1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
30 #include "safe-ctype.h"
32 #include "dwarf2dbg.h"
33 #include "opcode/i386.h"
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
52 #define RELOC_ENUM enum bfd_reloc_code_real
54 #define RELOC_ENUM int
58 #define DEFAULT_ARCH "i386"
63 #define INLINE __inline__
69 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
70 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
73 static INLINE int fits_in_signed_word PARAMS ((offsetT));
74 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
75 static INLINE int fits_in_signed_long PARAMS ((offsetT));
76 static int smallest_imm_type PARAMS ((offsetT));
77 static offsetT offset_in_range PARAMS ((offsetT, int));
78 static int add_prefix PARAMS ((unsigned int));
79 static void set_code_flag PARAMS ((int));
80 static void set_16bit_gcc_code_flag PARAMS ((int));
81 static void set_intel_syntax PARAMS ((int));
82 static void set_cpu_arch PARAMS ((int));
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
112 static void s_bss PARAMS ((int));
115 static const char *default_arch = DEFAULT_ARCH;
117 /* 'md_assemble ()' gathers together information and puts it into a
124 const reg_entry *regs;
129 /* TM holds the template for the insn were currently assembling. */
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
148 /* Displacement expression, immediate expression, or register for each
150 union i386_op op[MAX_OPERANDS];
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
156 /* Relocation type for operand */
157 RELOC_ENUM reloc[MAX_OPERANDS];
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
182 typedef struct _i386_insn i386_insn;
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
187 const char extra_symbol_chars[] = "*%-(@[";
189 const char extra_symbol_chars[] = "*%-([";
192 #if (defined (TE_I386AIX) \
193 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
194 && !defined (TE_LINUX) \
195 && !defined (TE_FreeBSD) \
196 && !defined (TE_NetBSD)))
197 /* This array holds the chars that always start a comment. If the
198 pre-processor is disabled, these aren't very useful. */
199 const char comment_chars[] = "#/";
200 #define PREFIX_SEPARATOR '\\'
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "";
213 /* Putting '/' here makes it impossible to use the divide operator.
214 However, we need it for compatibility with SVR4 systems. */
215 const char comment_chars[] = "#";
216 #define PREFIX_SEPARATOR '/'
218 const char line_comment_chars[] = "/";
221 const char line_separator_chars[] = ";";
223 /* Chars that can be used to separate mant from exp in floating point
225 const char EXP_CHARS[] = "eE";
227 /* Chars that mean this number is a floating point constant
230 const char FLT_CHARS[] = "fFdDxX";
232 /* Tables for lexical analysis. */
233 static char mnemonic_chars[256];
234 static char register_chars[256];
235 static char operand_chars[256];
236 static char identifier_chars[256];
237 static char digit_chars[256];
239 /* Lexical macros. */
240 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
241 #define is_operand_char(x) (operand_chars[(unsigned char) x])
242 #define is_register_char(x) (register_chars[(unsigned char) x])
243 #define is_space_char(x) ((x) == ' ')
244 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
245 #define is_digit_char(x) (digit_chars[(unsigned char) x])
247 /* All non-digit non-letter charcters that may occur in an operand. */
248 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
250 /* md_assemble() always leaves the strings it's passed unaltered. To
251 effect this we maintain a stack of saved characters that we've smashed
252 with '\0's (indicating end of strings for various sub-fields of the
253 assembler instruction). */
254 static char save_stack[32];
255 static char *save_stack_p;
256 #define END_STRING_AND_SAVE(s) \
257 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
258 #define RESTORE_END_STRING(s) \
259 do { *(s) = *--save_stack_p; } while (0)
261 /* The instruction we're assembling. */
264 /* Possible templates for current insn. */
265 static const templates *current_templates;
267 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
268 static expressionS disp_expressions[2], im_expressions[2];
270 /* Current operand we are working on. */
271 static int this_operand;
273 /* We support four different modes. FLAG_CODE variable is used to distinguish
280 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
282 static enum flag_code flag_code;
283 static int use_rela_relocations = 0;
285 /* The names used to print error messages. */
286 static const char *flag_code_names[] =
293 /* 1 for intel syntax,
295 static int intel_syntax = 0;
297 /* 1 if register prefix % not required. */
298 static int allow_naked_reg = 0;
300 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
301 leave, push, and pop instructions so that gcc has the same stack
302 frame as in 32 bit mode. */
303 static char stackop_size = '\0';
305 /* Non-zero to quieten some warnings. */
306 static int quiet_warnings = 0;
309 static const char *cpu_arch_name = NULL;
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
314 /* If set, conditional jumps are not automatically promoted to handle
315 larger than a byte offset. */
316 static unsigned int no_cond_jump_promotion = 0;
318 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
321 /* Interface to relax_segment.
322 There are 3 major relax states for 386 jump insns because the
323 different types of jumps add different sizes to frags when we're
324 figuring out what sort of jump to choose to reach a given label. */
327 #define UNCOND_JUMP 0
329 #define COND_JUMP86 2
334 #define SMALL16 (SMALL | CODE16)
336 #define BIG16 (BIG | CODE16)
340 #define INLINE __inline__
346 #define ENCODE_RELAX_STATE(type, size) \
347 ((relax_substateT) (((type) << 2) | (size)))
348 #define TYPE_FROM_RELAX_STATE(s) \
350 #define DISP_SIZE_FROM_RELAX_STATE(s) \
351 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
353 /* This table is used by relax_frag to promote short jumps to long
354 ones where necessary. SMALL (short) jumps may be promoted to BIG
355 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
356 don't allow a short jump in a 32 bit code segment to be promoted to
357 a 16 bit offset jump because it's slower (requires data size
358 prefix), and doesn't work, unless the destination is in the bottom
359 64k of the code segment (The top 16 bits of eip are zeroed). */
361 const relax_typeS md_relax_table[] =
364 1) most positive reach of this state,
365 2) most negative reach of this state,
366 3) how many bytes this mode will have in the variable part of the frag
367 4) which index into the table to try if we can't fit into this one. */
369 /* UNCOND_JUMP states. */
370 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
371 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
372 /* dword jmp adds 4 bytes to frag:
373 0 extra opcode bytes, 4 displacement bytes. */
375 /* word jmp adds 2 byte2 to frag:
376 0 extra opcode bytes, 2 displacement bytes. */
379 /* COND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
382 /* dword conditionals adds 5 bytes to frag:
383 1 extra opcode byte, 4 displacement bytes. */
385 /* word conditionals add 3 bytes to frag:
386 1 extra opcode byte, 2 displacement bytes. */
389 /* COND_JUMP86 states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
395 /* word conditionals add 4 bytes to frag:
396 1 displacement byte and a 3 byte long branch insn. */
400 static const arch_entry cpu_arch[] = {
402 {"i186", Cpu086|Cpu186 },
403 {"i286", Cpu086|Cpu186|Cpu286 },
404 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
405 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
406 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
407 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
408 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
409 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
410 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
411 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
412 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
413 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
417 const pseudo_typeS md_pseudo_table[] =
419 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
420 {"align", s_align_bytes, 0},
422 {"align", s_align_ptwo, 0},
424 {"arch", set_cpu_arch, 0},
428 {"ffloat", float_cons, 'f'},
429 {"dfloat", float_cons, 'd'},
430 {"tfloat", float_cons, 'x'},
432 {"noopt", s_ignore, 0},
433 {"optim", s_ignore, 0},
434 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
435 {"code16", set_code_flag, CODE_16BIT},
436 {"code32", set_code_flag, CODE_32BIT},
437 {"code64", set_code_flag, CODE_64BIT},
438 {"intel_syntax", set_intel_syntax, 1},
439 {"att_syntax", set_intel_syntax, 0},
440 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
441 {"loc", dwarf2_directive_loc, 0},
445 /* For interface with expression (). */
446 extern char *input_line_pointer;
448 /* Hash table for instruction mnemonic lookup. */
449 static struct hash_control *op_hash;
451 /* Hash table for register lookup. */
452 static struct hash_control *reg_hash;
455 i386_align_code (fragP, count)
459 /* Various efficient no-op patterns for aligning code labels.
460 Note: Don't try to assemble the instructions in the comments.
461 0L and 0w are not legal. */
462 static const char f32_1[] =
464 static const char f32_2[] =
465 {0x89,0xf6}; /* movl %esi,%esi */
466 static const char f32_3[] =
467 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
468 static const char f32_4[] =
469 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
470 static const char f32_5[] =
472 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
473 static const char f32_6[] =
474 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
475 static const char f32_7[] =
476 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
477 static const char f32_8[] =
479 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
480 static const char f32_9[] =
481 {0x89,0xf6, /* movl %esi,%esi */
482 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
483 static const char f32_10[] =
484 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
485 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
486 static const char f32_11[] =
487 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
488 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
489 static const char f32_12[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
491 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
492 static const char f32_13[] =
493 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
494 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
495 static const char f32_14[] =
496 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
497 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
498 static const char f32_15[] =
499 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
500 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
501 static const char f16_3[] =
502 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
503 static const char f16_4[] =
504 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
505 static const char f16_5[] =
507 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
508 static const char f16_6[] =
509 {0x89,0xf6, /* mov %si,%si */
510 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
511 static const char f16_7[] =
512 {0x8d,0x74,0x00, /* lea 0(%si),%si */
513 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
514 static const char f16_8[] =
515 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
516 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
517 static const char *const f32_patt[] = {
518 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
519 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
521 static const char *const f16_patt[] = {
522 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
523 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
526 if (count <= 0 || count > 15)
529 /* The recommended way to pad 64bit code is to use NOPs preceded by
530 maximally four 0x66 prefixes. Balance the size of nops. */
531 if (flag_code == CODE_64BIT)
534 int nnops = (count + 3) / 4;
535 int len = count / nnops;
536 int remains = count - nnops * len;
539 for (i = 0; i < remains; i++)
541 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
542 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
545 for (; i < nnops; i++)
547 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
548 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
553 if (flag_code == CODE_16BIT)
555 memcpy (fragP->fr_literal + fragP->fr_fix,
556 f16_patt[count - 1], count);
558 /* Adjust jump offset. */
559 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
562 memcpy (fragP->fr_literal + fragP->fr_fix,
563 f32_patt[count - 1], count);
564 fragP->fr_var = count;
567 static INLINE unsigned int
568 mode_from_disp_size (t)
571 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
575 fits_in_signed_byte (num)
578 return (num >= -128) && (num <= 127);
582 fits_in_unsigned_byte (num)
585 return (num & 0xff) == num;
589 fits_in_unsigned_word (num)
592 return (num & 0xffff) == num;
596 fits_in_signed_word (num)
599 return (-32768 <= num) && (num <= 32767);
602 fits_in_signed_long (num)
603 offsetT num ATTRIBUTE_UNUSED;
608 return (!(((offsetT) -1 << 31) & num)
609 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
611 } /* fits_in_signed_long() */
613 fits_in_unsigned_long (num)
614 offsetT num ATTRIBUTE_UNUSED;
619 return (num & (((offsetT) 2 << 31) - 1)) == num;
621 } /* fits_in_unsigned_long() */
624 smallest_imm_type (num)
627 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
629 /* This code is disabled on the 486 because all the Imm1 forms
630 in the opcode table are slower on the i486. They're the
631 versions with the implicitly specified single-position
632 displacement, which has another syntax if you really want to
635 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
637 return (fits_in_signed_byte (num)
638 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
639 : fits_in_unsigned_byte (num)
640 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
641 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
642 ? (Imm16 | Imm32 | Imm32S | Imm64)
643 : fits_in_signed_long (num)
644 ? (Imm32 | Imm32S | Imm64)
645 : fits_in_unsigned_long (num)
651 offset_in_range (val, size)
659 case 1: mask = ((addressT) 1 << 8) - 1; break;
660 case 2: mask = ((addressT) 1 << 16) - 1; break;
661 case 4: mask = ((addressT) 2 << 31) - 1; break;
663 case 8: mask = ((addressT) 2 << 63) - 1; break;
668 /* If BFD64, sign extend val. */
669 if (!use_rela_relocations)
670 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
671 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
673 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
675 char buf1[40], buf2[40];
677 sprint_value (buf1, val);
678 sprint_value (buf2, val & mask);
679 as_warn (_("%s shortened to %s"), buf1, buf2);
684 /* Returns 0 if attempting to add a prefix where one from the same
685 class already exists, 1 if non rep/repne added, 2 if rep/repne
694 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
695 && flag_code == CODE_64BIT)
703 case CS_PREFIX_OPCODE:
704 case DS_PREFIX_OPCODE:
705 case ES_PREFIX_OPCODE:
706 case FS_PREFIX_OPCODE:
707 case GS_PREFIX_OPCODE:
708 case SS_PREFIX_OPCODE:
712 case REPNE_PREFIX_OPCODE:
713 case REPE_PREFIX_OPCODE:
716 case LOCK_PREFIX_OPCODE:
724 case ADDR_PREFIX_OPCODE:
728 case DATA_PREFIX_OPCODE:
733 if (i.prefix[q] != 0)
735 as_bad (_("same type of prefix used twice"));
740 i.prefix[q] = prefix;
745 set_code_flag (value)
749 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
750 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
751 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
753 as_bad (_("64bit mode not supported on this CPU."));
755 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
757 as_bad (_("32bit mode not supported on this CPU."));
763 set_16bit_gcc_code_flag (new_code_flag)
766 flag_code = new_code_flag;
767 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
768 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
773 set_intel_syntax (syntax_flag)
776 /* Find out if register prefixing is specified. */
777 int ask_naked_reg = 0;
780 if (!is_end_of_line[(unsigned char) *input_line_pointer])
782 char *string = input_line_pointer;
783 int e = get_symbol_end ();
785 if (strcmp (string, "prefix") == 0)
787 else if (strcmp (string, "noprefix") == 0)
790 as_bad (_("bad argument to syntax directive."));
791 *input_line_pointer = e;
793 demand_empty_rest_of_line ();
795 intel_syntax = syntax_flag;
797 if (ask_naked_reg == 0)
800 allow_naked_reg = (intel_syntax
801 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
803 /* Conservative default. */
808 allow_naked_reg = (ask_naked_reg < 0);
813 int dummy ATTRIBUTE_UNUSED;
817 if (!is_end_of_line[(unsigned char) *input_line_pointer])
819 char *string = input_line_pointer;
820 int e = get_symbol_end ();
823 for (i = 0; cpu_arch[i].name; i++)
825 if (strcmp (string, cpu_arch[i].name) == 0)
827 cpu_arch_name = cpu_arch[i].name;
828 cpu_arch_flags = (cpu_arch[i].flags
829 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
833 if (!cpu_arch[i].name)
834 as_bad (_("no such architecture: `%s'"), string);
836 *input_line_pointer = e;
839 as_bad (_("missing cpu architecture"));
841 no_cond_jump_promotion = 0;
842 if (*input_line_pointer == ','
843 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
845 char *string = ++input_line_pointer;
846 int e = get_symbol_end ();
848 if (strcmp (string, "nojumps") == 0)
849 no_cond_jump_promotion = 1;
850 else if (strcmp (string, "jumps") == 0)
853 as_bad (_("no such architecture modifier: `%s'"), string);
855 *input_line_pointer = e;
858 demand_empty_rest_of_line ();
865 if (!strcmp (default_arch, "x86_64"))
866 return bfd_mach_x86_64;
867 else if (!strcmp (default_arch, "i386"))
868 return bfd_mach_i386_i386;
870 as_fatal (_("Unknown architecture"));
877 const char *hash_err;
879 /* Initialize op_hash hash table. */
880 op_hash = hash_new ();
883 const template *optab;
884 templates *core_optab;
886 /* Setup for loop. */
888 core_optab = (templates *) xmalloc (sizeof (templates));
889 core_optab->start = optab;
894 if (optab->name == NULL
895 || strcmp (optab->name, (optab - 1)->name) != 0)
897 /* different name --> ship out current template list;
898 add to hash table; & begin anew. */
899 core_optab->end = optab;
900 hash_err = hash_insert (op_hash,
905 as_fatal (_("Internal Error: Can't hash %s: %s"),
909 if (optab->name == NULL)
911 core_optab = (templates *) xmalloc (sizeof (templates));
912 core_optab->start = optab;
917 /* Initialize reg_hash hash table. */
918 reg_hash = hash_new ();
920 const reg_entry *regtab;
922 for (regtab = i386_regtab;
923 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
926 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
928 as_fatal (_("Internal Error: Can't hash %s: %s"),
934 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
939 for (c = 0; c < 256; c++)
944 mnemonic_chars[c] = c;
945 register_chars[c] = c;
946 operand_chars[c] = c;
948 else if (ISLOWER (c))
950 mnemonic_chars[c] = c;
951 register_chars[c] = c;
952 operand_chars[c] = c;
954 else if (ISUPPER (c))
956 mnemonic_chars[c] = TOLOWER (c);
957 register_chars[c] = mnemonic_chars[c];
958 operand_chars[c] = c;
961 if (ISALPHA (c) || ISDIGIT (c))
962 identifier_chars[c] = c;
965 identifier_chars[c] = c;
966 operand_chars[c] = c;
971 identifier_chars['@'] = '@';
973 digit_chars['-'] = '-';
974 identifier_chars['_'] = '_';
975 identifier_chars['.'] = '.';
977 for (p = operand_special_chars; *p != '\0'; p++)
978 operand_chars[(unsigned char) *p] = *p;
981 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
982 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
984 record_alignment (text_section, 2);
985 record_alignment (data_section, 2);
986 record_alignment (bss_section, 2);
992 i386_print_statistics (file)
995 hash_print_statistics (file, "i386 opcode", op_hash);
996 hash_print_statistics (file, "i386 register", reg_hash);
1001 /* Debugging routines for md_assemble. */
1002 static void pi PARAMS ((char *, i386_insn *));
1003 static void pte PARAMS ((template *));
1004 static void pt PARAMS ((unsigned int));
1005 static void pe PARAMS ((expressionS *));
1006 static void ps PARAMS ((symbolS *));
1015 fprintf (stdout, "%s: template ", line);
1017 fprintf (stdout, " address: base %s index %s scale %x\n",
1018 x->base_reg ? x->base_reg->reg_name : "none",
1019 x->index_reg ? x->index_reg->reg_name : "none",
1020 x->log2_scale_factor);
1021 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1022 x->rm.mode, x->rm.reg, x->rm.regmem);
1023 fprintf (stdout, " sib: base %x index %x scale %x\n",
1024 x->sib.base, x->sib.index, x->sib.scale);
1025 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1026 (x->rex & REX_MODE64) != 0,
1027 (x->rex & REX_EXTX) != 0,
1028 (x->rex & REX_EXTY) != 0,
1029 (x->rex & REX_EXTZ) != 0);
1030 for (i = 0; i < x->operands; i++)
1032 fprintf (stdout, " #%d: ", i + 1);
1034 fprintf (stdout, "\n");
1036 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1037 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1038 if (x->types[i] & Imm)
1040 if (x->types[i] & Disp)
1041 pe (x->op[i].disps);
1050 fprintf (stdout, " %d operands ", t->operands);
1051 fprintf (stdout, "opcode %x ", t->base_opcode);
1052 if (t->extension_opcode != None)
1053 fprintf (stdout, "ext %x ", t->extension_opcode);
1054 if (t->opcode_modifier & D)
1055 fprintf (stdout, "D");
1056 if (t->opcode_modifier & W)
1057 fprintf (stdout, "W");
1058 fprintf (stdout, "\n");
1059 for (i = 0; i < t->operands; i++)
1061 fprintf (stdout, " #%d type ", i + 1);
1062 pt (t->operand_types[i]);
1063 fprintf (stdout, "\n");
1071 fprintf (stdout, " operation %d\n", e->X_op);
1072 fprintf (stdout, " add_number %ld (%lx)\n",
1073 (long) e->X_add_number, (long) e->X_add_number);
1074 if (e->X_add_symbol)
1076 fprintf (stdout, " add_symbol ");
1077 ps (e->X_add_symbol);
1078 fprintf (stdout, "\n");
1082 fprintf (stdout, " op_symbol ");
1083 ps (e->X_op_symbol);
1084 fprintf (stdout, "\n");
1092 fprintf (stdout, "%s type %s%s",
1094 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1095 segment_name (S_GET_SEGMENT (s)));
1104 static const type_names[] =
1117 { BaseIndex, "BaseIndex" },
1121 { Disp32S, "d32s" },
1123 { InOutPortReg, "InOutPortReg" },
1124 { ShiftCount, "ShiftCount" },
1125 { Control, "control reg" },
1126 { Test, "test reg" },
1127 { Debug, "debug reg" },
1128 { FloatReg, "FReg" },
1129 { FloatAcc, "FAcc" },
1133 { JumpAbsolute, "Jump Absolute" },
1144 const struct type_name *ty;
1146 for (ty = type_names; ty->mask; ty++)
1148 fprintf (stdout, "%s, ", ty->tname);
1152 #endif /* DEBUG386 */
1154 #ifdef BFD_ASSEMBLER
1155 static bfd_reloc_code_real_type reloc
1156 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1158 static bfd_reloc_code_real_type
1159 reloc (size, pcrel, sign, other)
1163 bfd_reloc_code_real_type other;
1165 if (other != NO_RELOC)
1171 as_bad (_("There are no unsigned pc-relative relocations"));
1174 case 1: return BFD_RELOC_8_PCREL;
1175 case 2: return BFD_RELOC_16_PCREL;
1176 case 4: return BFD_RELOC_32_PCREL;
1178 as_bad (_("can not do %d byte pc-relative relocation"), size);
1185 case 4: return BFD_RELOC_X86_64_32S;
1190 case 1: return BFD_RELOC_8;
1191 case 2: return BFD_RELOC_16;
1192 case 4: return BFD_RELOC_32;
1193 case 8: return BFD_RELOC_64;
1195 as_bad (_("can not do %s %d byte relocation"),
1196 sign ? "signed" : "unsigned", size);
1200 return BFD_RELOC_NONE;
1203 /* Here we decide which fixups can be adjusted to make them relative to
1204 the beginning of the section instead of the symbol. Basically we need
1205 to make sure that the dynamic relocations are done correctly, so in
1206 some cases we force the original symbol to be used. */
1209 tc_i386_fix_adjustable (fixP)
1210 fixS *fixP ATTRIBUTE_UNUSED;
1212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1213 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1216 /* Don't adjust pc-relative references to merge sections in 64-bit
1218 if (use_rela_relocations
1219 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1223 /* adjust_reloc_syms doesn't know about the GOT. */
1224 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1225 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1226 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1230 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1233 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1235 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1238 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1239 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1245 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1246 #define BFD_RELOC_8 0
1247 #define BFD_RELOC_16 0
1248 #define BFD_RELOC_32 0
1249 #define BFD_RELOC_8_PCREL 0
1250 #define BFD_RELOC_16_PCREL 0
1251 #define BFD_RELOC_32_PCREL 0
1252 #define BFD_RELOC_386_PLT32 0
1253 #define BFD_RELOC_386_GOT32 0
1254 #define BFD_RELOC_386_GOTOFF 0
1255 #define BFD_RELOC_386_TLS_GD 0
1256 #define BFD_RELOC_386_TLS_LDM 0
1257 #define BFD_RELOC_386_TLS_LDO_32 0
1258 #define BFD_RELOC_386_TLS_IE_32 0
1259 #define BFD_RELOC_386_TLS_IE 0
1260 #define BFD_RELOC_386_TLS_GOTIE 0
1261 #define BFD_RELOC_386_TLS_LE_32 0
1262 #define BFD_RELOC_386_TLS_LE 0
1263 #define BFD_RELOC_X86_64_PLT32 0
1264 #define BFD_RELOC_X86_64_GOT32 0
1265 #define BFD_RELOC_X86_64_GOTPCREL 0
1268 static int intel_float_operand PARAMS ((const char *mnemonic));
1271 intel_float_operand (mnemonic)
1272 const char *mnemonic;
1274 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1277 if (mnemonic[0] == 'f')
1283 /* This is the guts of the machine-dependent assembler. LINE points to a
1284 machine dependent instruction. This function is supposed to emit
1285 the frags/bytes it assembles to. */
1292 char mnemonic[MAX_MNEM_SIZE];
1294 /* Initialize globals. */
1295 memset (&i, '\0', sizeof (i));
1296 for (j = 0; j < MAX_OPERANDS; j++)
1297 i.reloc[j] = NO_RELOC;
1298 memset (disp_expressions, '\0', sizeof (disp_expressions));
1299 memset (im_expressions, '\0', sizeof (im_expressions));
1300 save_stack_p = save_stack;
1302 /* First parse an instruction mnemonic & call i386_operand for the operands.
1303 We assume that the scrubber has arranged it so that line[0] is the valid
1304 start of a (possibly prefixed) mnemonic. */
1306 line = parse_insn (line, mnemonic);
1310 line = parse_operands (line, mnemonic);
1314 /* Now we've parsed the mnemonic into a set of templates, and have the
1315 operands at hand. */
1317 /* All intel opcodes have reversed operands except for "bound" and
1318 "enter". We also don't reverse intersegment "jmp" and "call"
1319 instructions with 2 immediate operands so that the immediate segment
1320 precedes the offset, as it does when in AT&T mode. "enter" and the
1321 intersegment "jmp" and "call" instructions are the only ones that
1322 have two immediate operands. */
1323 if (intel_syntax && i.operands > 1
1324 && (strcmp (mnemonic, "bound") != 0)
1325 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1331 if (i.disp_operands)
1334 /* Next, we find a template that matches the given insn,
1335 making sure the overlap of the given operands types is consistent
1336 with the template operand types. */
1338 if (!match_template ())
1343 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1345 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1346 i.tm.base_opcode ^= FloatR;
1348 /* Zap movzx and movsx suffix. The suffix may have been set from
1349 "word ptr" or "byte ptr" on the source operand, but we'll use
1350 the suffix later to choose the destination register. */
1351 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1355 if (i.tm.opcode_modifier & FWait)
1356 if (!add_prefix (FWAIT_OPCODE))
1359 /* Check string instruction segment overrides. */
1360 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1362 if (!check_string ())
1366 if (!process_suffix ())
1369 /* Make still unresolved immediate matches conform to size of immediate
1370 given in i.suffix. */
1371 if (!finalize_imm ())
1374 if (i.types[0] & Imm1)
1375 i.imm_operands = 0; /* kludge for shift insns. */
1376 if (i.types[0] & ImplicitRegister)
1378 if (i.types[1] & ImplicitRegister)
1380 if (i.types[2] & ImplicitRegister)
1383 if (i.tm.opcode_modifier & ImmExt)
1385 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1386 opcode suffix which is coded in the same place as an 8-bit
1387 immediate field would be. Here we fake an 8-bit immediate
1388 operand from the opcode suffix stored in tm.extension_opcode. */
1392 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1394 exp = &im_expressions[i.imm_operands++];
1395 i.op[i.operands].imms = exp;
1396 i.types[i.operands++] = Imm8;
1397 exp->X_op = O_constant;
1398 exp->X_add_number = i.tm.extension_opcode;
1399 i.tm.extension_opcode = None;
1402 /* For insns with operands there are more diddles to do to the opcode. */
1405 if (!process_operands ())
1408 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1410 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1411 as_warn (_("translating to `%sp'"), i.tm.name);
1414 /* Handle conversion of 'int $3' --> special int3 insn. */
1415 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1417 i.tm.base_opcode = INT3_OPCODE;
1421 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1422 && i.op[0].disps->X_op == O_constant)
1424 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1425 the absolute address given by the constant. Since ix86 jumps and
1426 calls are pc relative, we need to generate a reloc. */
1427 i.op[0].disps->X_add_symbol = &abs_symbol;
1428 i.op[0].disps->X_op = O_symbol;
1431 if ((i.tm.opcode_modifier & Rex64) != 0)
1432 i.rex |= REX_MODE64;
1434 /* For 8 bit registers we need an empty rex prefix. Also if the
1435 instruction already has a prefix, we need to convert old
1436 registers to new ones. */
1438 if (((i.types[0] & Reg8) != 0
1439 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1440 || ((i.types[1] & Reg8) != 0
1441 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1442 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1447 i.rex |= REX_OPCODE;
1448 for (x = 0; x < 2; x++)
1450 /* Look for 8 bit operand that uses old registers. */
1451 if ((i.types[x] & Reg8) != 0
1452 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1454 /* In case it is "hi" register, give up. */
1455 if (i.op[x].regs->reg_num > 3)
1456 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1457 i.op[x].regs->reg_name);
1459 /* Otherwise it is equivalent to the extended register.
1460 Since the encoding doesn't change this is merely
1461 cosmetic cleanup for debug output. */
1463 i.op[x].regs = i.op[x].regs + 8;
1469 add_prefix (REX_OPCODE | i.rex);
1471 /* We are ready to output the insn. */
1476 parse_insn (line, mnemonic)
1481 char *token_start = l;
1484 /* Non-zero if we found a prefix only acceptable with string insns. */
1485 const char *expecting_string_instruction = NULL;
1490 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1493 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1495 as_bad (_("no such instruction: `%s'"), token_start);
1500 if (!is_space_char (*l)
1501 && *l != END_OF_INSN
1502 && *l != PREFIX_SEPARATOR
1505 as_bad (_("invalid character %s in mnemonic"),
1506 output_invalid (*l));
1509 if (token_start == l)
1511 if (*l == PREFIX_SEPARATOR)
1512 as_bad (_("expecting prefix; got nothing"));
1514 as_bad (_("expecting mnemonic; got nothing"));
1518 /* Look up instruction (or prefix) via hash table. */
1519 current_templates = hash_find (op_hash, mnemonic);
1521 if (*l != END_OF_INSN
1522 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1523 && current_templates
1524 && (current_templates->start->opcode_modifier & IsPrefix))
1526 /* If we are in 16-bit mode, do not allow addr16 or data16.
1527 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1528 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1529 && flag_code != CODE_64BIT
1530 && (((current_templates->start->opcode_modifier & Size32) != 0)
1531 ^ (flag_code == CODE_16BIT)))
1533 as_bad (_("redundant %s prefix"),
1534 current_templates->start->name);
1537 /* Add prefix, checking for repeated prefixes. */
1538 switch (add_prefix (current_templates->start->base_opcode))
1543 expecting_string_instruction = current_templates->start->name;
1546 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1553 if (!current_templates)
1555 /* See if we can get a match by trimming off a suffix. */
1558 case WORD_MNEM_SUFFIX:
1559 case BYTE_MNEM_SUFFIX:
1560 case QWORD_MNEM_SUFFIX:
1561 i.suffix = mnem_p[-1];
1563 current_templates = hash_find (op_hash, mnemonic);
1565 case SHORT_MNEM_SUFFIX:
1566 case LONG_MNEM_SUFFIX:
1569 i.suffix = mnem_p[-1];
1571 current_templates = hash_find (op_hash, mnemonic);
1579 if (intel_float_operand (mnemonic))
1580 i.suffix = SHORT_MNEM_SUFFIX;
1582 i.suffix = LONG_MNEM_SUFFIX;
1584 current_templates = hash_find (op_hash, mnemonic);
1588 if (!current_templates)
1590 as_bad (_("no such instruction: `%s'"), token_start);
1595 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1597 /* Check for a branch hint. We allow ",pt" and ",pn" for
1598 predict taken and predict not taken respectively.
1599 I'm not sure that branch hints actually do anything on loop
1600 and jcxz insns (JumpByte) for current Pentium4 chips. They
1601 may work in the future and it doesn't hurt to accept them
1603 if (l[0] == ',' && l[1] == 'p')
1607 if (!add_prefix (DS_PREFIX_OPCODE))
1611 else if (l[2] == 'n')
1613 if (!add_prefix (CS_PREFIX_OPCODE))
1619 /* Any other comma loses. */
1622 as_bad (_("invalid character %s in mnemonic"),
1623 output_invalid (*l));
1627 /* Check if instruction is supported on specified architecture. */
1628 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1629 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1631 as_warn (_("`%s' is not supported on `%s'"),
1632 current_templates->start->name, cpu_arch_name);
1634 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1636 as_warn (_("use .code16 to ensure correct addressing mode"));
1639 /* Check for rep/repne without a string instruction. */
1640 if (expecting_string_instruction
1641 && !(current_templates->start->opcode_modifier & IsString))
1643 as_bad (_("expecting string instruction after `%s'"),
1644 expecting_string_instruction);
1652 parse_operands (l, mnemonic)
1654 const char *mnemonic;
1658 /* 1 if operand is pending after ','. */
1659 unsigned int expecting_operand = 0;
1661 /* Non-zero if operand parens not balanced. */
1662 unsigned int paren_not_balanced;
1664 while (*l != END_OF_INSN)
1666 /* Skip optional white space before operand. */
1667 if (is_space_char (*l))
1669 if (!is_operand_char (*l) && *l != END_OF_INSN)
1671 as_bad (_("invalid character %s before operand %d"),
1672 output_invalid (*l),
1676 token_start = l; /* after white space */
1677 paren_not_balanced = 0;
1678 while (paren_not_balanced || *l != ',')
1680 if (*l == END_OF_INSN)
1682 if (paren_not_balanced)
1685 as_bad (_("unbalanced parenthesis in operand %d."),
1688 as_bad (_("unbalanced brackets in operand %d."),
1693 break; /* we are done */
1695 else if (!is_operand_char (*l) && !is_space_char (*l))
1697 as_bad (_("invalid character %s in operand %d"),
1698 output_invalid (*l),
1705 ++paren_not_balanced;
1707 --paren_not_balanced;
1712 ++paren_not_balanced;
1714 --paren_not_balanced;
1718 if (l != token_start)
1719 { /* Yes, we've read in another operand. */
1720 unsigned int operand_ok;
1721 this_operand = i.operands++;
1722 if (i.operands > MAX_OPERANDS)
1724 as_bad (_("spurious operands; (%d operands/instruction max)"),
1728 /* Now parse operand adding info to 'i' as we go along. */
1729 END_STRING_AND_SAVE (l);
1733 i386_intel_operand (token_start,
1734 intel_float_operand (mnemonic));
1736 operand_ok = i386_operand (token_start);
1738 RESTORE_END_STRING (l);
1744 if (expecting_operand)
1746 expecting_operand_after_comma:
1747 as_bad (_("expecting operand after ','; got nothing"));
1752 as_bad (_("expecting operand before ','; got nothing"));
1757 /* Now *l must be either ',' or END_OF_INSN. */
1760 if (*++l == END_OF_INSN)
1762 /* Just skip it, if it's \n complain. */
1763 goto expecting_operand_after_comma;
1765 expecting_operand = 1;
1774 union i386_op temp_op;
1775 unsigned int temp_type;
1776 RELOC_ENUM temp_reloc;
1780 if (i.operands == 2)
1785 else if (i.operands == 3)
1790 temp_type = i.types[xchg2];
1791 i.types[xchg2] = i.types[xchg1];
1792 i.types[xchg1] = temp_type;
1793 temp_op = i.op[xchg2];
1794 i.op[xchg2] = i.op[xchg1];
1795 i.op[xchg1] = temp_op;
1796 temp_reloc = i.reloc[xchg2];
1797 i.reloc[xchg2] = i.reloc[xchg1];
1798 i.reloc[xchg1] = temp_reloc;
1800 if (i.mem_operands == 2)
1802 const seg_entry *temp_seg;
1803 temp_seg = i.seg[0];
1804 i.seg[0] = i.seg[1];
1805 i.seg[1] = temp_seg;
1809 /* Try to ensure constant immediates are represented in the smallest
1814 char guess_suffix = 0;
1818 guess_suffix = i.suffix;
1819 else if (i.reg_operands)
1821 /* Figure out a suffix from the last register operand specified.
1822 We can't do this properly yet, ie. excluding InOutPortReg,
1823 but the following works for instructions with immediates.
1824 In any case, we can't set i.suffix yet. */
1825 for (op = i.operands; --op >= 0;)
1826 if (i.types[op] & Reg)
1828 if (i.types[op] & Reg8)
1829 guess_suffix = BYTE_MNEM_SUFFIX;
1830 else if (i.types[op] & Reg16)
1831 guess_suffix = WORD_MNEM_SUFFIX;
1832 else if (i.types[op] & Reg32)
1833 guess_suffix = LONG_MNEM_SUFFIX;
1834 else if (i.types[op] & Reg64)
1835 guess_suffix = QWORD_MNEM_SUFFIX;
1839 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1840 guess_suffix = WORD_MNEM_SUFFIX;
1842 for (op = i.operands; --op >= 0;)
1843 if (i.types[op] & Imm)
1845 switch (i.op[op].imms->X_op)
1848 /* If a suffix is given, this operand may be shortened. */
1849 switch (guess_suffix)
1851 case LONG_MNEM_SUFFIX:
1852 i.types[op] |= Imm32 | Imm64;
1854 case WORD_MNEM_SUFFIX:
1855 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1857 case BYTE_MNEM_SUFFIX:
1858 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1862 /* If this operand is at most 16 bits, convert it
1863 to a signed 16 bit number before trying to see
1864 whether it will fit in an even smaller size.
1865 This allows a 16-bit operand such as $0xffe0 to
1866 be recognised as within Imm8S range. */
1867 if ((i.types[op] & Imm16)
1868 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1870 i.op[op].imms->X_add_number =
1871 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1873 if ((i.types[op] & Imm32)
1874 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1877 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1878 ^ ((offsetT) 1 << 31))
1879 - ((offsetT) 1 << 31));
1881 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1883 /* We must avoid matching of Imm32 templates when 64bit
1884 only immediate is available. */
1885 if (guess_suffix == QWORD_MNEM_SUFFIX)
1886 i.types[op] &= ~Imm32;
1893 /* Symbols and expressions. */
1895 /* Convert symbolic operand to proper sizes for matching. */
1896 switch (guess_suffix)
1898 case QWORD_MNEM_SUFFIX:
1899 i.types[op] = Imm64 | Imm32S;
1901 case LONG_MNEM_SUFFIX:
1902 i.types[op] = Imm32 | Imm64;
1904 case WORD_MNEM_SUFFIX:
1905 i.types[op] = Imm16 | Imm32 | Imm64;
1908 case BYTE_MNEM_SUFFIX:
1909 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1918 /* Try to use the smallest displacement type too. */
1924 for (op = i.operands; --op >= 0;)
1925 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1927 offsetT disp = i.op[op].disps->X_add_number;
1929 if (i.types[op] & Disp16)
1931 /* We know this operand is at most 16 bits, so
1932 convert to a signed 16 bit number before trying
1933 to see whether it will fit in an even smaller
1936 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1938 else if (i.types[op] & Disp32)
1940 /* We know this operand is at most 32 bits, so convert to a
1941 signed 32 bit number before trying to see whether it will
1942 fit in an even smaller size. */
1943 disp &= (((offsetT) 2 << 31) - 1);
1944 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1946 if (flag_code == CODE_64BIT)
1948 if (fits_in_signed_long (disp))
1949 i.types[op] |= Disp32S;
1950 if (fits_in_unsigned_long (disp))
1951 i.types[op] |= Disp32;
1953 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1954 && fits_in_signed_byte (disp))
1955 i.types[op] |= Disp8;
1962 /* Points to template once we've found it. */
1964 unsigned int overlap0, overlap1, overlap2;
1965 unsigned int found_reverse_match;
1968 #define MATCH(overlap, given, template) \
1969 ((overlap & ~JumpAbsolute) \
1970 && (((given) & (BaseIndex | JumpAbsolute)) \
1971 == ((overlap) & (BaseIndex | JumpAbsolute))))
1973 /* If given types r0 and r1 are registers they must be of the same type
1974 unless the expected operand type register overlap is null.
1975 Note that Acc in a template matches every size of reg. */
1976 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1977 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
1978 || ((g0) & Reg) == ((g1) & Reg) \
1979 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1984 found_reverse_match = 0;
1985 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1987 : (i.suffix == WORD_MNEM_SUFFIX
1989 : (i.suffix == SHORT_MNEM_SUFFIX
1991 : (i.suffix == LONG_MNEM_SUFFIX
1993 : (i.suffix == QWORD_MNEM_SUFFIX
1995 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
1996 ? No_xSuf : 0))))));
1998 for (t = current_templates->start;
1999 t < current_templates->end;
2002 /* Must have right number of operands. */
2003 if (i.operands != t->operands)
2006 /* Check the suffix, except for some instructions in intel mode. */
2007 if ((t->opcode_modifier & suffix_check)
2009 && (t->opcode_modifier & IgnoreSize))
2011 && t->base_opcode == 0xd9
2012 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2013 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2016 /* Do not verify operands when there are none. */
2017 else if (!t->operands)
2019 if (t->cpu_flags & ~cpu_arch_flags)
2021 /* We've found a match; break out of loop. */
2025 overlap0 = i.types[0] & t->operand_types[0];
2026 switch (t->operands)
2029 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2034 overlap1 = i.types[1] & t->operand_types[1];
2035 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2036 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2037 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2038 t->operand_types[0],
2039 overlap1, i.types[1],
2040 t->operand_types[1]))
2042 /* Check if other direction is valid ... */
2043 if ((t->opcode_modifier & (D | FloatD)) == 0)
2046 /* Try reversing direction of operands. */
2047 overlap0 = i.types[0] & t->operand_types[1];
2048 overlap1 = i.types[1] & t->operand_types[0];
2049 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2050 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2051 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2052 t->operand_types[1],
2053 overlap1, i.types[1],
2054 t->operand_types[0]))
2056 /* Does not match either direction. */
2059 /* found_reverse_match holds which of D or FloatDR
2061 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2063 /* Found a forward 2 operand match here. */
2064 else if (t->operands == 3)
2066 /* Here we make use of the fact that there are no
2067 reverse match 3 operand instructions, and all 3
2068 operand instructions only need to be checked for
2069 register consistency between operands 2 and 3. */
2070 overlap2 = i.types[2] & t->operand_types[2];
2071 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2072 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2073 t->operand_types[1],
2074 overlap2, i.types[2],
2075 t->operand_types[2]))
2079 /* Found either forward/reverse 2 or 3 operand match here:
2080 slip through to break. */
2082 if (t->cpu_flags & ~cpu_arch_flags)
2084 found_reverse_match = 0;
2087 /* We've found a match; break out of loop. */
2091 if (t == current_templates->end)
2093 /* We found no match. */
2094 as_bad (_("suffix or operands invalid for `%s'"),
2095 current_templates->start->name);
2099 if (!quiet_warnings)
2102 && ((i.types[0] & JumpAbsolute)
2103 != (t->operand_types[0] & JumpAbsolute)))
2105 as_warn (_("indirect %s without `*'"), t->name);
2108 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2109 == (IsPrefix | IgnoreSize))
2111 /* Warn them that a data or address size prefix doesn't
2112 affect assembly of the next line of code. */
2113 as_warn (_("stand-alone `%s' prefix"), t->name);
2117 /* Copy the template we found. */
2119 if (found_reverse_match)
2121 /* If we found a reverse match we must alter the opcode
2122 direction bit. found_reverse_match holds bits to change
2123 (different for int & float insns). */
2125 i.tm.base_opcode ^= found_reverse_match;
2127 i.tm.operand_types[0] = t->operand_types[1];
2128 i.tm.operand_types[1] = t->operand_types[0];
2137 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2138 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2140 if (i.seg[0] != NULL && i.seg[0] != &es)
2142 as_bad (_("`%s' operand %d must use `%%es' segment"),
2147 /* There's only ever one segment override allowed per instruction.
2148 This instruction possibly has a legal segment override on the
2149 second operand, so copy the segment to where non-string
2150 instructions store it, allowing common code. */
2151 i.seg[0] = i.seg[1];
2153 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2155 if (i.seg[1] != NULL && i.seg[1] != &es)
2157 as_bad (_("`%s' operand %d must use `%%es' segment"),
2169 /* If matched instruction specifies an explicit instruction mnemonic
2171 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2173 if (i.tm.opcode_modifier & Size16)
2174 i.suffix = WORD_MNEM_SUFFIX;
2175 else if (i.tm.opcode_modifier & Size64)
2176 i.suffix = QWORD_MNEM_SUFFIX;
2178 i.suffix = LONG_MNEM_SUFFIX;
2180 else if (i.reg_operands)
2182 /* If there's no instruction mnemonic suffix we try to invent one
2183 based on register operands. */
2186 /* We take i.suffix from the last register operand specified,
2187 Destination register type is more significant than source
2190 for (op = i.operands; --op >= 0;)
2191 if ((i.types[op] & Reg)
2192 && !(i.tm.operand_types[op] & InOutPortReg))
2194 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2195 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2196 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2201 else if (i.suffix == BYTE_MNEM_SUFFIX)
2203 if (!check_byte_reg ())
2206 else if (i.suffix == LONG_MNEM_SUFFIX)
2208 if (!check_long_reg ())
2211 else if (i.suffix == QWORD_MNEM_SUFFIX)
2213 if (!check_qword_reg ())
2216 else if (i.suffix == WORD_MNEM_SUFFIX)
2218 if (!check_word_reg ())
2221 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2222 /* Do nothing if the instruction is going to ignore the prefix. */
2227 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2229 i.suffix = stackop_size;
2232 /* Change the opcode based on the operand size given by i.suffix;
2233 We need not change things for byte insns. */
2235 if (!i.suffix && (i.tm.opcode_modifier & W))
2237 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2241 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2243 /* It's not a byte, select word/dword operation. */
2244 if (i.tm.opcode_modifier & W)
2246 if (i.tm.opcode_modifier & ShortForm)
2247 i.tm.base_opcode |= 8;
2249 i.tm.base_opcode |= 1;
2252 /* Now select between word & dword operations via the operand
2253 size prefix, except for instructions that will ignore this
2255 if (i.suffix != QWORD_MNEM_SUFFIX
2256 && !(i.tm.opcode_modifier & IgnoreSize)
2257 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2258 || (flag_code == CODE_64BIT
2259 && (i.tm.opcode_modifier & JumpByte))))
2261 unsigned int prefix = DATA_PREFIX_OPCODE;
2262 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2263 prefix = ADDR_PREFIX_OPCODE;
2265 if (!add_prefix (prefix))
2269 /* Set mode64 for an operand. */
2270 if (i.suffix == QWORD_MNEM_SUFFIX
2271 && flag_code == CODE_64BIT
2272 && (i.tm.opcode_modifier & NoRex64) == 0)
2273 i.rex |= REX_MODE64;
2275 /* Size floating point instruction. */
2276 if (i.suffix == LONG_MNEM_SUFFIX)
2278 if (i.tm.opcode_modifier & FloatMF)
2279 i.tm.base_opcode ^= 4;
2290 for (op = i.operands; --op >= 0;)
2292 /* If this is an eight bit register, it's OK. If it's the 16 or
2293 32 bit version of an eight bit register, we will just use the
2294 low portion, and that's OK too. */
2295 if (i.types[op] & Reg8)
2298 /* movzx and movsx should not generate this warning. */
2300 && (i.tm.base_opcode == 0xfb7
2301 || i.tm.base_opcode == 0xfb6
2302 || i.tm.base_opcode == 0x63
2303 || i.tm.base_opcode == 0xfbe
2304 || i.tm.base_opcode == 0xfbf))
2307 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2309 /* Check that the template allows eight bit regs. This
2310 kills insns such as `orb $1,%edx', which maybe should be
2312 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2316 /* Prohibit these changes in the 64bit mode, since the
2317 lowering is more complicated. */
2318 if (flag_code == CODE_64BIT
2319 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2321 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2322 i.op[op].regs->reg_name,
2326 #if REGISTER_WARNINGS
2328 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2329 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2330 (i.op[op].regs + (i.types[op] & Reg16
2331 ? REGNAM_AL - REGNAM_AX
2332 : REGNAM_AL - REGNAM_EAX))->reg_name,
2333 i.op[op].regs->reg_name,
2338 /* Any other register is bad. */
2339 if (i.types[op] & (Reg | RegMMX | RegXMM
2341 | Control | Debug | Test
2342 | FloatReg | FloatAcc))
2344 as_bad (_("`%%%s' not allowed with `%s%c'"),
2345 i.op[op].regs->reg_name,
2359 for (op = i.operands; --op >= 0;)
2360 /* Reject eight bit registers, except where the template requires
2361 them. (eg. movzb) */
2362 if ((i.types[op] & Reg8) != 0
2363 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2365 as_bad (_("`%%%s' not allowed with `%s%c'"),
2366 i.op[op].regs->reg_name,
2371 /* Warn if the e prefix on a general reg is missing. */
2372 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2373 && (i.types[op] & Reg16) != 0
2374 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2376 /* Prohibit these changes in the 64bit mode, since the
2377 lowering is more complicated. */
2378 if (flag_code == CODE_64BIT)
2380 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2381 i.op[op].regs->reg_name,
2385 #if REGISTER_WARNINGS
2387 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2388 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2389 i.op[op].regs->reg_name,
2393 /* Warn if the r prefix on a general reg is missing. */
2394 else if ((i.types[op] & Reg64) != 0
2395 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2397 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2398 i.op[op].regs->reg_name,
2410 for (op = i.operands; --op >= 0; )
2411 /* Reject eight bit registers, except where the template requires
2412 them. (eg. movzb) */
2413 if ((i.types[op] & Reg8) != 0
2414 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2416 as_bad (_("`%%%s' not allowed with `%s%c'"),
2417 i.op[op].regs->reg_name,
2422 /* Warn if the e prefix on a general reg is missing. */
2423 else if (((i.types[op] & Reg16) != 0
2424 || (i.types[op] & Reg32) != 0)
2425 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2427 /* Prohibit these changes in the 64bit mode, since the
2428 lowering is more complicated. */
2429 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2430 i.op[op].regs->reg_name,
2441 for (op = i.operands; --op >= 0;)
2442 /* Reject eight bit registers, except where the template requires
2443 them. (eg. movzb) */
2444 if ((i.types[op] & Reg8) != 0
2445 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2447 as_bad (_("`%%%s' not allowed with `%s%c'"),
2448 i.op[op].regs->reg_name,
2453 /* Warn if the e prefix on a general reg is present. */
2454 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2455 && (i.types[op] & Reg32) != 0
2456 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2458 /* Prohibit these changes in the 64bit mode, since the
2459 lowering is more complicated. */
2460 if (flag_code == CODE_64BIT)
2462 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2463 i.op[op].regs->reg_name,
2468 #if REGISTER_WARNINGS
2469 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2470 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2471 i.op[op].regs->reg_name,
2481 unsigned int overlap0, overlap1, overlap2;
2483 overlap0 = i.types[0] & i.tm.operand_types[0];
2484 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2485 && overlap0 != Imm8 && overlap0 != Imm8S
2486 && overlap0 != Imm16 && overlap0 != Imm32S
2487 && overlap0 != Imm32 && overlap0 != Imm64)
2491 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2493 : (i.suffix == WORD_MNEM_SUFFIX
2495 : (i.suffix == QWORD_MNEM_SUFFIX
2499 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2500 || overlap0 == (Imm16 | Imm32)
2501 || overlap0 == (Imm16 | Imm32S))
2503 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2506 if (overlap0 != Imm8 && overlap0 != Imm8S
2507 && overlap0 != Imm16 && overlap0 != Imm32S
2508 && overlap0 != Imm32 && overlap0 != Imm64)
2510 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2514 i.types[0] = overlap0;
2516 overlap1 = i.types[1] & i.tm.operand_types[1];
2517 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2518 && overlap1 != Imm8 && overlap1 != Imm8S
2519 && overlap1 != Imm16 && overlap1 != Imm32S
2520 && overlap1 != Imm32 && overlap1 != Imm64)
2524 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2526 : (i.suffix == WORD_MNEM_SUFFIX
2528 : (i.suffix == QWORD_MNEM_SUFFIX
2532 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2533 || overlap1 == (Imm16 | Imm32)
2534 || overlap1 == (Imm16 | Imm32S))
2536 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2539 if (overlap1 != Imm8 && overlap1 != Imm8S
2540 && overlap1 != Imm16 && overlap1 != Imm32S
2541 && overlap1 != Imm32 && overlap1 != Imm64)
2543 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2547 i.types[1] = overlap1;
2549 overlap2 = i.types[2] & i.tm.operand_types[2];
2550 assert ((overlap2 & Imm) == 0);
2551 i.types[2] = overlap2;
2559 /* Default segment register this instruction will use for memory
2560 accesses. 0 means unknown. This is only for optimizing out
2561 unnecessary segment overrides. */
2562 const seg_entry *default_seg = 0;
2564 /* The imul $imm, %reg instruction is converted into
2565 imul $imm, %reg, %reg, and the clr %reg instruction
2566 is converted into xor %reg, %reg. */
2567 if (i.tm.opcode_modifier & regKludge)
2569 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2570 /* Pretend we saw the extra register operand. */
2571 assert (i.op[first_reg_op + 1].regs == 0);
2572 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2573 i.types[first_reg_op + 1] = i.types[first_reg_op];
2577 if (i.tm.opcode_modifier & ShortForm)
2579 /* The register or float register operand is in operand 0 or 1. */
2580 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2581 /* Register goes in low 3 bits of opcode. */
2582 i.tm.base_opcode |= i.op[op].regs->reg_num;
2583 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2585 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2587 /* Warn about some common errors, but press on regardless.
2588 The first case can be generated by gcc (<= 2.8.1). */
2589 if (i.operands == 2)
2591 /* Reversed arguments on faddp, fsubp, etc. */
2592 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2593 i.op[1].regs->reg_name,
2594 i.op[0].regs->reg_name);
2598 /* Extraneous `l' suffix on fp insn. */
2599 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2600 i.op[0].regs->reg_name);
2604 else if (i.tm.opcode_modifier & Modrm)
2606 /* The opcode is completed (modulo i.tm.extension_opcode which
2607 must be put into the modrm byte).
2608 Now, we make the modrm & index base bytes based on all the
2609 info we've collected. */
2611 default_seg = build_modrm_byte ();
2613 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2615 if (i.tm.base_opcode == POP_SEG_SHORT
2616 && i.op[0].regs->reg_num == 1)
2618 as_bad (_("you can't `pop %%cs'"));
2621 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2622 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2625 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2629 else if ((i.tm.opcode_modifier & IsString) != 0)
2631 /* For the string instructions that allow a segment override
2632 on one of their operands, the default segment is ds. */
2636 /* If a segment was explicitly specified,
2637 and the specified segment is not the default,
2638 use an opcode prefix to select it.
2639 If we never figured out what the default segment is,
2640 then default_seg will be zero at this point,
2641 and the specified segment prefix will always be used. */
2642 if ((i.seg[0]) && (i.seg[0] != default_seg))
2644 if (!add_prefix (i.seg[0]->seg_prefix))
2650 static const seg_entry *
2653 const seg_entry *default_seg = 0;
2655 /* i.reg_operands MUST be the number of real register operands;
2656 implicit registers do not count. */
2657 if (i.reg_operands == 2)
2659 unsigned int source, dest;
2660 source = ((i.types[0]
2661 & (Reg | RegMMX | RegXMM
2663 | Control | Debug | Test))
2668 /* One of the register operands will be encoded in the i.tm.reg
2669 field, the other in the combined i.tm.mode and i.tm.regmem
2670 fields. If no form of this instruction supports a memory
2671 destination operand, then we assume the source operand may
2672 sometimes be a memory operand and so we need to store the
2673 destination in the i.rm.reg field. */
2674 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2676 i.rm.reg = i.op[dest].regs->reg_num;
2677 i.rm.regmem = i.op[source].regs->reg_num;
2678 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2680 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2685 i.rm.reg = i.op[source].regs->reg_num;
2686 i.rm.regmem = i.op[dest].regs->reg_num;
2687 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2689 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2694 { /* If it's not 2 reg operands... */
2697 unsigned int fake_zero_displacement = 0;
2698 unsigned int op = ((i.types[0] & AnyMem)
2700 : (i.types[1] & AnyMem) ? 1 : 2);
2704 if (i.base_reg == 0)
2707 if (!i.disp_operands)
2708 fake_zero_displacement = 1;
2709 if (i.index_reg == 0)
2711 /* Operand is just <disp> */
2712 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2713 && (flag_code != CODE_64BIT))
2715 i.rm.regmem = NO_BASE_REGISTER_16;
2716 i.types[op] &= ~Disp;
2717 i.types[op] |= Disp16;
2719 else if (flag_code != CODE_64BIT
2720 || (i.prefix[ADDR_PREFIX] != 0))
2722 i.rm.regmem = NO_BASE_REGISTER;
2723 i.types[op] &= ~Disp;
2724 i.types[op] |= Disp32;
2728 /* 64bit mode overwrites the 32bit absolute
2729 addressing by RIP relative addressing and
2730 absolute addressing is encoded by one of the
2731 redundant SIB forms. */
2732 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2733 i.sib.base = NO_BASE_REGISTER;
2734 i.sib.index = NO_INDEX_REGISTER;
2735 i.types[op] &= ~Disp;
2736 i.types[op] |= Disp32S;
2739 else /* !i.base_reg && i.index_reg */
2741 i.sib.index = i.index_reg->reg_num;
2742 i.sib.base = NO_BASE_REGISTER;
2743 i.sib.scale = i.log2_scale_factor;
2744 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2745 i.types[op] &= ~Disp;
2746 if (flag_code != CODE_64BIT)
2747 i.types[op] |= Disp32; /* Must be 32 bit */
2749 i.types[op] |= Disp32S;
2750 if ((i.index_reg->reg_flags & RegRex) != 0)
2754 /* RIP addressing for 64bit mode. */
2755 else if (i.base_reg->reg_type == BaseIndex)
2757 i.rm.regmem = NO_BASE_REGISTER;
2758 i.types[op] &= ~Disp;
2759 i.types[op] |= Disp32S;
2760 i.flags[op] = Operand_PCrel;
2762 else if (i.base_reg->reg_type & Reg16)
2764 switch (i.base_reg->reg_num)
2767 if (i.index_reg == 0)
2769 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2770 i.rm.regmem = i.index_reg->reg_num - 6;
2774 if (i.index_reg == 0)
2777 if ((i.types[op] & Disp) == 0)
2779 /* fake (%bp) into 0(%bp) */
2780 i.types[op] |= Disp8;
2781 fake_zero_displacement = 1;
2784 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2785 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2787 default: /* (%si) -> 4 or (%di) -> 5 */
2788 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2790 i.rm.mode = mode_from_disp_size (i.types[op]);
2792 else /* i.base_reg and 32/64 bit mode */
2794 if (flag_code == CODE_64BIT
2795 && (i.types[op] & Disp))
2797 if (i.types[op] & Disp8)
2798 i.types[op] = Disp8 | Disp32S;
2800 i.types[op] = Disp32S;
2802 i.rm.regmem = i.base_reg->reg_num;
2803 if ((i.base_reg->reg_flags & RegRex) != 0)
2805 i.sib.base = i.base_reg->reg_num;
2806 /* x86-64 ignores REX prefix bit here to avoid decoder
2808 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2811 if (i.disp_operands == 0)
2813 fake_zero_displacement = 1;
2814 i.types[op] |= Disp8;
2817 else if (i.base_reg->reg_num == ESP_REG_NUM)
2821 i.sib.scale = i.log2_scale_factor;
2822 if (i.index_reg == 0)
2824 /* <disp>(%esp) becomes two byte modrm with no index
2825 register. We've already stored the code for esp
2826 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2827 Any base register besides %esp will not use the
2828 extra modrm byte. */
2829 i.sib.index = NO_INDEX_REGISTER;
2830 #if !SCALE1_WHEN_NO_INDEX
2831 /* Another case where we force the second modrm byte. */
2832 if (i.log2_scale_factor)
2833 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2838 i.sib.index = i.index_reg->reg_num;
2839 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2840 if ((i.index_reg->reg_flags & RegRex) != 0)
2843 i.rm.mode = mode_from_disp_size (i.types[op]);
2846 if (fake_zero_displacement)
2848 /* Fakes a zero displacement assuming that i.types[op]
2849 holds the correct displacement size. */
2852 assert (i.op[op].disps == 0);
2853 exp = &disp_expressions[i.disp_operands++];
2854 i.op[op].disps = exp;
2855 exp->X_op = O_constant;
2856 exp->X_add_number = 0;
2857 exp->X_add_symbol = (symbolS *) 0;
2858 exp->X_op_symbol = (symbolS *) 0;
2862 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2863 (if any) based on i.tm.extension_opcode. Again, we must be
2864 careful to make sure that segment/control/debug/test/MMX
2865 registers are coded into the i.rm.reg field. */
2870 & (Reg | RegMMX | RegXMM
2872 | Control | Debug | Test))
2875 & (Reg | RegMMX | RegXMM
2877 | Control | Debug | Test))
2880 /* If there is an extension opcode to put here, the register
2881 number must be put into the regmem field. */
2882 if (i.tm.extension_opcode != None)
2884 i.rm.regmem = i.op[op].regs->reg_num;
2885 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2890 i.rm.reg = i.op[op].regs->reg_num;
2891 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2895 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2896 must set it to 3 to indicate this is a register operand
2897 in the regmem field. */
2898 if (!i.mem_operands)
2902 /* Fill in i.rm.reg field with extension opcode (if any). */
2903 if (i.tm.extension_opcode != None)
2904 i.rm.reg = i.tm.extension_opcode;
2915 relax_substateT subtype;
2920 if (flag_code == CODE_16BIT)
2924 if (i.prefix[DATA_PREFIX] != 0)
2930 /* Pentium4 branch hints. */
2931 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2932 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2937 if (i.prefix[REX_PREFIX] != 0)
2943 if (i.prefixes != 0 && !intel_syntax)
2944 as_warn (_("skipping prefixes on this instruction"));
2946 /* It's always a symbol; End frag & setup for relax.
2947 Make sure there is enough room in this frag for the largest
2948 instruction we may generate in md_convert_frag. This is 2
2949 bytes for the opcode and room for the prefix and largest
2951 frag_grow (prefix + 2 + 4);
2952 /* Prefix and 1 opcode byte go in fr_fix. */
2953 p = frag_more (prefix + 1);
2954 if (i.prefix[DATA_PREFIX] != 0)
2955 *p++ = DATA_PREFIX_OPCODE;
2956 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2957 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2958 *p++ = i.prefix[SEG_PREFIX];
2959 if (i.prefix[REX_PREFIX] != 0)
2960 *p++ = i.prefix[REX_PREFIX];
2961 *p = i.tm.base_opcode;
2963 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2964 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2965 else if ((cpu_arch_flags & Cpu386) != 0)
2966 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
2968 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
2971 sym = i.op[0].disps->X_add_symbol;
2972 off = i.op[0].disps->X_add_number;
2974 if (i.op[0].disps->X_op != O_constant
2975 && i.op[0].disps->X_op != O_symbol)
2977 /* Handle complex expressions. */
2978 sym = make_expr_symbol (i.op[0].disps);
2982 /* 1 possible extra opcode + 4 byte displacement go in var part.
2983 Pass reloc in fr_var. */
2984 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
2993 if (i.tm.opcode_modifier & JumpByte)
2995 /* This is a loop or jecxz type instruction. */
2997 if (i.prefix[ADDR_PREFIX] != 0)
2999 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3002 /* Pentium4 branch hints. */
3003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3006 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3015 if (flag_code == CODE_16BIT)
3018 if (i.prefix[DATA_PREFIX] != 0)
3020 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3030 if (i.prefix[REX_PREFIX] != 0)
3032 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3036 if (i.prefixes != 0 && !intel_syntax)
3037 as_warn (_("skipping prefixes on this instruction"));
3039 p = frag_more (1 + size);
3040 *p++ = i.tm.base_opcode;
3042 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3043 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3047 output_interseg_jump ()
3055 if (flag_code == CODE_16BIT)
3059 if (i.prefix[DATA_PREFIX] != 0)
3065 if (i.prefix[REX_PREFIX] != 0)
3075 if (i.prefixes != 0 && !intel_syntax)
3076 as_warn (_("skipping prefixes on this instruction"));
3078 /* 1 opcode; 2 segment; offset */
3079 p = frag_more (prefix + 1 + 2 + size);
3081 if (i.prefix[DATA_PREFIX] != 0)
3082 *p++ = DATA_PREFIX_OPCODE;
3084 if (i.prefix[REX_PREFIX] != 0)
3085 *p++ = i.prefix[REX_PREFIX];
3087 *p++ = i.tm.base_opcode;
3088 if (i.op[1].imms->X_op == O_constant)
3090 offsetT n = i.op[1].imms->X_add_number;
3093 && !fits_in_unsigned_word (n)
3094 && !fits_in_signed_word (n))
3096 as_bad (_("16-bit jump out of range"));
3099 md_number_to_chars (p, n, size);
3102 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3103 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3104 if (i.op[0].imms->X_op != O_constant)
3105 as_bad (_("can't handle non absolute segment in `%s'"),
3107 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3114 fragS *insn_start_frag;
3115 offsetT insn_start_off;
3117 /* Tie dwarf2 debug info to the address at the start of the insn.
3118 We can't do this after the insn has been output as the current
3119 frag may have been closed off. eg. by frag_var. */
3120 dwarf2_emit_insn (0);
3122 insn_start_frag = frag_now;
3123 insn_start_off = frag_now_fix ();
3126 if (i.tm.opcode_modifier & Jump)
3128 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3130 else if (i.tm.opcode_modifier & JumpInterSegment)
3131 output_interseg_jump ();
3134 /* Output normal instructions here. */
3138 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3139 byte for the SSE instructions to specify a prefix they require. */
3140 if (i.tm.base_opcode & 0xff0000)
3141 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3143 /* The prefix bytes. */
3145 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3151 md_number_to_chars (p, (valueT) *q, 1);
3155 /* Now the opcode; be careful about word order here! */
3156 if (fits_in_unsigned_byte (i.tm.base_opcode))
3158 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3163 /* Put out high byte first: can't use md_number_to_chars! */
3164 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3165 *p = i.tm.base_opcode & 0xff;
3168 /* Now the modrm byte and sib byte (if present). */
3169 if (i.tm.opcode_modifier & Modrm)
3172 md_number_to_chars (p,
3173 (valueT) (i.rm.regmem << 0
3177 /* If i.rm.regmem == ESP (4)
3178 && i.rm.mode != (Register mode)
3180 ==> need second modrm byte. */
3181 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3183 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3186 md_number_to_chars (p,
3187 (valueT) (i.sib.base << 0
3189 | i.sib.scale << 6),
3194 if (i.disp_operands)
3195 output_disp (insn_start_frag, insn_start_off);
3198 output_imm (insn_start_frag, insn_start_off);
3206 #endif /* DEBUG386 */
3210 output_disp (insn_start_frag, insn_start_off)
3211 fragS *insn_start_frag;
3212 offsetT insn_start_off;
3217 for (n = 0; n < i.operands; n++)
3219 if (i.types[n] & Disp)
3221 if (i.op[n].disps->X_op == O_constant)
3227 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3230 if (i.types[n] & Disp8)
3232 if (i.types[n] & Disp64)
3235 val = offset_in_range (i.op[n].disps->X_add_number,
3237 p = frag_more (size);
3238 md_number_to_chars (p, val, size);
3242 RELOC_ENUM reloc_type;
3245 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3247 /* The PC relative address is computed relative
3248 to the instruction boundary, so in case immediate
3249 fields follows, we need to adjust the value. */
3250 if (pcrel && i.imm_operands)
3255 for (n1 = 0; n1 < i.operands; n1++)
3256 if (i.types[n1] & Imm)
3258 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3261 if (i.types[n1] & (Imm8 | Imm8S))
3263 if (i.types[n1] & Imm64)
3268 /* We should find the immediate. */
3269 if (n1 == i.operands)
3271 i.op[n].disps->X_add_number -= imm_size;
3274 if (i.types[n] & Disp32S)
3277 if (i.types[n] & (Disp16 | Disp64))
3280 if (i.types[n] & Disp64)
3284 p = frag_more (size);
3285 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3286 #ifdef BFD_ASSEMBLER
3287 if (reloc_type == BFD_RELOC_32
3289 && GOT_symbol == i.op[n].disps->X_add_symbol
3290 && (i.op[n].disps->X_op == O_symbol
3291 || (i.op[n].disps->X_op == O_add
3292 && ((symbol_get_value_expression
3293 (i.op[n].disps->X_op_symbol)->X_op)
3298 if (insn_start_frag == frag_now)
3299 add = (p - frag_now->fr_literal) - insn_start_off;
3304 add = insn_start_frag->fr_fix - insn_start_off;
3305 for (fr = insn_start_frag->fr_next;
3306 fr && fr != frag_now; fr = fr->fr_next)
3308 add += p - frag_now->fr_literal;
3311 /* We don't support dynamic linking on x86-64 yet. */
3312 if (flag_code == CODE_64BIT)
3314 reloc_type = BFD_RELOC_386_GOTPC;
3315 i.op[n].disps->X_add_number += add;
3318 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3319 i.op[n].disps, pcrel, reloc_type);
3326 output_imm (insn_start_frag, insn_start_off)
3327 fragS *insn_start_frag;
3328 offsetT insn_start_off;
3333 for (n = 0; n < i.operands; n++)
3335 if (i.types[n] & Imm)
3337 if (i.op[n].imms->X_op == O_constant)
3343 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3346 if (i.types[n] & (Imm8 | Imm8S))
3348 else if (i.types[n] & Imm64)
3351 val = offset_in_range (i.op[n].imms->X_add_number,
3353 p = frag_more (size);
3354 md_number_to_chars (p, val, size);
3358 /* Not absolute_section.
3359 Need a 32-bit fixup (don't support 8bit
3360 non-absolute imms). Try to support other
3362 RELOC_ENUM reloc_type;
3366 if ((i.types[n] & (Imm32S))
3367 && i.suffix == QWORD_MNEM_SUFFIX)
3369 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3372 if (i.types[n] & (Imm8 | Imm8S))
3374 if (i.types[n] & Imm64)
3378 p = frag_more (size);
3379 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3380 #ifdef BFD_ASSEMBLER
3381 /* This is tough to explain. We end up with this one if we
3382 * have operands that look like
3383 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3384 * obtain the absolute address of the GOT, and it is strongly
3385 * preferable from a performance point of view to avoid using
3386 * a runtime relocation for this. The actual sequence of
3387 * instructions often look something like:
3392 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3394 * The call and pop essentially return the absolute address
3395 * of the label .L66 and store it in %ebx. The linker itself
3396 * will ultimately change the first operand of the addl so
3397 * that %ebx points to the GOT, but to keep things simple, the
3398 * .o file must have this operand set so that it generates not
3399 * the absolute address of .L66, but the absolute address of
3400 * itself. This allows the linker itself simply treat a GOTPC
3401 * relocation as asking for a pcrel offset to the GOT to be
3402 * added in, and the addend of the relocation is stored in the
3403 * operand field for the instruction itself.
3405 * Our job here is to fix the operand so that it would add
3406 * the correct offset so that %ebx would point to itself. The
3407 * thing that is tricky is that .-.L66 will point to the
3408 * beginning of the instruction, so we need to further modify
3409 * the operand so that it will point to itself. There are
3410 * other cases where you have something like:
3412 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3414 * and here no correction would be required. Internally in
3415 * the assembler we treat operands of this form as not being
3416 * pcrel since the '.' is explicitly mentioned, and I wonder
3417 * whether it would simplify matters to do it this way. Who
3418 * knows. In earlier versions of the PIC patches, the
3419 * pcrel_adjust field was used to store the correction, but
3420 * since the expression is not pcrel, I felt it would be
3421 * confusing to do it this way. */
3423 if (reloc_type == BFD_RELOC_32
3425 && GOT_symbol == i.op[n].imms->X_add_symbol
3426 && (i.op[n].imms->X_op == O_symbol
3427 || (i.op[n].imms->X_op == O_add
3428 && ((symbol_get_value_expression
3429 (i.op[n].imms->X_op_symbol)->X_op)
3434 if (insn_start_frag == frag_now)
3435 add = (p - frag_now->fr_literal) - insn_start_off;
3440 add = insn_start_frag->fr_fix - insn_start_off;
3441 for (fr = insn_start_frag->fr_next;
3442 fr && fr != frag_now; fr = fr->fr_next)
3444 add += p - frag_now->fr_literal;
3447 /* We don't support dynamic linking on x86-64 yet. */
3448 if (flag_code == CODE_64BIT)
3450 reloc_type = BFD_RELOC_386_GOTPC;
3451 i.op[n].imms->X_add_number += add;
3454 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3455 i.op[n].imms, 0, reloc_type);
3462 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3464 /* Parse operands of the form
3465 <symbol>@GOTOFF+<nnn>
3466 and similar .plt or .got references.
3468 If we find one, set up the correct relocation in RELOC and copy the
3469 input string, minus the `@GOTOFF' into a malloc'd buffer for
3470 parsing by the calling routine. Return this buffer, and if ADJUST
3471 is non-null set it to the length of the string we removed from the
3472 input line. Otherwise return NULL. */
3474 lex_got (reloc, adjust)
3478 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3479 static const struct {
3481 const RELOC_ENUM rel[NUM_FLAG_CODE];
3483 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3484 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3485 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3486 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, 0 } },
3487 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3488 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, 0 } },
3489 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, 0 } },
3490 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3491 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, 0 } },
3492 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3493 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3494 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3499 for (cp = input_line_pointer; *cp != '@'; cp++)
3500 if (is_end_of_line[(unsigned char) *cp])
3503 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3507 len = strlen (gotrel[j].str);
3508 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3510 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3513 char *tmpbuf, *past_reloc;
3515 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3519 if (GOT_symbol == NULL)
3520 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3522 /* Replace the relocation token with ' ', so that
3523 errors like foo@GOTOFF1 will be detected. */
3525 /* The length of the first part of our input line. */
3526 first = cp - input_line_pointer;
3528 /* The second part goes from after the reloc token until
3529 (and including) an end_of_line char. Don't use strlen
3530 here as the end_of_line char may not be a NUL. */
3531 past_reloc = cp + 1 + len;
3532 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3534 second = cp - past_reloc;
3536 /* Allocate and copy string. The trailing NUL shouldn't
3537 be necessary, but be safe. */
3538 tmpbuf = xmalloc (first + second + 2);
3539 memcpy (tmpbuf, input_line_pointer, first);
3540 tmpbuf[first] = ' ';
3541 memcpy (tmpbuf + first + 1, past_reloc, second);
3542 tmpbuf[first + second + 1] = '\0';
3546 as_bad (_("@%s reloc is not supported in %s bit mode"),
3547 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3552 /* Might be a symbol version string. Don't as_bad here. */
3556 /* x86_cons_fix_new is called via the expression parsing code when a
3557 reloc is needed. We use this hook to get the correct .got reloc. */
3558 static RELOC_ENUM got_reloc = NO_RELOC;
3561 x86_cons_fix_new (frag, off, len, exp)
3567 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3568 got_reloc = NO_RELOC;
3569 fix_new_exp (frag, off, len, exp, 0, r);
3573 x86_cons (exp, size)
3579 /* Handle @GOTOFF and the like in an expression. */
3581 char *gotfree_input_line;
3584 save = input_line_pointer;
3585 gotfree_input_line = lex_got (&got_reloc, &adjust);
3586 if (gotfree_input_line)
3587 input_line_pointer = gotfree_input_line;
3591 if (gotfree_input_line)
3593 /* expression () has merrily parsed up to the end of line,
3594 or a comma - in the wrong buffer. Transfer how far
3595 input_line_pointer has moved to the right buffer. */
3596 input_line_pointer = (save
3597 + (input_line_pointer - gotfree_input_line)
3599 free (gotfree_input_line);
3607 static int i386_immediate PARAMS ((char *));
3610 i386_immediate (imm_start)
3613 char *save_input_line_pointer;
3615 char *gotfree_input_line;
3620 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3622 as_bad (_("only 1 or 2 immediate operands are allowed"));
3626 exp = &im_expressions[i.imm_operands++];
3627 i.op[this_operand].imms = exp;
3629 if (is_space_char (*imm_start))
3632 save_input_line_pointer = input_line_pointer;
3633 input_line_pointer = imm_start;
3636 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3637 if (gotfree_input_line)
3638 input_line_pointer = gotfree_input_line;
3641 exp_seg = expression (exp);
3644 if (*input_line_pointer)
3645 as_bad (_("junk `%s' after expression"), input_line_pointer);
3647 input_line_pointer = save_input_line_pointer;
3649 if (gotfree_input_line)
3650 free (gotfree_input_line);
3653 if (exp->X_op == O_absent || exp->X_op == O_big)
3655 /* Missing or bad expr becomes absolute 0. */
3656 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3658 exp->X_op = O_constant;
3659 exp->X_add_number = 0;
3660 exp->X_add_symbol = (symbolS *) 0;
3661 exp->X_op_symbol = (symbolS *) 0;
3663 else if (exp->X_op == O_constant)
3665 /* Size it properly later. */
3666 i.types[this_operand] |= Imm64;
3667 /* If BFD64, sign extend val. */
3668 if (!use_rela_relocations)
3669 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3670 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3672 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3674 #ifdef BFD_ASSEMBLER
3675 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3677 && exp_seg != absolute_section
3678 && exp_seg != text_section
3679 && exp_seg != data_section
3680 && exp_seg != bss_section
3681 && exp_seg != undefined_section
3682 #ifdef BFD_ASSEMBLER
3683 && !bfd_is_com_section (exp_seg)
3687 #ifdef BFD_ASSEMBLER
3688 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3690 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3697 /* This is an address. The size of the address will be
3698 determined later, depending on destination register,
3699 suffix, or the default for the section. */
3700 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3706 static char *i386_scale PARAMS ((char *));
3713 char *save = input_line_pointer;
3715 input_line_pointer = scale;
3716 val = get_absolute_expression ();
3722 i.log2_scale_factor = 0;
3725 i.log2_scale_factor = 1;
3728 i.log2_scale_factor = 2;
3731 i.log2_scale_factor = 3;
3734 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3736 input_line_pointer = save;
3739 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3741 as_warn (_("scale factor of %d without an index register"),
3742 1 << i.log2_scale_factor);
3743 #if SCALE1_WHEN_NO_INDEX
3744 i.log2_scale_factor = 0;
3747 scale = input_line_pointer;
3748 input_line_pointer = save;
3752 static int i386_displacement PARAMS ((char *, char *));
3755 i386_displacement (disp_start, disp_end)
3761 char *save_input_line_pointer;
3763 char *gotfree_input_line;
3765 int bigdisp = Disp32;
3767 if (flag_code == CODE_64BIT)
3769 if (i.prefix[ADDR_PREFIX] == 0)
3772 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3774 i.types[this_operand] |= bigdisp;
3776 exp = &disp_expressions[i.disp_operands];
3777 i.op[this_operand].disps = exp;
3779 save_input_line_pointer = input_line_pointer;
3780 input_line_pointer = disp_start;
3781 END_STRING_AND_SAVE (disp_end);
3783 #ifndef GCC_ASM_O_HACK
3784 #define GCC_ASM_O_HACK 0
3787 END_STRING_AND_SAVE (disp_end + 1);
3788 if ((i.types[this_operand] & BaseIndex) != 0
3789 && displacement_string_end[-1] == '+')
3791 /* This hack is to avoid a warning when using the "o"
3792 constraint within gcc asm statements.
3795 #define _set_tssldt_desc(n,addr,limit,type) \
3796 __asm__ __volatile__ ( \
3798 "movw %w1,2+%0\n\t" \
3800 "movb %b1,4+%0\n\t" \
3801 "movb %4,5+%0\n\t" \
3802 "movb $0,6+%0\n\t" \
3803 "movb %h1,7+%0\n\t" \
3805 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3807 This works great except that the output assembler ends
3808 up looking a bit weird if it turns out that there is
3809 no offset. You end up producing code that looks like:
3822 So here we provide the missing zero. */
3824 *displacement_string_end = '0';
3828 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3829 if (gotfree_input_line)
3830 input_line_pointer = gotfree_input_line;
3833 exp_seg = expression (exp);
3836 if (*input_line_pointer)
3837 as_bad (_("junk `%s' after expression"), input_line_pointer);
3839 RESTORE_END_STRING (disp_end + 1);
3841 RESTORE_END_STRING (disp_end);
3842 input_line_pointer = save_input_line_pointer;
3844 if (gotfree_input_line)
3845 free (gotfree_input_line);
3848 #ifdef BFD_ASSEMBLER
3849 /* We do this to make sure that the section symbol is in
3850 the symbol table. We will ultimately change the relocation
3851 to be relative to the beginning of the section. */
3852 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3853 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3855 if (exp->X_op != O_symbol)
3857 as_bad (_("bad expression used with @%s"),
3858 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3864 if (S_IS_LOCAL (exp->X_add_symbol)
3865 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3866 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3867 exp->X_op = O_subtract;
3868 exp->X_op_symbol = GOT_symbol;
3869 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3870 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3872 i.reloc[this_operand] = BFD_RELOC_32;
3876 if (exp->X_op == O_absent || exp->X_op == O_big)
3878 /* Missing or bad expr becomes absolute 0. */
3879 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3881 exp->X_op = O_constant;
3882 exp->X_add_number = 0;
3883 exp->X_add_symbol = (symbolS *) 0;
3884 exp->X_op_symbol = (symbolS *) 0;
3887 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3888 if (exp->X_op != O_constant
3889 #ifdef BFD_ASSEMBLER
3890 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3892 && exp_seg != absolute_section
3893 && exp_seg != text_section
3894 && exp_seg != data_section
3895 && exp_seg != bss_section
3896 && exp_seg != undefined_section
3897 #ifdef BFD_ASSEMBLER
3898 && !bfd_is_com_section (exp_seg)
3902 #ifdef BFD_ASSEMBLER
3903 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3905 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3910 else if (flag_code == CODE_64BIT)
3911 i.types[this_operand] |= Disp32S | Disp32;
3915 static int i386_index_check PARAMS ((const char *));
3917 /* Make sure the memory operand we've been dealt is valid.
3918 Return 1 on success, 0 on a failure. */
3921 i386_index_check (operand_string)
3922 const char *operand_string;
3925 #if INFER_ADDR_PREFIX
3931 if (flag_code == CODE_64BIT)
3933 if (i.prefix[ADDR_PREFIX] == 0)
3937 && ((i.base_reg->reg_type & Reg64) == 0)
3938 && (i.base_reg->reg_type != BaseIndex
3941 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3942 != (Reg64 | BaseIndex))))
3949 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3951 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3952 != (Reg32 | BaseIndex))))
3958 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3962 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
3963 != (Reg16 | BaseIndex)))
3965 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
3966 != (Reg16 | BaseIndex))
3968 && i.base_reg->reg_num < 6
3969 && i.index_reg->reg_num >= 6
3970 && i.log2_scale_factor == 0))))
3977 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3979 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3980 != (Reg32 | BaseIndex))))
3986 #if INFER_ADDR_PREFIX
3987 if (flag_code != CODE_64BIT
3988 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3990 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3992 /* Change the size of any displacement too. At most one of
3993 Disp16 or Disp32 is set.
3994 FIXME. There doesn't seem to be any real need for separate
3995 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3996 Removing them would probably clean up the code quite a lot. */
3997 if (i.types[this_operand] & (Disp16 | Disp32))
3998 i.types[this_operand] ^= (Disp16 | Disp32);
4003 as_bad (_("`%s' is not a valid base/index expression"),
4007 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4009 flag_code_names[flag_code]);
4015 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4019 i386_operand (operand_string)
4020 char *operand_string;
4024 char *op_string = operand_string;
4026 if (is_space_char (*op_string))
4029 /* We check for an absolute prefix (differentiating,
4030 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4031 if (*op_string == ABSOLUTE_PREFIX)
4034 if (is_space_char (*op_string))
4036 i.types[this_operand] |= JumpAbsolute;
4039 /* Check if operand is a register. */
4040 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4041 && (r = parse_register (op_string, &end_op)) != NULL)
4043 /* Check for a segment override by searching for ':' after a
4044 segment register. */
4046 if (is_space_char (*op_string))
4048 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4053 i.seg[i.mem_operands] = &es;
4056 i.seg[i.mem_operands] = &cs;
4059 i.seg[i.mem_operands] = &ss;
4062 i.seg[i.mem_operands] = &ds;
4065 i.seg[i.mem_operands] = &fs;
4068 i.seg[i.mem_operands] = &gs;
4072 /* Skip the ':' and whitespace. */
4074 if (is_space_char (*op_string))
4077 if (!is_digit_char (*op_string)
4078 && !is_identifier_char (*op_string)
4079 && *op_string != '('
4080 && *op_string != ABSOLUTE_PREFIX)
4082 as_bad (_("bad memory operand `%s'"), op_string);
4085 /* Handle case of %es:*foo. */
4086 if (*op_string == ABSOLUTE_PREFIX)
4089 if (is_space_char (*op_string))
4091 i.types[this_operand] |= JumpAbsolute;
4093 goto do_memory_reference;
4097 as_bad (_("junk `%s' after register"), op_string);
4100 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4101 i.op[this_operand].regs = r;
4104 else if (*op_string == REGISTER_PREFIX)
4106 as_bad (_("bad register name `%s'"), op_string);
4109 else if (*op_string == IMMEDIATE_PREFIX)
4112 if (i.types[this_operand] & JumpAbsolute)
4114 as_bad (_("immediate operand illegal with absolute jump"));
4117 if (!i386_immediate (op_string))
4120 else if (is_digit_char (*op_string)
4121 || is_identifier_char (*op_string)
4122 || *op_string == '(')
4124 /* This is a memory reference of some sort. */
4127 /* Start and end of displacement string expression (if found). */
4128 char *displacement_string_start;
4129 char *displacement_string_end;
4131 do_memory_reference:
4132 if ((i.mem_operands == 1
4133 && (current_templates->start->opcode_modifier & IsString) == 0)
4134 || i.mem_operands == 2)
4136 as_bad (_("too many memory references for `%s'"),
4137 current_templates->start->name);
4141 /* Check for base index form. We detect the base index form by
4142 looking for an ')' at the end of the operand, searching
4143 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4145 base_string = op_string + strlen (op_string);
4148 if (is_space_char (*base_string))
4151 /* If we only have a displacement, set-up for it to be parsed later. */
4152 displacement_string_start = op_string;
4153 displacement_string_end = base_string + 1;
4155 if (*base_string == ')')
4158 unsigned int parens_balanced = 1;
4159 /* We've already checked that the number of left & right ()'s are
4160 equal, so this loop will not be infinite. */
4164 if (*base_string == ')')
4166 if (*base_string == '(')
4169 while (parens_balanced);
4171 temp_string = base_string;
4173 /* Skip past '(' and whitespace. */
4175 if (is_space_char (*base_string))
4178 if (*base_string == ','
4179 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4180 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4182 displacement_string_end = temp_string;
4184 i.types[this_operand] |= BaseIndex;
4188 base_string = end_op;
4189 if (is_space_char (*base_string))
4193 /* There may be an index reg or scale factor here. */
4194 if (*base_string == ',')
4197 if (is_space_char (*base_string))
4200 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4201 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4203 base_string = end_op;
4204 if (is_space_char (*base_string))
4206 if (*base_string == ',')
4209 if (is_space_char (*base_string))
4212 else if (*base_string != ')')
4214 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4219 else if (*base_string == REGISTER_PREFIX)
4221 as_bad (_("bad register name `%s'"), base_string);
4225 /* Check for scale factor. */
4226 if (*base_string != ')')
4228 char *end_scale = i386_scale (base_string);
4233 base_string = end_scale;
4234 if (is_space_char (*base_string))
4236 if (*base_string != ')')
4238 as_bad (_("expecting `)' after scale factor in `%s'"),
4243 else if (!i.index_reg)
4245 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4250 else if (*base_string != ')')
4252 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4257 else if (*base_string == REGISTER_PREFIX)
4259 as_bad (_("bad register name `%s'"), base_string);
4264 /* If there's an expression beginning the operand, parse it,
4265 assuming displacement_string_start and
4266 displacement_string_end are meaningful. */
4267 if (displacement_string_start != displacement_string_end)
4269 if (!i386_displacement (displacement_string_start,
4270 displacement_string_end))
4274 /* Special case for (%dx) while doing input/output op. */
4276 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4278 && i.log2_scale_factor == 0
4279 && i.seg[i.mem_operands] == 0
4280 && (i.types[this_operand] & Disp) == 0)
4282 i.types[this_operand] = InOutPortReg;
4286 if (i386_index_check (operand_string) == 0)
4292 /* It's not a memory operand; argh! */
4293 as_bad (_("invalid char %s beginning operand %d `%s'"),
4294 output_invalid (*op_string),
4299 return 1; /* Normal return. */
4302 /* md_estimate_size_before_relax()
4304 Called just before relax() for rs_machine_dependent frags. The x86
4305 assembler uses these frags to handle variable size jump
4308 Any symbol that is now undefined will not become defined.
4309 Return the correct fr_subtype in the frag.
4310 Return the initial "guess for variable size of frag" to caller.
4311 The guess is actually the growth beyond the fixed part. Whatever
4312 we do to grow the fixed or variable part contributes to our
4316 md_estimate_size_before_relax (fragP, segment)
4320 /* We've already got fragP->fr_subtype right; all we have to do is
4321 check for un-relaxable symbols. On an ELF system, we can't relax
4322 an externally visible symbol, because it may be overridden by a
4324 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4325 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4326 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4327 && (S_IS_EXTERNAL (fragP->fr_symbol)
4328 || S_IS_WEAK (fragP->fr_symbol)))
4332 /* Symbol is undefined in this segment, or we need to keep a
4333 reloc so that weak symbols can be overridden. */
4334 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4335 RELOC_ENUM reloc_type;
4336 unsigned char *opcode;
4339 if (fragP->fr_var != NO_RELOC)
4340 reloc_type = fragP->fr_var;
4342 reloc_type = BFD_RELOC_16_PCREL;
4344 reloc_type = BFD_RELOC_32_PCREL;
4346 old_fr_fix = fragP->fr_fix;
4347 opcode = (unsigned char *) fragP->fr_opcode;
4349 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4352 /* Make jmp (0xeb) a (d)word displacement jump. */
4354 fragP->fr_fix += size;
4355 fix_new (fragP, old_fr_fix, size,
4357 fragP->fr_offset, 1,
4363 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4365 /* Negate the condition, and branch past an
4366 unconditional jump. */
4369 /* Insert an unconditional jump. */
4371 /* We added two extra opcode bytes, and have a two byte
4373 fragP->fr_fix += 2 + 2;
4374 fix_new (fragP, old_fr_fix + 2, 2,
4376 fragP->fr_offset, 1,
4383 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4386 fix_new (fragP, old_fr_fix, 1,
4388 fragP->fr_offset, 1,
4393 /* This changes the byte-displacement jump 0x7N
4394 to the (d)word-displacement jump 0x0f,0x8N. */
4395 opcode[1] = opcode[0] + 0x10;
4396 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4397 /* We've added an opcode byte. */
4398 fragP->fr_fix += 1 + size;
4399 fix_new (fragP, old_fr_fix + 1, size,
4401 fragP->fr_offset, 1,
4406 BAD_CASE (fragP->fr_subtype);
4410 return fragP->fr_fix - old_fr_fix;
4413 /* Guess size depending on current relax state. Initially the relax
4414 state will correspond to a short jump and we return 1, because
4415 the variable part of the frag (the branch offset) is one byte
4416 long. However, we can relax a section more than once and in that
4417 case we must either set fr_subtype back to the unrelaxed state,
4418 or return the value for the appropriate branch. */
4419 return md_relax_table[fragP->fr_subtype].rlx_length;
4422 /* Called after relax() is finished.
4424 In: Address of frag.
4425 fr_type == rs_machine_dependent.
4426 fr_subtype is what the address relaxed to.
4428 Out: Any fixSs and constants are set up.
4429 Caller will turn frag into a ".space 0". */
4431 #ifndef BFD_ASSEMBLER
4433 md_convert_frag (headers, sec, fragP)
4434 object_headers *headers ATTRIBUTE_UNUSED;
4435 segT sec ATTRIBUTE_UNUSED;
4439 md_convert_frag (abfd, sec, fragP)
4440 bfd *abfd ATTRIBUTE_UNUSED;
4441 segT sec ATTRIBUTE_UNUSED;
4445 unsigned char *opcode;
4446 unsigned char *where_to_put_displacement = NULL;
4447 offsetT target_address;
4448 offsetT opcode_address;
4449 unsigned int extension = 0;
4450 offsetT displacement_from_opcode_start;
4452 opcode = (unsigned char *) fragP->fr_opcode;
4454 /* Address we want to reach in file space. */
4455 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4457 /* Address opcode resides at in file space. */
4458 opcode_address = fragP->fr_address + fragP->fr_fix;
4460 /* Displacement from opcode start to fill into instruction. */
4461 displacement_from_opcode_start = target_address - opcode_address;
4463 if ((fragP->fr_subtype & BIG) == 0)
4465 /* Don't have to change opcode. */
4466 extension = 1; /* 1 opcode + 1 displacement */
4467 where_to_put_displacement = &opcode[1];
4471 if (no_cond_jump_promotion
4472 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4473 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4475 switch (fragP->fr_subtype)
4477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4478 extension = 4; /* 1 opcode + 4 displacement */
4480 where_to_put_displacement = &opcode[1];
4483 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4484 extension = 2; /* 1 opcode + 2 displacement */
4486 where_to_put_displacement = &opcode[1];
4489 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4490 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4491 extension = 5; /* 2 opcode + 4 displacement */
4492 opcode[1] = opcode[0] + 0x10;
4493 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4494 where_to_put_displacement = &opcode[2];
4497 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4498 extension = 3; /* 2 opcode + 2 displacement */
4499 opcode[1] = opcode[0] + 0x10;
4500 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4501 where_to_put_displacement = &opcode[2];
4504 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4509 where_to_put_displacement = &opcode[3];
4513 BAD_CASE (fragP->fr_subtype);
4518 /* Now put displacement after opcode. */
4519 md_number_to_chars ((char *) where_to_put_displacement,
4520 (valueT) (displacement_from_opcode_start - extension),
4521 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4522 fragP->fr_fix += extension;
4525 /* Size of byte displacement jmp. */
4526 int md_short_jump_size = 2;
4528 /* Size of dword displacement jmp. */
4529 int md_long_jump_size = 5;
4531 /* Size of relocation record. */
4532 const int md_reloc_size = 8;
4535 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4537 addressT from_addr, to_addr;
4538 fragS *frag ATTRIBUTE_UNUSED;
4539 symbolS *to_symbol ATTRIBUTE_UNUSED;
4543 offset = to_addr - (from_addr + 2);
4544 /* Opcode for byte-disp jump. */
4545 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4546 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4550 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4552 addressT from_addr, to_addr;
4553 fragS *frag ATTRIBUTE_UNUSED;
4554 symbolS *to_symbol ATTRIBUTE_UNUSED;
4558 offset = to_addr - (from_addr + 5);
4559 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4560 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4563 /* Apply a fixup (fixS) to segment data, once it has been determined
4564 by our caller that we have all the info we need to fix it up.
4566 On the 386, immediates, displacements, and data pointers are all in
4567 the same (little-endian) format, so we don't need to care about which
4571 md_apply_fix3 (fixP, valP, seg)
4572 /* The fix we're to put in. */
4574 /* Pointer to the value of the bits. */
4576 /* Segment fix is from. */
4577 segT seg ATTRIBUTE_UNUSED;
4579 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4580 valueT value = *valP;
4582 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4585 switch (fixP->fx_r_type)
4591 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4594 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4597 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4602 if (fixP->fx_addsy != NULL
4603 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4604 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4605 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4606 && !use_rela_relocations)
4608 /* This is a hack. There should be a better way to handle this.
4609 This covers for the fact that bfd_install_relocation will
4610 subtract the current location (for partial_inplace, PC relative
4611 relocations); see more below. */
4613 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4615 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4618 value += fixP->fx_where + fixP->fx_frag->fr_address;
4620 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4621 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4623 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4626 || (symbol_section_p (fixP->fx_addsy)
4627 && sym_seg != absolute_section))
4628 && !S_FORCE_RELOC (fixP->fx_addsy))
4630 /* Yes, we add the values in twice. This is because
4631 bfd_install_relocation subtracts them out again. I think
4632 bfd_install_relocation is broken, but I don't dare change
4634 value += fixP->fx_where + fixP->fx_frag->fr_address;
4638 #if defined (OBJ_COFF) && defined (TE_PE)
4639 /* For some reason, the PE format does not store a section
4640 address offset for a PC relative symbol. */
4641 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4642 value += md_pcrel_from (fixP);
4646 /* Fix a few things - the dynamic linker expects certain values here,
4647 and we must not dissappoint it. */
4648 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4649 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4651 switch (fixP->fx_r_type)
4653 case BFD_RELOC_386_PLT32:
4654 case BFD_RELOC_X86_64_PLT32:
4655 /* Make the jump instruction point to the address of the operand. At
4656 runtime we merely add the offset to the actual PLT entry. */
4660 case BFD_RELOC_386_GOT32:
4661 case BFD_RELOC_386_TLS_GD:
4662 case BFD_RELOC_386_TLS_LDM:
4663 case BFD_RELOC_386_TLS_IE_32:
4664 case BFD_RELOC_386_TLS_IE:
4665 case BFD_RELOC_386_TLS_GOTIE:
4666 case BFD_RELOC_X86_64_GOT32:
4667 value = 0; /* Fully resolved at runtime. No addend. */
4670 case BFD_RELOC_VTABLE_INHERIT:
4671 case BFD_RELOC_VTABLE_ENTRY:
4678 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4680 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4682 /* Are we finished with this relocation now? */
4683 if (fixP->fx_addsy == NULL)
4685 #ifdef BFD_ASSEMBLER
4686 else if (use_rela_relocations)
4688 fixP->fx_no_overflow = 1;
4689 /* Remember value for tc_gen_reloc. */
4690 fixP->fx_addnumber = value;
4694 md_number_to_chars (p, value, fixP->fx_size);
4697 #define MAX_LITTLENUMS 6
4699 /* Turn the string pointed to by litP into a floating point constant
4700 of type TYPE, and emit the appropriate bytes. The number of
4701 LITTLENUMS emitted is stored in *SIZEP. An error message is
4702 returned, or NULL on OK. */
4705 md_atof (type, litP, sizeP)
4711 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4712 LITTLENUM_TYPE *wordP;
4734 return _("Bad call to md_atof ()");
4736 t = atof_ieee (input_line_pointer, type, words);
4738 input_line_pointer = t;
4740 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4741 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4742 the bigendian 386. */
4743 for (wordP = words + prec - 1; prec--;)
4745 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4746 litP += sizeof (LITTLENUM_TYPE);
4751 char output_invalid_buf[8];
4758 sprintf (output_invalid_buf, "'%c'", c);
4760 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4761 return output_invalid_buf;
4764 /* REG_STRING starts *before* REGISTER_PREFIX. */
4766 static const reg_entry *
4767 parse_register (reg_string, end_op)
4771 char *s = reg_string;
4773 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4776 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4777 if (*s == REGISTER_PREFIX)
4780 if (is_space_char (*s))
4784 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4786 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4787 return (const reg_entry *) NULL;
4791 /* For naked regs, make sure that we are not dealing with an identifier.
4792 This prevents confusing an identifier like `eax_var' with register
4794 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4795 return (const reg_entry *) NULL;
4799 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4801 /* Handle floating point regs, allowing spaces in the (i) part. */
4802 if (r == i386_regtab /* %st is first entry of table */)
4804 if (is_space_char (*s))
4809 if (is_space_char (*s))
4811 if (*s >= '0' && *s <= '7')
4813 r = &i386_float_regtab[*s - '0'];
4815 if (is_space_char (*s))
4823 /* We have "%st(" then garbage. */
4824 return (const reg_entry *) NULL;
4829 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4830 && flag_code != CODE_64BIT)
4832 return (const reg_entry *) NULL;
4838 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4839 const char *md_shortopts = "kVQ:sq";
4841 const char *md_shortopts = "q";
4844 struct option md_longopts[] = {
4845 #define OPTION_32 (OPTION_MD_BASE + 0)
4846 {"32", no_argument, NULL, OPTION_32},
4847 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4848 #define OPTION_64 (OPTION_MD_BASE + 1)
4849 {"64", no_argument, NULL, OPTION_64},
4851 {NULL, no_argument, NULL, 0}
4853 size_t md_longopts_size = sizeof (md_longopts);
4856 md_parse_option (c, arg)
4858 char *arg ATTRIBUTE_UNUSED;
4866 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4867 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4868 should be emitted or not. FIXME: Not implemented. */
4872 /* -V: SVR4 argument to print version ID. */
4874 print_version_id ();
4877 /* -k: Ignore for FreeBSD compatibility. */
4882 /* -s: On i386 Solaris, this tells the native assembler to use
4883 .stab instead of .stab.excl. We always use .stab anyhow. */
4888 const char **list, **l;
4890 list = bfd_target_list ();
4891 for (l = list; *l != NULL; l++)
4892 if (strcmp (*l, "elf64-x86-64") == 0)
4894 default_arch = "x86_64";
4898 as_fatal (_("No compiled in support for x86_64"));
4905 default_arch = "i386";
4915 md_show_usage (stream)
4918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4919 fprintf (stream, _("\
4921 -V print assembler version number\n\
4923 -q quieten some warnings\n\
4926 fprintf (stream, _("\
4927 -q quieten some warnings\n"));
4931 #ifdef BFD_ASSEMBLER
4932 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4933 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4935 /* Pick the target format to use. */
4938 i386_target_format ()
4940 if (!strcmp (default_arch, "x86_64"))
4941 set_code_flag (CODE_64BIT);
4942 else if (!strcmp (default_arch, "i386"))
4943 set_code_flag (CODE_32BIT);
4945 as_fatal (_("Unknown architecture"));
4946 switch (OUTPUT_FLAVOR)
4948 #ifdef OBJ_MAYBE_AOUT
4949 case bfd_target_aout_flavour:
4950 return AOUT_TARGET_FORMAT;
4952 #ifdef OBJ_MAYBE_COFF
4953 case bfd_target_coff_flavour:
4956 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
4957 case bfd_target_elf_flavour:
4959 if (flag_code == CODE_64BIT)
4960 use_rela_relocations = 1;
4961 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
4970 #endif /* OBJ_MAYBE_ more than one */
4972 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4973 void i386_elf_emit_arch_note ()
4975 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4976 && cpu_arch_name != NULL)
4979 asection *seg = now_seg;
4980 subsegT subseg = now_subseg;
4981 Elf_Internal_Note i_note;
4982 Elf_External_Note e_note;
4983 asection *note_secp;
4986 /* Create the .note section. */
4987 note_secp = subseg_new (".note", 0);
4988 bfd_set_section_flags (stdoutput,
4990 SEC_HAS_CONTENTS | SEC_READONLY);
4992 /* Process the arch string. */
4993 len = strlen (cpu_arch_name);
4995 i_note.namesz = len + 1;
4997 i_note.type = NT_ARCH;
4998 p = frag_more (sizeof (e_note.namesz));
4999 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5000 p = frag_more (sizeof (e_note.descsz));
5001 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5002 p = frag_more (sizeof (e_note.type));
5003 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5004 p = frag_more (len + 1);
5005 strcpy (p, cpu_arch_name);
5007 frag_align (2, 0, 0);
5009 subseg_set (seg, subseg);
5013 #endif /* BFD_ASSEMBLER */
5016 md_undefined_symbol (name)
5019 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5020 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5021 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5022 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5026 if (symbol_find (name))
5027 as_bad (_("GOT already in symbol table"));
5028 GOT_symbol = symbol_new (name, undefined_section,
5029 (valueT) 0, &zero_address_frag);
5036 /* Round up a section size to the appropriate boundary. */
5039 md_section_align (segment, size)
5040 segT segment ATTRIBUTE_UNUSED;
5043 #ifdef BFD_ASSEMBLER
5044 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5045 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5047 /* For a.out, force the section size to be aligned. If we don't do
5048 this, BFD will align it for us, but it will not write out the
5049 final bytes of the section. This may be a bug in BFD, but it is
5050 easier to fix it here since that is how the other a.out targets
5054 align = bfd_get_section_alignment (stdoutput, segment);
5055 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5063 /* On the i386, PC-relative offsets are relative to the start of the
5064 next instruction. That is, the address of the offset, plus its
5065 size, since the offset is always the last part of the insn. */
5068 md_pcrel_from (fixP)
5071 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5078 int ignore ATTRIBUTE_UNUSED;
5082 temp = get_absolute_expression ();
5083 subseg_set (bss_section, (subsegT) temp);
5084 demand_empty_rest_of_line ();
5089 #ifdef BFD_ASSEMBLER
5092 i386_validate_fix (fixp)
5095 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5097 /* GOTOFF relocation are nonsense in 64bit mode. */
5098 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5100 if (flag_code != CODE_64BIT)
5102 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5106 if (flag_code == CODE_64BIT)
5108 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5115 i386_force_relocation (fixp)
5118 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5119 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5122 return S_FORCE_RELOC (fixp->fx_addsy);
5126 tc_gen_reloc (section, fixp)
5127 asection *section ATTRIBUTE_UNUSED;
5131 bfd_reloc_code_real_type code;
5133 switch (fixp->fx_r_type)
5135 case BFD_RELOC_X86_64_PLT32:
5136 case BFD_RELOC_X86_64_GOT32:
5137 case BFD_RELOC_X86_64_GOTPCREL:
5138 case BFD_RELOC_386_PLT32:
5139 case BFD_RELOC_386_GOT32:
5140 case BFD_RELOC_386_GOTOFF:
5141 case BFD_RELOC_386_GOTPC:
5142 case BFD_RELOC_386_TLS_GD:
5143 case BFD_RELOC_386_TLS_LDM:
5144 case BFD_RELOC_386_TLS_LDO_32:
5145 case BFD_RELOC_386_TLS_IE_32:
5146 case BFD_RELOC_386_TLS_IE:
5147 case BFD_RELOC_386_TLS_GOTIE:
5148 case BFD_RELOC_386_TLS_LE_32:
5149 case BFD_RELOC_386_TLS_LE:
5150 case BFD_RELOC_X86_64_32S:
5152 case BFD_RELOC_VTABLE_ENTRY:
5153 case BFD_RELOC_VTABLE_INHERIT:
5154 code = fixp->fx_r_type;
5159 switch (fixp->fx_size)
5162 as_bad_where (fixp->fx_file, fixp->fx_line,
5163 _("can not do %d byte pc-relative relocation"),
5165 code = BFD_RELOC_32_PCREL;
5167 case 1: code = BFD_RELOC_8_PCREL; break;
5168 case 2: code = BFD_RELOC_16_PCREL; break;
5169 case 4: code = BFD_RELOC_32_PCREL; break;
5174 switch (fixp->fx_size)
5177 as_bad_where (fixp->fx_file, fixp->fx_line,
5178 _("can not do %d byte relocation"),
5180 code = BFD_RELOC_32;
5182 case 1: code = BFD_RELOC_8; break;
5183 case 2: code = BFD_RELOC_16; break;
5184 case 4: code = BFD_RELOC_32; break;
5186 case 8: code = BFD_RELOC_64; break;
5193 if (code == BFD_RELOC_32
5195 && fixp->fx_addsy == GOT_symbol)
5197 /* We don't support GOTPC on 64bit targets. */
5198 if (flag_code == CODE_64BIT)
5200 code = BFD_RELOC_386_GOTPC;
5203 rel = (arelent *) xmalloc (sizeof (arelent));
5204 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5205 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5207 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5208 if (!use_rela_relocations)
5210 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5211 vtable entry to be used in the relocation's section offset. */
5212 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5213 rel->address = fixp->fx_offset;
5217 /* Use the rela in 64bit mode. */
5220 if (!fixp->fx_pcrel)
5221 rel->addend = fixp->fx_offset;
5225 case BFD_RELOC_X86_64_PLT32:
5226 case BFD_RELOC_X86_64_GOT32:
5227 case BFD_RELOC_X86_64_GOTPCREL:
5228 rel->addend = fixp->fx_offset - fixp->fx_size;
5231 rel->addend = (section->vma
5233 + fixp->fx_addnumber
5234 + md_pcrel_from (fixp));
5239 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5240 if (rel->howto == NULL)
5242 as_bad_where (fixp->fx_file, fixp->fx_line,
5243 _("cannot represent relocation type %s"),
5244 bfd_get_reloc_code_name (code));
5245 /* Set howto to a garbage value so that we can keep going. */
5246 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5247 assert (rel->howto != NULL);
5253 #else /* !BFD_ASSEMBLER */
5255 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5257 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5260 relax_addressT segment_address_in_file;
5262 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5263 Out: GNU LD relocation length code: 0, 1, or 2. */
5265 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5268 know (fixP->fx_addsy != NULL);
5270 md_number_to_chars (where,
5271 (valueT) (fixP->fx_frag->fr_address
5272 + fixP->fx_where - segment_address_in_file),
5275 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5276 ? S_GET_TYPE (fixP->fx_addsy)
5277 : fixP->fx_addsy->sy_number);
5279 where[6] = (r_symbolnum >> 16) & 0x0ff;
5280 where[5] = (r_symbolnum >> 8) & 0x0ff;
5281 where[4] = r_symbolnum & 0x0ff;
5282 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5283 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5284 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5287 #endif /* OBJ_AOUT or OBJ_BOUT. */
5289 #if defined (I386COFF)
5292 tc_coff_fix2rtype (fixP)
5295 if (fixP->fx_r_type == R_IMAGEBASE)
5298 return (fixP->fx_pcrel ?
5299 (fixP->fx_size == 1 ? R_PCRBYTE :
5300 fixP->fx_size == 2 ? R_PCRWORD :
5302 (fixP->fx_size == 1 ? R_RELBYTE :
5303 fixP->fx_size == 2 ? R_RELWORD :
5308 tc_coff_sizemachdep (frag)
5312 return (frag->fr_next->fr_address - frag->fr_address);
5317 #endif /* I386COFF */
5319 #endif /* !BFD_ASSEMBLER */
5321 /* Parse operands using Intel syntax. This implements a recursive descent
5322 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5325 FIXME: We do not recognize the full operand grammar defined in the MASM
5326 documentation. In particular, all the structure/union and
5327 high-level macro operands are missing.
5329 Uppercase words are terminals, lower case words are non-terminals.
5330 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5331 bars '|' denote choices. Most grammar productions are implemented in
5332 functions called 'intel_<production>'.
5334 Initial production is 'expr'.
5340 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5342 constant digits [[ radixOverride ]]
5344 dataType BYTE | WORD | DWORD | QWORD | XWORD
5377 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5378 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5380 hexdigit a | b | c | d | e | f
5381 | A | B | C | D | E | F
5391 register specialRegister
5395 segmentRegister CS | DS | ES | FS | GS | SS
5397 specialRegister CR0 | CR2 | CR3
5398 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5399 | TR3 | TR4 | TR5 | TR6 | TR7
5401 We simplify the grammar in obvious places (e.g., register parsing is
5402 done by calling parse_register) and eliminate immediate left recursion
5403 to implement a recursive-descent parser.
5443 /* Parsing structure for the intel syntax parser. Used to implement the
5444 semantic actions for the operand grammar. */
5445 struct intel_parser_s
5447 char *op_string; /* The string being parsed. */
5448 int got_a_float; /* Whether the operand is a float. */
5449 int op_modifier; /* Operand modifier. */
5450 int is_mem; /* 1 if operand is memory reference. */
5451 const reg_entry *reg; /* Last register reference found. */
5452 char *disp; /* Displacement string being built. */
5455 static struct intel_parser_s intel_parser;
5457 /* Token structure for parsing intel syntax. */
5460 int code; /* Token code. */
5461 const reg_entry *reg; /* Register entry for register tokens. */
5462 char *str; /* String representation. */
5465 static struct intel_token cur_token, prev_token;
5467 /* Token codes for the intel parser. Since T_SHORT is already used
5468 by COFF, undefine it first to prevent a warning. */
5483 /* Prototypes for intel parser functions. */
5484 static int intel_match_token PARAMS ((int code));
5485 static void intel_get_token PARAMS ((void));
5486 static void intel_putback_token PARAMS ((void));
5487 static int intel_expr PARAMS ((void));
5488 static int intel_e05 PARAMS ((void));
5489 static int intel_e05_1 PARAMS ((void));
5490 static int intel_e06 PARAMS ((void));
5491 static int intel_e06_1 PARAMS ((void));
5492 static int intel_e09 PARAMS ((void));
5493 static int intel_e09_1 PARAMS ((void));
5494 static int intel_e10 PARAMS ((void));
5495 static int intel_e10_1 PARAMS ((void));
5496 static int intel_e11 PARAMS ((void));
5499 i386_intel_operand (operand_string, got_a_float)
5500 char *operand_string;
5506 /* Initialize token holders. */
5507 cur_token.code = prev_token.code = T_NIL;
5508 cur_token.reg = prev_token.reg = NULL;
5509 cur_token.str = prev_token.str = NULL;
5511 /* Initialize parser structure. */
5512 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5515 strcpy (intel_parser.op_string, operand_string);
5516 intel_parser.got_a_float = got_a_float;
5517 intel_parser.op_modifier = -1;
5518 intel_parser.is_mem = 0;
5519 intel_parser.reg = NULL;
5520 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5521 if (intel_parser.disp == NULL)
5523 intel_parser.disp[0] = '\0';
5525 /* Read the first token and start the parser. */
5527 ret = intel_expr ();
5531 /* If we found a memory reference, hand it over to i386_displacement
5532 to fill in the rest of the operand fields. */
5533 if (intel_parser.is_mem)
5535 if ((i.mem_operands == 1
5536 && (current_templates->start->opcode_modifier & IsString) == 0)
5537 || i.mem_operands == 2)
5539 as_bad (_("too many memory references for '%s'"),
5540 current_templates->start->name);
5545 char *s = intel_parser.disp;
5548 /* Add the displacement expression. */
5550 ret = i386_displacement (s, s + strlen (s))
5551 && i386_index_check (s);
5555 /* Constant and OFFSET expressions are handled by i386_immediate. */
5556 else if (intel_parser.op_modifier == OFFSET_FLAT
5557 || intel_parser.reg == NULL)
5558 ret = i386_immediate (intel_parser.disp);
5562 free (intel_parser.disp);
5572 /* expr SHORT e05 */
5573 if (cur_token.code == T_SHORT)
5575 intel_parser.op_modifier = SHORT;
5576 intel_match_token (T_SHORT);
5578 return (intel_e05 ());
5583 return intel_e05 ();
5593 return (intel_e06 () && intel_e05_1 ());
5599 /* e05' addOp e06 e05' */
5600 if (cur_token.code == '+' || cur_token.code == '-')
5602 strcat (intel_parser.disp, cur_token.str);
5603 intel_match_token (cur_token.code);
5605 return (intel_e06 () && intel_e05_1 ());
5620 return (intel_e09 () && intel_e06_1 ());
5626 /* e06' mulOp e09 e06' */
5627 if (cur_token.code == '*' || cur_token.code == '/')
5629 strcat (intel_parser.disp, cur_token.str);
5630 intel_match_token (cur_token.code);
5632 return (intel_e09 () && intel_e06_1 ());
5640 /* e09 OFFSET e10 e09'
5649 /* e09 OFFSET e10 e09' */
5650 if (cur_token.code == T_OFFSET)
5652 intel_parser.is_mem = 0;
5653 intel_parser.op_modifier = OFFSET_FLAT;
5654 intel_match_token (T_OFFSET);
5656 return (intel_e10 () && intel_e09_1 ());
5661 return (intel_e10 () && intel_e09_1 ());
5667 /* e09' PTR e10 e09' */
5668 if (cur_token.code == T_PTR)
5670 if (prev_token.code == T_BYTE)
5671 i.suffix = BYTE_MNEM_SUFFIX;
5673 else if (prev_token.code == T_WORD)
5675 if (intel_parser.got_a_float == 2) /* "fi..." */
5676 i.suffix = SHORT_MNEM_SUFFIX;
5678 i.suffix = WORD_MNEM_SUFFIX;
5681 else if (prev_token.code == T_DWORD)
5683 if (intel_parser.got_a_float == 1) /* "f..." */
5684 i.suffix = SHORT_MNEM_SUFFIX;
5686 i.suffix = LONG_MNEM_SUFFIX;
5689 else if (prev_token.code == T_QWORD)
5691 if (intel_parser.got_a_float == 1) /* "f..." */
5692 i.suffix = LONG_MNEM_SUFFIX;
5694 i.suffix = QWORD_MNEM_SUFFIX;
5697 else if (prev_token.code == T_XWORD)
5698 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5702 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5706 intel_match_token (T_PTR);
5708 return (intel_e10 () && intel_e09_1 ());
5711 /* e09 : e10 e09' */
5712 else if (cur_token.code == ':')
5714 /* Mark as a memory operand only if it's not already known to be an
5715 offset expression. */
5716 if (intel_parser.op_modifier != OFFSET_FLAT)
5717 intel_parser.is_mem = 1;
5719 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5734 return (intel_e11 () && intel_e10_1 ());
5740 /* e10' [ expr ] e10' */
5741 if (cur_token.code == '[')
5743 intel_match_token ('[');
5745 /* Mark as a memory operand only if it's not already known to be an
5746 offset expression. If it's an offset expression, we need to keep
5748 if (intel_parser.op_modifier != OFFSET_FLAT)
5749 intel_parser.is_mem = 1;
5751 strcat (intel_parser.disp, "[");
5753 /* Add a '+' to the displacement string if necessary. */
5754 if (*intel_parser.disp != '\0'
5755 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5756 strcat (intel_parser.disp, "+");
5758 if (intel_expr () && intel_match_token (']'))
5760 /* Preserve brackets when the operand is an offset expression. */
5761 if (intel_parser.op_modifier == OFFSET_FLAT)
5762 strcat (intel_parser.disp, "]");
5764 return intel_e10_1 ();
5791 if (cur_token.code == '(')
5793 intel_match_token ('(');
5794 strcat (intel_parser.disp, "(");
5796 if (intel_expr () && intel_match_token (')'))
5798 strcat (intel_parser.disp, ")");
5806 else if (cur_token.code == '[')
5808 intel_match_token ('[');
5810 /* Mark as a memory operand only if it's not already known to be an
5811 offset expression. If it's an offset expression, we need to keep
5813 if (intel_parser.op_modifier != OFFSET_FLAT)
5814 intel_parser.is_mem = 1;
5816 strcat (intel_parser.disp, "[");
5818 /* Operands for jump/call inside brackets denote absolute addresses. */
5819 if (current_templates->start->opcode_modifier & Jump
5820 || current_templates->start->opcode_modifier & JumpDword
5821 || current_templates->start->opcode_modifier & JumpByte
5822 || current_templates->start->opcode_modifier & JumpInterSegment)
5823 i.types[this_operand] |= JumpAbsolute;
5825 /* Add a '+' to the displacement string if necessary. */
5826 if (*intel_parser.disp != '\0'
5827 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5828 strcat (intel_parser.disp, "+");
5830 if (intel_expr () && intel_match_token (']'))
5832 /* Preserve brackets when the operand is an offset expression. */
5833 if (intel_parser.op_modifier == OFFSET_FLAT)
5834 strcat (intel_parser.disp, "]");
5847 else if (cur_token.code == T_BYTE
5848 || cur_token.code == T_WORD
5849 || cur_token.code == T_DWORD
5850 || cur_token.code == T_QWORD
5851 || cur_token.code == T_XWORD)
5853 intel_match_token (cur_token.code);
5860 else if (cur_token.code == '$' || cur_token.code == '.')
5862 strcat (intel_parser.disp, cur_token.str);
5863 intel_match_token (cur_token.code);
5865 /* Mark as a memory operand only if it's not already known to be an
5866 offset expression. */
5867 if (intel_parser.op_modifier != OFFSET_FLAT)
5868 intel_parser.is_mem = 1;
5874 else if (cur_token.code == T_REG)
5876 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5878 intel_match_token (T_REG);
5880 /* Check for segment change. */
5881 if (cur_token.code == ':')
5883 if (reg->reg_type & (SReg2 | SReg3))
5885 switch (reg->reg_num)
5888 i.seg[i.mem_operands] = &es;
5891 i.seg[i.mem_operands] = &cs;
5894 i.seg[i.mem_operands] = &ss;
5897 i.seg[i.mem_operands] = &ds;
5900 i.seg[i.mem_operands] = &fs;
5903 i.seg[i.mem_operands] = &gs;
5909 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5914 /* Not a segment register. Check for register scaling. */
5915 else if (cur_token.code == '*')
5917 if (!intel_parser.is_mem)
5919 as_bad (_("Register scaling only allowed in memory operands."));
5923 /* What follows must be a valid scale. */
5924 if (intel_match_token ('*')
5925 && strchr ("01248", *cur_token.str))
5928 i.types[this_operand] |= BaseIndex;
5930 /* Set the scale after setting the register (otherwise,
5931 i386_scale will complain) */
5932 i386_scale (cur_token.str);
5933 intel_match_token (T_CONST);
5937 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5943 /* No scaling. If this is a memory operand, the register is either a
5944 base register (first occurrence) or an index register (second
5946 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
5948 if (i.base_reg && i.index_reg)
5950 as_bad (_("Too many register references in memory operand.\n"));
5954 if (i.base_reg == NULL)
5959 i.types[this_operand] |= BaseIndex;
5962 /* Offset modifier. Add the register to the displacement string to be
5963 parsed as an immediate expression after we're done. */
5964 else if (intel_parser.op_modifier == OFFSET_FLAT)
5965 strcat (intel_parser.disp, reg->reg_name);
5967 /* It's neither base nor index nor offset. */
5970 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
5971 i.op[this_operand].regs = reg;
5975 /* Since registers are not part of the displacement string (except
5976 when we're parsing offset operands), we may need to remove any
5977 preceding '+' from the displacement string. */
5978 if (*intel_parser.disp != '\0'
5979 && intel_parser.op_modifier != OFFSET_FLAT)
5981 char *s = intel_parser.disp;
5982 s += strlen (s) - 1;
5991 else if (cur_token.code == T_ID)
5993 /* Add the identifier to the displacement string. */
5994 strcat (intel_parser.disp, cur_token.str);
5995 intel_match_token (T_ID);
5997 /* The identifier represents a memory reference only if it's not
5998 preceded by an offset modifier. */
5999 if (intel_parser.op_modifier != OFFSET_FLAT)
6000 intel_parser.is_mem = 1;
6006 else if (cur_token.code == T_CONST
6007 || cur_token.code == '-'
6008 || cur_token.code == '+')
6012 /* Allow constants that start with `+' or `-'. */
6013 if (cur_token.code == '-' || cur_token.code == '+')
6015 strcat (intel_parser.disp, cur_token.str);
6016 intel_match_token (cur_token.code);
6017 if (cur_token.code != T_CONST)
6019 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6025 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6026 if (save_str == NULL)
6028 strcpy (save_str, cur_token.str);
6030 /* Get the next token to check for register scaling. */
6031 intel_match_token (cur_token.code);
6033 /* Check if this constant is a scaling factor for an index register. */
6034 if (cur_token.code == '*')
6036 if (intel_match_token ('*') && cur_token.code == T_REG)
6038 if (!intel_parser.is_mem)
6040 as_bad (_("Register scaling only allowed in memory operands."));
6044 /* The constant is followed by `* reg', so it must be
6046 if (strchr ("01248", *save_str))
6048 i.index_reg = cur_token.reg;
6049 i.types[this_operand] |= BaseIndex;
6051 /* Set the scale after setting the register (otherwise,
6052 i386_scale will complain) */
6053 i386_scale (save_str);
6054 intel_match_token (T_REG);
6056 /* Since registers are not part of the displacement
6057 string, we may need to remove any preceding '+' from
6058 the displacement string. */
6059 if (*intel_parser.disp != '\0')
6061 char *s = intel_parser.disp;
6062 s += strlen (s) - 1;
6075 /* The constant was not used for register scaling. Since we have
6076 already consumed the token following `*' we now need to put it
6077 back in the stream. */
6079 intel_putback_token ();
6082 /* Add the constant to the displacement string. */
6083 strcat (intel_parser.disp, save_str);
6089 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6093 /* Match the given token against cur_token. If they match, read the next
6094 token from the operand string. */
6096 intel_match_token (code)
6099 if (cur_token.code == code)
6106 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6111 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6116 const reg_entry *reg;
6117 struct intel_token new_token;
6119 new_token.code = T_NIL;
6120 new_token.reg = NULL;
6121 new_token.str = NULL;
6123 /* Free the memory allocated to the previous token and move
6124 cur_token to prev_token. */
6126 free (prev_token.str);
6128 prev_token = cur_token;
6130 /* Skip whitespace. */
6131 while (is_space_char (*intel_parser.op_string))
6132 intel_parser.op_string++;
6134 /* Return an empty token if we find nothing else on the line. */
6135 if (*intel_parser.op_string == '\0')
6137 cur_token = new_token;
6141 /* The new token cannot be larger than the remainder of the operand
6143 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6144 if (new_token.str == NULL)
6146 new_token.str[0] = '\0';
6148 if (strchr ("0123456789", *intel_parser.op_string))
6150 char *p = new_token.str;
6151 char *q = intel_parser.op_string;
6152 new_token.code = T_CONST;
6154 /* Allow any kind of identifier char to encompass floating point and
6155 hexadecimal numbers. */
6156 while (is_identifier_char (*q))
6160 /* Recognize special symbol names [0-9][bf]. */
6161 if (strlen (intel_parser.op_string) == 2
6162 && (intel_parser.op_string[1] == 'b'
6163 || intel_parser.op_string[1] == 'f'))
6164 new_token.code = T_ID;
6167 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6169 new_token.code = *intel_parser.op_string;
6170 new_token.str[0] = *intel_parser.op_string;
6171 new_token.str[1] = '\0';
6174 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6175 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6177 new_token.code = T_REG;
6178 new_token.reg = reg;
6180 if (*intel_parser.op_string == REGISTER_PREFIX)
6182 new_token.str[0] = REGISTER_PREFIX;
6183 new_token.str[1] = '\0';
6186 strcat (new_token.str, reg->reg_name);
6189 else if (is_identifier_char (*intel_parser.op_string))
6191 char *p = new_token.str;
6192 char *q = intel_parser.op_string;
6194 /* A '.' or '$' followed by an identifier char is an identifier.
6195 Otherwise, it's operator '.' followed by an expression. */
6196 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6198 new_token.code = *q;
6199 new_token.str[0] = *q;
6200 new_token.str[1] = '\0';
6204 while (is_identifier_char (*q) || *q == '@')
6208 if (strcasecmp (new_token.str, "BYTE") == 0)
6209 new_token.code = T_BYTE;
6211 else if (strcasecmp (new_token.str, "WORD") == 0)
6212 new_token.code = T_WORD;
6214 else if (strcasecmp (new_token.str, "DWORD") == 0)
6215 new_token.code = T_DWORD;
6217 else if (strcasecmp (new_token.str, "QWORD") == 0)
6218 new_token.code = T_QWORD;
6220 else if (strcasecmp (new_token.str, "XWORD") == 0)
6221 new_token.code = T_XWORD;
6223 else if (strcasecmp (new_token.str, "PTR") == 0)
6224 new_token.code = T_PTR;
6226 else if (strcasecmp (new_token.str, "SHORT") == 0)
6227 new_token.code = T_SHORT;
6229 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6231 new_token.code = T_OFFSET;
6233 /* ??? This is not mentioned in the MASM grammar but gcc
6234 makes use of it with -mintel-syntax. OFFSET may be
6235 followed by FLAT: */
6236 if (strncasecmp (q, " FLAT:", 6) == 0)
6237 strcat (new_token.str, " FLAT:");
6240 /* ??? This is not mentioned in the MASM grammar. */
6241 else if (strcasecmp (new_token.str, "FLAT") == 0)
6242 new_token.code = T_OFFSET;
6245 new_token.code = T_ID;
6250 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6252 intel_parser.op_string += strlen (new_token.str);
6253 cur_token = new_token;
6256 /* Put cur_token back into the token stream and make cur_token point to
6259 intel_putback_token ()
6261 intel_parser.op_string -= strlen (cur_token.str);
6262 free (cur_token.str);
6263 cur_token = prev_token;
6265 /* Forget prev_token. */
6266 prev_token.code = T_NIL;
6267 prev_token.reg = NULL;
6268 prev_token.str = NULL;