1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
30 #include "safe-ctype.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34 #include "opcode/i386.h"
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
53 #define RELOC_ENUM enum bfd_reloc_code_real
55 #define RELOC_ENUM int
59 #define DEFAULT_ARCH "i386"
64 #define INLINE __inline__
70 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74 static INLINE int fits_in_signed_word PARAMS ((offsetT));
75 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76 static INLINE int fits_in_signed_long PARAMS ((offsetT));
77 static int smallest_imm_type PARAMS ((offsetT));
78 static offsetT offset_in_range PARAMS ((offsetT, int));
79 static int add_prefix PARAMS ((unsigned int));
80 static void set_code_flag PARAMS ((int));
81 static void set_16bit_gcc_code_flag PARAMS ((int));
82 static void set_intel_syntax PARAMS ((int));
83 static void set_cpu_arch PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
113 static void s_bss PARAMS ((int));
116 static const char *default_arch = DEFAULT_ARCH;
118 /* 'md_assemble ()' gathers together information and puts it into a
125 const reg_entry *regs;
130 /* TM holds the template for the insn were currently assembling. */
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
137 /* OPERANDS gives the number of given operands. */
138 unsigned int operands;
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
145 /* TYPES [i] is the type (see above #defines) which tells us how to
146 use OP[i] for the corresponding operand. */
147 unsigned int types[MAX_OPERANDS];
149 /* Displacement expression, immediate expression, or register for each
151 union i386_op op[MAX_OPERANDS];
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155 #define Operand_PCrel 1
157 /* Relocation type for operand */
158 RELOC_ENUM reloc[MAX_OPERANDS];
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
166 /* SEG gives the seg_entries of this insn. They are zero unless
167 explicit segment overrides are given. */
168 const seg_entry *seg[2];
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
183 typedef struct _i386_insn i386_insn;
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
188 const char extra_symbol_chars[] = "*%-(@[";
190 const char extra_symbol_chars[] = "*%-([";
193 #if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
198 /* This array holds the chars that always start a comment. If the
199 pre-processor is disabled, these aren't very useful. */
200 const char comment_chars[] = "#/";
201 #define PREFIX_SEPARATOR '\\'
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#";
214 /* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216 const char comment_chars[] = "#";
217 #define PREFIX_SEPARATOR '/'
219 const char line_comment_chars[] = "/#";
222 const char line_separator_chars[] = ";";
224 /* Chars that can be used to separate mant from exp in floating point
226 const char EXP_CHARS[] = "eE";
228 /* Chars that mean this number is a floating point constant
231 const char FLT_CHARS[] = "fFdDxX";
233 /* Tables for lexical analysis. */
234 static char mnemonic_chars[256];
235 static char register_chars[256];
236 static char operand_chars[256];
237 static char identifier_chars[256];
238 static char digit_chars[256];
240 /* Lexical macros. */
241 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242 #define is_operand_char(x) (operand_chars[(unsigned char) x])
243 #define is_register_char(x) (register_chars[(unsigned char) x])
244 #define is_space_char(x) ((x) == ' ')
245 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246 #define is_digit_char(x) (digit_chars[(unsigned char) x])
248 /* All non-digit non-letter charcters that may occur in an operand. */
249 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
251 /* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
254 assembler instruction). */
255 static char save_stack[32];
256 static char *save_stack_p;
257 #define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259 #define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
262 /* The instruction we're assembling. */
265 /* Possible templates for current insn. */
266 static const templates *current_templates;
268 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
269 static expressionS disp_expressions[2], im_expressions[2];
271 /* Current operand we are working on. */
272 static int this_operand;
274 /* We support four different modes. FLAG_CODE variable is used to distinguish
281 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
283 static enum flag_code flag_code;
284 static int use_rela_relocations = 0;
286 /* The names used to print error messages. */
287 static const char *flag_code_names[] =
294 /* 1 for intel syntax,
296 static int intel_syntax = 0;
298 /* 1 if register prefix % not required. */
299 static int allow_naked_reg = 0;
301 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304 static char stackop_size = '\0';
306 /* Non-zero to optimize code alignment. */
307 int optimize_align_code = 1;
309 /* Non-zero to quieten some warnings. */
310 static int quiet_warnings = 0;
313 static const char *cpu_arch_name = NULL;
315 /* CPU feature flags. */
316 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
318 /* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320 static unsigned int no_cond_jump_promotion = 0;
322 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
325 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
326 unsigned int x86_dwarf2_return_column;
328 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329 int x86_cie_data_alignment;
331 /* Interface to relax_segment.
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
337 #define UNCOND_JUMP 0
339 #define COND_JUMP86 2
344 #define SMALL16 (SMALL | CODE16)
346 #define BIG16 (BIG | CODE16)
350 #define INLINE __inline__
356 #define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358 #define TYPE_FROM_RELAX_STATE(s) \
360 #define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
363 /* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
371 const relax_typeS md_relax_table[] =
374 1) most positive reach of this state,
375 2) most negative reach of this state,
376 3) how many bytes this mode will have in the variable part of the frag
377 4) which index into the table to try if we can't fit into this one. */
379 /* UNCOND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
395 /* word conditionals add 3 bytes to frag:
396 1 extra opcode byte, 2 displacement bytes. */
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
410 static const arch_entry cpu_arch[] = {
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
427 const pseudo_typeS md_pseudo_table[] =
429 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
432 {"align", s_align_ptwo, 0},
434 {"arch", set_cpu_arch, 0},
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
451 {"loc", dwarf2_directive_loc, 0},
455 /* For interface with expression (). */
456 extern char *input_line_pointer;
458 /* Hash table for instruction mnemonic lookup. */
459 static struct hash_control *op_hash;
461 /* Hash table for register lookup. */
462 static struct hash_control *reg_hash;
465 i386_align_code (fragP, count)
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
472 static const char f32_1[] =
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
531 static const char *const f16_patt[] = {
532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
536 if (count <= 0 || count > 15)
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
549 for (i = 0; i < remains; i++)
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
555 for (; i < nnops; i++)
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
563 if (flag_code == CODE_16BIT)
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
577 static INLINE unsigned int
578 mode_from_disp_size (t)
581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
585 fits_in_signed_byte (num)
588 return (num >= -128) && (num <= 127);
592 fits_in_unsigned_byte (num)
595 return (num & 0xff) == num;
599 fits_in_unsigned_word (num)
602 return (num & 0xffff) == num;
606 fits_in_signed_word (num)
609 return (-32768 <= num) && (num <= 32767);
612 fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
621 } /* fits_in_signed_long() */
623 fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
631 } /* fits_in_unsigned_long() */
634 smallest_imm_type (num)
637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
647 return (fits_in_signed_byte (num)
648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
649 : fits_in_unsigned_byte (num)
650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
661 offset_in_range (val, size)
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
671 case 4: mask = ((addressT) 2 << 31) - 1; break;
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
678 /* If BFD64, sign extend val. */
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
685 char buf1[40], buf2[40];
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
694 /* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
726 case LOCK_PREFIX_OPCODE:
734 case ADDR_PREFIX_OPCODE:
738 case DATA_PREFIX_OPCODE:
743 if (i.prefix[q] != 0)
745 as_bad (_("same type of prefix used twice"));
750 i.prefix[q] = prefix;
755 set_code_flag (value)
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
763 as_bad (_("64bit mode not supported on this CPU."));
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
767 as_bad (_("32bit mode not supported on this CPU."));
773 set_16bit_gcc_code_flag (new_code_flag)
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
783 set_intel_syntax (syntax_flag)
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
795 if (strcmp (string, "prefix") == 0)
797 else if (strcmp (string, "noprefix") == 0)
800 as_bad (_("bad argument to syntax directive."));
801 *input_line_pointer = e;
803 demand_empty_rest_of_line ();
805 intel_syntax = syntax_flag;
807 if (ask_naked_reg == 0)
810 allow_naked_reg = (intel_syntax
811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
813 /* Conservative default. */
818 allow_naked_reg = (ask_naked_reg < 0);
823 int dummy ATTRIBUTE_UNUSED;
827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
833 for (i = 0; cpu_arch[i].name; i++)
835 if (strcmp (string, cpu_arch[i].name) == 0)
837 cpu_arch_name = cpu_arch[i].name;
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
846 *input_line_pointer = e;
849 as_bad (_("missing cpu architecture"));
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
863 as_bad (_("no such architecture modifier: `%s'"), string);
865 *input_line_pointer = e;
868 demand_empty_rest_of_line ();
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
880 as_fatal (_("Unknown architecture"));
887 const char *hash_err;
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
893 const template *optab;
894 templates *core_optab;
896 /* Setup for loop. */
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
919 if (optab->name == NULL)
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
930 const reg_entry *regtab;
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
949 for (c = 0; c < 256; c++)
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
958 else if (ISLOWER (c))
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
964 else if (ISUPPER (c))
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
981 identifier_chars['@'] = '@';
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
1000 if (flag_code == CODE_64BIT)
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1013 i386_print_statistics (file)
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1022 /* Debugging routines for md_assemble. */
1023 static void pi PARAMS ((char *, i386_insn *));
1024 static void pte PARAMS ((template *));
1025 static void pt PARAMS ((unsigned int));
1026 static void pe PARAMS ((expressionS *));
1027 static void ps PARAMS ((symbolS *));
1036 fprintf (stdout, "%s: template ", line);
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1043 x->rm.mode, x->rm.reg, x->rm.regmem);
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
1051 for (i = 0; i < x->operands; i++)
1053 fprintf (stdout, " #%d: ", i + 1);
1055 fprintf (stdout, "\n");
1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1059 if (x->types[i] & Imm)
1061 if (x->types[i] & Disp)
1062 pe (x->op[i].disps);
1071 fprintf (stdout, " %d operands ", t->operands);
1072 fprintf (stdout, "opcode %x ", t->base_opcode);
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1092 fprintf (stdout, " operation %d\n", e->X_op);
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
1095 if (e->X_add_symbol)
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1113 fprintf (stdout, "%s type %s%s",
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1125 static const type_names[] =
1138 { BaseIndex, "BaseIndex" },
1142 { Disp32S, "d32s" },
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1154 { JumpAbsolute, "Jump Absolute" },
1165 const struct type_name *ty;
1167 for (ty = type_names; ty->mask; ty++)
1169 fprintf (stdout, "%s, ", ty->tname);
1173 #endif /* DEBUG386 */
1175 #ifdef BFD_ASSEMBLER
1176 static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1179 static bfd_reloc_code_real_type
1180 reloc (size, pcrel, sign, other)
1184 bfd_reloc_code_real_type other;
1186 if (other != NO_RELOC)
1192 as_bad (_("There are no unsigned pc-relative relocations"));
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
1206 case 4: return BFD_RELOC_X86_64_32S;
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
1221 return BFD_RELOC_NONE;
1224 /* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1230 tc_i386_fix_adjustable (fixP)
1231 fixS *fixP ATTRIBUTE_UNUSED;
1233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1244 /* adjust_reloc_syms doesn't know about the GOT. */
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1271 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1272 #define BFD_RELOC_8 0
1273 #define BFD_RELOC_16 0
1274 #define BFD_RELOC_32 0
1275 #define BFD_RELOC_8_PCREL 0
1276 #define BFD_RELOC_16_PCREL 0
1277 #define BFD_RELOC_32_PCREL 0
1278 #define BFD_RELOC_386_PLT32 0
1279 #define BFD_RELOC_386_GOT32 0
1280 #define BFD_RELOC_386_GOTOFF 0
1281 #define BFD_RELOC_386_TLS_GD 0
1282 #define BFD_RELOC_386_TLS_LDM 0
1283 #define BFD_RELOC_386_TLS_LDO_32 0
1284 #define BFD_RELOC_386_TLS_IE_32 0
1285 #define BFD_RELOC_386_TLS_IE 0
1286 #define BFD_RELOC_386_TLS_GOTIE 0
1287 #define BFD_RELOC_386_TLS_LE_32 0
1288 #define BFD_RELOC_386_TLS_LE 0
1289 #define BFD_RELOC_X86_64_PLT32 0
1290 #define BFD_RELOC_X86_64_GOT32 0
1291 #define BFD_RELOC_X86_64_GOTPCREL 0
1292 #define BFD_RELOC_X86_64_TLSGD 0
1293 #define BFD_RELOC_X86_64_TLSLD 0
1294 #define BFD_RELOC_X86_64_DTPOFF32 0
1295 #define BFD_RELOC_X86_64_GOTTPOFF 0
1296 #define BFD_RELOC_X86_64_TPOFF32 0
1299 static int intel_float_operand PARAMS ((const char *mnemonic));
1302 intel_float_operand (mnemonic)
1303 const char *mnemonic;
1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1308 if (mnemonic[0] == 'f')
1314 /* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1323 char mnemonic[MAX_MNEM_SIZE];
1325 /* Initialize globals. */
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1328 i.reloc[j] = NO_RELOC;
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
1331 save_stack_p = save_stack;
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
1335 start of a (possibly prefixed) mnemonic. */
1337 line = parse_insn (line, mnemonic);
1341 line = parse_operands (line, mnemonic);
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1362 if (i.disp_operands)
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
1369 if (!match_template ())
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1393 if (!check_string ())
1397 if (!process_suffix ())
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1409 if (i.types[1] & ImplicitRegister)
1411 if (i.types[2] & ImplicitRegister)
1414 if (i.tm.opcode_modifier & ImmExt)
1418 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1420 /* These Intel Precott New Instructions have the fixed
1421 operands with an opcode suffix which is coded in the same
1422 place as an 8-bit immediate field would be. Here we check
1423 those operands and remove them afterwards. */
1426 for (x = 0; x < i.operands; x++)
1427 if (i.op[x].regs->reg_num != x)
1428 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1429 i.op[x].regs->reg_name, x + 1, i.tm.name);
1433 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1434 opcode suffix which is coded in the same place as an 8-bit
1435 immediate field would be. Here we fake an 8-bit immediate
1436 operand from the opcode suffix stored in tm.extension_opcode. */
1438 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1440 exp = &im_expressions[i.imm_operands++];
1441 i.op[i.operands].imms = exp;
1442 i.types[i.operands++] = Imm8;
1443 exp->X_op = O_constant;
1444 exp->X_add_number = i.tm.extension_opcode;
1445 i.tm.extension_opcode = None;
1448 /* For insns with operands there are more diddles to do to the opcode. */
1451 if (!process_operands ())
1454 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1456 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1457 as_warn (_("translating to `%sp'"), i.tm.name);
1460 /* Handle conversion of 'int $3' --> special int3 insn. */
1461 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1463 i.tm.base_opcode = INT3_OPCODE;
1467 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1468 && i.op[0].disps->X_op == O_constant)
1470 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1471 the absolute address given by the constant. Since ix86 jumps and
1472 calls are pc relative, we need to generate a reloc. */
1473 i.op[0].disps->X_add_symbol = &abs_symbol;
1474 i.op[0].disps->X_op = O_symbol;
1477 if ((i.tm.opcode_modifier & Rex64) != 0)
1478 i.rex |= REX_MODE64;
1480 /* For 8 bit registers we need an empty rex prefix. Also if the
1481 instruction already has a prefix, we need to convert old
1482 registers to new ones. */
1484 if (((i.types[0] & Reg8) != 0
1485 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1486 || ((i.types[1] & Reg8) != 0
1487 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1488 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1493 i.rex |= REX_OPCODE;
1494 for (x = 0; x < 2; x++)
1496 /* Look for 8 bit operand that uses old registers. */
1497 if ((i.types[x] & Reg8) != 0
1498 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1500 /* In case it is "hi" register, give up. */
1501 if (i.op[x].regs->reg_num > 3)
1502 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1503 i.op[x].regs->reg_name);
1505 /* Otherwise it is equivalent to the extended register.
1506 Since the encoding doesn't change this is merely
1507 cosmetic cleanup for debug output. */
1509 i.op[x].regs = i.op[x].regs + 8;
1515 add_prefix (REX_OPCODE | i.rex);
1517 /* We are ready to output the insn. */
1522 parse_insn (line, mnemonic)
1527 char *token_start = l;
1530 /* Non-zero if we found a prefix only acceptable with string insns. */
1531 const char *expecting_string_instruction = NULL;
1536 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1539 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1541 as_bad (_("no such instruction: `%s'"), token_start);
1546 if (!is_space_char (*l)
1547 && *l != END_OF_INSN
1548 && *l != PREFIX_SEPARATOR
1551 as_bad (_("invalid character %s in mnemonic"),
1552 output_invalid (*l));
1555 if (token_start == l)
1557 if (*l == PREFIX_SEPARATOR)
1558 as_bad (_("expecting prefix; got nothing"));
1560 as_bad (_("expecting mnemonic; got nothing"));
1564 /* Look up instruction (or prefix) via hash table. */
1565 current_templates = hash_find (op_hash, mnemonic);
1567 if (*l != END_OF_INSN
1568 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1569 && current_templates
1570 && (current_templates->start->opcode_modifier & IsPrefix))
1572 /* If we are in 16-bit mode, do not allow addr16 or data16.
1573 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1574 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1575 && flag_code != CODE_64BIT
1576 && (((current_templates->start->opcode_modifier & Size32) != 0)
1577 ^ (flag_code == CODE_16BIT)))
1579 as_bad (_("redundant %s prefix"),
1580 current_templates->start->name);
1583 /* Add prefix, checking for repeated prefixes. */
1584 switch (add_prefix (current_templates->start->base_opcode))
1589 expecting_string_instruction = current_templates->start->name;
1592 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1599 if (!current_templates)
1601 /* See if we can get a match by trimming off a suffix. */
1604 case WORD_MNEM_SUFFIX:
1605 case BYTE_MNEM_SUFFIX:
1606 case QWORD_MNEM_SUFFIX:
1607 i.suffix = mnem_p[-1];
1609 current_templates = hash_find (op_hash, mnemonic);
1611 case SHORT_MNEM_SUFFIX:
1612 case LONG_MNEM_SUFFIX:
1615 i.suffix = mnem_p[-1];
1617 current_templates = hash_find (op_hash, mnemonic);
1625 if (intel_float_operand (mnemonic))
1626 i.suffix = SHORT_MNEM_SUFFIX;
1628 i.suffix = LONG_MNEM_SUFFIX;
1630 current_templates = hash_find (op_hash, mnemonic);
1634 if (!current_templates)
1636 as_bad (_("no such instruction: `%s'"), token_start);
1641 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1643 /* Check for a branch hint. We allow ",pt" and ",pn" for
1644 predict taken and predict not taken respectively.
1645 I'm not sure that branch hints actually do anything on loop
1646 and jcxz insns (JumpByte) for current Pentium4 chips. They
1647 may work in the future and it doesn't hurt to accept them
1649 if (l[0] == ',' && l[1] == 'p')
1653 if (!add_prefix (DS_PREFIX_OPCODE))
1657 else if (l[2] == 'n')
1659 if (!add_prefix (CS_PREFIX_OPCODE))
1665 /* Any other comma loses. */
1668 as_bad (_("invalid character %s in mnemonic"),
1669 output_invalid (*l));
1673 /* Check if instruction is supported on specified architecture. */
1674 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1675 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1677 as_warn (_("`%s' is not supported on `%s'"),
1678 current_templates->start->name, cpu_arch_name);
1680 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1682 as_warn (_("use .code16 to ensure correct addressing mode"));
1685 /* Check for rep/repne without a string instruction. */
1686 if (expecting_string_instruction
1687 && !(current_templates->start->opcode_modifier & IsString))
1689 as_bad (_("expecting string instruction after `%s'"),
1690 expecting_string_instruction);
1698 parse_operands (l, mnemonic)
1700 const char *mnemonic;
1704 /* 1 if operand is pending after ','. */
1705 unsigned int expecting_operand = 0;
1707 /* Non-zero if operand parens not balanced. */
1708 unsigned int paren_not_balanced;
1710 while (*l != END_OF_INSN)
1712 /* Skip optional white space before operand. */
1713 if (is_space_char (*l))
1715 if (!is_operand_char (*l) && *l != END_OF_INSN)
1717 as_bad (_("invalid character %s before operand %d"),
1718 output_invalid (*l),
1722 token_start = l; /* after white space */
1723 paren_not_balanced = 0;
1724 while (paren_not_balanced || *l != ',')
1726 if (*l == END_OF_INSN)
1728 if (paren_not_balanced)
1731 as_bad (_("unbalanced parenthesis in operand %d."),
1734 as_bad (_("unbalanced brackets in operand %d."),
1739 break; /* we are done */
1741 else if (!is_operand_char (*l) && !is_space_char (*l))
1743 as_bad (_("invalid character %s in operand %d"),
1744 output_invalid (*l),
1751 ++paren_not_balanced;
1753 --paren_not_balanced;
1758 ++paren_not_balanced;
1760 --paren_not_balanced;
1764 if (l != token_start)
1765 { /* Yes, we've read in another operand. */
1766 unsigned int operand_ok;
1767 this_operand = i.operands++;
1768 if (i.operands > MAX_OPERANDS)
1770 as_bad (_("spurious operands; (%d operands/instruction max)"),
1774 /* Now parse operand adding info to 'i' as we go along. */
1775 END_STRING_AND_SAVE (l);
1779 i386_intel_operand (token_start,
1780 intel_float_operand (mnemonic));
1782 operand_ok = i386_operand (token_start);
1784 RESTORE_END_STRING (l);
1790 if (expecting_operand)
1792 expecting_operand_after_comma:
1793 as_bad (_("expecting operand after ','; got nothing"));
1798 as_bad (_("expecting operand before ','; got nothing"));
1803 /* Now *l must be either ',' or END_OF_INSN. */
1806 if (*++l == END_OF_INSN)
1808 /* Just skip it, if it's \n complain. */
1809 goto expecting_operand_after_comma;
1811 expecting_operand = 1;
1820 union i386_op temp_op;
1821 unsigned int temp_type;
1822 RELOC_ENUM temp_reloc;
1826 if (i.operands == 2)
1831 else if (i.operands == 3)
1836 temp_type = i.types[xchg2];
1837 i.types[xchg2] = i.types[xchg1];
1838 i.types[xchg1] = temp_type;
1839 temp_op = i.op[xchg2];
1840 i.op[xchg2] = i.op[xchg1];
1841 i.op[xchg1] = temp_op;
1842 temp_reloc = i.reloc[xchg2];
1843 i.reloc[xchg2] = i.reloc[xchg1];
1844 i.reloc[xchg1] = temp_reloc;
1846 if (i.mem_operands == 2)
1848 const seg_entry *temp_seg;
1849 temp_seg = i.seg[0];
1850 i.seg[0] = i.seg[1];
1851 i.seg[1] = temp_seg;
1855 /* Try to ensure constant immediates are represented in the smallest
1860 char guess_suffix = 0;
1864 guess_suffix = i.suffix;
1865 else if (i.reg_operands)
1867 /* Figure out a suffix from the last register operand specified.
1868 We can't do this properly yet, ie. excluding InOutPortReg,
1869 but the following works for instructions with immediates.
1870 In any case, we can't set i.suffix yet. */
1871 for (op = i.operands; --op >= 0;)
1872 if (i.types[op] & Reg)
1874 if (i.types[op] & Reg8)
1875 guess_suffix = BYTE_MNEM_SUFFIX;
1876 else if (i.types[op] & Reg16)
1877 guess_suffix = WORD_MNEM_SUFFIX;
1878 else if (i.types[op] & Reg32)
1879 guess_suffix = LONG_MNEM_SUFFIX;
1880 else if (i.types[op] & Reg64)
1881 guess_suffix = QWORD_MNEM_SUFFIX;
1885 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1886 guess_suffix = WORD_MNEM_SUFFIX;
1888 for (op = i.operands; --op >= 0;)
1889 if (i.types[op] & Imm)
1891 switch (i.op[op].imms->X_op)
1894 /* If a suffix is given, this operand may be shortened. */
1895 switch (guess_suffix)
1897 case LONG_MNEM_SUFFIX:
1898 i.types[op] |= Imm32 | Imm64;
1900 case WORD_MNEM_SUFFIX:
1901 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1903 case BYTE_MNEM_SUFFIX:
1904 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1908 /* If this operand is at most 16 bits, convert it
1909 to a signed 16 bit number before trying to see
1910 whether it will fit in an even smaller size.
1911 This allows a 16-bit operand such as $0xffe0 to
1912 be recognised as within Imm8S range. */
1913 if ((i.types[op] & Imm16)
1914 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1916 i.op[op].imms->X_add_number =
1917 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1919 if ((i.types[op] & Imm32)
1920 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1923 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1924 ^ ((offsetT) 1 << 31))
1925 - ((offsetT) 1 << 31));
1927 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1929 /* We must avoid matching of Imm32 templates when 64bit
1930 only immediate is available. */
1931 if (guess_suffix == QWORD_MNEM_SUFFIX)
1932 i.types[op] &= ~Imm32;
1939 /* Symbols and expressions. */
1941 /* Convert symbolic operand to proper sizes for matching. */
1942 switch (guess_suffix)
1944 case QWORD_MNEM_SUFFIX:
1945 i.types[op] = Imm64 | Imm32S;
1947 case LONG_MNEM_SUFFIX:
1948 i.types[op] = Imm32 | Imm64;
1950 case WORD_MNEM_SUFFIX:
1951 i.types[op] = Imm16 | Imm32 | Imm64;
1954 case BYTE_MNEM_SUFFIX:
1955 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1964 /* Try to use the smallest displacement type too. */
1970 for (op = i.operands; --op >= 0;)
1971 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1973 offsetT disp = i.op[op].disps->X_add_number;
1975 if (i.types[op] & Disp16)
1977 /* We know this operand is at most 16 bits, so
1978 convert to a signed 16 bit number before trying
1979 to see whether it will fit in an even smaller
1982 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1984 else if (i.types[op] & Disp32)
1986 /* We know this operand is at most 32 bits, so convert to a
1987 signed 32 bit number before trying to see whether it will
1988 fit in an even smaller size. */
1989 disp &= (((offsetT) 2 << 31) - 1);
1990 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1992 if (flag_code == CODE_64BIT)
1994 if (fits_in_signed_long (disp))
1995 i.types[op] |= Disp32S;
1996 if (fits_in_unsigned_long (disp))
1997 i.types[op] |= Disp32;
1999 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2000 && fits_in_signed_byte (disp))
2001 i.types[op] |= Disp8;
2008 /* Points to template once we've found it. */
2010 unsigned int overlap0, overlap1, overlap2;
2011 unsigned int found_reverse_match;
2014 #define MATCH(overlap, given, template) \
2015 ((overlap & ~JumpAbsolute) \
2016 && (((given) & (BaseIndex | JumpAbsolute)) \
2017 == ((overlap) & (BaseIndex | JumpAbsolute))))
2019 /* If given types r0 and r1 are registers they must be of the same type
2020 unless the expected operand type register overlap is null.
2021 Note that Acc in a template matches every size of reg. */
2022 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2023 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2024 || ((g0) & Reg) == ((g1) & Reg) \
2025 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2030 found_reverse_match = 0;
2031 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2033 : (i.suffix == WORD_MNEM_SUFFIX
2035 : (i.suffix == SHORT_MNEM_SUFFIX
2037 : (i.suffix == LONG_MNEM_SUFFIX
2039 : (i.suffix == QWORD_MNEM_SUFFIX
2041 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2042 ? No_xSuf : 0))))));
2044 for (t = current_templates->start;
2045 t < current_templates->end;
2048 /* Must have right number of operands. */
2049 if (i.operands != t->operands)
2052 /* Check the suffix, except for some instructions in intel mode. */
2053 if ((t->opcode_modifier & suffix_check)
2055 && (t->opcode_modifier & IgnoreSize))
2057 && t->base_opcode == 0xd9
2058 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2059 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2062 /* Do not verify operands when there are none. */
2063 else if (!t->operands)
2065 if (t->cpu_flags & ~cpu_arch_flags)
2067 /* We've found a match; break out of loop. */
2071 overlap0 = i.types[0] & t->operand_types[0];
2072 switch (t->operands)
2075 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2080 overlap1 = i.types[1] & t->operand_types[1];
2081 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2082 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2083 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2084 t->operand_types[0],
2085 overlap1, i.types[1],
2086 t->operand_types[1]))
2088 /* Check if other direction is valid ... */
2089 if ((t->opcode_modifier & (D | FloatD)) == 0)
2092 /* Try reversing direction of operands. */
2093 overlap0 = i.types[0] & t->operand_types[1];
2094 overlap1 = i.types[1] & t->operand_types[0];
2095 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2096 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2097 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2098 t->operand_types[1],
2099 overlap1, i.types[1],
2100 t->operand_types[0]))
2102 /* Does not match either direction. */
2105 /* found_reverse_match holds which of D or FloatDR
2107 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2109 /* Found a forward 2 operand match here. */
2110 else if (t->operands == 3)
2112 /* Here we make use of the fact that there are no
2113 reverse match 3 operand instructions, and all 3
2114 operand instructions only need to be checked for
2115 register consistency between operands 2 and 3. */
2116 overlap2 = i.types[2] & t->operand_types[2];
2117 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2118 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2119 t->operand_types[1],
2120 overlap2, i.types[2],
2121 t->operand_types[2]))
2125 /* Found either forward/reverse 2 or 3 operand match here:
2126 slip through to break. */
2128 if (t->cpu_flags & ~cpu_arch_flags)
2130 found_reverse_match = 0;
2133 /* We've found a match; break out of loop. */
2137 if (t == current_templates->end)
2139 /* We found no match. */
2140 as_bad (_("suffix or operands invalid for `%s'"),
2141 current_templates->start->name);
2145 if (!quiet_warnings)
2148 && ((i.types[0] & JumpAbsolute)
2149 != (t->operand_types[0] & JumpAbsolute)))
2151 as_warn (_("indirect %s without `*'"), t->name);
2154 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2155 == (IsPrefix | IgnoreSize))
2157 /* Warn them that a data or address size prefix doesn't
2158 affect assembly of the next line of code. */
2159 as_warn (_("stand-alone `%s' prefix"), t->name);
2163 /* Copy the template we found. */
2165 if (found_reverse_match)
2167 /* If we found a reverse match we must alter the opcode
2168 direction bit. found_reverse_match holds bits to change
2169 (different for int & float insns). */
2171 i.tm.base_opcode ^= found_reverse_match;
2173 i.tm.operand_types[0] = t->operand_types[1];
2174 i.tm.operand_types[1] = t->operand_types[0];
2183 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2184 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2186 if (i.seg[0] != NULL && i.seg[0] != &es)
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2193 /* There's only ever one segment override allowed per instruction.
2194 This instruction possibly has a legal segment override on the
2195 second operand, so copy the segment to where non-string
2196 instructions store it, allowing common code. */
2197 i.seg[0] = i.seg[1];
2199 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2201 if (i.seg[1] != NULL && i.seg[1] != &es)
2203 as_bad (_("`%s' operand %d must use `%%es' segment"),
2215 /* If matched instruction specifies an explicit instruction mnemonic
2217 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2219 if (i.tm.opcode_modifier & Size16)
2220 i.suffix = WORD_MNEM_SUFFIX;
2221 else if (i.tm.opcode_modifier & Size64)
2222 i.suffix = QWORD_MNEM_SUFFIX;
2224 i.suffix = LONG_MNEM_SUFFIX;
2226 else if (i.reg_operands)
2228 /* If there's no instruction mnemonic suffix we try to invent one
2229 based on register operands. */
2232 /* We take i.suffix from the last register operand specified,
2233 Destination register type is more significant than source
2236 for (op = i.operands; --op >= 0;)
2237 if ((i.types[op] & Reg)
2238 && !(i.tm.operand_types[op] & InOutPortReg))
2240 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2241 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2242 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2247 else if (i.suffix == BYTE_MNEM_SUFFIX)
2249 if (!check_byte_reg ())
2252 else if (i.suffix == LONG_MNEM_SUFFIX)
2254 if (!check_long_reg ())
2257 else if (i.suffix == QWORD_MNEM_SUFFIX)
2259 if (!check_qword_reg ())
2262 else if (i.suffix == WORD_MNEM_SUFFIX)
2264 if (!check_word_reg ())
2267 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2268 /* Do nothing if the instruction is going to ignore the prefix. */
2273 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2275 i.suffix = stackop_size;
2278 /* Change the opcode based on the operand size given by i.suffix;
2279 We need not change things for byte insns. */
2281 if (!i.suffix && (i.tm.opcode_modifier & W))
2283 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2287 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2289 /* It's not a byte, select word/dword operation. */
2290 if (i.tm.opcode_modifier & W)
2292 if (i.tm.opcode_modifier & ShortForm)
2293 i.tm.base_opcode |= 8;
2295 i.tm.base_opcode |= 1;
2298 /* Now select between word & dword operations via the operand
2299 size prefix, except for instructions that will ignore this
2301 if (i.suffix != QWORD_MNEM_SUFFIX
2302 && !(i.tm.opcode_modifier & IgnoreSize)
2303 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2304 || (flag_code == CODE_64BIT
2305 && (i.tm.opcode_modifier & JumpByte))))
2307 unsigned int prefix = DATA_PREFIX_OPCODE;
2308 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2309 prefix = ADDR_PREFIX_OPCODE;
2311 if (!add_prefix (prefix))
2315 /* Set mode64 for an operand. */
2316 if (i.suffix == QWORD_MNEM_SUFFIX
2317 && flag_code == CODE_64BIT
2318 && (i.tm.opcode_modifier & NoRex64) == 0)
2319 i.rex |= REX_MODE64;
2321 /* Size floating point instruction. */
2322 if (i.suffix == LONG_MNEM_SUFFIX)
2324 if (i.tm.opcode_modifier & FloatMF)
2325 i.tm.base_opcode ^= 4;
2336 for (op = i.operands; --op >= 0;)
2338 /* If this is an eight bit register, it's OK. If it's the 16 or
2339 32 bit version of an eight bit register, we will just use the
2340 low portion, and that's OK too. */
2341 if (i.types[op] & Reg8)
2344 /* movzx and movsx should not generate this warning. */
2346 && (i.tm.base_opcode == 0xfb7
2347 || i.tm.base_opcode == 0xfb6
2348 || i.tm.base_opcode == 0x63
2349 || i.tm.base_opcode == 0xfbe
2350 || i.tm.base_opcode == 0xfbf))
2353 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2355 /* Check that the template allows eight bit regs. This
2356 kills insns such as `orb $1,%edx', which maybe should be
2358 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2362 /* Prohibit these changes in the 64bit mode, since the
2363 lowering is more complicated. */
2364 if (flag_code == CODE_64BIT
2365 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2367 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2368 i.op[op].regs->reg_name,
2372 #if REGISTER_WARNINGS
2374 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2375 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2376 (i.op[op].regs + (i.types[op] & Reg16
2377 ? REGNAM_AL - REGNAM_AX
2378 : REGNAM_AL - REGNAM_EAX))->reg_name,
2379 i.op[op].regs->reg_name,
2384 /* Any other register is bad. */
2385 if (i.types[op] & (Reg | RegMMX | RegXMM
2387 | Control | Debug | Test
2388 | FloatReg | FloatAcc))
2390 as_bad (_("`%%%s' not allowed with `%s%c'"),
2391 i.op[op].regs->reg_name,
2405 for (op = i.operands; --op >= 0;)
2406 /* Reject eight bit registers, except where the template requires
2407 them. (eg. movzb) */
2408 if ((i.types[op] & Reg8) != 0
2409 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2411 as_bad (_("`%%%s' not allowed with `%s%c'"),
2412 i.op[op].regs->reg_name,
2417 /* Warn if the e prefix on a general reg is missing. */
2418 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2419 && (i.types[op] & Reg16) != 0
2420 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2422 /* Prohibit these changes in the 64bit mode, since the
2423 lowering is more complicated. */
2424 if (flag_code == CODE_64BIT)
2426 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2427 i.op[op].regs->reg_name,
2431 #if REGISTER_WARNINGS
2433 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2434 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2435 i.op[op].regs->reg_name,
2439 /* Warn if the r prefix on a general reg is missing. */
2440 else if ((i.types[op] & Reg64) != 0
2441 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2443 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2444 i.op[op].regs->reg_name,
2456 for (op = i.operands; --op >= 0; )
2457 /* Reject eight bit registers, except where the template requires
2458 them. (eg. movzb) */
2459 if ((i.types[op] & Reg8) != 0
2460 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2462 as_bad (_("`%%%s' not allowed with `%s%c'"),
2463 i.op[op].regs->reg_name,
2468 /* Warn if the e prefix on a general reg is missing. */
2469 else if (((i.types[op] & Reg16) != 0
2470 || (i.types[op] & Reg32) != 0)
2471 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2473 /* Prohibit these changes in the 64bit mode, since the
2474 lowering is more complicated. */
2475 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2476 i.op[op].regs->reg_name,
2487 for (op = i.operands; --op >= 0;)
2488 /* Reject eight bit registers, except where the template requires
2489 them. (eg. movzb) */
2490 if ((i.types[op] & Reg8) != 0
2491 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2493 as_bad (_("`%%%s' not allowed with `%s%c'"),
2494 i.op[op].regs->reg_name,
2499 /* Warn if the e prefix on a general reg is present. */
2500 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2501 && (i.types[op] & Reg32) != 0
2502 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2504 /* Prohibit these changes in the 64bit mode, since the
2505 lowering is more complicated. */
2506 if (flag_code == CODE_64BIT)
2508 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2509 i.op[op].regs->reg_name,
2514 #if REGISTER_WARNINGS
2515 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2516 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2517 i.op[op].regs->reg_name,
2527 unsigned int overlap0, overlap1, overlap2;
2529 overlap0 = i.types[0] & i.tm.operand_types[0];
2530 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2531 && overlap0 != Imm8 && overlap0 != Imm8S
2532 && overlap0 != Imm16 && overlap0 != Imm32S
2533 && overlap0 != Imm32 && overlap0 != Imm64)
2537 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2539 : (i.suffix == WORD_MNEM_SUFFIX
2541 : (i.suffix == QWORD_MNEM_SUFFIX
2545 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2546 || overlap0 == (Imm16 | Imm32)
2547 || overlap0 == (Imm16 | Imm32S))
2549 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2552 if (overlap0 != Imm8 && overlap0 != Imm8S
2553 && overlap0 != Imm16 && overlap0 != Imm32S
2554 && overlap0 != Imm32 && overlap0 != Imm64)
2556 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2560 i.types[0] = overlap0;
2562 overlap1 = i.types[1] & i.tm.operand_types[1];
2563 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2564 && overlap1 != Imm8 && overlap1 != Imm8S
2565 && overlap1 != Imm16 && overlap1 != Imm32S
2566 && overlap1 != Imm32 && overlap1 != Imm64)
2570 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2572 : (i.suffix == WORD_MNEM_SUFFIX
2574 : (i.suffix == QWORD_MNEM_SUFFIX
2578 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2579 || overlap1 == (Imm16 | Imm32)
2580 || overlap1 == (Imm16 | Imm32S))
2582 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2585 if (overlap1 != Imm8 && overlap1 != Imm8S
2586 && overlap1 != Imm16 && overlap1 != Imm32S
2587 && overlap1 != Imm32 && overlap1 != Imm64)
2589 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2593 i.types[1] = overlap1;
2595 overlap2 = i.types[2] & i.tm.operand_types[2];
2596 assert ((overlap2 & Imm) == 0);
2597 i.types[2] = overlap2;
2605 /* Default segment register this instruction will use for memory
2606 accesses. 0 means unknown. This is only for optimizing out
2607 unnecessary segment overrides. */
2608 const seg_entry *default_seg = 0;
2610 /* The imul $imm, %reg instruction is converted into
2611 imul $imm, %reg, %reg, and the clr %reg instruction
2612 is converted into xor %reg, %reg. */
2613 if (i.tm.opcode_modifier & regKludge)
2615 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2616 /* Pretend we saw the extra register operand. */
2617 assert (i.op[first_reg_op + 1].regs == 0);
2618 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2619 i.types[first_reg_op + 1] = i.types[first_reg_op];
2623 if (i.tm.opcode_modifier & ShortForm)
2625 /* The register or float register operand is in operand 0 or 1. */
2626 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2627 /* Register goes in low 3 bits of opcode. */
2628 i.tm.base_opcode |= i.op[op].regs->reg_num;
2629 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2631 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2633 /* Warn about some common errors, but press on regardless.
2634 The first case can be generated by gcc (<= 2.8.1). */
2635 if (i.operands == 2)
2637 /* Reversed arguments on faddp, fsubp, etc. */
2638 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2639 i.op[1].regs->reg_name,
2640 i.op[0].regs->reg_name);
2644 /* Extraneous `l' suffix on fp insn. */
2645 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2646 i.op[0].regs->reg_name);
2650 else if (i.tm.opcode_modifier & Modrm)
2652 /* The opcode is completed (modulo i.tm.extension_opcode which
2653 must be put into the modrm byte). Now, we make the modrm and
2654 index base bytes based on all the info we've collected. */
2656 default_seg = build_modrm_byte ();
2658 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2660 if (i.tm.base_opcode == POP_SEG_SHORT
2661 && i.op[0].regs->reg_num == 1)
2663 as_bad (_("you can't `pop %%cs'"));
2666 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2667 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2670 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2674 else if ((i.tm.opcode_modifier & IsString) != 0)
2676 /* For the string instructions that allow a segment override
2677 on one of their operands, the default segment is ds. */
2681 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2682 as_warn (_("segment override on `lea' is ineffectual"));
2684 /* If a segment was explicitly specified, and the specified segment
2685 is not the default, use an opcode prefix to select it. If we
2686 never figured out what the default segment is, then default_seg
2687 will be zero at this point, and the specified segment prefix will
2689 if ((i.seg[0]) && (i.seg[0] != default_seg))
2691 if (!add_prefix (i.seg[0]->seg_prefix))
2697 static const seg_entry *
2700 const seg_entry *default_seg = 0;
2702 /* i.reg_operands MUST be the number of real register operands;
2703 implicit registers do not count. */
2704 if (i.reg_operands == 2)
2706 unsigned int source, dest;
2707 source = ((i.types[0]
2708 & (Reg | RegMMX | RegXMM
2710 | Control | Debug | Test))
2715 /* One of the register operands will be encoded in the i.tm.reg
2716 field, the other in the combined i.tm.mode and i.tm.regmem
2717 fields. If no form of this instruction supports a memory
2718 destination operand, then we assume the source operand may
2719 sometimes be a memory operand and so we need to store the
2720 destination in the i.rm.reg field. */
2721 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2723 i.rm.reg = i.op[dest].regs->reg_num;
2724 i.rm.regmem = i.op[source].regs->reg_num;
2725 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2727 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2732 i.rm.reg = i.op[source].regs->reg_num;
2733 i.rm.regmem = i.op[dest].regs->reg_num;
2734 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2736 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2741 { /* If it's not 2 reg operands... */
2744 unsigned int fake_zero_displacement = 0;
2745 unsigned int op = ((i.types[0] & AnyMem)
2747 : (i.types[1] & AnyMem) ? 1 : 2);
2751 if (i.base_reg == 0)
2754 if (!i.disp_operands)
2755 fake_zero_displacement = 1;
2756 if (i.index_reg == 0)
2758 /* Operand is just <disp> */
2759 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2760 && (flag_code != CODE_64BIT))
2762 i.rm.regmem = NO_BASE_REGISTER_16;
2763 i.types[op] &= ~Disp;
2764 i.types[op] |= Disp16;
2766 else if (flag_code != CODE_64BIT
2767 || (i.prefix[ADDR_PREFIX] != 0))
2769 i.rm.regmem = NO_BASE_REGISTER;
2770 i.types[op] &= ~Disp;
2771 i.types[op] |= Disp32;
2775 /* 64bit mode overwrites the 32bit absolute
2776 addressing by RIP relative addressing and
2777 absolute addressing is encoded by one of the
2778 redundant SIB forms. */
2779 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2780 i.sib.base = NO_BASE_REGISTER;
2781 i.sib.index = NO_INDEX_REGISTER;
2782 i.types[op] &= ~Disp;
2783 i.types[op] |= Disp32S;
2786 else /* !i.base_reg && i.index_reg */
2788 i.sib.index = i.index_reg->reg_num;
2789 i.sib.base = NO_BASE_REGISTER;
2790 i.sib.scale = i.log2_scale_factor;
2791 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2792 i.types[op] &= ~Disp;
2793 if (flag_code != CODE_64BIT)
2794 i.types[op] |= Disp32; /* Must be 32 bit */
2796 i.types[op] |= Disp32S;
2797 if ((i.index_reg->reg_flags & RegRex) != 0)
2801 /* RIP addressing for 64bit mode. */
2802 else if (i.base_reg->reg_type == BaseIndex)
2804 i.rm.regmem = NO_BASE_REGISTER;
2805 i.types[op] &= ~Disp;
2806 i.types[op] |= Disp32S;
2807 i.flags[op] = Operand_PCrel;
2809 else if (i.base_reg->reg_type & Reg16)
2811 switch (i.base_reg->reg_num)
2814 if (i.index_reg == 0)
2816 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2817 i.rm.regmem = i.index_reg->reg_num - 6;
2821 if (i.index_reg == 0)
2824 if ((i.types[op] & Disp) == 0)
2826 /* fake (%bp) into 0(%bp) */
2827 i.types[op] |= Disp8;
2828 fake_zero_displacement = 1;
2831 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2832 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2834 default: /* (%si) -> 4 or (%di) -> 5 */
2835 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2837 i.rm.mode = mode_from_disp_size (i.types[op]);
2839 else /* i.base_reg and 32/64 bit mode */
2841 if (flag_code == CODE_64BIT
2842 && (i.types[op] & Disp))
2844 if (i.types[op] & Disp8)
2845 i.types[op] = Disp8 | Disp32S;
2847 i.types[op] = Disp32S;
2849 i.rm.regmem = i.base_reg->reg_num;
2850 if ((i.base_reg->reg_flags & RegRex) != 0)
2852 i.sib.base = i.base_reg->reg_num;
2853 /* x86-64 ignores REX prefix bit here to avoid decoder
2855 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2858 if (i.disp_operands == 0)
2860 fake_zero_displacement = 1;
2861 i.types[op] |= Disp8;
2864 else if (i.base_reg->reg_num == ESP_REG_NUM)
2868 i.sib.scale = i.log2_scale_factor;
2869 if (i.index_reg == 0)
2871 /* <disp>(%esp) becomes two byte modrm with no index
2872 register. We've already stored the code for esp
2873 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2874 Any base register besides %esp will not use the
2875 extra modrm byte. */
2876 i.sib.index = NO_INDEX_REGISTER;
2877 #if !SCALE1_WHEN_NO_INDEX
2878 /* Another case where we force the second modrm byte. */
2879 if (i.log2_scale_factor)
2880 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2885 i.sib.index = i.index_reg->reg_num;
2886 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2887 if ((i.index_reg->reg_flags & RegRex) != 0)
2890 i.rm.mode = mode_from_disp_size (i.types[op]);
2893 if (fake_zero_displacement)
2895 /* Fakes a zero displacement assuming that i.types[op]
2896 holds the correct displacement size. */
2899 assert (i.op[op].disps == 0);
2900 exp = &disp_expressions[i.disp_operands++];
2901 i.op[op].disps = exp;
2902 exp->X_op = O_constant;
2903 exp->X_add_number = 0;
2904 exp->X_add_symbol = (symbolS *) 0;
2905 exp->X_op_symbol = (symbolS *) 0;
2909 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2910 (if any) based on i.tm.extension_opcode. Again, we must be
2911 careful to make sure that segment/control/debug/test/MMX
2912 registers are coded into the i.rm.reg field. */
2917 & (Reg | RegMMX | RegXMM
2919 | Control | Debug | Test))
2922 & (Reg | RegMMX | RegXMM
2924 | Control | Debug | Test))
2927 /* If there is an extension opcode to put here, the register
2928 number must be put into the regmem field. */
2929 if (i.tm.extension_opcode != None)
2931 i.rm.regmem = i.op[op].regs->reg_num;
2932 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2937 i.rm.reg = i.op[op].regs->reg_num;
2938 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2942 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2943 must set it to 3 to indicate this is a register operand
2944 in the regmem field. */
2945 if (!i.mem_operands)
2949 /* Fill in i.rm.reg field with extension opcode (if any). */
2950 if (i.tm.extension_opcode != None)
2951 i.rm.reg = i.tm.extension_opcode;
2962 relax_substateT subtype;
2967 if (flag_code == CODE_16BIT)
2971 if (i.prefix[DATA_PREFIX] != 0)
2977 /* Pentium4 branch hints. */
2978 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2979 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2984 if (i.prefix[REX_PREFIX] != 0)
2990 if (i.prefixes != 0 && !intel_syntax)
2991 as_warn (_("skipping prefixes on this instruction"));
2993 /* It's always a symbol; End frag & setup for relax.
2994 Make sure there is enough room in this frag for the largest
2995 instruction we may generate in md_convert_frag. This is 2
2996 bytes for the opcode and room for the prefix and largest
2998 frag_grow (prefix + 2 + 4);
2999 /* Prefix and 1 opcode byte go in fr_fix. */
3000 p = frag_more (prefix + 1);
3001 if (i.prefix[DATA_PREFIX] != 0)
3002 *p++ = DATA_PREFIX_OPCODE;
3003 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3004 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3005 *p++ = i.prefix[SEG_PREFIX];
3006 if (i.prefix[REX_PREFIX] != 0)
3007 *p++ = i.prefix[REX_PREFIX];
3008 *p = i.tm.base_opcode;
3010 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3011 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3012 else if ((cpu_arch_flags & Cpu386) != 0)
3013 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3015 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3018 sym = i.op[0].disps->X_add_symbol;
3019 off = i.op[0].disps->X_add_number;
3021 if (i.op[0].disps->X_op != O_constant
3022 && i.op[0].disps->X_op != O_symbol)
3024 /* Handle complex expressions. */
3025 sym = make_expr_symbol (i.op[0].disps);
3029 /* 1 possible extra opcode + 4 byte displacement go in var part.
3030 Pass reloc in fr_var. */
3031 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3041 if (i.tm.opcode_modifier & JumpByte)
3043 /* This is a loop or jecxz type instruction. */
3045 if (i.prefix[ADDR_PREFIX] != 0)
3047 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3050 /* Pentium4 branch hints. */
3051 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3052 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3054 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3063 if (flag_code == CODE_16BIT)
3066 if (i.prefix[DATA_PREFIX] != 0)
3068 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3078 if (i.prefix[REX_PREFIX] != 0)
3080 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3084 if (i.prefixes != 0 && !intel_syntax)
3085 as_warn (_("skipping prefixes on this instruction"));
3087 p = frag_more (1 + size);
3088 *p++ = i.tm.base_opcode;
3090 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3091 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3093 /* All jumps handled here are signed, but don't use a signed limit
3094 check for 32 and 16 bit jumps as we want to allow wrap around at
3095 4G and 64k respectively. */
3097 fixP->fx_signed = 1;
3101 output_interseg_jump ()
3109 if (flag_code == CODE_16BIT)
3113 if (i.prefix[DATA_PREFIX] != 0)
3119 if (i.prefix[REX_PREFIX] != 0)
3129 if (i.prefixes != 0 && !intel_syntax)
3130 as_warn (_("skipping prefixes on this instruction"));
3132 /* 1 opcode; 2 segment; offset */
3133 p = frag_more (prefix + 1 + 2 + size);
3135 if (i.prefix[DATA_PREFIX] != 0)
3136 *p++ = DATA_PREFIX_OPCODE;
3138 if (i.prefix[REX_PREFIX] != 0)
3139 *p++ = i.prefix[REX_PREFIX];
3141 *p++ = i.tm.base_opcode;
3142 if (i.op[1].imms->X_op == O_constant)
3144 offsetT n = i.op[1].imms->X_add_number;
3147 && !fits_in_unsigned_word (n)
3148 && !fits_in_signed_word (n))
3150 as_bad (_("16-bit jump out of range"));
3153 md_number_to_chars (p, n, size);
3156 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3157 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3158 if (i.op[0].imms->X_op != O_constant)
3159 as_bad (_("can't handle non absolute segment in `%s'"),
3161 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3168 fragS *insn_start_frag;
3169 offsetT insn_start_off;
3171 /* Tie dwarf2 debug info to the address at the start of the insn.
3172 We can't do this after the insn has been output as the current
3173 frag may have been closed off. eg. by frag_var. */
3174 dwarf2_emit_insn (0);
3176 insn_start_frag = frag_now;
3177 insn_start_off = frag_now_fix ();
3180 if (i.tm.opcode_modifier & Jump)
3182 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3184 else if (i.tm.opcode_modifier & JumpInterSegment)
3185 output_interseg_jump ();
3188 /* Output normal instructions here. */
3192 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3193 byte for the SSE instructions to specify a prefix they require. */
3194 if (i.tm.base_opcode & 0xff0000)
3195 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3197 /* The prefix bytes. */
3199 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3205 md_number_to_chars (p, (valueT) *q, 1);
3209 /* Now the opcode; be careful about word order here! */
3210 if (fits_in_unsigned_byte (i.tm.base_opcode))
3212 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3217 /* Put out high byte first: can't use md_number_to_chars! */
3218 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3219 *p = i.tm.base_opcode & 0xff;
3222 /* Now the modrm byte and sib byte (if present). */
3223 if (i.tm.opcode_modifier & Modrm)
3226 md_number_to_chars (p,
3227 (valueT) (i.rm.regmem << 0
3231 /* If i.rm.regmem == ESP (4)
3232 && i.rm.mode != (Register mode)
3234 ==> need second modrm byte. */
3235 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3237 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3240 md_number_to_chars (p,
3241 (valueT) (i.sib.base << 0
3243 | i.sib.scale << 6),
3248 if (i.disp_operands)
3249 output_disp (insn_start_frag, insn_start_off);
3252 output_imm (insn_start_frag, insn_start_off);
3260 #endif /* DEBUG386 */
3264 output_disp (insn_start_frag, insn_start_off)
3265 fragS *insn_start_frag;
3266 offsetT insn_start_off;
3271 for (n = 0; n < i.operands; n++)
3273 if (i.types[n] & Disp)
3275 if (i.op[n].disps->X_op == O_constant)
3281 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3284 if (i.types[n] & Disp8)
3286 if (i.types[n] & Disp64)
3289 val = offset_in_range (i.op[n].disps->X_add_number,
3291 p = frag_more (size);
3292 md_number_to_chars (p, val, size);
3296 RELOC_ENUM reloc_type;
3299 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3301 /* The PC relative address is computed relative
3302 to the instruction boundary, so in case immediate
3303 fields follows, we need to adjust the value. */
3304 if (pcrel && i.imm_operands)
3309 for (n1 = 0; n1 < i.operands; n1++)
3310 if (i.types[n1] & Imm)
3312 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3315 if (i.types[n1] & (Imm8 | Imm8S))
3317 if (i.types[n1] & Imm64)
3322 /* We should find the immediate. */
3323 if (n1 == i.operands)
3325 i.op[n].disps->X_add_number -= imm_size;
3328 if (i.types[n] & Disp32S)
3331 if (i.types[n] & (Disp16 | Disp64))
3334 if (i.types[n] & Disp64)
3338 p = frag_more (size);
3339 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3340 #ifdef BFD_ASSEMBLER
3341 if (reloc_type == BFD_RELOC_32
3343 && GOT_symbol == i.op[n].disps->X_add_symbol
3344 && (i.op[n].disps->X_op == O_symbol
3345 || (i.op[n].disps->X_op == O_add
3346 && ((symbol_get_value_expression
3347 (i.op[n].disps->X_op_symbol)->X_op)
3352 if (insn_start_frag == frag_now)
3353 add = (p - frag_now->fr_literal) - insn_start_off;
3358 add = insn_start_frag->fr_fix - insn_start_off;
3359 for (fr = insn_start_frag->fr_next;
3360 fr && fr != frag_now; fr = fr->fr_next)
3362 add += p - frag_now->fr_literal;
3365 /* We don't support dynamic linking on x86-64 yet. */
3366 if (flag_code == CODE_64BIT)
3368 reloc_type = BFD_RELOC_386_GOTPC;
3369 i.op[n].disps->X_add_number += add;
3372 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3373 i.op[n].disps, pcrel, reloc_type);
3380 output_imm (insn_start_frag, insn_start_off)
3381 fragS *insn_start_frag;
3382 offsetT insn_start_off;
3387 for (n = 0; n < i.operands; n++)
3389 if (i.types[n] & Imm)
3391 if (i.op[n].imms->X_op == O_constant)
3397 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3400 if (i.types[n] & (Imm8 | Imm8S))
3402 else if (i.types[n] & Imm64)
3405 val = offset_in_range (i.op[n].imms->X_add_number,
3407 p = frag_more (size);
3408 md_number_to_chars (p, val, size);
3412 /* Not absolute_section.
3413 Need a 32-bit fixup (don't support 8bit
3414 non-absolute imms). Try to support other
3416 RELOC_ENUM reloc_type;
3420 if ((i.types[n] & (Imm32S))
3421 && i.suffix == QWORD_MNEM_SUFFIX)
3423 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3426 if (i.types[n] & (Imm8 | Imm8S))
3428 if (i.types[n] & Imm64)
3432 p = frag_more (size);
3433 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3434 #ifdef BFD_ASSEMBLER
3435 /* This is tough to explain. We end up with this one if we
3436 * have operands that look like
3437 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3438 * obtain the absolute address of the GOT, and it is strongly
3439 * preferable from a performance point of view to avoid using
3440 * a runtime relocation for this. The actual sequence of
3441 * instructions often look something like:
3446 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3448 * The call and pop essentially return the absolute address
3449 * of the label .L66 and store it in %ebx. The linker itself
3450 * will ultimately change the first operand of the addl so
3451 * that %ebx points to the GOT, but to keep things simple, the
3452 * .o file must have this operand set so that it generates not
3453 * the absolute address of .L66, but the absolute address of
3454 * itself. This allows the linker itself simply treat a GOTPC
3455 * relocation as asking for a pcrel offset to the GOT to be
3456 * added in, and the addend of the relocation is stored in the
3457 * operand field for the instruction itself.
3459 * Our job here is to fix the operand so that it would add
3460 * the correct offset so that %ebx would point to itself. The
3461 * thing that is tricky is that .-.L66 will point to the
3462 * beginning of the instruction, so we need to further modify
3463 * the operand so that it will point to itself. There are
3464 * other cases where you have something like:
3466 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3468 * and here no correction would be required. Internally in
3469 * the assembler we treat operands of this form as not being
3470 * pcrel since the '.' is explicitly mentioned, and I wonder
3471 * whether it would simplify matters to do it this way. Who
3472 * knows. In earlier versions of the PIC patches, the
3473 * pcrel_adjust field was used to store the correction, but
3474 * since the expression is not pcrel, I felt it would be
3475 * confusing to do it this way. */
3477 if (reloc_type == BFD_RELOC_32
3479 && GOT_symbol == i.op[n].imms->X_add_symbol
3480 && (i.op[n].imms->X_op == O_symbol
3481 || (i.op[n].imms->X_op == O_add
3482 && ((symbol_get_value_expression
3483 (i.op[n].imms->X_op_symbol)->X_op)
3488 if (insn_start_frag == frag_now)
3489 add = (p - frag_now->fr_literal) - insn_start_off;
3494 add = insn_start_frag->fr_fix - insn_start_off;
3495 for (fr = insn_start_frag->fr_next;
3496 fr && fr != frag_now; fr = fr->fr_next)
3498 add += p - frag_now->fr_literal;
3501 /* We don't support dynamic linking on x86-64 yet. */
3502 if (flag_code == CODE_64BIT)
3504 reloc_type = BFD_RELOC_386_GOTPC;
3505 i.op[n].imms->X_add_number += add;
3508 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3509 i.op[n].imms, 0, reloc_type);
3516 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3518 /* Parse operands of the form
3519 <symbol>@GOTOFF+<nnn>
3520 and similar .plt or .got references.
3522 If we find one, set up the correct relocation in RELOC and copy the
3523 input string, minus the `@GOTOFF' into a malloc'd buffer for
3524 parsing by the calling routine. Return this buffer, and if ADJUST
3525 is non-null set it to the length of the string we removed from the
3526 input line. Otherwise return NULL. */
3528 lex_got (reloc, adjust)
3532 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3533 static const struct {
3535 const RELOC_ENUM rel[NUM_FLAG_CODE];
3537 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3538 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3539 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3540 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3541 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3542 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3543 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3544 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3545 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3546 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3547 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3548 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3549 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3554 for (cp = input_line_pointer; *cp != '@'; cp++)
3555 if (is_end_of_line[(unsigned char) *cp])
3558 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3562 len = strlen (gotrel[j].str);
3563 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3565 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3568 char *tmpbuf, *past_reloc;
3570 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3574 if (GOT_symbol == NULL)
3575 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3577 /* Replace the relocation token with ' ', so that
3578 errors like foo@GOTOFF1 will be detected. */
3580 /* The length of the first part of our input line. */
3581 first = cp - input_line_pointer;
3583 /* The second part goes from after the reloc token until
3584 (and including) an end_of_line char. Don't use strlen
3585 here as the end_of_line char may not be a NUL. */
3586 past_reloc = cp + 1 + len;
3587 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3589 second = cp - past_reloc;
3591 /* Allocate and copy string. The trailing NUL shouldn't
3592 be necessary, but be safe. */
3593 tmpbuf = xmalloc (first + second + 2);
3594 memcpy (tmpbuf, input_line_pointer, first);
3595 tmpbuf[first] = ' ';
3596 memcpy (tmpbuf + first + 1, past_reloc, second);
3597 tmpbuf[first + second + 1] = '\0';
3601 as_bad (_("@%s reloc is not supported in %s bit mode"),
3602 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3607 /* Might be a symbol version string. Don't as_bad here. */
3611 /* x86_cons_fix_new is called via the expression parsing code when a
3612 reloc is needed. We use this hook to get the correct .got reloc. */
3613 static RELOC_ENUM got_reloc = NO_RELOC;
3616 x86_cons_fix_new (frag, off, len, exp)
3622 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3623 got_reloc = NO_RELOC;
3624 fix_new_exp (frag, off, len, exp, 0, r);
3628 x86_cons (exp, size)
3634 /* Handle @GOTOFF and the like in an expression. */
3636 char *gotfree_input_line;
3639 save = input_line_pointer;
3640 gotfree_input_line = lex_got (&got_reloc, &adjust);
3641 if (gotfree_input_line)
3642 input_line_pointer = gotfree_input_line;
3646 if (gotfree_input_line)
3648 /* expression () has merrily parsed up to the end of line,
3649 or a comma - in the wrong buffer. Transfer how far
3650 input_line_pointer has moved to the right buffer. */
3651 input_line_pointer = (save
3652 + (input_line_pointer - gotfree_input_line)
3654 free (gotfree_input_line);
3662 static int i386_immediate PARAMS ((char *));
3665 i386_immediate (imm_start)
3668 char *save_input_line_pointer;
3670 char *gotfree_input_line;
3675 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3677 as_bad (_("only 1 or 2 immediate operands are allowed"));
3681 exp = &im_expressions[i.imm_operands++];
3682 i.op[this_operand].imms = exp;
3684 if (is_space_char (*imm_start))
3687 save_input_line_pointer = input_line_pointer;
3688 input_line_pointer = imm_start;
3691 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3692 if (gotfree_input_line)
3693 input_line_pointer = gotfree_input_line;
3696 exp_seg = expression (exp);
3699 if (*input_line_pointer)
3700 as_bad (_("junk `%s' after expression"), input_line_pointer);
3702 input_line_pointer = save_input_line_pointer;
3704 if (gotfree_input_line)
3705 free (gotfree_input_line);
3708 if (exp->X_op == O_absent || exp->X_op == O_big)
3710 /* Missing or bad expr becomes absolute 0. */
3711 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3713 exp->X_op = O_constant;
3714 exp->X_add_number = 0;
3715 exp->X_add_symbol = (symbolS *) 0;
3716 exp->X_op_symbol = (symbolS *) 0;
3718 else if (exp->X_op == O_constant)
3720 /* Size it properly later. */
3721 i.types[this_operand] |= Imm64;
3722 /* If BFD64, sign extend val. */
3723 if (!use_rela_relocations)
3724 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3725 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3727 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3729 #ifdef BFD_ASSEMBLER
3730 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3732 && exp_seg != absolute_section
3733 && exp_seg != text_section
3734 && exp_seg != data_section
3735 && exp_seg != bss_section
3736 && exp_seg != undefined_section
3737 #ifdef BFD_ASSEMBLER
3738 && !bfd_is_com_section (exp_seg)
3742 #ifdef BFD_ASSEMBLER
3743 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3745 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3752 /* This is an address. The size of the address will be
3753 determined later, depending on destination register,
3754 suffix, or the default for the section. */
3755 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3761 static char *i386_scale PARAMS ((char *));
3768 char *save = input_line_pointer;
3770 input_line_pointer = scale;
3771 val = get_absolute_expression ();
3777 i.log2_scale_factor = 0;
3780 i.log2_scale_factor = 1;
3783 i.log2_scale_factor = 2;
3786 i.log2_scale_factor = 3;
3789 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3791 input_line_pointer = save;
3794 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3796 as_warn (_("scale factor of %d without an index register"),
3797 1 << i.log2_scale_factor);
3798 #if SCALE1_WHEN_NO_INDEX
3799 i.log2_scale_factor = 0;
3802 scale = input_line_pointer;
3803 input_line_pointer = save;
3807 static int i386_displacement PARAMS ((char *, char *));
3810 i386_displacement (disp_start, disp_end)
3816 char *save_input_line_pointer;
3818 char *gotfree_input_line;
3820 int bigdisp = Disp32;
3822 if (flag_code == CODE_64BIT)
3824 if (i.prefix[ADDR_PREFIX] == 0)
3827 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3829 i.types[this_operand] |= bigdisp;
3831 exp = &disp_expressions[i.disp_operands];
3832 i.op[this_operand].disps = exp;
3834 save_input_line_pointer = input_line_pointer;
3835 input_line_pointer = disp_start;
3836 END_STRING_AND_SAVE (disp_end);
3838 #ifndef GCC_ASM_O_HACK
3839 #define GCC_ASM_O_HACK 0
3842 END_STRING_AND_SAVE (disp_end + 1);
3843 if ((i.types[this_operand] & BaseIndex) != 0
3844 && displacement_string_end[-1] == '+')
3846 /* This hack is to avoid a warning when using the "o"
3847 constraint within gcc asm statements.
3850 #define _set_tssldt_desc(n,addr,limit,type) \
3851 __asm__ __volatile__ ( \
3853 "movw %w1,2+%0\n\t" \
3855 "movb %b1,4+%0\n\t" \
3856 "movb %4,5+%0\n\t" \
3857 "movb $0,6+%0\n\t" \
3858 "movb %h1,7+%0\n\t" \
3860 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3862 This works great except that the output assembler ends
3863 up looking a bit weird if it turns out that there is
3864 no offset. You end up producing code that looks like:
3877 So here we provide the missing zero. */
3879 *displacement_string_end = '0';
3883 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3884 if (gotfree_input_line)
3885 input_line_pointer = gotfree_input_line;
3888 exp_seg = expression (exp);
3891 if (*input_line_pointer)
3892 as_bad (_("junk `%s' after expression"), input_line_pointer);
3894 RESTORE_END_STRING (disp_end + 1);
3896 RESTORE_END_STRING (disp_end);
3897 input_line_pointer = save_input_line_pointer;
3899 if (gotfree_input_line)
3900 free (gotfree_input_line);
3903 #ifdef BFD_ASSEMBLER
3904 /* We do this to make sure that the section symbol is in
3905 the symbol table. We will ultimately change the relocation
3906 to be relative to the beginning of the section. */
3907 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3908 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3910 if (exp->X_op != O_symbol)
3912 as_bad (_("bad expression used with @%s"),
3913 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3919 if (S_IS_LOCAL (exp->X_add_symbol)
3920 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3921 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3922 exp->X_op = O_subtract;
3923 exp->X_op_symbol = GOT_symbol;
3924 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3925 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3927 i.reloc[this_operand] = BFD_RELOC_32;
3931 if (exp->X_op == O_absent || exp->X_op == O_big)
3933 /* Missing or bad expr becomes absolute 0. */
3934 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3936 exp->X_op = O_constant;
3937 exp->X_add_number = 0;
3938 exp->X_add_symbol = (symbolS *) 0;
3939 exp->X_op_symbol = (symbolS *) 0;
3942 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3943 if (exp->X_op != O_constant
3944 #ifdef BFD_ASSEMBLER
3945 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3947 && exp_seg != absolute_section
3948 && exp_seg != text_section
3949 && exp_seg != data_section
3950 && exp_seg != bss_section
3951 && exp_seg != undefined_section
3952 #ifdef BFD_ASSEMBLER
3953 && !bfd_is_com_section (exp_seg)
3957 #ifdef BFD_ASSEMBLER
3958 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3960 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3965 else if (flag_code == CODE_64BIT)
3966 i.types[this_operand] |= Disp32S | Disp32;
3970 static int i386_index_check PARAMS ((const char *));
3972 /* Make sure the memory operand we've been dealt is valid.
3973 Return 1 on success, 0 on a failure. */
3976 i386_index_check (operand_string)
3977 const char *operand_string;
3980 #if INFER_ADDR_PREFIX
3986 if (flag_code == CODE_64BIT)
3988 if (i.prefix[ADDR_PREFIX] == 0)
3992 && ((i.base_reg->reg_type & Reg64) == 0)
3993 && (i.base_reg->reg_type != BaseIndex
3996 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3997 != (Reg64 | BaseIndex))))
4004 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4006 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4007 != (Reg32 | BaseIndex))))
4013 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4017 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4018 != (Reg16 | BaseIndex)))
4020 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4021 != (Reg16 | BaseIndex))
4023 && i.base_reg->reg_num < 6
4024 && i.index_reg->reg_num >= 6
4025 && i.log2_scale_factor == 0))))
4032 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4034 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4035 != (Reg32 | BaseIndex))))
4041 #if INFER_ADDR_PREFIX
4042 if (flag_code != CODE_64BIT
4043 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4045 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4047 /* Change the size of any displacement too. At most one of
4048 Disp16 or Disp32 is set.
4049 FIXME. There doesn't seem to be any real need for separate
4050 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4051 Removing them would probably clean up the code quite a lot. */
4052 if (i.types[this_operand] & (Disp16 | Disp32))
4053 i.types[this_operand] ^= (Disp16 | Disp32);
4058 as_bad (_("`%s' is not a valid base/index expression"),
4062 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4064 flag_code_names[flag_code]);
4070 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4074 i386_operand (operand_string)
4075 char *operand_string;
4079 char *op_string = operand_string;
4081 if (is_space_char (*op_string))
4084 /* We check for an absolute prefix (differentiating,
4085 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4086 if (*op_string == ABSOLUTE_PREFIX)
4089 if (is_space_char (*op_string))
4091 i.types[this_operand] |= JumpAbsolute;
4094 /* Check if operand is a register. */
4095 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4096 && (r = parse_register (op_string, &end_op)) != NULL)
4098 /* Check for a segment override by searching for ':' after a
4099 segment register. */
4101 if (is_space_char (*op_string))
4103 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4108 i.seg[i.mem_operands] = &es;
4111 i.seg[i.mem_operands] = &cs;
4114 i.seg[i.mem_operands] = &ss;
4117 i.seg[i.mem_operands] = &ds;
4120 i.seg[i.mem_operands] = &fs;
4123 i.seg[i.mem_operands] = &gs;
4127 /* Skip the ':' and whitespace. */
4129 if (is_space_char (*op_string))
4132 if (!is_digit_char (*op_string)
4133 && !is_identifier_char (*op_string)
4134 && *op_string != '('
4135 && *op_string != ABSOLUTE_PREFIX)
4137 as_bad (_("bad memory operand `%s'"), op_string);
4140 /* Handle case of %es:*foo. */
4141 if (*op_string == ABSOLUTE_PREFIX)
4144 if (is_space_char (*op_string))
4146 i.types[this_operand] |= JumpAbsolute;
4148 goto do_memory_reference;
4152 as_bad (_("junk `%s' after register"), op_string);
4155 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4156 i.op[this_operand].regs = r;
4159 else if (*op_string == REGISTER_PREFIX)
4161 as_bad (_("bad register name `%s'"), op_string);
4164 else if (*op_string == IMMEDIATE_PREFIX)
4167 if (i.types[this_operand] & JumpAbsolute)
4169 as_bad (_("immediate operand illegal with absolute jump"));
4172 if (!i386_immediate (op_string))
4175 else if (is_digit_char (*op_string)
4176 || is_identifier_char (*op_string)
4177 || *op_string == '(')
4179 /* This is a memory reference of some sort. */
4182 /* Start and end of displacement string expression (if found). */
4183 char *displacement_string_start;
4184 char *displacement_string_end;
4186 do_memory_reference:
4187 if ((i.mem_operands == 1
4188 && (current_templates->start->opcode_modifier & IsString) == 0)
4189 || i.mem_operands == 2)
4191 as_bad (_("too many memory references for `%s'"),
4192 current_templates->start->name);
4196 /* Check for base index form. We detect the base index form by
4197 looking for an ')' at the end of the operand, searching
4198 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4200 base_string = op_string + strlen (op_string);
4203 if (is_space_char (*base_string))
4206 /* If we only have a displacement, set-up for it to be parsed later. */
4207 displacement_string_start = op_string;
4208 displacement_string_end = base_string + 1;
4210 if (*base_string == ')')
4213 unsigned int parens_balanced = 1;
4214 /* We've already checked that the number of left & right ()'s are
4215 equal, so this loop will not be infinite. */
4219 if (*base_string == ')')
4221 if (*base_string == '(')
4224 while (parens_balanced);
4226 temp_string = base_string;
4228 /* Skip past '(' and whitespace. */
4230 if (is_space_char (*base_string))
4233 if (*base_string == ','
4234 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4235 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4237 displacement_string_end = temp_string;
4239 i.types[this_operand] |= BaseIndex;
4243 base_string = end_op;
4244 if (is_space_char (*base_string))
4248 /* There may be an index reg or scale factor here. */
4249 if (*base_string == ',')
4252 if (is_space_char (*base_string))
4255 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4256 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4258 base_string = end_op;
4259 if (is_space_char (*base_string))
4261 if (*base_string == ',')
4264 if (is_space_char (*base_string))
4267 else if (*base_string != ')')
4269 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4274 else if (*base_string == REGISTER_PREFIX)
4276 as_bad (_("bad register name `%s'"), base_string);
4280 /* Check for scale factor. */
4281 if (*base_string != ')')
4283 char *end_scale = i386_scale (base_string);
4288 base_string = end_scale;
4289 if (is_space_char (*base_string))
4291 if (*base_string != ')')
4293 as_bad (_("expecting `)' after scale factor in `%s'"),
4298 else if (!i.index_reg)
4300 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4305 else if (*base_string != ')')
4307 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4312 else if (*base_string == REGISTER_PREFIX)
4314 as_bad (_("bad register name `%s'"), base_string);
4319 /* If there's an expression beginning the operand, parse it,
4320 assuming displacement_string_start and
4321 displacement_string_end are meaningful. */
4322 if (displacement_string_start != displacement_string_end)
4324 if (!i386_displacement (displacement_string_start,
4325 displacement_string_end))
4329 /* Special case for (%dx) while doing input/output op. */
4331 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4333 && i.log2_scale_factor == 0
4334 && i.seg[i.mem_operands] == 0
4335 && (i.types[this_operand] & Disp) == 0)
4337 i.types[this_operand] = InOutPortReg;
4341 if (i386_index_check (operand_string) == 0)
4347 /* It's not a memory operand; argh! */
4348 as_bad (_("invalid char %s beginning operand %d `%s'"),
4349 output_invalid (*op_string),
4354 return 1; /* Normal return. */
4357 /* md_estimate_size_before_relax()
4359 Called just before relax() for rs_machine_dependent frags. The x86
4360 assembler uses these frags to handle variable size jump
4363 Any symbol that is now undefined will not become defined.
4364 Return the correct fr_subtype in the frag.
4365 Return the initial "guess for variable size of frag" to caller.
4366 The guess is actually the growth beyond the fixed part. Whatever
4367 we do to grow the fixed or variable part contributes to our
4371 md_estimate_size_before_relax (fragP, segment)
4375 /* We've already got fragP->fr_subtype right; all we have to do is
4376 check for un-relaxable symbols. On an ELF system, we can't relax
4377 an externally visible symbol, because it may be overridden by a
4379 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4380 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4381 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4382 && (S_IS_EXTERNAL (fragP->fr_symbol)
4383 || S_IS_WEAK (fragP->fr_symbol)))
4387 /* Symbol is undefined in this segment, or we need to keep a
4388 reloc so that weak symbols can be overridden. */
4389 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4390 RELOC_ENUM reloc_type;
4391 unsigned char *opcode;
4394 if (fragP->fr_var != NO_RELOC)
4395 reloc_type = fragP->fr_var;
4397 reloc_type = BFD_RELOC_16_PCREL;
4399 reloc_type = BFD_RELOC_32_PCREL;
4401 old_fr_fix = fragP->fr_fix;
4402 opcode = (unsigned char *) fragP->fr_opcode;
4404 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4407 /* Make jmp (0xeb) a (d)word displacement jump. */
4409 fragP->fr_fix += size;
4410 fix_new (fragP, old_fr_fix, size,
4412 fragP->fr_offset, 1,
4418 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4420 /* Negate the condition, and branch past an
4421 unconditional jump. */
4424 /* Insert an unconditional jump. */
4426 /* We added two extra opcode bytes, and have a two byte
4428 fragP->fr_fix += 2 + 2;
4429 fix_new (fragP, old_fr_fix + 2, 2,
4431 fragP->fr_offset, 1,
4438 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4443 fixP = fix_new (fragP, old_fr_fix, 1,
4445 fragP->fr_offset, 1,
4447 fixP->fx_signed = 1;
4451 /* This changes the byte-displacement jump 0x7N
4452 to the (d)word-displacement jump 0x0f,0x8N. */
4453 opcode[1] = opcode[0] + 0x10;
4454 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4455 /* We've added an opcode byte. */
4456 fragP->fr_fix += 1 + size;
4457 fix_new (fragP, old_fr_fix + 1, size,
4459 fragP->fr_offset, 1,
4464 BAD_CASE (fragP->fr_subtype);
4468 return fragP->fr_fix - old_fr_fix;
4471 /* Guess size depending on current relax state. Initially the relax
4472 state will correspond to a short jump and we return 1, because
4473 the variable part of the frag (the branch offset) is one byte
4474 long. However, we can relax a section more than once and in that
4475 case we must either set fr_subtype back to the unrelaxed state,
4476 or return the value for the appropriate branch. */
4477 return md_relax_table[fragP->fr_subtype].rlx_length;
4480 /* Called after relax() is finished.
4482 In: Address of frag.
4483 fr_type == rs_machine_dependent.
4484 fr_subtype is what the address relaxed to.
4486 Out: Any fixSs and constants are set up.
4487 Caller will turn frag into a ".space 0". */
4489 #ifndef BFD_ASSEMBLER
4491 md_convert_frag (headers, sec, fragP)
4492 object_headers *headers ATTRIBUTE_UNUSED;
4493 segT sec ATTRIBUTE_UNUSED;
4497 md_convert_frag (abfd, sec, fragP)
4498 bfd *abfd ATTRIBUTE_UNUSED;
4499 segT sec ATTRIBUTE_UNUSED;
4503 unsigned char *opcode;
4504 unsigned char *where_to_put_displacement = NULL;
4505 offsetT target_address;
4506 offsetT opcode_address;
4507 unsigned int extension = 0;
4508 offsetT displacement_from_opcode_start;
4510 opcode = (unsigned char *) fragP->fr_opcode;
4512 /* Address we want to reach in file space. */
4513 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4515 /* Address opcode resides at in file space. */
4516 opcode_address = fragP->fr_address + fragP->fr_fix;
4518 /* Displacement from opcode start to fill into instruction. */
4519 displacement_from_opcode_start = target_address - opcode_address;
4521 if ((fragP->fr_subtype & BIG) == 0)
4523 /* Don't have to change opcode. */
4524 extension = 1; /* 1 opcode + 1 displacement */
4525 where_to_put_displacement = &opcode[1];
4529 if (no_cond_jump_promotion
4530 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4531 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4533 switch (fragP->fr_subtype)
4535 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4536 extension = 4; /* 1 opcode + 4 displacement */
4538 where_to_put_displacement = &opcode[1];
4541 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4542 extension = 2; /* 1 opcode + 2 displacement */
4544 where_to_put_displacement = &opcode[1];
4547 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4548 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4549 extension = 5; /* 2 opcode + 4 displacement */
4550 opcode[1] = opcode[0] + 0x10;
4551 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4552 where_to_put_displacement = &opcode[2];
4555 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4556 extension = 3; /* 2 opcode + 2 displacement */
4557 opcode[1] = opcode[0] + 0x10;
4558 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4559 where_to_put_displacement = &opcode[2];
4562 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4567 where_to_put_displacement = &opcode[3];
4571 BAD_CASE (fragP->fr_subtype);
4576 /* Now put displacement after opcode. */
4577 md_number_to_chars ((char *) where_to_put_displacement,
4578 (valueT) (displacement_from_opcode_start - extension),
4579 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4580 fragP->fr_fix += extension;
4583 /* Size of byte displacement jmp. */
4584 int md_short_jump_size = 2;
4586 /* Size of dword displacement jmp. */
4587 int md_long_jump_size = 5;
4589 /* Size of relocation record. */
4590 const int md_reloc_size = 8;
4593 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4595 addressT from_addr, to_addr;
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
4601 offset = to_addr - (from_addr + 2);
4602 /* Opcode for byte-disp jump. */
4603 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4604 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4608 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4610 addressT from_addr, to_addr;
4611 fragS *frag ATTRIBUTE_UNUSED;
4612 symbolS *to_symbol ATTRIBUTE_UNUSED;
4616 offset = to_addr - (from_addr + 5);
4617 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4618 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4621 /* Apply a fixup (fixS) to segment data, once it has been determined
4622 by our caller that we have all the info we need to fix it up.
4624 On the 386, immediates, displacements, and data pointers are all in
4625 the same (little-endian) format, so we don't need to care about which
4629 md_apply_fix3 (fixP, valP, seg)
4630 /* The fix we're to put in. */
4632 /* Pointer to the value of the bits. */
4634 /* Segment fix is from. */
4635 segT seg ATTRIBUTE_UNUSED;
4637 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4638 valueT value = *valP;
4640 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4643 switch (fixP->fx_r_type)
4649 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4652 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4655 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4660 if (fixP->fx_addsy != NULL
4661 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4664 && !use_rela_relocations)
4666 /* This is a hack. There should be a better way to handle this.
4667 This covers for the fact that bfd_install_relocation will
4668 subtract the current location (for partial_inplace, PC relative
4669 relocations); see more below. */
4671 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4676 value += fixP->fx_where + fixP->fx_frag->fr_address;
4678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4684 || (symbol_section_p (fixP->fx_addsy)
4685 && sym_seg != absolute_section))
4686 && !generic_force_reloc (fixP))
4688 /* Yes, we add the values in twice. This is because
4689 bfd_install_relocation subtracts them out again. I think
4690 bfd_install_relocation is broken, but I don't dare change
4692 value += fixP->fx_where + fixP->fx_frag->fr_address;
4696 #if defined (OBJ_COFF) && defined (TE_PE)
4697 /* For some reason, the PE format does not store a section
4698 address offset for a PC relative symbol. */
4699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4700 value += md_pcrel_from (fixP);
4704 /* Fix a few things - the dynamic linker expects certain values here,
4705 and we must not dissappoint it. */
4706 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4707 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4709 switch (fixP->fx_r_type)
4711 case BFD_RELOC_386_PLT32:
4712 case BFD_RELOC_X86_64_PLT32:
4713 /* Make the jump instruction point to the address of the operand. At
4714 runtime we merely add the offset to the actual PLT entry. */
4718 case BFD_RELOC_386_TLS_GD:
4719 case BFD_RELOC_386_TLS_LDM:
4720 case BFD_RELOC_386_TLS_IE_32:
4721 case BFD_RELOC_386_TLS_IE:
4722 case BFD_RELOC_386_TLS_GOTIE:
4723 case BFD_RELOC_X86_64_TLSGD:
4724 case BFD_RELOC_X86_64_TLSLD:
4725 case BFD_RELOC_X86_64_GOTTPOFF:
4726 value = 0; /* Fully resolved at runtime. No addend. */
4728 case BFD_RELOC_386_TLS_LE:
4729 case BFD_RELOC_386_TLS_LDO_32:
4730 case BFD_RELOC_386_TLS_LE_32:
4731 case BFD_RELOC_X86_64_DTPOFF32:
4732 case BFD_RELOC_X86_64_TPOFF32:
4733 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4736 case BFD_RELOC_386_GOT32:
4737 case BFD_RELOC_X86_64_GOT32:
4738 value = 0; /* Fully resolved at runtime. No addend. */
4741 case BFD_RELOC_VTABLE_INHERIT:
4742 case BFD_RELOC_VTABLE_ENTRY:
4749 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4751 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4753 /* Are we finished with this relocation now? */
4754 if (fixP->fx_addsy == NULL)
4756 #ifdef BFD_ASSEMBLER
4757 else if (use_rela_relocations)
4759 fixP->fx_no_overflow = 1;
4760 /* Remember value for tc_gen_reloc. */
4761 fixP->fx_addnumber = value;
4765 md_number_to_chars (p, value, fixP->fx_size);
4768 #define MAX_LITTLENUMS 6
4770 /* Turn the string pointed to by litP into a floating point constant
4771 of type TYPE, and emit the appropriate bytes. The number of
4772 LITTLENUMS emitted is stored in *SIZEP. An error message is
4773 returned, or NULL on OK. */
4776 md_atof (type, litP, sizeP)
4782 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4783 LITTLENUM_TYPE *wordP;
4805 return _("Bad call to md_atof ()");
4807 t = atof_ieee (input_line_pointer, type, words);
4809 input_line_pointer = t;
4811 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4812 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4813 the bigendian 386. */
4814 for (wordP = words + prec - 1; prec--;)
4816 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4817 litP += sizeof (LITTLENUM_TYPE);
4822 char output_invalid_buf[8];
4829 sprintf (output_invalid_buf, "'%c'", c);
4831 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4832 return output_invalid_buf;
4835 /* REG_STRING starts *before* REGISTER_PREFIX. */
4837 static const reg_entry *
4838 parse_register (reg_string, end_op)
4842 char *s = reg_string;
4844 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4847 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4848 if (*s == REGISTER_PREFIX)
4851 if (is_space_char (*s))
4855 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4857 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4858 return (const reg_entry *) NULL;
4862 /* For naked regs, make sure that we are not dealing with an identifier.
4863 This prevents confusing an identifier like `eax_var' with register
4865 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4866 return (const reg_entry *) NULL;
4870 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4872 /* Handle floating point regs, allowing spaces in the (i) part. */
4873 if (r == i386_regtab /* %st is first entry of table */)
4875 if (is_space_char (*s))
4880 if (is_space_char (*s))
4882 if (*s >= '0' && *s <= '7')
4884 r = &i386_float_regtab[*s - '0'];
4886 if (is_space_char (*s))
4894 /* We have "%st(" then garbage. */
4895 return (const reg_entry *) NULL;
4900 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4901 && flag_code != CODE_64BIT)
4903 return (const reg_entry *) NULL;
4909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4910 const char *md_shortopts = "kVQ:sqn";
4912 const char *md_shortopts = "qn";
4915 struct option md_longopts[] = {
4916 #define OPTION_32 (OPTION_MD_BASE + 0)
4917 {"32", no_argument, NULL, OPTION_32},
4918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4919 #define OPTION_64 (OPTION_MD_BASE + 1)
4920 {"64", no_argument, NULL, OPTION_64},
4922 {NULL, no_argument, NULL, 0}
4924 size_t md_longopts_size = sizeof (md_longopts);
4927 md_parse_option (c, arg)
4929 char *arg ATTRIBUTE_UNUSED;
4934 optimize_align_code = 0;
4941 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4942 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4943 should be emitted or not. FIXME: Not implemented. */
4947 /* -V: SVR4 argument to print version ID. */
4949 print_version_id ();
4952 /* -k: Ignore for FreeBSD compatibility. */
4957 /* -s: On i386 Solaris, this tells the native assembler to use
4958 .stab instead of .stab.excl. We always use .stab anyhow. */
4963 const char **list, **l;
4965 list = bfd_target_list ();
4966 for (l = list; *l != NULL; l++)
4967 if (strcmp (*l, "elf64-x86-64") == 0)
4969 default_arch = "x86_64";
4973 as_fatal (_("No compiled in support for x86_64"));
4980 default_arch = "i386";
4990 md_show_usage (stream)
4993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4994 fprintf (stream, _("\
4996 -V print assembler version number\n\
4998 -n Do not optimize code alignment\n\
4999 -q quieten some warnings\n\
5002 fprintf (stream, _("\
5003 -n Do not optimize code alignment\n\
5004 -q quieten some warnings\n"));
5008 #ifdef BFD_ASSEMBLER
5009 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5010 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5012 /* Pick the target format to use. */
5015 i386_target_format ()
5017 if (!strcmp (default_arch, "x86_64"))
5018 set_code_flag (CODE_64BIT);
5019 else if (!strcmp (default_arch, "i386"))
5020 set_code_flag (CODE_32BIT);
5022 as_fatal (_("Unknown architecture"));
5023 switch (OUTPUT_FLAVOR)
5025 #ifdef OBJ_MAYBE_AOUT
5026 case bfd_target_aout_flavour:
5027 return AOUT_TARGET_FORMAT;
5029 #ifdef OBJ_MAYBE_COFF
5030 case bfd_target_coff_flavour:
5033 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5034 case bfd_target_elf_flavour:
5036 if (flag_code == CODE_64BIT)
5037 use_rela_relocations = 1;
5038 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5047 #endif /* OBJ_MAYBE_ more than one */
5049 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5050 void i386_elf_emit_arch_note ()
5052 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5053 && cpu_arch_name != NULL)
5056 asection *seg = now_seg;
5057 subsegT subseg = now_subseg;
5058 Elf_Internal_Note i_note;
5059 Elf_External_Note e_note;
5060 asection *note_secp;
5063 /* Create the .note section. */
5064 note_secp = subseg_new (".note", 0);
5065 bfd_set_section_flags (stdoutput,
5067 SEC_HAS_CONTENTS | SEC_READONLY);
5069 /* Process the arch string. */
5070 len = strlen (cpu_arch_name);
5072 i_note.namesz = len + 1;
5074 i_note.type = NT_ARCH;
5075 p = frag_more (sizeof (e_note.namesz));
5076 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5077 p = frag_more (sizeof (e_note.descsz));
5078 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5079 p = frag_more (sizeof (e_note.type));
5080 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5081 p = frag_more (len + 1);
5082 strcpy (p, cpu_arch_name);
5084 frag_align (2, 0, 0);
5086 subseg_set (seg, subseg);
5090 #endif /* BFD_ASSEMBLER */
5093 md_undefined_symbol (name)
5096 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5097 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5098 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5099 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5103 if (symbol_find (name))
5104 as_bad (_("GOT already in symbol table"));
5105 GOT_symbol = symbol_new (name, undefined_section,
5106 (valueT) 0, &zero_address_frag);
5113 /* Round up a section size to the appropriate boundary. */
5116 md_section_align (segment, size)
5117 segT segment ATTRIBUTE_UNUSED;
5120 #ifdef BFD_ASSEMBLER
5121 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5122 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5124 /* For a.out, force the section size to be aligned. If we don't do
5125 this, BFD will align it for us, but it will not write out the
5126 final bytes of the section. This may be a bug in BFD, but it is
5127 easier to fix it here since that is how the other a.out targets
5131 align = bfd_get_section_alignment (stdoutput, segment);
5132 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5140 /* On the i386, PC-relative offsets are relative to the start of the
5141 next instruction. That is, the address of the offset, plus its
5142 size, since the offset is always the last part of the insn. */
5145 md_pcrel_from (fixP)
5148 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5155 int ignore ATTRIBUTE_UNUSED;
5159 temp = get_absolute_expression ();
5160 subseg_set (bss_section, (subsegT) temp);
5161 demand_empty_rest_of_line ();
5166 #ifdef BFD_ASSEMBLER
5169 i386_validate_fix (fixp)
5172 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5174 /* GOTOFF relocation are nonsense in 64bit mode. */
5175 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5177 if (flag_code != CODE_64BIT)
5179 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5183 if (flag_code == CODE_64BIT)
5185 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5192 tc_gen_reloc (section, fixp)
5193 asection *section ATTRIBUTE_UNUSED;
5197 bfd_reloc_code_real_type code;
5199 switch (fixp->fx_r_type)
5201 case BFD_RELOC_X86_64_PLT32:
5202 case BFD_RELOC_X86_64_GOT32:
5203 case BFD_RELOC_X86_64_GOTPCREL:
5204 case BFD_RELOC_386_PLT32:
5205 case BFD_RELOC_386_GOT32:
5206 case BFD_RELOC_386_GOTOFF:
5207 case BFD_RELOC_386_GOTPC:
5208 case BFD_RELOC_386_TLS_GD:
5209 case BFD_RELOC_386_TLS_LDM:
5210 case BFD_RELOC_386_TLS_LDO_32:
5211 case BFD_RELOC_386_TLS_IE_32:
5212 case BFD_RELOC_386_TLS_IE:
5213 case BFD_RELOC_386_TLS_GOTIE:
5214 case BFD_RELOC_386_TLS_LE_32:
5215 case BFD_RELOC_386_TLS_LE:
5216 case BFD_RELOC_X86_64_32S:
5217 case BFD_RELOC_X86_64_TLSGD:
5218 case BFD_RELOC_X86_64_TLSLD:
5219 case BFD_RELOC_X86_64_DTPOFF32:
5220 case BFD_RELOC_X86_64_GOTTPOFF:
5221 case BFD_RELOC_X86_64_TPOFF32:
5223 case BFD_RELOC_VTABLE_ENTRY:
5224 case BFD_RELOC_VTABLE_INHERIT:
5225 code = fixp->fx_r_type;
5230 switch (fixp->fx_size)
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte pc-relative relocation"),
5236 code = BFD_RELOC_32_PCREL;
5238 case 1: code = BFD_RELOC_8_PCREL; break;
5239 case 2: code = BFD_RELOC_16_PCREL; break;
5240 case 4: code = BFD_RELOC_32_PCREL; break;
5245 switch (fixp->fx_size)
5248 as_bad_where (fixp->fx_file, fixp->fx_line,
5249 _("can not do %d byte relocation"),
5251 code = BFD_RELOC_32;
5253 case 1: code = BFD_RELOC_8; break;
5254 case 2: code = BFD_RELOC_16; break;
5255 case 4: code = BFD_RELOC_32; break;
5257 case 8: code = BFD_RELOC_64; break;
5264 if (code == BFD_RELOC_32
5266 && fixp->fx_addsy == GOT_symbol)
5268 /* We don't support GOTPC on 64bit targets. */
5269 if (flag_code == CODE_64BIT)
5271 code = BFD_RELOC_386_GOTPC;
5274 rel = (arelent *) xmalloc (sizeof (arelent));
5275 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5276 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5278 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5279 if (!use_rela_relocations)
5281 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5282 vtable entry to be used in the relocation's section offset. */
5283 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5284 rel->address = fixp->fx_offset;
5288 /* Use the rela in 64bit mode. */
5291 if (!fixp->fx_pcrel)
5292 rel->addend = fixp->fx_offset;
5296 case BFD_RELOC_X86_64_PLT32:
5297 case BFD_RELOC_X86_64_GOT32:
5298 case BFD_RELOC_X86_64_GOTPCREL:
5299 case BFD_RELOC_X86_64_TLSGD:
5300 case BFD_RELOC_X86_64_TLSLD:
5301 case BFD_RELOC_X86_64_GOTTPOFF:
5302 rel->addend = fixp->fx_offset - fixp->fx_size;
5305 rel->addend = (section->vma
5307 + fixp->fx_addnumber
5308 + md_pcrel_from (fixp));
5313 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5314 if (rel->howto == NULL)
5316 as_bad_where (fixp->fx_file, fixp->fx_line,
5317 _("cannot represent relocation type %s"),
5318 bfd_get_reloc_code_name (code));
5319 /* Set howto to a garbage value so that we can keep going. */
5320 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5321 assert (rel->howto != NULL);
5327 #else /* !BFD_ASSEMBLER */
5329 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5331 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5334 relax_addressT segment_address_in_file;
5336 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5337 Out: GNU LD relocation length code: 0, 1, or 2. */
5339 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5342 know (fixP->fx_addsy != NULL);
5344 md_number_to_chars (where,
5345 (valueT) (fixP->fx_frag->fr_address
5346 + fixP->fx_where - segment_address_in_file),
5349 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5350 ? S_GET_TYPE (fixP->fx_addsy)
5351 : fixP->fx_addsy->sy_number);
5353 where[6] = (r_symbolnum >> 16) & 0x0ff;
5354 where[5] = (r_symbolnum >> 8) & 0x0ff;
5355 where[4] = r_symbolnum & 0x0ff;
5356 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5357 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5358 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5361 #endif /* OBJ_AOUT or OBJ_BOUT. */
5363 #if defined (I386COFF)
5366 tc_coff_fix2rtype (fixP)
5369 if (fixP->fx_r_type == R_IMAGEBASE)
5372 return (fixP->fx_pcrel ?
5373 (fixP->fx_size == 1 ? R_PCRBYTE :
5374 fixP->fx_size == 2 ? R_PCRWORD :
5376 (fixP->fx_size == 1 ? R_RELBYTE :
5377 fixP->fx_size == 2 ? R_RELWORD :
5382 tc_coff_sizemachdep (frag)
5386 return (frag->fr_next->fr_address - frag->fr_address);
5391 #endif /* I386COFF */
5393 #endif /* !BFD_ASSEMBLER */
5395 /* Parse operands using Intel syntax. This implements a recursive descent
5396 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5399 FIXME: We do not recognize the full operand grammar defined in the MASM
5400 documentation. In particular, all the structure/union and
5401 high-level macro operands are missing.
5403 Uppercase words are terminals, lower case words are non-terminals.
5404 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5405 bars '|' denote choices. Most grammar productions are implemented in
5406 functions called 'intel_<production>'.
5408 Initial production is 'expr'.
5414 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5416 constant digits [[ radixOverride ]]
5418 dataType BYTE | WORD | DWORD | QWORD | XWORD
5451 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5452 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5454 hexdigit a | b | c | d | e | f
5455 | A | B | C | D | E | F
5465 register specialRegister
5469 segmentRegister CS | DS | ES | FS | GS | SS
5471 specialRegister CR0 | CR2 | CR3
5472 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5473 | TR3 | TR4 | TR5 | TR6 | TR7
5475 We simplify the grammar in obvious places (e.g., register parsing is
5476 done by calling parse_register) and eliminate immediate left recursion
5477 to implement a recursive-descent parser.
5517 /* Parsing structure for the intel syntax parser. Used to implement the
5518 semantic actions for the operand grammar. */
5519 struct intel_parser_s
5521 char *op_string; /* The string being parsed. */
5522 int got_a_float; /* Whether the operand is a float. */
5523 int op_modifier; /* Operand modifier. */
5524 int is_mem; /* 1 if operand is memory reference. */
5525 const reg_entry *reg; /* Last register reference found. */
5526 char *disp; /* Displacement string being built. */
5529 static struct intel_parser_s intel_parser;
5531 /* Token structure for parsing intel syntax. */
5534 int code; /* Token code. */
5535 const reg_entry *reg; /* Register entry for register tokens. */
5536 char *str; /* String representation. */
5539 static struct intel_token cur_token, prev_token;
5541 /* Token codes for the intel parser. Since T_SHORT is already used
5542 by COFF, undefine it first to prevent a warning. */
5557 /* Prototypes for intel parser functions. */
5558 static int intel_match_token PARAMS ((int code));
5559 static void intel_get_token PARAMS ((void));
5560 static void intel_putback_token PARAMS ((void));
5561 static int intel_expr PARAMS ((void));
5562 static int intel_e05 PARAMS ((void));
5563 static int intel_e05_1 PARAMS ((void));
5564 static int intel_e06 PARAMS ((void));
5565 static int intel_e06_1 PARAMS ((void));
5566 static int intel_e09 PARAMS ((void));
5567 static int intel_e09_1 PARAMS ((void));
5568 static int intel_e10 PARAMS ((void));
5569 static int intel_e10_1 PARAMS ((void));
5570 static int intel_e11 PARAMS ((void));
5573 i386_intel_operand (operand_string, got_a_float)
5574 char *operand_string;
5580 /* Initialize token holders. */
5581 cur_token.code = prev_token.code = T_NIL;
5582 cur_token.reg = prev_token.reg = NULL;
5583 cur_token.str = prev_token.str = NULL;
5585 /* Initialize parser structure. */
5586 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5589 strcpy (intel_parser.op_string, operand_string);
5590 intel_parser.got_a_float = got_a_float;
5591 intel_parser.op_modifier = -1;
5592 intel_parser.is_mem = 0;
5593 intel_parser.reg = NULL;
5594 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5595 if (intel_parser.disp == NULL)
5597 intel_parser.disp[0] = '\0';
5599 /* Read the first token and start the parser. */
5601 ret = intel_expr ();
5605 /* If we found a memory reference, hand it over to i386_displacement
5606 to fill in the rest of the operand fields. */
5607 if (intel_parser.is_mem)
5609 if ((i.mem_operands == 1
5610 && (current_templates->start->opcode_modifier & IsString) == 0)
5611 || i.mem_operands == 2)
5613 as_bad (_("too many memory references for '%s'"),
5614 current_templates->start->name);
5619 char *s = intel_parser.disp;
5622 /* Add the displacement expression. */
5624 ret = i386_displacement (s, s + strlen (s))
5625 && i386_index_check (s);
5629 /* Constant and OFFSET expressions are handled by i386_immediate. */
5630 else if (intel_parser.op_modifier == OFFSET_FLAT
5631 || intel_parser.reg == NULL)
5632 ret = i386_immediate (intel_parser.disp);
5636 free (intel_parser.disp);
5646 /* expr SHORT e05 */
5647 if (cur_token.code == T_SHORT)
5649 intel_parser.op_modifier = SHORT;
5650 intel_match_token (T_SHORT);
5652 return (intel_e05 ());
5657 return intel_e05 ();
5667 return (intel_e06 () && intel_e05_1 ());
5673 /* e05' addOp e06 e05' */
5674 if (cur_token.code == '+' || cur_token.code == '-')
5676 strcat (intel_parser.disp, cur_token.str);
5677 intel_match_token (cur_token.code);
5679 return (intel_e06 () && intel_e05_1 ());
5694 return (intel_e09 () && intel_e06_1 ());
5700 /* e06' mulOp e09 e06' */
5701 if (cur_token.code == '*' || cur_token.code == '/')
5703 strcat (intel_parser.disp, cur_token.str);
5704 intel_match_token (cur_token.code);
5706 return (intel_e09 () && intel_e06_1 ());
5714 /* e09 OFFSET e10 e09'
5723 /* e09 OFFSET e10 e09' */
5724 if (cur_token.code == T_OFFSET)
5726 intel_parser.is_mem = 0;
5727 intel_parser.op_modifier = OFFSET_FLAT;
5728 intel_match_token (T_OFFSET);
5730 return (intel_e10 () && intel_e09_1 ());
5735 return (intel_e10 () && intel_e09_1 ());
5741 /* e09' PTR e10 e09' */
5742 if (cur_token.code == T_PTR)
5744 if (prev_token.code == T_BYTE)
5745 i.suffix = BYTE_MNEM_SUFFIX;
5747 else if (prev_token.code == T_WORD)
5749 if (intel_parser.got_a_float == 2) /* "fi..." */
5750 i.suffix = SHORT_MNEM_SUFFIX;
5752 i.suffix = WORD_MNEM_SUFFIX;
5755 else if (prev_token.code == T_DWORD)
5757 if (intel_parser.got_a_float == 1) /* "f..." */
5758 i.suffix = SHORT_MNEM_SUFFIX;
5760 i.suffix = LONG_MNEM_SUFFIX;
5763 else if (prev_token.code == T_QWORD)
5765 if (intel_parser.got_a_float == 1) /* "f..." */
5766 i.suffix = LONG_MNEM_SUFFIX;
5768 i.suffix = QWORD_MNEM_SUFFIX;
5771 else if (prev_token.code == T_XWORD)
5772 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5776 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5780 intel_match_token (T_PTR);
5782 return (intel_e10 () && intel_e09_1 ());
5785 /* e09 : e10 e09' */
5786 else if (cur_token.code == ':')
5788 /* Mark as a memory operand only if it's not already known to be an
5789 offset expression. */
5790 if (intel_parser.op_modifier != OFFSET_FLAT)
5791 intel_parser.is_mem = 1;
5793 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5808 return (intel_e11 () && intel_e10_1 ());
5814 /* e10' [ expr ] e10' */
5815 if (cur_token.code == '[')
5817 intel_match_token ('[');
5819 /* Mark as a memory operand only if it's not already known to be an
5820 offset expression. If it's an offset expression, we need to keep
5822 if (intel_parser.op_modifier != OFFSET_FLAT)
5823 intel_parser.is_mem = 1;
5825 strcat (intel_parser.disp, "[");
5827 /* Add a '+' to the displacement string if necessary. */
5828 if (*intel_parser.disp != '\0'
5829 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5830 strcat (intel_parser.disp, "+");
5832 if (intel_expr () && intel_match_token (']'))
5834 /* Preserve brackets when the operand is an offset expression. */
5835 if (intel_parser.op_modifier == OFFSET_FLAT)
5836 strcat (intel_parser.disp, "]");
5838 return intel_e10_1 ();
5865 if (cur_token.code == '(')
5867 intel_match_token ('(');
5868 strcat (intel_parser.disp, "(");
5870 if (intel_expr () && intel_match_token (')'))
5872 strcat (intel_parser.disp, ")");
5880 else if (cur_token.code == '[')
5882 intel_match_token ('[');
5884 /* Mark as a memory operand only if it's not already known to be an
5885 offset expression. If it's an offset expression, we need to keep
5887 if (intel_parser.op_modifier != OFFSET_FLAT)
5888 intel_parser.is_mem = 1;
5890 strcat (intel_parser.disp, "[");
5892 /* Operands for jump/call inside brackets denote absolute addresses. */
5893 if (current_templates->start->opcode_modifier & Jump
5894 || current_templates->start->opcode_modifier & JumpDword
5895 || current_templates->start->opcode_modifier & JumpByte
5896 || current_templates->start->opcode_modifier & JumpInterSegment)
5897 i.types[this_operand] |= JumpAbsolute;
5899 /* Add a '+' to the displacement string if necessary. */
5900 if (*intel_parser.disp != '\0'
5901 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5902 strcat (intel_parser.disp, "+");
5904 if (intel_expr () && intel_match_token (']'))
5906 /* Preserve brackets when the operand is an offset expression. */
5907 if (intel_parser.op_modifier == OFFSET_FLAT)
5908 strcat (intel_parser.disp, "]");
5921 else if (cur_token.code == T_BYTE
5922 || cur_token.code == T_WORD
5923 || cur_token.code == T_DWORD
5924 || cur_token.code == T_QWORD
5925 || cur_token.code == T_XWORD)
5927 intel_match_token (cur_token.code);
5934 else if (cur_token.code == '$' || cur_token.code == '.')
5936 strcat (intel_parser.disp, cur_token.str);
5937 intel_match_token (cur_token.code);
5939 /* Mark as a memory operand only if it's not already known to be an
5940 offset expression. */
5941 if (intel_parser.op_modifier != OFFSET_FLAT)
5942 intel_parser.is_mem = 1;
5948 else if (cur_token.code == T_REG)
5950 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5952 intel_match_token (T_REG);
5954 /* Check for segment change. */
5955 if (cur_token.code == ':')
5957 if (reg->reg_type & (SReg2 | SReg3))
5959 switch (reg->reg_num)
5962 i.seg[i.mem_operands] = &es;
5965 i.seg[i.mem_operands] = &cs;
5968 i.seg[i.mem_operands] = &ss;
5971 i.seg[i.mem_operands] = &ds;
5974 i.seg[i.mem_operands] = &fs;
5977 i.seg[i.mem_operands] = &gs;
5983 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5988 /* Not a segment register. Check for register scaling. */
5989 else if (cur_token.code == '*')
5991 if (!intel_parser.is_mem)
5993 as_bad (_("Register scaling only allowed in memory operands."));
5997 /* What follows must be a valid scale. */
5998 if (intel_match_token ('*')
5999 && strchr ("01248", *cur_token.str))
6002 i.types[this_operand] |= BaseIndex;
6004 /* Set the scale after setting the register (otherwise,
6005 i386_scale will complain) */
6006 i386_scale (cur_token.str);
6007 intel_match_token (T_CONST);
6011 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6017 /* No scaling. If this is a memory operand, the register is either a
6018 base register (first occurrence) or an index register (second
6020 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6022 if (i.base_reg && i.index_reg)
6024 as_bad (_("Too many register references in memory operand.\n"));
6028 if (i.base_reg == NULL)
6033 i.types[this_operand] |= BaseIndex;
6036 /* Offset modifier. Add the register to the displacement string to be
6037 parsed as an immediate expression after we're done. */
6038 else if (intel_parser.op_modifier == OFFSET_FLAT)
6039 strcat (intel_parser.disp, reg->reg_name);
6041 /* It's neither base nor index nor offset. */
6044 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6045 i.op[this_operand].regs = reg;
6049 /* Since registers are not part of the displacement string (except
6050 when we're parsing offset operands), we may need to remove any
6051 preceding '+' from the displacement string. */
6052 if (*intel_parser.disp != '\0'
6053 && intel_parser.op_modifier != OFFSET_FLAT)
6055 char *s = intel_parser.disp;
6056 s += strlen (s) - 1;
6065 else if (cur_token.code == T_ID)
6067 /* Add the identifier to the displacement string. */
6068 strcat (intel_parser.disp, cur_token.str);
6069 intel_match_token (T_ID);
6071 /* The identifier represents a memory reference only if it's not
6072 preceded by an offset modifier. */
6073 if (intel_parser.op_modifier != OFFSET_FLAT)
6074 intel_parser.is_mem = 1;
6080 else if (cur_token.code == T_CONST
6081 || cur_token.code == '-'
6082 || cur_token.code == '+')
6086 /* Allow constants that start with `+' or `-'. */
6087 if (cur_token.code == '-' || cur_token.code == '+')
6089 strcat (intel_parser.disp, cur_token.str);
6090 intel_match_token (cur_token.code);
6091 if (cur_token.code != T_CONST)
6093 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6099 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6100 if (save_str == NULL)
6102 strcpy (save_str, cur_token.str);
6104 /* Get the next token to check for register scaling. */
6105 intel_match_token (cur_token.code);
6107 /* Check if this constant is a scaling factor for an index register. */
6108 if (cur_token.code == '*')
6110 if (intel_match_token ('*') && cur_token.code == T_REG)
6112 if (!intel_parser.is_mem)
6114 as_bad (_("Register scaling only allowed in memory operands."));
6118 /* The constant is followed by `* reg', so it must be
6120 if (strchr ("01248", *save_str))
6122 i.index_reg = cur_token.reg;
6123 i.types[this_operand] |= BaseIndex;
6125 /* Set the scale after setting the register (otherwise,
6126 i386_scale will complain) */
6127 i386_scale (save_str);
6128 intel_match_token (T_REG);
6130 /* Since registers are not part of the displacement
6131 string, we may need to remove any preceding '+' from
6132 the displacement string. */
6133 if (*intel_parser.disp != '\0')
6135 char *s = intel_parser.disp;
6136 s += strlen (s) - 1;
6149 /* The constant was not used for register scaling. Since we have
6150 already consumed the token following `*' we now need to put it
6151 back in the stream. */
6153 intel_putback_token ();
6156 /* Add the constant to the displacement string. */
6157 strcat (intel_parser.disp, save_str);
6163 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6167 /* Match the given token against cur_token. If they match, read the next
6168 token from the operand string. */
6170 intel_match_token (code)
6173 if (cur_token.code == code)
6180 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6185 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6190 const reg_entry *reg;
6191 struct intel_token new_token;
6193 new_token.code = T_NIL;
6194 new_token.reg = NULL;
6195 new_token.str = NULL;
6197 /* Free the memory allocated to the previous token and move
6198 cur_token to prev_token. */
6200 free (prev_token.str);
6202 prev_token = cur_token;
6204 /* Skip whitespace. */
6205 while (is_space_char (*intel_parser.op_string))
6206 intel_parser.op_string++;
6208 /* Return an empty token if we find nothing else on the line. */
6209 if (*intel_parser.op_string == '\0')
6211 cur_token = new_token;
6215 /* The new token cannot be larger than the remainder of the operand
6217 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6218 if (new_token.str == NULL)
6220 new_token.str[0] = '\0';
6222 if (strchr ("0123456789", *intel_parser.op_string))
6224 char *p = new_token.str;
6225 char *q = intel_parser.op_string;
6226 new_token.code = T_CONST;
6228 /* Allow any kind of identifier char to encompass floating point and
6229 hexadecimal numbers. */
6230 while (is_identifier_char (*q))
6234 /* Recognize special symbol names [0-9][bf]. */
6235 if (strlen (intel_parser.op_string) == 2
6236 && (intel_parser.op_string[1] == 'b'
6237 || intel_parser.op_string[1] == 'f'))
6238 new_token.code = T_ID;
6241 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6243 new_token.code = *intel_parser.op_string;
6244 new_token.str[0] = *intel_parser.op_string;
6245 new_token.str[1] = '\0';
6248 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6249 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6251 new_token.code = T_REG;
6252 new_token.reg = reg;
6254 if (*intel_parser.op_string == REGISTER_PREFIX)
6256 new_token.str[0] = REGISTER_PREFIX;
6257 new_token.str[1] = '\0';
6260 strcat (new_token.str, reg->reg_name);
6263 else if (is_identifier_char (*intel_parser.op_string))
6265 char *p = new_token.str;
6266 char *q = intel_parser.op_string;
6268 /* A '.' or '$' followed by an identifier char is an identifier.
6269 Otherwise, it's operator '.' followed by an expression. */
6270 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6272 new_token.code = *q;
6273 new_token.str[0] = *q;
6274 new_token.str[1] = '\0';
6278 while (is_identifier_char (*q) || *q == '@')
6282 if (strcasecmp (new_token.str, "BYTE") == 0)
6283 new_token.code = T_BYTE;
6285 else if (strcasecmp (new_token.str, "WORD") == 0)
6286 new_token.code = T_WORD;
6288 else if (strcasecmp (new_token.str, "DWORD") == 0)
6289 new_token.code = T_DWORD;
6291 else if (strcasecmp (new_token.str, "QWORD") == 0)
6292 new_token.code = T_QWORD;
6294 else if (strcasecmp (new_token.str, "XWORD") == 0)
6295 new_token.code = T_XWORD;
6297 else if (strcasecmp (new_token.str, "PTR") == 0)
6298 new_token.code = T_PTR;
6300 else if (strcasecmp (new_token.str, "SHORT") == 0)
6301 new_token.code = T_SHORT;
6303 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6305 new_token.code = T_OFFSET;
6307 /* ??? This is not mentioned in the MASM grammar but gcc
6308 makes use of it with -mintel-syntax. OFFSET may be
6309 followed by FLAT: */
6310 if (strncasecmp (q, " FLAT:", 6) == 0)
6311 strcat (new_token.str, " FLAT:");
6314 /* ??? This is not mentioned in the MASM grammar. */
6315 else if (strcasecmp (new_token.str, "FLAT") == 0)
6316 new_token.code = T_OFFSET;
6319 new_token.code = T_ID;
6324 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6326 intel_parser.op_string += strlen (new_token.str);
6327 cur_token = new_token;
6330 /* Put cur_token back into the token stream and make cur_token point to
6333 intel_putback_token ()
6335 intel_parser.op_string -= strlen (cur_token.str);
6336 free (cur_token.str);
6337 cur_token = prev_token;
6339 /* Forget prev_token. */
6340 prev_token.code = T_NIL;
6341 prev_token.reg = NULL;
6342 prev_token.str = NULL;
6346 tc_x86_regname_to_dw2regnum (const char *regname)
6348 unsigned int regnum;
6349 unsigned int regnames_count;
6350 char *regnames_32[] =
6352 "eax", "ecx", "edx", "ebx",
6353 "esp", "ebp", "esi", "edi",
6356 char *regnames_64[] =
6358 "rax", "rbx", "rcx", "rdx",
6359 "rdi", "rsi", "rbp", "rsp",
6360 "r8", "r9", "r10", "r11",
6361 "r12", "r13", "r14", "r15",
6366 if (flag_code == CODE_64BIT)
6368 regnames = regnames_64;
6369 regnames_count = ARRAY_SIZE (regnames_64);
6373 regnames = regnames_32;
6374 regnames_count = ARRAY_SIZE (regnames_32);
6377 for (regnum = 0; regnum < regnames_count; regnum++)
6378 if (strcmp (regname, regnames[regnum]) == 0)
6385 tc_x86_frame_initial_instructions (void)
6387 static unsigned int sp_regno;
6390 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6393 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6394 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);