temp_op = i.op[xchg2];
2342 i.op[xchg2] = i.op[xchg1];
2343 i.op[xchg1] = temp_op;
2344 temp_reloc = i.reloc[xchg2];
2345 i.reloc[xchg2] = i.reloc[xchg1];
2346 i.reloc[xchg1] = temp_reloc;
2351 if (i.operands == 2)
2356 else if (i.operands == 3)
2361 temp_type = i.types[xchg2];
2362 i.types[xchg2] = i.types[xchg1];
2363 i.types[xchg1] = temp_type;
2364 temp_op = i.op[xchg2];
2365 i.op[xchg2] = i.op[xchg1];
2366 i.op[xchg1] = temp_op;
2367 temp_reloc = i.reloc[xchg2];
2368 i.reloc[xchg2] = i.reloc[xchg1];
2369 i.reloc[xchg1] = temp_reloc;
2371 if (i.mem_operands == 2)
2373 const seg_entry *temp_seg;
2374 temp_seg = i.seg[0];
2375 i.seg[0] = i.seg[1];
2376 i.seg[1] = temp_seg;
2380 /* Try to ensure constant immediates are represented in the smallest
2385 char guess_suffix = 0;
2389 guess_suffix = i.suffix;
2390 else if (i.reg_operands)
2392 /* Figure out a suffix from the last register operand specified.
2393 We can't do this properly yet, ie. excluding InOutPortReg,
2394 but the following works for instructions with immediates.
2395 In any case, we can't set i.suffix yet. */
2396 for (op = i.operands; --op >= 0;)
2397 if (i.types[op] & Reg)
2399 if (i.types[op] & Reg8)
2400 guess_suffix = BYTE_MNEM_SUFFIX;
2401 else if (i.types[op] & Reg16)
2402 guess_suffix = WORD_MNEM_SUFFIX;
2403 else if (i.types[op] & Reg32)
2404 guess_suffix = LONG_MNEM_SUFFIX;
2405 else if (i.types[op] & Reg64)
2406 guess_suffix = QWORD_MNEM_SUFFIX;
2410 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2411 guess_suffix = WORD_MNEM_SUFFIX;
2413 for (op = i.operands; --op >= 0;)
2414 if (i.types[op] & Imm)
2416 switch (i.op[op].imms->X_op)
2419 /* If a suffix is given, this operand may be shortened. */
2420 switch (guess_suffix)
2422 case LONG_MNEM_SUFFIX:
2423 i.types[op] |= Imm32 | Imm64;
2425 case WORD_MNEM_SUFFIX:
2426 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2428 case BYTE_MNEM_SUFFIX:
2429 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2433 /* If this operand is at most 16 bits, convert it
2434 to a signed 16 bit number before trying to see
2435 whether it will fit in an even smaller size.
2436 This allows a 16-bit operand such as $0xffe0 to
2437 be recognised as within Imm8S range. */
2438 if ((i.types[op] & Imm16)
2439 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2441 i.op[op].imms->X_add_number =
2442 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2444 if ((i.types[op] & Imm32)
2445 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2448 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2449 ^ ((offsetT) 1 << 31))
2450 - ((offsetT) 1 << 31));
2452 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2454 /* We must avoid matching of Imm32 templates when 64bit
2455 only immediate is available. */
2456 if (guess_suffix == QWORD_MNEM_SUFFIX)
2457 i.types[op] &= ~Imm32;
2464 /* Symbols and expressions. */
2466 /* Convert symbolic operand to proper sizes for matching, but don't
2467 prevent matching a set of insns that only supports sizes other
2468 than those matching the insn suffix. */
2470 unsigned int mask, allowed = 0;
2473 for (t = current_templates->start; t < current_templates->end; ++t)
2474 allowed |= t->operand_types[op];
2475 switch (guess_suffix)
2477 case QWORD_MNEM_SUFFIX:
2478 mask = Imm64 | Imm32S;
2480 case LONG_MNEM_SUFFIX:
2483 case WORD_MNEM_SUFFIX:
2486 case BYTE_MNEM_SUFFIX:
2494 i.types[op] &= mask;
2501 /* Try to use the smallest displacement type too. */
2507 for (op = i.operands; --op >= 0;)
2508 if (i.types[op] & Disp)
2510 if (i.op[op].disps->X_op == O_constant)
2512 offsetT disp = i.op[op].disps->X_add_number;
2514 if ((i.types[op] & Disp16)
2515 && (disp & ~(offsetT) 0xffff) == 0)
2517 /* If this operand is at most 16 bits, convert
2518 to a signed 16 bit number and don't use 64bit
2520 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2521 i.types[op] &= ~Disp64;
2523 if ((i.types[op] & Disp32)
2524 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2526 /* If this operand is at most 32 bits, convert
2527 to a signed 32 bit number and don't use 64bit
2529 disp &= (((offsetT) 2 << 31) - 1);
2530 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2531 i.types[op] &= ~Disp64;
2533 if (!disp && (i.types[op] & BaseIndex))
2535 i.types[op] &= ~Disp;
2539 else if (flag_code == CODE_64BIT)
2541 if (fits_in_signed_long (disp))
2543 i.types[op] &= ~Disp64;
2544 i.types[op] |= Disp32S;
2546 if (fits_in_unsigned_long (disp))
2547 i.types[op] |= Disp32;
2549 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2550 && fits_in_signed_byte (disp))
2551 i.types[op] |= Disp8;
2553 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2554 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2556 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2557 i.op[op].disps, 0, i.reloc[op]);
2558 i.types[op] &= ~Disp;
2561 /* We only support 64bit displacement on constants. */
2562 i.types[op] &= ~Disp64;
2569 /* Points to template once we've found it. */
2571 unsigned int overlap0, overlap1, overlap2, overlap3;
2572 unsigned int found_reverse_match;
2574 unsigned int operand_types [MAX_OPERANDS];
2575 int addr_prefix_disp;
2578 #if MAX_OPERANDS != 4
2579 # error "MAX_OPERANDS must be 4."
2582 #define MATCH(overlap, given, template) \
2583 ((overlap & ~JumpAbsolute) \
2584 && (((given) & (BaseIndex | JumpAbsolute)) \
2585 == ((overlap) & (BaseIndex | JumpAbsolute))))
2587 /* If given types r0 and r1 are registers they must be of the same type
2588 unless the expected operand type register overlap is null.
2589 Note that Acc in a template matches every size of reg. */
2590 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2591 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2592 || ((g0) & Reg) == ((g1) & Reg) \
2593 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2599 found_reverse_match = 0;
2600 for (j = 0; j < MAX_OPERANDS; j++)
2601 operand_types [j] = 0;
2602 addr_prefix_disp = -1;
2603 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2605 : (i.suffix == WORD_MNEM_SUFFIX
2607 : (i.suffix == SHORT_MNEM_SUFFIX
2609 : (i.suffix == LONG_MNEM_SUFFIX
2611 : (i.suffix == QWORD_MNEM_SUFFIX
2613 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2614 ? No_xSuf : 0))))));
2616 for (t = current_templates->start; t < current_templates->end; t++)
2618 addr_prefix_disp = -1;
2620 /* Must have right number of operands. */
2621 if (i.operands != t->operands)
2624 /* Check the suffix, except for some instructions in intel mode. */
2625 if ((t->opcode_modifier & suffix_check)
2627 && (t->opcode_modifier & IgnoreSize)))
2630 for (j = 0; j < MAX_OPERANDS; j++)
2631 operand_types [j] = t->operand_types [j];
2633 /* In general, don't allow 64-bit operands in 32-bit mode. */
2634 if (i.suffix == QWORD_MNEM_SUFFIX
2635 && flag_code != CODE_64BIT
2637 ? (!(t->opcode_modifier & IgnoreSize)
2638 && !intel_float_operand (t->name))
2639 : intel_float_operand (t->name) != 2)
2640 && (!(operand_types[0] & (RegMMX | RegXMM))
2641 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2642 && (t->base_opcode != 0x0fc7
2643 || t->extension_opcode != 1 /* cmpxchg8b */))
2646 /* Do not verify operands when there are none. */
2647 else if (!t->operands)
2649 if (t->cpu_flags & ~cpu_arch_flags)
2651 /* We've found a match; break out of loop. */
2655 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2656 into Disp32/Disp16/Disp32 operand. */
2657 if (i.prefix[ADDR_PREFIX] != 0)
2659 unsigned int DispOn = 0, DispOff = 0;
2677 for (j = 0; j < MAX_OPERANDS; j++)
2679 /* There should be only one Disp operand. */
2680 if ((operand_types[j] & DispOff))
2682 addr_prefix_disp = j;
2683 operand_types[j] |= DispOn;
2684 operand_types[j] &= ~DispOff;
2690 overlap0 = i.types[0] & operand_types[0];
2691 switch (t->operands)
2694 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2700 overlap1 = i.types[1] & operand_types[1];
2701 if (!MATCH (overlap0, i.types[0], operand_types[0])
2702 || !MATCH (overlap1, i.types[1], operand_types[1])
2703 /* monitor in SSE3 is a very special case. The first
2704 register and the second register may have different
2706 || !((t->base_opcode == 0x0f01
2707 && t->extension_opcode == 0xc8)
2708 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2710 overlap1, i.types[1],
2713 /* Check if other direction is valid ... */
2714 if ((t->opcode_modifier & (D | FloatD)) == 0)
2717 /* Try reversing direction of operands. */
2718 overlap0 = i.types[0] & operand_types[1];
2719 overlap1 = i.types[1] & operand_types[0];
2720 if (!MATCH (overlap0, i.types[0], operand_types[1])
2721 || !MATCH (overlap1, i.types[1], operand_types[0])
2722 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2724 overlap1, i.types[1],
2727 /* Does not match either direction. */
2730 /* found_reverse_match holds which of D or FloatDR
2732 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2736 /* Found a forward 2 operand match here. */
2737 if (t->operands > 2)
2738 overlap2 = i.types[2] & operand_types[2];
2739 if (t->operands > 3)
2740 overlap3 = i.types[3] & operand_types[3];
2742 switch (t->operands)
2745 if (!MATCH (overlap3, i.types[3], operand_types[3])
2746 || !CONSISTENT_REGISTER_MATCH (overlap2,
2754 /* Here we make use of the fact that there are no
2755 reverse match 3 operand instructions, and all 3
2756 operand instructions only need to be checked for
2757 register consistency between operands 2 and 3. */
2758 if (!MATCH (overlap2, i.types[2], operand_types[2])
2759 || !CONSISTENT_REGISTER_MATCH (overlap1,
2769 /* Found either forward/reverse 2, 3 or 4 operand match here:
2770 slip through to break. */
2772 if (t->cpu_flags & ~cpu_arch_flags)
2774 found_reverse_match = 0;
2777 /* We've found a match; break out of loop. */
2781 if (t == current_templates->end)
2783 /* We found no match. */
2784 as_bad (_("suffix or operands invalid for `%s'"),
2785 current_templates->start->name);
2789 if (!quiet_warnings)
2792 && ((i.types[0] & JumpAbsolute)
2793 != (operand_types[0] & JumpAbsolute)))
2795 as_warn (_("indirect %s without `*'"), t->name);
2798 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2799 == (IsPrefix | IgnoreSize))
2801 /* Warn them that a data or address size prefix doesn't
2802 affect assembly of the next line of code. */
2803 as_warn (_("stand-alone `%s' prefix"), t->name);
2807 /* Copy the template we found. */
2810 if (addr_prefix_disp != -1)
2811 i.tm.operand_types[addr_prefix_disp]
2812 = operand_types[addr_prefix_disp];
2814 if (found_reverse_match)
2816 /* If we found a reverse match we must alter the opcode
2817 direction bit. found_reverse_match holds bits to change
2818 (different for int & float insns). */
2820 i.tm.base_opcode ^= found_reverse_match;
2822 i.tm.operand_types[0] = operand_types[1];
2823 i.tm.operand_types[1] = operand_types[0];
2832 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2833 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2835 if (i.seg[0] != NULL && i.seg[0] != &es)
2837 as_bad (_("`%s' operand %d must use `%%es' segment"),
2842 /* There's only ever one segment override allowed per instruction.
2843 This instruction possibly has a legal segment override on the
2844 second operand, so copy the segment to where non-string
2845 instructions store it, allowing common code. */
2846 i.seg[0] = i.seg[1];
2848 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2850 if (i.seg[1] != NULL && i.seg[1] != &es)
2852 as_bad (_("`%s' operand %d must use `%%es' segment"),
2862 process_suffix (void)
2864 /* If matched instruction specifies an explicit instruction mnemonic
2866 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2868 if (i.tm.opcode_modifier & Size16)
2869 i.suffix = WORD_MNEM_SUFFIX;
2870 else if (i.tm.opcode_modifier & Size64)
2871 i.suffix = QWORD_MNEM_SUFFIX;
2873 i.suffix = LONG_MNEM_SUFFIX;
2875 else if (i.reg_operands)
2877 /* If there's no instruction mnemonic suffix we try to invent one
2878 based on register operands. */
2881 /* We take i.suffix from the last register operand specified,
2882 Destination register type is more significant than source
2886 for (op = i.operands; --op >= 0;)
2887 if ((i.types[op] & Reg)
2888 && !(i.tm.operand_types[op] & InOutPortReg))
2890 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2891 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2892 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2897 else if (i.suffix == BYTE_MNEM_SUFFIX)
2899 if (!check_byte_reg ())
2902 else if (i.suffix == LONG_MNEM_SUFFIX)
2904 if (!check_long_reg ())
2907 else if (i.suffix == QWORD_MNEM_SUFFIX)
2909 if (!check_qword_reg ())
2912 else if (i.suffix == WORD_MNEM_SUFFIX)
2914 if (!check_word_reg ())
2917 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2918 /* Do nothing if the instruction is going to ignore the prefix. */
2923 else if ((i.tm.opcode_modifier & DefaultSize)
2925 /* exclude fldenv/frstor/fsave/fstenv */
2926 && (i.tm.opcode_modifier & No_sSuf))
2928 i.suffix = stackop_size;
2930 else if (intel_syntax
2932 && ((i.tm.operand_types[0] & JumpAbsolute)
2933 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2934 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2935 && i.tm.extension_opcode <= 3)))
2940 if (!(i.tm.opcode_modifier & No_qSuf))
2942 i.suffix = QWORD_MNEM_SUFFIX;
2946 if (!(i.tm.opcode_modifier & No_lSuf))
2947 i.suffix = LONG_MNEM_SUFFIX;
2950 if (!(i.tm.opcode_modifier & No_wSuf))
2951 i.suffix = WORD_MNEM_SUFFIX;
2960 if (i.tm.opcode_modifier & W)
2962 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2968 unsigned int suffixes = (~i.tm.opcode_modifier
2976 if ((i.tm.opcode_modifier & W)
2977 || ((suffixes & (suffixes - 1))
2978 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2980 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2986 /* Change the opcode based on the operand size given by i.suffix;
2987 We don't need to change things for byte insns. */
2989 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2991 /* It's not a byte, select word/dword operation. */
2992 if (i.tm.opcode_modifier & W)
2994 if (i.tm.opcode_modifier & ShortForm)
2995 i.tm.base_opcode |= 8;
2997 i.tm.base_opcode |= 1;
3000 /* Now select between word & dword operations via the operand
3001 size prefix, except for instructions that will ignore this
3003 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
3005 /* monitor in SSE3 is a very special case. The default size
3006 of AX is the size of mode. The address size override
3007 prefix will change the size of AX. */
3008 if (i.op->regs[0].reg_type &
3009 (flag_code == CODE_32BIT ? Reg16 : Reg32))
3010 if (!add_prefix (ADDR_PREFIX_OPCODE))
3013 else if (i.suffix != QWORD_MNEM_SUFFIX
3014 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3015 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
3016 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3017 || (flag_code == CODE_64BIT
3018 && (i.tm.opcode_modifier & JumpByte))))
3020 unsigned int prefix = DATA_PREFIX_OPCODE;
3022 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3023 prefix = ADDR_PREFIX_OPCODE;
3025 if (!add_prefix (prefix))
3029 /* Set mode64 for an operand. */
3030 if (i.suffix == QWORD_MNEM_SUFFIX
3031 && flag_code == CODE_64BIT
3032 && (i.tm.opcode_modifier & NoRex64) == 0)
3034 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3037 || i.types [0] != (Acc | Reg64)
3038 || i.types [1] != (Acc | Reg64)
3039 || strcmp (i.tm.name, "xchg") != 0)
3040 i.rex |= REX_MODE64;
3043 /* Size floating point instruction. */
3044 if (i.suffix == LONG_MNEM_SUFFIX)
3045 if (i.tm.opcode_modifier & FloatMF)
3046 i.tm.base_opcode ^= 4;
3053 check_byte_reg (void)
3057 for (op = i.operands; --op >= 0;)
3059 /* If this is an eight bit register, it's OK. If it's the 16 or
3060 32 bit version of an eight bit register, we will just use the
3061 low portion, and that's OK too. */
3062 if (i.types[op] & Reg8)
3065 /* movzx and movsx should not generate this warning. */
3067 && (i.tm.base_opcode == 0xfb7
3068 || i.tm.base_opcode == 0xfb6
3069 || i.tm.base_opcode == 0x63
3070 || i.tm.base_opcode == 0xfbe
3071 || i.tm.base_opcode == 0xfbf))
3074 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3076 /* Prohibit these changes in the 64bit mode, since the
3077 lowering is more complicated. */
3078 if (flag_code == CODE_64BIT
3079 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3081 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3082 i.op[op].regs->reg_name,
3086 #if REGISTER_WARNINGS
3088 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3089 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3090 (i.op[op].regs + (i.types[op] & Reg16
3091 ? REGNAM_AL - REGNAM_AX
3092 : REGNAM_AL - REGNAM_EAX))->reg_name,
3093 i.op[op].regs->reg_name,
3098 /* Any other register is bad. */
3099 if (i.types[op] & (Reg | RegMMX | RegXMM
3101 | Control | Debug | Test
3102 | FloatReg | FloatAcc))
3104 as_bad (_("`%%%s' not allowed with `%s%c'"),
3105 i.op[op].regs->reg_name,
3119 for (op = i.operands; --op >= 0;)
3120 /* Reject eight bit registers, except where the template requires
3121 them. (eg. movzb) */
3122 if ((i.types[op] & Reg8) != 0
3123 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3125 as_bad (_("`%%%s' not allowed with `%s%c'"),
3126 i.op[op].regs->reg_name,
3131 /* Warn if the e prefix on a general reg is missing. */
3132 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3133 && (i.types[op] & Reg16) != 0
3134 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3136 /* Prohibit these changes in the 64bit mode, since the
3137 lowering is more complicated. */
3138 if (flag_code == CODE_64BIT)
3140 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3141 i.op[op].regs->reg_name,
3145 #if REGISTER_WARNINGS
3147 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3148 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3149 i.op[op].regs->reg_name,
3153 /* Warn if the r prefix on a general reg is missing. */
3154 else if ((i.types[op] & Reg64) != 0
3155 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3157 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3158 i.op[op].regs->reg_name,
3170 for (op = i.operands; --op >= 0; )
3171 /* Reject eight bit registers, except where the template requires
3172 them. (eg. movzb) */
3173 if ((i.types[op] & Reg8) != 0
3174 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3176 as_bad (_("`%%%s' not allowed with `%s%c'"),
3177 i.op[op].regs->reg_name,
3182 /* Warn if the e prefix on a general reg is missing. */
3183 else if (((i.types[op] & Reg16) != 0
3184 || (i.types[op] & Reg32) != 0)
3185 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3187 /* Prohibit these changes in the 64bit mode, since the
3188 lowering is more complicated. */
3189 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3190 i.op[op].regs->reg_name,
3201 for (op = i.operands; --op >= 0;)
3202 /* Reject eight bit registers, except where the template requires
3203 them. (eg. movzb) */
3204 if ((i.types[op] & Reg8) != 0
3205 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3207 as_bad (_("`%%%s' not allowed with `%s%c'"),
3208 i.op[op].regs->reg_name,
3213 /* Warn if the e prefix on a general reg is present. */
3214 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3215 && (i.types[op] & Reg32) != 0
3216 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3218 /* Prohibit these changes in the 64bit mode, since the
3219 lowering is more complicated. */
3220 if (flag_code == CODE_64BIT)
3222 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3223 i.op[op].regs->reg_name,
3228 #if REGISTER_WARNINGS
3229 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3230 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3231 i.op[op].regs->reg_name,
3241 unsigned int overlap0, overlap1, overlap2;
3243 overlap0 = i.types[0] & i.tm.operand_types[0];
3244 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3245 && overlap0 != Imm8 && overlap0 != Imm8S
3246 && overlap0 != Imm16 && overlap0 != Imm32S
3247 && overlap0 != Imm32 && overlap0 != Imm64)
3251 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3253 : (i.suffix == WORD_MNEM_SUFFIX
3255 : (i.suffix == QWORD_MNEM_SUFFIX
3259 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3260 || overlap0 == (Imm16 | Imm32)
3261 || overlap0 == (Imm16 | Imm32S))
3263 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3266 if (overlap0 != Imm8 && overlap0 != Imm8S
3267 && overlap0 != Imm16 && overlap0 != Imm32S
3268 && overlap0 != Imm32 && overlap0 != Imm64)
3270 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
3274 i.types[0] = overlap0;
3276 overlap1 = i.types[1] & i.tm.operand_types[1];
3277 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3278 && overlap1 != Imm8 && overlap1 != Imm8S
3279 && overlap1 != Imm16 && overlap1 != Imm32S
3280 && overlap1 != Imm32 && overlap1 != Imm64)
3284 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3286 : (i.suffix == WORD_MNEM_SUFFIX
3288 : (i.suffix == QWORD_MNEM_SUFFIX
3292 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3293 || overlap1 == (Imm16 | Imm32)
3294 || overlap1 == (Imm16 | Imm32S))
3296 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3299 if (overlap1 != Imm8 && overlap1 != Imm8S
3300 && overlap1 != Imm16 && overlap1 != Imm32S
3301 && overlap1 != Imm32 && overlap1 != Imm64)
3303 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
3307 i.types[1] = overlap1;
3309 overlap2 = i.types[2] & i.tm.operand_types[2];
3310 assert ((overlap2 & Imm) == 0);
3311 i.types[2] = overlap2;
3319 /* Default segment register this instruction will use for memory
3320 accesses. 0 means unknown. This is only for optimizing out
3321 unnecessary segment overrides. */
3322 const seg_entry *default_seg = 0;
3324 /* The imul $imm, %reg instruction is converted into
3325 imul $imm, %reg, %reg, and the clr %reg instruction
3326 is converted into xor %reg, %reg. */
3327 if (i.tm.opcode_modifier & regKludge)
3329 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3330 /* Pretend we saw the extra register operand. */
3331 assert (i.op[first_reg_op + 1].regs == 0);
3332 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3333 i.types[first_reg_op + 1] = i.types[first_reg_op];
3337 if (i.tm.opcode_modifier & ShortForm)
3339 /* The register or float register operand is in operand 0 or 1. */
3340 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3341 /* Register goes in low 3 bits of opcode. */
3342 i.tm.base_opcode |= i.op[op].regs->reg_num;
3343 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3345 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3347 /* Warn about some common errors, but press on regardless.
3348 The first case can be generated by gcc (<= 2.8.1). */
3349 if (i.operands == 2)
3351 /* Reversed arguments on faddp, fsubp, etc. */
3352 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
3353 i.op[1].regs->reg_name,
3354 i.op[0].regs->reg_name);
3358 /* Extraneous `l' suffix on fp insn. */
3359 as_warn (_("translating to `%s %%%s'"), i.tm.name,
3360 i.op[0].regs->reg_name);
3364 else if (i.tm.opcode_modifier & Modrm)
3366 /* The opcode is completed (modulo i.tm.extension_opcode which
3367 must be put into the modrm byte). Now, we make the modrm and
3368 index base bytes based on all the info we've collected. */
3370 default_seg = build_modrm_byte ();
3372 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
3374 if (i.tm.base_opcode == POP_SEG_SHORT
3375 && i.op[0].regs->reg_num == 1)
3377 as_bad (_("you can't `pop %%cs'"));
3380 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3381 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3384 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
3388 else if ((i.tm.opcode_modifier & IsString) != 0)
3390 /* For the string instructions that allow a segment override
3391 on one of their operands, the default segment is ds. */
3395 if ((i.tm.base_opcode == 0x8d /* lea */
3396 || (i.tm.cpu_flags & CpuSVME))
3397 && i.seg[0] && !quiet_warnings)
3398 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3400 /* If a segment was explicitly specified, and the specified segment
3401 is not the default, use an opcode prefix to select it. If we
3402 never figured out what the default segment is, then default_seg
3403 will be zero at this point, and the specified segment prefix will
3405 if ((i.seg[0]) && (i.seg[0] != default_seg))
3407 if (!add_prefix (i.seg[0]->seg_prefix))
3413 static const seg_entry *
3416 const seg_entry *default_seg = 0;
3418 /* i.reg_operands MUST be the number of real register operands;
3419 implicit registers do not count. */
3420 if (i.reg_operands == 2)
3422 unsigned int source, dest;
3423 source = ((i.types[0]
3424 & (Reg | RegMMX | RegXMM
3426 | Control | Debug | Test))
3429 /* In 4 operands instructions with 2 immediate operands, the first two are immediate
3430 bytes and hence source operand will be in the next byte after the immediates */
3431 if ((i.operands == 4)&&(i.imm_operands=2)) source++;
3435 /* One of the register operands will be encoded in the i.tm.reg
3436 field, the other in the combined i.tm.mode and i.tm.regmem
3437 fields. If no form of this instruction supports a memory
3438 destination operand, then we assume the source operand may
3439 sometimes be a memory operand and so we need to store the
3440 destination in the i.rm.reg field. */
3441 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3443 i.rm.reg = i.op[dest].regs->reg_num;
3444 i.rm.regmem = i.op[source].regs->reg_num;
3445 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3447 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3452 i.rm.reg = i.op[source].regs->reg_num;
3453 i.rm.regmem = i.op[dest].regs->reg_num;
3454 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3456 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3459 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3461 if (!((i.types[0] | i.types[1]) & Control))
3463 i.rex &= ~(REX_EXTX | REX_EXTZ);
3464 add_prefix (LOCK_PREFIX_OPCODE);
3468 { /* If it's not 2 reg operands... */
3471 unsigned int fake_zero_displacement = 0;
3472 unsigned int op = ((i.types[0] & AnyMem)
3474 : (i.types[1] & AnyMem) ? 1 : 2);
3478 if (i.base_reg == 0)
3481 if (!i.disp_operands)
3482 fake_zero_displacement = 1;
3483 if (i.index_reg == 0)
3485 /* Operand is just <disp> */
3486 if (flag_code == CODE_64BIT)
3488 /* 64bit mode overwrites the 32bit absolute
3489 addressing by RIP relative addressing and
3490 absolute addressing is encoded by one of the
3491 redundant SIB forms. */
3492 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3493 i.sib.base = NO_BASE_REGISTER;
3494 i.sib.index = NO_INDEX_REGISTER;
3495 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
3497 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3499 i.rm.regmem = NO_BASE_REGISTER_16;
3500 i.types[op] = Disp16;
3504 i.rm.regmem = NO_BASE_REGISTER;
3505 i.types[op] = Disp32;
3508 else /* !i.base_reg && i.index_reg */
3510 i.sib.index = i.index_reg->reg_num;
3511 i.sib.base = NO_BASE_REGISTER;
3512 i.sib.scale = i.log2_scale_factor;
3513 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3514 i.types[op] &= ~Disp;
3515 if (flag_code != CODE_64BIT)
3516 i.types[op] |= Disp32; /* Must be 32 bit */
3518 i.types[op] |= Disp32S;
3519 if ((i.index_reg->reg_flags & RegRex) != 0)
3523 /* RIP addressing for 64bit mode. */
3524 else if (i.base_reg->reg_type == BaseIndex)
3526 i.rm.regmem = NO_BASE_REGISTER;
3527 i.types[op] &= ~ Disp;
3528 i.types[op] |= Disp32S;
3529 i.flags[op] = Operand_PCrel;
3530 if (! i.disp_operands)
3531 fake_zero_displacement = 1;
3533 else if (i.base_reg->reg_type & Reg16)
3535 switch (i.base_reg->reg_num)
3538 if (i.index_reg == 0)
3540 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3541 i.rm.regmem = i.index_reg->reg_num - 6;
3545 if (i.index_reg == 0)
3548 if ((i.types[op] & Disp) == 0)
3550 /* fake (%bp) into 0(%bp) */
3551 i.types[op] |= Disp8;
3552 fake_zero_displacement = 1;
3555 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3556 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3558 default: /* (%si) -> 4 or (%di) -> 5 */
3559 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3561 i.rm.mode = mode_from_disp_size (i.types[op]);
3563 else /* i.base_reg and 32/64 bit mode */
3565 if (flag_code == CODE_64BIT
3566 && (i.types[op] & Disp))
3567 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3569 i.rm.regmem = i.base_reg->reg_num;
3570 if ((i.base_reg->reg_flags & RegRex) != 0)
3572 i.sib.base = i.base_reg->reg_num;
3573 /* x86-64 ignores REX prefix bit here to avoid decoder
3575 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3578 if (i.disp_operands == 0)
3580 fake_zero_displacement = 1;
3581 i.types[op] |= Disp8;
3584 else if (i.base_reg->reg_num == ESP_REG_NUM)
3588 i.sib.scale = i.log2_scale_factor;
3589 if (i.index_reg == 0)
3591 /* <disp>(%esp) becomes two byte modrm with no index
3592 register. We've already stored the code for esp
3593 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3594 Any base register besides %esp will not use the
3595 extra modrm byte. */
3596 i.sib.index = NO_INDEX_REGISTER;
3597 #if !SCALE1_WHEN_NO_INDEX
3598 /* Another case where we force the second modrm byte. */
3599 if (i.log2_scale_factor)
3600 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3605 i.sib.index = i.index_reg->reg_num;
3606 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3607 if ((i.index_reg->reg_flags & RegRex) != 0)
3612 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3613 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3616 i.rm.mode = mode_from_disp_size (i.types[op]);
3619 if (fake_zero_displacement)
3621 /* Fakes a zero displacement assuming that i.types[op]
3622 holds the correct displacement size. */
3625 assert (i.op[op].disps == 0);
3626 exp = &disp_expressions[i.disp_operands++];
3627 i.op[op].disps = exp;
3628 exp->X_op = O_constant;
3629 exp->X_add_number = 0;
3630 exp->X_add_symbol = (symbolS *) 0;
3631 exp->X_op_symbol = (symbolS *) 0;
3635 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3636 (if any) based on i.tm.extension_opcode. Again, we must be
3637 careful to make sure that segment/control/debug/test/MMX
3638 registers are coded into the i.rm.reg field. */
3643 & (Reg | RegMMX | RegXMM
3645 | Control | Debug | Test))
3648 & (Reg | RegMMX | RegXMM
3650 | Control | Debug | Test))
3653 /* If there is an extension opcode to put here, the register
3654 number must be put into the regmem field. */
3655 if (i.tm.extension_opcode != None)
3657 i.rm.regmem = i.op[op].regs->reg_num;
3658 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3663 i.rm.reg = i.op[op].regs->reg_num;
3664 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3668 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3669 must set it to 3 to indicate this is a register operand
3670 in the regmem field. */
3671 if (!i.mem_operands)
3675 /* Fill in i.rm.reg field with extension opcode (if any). */
3676 if (i.tm.extension_opcode != None)
3677 i.rm.reg = i.tm.extension_opcode;
3688 relax_substateT subtype;
3693 if (flag_code == CODE_16BIT)
3697 if (i.prefix[DATA_PREFIX] != 0)
3703 /* Pentium4 branch hints. */
3704 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3705 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3710 if (i.prefix[REX_PREFIX] != 0)
3716 if (i.prefixes != 0 && !intel_syntax)
3717 as_warn (_("skipping prefixes on this instruction"));
3719 /* It's always a symbol; End frag & setup for relax.
3720 Make sure there is enough room in this frag for the largest
3721 instruction we may generate in md_convert_frag. This is 2
3722 bytes for the opcode and room for the prefix and largest
3724 frag_grow (prefix + 2 + 4);
3725 /* Prefix and 1 opcode byte go in fr_fix. */
3726 p = frag_more (prefix + 1);
3727 if (i.prefix[DATA_PREFIX] != 0)
3728 *p++ = DATA_PREFIX_OPCODE;
3729 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3730 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3731 *p++ = i.prefix[SEG_PREFIX];
3732 if (i.prefix[REX_PREFIX] != 0)
3733 *p++ = i.prefix[REX_PREFIX];
3734 *p = i.tm.base_opcode;
3736 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3737 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3738 else if ((cpu_arch_flags & Cpu386) != 0)
3739 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3741 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3744 sym = i.op[0].disps->X_add_symbol;
3745 off = i.op[0].disps->X_add_number;
3747 if (i.op[0].disps->X_op != O_constant
3748 && i.op[0].disps->X_op != O_symbol)
3750 /* Handle complex expressions. */
3751 sym = make_expr_symbol (i.op[0].disps);
3755 /* 1 possible extra opcode + 4 byte displacement go in var part.
3756 Pass reloc in fr_var. */
3757 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3767 if (i.tm.opcode_modifier & JumpByte)
3769 /* This is a loop or jecxz type instruction. */
3771 if (i.prefix[ADDR_PREFIX] != 0)
3773 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3776 /* Pentium4 branch hints. */
3777 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3778 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3780 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3789 if (flag_code == CODE_16BIT)
3792 if (i.prefix[DATA_PREFIX] != 0)
3794 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3804 if (i.prefix[REX_PREFIX] != 0)
3806 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3810 if (i.prefixes != 0 && !intel_syntax)
3811 as_warn (_("skipping prefixes on this instruction"));
3813 p = frag_more (1 + size);
3814 *p++ = i.tm.base_opcode;
3816 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3817 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3819 /* All jumps handled here are signed, but don't use a signed limit
3820 check for 32 and 16 bit jumps as we want to allow wrap around at
3821 4G and 64k respectively. */
3823 fixP->fx_signed = 1;
3827 output_interseg_jump ()
3835 if (flag_code == CODE_16BIT)
3839 if (i.prefix[DATA_PREFIX] != 0)
3845 if (i.prefix[REX_PREFIX] != 0)
3855 if (i.prefixes != 0 && !intel_syntax)
3856 as_warn (_("skipping prefixes on this instruction"));
3858 /* 1 opcode; 2 segment; offset */
3859 p = frag_more (prefix + 1 + 2 + size);
3861 if (i.prefix[DATA_PREFIX] != 0)
3862 *p++ = DATA_PREFIX_OPCODE;
3864 if (i.prefix[REX_PREFIX] != 0)
3865 *p++ = i.prefix[REX_PREFIX];
3867 *p++ = i.tm.base_opcode;
3868 if (i.op[1].imms->X_op == O_constant)
3870 offsetT n = i.op[1].imms->X_add_number;
3873 && !fits_in_unsigned_word (n)
3874 && !fits_in_signed_word (n))
3876 as_bad (_("16-bit jump out of range"));
3879 md_number_to_chars (p, n, size);
3882 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3883 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3884 if (i.op[0].imms->X_op != O_constant)
3885 as_bad (_("can't handle non absolute segment in `%s'"),
3887 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3893 fragS *insn_start_frag;
3894 offsetT insn_start_off;
3896 /* Tie dwarf2 debug info to the address at the start of the insn.
3897 We can't do this after the insn has been output as the current
3898 frag may have been closed off. eg. by frag_var. */
3899 dwarf2_emit_insn (0);
3901 insn_start_frag = frag_now;
3902 insn_start_off = frag_now_fix ();
3905 if (i.tm.opcode_modifier & Jump)
3907 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3909 else if (i.tm.opcode_modifier & JumpInterSegment)
3910 output_interseg_jump ();
3913 /* Output normal instructions here. */
3916 unsigned int prefix;
3918 /* All opcodes on i386 have either 1 or 2 bytes. Supplemental
3919 Streaming SIMD extensions 3 Instructions have 3 bytes. We may
3920 use one more higher byte to specify a prefix the instruction
3922 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3924 if (i.tm.base_opcode & 0xff000000)
3926 prefix = (i.tm.base_opcode >> 24) & 0xff;
3930 else if ((i.tm.base_opcode & 0xff0000) != 0)
3932 prefix = (i.tm.base_opcode >> 16) & 0xff;
3933 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3936 if (prefix != REPE_PREFIX_OPCODE
3937 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3938 add_prefix (prefix);
3941 add_prefix (prefix);
3944 /* The prefix bytes. */
3946 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3952 md_number_to_chars (p, (valueT) *q, 1);
3956 /* Now the opcode; be careful about word order here! */
3957 if (fits_in_unsigned_byte (i.tm.base_opcode))
3959 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3963 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3966 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3971 /* Put out high byte first: can't use md_number_to_chars! */
3972 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3973 *p = i.tm.base_opcode & 0xff;
3976 /* Now the modrm byte and sib byte (if present). */
3977 if (i.tm.opcode_modifier & Modrm)
3980 md_number_to_chars (p,
3981 (valueT) (i.rm.regmem << 0
3985 /* If i.rm.regmem == ESP (4)
3986 && i.rm.mode != (Register mode)
3988 ==> need second modrm byte. */
3989 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3991 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3994 md_number_to_chars (p,
3995 (valueT) (i.sib.base << 0
3997 | i.sib.scale << 6),
4002 if (i.disp_operands)
4003 output_disp (insn_start_frag, insn_start_off);
4006 output_imm (insn_start_frag, insn_start_off);
4012 pi ("" /*line*/, &i);
4014 #endif /* DEBUG386 */
4018 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4023 for (n = 0; n < i.operands; n++)
4025 if (i.types[n] & Disp)
4027 if (i.op[n].disps->X_op == O_constant)
4033 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4036 if (i.types[n] & Disp8)
4038 if (i.types[n] & Disp64)
4041 val = offset_in_range (i.op[n].disps->X_add_number,
4043 p = frag_more (size);
4044 md_number_to_chars (p, val, size);
4048 enum bfd_reloc_code_real reloc_type;
4051 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4053 /* The PC relative address is computed relative
4054 to the instruction boundary, so in case immediate
4055 fields follows, we need to adjust the value. */
4056 if (pcrel && i.imm_operands)
4061 for (n1 = 0; n1 < i.operands; n1++)
4062 if (i.types[n1] & Imm)
4064 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4067 if (i.types[n1] & (Imm8 | Imm8S))
4069 if (i.types[n1] & Imm64)
4074 /* We should find the immediate. */
4075 if (n1 == i.operands)
4077 i.op[n].disps->X_add_number -= imm_size;
4080 if (i.types[n] & Disp32S)
4083 if (i.types[n] & (Disp16 | Disp64))
4086 if (i.types[n] & Disp64)
4090 p = frag_more (size);
4091 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4093 && GOT_symbol == i.op[n].disps->X_add_symbol
4094 && (((reloc_type == BFD_RELOC_32
4095 || reloc_type == BFD_RELOC_X86_64_32S
4096 || (reloc_type == BFD_RELOC_64
4098 && (i.op[n].disps->X_op == O_symbol
4099 || (i.op[n].disps->X_op == O_add
4100 && ((symbol_get_value_expression
4101 (i.op[n].disps->X_op_symbol)->X_op)
4103 || reloc_type == BFD_RELOC_32_PCREL))
4107 if (insn_start_frag == frag_now)
4108 add = (p - frag_now->fr_literal) - insn_start_off;
4113 add = insn_start_frag->fr_fix - insn_start_off;
4114 for (fr = insn_start_frag->fr_next;
4115 fr && fr != frag_now; fr = fr->fr_next)
4117 add += p - frag_now->fr_literal;
4122 reloc_type = BFD_RELOC_386_GOTPC;
4123 i.op[n].imms->X_add_number += add;
4125 else if (reloc_type == BFD_RELOC_64)
4126 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4128 /* Don't do the adjustment for x86-64, as there
4129 the pcrel addressing is relative to the _next_
4130 insn, and that is taken care of in other code. */
4131 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4133 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4134 i.op[n].disps, pcrel, reloc_type);
4141 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4146 for (n = 0; n < i.operands; n++)
4148 if (i.types[n] & Imm)
4150 if (i.op[n].imms->X_op == O_constant)
4156 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4159 if (i.types[n] & (Imm8 | Imm8S))
4161 else if (i.types[n] & Imm64)
4164 val = offset_in_range (i.op[n].imms->X_add_number,
4166 p = frag_more (size);
4167 md_number_to_chars (p, val, size);
4171 /* Not absolute_section.
4172 Need a 32-bit fixup (don't support 8bit
4173 non-absolute imms). Try to support other
4175 enum bfd_reloc_code_real reloc_type;
4179 if ((i.types[n] & (Imm32S))
4180 && (i.suffix == QWORD_MNEM_SUFFIX
4181 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4183 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4186 if (i.types[n] & (Imm8 | Imm8S))
4188 if (i.types[n] & Imm64)
4192 p = frag_more (size);
4193 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4195 /* This is tough to explain. We end up with this one if we
4196 * have operands that look like
4197 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4198 * obtain the absolute address of the GOT, and it is strongly
4199 * preferable from a performance point of view to avoid using
4200 * a runtime relocation for this. The actual sequence of
4201 * instructions often look something like:
4206 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4208 * The call and pop essentially return the absolute address
4209 * of the label .L66 and store it in %ebx. The linker itself
4210 * will ultimately change the first operand of the addl so
4211 * that %ebx points to the GOT, but to keep things simple, the
4212 * .o file must have this operand set so that it generates not
4213 * the absolute address of .L66, but the absolute address of
4214 * itself. This allows the linker itself simply treat a GOTPC
4215 * relocation as asking for a pcrel offset to the GOT to be
4216 * added in, and the addend of the relocation is stored in the
4217 * operand field for the instruction itself.
4219 * Our job here is to fix the operand so that it would add
4220 * the correct offset so that %ebx would point to itself. The
4221 * thing that is tricky is that .-.L66 will point to the
4222 * beginning of the instruction, so we need to further modify
4223 * the operand so that it will point to itself. There are
4224 * other cases where you have something like:
4226 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4228 * and here no correction would be required. Internally in
4229 * the assembler we treat operands of this form as not being
4230 * pcrel since the '.' is explicitly mentioned, and I wonder
4231 * whether it would simplify matters to do it this way. Who
4232 * knows. In earlier versions of the PIC patches, the
4233 * pcrel_adjust field was used to store the correction, but
4234 * since the expression is not pcrel, I felt it would be
4235 * confusing to do it this way. */
4237 if ((reloc_type == BFD_RELOC_32
4238 || reloc_type == BFD_RELOC_X86_64_32S
4239 || reloc_type == BFD_RELOC_64)
4241 && GOT_symbol == i.op[n].imms->X_add_symbol
4242 && (i.op[n].imms->X_op == O_symbol
4243 || (i.op[n].imms->X_op == O_add
4244 && ((symbol_get_value_expression
4245 (i.op[n].imms->X_op_symbol)->X_op)
4250 if (insn_start_frag == frag_now)
4251 add = (p - frag_now->fr_literal) - insn_start_off;
4256 add = insn_start_frag->fr_fix - insn_start_off;
4257 for (fr = insn_start_frag->fr_next;
4258 fr && fr != frag_now; fr = fr->fr_next)
4260 add += p - frag_now->fr_literal;
4264 reloc_type = BFD_RELOC_386_GOTPC;
4266 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4268 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4269 i.op[n].imms->X_add_number += add;
4271 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4272 i.op[n].imms, 0, reloc_type);
4278 /* x86_cons_fix_new is called via the expression parsing code when a
4279 reloc is needed. We use this hook to get the correct .got reloc. */
4280 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4281 static int cons_sign = -1;
4284 x86_cons_fix_new (fragS *frag,
4289 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4291 got_reloc = NO_RELOC;
4294 if (exp->X_op == O_secrel)
4296 exp->X_op = O_symbol;
4297 r = BFD_RELOC_32_SECREL;
4301 fix_new_exp (frag, off, len, exp, 0, r);
4304 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4305 # define lex_got(reloc, adjust, types) NULL
4307 /* Parse operands of the form
4308 <symbol>@GOTOFF+<nnn>
4309 and similar .plt or .got references.
4311 If we find one, set up the correct relocation in RELOC and copy the
4312 input string, minus the `@GOTOFF' into a malloc'd buffer for
4313 parsing by the calling routine. Return this buffer, and if ADJUST
4314 is non-null set it to the length of the string we removed from the
4315 input line. Otherwise return NULL. */
4317 lex_got (enum bfd_reloc_code_real *reloc,
4319 unsigned int *types)
4321 /* Some of the relocations depend on the size of what field is to
4322 be relocated. But in our callers i386_immediate and i386_displacement
4323 we don't yet know the operand size (this will be set by insn
4324 matching). Hence we record the word32 relocation here,
4325 and adjust the reloc according to the real size in reloc(). */
4326 static const struct {
4328 const enum bfd_reloc_code_real rel[2];
4329 const unsigned int types64;
4331 { "PLTOFF", { 0, BFD_RELOC_X86_64_PLTOFF64 }, Imm64 },
4332 { "PLT", { BFD_RELOC_386_PLT32, BFD_RELOC_X86_64_PLT32 }, Imm32|Imm32S|Disp32 },
4333 { "GOTPLT", { 0, BFD_RELOC_X86_64_GOTPLT64 }, Imm64|Disp64 },
4334 { "GOTOFF", { BFD_RELOC_386_GOTOFF, BFD_RELOC_X86_64_GOTOFF64 }, Imm64|Disp64 },
4335 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL }, Imm32|Imm32S|Disp32 },
4336 { "TLSGD", { BFD_RELOC_386_TLS_GD, BFD_RELOC_X86_64_TLSGD }, Imm32|Imm32S|Disp32 },
4337 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0 }, 0 },
4338 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD }, Imm32|Imm32S|Disp32 },
4339 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, BFD_RELOC_X86_64_GOTTPOFF }, Imm32|Imm32S|Disp32 },
4340 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, BFD_RELOC_X86_64_TPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
4341 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0 }, 0 },
4342 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, BFD_RELOC_X86_64_DTPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
4343 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0 }, 0 },
4344 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0 }, 0 },
4345 { "GOT", { BFD_RELOC_386_GOT32, BFD_RELOC_X86_64_GOT32 }, Imm32|Imm32S|Disp32|Imm64 },
4346 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC, BFD_RELOC_X86_64_GOTPC32_TLSDESC }, Imm32|Imm32S|Disp32 },
4347 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL, BFD_RELOC_X86_64_TLSDESC_CALL }, Imm32|Imm32S|Disp32 }
4355 for (cp = input_line_pointer; *cp != '@'; cp++)
4356 if (is_end_of_line[(unsigned char) *cp])
4359 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4363 len = strlen (gotrel[j].str);
4364 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4366 if (gotrel[j].rel[object_64bit] != 0)
4369 char *tmpbuf, *past_reloc;
4371 *reloc = gotrel[j].rel[object_64bit];
4377 if (flag_code != CODE_64BIT)
4378 *types = Imm32|Disp32;
4380 *types = gotrel[j].types64;
4383 if (GOT_symbol == NULL)
4384 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4386 /* Replace the relocation token with ' ', so that
4387 errors like foo@GOTOFF1 will be detected. */
4389 /* The length of the first part of our input line. */
4390 first = cp - input_line_pointer;
4392 /* The second part goes from after the reloc token until
4393 (and including) an end_of_line char. Don't use strlen
4394 here as the end_of_line char may not be a NUL. */
4395 past_reloc = cp + 1 + len;
4396 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4398 second = cp - past_reloc;
4400 /* Allocate and copy string. The trailing NUL shouldn't
4401 be necessary, but be safe. */
4402 tmpbuf = xmalloc (first + second + 2);
4403 memcpy (tmpbuf, input_line_pointer, first);
4404 tmpbuf[first] = ' ';
4405 memcpy (tmpbuf + first + 1, past_reloc, second);
4406 tmpbuf[first + second + 1] = '\0';
4410 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4411 gotrel[j].str, 1 << (5 + object_64bit));
4416 /* Might be a symbol version string. Don't as_bad here. */
4421 x86_cons (exp, size)
4425 if (size == 4 || (object_64bit && size == 8))
4427 /* Handle @GOTOFF and the like in an expression. */
4429 char *gotfree_input_line;
4432 save = input_line_pointer;
4433 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4434 if (gotfree_input_line)
4435 input_line_pointer = gotfree_input_line;
4439 if (gotfree_input_line)
4441 /* expression () has merrily parsed up to the end of line,
4442 or a comma - in the wrong buffer. Transfer how far
4443 input_line_pointer has moved to the right buffer. */
4444 input_line_pointer = (save
4445 + (input_line_pointer - gotfree_input_line)
4447 free (gotfree_input_line);
4455 static void signed_cons (int size)
4457 if (flag_code == CODE_64BIT)
4465 pe_directive_secrel (dummy)
4466 int dummy ATTRIBUTE_UNUSED;
4473 if (exp.X_op == O_symbol)
4474 exp.X_op = O_secrel;
4476 emit_expr (&exp, 4);
4478 while (*input_line_pointer++ == ',');
4480 input_line_pointer--;
4481 demand_empty_rest_of_line ();
4485 static int i386_immediate PARAMS ((char *));
4488 i386_immediate (imm_start)
4491 char *save_input_line_pointer;
4492 char *gotfree_input_line;
4495 unsigned int types = ~0U;
4497 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4499 as_bad (_("only 1 or 2 immediate operands are allowed"));
4503 exp = &im_expressions[i.imm_operands++];
4504 i.op[this_operand].imms = exp;
4506 if (is_space_char (*imm_start))
4509 save_input_line_pointer = input_line_pointer;
4510 input_line_pointer = imm_start;
4512 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4513 if (gotfree_input_line)
4514 input_line_pointer = gotfree_input_line;
4516 exp_seg = expression (exp);
4519 if (*input_line_pointer)
4520 as_bad (_("junk `%s' after expression"), input_line_pointer);
4522 input_line_pointer = save_input_line_pointer;
4523 if (gotfree_input_line)
4524 free (gotfree_input_line);
4526 if (exp->X_op == O_absent || exp->X_op == O_big)
4528 /* Missing or bad expr becomes absolute 0. */
4529 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4531 exp->X_op = O_constant;
4532 exp->X_add_number = 0;
4533 exp->X_add_symbol = (symbolS *) 0;
4534 exp->X_op_symbol = (symbolS *) 0;
4536 else if (exp->X_op == O_constant)
4538 /* Size it properly later. */
4539 i.types[this_operand] |= Imm64;
4540 /* If BFD64, sign extend val. */
4541 if (!use_rela_relocations)
4542 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4543 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4545 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4546 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4547 && exp_seg != absolute_section
4548 && exp_seg != text_section
4549 && exp_seg != data_section
4550 && exp_seg != bss_section
4551 && exp_seg != undefined_section
4552 && !bfd_is_com_section (exp_seg))
4554 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4558 else if (!intel_syntax && exp->X_op == O_register)
4560 as_bad (_("illegal immediate register operand %s"), imm_start);
4565 /* This is an address. The size of the address will be
4566 determined later, depending on destination register,
4567 suffix, or the default for the section. */
4568 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4569 i.types[this_operand] &= types;
4575 static char *i386_scale PARAMS ((char *));
4582 char *save = input_line_pointer;
4584 input_line_pointer = scale;
4585 val = get_absolute_expression ();
4590 i.log2_scale_factor = 0;
4593 i.log2_scale_factor = 1;
4596 i.log2_scale_factor = 2;
4599 i.log2_scale_factor = 3;
4603 char sep = *input_line_pointer;
4605 *input_line_pointer = '\0';
4606 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4608 *input_line_pointer = sep;
4609 input_line_pointer = save;
4613 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4615 as_warn (_("scale factor of %d without an index register"),
4616 1 << i.log2_scale_factor);
4617 #if SCALE1_WHEN_NO_INDEX
4618 i.log2_scale_factor = 0;
4621 scale = input_line_pointer;
4622 input_line_pointer = save;
4626 static int i386_displacement PARAMS ((char *, char *));
4629 i386_displacement (disp_start, disp_end)
4635 char *save_input_line_pointer;
4636 char *gotfree_input_line;
4637 int bigdisp, override;
4638 unsigned int types = Disp;
4640 if ((i.types[this_operand] & JumpAbsolute)
4641 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4644 override = (i.prefix[ADDR_PREFIX] != 0);
4648 /* For PC-relative branches, the width of the displacement
4649 is dependent upon data size, not address size. */
4651 override = (i.prefix[DATA_PREFIX] != 0);
4653 if (flag_code == CODE_64BIT)
4656 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4658 : Disp32S | Disp32);
4660 bigdisp = Disp64 | Disp32S | Disp32;
4667 override = (i.suffix == (flag_code != CODE_16BIT
4669 : LONG_MNEM_SUFFIX));
4672 if ((flag_code == CODE_16BIT) ^ override)
4675 i.types[this_operand] |= bigdisp;
4677 exp = &disp_expressions[i.disp_operands];
4678 i.op[this_operand].disps = exp;
4680 save_input_line_pointer = input_line_pointer;
4681 input_line_pointer = disp_start;
4682 END_STRING_AND_SAVE (disp_end);
4684 #ifndef GCC_ASM_O_HACK
4685 #define GCC_ASM_O_HACK 0
4688 END_STRING_AND_SAVE (disp_end + 1);
4689 if ((i.types[this_operand] & BaseIndex) != 0
4690 && displacement_string_end[-1] == '+')
4692 /* This hack is to avoid a warning when using the "o"
4693 constraint within gcc asm statements.
4696 #define _set_tssldt_desc(n,addr,limit,type) \
4697 __asm__ __volatile__ ( \
4699 "movw %w1,2+%0\n\t" \
4701 "movb %b1,4+%0\n\t" \
4702 "movb %4,5+%0\n\t" \
4703 "movb $0,6+%0\n\t" \
4704 "movb %h1,7+%0\n\t" \
4706 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4708 This works great except that the output assembler ends
4709 up looking a bit weird if it turns out that there is
4710 no offset. You end up producing code that looks like:
4723 So here we provide the missing zero. */
4725 *displacement_string_end = '0';
4728 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4729 if (gotfree_input_line)
4730 input_line_pointer = gotfree_input_line;
4732 exp_seg = expression (exp);
4735 if (*input_line_pointer)
4736 as_bad (_("junk `%s' after expression"), input_line_pointer);
4738 RESTORE_END_STRING (disp_end + 1);
4740 RESTORE_END_STRING (disp_end);
4741 input_line_pointer = save_input_line_pointer;
4742 if (gotfree_input_line)
4743 free (gotfree_input_line);
4745 /* We do this to make sure that the section symbol is in
4746 the symbol table. We will ultimately change the relocation
4747 to be relative to the beginning of the section. */
4748 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4749 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4750 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4752 if (exp->X_op != O_symbol)
4754 as_bad (_("bad expression used with @%s"),
4755 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4761 if (S_IS_LOCAL (exp->X_add_symbol)
4762 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4763 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4764 exp->X_op = O_subtract;
4765 exp->X_op_symbol = GOT_symbol;
4766 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4767 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4768 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4769 i.reloc[this_operand] = BFD_RELOC_64;
4771 i.reloc[this_operand] = BFD_RELOC_32;
4774 if (exp->X_op == O_absent || exp->X_op == O_big)
4776 /* Missing or bad expr becomes absolute 0. */
4777 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4779 exp->X_op = O_constant;
4780 exp->X_add_number = 0;
4781 exp->X_add_symbol = (symbolS *) 0;
4782 exp->X_op_symbol = (symbolS *) 0;
4785 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4786 if (exp->X_op != O_constant
4787 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4788 && exp_seg != absolute_section
4789 && exp_seg != text_section
4790 && exp_seg != data_section
4791 && exp_seg != bss_section
4792 && exp_seg != undefined_section
4793 && !bfd_is_com_section (exp_seg))
4795 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4800 if (!(i.types[this_operand] & ~Disp))
4801 i.types[this_operand] &= types;
4806 static int i386_index_check PARAMS ((const char *));
4808 /* Make sure the memory operand we've been dealt is valid.
4809 Return 1 on success, 0 on a failure. */
4812 i386_index_check (operand_string)
4813 const char *operand_string;
4816 #if INFER_ADDR_PREFIX
4822 if ((current_templates->start->cpu_flags & CpuSVME)
4823 && current_templates->end[-1].operand_types[0] == AnyMem)
4825 /* Memory operands of SVME insns are special in that they only allow
4826 rAX as their memory address and ignore any segment override. */
4829 /* SKINIT is even more restrictive: it always requires EAX. */
4830 if (strcmp (current_templates->start->name, "skinit") == 0)
4832 else if (flag_code == CODE_64BIT)
4833 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4835 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4839 || !(i.base_reg->reg_type & Acc)
4840 || !(i.base_reg->reg_type & RegXX)
4842 || (i.types[0] & Disp))
4845 else if (flag_code == CODE_64BIT)
4847 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4850 && ((i.base_reg->reg_type & RegXX) == 0)
4851 && (i.base_reg->reg_type != BaseIndex
4854 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4855 != (RegXX | BaseIndex))))
4860 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4864 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4865 != (Reg16 | BaseIndex)))
4867 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4868 != (Reg16 | BaseIndex))
4870 && i.base_reg->reg_num < 6
4871 && i.index_reg->reg_num >= 6
4872 && i.log2_scale_factor == 0))))
4879 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4881 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4882 != (Reg32 | BaseIndex))))
4888 #if INFER_ADDR_PREFIX
4889 if (i.prefix[ADDR_PREFIX] == 0)
4891 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4893 /* Change the size of any displacement too. At most one of
4894 Disp16 or Disp32 is set.
4895 FIXME. There doesn't seem to be any real need for separate
4896 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4897 Removing them would probably clean up the code quite a lot. */
4898 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4899 i.types[this_operand] ^= (Disp16 | Disp32);
4904 as_bad (_("`%s' is not a valid base/index expression"),
4908 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4910 flag_code_names[flag_code]);
4915 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4919 i386_operand (operand_string)
4920 char *operand_string;
4924 char *op_string = operand_string;
4926 if (is_space_char (*op_string))
4929 /* We check for an absolute prefix (differentiating,
4930 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4931 if (*op_string == ABSOLUTE_PREFIX)
4934 if (is_space_char (*op_string))
4936 i.types[this_operand] |= JumpAbsolute;
4939 /* Check if operand is a register. */
4940 if ((r = parse_register (op_string, &end_op)) != NULL)
4942 /* Check for a segment override by searching for ':' after a
4943 segment register. */
4945 if (is_space_char (*op_string))
4947 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4952 i.seg[i.mem_operands] = &es;
4955 i.seg[i.mem_operands] = &cs;
4958 i.seg[i.mem_operands] = &ss;
4961 i.seg[i.mem_operands] = &ds;
4964 i.seg[i.mem_operands] = &fs;
4967 i.seg[i.mem_operands] = &gs;
4971 /* Skip the ':' and whitespace. */
4973 if (is_space_char (*op_string))
4976 if (!is_digit_char (*op_string)
4977 && !is_identifier_char (*op_string)
4978 && *op_string != '('
4979 && *op_string != ABSOLUTE_PREFIX)
4981 as_bad (_("bad memory operand `%s'"), op_string);
4984 /* Handle case of %es:*foo. */
4985 if (*op_string == ABSOLUTE_PREFIX)
4988 if (is_space_char (*op_string))
4990 i.types[this_operand] |= JumpAbsolute;
4992 goto do_memory_reference;
4996 as_bad (_("junk `%s' after register"), op_string);
4999 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5000 i.op[this_operand].regs = r;
5003 else if (*op_string == REGISTER_PREFIX)
5005 as_bad (_("bad register name `%s'"), op_string);
5008 else if (*op_string == IMMEDIATE_PREFIX)
5011 if (i.types[this_operand] & JumpAbsolute)
5013 as_bad (_("immediate operand illegal with absolute jump"));
5016 if (!i386_immediate (op_string))
5019 else if (is_digit_char (*op_string)
5020 || is_identifier_char (*op_string)
5021 || *op_string == '(')
5023 /* This is a memory reference of some sort. */
5026 /* Start and end of displacement string expression (if found). */
5027 char *displacement_string_start;
5028 char *displacement_string_end;
5030 do_memory_reference:
5031 if ((i.mem_operands == 1
5032 && (current_templates->start->opcode_modifier & IsString) == 0)
5033 || i.mem_operands == 2)
5035 as_bad (_("too many memory references for `%s'"),
5036 current_templates->start->name);
5040 /* Check for base index form. We detect the base index form by
5041 looking for an ')' at the end of the operand, searching
5042 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5044 base_string = op_string + strlen (op_string);
5047 if (is_space_char (*base_string))
5050 /* If we only have a displacement, set-up for it to be parsed later. */
5051 displacement_string_start = op_string;
5052 displacement_string_end = base_string + 1;
5054 if (*base_string == ')')
5057 unsigned int parens_balanced = 1;
5058 /* We've already checked that the number of left & right ()'s are
5059 equal, so this loop will not be infinite. */
5063 if (*base_string == ')')
5065 if (*base_string == '(')
5068 while (parens_balanced);
5070 temp_string = base_string;
5072 /* Skip past '(' and whitespace. */
5074 if (is_space_char (*base_string))
5077 if (*base_string == ','
5078 || ((i.base_reg = parse_register (base_string, &end_op)) != NULL))
5080 displacement_string_end = temp_string;
5082 i.types[this_operand] |= BaseIndex;
5086 base_string = end_op;
5087 if (is_space_char (*base_string))
5091 /* There may be an index reg or scale factor here. */
5092 if (*base_string == ',')
5095 if (is_space_char (*base_string))
5098 if ((i.index_reg = parse_register (base_string, &end_op)) != NULL)
5100 base_string = end_op;
5101 if (is_space_char (*base_string))
5103 if (*base_string == ',')
5106 if (is_space_char (*base_string))
5109 else if (*base_string != ')')
5111 as_bad (_("expecting `,' or `)' after index register in `%s'"),
5116 else if (*base_string == REGISTER_PREFIX)
5118 as_bad (_("bad register name `%s'"), base_string);
5122 /* Check for scale factor. */
5123 if (*base_string != ')')
5125 char *end_scale = i386_scale (base_string);
5130 base_string = end_scale;
5131 if (is_space_char (*base_string))
5133 if (*base_string != ')')
5135 as_bad (_("expecting `)' after scale factor in `%s'"),
5140 else if (!i.index_reg)
5142 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
5147 else if (*base_string != ')')
5149 as_bad (_("expecting `,' or `)' after base register in `%s'"),
5154 else if (*base_string == REGISTER_PREFIX)
5156 as_bad (_("bad register name `%s'"), base_string);
5161 /* If there's an expression beginning the operand, parse it,
5162 assuming displacement_string_start and
5163 displacement_string_end are meaningful. */
5164 if (displacement_string_start != displacement_string_end)
5166 if (!i386_displacement (displacement_string_start,
5167 displacement_string_end))
5171 /* Special case for (%dx) while doing input/output op. */
5173 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5175 && i.log2_scale_factor == 0
5176 && i.seg[i.mem_operands] == 0
5177 && (i.types[this_operand] & Disp) == 0)
5179 i.types[this_operand] = InOutPortReg;
5183 if (i386_index_check (operand_string) == 0)
5189 /* It's not a memory operand; argh! */
5190 as_bad (_("invalid char %s beginning operand %d `%s'"),
5191 output_invalid (*op_string),
5196 return 1; /* Normal return. */
5199 /* md_estimate_size_before_relax()
5201 Called just before relax() for rs_machine_dependent frags. The x86
5202 assembler uses these frags to handle variable size jump
5205 Any symbol that is now undefined will not become defined.
5206 Return the correct fr_subtype in the frag.
5207 Return the initial "guess for variable size of frag" to caller.
5208 The guess is actually the growth beyond the fixed part. Whatever
5209 we do to grow the fixed or variable part contributes to our
5213 md_estimate_size_before_relax (fragP, segment)
5217 /* We've already got fragP->fr_subtype right; all we have to do is
5218 check for un-relaxable symbols. On an ELF system, we can't relax
5219 an externally visible symbol, because it may be overridden by a
5221 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5224 && (S_IS_EXTERNAL (fragP->fr_symbol)
5225 || S_IS_WEAK (fragP->fr_symbol)))
5229 /* Symbol is undefined in this segment, or we need to keep a
5230 reloc so that weak symbols can be overridden. */
5231 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5232 enum bfd_reloc_code_real reloc_type;
5233 unsigned char *opcode;
5236 if (fragP->fr_var != NO_RELOC)
5237 reloc_type = fragP->fr_var;
5239 reloc_type = BFD_RELOC_16_PCREL;
5241 reloc_type = BFD_RELOC_32_PCREL;
5243 old_fr_fix = fragP->fr_fix;
5244 opcode = (unsigned char *) fragP->fr_opcode;
5246 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5249 /* Make jmp (0xeb) a (d)word displacement jump. */
5251 fragP->fr_fix += size;
5252 fix_new (fragP, old_fr_fix, size,
5254 fragP->fr_offset, 1,
5260 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5262 /* Negate the condition, and branch past an
5263 unconditional jump. */
5266 /* Insert an unconditional jump. */
5268 /* We added two extra opcode bytes, and have a two byte
5270 fragP->fr_fix += 2 + 2;
5271 fix_new (fragP, old_fr_fix + 2, 2,
5273 fragP->fr_offset, 1,
5280 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5285 fixP = fix_new (fragP, old_fr_fix, 1,
5287 fragP->fr_offset, 1,
5289 fixP->fx_signed = 1;
5293 /* This changes the byte-displacement jump 0x7N
5294 to the (d)word-displacement jump 0x0f,0x8N. */
5295 opcode[1] = opcode[0] + 0x10;
5296 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5297 /* We've added an opcode byte. */
5298 fragP->fr_fix += 1 + size;
5299 fix_new (fragP, old_fr_fix + 1, size,
5301 fragP->fr_offset, 1,
5306 BAD_CASE (fragP->fr_subtype);
5310 return fragP->fr_fix - old_fr_fix;
5313 /* Guess size depending on current relax state. Initially the relax
5314 state will correspond to a short jump and we return 1, because
5315 the variable part of the frag (the branch offset) is one byte
5316 long. However, we can relax a section more than once and in that
5317 case we must either set fr_subtype back to the unrelaxed state,
5318 or return the value for the appropriate branch. */
5319 return md_relax_table[fragP->fr_subtype].rlx_length;
5322 /* Called after relax() is finished.
5324 In: Address of frag.
5325 fr_type == rs_machine_dependent.
5326 fr_subtype is what the address relaxed to.
5328 Out: Any fixSs and constants are set up.
5329 Caller will turn frag into a ".space 0". */
5332 md_convert_frag (abfd, sec, fragP)
5333 bfd *abfd ATTRIBUTE_UNUSED;
5334 segT sec ATTRIBUTE_UNUSED;
5337 unsigned char *opcode;
5338 unsigned char *where_to_put_displacement = NULL;
5339 offsetT target_address;
5340 offsetT opcode_address;
5341 unsigned int extension = 0;
5342 offsetT displacement_from_opcode_start;
5344 opcode = (unsigned char *) fragP->fr_opcode;
5346 /* Address we want to reach in file space. */
5347 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5349 /* Address opcode resides at in file space. */
5350 opcode_address = fragP->fr_address + fragP->fr_fix;
5352 /* Displacement from opcode start to fill into instruction. */
5353 displacement_from_opcode_start = target_address - opcode_address;
5355 if ((fragP->fr_subtype & BIG) == 0)
5357 /* Don't have to change opcode. */
5358 extension = 1; /* 1 opcode + 1 displacement */
5359 where_to_put_displacement = &opcode[1];
5363 if (no_cond_jump_promotion
5364 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5365 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
5367 switch (fragP->fr_subtype)
5369 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5370 extension = 4; /* 1 opcode + 4 displacement */
5372 where_to_put_displacement = &opcode[1];
5375 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5376 extension = 2; /* 1 opcode + 2 displacement */
5378 where_to_put_displacement = &opcode[1];
5381 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5382 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5383 extension = 5; /* 2 opcode + 4 displacement */
5384 opcode[1] = opcode[0] + 0x10;
5385 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5386 where_to_put_displacement = &opcode[2];
5389 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5390 extension = 3; /* 2 opcode + 2 displacement */
5391 opcode[1] = opcode[0] + 0x10;
5392 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5393 where_to_put_displacement = &opcode[2];
5396 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5401 where_to_put_displacement = &opcode[3];
5405 BAD_CASE (fragP->fr_subtype);
5410 /* If size if less then four we are sure that the operand fits,
5411 but if it's 4, then it could be that the displacement is larger
5413 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5415 && ((addressT) (displacement_from_opcode_start - extension
5416 + ((addressT) 1 << 31))
5417 > (((addressT) 2 << 31) - 1)))
5419 as_bad_where (fragP->fr_file, fragP->fr_line,
5420 _("jump target out of range"));
5421 /* Make us emit 0. */
5422 displacement_from_opcode_start = extension;
5424 /* Now put displacement after opcode. */
5425 md_number_to_chars ((char *) where_to_put_displacement,
5426 (valueT) (displacement_from_opcode_start - extension),
5427 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5428 fragP->fr_fix += extension;
5431 /* Size of byte displacement jmp. */
5432 int md_short_jump_size = 2;
5434 /* Size of dword displacement jmp. */
5435 int md_long_jump_size = 5;
5438 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5440 addressT from_addr, to_addr;
5441 fragS *frag ATTRIBUTE_UNUSED;
5442 symbolS *to_symbol ATTRIBUTE_UNUSED;
5446 offset = to_addr - (from_addr + 2);
5447 /* Opcode for byte-disp jump. */
5448 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5449 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5453 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5455 addressT from_addr, to_addr;
5456 fragS *frag ATTRIBUTE_UNUSED;
5457 symbolS *to_symbol ATTRIBUTE_UNUSED;
5461 offset = to_addr - (from_addr + 5);
5462 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5463 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5466 /* Apply a fixup (fixS) to segment data, once it has been determined
5467 by our caller that we have all the info we need to fix it up.
5469 On the 386, immediates, displacements, and data pointers are all in
5470 the same (little-endian) format, so we don't need to care about which
5474 md_apply_fix (fixP, valP, seg)
5475 /* The fix we're to put in. */
5477 /* Pointer to the value of the bits. */
5479 /* Segment fix is from. */
5480 segT seg ATTRIBUTE_UNUSED;
5482 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5483 valueT value = *valP;
5485 #if !defined (TE_Mach)
5488 switch (fixP->fx_r_type)
5494 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5497 case BFD_RELOC_X86_64_32S:
5498 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5501 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5504 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5509 if (fixP->fx_addsy != NULL
5510 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5511 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5512 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5513 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5514 && !use_rela_relocations)
5516 /* This is a hack. There should be a better way to handle this.
5517 This covers for the fact that bfd_install_relocation will
5518 subtract the current location (for partial_inplace, PC relative
5519 relocations); see more below. */
5523 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5526 value += fixP->fx_where + fixP->fx_frag->fr_address;
5528 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5531 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5534 || (symbol_section_p (fixP->fx_addsy)
5535 && sym_seg != absolute_section))
5536 && !generic_force_reloc (fixP))
5538 /* Yes, we add the values in twice. This is because
5539 bfd_install_relocation subtracts them out again. I think
5540 bfd_install_relocation is broken, but I don't dare change
5542 value += fixP->fx_where + fixP->fx_frag->fr_address;
5546 #if defined (OBJ_COFF) && defined (TE_PE)
5547 /* For some reason, the PE format does not store a
5548 section address offset for a PC relative symbol. */
5549 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5550 || S_IS_WEAK (fixP->fx_addsy))
5551 value += md_pcrel_from (fixP);
5555 /* Fix a few things - the dynamic linker expects certain values here,
5556 and we must not disappoint it. */
5557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5558 if (IS_ELF && fixP->fx_addsy)
5559 switch (fixP->fx_r_type)
5561 case BFD_RELOC_386_PLT32:
5562 case BFD_RELOC_X86_64_PLT32:
5563 /* Make the jump instruction point to the address of the operand. At
5564 runtime we merely add the offset to the actual PLT entry. */
5568 case BFD_RELOC_386_TLS_GD:
5569 case BFD_RELOC_386_TLS_LDM:
5570 case BFD_RELOC_386_TLS_IE_32:
5571 case BFD_RELOC_386_TLS_IE:
5572 case BFD_RELOC_386_TLS_GOTIE:
5573 case BFD_RELOC_386_TLS_GOTDESC:
5574 case BFD_RELOC_X86_64_TLSGD:
5575 case BFD_RELOC_X86_64_TLSLD:
5576 case BFD_RELOC_X86_64_GOTTPOFF:
5577 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5578 value = 0; /* Fully resolved at runtime. No addend. */
5580 case BFD_RELOC_386_TLS_LE:
5581 case BFD_RELOC_386_TLS_LDO_32:
5582 case BFD_RELOC_386_TLS_LE_32:
5583 case BFD_RELOC_X86_64_DTPOFF32:
5584 case BFD_RELOC_X86_64_DTPOFF64:
5585 case BFD_RELOC_X86_64_TPOFF32:
5586 case BFD_RELOC_X86_64_TPOFF64:
5587 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5590 case BFD_RELOC_386_TLS_DESC_CALL:
5591 case BFD_RELOC_X86_64_TLSDESC_CALL:
5592 value = 0; /* Fully resolved at runtime. No addend. */
5593 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5597 case BFD_RELOC_386_GOT32:
5598 case BFD_RELOC_X86_64_GOT32:
5599 value = 0; /* Fully resolved at runtime. No addend. */
5602 case BFD_RELOC_VTABLE_INHERIT:
5603 case BFD_RELOC_VTABLE_ENTRY:
5610 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5612 #endif /* !defined (TE_Mach) */
5614 /* Are we finished with this relocation now? */
5615 if (fixP->fx_addsy == NULL)
5617 else if (use_rela_relocations)
5619 fixP->fx_no_overflow = 1;
5620 /* Remember value for tc_gen_reloc. */
5621 fixP->fx_addnumber = value;
5625 md_number_to_chars (p, value, fixP->fx_size);
5628 #define MAX_LITTLENUMS 6
5630 /* Turn the string pointed to by litP into a floating point constant
5631 of type TYPE, and emit the appropriate bytes. The number of
5632 LITTLENUMS emitted is stored in *SIZEP. An error message is
5633 returned, or NULL on OK. */
5636 md_atof (type, litP, sizeP)
5642 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5643 LITTLENUM_TYPE *wordP;
5665 return _("Bad call to md_atof ()");
5667 t = atof_ieee (input_line_pointer, type, words);
5669 input_line_pointer = t;
5671 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5672 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5673 the bigendian 386. */
5674 for (wordP = words + prec - 1; prec--;)
5676 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5677 litP += sizeof (LITTLENUM_TYPE);
5682 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5689 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5692 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5693 "(0x%x)", (unsigned char) c);
5694 return output_invalid_buf;
5697 /* REG_STRING starts *before* REGISTER_PREFIX. */
5699 static const reg_entry *
5700 parse_real_register (char *reg_string, char **end_op)
5702 char *s = reg_string;
5704 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5707 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5708 if (*s == REGISTER_PREFIX)
5711 if (is_space_char (*s))
5715 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5717 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5718 return (const reg_entry *) NULL;
5722 /* For naked regs, make sure that we are not dealing with an identifier.
5723 This prevents confusing an identifier like `eax_var' with register
5725 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5726 return (const reg_entry *) NULL;
5730 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5732 /* Handle floating point regs, allowing spaces in the (i) part. */
5733 if (r == i386_regtab /* %st is first entry of table */)
5735 if (is_space_char (*s))
5740 if (is_space_char (*s))
5742 if (*s >= '0' && *s <= '7')
5744 r = &i386_float_regtab[*s - '0'];
5746 if (is_space_char (*s))
5754 /* We have "%st(" then garbage. */
5755 return (const reg_entry *) NULL;
5760 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5761 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5762 && flag_code != CODE_64BIT)
5763 return (const reg_entry *) NULL;
5768 /* REG_STRING starts *before* REGISTER_PREFIX. */
5770 static const reg_entry *
5771 parse_register (char *reg_string, char **end_op)
5775 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5776 r = parse_real_register (reg_string, end_op);
5781 char *save = input_line_pointer;
5785 input_line_pointer = reg_string;
5786 c = get_symbol_end ();
5787 symbolP = symbol_find (reg_string);
5788 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5790 const expressionS *e = symbol_get_value_expression (symbolP);
5792 know (e->X_op == O_register);
5793 know (e->X_add_number >= 0 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5794 r = i386_regtab + e->X_add_number;
5795 *end_op = input_line_pointer;
5797 *input_line_pointer = c;
5798 input_line_pointer = save;
5804 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5807 char *end = input_line_pointer;
5810 r = parse_register (name, &input_line_pointer);
5811 if (r && end <= input_line_pointer)
5813 *nextcharP = *input_line_pointer;
5814 *input_line_pointer = 0;
5815 e->X_op = O_register;
5816 e->X_add_number = r - i386_regtab;
5819 input_line_pointer = end;
5825 md_operand (expressionS *e)
5827 if (*input_line_pointer == REGISTER_PREFIX)
5830 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5834 e->X_op = O_register;
5835 e->X_add_number = r - i386_regtab;
5836 input_line_pointer = end;
5842 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5843 const char *md_shortopts = "kVQ:sqn";
5845 const char *md_shortopts = "qn";
5848 #define OPTION_32 (OPTION_MD_BASE + 0)
5849 #define OPTION_64 (OPTION_MD_BASE + 1)
5850 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5851 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5852 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5854 struct option md_longopts[] =
5856 {"32", no_argument, NULL, OPTION_32},
5857 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5858 {"64", no_argument, NULL, OPTION_64},
5860 {"divide", no_argument, NULL, OPTION_DIVIDE},
5861 {"march", required_argument, NULL, OPTION_MARCH},
5862 {"mtune", required_argument, NULL, OPTION_MTUNE},
5863 {NULL, no_argument, NULL, 0}
5865 size_t md_longopts_size = sizeof (md_longopts);
5868 md_parse_option (int c, char *arg)
5875 optimize_align_code = 0;
5882 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5883 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5884 should be emitted or not. FIXME: Not implemented. */
5888 /* -V: SVR4 argument to print version ID. */
5890 print_version_id ();
5893 /* -k: Ignore for FreeBSD compatibility. */
5898 /* -s: On i386 Solaris, this tells the native assembler to use
5899 .stab instead of .stab.excl. We always use .stab anyhow. */
5902 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5905 const char **list, **l;
5907 list = bfd_target_list ();
5908 for (l = list; *l != NULL; l++)
5909 if (CONST_STRNEQ (*l, "elf64-x86-64")
5910 || strcmp (*l, "coff-x86-64") == 0
5911 || strcmp (*l, "pe-x86-64") == 0
5912 || strcmp (*l, "pei-x86-64") == 0)
5914 default_arch = "x86_64";
5918 as_fatal (_("No compiled in support for x86_64"));
5925 default_arch = "i386";
5929 #ifdef SVR4_COMMENT_CHARS
5934 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5936 for (s = i386_comment_chars; *s != '\0'; s++)
5940 i386_comment_chars = n;
5947 as_fatal (_("Invalid -march= option: `%s'"), arg);
5948 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5950 if (strcmp (arg, cpu_arch [i].name) == 0)
5952 cpu_arch_isa = cpu_arch[i].type;
5953 cpu_arch_isa_flags = cpu_arch[i].flags;
5954 if (!cpu_arch_tune_set)
5956 cpu_arch_tune = cpu_arch_isa;
5957 cpu_arch_tune_flags = cpu_arch_isa_flags;
5962 if (i >= ARRAY_SIZE (cpu_arch))
5963 as_fatal (_("Invalid -march= option: `%s'"), arg);
5968 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5969 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5971 if (strcmp (arg, cpu_arch [i].name) == 0)
5973 cpu_arch_tune_set = 1;
5974 cpu_arch_tune = cpu_arch [i].type;
5975 cpu_arch_tune_flags = cpu_arch[i].flags;
5979 if (i >= ARRAY_SIZE (cpu_arch))
5980 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5990 md_show_usage (stream)
5993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5994 fprintf (stream, _("\
5996 -V print assembler version number\n\
5999 fprintf (stream, _("\
6000 -n Do not optimize code alignment\n\
6001 -q quieten some warnings\n"));
6002 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6003 fprintf (stream, _("\
6006 #ifdef SVR4_COMMENT_CHARS
6007 fprintf (stream, _("\
6008 --divide do not treat `/' as a comment character\n"));
6010 fprintf (stream, _("\
6011 --divide ignored\n"));
6013 fprintf (stream, _("\
6014 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6015 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6016 core, core2, k6, athlon, k8, generic32, generic64\n"));
6022 x86_64_target_format (void)
6024 if (strcmp (default_arch, "x86_64") == 0)
6026 set_code_flag (CODE_64BIT);
6027 return COFF_TARGET_FORMAT;
6029 else if (strcmp (default_arch, "i386") == 0)
6031 set_code_flag (CODE_32BIT);
6035 as_fatal (_("Unknown architecture"));
6040 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6041 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6043 /* Pick the target format to use. */
6046 i386_target_format ()
6048 if (!strcmp (default_arch, "x86_64"))
6050 set_code_flag (CODE_64BIT);
6051 if (cpu_arch_isa_flags == 0)
6052 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6053 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6055 if (cpu_arch_tune_flags == 0)
6056 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6057 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6060 else if (!strcmp (default_arch, "i386"))
6062 set_code_flag (CODE_32BIT);
6063 if (cpu_arch_isa_flags == 0)
6064 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6065 if (cpu_arch_tune_flags == 0)
6066 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6069 as_fatal (_("Unknown architecture"));
6070 switch (OUTPUT_FLAVOR)
6072 #ifdef OBJ_MAYBE_AOUT
6073 case bfd_target_aout_flavour:
6074 return AOUT_TARGET_FORMAT;
6076 #ifdef OBJ_MAYBE_COFF
6077 case bfd_target_coff_flavour:
6080 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6081 case bfd_target_elf_flavour:
6083 if (flag_code == CODE_64BIT)
6086 use_rela_relocations = 1;
6088 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6097 #endif /* OBJ_MAYBE_ more than one */
6099 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6100 void i386_elf_emit_arch_note ()
6102 if (IS_ELF && cpu_arch_name != NULL)
6105 asection *seg = now_seg;
6106 subsegT subseg = now_subseg;
6107 Elf_Internal_Note i_note;
6108 Elf_External_Note e_note;
6109 asection *note_secp;
6112 /* Create the .note section. */
6113 note_secp = subseg_new (".note", 0);
6114 bfd_set_section_flags (stdoutput,
6116 SEC_HAS_CONTENTS | SEC_READONLY);
6118 /* Process the arch string. */
6119 len = strlen (cpu_arch_name);
6121 i_note.namesz = len + 1;
6123 i_note.type = NT_ARCH;
6124 p = frag_more (sizeof (e_note.namesz));
6125 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6126 p = frag_more (sizeof (e_note.descsz));
6127 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6128 p = frag_more (sizeof (e_note.type));
6129 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6130 p = frag_more (len + 1);
6131 strcpy (p, cpu_arch_name);
6133 frag_align (2, 0, 0);
6135 subseg_set (seg, subseg);
6141 md_undefined_symbol (name)
6144 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6145 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6146 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6147 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6151 if (symbol_find (name))
6152 as_bad (_("GOT already in symbol table"));
6153 GOT_symbol = symbol_new (name, undefined_section,
6154 (valueT) 0, &zero_address_frag);
6161 /* Round up a section size to the appropriate boundary. */
6164 md_section_align (segment, size)
6165 segT segment ATTRIBUTE_UNUSED;
6168 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6169 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6171 /* For a.out, force the section size to be aligned. If we don't do
6172 this, BFD will align it for us, but it will not write out the
6173 final bytes of the section. This may be a bug in BFD, but it is
6174 easier to fix it here since that is how the other a.out targets
6178 align = bfd_get_section_alignment (stdoutput, segment);
6179 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6186 /* On the i386, PC-relative offsets are relative to the start of the
6187 next instruction. That is, the address of the offset, plus its
6188 size, since the offset is always the last part of the insn. */
6191 md_pcrel_from (fixP)
6194 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6201 int ignore ATTRIBUTE_UNUSED;
6205 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6207 obj_elf_section_change_hook ();
6209 temp = get_absolute_expression ();
6210 subseg_set (bss_section, (subsegT) temp);
6211 demand_empty_rest_of_line ();
6217 i386_validate_fix (fixp)
6220 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6222 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6226 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6231 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6233 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6240 tc_gen_reloc (section, fixp)
6241 asection *section ATTRIBUTE_UNUSED;
6245 bfd_reloc_code_real_type code;
6247 switch (fixp->fx_r_type)
6249 case BFD_RELOC_X86_64_PLT32:
6250 case BFD_RELOC_X86_64_GOT32:
6251 case BFD_RELOC_X86_64_GOTPCREL:
6252 case BFD_RELOC_386_PLT32:
6253 case BFD_RELOC_386_GOT32:
6254 case BFD_RELOC_386_GOTOFF:
6255 case BFD_RELOC_386_GOTPC:
6256 case BFD_RELOC_386_TLS_GD:
6257 case BFD_RELOC_386_TLS_LDM:
6258 case BFD_RELOC_386_TLS_LDO_32:
6259 case BFD_RELOC_386_TLS_IE_32:
6260 case BFD_RELOC_386_TLS_IE:
6261 case BFD_RELOC_386_TLS_GOTIE:
6262 case BFD_RELOC_386_TLS_LE_32:
6263 case BFD_RELOC_386_TLS_LE:
6264 case BFD_RELOC_386_TLS_GOTDESC:
6265 case BFD_RELOC_386_TLS_DESC_CALL:
6266 case BFD_RELOC_X86_64_TLSGD:
6267 case BFD_RELOC_X86_64_TLSLD:
6268 case BFD_RELOC_X86_64_DTPOFF32:
6269 case BFD_RELOC_X86_64_DTPOFF64:
6270 case BFD_RELOC_X86_64_GOTTPOFF:
6271 case BFD_RELOC_X86_64_TPOFF32:
6272 case BFD_RELOC_X86_64_TPOFF64:
6273 case BFD_RELOC_X86_64_GOTOFF64:
6274 case BFD_RELOC_X86_64_GOTPC32:
6275 case BFD_RELOC_X86_64_GOT64:
6276 case BFD_RELOC_X86_64_GOTPCREL64:
6277 case BFD_RELOC_X86_64_GOTPC64:
6278 case BFD_RELOC_X86_64_GOTPLT64:
6279 case BFD_RELOC_X86_64_PLTOFF64:
6280 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6281 case BFD_RELOC_X86_64_TLSDESC_CALL:
6283 case BFD_RELOC_VTABLE_ENTRY:
6284 case BFD_RELOC_VTABLE_INHERIT:
6286 case BFD_RELOC_32_SECREL:
6288 code = fixp->fx_r_type;
6290 case BFD_RELOC_X86_64_32S:
6291 if (!fixp->fx_pcrel)
6293 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6294 code = fixp->fx_r_type;
6300 switch (fixp->fx_size)
6303 as_bad_where (fixp->fx_file, fixp->fx_line,
6304 _("can not do %d byte pc-relative relocation"),
6306 code = BFD_RELOC_32_PCREL;
6308 case 1: code = BFD_RELOC_8_PCREL; break;
6309 case 2: code = BFD_RELOC_16_PCREL; break;
6310 case 4: code = BFD_RELOC_32_PCREL; break;
6312 case 8: code = BFD_RELOC_64_PCREL; break;
6318 switch (fixp->fx_size)
6321 as_bad_where (fixp->fx_file, fixp->fx_line,
6322 _("can not do %d byte relocation"),
6324 code = BFD_RELOC_32;
6326 case 1: code = BFD_RELOC_8; break;
6327 case 2: code = BFD_RELOC_16; break;
6328 case 4: code = BFD_RELOC_32; break;
6330 case 8: code = BFD_RELOC_64; break;
6337 if ((code == BFD_RELOC_32
6338 || code == BFD_RELOC_32_PCREL
6339 || code == BFD_RELOC_X86_64_32S)
6341 && fixp->fx_addsy == GOT_symbol)
6344 code = BFD_RELOC_386_GOTPC;
6346 code = BFD_RELOC_X86_64_GOTPC32;
6348 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6350 && fixp->fx_addsy == GOT_symbol)
6352 code = BFD_RELOC_X86_64_GOTPC64;
6355 rel = (arelent *) xmalloc (sizeof (arelent));
6356 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6357 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6359 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6361 if (!use_rela_relocations)
6363 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6364 vtable entry to be used in the relocation's section offset. */
6365 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6366 rel->address = fixp->fx_offset;
6370 /* Use the rela in 64bit mode. */
6373 if (!fixp->fx_pcrel)
6374 rel->addend = fixp->fx_offset;
6378 case BFD_RELOC_X86_64_PLT32:
6379 case BFD_RELOC_X86_64_GOT32:
6380 case BFD_RELOC_X86_64_GOTPCREL:
6381 case BFD_RELOC_X86_64_TLSGD:
6382 case BFD_RELOC_X86_64_TLSLD:
6383 case BFD_RELOC_X86_64_GOTTPOFF:
6384 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6385 case BFD_RELOC_X86_64_TLSDESC_CALL:
6386 rel->addend = fixp->fx_offset - fixp->fx_size;
6389 rel->addend = (section->vma
6391 + fixp->fx_addnumber
6392 + md_pcrel_from (fixp));
6397 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6398 if (rel->howto == NULL)
6400 as_bad_where (fixp->fx_file, fixp->fx_line,
6401 _("cannot represent relocation type %s"),
6402 bfd_get_reloc_code_name (code));
6403 /* Set howto to a garbage value so that we can keep going. */
6404 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6405 assert (rel->howto != NULL);
6412 /* Parse operands using Intel syntax. This implements a recursive descent
6413 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6416 FIXME: We do not recognize the full operand grammar defined in the MASM
6417 documentation. In particular, all the structure/union and
6418 high-level macro operands are missing.
6420 Uppercase words are terminals, lower case words are non-terminals.
6421 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6422 bars '|' denote choices. Most grammar productions are implemented in
6423 functions called 'intel_<production>'.
6425 Initial production is 'expr'.
6431 binOp & | AND | \| | OR | ^ | XOR
6433 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6435 constant digits [[ radixOverride ]]
6437 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6475 => expr expr cmpOp e04
6478 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6479 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6481 hexdigit a | b | c | d | e | f
6482 | A | B | C | D | E | F
6488 mulOp * | / | % | MOD | << | SHL | >> | SHR
6492 register specialRegister
6496 segmentRegister CS | DS | ES | FS | GS | SS
6498 specialRegister CR0 | CR2 | CR3 | CR4
6499 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6500 | TR3 | TR4 | TR5 | TR6 | TR7
6502 We simplify the grammar in obvious places (e.g., register parsing is
6503 done by calling parse_register) and eliminate immediate left recursion
6504 to implement a recursive-descent parser.
6508 expr' cmpOp e04 expr'
6559 /* Parsing structure for the intel syntax parser. Used to implement the
6560 semantic actions for the operand grammar. */
6561 struct intel_parser_s
6563 char *op_string; /* The string being parsed. */
6564 int got_a_float; /* Whether the operand is a float. */
6565 int op_modifier; /* Operand modifier. */
6566 int is_mem; /* 1 if operand is memory reference. */
6567 int in_offset; /* >=1 if parsing operand of offset. */
6568 int in_bracket; /* >=1 if parsing operand in brackets. */
6569 const reg_entry *reg; /* Last register reference found. */
6570 char *disp; /* Displacement string being built. */
6571 char *next_operand; /* Resume point when splitting operands. */
6574 static struct intel_parser_s intel_parser;
6576 /* Token structure for parsing intel syntax. */
6579 int code; /* Token code. */
6580 const reg_entry *reg; /* Register entry for register tokens. */
6581 char *str; /* String representation. */
6584 static struct intel_token cur_token, prev_token;
6586 /* Token codes for the intel parser. Since T_SHORT is already used
6587 by COFF, undefine it first to prevent a warning. */
6606 /* Prototypes for intel parser functions. */
6607 static int intel_match_token PARAMS ((int code));
6608 static void intel_get_token PARAMS ((void));
6609 static void intel_putback_token PARAMS ((void));
6610 static int intel_expr PARAMS ((void));
6611 static int intel_e04 PARAMS ((void));
6612 static int intel_e05 PARAMS ((void));
6613 static int intel_e06 PARAMS ((void));
6614 static int intel_e09 PARAMS ((void));
6615 static int intel_bracket_expr PARAMS ((void));
6616 static int intel_e10 PARAMS ((void));
6617 static int intel_e11 PARAMS ((void));
6620 i386_intel_operand (operand_string, got_a_float)
6621 char *operand_string;
6627 p = intel_parser.op_string = xstrdup (operand_string);
6628 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6632 /* Initialize token holders. */
6633 cur_token.code = prev_token.code = T_NIL;
6634 cur_token.reg = prev_token.reg = NULL;
6635 cur_token.str = prev_token.str = NULL;
6637 /* Initialize parser structure. */
6638 intel_parser.got_a_float = got_a_float;
6639 intel_parser.op_modifier = 0;
6640 intel_parser.is_mem = 0;
6641 intel_parser.in_offset = 0;
6642 intel_parser.in_bracket = 0;
6643 intel_parser.reg = NULL;
6644 intel_parser.disp[0] = '\0';
6645 intel_parser.next_operand = NULL;
6647 /* Read the first token and start the parser. */
6649 ret = intel_expr ();
6654 if (cur_token.code != T_NIL)
6656 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6657 current_templates->start->name, cur_token.str);
6660 /* If we found a memory reference, hand it over to i386_displacement
6661 to fill in the rest of the operand fields. */
6662 else if (intel_parser.is_mem)
6664 if ((i.mem_operands == 1
6665 && (current_templates->start->opcode_modifier & IsString) == 0)
6666 || i.mem_operands == 2)
6668 as_bad (_("too many memory references for '%s'"),
6669 current_templates->start->name);
6674 char *s = intel_parser.disp;
6677 if (!quiet_warnings && intel_parser.is_mem < 0)
6678 /* See the comments in intel_bracket_expr. */
6679 as_warn (_("Treating `%s' as memory reference"), operand_string);
6681 /* Add the displacement expression. */
6683 ret = i386_displacement (s, s + strlen (s));
6686 /* Swap base and index in 16-bit memory operands like
6687 [si+bx]. Since i386_index_check is also used in AT&T
6688 mode we have to do that here. */
6691 && (i.base_reg->reg_type & Reg16)
6692 && (i.index_reg->reg_type & Reg16)
6693 && i.base_reg->reg_num >= 6
6694 && i.index_reg->reg_num < 6)
6696 const reg_entry *base = i.index_reg;
6698 i.index_reg = i.base_reg;
6701 ret = i386_index_check (operand_string);
6706 /* Constant and OFFSET expressions are handled by i386_immediate. */
6707 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6708 || intel_parser.reg == NULL)
6709 ret = i386_immediate (intel_parser.disp);
6711 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6713 if (!ret || !intel_parser.next_operand)
6715 intel_parser.op_string = intel_parser.next_operand;
6716 this_operand = i.operands++;
6720 free (intel_parser.disp);
6725 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6729 expr' cmpOp e04 expr'
6734 /* XXX Implement the comparison operators. */
6735 return intel_e04 ();
6752 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6753 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6755 if (cur_token.code == '+')
6757 else if (cur_token.code == '-')
6758 nregs = NUM_ADDRESS_REGS;
6762 strcat (intel_parser.disp, cur_token.str);
6763 intel_match_token (cur_token.code);
6774 int nregs = ~NUM_ADDRESS_REGS;
6781 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
6785 str[0] = cur_token.code;
6787 strcat (intel_parser.disp, str);
6792 intel_match_token (cur_token.code);
6797 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6798 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6809 int nregs = ~NUM_ADDRESS_REGS;
6816 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
6820 str[0] = cur_token.code;
6822 strcat (intel_parser.disp, str);
6824 else if (cur_token.code == T_SHL)
6825 strcat (intel_parser.disp, "<<");
6826 else if (cur_token.code == T_SHR)
6827 strcat (intel_parser.disp, ">>");
6831 intel_match_token (cur_token.code);
6836 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6837 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6855 int nregs = ~NUM_ADDRESS_REGS;
6860 /* Don't consume constants here. */
6861 if (cur_token.code == '+' || cur_token.code == '-')
6863 /* Need to look one token ahead - if the next token
6864 is a constant, the current token is its sign. */
6867 intel_match_token (cur_token.code);
6868 next_code = cur_token.code;
6869 intel_putback_token ();
6870 if (next_code == T_CONST)
6874 /* e09 OFFSET e09 */
6875 if (cur_token.code == T_OFFSET)
6878 ++intel_parser.in_offset;
6882 else if (cur_token.code == T_SHORT)
6883 intel_parser.op_modifier |= 1 << T_SHORT;
6886 else if (cur_token.code == '+')
6887 strcat (intel_parser.disp, "+");
6892 else if (cur_token.code == '-' || cur_token.code == '~')
6898 str[0] = cur_token.code;
6900 strcat (intel_parser.disp, str);
6907 intel_match_token (cur_token.code);
6915 /* e09' PTR e10 e09' */
6916 if (cur_token.code == T_PTR)
6920 if (prev_token.code == T_BYTE)
6921 suffix = BYTE_MNEM_SUFFIX;
6923 else if (prev_token.code == T_WORD)
6925 if (current_templates->start->name[0] == 'l'
6926 && current_templates->start->name[2] == 's'
6927 && current_templates->start->name[3] == 0)
6928 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6929 else if (intel_parser.got_a_float == 2) /* "fi..." */
6930 suffix = SHORT_MNEM_SUFFIX;
6932 suffix = WORD_MNEM_SUFFIX;
6935 else if (prev_token.code == T_DWORD)
6937 if (current_templates->start->name[0] == 'l'
6938 && current_templates->start->name[2] == 's'
6939 && current_templates->start->name[3] == 0)
6940 suffix = WORD_MNEM_SUFFIX;
6941 else if (flag_code == CODE_16BIT
6942 && (current_templates->start->opcode_modifier
6943 & (Jump | JumpDword)))
6944 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6945 else if (intel_parser.got_a_float == 1) /* "f..." */
6946 suffix = SHORT_MNEM_SUFFIX;
6948 suffix = LONG_MNEM_SUFFIX;
6951 else if (prev_token.code == T_FWORD)
6953 if (current_templates->start->name[0] == 'l'
6954 && current_templates->start->name[2] == 's'
6955 && current_templates->start->name[3] == 0)
6956 suffix = LONG_MNEM_SUFFIX;
6957 else if (!intel_parser.got_a_float)
6959 if (flag_code == CODE_16BIT)
6960 add_prefix (DATA_PREFIX_OPCODE);
6961 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6964 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6967 else if (prev_token.code == T_QWORD)
6969 if (intel_parser.got_a_float == 1) /* "f..." */
6970 suffix = LONG_MNEM_SUFFIX;
6972 suffix = QWORD_MNEM_SUFFIX;
6975 else if (prev_token.code == T_TBYTE)
6977 if (intel_parser.got_a_float == 1)
6978 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6980 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6983 else if (prev_token.code == T_XMMWORD)
6985 /* XXX ignored for now, but accepted since gcc uses it */
6991 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6995 /* Operands for jump/call using 'ptr' notation denote absolute
6997 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6998 i.types[this_operand] |= JumpAbsolute;
7000 if (current_templates->start->base_opcode == 0x8d /* lea */)
7004 else if (i.suffix != suffix)
7006 as_bad (_("Conflicting operand modifiers"));
7012 /* e09' : e10 e09' */
7013 else if (cur_token.code == ':')
7015 if (prev_token.code != T_REG)
7017 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7018 segment/group identifier (which we don't have), using comma
7019 as the operand separator there is even less consistent, since
7020 there all branches only have a single operand. */
7021 if (this_operand != 0
7022 || intel_parser.in_offset
7023 || intel_parser.in_bracket
7024 || (!(current_templates->start->opcode_modifier
7025 & (Jump|JumpDword|JumpInterSegment))
7026 && !(current_templates->start->operand_types[0]
7028 return intel_match_token (T_NIL);
7029 /* Remember the start of the 2nd operand and terminate 1st
7031 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7032 another expression), but it gets at least the simplest case
7033 (a plain number or symbol on the left side) right. */
7034 intel_parser.next_operand = intel_parser.op_string;
7035 *--intel_parser.op_string = '\0';
7036 return intel_match_token (':');
7044 intel_match_token (cur_token.code);
7050 --intel_parser.in_offset;
7053 if (NUM_ADDRESS_REGS > nregs)
7055 as_bad (_("Invalid operand to `OFFSET'"));
7058 intel_parser.op_modifier |= 1 << T_OFFSET;
7061 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7062 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7067 intel_bracket_expr ()
7069 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7070 const char *start = intel_parser.op_string;
7073 if (i.op[this_operand].regs)
7074 return intel_match_token (T_NIL);
7076 intel_match_token ('[');
7078 /* Mark as a memory operand only if it's not already known to be an
7079 offset expression. If it's an offset expression, we need to keep
7081 if (!intel_parser.in_offset)
7083 ++intel_parser.in_bracket;
7085 /* Operands for jump/call inside brackets denote absolute addresses. */
7086 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7087 i.types[this_operand] |= JumpAbsolute;
7089 /* Unfortunately gas always diverged from MASM in a respect that can't
7090 be easily fixed without risking to break code sequences likely to be
7091 encountered (the testsuite even check for this): MASM doesn't consider
7092 an expression inside brackets unconditionally as a memory reference.
7093 When that is e.g. a constant, an offset expression, or the sum of the
7094 two, this is still taken as a constant load. gas, however, always
7095 treated these as memory references. As a compromise, we'll try to make
7096 offset expressions inside brackets work the MASM way (since that's
7097 less likely to be found in real world code), but make constants alone
7098 continue to work the traditional gas way. In either case, issue a
7100 intel_parser.op_modifier &= ~was_offset;
7103 strcat (intel_parser.disp, "[");
7105 /* Add a '+' to the displacement string if necessary. */
7106 if (*intel_parser.disp != '\0'
7107 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7108 strcat (intel_parser.disp, "+");
7111 && (len = intel_parser.op_string - start - 1,
7112 intel_match_token (']')))
7114 /* Preserve brackets when the operand is an offset expression. */
7115 if (intel_parser.in_offset)
7116 strcat (intel_parser.disp, "]");
7119 --intel_parser.in_bracket;
7120 if (i.base_reg || i.index_reg)
7121 intel_parser.is_mem = 1;
7122 if (!intel_parser.is_mem)
7124 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7125 /* Defer the warning until all of the operand was parsed. */
7126 intel_parser.is_mem = -1;
7127 else if (!quiet_warnings)
7128 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
7131 intel_parser.op_modifier |= was_offset;
7148 while (cur_token.code == '[')
7150 if (!intel_bracket_expr ())
7175 switch (cur_token.code)
7179 intel_match_token ('(');
7180 strcat (intel_parser.disp, "(");
7182 if (intel_expr () && intel_match_token (')'))
7184 strcat (intel_parser.disp, ")");
7191 return intel_bracket_expr ();
7196 strcat (intel_parser.disp, cur_token.str);
7197 intel_match_token (cur_token.code);
7199 /* Mark as a memory operand only if it's not already known to be an
7200 offset expression. */
7201 if (!intel_parser.in_offset)
7202 intel_parser.is_mem = 1;
7209 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7211 intel_match_token (T_REG);
7213 /* Check for segment change. */
7214 if (cur_token.code == ':')
7216 if (!(reg->reg_type & (SReg2 | SReg3)))
7218 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
7221 else if (i.seg[i.mem_operands])
7222 as_warn (_("Extra segment override ignored"));
7225 if (!intel_parser.in_offset)
7226 intel_parser.is_mem = 1;
7227 switch (reg->reg_num)
7230 i.seg[i.mem_operands] = &es;
7233 i.seg[i.mem_operands] = &cs;
7236 i.seg[i.mem_operands] = &ss;
7239 i.seg[i.mem_operands] = &ds;
7242 i.seg[i.mem_operands] = &fs;
7245 i.seg[i.mem_operands] = &gs;
7251 /* Not a segment register. Check for register scaling. */
7252 else if (cur_token.code == '*')
7254 if (!intel_parser.in_bracket)
7256 as_bad (_("Register scaling only allowed in memory operands"));
7260 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7261 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7262 else if (i.index_reg)
7263 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7265 /* What follows must be a valid scale. */
7266 intel_match_token ('*');
7268 i.types[this_operand] |= BaseIndex;
7270 /* Set the scale after setting the register (otherwise,
7271 i386_scale will complain) */
7272 if (cur_token.code == '+' || cur_token.code == '-')
7274 char *str, sign = cur_token.code;
7275 intel_match_token (cur_token.code);
7276 if (cur_token.code != T_CONST)
7278 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7282 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7283 strcpy (str + 1, cur_token.str);
7285 if (!i386_scale (str))
7289 else if (!i386_scale (cur_token.str))
7291 intel_match_token (cur_token.code);
7294 /* No scaling. If this is a memory operand, the register is either a
7295 base register (first occurrence) or an index register (second
7297 else if (intel_parser.in_bracket)
7302 else if (!i.index_reg)
7306 as_bad (_("Too many register references in memory operand"));
7310 i.types[this_operand] |= BaseIndex;
7313 /* It's neither base nor index. */
7314 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7316 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7317 i.op[this_operand].regs = reg;
7322 as_bad (_("Invalid use of register"));
7326 /* Since registers are not part of the displacement string (except
7327 when we're parsing offset operands), we may need to remove any
7328 preceding '+' from the displacement string. */
7329 if (*intel_parser.disp != '\0'
7330 && !intel_parser.in_offset)
7332 char *s = intel_parser.disp;
7333 s += strlen (s) - 1;
7356 intel_match_token (cur_token.code);
7358 if (cur_token.code == T_PTR)
7361 /* It must have been an identifier. */
7362 intel_putback_token ();
7363 cur_token.code = T_ID;
7369 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7373 /* The identifier represents a memory reference only if it's not
7374 preceded by an offset modifier and if it's not an equate. */
7375 symbolP = symbol_find(cur_token.str);
7376 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7377 intel_parser.is_mem = 1;
7385 char *save_str, sign = 0;
7387 /* Allow constants that start with `+' or `-'. */
7388 if (cur_token.code == '-' || cur_token.code == '+')
7390 sign = cur_token.code;
7391 intel_match_token (cur_token.code);
7392 if (cur_token.code != T_CONST)
7394 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7400 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7401 strcpy (save_str + !!sign, cur_token.str);
7405 /* Get the next token to check for register scaling. */
7406 intel_match_token (cur_token.code);
7408 /* Check if this constant is a scaling factor for an index register. */
7409 if (cur_token.code == '*')
7411 if (intel_match_token ('*') && cur_token.code == T_REG)
7413 const reg_entry *reg = cur_token.reg;
7415 if (!intel_parser.in_bracket)
7417 as_bad (_("Register scaling only allowed in memory operands"));
7421 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
7422 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7423 else if (i.index_reg)
7424 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7426 /* The constant is followed by `* reg', so it must be
7429 i.types[this_operand] |= BaseIndex;
7431 /* Set the scale after setting the register (otherwise,
7432 i386_scale will complain) */
7433 if (!i386_scale (save_str))
7435 intel_match_token (T_REG);
7437 /* Since registers are not part of the displacement
7438 string, we may need to remove any preceding '+' from
7439 the displacement string. */
7440 if (*intel_parser.disp != '\0')
7442 char *s = intel_parser.disp;
7443 s += strlen (s) - 1;
7453 /* The constant was not used for register scaling. Since we have
7454 already consumed the token following `*' we now need to put it
7455 back in the stream. */
7456 intel_putback_token ();
7459 /* Add the constant to the displacement string. */
7460 strcat (intel_parser.disp, save_str);
7467 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7471 /* Match the given token against cur_token. If they match, read the next
7472 token from the operand string. */
7474 intel_match_token (code)
7477 if (cur_token.code == code)
7484 as_bad (_("Unexpected token `%s'"), cur_token.str);
7489 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7494 const reg_entry *reg;
7495 struct intel_token new_token;
7497 new_token.code = T_NIL;
7498 new_token.reg = NULL;
7499 new_token.str = NULL;
7501 /* Free the memory allocated to the previous token and move
7502 cur_token to prev_token. */
7504 free (prev_token.str);
7506 prev_token = cur_token;
7508 /* Skip whitespace. */
7509 while (is_space_char (*intel_parser.op_string))
7510 intel_parser.op_string++;
7512 /* Return an empty token if we find nothing else on the line. */
7513 if (*intel_parser.op_string == '\0')
7515 cur_token = new_token;
7519 /* The new token cannot be larger than the remainder of the operand
7521 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7522 new_token.str[0] = '\0';
7524 if (strchr ("0123456789", *intel_parser.op_string))
7526 char *p = new_token.str;
7527 char *q = intel_parser.op_string;
7528 new_token.code = T_CONST;
7530 /* Allow any kind of identifier char to encompass floating point and
7531 hexadecimal numbers. */
7532 while (is_identifier_char (*q))
7536 /* Recognize special symbol names [0-9][bf]. */
7537 if (strlen (intel_parser.op_string) == 2
7538 && (intel_parser.op_string[1] == 'b'
7539 || intel_parser.op_string[1] == 'f'))
7540 new_token.code = T_ID;
7543 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7545 size_t len = end_op - intel_parser.op_string;
7547 new_token.code = T_REG;
7548 new_token.reg = reg;
7550 memcpy (new_token.str, intel_parser.op_string, len);
7551 new_token.str[len] = '\0';
7554 else if (is_identifier_char (*intel_parser.op_string))
7556 char *p = new_token.str;
7557 char *q = intel_parser.op_string;
7559 /* A '.' or '$' followed by an identifier char is an identifier.
7560 Otherwise, it's operator '.' followed by an expression. */
7561 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7563 new_token.code = '.';
7564 new_token.str[0] = '.';
7565 new_token.str[1] = '\0';
7569 while (is_identifier_char (*q) || *q == '@')
7573 if (strcasecmp (new_token.str, "NOT") == 0)
7574 new_token.code = '~';
7576 else if (strcasecmp (new_token.str, "MOD") == 0)
7577 new_token.code = '%';
7579 else if (strcasecmp (new_token.str, "AND") == 0)
7580 new_token.code = '&';
7582 else if (strcasecmp (new_token.str, "OR") == 0)
7583 new_token.code = '|';
7585 else if (strcasecmp (new_token.str, "XOR") == 0)
7586 new_token.code = '^';
7588 else if (strcasecmp (new_token.str, "SHL") == 0)
7589 new_token.code = T_SHL;
7591 else if (strcasecmp (new_token.str, "SHR") == 0)
7592 new_token.code = T_SHR;
7594 else if (strcasecmp (new_token.str, "BYTE") == 0)
7595 new_token.code = T_BYTE;
7597 else if (strcasecmp (new_token.str, "WORD") == 0)
7598 new_token.code = T_WORD;
7600 else if (strcasecmp (new_token.str, "DWORD") == 0)
7601 new_token.code = T_DWORD;
7603 else if (strcasecmp (new_token.str, "FWORD") == 0)
7604 new_token.code = T_FWORD;
7606 else if (strcasecmp (new_token.str, "QWORD") == 0)
7607 new_token.code = T_QWORD;
7609 else if (strcasecmp (new_token.str, "TBYTE") == 0
7610 /* XXX remove (gcc still uses it) */
7611 || strcasecmp (new_token.str, "XWORD") == 0)
7612 new_token.code = T_TBYTE;
7614 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7615 || strcasecmp (new_token.str, "OWORD") == 0)
7616 new_token.code = T_XMMWORD;
7618 else if (strcasecmp (new_token.str, "PTR") == 0)
7619 new_token.code = T_PTR;
7621 else if (strcasecmp (new_token.str, "SHORT") == 0)
7622 new_token.code = T_SHORT;
7624 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7626 new_token.code = T_OFFSET;
7628 /* ??? This is not mentioned in the MASM grammar but gcc
7629 makes use of it with -mintel-syntax. OFFSET may be
7630 followed by FLAT: */
7631 if (strncasecmp (q, " FLAT:", 6) == 0)
7632 strcat (new_token.str, " FLAT:");
7635 /* ??? This is not mentioned in the MASM grammar. */
7636 else if (strcasecmp (new_token.str, "FLAT") == 0)
7638 new_token.code = T_OFFSET;
7640 strcat (new_token.str, ":");
7642 as_bad (_("`:' expected"));
7646 new_token.code = T_ID;
7650 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7652 new_token.code = *intel_parser.op_string;
7653 new_token.str[0] = *intel_parser.op_string;
7654 new_token.str[1] = '\0';
7657 else if (strchr ("<>", *intel_parser.op_string)
7658 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7660 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7661 new_token.str[0] = *intel_parser.op_string;
7662 new_token.str[1] = *intel_parser.op_string;
7663 new_token.str[2] = '\0';
7667 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7669 intel_parser.op_string += strlen (new_token.str);
7670 cur_token = new_token;
7673 /* Put cur_token back into the token stream and make cur_token point to
7676 intel_putback_token ()
7678 if (cur_token.code != T_NIL)
7680 intel_parser.op_string -= strlen (cur_token.str);
7681 free (cur_token.str);
7683 cur_token = prev_token;
7685 /* Forget prev_token. */
7686 prev_token.code = T_NIL;
7687 prev_token.reg = NULL;
7688 prev_token.str = NULL;
7692 tc_x86_regname_to_dw2regnum (char *regname)
7694 unsigned int regnum;
7695 unsigned int regnames_count;
7696 static const char *const regnames_32[] =
7698 "eax", "ecx", "edx", "ebx",
7699 "esp", "ebp", "esi", "edi",
7700 "eip", "eflags", NULL,
7701 "st0", "st1", "st2", "st3",
7702 "st4", "st5", "st6", "st7",
7704 "xmm0", "xmm1", "xmm2", "xmm3",
7705 "xmm4", "xmm5", "xmm6", "xmm7",
7706 "mm0", "mm1", "mm2", "mm3",
7707 "mm4", "mm5", "mm6", "mm7",
7708 "fcw", "fsw", "mxcsr",
7709 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7712 static const char *const regnames_64[] =
7714 "rax", "rdx", "rcx", "rbx",
7715 "rsi", "rdi", "rbp", "rsp",
7716 "r8", "r9", "r10", "r11",
7717 "r12", "r13", "r14", "r15",
7719 "xmm0", "xmm1", "xmm2", "xmm3",
7720 "xmm4", "xmm5", "xmm6", "xmm7",
7721 "xmm8", "xmm9", "xmm10", "xmm11",
7722 "xmm12", "xmm13", "xmm14", "xmm15",
7723 "st0", "st1", "st2", "st3",
7724 "st4", "st5", "st6", "st7",
7725 "mm0", "mm1", "mm2", "mm3",
7726 "mm4", "mm5", "mm6", "mm7",
7728 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7729 "fs.base", "gs.base", NULL, NULL,
7731 "mxcsr", "fcw", "fsw"
7733 const char *const *regnames;
7735 if (flag_code == CODE_64BIT)
7737 regnames = regnames_64;
7738 regnames_count = ARRAY_SIZE (regnames_64);
7742 regnames = regnames_32;
7743 regnames_count = ARRAY_SIZE (regnames_32);
7746 for (regnum = 0; regnum < regnames_count; regnum++)
7747 if (regnames[regnum] != NULL
7748 && strcmp (regname, regnames[regnum]) == 0)
7755 tc_x86_frame_initial_instructions (void)
7757 static unsigned int sp_regno;
7760 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7763 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7764 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7768 i386_elf_section_type (const char *str, size_t len)
7770 if (flag_code == CODE_64BIT
7771 && len == sizeof ("unwind") - 1
7772 && strncmp (str, "unwind", 6) == 0)
7773 return SHT_X86_64_UNWIND;
7780 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7784 expr.X_op = O_secrel;
7785 expr.X_add_symbol = symbol;
7786 expr.X_add_number = 0;
7787 emit_expr (&expr, size);
7791 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7792 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7795 x86_64_section_letter (int letter, char **ptr_msg)
7797 if (flag_code == CODE_64BIT)
7800 return SHF_X86_64_LARGE;
7802 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7805 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7810 x86_64_section_word (char *str, size_t len)
7812 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7813 return SHF_X86_64_LARGE;
7819 handle_large_common (int small ATTRIBUTE_UNUSED)
7821 if (flag_code != CODE_64BIT)
7823 s_comm_internal (0, elf_common_parse);
7824 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7828 static segT lbss_section;
7829 asection *saved_com_section_ptr = elf_com_section_ptr;
7830 asection *saved_bss_section = bss_section;
7832 if (lbss_section == NULL)
7834 flagword applicable;
7836 subsegT subseg = now_subseg;
7838 /* The .lbss section is for local .largecomm symbols. */
7839 lbss_section = subseg_new (".lbss", 0);
7840 applicable = bfd_applicable_section_flags (stdoutput);
7841 bfd_set_section_flags (stdoutput, lbss_section,
7842 applicable & SEC_ALLOC);
7843 seg_info (lbss_section)->bss = 1;
7845 subseg_set (seg, subseg);
7848 elf_com_section_ptr = &_bfd_elf_large_com_section;
7849 bss_section = lbss_section;
7851 s_comm_internal (0, elf_common_parse);
7853 elf_com_section_ptr = saved_com_section_ptr;
7854 bss_section = saved_bss_section;
7857 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */