1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
31 #include "safe-ctype.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
55 #define DEFAULT_ARCH "i386"
60 #define INLINE __inline__
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
81 static void pe_directive_secrel PARAMS ((int));
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
112 static void s_bss PARAMS ((int));
115 static const char *default_arch = DEFAULT_ARCH;
117 /* 'md_assemble ()' gathers together information and puts it into a
124 const reg_entry *regs;
129 /* TM holds the template for the insn were currently assembling. */
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
148 /* Displacement expression, immediate expression, or register for each
150 union i386_op op[MAX_OPERANDS];
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
182 typedef struct _i386_insn i386_insn;
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char extra_symbol_chars[] = "*%-(["
195 #if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201 /* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203 const char comment_chars[] = "#/";
204 #define PREFIX_SEPARATOR '\\'
206 /* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214 const char line_comment_chars[] = "#";
217 /* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219 const char comment_chars[] = "#";
220 #define PREFIX_SEPARATOR '/'
222 const char line_comment_chars[] = "/#";
225 const char line_separator_chars[] = ";";
227 /* Chars that can be used to separate mant from exp in floating point
229 const char EXP_CHARS[] = "eE";
231 /* Chars that mean this number is a floating point constant
234 const char FLT_CHARS[] = "fFdDxX";
236 /* Tables for lexical analysis. */
237 static char mnemonic_chars[256];
238 static char register_chars[256];
239 static char operand_chars[256];
240 static char identifier_chars[256];
241 static char digit_chars[256];
243 /* Lexical macros. */
244 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245 #define is_operand_char(x) (operand_chars[(unsigned char) x])
246 #define is_register_char(x) (register_chars[(unsigned char) x])
247 #define is_space_char(x) ((x) == ' ')
248 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249 #define is_digit_char(x) (digit_chars[(unsigned char) x])
251 /* All non-digit non-letter characters that may occur in an operand. */
252 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
254 /* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258 static char save_stack[32];
259 static char *save_stack_p;
260 #define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262 #define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
265 /* The instruction we're assembling. */
268 /* Possible templates for current insn. */
269 static const templates *current_templates;
271 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272 static expressionS disp_expressions[2], im_expressions[2];
274 /* Current operand we are working on. */
275 static int this_operand;
277 /* We support four different modes. FLAG_CODE variable is used to distinguish
284 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
286 static enum flag_code flag_code;
287 static int use_rela_relocations = 0;
289 /* The names used to print error messages. */
290 static const char *flag_code_names[] =
297 /* 1 for intel syntax,
299 static int intel_syntax = 0;
301 /* 1 if register prefix % not required. */
302 static int allow_naked_reg = 0;
304 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307 static char stackop_size = '\0';
309 /* Non-zero to optimize code alignment. */
310 int optimize_align_code = 1;
312 /* Non-zero to quieten some warnings. */
313 static int quiet_warnings = 0;
316 static const char *cpu_arch_name = NULL;
318 /* CPU feature flags. */
319 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
321 /* If set, conditional jumps are not automatically promoted to handle
322 larger than a byte offset. */
323 static unsigned int no_cond_jump_promotion = 0;
325 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
328 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
329 unsigned int x86_dwarf2_return_column;
331 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
332 int x86_cie_data_alignment;
334 /* Interface to relax_segment.
335 There are 3 major relax states for 386 jump insns because the
336 different types of jumps add different sizes to frags when we're
337 figuring out what sort of jump to choose to reach a given label. */
340 #define UNCOND_JUMP 0
342 #define COND_JUMP86 2
347 #define SMALL16 (SMALL | CODE16)
349 #define BIG16 (BIG | CODE16)
353 #define INLINE __inline__
359 #define ENCODE_RELAX_STATE(type, size) \
360 ((relax_substateT) (((type) << 2) | (size)))
361 #define TYPE_FROM_RELAX_STATE(s) \
363 #define DISP_SIZE_FROM_RELAX_STATE(s) \
364 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
366 /* This table is used by relax_frag to promote short jumps to long
367 ones where necessary. SMALL (short) jumps may be promoted to BIG
368 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
369 don't allow a short jump in a 32 bit code segment to be promoted to
370 a 16 bit offset jump because it's slower (requires data size
371 prefix), and doesn't work, unless the destination is in the bottom
372 64k of the code segment (The top 16 bits of eip are zeroed). */
374 const relax_typeS md_relax_table[] =
377 1) most positive reach of this state,
378 2) most negative reach of this state,
379 3) how many bytes this mode will have in the variable part of the frag
380 4) which index into the table to try if we can't fit into this one. */
382 /* UNCOND_JUMP states. */
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
385 /* dword jmp adds 4 bytes to frag:
386 0 extra opcode bytes, 4 displacement bytes. */
388 /* word jmp adds 2 byte2 to frag:
389 0 extra opcode bytes, 2 displacement bytes. */
392 /* COND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
395 /* dword conditionals adds 5 bytes to frag:
396 1 extra opcode byte, 4 displacement bytes. */
398 /* word conditionals add 3 bytes to frag:
399 1 extra opcode byte, 2 displacement bytes. */
402 /* COND_JUMP86 states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
408 /* word conditionals add 4 bytes to frag:
409 1 displacement byte and a 3 byte long branch insn. */
413 static const arch_entry cpu_arch[] = {
415 {"i186", Cpu086|Cpu186 },
416 {"i286", Cpu086|Cpu186|Cpu286 },
417 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
418 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
419 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
420 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
421 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
422 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
423 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
424 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
425 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
426 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
430 const pseudo_typeS md_pseudo_table[] =
432 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
433 {"align", s_align_bytes, 0},
435 {"align", s_align_ptwo, 0},
437 {"arch", set_cpu_arch, 0},
441 {"ffloat", float_cons, 'f'},
442 {"dfloat", float_cons, 'd'},
443 {"tfloat", float_cons, 'x'},
445 {"noopt", s_ignore, 0},
446 {"optim", s_ignore, 0},
447 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
448 {"code16", set_code_flag, CODE_16BIT},
449 {"code32", set_code_flag, CODE_32BIT},
450 {"code64", set_code_flag, CODE_64BIT},
451 {"intel_syntax", set_intel_syntax, 1},
452 {"att_syntax", set_intel_syntax, 0},
453 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
454 {"loc", dwarf2_directive_loc, 0},
456 {"secrel32", pe_directive_secrel, 0},
461 /* For interface with expression (). */
462 extern char *input_line_pointer;
464 /* Hash table for instruction mnemonic lookup. */
465 static struct hash_control *op_hash;
467 /* Hash table for register lookup. */
468 static struct hash_control *reg_hash;
471 i386_align_code (fragP, count)
475 /* Various efficient no-op patterns for aligning code labels.
476 Note: Don't try to assemble the instructions in the comments.
477 0L and 0w are not legal. */
478 static const char f32_1[] =
480 static const char f32_2[] =
481 {0x89,0xf6}; /* movl %esi,%esi */
482 static const char f32_3[] =
483 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
484 static const char f32_4[] =
485 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
486 static const char f32_5[] =
488 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
489 static const char f32_6[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
491 static const char f32_7[] =
492 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
493 static const char f32_8[] =
495 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
496 static const char f32_9[] =
497 {0x89,0xf6, /* movl %esi,%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_10[] =
500 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
501 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
502 static const char f32_11[] =
503 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_12[] =
506 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
507 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
508 static const char f32_13[] =
509 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
510 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
511 static const char f32_14[] =
512 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
513 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
514 static const char f32_15[] =
515 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
516 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
517 static const char f16_3[] =
518 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
519 static const char f16_4[] =
520 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
521 static const char f16_5[] =
523 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
524 static const char f16_6[] =
525 {0x89,0xf6, /* mov %si,%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char f16_7[] =
528 {0x8d,0x74,0x00, /* lea 0(%si),%si */
529 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
530 static const char f16_8[] =
531 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
532 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
533 static const char *const f32_patt[] = {
534 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
535 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
537 static const char *const f16_patt[] = {
538 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
539 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
542 if (count <= 0 || count > 15)
545 /* The recommended way to pad 64bit code is to use NOPs preceded by
546 maximally four 0x66 prefixes. Balance the size of nops. */
547 if (flag_code == CODE_64BIT)
550 int nnops = (count + 3) / 4;
551 int len = count / nnops;
552 int remains = count - nnops * len;
555 for (i = 0; i < remains; i++)
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
558 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
561 for (; i < nnops; i++)
563 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
564 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
569 if (flag_code == CODE_16BIT)
571 memcpy (fragP->fr_literal + fragP->fr_fix,
572 f16_patt[count - 1], count);
574 /* Adjust jump offset. */
575 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
578 memcpy (fragP->fr_literal + fragP->fr_fix,
579 f32_patt[count - 1], count);
580 fragP->fr_var = count;
583 static INLINE unsigned int
584 mode_from_disp_size (t)
587 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
591 fits_in_signed_byte (num)
594 return (num >= -128) && (num <= 127);
598 fits_in_unsigned_byte (num)
601 return (num & 0xff) == num;
605 fits_in_unsigned_word (num)
608 return (num & 0xffff) == num;
612 fits_in_signed_word (num)
615 return (-32768 <= num) && (num <= 32767);
618 fits_in_signed_long (num)
619 offsetT num ATTRIBUTE_UNUSED;
624 return (!(((offsetT) -1 << 31) & num)
625 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
627 } /* fits_in_signed_long() */
629 fits_in_unsigned_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
635 return (num & (((offsetT) 2 << 31) - 1)) == num;
637 } /* fits_in_unsigned_long() */
640 smallest_imm_type (num)
643 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
645 /* This code is disabled on the 486 because all the Imm1 forms
646 in the opcode table are slower on the i486. They're the
647 versions with the implicitly specified single-position
648 displacement, which has another syntax if you really want to
651 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
653 return (fits_in_signed_byte (num)
654 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_byte (num)
656 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
657 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
658 ? (Imm16 | Imm32 | Imm32S | Imm64)
659 : fits_in_signed_long (num)
660 ? (Imm32 | Imm32S | Imm64)
661 : fits_in_unsigned_long (num)
667 offset_in_range (val, size)
675 case 1: mask = ((addressT) 1 << 8) - 1; break;
676 case 2: mask = ((addressT) 1 << 16) - 1; break;
677 case 4: mask = ((addressT) 2 << 31) - 1; break;
679 case 8: mask = ((addressT) 2 << 63) - 1; break;
684 /* If BFD64, sign extend val. */
685 if (!use_rela_relocations)
686 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
687 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
689 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
691 char buf1[40], buf2[40];
693 sprint_value (buf1, val);
694 sprint_value (buf2, val & mask);
695 as_warn (_("%s shortened to %s"), buf1, buf2);
700 /* Returns 0 if attempting to add a prefix where one from the same
701 class already exists, 1 if non rep/repne added, 2 if rep/repne
710 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
711 && flag_code == CODE_64BIT)
719 case CS_PREFIX_OPCODE:
720 case DS_PREFIX_OPCODE:
721 case ES_PREFIX_OPCODE:
722 case FS_PREFIX_OPCODE:
723 case GS_PREFIX_OPCODE:
724 case SS_PREFIX_OPCODE:
728 case REPNE_PREFIX_OPCODE:
729 case REPE_PREFIX_OPCODE:
732 case LOCK_PREFIX_OPCODE:
740 case ADDR_PREFIX_OPCODE:
744 case DATA_PREFIX_OPCODE:
749 if (i.prefix[q] != 0)
751 as_bad (_("same type of prefix used twice"));
756 i.prefix[q] = prefix;
761 set_code_flag (value)
765 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
766 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
767 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
769 as_bad (_("64bit mode not supported on this CPU."));
771 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
773 as_bad (_("32bit mode not supported on this CPU."));
779 set_16bit_gcc_code_flag (new_code_flag)
782 flag_code = new_code_flag;
783 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
784 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
785 stackop_size = LONG_MNEM_SUFFIX;
789 set_intel_syntax (syntax_flag)
792 /* Find out if register prefixing is specified. */
793 int ask_naked_reg = 0;
796 if (!is_end_of_line[(unsigned char) *input_line_pointer])
798 char *string = input_line_pointer;
799 int e = get_symbol_end ();
801 if (strcmp (string, "prefix") == 0)
803 else if (strcmp (string, "noprefix") == 0)
806 as_bad (_("bad argument to syntax directive."));
807 *input_line_pointer = e;
809 demand_empty_rest_of_line ();
811 intel_syntax = syntax_flag;
813 if (ask_naked_reg == 0)
814 allow_naked_reg = (intel_syntax
815 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
817 allow_naked_reg = (ask_naked_reg < 0);
819 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
820 identifier_chars['$'] = intel_syntax ? '$' : 0;
825 int dummy ATTRIBUTE_UNUSED;
829 if (!is_end_of_line[(unsigned char) *input_line_pointer])
831 char *string = input_line_pointer;
832 int e = get_symbol_end ();
835 for (i = 0; cpu_arch[i].name; i++)
837 if (strcmp (string, cpu_arch[i].name) == 0)
839 cpu_arch_name = cpu_arch[i].name;
840 cpu_arch_flags = (cpu_arch[i].flags
841 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
845 if (!cpu_arch[i].name)
846 as_bad (_("no such architecture: `%s'"), string);
848 *input_line_pointer = e;
851 as_bad (_("missing cpu architecture"));
853 no_cond_jump_promotion = 0;
854 if (*input_line_pointer == ','
855 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
857 char *string = ++input_line_pointer;
858 int e = get_symbol_end ();
860 if (strcmp (string, "nojumps") == 0)
861 no_cond_jump_promotion = 1;
862 else if (strcmp (string, "jumps") == 0)
865 as_bad (_("no such architecture modifier: `%s'"), string);
867 *input_line_pointer = e;
870 demand_empty_rest_of_line ();
876 if (!strcmp (default_arch, "x86_64"))
877 return bfd_mach_x86_64;
878 else if (!strcmp (default_arch, "i386"))
879 return bfd_mach_i386_i386;
881 as_fatal (_("Unknown architecture"));
887 const char *hash_err;
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
893 const template *optab;
894 templates *core_optab;
896 /* Setup for loop. */
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
919 if (optab->name == NULL)
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
930 const reg_entry *regtab;
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
949 for (c = 0; c < 256; c++)
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
958 else if (ISLOWER (c))
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
964 else if (ISUPPER (c))
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
981 identifier_chars['@'] = '@';
984 identifier_chars['?'] = '?';
985 operand_chars['?'] = '?';
987 digit_chars['-'] = '-';
988 identifier_chars['_'] = '_';
989 identifier_chars['.'] = '.';
991 for (p = operand_special_chars; *p != '\0'; p++)
992 operand_chars[(unsigned char) *p] = *p;
995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
996 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
998 record_alignment (text_section, 2);
999 record_alignment (data_section, 2);
1000 record_alignment (bss_section, 2);
1004 if (flag_code == CODE_64BIT)
1006 x86_dwarf2_return_column = 16;
1007 x86_cie_data_alignment = -8;
1011 x86_dwarf2_return_column = 8;
1012 x86_cie_data_alignment = -4;
1017 i386_print_statistics (file)
1020 hash_print_statistics (file, "i386 opcode", op_hash);
1021 hash_print_statistics (file, "i386 register", reg_hash);
1026 /* Debugging routines for md_assemble. */
1027 static void pi PARAMS ((char *, i386_insn *));
1028 static void pte PARAMS ((template *));
1029 static void pt PARAMS ((unsigned int));
1030 static void pe PARAMS ((expressionS *));
1031 static void ps PARAMS ((symbolS *));
1040 fprintf (stdout, "%s: template ", line);
1042 fprintf (stdout, " address: base %s index %s scale %x\n",
1043 x->base_reg ? x->base_reg->reg_name : "none",
1044 x->index_reg ? x->index_reg->reg_name : "none",
1045 x->log2_scale_factor);
1046 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1047 x->rm.mode, x->rm.reg, x->rm.regmem);
1048 fprintf (stdout, " sib: base %x index %x scale %x\n",
1049 x->sib.base, x->sib.index, x->sib.scale);
1050 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1051 (x->rex & REX_MODE64) != 0,
1052 (x->rex & REX_EXTX) != 0,
1053 (x->rex & REX_EXTY) != 0,
1054 (x->rex & REX_EXTZ) != 0);
1055 for (i = 0; i < x->operands; i++)
1057 fprintf (stdout, " #%d: ", i + 1);
1059 fprintf (stdout, "\n");
1061 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1062 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1063 if (x->types[i] & Imm)
1065 if (x->types[i] & Disp)
1066 pe (x->op[i].disps);
1075 fprintf (stdout, " %d operands ", t->operands);
1076 fprintf (stdout, "opcode %x ", t->base_opcode);
1077 if (t->extension_opcode != None)
1078 fprintf (stdout, "ext %x ", t->extension_opcode);
1079 if (t->opcode_modifier & D)
1080 fprintf (stdout, "D");
1081 if (t->opcode_modifier & W)
1082 fprintf (stdout, "W");
1083 fprintf (stdout, "\n");
1084 for (i = 0; i < t->operands; i++)
1086 fprintf (stdout, " #%d type ", i + 1);
1087 pt (t->operand_types[i]);
1088 fprintf (stdout, "\n");
1096 fprintf (stdout, " operation %d\n", e->X_op);
1097 fprintf (stdout, " add_number %ld (%lx)\n",
1098 (long) e->X_add_number, (long) e->X_add_number);
1099 if (e->X_add_symbol)
1101 fprintf (stdout, " add_symbol ");
1102 ps (e->X_add_symbol);
1103 fprintf (stdout, "\n");
1107 fprintf (stdout, " op_symbol ");
1108 ps (e->X_op_symbol);
1109 fprintf (stdout, "\n");
1117 fprintf (stdout, "%s type %s%s",
1119 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1120 segment_name (S_GET_SEGMENT (s)));
1129 static const type_names[] =
1142 { BaseIndex, "BaseIndex" },
1146 { Disp32S, "d32s" },
1148 { InOutPortReg, "InOutPortReg" },
1149 { ShiftCount, "ShiftCount" },
1150 { Control, "control reg" },
1151 { Test, "test reg" },
1152 { Debug, "debug reg" },
1153 { FloatReg, "FReg" },
1154 { FloatAcc, "FAcc" },
1158 { JumpAbsolute, "Jump Absolute" },
1169 const struct type_name *ty;
1171 for (ty = type_names; ty->mask; ty++)
1173 fprintf (stdout, "%s, ", ty->tname);
1177 #endif /* DEBUG386 */
1179 static bfd_reloc_code_real_type reloc
1180 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1182 static bfd_reloc_code_real_type
1183 reloc (size, pcrel, sign, other)
1187 bfd_reloc_code_real_type other;
1189 if (other != NO_RELOC)
1195 as_bad (_("There are no unsigned pc-relative relocations"));
1198 case 1: return BFD_RELOC_8_PCREL;
1199 case 2: return BFD_RELOC_16_PCREL;
1200 case 4: return BFD_RELOC_32_PCREL;
1202 as_bad (_("can not do %d byte pc-relative relocation"), size);
1209 case 4: return BFD_RELOC_X86_64_32S;
1214 case 1: return BFD_RELOC_8;
1215 case 2: return BFD_RELOC_16;
1216 case 4: return BFD_RELOC_32;
1217 case 8: return BFD_RELOC_64;
1219 as_bad (_("can not do %s %d byte relocation"),
1220 sign ? "signed" : "unsigned", size);
1224 return BFD_RELOC_NONE;
1227 /* Here we decide which fixups can be adjusted to make them relative to
1228 the beginning of the section instead of the symbol. Basically we need
1229 to make sure that the dynamic relocations are done correctly, so in
1230 some cases we force the original symbol to be used. */
1233 tc_i386_fix_adjustable (fixP)
1234 fixS *fixP ATTRIBUTE_UNUSED;
1236 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1237 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1240 /* Don't adjust pc-relative references to merge sections in 64-bit
1242 if (use_rela_relocations
1243 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1247 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1248 and changed later by validate_fix. */
1249 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1250 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1253 /* adjust_reloc_syms doesn't know about the GOT. */
1254 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1255 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1256 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1261 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1262 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1263 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1267 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1269 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1270 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1271 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1272 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1280 static int intel_float_operand PARAMS ((const char *mnemonic));
1283 intel_float_operand (mnemonic)
1284 const char *mnemonic;
1286 /* Note that the value returned is meaningful only for opcodes with (memory)
1287 operands, hence the code here is free to improperly handle opcodes that
1288 have no operands (for better performance and smaller code). */
1290 if (mnemonic[0] != 'f')
1291 return 0; /* non-math */
1293 switch (mnemonic[1])
1295 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1296 the fs segment override prefix not currently handled because no
1297 call path can make opcodes without operands get here */
1299 return 2 /* integer op */;
1301 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1302 return 3; /* fldcw/fldenv */
1305 if (mnemonic[2] != 'o' /* fnop */)
1306 return 3; /* non-waiting control op */
1309 if (mnemonic[2] == 's')
1310 return 3; /* frstor/frstpm */
1313 if (mnemonic[2] == 'a')
1314 return 3; /* fsave */
1315 if (mnemonic[2] == 't')
1317 switch (mnemonic[3])
1319 case 'c': /* fstcw */
1320 case 'd': /* fstdw */
1321 case 'e': /* fstenv */
1322 case 's': /* fsts[gw] */
1328 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1329 return 0; /* fxsave/fxrstor are not really math ops */
1336 /* This is the guts of the machine-dependent assembler. LINE points to a
1337 machine dependent instruction. This function is supposed to emit
1338 the frags/bytes it assembles to. */
1345 char mnemonic[MAX_MNEM_SIZE];
1347 /* Initialize globals. */
1348 memset (&i, '\0', sizeof (i));
1349 for (j = 0; j < MAX_OPERANDS; j++)
1350 i.reloc[j] = NO_RELOC;
1351 memset (disp_expressions, '\0', sizeof (disp_expressions));
1352 memset (im_expressions, '\0', sizeof (im_expressions));
1353 save_stack_p = save_stack;
1355 /* First parse an instruction mnemonic & call i386_operand for the operands.
1356 We assume that the scrubber has arranged it so that line[0] is the valid
1357 start of a (possibly prefixed) mnemonic. */
1359 line = parse_insn (line, mnemonic);
1363 line = parse_operands (line, mnemonic);
1367 /* Now we've parsed the mnemonic into a set of templates, and have the
1368 operands at hand. */
1370 /* All intel opcodes have reversed operands except for "bound" and
1371 "enter". We also don't reverse intersegment "jmp" and "call"
1372 instructions with 2 immediate operands so that the immediate segment
1373 precedes the offset, as it does when in AT&T mode. "enter" and the
1374 intersegment "jmp" and "call" instructions are the only ones that
1375 have two immediate operands. */
1376 if (intel_syntax && i.operands > 1
1377 && (strcmp (mnemonic, "bound") != 0)
1378 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1384 if (i.disp_operands)
1387 /* Next, we find a template that matches the given insn,
1388 making sure the overlap of the given operands types is consistent
1389 with the template operand types. */
1391 if (!match_template ())
1396 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1398 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1399 i.tm.base_opcode ^= FloatR;
1401 /* Zap movzx and movsx suffix. The suffix may have been set from
1402 "word ptr" or "byte ptr" on the source operand, but we'll use
1403 the suffix later to choose the destination register. */
1404 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1406 if (i.reg_operands < 2
1408 && (~i.tm.opcode_modifier
1415 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1421 if (i.tm.opcode_modifier & FWait)
1422 if (!add_prefix (FWAIT_OPCODE))
1425 /* Check string instruction segment overrides. */
1426 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1428 if (!check_string ())
1432 if (!process_suffix ())
1435 /* Make still unresolved immediate matches conform to size of immediate
1436 given in i.suffix. */
1437 if (!finalize_imm ())
1440 if (i.types[0] & Imm1)
1441 i.imm_operands = 0; /* kludge for shift insns. */
1442 if (i.types[0] & ImplicitRegister)
1444 if (i.types[1] & ImplicitRegister)
1446 if (i.types[2] & ImplicitRegister)
1449 if (i.tm.opcode_modifier & ImmExt)
1453 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1455 /* These Intel Prescott New Instructions have the fixed
1456 operands with an opcode suffix which is coded in the same
1457 place as an 8-bit immediate field would be. Here we check
1458 those operands and remove them afterwards. */
1461 for (x = 0; x < i.operands; x++)
1462 if (i.op[x].regs->reg_num != x)
1463 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1464 i.op[x].regs->reg_name, x + 1, i.tm.name);
1468 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1469 opcode suffix which is coded in the same place as an 8-bit
1470 immediate field would be. Here we fake an 8-bit immediate
1471 operand from the opcode suffix stored in tm.extension_opcode. */
1473 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1475 exp = &im_expressions[i.imm_operands++];
1476 i.op[i.operands].imms = exp;
1477 i.types[i.operands++] = Imm8;
1478 exp->X_op = O_constant;
1479 exp->X_add_number = i.tm.extension_opcode;
1480 i.tm.extension_opcode = None;
1483 /* For insns with operands there are more diddles to do to the opcode. */
1486 if (!process_operands ())
1489 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1491 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1492 as_warn (_("translating to `%sp'"), i.tm.name);
1495 /* Handle conversion of 'int $3' --> special int3 insn. */
1496 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1498 i.tm.base_opcode = INT3_OPCODE;
1502 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1503 && i.op[0].disps->X_op == O_constant)
1505 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1506 the absolute address given by the constant. Since ix86 jumps and
1507 calls are pc relative, we need to generate a reloc. */
1508 i.op[0].disps->X_add_symbol = &abs_symbol;
1509 i.op[0].disps->X_op = O_symbol;
1512 if ((i.tm.opcode_modifier & Rex64) != 0)
1513 i.rex |= REX_MODE64;
1515 /* For 8 bit registers we need an empty rex prefix. Also if the
1516 instruction already has a prefix, we need to convert old
1517 registers to new ones. */
1519 if (((i.types[0] & Reg8) != 0
1520 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1521 || ((i.types[1] & Reg8) != 0
1522 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1523 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1528 i.rex |= REX_OPCODE;
1529 for (x = 0; x < 2; x++)
1531 /* Look for 8 bit operand that uses old registers. */
1532 if ((i.types[x] & Reg8) != 0
1533 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1535 /* In case it is "hi" register, give up. */
1536 if (i.op[x].regs->reg_num > 3)
1537 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1538 i.op[x].regs->reg_name);
1540 /* Otherwise it is equivalent to the extended register.
1541 Since the encoding doesn't change this is merely
1542 cosmetic cleanup for debug output. */
1544 i.op[x].regs = i.op[x].regs + 8;
1550 add_prefix (REX_OPCODE | i.rex);
1552 /* We are ready to output the insn. */
1557 parse_insn (line, mnemonic)
1562 char *token_start = l;
1565 /* Non-zero if we found a prefix only acceptable with string insns. */
1566 const char *expecting_string_instruction = NULL;
1571 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1574 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1576 as_bad (_("no such instruction: `%s'"), token_start);
1581 if (!is_space_char (*l)
1582 && *l != END_OF_INSN
1583 && *l != PREFIX_SEPARATOR
1586 as_bad (_("invalid character %s in mnemonic"),
1587 output_invalid (*l));
1590 if (token_start == l)
1592 if (*l == PREFIX_SEPARATOR)
1593 as_bad (_("expecting prefix; got nothing"));
1595 as_bad (_("expecting mnemonic; got nothing"));
1599 /* Look up instruction (or prefix) via hash table. */
1600 current_templates = hash_find (op_hash, mnemonic);
1602 if (*l != END_OF_INSN
1603 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1604 && current_templates
1605 && (current_templates->start->opcode_modifier & IsPrefix))
1607 /* If we are in 16-bit mode, do not allow addr16 or data16.
1608 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1609 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1610 && flag_code != CODE_64BIT
1611 && (((current_templates->start->opcode_modifier & Size32) != 0)
1612 ^ (flag_code == CODE_16BIT)))
1614 as_bad (_("redundant %s prefix"),
1615 current_templates->start->name);
1618 /* Add prefix, checking for repeated prefixes. */
1619 switch (add_prefix (current_templates->start->base_opcode))
1624 expecting_string_instruction = current_templates->start->name;
1627 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1634 if (!current_templates)
1636 /* See if we can get a match by trimming off a suffix. */
1639 case WORD_MNEM_SUFFIX:
1640 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1641 i.suffix = SHORT_MNEM_SUFFIX;
1643 case BYTE_MNEM_SUFFIX:
1644 case QWORD_MNEM_SUFFIX:
1645 i.suffix = mnem_p[-1];
1647 current_templates = hash_find (op_hash, mnemonic);
1649 case SHORT_MNEM_SUFFIX:
1650 case LONG_MNEM_SUFFIX:
1653 i.suffix = mnem_p[-1];
1655 current_templates = hash_find (op_hash, mnemonic);
1663 if (intel_float_operand (mnemonic) == 1)
1664 i.suffix = SHORT_MNEM_SUFFIX;
1666 i.suffix = LONG_MNEM_SUFFIX;
1668 current_templates = hash_find (op_hash, mnemonic);
1672 if (!current_templates)
1674 as_bad (_("no such instruction: `%s'"), token_start);
1679 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1681 /* Check for a branch hint. We allow ",pt" and ",pn" for
1682 predict taken and predict not taken respectively.
1683 I'm not sure that branch hints actually do anything on loop
1684 and jcxz insns (JumpByte) for current Pentium4 chips. They
1685 may work in the future and it doesn't hurt to accept them
1687 if (l[0] == ',' && l[1] == 'p')
1691 if (!add_prefix (DS_PREFIX_OPCODE))
1695 else if (l[2] == 'n')
1697 if (!add_prefix (CS_PREFIX_OPCODE))
1703 /* Any other comma loses. */
1706 as_bad (_("invalid character %s in mnemonic"),
1707 output_invalid (*l));
1711 /* Check if instruction is supported on specified architecture. */
1712 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1713 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1715 as_warn (_("`%s' is not supported on `%s'"),
1716 current_templates->start->name, cpu_arch_name);
1718 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1720 as_warn (_("use .code16 to ensure correct addressing mode"));
1723 /* Check for rep/repne without a string instruction. */
1724 if (expecting_string_instruction
1725 && !(current_templates->start->opcode_modifier & IsString))
1727 as_bad (_("expecting string instruction after `%s'"),
1728 expecting_string_instruction);
1736 parse_operands (l, mnemonic)
1738 const char *mnemonic;
1742 /* 1 if operand is pending after ','. */
1743 unsigned int expecting_operand = 0;
1745 /* Non-zero if operand parens not balanced. */
1746 unsigned int paren_not_balanced;
1748 while (*l != END_OF_INSN)
1750 /* Skip optional white space before operand. */
1751 if (is_space_char (*l))
1753 if (!is_operand_char (*l) && *l != END_OF_INSN)
1755 as_bad (_("invalid character %s before operand %d"),
1756 output_invalid (*l),
1760 token_start = l; /* after white space */
1761 paren_not_balanced = 0;
1762 while (paren_not_balanced || *l != ',')
1764 if (*l == END_OF_INSN)
1766 if (paren_not_balanced)
1769 as_bad (_("unbalanced parenthesis in operand %d."),
1772 as_bad (_("unbalanced brackets in operand %d."),
1777 break; /* we are done */
1779 else if (!is_operand_char (*l) && !is_space_char (*l))
1781 as_bad (_("invalid character %s in operand %d"),
1782 output_invalid (*l),
1789 ++paren_not_balanced;
1791 --paren_not_balanced;
1796 ++paren_not_balanced;
1798 --paren_not_balanced;
1802 if (l != token_start)
1803 { /* Yes, we've read in another operand. */
1804 unsigned int operand_ok;
1805 this_operand = i.operands++;
1806 if (i.operands > MAX_OPERANDS)
1808 as_bad (_("spurious operands; (%d operands/instruction max)"),
1812 /* Now parse operand adding info to 'i' as we go along. */
1813 END_STRING_AND_SAVE (l);
1817 i386_intel_operand (token_start,
1818 intel_float_operand (mnemonic));
1820 operand_ok = i386_operand (token_start);
1822 RESTORE_END_STRING (l);
1828 if (expecting_operand)
1830 expecting_operand_after_comma:
1831 as_bad (_("expecting operand after ','; got nothing"));
1836 as_bad (_("expecting operand before ','; got nothing"));
1841 /* Now *l must be either ',' or END_OF_INSN. */
1844 if (*++l == END_OF_INSN)
1846 /* Just skip it, if it's \n complain. */
1847 goto expecting_operand_after_comma;
1849 expecting_operand = 1;
1858 union i386_op temp_op;
1859 unsigned int temp_type;
1860 enum bfd_reloc_code_real temp_reloc;
1864 if (i.operands == 2)
1869 else if (i.operands == 3)
1874 temp_type = i.types[xchg2];
1875 i.types[xchg2] = i.types[xchg1];
1876 i.types[xchg1] = temp_type;
1877 temp_op = i.op[xchg2];
1878 i.op[xchg2] = i.op[xchg1];
1879 i.op[xchg1] = temp_op;
1880 temp_reloc = i.reloc[xchg2];
1881 i.reloc[xchg2] = i.reloc[xchg1];
1882 i.reloc[xchg1] = temp_reloc;
1884 if (i.mem_operands == 2)
1886 const seg_entry *temp_seg;
1887 temp_seg = i.seg[0];
1888 i.seg[0] = i.seg[1];
1889 i.seg[1] = temp_seg;
1893 /* Try to ensure constant immediates are represented in the smallest
1898 char guess_suffix = 0;
1902 guess_suffix = i.suffix;
1903 else if (i.reg_operands)
1905 /* Figure out a suffix from the last register operand specified.
1906 We can't do this properly yet, ie. excluding InOutPortReg,
1907 but the following works for instructions with immediates.
1908 In any case, we can't set i.suffix yet. */
1909 for (op = i.operands; --op >= 0;)
1910 if (i.types[op] & Reg)
1912 if (i.types[op] & Reg8)
1913 guess_suffix = BYTE_MNEM_SUFFIX;
1914 else if (i.types[op] & Reg16)
1915 guess_suffix = WORD_MNEM_SUFFIX;
1916 else if (i.types[op] & Reg32)
1917 guess_suffix = LONG_MNEM_SUFFIX;
1918 else if (i.types[op] & Reg64)
1919 guess_suffix = QWORD_MNEM_SUFFIX;
1923 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1924 guess_suffix = WORD_MNEM_SUFFIX;
1926 for (op = i.operands; --op >= 0;)
1927 if (i.types[op] & Imm)
1929 switch (i.op[op].imms->X_op)
1932 /* If a suffix is given, this operand may be shortened. */
1933 switch (guess_suffix)
1935 case LONG_MNEM_SUFFIX:
1936 i.types[op] |= Imm32 | Imm64;
1938 case WORD_MNEM_SUFFIX:
1939 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1941 case BYTE_MNEM_SUFFIX:
1942 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1946 /* If this operand is at most 16 bits, convert it
1947 to a signed 16 bit number before trying to see
1948 whether it will fit in an even smaller size.
1949 This allows a 16-bit operand such as $0xffe0 to
1950 be recognised as within Imm8S range. */
1951 if ((i.types[op] & Imm16)
1952 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1954 i.op[op].imms->X_add_number =
1955 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1957 if ((i.types[op] & Imm32)
1958 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1961 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1962 ^ ((offsetT) 1 << 31))
1963 - ((offsetT) 1 << 31));
1965 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1967 /* We must avoid matching of Imm32 templates when 64bit
1968 only immediate is available. */
1969 if (guess_suffix == QWORD_MNEM_SUFFIX)
1970 i.types[op] &= ~Imm32;
1977 /* Symbols and expressions. */
1979 /* Convert symbolic operand to proper sizes for matching. */
1980 switch (guess_suffix)
1982 case QWORD_MNEM_SUFFIX:
1983 i.types[op] = Imm64 | Imm32S;
1985 case LONG_MNEM_SUFFIX:
1986 i.types[op] = Imm32;
1988 case WORD_MNEM_SUFFIX:
1989 i.types[op] = Imm16;
1991 case BYTE_MNEM_SUFFIX:
1992 i.types[op] = Imm8 | Imm8S;
2000 /* Try to use the smallest displacement type too. */
2006 for (op = i.operands; --op >= 0;)
2007 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
2009 offsetT disp = i.op[op].disps->X_add_number;
2011 if (i.types[op] & Disp16)
2013 /* We know this operand is at most 16 bits, so
2014 convert to a signed 16 bit number before trying
2015 to see whether it will fit in an even smaller
2018 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2020 else if (i.types[op] & Disp32)
2022 /* We know this operand is at most 32 bits, so convert to a
2023 signed 32 bit number before trying to see whether it will
2024 fit in an even smaller size. */
2025 disp &= (((offsetT) 2 << 31) - 1);
2026 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2028 if (flag_code == CODE_64BIT)
2030 if (fits_in_signed_long (disp))
2031 i.types[op] |= Disp32S;
2032 if (fits_in_unsigned_long (disp))
2033 i.types[op] |= Disp32;
2035 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2036 && fits_in_signed_byte (disp))
2037 i.types[op] |= Disp8;
2044 /* Points to template once we've found it. */
2046 unsigned int overlap0, overlap1, overlap2;
2047 unsigned int found_reverse_match;
2050 #define MATCH(overlap, given, template) \
2051 ((overlap & ~JumpAbsolute) \
2052 && (((given) & (BaseIndex | JumpAbsolute)) \
2053 == ((overlap) & (BaseIndex | JumpAbsolute))))
2055 /* If given types r0 and r1 are registers they must be of the same type
2056 unless the expected operand type register overlap is null.
2057 Note that Acc in a template matches every size of reg. */
2058 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2059 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2060 || ((g0) & Reg) == ((g1) & Reg) \
2061 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2066 found_reverse_match = 0;
2067 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2069 : (i.suffix == WORD_MNEM_SUFFIX
2071 : (i.suffix == SHORT_MNEM_SUFFIX
2073 : (i.suffix == LONG_MNEM_SUFFIX
2075 : (i.suffix == QWORD_MNEM_SUFFIX
2077 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2078 ? No_xSuf : 0))))));
2080 t = current_templates->start;
2081 if (i.suffix == QWORD_MNEM_SUFFIX
2082 && flag_code != CODE_64BIT
2084 ? !(t->opcode_modifier & IgnoreSize)
2085 && !intel_float_operand (t->name)
2086 : intel_float_operand (t->name) != 2)
2087 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2088 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2089 && (t->base_opcode != 0x0fc7
2090 || t->extension_opcode != 1 /* cmpxchg8b */))
2091 t = current_templates->end;
2092 for (; t < current_templates->end; t++)
2094 /* Must have right number of operands. */
2095 if (i.operands != t->operands)
2098 /* Check the suffix, except for some instructions in intel mode. */
2099 if ((t->opcode_modifier & suffix_check)
2101 && (t->opcode_modifier & IgnoreSize)))
2104 /* Do not verify operands when there are none. */
2105 else if (!t->operands)
2107 if (t->cpu_flags & ~cpu_arch_flags)
2109 /* We've found a match; break out of loop. */
2113 overlap0 = i.types[0] & t->operand_types[0];
2114 switch (t->operands)
2117 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2122 overlap1 = i.types[1] & t->operand_types[1];
2123 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2124 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2125 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2126 t->operand_types[0],
2127 overlap1, i.types[1],
2128 t->operand_types[1]))
2130 /* Check if other direction is valid ... */
2131 if ((t->opcode_modifier & (D | FloatD)) == 0)
2134 /* Try reversing direction of operands. */
2135 overlap0 = i.types[0] & t->operand_types[1];
2136 overlap1 = i.types[1] & t->operand_types[0];
2137 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2138 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2139 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2140 t->operand_types[1],
2141 overlap1, i.types[1],
2142 t->operand_types[0]))
2144 /* Does not match either direction. */
2147 /* found_reverse_match holds which of D or FloatDR
2149 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2151 /* Found a forward 2 operand match here. */
2152 else if (t->operands == 3)
2154 /* Here we make use of the fact that there are no
2155 reverse match 3 operand instructions, and all 3
2156 operand instructions only need to be checked for
2157 register consistency between operands 2 and 3. */
2158 overlap2 = i.types[2] & t->operand_types[2];
2159 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2160 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2161 t->operand_types[1],
2162 overlap2, i.types[2],
2163 t->operand_types[2]))
2167 /* Found either forward/reverse 2 or 3 operand match here:
2168 slip through to break. */
2170 if (t->cpu_flags & ~cpu_arch_flags)
2172 found_reverse_match = 0;
2175 /* We've found a match; break out of loop. */
2179 if (t == current_templates->end)
2181 /* We found no match. */
2182 as_bad (_("suffix or operands invalid for `%s'"),
2183 current_templates->start->name);
2187 if (!quiet_warnings)
2190 && ((i.types[0] & JumpAbsolute)
2191 != (t->operand_types[0] & JumpAbsolute)))
2193 as_warn (_("indirect %s without `*'"), t->name);
2196 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2197 == (IsPrefix | IgnoreSize))
2199 /* Warn them that a data or address size prefix doesn't
2200 affect assembly of the next line of code. */
2201 as_warn (_("stand-alone `%s' prefix"), t->name);
2205 /* Copy the template we found. */
2207 if (found_reverse_match)
2209 /* If we found a reverse match we must alter the opcode
2210 direction bit. found_reverse_match holds bits to change
2211 (different for int & float insns). */
2213 i.tm.base_opcode ^= found_reverse_match;
2215 i.tm.operand_types[0] = t->operand_types[1];
2216 i.tm.operand_types[1] = t->operand_types[0];
2225 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2226 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2228 if (i.seg[0] != NULL && i.seg[0] != &es)
2230 as_bad (_("`%s' operand %d must use `%%es' segment"),
2235 /* There's only ever one segment override allowed per instruction.
2236 This instruction possibly has a legal segment override on the
2237 second operand, so copy the segment to where non-string
2238 instructions store it, allowing common code. */
2239 i.seg[0] = i.seg[1];
2241 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2243 if (i.seg[1] != NULL && i.seg[1] != &es)
2245 as_bad (_("`%s' operand %d must use `%%es' segment"),
2255 process_suffix (void)
2257 /* If matched instruction specifies an explicit instruction mnemonic
2259 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2261 if (i.tm.opcode_modifier & Size16)
2262 i.suffix = WORD_MNEM_SUFFIX;
2263 else if (i.tm.opcode_modifier & Size64)
2264 i.suffix = QWORD_MNEM_SUFFIX;
2266 i.suffix = LONG_MNEM_SUFFIX;
2268 else if (i.reg_operands)
2270 /* If there's no instruction mnemonic suffix we try to invent one
2271 based on register operands. */
2274 /* We take i.suffix from the last register operand specified,
2275 Destination register type is more significant than source
2279 for (op = i.operands; --op >= 0;)
2280 if ((i.types[op] & Reg)
2281 && !(i.tm.operand_types[op] & InOutPortReg))
2283 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2284 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2285 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2290 else if (i.suffix == BYTE_MNEM_SUFFIX)
2292 if (!check_byte_reg ())
2295 else if (i.suffix == LONG_MNEM_SUFFIX)
2297 if (!check_long_reg ())
2300 else if (i.suffix == QWORD_MNEM_SUFFIX)
2302 if (!check_qword_reg ())
2305 else if (i.suffix == WORD_MNEM_SUFFIX)
2307 if (!check_word_reg ())
2310 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2311 /* Do nothing if the instruction is going to ignore the prefix. */
2316 else if ((i.tm.opcode_modifier & DefaultSize)
2318 /* exclude fldenv/frstor/fsave/fstenv */
2319 && (i.tm.opcode_modifier & No_sSuf))
2321 i.suffix = stackop_size;
2322 if (i.suffix == QWORD_MNEM_SUFFIX
2323 && (i.tm.opcode_modifier & No_qSuf))
2324 i.suffix = LONG_MNEM_SUFFIX;
2326 else if (intel_syntax
2328 && ((i.tm.operand_types[0] & JumpAbsolute)
2329 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2330 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2331 && i.tm.extension_opcode <= 3)))
2336 if (!(i.tm.opcode_modifier & No_qSuf))
2338 i.suffix = QWORD_MNEM_SUFFIX;
2342 if (!(i.tm.opcode_modifier & No_lSuf))
2343 i.suffix = LONG_MNEM_SUFFIX;
2346 if (!(i.tm.opcode_modifier & No_wSuf))
2347 i.suffix = WORD_MNEM_SUFFIX;
2356 if (i.tm.opcode_modifier & W)
2358 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2364 unsigned int suffixes = ~i.tm.opcode_modifier
2372 if ((i.tm.opcode_modifier & W)
2373 || ((suffixes & (suffixes - 1))
2374 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2376 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2382 /* Change the opcode based on the operand size given by i.suffix;
2383 We don't need to change things for byte insns. */
2385 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2387 /* It's not a byte, select word/dword operation. */
2388 if (i.tm.opcode_modifier & W)
2390 if (i.tm.opcode_modifier & ShortForm)
2391 i.tm.base_opcode |= 8;
2393 i.tm.base_opcode |= 1;
2396 /* Now select between word & dword operations via the operand
2397 size prefix, except for instructions that will ignore this
2399 if (i.suffix != QWORD_MNEM_SUFFIX
2400 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2401 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2402 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2403 || (flag_code == CODE_64BIT
2404 && (i.tm.opcode_modifier & JumpByte))))
2406 unsigned int prefix = DATA_PREFIX_OPCODE;
2408 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2409 prefix = ADDR_PREFIX_OPCODE;
2411 if (!add_prefix (prefix))
2415 /* Set mode64 for an operand. */
2416 if (i.suffix == QWORD_MNEM_SUFFIX
2417 && flag_code == CODE_64BIT
2418 && (i.tm.opcode_modifier & NoRex64) == 0)
2419 i.rex |= REX_MODE64;
2421 /* Size floating point instruction. */
2422 if (i.suffix == LONG_MNEM_SUFFIX)
2423 if (i.tm.opcode_modifier & FloatMF)
2424 i.tm.base_opcode ^= 4;
2431 check_byte_reg (void)
2435 for (op = i.operands; --op >= 0;)
2437 /* If this is an eight bit register, it's OK. If it's the 16 or
2438 32 bit version of an eight bit register, we will just use the
2439 low portion, and that's OK too. */
2440 if (i.types[op] & Reg8)
2443 /* movzx and movsx should not generate this warning. */
2445 && (i.tm.base_opcode == 0xfb7
2446 || i.tm.base_opcode == 0xfb6
2447 || i.tm.base_opcode == 0x63
2448 || i.tm.base_opcode == 0xfbe
2449 || i.tm.base_opcode == 0xfbf))
2452 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2454 /* Check that the template allows eight bit regs. This
2455 kills insns such as `orb $1,%edx', which maybe should be
2457 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2461 /* Prohibit these changes in the 64bit mode, since the
2462 lowering is more complicated. */
2463 if (flag_code == CODE_64BIT
2464 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2466 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2467 i.op[op].regs->reg_name,
2471 #if REGISTER_WARNINGS
2473 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2474 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2475 (i.op[op].regs + (i.types[op] & Reg16
2476 ? REGNAM_AL - REGNAM_AX
2477 : REGNAM_AL - REGNAM_EAX))->reg_name,
2478 i.op[op].regs->reg_name,
2483 /* Any other register is bad. */
2484 if (i.types[op] & (Reg | RegMMX | RegXMM
2486 | Control | Debug | Test
2487 | FloatReg | FloatAcc))
2489 as_bad (_("`%%%s' not allowed with `%s%c'"),
2490 i.op[op].regs->reg_name,
2504 for (op = i.operands; --op >= 0;)
2505 /* Reject eight bit registers, except where the template requires
2506 them. (eg. movzb) */
2507 if ((i.types[op] & Reg8) != 0
2508 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2510 as_bad (_("`%%%s' not allowed with `%s%c'"),
2511 i.op[op].regs->reg_name,
2516 /* Warn if the e prefix on a general reg is missing. */
2517 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2518 && (i.types[op] & Reg16) != 0
2519 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2521 /* Prohibit these changes in the 64bit mode, since the
2522 lowering is more complicated. */
2523 if (flag_code == CODE_64BIT)
2525 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2526 i.op[op].regs->reg_name,
2530 #if REGISTER_WARNINGS
2532 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2533 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2534 i.op[op].regs->reg_name,
2538 /* Warn if the r prefix on a general reg is missing. */
2539 else if ((i.types[op] & Reg64) != 0
2540 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2542 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2543 i.op[op].regs->reg_name,
2555 for (op = i.operands; --op >= 0; )
2556 /* Reject eight bit registers, except where the template requires
2557 them. (eg. movzb) */
2558 if ((i.types[op] & Reg8) != 0
2559 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2561 as_bad (_("`%%%s' not allowed with `%s%c'"),
2562 i.op[op].regs->reg_name,
2567 /* Warn if the e prefix on a general reg is missing. */
2568 else if (((i.types[op] & Reg16) != 0
2569 || (i.types[op] & Reg32) != 0)
2570 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2572 /* Prohibit these changes in the 64bit mode, since the
2573 lowering is more complicated. */
2574 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2575 i.op[op].regs->reg_name,
2586 for (op = i.operands; --op >= 0;)
2587 /* Reject eight bit registers, except where the template requires
2588 them. (eg. movzb) */
2589 if ((i.types[op] & Reg8) != 0
2590 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2592 as_bad (_("`%%%s' not allowed with `%s%c'"),
2593 i.op[op].regs->reg_name,
2598 /* Warn if the e prefix on a general reg is present. */
2599 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2600 && (i.types[op] & Reg32) != 0
2601 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2603 /* Prohibit these changes in the 64bit mode, since the
2604 lowering is more complicated. */
2605 if (flag_code == CODE_64BIT)
2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2608 i.op[op].regs->reg_name,
2613 #if REGISTER_WARNINGS
2614 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2615 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2616 i.op[op].regs->reg_name,
2626 unsigned int overlap0, overlap1, overlap2;
2628 overlap0 = i.types[0] & i.tm.operand_types[0];
2629 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2630 && overlap0 != Imm8 && overlap0 != Imm8S
2631 && overlap0 != Imm16 && overlap0 != Imm32S
2632 && overlap0 != Imm32 && overlap0 != Imm64)
2636 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2638 : (i.suffix == WORD_MNEM_SUFFIX
2640 : (i.suffix == QWORD_MNEM_SUFFIX
2644 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2645 || overlap0 == (Imm16 | Imm32)
2646 || overlap0 == (Imm16 | Imm32S))
2648 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2651 if (overlap0 != Imm8 && overlap0 != Imm8S
2652 && overlap0 != Imm16 && overlap0 != Imm32S
2653 && overlap0 != Imm32 && overlap0 != Imm64)
2655 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2659 i.types[0] = overlap0;
2661 overlap1 = i.types[1] & i.tm.operand_types[1];
2662 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2663 && overlap1 != Imm8 && overlap1 != Imm8S
2664 && overlap1 != Imm16 && overlap1 != Imm32S
2665 && overlap1 != Imm32 && overlap1 != Imm64)
2669 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2671 : (i.suffix == WORD_MNEM_SUFFIX
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2677 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2678 || overlap1 == (Imm16 | Imm32)
2679 || overlap1 == (Imm16 | Imm32S))
2681 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2684 if (overlap1 != Imm8 && overlap1 != Imm8S
2685 && overlap1 != Imm16 && overlap1 != Imm32S
2686 && overlap1 != Imm32 && overlap1 != Imm64)
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2692 i.types[1] = overlap1;
2694 overlap2 = i.types[2] & i.tm.operand_types[2];
2695 assert ((overlap2 & Imm) == 0);
2696 i.types[2] = overlap2;
2704 /* Default segment register this instruction will use for memory
2705 accesses. 0 means unknown. This is only for optimizing out
2706 unnecessary segment overrides. */
2707 const seg_entry *default_seg = 0;
2709 /* The imul $imm, %reg instruction is converted into
2710 imul $imm, %reg, %reg, and the clr %reg instruction
2711 is converted into xor %reg, %reg. */
2712 if (i.tm.opcode_modifier & regKludge)
2714 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2715 /* Pretend we saw the extra register operand. */
2716 assert (i.op[first_reg_op + 1].regs == 0);
2717 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2718 i.types[first_reg_op + 1] = i.types[first_reg_op];
2722 if (i.tm.opcode_modifier & ShortForm)
2724 /* The register or float register operand is in operand 0 or 1. */
2725 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2726 /* Register goes in low 3 bits of opcode. */
2727 i.tm.base_opcode |= i.op[op].regs->reg_num;
2728 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2730 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2732 /* Warn about some common errors, but press on regardless.
2733 The first case can be generated by gcc (<= 2.8.1). */
2734 if (i.operands == 2)
2736 /* Reversed arguments on faddp, fsubp, etc. */
2737 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2738 i.op[1].regs->reg_name,
2739 i.op[0].regs->reg_name);
2743 /* Extraneous `l' suffix on fp insn. */
2744 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2745 i.op[0].regs->reg_name);
2749 else if (i.tm.opcode_modifier & Modrm)
2751 /* The opcode is completed (modulo i.tm.extension_opcode which
2752 must be put into the modrm byte). Now, we make the modrm and
2753 index base bytes based on all the info we've collected. */
2755 default_seg = build_modrm_byte ();
2757 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2759 if (i.tm.base_opcode == POP_SEG_SHORT
2760 && i.op[0].regs->reg_num == 1)
2762 as_bad (_("you can't `pop %%cs'"));
2765 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2766 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2769 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2773 else if ((i.tm.opcode_modifier & IsString) != 0)
2775 /* For the string instructions that allow a segment override
2776 on one of their operands, the default segment is ds. */
2780 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2781 as_warn (_("segment override on `lea' is ineffectual"));
2783 /* If a segment was explicitly specified, and the specified segment
2784 is not the default, use an opcode prefix to select it. If we
2785 never figured out what the default segment is, then default_seg
2786 will be zero at this point, and the specified segment prefix will
2788 if ((i.seg[0]) && (i.seg[0] != default_seg))
2790 if (!add_prefix (i.seg[0]->seg_prefix))
2796 static const seg_entry *
2799 const seg_entry *default_seg = 0;
2801 /* i.reg_operands MUST be the number of real register operands;
2802 implicit registers do not count. */
2803 if (i.reg_operands == 2)
2805 unsigned int source, dest;
2806 source = ((i.types[0]
2807 & (Reg | RegMMX | RegXMM
2809 | Control | Debug | Test))
2814 /* One of the register operands will be encoded in the i.tm.reg
2815 field, the other in the combined i.tm.mode and i.tm.regmem
2816 fields. If no form of this instruction supports a memory
2817 destination operand, then we assume the source operand may
2818 sometimes be a memory operand and so we need to store the
2819 destination in the i.rm.reg field. */
2820 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2822 i.rm.reg = i.op[dest].regs->reg_num;
2823 i.rm.regmem = i.op[source].regs->reg_num;
2824 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2826 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2831 i.rm.reg = i.op[source].regs->reg_num;
2832 i.rm.regmem = i.op[dest].regs->reg_num;
2833 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2835 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2840 { /* If it's not 2 reg operands... */
2843 unsigned int fake_zero_displacement = 0;
2844 unsigned int op = ((i.types[0] & AnyMem)
2846 : (i.types[1] & AnyMem) ? 1 : 2);
2850 if (i.base_reg == 0)
2853 if (!i.disp_operands)
2854 fake_zero_displacement = 1;
2855 if (i.index_reg == 0)
2857 /* Operand is just <disp> */
2858 if (flag_code == CODE_64BIT)
2860 /* 64bit mode overwrites the 32bit absolute
2861 addressing by RIP relative addressing and
2862 absolute addressing is encoded by one of the
2863 redundant SIB forms. */
2864 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2865 i.sib.base = NO_BASE_REGISTER;
2866 i.sib.index = NO_INDEX_REGISTER;
2867 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2869 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2871 i.rm.regmem = NO_BASE_REGISTER_16;
2872 i.types[op] = Disp16;
2876 i.rm.regmem = NO_BASE_REGISTER;
2877 i.types[op] = Disp32;
2880 else /* !i.base_reg && i.index_reg */
2882 i.sib.index = i.index_reg->reg_num;
2883 i.sib.base = NO_BASE_REGISTER;
2884 i.sib.scale = i.log2_scale_factor;
2885 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2886 i.types[op] &= ~Disp;
2887 if (flag_code != CODE_64BIT)
2888 i.types[op] |= Disp32; /* Must be 32 bit */
2890 i.types[op] |= Disp32S;
2891 if ((i.index_reg->reg_flags & RegRex) != 0)
2895 /* RIP addressing for 64bit mode. */
2896 else if (i.base_reg->reg_type == BaseIndex)
2898 i.rm.regmem = NO_BASE_REGISTER;
2899 i.types[op] &= ~ Disp;
2900 i.types[op] |= Disp32S;
2901 i.flags[op] = Operand_PCrel;
2902 if (! i.disp_operands)
2903 fake_zero_displacement = 1;
2905 else if (i.base_reg->reg_type & Reg16)
2907 switch (i.base_reg->reg_num)
2910 if (i.index_reg == 0)
2912 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2913 i.rm.regmem = i.index_reg->reg_num - 6;
2917 if (i.index_reg == 0)
2920 if ((i.types[op] & Disp) == 0)
2922 /* fake (%bp) into 0(%bp) */
2923 i.types[op] |= Disp8;
2924 fake_zero_displacement = 1;
2927 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2928 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2930 default: /* (%si) -> 4 or (%di) -> 5 */
2931 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2933 i.rm.mode = mode_from_disp_size (i.types[op]);
2935 else /* i.base_reg and 32/64 bit mode */
2937 if (flag_code == CODE_64BIT
2938 && (i.types[op] & Disp))
2939 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2941 i.rm.regmem = i.base_reg->reg_num;
2942 if ((i.base_reg->reg_flags & RegRex) != 0)
2944 i.sib.base = i.base_reg->reg_num;
2945 /* x86-64 ignores REX prefix bit here to avoid decoder
2947 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2950 if (i.disp_operands == 0)
2952 fake_zero_displacement = 1;
2953 i.types[op] |= Disp8;
2956 else if (i.base_reg->reg_num == ESP_REG_NUM)
2960 i.sib.scale = i.log2_scale_factor;
2961 if (i.index_reg == 0)
2963 /* <disp>(%esp) becomes two byte modrm with no index
2964 register. We've already stored the code for esp
2965 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2966 Any base register besides %esp will not use the
2967 extra modrm byte. */
2968 i.sib.index = NO_INDEX_REGISTER;
2969 #if !SCALE1_WHEN_NO_INDEX
2970 /* Another case where we force the second modrm byte. */
2971 if (i.log2_scale_factor)
2972 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2977 i.sib.index = i.index_reg->reg_num;
2978 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2979 if ((i.index_reg->reg_flags & RegRex) != 0)
2982 i.rm.mode = mode_from_disp_size (i.types[op]);
2985 if (fake_zero_displacement)
2987 /* Fakes a zero displacement assuming that i.types[op]
2988 holds the correct displacement size. */
2991 assert (i.op[op].disps == 0);
2992 exp = &disp_expressions[i.disp_operands++];
2993 i.op[op].disps = exp;
2994 exp->X_op = O_constant;
2995 exp->X_add_number = 0;
2996 exp->X_add_symbol = (symbolS *) 0;
2997 exp->X_op_symbol = (symbolS *) 0;
3001 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3002 (if any) based on i.tm.extension_opcode. Again, we must be
3003 careful to make sure that segment/control/debug/test/MMX
3004 registers are coded into the i.rm.reg field. */
3009 & (Reg | RegMMX | RegXMM
3011 | Control | Debug | Test))
3014 & (Reg | RegMMX | RegXMM
3016 | Control | Debug | Test))
3019 /* If there is an extension opcode to put here, the register
3020 number must be put into the regmem field. */
3021 if (i.tm.extension_opcode != None)
3023 i.rm.regmem = i.op[op].regs->reg_num;
3024 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3029 i.rm.reg = i.op[op].regs->reg_num;
3030 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3034 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3035 must set it to 3 to indicate this is a register operand
3036 in the regmem field. */
3037 if (!i.mem_operands)
3041 /* Fill in i.rm.reg field with extension opcode (if any). */
3042 if (i.tm.extension_opcode != None)
3043 i.rm.reg = i.tm.extension_opcode;
3054 relax_substateT subtype;
3059 if (flag_code == CODE_16BIT)
3063 if (i.prefix[DATA_PREFIX] != 0)
3069 /* Pentium4 branch hints. */
3070 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3071 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3076 if (i.prefix[REX_PREFIX] != 0)
3082 if (i.prefixes != 0 && !intel_syntax)
3083 as_warn (_("skipping prefixes on this instruction"));
3085 /* It's always a symbol; End frag & setup for relax.
3086 Make sure there is enough room in this frag for the largest
3087 instruction we may generate in md_convert_frag. This is 2
3088 bytes for the opcode and room for the prefix and largest
3090 frag_grow (prefix + 2 + 4);
3091 /* Prefix and 1 opcode byte go in fr_fix. */
3092 p = frag_more (prefix + 1);
3093 if (i.prefix[DATA_PREFIX] != 0)
3094 *p++ = DATA_PREFIX_OPCODE;
3095 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3096 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3097 *p++ = i.prefix[SEG_PREFIX];
3098 if (i.prefix[REX_PREFIX] != 0)
3099 *p++ = i.prefix[REX_PREFIX];
3100 *p = i.tm.base_opcode;
3102 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3103 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3104 else if ((cpu_arch_flags & Cpu386) != 0)
3105 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3107 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3110 sym = i.op[0].disps->X_add_symbol;
3111 off = i.op[0].disps->X_add_number;
3113 if (i.op[0].disps->X_op != O_constant
3114 && i.op[0].disps->X_op != O_symbol)
3116 /* Handle complex expressions. */
3117 sym = make_expr_symbol (i.op[0].disps);
3121 /* 1 possible extra opcode + 4 byte displacement go in var part.
3122 Pass reloc in fr_var. */
3123 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3133 if (i.tm.opcode_modifier & JumpByte)
3135 /* This is a loop or jecxz type instruction. */
3137 if (i.prefix[ADDR_PREFIX] != 0)
3139 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3142 /* Pentium4 branch hints. */
3143 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3144 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3146 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3155 if (flag_code == CODE_16BIT)
3158 if (i.prefix[DATA_PREFIX] != 0)
3160 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3170 if (i.prefix[REX_PREFIX] != 0)
3172 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3176 if (i.prefixes != 0 && !intel_syntax)
3177 as_warn (_("skipping prefixes on this instruction"));
3179 p = frag_more (1 + size);
3180 *p++ = i.tm.base_opcode;
3182 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3183 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3185 /* All jumps handled here are signed, but don't use a signed limit
3186 check for 32 and 16 bit jumps as we want to allow wrap around at
3187 4G and 64k respectively. */
3189 fixP->fx_signed = 1;
3193 output_interseg_jump ()
3201 if (flag_code == CODE_16BIT)
3205 if (i.prefix[DATA_PREFIX] != 0)
3211 if (i.prefix[REX_PREFIX] != 0)
3221 if (i.prefixes != 0 && !intel_syntax)
3222 as_warn (_("skipping prefixes on this instruction"));
3224 /* 1 opcode; 2 segment; offset */
3225 p = frag_more (prefix + 1 + 2 + size);
3227 if (i.prefix[DATA_PREFIX] != 0)
3228 *p++ = DATA_PREFIX_OPCODE;
3230 if (i.prefix[REX_PREFIX] != 0)
3231 *p++ = i.prefix[REX_PREFIX];
3233 *p++ = i.tm.base_opcode;
3234 if (i.op[1].imms->X_op == O_constant)
3236 offsetT n = i.op[1].imms->X_add_number;
3239 && !fits_in_unsigned_word (n)
3240 && !fits_in_signed_word (n))
3242 as_bad (_("16-bit jump out of range"));
3245 md_number_to_chars (p, n, size);
3248 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3249 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3250 if (i.op[0].imms->X_op != O_constant)
3251 as_bad (_("can't handle non absolute segment in `%s'"),
3253 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3259 fragS *insn_start_frag;
3260 offsetT insn_start_off;
3262 /* Tie dwarf2 debug info to the address at the start of the insn.
3263 We can't do this after the insn has been output as the current
3264 frag may have been closed off. eg. by frag_var. */
3265 dwarf2_emit_insn (0);
3267 insn_start_frag = frag_now;
3268 insn_start_off = frag_now_fix ();
3271 if (i.tm.opcode_modifier & Jump)
3273 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3275 else if (i.tm.opcode_modifier & JumpInterSegment)
3276 output_interseg_jump ();
3279 /* Output normal instructions here. */
3283 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3284 have 3 bytes. We may use one more higher byte to specify a prefix
3285 the instruction requires. */
3286 if ((i.tm.cpu_flags & CpuPadLock) != 0
3287 && (i.tm.base_opcode & 0xff000000) != 0)
3289 unsigned int prefix;
3290 prefix = (i.tm.base_opcode >> 24) & 0xff;
3292 if (prefix != REPE_PREFIX_OPCODE
3293 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3294 add_prefix (prefix);
3297 if ((i.tm.cpu_flags & CpuPadLock) == 0
3298 && (i.tm.base_opcode & 0xff0000) != 0)
3299 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3301 /* The prefix bytes. */
3303 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3309 md_number_to_chars (p, (valueT) *q, 1);
3313 /* Now the opcode; be careful about word order here! */
3314 if (fits_in_unsigned_byte (i.tm.base_opcode))
3316 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3320 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3323 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3328 /* Put out high byte first: can't use md_number_to_chars! */
3329 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3330 *p = i.tm.base_opcode & 0xff;
3333 /* Now the modrm byte and sib byte (if present). */
3334 if (i.tm.opcode_modifier & Modrm)
3337 md_number_to_chars (p,
3338 (valueT) (i.rm.regmem << 0
3342 /* If i.rm.regmem == ESP (4)
3343 && i.rm.mode != (Register mode)
3345 ==> need second modrm byte. */
3346 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3348 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3351 md_number_to_chars (p,
3352 (valueT) (i.sib.base << 0
3354 | i.sib.scale << 6),
3359 if (i.disp_operands)
3360 output_disp (insn_start_frag, insn_start_off);
3363 output_imm (insn_start_frag, insn_start_off);
3371 #endif /* DEBUG386 */
3375 output_disp (insn_start_frag, insn_start_off)
3376 fragS *insn_start_frag;
3377 offsetT insn_start_off;
3382 for (n = 0; n < i.operands; n++)
3384 if (i.types[n] & Disp)
3386 if (i.op[n].disps->X_op == O_constant)
3392 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3395 if (i.types[n] & Disp8)
3397 if (i.types[n] & Disp64)
3400 val = offset_in_range (i.op[n].disps->X_add_number,
3402 p = frag_more (size);
3403 md_number_to_chars (p, val, size);
3407 enum bfd_reloc_code_real reloc_type;
3410 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3412 /* The PC relative address is computed relative
3413 to the instruction boundary, so in case immediate
3414 fields follows, we need to adjust the value. */
3415 if (pcrel && i.imm_operands)
3420 for (n1 = 0; n1 < i.operands; n1++)
3421 if (i.types[n1] & Imm)
3423 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3426 if (i.types[n1] & (Imm8 | Imm8S))
3428 if (i.types[n1] & Imm64)
3433 /* We should find the immediate. */
3434 if (n1 == i.operands)
3436 i.op[n].disps->X_add_number -= imm_size;
3439 if (i.types[n] & Disp32S)
3442 if (i.types[n] & (Disp16 | Disp64))
3445 if (i.types[n] & Disp64)
3449 p = frag_more (size);
3450 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3451 if (reloc_type == BFD_RELOC_32
3453 && GOT_symbol == i.op[n].disps->X_add_symbol
3454 && (i.op[n].disps->X_op == O_symbol
3455 || (i.op[n].disps->X_op == O_add
3456 && ((symbol_get_value_expression
3457 (i.op[n].disps->X_op_symbol)->X_op)
3462 if (insn_start_frag == frag_now)
3463 add = (p - frag_now->fr_literal) - insn_start_off;
3468 add = insn_start_frag->fr_fix - insn_start_off;
3469 for (fr = insn_start_frag->fr_next;
3470 fr && fr != frag_now; fr = fr->fr_next)
3472 add += p - frag_now->fr_literal;
3475 /* We don't support dynamic linking on x86-64 yet. */
3476 if (flag_code == CODE_64BIT)
3478 reloc_type = BFD_RELOC_386_GOTPC;
3479 i.op[n].disps->X_add_number += add;
3481 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3482 i.op[n].disps, pcrel, reloc_type);
3489 output_imm (insn_start_frag, insn_start_off)
3490 fragS *insn_start_frag;
3491 offsetT insn_start_off;
3496 for (n = 0; n < i.operands; n++)
3498 if (i.types[n] & Imm)
3500 if (i.op[n].imms->X_op == O_constant)
3506 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3509 if (i.types[n] & (Imm8 | Imm8S))
3511 else if (i.types[n] & Imm64)
3514 val = offset_in_range (i.op[n].imms->X_add_number,
3516 p = frag_more (size);
3517 md_number_to_chars (p, val, size);
3521 /* Not absolute_section.
3522 Need a 32-bit fixup (don't support 8bit
3523 non-absolute imms). Try to support other
3525 enum bfd_reloc_code_real reloc_type;
3529 if ((i.types[n] & (Imm32S))
3530 && i.suffix == QWORD_MNEM_SUFFIX)
3532 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3535 if (i.types[n] & (Imm8 | Imm8S))
3537 if (i.types[n] & Imm64)
3541 p = frag_more (size);
3542 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3544 /* This is tough to explain. We end up with this one if we
3545 * have operands that look like
3546 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3547 * obtain the absolute address of the GOT, and it is strongly
3548 * preferable from a performance point of view to avoid using
3549 * a runtime relocation for this. The actual sequence of
3550 * instructions often look something like:
3555 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3557 * The call and pop essentially return the absolute address
3558 * of the label .L66 and store it in %ebx. The linker itself
3559 * will ultimately change the first operand of the addl so
3560 * that %ebx points to the GOT, but to keep things simple, the
3561 * .o file must have this operand set so that it generates not
3562 * the absolute address of .L66, but the absolute address of
3563 * itself. This allows the linker itself simply treat a GOTPC
3564 * relocation as asking for a pcrel offset to the GOT to be
3565 * added in, and the addend of the relocation is stored in the
3566 * operand field for the instruction itself.
3568 * Our job here is to fix the operand so that it would add
3569 * the correct offset so that %ebx would point to itself. The
3570 * thing that is tricky is that .-.L66 will point to the
3571 * beginning of the instruction, so we need to further modify
3572 * the operand so that it will point to itself. There are
3573 * other cases where you have something like:
3575 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3577 * and here no correction would be required. Internally in
3578 * the assembler we treat operands of this form as not being
3579 * pcrel since the '.' is explicitly mentioned, and I wonder
3580 * whether it would simplify matters to do it this way. Who
3581 * knows. In earlier versions of the PIC patches, the
3582 * pcrel_adjust field was used to store the correction, but
3583 * since the expression is not pcrel, I felt it would be
3584 * confusing to do it this way. */
3586 if (reloc_type == BFD_RELOC_32
3588 && GOT_symbol == i.op[n].imms->X_add_symbol
3589 && (i.op[n].imms->X_op == O_symbol
3590 || (i.op[n].imms->X_op == O_add
3591 && ((symbol_get_value_expression
3592 (i.op[n].imms->X_op_symbol)->X_op)
3597 if (insn_start_frag == frag_now)
3598 add = (p - frag_now->fr_literal) - insn_start_off;
3603 add = insn_start_frag->fr_fix - insn_start_off;
3604 for (fr = insn_start_frag->fr_next;
3605 fr && fr != frag_now; fr = fr->fr_next)
3607 add += p - frag_now->fr_literal;
3610 /* We don't support dynamic linking on x86-64 yet. */
3611 if (flag_code == CODE_64BIT)
3613 reloc_type = BFD_RELOC_386_GOTPC;
3614 i.op[n].imms->X_add_number += add;
3616 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3617 i.op[n].imms, 0, reloc_type);
3624 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3626 /* Parse operands of the form
3627 <symbol>@GOTOFF+<nnn>
3628 and similar .plt or .got references.
3630 If we find one, set up the correct relocation in RELOC and copy the
3631 input string, minus the `@GOTOFF' into a malloc'd buffer for
3632 parsing by the calling routine. Return this buffer, and if ADJUST
3633 is non-null set it to the length of the string we removed from the
3634 input line. Otherwise return NULL. */
3636 lex_got (reloc, adjust)
3637 enum bfd_reloc_code_real *reloc;
3640 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3641 static const struct {
3643 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3645 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3646 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3647 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3648 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3649 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3650 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3651 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3652 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3653 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3654 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3655 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3656 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3657 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3662 for (cp = input_line_pointer; *cp != '@'; cp++)
3663 if (is_end_of_line[(unsigned char) *cp])
3666 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3670 len = strlen (gotrel[j].str);
3671 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3673 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3676 char *tmpbuf, *past_reloc;
3678 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3682 if (GOT_symbol == NULL)
3683 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3685 /* Replace the relocation token with ' ', so that
3686 errors like foo@GOTOFF1 will be detected. */
3688 /* The length of the first part of our input line. */
3689 first = cp - input_line_pointer;
3691 /* The second part goes from after the reloc token until
3692 (and including) an end_of_line char. Don't use strlen
3693 here as the end_of_line char may not be a NUL. */
3694 past_reloc = cp + 1 + len;
3695 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3697 second = cp - past_reloc;
3699 /* Allocate and copy string. The trailing NUL shouldn't
3700 be necessary, but be safe. */
3701 tmpbuf = xmalloc (first + second + 2);
3702 memcpy (tmpbuf, input_line_pointer, first);
3703 tmpbuf[first] = ' ';
3704 memcpy (tmpbuf + first + 1, past_reloc, second);
3705 tmpbuf[first + second + 1] = '\0';
3709 as_bad (_("@%s reloc is not supported in %s bit mode"),
3710 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3715 /* Might be a symbol version string. Don't as_bad here. */
3719 /* x86_cons_fix_new is called via the expression parsing code when a
3720 reloc is needed. We use this hook to get the correct .got reloc. */
3721 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3724 x86_cons_fix_new (frag, off, len, exp)
3730 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3731 got_reloc = NO_RELOC;
3732 fix_new_exp (frag, off, len, exp, 0, r);
3736 x86_cons (exp, size)
3742 /* Handle @GOTOFF and the like in an expression. */
3744 char *gotfree_input_line;
3747 save = input_line_pointer;
3748 gotfree_input_line = lex_got (&got_reloc, &adjust);
3749 if (gotfree_input_line)
3750 input_line_pointer = gotfree_input_line;
3754 if (gotfree_input_line)
3756 /* expression () has merrily parsed up to the end of line,
3757 or a comma - in the wrong buffer. Transfer how far
3758 input_line_pointer has moved to the right buffer. */
3759 input_line_pointer = (save
3760 + (input_line_pointer - gotfree_input_line)
3762 free (gotfree_input_line);
3773 x86_pe_cons_fix_new (frag, off, len, exp)
3779 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3781 if (exp->X_op == O_secrel)
3783 exp->X_op = O_symbol;
3784 r = BFD_RELOC_32_SECREL;
3787 fix_new_exp (frag, off, len, exp, 0, r);
3791 pe_directive_secrel (dummy)
3792 int dummy ATTRIBUTE_UNUSED;
3799 if (exp.X_op == O_symbol)
3800 exp.X_op = O_secrel;
3802 emit_expr (&exp, 4);
3804 while (*input_line_pointer++ == ',');
3806 input_line_pointer--;
3807 demand_empty_rest_of_line ();
3812 static int i386_immediate PARAMS ((char *));
3815 i386_immediate (imm_start)
3818 char *save_input_line_pointer;
3820 char *gotfree_input_line;
3825 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3827 as_bad (_("only 1 or 2 immediate operands are allowed"));
3831 exp = &im_expressions[i.imm_operands++];
3832 i.op[this_operand].imms = exp;
3834 if (is_space_char (*imm_start))
3837 save_input_line_pointer = input_line_pointer;
3838 input_line_pointer = imm_start;
3841 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3842 if (gotfree_input_line)
3843 input_line_pointer = gotfree_input_line;
3846 exp_seg = expression (exp);
3849 if (*input_line_pointer)
3850 as_bad (_("junk `%s' after expression"), input_line_pointer);
3852 input_line_pointer = save_input_line_pointer;
3854 if (gotfree_input_line)
3855 free (gotfree_input_line);
3858 if (exp->X_op == O_absent || exp->X_op == O_big)
3860 /* Missing or bad expr becomes absolute 0. */
3861 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3863 exp->X_op = O_constant;
3864 exp->X_add_number = 0;
3865 exp->X_add_symbol = (symbolS *) 0;
3866 exp->X_op_symbol = (symbolS *) 0;
3868 else if (exp->X_op == O_constant)
3870 /* Size it properly later. */
3871 i.types[this_operand] |= Imm64;
3872 /* If BFD64, sign extend val. */
3873 if (!use_rela_relocations)
3874 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3875 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3877 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3878 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3879 && exp_seg != absolute_section
3880 && exp_seg != text_section
3881 && exp_seg != data_section
3882 && exp_seg != bss_section
3883 && exp_seg != undefined_section
3884 && !bfd_is_com_section (exp_seg))
3886 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3892 /* This is an address. The size of the address will be
3893 determined later, depending on destination register,
3894 suffix, or the default for the section. */
3895 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3901 static char *i386_scale PARAMS ((char *));
3908 char *save = input_line_pointer;
3910 input_line_pointer = scale;
3911 val = get_absolute_expression ();
3917 i.log2_scale_factor = 0;
3920 i.log2_scale_factor = 1;
3923 i.log2_scale_factor = 2;
3926 i.log2_scale_factor = 3;
3929 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3931 input_line_pointer = save;
3934 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3936 as_warn (_("scale factor of %d without an index register"),
3937 1 << i.log2_scale_factor);
3938 #if SCALE1_WHEN_NO_INDEX
3939 i.log2_scale_factor = 0;
3942 scale = input_line_pointer;
3943 input_line_pointer = save;
3947 static int i386_displacement PARAMS ((char *, char *));
3950 i386_displacement (disp_start, disp_end)
3956 char *save_input_line_pointer;
3958 char *gotfree_input_line;
3960 int bigdisp = Disp32;
3962 if (flag_code == CODE_64BIT)
3964 if (i.prefix[ADDR_PREFIX] == 0)
3967 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3969 i.types[this_operand] |= bigdisp;
3971 exp = &disp_expressions[i.disp_operands];
3972 i.op[this_operand].disps = exp;
3974 save_input_line_pointer = input_line_pointer;
3975 input_line_pointer = disp_start;
3976 END_STRING_AND_SAVE (disp_end);
3978 #ifndef GCC_ASM_O_HACK
3979 #define GCC_ASM_O_HACK 0
3982 END_STRING_AND_SAVE (disp_end + 1);
3983 if ((i.types[this_operand] & BaseIndex) != 0
3984 && displacement_string_end[-1] == '+')
3986 /* This hack is to avoid a warning when using the "o"
3987 constraint within gcc asm statements.
3990 #define _set_tssldt_desc(n,addr,limit,type) \
3991 __asm__ __volatile__ ( \
3993 "movw %w1,2+%0\n\t" \
3995 "movb %b1,4+%0\n\t" \
3996 "movb %4,5+%0\n\t" \
3997 "movb $0,6+%0\n\t" \
3998 "movb %h1,7+%0\n\t" \
4000 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4002 This works great except that the output assembler ends
4003 up looking a bit weird if it turns out that there is
4004 no offset. You end up producing code that looks like:
4017 So here we provide the missing zero. */
4019 *displacement_string_end = '0';
4023 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4024 if (gotfree_input_line)
4025 input_line_pointer = gotfree_input_line;
4028 exp_seg = expression (exp);
4031 if (*input_line_pointer)
4032 as_bad (_("junk `%s' after expression"), input_line_pointer);
4034 RESTORE_END_STRING (disp_end + 1);
4036 RESTORE_END_STRING (disp_end);
4037 input_line_pointer = save_input_line_pointer;
4039 if (gotfree_input_line)
4040 free (gotfree_input_line);
4043 /* We do this to make sure that the section symbol is in
4044 the symbol table. We will ultimately change the relocation
4045 to be relative to the beginning of the section. */
4046 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4047 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4049 if (exp->X_op != O_symbol)
4051 as_bad (_("bad expression used with @%s"),
4052 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4058 if (S_IS_LOCAL (exp->X_add_symbol)
4059 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4060 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4061 exp->X_op = O_subtract;
4062 exp->X_op_symbol = GOT_symbol;
4063 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4064 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4066 i.reloc[this_operand] = BFD_RELOC_32;
4069 if (exp->X_op == O_absent || exp->X_op == O_big)
4071 /* Missing or bad expr becomes absolute 0. */
4072 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4074 exp->X_op = O_constant;
4075 exp->X_add_number = 0;
4076 exp->X_add_symbol = (symbolS *) 0;
4077 exp->X_op_symbol = (symbolS *) 0;
4080 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4081 if (exp->X_op != O_constant
4082 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4083 && exp_seg != absolute_section
4084 && exp_seg != text_section
4085 && exp_seg != data_section
4086 && exp_seg != bss_section
4087 && exp_seg != undefined_section
4088 && !bfd_is_com_section (exp_seg))
4090 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4094 else if (flag_code == CODE_64BIT)
4095 i.types[this_operand] |= Disp32S | Disp32;
4099 static int i386_index_check PARAMS ((const char *));
4101 /* Make sure the memory operand we've been dealt is valid.
4102 Return 1 on success, 0 on a failure. */
4105 i386_index_check (operand_string)
4106 const char *operand_string;
4109 #if INFER_ADDR_PREFIX
4115 if (flag_code == CODE_64BIT)
4117 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4120 && ((i.base_reg->reg_type & RegXX) == 0)
4121 && (i.base_reg->reg_type != BaseIndex
4124 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4125 != (RegXX | BaseIndex))))
4130 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4134 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4135 != (Reg16 | BaseIndex)))
4137 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4138 != (Reg16 | BaseIndex))
4140 && i.base_reg->reg_num < 6
4141 && i.index_reg->reg_num >= 6
4142 && i.log2_scale_factor == 0))))
4149 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4151 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4152 != (Reg32 | BaseIndex))))
4158 #if INFER_ADDR_PREFIX
4159 if (i.prefix[ADDR_PREFIX] == 0)
4161 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4163 /* Change the size of any displacement too. At most one of
4164 Disp16 or Disp32 is set.
4165 FIXME. There doesn't seem to be any real need for separate
4166 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4167 Removing them would probably clean up the code quite a lot. */
4168 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4169 i.types[this_operand] ^= (Disp16 | Disp32);
4174 as_bad (_("`%s' is not a valid base/index expression"),
4178 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4180 flag_code_names[flag_code]);
4185 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4189 i386_operand (operand_string)
4190 char *operand_string;
4194 char *op_string = operand_string;
4196 if (is_space_char (*op_string))
4199 /* We check for an absolute prefix (differentiating,
4200 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4201 if (*op_string == ABSOLUTE_PREFIX)
4204 if (is_space_char (*op_string))
4206 i.types[this_operand] |= JumpAbsolute;
4209 /* Check if operand is a register. */
4210 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4211 && (r = parse_register (op_string, &end_op)) != NULL)
4213 /* Check for a segment override by searching for ':' after a
4214 segment register. */
4216 if (is_space_char (*op_string))
4218 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4223 i.seg[i.mem_operands] = &es;
4226 i.seg[i.mem_operands] = &cs;
4229 i.seg[i.mem_operands] = &ss;
4232 i.seg[i.mem_operands] = &ds;
4235 i.seg[i.mem_operands] = &fs;
4238 i.seg[i.mem_operands] = &gs;
4242 /* Skip the ':' and whitespace. */
4244 if (is_space_char (*op_string))
4247 if (!is_digit_char (*op_string)
4248 && !is_identifier_char (*op_string)
4249 && *op_string != '('
4250 && *op_string != ABSOLUTE_PREFIX)
4252 as_bad (_("bad memory operand `%s'"), op_string);
4255 /* Handle case of %es:*foo. */
4256 if (*op_string == ABSOLUTE_PREFIX)
4259 if (is_space_char (*op_string))
4261 i.types[this_operand] |= JumpAbsolute;
4263 goto do_memory_reference;
4267 as_bad (_("junk `%s' after register"), op_string);
4270 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4271 i.op[this_operand].regs = r;
4274 else if (*op_string == REGISTER_PREFIX)
4276 as_bad (_("bad register name `%s'"), op_string);
4279 else if (*op_string == IMMEDIATE_PREFIX)
4282 if (i.types[this_operand] & JumpAbsolute)
4284 as_bad (_("immediate operand illegal with absolute jump"));
4287 if (!i386_immediate (op_string))
4290 else if (is_digit_char (*op_string)
4291 || is_identifier_char (*op_string)
4292 || *op_string == '(')
4294 /* This is a memory reference of some sort. */
4297 /* Start and end of displacement string expression (if found). */
4298 char *displacement_string_start;
4299 char *displacement_string_end;
4301 do_memory_reference:
4302 if ((i.mem_operands == 1
4303 && (current_templates->start->opcode_modifier & IsString) == 0)
4304 || i.mem_operands == 2)
4306 as_bad (_("too many memory references for `%s'"),
4307 current_templates->start->name);
4311 /* Check for base index form. We detect the base index form by
4312 looking for an ')' at the end of the operand, searching
4313 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4315 base_string = op_string + strlen (op_string);
4318 if (is_space_char (*base_string))
4321 /* If we only have a displacement, set-up for it to be parsed later. */
4322 displacement_string_start = op_string;
4323 displacement_string_end = base_string + 1;
4325 if (*base_string == ')')
4328 unsigned int parens_balanced = 1;
4329 /* We've already checked that the number of left & right ()'s are
4330 equal, so this loop will not be infinite. */
4334 if (*base_string == ')')
4336 if (*base_string == '(')
4339 while (parens_balanced);
4341 temp_string = base_string;
4343 /* Skip past '(' and whitespace. */
4345 if (is_space_char (*base_string))
4348 if (*base_string == ','
4349 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4350 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4352 displacement_string_end = temp_string;
4354 i.types[this_operand] |= BaseIndex;
4358 base_string = end_op;
4359 if (is_space_char (*base_string))
4363 /* There may be an index reg or scale factor here. */
4364 if (*base_string == ',')
4367 if (is_space_char (*base_string))
4370 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4371 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4373 base_string = end_op;
4374 if (is_space_char (*base_string))
4376 if (*base_string == ',')
4379 if (is_space_char (*base_string))
4382 else if (*base_string != ')')
4384 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4389 else if (*base_string == REGISTER_PREFIX)
4391 as_bad (_("bad register name `%s'"), base_string);
4395 /* Check for scale factor. */
4396 if (*base_string != ')')
4398 char *end_scale = i386_scale (base_string);
4403 base_string = end_scale;
4404 if (is_space_char (*base_string))
4406 if (*base_string != ')')
4408 as_bad (_("expecting `)' after scale factor in `%s'"),
4413 else if (!i.index_reg)
4415 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4420 else if (*base_string != ')')
4422 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4427 else if (*base_string == REGISTER_PREFIX)
4429 as_bad (_("bad register name `%s'"), base_string);
4434 /* If there's an expression beginning the operand, parse it,
4435 assuming displacement_string_start and
4436 displacement_string_end are meaningful. */
4437 if (displacement_string_start != displacement_string_end)
4439 if (!i386_displacement (displacement_string_start,
4440 displacement_string_end))
4444 /* Special case for (%dx) while doing input/output op. */
4446 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4448 && i.log2_scale_factor == 0
4449 && i.seg[i.mem_operands] == 0
4450 && (i.types[this_operand] & Disp) == 0)
4452 i.types[this_operand] = InOutPortReg;
4456 if (i386_index_check (operand_string) == 0)
4462 /* It's not a memory operand; argh! */
4463 as_bad (_("invalid char %s beginning operand %d `%s'"),
4464 output_invalid (*op_string),
4469 return 1; /* Normal return. */
4472 /* md_estimate_size_before_relax()
4474 Called just before relax() for rs_machine_dependent frags. The x86
4475 assembler uses these frags to handle variable size jump
4478 Any symbol that is now undefined will not become defined.
4479 Return the correct fr_subtype in the frag.
4480 Return the initial "guess for variable size of frag" to caller.
4481 The guess is actually the growth beyond the fixed part. Whatever
4482 we do to grow the fixed or variable part contributes to our
4486 md_estimate_size_before_relax (fragP, segment)
4490 /* We've already got fragP->fr_subtype right; all we have to do is
4491 check for un-relaxable symbols. On an ELF system, we can't relax
4492 an externally visible symbol, because it may be overridden by a
4494 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4495 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4496 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4497 && (S_IS_EXTERNAL (fragP->fr_symbol)
4498 || S_IS_WEAK (fragP->fr_symbol)))
4502 /* Symbol is undefined in this segment, or we need to keep a
4503 reloc so that weak symbols can be overridden. */
4504 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4505 enum bfd_reloc_code_real reloc_type;
4506 unsigned char *opcode;
4509 if (fragP->fr_var != NO_RELOC)
4510 reloc_type = fragP->fr_var;
4512 reloc_type = BFD_RELOC_16_PCREL;
4514 reloc_type = BFD_RELOC_32_PCREL;
4516 old_fr_fix = fragP->fr_fix;
4517 opcode = (unsigned char *) fragP->fr_opcode;
4519 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4522 /* Make jmp (0xeb) a (d)word displacement jump. */
4524 fragP->fr_fix += size;
4525 fix_new (fragP, old_fr_fix, size,
4527 fragP->fr_offset, 1,
4533 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4535 /* Negate the condition, and branch past an
4536 unconditional jump. */
4539 /* Insert an unconditional jump. */
4541 /* We added two extra opcode bytes, and have a two byte
4543 fragP->fr_fix += 2 + 2;
4544 fix_new (fragP, old_fr_fix + 2, 2,
4546 fragP->fr_offset, 1,
4553 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4558 fixP = fix_new (fragP, old_fr_fix, 1,
4560 fragP->fr_offset, 1,
4562 fixP->fx_signed = 1;
4566 /* This changes the byte-displacement jump 0x7N
4567 to the (d)word-displacement jump 0x0f,0x8N. */
4568 opcode[1] = opcode[0] + 0x10;
4569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4570 /* We've added an opcode byte. */
4571 fragP->fr_fix += 1 + size;
4572 fix_new (fragP, old_fr_fix + 1, size,
4574 fragP->fr_offset, 1,
4579 BAD_CASE (fragP->fr_subtype);
4583 return fragP->fr_fix - old_fr_fix;
4586 /* Guess size depending on current relax state. Initially the relax
4587 state will correspond to a short jump and we return 1, because
4588 the variable part of the frag (the branch offset) is one byte
4589 long. However, we can relax a section more than once and in that
4590 case we must either set fr_subtype back to the unrelaxed state,
4591 or return the value for the appropriate branch. */
4592 return md_relax_table[fragP->fr_subtype].rlx_length;
4595 /* Called after relax() is finished.
4597 In: Address of frag.
4598 fr_type == rs_machine_dependent.
4599 fr_subtype is what the address relaxed to.
4601 Out: Any fixSs and constants are set up.
4602 Caller will turn frag into a ".space 0". */
4605 md_convert_frag (abfd, sec, fragP)
4606 bfd *abfd ATTRIBUTE_UNUSED;
4607 segT sec ATTRIBUTE_UNUSED;
4610 unsigned char *opcode;
4611 unsigned char *where_to_put_displacement = NULL;
4612 offsetT target_address;
4613 offsetT opcode_address;
4614 unsigned int extension = 0;
4615 offsetT displacement_from_opcode_start;
4617 opcode = (unsigned char *) fragP->fr_opcode;
4619 /* Address we want to reach in file space. */
4620 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4622 /* Address opcode resides at in file space. */
4623 opcode_address = fragP->fr_address + fragP->fr_fix;
4625 /* Displacement from opcode start to fill into instruction. */
4626 displacement_from_opcode_start = target_address - opcode_address;
4628 if ((fragP->fr_subtype & BIG) == 0)
4630 /* Don't have to change opcode. */
4631 extension = 1; /* 1 opcode + 1 displacement */
4632 where_to_put_displacement = &opcode[1];
4636 if (no_cond_jump_promotion
4637 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4638 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4640 switch (fragP->fr_subtype)
4642 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4643 extension = 4; /* 1 opcode + 4 displacement */
4645 where_to_put_displacement = &opcode[1];
4648 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4649 extension = 2; /* 1 opcode + 2 displacement */
4651 where_to_put_displacement = &opcode[1];
4654 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4655 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4656 extension = 5; /* 2 opcode + 4 displacement */
4657 opcode[1] = opcode[0] + 0x10;
4658 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4659 where_to_put_displacement = &opcode[2];
4662 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4663 extension = 3; /* 2 opcode + 2 displacement */
4664 opcode[1] = opcode[0] + 0x10;
4665 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4666 where_to_put_displacement = &opcode[2];
4669 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4674 where_to_put_displacement = &opcode[3];
4678 BAD_CASE (fragP->fr_subtype);
4683 /* Now put displacement after opcode. */
4684 md_number_to_chars ((char *) where_to_put_displacement,
4685 (valueT) (displacement_from_opcode_start - extension),
4686 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4687 fragP->fr_fix += extension;
4690 /* Size of byte displacement jmp. */
4691 int md_short_jump_size = 2;
4693 /* Size of dword displacement jmp. */
4694 int md_long_jump_size = 5;
4696 /* Size of relocation record. */
4697 const int md_reloc_size = 8;
4700 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4702 addressT from_addr, to_addr;
4703 fragS *frag ATTRIBUTE_UNUSED;
4704 symbolS *to_symbol ATTRIBUTE_UNUSED;
4708 offset = to_addr - (from_addr + 2);
4709 /* Opcode for byte-disp jump. */
4710 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4711 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4715 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4717 addressT from_addr, to_addr;
4718 fragS *frag ATTRIBUTE_UNUSED;
4719 symbolS *to_symbol ATTRIBUTE_UNUSED;
4723 offset = to_addr - (from_addr + 5);
4724 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4725 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4728 /* Apply a fixup (fixS) to segment data, once it has been determined
4729 by our caller that we have all the info we need to fix it up.
4731 On the 386, immediates, displacements, and data pointers are all in
4732 the same (little-endian) format, so we don't need to care about which
4736 md_apply_fix3 (fixP, valP, seg)
4737 /* The fix we're to put in. */
4739 /* Pointer to the value of the bits. */
4741 /* Segment fix is from. */
4742 segT seg ATTRIBUTE_UNUSED;
4744 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4745 valueT value = *valP;
4747 #if !defined (TE_Mach)
4750 switch (fixP->fx_r_type)
4756 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4759 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4762 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4767 if (fixP->fx_addsy != NULL
4768 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4769 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4770 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4771 && !use_rela_relocations)
4773 /* This is a hack. There should be a better way to handle this.
4774 This covers for the fact that bfd_install_relocation will
4775 subtract the current location (for partial_inplace, PC relative
4776 relocations); see more below. */
4778 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4780 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4783 value += fixP->fx_where + fixP->fx_frag->fr_address;
4785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4786 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4788 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4791 || (symbol_section_p (fixP->fx_addsy)
4792 && sym_seg != absolute_section))
4793 && !generic_force_reloc (fixP))
4795 /* Yes, we add the values in twice. This is because
4796 bfd_install_relocation subtracts them out again. I think
4797 bfd_install_relocation is broken, but I don't dare change
4799 value += fixP->fx_where + fixP->fx_frag->fr_address;
4803 #if defined (OBJ_COFF) && defined (TE_PE)
4804 /* For some reason, the PE format does not store a section
4805 address offset for a PC relative symbol. */
4806 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4807 value += md_pcrel_from (fixP);
4811 /* Fix a few things - the dynamic linker expects certain values here,
4812 and we must not disappoint it. */
4813 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4814 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4816 switch (fixP->fx_r_type)
4818 case BFD_RELOC_386_PLT32:
4819 case BFD_RELOC_X86_64_PLT32:
4820 /* Make the jump instruction point to the address of the operand. At
4821 runtime we merely add the offset to the actual PLT entry. */
4825 case BFD_RELOC_386_TLS_GD:
4826 case BFD_RELOC_386_TLS_LDM:
4827 case BFD_RELOC_386_TLS_IE_32:
4828 case BFD_RELOC_386_TLS_IE:
4829 case BFD_RELOC_386_TLS_GOTIE:
4830 case BFD_RELOC_X86_64_TLSGD:
4831 case BFD_RELOC_X86_64_TLSLD:
4832 case BFD_RELOC_X86_64_GOTTPOFF:
4833 value = 0; /* Fully resolved at runtime. No addend. */
4835 case BFD_RELOC_386_TLS_LE:
4836 case BFD_RELOC_386_TLS_LDO_32:
4837 case BFD_RELOC_386_TLS_LE_32:
4838 case BFD_RELOC_X86_64_DTPOFF32:
4839 case BFD_RELOC_X86_64_TPOFF32:
4840 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4843 case BFD_RELOC_386_GOT32:
4844 case BFD_RELOC_X86_64_GOT32:
4845 value = 0; /* Fully resolved at runtime. No addend. */
4848 case BFD_RELOC_VTABLE_INHERIT:
4849 case BFD_RELOC_VTABLE_ENTRY:
4856 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4858 #endif /* !defined (TE_Mach) */
4860 /* Are we finished with this relocation now? */
4861 if (fixP->fx_addsy == NULL)
4863 else if (use_rela_relocations)
4865 fixP->fx_no_overflow = 1;
4866 /* Remember value for tc_gen_reloc. */
4867 fixP->fx_addnumber = value;
4871 md_number_to_chars (p, value, fixP->fx_size);
4874 #define MAX_LITTLENUMS 6
4876 /* Turn the string pointed to by litP into a floating point constant
4877 of type TYPE, and emit the appropriate bytes. The number of
4878 LITTLENUMS emitted is stored in *SIZEP. An error message is
4879 returned, or NULL on OK. */
4882 md_atof (type, litP, sizeP)
4888 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4889 LITTLENUM_TYPE *wordP;
4911 return _("Bad call to md_atof ()");
4913 t = atof_ieee (input_line_pointer, type, words);
4915 input_line_pointer = t;
4917 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4918 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4919 the bigendian 386. */
4920 for (wordP = words + prec - 1; prec--;)
4922 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4923 litP += sizeof (LITTLENUM_TYPE);
4928 char output_invalid_buf[8];
4935 sprintf (output_invalid_buf, "'%c'", c);
4937 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4938 return output_invalid_buf;
4941 /* REG_STRING starts *before* REGISTER_PREFIX. */
4943 static const reg_entry *
4944 parse_register (reg_string, end_op)
4948 char *s = reg_string;
4950 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4953 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4954 if (*s == REGISTER_PREFIX)
4957 if (is_space_char (*s))
4961 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4963 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4964 return (const reg_entry *) NULL;
4968 /* For naked regs, make sure that we are not dealing with an identifier.
4969 This prevents confusing an identifier like `eax_var' with register
4971 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4972 return (const reg_entry *) NULL;
4976 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4978 /* Handle floating point regs, allowing spaces in the (i) part. */
4979 if (r == i386_regtab /* %st is first entry of table */)
4981 if (is_space_char (*s))
4986 if (is_space_char (*s))
4988 if (*s >= '0' && *s <= '7')
4990 r = &i386_float_regtab[*s - '0'];
4992 if (is_space_char (*s))
5000 /* We have "%st(" then garbage. */
5001 return (const reg_entry *) NULL;
5006 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5007 && flag_code != CODE_64BIT)
5008 return (const reg_entry *) NULL;
5013 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5014 const char *md_shortopts = "kVQ:sqn";
5016 const char *md_shortopts = "qn";
5019 struct option md_longopts[] = {
5020 #define OPTION_32 (OPTION_MD_BASE + 0)
5021 {"32", no_argument, NULL, OPTION_32},
5022 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5023 #define OPTION_64 (OPTION_MD_BASE + 1)
5024 {"64", no_argument, NULL, OPTION_64},
5026 {NULL, no_argument, NULL, 0}
5028 size_t md_longopts_size = sizeof (md_longopts);
5031 md_parse_option (c, arg)
5033 char *arg ATTRIBUTE_UNUSED;
5038 optimize_align_code = 0;
5045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5046 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5047 should be emitted or not. FIXME: Not implemented. */
5051 /* -V: SVR4 argument to print version ID. */
5053 print_version_id ();
5056 /* -k: Ignore for FreeBSD compatibility. */
5061 /* -s: On i386 Solaris, this tells the native assembler to use
5062 .stab instead of .stab.excl. We always use .stab anyhow. */
5067 const char **list, **l;
5069 list = bfd_target_list ();
5070 for (l = list; *l != NULL; l++)
5071 if (strcmp (*l, "elf64-x86-64") == 0)
5073 default_arch = "x86_64";
5077 as_fatal (_("No compiled in support for x86_64"));
5084 default_arch = "i386";
5094 md_show_usage (stream)
5097 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5098 fprintf (stream, _("\
5100 -V print assembler version number\n\
5102 -n Do not optimize code alignment\n\
5103 -q quieten some warnings\n\
5106 fprintf (stream, _("\
5107 -n Do not optimize code alignment\n\
5108 -q quieten some warnings\n"));
5112 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5113 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5115 /* Pick the target format to use. */
5118 i386_target_format ()
5120 if (!strcmp (default_arch, "x86_64"))
5121 set_code_flag (CODE_64BIT);
5122 else if (!strcmp (default_arch, "i386"))
5123 set_code_flag (CODE_32BIT);
5125 as_fatal (_("Unknown architecture"));
5126 switch (OUTPUT_FLAVOR)
5128 #ifdef OBJ_MAYBE_AOUT
5129 case bfd_target_aout_flavour:
5130 return AOUT_TARGET_FORMAT;
5132 #ifdef OBJ_MAYBE_COFF
5133 case bfd_target_coff_flavour:
5136 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5137 case bfd_target_elf_flavour:
5139 if (flag_code == CODE_64BIT)
5140 use_rela_relocations = 1;
5141 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5150 #endif /* OBJ_MAYBE_ more than one */
5152 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5153 void i386_elf_emit_arch_note ()
5155 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5156 && cpu_arch_name != NULL)
5159 asection *seg = now_seg;
5160 subsegT subseg = now_subseg;
5161 Elf_Internal_Note i_note;
5162 Elf_External_Note e_note;
5163 asection *note_secp;
5166 /* Create the .note section. */
5167 note_secp = subseg_new (".note", 0);
5168 bfd_set_section_flags (stdoutput,
5170 SEC_HAS_CONTENTS | SEC_READONLY);
5172 /* Process the arch string. */
5173 len = strlen (cpu_arch_name);
5175 i_note.namesz = len + 1;
5177 i_note.type = NT_ARCH;
5178 p = frag_more (sizeof (e_note.namesz));
5179 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5180 p = frag_more (sizeof (e_note.descsz));
5181 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5182 p = frag_more (sizeof (e_note.type));
5183 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5184 p = frag_more (len + 1);
5185 strcpy (p, cpu_arch_name);
5187 frag_align (2, 0, 0);
5189 subseg_set (seg, subseg);
5195 md_undefined_symbol (name)
5198 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5199 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5200 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5201 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5205 if (symbol_find (name))
5206 as_bad (_("GOT already in symbol table"));
5207 GOT_symbol = symbol_new (name, undefined_section,
5208 (valueT) 0, &zero_address_frag);
5215 /* Round up a section size to the appropriate boundary. */
5218 md_section_align (segment, size)
5219 segT segment ATTRIBUTE_UNUSED;
5222 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5223 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5225 /* For a.out, force the section size to be aligned. If we don't do
5226 this, BFD will align it for us, but it will not write out the
5227 final bytes of the section. This may be a bug in BFD, but it is
5228 easier to fix it here since that is how the other a.out targets
5232 align = bfd_get_section_alignment (stdoutput, segment);
5233 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5240 /* On the i386, PC-relative offsets are relative to the start of the
5241 next instruction. That is, the address of the offset, plus its
5242 size, since the offset is always the last part of the insn. */
5245 md_pcrel_from (fixP)
5248 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5255 int ignore ATTRIBUTE_UNUSED;
5259 temp = get_absolute_expression ();
5260 subseg_set (bss_section, (subsegT) temp);
5261 demand_empty_rest_of_line ();
5267 i386_validate_fix (fixp)
5270 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5272 /* GOTOFF relocation are nonsense in 64bit mode. */
5273 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5275 if (flag_code != CODE_64BIT)
5277 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5281 if (flag_code == CODE_64BIT)
5283 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5290 tc_gen_reloc (section, fixp)
5291 asection *section ATTRIBUTE_UNUSED;
5295 bfd_reloc_code_real_type code;
5297 switch (fixp->fx_r_type)
5299 case BFD_RELOC_X86_64_PLT32:
5300 case BFD_RELOC_X86_64_GOT32:
5301 case BFD_RELOC_X86_64_GOTPCREL:
5302 case BFD_RELOC_386_PLT32:
5303 case BFD_RELOC_386_GOT32:
5304 case BFD_RELOC_386_GOTOFF:
5305 case BFD_RELOC_386_GOTPC:
5306 case BFD_RELOC_386_TLS_GD:
5307 case BFD_RELOC_386_TLS_LDM:
5308 case BFD_RELOC_386_TLS_LDO_32:
5309 case BFD_RELOC_386_TLS_IE_32:
5310 case BFD_RELOC_386_TLS_IE:
5311 case BFD_RELOC_386_TLS_GOTIE:
5312 case BFD_RELOC_386_TLS_LE_32:
5313 case BFD_RELOC_386_TLS_LE:
5314 case BFD_RELOC_X86_64_32S:
5315 case BFD_RELOC_X86_64_TLSGD:
5316 case BFD_RELOC_X86_64_TLSLD:
5317 case BFD_RELOC_X86_64_DTPOFF32:
5318 case BFD_RELOC_X86_64_GOTTPOFF:
5319 case BFD_RELOC_X86_64_TPOFF32:
5321 case BFD_RELOC_VTABLE_ENTRY:
5322 case BFD_RELOC_VTABLE_INHERIT:
5324 case BFD_RELOC_32_SECREL:
5326 code = fixp->fx_r_type;
5331 switch (fixp->fx_size)
5334 as_bad_where (fixp->fx_file, fixp->fx_line,
5335 _("can not do %d byte pc-relative relocation"),
5337 code = BFD_RELOC_32_PCREL;
5339 case 1: code = BFD_RELOC_8_PCREL; break;
5340 case 2: code = BFD_RELOC_16_PCREL; break;
5341 case 4: code = BFD_RELOC_32_PCREL; break;
5346 switch (fixp->fx_size)
5349 as_bad_where (fixp->fx_file, fixp->fx_line,
5350 _("can not do %d byte relocation"),
5352 code = BFD_RELOC_32;
5354 case 1: code = BFD_RELOC_8; break;
5355 case 2: code = BFD_RELOC_16; break;
5356 case 4: code = BFD_RELOC_32; break;
5358 case 8: code = BFD_RELOC_64; break;
5365 if (code == BFD_RELOC_32
5367 && fixp->fx_addsy == GOT_symbol)
5369 /* We don't support GOTPC on 64bit targets. */
5370 if (flag_code == CODE_64BIT)
5372 code = BFD_RELOC_386_GOTPC;
5375 rel = (arelent *) xmalloc (sizeof (arelent));
5376 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5377 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5379 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5382 if (S_IS_WEAK (fixp->fx_addsy))
5383 rel->addend = rel->address - (*rel->sym_ptr_ptr)->value + 4;
5386 if (!use_rela_relocations)
5388 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5389 vtable entry to be used in the relocation's section offset. */
5390 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5391 rel->address = fixp->fx_offset;
5395 /* Use the rela in 64bit mode. */
5398 if (!fixp->fx_pcrel)
5399 rel->addend = fixp->fx_offset;
5403 case BFD_RELOC_X86_64_PLT32:
5404 case BFD_RELOC_X86_64_GOT32:
5405 case BFD_RELOC_X86_64_GOTPCREL:
5406 case BFD_RELOC_X86_64_TLSGD:
5407 case BFD_RELOC_X86_64_TLSLD:
5408 case BFD_RELOC_X86_64_GOTTPOFF:
5409 rel->addend = fixp->fx_offset - fixp->fx_size;
5412 rel->addend = (section->vma
5414 + fixp->fx_addnumber
5415 + md_pcrel_from (fixp));
5420 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5421 if (rel->howto == NULL)
5423 as_bad_where (fixp->fx_file, fixp->fx_line,
5424 _("cannot represent relocation type %s"),
5425 bfd_get_reloc_code_name (code));
5426 /* Set howto to a garbage value so that we can keep going. */
5427 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5428 assert (rel->howto != NULL);
5435 /* Parse operands using Intel syntax. This implements a recursive descent
5436 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5439 FIXME: We do not recognize the full operand grammar defined in the MASM
5440 documentation. In particular, all the structure/union and
5441 high-level macro operands are missing.
5443 Uppercase words are terminals, lower case words are non-terminals.
5444 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5445 bars '|' denote choices. Most grammar productions are implemented in
5446 functions called 'intel_<production>'.
5448 Initial production is 'expr'.
5454 binOp & | AND | \| | OR | ^ | XOR
5456 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5458 constant digits [[ radixOverride ]]
5460 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5498 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5499 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5501 hexdigit a | b | c | d | e | f
5502 | A | B | C | D | E | F
5508 mulOp * | / | % | MOD | << | SHL | >> | SHR
5512 register specialRegister
5516 segmentRegister CS | DS | ES | FS | GS | SS
5518 specialRegister CR0 | CR2 | CR3 | CR4
5519 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5520 | TR3 | TR4 | TR5 | TR6 | TR7
5522 We simplify the grammar in obvious places (e.g., register parsing is
5523 done by calling parse_register) and eliminate immediate left recursion
5524 to implement a recursive-descent parser.
5574 /* Parsing structure for the intel syntax parser. Used to implement the
5575 semantic actions for the operand grammar. */
5576 struct intel_parser_s
5578 char *op_string; /* The string being parsed. */
5579 int got_a_float; /* Whether the operand is a float. */
5580 int op_modifier; /* Operand modifier. */
5581 int is_mem; /* 1 if operand is memory reference. */
5582 const reg_entry *reg; /* Last register reference found. */
5583 char *disp; /* Displacement string being built. */
5586 static struct intel_parser_s intel_parser;
5588 /* Token structure for parsing intel syntax. */
5591 int code; /* Token code. */
5592 const reg_entry *reg; /* Register entry for register tokens. */
5593 char *str; /* String representation. */
5596 static struct intel_token cur_token, prev_token;
5598 /* Token codes for the intel parser. Since T_SHORT is already used
5599 by COFF, undefine it first to prevent a warning. */
5618 /* Prototypes for intel parser functions. */
5619 static int intel_match_token PARAMS ((int code));
5620 static void intel_get_token PARAMS ((void));
5621 static void intel_putback_token PARAMS ((void));
5622 static int intel_expr PARAMS ((void));
5623 static int intel_e04 PARAMS ((void));
5624 static int intel_e04_1 PARAMS ((void));
5625 static int intel_e05 PARAMS ((void));
5626 static int intel_e05_1 PARAMS ((void));
5627 static int intel_e06 PARAMS ((void));
5628 static int intel_e06_1 PARAMS ((void));
5629 static int intel_e09 PARAMS ((void));
5630 static int intel_e09_1 PARAMS ((void));
5631 static int intel_e10 PARAMS ((void));
5632 static int intel_e10_1 PARAMS ((void));
5633 static int intel_e11 PARAMS ((void));
5636 i386_intel_operand (operand_string, got_a_float)
5637 char *operand_string;
5643 /* Initialize token holders. */
5644 cur_token.code = prev_token.code = T_NIL;
5645 cur_token.reg = prev_token.reg = NULL;
5646 cur_token.str = prev_token.str = NULL;
5648 /* Initialize parser structure. */
5649 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5652 strcpy (intel_parser.op_string, operand_string);
5653 intel_parser.got_a_float = got_a_float;
5654 intel_parser.op_modifier = -1;
5655 intel_parser.is_mem = 0;
5656 intel_parser.reg = NULL;
5657 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5658 if (intel_parser.disp == NULL)
5660 intel_parser.disp[0] = '\0';
5662 /* Read the first token and start the parser. */
5664 ret = intel_expr ();
5668 if (cur_token.code != T_NIL)
5670 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5671 current_templates->start->name, cur_token.str);
5674 /* If we found a memory reference, hand it over to i386_displacement
5675 to fill in the rest of the operand fields. */
5676 else if (intel_parser.is_mem)
5678 if ((i.mem_operands == 1
5679 && (current_templates->start->opcode_modifier & IsString) == 0)
5680 || i.mem_operands == 2)
5682 as_bad (_("too many memory references for '%s'"),
5683 current_templates->start->name);
5688 char *s = intel_parser.disp;
5691 /* Add the displacement expression. */
5693 ret = i386_displacement (s, s + strlen (s));
5695 ret = i386_index_check (operand_string);
5699 /* Constant and OFFSET expressions are handled by i386_immediate. */
5700 else if (intel_parser.op_modifier == T_OFFSET
5701 || intel_parser.reg == NULL)
5702 ret = i386_immediate (intel_parser.disp);
5706 free (intel_parser.disp);
5716 /* expr SHORT e04 */
5717 if (cur_token.code == T_SHORT)
5719 intel_parser.op_modifier = T_SHORT;
5720 intel_match_token (T_SHORT);
5722 return (intel_e04 ());
5727 return intel_e04 ();
5737 return (intel_e05 () && intel_e04_1 ());
5743 /* e04' addOp e05 e04' */
5744 if (cur_token.code == '+' || cur_token.code == '-')
5748 str[0] = cur_token.code;
5750 strcat (intel_parser.disp, str);
5751 intel_match_token (cur_token.code);
5753 return (intel_e05 () && intel_e04_1 ());
5768 return (intel_e06 () && intel_e05_1 ());
5774 /* e05' binOp e06 e05' */
5775 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5779 str[0] = cur_token.code;
5781 strcat (intel_parser.disp, str);
5782 intel_match_token (cur_token.code);
5784 return (intel_e06 () && intel_e05_1 ());
5799 return (intel_e09 () && intel_e06_1 ());
5805 /* e06' mulOp e09 e06' */
5806 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5810 str[0] = cur_token.code;
5812 strcat (intel_parser.disp, str);
5813 intel_match_token (cur_token.code);
5815 return (intel_e09 () && intel_e06_1 ());
5817 else if (cur_token.code == T_SHL)
5819 strcat (intel_parser.disp, "<<");
5820 intel_match_token (cur_token.code);
5822 return (intel_e09 () && intel_e06_1 ());
5824 else if (cur_token.code == T_SHR)
5826 strcat (intel_parser.disp, ">>");
5827 intel_match_token (cur_token.code);
5829 return (intel_e09 () && intel_e06_1 ());
5837 /* e09 OFFSET e10 e09'
5850 /* e09 OFFSET e10 e09' */
5851 if (cur_token.code == T_OFFSET)
5853 intel_parser.is_mem = 0;
5854 intel_parser.op_modifier = T_OFFSET;
5855 intel_match_token (T_OFFSET);
5857 return (intel_e10 () && intel_e09_1 ());
5860 /* e09 NOT e10 e09' */
5861 else if (cur_token.code == '~')
5865 str[0] = cur_token.code;
5867 strcat (intel_parser.disp, str);
5868 intel_match_token (cur_token.code);
5870 return (intel_e10 () && intel_e09_1 ());
5875 return (intel_e10 () && intel_e09_1 ());
5881 /* e09' PTR e10 e09' */
5882 if (cur_token.code == T_PTR)
5886 if (prev_token.code == T_BYTE)
5887 suffix = BYTE_MNEM_SUFFIX;
5889 else if (prev_token.code == T_WORD)
5891 if (current_templates->start->name[0] == 'l'
5892 && current_templates->start->name[2] == 's'
5893 && current_templates->start->name[3] == 0)
5894 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5895 else if (intel_parser.got_a_float == 2) /* "fi..." */
5896 suffix = SHORT_MNEM_SUFFIX;
5898 suffix = WORD_MNEM_SUFFIX;
5901 else if (prev_token.code == T_DWORD)
5903 if (current_templates->start->name[0] == 'l'
5904 && current_templates->start->name[2] == 's'
5905 && current_templates->start->name[3] == 0)
5906 suffix = WORD_MNEM_SUFFIX;
5907 else if (flag_code == CODE_16BIT
5908 && (current_templates->start->opcode_modifier
5909 & (Jump|JumpDword|JumpInterSegment)))
5910 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5911 else if (intel_parser.got_a_float == 1) /* "f..." */
5912 suffix = SHORT_MNEM_SUFFIX;
5914 suffix = LONG_MNEM_SUFFIX;
5917 else if (prev_token.code == T_FWORD)
5919 if (current_templates->start->name[0] == 'l'
5920 && current_templates->start->name[2] == 's'
5921 && current_templates->start->name[3] == 0)
5922 suffix = LONG_MNEM_SUFFIX;
5923 else if (!intel_parser.got_a_float)
5925 if (flag_code == CODE_16BIT)
5926 add_prefix (DATA_PREFIX_OPCODE);
5927 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5930 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5933 else if (prev_token.code == T_QWORD)
5935 if (intel_parser.got_a_float == 1) /* "f..." */
5936 suffix = LONG_MNEM_SUFFIX;
5938 suffix = QWORD_MNEM_SUFFIX;
5941 else if (prev_token.code == T_TBYTE)
5943 if (intel_parser.got_a_float == 1)
5944 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5946 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5949 else if (prev_token.code == T_XMMWORD)
5951 /* XXX ignored for now, but accepted since gcc uses it */
5957 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
5961 if (current_templates->start->base_opcode == 0x8d /* lea */)
5965 else if (i.suffix != suffix)
5967 as_bad (_("Conflicting operand modifiers"));
5971 intel_match_token (T_PTR);
5973 return (intel_e10 () && intel_e09_1 ());
5976 /* e09 : e10 e09' */
5977 else if (cur_token.code == ':')
5979 /* Mark as a memory operand only if it's not already known to be an
5980 offset expression. */
5981 if (intel_parser.op_modifier != T_OFFSET)
5982 intel_parser.is_mem = 1;
5984 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5999 return (intel_e11 () && intel_e10_1 ());
6005 /* e10' [ expr ] e10' */
6006 if (cur_token.code == '[')
6008 intel_match_token ('[');
6010 /* Mark as a memory operand only if it's not already known to be an
6011 offset expression. If it's an offset expression, we need to keep
6013 if (intel_parser.op_modifier != T_OFFSET)
6014 intel_parser.is_mem = 1;
6016 strcat (intel_parser.disp, "[");
6018 /* Add a '+' to the displacement string if necessary. */
6019 if (*intel_parser.disp != '\0'
6020 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6021 strcat (intel_parser.disp, "+");
6023 if (intel_expr () && intel_match_token (']'))
6025 /* Preserve brackets when the operand is an offset expression. */
6026 if (intel_parser.op_modifier == T_OFFSET)
6027 strcat (intel_parser.disp, "]");
6029 return intel_e10_1 ();
6059 if (cur_token.code == '(')
6061 intel_match_token ('(');
6062 strcat (intel_parser.disp, "(");
6064 if (intel_expr () && intel_match_token (')'))
6066 strcat (intel_parser.disp, ")");
6074 else if (cur_token.code == '[')
6076 intel_match_token ('[');
6078 /* Mark as a memory operand only if it's not already known to be an
6079 offset expression. If it's an offset expression, we need to keep
6081 if (intel_parser.op_modifier != T_OFFSET)
6082 intel_parser.is_mem = 1;
6084 strcat (intel_parser.disp, "[");
6086 /* Operands for jump/call inside brackets denote absolute addresses. */
6087 if (current_templates->start->opcode_modifier
6088 & (Jump|JumpDword|JumpByte|JumpInterSegment))
6089 i.types[this_operand] |= JumpAbsolute;
6091 /* Add a '+' to the displacement string if necessary. */
6092 if (*intel_parser.disp != '\0'
6093 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6094 strcat (intel_parser.disp, "+");
6096 if (intel_expr () && intel_match_token (']'))
6098 /* Preserve brackets when the operand is an offset expression. */
6099 if (intel_parser.op_modifier == T_OFFSET)
6100 strcat (intel_parser.disp, "]");
6116 else if (cur_token.code == T_BYTE
6117 || cur_token.code == T_WORD
6118 || cur_token.code == T_DWORD
6119 || cur_token.code == T_FWORD
6120 || cur_token.code == T_QWORD
6121 || cur_token.code == T_TBYTE
6122 || cur_token.code == T_XMMWORD)
6124 intel_match_token (cur_token.code);
6131 else if (cur_token.code == '.')
6133 strcat (intel_parser.disp, cur_token.str);
6134 intel_match_token (cur_token.code);
6136 /* Mark as a memory operand only if it's not already known to be an
6137 offset expression. */
6138 if (intel_parser.op_modifier != T_OFFSET)
6139 intel_parser.is_mem = 1;
6145 else if (cur_token.code == T_REG)
6147 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6149 intel_match_token (T_REG);
6151 /* Check for segment change. */
6152 if (cur_token.code == ':')
6154 if (reg->reg_type & (SReg2 | SReg3))
6156 switch (reg->reg_num)
6159 i.seg[i.mem_operands] = &es;
6162 i.seg[i.mem_operands] = &cs;
6165 i.seg[i.mem_operands] = &ss;
6168 i.seg[i.mem_operands] = &ds;
6171 i.seg[i.mem_operands] = &fs;
6174 i.seg[i.mem_operands] = &gs;
6180 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6185 /* Not a segment register. Check for register scaling. */
6186 else if (cur_token.code == '*')
6188 if (!intel_parser.is_mem)
6190 as_bad (_("Register scaling only allowed in memory operands."));
6194 /* What follows must be a valid scale. */
6195 if (intel_match_token ('*')
6196 && strchr ("01248", *cur_token.str))
6199 i.types[this_operand] |= BaseIndex;
6201 /* Set the scale after setting the register (otherwise,
6202 i386_scale will complain) */
6203 i386_scale (cur_token.str);
6204 intel_match_token (T_CONST);
6208 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6214 /* No scaling. If this is a memory operand, the register is either a
6215 base register (first occurrence) or an index register (second
6217 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6219 if (i.base_reg && i.index_reg)
6221 as_bad (_("Too many register references in memory operand."));
6225 if (i.base_reg == NULL)
6230 i.types[this_operand] |= BaseIndex;
6233 /* Offset modifier. Add the register to the displacement string to be
6234 parsed as an immediate expression after we're done. */
6235 else if (intel_parser.op_modifier == T_OFFSET)
6236 strcat (intel_parser.disp, reg->reg_name);
6238 /* It's neither base nor index nor offset. */
6241 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6242 i.op[this_operand].regs = reg;
6246 /* Since registers are not part of the displacement string (except
6247 when we're parsing offset operands), we may need to remove any
6248 preceding '+' from the displacement string. */
6249 if (*intel_parser.disp != '\0'
6250 && intel_parser.op_modifier != T_OFFSET)
6252 char *s = intel_parser.disp;
6253 s += strlen (s) - 1;
6262 else if (cur_token.code == T_ID)
6264 /* Add the identifier to the displacement string. */
6265 strcat (intel_parser.disp, cur_token.str);
6267 /* The identifier represents a memory reference only if it's not
6268 preceded by an offset modifier and if it's not an equate. */
6269 if (intel_parser.op_modifier != T_OFFSET)
6273 symbolP = symbol_find(cur_token.str);
6274 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6275 intel_parser.is_mem = 1;
6278 intel_match_token (T_ID);
6283 else if (cur_token.code == T_CONST
6284 || cur_token.code == '-'
6285 || cur_token.code == '+')
6289 /* Allow constants that start with `+' or `-'. */
6290 if (cur_token.code == '-' || cur_token.code == '+')
6292 strcat (intel_parser.disp, cur_token.str);
6293 intel_match_token (cur_token.code);
6294 if (cur_token.code != T_CONST)
6296 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
6302 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6303 if (save_str == NULL)
6305 strcpy (save_str, cur_token.str);
6307 /* Get the next token to check for register scaling. */
6308 intel_match_token (cur_token.code);
6310 /* Check if this constant is a scaling factor for an index register. */
6311 if (cur_token.code == '*')
6313 if (intel_match_token ('*') && cur_token.code == T_REG)
6315 if (!intel_parser.is_mem)
6317 as_bad (_("Register scaling only allowed in memory operands."));
6321 /* The constant is followed by `* reg', so it must be
6323 if (strchr ("01248", *save_str))
6325 i.index_reg = cur_token.reg;
6326 i.types[this_operand] |= BaseIndex;
6328 /* Set the scale after setting the register (otherwise,
6329 i386_scale will complain) */
6330 i386_scale (save_str);
6331 intel_match_token (T_REG);
6333 /* Since registers are not part of the displacement
6334 string, we may need to remove any preceding '+' from
6335 the displacement string. */
6336 if (*intel_parser.disp != '\0')
6338 char *s = intel_parser.disp;
6339 s += strlen (s) - 1;
6352 /* The constant was not used for register scaling. Since we have
6353 already consumed the token following `*' we now need to put it
6354 back in the stream. */
6356 intel_putback_token ();
6359 /* Add the constant to the displacement string. */
6360 strcat (intel_parser.disp, save_str);
6366 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6370 /* Match the given token against cur_token. If they match, read the next
6371 token from the operand string. */
6373 intel_match_token (code)
6376 if (cur_token.code == code)
6383 as_bad (_("Unexpected token `%s'"), cur_token.str);
6388 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6393 const reg_entry *reg;
6394 struct intel_token new_token;
6396 new_token.code = T_NIL;
6397 new_token.reg = NULL;
6398 new_token.str = NULL;
6400 /* Free the memory allocated to the previous token and move
6401 cur_token to prev_token. */
6403 free (prev_token.str);
6405 prev_token = cur_token;
6407 /* Skip whitespace. */
6408 while (is_space_char (*intel_parser.op_string))
6409 intel_parser.op_string++;
6411 /* Return an empty token if we find nothing else on the line. */
6412 if (*intel_parser.op_string == '\0')
6414 cur_token = new_token;
6418 /* The new token cannot be larger than the remainder of the operand
6420 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6421 if (new_token.str == NULL)
6423 new_token.str[0] = '\0';
6425 if (strchr ("0123456789", *intel_parser.op_string))
6427 char *p = new_token.str;
6428 char *q = intel_parser.op_string;
6429 new_token.code = T_CONST;
6431 /* Allow any kind of identifier char to encompass floating point and
6432 hexadecimal numbers. */
6433 while (is_identifier_char (*q))
6437 /* Recognize special symbol names [0-9][bf]. */
6438 if (strlen (intel_parser.op_string) == 2
6439 && (intel_parser.op_string[1] == 'b'
6440 || intel_parser.op_string[1] == 'f'))
6441 new_token.code = T_ID;
6444 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6445 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6447 new_token.code = T_REG;
6448 new_token.reg = reg;
6450 if (*intel_parser.op_string == REGISTER_PREFIX)
6452 new_token.str[0] = REGISTER_PREFIX;
6453 new_token.str[1] = '\0';
6456 strcat (new_token.str, reg->reg_name);
6459 else if (is_identifier_char (*intel_parser.op_string))
6461 char *p = new_token.str;
6462 char *q = intel_parser.op_string;
6464 /* A '.' or '$' followed by an identifier char is an identifier.
6465 Otherwise, it's operator '.' followed by an expression. */
6466 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6468 new_token.code = '.';
6469 new_token.str[0] = '.';
6470 new_token.str[1] = '\0';
6474 while (is_identifier_char (*q) || *q == '@')
6478 if (strcasecmp (new_token.str, "NOT") == 0)
6479 new_token.code = '~';
6481 else if (strcasecmp (new_token.str, "MOD") == 0)
6482 new_token.code = '%';
6484 else if (strcasecmp (new_token.str, "AND") == 0)
6485 new_token.code = '&';
6487 else if (strcasecmp (new_token.str, "OR") == 0)
6488 new_token.code = '|';
6490 else if (strcasecmp (new_token.str, "XOR") == 0)
6491 new_token.code = '^';
6493 else if (strcasecmp (new_token.str, "SHL") == 0)
6494 new_token.code = T_SHL;
6496 else if (strcasecmp (new_token.str, "SHR") == 0)
6497 new_token.code = T_SHR;
6499 else if (strcasecmp (new_token.str, "BYTE") == 0)
6500 new_token.code = T_BYTE;
6502 else if (strcasecmp (new_token.str, "WORD") == 0)
6503 new_token.code = T_WORD;
6505 else if (strcasecmp (new_token.str, "DWORD") == 0)
6506 new_token.code = T_DWORD;
6508 else if (strcasecmp (new_token.str, "FWORD") == 0)
6509 new_token.code = T_FWORD;
6511 else if (strcasecmp (new_token.str, "QWORD") == 0)
6512 new_token.code = T_QWORD;
6514 else if (strcasecmp (new_token.str, "TBYTE") == 0
6515 /* XXX remove (gcc still uses it) */
6516 || strcasecmp (new_token.str, "XWORD") == 0)
6517 new_token.code = T_TBYTE;
6519 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6520 || strcasecmp (new_token.str, "OWORD") == 0)
6521 new_token.code = T_XMMWORD;
6523 else if (strcasecmp (new_token.str, "PTR") == 0)
6524 new_token.code = T_PTR;
6526 else if (strcasecmp (new_token.str, "SHORT") == 0)
6527 new_token.code = T_SHORT;
6529 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6531 new_token.code = T_OFFSET;
6533 /* ??? This is not mentioned in the MASM grammar but gcc
6534 makes use of it with -mintel-syntax. OFFSET may be
6535 followed by FLAT: */
6536 if (strncasecmp (q, " FLAT:", 6) == 0)
6537 strcat (new_token.str, " FLAT:");
6540 /* ??? This is not mentioned in the MASM grammar. */
6541 else if (strcasecmp (new_token.str, "FLAT") == 0)
6542 new_token.code = T_OFFSET;
6545 new_token.code = T_ID;
6549 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6551 new_token.code = *intel_parser.op_string;
6552 new_token.str[0] = *intel_parser.op_string;
6553 new_token.str[1] = '\0';
6556 else if (strchr ("<>", *intel_parser.op_string)
6557 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6559 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6560 new_token.str[0] = *intel_parser.op_string;
6561 new_token.str[1] = *intel_parser.op_string;
6562 new_token.str[2] = '\0';
6566 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6568 intel_parser.op_string += strlen (new_token.str);
6569 cur_token = new_token;
6572 /* Put cur_token back into the token stream and make cur_token point to
6575 intel_putback_token ()
6577 intel_parser.op_string -= strlen (cur_token.str);
6578 free (cur_token.str);
6579 cur_token = prev_token;
6581 /* Forget prev_token. */
6582 prev_token.code = T_NIL;
6583 prev_token.reg = NULL;
6584 prev_token.str = NULL;
6588 tc_x86_regname_to_dw2regnum (const char *regname)
6590 unsigned int regnum;
6591 unsigned int regnames_count;
6592 char *regnames_32[] =
6594 "eax", "ecx", "edx", "ebx",
6595 "esp", "ebp", "esi", "edi",
6598 char *regnames_64[] =
6600 "rax", "rbx", "rcx", "rdx",
6601 "rdi", "rsi", "rbp", "rsp",
6602 "r8", "r9", "r10", "r11",
6603 "r12", "r13", "r14", "r15",
6608 if (flag_code == CODE_64BIT)
6610 regnames = regnames_64;
6611 regnames_count = ARRAY_SIZE (regnames_64);
6615 regnames = regnames_32;
6616 regnames_count = ARRAY_SIZE (regnames_32);
6619 for (regnum = 0; regnum < regnames_count; regnum++)
6620 if (strcmp (regname, regnames[regnum]) == 0)
6627 tc_x86_frame_initial_instructions (void)
6629 static unsigned int sp_regno;
6632 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6635 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6636 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6640 i386_elf_section_type (const char *str, size_t len)
6642 if (flag_code == CODE_64BIT
6643 && len == sizeof ("unwind") - 1
6644 && strncmp (str, "unwind", 6) == 0)
6645 return SHT_X86_64_UNWIND;
6652 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6656 expr.X_op = O_secrel;
6657 expr.X_add_symbol = symbol;
6658 expr.X_add_number = 0;
6659 emit_expr (&expr, size);