1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
38 #include "dw2gencfi.h"
41 #include "dwarf2dbg.h"
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
47 /* This structure holds the unwinding state. */
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
62 /* The number of bytes pushed to the stack. */
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
72 /* Nonzero if an unwind_setfp directive has been seen. */
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
78 /* Whether --fdpic was given. */
83 /* Results from operand parsing worker functions. */
87 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
99 /* Types of processor to assemble for. */
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
269 static const arm_feature_set arm_arch_any = ARM_ANY;
271 static const arm_feature_set fpu_any = FPU_ANY;
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
350 extern FLONUM_TYPE generic_floating_point_number;
352 /* Return if no cpu was selected on command-line. */
354 no_cpu_selected (void)
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
361 static int meabi_flags = EABI_DEFAULT;
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
412 Important differences from the old Thumb mode:
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
423 static bfd_boolean unified_syntax = FALSE;
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
444 enum neon_el_type type;
448 #define NEON_MAX_TYPE_ELS 4
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
456 enum pred_instruction_type
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
480 unsigned long instruction;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
497 bfd_reloc_code_real_type type;
500 } relocs[ARM_IT_MAX_RELOCS];
502 enum pred_instruction_type pred_insn_type;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
536 static struct arm_it inst;
538 #define NUM_FLOAT_VALS 8
540 const char * fp_const[] =
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
561 #define DOUBLE_LOAD_FLAG 0x00000001
565 const char * template_name;
569 #define COND_ALWAYS 0xE
573 const char * template_name;
577 struct asm_barrier_opt
579 const char * template_name;
581 const arm_feature_set arch;
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
596 bfd_reloc_code_real_type reloc;
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
614 struct neon_typed_alias
616 unsigned char defined;
618 struct neon_type_el eltype;
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
696 /* Some well known registers that we refer to directly elsewhere. */
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
708 /* Basic string to match. */
709 const char * template_name;
711 /* Parameters to instruction. */
712 unsigned int operands[8];
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
717 /* Basic instruction code. */
720 /* Thumb-format instruction code. */
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
753 #define T2_SUBS_PC_LR 0xf3de8f00
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
770 /* Codes to distinguish the arithmetic instructions. */
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
850 #define T_OPCODE_BRANCH 0xe000
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
915 /* Stuff needed to resolve the label ambiguity
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
942 struct literal_pool * next;
943 unsigned int alignment;
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
949 typedef enum asmfunc_states
952 WAITING_ASMFUNC_NAME,
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
961 static struct current_pred now_pred;
965 now_pred_compatible (int cond)
967 return (cond & ~1) == (now_pred.cc & ~1);
971 conditional_insn (void)
973 return inst.cond != COND_ALWAYS;
976 static int in_pred_block (void);
978 static int handle_pred_state (void);
980 static void force_automatic_it_block_close (void);
982 static void it_fsm_post_encode (void);
984 #define set_pred_insn_type(type) \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
993 #define set_pred_insn_type_nonvoid(type, failret) \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
1002 #define set_pred_insn_type_last() \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1027 char arm_line_separator_chars[] = ";";
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1039 /* Prefix characters that indicate the start of an immediate
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1043 /* Separator character handling. */
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1048 skip_past_char (char ** str, char c)
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1064 /* Arithmetic expressions (possibly involving symbols). */
1066 /* Return TRUE if anything in the expression is a bignum. */
1069 walk_no_bignums (symbolS * sp)
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1084 static bfd_boolean in_my_get_expression = FALSE;
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1099 /* In unified syntax, all prefixes are optional. */
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1104 switch (prefix_mode)
1106 case GE_NO_PREFIX: break;
1108 if (!is_immediate_prefix (**str))
1110 inst.error = _("immediate expression requires a # prefix");
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1124 memset (ep, 0, sizeof (expressionS));
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1130 in_my_get_expression = FALSE;
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1151 && walk_no_bignums (ep->X_op_symbol))))))
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1179 md_atof (int type, char * litP, int * sizeP)
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1214 return _("Unrecognized or unsupported floating point constant");
1217 t = atof_ieee (input_line_pointer, type, words);
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1222 if (target_big_endian)
1224 for (i = 0; i < prec; i++)
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1258 md_operand (expressionS * exp)
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1264 /* Immediate values. */
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1272 immediate_for_directive (int *val)
1275 exp.X_op = O_illegal;
1277 if (is_immediate_prefix (*input_line_pointer))
1279 input_line_pointer++;
1283 if (exp.X_op != O_constant)
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1289 *val = exp.X_add_number;
1294 /* Register parsing. */
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1306 struct reg_entry *reg;
1308 skip_whitespace (start);
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1341 /* Alternative syntaxes are accepted for a few register classes. */
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1354 /* For backward compatibility, a bare number is valid here. */
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1390 if (reg && reg->type == type)
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1408 Can all be legally parsed by this function.
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1415 parse_neon_type (struct neon_type *type, char **str)
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1432 /* Just a size without an explicit type. */
1436 switch (TOLOWER (*ptr))
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1444 thistype = NT_float;
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1461 thissize = strtoul (ptr, &ptr, 10);
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1466 as_bad (_("bad size %d in type specifier"), thissize);
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1495 first_error (const char *err)
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1506 struct neon_type optype;
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1516 first_error (_("only one type should be specified for operand"));
1522 first_error (_("vector type expected"));
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1540 /* Record a use of the given feature. */
1542 record_feature_use (const arm_feature_set *feature)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1553 mark_feature_used (const arm_feature_set *feature)
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1561 first_error (BAD_MVE_AUTO);
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1568 /* Add the appropriate architecture feature for the barrier option used.
1570 record_feature_use (feature);
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1621 if (type == REG_TYPE_MQ)
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1626 if (!reg || reg->type != REG_TYPE_NQ)
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1631 first_error (_("expected MVE register [q0..q7]"));
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1641 if (type != reg->type)
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1651 first_error (_("can't redefine type for operand"));
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1658 if (skip_past_char (&str, '[') == SUCCESS)
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1669 first_error (_("only D registers may be indexed"));
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1675 first_error (_("can't change index for operand"));
1679 atype.defined |= NTA_HASINDEX;
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1689 if (exp.X_op != O_constant)
1691 first_error (_("constant expression required"));
1695 if (skip_past_char (&str, ']') == FAIL)
1698 atype.index = exp.X_add_number;
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1724 struct neon_typed_alias atype;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1731 /* Do not allow regname(... to parse as a register. */
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1738 first_error (_("register operand expected, but got scalar"));
1743 *vectype = atype.eltype;
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1763 struct neon_typed_alias atype;
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1789 first_error (_("scalar must have an index"));
1792 else if (atype.index >= reg_size / elsize)
1794 first_error (_("scalar index out of range"));
1799 *type = atype.eltype;
1803 return reg * 16 + atype.index;
1806 /* Types of registers in a list. */
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1833 skip_whitespace (str);
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1852 if (reg == REG_SP || reg == REG_PC)
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1859 str += apsr_str_len;
1864 first_error (_("r0-r12, lr or APSR expected"));
1868 else /* etype == REGLIST_RN. */
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1883 first_error (_("bad range in register list"));
1887 for (i = cur_reg + 1; i < reg; i++)
1889 if (range & (1 << i))
1891 (_("Warning: duplicated register (r%d) in register list"),
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1912 if (skip_past_char (&str, '}') == FAIL)
1914 first_error (_("missing `}'"));
1918 else if (etype == REGLIST_RN)
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1925 if (exp.X_op == O_constant)
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1930 inst.error = _("invalid register mask");
1934 if ((range & exp.X_add_number) != 0)
1936 int regno = range & exp.X_add_number;
1939 regno = (1 << regno) - 1;
1941 (_("Warning: duplicated register (r%d) in register list"),
1945 range |= exp.X_add_number;
1949 if (inst.relocs[0].type != 0)
1951 inst.error = _("expression too complex");
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1961 if (*str == '|' || *str == '+')
1967 while (another_range);
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1999 unsigned long mask = 0;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2005 if (skip_past_char (&str, '{') == FAIL)
2007 inst.error = _("expecting {");
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2058 new_base = arm_typed_reg_parse (&str, regtype, ®type, NULL);
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 first_error (_("VPR expected last"));
2077 else if (new_base == FAIL)
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2088 else if (new_base == FAIL)
2090 first_error (_(reg_expected_msgs[regtype]));
2094 *partial_match = TRUE;
2098 if (new_base >= max_regs)
2100 first_error (_("register out of range in list"));
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2114 if (mask & (setmask << new_base))
2116 first_error (_("invalid register list"));
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2122 as_tsktsk (_("register list not in ascending order"));
2126 mask |= setmask << new_base;
2129 if (*str == '-') /* We have the start of a range expression */
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2142 if (high_range >= max_regs)
2144 first_error (_("register out of range in list"));
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2151 if (high_range <= new_base)
2153 inst.error = _("register range not in ascending order");
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2159 if (mask & (setmask << new_base))
2161 inst.error = _("invalid register list");
2165 mask |= setmask << new_base;
2170 while (skip_past_comma (&str) != FAIL);
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2180 if (expect_vpr && !vpr_seen)
2182 first_error (_("VPR expected last"));
2186 /* Final test -- the registers must be consecutive. */
2188 for (i = 0; i < count; i++)
2190 if ((mask & (1u << i)) == 0)
2192 inst.error = _("non-contiguous register range");
2202 /* True if two alias types are the same. */
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2213 if (a->defined != b->defined)
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2243 struct neon_type_el *eltype)
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2266 struct neon_typed_alias atype;
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2273 first_error (_(reg_expected_msgs[rtype]));
2280 if (rtype == REG_TYPE_NQ)
2286 else if (reg_incr == -1)
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2291 first_error (_(incr_error));
2295 else if (getreg != base_reg + reg_incr * count)
2297 first_error (_(incr_error));
2301 if (! neon_alias_types_same (&atype, &firsttype))
2303 first_error (_(type_error));
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2317 first_error (_(type_error));
2322 else if (reg_incr != 1)
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2331 first_error (_(reg_expected_msgs[rtype]));
2334 if (! neon_alias_types_same (&htype, &firsttype))
2336 first_error (_(type_error));
2339 count += hireg + dregs - getreg;
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2354 else if (lane != atype.index)
2356 first_error (_(type_error));
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2364 first_error (_(type_error));
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2371 /* No lane set by [x]. We must be interleaving structures. */
2373 lane = NEON_INTERLEAVE_LANES;
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2379 first_error (_("error parsing element/structure list"));
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2385 first_error (_("expected }"));
2393 *eltype = firsttype.eltype;
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2408 parse_reloc (char **str)
2410 struct reloc_entry *r;
2414 return BFD_RELOC_UNUSED;
2419 while (*q && *q != ')' && *q != ',')
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2432 /* Directives: register aliases. */
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2437 struct reg_entry *new_reg;
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2445 /* Only warn about a redefinition if it's not defined as the
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2476 first_error (_("attempt to redefine typed alias"));
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2487 /* Look for the .req directive. This is of the form:
2489 new_register_name .req existing_register_name
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2495 create_register_alias (char * newname, char *p)
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2504 if (strncmp (oldname, " .req ", 6) != 0)
2508 if (*oldname == '\0')
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2528 nbuf = xmemdup0 (newname, nlen);
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2535 for (p = nbuf; *p; p++)
2538 if (strncmp (nbuf, newname, nlen))
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2556 for (p = nbuf; *p; p++)
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2578 create_neon_reg_alias (char *newname, char *p)
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2607 basereg = arm_reg_parse_multi (&p);
2609 if (basereg && basereg->type != basetype)
2611 as_bad (_("bad type for register"));
2615 if (basereg == NULL)
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2622 as_bad (_("expression must be constant"));
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2632 typeinfo = *basereg->neon;
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2639 as_bad (_("can't redefine the type of a register alias"));
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2646 as_bad (_("you must specify a single type only"));
2649 typeinfo.eltype = ntype.el[0];
2652 if (skip_past_char (&p, '[') == SUCCESS)
2655 /* We got a scalar index. */
2657 if (typeinfo.defined & NTA_HASINDEX)
2659 as_bad (_("can't redefine the index of a scalar alias"));
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2665 if (exp.X_op != O_constant)
2667 as_bad (_("scalar index must be constant"));
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2674 if (skip_past_char (&p, ']') == FAIL)
2676 as_bad (_("expecting ]"));
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2691 namebuf = xmemdup0 (newname, namelen);
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2720 s_req (int a ATTRIBUTE_UNUSED)
2722 as_bad (_("invalid syntax for .req directive"));
2726 s_dn (int a ATTRIBUTE_UNUSED)
2728 as_bad (_("invalid syntax for .dn directive"));
2732 s_qn (int a ATTRIBUTE_UNUSED)
2734 as_bad (_("invalid syntax for .qn directive"));
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2749 name = input_line_pointer;
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2760 as_bad (_("invalid syntax for .unreq directive"));
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2799 for (p = nbuf; *p; p++)
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2819 /* Directives: Instruction set selection. */
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2827 /* Create a new mapping symbol for the transition to STATE. */
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2833 const char * symname;
2840 type = BSF_NO_FLAGS;
2844 type = BSF_NO_FLAGS;
2848 type = BSF_NO_FLAGS;
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2887 if (frag->tc_frag_data.first_map != NULL)
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2892 frag->tc_frag_data.first_map = symbolP;
2894 if (frag->tc_frag_data.last_map != NULL)
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2900 frag->tc_frag_data.last_map = symbolP;
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2915 symbolS *symp = frag->tc_frag_data.last_map;
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2937 mapping_state (enum mstate state)
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2946 if (state == MAP_ARM || state == MAP_THUMB)
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2951 When emitting instructions into any section, mark the section
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2966 mapping_state_2 (state, 0);
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2973 mapping_state_2 (enum mstate state, int max_chars)
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2977 if (!SEG_NORMAL (now_seg))
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3008 find_real_start (symbolS * symbolP)
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3032 if (new_target == NULL)
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3043 opcode_select (int width)
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3069 frag_align (2, 0, 0);
3071 record_alignment (now_seg, 1);
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3084 demand_empty_rest_of_line ();
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3091 demand_empty_rest_of_line ();
3095 s_code (int unused ATTRIBUTE_UNUSED)
3099 temp = get_absolute_expression ();
3104 opcode_select (temp);
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3123 record_alignment (now_seg, 1);
3126 demand_empty_rest_of_line ();
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3143 s_thumb_set (int equiv)
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3160 if (*input_line_pointer != ',')
3163 as_bad (_("expected comma after name \"%s\""), name);
3165 ignore_rest_of_line ();
3169 input_line_pointer++;
3172 if (name[0] == '.' && name[1] == '\0')
3174 /* XXX - this should not happen to .thumb_set. */
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3185 if (listing & LISTING_SYMBOLS)
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3206 symbol_table_insert (symbolP);
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3215 pseudo_set (symbolP);
3217 demand_empty_rest_of_line ();
3219 /* XXX Now we come to the Thumb specific bit of code. */
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3228 /* Directives: Mode selection. */
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3238 delim = get_symbol_name (& name);
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3253 /* Directives: sectioning and alignment. */
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3271 /* Never make frag if expect extra pass. */
3273 frag_align (1, 0, 0);
3275 record_alignment (now_seg, 1);
3277 demand_empty_rest_of_line ();
3280 /* Directives: CodeComposer Studio. */
3282 /* .ref (for CodeComposer Studio syntax only). */
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3295 asmfunc_debug (const char * name)
3297 static const char * last_name = NULL;
3301 gas_assert (last_name == NULL);
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3309 gas_assert (last_name != NULL);
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3321 if (codecomposer_syntax)
3323 switch (asmfunc_state)
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3337 demand_empty_rest_of_line ();
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3346 if (codecomposer_syntax)
3348 switch (asmfunc_state)
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3363 demand_empty_rest_of_line ();
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 s_ccs_def (int name)
3372 if (codecomposer_syntax)
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3378 /* Directives: Literal pools. */
3380 static literal_pool *
3381 find_literal_pool (void)
3383 literal_pool * pool;
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3402 pool = find_literal_pool ();
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3438 add_to_lit_pool (unsigned int nbytes)
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3457 imm2 = inst.operands[1].imm;
3461 pool = find_or_make_literal_pool ();
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3513 inst.error = _("literal pool overflow");
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3525 We also need to make sure there is enough space for
3528 We also check to make sure the literal operand is a
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3533 inst.error = _("invalid type for literal pool");
3536 else if (pool_size & 0x7)
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3540 inst.error = _("literal pool overflow");
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3553 inst.error = _("literal pool overflow");
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3584 pool->next_free_entry += 1;
3586 else if (padding_slot_p)
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3600 tc_start_label_without_colon (void)
3602 bfd_boolean ret = TRUE;
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3606 const char *label = input_line_pointer;
3608 while (!is_end_of_line[(int) label[-1]])
3613 as_bad (_("Invalid label '%s'"), label);
3617 asmfunc_debug (label);
3619 asmfunc_state = WAITING_ENDASMFUNC;
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3636 char * preserved_copy_of_name;
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (¬es, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (¬es);
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3653 symbol_set_frag (symbolP, frag);
3655 /* Link to end of symbol chain. */
3657 extern int symbol_table_frozen;
3659 if (symbol_table_frozen)
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3665 obj_symbol_new_hook (symbolP);
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3680 literal_pool * pool;
3683 pool = find_literal_pool ();
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3692 frag_align (pool->alignment, 0, 0);
3694 record_alignment (now_seg, 2);
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3729 /* Forward declarations for functions below, in the MD interface
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3737 /* Directives: Data. */
3740 s_arm_elf_cons (int nbytes)
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3748 if (is_it_end_of_statement ())
3750 demand_empty_rest_of_line ();
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3758 mapping_state (MAP_DATA);
3762 char *base = input_line_pointer;
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3798 howto->name, nbytes);
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3815 memcpy (base, save_buf, p - base);
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3827 while (*input_line_pointer++ == ',');
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3838 emit_thumb32_expr (expressionS * exp)
3840 expressionS exp_high = *exp;
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3848 /* Guess the instruction size based on the opcode. */
3851 thumb_insn_size (int opcode)
3853 if ((unsigned int) opcode < 0xe800u)
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3862 emit_insn (expressionS *exp, int nbytes)
3866 if (exp->X_op == O_constant)
3871 size = thumb_insn_size (exp->X_add_number);
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3891 emit_expr (exp, (unsigned int) size);
3893 it_fsm_post_encode ();
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3901 as_bad (_("constant expression required"));
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3910 s_arm_elf_inst (int nbytes)
3912 if (is_it_end_of_statement ())
3914 demand_empty_rest_of_line ();
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3922 mapping_state (MAP_THUMB);
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3934 mapping_state (MAP_ARM);
3943 if (! emit_insn (& exp, nbytes))
3945 ignore_rest_of_line ();
3949 while (*input_line_pointer++ == ',');
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3956 /* Parse a .rel31 directive. */
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3980 #ifdef md_cons_align
3984 mapping_state (MAP_DATA);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3993 demand_empty_rest_of_line ();
3996 /* Directives: AEABI stack-unwind tables. */
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4006 as_bad (_("duplicate .fnstart directive"));
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4022 unwind.sp_restored = 0;
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4039 create_unwind_entry (1);
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4050 unsigned int marked_pr_dependency;
4052 demand_empty_rest_of_line ();
4054 if (!unwind.proc_start)
4056 as_bad (_(".fnend directive without .fnstart"));
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4071 ptr = frag_more (8);
4073 where = frag_now_fix () - 8;
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4086 static const char *const name[] =
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4109 unwind.proc_start = NULL;
4113 /* Parse an unwind_cantunwind directive. */
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4125 unwind.personality_index = -2;
4129 /* Parse a personalityindex directive. */
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4152 unwind.personality_index = exp.X_add_number;
4154 demand_empty_rest_of_line ();
4158 /* Parse a personality directive. */
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4177 demand_empty_rest_of_line ();
4181 /* Parse a directive saving core registers. */
4184 s_arm_unwind_save_core (void)
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4198 demand_empty_rest_of_line ();
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4232 /* Use the short form. */
4234 op = 0xa8; /* Pop r14. */
4236 op = 0xa0; /* Do not pop r14. */
4238 add_unwind_opcode (op, 1);
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4258 /* Parse a directive saving FPA registers. */
4261 s_arm_unwind_save_fpa (int reg)
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4271 exp.X_op = O_illegal;
4273 if (exp.X_op != O_constant)
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4280 num_regs = exp.X_add_number;
4282 if (num_regs < 1 || num_regs > 4)
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4289 demand_empty_rest_of_line ();
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4303 unwind.frame_size += num_regs * 12;
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4310 s_arm_unwind_save_vfp_armv6 (void)
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4328 demand_empty_rest_of_line ();
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4339 if (num_vfpv3_regs > 0)
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4355 unwind.frame_size += count * 8;
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4362 s_arm_unwind_save_vfp (void)
4367 bfd_boolean partial_match;
4369 count = parse_vfp_reg_list (&input_line_pointer, ®, REGLIST_VFP_D,
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4378 demand_empty_rest_of_line ();
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4392 unwind.frame_size += count * 8 + 4;
4396 /* Parse a directive saving iWMMXt data registers. */
4399 s_arm_unwind_save_mmxwr (void)
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4421 as_tsktsk (_("register list not in ascending order"));
4424 if (*input_line_pointer == '-')
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4433 else if (reg >= hi_reg)
4435 as_bad (_("bad register range"));
4438 for (; reg < hi_reg; reg++)
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4444 skip_past_char (&input_line_pointer, '}');
4446 demand_empty_rest_of_line ();
4448 /* Generate any deferred opcodes because we're going to be looking at
4450 flush_pending_unwind ();
4452 for (i = 0; i < 16; i++)
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4461 if (unwind.opcode_count > 0)
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4467 /* Only merge if the blocks are contiguous. */
4470 if ((mask & 0xfe00) == (1 << 9))
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4476 else if (i == 6 && unwind.opcode_count >= 2)
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4482 op = 0xffff << (reg - 1);
4484 && ((mask & op) == (1u << (reg - 1))))
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4489 unwind.opcode_count -= 2;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4500 /* Save registers in blocks. */
4502 || !(mask & (1 << reg)))
4504 /* We found an unsaved reg. Generate opcodes to save the
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4527 ignore_rest_of_line ();
4531 s_arm_unwind_save_mmxwcg (void)
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4541 skip_whitespace (input_line_pointer);
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4555 as_tsktsk (_("register list not in ascending order"));
4558 if (*input_line_pointer == '-')
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4567 else if (reg >= hi_reg)
4569 as_bad (_("bad register range"));
4572 for (; reg < hi_reg; reg++)
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4578 skip_past_char (&input_line_pointer, '}');
4580 demand_empty_rest_of_line ();
4582 /* Generate any deferred opcodes because we're going to be looking at
4584 flush_pending_unwind ();
4586 for (reg = 0; reg < 16; reg++)
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4592 add_unwind_opcode (op, 2);
4595 ignore_rest_of_line ();
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4603 s_arm_unwind_save (int arch_v6)
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4621 reg = arm_reg_parse_multi (&peek);
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4644 s_arm_unwind_save_core ();
4649 s_arm_unwind_save_vfp_armv6 ();
4651 s_arm_unwind_save_vfp ();
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4669 /* Parse an unwind_movsp directive. */
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4692 if (immediate_for_directive (&offset) == FAIL)
4698 demand_empty_rest_of_line ();
4700 if (reg == REG_SP || reg == REG_PC)
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4709 /* Generate opcode to restore the value. */
4711 add_unwind_opcode (op, 1);
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4719 /* Parse an unwind_pad directive. */
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4729 if (immediate_for_directive (&offset) == FAIL)
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4743 demand_empty_rest_of_line ();
4746 /* Parse an unwind_setfp directive. */
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4774 if (immediate_for_directive (&offset) == FAIL)
4780 demand_empty_rest_of_line ();
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4795 unwind.fp_offset -= offset;
4798 /* Parse an unwind_raw directive. */
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4815 unwind.frame_size += exp.X_add_number;
4819 exp.X_op = O_illegal;
4821 if (exp.X_op != O_constant)
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4830 /* Parse the opcode. */
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4844 op[count++] = exp.X_add_number;
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4853 /* Add the opcode bytes in reverse order. */
4855 add_unwind_opcode (op[count], 1);
4857 demand_empty_rest_of_line ();
4861 /* Parse a .eabi_attribute directive. */
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4872 /* Emit a tls fix for the symbol. */
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4883 #ifdef md_cons_align
4887 /* Since we're just labelling the code, there's no need to define a
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4895 #endif /* OBJ_ELF */
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4916 emit_expr (&exp, 4);
4918 while (*input_line_pointer++ == ',');
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4931 const pseudo_typeS md_pseudo_table[] =
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4980 /* These are used for dwarf. */
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4993 {"secrel32", pe_directive_secrel, 0},
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5005 /* Parser functions used exclusively in instruction operands. */
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5022 inst.error = _("constant expression required");
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5028 inst.error = _("immediate value out of range");
5032 *val = exp.X_add_number;
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5050 if (exp_p->X_op == O_constant)
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5061 inst.operands[i].regisimm = 1;
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5080 LITTLENUM_TYPE m = -1;
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5113 parse_fpa_immediate (char ** str)
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5124 for (i = 0; fp_const[i]; i++)
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5152 if (words[j] != fp_values[i][j])
5156 if (j == MAX_LITTLENUMS)
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5182 if (words[j] != fp_values[i][j])
5186 if (j == MAX_LITTLENUMS)
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5206 is_quarter_float (unsigned imm)
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5213 /* Detect the presence of a floating point or integer zero constant,
5217 parse_ifimm_zero (char **in)
5221 if (!is_immediate_prefix (**in))
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5258 parse_qfloat_immediate (char **ccp, int *immed)
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5265 skip_past_char (&str, '#');
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5273 skip_whitespace (fpnum);
5275 if (strncmp (fpnum, "0x", 2) == 0)
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5292 unsigned fpword = 0;
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5315 /* Shift operands. */
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5321 struct asm_shift_name
5324 enum shift_kind kind;
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5357 for (p = *str; ISALPHA (*p); p++)
5362 inst.error = _("shift expression expected");
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5369 if (shift_name == NULL)
5371 inst.error = _("shift expression expected");
5375 shift = shift_name->kind;
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5383 inst.error = _("'UXTW' not allowed here");
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5391 inst.error = _("'LSL' or 'ASR' required");
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5399 inst.error = _("'LSL' required");
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5407 inst.error = _("'ASR' required");
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5414 inst.error = _("'UXTW' required");
5422 if (shift != SHIFT_RRX)
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5445 #<immediate>, <rotate>
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5454 parse_shifter_operand (char **str, int i)
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5468 if (skip_past_comma (str) == FAIL)
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5478 if (skip_past_comma (str) == SUCCESS)
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5486 inst.error = _("constant expression expected");
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5493 inst.error = _("invalid rotation");
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5499 inst.error = _("invalid constant");
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5520 struct group_reloc_table_entry
5531 /* Varieties of non-ALU group relocation. */
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5627 int length = strlen (group_reloc_table[i].name);
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5653 Everything else is as for parse_shifter_operand. */
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5665 struct group_reloc_table_entry *entry;
5667 if ((*str)[0] == '#')
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5688 return PARSE_OPERAND_SUCCESS;
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5694 /* Never reached. */
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5709 if (exp.X_op != O_constant)
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5721 return PARSE_OPERAND_SUCCESS;
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5727 Preindexed addressing (.preind=1):
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5734 These three may have a trailing ! which causes .writeback to be set also.
5736 Postindexed addressing (.postind=1, .writeback=1):
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5743 Unindexed addressing (.preind=0, .postind=0):
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5763 if (skip_past_char (&p, '[') == FAIL)
5765 if (skip_past_char (&p, '=') == FAIL)
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5781 return PARSE_OPERAND_SUCCESS;
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5787 if (group_type == GROUP_MVE)
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5793 inst.operands[i].isquad = 1;
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5812 if (skip_past_comma (&p) == SUCCESS)
5814 inst.operands[i].preind = 1;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5827 if (skip_past_comma (&p) == SUCCESS)
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5835 return PARSE_OPERAND_FAIL;
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5854 if (result != PARSE_OPERAND_SUCCESS)
5859 if (inst.operands[i].negative)
5861 inst.operands[i].negative = 0;
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5868 struct group_reloc_table_entry *entry;
5870 /* Skip over the #: or : sequence. */
5876 /* Try to parse a group relocation. Anything else is an
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5890 /* Record the relocation type. */
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5912 if (inst.relocs[0].type == 0)
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5928 skip_whitespace (q);
5932 skip_whitespace (q);
5935 inst.operands[i].negative = 1;
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5946 if (result != PARSE_OPERAND_SUCCESS)
5950 if (skip_past_char (&p, ']') == FAIL)
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5959 else if (skip_past_comma (&p) == SUCCESS)
5961 if (skip_past_char (&p, '{') == SUCCESS)
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5968 if (skip_past_char (&p, '}') == FAIL)
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5973 if (inst.operands[i].preind)
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5979 return PARSE_OPERAND_SUCCESS;
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5986 if (inst.operands[i].preind)
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6021 if (inst.operands[i].negative)
6023 inst.operands[i].negative = 0;
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6032 skip_whitespace (q);
6036 skip_whitespace (q);
6039 inst.operands[i].negative = 1;
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6054 return PARSE_OPERAND_SUCCESS;
6058 parse_address (char **str, int i)
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6067 return parse_address_main (str, i, 1, type);
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6072 parse_half (char **str)
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6086 skip_whitespace (p);
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6094 if (inst.relocs[0].exp.X_op != O_constant)
6096 inst.error = _("constant expression expected");
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6102 inst.error = _("immediate value out of range");
6110 /* Miscellaneous. */
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6115 parse_psr (char **str, bfd_boolean lhs)
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6136 goto unsupported_psr;
6138 psr_field = SPSR_BIT;
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6143 goto unsupported_psr;
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6159 while (ISALNUM (*p) || *p == '_');
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6177 psr_field = psr->field;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6187 return psr->field | (lhs ? PSR_f : 0);
6190 goto unsupported_psr;
6196 /* A suffix follows. */
6202 while (ISALNUM (*p) || *p == '_');
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6211 for (bit = start; bit != p; bit++)
6213 switch (TOLOWER (*bit))
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6240 inst.error = _("unexpected bit specified after APSR");
6245 if (nzcvq_bits == 0x1f)
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6264 inst.error = _("bad bitmask specified after APSR");
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6275 psr_field |= psr->field;
6281 goto error; /* Garbage after "[CS]PSR". */
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6305 inst.error = _("flag for {c}psr instruction expected");
6310 parse_sys_vldr_vstr (char **str)
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6346 parse_cps_flags (char **str)
6355 case '\0': case ',':
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6363 inst.error = _("unrecognized CPS flag");
6368 if (saw_a_flag == 0)
6370 inst.error = _("missing CPS flags");
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6382 parse_endian_specifier (char **str)
6387 if (strncasecmp (s, "BE", 2))
6389 else if (strncasecmp (s, "LE", 2))
6393 inst.error = _("valid endian specifiers are be or le");
6397 if (ISALNUM (s[2]) || s[2] == '_')
6399 inst.error = _("valid endian specifiers are be or le");
6404 return little_endian;
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6412 parse_ror (char **str)
6417 if (strncasecmp (s, "ROR", 3) == 0)
6421 inst.error = _("missing rotation field after comma");
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6444 parse_cond (char **str)
6447 const struct asm_cond *c;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6455 while (ISALPHA (*q) && n < 3)
6457 cond[n] = TOLOWER (*q);
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6465 inst.error = _("condition required");
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6476 parse_barrier (char **str)
6479 const struct asm_barrier_opt *o;
6482 while (ISALPHA (*q))
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6490 if (!mark_feature_used (&o->arch))
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6500 parse_tb (char **str)
6505 if (skip_past_char (&p, '[') == FAIL)
6507 inst.error = _("'[' expected");
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6516 inst.operands[0].reg = reg;
6518 if (skip_past_comma (&p) == FAIL)
6520 inst.error = _("',' expected");
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6529 inst.operands[0].imm = reg;
6531 if (skip_past_comma (&p) == SUCCESS)
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6535 if (inst.relocs[0].exp.X_add_number != 1)
6537 inst.error = _("invalid shift");
6540 inst.operands[0].shifted = 1;
6543 if (skip_past_char (&p, ']') == FAIL)
6545 inst.error = _("']' expected");
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6560 parse_neon_mov (char **str, int *which_operand)
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6565 struct neon_type_el optype;
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6576 if (skip_past_comma (&ptr) == FAIL)
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6595 if (skip_past_comma (&ptr) == FAIL)
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6605 if (skip_past_comma (&ptr) == FAIL)
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6617 first_error (_("expected ARM or MVE vector register"));
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6629 if (skip_past_comma (&ptr) == FAIL)
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6664 if (rtype == REG_TYPE_NQ)
6666 first_error (_("can't use Neon quad register here"));
6669 else if (rtype != REG_TYPE_VFS)
6672 if (skip_past_comma (&ptr) == FAIL)
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6697 if (skip_past_comma (&ptr) == SUCCESS)
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6709 if (skip_past_comma (&ptr) == FAIL)
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6744 if (skip_past_comma (&ptr) == FAIL)
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6769 if (skip_past_comma (&ptr) == FAIL)
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6784 if (rtype == REG_TYPE_VFS)
6788 if (skip_past_comma (&ptr) == FAIL)
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6816 if (skip_past_comma (&ptr) == FAIL)
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6833 first_error (_("VFP single, double or MVE vector register"
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6853 first_error (_("parse error"));
6857 /* Successfully parsed the operands. Update args. */
6863 first_error (_("expected comma"));
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6879 OP_stop, /* end of line */
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR, /* MVE vector or ARM register. */
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6934 OP_REGLST, /* ARM register list */
6935 OP_CLRMLST, /* CLRM register list */
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6969 OP_VLDR, /* VLDR operand. */
6971 OP_I0, /* immediate zero */
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
6975 OP_I16z, /* 0 .. 16 */
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
6981 OP_I63s, /* -64 .. 63 */
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
6984 OP_I255, /* 0 .. 255 */
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6991 OP_SH, /* shifter operand */
6992 OP_SHG, /* shifter operand with possible group relocation */
6993 OP_ADDR, /* Memory address expression (any mode) */
6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7010 OP_COND, /* conditional code */
7011 OP_TB, /* Table branch. */
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7015 OP_RRnpc_I0, /* ARM register or literal 0 */
7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
7025 OP_oI32b, /* 1 .. 32 */
7026 OP_oI32z, /* 0 .. 32 */
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7030 OP_oRR, /* ARM register */
7031 OP_oLR, /* ARM LR register */
7032 OP_oRRnpc, /* ARM register, not the PC */
7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7055 OP_FIRST_OPTIONAL = OP_oI7b
7058 /* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7063 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7065 unsigned const int *upat = pattern;
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
7068 int i, val = 0, backtrack_index = 0;
7069 enum arm_reg_type rtype;
7070 parse_operand_result result;
7071 unsigned int op_parse_code;
7072 bfd_boolean partial_match;
7074 #define po_char_or_fail(chr) \
7077 if (skip_past_char (&str, chr) == FAIL) \
7082 #define po_reg_or_fail(regtype) \
7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7086 & inst.operands[i].vectype); \
7089 first_error (_(reg_expected_msgs[regtype])); \
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7103 #define po_reg_or_goto(regtype, label) \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7116 || rtype == REG_TYPE_VFD \
7117 || rtype == REG_TYPE_NQ); \
7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7122 #define po_imm_or_fail(min, max, popt) \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7127 inst.operands[i].imm = val; \
7131 #define po_scalar_or_goto(elsz, label, reg_type) \
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7143 #define po_misc_or_fail(expr) \
7151 #define po_misc_or_fail_no_backtrack(expr) \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7162 #define po_barrier_or_imm(str) \
7165 val = parse_barrier (&str); \
7166 if (val == FAIL && ! ISALPHA (*str)) \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7180 skip_whitespace (str);
7182 for (i = 0; upat[i] != OP_stop; i++)
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
7191 /* Remember where we are in case we need to backtrack. */
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7197 if (i > 0 && (i > 1 || inst.operands[0].present))
7198 po_char_or_fail (',');
7200 switch (op_parse_code)
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7231 /* Also accept generic coprocessor regs for unknown registers. */
7233 po_reg_or_fail (REG_TYPE_CN);
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7290 po_reg_or_fail (REG_TYPE_MQ);
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7301 po_imm_or_fail (0, 0, TRUE);
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7323 = _("only floating point zero is allowed as immediate value");
7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7334 po_reg_or_fail (REG_TYPE_RN);
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7352 po_reg_or_fail (REG_TYPE_NSDQ);
7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7365 po_reg_or_fail (REG_TYPE_NSD);
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7385 po_reg_or_fail (REG_TYPE_NDQ);
7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7394 po_reg_or_fail (REG_TYPE_VFD);
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7418 inst.error = _("immediate value is out of range");
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7429 po_imm_or_fail (0, 63, TRUE);
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7471 /* Immediate variants */
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7483 while (*s && *s != ',')
7488 inst.operands[i].writeback = 1;
7490 po_imm_or_fail (0, 31, TRUE);
7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7510 if (inst.relocs[0].exp.X_op == O_symbol)
7512 val = parse_reloc (&str);
7515 inst.error = _("unrecognized relocation suffix");
7518 else if (val != BFD_RELOC_UNUSED)
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7531 inst.operands[i].hasreloc = 1;
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7540 /* Operand for MOVW or MOVT. */
7542 po_misc_or_fail (parse_half (&str));
7545 /* Register or expression. */
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7549 /* Register or immediate. */
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7555 if (!is_immediate_prefix (*str))
7558 val = parse_fpa_immediate (&str);
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7570 /* Two kinds of register. */
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7579 inst.error = _("iWMMXt data or control register expected");
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7594 inst.error = _("iWMMXt control register expected");
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
7607 case OP_COND: val = parse_cond (&str); break;
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7620 inst.error = _("Banked registers are not available with this "
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7633 val = parse_sys_vldr_vstr (&str);
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7657 inst.operands[i].isvec = 1;
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
7666 po_misc_or_fail (parse_tb (&str));
7669 /* Register lists. */
7671 val = parse_reg_list (&str, REGLIST_RN);
7674 inst.operands[i].writeback = 1;
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7696 REGLIST_NEON_D, &partial_match);
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
7714 inst.operands[i].issingle = 1;
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7720 REGLIST_NEON_D, &partial_match);
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7732 0, &inst.operands[i].vectype);
7735 /* Addressing modes */
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7741 po_misc_or_fail (parse_address (&str, i));
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str, i, GROUP_LDR));
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
7755 po_misc_or_fail_no_backtrack (
7756 parse_address_group_reloc (&str, i, GROUP_LDC));
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7764 po_misc_or_fail_no_backtrack (
7765 parse_shifter_operand_group_reloc (&str, i));
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7788 po_reg_or_fail (REG_TYPE_ZR);
7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
7798 switch (op_parse_code)
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7812 if (inst.operands[i].isreg)
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7822 inst.error = BAD_SP;
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7836 if (inst.operands[i].isreg)
7846 case OP_oBARRIER_I15:
7859 inst.operands[i].imm = val;
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7881 if (inst.operands[i].isreg)
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7901 inst.error = BAD_ARGS;
7906 /* The parse routine should already have set inst.error, but set a
7907 default here just in case. */
7909 inst.error = BAD_SYNTAX;
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
7921 inst.error = BAD_SYNTAX;
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
7937 return inst.error ? FAIL : SUCCESS;
7940 #undef po_char_or_fail
7941 #undef po_reg_or_fail
7942 #undef po_reg_or_goto
7943 #undef po_imm_or_fail
7944 #undef po_scalar_or_fail
7945 #undef po_barrier_or_imm
7947 /* Shorthand macro for instruction encoding functions issuing errors. */
7948 #define constraint(expr, err) \
7959 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965 #define reject_bad_reg(reg) \
7967 if (reg == REG_PC) \
7969 inst.error = BAD_PC; \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7975 inst.error = BAD_SP; \
7980 /* If REG is R13 (the stack pointer), warn that its use is
7982 #define warn_deprecated_sp(reg) \
7984 if (warn_on_deprecated && reg == REG_SP) \
7985 as_tsktsk (_("use of r13 is deprecated")); \
7988 /* Functions for operand encoding. ARM, then Thumb. */
7990 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7992 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
7996 instruction is the same as the equivalent Coprocessor 10 instruction that
7997 exists for Single-Precision operation. */
8000 do_scalar_fp16_v82_encode (void)
8002 if (inst.cond < COND_ALWAYS)
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8012 /* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8016 encode_arm_immediate (unsigned int val)
8023 for (i = 2; i < 32; i += 2)
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8030 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8033 encode_thumb32_immediate (unsigned int val)
8040 for (i = 1; i <= 24; i++)
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8048 if (val == ((a << 16) | a))
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
8059 /* Encode a VFP SP or DP register number into inst.instruction. */
8062 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8078 first_error (_("D register out of range for selected VFP version"));
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8114 /* Encode a <shift> in an ARM-format instruction. The immediate,
8115 if any, is handled by md_apply_fix. */
8117 encode_arm_shift (int i)
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8123 for (op_index = 0; op_index <= i; ++op_index)
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
8130 as_warn (UNPRED_REG ("r15"));
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8153 encode_arm_shifter_operand (int i)
8155 if (inst.operands[i].isreg)
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
8162 inst.instruction |= INST_IMMEDIATE;
8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8164 inst.instruction |= inst.operands[i].imm;
8168 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8170 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8177 inst.instruction |= inst.operands[i].reg << 16;
8179 if (inst.operands[i].preind)
8183 inst.error = _("instruction does not accept preindexed addressing");
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
8191 else if (inst.operands[i].postind)
8193 gas_assert (inst.operands[i].writeback);
8195 inst.instruction |= WRITE_BACK;
8197 else /* unindexed - only for coprocessor */
8199 inst.error = _("instruction does not accept unindexed addressing");
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
8211 /* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8216 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8220 encode_arm_addr_mode_common (i, is_t);
8222 if (inst.operands[i].immisreg)
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8242 else /* immediate offset in inst.relocs[0] */
8244 if (is_pc && !inst.relocs[0].pc_rel)
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
8254 /* Use of PC in str is deprecated for ARMv7. */
8255 if (warn_on_deprecated
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8271 /* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8277 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8281 inst.error = _("instruction does not accept scaled register index");
8285 encode_arm_addr_mode_common (i, is_t);
8287 if (inst.operands[i].immisreg)
8289 constraint ((inst.operands[i].imm == REG_PC
8290 || (is_t && inst.operands[i].reg == REG_PC)),
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8298 else /* immediate offset in inst.relocs[0] */
8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8301 && inst.operands[i].writeback),
8303 inst.instruction |= HWOFFSET_IMM;
8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8315 /* Write immediate bits [7:0] to the following locations:
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8323 neon_write_immbits (unsigned immbits)
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8330 /* Invert low-order SIZE bits of XHI:XLO. */
8333 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8341 immlo = (~immlo) & 0xff;
8345 immlo = (~immlo) & 0xffff;
8349 immhi = (~immhi) & 0xffffffff;
8353 immlo = (~immlo) & 0xffffffff;
8367 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8371 neon_bits_same_in_bytes (unsigned imm)
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8379 /* For immediate of above form, return 0bABCD. */
8382 neon_squash_bits (unsigned imm)
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8388 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8391 neon_qfloat_bits (unsigned imm)
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8396 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8404 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8410 if (type == NT_float && !float_p)
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8415 if (size != 32 || *op == 1)
8417 *immbits = neon_qfloat_bits (immlo);
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8440 if (immlo == (immlo & 0x000000ff))
8445 else if (immlo == (immlo & 0x0000ff00))
8447 *immbits = immlo >> 8;
8450 else if (immlo == (immlo & 0x00ff0000))
8452 *immbits = immlo >> 16;
8455 else if (immlo == (immlo & 0xff000000))
8457 *immbits = immlo >> 24;
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8462 *immbits = (immlo >> 8) & 0xff;
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8467 *immbits = (immlo >> 16) & 0xff;
8471 if ((immlo & 0xffff) != (immlo >> 16))
8478 if (immlo == (immlo & 0x000000ff))
8483 else if (immlo == (immlo & 0x0000ff00))
8485 *immbits = immlo >> 8;
8489 if ((immlo & 0xff) != (immlo >> 8))
8494 if (immlo == (immlo & 0x000000ff))
8496 /* Don't allow MVN with 8-bit immediate. */
8506 #if defined BFD_HOST_64_BIT
8507 /* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8511 is_double_a_single (bfd_int64_t v)
8513 int exp = (int)((v >> 52) & 0x7FF);
8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8521 /* Returns a double precision value casted to single precision
8522 (ignoring the least significant bits in exponent and mantissa). */
8525 double_to_single (bfd_int64_t v)
8527 int sign = (int) ((v >> 63) & 1l);
8528 int exp = (int) ((v >> 52) & 0x7FF);
8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8535 exp = exp - 1023 + 127;
8544 /* No denormalized numbers. */
8550 return (sign << 31) | (exp << 23) | mantissa;
8552 #endif /* BFD_HOST_64_BIT */
8561 static void do_vfp_nsyn_opcode (const char *);
8563 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
8570 inst.operands[i] describes the destination register. */
8573 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8584 if ((inst.instruction & tbit) == 0)
8586 inst.error = _("invalid pseudo operation");
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
8594 inst.error = _("constant expression expected");
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8601 #if defined BFD_HOST_64_BIT
8606 if (inst.relocs[0].exp.X_op == O_big)
8608 LITTLENUM_TYPE w[X_PRECISION];
8611 if (inst.relocs[0].exp.X_add_number == -1)
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8615 /* FIXME: Should we check words w[2..5] ? */
8620 #if defined BFD_HOST_64_BIT
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
8635 v = inst.relocs[0].exp.X_add_number;
8637 if (!inst.operands[i].issingle)
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8659 newimm = encode_thumb32_immediate (~v);
8660 if (newimm != (unsigned int) FAIL)
8664 /* The number can be loaded with a mov.w or mvn
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8669 inst.instruction = (0xf04f0000 /* MOV.W. */
8670 | (inst.operands[i].reg << 8));
8671 /* Change to MOVN. */
8672 inst.instruction |= (isNegated ? 0x200000 : 0);
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8678 /* The number can be loaded with a movw instruction. */
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8682 int imm = v & 0xFFFF;
8684 inst.instruction = 0xf2400000; /* MOVW. */
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8696 int value = encode_arm_immediate (v);
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8707 value = encode_arm_immediate (~ v);
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
8724 : inst.relocs[0].exp.X_unsigned
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8732 neon_invert_size (&immlo, &immhi, 64);
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8751 neon_write_immbits (immbits);
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775 #if defined BFD_HOST_64_BIT
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8808 /* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8817 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8819 if (!inst.operands[i].isreg)
8822 if (! inst.operands[0].isvec)
8824 inst.error = _("invalid co-processor operand");
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8831 inst.instruction |= inst.operands[i].reg << 16;
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8837 gas_assert (!inst.operands[i].writeback);
8840 inst.error = _("instruction does not support unindexed addressing");
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8851 if (inst.operands[i].writeback)
8853 if (inst.operands[i].reg == REG_PC)
8855 inst.error = _("pc may not be used with write-back");
8860 inst.error = _("instruction does not support writeback");
8863 inst.instruction |= WRITE_BACK;
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8885 /* Functions for instruction encoding, sorted by sub-architecture.
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
8897 inst.instruction |= inst.operands[0].reg << 12;
8903 inst.instruction |= inst.operands[0].reg << 16;
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8942 check_obsolete (const arm_feature_set *feature, const char *msg)
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8946 as_tsktsk ("%s", msg);
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8961 unsigned Rn = inst.operands[2].reg;
8962 /* Enforce restrictions on SWP instruction. */
8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
8979 inst.instruction |= Rn << 16;
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9006 inst.instruction |= inst.operands[0].imm;
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
9016 /* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9020 /* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
9034 if (support_interwork
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
9042 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
9056 inst.size = INSN_SIZE * 2;
9057 inst.relocs[0].exp.X_add_number -= 8;
9059 if (support_interwork
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9083 if (inst.operands[0].present)
9084 inst.instruction |= inst.operands[0].imm;
9086 inst.instruction |= 0xf;
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9132 /* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9149 encode_branch (int default_reloc)
9151 if (inst.operands[0].hasreloc)
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9192 /* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9203 if (inst.operands[0].isreg)
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9210 inst.instruction |= inst.operands[0].reg;
9214 /* Arg is an address; this instruction cannot be executed
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9219 inst.instruction = 0xfa000000;
9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9227 bfd_boolean want_reloc;
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9232 inst.instruction |= inst.operands[0].reg;
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9250 /* ARM v5TEJ. Jump to Jazelle code. */
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9258 inst.instruction |= inst.operands[0].reg;
9261 /* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
9282 /* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9288 No special properties. */
9290 struct deprecated_coproc_regs_s
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9303 #define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9306 /* Table of all deprecated coprocessor registers. */
9307 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9323 DEPR_ACCESS_V8, NULL},
9326 #undef DEPR_ACCESS_V8
9328 static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9337 Rd = inst.operands[2].reg;
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9343 reject_bad_reg (Rd);
9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9346 constraint (Rd == REG_SP, BAD_SP);
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9366 if (! ARM_CPU_IS_ANY (cpu_variant)
9367 && warn_on_deprecated
9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9369 as_tsktsk ("%s", r->dep_msg);
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
9375 inst.instruction |= Rd << 12;
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9381 /* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9387 Two XScale instructions are special cases of these:
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9392 Result unpredictable if Rd or Rn is R15. */
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
9425 inst.instruction |= inst.operands[4].reg;
9431 inst.instruction |= inst.operands[0].imm << 6;
9432 if (inst.operands[1].present)
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9442 inst.instruction |= inst.operands[0].imm;
9448 unsigned Rd, Rn, Rm;
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9467 /* There is no IT instruction in ARM mode. We
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
9481 /* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9484 only_one_reg_in_list (int range)
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9491 encode_ldmstm(int from_push_pop_mnem)
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
9503 if (inst.operands[0].writeback)
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9552 /* ARMv5TE load-consecutive (argument parse)
9561 constraint (inst.operands[0].reg % 2 != 0,
9562 _("first transfer register must be even"));
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
9565 _("can only transfer two consecutive registers"));
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
9581 if (!(inst.instruction & V4_STR_BIT))
9583 /* For an index-register load, the index register must not overlap the
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9603 or if they have mistakenly used a register name as the last
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
9617 _("offset must be zero in ARM encoding"));
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
9642 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9645 check_ldr_r15_aligned (void)
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
9651 _("ldr to register 15 must be 4-byte aligned"));
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9662 check_ldr_r15_aligned ();
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9670 if (inst.operands[1].preind)
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
9674 _("this instruction requires a post-indexed address"));
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9684 /* Halfword and signed-byte load/store operations. */
9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9702 if (inst.operands[1].preind)
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
9706 _("this instruction requires a post-indexed address"));
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9716 /* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9730 if (inst.operands[0].reg == inst.operands[1].reg
9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9732 && !(inst.instruction & 0x00400000))
9733 as_tsktsk (_("Rd and Rm should be different in mla"));
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9751 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9758 top = (inst.instruction & 0x00400000) != 0;
9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9760 _(":lower16: not allowed in this instruction"));
9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9762 _(":upper16: not allowed in this instruction"));
9763 inst.instruction |= inst.operands[0].reg << 12;
9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9766 imm = inst.relocs[0].exp.X_add_number;
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9774 do_vfp_nsyn_mrs (void)
9776 if (inst.operands[0].isvec)
9778 if (inst.operands[1].reg != 1)
9779 first_error (_("operand 1 must be FPSCR"));
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9793 do_vfp_nsyn_msr (void)
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9806 unsigned Rt = inst.operands[0].reg;
9808 if (thumb_mode && Rt == REG_SP)
9810 inst.error = BAD_SP;
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
9820 if (!inst.operands[0].isvec && Rt == REG_PC)
9822 inst.error = BAD_PC;
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
9829 inst.instruction |= (Rt << 12);
9835 unsigned Rt = inst.operands[1].reg;
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9841 inst.error = BAD_PC;
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
9853 inst.instruction |= (Rt << 12);
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9865 inst.instruction |= inst.operands[0].reg << 12;
9867 if (inst.operands[1].isreg)
9869 br = inst.operands[1].reg;
9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9871 as_bad (_("bad register for mrs"));
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9882 inst.instruction |= br;
9885 /* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9900 inst.instruction |= INST_IMMEDIATE;
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
9922 /* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
9942 || inst.operands[1].reg == inst.operands[2].reg)
9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
9961 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9976 /* ARM V6 PKHTB (Argument Parse). */
9981 if (!inst.operands[3].present)
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
9999 /* ARMv5TE: Preload-Cache
10000 MP Extensions: Preload for write
10004 Syntactically, like LDR with B=1, W=0, L=1. */
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10020 /* ARMv7: PLI <addr_mode> */
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10049 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10052 Unconditionally executed.
10053 Error if Rn is R15. */
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10063 /* ARM V6 ssat (argument parse). */
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
10076 /* ARM V6 usat (argument parse). */
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
10089 /* ARM V6 ssat16 (argument parse). */
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10107 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
10110 setend <endian_specifier>, where <endian_specifier> is either
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10181 inst.instruction |= (inst.operands[0].imm << 3);
10184 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10198 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10215 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10227 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
10235 if (inst.operands[0].present)
10237 reg = inst.operands[0].reg;
10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
10246 inst.instruction |= WRITE_BACK;
10249 /* ARM V6 strex (argument parse). */
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
10267 _("offset must be zero in ARM encoding"));
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
10276 do_t_strexbh (void)
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10331 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
10362 /* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
10366 do_vfp_sp_monadic (void)
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10377 do_vfp_sp_dyadic (void)
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10385 do_vfp_sp_compare_z (void)
10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10391 do_vfp_dp_sp_cvt (void)
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10398 do_vfp_sp_dp_cvt (void)
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10405 do_vfp_reg_from_sp (void)
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10411 inst.instruction |= inst.operands[0].reg << 12;
10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10416 do_vfp_reg2_from_sp2 (void)
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10426 do_vfp_sp_from_reg (void)
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10433 inst.instruction |= inst.operands[1].reg << 12;
10437 do_vfp_sp2_from_reg2 (void)
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
10447 do_vfp_sp_ldst (void)
10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
10454 do_vfp_dp_ldst (void)
10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
10462 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10471 inst.instruction |= inst.operands[1].imm;
10475 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
10485 inst.instruction |= inst.operands[0].reg << 16;
10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10492 inst.instruction |= count;
10496 do_vfp_sp_ldstmia (void)
10498 vfp_sp_ldstm (VFP_LDSTMIA);
10502 do_vfp_sp_ldstmdb (void)
10504 vfp_sp_ldstm (VFP_LDSTMDB);
10508 do_vfp_dp_ldstmia (void)
10510 vfp_dp_ldstm (VFP_LDSTMIA);
10514 do_vfp_dp_ldstmdb (void)
10516 vfp_dp_ldstm (VFP_LDSTMDB);
10520 do_vfp_xp_ldstmia (void)
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10526 do_vfp_xp_ldstmdb (void)
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
10532 do_vfp_dp_rd_rm (void)
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10543 do_vfp_dp_rn_rd (void)
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10550 do_vfp_dp_rd_rn (void)
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10557 do_vfp_dp_rd_rn_rm (void)
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10569 do_vfp_dp_rd (void)
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10575 do_vfp_dp_rm_rd_rn (void)
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10586 /* VFPv3 instructions. */
10588 do_vfp_sp_const (void)
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
10596 do_vfp_dp_const (void)
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
10604 vfp_conv (int srcsize)
10606 int immbits = srcsize - inst.operands[1].imm;
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10611 i.e. immbits must be in range 0 - 16. */
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10618 i.e. immbits must be in range 0 - 31. */
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10628 do_vfp_sp_conv_16 (void)
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10635 do_vfp_dp_conv_16 (void)
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10642 do_vfp_sp_conv_32 (void)
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10649 do_vfp_dp_conv_32 (void)
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10655 /* FPA instructions. Also in a logical order. */
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10665 do_fpa_ldmstm (void)
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
10685 _("this instruction does not support indexing"));
10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10690 if (!(inst.instruction & INDEX_UP))
10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
10703 /* iWMMXt instructions: strictly in alphabetical order. */
10706 do_iwmmxt_tandorc (void)
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10712 do_iwmmxt_textrc (void)
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10719 do_iwmmxt_textrm (void)
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10727 do_iwmmxt_tinsr (void)
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10735 do_iwmmxt_tmia (void)
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10743 do_iwmmxt_waligni (void)
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10752 do_iwmmxt_wmerge (void)
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10761 do_iwmmxt_wmov (void)
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10770 do_iwmmxt_wldstbh (void)
10773 inst.instruction |= inst.operands[0].reg << 12;
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10782 do_iwmmxt_wldstw (void)
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10796 do_iwmmxt_wldstd (void)
10798 inst.instruction |= inst.operands[0].reg << 12;
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10802 inst.instruction &= ~0x1a000ff;
10803 inst.instruction |= (0xfU << 28);
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10812 inst.instruction |= inst.operands[1].imm;
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
10819 do_iwmmxt_wshufh (void)
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10828 do_iwmmxt_wzero (void)
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10837 do_iwmmxt_wrwrwr_or_imm5 (void)
10839 if (inst.operands[2].isreg)
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10845 if (inst.operands[2].imm == 0)
10847 switch ((inst.instruction >> 20) & 0xf)
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10886 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
10889 /* Insns like "foo X,Y,Z". */
10892 do_mav_triple (void)
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10899 /* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
10911 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10913 do_mav_dspsc (void)
10915 inst.instruction |= inst.operands[1].reg << 12;
10918 /* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10923 do_mav_shift (void)
10925 int imm = inst.operands[2].imm;
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10935 inst.instruction |= imm;
10938 /* XScale instructions. Also sorted arithmetic before move. */
10940 /* Xscale multiply-accumulate (argument parse)
10943 MIAxycc acc0,Rm,Rs. */
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10952 /* Xscale move-accumulator-register (argument parse)
10954 MARcc acc0,RdLo,RdHi. */
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
10963 /* Xscale move-register-accumulator (argument parse)
10965 MRAcc RdLo,RdHi,acc0. */
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10975 /* Encoding functions relevant only to Thumb. */
10977 /* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10981 encode_thumb32_shifted_operand (int i)
10983 unsigned int value = inst.relocs[0].exp.X_add_number;
10984 unsigned int shift = inst.operands[i].shift_kind;
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10993 constraint (inst.relocs[0].exp.X_op != O_constant,
10994 _("expression too complex"));
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11003 else if (value == 32)
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
11013 /* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
11021 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11025 constraint (!inst.operands[i].isreg,
11026 _("Instruction does not support =N addresses"));
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
11031 constraint (is_pc, BAD_PC_ADDRESSING);
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
11042 inst.instruction |= inst.operands[i].imm;
11043 if (inst.operands[i].shifted)
11045 constraint (inst.relocs[0].exp.X_op != O_constant,
11046 _("expression too complex"));
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
11049 _("shift out of range"));
11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
11054 else if (inst.operands[i].preind)
11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11057 constraint (is_t && inst.operands[i].writeback,
11058 _("cannot use writeback with this instruction"));
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11076 else if (inst.operands[i].postind)
11078 gas_assert (inst.operands[i].writeback);
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11083 inst.instruction |= 0x00200000;
11085 inst.instruction |= 0x00000900;
11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11092 /* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
11097 Also contains several pseudo-instructions used during relaxation. */
11098 #define T16_32_TAB \
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
11114 X(_bf, 0000, f040e001), \
11115 X(_bfcsel,0000, f000e001), \
11116 X(_bfx, 0000, f060e001), \
11117 X(_bfl, 0000, f000c001), \
11118 X(_bflx, 0000, f070e001), \
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
11127 X(_dls, 0000, f040e001), \
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
11140 X(_le, 0000, f00fc001), \
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
11182 X(_wls, 0000, f040c001), \
11183 X(_sev, bf40, f3af8004), \
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
11187 /* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
11190 #define X(a,b,c) T_MNEM##a
11191 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11194 #define X(a,b,c) 0x##b
11195 static const unsigned short thumb_op16[] = { T16_32_TAB };
11196 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11199 #define X(a,b,c) 0x##c
11200 static const unsigned int thumb_op32[] = { T16_32_TAB };
11201 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11206 /* Thumb instruction encoders, in alphabetical order. */
11208 /* ADDW or SUBW. */
11211 do_t_add_sub_w (void)
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11221 constraint (Rd == REG_PC, BAD_PC);
11223 reject_bad_reg (Rd);
11225 inst.instruction |= (Rn << 16) | (Rd << 8);
11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11229 /* Parse an add or subtract instruction. We get here with inst.instruction
11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11233 do_t_add_sub (void)
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11243 set_pred_insn_type_last ();
11245 if (unified_syntax)
11248 bfd_boolean narrow;
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11254 narrow = !in_pred_block ();
11256 narrow = in_pred_block ();
11257 if (!inst.operands[2].isreg)
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
11267 if (inst.size_req != 4)
11269 /* Attempt to use a narrow opcode, with relaxation if
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11292 if (inst.size_req == 2)
11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11295 inst.relax = opcode;
11299 constraint (inst.size_req == 2, BAD_HIREG);
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11308 THUMB1_RELOC_ONLY);
11311 constraint (add, BAD_PC);
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
11314 constraint (inst.relocs[0].exp.X_op != O_constant,
11315 _("expression too complex"));
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
11324 else if (Rs == REG_PC)
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
11346 unsigned int value = inst.relocs[0].exp.X_add_number;
11347 unsigned int shift = inst.operands[2].shift_kind;
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11388 constraint (Rd == REG_PC, BAD_PC);
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
11404 encode_thumb32_shifted_operand (2);
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11438 inst.instruction |= Rn << 3;
11440 inst.instruction |= Rs << 3;
11442 constraint (1, _("dest must overlap one source register"));
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
11466 inst.instruction |= Rd << 4;
11468 else if (unified_syntax && inst.size_req != 2)
11470 /* Generate a 32-bit opcode. */
11471 inst.instruction = THUMB_OP32 (inst.instruction);
11472 inst.instruction |= Rd << 8;
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
11478 /* Generate a 16-bit opcode. */
11479 inst.instruction = THUMB_OP16 (inst.instruction);
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
11483 inst.instruction |= Rd << 4;
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
11493 /* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11515 if (unified_syntax)
11517 if (!inst.operands[2].isreg)
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11529 bfd_boolean narrow;
11531 /* See if we can do this with a 16-bit instruction. */
11532 if (THUMB_SETS_FLAGS (inst.instruction))
11533 narrow = !in_pred_block ();
11535 narrow = in_pred_block ();
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11539 if (inst.operands[2].shifted)
11541 if (inst.size_req == 4)
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
11582 /* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
11603 if (unified_syntax)
11605 if (!inst.operands[2].isreg)
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11617 bfd_boolean narrow;
11619 /* See if we can do this with a 16-bit instruction. */
11620 if (THUMB_SETS_FLAGS (inst.instruction))
11621 narrow = !in_pred_block ();
11623 narrow = in_pred_block ();
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11627 if (inst.operands[2].shifted)
11629 if (inst.size_req == 4)
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11675 inst.instruction |= Rn << 3;
11677 inst.instruction |= Rs << 3;
11679 constraint (1, _("dest must overlap one source register"));
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11749 /* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
11762 set_pred_insn_type_last ();
11764 if (inst.operands[0].isreg)
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11772 /* No register. This must be BLX(1). */
11773 inst.instruction = 0xf000e800;
11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11783 bfd_reloc_code_real_type reloc;
11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11788 if (in_pred_block ())
11790 /* Conditional branches inside IT blocks are encoded as unconditional
11792 cond = COND_ALWAYS;
11797 if (cond != COND_ALWAYS)
11798 opcode = T_MNEM_bcond;
11800 opcode = inst.instruction;
11803 && (inst.size_req == 4
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
11806 || inst.relocs[0].exp.X_op == O_constant))))
11808 inst.instruction = THUMB_OP32(opcode);
11809 if (cond == COND_ALWAYS)
11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11817 gas_assert (cond != 0xF);
11818 inst.instruction |= cond << 22;
11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11824 inst.instruction = THUMB_OP16(opcode);
11825 if (cond == COND_ALWAYS)
11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11829 inst.instruction |= cond << 8;
11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
11840 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11841 between the two is the maximum immediate allowed - which is passed in
11844 do_t_bkpt_hlt1 (int range)
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
11848 if (inst.operands[0].present)
11850 constraint (inst.operands[0].imm > range,
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
11855 set_pred_insn_type (NEUTRAL_IT_INSN);
11861 do_t_bkpt_hlt1 (63);
11867 do_t_bkpt_hlt1 (255);
11871 do_t_branch23 (void)
11873 set_pred_insn_type_last ();
11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11884 #if defined(OBJ_COFF)
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11901 set_pred_insn_type_last ();
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11913 set_pred_insn_type_last ();
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
11946 inst.instruction |= inst.operands[0].imm;
11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
11977 /* THUMB CPY instruction (argument parse). */
11982 if (inst.size_req == 4)
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12009 inst.instruction |= inst.operands[0].imm;
12015 unsigned Rd, Rn, Rm;
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12043 unsigned int cond = inst.operands[0].imm;
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
12051 /* If the condition is a negative condition, invert the mask. */
12052 if ((cond & 0x1) == 0x0)
12054 unsigned int mask = inst.instruction & 0x000f;
12056 if ((mask & 0x7) == 0)
12058 /* No conversion needed. */
12059 now_pred.block_length = 1;
12061 else if ((mask & 0x3) == 0)
12064 now_pred.block_length = 2;
12066 else if ((mask & 0x1) == 0)
12069 now_pred.block_length = 3;
12074 now_pred.block_length = 4;
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
12081 inst.instruction |= cond << 4;
12084 /* Helper function used for both push/pop and ldm/stm. */
12086 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
12089 bfd_boolean load, store;
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
12098 if (do_io && (mask & (1 << base)) != 0
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12105 if (mask & (1 << 15))
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12110 set_pred_insn_type_last ();
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
12119 if (do_io && ((mask & (mask - 1)) == 0))
12121 /* Single register transfers implemented as str/ldr. */
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12137 inst.instruction |= 0xf8400000;
12139 inst.instruction |= 0x00100000;
12141 mask = ffs (mask) - 1;
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12147 inst.instruction |= mask;
12149 inst.instruction |= base << 16;
12155 /* This really doesn't seem worth it. */
12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
12161 if (unified_syntax)
12163 bfd_boolean narrow;
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
12170 && !(inst.operands[1].imm & ~0xff))
12172 mask = 1 << inst.operands[0].reg;
12174 if (inst.operands[0].reg <= 7)
12176 if (inst.instruction == T_MNEM_stmia
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12218 else if (inst.operands[0] .reg == REG_SP)
12220 if (inst.operands[0].writeback)
12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12224 ? T_MNEM_push : T_MNEM_pop);
12225 inst.instruction |= inst.operands[1].imm;
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
12256 if (inst.instruction == T_MNEM_stmia)
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12262 as_warn (_("value stored for r%d is UNKNOWN"),
12263 inst.operands[0].reg);
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12300 if (!inst.operands[1].present)
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
12318 unsigned long opcode;
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
12324 set_pred_insn_type_last ();
12326 opcode = inst.instruction;
12327 if (unified_syntax)
12329 if (!inst.operands[1].isreg)
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12347 inst.instruction = THUMB_OP16 (opcode);
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12364 if (inst.relocs[0].pc_rel)
12365 opcode = T_MNEM_ldr_pc2;
12367 opcode = T_MNEM_ldr_pc;
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12374 opcode = T_MNEM_str_sp;
12376 inst.instruction = inst.operands[0].reg << 8;
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12387 inst.relax = opcode;
12391 /* Definitely a 32-bit variant. */
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12408 /* Do some validations regarding addressing modes. */
12409 if (inst.operands[1].immisreg)
12410 reject_bad_reg (inst.operands[1].imm);
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12416 inst.instruction = THUMB_OP32 (opcode);
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12419 check_ldr_r15_aligned ();
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12461 inst.instruction = T_OPCODE_STR_SP;
12463 inst.instruction |= inst.operands[0].reg << 8;
12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
12484 switch (inst.instruction)
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12505 if (!inst.operands[1].present)
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
12510 constraint (inst.operands[0].reg == REG_R12,
12511 _("r12 not allowed here"));
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
12518 "one of transfer registers"));
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12535 unsigned Rd, Rn, Rm, Ra;
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
12556 unsigned RdLo, RdHi, Rn, Rm;
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
12575 do_t_mov_cmp (void)
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12583 set_pred_insn_type_last ();
12585 if (unified_syntax)
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12589 unsigned long opcode;
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12593 low_regs = (Rn <= 7 && Rm <= 7);
12594 opcode = inst.instruction;
12595 if (in_pred_block ())
12596 narrow = opcode != T_MNEM_movs;
12598 narrow = opcode != T_MNEM_movs || low_regs;
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
12609 inst.instruction = T2_SUBS_PC_LR;
12613 if (opcode == T_MNEM_cmp)
12615 constraint (Rn == REG_PC, BAD_PC);
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12627 reject_bad_reg (Rm);
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12632 if (inst.operands[1].isreg)
12634 if (opcode == T_MNEM_movs)
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12645 as_tsktsk (_("Use of r%u as a source register is "
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12660 reject_bad_reg (Rn);
12663 if (!inst.operands[1].isreg)
12665 /* Immediate operand. */
12666 if (!in_pred_block () && opcode == T_MNEM_mov)
12668 if (low_regs && narrow)
12670 inst.instruction = THUMB_OP16 (opcode);
12671 inst.instruction |= Rn << 8;
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12675 if (inst.size_req == 2)
12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12678 inst.relax = opcode;
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12687 THUMB1_RELOC_ONLY);
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12691 inst.instruction |= Rn << r0off;
12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12702 if (in_pred_block ())
12707 if (inst.size_req == 4)
12710 if (!low_regs || inst.operands[1].imm > 7)
12716 switch (inst.operands[1].shift_kind)
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12734 inst.instruction = opcode;
12737 inst.instruction |= Rn;
12738 inst.instruction |= inst.operands[1].imm << 3;
12743 inst.instruction |= CONDS_BIT;
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
12747 inst.instruction |= inst.operands[1].imm;
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12758 if (in_pred_block ())
12759 narrow = (inst.instruction == T_MNEM_mov);
12761 narrow = (inst.instruction == T_MNEM_movs);
12766 switch (inst.operands[1].shift_kind)
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12783 inst.instruction = THUMB_OP32 (inst.instruction);
12784 inst.instruction |= Rn << r0off;
12785 encode_thumb32_shifted_operand (1);
12789 switch (inst.instruction)
12792 /* In v4t or v5t a move of two lowregs produces unpredictable
12793 results. Don't allow this. */
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12803 inst.instruction = T_OPCODE_MOV_HR;
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
12810 /* We know we have low registers at this point.
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
12820 inst.instruction = T_OPCODE_CMP_LR;
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
12826 inst.instruction = T_OPCODE_CMP_HR;
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
12836 inst.instruction = THUMB_OP16 (inst.instruction);
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12842 if (inst.operands[1].isreg)
12844 if (Rn < 8 && Rm < 8)
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
12851 inst.instruction = T_OPCODE_CMP_LR;
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12861 inst.instruction = T_OPCODE_CMP_HR;
12867 constraint (Rn > 7,
12868 _("only lo regs allowed with immediate"));
12869 inst.instruction |= Rn << 8;
12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12881 top = (inst.instruction & 0x00800000) != 0;
12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12884 constraint (top, _(":lower16: not allowed in this instruction"));
12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12889 constraint (!top, _(":upper16: not allowed in this instruction"));
12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12896 inst.instruction |= Rd << 8;
12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12899 imm = inst.relocs[0].exp.X_add_number;
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12908 do_t_mvn_tst (void)
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12922 if (unified_syntax)
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12926 bfd_boolean narrow;
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
12931 || Rn > 7 || Rm > 7)
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
12937 narrow = !in_pred_block ();
12939 narrow = in_pred_block ();
12941 if (!inst.operands[1].isreg)
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12948 inst.instruction |= Rn << r0off;
12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12953 /* See if we can do this with a 16-bit instruction. */
12956 inst.instruction = THUMB_OP16 (inst.instruction);
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
12967 inst.instruction |= Rn << r0off;
12968 encode_thumb32_shifted_operand (1);
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
12978 constraint (Rn > 7 || Rm > 7,
12981 inst.instruction = THUMB_OP16 (inst.instruction);
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12999 if (inst.operands[1].isreg)
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13050 flags = inst.operands[0].imm;
13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13056 /* PR gas/12698: The constraint is only applied for m_profile.
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
13078 inst.instruction |= (flags & 0xff);
13079 inst.instruction |= Rn << 16;
13085 bfd_boolean narrow;
13086 unsigned Rd, Rn, Rm;
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13095 if (unified_syntax)
13097 if (inst.size_req == 4
13103 else if (inst.instruction == T_MNEM_muls)
13104 narrow = !in_pred_block ();
13106 narrow = in_pred_block ();
13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13111 constraint (Rn > 7 || Rm > 7,
13118 /* 16-bit MULS/Conditional MUL. */
13119 inst.instruction = THUMB_OP16 (inst.instruction);
13120 inst.instruction |= Rd;
13123 inst.instruction |= Rm << 3;
13125 inst.instruction |= Rn << 3;
13127 constraint (1, _("dest must overlap one source register"));
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
13134 inst.instruction = THUMB_OP32 (inst.instruction);
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
13148 unsigned RdLo, RdHi, Rn, Rm;
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13172 set_pred_insn_type (NEUTRAL_IT_INSN);
13174 if (unified_syntax)
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13191 inst.instruction = 0x46c0;
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13205 if (unified_syntax)
13207 bfd_boolean narrow;
13209 if (THUMB_SETS_FLAGS (inst.instruction))
13210 narrow = !in_pred_block ();
13212 narrow = in_pred_block ();
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13215 if (inst.size_req == 4)
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13258 if (!inst.operands[2].isreg)
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13267 Rm = inst.operands[2].reg;
13268 reject_bad_reg (Rm);
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13280 unsigned Rd, Rn, Rm;
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
13293 if (inst.operands[3].present)
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
13306 if (!inst.operands[3].present)
13310 inst.instruction &= ~0x00000020;
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13330 do_t_push_pop (void)
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13337 _("expression too complex"));
13339 mask = inst.operands[0].imm;
13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13342 else if (inst.size_req != 4
13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13344 ? REG_LR : REG_PC)))
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
13348 inst.instruction |= mask & 0xff;
13350 else if (unified_syntax)
13352 inst.instruction = THUMB_OP32 (inst.instruction);
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13357 inst.error = _("invalid register list to push/pop instruction");
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13369 inst.error = _("invalid register list to push/pop instruction");
13375 do_t_vscclrm (void)
13377 if (inst.operands[0].issingle)
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13419 if (Rd <= 7 && Rm <= 7
13420 && inst.size_req != 4)
13422 inst.instruction = THUMB_OP16 (inst.instruction);
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
13426 else if (unified_syntax)
13428 inst.instruction = THUMB_OP32 (inst.instruction);
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
13434 inst.error = BAD_HIREG;
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13471 bfd_boolean narrow;
13473 if ((inst.instruction & 0x00100000) != 0)
13474 narrow = !in_pred_block ();
13476 narrow = in_pred_block ();
13478 if (Rd > 7 || Rs > 7)
13481 if (inst.size_req == 4 || !unified_syntax)
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13489 relaxation, but it doesn't seem worth the hassle. */
13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13504 encode_thumb32_shifted_operand (2);
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13525 if (unified_syntax)
13527 bfd_boolean narrow;
13530 switch (inst.instruction)
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13543 if (THUMB_SETS_FLAGS (inst.instruction))
13544 narrow = !in_pred_block ();
13546 narrow = in_pred_block ();
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13555 if (inst.size_req == 4)
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
13563 if (inst.operands[2].isreg)
13565 reject_bad_reg (inst.operands[2].reg);
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
13577 inst.operands[1].shifted = 1;
13578 inst.operands[1].shift_kind = shift_kind;
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
13589 if (inst.operands[2].isreg)
13591 switch (shift_kind)
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
13609 switch (shift_kind)
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
13634 switch (inst.instruction)
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
13652 switch (inst.instruction)
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
13670 unsigned Rd, Rn, Rm;
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
13688 unsigned Rd, Rn, Rm;
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13706 unsigned int value = inst.relocs[0].exp.X_add_number;
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
13709 constraint (inst.relocs[0].exp.X_op != O_constant,
13710 _("expression too complex"));
13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
13716 set_pred_insn_type_last ();
13722 unsigned int value = inst.relocs[0].exp.X_add_number;
13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13730 do_t_ssat_usat (int bias)
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13740 inst.instruction |= Rd << 8;
13741 inst.instruction |= inst.operands[1].imm - bias;
13742 inst.instruction |= Rn << 16;
13744 if (inst.operands[3].present)
13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
13750 constraint (inst.relocs[0].exp.X_op != O_constant,
13751 _("expression too complex"));
13753 if (shift_amount != 0)
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
13759 inst.instruction |= 0x00200000; /* sh bit. */
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
13770 do_t_ssat_usat (1);
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13784 inst.instruction |= Rd << 8;
13785 inst.instruction |= inst.operands[1].imm - 1;
13786 inst.instruction |= Rn << 16;
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
13814 || inst.operands[0].reg == inst.operands[3].reg,
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
13826 unsigned Rd, Rn, Rm;
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
13839 inst.instruction |= inst.operands[3].imm << 4;
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
13855 && Rd <= 7 && Rm <= 7
13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13858 inst.instruction = THUMB_OP16 (inst.instruction);
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
13862 else if (unified_syntax)
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
13868 inst.instruction |= inst.operands[2].imm << 4;
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13890 half = (inst.instruction & 0x10) != 0;
13891 set_pred_insn_type_last ();
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
13900 reject_bad_reg (Rm);
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
13904 inst.instruction |= (Rn << 16) | Rm;
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13927 set_pred_insn_type (NEUTRAL_IT_INSN);
13934 do_t_ssat_usat (0);
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13948 inst.instruction |= Rd << 8;
13949 inst.instruction |= inst.operands[1].imm;
13950 inst.instruction |= Rn << 16;
13953 /* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13956 v8_1_branch_value_check (int val, int nbits, int is_signed)
13958 gas_assert (nbits > 0 && nbits <= 32);
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13973 /* For branches in Armv8.1-M Mainline. */
13975 do_t_branch_future (void)
13977 unsigned long insn = inst.instruction;
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13996 if (inst.operands[1].hasreloc == 0)
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14015 if (inst.operands[1].hasreloc == 0)
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14033 case T_MNEM_bfcsel:
14035 if (inst.operands[1].hasreloc == 0)
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14050 if (inst.operands[2].hasreloc == 0)
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14075 inst.instruction |= inst.operands[1].reg << 16;
14082 /* Helper function for do_t_loloop to handle relocations. */
14084 v8_1_loop_reloc (int is_le)
14086 if (inst.relocs[0].exp.X_op == O_constant)
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14099 inst.instruction |= (imml << 11) | (immh << 1);
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14108 /* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14113 unsigned long insn = inst.instruction;
14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14125 v8_1_loop_reloc (TRUE);
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14140 /* MVE instruction encoder helpers. */
14141 #define M_MNEM_vabav 0xee800f01
14142 #define M_MNEM_vmladav 0xeef00e00
14143 #define M_MNEM_vmladava 0xeef00e20
14144 #define M_MNEM_vmladavx 0xeef01e00
14145 #define M_MNEM_vmladavax 0xeef01e20
14146 #define M_MNEM_vmlsdav 0xeef00e01
14147 #define M_MNEM_vmlsdava 0xeef00e21
14148 #define M_MNEM_vmlsdavx 0xeef01e01
14149 #define M_MNEM_vmlsdavax 0xeef01e21
14150 #define M_MNEM_vmullt 0xee011e00
14151 #define M_MNEM_vmullb 0xee010e00
14152 #define M_MNEM_vst20 0xfc801e00
14153 #define M_MNEM_vst21 0xfc801e20
14154 #define M_MNEM_vst40 0xfc801e01
14155 #define M_MNEM_vst41 0xfc801e21
14156 #define M_MNEM_vst42 0xfc801e41
14157 #define M_MNEM_vst43 0xfc801e61
14158 #define M_MNEM_vld20 0xfc901e00
14159 #define M_MNEM_vld21 0xfc901e20
14160 #define M_MNEM_vld40 0xfc901e01
14161 #define M_MNEM_vld41 0xfc901e21
14162 #define M_MNEM_vld42 0xfc901e41
14163 #define M_MNEM_vld43 0xfc901e61
14164 #define M_MNEM_vstrb 0xec000e00
14165 #define M_MNEM_vstrh 0xec000e10
14166 #define M_MNEM_vstrw 0xec000e40
14167 #define M_MNEM_vstrd 0xec000e50
14168 #define M_MNEM_vldrb 0xec100e00
14169 #define M_MNEM_vldrh 0xec100e10
14170 #define M_MNEM_vldrw 0xec100e40
14171 #define M_MNEM_vldrd 0xec100e50
14172 #define M_MNEM_vmovlt 0xeea01f40
14173 #define M_MNEM_vmovlb 0xeea00f40
14174 #define M_MNEM_vmovnt 0xfe311e81
14175 #define M_MNEM_vmovnb 0xfe310e81
14176 #define M_MNEM_vadc 0xee300f00
14177 #define M_MNEM_vadci 0xee301f00
14178 #define M_MNEM_vbrsr 0xfe011e60
14179 #define M_MNEM_vaddlv 0xee890f00
14180 #define M_MNEM_vaddlva 0xee890f20
14181 #define M_MNEM_vaddv 0xeef10f00
14182 #define M_MNEM_vaddva 0xeef10f20
14183 #define M_MNEM_vddup 0xee011f6e
14184 #define M_MNEM_vdwdup 0xee011f60
14185 #define M_MNEM_vidup 0xee010f6e
14186 #define M_MNEM_viwdup 0xee010f60
14187 #define M_MNEM_vmaxv 0xeee20f00
14188 #define M_MNEM_vmaxav 0xeee00f00
14189 #define M_MNEM_vminv 0xeee20f80
14190 #define M_MNEM_vminav 0xeee00f80
14191 #define M_MNEM_vmlaldav 0xee800e00
14192 #define M_MNEM_vmlaldava 0xee800e20
14193 #define M_MNEM_vmlaldavx 0xee801e00
14194 #define M_MNEM_vmlaldavax 0xee801e20
14195 #define M_MNEM_vmlsldav 0xee800e01
14196 #define M_MNEM_vmlsldava 0xee800e21
14197 #define M_MNEM_vmlsldavx 0xee801e01
14198 #define M_MNEM_vmlsldavax 0xee801e21
14199 #define M_MNEM_vrmlaldavhx 0xee801f00
14200 #define M_MNEM_vrmlaldavhax 0xee801f20
14201 #define M_MNEM_vrmlsldavh 0xfe800e01
14202 #define M_MNEM_vrmlsldavha 0xfe800e21
14203 #define M_MNEM_vrmlsldavhx 0xfe801e01
14204 #define M_MNEM_vrmlsldavhax 0xfe801e21
14205 #define M_MNEM_vqmovnt 0xee331e01
14206 #define M_MNEM_vqmovnb 0xee330e01
14207 #define M_MNEM_vqmovunt 0xee311e81
14208 #define M_MNEM_vqmovunb 0xee310e81
14210 /* Neon instruction encoder helpers. */
14212 /* Encodings for the different types for various Neon opcodes. */
14214 /* An "invalid" code for the following tables. */
14217 struct neon_tab_entry
14220 unsigned float_or_poly;
14221 unsigned scalar_or_imm;
14224 /* Map overloaded Neon opcodes to their respective encodings. */
14225 #define NEON_ENC_TAB \
14226 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14227 X(vabdl, 0x0800700, N_INV, N_INV), \
14228 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14229 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14230 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14231 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14232 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14233 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14234 X(vaddl, 0x0800000, N_INV, N_INV), \
14235 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14236 X(vsubl, 0x0800200, N_INV, N_INV), \
14237 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14238 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14239 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14240 /* Register variants of the following two instructions are encoded as
14241 vcge / vcgt with the operands reversed. */ \
14242 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14243 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14244 X(vfma, N_INV, 0x0000c10, N_INV), \
14245 X(vfms, N_INV, 0x0200c10, N_INV), \
14246 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14247 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14248 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14249 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14250 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14251 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14252 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14253 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14254 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14255 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14256 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14257 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14258 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14259 X(vshl, 0x0000400, N_INV, 0x0800510), \
14260 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14261 X(vand, 0x0000110, N_INV, 0x0800030), \
14262 X(vbic, 0x0100110, N_INV, 0x0800030), \
14263 X(veor, 0x1000110, N_INV, N_INV), \
14264 X(vorn, 0x0300110, N_INV, 0x0800010), \
14265 X(vorr, 0x0200110, N_INV, 0x0800010), \
14266 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14267 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14268 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14269 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14270 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14271 X(vst1, 0x0000000, 0x0800000, N_INV), \
14272 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14273 X(vst2, 0x0000100, 0x0800100, N_INV), \
14274 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14275 X(vst3, 0x0000200, 0x0800200, N_INV), \
14276 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14277 X(vst4, 0x0000300, 0x0800300, N_INV), \
14278 X(vmovn, 0x1b20200, N_INV, N_INV), \
14279 X(vtrn, 0x1b20080, N_INV, N_INV), \
14280 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14281 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14282 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14283 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14284 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14285 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14286 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14287 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14288 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14289 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14290 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14291 X(vseleq, 0xe000a00, N_INV, N_INV), \
14292 X(vselvs, 0xe100a00, N_INV, N_INV), \
14293 X(vselge, 0xe200a00, N_INV, N_INV), \
14294 X(vselgt, 0xe300a00, N_INV, N_INV), \
14295 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14296 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14297 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14298 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14299 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14300 X(aes, 0x3b00300, N_INV, N_INV), \
14301 X(sha3op, 0x2000c00, N_INV, N_INV), \
14302 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14303 X(sha2op, 0x3ba0380, N_INV, N_INV)
14307 #define X(OPC,I,F,S) N_MNEM_##OPC
14312 static const struct neon_tab_entry neon_enc_tab[] =
14314 #define X(OPC,I,F,S) { (I), (F), (S) }
14319 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14320 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14321 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14322 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14323 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14324 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14325 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14326 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14327 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14328 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14329 #define NEON_ENC_SINGLE_(X) \
14330 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14331 #define NEON_ENC_DOUBLE_(X) \
14332 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14333 #define NEON_ENC_FPV8_(X) \
14334 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14336 #define NEON_ENCODE(type, inst) \
14339 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14340 inst.is_neon = 1; \
14344 #define check_neon_suffixes \
14347 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14349 as_bad (_("invalid neon suffix for non neon instruction")); \
14355 /* Define shapes for instruction operands. The following mnemonic characters
14356 are used in this table:
14358 F - VFP S<n> register
14359 D - Neon D<n> register
14360 Q - Neon Q<n> register
14364 L - D<n> register list
14366 This table is used to generate various data:
14367 - enumerations of the form NS_DDR to be used as arguments to
14369 - a table classifying shapes into single, double, quad, mixed.
14370 - a table used to drive neon_select_shape. */
14372 #define NEON_SHAPE_DEF \
14373 X(4, (R, R, Q, Q), QUAD), \
14374 X(4, (Q, R, R, I), QUAD), \
14375 X(4, (R, R, S, S), QUAD), \
14376 X(4, (S, S, R, R), QUAD), \
14377 X(3, (Q, R, I), QUAD), \
14378 X(3, (I, Q, Q), QUAD), \
14379 X(3, (I, Q, R), QUAD), \
14380 X(3, (R, Q, Q), QUAD), \
14381 X(3, (D, D, D), DOUBLE), \
14382 X(3, (Q, Q, Q), QUAD), \
14383 X(3, (D, D, I), DOUBLE), \
14384 X(3, (Q, Q, I), QUAD), \
14385 X(3, (D, D, S), DOUBLE), \
14386 X(3, (Q, Q, S), QUAD), \
14387 X(3, (Q, Q, R), QUAD), \
14388 X(3, (R, R, Q), QUAD), \
14389 X(2, (R, Q), QUAD), \
14390 X(2, (D, D), DOUBLE), \
14391 X(2, (Q, Q), QUAD), \
14392 X(2, (D, S), DOUBLE), \
14393 X(2, (Q, S), QUAD), \
14394 X(2, (D, R), DOUBLE), \
14395 X(2, (Q, R), QUAD), \
14396 X(2, (D, I), DOUBLE), \
14397 X(2, (Q, I), QUAD), \
14398 X(3, (D, L, D), DOUBLE), \
14399 X(2, (D, Q), MIXED), \
14400 X(2, (Q, D), MIXED), \
14401 X(3, (D, Q, I), MIXED), \
14402 X(3, (Q, D, I), MIXED), \
14403 X(3, (Q, D, D), MIXED), \
14404 X(3, (D, Q, Q), MIXED), \
14405 X(3, (Q, Q, D), MIXED), \
14406 X(3, (Q, D, S), MIXED), \
14407 X(3, (D, Q, S), MIXED), \
14408 X(4, (D, D, D, I), DOUBLE), \
14409 X(4, (Q, Q, Q, I), QUAD), \
14410 X(4, (D, D, S, I), DOUBLE), \
14411 X(4, (Q, Q, S, I), QUAD), \
14412 X(2, (F, F), SINGLE), \
14413 X(3, (F, F, F), SINGLE), \
14414 X(2, (F, I), SINGLE), \
14415 X(2, (F, D), MIXED), \
14416 X(2, (D, F), MIXED), \
14417 X(3, (F, F, I), MIXED), \
14418 X(4, (R, R, F, F), SINGLE), \
14419 X(4, (F, F, R, R), SINGLE), \
14420 X(3, (D, R, R), DOUBLE), \
14421 X(3, (R, R, D), DOUBLE), \
14422 X(2, (S, R), SINGLE), \
14423 X(2, (R, S), SINGLE), \
14424 X(2, (F, R), SINGLE), \
14425 X(2, (R, F), SINGLE), \
14426 /* Half float shape supported so far. */\
14427 X (2, (H, D), MIXED), \
14428 X (2, (D, H), MIXED), \
14429 X (2, (H, F), MIXED), \
14430 X (2, (F, H), MIXED), \
14431 X (2, (H, H), HALF), \
14432 X (2, (H, R), HALF), \
14433 X (2, (R, H), HALF), \
14434 X (2, (H, I), HALF), \
14435 X (3, (H, H, H), HALF), \
14436 X (3, (H, F, I), MIXED), \
14437 X (3, (F, H, I), MIXED), \
14438 X (3, (D, H, H), MIXED), \
14439 X (3, (D, H, S), MIXED)
14441 #define S2(A,B) NS_##A##B
14442 #define S3(A,B,C) NS_##A##B##C
14443 #define S4(A,B,C,D) NS_##A##B##C##D
14445 #define X(N, L, C) S##N L
14458 enum neon_shape_class
14467 #define X(N, L, C) SC_##C
14469 static enum neon_shape_class neon_shape_class[] =
14488 /* Register widths of above. */
14489 static unsigned neon_shape_el_size[] =
14501 struct neon_shape_info
14504 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14507 #define S2(A,B) { SE_##A, SE_##B }
14508 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14509 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14511 #define X(N, L, C) { N, S##N L }
14513 static struct neon_shape_info neon_shape_tab[] =
14523 /* Bit masks used in type checking given instructions.
14524 'N_EQK' means the type must be the same as (or based on in some way) the key
14525 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14526 set, various other bits can be set as well in order to modify the meaning of
14527 the type constraint. */
14529 enum neon_type_mask
14553 N_KEY = 0x1000000, /* Key element (main type specifier). */
14554 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14555 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14556 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14557 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14558 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14559 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14560 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14561 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14562 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14563 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14565 N_MAX_NONSPECIAL = N_P64
14568 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14570 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14571 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14572 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14573 #define N_S_32 (N_S8 | N_S16 | N_S32)
14574 #define N_F_16_32 (N_F16 | N_F32)
14575 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14576 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14577 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14578 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14579 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14580 #define N_F_MVE (N_F16 | N_F32)
14581 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14583 /* Pass this as the first type argument to neon_check_type to ignore types
14585 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14587 /* Select a "shape" for the current instruction (describing register types or
14588 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14589 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14590 function of operand parsing, so this function doesn't need to be called.
14591 Shapes should be listed in order of decreasing length. */
14593 static enum neon_shape
14594 neon_select_shape (enum neon_shape shape, ...)
14597 enum neon_shape first_shape = shape;
14599 /* Fix missing optional operands. FIXME: we don't know at this point how
14600 many arguments we should have, so this makes the assumption that we have
14601 > 1. This is true of all current Neon opcodes, I think, but may not be
14602 true in the future. */
14603 if (!inst.operands[1].present)
14604 inst.operands[1] = inst.operands[0];
14606 va_start (ap, shape);
14608 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14613 for (j = 0; j < neon_shape_tab[shape].els; j++)
14615 if (!inst.operands[j].present)
14621 switch (neon_shape_tab[shape].el[j])
14623 /* If a .f16, .16, .u16, .s16 type specifier is given over
14624 a VFP single precision register operand, it's essentially
14625 means only half of the register is used.
14627 If the type specifier is given after the mnemonics, the
14628 information is stored in inst.vectype. If the type specifier
14629 is given after register operand, the information is stored
14630 in inst.operands[].vectype.
14632 When there is only one type specifier, and all the register
14633 operands are the same type of hardware register, the type
14634 specifier applies to all register operands.
14636 If no type specifier is given, the shape is inferred from
14637 operand information.
14640 vadd.f16 s0, s1, s2: NS_HHH
14641 vabs.f16 s0, s1: NS_HH
14642 vmov.f16 s0, r1: NS_HR
14643 vmov.f16 r0, s1: NS_RH
14644 vcvt.f16 r0, s1: NS_RH
14645 vcvt.f16.s32 s2, s2, #29: NS_HFI
14646 vcvt.f16.s32 s2, s2: NS_HF
14649 if (!(inst.operands[j].isreg
14650 && inst.operands[j].isvec
14651 && inst.operands[j].issingle
14652 && !inst.operands[j].isquad
14653 && ((inst.vectype.elems == 1
14654 && inst.vectype.el[0].size == 16)
14655 || (inst.vectype.elems > 1
14656 && inst.vectype.el[j].size == 16)
14657 || (inst.vectype.elems == 0
14658 && inst.operands[j].vectype.type != NT_invtype
14659 && inst.operands[j].vectype.size == 16))))
14664 if (!(inst.operands[j].isreg
14665 && inst.operands[j].isvec
14666 && inst.operands[j].issingle
14667 && !inst.operands[j].isquad
14668 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14669 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14670 || (inst.vectype.elems == 0
14671 && (inst.operands[j].vectype.size == 32
14672 || inst.operands[j].vectype.type == NT_invtype)))))
14677 if (!(inst.operands[j].isreg
14678 && inst.operands[j].isvec
14679 && !inst.operands[j].isquad
14680 && !inst.operands[j].issingle))
14685 if (!(inst.operands[j].isreg
14686 && !inst.operands[j].isvec))
14691 if (!(inst.operands[j].isreg
14692 && inst.operands[j].isvec
14693 && inst.operands[j].isquad
14694 && !inst.operands[j].issingle))
14699 if (!(!inst.operands[j].isreg
14700 && !inst.operands[j].isscalar))
14705 if (!(!inst.operands[j].isreg
14706 && inst.operands[j].isscalar))
14716 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14717 /* We've matched all the entries in the shape table, and we don't
14718 have any left over operands which have not been matched. */
14724 if (shape == NS_NULL && first_shape != NS_NULL)
14725 first_error (_("invalid instruction shape"));
14730 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14731 means the Q bit should be set). */
14734 neon_quad (enum neon_shape shape)
14736 return neon_shape_class[shape] == SC_QUAD;
14740 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14743 /* Allow modification to be made to types which are constrained to be
14744 based on the key element, based on bits set alongside N_EQK. */
14745 if ((typebits & N_EQK) != 0)
14747 if ((typebits & N_HLF) != 0)
14749 else if ((typebits & N_DBL) != 0)
14751 if ((typebits & N_SGN) != 0)
14752 *g_type = NT_signed;
14753 else if ((typebits & N_UNS) != 0)
14754 *g_type = NT_unsigned;
14755 else if ((typebits & N_INT) != 0)
14756 *g_type = NT_integer;
14757 else if ((typebits & N_FLT) != 0)
14758 *g_type = NT_float;
14759 else if ((typebits & N_SIZ) != 0)
14760 *g_type = NT_untyped;
14764 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14765 operand type, i.e. the single type specified in a Neon instruction when it
14766 is the only one given. */
14768 static struct neon_type_el
14769 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14771 struct neon_type_el dest = *key;
14773 gas_assert ((thisarg & N_EQK) != 0);
14775 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14780 /* Convert Neon type and size into compact bitmask representation. */
14782 static enum neon_type_mask
14783 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14790 case 8: return N_8;
14791 case 16: return N_16;
14792 case 32: return N_32;
14793 case 64: return N_64;
14801 case 8: return N_I8;
14802 case 16: return N_I16;
14803 case 32: return N_I32;
14804 case 64: return N_I64;
14812 case 16: return N_F16;
14813 case 32: return N_F32;
14814 case 64: return N_F64;
14822 case 8: return N_P8;
14823 case 16: return N_P16;
14824 case 64: return N_P64;
14832 case 8: return N_S8;
14833 case 16: return N_S16;
14834 case 32: return N_S32;
14835 case 64: return N_S64;
14843 case 8: return N_U8;
14844 case 16: return N_U16;
14845 case 32: return N_U32;
14846 case 64: return N_U64;
14857 /* Convert compact Neon bitmask type representation to a type and size. Only
14858 handles the case where a single bit is set in the mask. */
14861 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14862 enum neon_type_mask mask)
14864 if ((mask & N_EQK) != 0)
14867 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14869 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14871 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14873 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14878 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14880 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14881 *type = NT_unsigned;
14882 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14883 *type = NT_integer;
14884 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14885 *type = NT_untyped;
14886 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14888 else if ((mask & (N_F_ALL)) != 0)
14896 /* Modify a bitmask of allowed types. This is only needed for type
14900 modify_types_allowed (unsigned allowed, unsigned mods)
14903 enum neon_el_type type;
14909 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14911 if (el_type_of_type_chk (&type, &size,
14912 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14914 neon_modify_type_size (mods, &type, &size);
14915 destmask |= type_chk_of_el_type (type, size);
14922 /* Check type and return type classification.
14923 The manual states (paraphrase): If one datatype is given, it indicates the
14925 - the second operand, if there is one
14926 - the operand, if there is no second operand
14927 - the result, if there are no operands.
14928 This isn't quite good enough though, so we use a concept of a "key" datatype
14929 which is set on a per-instruction basis, which is the one which matters when
14930 only one data type is written.
14931 Note: this function has side-effects (e.g. filling in missing operands). All
14932 Neon instructions should call it before performing bit encoding. */
14934 static struct neon_type_el
14935 neon_check_type (unsigned els, enum neon_shape ns, ...)
14938 unsigned i, pass, key_el = 0;
14939 unsigned types[NEON_MAX_TYPE_ELS];
14940 enum neon_el_type k_type = NT_invtype;
14941 unsigned k_size = -1u;
14942 struct neon_type_el badtype = {NT_invtype, -1};
14943 unsigned key_allowed = 0;
14945 /* Optional registers in Neon instructions are always (not) in operand 1.
14946 Fill in the missing operand here, if it was omitted. */
14947 if (els > 1 && !inst.operands[1].present)
14948 inst.operands[1] = inst.operands[0];
14950 /* Suck up all the varargs. */
14952 for (i = 0; i < els; i++)
14954 unsigned thisarg = va_arg (ap, unsigned);
14955 if (thisarg == N_IGNORE_TYPE)
14960 types[i] = thisarg;
14961 if ((thisarg & N_KEY) != 0)
14966 if (inst.vectype.elems > 0)
14967 for (i = 0; i < els; i++)
14968 if (inst.operands[i].vectype.type != NT_invtype)
14970 first_error (_("types specified in both the mnemonic and operands"));
14974 /* Duplicate inst.vectype elements here as necessary.
14975 FIXME: No idea if this is exactly the same as the ARM assembler,
14976 particularly when an insn takes one register and one non-register
14978 if (inst.vectype.elems == 1 && els > 1)
14981 inst.vectype.elems = els;
14982 inst.vectype.el[key_el] = inst.vectype.el[0];
14983 for (j = 0; j < els; j++)
14985 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14988 else if (inst.vectype.elems == 0 && els > 0)
14991 /* No types were given after the mnemonic, so look for types specified
14992 after each operand. We allow some flexibility here; as long as the
14993 "key" operand has a type, we can infer the others. */
14994 for (j = 0; j < els; j++)
14995 if (inst.operands[j].vectype.type != NT_invtype)
14996 inst.vectype.el[j] = inst.operands[j].vectype;
14998 if (inst.operands[key_el].vectype.type != NT_invtype)
15000 for (j = 0; j < els; j++)
15001 if (inst.operands[j].vectype.type == NT_invtype)
15002 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15007 first_error (_("operand types can't be inferred"));
15011 else if (inst.vectype.elems != els)
15013 first_error (_("type specifier has the wrong number of parts"));
15017 for (pass = 0; pass < 2; pass++)
15019 for (i = 0; i < els; i++)
15021 unsigned thisarg = types[i];
15022 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15023 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15024 enum neon_el_type g_type = inst.vectype.el[i].type;
15025 unsigned g_size = inst.vectype.el[i].size;
15027 /* Decay more-specific signed & unsigned types to sign-insensitive
15028 integer types if sign-specific variants are unavailable. */
15029 if ((g_type == NT_signed || g_type == NT_unsigned)
15030 && (types_allowed & N_SU_ALL) == 0)
15031 g_type = NT_integer;
15033 /* If only untyped args are allowed, decay any more specific types to
15034 them. Some instructions only care about signs for some element
15035 sizes, so handle that properly. */
15036 if (((types_allowed & N_UNT) == 0)
15037 && ((g_size == 8 && (types_allowed & N_8) != 0)
15038 || (g_size == 16 && (types_allowed & N_16) != 0)
15039 || (g_size == 32 && (types_allowed & N_32) != 0)
15040 || (g_size == 64 && (types_allowed & N_64) != 0)))
15041 g_type = NT_untyped;
15045 if ((thisarg & N_KEY) != 0)
15049 key_allowed = thisarg & ~N_KEY;
15051 /* Check architecture constraint on FP16 extension. */
15053 && k_type == NT_float
15054 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15056 inst.error = _(BAD_FP16);
15063 if ((thisarg & N_VFP) != 0)
15065 enum neon_shape_el regshape;
15066 unsigned regwidth, match;
15068 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15071 first_error (_("invalid instruction shape"));
15074 regshape = neon_shape_tab[ns].el[i];
15075 regwidth = neon_shape_el_size[regshape];
15077 /* In VFP mode, operands must match register widths. If we
15078 have a key operand, use its width, else use the width of
15079 the current operand. */
15085 /* FP16 will use a single precision register. */
15086 if (regwidth == 32 && match == 16)
15088 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15092 inst.error = _(BAD_FP16);
15097 if (regwidth != match)
15099 first_error (_("operand size must match register width"));
15104 if ((thisarg & N_EQK) == 0)
15106 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15108 if ((given_type & types_allowed) == 0)
15110 first_error (BAD_SIMD_TYPE);
15116 enum neon_el_type mod_k_type = k_type;
15117 unsigned mod_k_size = k_size;
15118 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15119 if (g_type != mod_k_type || g_size != mod_k_size)
15121 first_error (_("inconsistent types in Neon instruction"));
15129 return inst.vectype.el[key_el];
15132 /* Neon-style VFP instruction forwarding. */
15134 /* Thumb VFP instructions have 0xE in the condition field. */
15137 do_vfp_cond_or_thumb (void)
15142 inst.instruction |= 0xe0000000;
15144 inst.instruction |= inst.cond << 28;
15147 /* Look up and encode a simple mnemonic, for use as a helper function for the
15148 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15149 etc. It is assumed that operand parsing has already been done, and that the
15150 operands are in the form expected by the given opcode (this isn't necessarily
15151 the same as the form in which they were parsed, hence some massaging must
15152 take place before this function is called).
15153 Checks current arch version against that in the looked-up opcode. */
15156 do_vfp_nsyn_opcode (const char *opname)
15158 const struct asm_opcode *opcode;
15160 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15166 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15173 inst.instruction = opcode->tvalue;
15174 opcode->tencode ();
15178 inst.instruction = (inst.cond << 28) | opcode->avalue;
15179 opcode->aencode ();
15184 do_vfp_nsyn_add_sub (enum neon_shape rs)
15186 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15188 if (rs == NS_FFF || rs == NS_HHH)
15191 do_vfp_nsyn_opcode ("fadds");
15193 do_vfp_nsyn_opcode ("fsubs");
15195 /* ARMv8.2 fp16 instruction. */
15197 do_scalar_fp16_v82_encode ();
15202 do_vfp_nsyn_opcode ("faddd");
15204 do_vfp_nsyn_opcode ("fsubd");
15208 /* Check operand types to see if this is a VFP instruction, and if so call
15212 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15214 enum neon_shape rs;
15215 struct neon_type_el et;
15220 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15221 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15225 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15226 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15227 N_F_ALL | N_KEY | N_VFP);
15234 if (et.type != NT_invtype)
15245 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15247 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15249 if (rs == NS_FFF || rs == NS_HHH)
15252 do_vfp_nsyn_opcode ("fmacs");
15254 do_vfp_nsyn_opcode ("fnmacs");
15256 /* ARMv8.2 fp16 instruction. */
15258 do_scalar_fp16_v82_encode ();
15263 do_vfp_nsyn_opcode ("fmacd");
15265 do_vfp_nsyn_opcode ("fnmacd");
15270 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15272 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15274 if (rs == NS_FFF || rs == NS_HHH)
15277 do_vfp_nsyn_opcode ("ffmas");
15279 do_vfp_nsyn_opcode ("ffnmas");
15281 /* ARMv8.2 fp16 instruction. */
15283 do_scalar_fp16_v82_encode ();
15288 do_vfp_nsyn_opcode ("ffmad");
15290 do_vfp_nsyn_opcode ("ffnmad");
15295 do_vfp_nsyn_mul (enum neon_shape rs)
15297 if (rs == NS_FFF || rs == NS_HHH)
15299 do_vfp_nsyn_opcode ("fmuls");
15301 /* ARMv8.2 fp16 instruction. */
15303 do_scalar_fp16_v82_encode ();
15306 do_vfp_nsyn_opcode ("fmuld");
15310 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15312 int is_neg = (inst.instruction & 0x80) != 0;
15313 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15315 if (rs == NS_FF || rs == NS_HH)
15318 do_vfp_nsyn_opcode ("fnegs");
15320 do_vfp_nsyn_opcode ("fabss");
15322 /* ARMv8.2 fp16 instruction. */
15324 do_scalar_fp16_v82_encode ();
15329 do_vfp_nsyn_opcode ("fnegd");
15331 do_vfp_nsyn_opcode ("fabsd");
15335 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15336 insns belong to Neon, and are handled elsewhere. */
15339 do_vfp_nsyn_ldm_stm (int is_dbmode)
15341 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15345 do_vfp_nsyn_opcode ("fldmdbs");
15347 do_vfp_nsyn_opcode ("fldmias");
15352 do_vfp_nsyn_opcode ("fstmdbs");
15354 do_vfp_nsyn_opcode ("fstmias");
15359 do_vfp_nsyn_sqrt (void)
15361 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15362 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15364 if (rs == NS_FF || rs == NS_HH)
15366 do_vfp_nsyn_opcode ("fsqrts");
15368 /* ARMv8.2 fp16 instruction. */
15370 do_scalar_fp16_v82_encode ();
15373 do_vfp_nsyn_opcode ("fsqrtd");
15377 do_vfp_nsyn_div (void)
15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15381 N_F_ALL | N_KEY | N_VFP);
15383 if (rs == NS_FFF || rs == NS_HHH)
15385 do_vfp_nsyn_opcode ("fdivs");
15387 /* ARMv8.2 fp16 instruction. */
15389 do_scalar_fp16_v82_encode ();
15392 do_vfp_nsyn_opcode ("fdivd");
15396 do_vfp_nsyn_nmul (void)
15398 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15399 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15400 N_F_ALL | N_KEY | N_VFP);
15402 if (rs == NS_FFF || rs == NS_HHH)
15404 NEON_ENCODE (SINGLE, inst);
15405 do_vfp_sp_dyadic ();
15407 /* ARMv8.2 fp16 instruction. */
15409 do_scalar_fp16_v82_encode ();
15413 NEON_ENCODE (DOUBLE, inst);
15414 do_vfp_dp_rd_rn_rm ();
15416 do_vfp_cond_or_thumb ();
15420 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15424 neon_logbits (unsigned x)
15426 return ffs (x) - 4;
15429 #define LOW4(R) ((R) & 0xf)
15430 #define HI1(R) (((R) >> 4) & 1)
15433 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15438 first_error (BAD_EL_TYPE);
15441 switch (inst.operands[0].imm)
15444 first_error (_("invalid condition"));
15466 /* only accept eq and ne. */
15467 if (inst.operands[0].imm > 1)
15469 first_error (_("invalid condition"));
15472 return inst.operands[0].imm;
15474 if (inst.operands[0].imm == 0x2)
15476 else if (inst.operands[0].imm == 0x8)
15480 first_error (_("invalid condition"));
15484 switch (inst.operands[0].imm)
15487 first_error (_("invalid condition"));
15503 /* Should be unreachable. */
15510 /* We are dealing with a vector predicated block. */
15511 if (inst.operands[0].present)
15513 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15514 struct neon_type_el et
15515 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15518 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15520 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15522 if (et.type == NT_invtype)
15525 if (et.type == NT_float)
15527 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15529 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15530 inst.instruction |= (et.size == 16) << 28;
15531 inst.instruction |= 0x3 << 20;
15535 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15537 inst.instruction |= 1 << 28;
15538 inst.instruction |= neon_logbits (et.size) << 20;
15541 if (inst.operands[2].isquad)
15543 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15544 inst.instruction |= LOW4 (inst.operands[2].reg);
15545 inst.instruction |= (fcond & 0x2) >> 1;
15549 if (inst.operands[2].reg == REG_SP)
15550 as_tsktsk (MVE_BAD_SP);
15551 inst.instruction |= 1 << 6;
15552 inst.instruction |= (fcond & 0x2) << 4;
15553 inst.instruction |= inst.operands[2].reg;
15555 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15556 inst.instruction |= (fcond & 0x4) << 10;
15557 inst.instruction |= (fcond & 0x1) << 7;
15560 set_pred_insn_type (VPT_INSN);
15562 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15563 | ((inst.instruction & 0xe000) >> 13);
15564 now_pred.warn_deprecated = FALSE;
15565 now_pred.type = VECTOR_PRED;
15572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15573 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15574 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15575 if (!inst.operands[2].present)
15576 first_error (_("MVE vector or ARM register expected"));
15577 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15579 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15580 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15581 && inst.operands[1].isquad)
15583 inst.instruction = N_MNEM_vcmp;
15587 if (inst.cond > COND_ALWAYS)
15588 inst.pred_insn_type = INSIDE_VPT_INSN;
15590 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15592 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15593 struct neon_type_el et
15594 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15597 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15598 && !inst.operands[2].iszr, BAD_PC);
15600 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15602 inst.instruction = 0xee010f00;
15603 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15604 inst.instruction |= (fcond & 0x4) << 10;
15605 inst.instruction |= (fcond & 0x1) << 7;
15606 if (et.type == NT_float)
15608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= 0x3 << 20;
15615 inst.instruction |= 1 << 28;
15616 inst.instruction |= neon_logbits (et.size) << 20;
15618 if (inst.operands[2].isquad)
15620 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15621 inst.instruction |= (fcond & 0x2) >> 1;
15622 inst.instruction |= LOW4 (inst.operands[2].reg);
15626 if (inst.operands[2].reg == REG_SP)
15627 as_tsktsk (MVE_BAD_SP);
15628 inst.instruction |= 1 << 6;
15629 inst.instruction |= (fcond & 0x2) << 4;
15630 inst.instruction |= inst.operands[2].reg;
15638 do_mve_vmaxa_vmina (void)
15640 if (inst.cond > COND_ALWAYS)
15641 inst.pred_insn_type = INSIDE_VPT_INSN;
15643 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15645 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15646 struct neon_type_el et
15647 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15650 inst.instruction |= neon_logbits (et.size) << 18;
15651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15653 inst.instruction |= LOW4 (inst.operands[1].reg);
15658 do_mve_vfmas (void)
15660 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15661 struct neon_type_el et
15662 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15664 if (inst.cond > COND_ALWAYS)
15665 inst.pred_insn_type = INSIDE_VPT_INSN;
15667 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15669 if (inst.operands[2].reg == REG_SP)
15670 as_tsktsk (MVE_BAD_SP);
15671 else if (inst.operands[2].reg == REG_PC)
15672 as_tsktsk (MVE_BAD_PC);
15674 inst.instruction |= (et.size == 16) << 28;
15675 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15676 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15677 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15678 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15679 inst.instruction |= inst.operands[2].reg;
15684 do_mve_viddup (void)
15686 if (inst.cond > COND_ALWAYS)
15687 inst.pred_insn_type = INSIDE_VPT_INSN;
15689 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15691 unsigned imm = inst.relocs[0].exp.X_add_number;
15692 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15693 _("immediate must be either 1, 2, 4 or 8"));
15695 enum neon_shape rs;
15696 struct neon_type_el et;
15698 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15700 rs = neon_select_shape (NS_QRI, NS_NULL);
15701 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15706 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15707 if (inst.operands[2].reg == REG_SP)
15708 as_tsktsk (MVE_BAD_SP);
15709 else if (inst.operands[2].reg == REG_PC)
15710 first_error (BAD_PC);
15712 rs = neon_select_shape (NS_QRRI, NS_NULL);
15713 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15714 Rm = inst.operands[2].reg >> 1;
15716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15717 inst.instruction |= neon_logbits (et.size) << 20;
15718 inst.instruction |= inst.operands[1].reg << 16;
15719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15720 inst.instruction |= (imm > 2) << 7;
15721 inst.instruction |= Rm << 1;
15722 inst.instruction |= (imm == 2 || imm == 8);
15727 do_mve_vmlas (void)
15729 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15730 struct neon_type_el et
15731 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15733 if (inst.operands[2].reg == REG_PC)
15734 as_tsktsk (MVE_BAD_PC);
15735 else if (inst.operands[2].reg == REG_SP)
15736 as_tsktsk (MVE_BAD_SP);
15738 if (inst.cond > COND_ALWAYS)
15739 inst.pred_insn_type = INSIDE_VPT_INSN;
15741 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15743 inst.instruction |= (et.type == NT_unsigned) << 28;
15744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15745 inst.instruction |= neon_logbits (et.size) << 20;
15746 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15747 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15749 inst.instruction |= inst.operands[2].reg;
15754 do_mve_vqmovn (void)
15756 struct neon_type_el et;
15757 if (inst.instruction == M_MNEM_vqmovnt
15758 || inst.instruction == M_MNEM_vqmovnb)
15759 et = neon_check_type (2, NS_QQ, N_EQK,
15760 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15762 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15764 if (inst.cond > COND_ALWAYS)
15765 inst.pred_insn_type = INSIDE_VPT_INSN;
15767 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15769 inst.instruction |= (et.type == NT_unsigned) << 28;
15770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15771 inst.instruction |= (et.size == 32) << 18;
15772 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15773 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15774 inst.instruction |= LOW4 (inst.operands[1].reg);
15779 do_mve_vpsel (void)
15781 neon_select_shape (NS_QQQ, NS_NULL);
15783 if (inst.cond > COND_ALWAYS)
15784 inst.pred_insn_type = INSIDE_VPT_INSN;
15786 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15788 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15789 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15790 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15791 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15792 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15793 inst.instruction |= LOW4 (inst.operands[2].reg);
15798 do_mve_vpnot (void)
15800 if (inst.cond > COND_ALWAYS)
15801 inst.pred_insn_type = INSIDE_VPT_INSN;
15803 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15807 do_mve_vmaxnma_vminnma (void)
15809 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15810 struct neon_type_el et
15811 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15813 if (inst.cond > COND_ALWAYS)
15814 inst.pred_insn_type = INSIDE_VPT_INSN;
15816 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15818 inst.instruction |= (et.size == 16) << 28;
15819 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15820 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15821 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15822 inst.instruction |= LOW4 (inst.operands[1].reg);
15827 do_mve_vcmul (void)
15829 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15830 struct neon_type_el et
15831 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15833 if (inst.cond > COND_ALWAYS)
15834 inst.pred_insn_type = INSIDE_VPT_INSN;
15836 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15838 unsigned rot = inst.relocs[0].exp.X_add_number;
15839 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15840 _("immediate out of range"));
15842 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15843 || inst.operands[0].reg == inst.operands[2].reg))
15844 as_tsktsk (BAD_MVE_SRCDEST);
15846 inst.instruction |= (et.size == 32) << 28;
15847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15848 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15849 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15850 inst.instruction |= (rot > 90) << 12;
15851 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15852 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15853 inst.instruction |= LOW4 (inst.operands[2].reg);
15854 inst.instruction |= (rot == 90 || rot == 270);
15859 do_vfp_nsyn_cmp (void)
15861 enum neon_shape rs;
15862 if (!inst.operands[0].isreg)
15869 constraint (inst.operands[2].present, BAD_SYNTAX);
15870 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15874 if (inst.operands[1].isreg)
15876 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15877 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15879 if (rs == NS_FF || rs == NS_HH)
15881 NEON_ENCODE (SINGLE, inst);
15882 do_vfp_sp_monadic ();
15886 NEON_ENCODE (DOUBLE, inst);
15887 do_vfp_dp_rd_rm ();
15892 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15893 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15895 switch (inst.instruction & 0x0fffffff)
15898 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15901 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15907 if (rs == NS_FI || rs == NS_HI)
15909 NEON_ENCODE (SINGLE, inst);
15910 do_vfp_sp_compare_z ();
15914 NEON_ENCODE (DOUBLE, inst);
15918 do_vfp_cond_or_thumb ();
15920 /* ARMv8.2 fp16 instruction. */
15921 if (rs == NS_HI || rs == NS_HH)
15922 do_scalar_fp16_v82_encode ();
15926 nsyn_insert_sp (void)
15928 inst.operands[1] = inst.operands[0];
15929 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15930 inst.operands[0].reg = REG_SP;
15931 inst.operands[0].isreg = 1;
15932 inst.operands[0].writeback = 1;
15933 inst.operands[0].present = 1;
15937 do_vfp_nsyn_push (void)
15941 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15942 _("register list must contain at least 1 and at most 16 "
15945 if (inst.operands[1].issingle)
15946 do_vfp_nsyn_opcode ("fstmdbs");
15948 do_vfp_nsyn_opcode ("fstmdbd");
15952 do_vfp_nsyn_pop (void)
15956 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15957 _("register list must contain at least 1 and at most 16 "
15960 if (inst.operands[1].issingle)
15961 do_vfp_nsyn_opcode ("fldmias");
15963 do_vfp_nsyn_opcode ("fldmiad");
15966 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15967 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15970 neon_dp_fixup (struct arm_it* insn)
15972 unsigned int i = insn->instruction;
15977 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15988 insn->instruction = i;
15992 mve_encode_qqr (int size, int U, int fp)
15994 if (inst.operands[2].reg == REG_SP)
15995 as_tsktsk (MVE_BAD_SP);
15996 else if (inst.operands[2].reg == REG_PC)
15997 as_tsktsk (MVE_BAD_PC);
16002 if (((unsigned)inst.instruction) == 0xd00)
16003 inst.instruction = 0xee300f40;
16005 else if (((unsigned)inst.instruction) == 0x200d00)
16006 inst.instruction = 0xee301f40;
16008 else if (((unsigned)inst.instruction) == 0x1000d10)
16009 inst.instruction = 0xee310e60;
16011 /* Setting size which is 1 for F16 and 0 for F32. */
16012 inst.instruction |= (size == 16) << 28;
16017 if (((unsigned)inst.instruction) == 0x800)
16018 inst.instruction = 0xee010f40;
16020 else if (((unsigned)inst.instruction) == 0x1000800)
16021 inst.instruction = 0xee011f40;
16023 else if (((unsigned)inst.instruction) == 0)
16024 inst.instruction = 0xee000f40;
16026 else if (((unsigned)inst.instruction) == 0x200)
16027 inst.instruction = 0xee001f40;
16029 else if (((unsigned)inst.instruction) == 0x900)
16030 inst.instruction = 0xee010e40;
16032 else if (((unsigned)inst.instruction) == 0x910)
16033 inst.instruction = 0xee011e60;
16035 else if (((unsigned)inst.instruction) == 0x10)
16036 inst.instruction = 0xee000f60;
16038 else if (((unsigned)inst.instruction) == 0x210)
16039 inst.instruction = 0xee001f60;
16041 else if (((unsigned)inst.instruction) == 0x3000b10)
16042 inst.instruction = 0xee000e40;
16044 else if (((unsigned)inst.instruction) == 0x0000b00)
16045 inst.instruction = 0xee010e60;
16047 else if (((unsigned)inst.instruction) == 0x1000b00)
16048 inst.instruction = 0xfe010e60;
16051 inst.instruction |= U << 28;
16053 /* Setting bits for size. */
16054 inst.instruction |= neon_logbits (size) << 20;
16056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16057 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16058 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16059 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16060 inst.instruction |= inst.operands[2].reg;
16065 mve_encode_rqq (unsigned bit28, unsigned size)
16067 inst.instruction |= bit28 << 28;
16068 inst.instruction |= neon_logbits (size) << 20;
16069 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16070 inst.instruction |= inst.operands[0].reg << 12;
16071 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16072 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16073 inst.instruction |= LOW4 (inst.operands[2].reg);
16078 mve_encode_qqq (int ubit, int size)
16081 inst.instruction |= (ubit != 0) << 28;
16082 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16083 inst.instruction |= neon_logbits (size) << 20;
16084 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16087 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16088 inst.instruction |= LOW4 (inst.operands[2].reg);
16094 mve_encode_rq (unsigned bit28, unsigned size)
16096 inst.instruction |= bit28 << 28;
16097 inst.instruction |= neon_logbits (size) << 18;
16098 inst.instruction |= inst.operands[0].reg << 12;
16099 inst.instruction |= LOW4 (inst.operands[1].reg);
16104 mve_encode_rrqq (unsigned U, unsigned size)
16106 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16108 inst.instruction |= U << 28;
16109 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16110 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16111 inst.instruction |= (size == 32) << 16;
16112 inst.instruction |= inst.operands[0].reg << 12;
16113 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16114 inst.instruction |= inst.operands[3].reg;
16118 /* Encode insns with bit pattern:
16120 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16121 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16123 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16124 different meaning for some instruction. */
16127 neon_three_same (int isquad, int ubit, int size)
16129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16131 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16132 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16133 inst.instruction |= LOW4 (inst.operands[2].reg);
16134 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16135 inst.instruction |= (isquad != 0) << 6;
16136 inst.instruction |= (ubit != 0) << 24;
16138 inst.instruction |= neon_logbits (size) << 20;
16140 neon_dp_fixup (&inst);
16143 /* Encode instructions of the form:
16145 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16146 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16148 Don't write size if SIZE == -1. */
16151 neon_two_same (int qbit, int ubit, int size)
16153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16155 inst.instruction |= LOW4 (inst.operands[1].reg);
16156 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16157 inst.instruction |= (qbit != 0) << 6;
16158 inst.instruction |= (ubit != 0) << 24;
16161 inst.instruction |= neon_logbits (size) << 18;
16163 neon_dp_fixup (&inst);
16166 enum vfp_or_neon_is_neon_bits
16169 NEON_CHECK_ARCH = 2,
16170 NEON_CHECK_ARCH8 = 4
16173 /* Call this function if an instruction which may have belonged to the VFP or
16174 Neon instruction sets, but turned out to be a Neon instruction (due to the
16175 operand types involved, etc.). We have to check and/or fix-up a couple of
16178 - Make sure the user hasn't attempted to make a Neon instruction
16180 - Alter the value in the condition code field if necessary.
16181 - Make sure that the arch supports Neon instructions.
16183 Which of these operations take place depends on bits from enum
16184 vfp_or_neon_is_neon_bits.
16186 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16187 current instruction's condition is COND_ALWAYS, the condition field is
16188 changed to inst.uncond_value. This is necessary because instructions shared
16189 between VFP and Neon may be conditional for the VFP variants only, and the
16190 unconditional Neon version must have, e.g., 0xF in the condition field. */
16193 vfp_or_neon_is_neon (unsigned check)
16195 /* Conditions are always legal in Thumb mode (IT blocks). */
16196 if (!thumb_mode && (check & NEON_CHECK_CC))
16198 if (inst.cond != COND_ALWAYS)
16200 first_error (_(BAD_COND));
16203 if (inst.uncond_value != -1)
16204 inst.instruction |= inst.uncond_value << 28;
16208 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16209 || ((check & NEON_CHECK_ARCH8)
16210 && !mark_feature_used (&fpu_neon_ext_armv8)))
16212 first_error (_(BAD_FPU));
16220 check_simd_pred_availability (int fp, unsigned check)
16222 if (inst.cond > COND_ALWAYS)
16224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16226 inst.error = BAD_FPU;
16229 inst.pred_insn_type = INSIDE_VPT_INSN;
16231 else if (inst.cond < COND_ALWAYS)
16233 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16234 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16235 else if (vfp_or_neon_is_neon (check) == FAIL)
16240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16241 && vfp_or_neon_is_neon (check) == FAIL)
16244 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16245 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16250 /* Neon instruction encoders, in approximate order of appearance. */
16253 do_neon_dyadic_i_su (void)
16255 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16258 enum neon_shape rs;
16259 struct neon_type_el et;
16260 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16261 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16263 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16265 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16269 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16271 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16275 do_neon_dyadic_i64_su (void)
16277 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16279 enum neon_shape rs;
16280 struct neon_type_el et;
16281 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16283 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16284 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16288 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16289 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16292 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16294 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16298 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16301 unsigned size = et.size >> 3;
16302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16304 inst.instruction |= LOW4 (inst.operands[1].reg);
16305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16306 inst.instruction |= (isquad != 0) << 6;
16307 inst.instruction |= immbits << 16;
16308 inst.instruction |= (size >> 3) << 7;
16309 inst.instruction |= (size & 0x7) << 19;
16311 inst.instruction |= (uval != 0) << 24;
16313 neon_dp_fixup (&inst);
16317 do_neon_shl_imm (void)
16319 if (!inst.operands[2].isreg)
16321 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16322 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16323 int imm = inst.operands[2].imm;
16325 constraint (imm < 0 || (unsigned)imm >= et.size,
16326 _("immediate out of range for shift"));
16327 NEON_ENCODE (IMMED, inst);
16328 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16333 struct neon_type_el et = neon_check_type (3, rs,
16334 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16337 /* VSHL/VQSHL 3-register variants have syntax such as:
16339 whereas other 3-register operations encoded by neon_three_same have
16342 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16344 tmp = inst.operands[2].reg;
16345 inst.operands[2].reg = inst.operands[1].reg;
16346 inst.operands[1].reg = tmp;
16347 NEON_ENCODE (INTEGER, inst);
16348 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16353 do_neon_qshl_imm (void)
16355 if (!inst.operands[2].isreg)
16357 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16358 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16359 int imm = inst.operands[2].imm;
16361 constraint (imm < 0 || (unsigned)imm >= et.size,
16362 _("immediate out of range for shift"));
16363 NEON_ENCODE (IMMED, inst);
16364 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16368 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16369 struct neon_type_el et = neon_check_type (3, rs,
16370 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16373 /* See note in do_neon_shl_imm. */
16374 tmp = inst.operands[2].reg;
16375 inst.operands[2].reg = inst.operands[1].reg;
16376 inst.operands[1].reg = tmp;
16377 NEON_ENCODE (INTEGER, inst);
16378 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16383 do_neon_rshl (void)
16385 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16388 enum neon_shape rs;
16389 struct neon_type_el et;
16390 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16392 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16393 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16397 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16398 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16405 if (inst.operands[2].reg == REG_PC)
16406 as_tsktsk (MVE_BAD_PC);
16407 else if (inst.operands[2].reg == REG_SP)
16408 as_tsktsk (MVE_BAD_SP);
16410 constraint (inst.operands[0].reg != inst.operands[1].reg,
16411 _("invalid instruction shape"));
16413 if (inst.instruction == 0x0000510)
16414 /* We are dealing with vqrshl. */
16415 inst.instruction = 0xee331ee0;
16417 /* We are dealing with vrshl. */
16418 inst.instruction = 0xee331e60;
16420 inst.instruction |= (et.type == NT_unsigned) << 28;
16421 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16422 inst.instruction |= neon_logbits (et.size) << 18;
16423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16424 inst.instruction |= inst.operands[2].reg;
16429 tmp = inst.operands[2].reg;
16430 inst.operands[2].reg = inst.operands[1].reg;
16431 inst.operands[1].reg = tmp;
16432 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16437 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16439 /* Handle .I8 pseudo-instructions. */
16442 /* Unfortunately, this will make everything apart from zero out-of-range.
16443 FIXME is this the intended semantics? There doesn't seem much point in
16444 accepting .I8 if so. */
16445 immediate |= immediate << 8;
16451 if (immediate == (immediate & 0x000000ff))
16453 *immbits = immediate;
16456 else if (immediate == (immediate & 0x0000ff00))
16458 *immbits = immediate >> 8;
16461 else if (immediate == (immediate & 0x00ff0000))
16463 *immbits = immediate >> 16;
16466 else if (immediate == (immediate & 0xff000000))
16468 *immbits = immediate >> 24;
16471 if ((immediate & 0xffff) != (immediate >> 16))
16472 goto bad_immediate;
16473 immediate &= 0xffff;
16476 if (immediate == (immediate & 0x000000ff))
16478 *immbits = immediate;
16481 else if (immediate == (immediate & 0x0000ff00))
16483 *immbits = immediate >> 8;
16488 first_error (_("immediate value out of range"));
16493 do_neon_logic (void)
16495 if (inst.operands[2].present && inst.operands[2].isreg)
16497 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16499 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16502 else if (rs != NS_QQQ
16503 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16504 first_error (BAD_FPU);
16506 neon_check_type (3, rs, N_IGNORE_TYPE);
16507 /* U bit and size field were set as part of the bitmask. */
16508 NEON_ENCODE (INTEGER, inst);
16509 neon_three_same (neon_quad (rs), 0, -1);
16513 const int three_ops_form = (inst.operands[2].present
16514 && !inst.operands[2].isreg);
16515 const int immoperand = (three_ops_form ? 2 : 1);
16516 enum neon_shape rs = (three_ops_form
16517 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16518 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16519 /* Because neon_select_shape makes the second operand a copy of the first
16520 if the second operand is not present. */
16522 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16525 else if (rs != NS_QQI
16526 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16527 first_error (BAD_FPU);
16529 struct neon_type_el et;
16530 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16531 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16533 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16536 if (et.type == NT_invtype)
16538 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16543 if (three_ops_form)
16544 constraint (inst.operands[0].reg != inst.operands[1].reg,
16545 _("first and second operands shall be the same register"));
16547 NEON_ENCODE (IMMED, inst);
16549 immbits = inst.operands[immoperand].imm;
16552 /* .i64 is a pseudo-op, so the immediate must be a repeating
16554 if (immbits != (inst.operands[immoperand].regisimm ?
16555 inst.operands[immoperand].reg : 0))
16557 /* Set immbits to an invalid constant. */
16558 immbits = 0xdeadbeef;
16565 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16569 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16573 /* Pseudo-instruction for VBIC. */
16574 neon_invert_size (&immbits, 0, et.size);
16575 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16579 /* Pseudo-instruction for VORR. */
16580 neon_invert_size (&immbits, 0, et.size);
16581 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16591 inst.instruction |= neon_quad (rs) << 6;
16592 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16593 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16594 inst.instruction |= cmode << 8;
16595 neon_write_immbits (immbits);
16597 neon_dp_fixup (&inst);
16602 do_neon_bitfield (void)
16604 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16605 neon_check_type (3, rs, N_IGNORE_TYPE);
16606 neon_three_same (neon_quad (rs), 0, -1);
16610 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16613 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16614 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16616 if (et.type == NT_float)
16618 NEON_ENCODE (FLOAT, inst);
16620 mve_encode_qqr (et.size, 0, 1);
16622 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16626 NEON_ENCODE (INTEGER, inst);
16628 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16630 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16636 do_neon_dyadic_if_su_d (void)
16638 /* This version only allow D registers, but that constraint is enforced during
16639 operand parsing so we don't need to do anything extra here. */
16640 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16644 do_neon_dyadic_if_i_d (void)
16646 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16647 affected if we specify unsigned args. */
16648 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16652 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16654 constraint (size < 32, BAD_ADDR_MODE);
16655 constraint (size != elsize, BAD_EL_TYPE);
16656 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16657 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16658 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16659 _("destination register and offset register may not be the"
16662 int imm = inst.relocs[0].exp.X_add_number;
16669 constraint ((imm % (size / 8) != 0)
16670 || imm > (0x7f << neon_logbits (size)),
16671 (size == 32) ? _("immediate must be a multiple of 4 in the"
16672 " range of +/-[0,508]")
16673 : _("immediate must be a multiple of 8 in the"
16674 " range of +/-[0,1016]"));
16675 inst.instruction |= 0x11 << 24;
16676 inst.instruction |= add << 23;
16677 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16678 inst.instruction |= inst.operands[1].writeback << 21;
16679 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16681 inst.instruction |= 1 << 12;
16682 inst.instruction |= (size == 64) << 8;
16683 inst.instruction &= 0xffffff00;
16684 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16685 inst.instruction |= imm >> neon_logbits (size);
16689 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16691 unsigned os = inst.operands[1].imm >> 5;
16692 constraint (os != 0 && size == 8,
16693 _("can not shift offsets when accessing less than half-word"));
16694 constraint (os && os != neon_logbits (size),
16695 _("shift immediate must be 1, 2 or 3 for half-word, word"
16696 " or double-word accesses respectively"));
16697 if (inst.operands[1].reg == REG_PC)
16698 as_tsktsk (MVE_BAD_PC);
16703 constraint (elsize >= 64, BAD_EL_TYPE);
16706 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16710 constraint (elsize != size, BAD_EL_TYPE);
16715 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16719 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16720 _("destination register and offset register may not be"
16722 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16724 constraint (inst.vectype.el[0].type != NT_unsigned
16725 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16726 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16730 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16733 inst.instruction |= 1 << 23;
16734 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16735 inst.instruction |= inst.operands[1].reg << 16;
16736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16737 inst.instruction |= neon_logbits (elsize) << 7;
16738 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16739 inst.instruction |= LOW4 (inst.operands[1].imm);
16740 inst.instruction |= !!os;
16744 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16746 enum neon_el_type type = inst.vectype.el[0].type;
16748 constraint (size >= 64, BAD_ADDR_MODE);
16752 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16755 constraint (elsize != size, BAD_EL_TYPE);
16762 constraint (elsize != size && type != NT_unsigned
16763 && type != NT_signed, BAD_EL_TYPE);
16767 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16770 int imm = inst.relocs[0].exp.X_add_number;
16778 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16783 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16786 constraint (1, _("immediate must be a multiple of 2 in the"
16787 " range of +/-[0,254]"));
16790 constraint (1, _("immediate must be a multiple of 4 in the"
16791 " range of +/-[0,508]"));
16796 if (size != elsize)
16798 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16799 constraint (inst.operands[0].reg > 14,
16800 _("MVE vector register in the range [Q0..Q7] expected"));
16801 inst.instruction |= (load && type == NT_unsigned) << 28;
16802 inst.instruction |= (size == 16) << 19;
16803 inst.instruction |= neon_logbits (elsize) << 7;
16807 if (inst.operands[1].reg == REG_PC)
16808 as_tsktsk (MVE_BAD_PC);
16809 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16810 as_tsktsk (MVE_BAD_SP);
16811 inst.instruction |= 1 << 12;
16812 inst.instruction |= neon_logbits (size) << 7;
16814 inst.instruction |= inst.operands[1].preind << 24;
16815 inst.instruction |= add << 23;
16816 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16817 inst.instruction |= inst.operands[1].writeback << 21;
16818 inst.instruction |= inst.operands[1].reg << 16;
16819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16820 inst.instruction &= 0xffffff80;
16821 inst.instruction |= imm >> neon_logbits (size);
16826 do_mve_vstr_vldr (void)
16831 if (inst.cond > COND_ALWAYS)
16832 inst.pred_insn_type = INSIDE_VPT_INSN;
16834 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16836 switch (inst.instruction)
16843 /* fall through. */
16849 /* fall through. */
16855 /* fall through. */
16861 /* fall through. */
16866 unsigned elsize = inst.vectype.el[0].size;
16868 if (inst.operands[1].isquad)
16870 /* We are dealing with [Q, imm]{!} cases. */
16871 do_mve_vstr_vldr_QI (size, elsize, load);
16875 if (inst.operands[1].immisreg == 2)
16877 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16878 do_mve_vstr_vldr_RQ (size, elsize, load);
16880 else if (!inst.operands[1].immisreg)
16882 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16883 do_mve_vstr_vldr_RI (size, elsize, load);
16886 constraint (1, BAD_ADDR_MODE);
16893 do_mve_vst_vld (void)
16895 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16898 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16899 || inst.relocs[0].exp.X_add_number != 0
16900 || inst.operands[1].immisreg != 0,
16902 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16903 if (inst.operands[1].reg == REG_PC)
16904 as_tsktsk (MVE_BAD_PC);
16905 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16906 as_tsktsk (MVE_BAD_SP);
16909 /* These instructions are one of the "exceptions" mentioned in
16910 handle_pred_state. They are MVE instructions that are not VPT compatible
16911 and do not accept a VPT code, thus appending such a code is a syntax
16913 if (inst.cond > COND_ALWAYS)
16914 first_error (BAD_SYNTAX);
16915 /* If we append a scalar condition code we can set this to
16916 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16917 else if (inst.cond < COND_ALWAYS)
16918 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16920 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16923 inst.instruction |= inst.operands[1].writeback << 21;
16924 inst.instruction |= inst.operands[1].reg << 16;
16925 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16926 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16931 do_mve_vaddlv (void)
16933 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16934 struct neon_type_el et
16935 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16937 if (et.type == NT_invtype)
16938 first_error (BAD_EL_TYPE);
16940 if (inst.cond > COND_ALWAYS)
16941 inst.pred_insn_type = INSIDE_VPT_INSN;
16943 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16945 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16947 inst.instruction |= (et.type == NT_unsigned) << 28;
16948 inst.instruction |= inst.operands[1].reg << 19;
16949 inst.instruction |= inst.operands[0].reg << 12;
16950 inst.instruction |= inst.operands[2].reg;
16955 do_neon_dyadic_if_su (void)
16957 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16958 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16961 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16962 || inst.instruction == ((unsigned) N_MNEM_vmin))
16963 && et.type == NT_float
16964 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16966 if (check_simd_pred_availability (et.type == NT_float,
16967 NEON_CHECK_ARCH | NEON_CHECK_CC))
16970 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16974 do_neon_addsub_if_i (void)
16976 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16977 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16980 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16981 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16982 N_EQK, N_IF_32 | N_I64 | N_KEY);
16984 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16985 /* If we are parsing Q registers and the element types match MVE, which NEON
16986 also supports, then we must check whether this is an instruction that can
16987 be used by both MVE/NEON. This distinction can be made based on whether
16988 they are predicated or not. */
16989 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16991 if (check_simd_pred_availability (et.type == NT_float,
16992 NEON_CHECK_ARCH | NEON_CHECK_CC))
16997 /* If they are either in a D register or are using an unsupported. */
16999 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17003 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17004 affected if we specify unsigned args. */
17005 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17008 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17010 V<op> A,B (A is operand 0, B is operand 2)
17015 so handle that case specially. */
17018 neon_exchange_operands (void)
17020 if (inst.operands[1].present)
17022 void *scratch = xmalloc (sizeof (inst.operands[0]));
17024 /* Swap operands[1] and operands[2]. */
17025 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17026 inst.operands[1] = inst.operands[2];
17027 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17032 inst.operands[1] = inst.operands[2];
17033 inst.operands[2] = inst.operands[0];
17038 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17040 if (inst.operands[2].isreg)
17043 neon_exchange_operands ();
17044 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17048 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17049 struct neon_type_el et = neon_check_type (2, rs,
17050 N_EQK | N_SIZ, immtypes | N_KEY);
17052 NEON_ENCODE (IMMED, inst);
17053 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17054 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17055 inst.instruction |= LOW4 (inst.operands[1].reg);
17056 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17057 inst.instruction |= neon_quad (rs) << 6;
17058 inst.instruction |= (et.type == NT_float) << 10;
17059 inst.instruction |= neon_logbits (et.size) << 18;
17061 neon_dp_fixup (&inst);
17068 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17072 do_neon_cmp_inv (void)
17074 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17080 neon_compare (N_IF_32, N_IF_32, FALSE);
17083 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17084 scalars, which are encoded in 5 bits, M : Rm.
17085 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17086 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17089 Dot Product instructions are similar to multiply instructions except elsize
17090 should always be 32.
17092 This function translates SCALAR, which is GAS's internal encoding of indexed
17093 scalar register, to raw encoding. There is also register and index range
17094 check based on ELSIZE. */
17097 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17099 unsigned regno = NEON_SCALAR_REG (scalar);
17100 unsigned elno = NEON_SCALAR_INDEX (scalar);
17105 if (regno > 7 || elno > 3)
17107 return regno | (elno << 3);
17110 if (regno > 15 || elno > 1)
17112 return regno | (elno << 4);
17116 first_error (_("scalar out of range for multiply instruction"));
17122 /* Encode multiply / multiply-accumulate scalar instructions. */
17125 neon_mul_mac (struct neon_type_el et, int ubit)
17129 /* Give a more helpful error message if we have an invalid type. */
17130 if (et.type == NT_invtype)
17133 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17134 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17135 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17136 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17137 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17138 inst.instruction |= LOW4 (scalar);
17139 inst.instruction |= HI1 (scalar) << 5;
17140 inst.instruction |= (et.type == NT_float) << 8;
17141 inst.instruction |= neon_logbits (et.size) << 20;
17142 inst.instruction |= (ubit != 0) << 24;
17144 neon_dp_fixup (&inst);
17148 do_neon_mac_maybe_scalar (void)
17150 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17153 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17156 if (inst.operands[2].isscalar)
17158 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17159 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17160 struct neon_type_el et = neon_check_type (3, rs,
17161 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17162 NEON_ENCODE (SCALAR, inst);
17163 neon_mul_mac (et, neon_quad (rs));
17165 else if (!inst.operands[2].isvec)
17167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17169 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17170 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17172 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17176 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17177 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17178 affected if we specify unsigned args. */
17179 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17184 do_neon_fmac (void)
17186 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17187 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17190 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17193 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17195 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17196 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17201 if (inst.operands[2].reg == REG_SP)
17202 as_tsktsk (MVE_BAD_SP);
17203 else if (inst.operands[2].reg == REG_PC)
17204 as_tsktsk (MVE_BAD_PC);
17206 inst.instruction = 0xee310e40;
17207 inst.instruction |= (et.size == 16) << 28;
17208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17209 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17211 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17212 inst.instruction |= inst.operands[2].reg;
17219 constraint (!inst.operands[2].isvec, BAD_FPU);
17222 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17228 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17229 struct neon_type_el et = neon_check_type (3, rs,
17230 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17231 neon_three_same (neon_quad (rs), 0, et.size);
17234 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17235 same types as the MAC equivalents. The polynomial type for this instruction
17236 is encoded the same as the integer type. */
17241 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17244 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17247 if (inst.operands[2].isscalar)
17249 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17250 do_neon_mac_maybe_scalar ();
17254 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17256 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17257 struct neon_type_el et
17258 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17259 if (et.type == NT_float)
17260 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17263 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17267 constraint (!inst.operands[2].isvec, BAD_FPU);
17268 neon_dyadic_misc (NT_poly,
17269 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17275 do_neon_qdmulh (void)
17277 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17280 if (inst.operands[2].isscalar)
17282 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17283 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17284 struct neon_type_el et = neon_check_type (3, rs,
17285 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17286 NEON_ENCODE (SCALAR, inst);
17287 neon_mul_mac (et, neon_quad (rs));
17291 enum neon_shape rs;
17292 struct neon_type_el et;
17293 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17295 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17296 et = neon_check_type (3, rs,
17297 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17301 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17302 et = neon_check_type (3, rs,
17303 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17306 NEON_ENCODE (INTEGER, inst);
17308 mve_encode_qqr (et.size, 0, 0);
17310 /* The U bit (rounding) comes from bit mask. */
17311 neon_three_same (neon_quad (rs), 0, et.size);
17316 do_mve_vaddv (void)
17318 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17319 struct neon_type_el et
17320 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17322 if (et.type == NT_invtype)
17323 first_error (BAD_EL_TYPE);
17325 if (inst.cond > COND_ALWAYS)
17326 inst.pred_insn_type = INSIDE_VPT_INSN;
17328 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17330 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17332 mve_encode_rq (et.type == NT_unsigned, et.size);
17336 do_mve_vhcadd (void)
17338 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17339 struct neon_type_el et
17340 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17342 if (inst.cond > COND_ALWAYS)
17343 inst.pred_insn_type = INSIDE_VPT_INSN;
17345 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17347 unsigned rot = inst.relocs[0].exp.X_add_number;
17348 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17350 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17351 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17352 "operand makes instruction UNPREDICTABLE"));
17354 mve_encode_qqq (0, et.size);
17355 inst.instruction |= (rot == 270) << 12;
17360 do_mve_vqdmull (void)
17362 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17363 struct neon_type_el et
17364 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17367 && (inst.operands[0].reg == inst.operands[1].reg
17368 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17369 as_tsktsk (BAD_MVE_SRCDEST);
17371 if (inst.cond > COND_ALWAYS)
17372 inst.pred_insn_type = INSIDE_VPT_INSN;
17374 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17378 mve_encode_qqq (et.size == 32, 64);
17379 inst.instruction |= 1;
17383 mve_encode_qqr (64, et.size == 32, 0);
17384 inst.instruction |= 0x3 << 5;
17391 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17392 struct neon_type_el et
17393 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17395 if (et.type == NT_invtype)
17396 first_error (BAD_EL_TYPE);
17398 if (inst.cond > COND_ALWAYS)
17399 inst.pred_insn_type = INSIDE_VPT_INSN;
17401 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17403 mve_encode_qqq (0, 64);
17407 do_mve_vbrsr (void)
17409 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17410 struct neon_type_el et
17411 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17413 if (inst.cond > COND_ALWAYS)
17414 inst.pred_insn_type = INSIDE_VPT_INSN;
17416 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17418 mve_encode_qqr (et.size, 0, 0);
17424 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17426 if (inst.cond > COND_ALWAYS)
17427 inst.pred_insn_type = INSIDE_VPT_INSN;
17429 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17431 mve_encode_qqq (1, 64);
17435 do_mve_vmulh (void)
17437 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17438 struct neon_type_el et
17439 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17441 if (inst.cond > COND_ALWAYS)
17442 inst.pred_insn_type = INSIDE_VPT_INSN;
17444 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17446 mve_encode_qqq (et.type == NT_unsigned, et.size);
17450 do_mve_vqdmlah (void)
17452 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17453 struct neon_type_el et
17454 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17456 if (inst.cond > COND_ALWAYS)
17457 inst.pred_insn_type = INSIDE_VPT_INSN;
17459 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17461 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17465 do_mve_vqdmladh (void)
17467 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17468 struct neon_type_el et
17469 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17471 if (inst.cond > COND_ALWAYS)
17472 inst.pred_insn_type = INSIDE_VPT_INSN;
17474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17477 && (inst.operands[0].reg == inst.operands[1].reg
17478 || inst.operands[0].reg == inst.operands[2].reg))
17479 as_tsktsk (BAD_MVE_SRCDEST);
17481 mve_encode_qqq (0, et.size);
17486 do_mve_vmull (void)
17489 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17490 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17491 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17492 && inst.cond == COND_ALWAYS
17493 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17498 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17499 N_SUF_32 | N_F64 | N_P8
17500 | N_P16 | N_I_MVE | N_KEY);
17501 if (((et.type == NT_poly) && et.size == 8
17502 && ARM_CPU_IS_ANY (cpu_variant))
17503 || (et.type == NT_integer) || (et.type == NT_float))
17510 constraint (rs != NS_QQQ, BAD_FPU);
17511 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17512 N_SU_32 | N_P8 | N_P16 | N_KEY);
17514 /* We are dealing with MVE's vmullt. */
17516 && (inst.operands[0].reg == inst.operands[1].reg
17517 || inst.operands[0].reg == inst.operands[2].reg))
17518 as_tsktsk (BAD_MVE_SRCDEST);
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17525 if (et.type == NT_poly)
17526 mve_encode_qqq (neon_logbits (et.size), 64);
17528 mve_encode_qqq (et.type == NT_unsigned, et.size);
17533 inst.instruction = N_MNEM_vmul;
17536 inst.pred_insn_type = INSIDE_IT_INSN;
17541 do_mve_vabav (void)
17543 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17551 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17552 | N_S16 | N_S32 | N_U8 | N_U16
17555 if (inst.cond > COND_ALWAYS)
17556 inst.pred_insn_type = INSIDE_VPT_INSN;
17558 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17560 mve_encode_rqq (et.type == NT_unsigned, et.size);
17564 do_mve_vmladav (void)
17566 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17567 struct neon_type_el et = neon_check_type (3, rs,
17568 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17570 if (et.type == NT_unsigned
17571 && (inst.instruction == M_MNEM_vmladavx
17572 || inst.instruction == M_MNEM_vmladavax
17573 || inst.instruction == M_MNEM_vmlsdav
17574 || inst.instruction == M_MNEM_vmlsdava
17575 || inst.instruction == M_MNEM_vmlsdavx
17576 || inst.instruction == M_MNEM_vmlsdavax))
17577 first_error (BAD_SIMD_TYPE);
17579 constraint (inst.operands[2].reg > 14,
17580 _("MVE vector register in the range [Q0..Q7] expected"));
17582 if (inst.cond > COND_ALWAYS)
17583 inst.pred_insn_type = INSIDE_VPT_INSN;
17585 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17587 if (inst.instruction == M_MNEM_vmlsdav
17588 || inst.instruction == M_MNEM_vmlsdava
17589 || inst.instruction == M_MNEM_vmlsdavx
17590 || inst.instruction == M_MNEM_vmlsdavax)
17591 inst.instruction |= (et.size == 8) << 28;
17593 inst.instruction |= (et.size == 8) << 8;
17595 mve_encode_rqq (et.type == NT_unsigned, 64);
17596 inst.instruction |= (et.size == 32) << 16;
17600 do_mve_vmlaldav (void)
17602 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17603 struct neon_type_el et
17604 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17605 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17607 if (et.type == NT_unsigned
17608 && (inst.instruction == M_MNEM_vmlsldav
17609 || inst.instruction == M_MNEM_vmlsldava
17610 || inst.instruction == M_MNEM_vmlsldavx
17611 || inst.instruction == M_MNEM_vmlsldavax))
17612 first_error (BAD_SIMD_TYPE);
17614 if (inst.cond > COND_ALWAYS)
17615 inst.pred_insn_type = INSIDE_VPT_INSN;
17617 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17619 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17623 do_mve_vrmlaldavh (void)
17625 struct neon_type_el et;
17626 if (inst.instruction == M_MNEM_vrmlsldavh
17627 || inst.instruction == M_MNEM_vrmlsldavha
17628 || inst.instruction == M_MNEM_vrmlsldavhx
17629 || inst.instruction == M_MNEM_vrmlsldavhax)
17631 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17632 if (inst.operands[1].reg == REG_SP)
17633 as_tsktsk (MVE_BAD_SP);
17637 if (inst.instruction == M_MNEM_vrmlaldavhx
17638 || inst.instruction == M_MNEM_vrmlaldavhax)
17639 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17641 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17642 N_U32 | N_S32 | N_KEY);
17643 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17644 with vmax/min instructions, making the use of SP in assembly really
17645 nonsensical, so instead of issuing a warning like we do for other uses
17646 of SP for the odd register operand we error out. */
17647 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17650 /* Make sure we still check the second operand is an odd one and that PC is
17651 disallowed. This because we are parsing for any GPR operand, to be able
17652 to distinguish between giving a warning or an error for SP as described
17654 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17655 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17657 if (inst.cond > COND_ALWAYS)
17658 inst.pred_insn_type = INSIDE_VPT_INSN;
17660 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17662 mve_encode_rrqq (et.type == NT_unsigned, 0);
17667 do_mve_vmaxnmv (void)
17669 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17670 struct neon_type_el et
17671 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17673 if (inst.cond > COND_ALWAYS)
17674 inst.pred_insn_type = INSIDE_VPT_INSN;
17676 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17678 if (inst.operands[0].reg == REG_SP)
17679 as_tsktsk (MVE_BAD_SP);
17680 else if (inst.operands[0].reg == REG_PC)
17681 as_tsktsk (MVE_BAD_PC);
17683 mve_encode_rq (et.size == 16, 64);
17687 do_mve_vmaxv (void)
17689 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17690 struct neon_type_el et;
17692 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17693 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17695 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17697 if (inst.cond > COND_ALWAYS)
17698 inst.pred_insn_type = INSIDE_VPT_INSN;
17700 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17702 if (inst.operands[0].reg == REG_SP)
17703 as_tsktsk (MVE_BAD_SP);
17704 else if (inst.operands[0].reg == REG_PC)
17705 as_tsktsk (MVE_BAD_PC);
17707 mve_encode_rq (et.type == NT_unsigned, et.size);
17712 do_neon_qrdmlah (void)
17714 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17716 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17718 /* Check we're on the correct architecture. */
17719 if (!mark_feature_used (&fpu_neon_ext_armv8))
17721 = _("instruction form not available on this architecture.");
17722 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17724 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17725 record_feature_use (&fpu_neon_ext_v8_1);
17727 if (inst.operands[2].isscalar)
17729 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17730 struct neon_type_el et = neon_check_type (3, rs,
17731 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17732 NEON_ENCODE (SCALAR, inst);
17733 neon_mul_mac (et, neon_quad (rs));
17737 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17738 struct neon_type_el et = neon_check_type (3, rs,
17739 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17740 NEON_ENCODE (INTEGER, inst);
17741 /* The U bit (rounding) comes from bit mask. */
17742 neon_three_same (neon_quad (rs), 0, et.size);
17747 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17748 struct neon_type_el et
17749 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17751 NEON_ENCODE (INTEGER, inst);
17752 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17757 do_neon_fcmp_absolute (void)
17759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17760 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17761 N_F_16_32 | N_KEY);
17762 /* Size field comes from bit mask. */
17763 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17767 do_neon_fcmp_absolute_inv (void)
17769 neon_exchange_operands ();
17770 do_neon_fcmp_absolute ();
17774 do_neon_step (void)
17776 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17777 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17778 N_F_16_32 | N_KEY);
17779 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17783 do_neon_abs_neg (void)
17785 enum neon_shape rs;
17786 struct neon_type_el et;
17788 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17791 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17792 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17794 if (check_simd_pred_availability (et.type == NT_float,
17795 NEON_CHECK_ARCH | NEON_CHECK_CC))
17798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17800 inst.instruction |= LOW4 (inst.operands[1].reg);
17801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17802 inst.instruction |= neon_quad (rs) << 6;
17803 inst.instruction |= (et.type == NT_float) << 10;
17804 inst.instruction |= neon_logbits (et.size) << 18;
17806 neon_dp_fixup (&inst);
17812 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17813 struct neon_type_el et = neon_check_type (2, rs,
17814 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17815 int imm = inst.operands[2].imm;
17816 constraint (imm < 0 || (unsigned)imm >= et.size,
17817 _("immediate out of range for insert"));
17818 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17824 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17825 struct neon_type_el et = neon_check_type (2, rs,
17826 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17827 int imm = inst.operands[2].imm;
17828 constraint (imm < 1 || (unsigned)imm > et.size,
17829 _("immediate out of range for insert"));
17830 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17834 do_neon_qshlu_imm (void)
17836 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17837 struct neon_type_el et = neon_check_type (2, rs,
17838 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17839 int imm = inst.operands[2].imm;
17840 constraint (imm < 0 || (unsigned)imm >= et.size,
17841 _("immediate out of range for shift"));
17842 /* Only encodes the 'U present' variant of the instruction.
17843 In this case, signed types have OP (bit 8) set to 0.
17844 Unsigned types have OP set to 1. */
17845 inst.instruction |= (et.type == NT_unsigned) << 8;
17846 /* The rest of the bits are the same as other immediate shifts. */
17847 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17851 do_neon_qmovn (void)
17853 struct neon_type_el et = neon_check_type (2, NS_DQ,
17854 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17855 /* Saturating move where operands can be signed or unsigned, and the
17856 destination has the same signedness. */
17857 NEON_ENCODE (INTEGER, inst);
17858 if (et.type == NT_unsigned)
17859 inst.instruction |= 0xc0;
17861 inst.instruction |= 0x80;
17862 neon_two_same (0, 1, et.size / 2);
17866 do_neon_qmovun (void)
17868 struct neon_type_el et = neon_check_type (2, NS_DQ,
17869 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17870 /* Saturating move with unsigned results. Operands must be signed. */
17871 NEON_ENCODE (INTEGER, inst);
17872 neon_two_same (0, 1, et.size / 2);
17876 do_neon_rshift_sat_narrow (void)
17878 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17879 or unsigned. If operands are unsigned, results must also be unsigned. */
17880 struct neon_type_el et = neon_check_type (2, NS_DQI,
17881 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17882 int imm = inst.operands[2].imm;
17883 /* This gets the bounds check, size encoding and immediate bits calculation
17887 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17888 VQMOVN.I<size> <Dd>, <Qm>. */
17891 inst.operands[2].present = 0;
17892 inst.instruction = N_MNEM_vqmovn;
17897 constraint (imm < 1 || (unsigned)imm > et.size,
17898 _("immediate out of range"));
17899 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17903 do_neon_rshift_sat_narrow_u (void)
17905 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17906 or unsigned. If operands are unsigned, results must also be unsigned. */
17907 struct neon_type_el et = neon_check_type (2, NS_DQI,
17908 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17909 int imm = inst.operands[2].imm;
17910 /* This gets the bounds check, size encoding and immediate bits calculation
17914 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17915 VQMOVUN.I<size> <Dd>, <Qm>. */
17918 inst.operands[2].present = 0;
17919 inst.instruction = N_MNEM_vqmovun;
17924 constraint (imm < 1 || (unsigned)imm > et.size,
17925 _("immediate out of range"));
17926 /* FIXME: The manual is kind of unclear about what value U should have in
17927 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17929 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17933 do_neon_movn (void)
17935 struct neon_type_el et = neon_check_type (2, NS_DQ,
17936 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17937 NEON_ENCODE (INTEGER, inst);
17938 neon_two_same (0, 1, et.size / 2);
17942 do_neon_rshift_narrow (void)
17944 struct neon_type_el et = neon_check_type (2, NS_DQI,
17945 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17946 int imm = inst.operands[2].imm;
17947 /* This gets the bounds check, size encoding and immediate bits calculation
17951 /* If immediate is zero then we are a pseudo-instruction for
17952 VMOVN.I<size> <Dd>, <Qm> */
17955 inst.operands[2].present = 0;
17956 inst.instruction = N_MNEM_vmovn;
17961 constraint (imm < 1 || (unsigned)imm > et.size,
17962 _("immediate out of range for narrowing operation"));
17963 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17967 do_neon_shll (void)
17969 /* FIXME: Type checking when lengthening. */
17970 struct neon_type_el et = neon_check_type (2, NS_QDI,
17971 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17972 unsigned imm = inst.operands[2].imm;
17974 if (imm == et.size)
17976 /* Maximum shift variant. */
17977 NEON_ENCODE (INTEGER, inst);
17978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17979 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17980 inst.instruction |= LOW4 (inst.operands[1].reg);
17981 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17982 inst.instruction |= neon_logbits (et.size) << 18;
17984 neon_dp_fixup (&inst);
17988 /* A more-specific type check for non-max versions. */
17989 et = neon_check_type (2, NS_QDI,
17990 N_EQK | N_DBL, N_SU_32 | N_KEY);
17991 NEON_ENCODE (IMMED, inst);
17992 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17996 /* Check the various types for the VCVT instruction, and return which version
17997 the current instruction is. */
17999 #define CVT_FLAVOUR_VAR \
18000 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18001 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18002 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18003 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18004 /* Half-precision conversions. */ \
18005 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18006 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18007 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18008 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18009 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18010 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18011 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18012 Compared with single/double precision variants, only the co-processor \
18013 field is different, so the encoding flow is reused here. */ \
18014 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18015 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18016 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18017 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18018 /* VFP instructions. */ \
18019 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18020 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18021 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18022 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18023 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18024 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18025 /* VFP instructions with bitshift. */ \
18026 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18027 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18028 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18029 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18030 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18031 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18032 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18033 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18035 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18036 neon_cvt_flavour_##C,
18038 /* The different types of conversions we can do. */
18039 enum neon_cvt_flavour
18042 neon_cvt_flavour_invalid,
18043 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18048 static enum neon_cvt_flavour
18049 get_neon_cvt_flavour (enum neon_shape rs)
18051 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18052 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18053 if (et.type != NT_invtype) \
18055 inst.error = NULL; \
18056 return (neon_cvt_flavour_##C); \
18059 struct neon_type_el et;
18060 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18061 || rs == NS_FF) ? N_VFP : 0;
18062 /* The instruction versions which take an immediate take one register
18063 argument, which is extended to the width of the full register. Thus the
18064 "source" and "destination" registers must have the same width. Hack that
18065 here by making the size equal to the key (wider, in this case) operand. */
18066 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18070 return neon_cvt_flavour_invalid;
18085 /* Neon-syntax VFP conversions. */
18088 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18090 const char *opname = 0;
18092 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18093 || rs == NS_FHI || rs == NS_HFI)
18095 /* Conversions with immediate bitshift. */
18096 const char *enc[] =
18098 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18104 if (flavour < (int) ARRAY_SIZE (enc))
18106 opname = enc[flavour];
18107 constraint (inst.operands[0].reg != inst.operands[1].reg,
18108 _("operands 0 and 1 must be the same register"));
18109 inst.operands[1] = inst.operands[2];
18110 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18115 /* Conversions without bitshift. */
18116 const char *enc[] =
18118 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18124 if (flavour < (int) ARRAY_SIZE (enc))
18125 opname = enc[flavour];
18129 do_vfp_nsyn_opcode (opname);
18131 /* ARMv8.2 fp16 VCVT instruction. */
18132 if (flavour == neon_cvt_flavour_s32_f16
18133 || flavour == neon_cvt_flavour_u32_f16
18134 || flavour == neon_cvt_flavour_f16_u32
18135 || flavour == neon_cvt_flavour_f16_s32)
18136 do_scalar_fp16_v82_encode ();
18140 do_vfp_nsyn_cvtz (void)
18142 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18143 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18144 const char *enc[] =
18146 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18152 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18153 do_vfp_nsyn_opcode (enc[flavour]);
18157 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18158 enum neon_cvt_mode mode)
18163 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18164 D register operands. */
18165 if (flavour == neon_cvt_flavour_s32_f64
18166 || flavour == neon_cvt_flavour_u32_f64)
18167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18170 if (flavour == neon_cvt_flavour_s32_f16
18171 || flavour == neon_cvt_flavour_u32_f16)
18172 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18175 set_pred_insn_type (OUTSIDE_PRED_INSN);
18179 case neon_cvt_flavour_s32_f64:
18183 case neon_cvt_flavour_s32_f32:
18187 case neon_cvt_flavour_s32_f16:
18191 case neon_cvt_flavour_u32_f64:
18195 case neon_cvt_flavour_u32_f32:
18199 case neon_cvt_flavour_u32_f16:
18204 first_error (_("invalid instruction shape"));
18210 case neon_cvt_mode_a: rm = 0; break;
18211 case neon_cvt_mode_n: rm = 1; break;
18212 case neon_cvt_mode_p: rm = 2; break;
18213 case neon_cvt_mode_m: rm = 3; break;
18214 default: first_error (_("invalid rounding mode")); return;
18217 NEON_ENCODE (FPV8, inst);
18218 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18219 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18220 inst.instruction |= sz << 8;
18222 /* ARMv8.2 fp16 VCVT instruction. */
18223 if (flavour == neon_cvt_flavour_s32_f16
18224 ||flavour == neon_cvt_flavour_u32_f16)
18225 do_scalar_fp16_v82_encode ();
18226 inst.instruction |= op << 7;
18227 inst.instruction |= rm << 16;
18228 inst.instruction |= 0xf0000000;
18229 inst.is_neon = TRUE;
18233 do_neon_cvt_1 (enum neon_cvt_mode mode)
18235 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18236 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18237 NS_FH, NS_HF, NS_FHI, NS_HFI,
18239 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18241 if (flavour == neon_cvt_flavour_invalid)
18244 /* PR11109: Handle round-to-zero for VCVT conversions. */
18245 if (mode == neon_cvt_mode_z
18246 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18247 && (flavour == neon_cvt_flavour_s16_f16
18248 || flavour == neon_cvt_flavour_u16_f16
18249 || flavour == neon_cvt_flavour_s32_f32
18250 || flavour == neon_cvt_flavour_u32_f32
18251 || flavour == neon_cvt_flavour_s32_f64
18252 || flavour == neon_cvt_flavour_u32_f64)
18253 && (rs == NS_FD || rs == NS_FF))
18255 do_vfp_nsyn_cvtz ();
18259 /* ARMv8.2 fp16 VCVT conversions. */
18260 if (mode == neon_cvt_mode_z
18261 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18262 && (flavour == neon_cvt_flavour_s32_f16
18263 || flavour == neon_cvt_flavour_u32_f16)
18266 do_vfp_nsyn_cvtz ();
18267 do_scalar_fp16_v82_encode ();
18271 /* VFP rather than Neon conversions. */
18272 if (flavour >= neon_cvt_flavour_first_fp)
18274 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18275 do_vfp_nsyn_cvt (rs, flavour);
18277 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18285 if (mode == neon_cvt_mode_z
18286 && (flavour == neon_cvt_flavour_f16_s16
18287 || flavour == neon_cvt_flavour_f16_u16
18288 || flavour == neon_cvt_flavour_s16_f16
18289 || flavour == neon_cvt_flavour_u16_f16
18290 || flavour == neon_cvt_flavour_f32_u32
18291 || flavour == neon_cvt_flavour_f32_s32
18292 || flavour == neon_cvt_flavour_s32_f32
18293 || flavour == neon_cvt_flavour_u32_f32))
18295 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18298 else if (mode == neon_cvt_mode_n)
18300 /* We are dealing with vcvt with the 'ne' condition. */
18302 inst.instruction = N_MNEM_vcvt;
18303 do_neon_cvt_1 (neon_cvt_mode_z);
18306 /* fall through. */
18310 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18311 0x0000100, 0x1000100, 0x0, 0x1000000};
18313 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18314 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18317 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18319 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18320 _("immediate value out of range"));
18323 case neon_cvt_flavour_f16_s16:
18324 case neon_cvt_flavour_f16_u16:
18325 case neon_cvt_flavour_s16_f16:
18326 case neon_cvt_flavour_u16_f16:
18327 constraint (inst.operands[2].imm > 16,
18328 _("immediate value out of range"));
18330 case neon_cvt_flavour_f32_u32:
18331 case neon_cvt_flavour_f32_s32:
18332 case neon_cvt_flavour_s32_f32:
18333 case neon_cvt_flavour_u32_f32:
18334 constraint (inst.operands[2].imm > 32,
18335 _("immediate value out of range"));
18338 inst.error = BAD_FPU;
18343 /* Fixed-point conversion with #0 immediate is encoded as an
18344 integer conversion. */
18345 if (inst.operands[2].present && inst.operands[2].imm == 0)
18347 NEON_ENCODE (IMMED, inst);
18348 if (flavour != neon_cvt_flavour_invalid)
18349 inst.instruction |= enctab[flavour];
18350 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18351 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18352 inst.instruction |= LOW4 (inst.operands[1].reg);
18353 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18354 inst.instruction |= neon_quad (rs) << 6;
18355 inst.instruction |= 1 << 21;
18356 if (flavour < neon_cvt_flavour_s16_f16)
18358 inst.instruction |= 1 << 21;
18359 immbits = 32 - inst.operands[2].imm;
18360 inst.instruction |= immbits << 16;
18364 inst.instruction |= 3 << 20;
18365 immbits = 16 - inst.operands[2].imm;
18366 inst.instruction |= immbits << 16;
18367 inst.instruction &= ~(1 << 9);
18370 neon_dp_fixup (&inst);
18375 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18376 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18377 && (flavour == neon_cvt_flavour_s16_f16
18378 || flavour == neon_cvt_flavour_u16_f16
18379 || flavour == neon_cvt_flavour_s32_f32
18380 || flavour == neon_cvt_flavour_u32_f32))
18382 if (check_simd_pred_availability (1,
18383 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18386 else if (mode == neon_cvt_mode_z
18387 && (flavour == neon_cvt_flavour_f16_s16
18388 || flavour == neon_cvt_flavour_f16_u16
18389 || flavour == neon_cvt_flavour_s16_f16
18390 || flavour == neon_cvt_flavour_u16_f16
18391 || flavour == neon_cvt_flavour_f32_u32
18392 || flavour == neon_cvt_flavour_f32_s32
18393 || flavour == neon_cvt_flavour_s32_f32
18394 || flavour == neon_cvt_flavour_u32_f32))
18396 if (check_simd_pred_availability (1,
18397 NEON_CHECK_CC | NEON_CHECK_ARCH))
18400 /* fall through. */
18402 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18405 NEON_ENCODE (FLOAT, inst);
18406 if (check_simd_pred_availability (1,
18407 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18410 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18411 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18412 inst.instruction |= LOW4 (inst.operands[1].reg);
18413 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18414 inst.instruction |= neon_quad (rs) << 6;
18415 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18416 || flavour == neon_cvt_flavour_u32_f32) << 7;
18417 inst.instruction |= mode << 8;
18418 if (flavour == neon_cvt_flavour_u16_f16
18419 || flavour == neon_cvt_flavour_s16_f16)
18420 /* Mask off the original size bits and reencode them. */
18421 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18424 inst.instruction |= 0xfc000000;
18426 inst.instruction |= 0xf0000000;
18432 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18433 0x100, 0x180, 0x0, 0x080};
18435 NEON_ENCODE (INTEGER, inst);
18437 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18439 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18443 if (flavour != neon_cvt_flavour_invalid)
18444 inst.instruction |= enctab[flavour];
18446 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18447 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18448 inst.instruction |= LOW4 (inst.operands[1].reg);
18449 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18450 inst.instruction |= neon_quad (rs) << 6;
18451 if (flavour >= neon_cvt_flavour_s16_f16
18452 && flavour <= neon_cvt_flavour_f16_u16)
18453 /* Half precision. */
18454 inst.instruction |= 1 << 18;
18456 inst.instruction |= 2 << 18;
18458 neon_dp_fixup (&inst);
18463 /* Half-precision conversions for Advanced SIMD -- neon. */
18466 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18470 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18472 as_bad (_("operand size must match register width"));
18477 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18479 as_bad (_("operand size must match register width"));
18484 inst.instruction = 0x3b60600;
18486 inst.instruction = 0x3b60700;
18488 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18489 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18490 inst.instruction |= LOW4 (inst.operands[1].reg);
18491 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18492 neon_dp_fixup (&inst);
18496 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18497 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18498 do_vfp_nsyn_cvt (rs, flavour);
18500 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18505 do_neon_cvtr (void)
18507 do_neon_cvt_1 (neon_cvt_mode_x);
18513 do_neon_cvt_1 (neon_cvt_mode_z);
18517 do_neon_cvta (void)
18519 do_neon_cvt_1 (neon_cvt_mode_a);
18523 do_neon_cvtn (void)
18525 do_neon_cvt_1 (neon_cvt_mode_n);
18529 do_neon_cvtp (void)
18531 do_neon_cvt_1 (neon_cvt_mode_p);
18535 do_neon_cvtm (void)
18537 do_neon_cvt_1 (neon_cvt_mode_m);
18541 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18544 mark_feature_used (&fpu_vfp_ext_armv8);
18546 encode_arm_vfp_reg (inst.operands[0].reg,
18547 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18548 encode_arm_vfp_reg (inst.operands[1].reg,
18549 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18550 inst.instruction |= to ? 0x10000 : 0;
18551 inst.instruction |= t ? 0x80 : 0;
18552 inst.instruction |= is_double ? 0x100 : 0;
18553 do_vfp_cond_or_thumb ();
18557 do_neon_cvttb_1 (bfd_boolean t)
18559 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18560 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18564 else if (rs == NS_QQ || rs == NS_QQI)
18566 int single_to_half = 0;
18567 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18570 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18572 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18573 && (flavour == neon_cvt_flavour_u16_f16
18574 || flavour == neon_cvt_flavour_s16_f16
18575 || flavour == neon_cvt_flavour_f16_s16
18576 || flavour == neon_cvt_flavour_f16_u16
18577 || flavour == neon_cvt_flavour_u32_f32
18578 || flavour == neon_cvt_flavour_s32_f32
18579 || flavour == neon_cvt_flavour_f32_s32
18580 || flavour == neon_cvt_flavour_f32_u32))
18583 inst.instruction = N_MNEM_vcvt;
18584 set_pred_insn_type (INSIDE_VPT_INSN);
18585 do_neon_cvt_1 (neon_cvt_mode_z);
18588 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18589 single_to_half = 1;
18590 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18592 first_error (BAD_FPU);
18596 inst.instruction = 0xee3f0e01;
18597 inst.instruction |= single_to_half << 28;
18598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18599 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18600 inst.instruction |= t << 12;
18601 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18602 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18605 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18608 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18610 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18613 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18615 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18617 /* The VCVTB and VCVTT instructions with D-register operands
18618 don't work for SP only targets. */
18619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18623 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18625 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18627 /* The VCVTB and VCVTT instructions with D-register operands
18628 don't work for SP only targets. */
18629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18633 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18640 do_neon_cvtb (void)
18642 do_neon_cvttb_1 (FALSE);
18647 do_neon_cvtt (void)
18649 do_neon_cvttb_1 (TRUE);
18653 neon_move_immediate (void)
18655 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18656 struct neon_type_el et = neon_check_type (2, rs,
18657 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18658 unsigned immlo, immhi = 0, immbits;
18659 int op, cmode, float_p;
18661 constraint (et.type == NT_invtype,
18662 _("operand size must be specified for immediate VMOV"));
18664 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18665 op = (inst.instruction & (1 << 5)) != 0;
18667 immlo = inst.operands[1].imm;
18668 if (inst.operands[1].regisimm)
18669 immhi = inst.operands[1].reg;
18671 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18672 _("immediate has bits set outside the operand size"));
18674 float_p = inst.operands[1].immisfloat;
18676 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18677 et.size, et.type)) == FAIL)
18679 /* Invert relevant bits only. */
18680 neon_invert_size (&immlo, &immhi, et.size);
18681 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18682 with one or the other; those cases are caught by
18683 neon_cmode_for_move_imm. */
18685 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18686 &op, et.size, et.type)) == FAIL)
18688 first_error (_("immediate out of range"));
18693 inst.instruction &= ~(1 << 5);
18694 inst.instruction |= op << 5;
18696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18698 inst.instruction |= neon_quad (rs) << 6;
18699 inst.instruction |= cmode << 8;
18701 neon_write_immbits (immbits);
18707 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18710 if (inst.operands[1].isreg)
18712 enum neon_shape rs;
18713 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18714 rs = neon_select_shape (NS_QQ, NS_NULL);
18716 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18718 NEON_ENCODE (INTEGER, inst);
18719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18721 inst.instruction |= LOW4 (inst.operands[1].reg);
18722 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18723 inst.instruction |= neon_quad (rs) << 6;
18727 NEON_ENCODE (IMMED, inst);
18728 neon_move_immediate ();
18731 neon_dp_fixup (&inst);
18733 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18735 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18736 constraint ((inst.instruction & 0xd00) == 0xd00,
18737 _("immediate value out of range"));
18741 /* Encode instructions of form:
18743 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18744 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18747 neon_mixed_length (struct neon_type_el et, unsigned size)
18749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18751 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18752 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18753 inst.instruction |= LOW4 (inst.operands[2].reg);
18754 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18755 inst.instruction |= (et.type == NT_unsigned) << 24;
18756 inst.instruction |= neon_logbits (size) << 20;
18758 neon_dp_fixup (&inst);
18762 do_neon_dyadic_long (void)
18764 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18767 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18770 NEON_ENCODE (INTEGER, inst);
18771 /* FIXME: Type checking for lengthening op. */
18772 struct neon_type_el et = neon_check_type (3, NS_QDD,
18773 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18774 neon_mixed_length (et, et.size);
18776 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18777 && (inst.cond == 0xf || inst.cond == 0x10))
18779 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18780 in an IT block with le/lt conditions. */
18782 if (inst.cond == 0xf)
18784 else if (inst.cond == 0x10)
18787 inst.pred_insn_type = INSIDE_IT_INSN;
18789 if (inst.instruction == N_MNEM_vaddl)
18791 inst.instruction = N_MNEM_vadd;
18792 do_neon_addsub_if_i ();
18794 else if (inst.instruction == N_MNEM_vsubl)
18796 inst.instruction = N_MNEM_vsub;
18797 do_neon_addsub_if_i ();
18799 else if (inst.instruction == N_MNEM_vabdl)
18801 inst.instruction = N_MNEM_vabd;
18802 do_neon_dyadic_if_su ();
18806 first_error (BAD_FPU);
18810 do_neon_abal (void)
18812 struct neon_type_el et = neon_check_type (3, NS_QDD,
18813 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18814 neon_mixed_length (et, et.size);
18818 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18820 if (inst.operands[2].isscalar)
18822 struct neon_type_el et = neon_check_type (3, NS_QDS,
18823 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18824 NEON_ENCODE (SCALAR, inst);
18825 neon_mul_mac (et, et.type == NT_unsigned);
18829 struct neon_type_el et = neon_check_type (3, NS_QDD,
18830 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18831 NEON_ENCODE (INTEGER, inst);
18832 neon_mixed_length (et, et.size);
18837 do_neon_mac_maybe_scalar_long (void)
18839 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18842 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18843 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18846 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18848 unsigned regno = NEON_SCALAR_REG (scalar);
18849 unsigned elno = NEON_SCALAR_INDEX (scalar);
18853 if (regno > 7 || elno > 3)
18856 return ((regno & 0x7)
18857 | ((elno & 0x1) << 3)
18858 | (((elno >> 1) & 0x1) << 5));
18862 if (regno > 15 || elno > 1)
18865 return (((regno & 0x1) << 5)
18866 | ((regno >> 1) & 0x7)
18867 | ((elno & 0x1) << 3));
18871 first_error (_("scalar out of range for multiply instruction"));
18876 do_neon_fmac_maybe_scalar_long (int subtype)
18878 enum neon_shape rs;
18880 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18881 field (bits[21:20]) has different meaning. For scalar index variant, it's
18882 used to differentiate add and subtract, otherwise it's with fixed value
18886 if (inst.cond != COND_ALWAYS)
18887 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18888 "behaviour is UNPREDICTABLE"));
18890 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18896 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18897 be a scalar index register. */
18898 if (inst.operands[2].isscalar)
18900 high8 = 0xfe000000;
18903 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18907 high8 = 0xfc000000;
18910 inst.instruction |= (0x1 << 23);
18911 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18914 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18916 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18917 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18918 so we simply pass -1 as size. */
18919 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18920 neon_three_same (quad_p, 0, size);
18922 /* Undo neon_dp_fixup. Redo the high eight bits. */
18923 inst.instruction &= 0x00ffffff;
18924 inst.instruction |= high8;
18926 #define LOW1(R) ((R) & 0x1)
18927 #define HI4(R) (((R) >> 1) & 0xf)
18928 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18929 whether the instruction is in Q form and whether Vm is a scalar indexed
18931 if (inst.operands[2].isscalar)
18934 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18935 inst.instruction &= 0xffffffd0;
18936 inst.instruction |= rm;
18940 /* Redo Rn as well. */
18941 inst.instruction &= 0xfff0ff7f;
18942 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18943 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18948 /* Redo Rn and Rm. */
18949 inst.instruction &= 0xfff0ff50;
18950 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18951 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18952 inst.instruction |= HI4 (inst.operands[2].reg);
18953 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18958 do_neon_vfmal (void)
18960 return do_neon_fmac_maybe_scalar_long (0);
18964 do_neon_vfmsl (void)
18966 return do_neon_fmac_maybe_scalar_long (1);
18970 do_neon_dyadic_wide (void)
18972 struct neon_type_el et = neon_check_type (3, NS_QQD,
18973 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18974 neon_mixed_length (et, et.size);
18978 do_neon_dyadic_narrow (void)
18980 struct neon_type_el et = neon_check_type (3, NS_QDD,
18981 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18982 /* Operand sign is unimportant, and the U bit is part of the opcode,
18983 so force the operand type to integer. */
18984 et.type = NT_integer;
18985 neon_mixed_length (et, et.size / 2);
18989 do_neon_mul_sat_scalar_long (void)
18991 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18995 do_neon_vmull (void)
18997 if (inst.operands[2].isscalar)
18998 do_neon_mac_maybe_scalar_long ();
19001 struct neon_type_el et = neon_check_type (3, NS_QDD,
19002 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19004 if (et.type == NT_poly)
19005 NEON_ENCODE (POLY, inst);
19007 NEON_ENCODE (INTEGER, inst);
19009 /* For polynomial encoding the U bit must be zero, and the size must
19010 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19011 obviously, as 0b10). */
19014 /* Check we're on the correct architecture. */
19015 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19017 _("Instruction form not available on this architecture.");
19022 neon_mixed_length (et, et.size);
19029 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19030 struct neon_type_el et = neon_check_type (3, rs,
19031 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19032 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19034 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19035 _("shift out of range"));
19036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19037 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19038 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19039 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19040 inst.instruction |= LOW4 (inst.operands[2].reg);
19041 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19042 inst.instruction |= neon_quad (rs) << 6;
19043 inst.instruction |= imm << 8;
19045 neon_dp_fixup (&inst);
19051 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19052 struct neon_type_el et = neon_check_type (2, rs,
19053 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19054 unsigned op = (inst.instruction >> 7) & 3;
19055 /* N (width of reversed regions) is encoded as part of the bitmask. We
19056 extract it here to check the elements to be reversed are smaller.
19057 Otherwise we'd get a reserved instruction. */
19058 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19059 gas_assert (elsize != 0);
19060 constraint (et.size >= elsize,
19061 _("elements must be smaller than reversal region"));
19062 neon_two_same (neon_quad (rs), 1, et.size);
19068 if (inst.operands[1].isscalar)
19070 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19072 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19073 struct neon_type_el et = neon_check_type (2, rs,
19074 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19075 unsigned sizebits = et.size >> 3;
19076 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19077 int logsize = neon_logbits (et.size);
19078 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19080 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19083 NEON_ENCODE (SCALAR, inst);
19084 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19085 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19086 inst.instruction |= LOW4 (dm);
19087 inst.instruction |= HI1 (dm) << 5;
19088 inst.instruction |= neon_quad (rs) << 6;
19089 inst.instruction |= x << 17;
19090 inst.instruction |= sizebits << 16;
19092 neon_dp_fixup (&inst);
19096 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19097 struct neon_type_el et = neon_check_type (2, rs,
19098 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19101 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19108 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19110 if (inst.operands[1].reg == REG_SP)
19111 as_tsktsk (MVE_BAD_SP);
19112 else if (inst.operands[1].reg == REG_PC)
19113 as_tsktsk (MVE_BAD_PC);
19116 /* Duplicate ARM register to lanes of vector. */
19117 NEON_ENCODE (ARMREG, inst);
19120 case 8: inst.instruction |= 0x400000; break;
19121 case 16: inst.instruction |= 0x000020; break;
19122 case 32: inst.instruction |= 0x000000; break;
19125 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19126 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19127 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19128 inst.instruction |= neon_quad (rs) << 21;
19129 /* The encoding for this instruction is identical for the ARM and Thumb
19130 variants, except for the condition field. */
19131 do_vfp_cond_or_thumb ();
19136 do_mve_mov (int toQ)
19138 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19140 if (inst.cond > COND_ALWAYS)
19141 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19143 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19152 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19153 _("Index one must be [2,3] and index two must be two less than"
19155 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19156 _("General purpose registers may not be the same"));
19157 constraint (inst.operands[Rt].reg == REG_SP
19158 || inst.operands[Rt2].reg == REG_SP,
19160 constraint (inst.operands[Rt].reg == REG_PC
19161 || inst.operands[Rt2].reg == REG_PC,
19164 inst.instruction = 0xec000f00;
19165 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19166 inst.instruction |= !!toQ << 20;
19167 inst.instruction |= inst.operands[Rt2].reg << 16;
19168 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19169 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19170 inst.instruction |= inst.operands[Rt].reg;
19176 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19179 if (inst.cond > COND_ALWAYS)
19180 inst.pred_insn_type = INSIDE_VPT_INSN;
19182 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19184 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19187 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19188 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19190 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19191 inst.instruction |= LOW4 (inst.operands[1].reg);
19196 /* VMOV has particularly many variations. It can be one of:
19197 0. VMOV<c><q> <Qd>, <Qm>
19198 1. VMOV<c><q> <Dd>, <Dm>
19199 (Register operations, which are VORR with Rm = Rn.)
19200 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19201 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19203 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19204 (ARM register to scalar.)
19205 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19206 (Two ARM registers to vector.)
19207 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19208 (Scalar to ARM register.)
19209 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19210 (Vector to two ARM registers.)
19211 8. VMOV.F32 <Sd>, <Sm>
19212 9. VMOV.F64 <Dd>, <Dm>
19213 (VFP register moves.)
19214 10. VMOV.F32 <Sd>, #imm
19215 11. VMOV.F64 <Dd>, #imm
19216 (VFP float immediate load.)
19217 12. VMOV <Rd>, <Sm>
19218 (VFP single to ARM reg.)
19219 13. VMOV <Sd>, <Rm>
19220 (ARM reg to VFP single.)
19221 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19222 (Two ARM regs to two VFP singles.)
19223 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19224 (Two VFP singles to two ARM regs.)
19225 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19226 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19227 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19228 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19230 These cases can be disambiguated using neon_select_shape, except cases 1/9
19231 and 3/11 which depend on the operand type too.
19233 All the encoded bits are hardcoded by this function.
19235 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19236 Cases 5, 7 may be used with VFPv2 and above.
19238 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19239 can specify a type where it doesn't make sense to, and is ignored). */
19244 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19245 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19246 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19247 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19249 struct neon_type_el et;
19250 const char *ldconst = 0;
19254 case NS_DD: /* case 1/9. */
19255 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19256 /* It is not an error here if no type is given. */
19258 if (et.type == NT_float && et.size == 64)
19260 do_vfp_nsyn_opcode ("fcpyd");
19263 /* fall through. */
19265 case NS_QQ: /* case 0/1. */
19267 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19269 /* The architecture manual I have doesn't explicitly state which
19270 value the U bit should have for register->register moves, but
19271 the equivalent VORR instruction has U = 0, so do that. */
19272 inst.instruction = 0x0200110;
19273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19275 inst.instruction |= LOW4 (inst.operands[1].reg);
19276 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19277 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19278 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19279 inst.instruction |= neon_quad (rs) << 6;
19281 neon_dp_fixup (&inst);
19285 case NS_DI: /* case 3/11. */
19286 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19288 if (et.type == NT_float && et.size == 64)
19290 /* case 11 (fconstd). */
19291 ldconst = "fconstd";
19292 goto encode_fconstd;
19294 /* fall through. */
19296 case NS_QI: /* case 2/3. */
19297 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19299 inst.instruction = 0x0800010;
19300 neon_move_immediate ();
19301 neon_dp_fixup (&inst);
19304 case NS_SR: /* case 4. */
19306 unsigned bcdebits = 0;
19308 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19309 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19311 /* .<size> is optional here, defaulting to .32. */
19312 if (inst.vectype.elems == 0
19313 && inst.operands[0].vectype.type == NT_invtype
19314 && inst.operands[1].vectype.type == NT_invtype)
19316 inst.vectype.el[0].type = NT_untyped;
19317 inst.vectype.el[0].size = 32;
19318 inst.vectype.elems = 1;
19321 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19322 logsize = neon_logbits (et.size);
19326 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19327 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19332 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19333 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19337 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19339 if (inst.operands[1].reg == REG_SP)
19340 as_tsktsk (MVE_BAD_SP);
19341 else if (inst.operands[1].reg == REG_PC)
19342 as_tsktsk (MVE_BAD_PC);
19344 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19346 constraint (et.type == NT_invtype, _("bad type for scalar"));
19347 constraint (x >= size / et.size, _("scalar index out of range"));
19352 case 8: bcdebits = 0x8; break;
19353 case 16: bcdebits = 0x1; break;
19354 case 32: bcdebits = 0x0; break;
19358 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19360 inst.instruction = 0xe000b10;
19361 do_vfp_cond_or_thumb ();
19362 inst.instruction |= LOW4 (dn) << 16;
19363 inst.instruction |= HI1 (dn) << 7;
19364 inst.instruction |= inst.operands[1].reg << 12;
19365 inst.instruction |= (bcdebits & 3) << 5;
19366 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19367 inst.instruction |= (x >> (3-logsize)) << 16;
19371 case NS_DRR: /* case 5 (fmdrr). */
19372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19373 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19376 inst.instruction = 0xc400b10;
19377 do_vfp_cond_or_thumb ();
19378 inst.instruction |= LOW4 (inst.operands[0].reg);
19379 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19380 inst.instruction |= inst.operands[1].reg << 12;
19381 inst.instruction |= inst.operands[2].reg << 16;
19384 case NS_RS: /* case 6. */
19387 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19388 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19389 unsigned abcdebits = 0;
19391 /* .<dt> is optional here, defaulting to .32. */
19392 if (inst.vectype.elems == 0
19393 && inst.operands[0].vectype.type == NT_invtype
19394 && inst.operands[1].vectype.type == NT_invtype)
19396 inst.vectype.el[0].type = NT_untyped;
19397 inst.vectype.el[0].size = 32;
19398 inst.vectype.elems = 1;
19401 et = neon_check_type (2, NS_NULL,
19402 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19403 logsize = neon_logbits (et.size);
19407 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19408 && vfp_or_neon_is_neon (NEON_CHECK_CC
19409 | NEON_CHECK_ARCH) == FAIL)
19414 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19415 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19419 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19421 if (inst.operands[0].reg == REG_SP)
19422 as_tsktsk (MVE_BAD_SP);
19423 else if (inst.operands[0].reg == REG_PC)
19424 as_tsktsk (MVE_BAD_PC);
19427 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19429 constraint (et.type == NT_invtype, _("bad type for scalar"));
19430 constraint (x >= size / et.size, _("scalar index out of range"));
19434 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19435 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19436 case 32: abcdebits = 0x00; break;
19440 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19441 inst.instruction = 0xe100b10;
19442 do_vfp_cond_or_thumb ();
19443 inst.instruction |= LOW4 (dn) << 16;
19444 inst.instruction |= HI1 (dn) << 7;
19445 inst.instruction |= inst.operands[0].reg << 12;
19446 inst.instruction |= (abcdebits & 3) << 5;
19447 inst.instruction |= (abcdebits >> 2) << 21;
19448 inst.instruction |= (x >> (3-logsize)) << 16;
19452 case NS_RRD: /* case 7 (fmrrd). */
19453 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19454 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19457 inst.instruction = 0xc500b10;
19458 do_vfp_cond_or_thumb ();
19459 inst.instruction |= inst.operands[0].reg << 12;
19460 inst.instruction |= inst.operands[1].reg << 16;
19461 inst.instruction |= LOW4 (inst.operands[2].reg);
19462 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19465 case NS_FF: /* case 8 (fcpys). */
19466 do_vfp_nsyn_opcode ("fcpys");
19470 case NS_FI: /* case 10 (fconsts). */
19471 ldconst = "fconsts";
19473 if (!inst.operands[1].immisfloat)
19476 /* Immediate has to fit in 8 bits so float is enough. */
19477 float imm = (float) inst.operands[1].imm;
19478 memcpy (&new_imm, &imm, sizeof (float));
19479 /* But the assembly may have been written to provide an integer
19480 bit pattern that equates to a float, so check that the
19481 conversion has worked. */
19482 if (is_quarter_float (new_imm))
19484 if (is_quarter_float (inst.operands[1].imm))
19485 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19487 inst.operands[1].imm = new_imm;
19488 inst.operands[1].immisfloat = 1;
19492 if (is_quarter_float (inst.operands[1].imm))
19494 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19495 do_vfp_nsyn_opcode (ldconst);
19497 /* ARMv8.2 fp16 vmov.f16 instruction. */
19499 do_scalar_fp16_v82_encode ();
19502 first_error (_("immediate out of range"));
19506 case NS_RF: /* case 12 (fmrs). */
19507 do_vfp_nsyn_opcode ("fmrs");
19508 /* ARMv8.2 fp16 vmov.f16 instruction. */
19510 do_scalar_fp16_v82_encode ();
19514 case NS_FR: /* case 13 (fmsr). */
19515 do_vfp_nsyn_opcode ("fmsr");
19516 /* ARMv8.2 fp16 vmov.f16 instruction. */
19518 do_scalar_fp16_v82_encode ();
19528 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19529 (one of which is a list), but we have parsed four. Do some fiddling to
19530 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19532 case NS_RRFF: /* case 14 (fmrrs). */
19533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19536 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19537 _("VFP registers must be adjacent"));
19538 inst.operands[2].imm = 2;
19539 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19540 do_vfp_nsyn_opcode ("fmrrs");
19543 case NS_FFRR: /* case 15 (fmsrr). */
19544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19547 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19548 _("VFP registers must be adjacent"));
19549 inst.operands[1] = inst.operands[2];
19550 inst.operands[2] = inst.operands[3];
19551 inst.operands[0].imm = 2;
19552 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19553 do_vfp_nsyn_opcode ("fmsrr");
19557 /* neon_select_shape has determined that the instruction
19558 shape is wrong and has already set the error message. */
19569 if (!(inst.operands[0].present && inst.operands[0].isquad
19570 && inst.operands[1].present && inst.operands[1].isquad
19571 && !inst.operands[2].present))
19573 inst.instruction = 0;
19576 set_pred_insn_type (INSIDE_IT_INSN);
19581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19584 if (inst.cond != COND_ALWAYS)
19585 inst.pred_insn_type = INSIDE_VPT_INSN;
19587 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19588 | N_S16 | N_U16 | N_KEY);
19590 inst.instruction |= (et.type == NT_unsigned) << 28;
19591 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19592 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19594 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19595 inst.instruction |= LOW4 (inst.operands[1].reg);
19600 do_neon_rshift_round_imm (void)
19602 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19603 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19604 int imm = inst.operands[2].imm;
19606 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19609 inst.operands[2].present = 0;
19614 constraint (imm < 1 || (unsigned)imm > et.size,
19615 _("immediate out of range for shift"));
19616 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19621 do_neon_movhf (void)
19623 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19624 constraint (rs != NS_HH, _("invalid suffix"));
19626 if (inst.cond != COND_ALWAYS)
19630 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19631 " the behaviour is UNPREDICTABLE"));
19635 inst.error = BAD_COND;
19640 do_vfp_sp_monadic ();
19643 inst.instruction |= 0xf0000000;
19647 do_neon_movl (void)
19649 struct neon_type_el et = neon_check_type (2, NS_QD,
19650 N_EQK | N_DBL, N_SU_32 | N_KEY);
19651 unsigned sizebits = et.size >> 3;
19652 inst.instruction |= sizebits << 19;
19653 neon_two_same (0, et.type == NT_unsigned, -1);
19659 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19660 struct neon_type_el et = neon_check_type (2, rs,
19661 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19662 NEON_ENCODE (INTEGER, inst);
19663 neon_two_same (neon_quad (rs), 1, et.size);
19667 do_neon_zip_uzp (void)
19669 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19670 struct neon_type_el et = neon_check_type (2, rs,
19671 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19672 if (rs == NS_DD && et.size == 32)
19674 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19675 inst.instruction = N_MNEM_vtrn;
19679 neon_two_same (neon_quad (rs), 1, et.size);
19683 do_neon_sat_abs_neg (void)
19685 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19688 enum neon_shape rs;
19689 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19690 rs = neon_select_shape (NS_QQ, NS_NULL);
19692 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19693 struct neon_type_el et = neon_check_type (2, rs,
19694 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19695 neon_two_same (neon_quad (rs), 1, et.size);
19699 do_neon_pair_long (void)
19701 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19702 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19703 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19704 inst.instruction |= (et.type == NT_unsigned) << 7;
19705 neon_two_same (neon_quad (rs), 1, et.size);
19709 do_neon_recip_est (void)
19711 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19712 struct neon_type_el et = neon_check_type (2, rs,
19713 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19714 inst.instruction |= (et.type == NT_float) << 8;
19715 neon_two_same (neon_quad (rs), 1, et.size);
19721 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19724 enum neon_shape rs;
19725 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19726 rs = neon_select_shape (NS_QQ, NS_NULL);
19728 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19730 struct neon_type_el et = neon_check_type (2, rs,
19731 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19732 neon_two_same (neon_quad (rs), 1, et.size);
19738 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19741 enum neon_shape rs;
19742 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19743 rs = neon_select_shape (NS_QQ, NS_NULL);
19745 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19747 struct neon_type_el et = neon_check_type (2, rs,
19748 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19749 neon_two_same (neon_quad (rs), 1, et.size);
19755 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19756 struct neon_type_el et = neon_check_type (2, rs,
19757 N_EQK | N_INT, N_8 | N_KEY);
19758 neon_two_same (neon_quad (rs), 1, et.size);
19764 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19765 neon_two_same (neon_quad (rs), 1, -1);
19769 do_neon_tbl_tbx (void)
19771 unsigned listlenbits;
19772 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19774 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19776 first_error (_("bad list length for table lookup"));
19780 listlenbits = inst.operands[1].imm - 1;
19781 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19782 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19783 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19784 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19785 inst.instruction |= LOW4 (inst.operands[2].reg);
19786 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19787 inst.instruction |= listlenbits << 8;
19789 neon_dp_fixup (&inst);
19793 do_neon_ldm_stm (void)
19795 /* P, U and L bits are part of bitmask. */
19796 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19797 unsigned offsetbits = inst.operands[1].imm * 2;
19799 if (inst.operands[1].issingle)
19801 do_vfp_nsyn_ldm_stm (is_dbmode);
19805 constraint (is_dbmode && !inst.operands[0].writeback,
19806 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19808 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19809 _("register list must contain at least 1 and at most 16 "
19812 inst.instruction |= inst.operands[0].reg << 16;
19813 inst.instruction |= inst.operands[0].writeback << 21;
19814 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19815 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19817 inst.instruction |= offsetbits;
19819 do_vfp_cond_or_thumb ();
19823 do_neon_ldr_str (void)
19825 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19827 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19828 And is UNPREDICTABLE in thumb mode. */
19830 && inst.operands[1].reg == REG_PC
19831 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19834 inst.error = _("Use of PC here is UNPREDICTABLE");
19835 else if (warn_on_deprecated)
19836 as_tsktsk (_("Use of PC here is deprecated"));
19839 if (inst.operands[0].issingle)
19842 do_vfp_nsyn_opcode ("flds");
19844 do_vfp_nsyn_opcode ("fsts");
19846 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19847 if (inst.vectype.el[0].size == 16)
19848 do_scalar_fp16_v82_encode ();
19853 do_vfp_nsyn_opcode ("fldd");
19855 do_vfp_nsyn_opcode ("fstd");
19860 do_t_vldr_vstr_sysreg (void)
19862 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19863 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19865 /* Use of PC is UNPREDICTABLE. */
19866 if (inst.operands[1].reg == REG_PC)
19867 inst.error = _("Use of PC here is UNPREDICTABLE");
19869 if (inst.operands[1].immisreg)
19870 inst.error = _("instruction does not accept register index");
19872 if (!inst.operands[1].isreg)
19873 inst.error = _("instruction does not accept PC-relative addressing");
19875 if (abs (inst.operands[1].imm) >= (1 << 7))
19876 inst.error = _("immediate value out of range");
19878 inst.instruction = 0xec000f80;
19880 inst.instruction |= 1 << sysreg_vldr_bitno;
19881 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19882 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19883 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19887 do_vldr_vstr (void)
19889 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19891 /* VLDR/VSTR (System Register). */
19894 if (!mark_feature_used (&arm_ext_v8_1m_main))
19895 as_bad (_("Instruction not permitted on this architecture"));
19897 do_t_vldr_vstr_sysreg ();
19902 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19903 as_bad (_("Instruction not permitted on this architecture"));
19904 do_neon_ldr_str ();
19908 /* "interleave" version also handles non-interleaving register VLD1/VST1
19912 do_neon_ld_st_interleave (void)
19914 struct neon_type_el et = neon_check_type (1, NS_NULL,
19915 N_8 | N_16 | N_32 | N_64);
19916 unsigned alignbits = 0;
19918 /* The bits in this table go:
19919 0: register stride of one (0) or two (1)
19920 1,2: register list length, minus one (1, 2, 3, 4).
19921 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19922 We use -1 for invalid entries. */
19923 const int typetable[] =
19925 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19926 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19927 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19928 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19932 if (et.type == NT_invtype)
19935 if (inst.operands[1].immisalign)
19936 switch (inst.operands[1].imm >> 8)
19938 case 64: alignbits = 1; break;
19940 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19941 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19942 goto bad_alignment;
19946 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19947 goto bad_alignment;
19952 first_error (_("bad alignment"));
19956 inst.instruction |= alignbits << 4;
19957 inst.instruction |= neon_logbits (et.size) << 6;
19959 /* Bits [4:6] of the immediate in a list specifier encode register stride
19960 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19961 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19962 up the right value for "type" in a table based on this value and the given
19963 list style, then stick it back. */
19964 idx = ((inst.operands[0].imm >> 4) & 7)
19965 | (((inst.instruction >> 8) & 3) << 3);
19967 typebits = typetable[idx];
19969 constraint (typebits == -1, _("bad list type for instruction"));
19970 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19973 inst.instruction &= ~0xf00;
19974 inst.instruction |= typebits << 8;
19977 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19978 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19979 otherwise. The variable arguments are a list of pairs of legal (size, align)
19980 values, terminated with -1. */
19983 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19986 int result = FAIL, thissize, thisalign;
19988 if (!inst.operands[1].immisalign)
19994 va_start (ap, do_alignment);
19998 thissize = va_arg (ap, int);
19999 if (thissize == -1)
20001 thisalign = va_arg (ap, int);
20003 if (size == thissize && align == thisalign)
20006 while (result != SUCCESS);
20010 if (result == SUCCESS)
20013 first_error (_("unsupported alignment for instruction"));
20019 do_neon_ld_st_lane (void)
20021 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20022 int align_good, do_alignment = 0;
20023 int logsize = neon_logbits (et.size);
20024 int align = inst.operands[1].imm >> 8;
20025 int n = (inst.instruction >> 8) & 3;
20026 int max_el = 64 / et.size;
20028 if (et.type == NT_invtype)
20031 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20032 _("bad list length"));
20033 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20034 _("scalar index out of range"));
20035 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20037 _("stride of 2 unavailable when element size is 8"));
20041 case 0: /* VLD1 / VST1. */
20042 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20044 if (align_good == FAIL)
20048 unsigned alignbits = 0;
20051 case 16: alignbits = 0x1; break;
20052 case 32: alignbits = 0x3; break;
20055 inst.instruction |= alignbits << 4;
20059 case 1: /* VLD2 / VST2. */
20060 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20061 16, 32, 32, 64, -1);
20062 if (align_good == FAIL)
20065 inst.instruction |= 1 << 4;
20068 case 2: /* VLD3 / VST3. */
20069 constraint (inst.operands[1].immisalign,
20070 _("can't use alignment with this instruction"));
20073 case 3: /* VLD4 / VST4. */
20074 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20075 16, 64, 32, 64, 32, 128, -1);
20076 if (align_good == FAIL)
20080 unsigned alignbits = 0;
20083 case 8: alignbits = 0x1; break;
20084 case 16: alignbits = 0x1; break;
20085 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20088 inst.instruction |= alignbits << 4;
20095 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20096 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20097 inst.instruction |= 1 << (4 + logsize);
20099 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20100 inst.instruction |= logsize << 10;
20103 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20106 do_neon_ld_dup (void)
20108 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20109 int align_good, do_alignment = 0;
20111 if (et.type == NT_invtype)
20114 switch ((inst.instruction >> 8) & 3)
20116 case 0: /* VLD1. */
20117 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20118 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20119 &do_alignment, 16, 16, 32, 32, -1);
20120 if (align_good == FAIL)
20122 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20125 case 2: inst.instruction |= 1 << 5; break;
20126 default: first_error (_("bad list length")); return;
20128 inst.instruction |= neon_logbits (et.size) << 6;
20131 case 1: /* VLD2. */
20132 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20133 &do_alignment, 8, 16, 16, 32, 32, 64,
20135 if (align_good == FAIL)
20137 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20138 _("bad list length"));
20139 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20140 inst.instruction |= 1 << 5;
20141 inst.instruction |= neon_logbits (et.size) << 6;
20144 case 2: /* VLD3. */
20145 constraint (inst.operands[1].immisalign,
20146 _("can't use alignment with this instruction"));
20147 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20148 _("bad list length"));
20149 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20150 inst.instruction |= 1 << 5;
20151 inst.instruction |= neon_logbits (et.size) << 6;
20154 case 3: /* VLD4. */
20156 int align = inst.operands[1].imm >> 8;
20157 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20158 16, 64, 32, 64, 32, 128, -1);
20159 if (align_good == FAIL)
20161 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20162 _("bad list length"));
20163 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20164 inst.instruction |= 1 << 5;
20165 if (et.size == 32 && align == 128)
20166 inst.instruction |= 0x3 << 6;
20168 inst.instruction |= neon_logbits (et.size) << 6;
20175 inst.instruction |= do_alignment << 4;
20178 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20179 apart from bits [11:4]. */
20182 do_neon_ldx_stx (void)
20184 if (inst.operands[1].isreg)
20185 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20187 switch (NEON_LANE (inst.operands[0].imm))
20189 case NEON_INTERLEAVE_LANES:
20190 NEON_ENCODE (INTERLV, inst);
20191 do_neon_ld_st_interleave ();
20194 case NEON_ALL_LANES:
20195 NEON_ENCODE (DUP, inst);
20196 if (inst.instruction == N_INV)
20198 first_error ("only loads support such operands");
20205 NEON_ENCODE (LANE, inst);
20206 do_neon_ld_st_lane ();
20209 /* L bit comes from bit mask. */
20210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20212 inst.instruction |= inst.operands[1].reg << 16;
20214 if (inst.operands[1].postind)
20216 int postreg = inst.operands[1].imm & 0xf;
20217 constraint (!inst.operands[1].immisreg,
20218 _("post-index must be a register"));
20219 constraint (postreg == 0xd || postreg == 0xf,
20220 _("bad register for post-index"));
20221 inst.instruction |= postreg;
20225 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20226 constraint (inst.relocs[0].exp.X_op != O_constant
20227 || inst.relocs[0].exp.X_add_number != 0,
20230 if (inst.operands[1].writeback)
20232 inst.instruction |= 0xd;
20235 inst.instruction |= 0xf;
20239 inst.instruction |= 0xf9000000;
20241 inst.instruction |= 0xf4000000;
20246 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20248 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20249 D register operands. */
20250 if (neon_shape_class[rs] == SC_DOUBLE)
20251 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20254 NEON_ENCODE (FPV8, inst);
20256 if (rs == NS_FFF || rs == NS_HHH)
20258 do_vfp_sp_dyadic ();
20260 /* ARMv8.2 fp16 instruction. */
20262 do_scalar_fp16_v82_encode ();
20265 do_vfp_dp_rd_rn_rm ();
20268 inst.instruction |= 0x100;
20270 inst.instruction |= 0xf0000000;
20276 set_pred_insn_type (OUTSIDE_PRED_INSN);
20278 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20279 first_error (_("invalid instruction shape"));
20285 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20286 set_pred_insn_type (OUTSIDE_PRED_INSN);
20288 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20291 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20294 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20298 do_vrint_1 (enum neon_cvt_mode mode)
20300 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20301 struct neon_type_el et;
20306 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20307 D register operands. */
20308 if (neon_shape_class[rs] == SC_DOUBLE)
20309 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20312 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20314 if (et.type != NT_invtype)
20316 /* VFP encodings. */
20317 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20318 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20319 set_pred_insn_type (OUTSIDE_PRED_INSN);
20321 NEON_ENCODE (FPV8, inst);
20322 if (rs == NS_FF || rs == NS_HH)
20323 do_vfp_sp_monadic ();
20325 do_vfp_dp_rd_rm ();
20329 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20330 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20331 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20332 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20333 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20334 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20335 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20339 inst.instruction |= (rs == NS_DD) << 8;
20340 do_vfp_cond_or_thumb ();
20342 /* ARMv8.2 fp16 vrint instruction. */
20344 do_scalar_fp16_v82_encode ();
20348 /* Neon encodings (or something broken...). */
20350 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20352 if (et.type == NT_invtype)
20355 set_pred_insn_type (OUTSIDE_PRED_INSN);
20356 NEON_ENCODE (FLOAT, inst);
20358 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20361 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20362 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20363 inst.instruction |= LOW4 (inst.operands[1].reg);
20364 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20365 inst.instruction |= neon_quad (rs) << 6;
20366 /* Mask off the original size bits and reencode them. */
20367 inst.instruction = ((inst.instruction & 0xfff3ffff)
20368 | neon_logbits (et.size) << 18);
20372 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20373 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20374 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20375 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20376 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20377 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20378 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20383 inst.instruction |= 0xfc000000;
20385 inst.instruction |= 0xf0000000;
20392 do_vrint_1 (neon_cvt_mode_x);
20398 do_vrint_1 (neon_cvt_mode_z);
20404 do_vrint_1 (neon_cvt_mode_r);
20410 do_vrint_1 (neon_cvt_mode_a);
20416 do_vrint_1 (neon_cvt_mode_n);
20422 do_vrint_1 (neon_cvt_mode_p);
20428 do_vrint_1 (neon_cvt_mode_m);
20432 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20434 unsigned regno = NEON_SCALAR_REG (opnd);
20435 unsigned elno = NEON_SCALAR_INDEX (opnd);
20437 if (elsize == 16 && elno < 2 && regno < 16)
20438 return regno | (elno << 4);
20439 else if (elsize == 32 && elno == 0)
20442 first_error (_("scalar out of range"));
20449 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20450 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20451 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20452 constraint (inst.relocs[0].exp.X_op != O_constant,
20453 _("expression too complex"));
20454 unsigned rot = inst.relocs[0].exp.X_add_number;
20455 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20456 _("immediate out of range"));
20459 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20462 if (inst.operands[2].isscalar)
20464 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20465 first_error (_("invalid instruction shape"));
20466 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20467 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20468 N_KEY | N_F16 | N_F32).size;
20469 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20471 inst.instruction = 0xfe000800;
20472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20474 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20475 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20476 inst.instruction |= LOW4 (m);
20477 inst.instruction |= HI1 (m) << 5;
20478 inst.instruction |= neon_quad (rs) << 6;
20479 inst.instruction |= rot << 20;
20480 inst.instruction |= (size == 32) << 23;
20484 enum neon_shape rs;
20485 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20486 rs = neon_select_shape (NS_QQQI, NS_NULL);
20488 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20490 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20491 N_KEY | N_F16 | N_F32).size;
20492 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20493 && (inst.operands[0].reg == inst.operands[1].reg
20494 || inst.operands[0].reg == inst.operands[2].reg))
20495 as_tsktsk (BAD_MVE_SRCDEST);
20497 neon_three_same (neon_quad (rs), 0, -1);
20498 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20499 inst.instruction |= 0xfc200800;
20500 inst.instruction |= rot << 23;
20501 inst.instruction |= (size == 32) << 20;
20508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20509 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20510 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20511 constraint (inst.relocs[0].exp.X_op != O_constant,
20512 _("expression too complex"));
20514 unsigned rot = inst.relocs[0].exp.X_add_number;
20515 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20516 enum neon_shape rs;
20517 struct neon_type_el et;
20518 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20520 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20521 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20525 rs = neon_select_shape (NS_QQQI, NS_NULL);
20526 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20528 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20529 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20530 "operand makes instruction UNPREDICTABLE"));
20533 if (et.type == NT_invtype)
20536 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20540 if (et.type == NT_float)
20542 neon_three_same (neon_quad (rs), 0, -1);
20543 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20544 inst.instruction |= 0xfc800800;
20545 inst.instruction |= (rot == 270) << 24;
20546 inst.instruction |= (et.size == 32) << 20;
20550 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20551 inst.instruction = 0xfe000f00;
20552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20553 inst.instruction |= neon_logbits (et.size) << 20;
20554 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20555 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20556 inst.instruction |= (rot == 270) << 12;
20557 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20558 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20559 inst.instruction |= LOW4 (inst.operands[2].reg);
20564 /* Dot Product instructions encoding support. */
20567 do_neon_dotproduct (int unsigned_p)
20569 enum neon_shape rs;
20570 unsigned scalar_oprd2 = 0;
20573 if (inst.cond != COND_ALWAYS)
20574 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20575 "is UNPREDICTABLE"));
20577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20580 /* Dot Product instructions are in three-same D/Q register format or the third
20581 operand can be a scalar index register. */
20582 if (inst.operands[2].isscalar)
20584 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20585 high8 = 0xfe000000;
20586 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20590 high8 = 0xfc000000;
20591 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20595 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20597 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20599 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20600 Product instruction, so we pass 0 as the "ubit" parameter. And the
20601 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20602 neon_three_same (neon_quad (rs), 0, 32);
20604 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20605 different NEON three-same encoding. */
20606 inst.instruction &= 0x00ffffff;
20607 inst.instruction |= high8;
20608 /* Encode 'U' bit which indicates signedness. */
20609 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20610 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20611 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20612 the instruction encoding. */
20613 if (inst.operands[2].isscalar)
20615 inst.instruction &= 0xffffffd0;
20616 inst.instruction |= LOW4 (scalar_oprd2);
20617 inst.instruction |= HI1 (scalar_oprd2) << 5;
20621 /* Dot Product instructions for signed integer. */
20624 do_neon_dotproduct_s (void)
20626 return do_neon_dotproduct (0);
20629 /* Dot Product instructions for unsigned integer. */
20632 do_neon_dotproduct_u (void)
20634 return do_neon_dotproduct (1);
20637 /* Crypto v1 instructions. */
20639 do_crypto_2op_1 (unsigned elttype, int op)
20641 set_pred_insn_type (OUTSIDE_PRED_INSN);
20643 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20649 NEON_ENCODE (INTEGER, inst);
20650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20652 inst.instruction |= LOW4 (inst.operands[1].reg);
20653 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20655 inst.instruction |= op << 6;
20658 inst.instruction |= 0xfc000000;
20660 inst.instruction |= 0xf0000000;
20664 do_crypto_3op_1 (int u, int op)
20666 set_pred_insn_type (OUTSIDE_PRED_INSN);
20668 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20669 N_32 | N_UNT | N_KEY).type == NT_invtype)
20674 NEON_ENCODE (INTEGER, inst);
20675 neon_three_same (1, u, 8 << op);
20681 do_crypto_2op_1 (N_8, 0);
20687 do_crypto_2op_1 (N_8, 1);
20693 do_crypto_2op_1 (N_8, 2);
20699 do_crypto_2op_1 (N_8, 3);
20705 do_crypto_3op_1 (0, 0);
20711 do_crypto_3op_1 (0, 1);
20717 do_crypto_3op_1 (0, 2);
20723 do_crypto_3op_1 (0, 3);
20729 do_crypto_3op_1 (1, 0);
20735 do_crypto_3op_1 (1, 1);
20739 do_sha256su1 (void)
20741 do_crypto_3op_1 (1, 2);
20747 do_crypto_2op_1 (N_32, -1);
20753 do_crypto_2op_1 (N_32, 0);
20757 do_sha256su0 (void)
20759 do_crypto_2op_1 (N_32, 1);
20763 do_crc32_1 (unsigned int poly, unsigned int sz)
20765 unsigned int Rd = inst.operands[0].reg;
20766 unsigned int Rn = inst.operands[1].reg;
20767 unsigned int Rm = inst.operands[2].reg;
20769 set_pred_insn_type (OUTSIDE_PRED_INSN);
20770 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20771 inst.instruction |= LOW4 (Rn) << 16;
20772 inst.instruction |= LOW4 (Rm);
20773 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20774 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20776 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20777 as_warn (UNPRED_REG ("r15"));
20819 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20821 neon_check_type (2, NS_FD, N_S32, N_F64);
20822 do_vfp_sp_dp_cvt ();
20823 do_vfp_cond_or_thumb ();
20827 /* Overall per-instruction processing. */
20829 /* We need to be able to fix up arbitrary expressions in some statements.
20830 This is so that we can handle symbols that are an arbitrary distance from
20831 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20832 which returns part of an address in a form which will be valid for
20833 a data instruction. We do this by pushing the expression into a symbol
20834 in the expr_section, and creating a fix for that. */
20837 fix_new_arm (fragS * frag,
20851 /* Create an absolute valued symbol, so we have something to
20852 refer to in the object file. Unfortunately for us, gas's
20853 generic expression parsing will already have folded out
20854 any use of .set foo/.type foo %function that may have
20855 been used to set type information of the target location,
20856 that's being specified symbolically. We have to presume
20857 the user knows what they are doing. */
20861 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20863 symbol = symbol_find_or_make (name);
20864 S_SET_SEGMENT (symbol, absolute_section);
20865 symbol_set_frag (symbol, &zero_address_frag);
20866 S_SET_VALUE (symbol, exp->X_add_number);
20867 exp->X_op = O_symbol;
20868 exp->X_add_symbol = symbol;
20869 exp->X_add_number = 0;
20875 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20876 (enum bfd_reloc_code_real) reloc);
20880 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20881 pc_rel, (enum bfd_reloc_code_real) reloc);
20885 /* Mark whether the fix is to a THUMB instruction, or an ARM
20887 new_fix->tc_fix_data = thumb_mode;
20890 /* Create a frg for an instruction requiring relaxation. */
20892 output_relax_insn (void)
20898 /* The size of the instruction is unknown, so tie the debug info to the
20899 start of the instruction. */
20900 dwarf2_emit_insn (0);
20902 switch (inst.relocs[0].exp.X_op)
20905 sym = inst.relocs[0].exp.X_add_symbol;
20906 offset = inst.relocs[0].exp.X_add_number;
20910 offset = inst.relocs[0].exp.X_add_number;
20913 sym = make_expr_symbol (&inst.relocs[0].exp);
20917 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20918 inst.relax, sym, offset, NULL/*offset, opcode*/);
20919 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20922 /* Write a 32-bit thumb instruction to buf. */
20924 put_thumb32_insn (char * buf, unsigned long insn)
20926 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20927 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20931 output_inst (const char * str)
20937 as_bad ("%s -- `%s'", inst.error, str);
20942 output_relax_insn ();
20945 if (inst.size == 0)
20948 to = frag_more (inst.size);
20949 /* PR 9814: Record the thumb mode into the current frag so that we know
20950 what type of NOP padding to use, if necessary. We override any previous
20951 setting so that if the mode has changed then the NOPS that we use will
20952 match the encoding of the last instruction in the frag. */
20953 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20955 if (thumb_mode && (inst.size > THUMB_SIZE))
20957 gas_assert (inst.size == (2 * THUMB_SIZE));
20958 put_thumb32_insn (to, inst.instruction);
20960 else if (inst.size > INSN_SIZE)
20962 gas_assert (inst.size == (2 * INSN_SIZE));
20963 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20964 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20967 md_number_to_chars (to, inst.instruction, inst.size);
20970 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20972 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20973 fix_new_arm (frag_now, to - frag_now->fr_literal,
20974 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20975 inst.relocs[r].type);
20978 dwarf2_emit_insn (inst.size);
20982 output_it_inst (int cond, int mask, char * to)
20984 unsigned long instruction = 0xbf00;
20987 instruction |= mask;
20988 instruction |= cond << 4;
20992 to = frag_more (2);
20994 dwarf2_emit_insn (2);
20998 md_number_to_chars (to, instruction, 2);
21003 /* Tag values used in struct asm_opcode's tag field. */
21006 OT_unconditional, /* Instruction cannot be conditionalized.
21007 The ARM condition field is still 0xE. */
21008 OT_unconditionalF, /* Instruction cannot be conditionalized
21009 and carries 0xF in its ARM condition field. */
21010 OT_csuffix, /* Instruction takes a conditional suffix. */
21011 OT_csuffixF, /* Some forms of the instruction take a scalar
21012 conditional suffix, others place 0xF where the
21013 condition field would be, others take a vector
21014 conditional suffix. */
21015 OT_cinfix3, /* Instruction takes a conditional infix,
21016 beginning at character index 3. (In
21017 unified mode, it becomes a suffix.) */
21018 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21019 tsts, cmps, cmns, and teqs. */
21020 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21021 character index 3, even in unified mode. Used for
21022 legacy instructions where suffix and infix forms
21023 may be ambiguous. */
21024 OT_csuf_or_in3, /* Instruction takes either a conditional
21025 suffix or an infix at character index 3. */
21026 OT_odd_infix_unc, /* This is the unconditional variant of an
21027 instruction that takes a conditional infix
21028 at an unusual position. In unified mode,
21029 this variant will accept a suffix. */
21030 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21031 are the conditional variants of instructions that
21032 take conditional infixes in unusual positions.
21033 The infix appears at character index
21034 (tag - OT_odd_infix_0). These are not accepted
21035 in unified mode. */
21038 /* Subroutine of md_assemble, responsible for looking up the primary
21039 opcode from the mnemonic the user wrote. STR points to the
21040 beginning of the mnemonic.
21042 This is not simply a hash table lookup, because of conditional
21043 variants. Most instructions have conditional variants, which are
21044 expressed with a _conditional affix_ to the mnemonic. If we were
21045 to encode each conditional variant as a literal string in the opcode
21046 table, it would have approximately 20,000 entries.
21048 Most mnemonics take this affix as a suffix, and in unified syntax,
21049 'most' is upgraded to 'all'. However, in the divided syntax, some
21050 instructions take the affix as an infix, notably the s-variants of
21051 the arithmetic instructions. Of those instructions, all but six
21052 have the infix appear after the third character of the mnemonic.
21054 Accordingly, the algorithm for looking up primary opcodes given
21057 1. Look up the identifier in the opcode table.
21058 If we find a match, go to step U.
21060 2. Look up the last two characters of the identifier in the
21061 conditions table. If we find a match, look up the first N-2
21062 characters of the identifier in the opcode table. If we
21063 find a match, go to step CE.
21065 3. Look up the fourth and fifth characters of the identifier in
21066 the conditions table. If we find a match, extract those
21067 characters from the identifier, and look up the remaining
21068 characters in the opcode table. If we find a match, go
21073 U. Examine the tag field of the opcode structure, in case this is
21074 one of the six instructions with its conditional infix in an
21075 unusual place. If it is, the tag tells us where to find the
21076 infix; look it up in the conditions table and set inst.cond
21077 accordingly. Otherwise, this is an unconditional instruction.
21078 Again set inst.cond accordingly. Return the opcode structure.
21080 CE. Examine the tag field to make sure this is an instruction that
21081 should receive a conditional suffix. If it is not, fail.
21082 Otherwise, set inst.cond from the suffix we already looked up,
21083 and return the opcode structure.
21085 CM. Examine the tag field to make sure this is an instruction that
21086 should receive a conditional infix after the third character.
21087 If it is not, fail. Otherwise, undo the edits to the current
21088 line of input and proceed as for case CE. */
21090 static const struct asm_opcode *
21091 opcode_lookup (char **str)
21095 const struct asm_opcode *opcode;
21096 const struct asm_cond *cond;
21099 /* Scan up to the end of the mnemonic, which must end in white space,
21100 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21101 for (base = end = *str; *end != '\0'; end++)
21102 if (*end == ' ' || *end == '.')
21108 /* Handle a possible width suffix and/or Neon type suffix. */
21113 /* The .w and .n suffixes are only valid if the unified syntax is in
21115 if (unified_syntax && end[1] == 'w')
21117 else if (unified_syntax && end[1] == 'n')
21122 inst.vectype.elems = 0;
21124 *str = end + offset;
21126 if (end[offset] == '.')
21128 /* See if we have a Neon type suffix (possible in either unified or
21129 non-unified ARM syntax mode). */
21130 if (parse_neon_type (&inst.vectype, str) == FAIL)
21133 else if (end[offset] != '\0' && end[offset] != ' ')
21139 /* Look for unaffixed or special-case affixed mnemonic. */
21140 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21145 if (opcode->tag < OT_odd_infix_0)
21147 inst.cond = COND_ALWAYS;
21151 if (warn_on_deprecated && unified_syntax)
21152 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21153 affix = base + (opcode->tag - OT_odd_infix_0);
21154 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21157 inst.cond = cond->value;
21160 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21162 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21164 if (end - base < 2)
21167 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21168 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21170 /* If this opcode can not be vector predicated then don't accept it with a
21171 vector predication code. */
21172 if (opcode && !opcode->mayBeVecPred)
21175 if (!opcode || !cond)
21177 /* Cannot have a conditional suffix on a mnemonic of less than two
21179 if (end - base < 3)
21182 /* Look for suffixed mnemonic. */
21184 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21185 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21189 if (opcode && cond)
21192 switch (opcode->tag)
21194 case OT_cinfix3_legacy:
21195 /* Ignore conditional suffixes matched on infix only mnemonics. */
21199 case OT_cinfix3_deprecated:
21200 case OT_odd_infix_unc:
21201 if (!unified_syntax)
21203 /* Fall through. */
21207 case OT_csuf_or_in3:
21208 inst.cond = cond->value;
21211 case OT_unconditional:
21212 case OT_unconditionalF:
21214 inst.cond = cond->value;
21217 /* Delayed diagnostic. */
21218 inst.error = BAD_COND;
21219 inst.cond = COND_ALWAYS;
21228 /* Cannot have a usual-position infix on a mnemonic of less than
21229 six characters (five would be a suffix). */
21230 if (end - base < 6)
21233 /* Look for infixed mnemonic in the usual position. */
21235 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21239 memcpy (save, affix, 2);
21240 memmove (affix, affix + 2, (end - affix) - 2);
21241 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21243 memmove (affix + 2, affix, (end - affix) - 2);
21244 memcpy (affix, save, 2);
21247 && (opcode->tag == OT_cinfix3
21248 || opcode->tag == OT_cinfix3_deprecated
21249 || opcode->tag == OT_csuf_or_in3
21250 || opcode->tag == OT_cinfix3_legacy))
21253 if (warn_on_deprecated && unified_syntax
21254 && (opcode->tag == OT_cinfix3
21255 || opcode->tag == OT_cinfix3_deprecated))
21256 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21258 inst.cond = cond->value;
21265 /* This function generates an initial IT instruction, leaving its block
21266 virtually open for the new instructions. Eventually,
21267 the mask will be updated by now_pred_add_mask () each time
21268 a new instruction needs to be included in the IT block.
21269 Finally, the block is closed with close_automatic_it_block ().
21270 The block closure can be requested either from md_assemble (),
21271 a tencode (), or due to a label hook. */
21274 new_automatic_it_block (int cond)
21276 now_pred.state = AUTOMATIC_PRED_BLOCK;
21277 now_pred.mask = 0x18;
21278 now_pred.cc = cond;
21279 now_pred.block_length = 1;
21280 mapping_state (MAP_THUMB);
21281 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21282 now_pred.warn_deprecated = FALSE;
21283 now_pred.insn_cond = TRUE;
21286 /* Close an automatic IT block.
21287 See comments in new_automatic_it_block (). */
21290 close_automatic_it_block (void)
21292 now_pred.mask = 0x10;
21293 now_pred.block_length = 0;
21296 /* Update the mask of the current automatically-generated IT
21297 instruction. See comments in new_automatic_it_block (). */
21300 now_pred_add_mask (int cond)
21302 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21303 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21304 | ((bitvalue) << (nbit)))
21305 const int resulting_bit = (cond & 1);
21307 now_pred.mask &= 0xf;
21308 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21310 (5 - now_pred.block_length));
21311 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21313 ((5 - now_pred.block_length) - 1));
21314 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21317 #undef SET_BIT_VALUE
21320 /* The IT blocks handling machinery is accessed through the these functions:
21321 it_fsm_pre_encode () from md_assemble ()
21322 set_pred_insn_type () optional, from the tencode functions
21323 set_pred_insn_type_last () ditto
21324 in_pred_block () ditto
21325 it_fsm_post_encode () from md_assemble ()
21326 force_automatic_it_block_close () from label handling functions
21329 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21330 initializing the IT insn type with a generic initial value depending
21331 on the inst.condition.
21332 2) During the tencode function, two things may happen:
21333 a) The tencode function overrides the IT insn type by
21334 calling either set_pred_insn_type (type) or
21335 set_pred_insn_type_last ().
21336 b) The tencode function queries the IT block state by
21337 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21339 Both set_pred_insn_type and in_pred_block run the internal FSM state
21340 handling function (handle_pred_state), because: a) setting the IT insn
21341 type may incur in an invalid state (exiting the function),
21342 and b) querying the state requires the FSM to be updated.
21343 Specifically we want to avoid creating an IT block for conditional
21344 branches, so it_fsm_pre_encode is actually a guess and we can't
21345 determine whether an IT block is required until the tencode () routine
21346 has decided what type of instruction this actually it.
21347 Because of this, if set_pred_insn_type and in_pred_block have to be
21348 used, set_pred_insn_type has to be called first.
21350 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21351 that determines the insn IT type depending on the inst.cond code.
21352 When a tencode () routine encodes an instruction that can be
21353 either outside an IT block, or, in the case of being inside, has to be
21354 the last one, set_pred_insn_type_last () will determine the proper
21355 IT instruction type based on the inst.cond code. Otherwise,
21356 set_pred_insn_type can be called for overriding that logic or
21357 for covering other cases.
21359 Calling handle_pred_state () may not transition the IT block state to
21360 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21361 still queried. Instead, if the FSM determines that the state should
21362 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21363 after the tencode () function: that's what it_fsm_post_encode () does.
21365 Since in_pred_block () calls the state handling function to get an
21366 updated state, an error may occur (due to invalid insns combination).
21367 In that case, inst.error is set.
21368 Therefore, inst.error has to be checked after the execution of
21369 the tencode () routine.
21371 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21372 any pending state change (if any) that didn't take place in
21373 handle_pred_state () as explained above. */
21376 it_fsm_pre_encode (void)
21378 if (inst.cond != COND_ALWAYS)
21379 inst.pred_insn_type = INSIDE_IT_INSN;
21381 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21383 now_pred.state_handled = 0;
21386 /* IT state FSM handling function. */
21387 /* MVE instructions and non-MVE instructions are handled differently because of
21388 the introduction of VPT blocks.
21389 Specifications say that any non-MVE instruction inside a VPT block is
21390 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21391 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21392 few exceptions we have MVE_UNPREDICABLE_INSN.
21393 The error messages provided depending on the different combinations possible
21394 are described in the cases below:
21395 For 'most' MVE instructions:
21396 1) In an IT block, with an IT code: syntax error
21397 2) In an IT block, with a VPT code: error: must be in a VPT block
21398 3) In an IT block, with no code: warning: UNPREDICTABLE
21399 4) In a VPT block, with an IT code: syntax error
21400 5) In a VPT block, with a VPT code: OK!
21401 6) In a VPT block, with no code: error: missing code
21402 7) Outside a pred block, with an IT code: error: syntax error
21403 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21404 9) Outside a pred block, with no code: OK!
21405 For non-MVE instructions:
21406 10) In an IT block, with an IT code: OK!
21407 11) In an IT block, with a VPT code: syntax error
21408 12) In an IT block, with no code: error: missing code
21409 13) In a VPT block, with an IT code: error: should be in an IT block
21410 14) In a VPT block, with a VPT code: syntax error
21411 15) In a VPT block, with no code: UNPREDICTABLE
21412 16) Outside a pred block, with an IT code: error: should be in an IT block
21413 17) Outside a pred block, with a VPT code: syntax error
21414 18) Outside a pred block, with no code: OK!
21419 handle_pred_state (void)
21421 now_pred.state_handled = 1;
21422 now_pred.insn_cond = FALSE;
21424 switch (now_pred.state)
21426 case OUTSIDE_PRED_BLOCK:
21427 switch (inst.pred_insn_type)
21429 case MVE_UNPREDICABLE_INSN:
21430 case MVE_OUTSIDE_PRED_INSN:
21431 if (inst.cond < COND_ALWAYS)
21433 /* Case 7: Outside a pred block, with an IT code: error: syntax
21435 inst.error = BAD_SYNTAX;
21438 /* Case 9: Outside a pred block, with no code: OK! */
21440 case OUTSIDE_PRED_INSN:
21441 if (inst.cond > COND_ALWAYS)
21443 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21445 inst.error = BAD_SYNTAX;
21448 /* Case 18: Outside a pred block, with no code: OK! */
21451 case INSIDE_VPT_INSN:
21452 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21454 inst.error = BAD_OUT_VPT;
21457 case INSIDE_IT_INSN:
21458 case INSIDE_IT_LAST_INSN:
21459 if (inst.cond < COND_ALWAYS)
21461 /* Case 16: Outside a pred block, with an IT code: error: should
21462 be in an IT block. */
21463 if (thumb_mode == 0)
21466 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21467 as_tsktsk (_("Warning: conditional outside an IT block"\
21472 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21473 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21475 /* Automatically generate the IT instruction. */
21476 new_automatic_it_block (inst.cond);
21477 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21478 close_automatic_it_block ();
21482 inst.error = BAD_OUT_IT;
21488 else if (inst.cond > COND_ALWAYS)
21490 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21492 inst.error = BAD_SYNTAX;
21497 case IF_INSIDE_IT_LAST_INSN:
21498 case NEUTRAL_IT_INSN:
21502 if (inst.cond != COND_ALWAYS)
21503 first_error (BAD_SYNTAX);
21504 now_pred.state = MANUAL_PRED_BLOCK;
21505 now_pred.block_length = 0;
21506 now_pred.type = VECTOR_PRED;
21510 now_pred.state = MANUAL_PRED_BLOCK;
21511 now_pred.block_length = 0;
21512 now_pred.type = SCALAR_PRED;
21517 case AUTOMATIC_PRED_BLOCK:
21518 /* Three things may happen now:
21519 a) We should increment current it block size;
21520 b) We should close current it block (closing insn or 4 insns);
21521 c) We should close current it block and start a new one (due
21522 to incompatible conditions or
21523 4 insns-length block reached). */
21525 switch (inst.pred_insn_type)
21527 case INSIDE_VPT_INSN:
21529 case MVE_UNPREDICABLE_INSN:
21530 case MVE_OUTSIDE_PRED_INSN:
21532 case OUTSIDE_PRED_INSN:
21533 /* The closure of the block shall happen immediately,
21534 so any in_pred_block () call reports the block as closed. */
21535 force_automatic_it_block_close ();
21538 case INSIDE_IT_INSN:
21539 case INSIDE_IT_LAST_INSN:
21540 case IF_INSIDE_IT_LAST_INSN:
21541 now_pred.block_length++;
21543 if (now_pred.block_length > 4
21544 || !now_pred_compatible (inst.cond))
21546 force_automatic_it_block_close ();
21547 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21548 new_automatic_it_block (inst.cond);
21552 now_pred.insn_cond = TRUE;
21553 now_pred_add_mask (inst.cond);
21556 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21557 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21558 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21559 close_automatic_it_block ();
21562 case NEUTRAL_IT_INSN:
21563 now_pred.block_length++;
21564 now_pred.insn_cond = TRUE;
21566 if (now_pred.block_length > 4)
21567 force_automatic_it_block_close ();
21569 now_pred_add_mask (now_pred.cc & 1);
21573 close_automatic_it_block ();
21574 now_pred.state = MANUAL_PRED_BLOCK;
21579 case MANUAL_PRED_BLOCK:
21582 if (now_pred.type == SCALAR_PRED)
21584 /* Check conditional suffixes. */
21585 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21586 now_pred.mask <<= 1;
21587 now_pred.mask &= 0x1f;
21588 is_last = (now_pred.mask == 0x10);
21592 now_pred.cc ^= (now_pred.mask >> 4);
21593 cond = now_pred.cc + 0xf;
21594 now_pred.mask <<= 1;
21595 now_pred.mask &= 0x1f;
21596 is_last = now_pred.mask == 0x10;
21598 now_pred.insn_cond = TRUE;
21600 switch (inst.pred_insn_type)
21602 case OUTSIDE_PRED_INSN:
21603 if (now_pred.type == SCALAR_PRED)
21605 if (inst.cond == COND_ALWAYS)
21607 /* Case 12: In an IT block, with no code: error: missing
21609 inst.error = BAD_NOT_IT;
21612 else if (inst.cond > COND_ALWAYS)
21614 /* Case 11: In an IT block, with a VPT code: syntax error.
21616 inst.error = BAD_SYNTAX;
21619 else if (thumb_mode)
21621 /* This is for some special cases where a non-MVE
21622 instruction is not allowed in an IT block, such as cbz,
21623 but are put into one with a condition code.
21624 You could argue this should be a syntax error, but we
21625 gave the 'not allowed in IT block' diagnostic in the
21626 past so we will keep doing so. */
21627 inst.error = BAD_NOT_IT;
21634 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21635 as_tsktsk (MVE_NOT_VPT);
21638 case MVE_OUTSIDE_PRED_INSN:
21639 if (now_pred.type == SCALAR_PRED)
21641 if (inst.cond == COND_ALWAYS)
21643 /* Case 3: In an IT block, with no code: warning:
21645 as_tsktsk (MVE_NOT_IT);
21648 else if (inst.cond < COND_ALWAYS)
21650 /* Case 1: In an IT block, with an IT code: syntax error.
21652 inst.error = BAD_SYNTAX;
21660 if (inst.cond < COND_ALWAYS)
21662 /* Case 4: In a VPT block, with an IT code: syntax error.
21664 inst.error = BAD_SYNTAX;
21667 else if (inst.cond == COND_ALWAYS)
21669 /* Case 6: In a VPT block, with no code: error: missing
21671 inst.error = BAD_NOT_VPT;
21679 case MVE_UNPREDICABLE_INSN:
21680 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21682 case INSIDE_IT_INSN:
21683 if (inst.cond > COND_ALWAYS)
21685 /* Case 11: In an IT block, with a VPT code: syntax error. */
21686 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21687 inst.error = BAD_SYNTAX;
21690 else if (now_pred.type == SCALAR_PRED)
21692 /* Case 10: In an IT block, with an IT code: OK! */
21693 if (cond != inst.cond)
21695 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21702 /* Case 13: In a VPT block, with an IT code: error: should be
21704 inst.error = BAD_OUT_IT;
21709 case INSIDE_VPT_INSN:
21710 if (now_pred.type == SCALAR_PRED)
21712 /* Case 2: In an IT block, with a VPT code: error: must be in a
21714 inst.error = BAD_OUT_VPT;
21717 /* Case 5: In a VPT block, with a VPT code: OK! */
21718 else if (cond != inst.cond)
21720 inst.error = BAD_VPT_COND;
21724 case INSIDE_IT_LAST_INSN:
21725 case IF_INSIDE_IT_LAST_INSN:
21726 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21728 /* Case 4: In a VPT block, with an IT code: syntax error. */
21729 /* Case 11: In an IT block, with a VPT code: syntax error. */
21730 inst.error = BAD_SYNTAX;
21733 else if (cond != inst.cond)
21735 inst.error = BAD_IT_COND;
21740 inst.error = BAD_BRANCH;
21745 case NEUTRAL_IT_INSN:
21746 /* The BKPT instruction is unconditional even in a IT or VPT
21751 if (now_pred.type == SCALAR_PRED)
21753 inst.error = BAD_IT_IT;
21756 /* fall through. */
21758 if (inst.cond == COND_ALWAYS)
21760 /* Executing a VPT/VPST instruction inside an IT block or a
21761 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21763 if (now_pred.type == SCALAR_PRED)
21764 as_tsktsk (MVE_NOT_IT);
21766 as_tsktsk (MVE_NOT_VPT);
21771 /* VPT/VPST do not accept condition codes. */
21772 inst.error = BAD_SYNTAX;
21783 struct depr_insn_mask
21785 unsigned long pattern;
21786 unsigned long mask;
21787 const char* description;
21790 /* List of 16-bit instruction patterns deprecated in an IT block in
21792 static const struct depr_insn_mask depr_it_insns[] = {
21793 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21794 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21795 { 0xa000, 0xb800, N_("ADR") },
21796 { 0x4800, 0xf800, N_("Literal loads") },
21797 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21798 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21799 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21800 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21801 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21806 it_fsm_post_encode (void)
21810 if (!now_pred.state_handled)
21811 handle_pred_state ();
21813 if (now_pred.insn_cond
21814 && !now_pred.warn_deprecated
21815 && warn_on_deprecated
21816 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21817 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21819 if (inst.instruction >= 0x10000)
21821 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21822 "performance deprecated in ARMv8-A and ARMv8-R"));
21823 now_pred.warn_deprecated = TRUE;
21827 const struct depr_insn_mask *p = depr_it_insns;
21829 while (p->mask != 0)
21831 if ((inst.instruction & p->mask) == p->pattern)
21833 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21834 "instructions of the following class are "
21835 "performance deprecated in ARMv8-A and "
21836 "ARMv8-R: %s"), p->description);
21837 now_pred.warn_deprecated = TRUE;
21845 if (now_pred.block_length > 1)
21847 as_tsktsk (_("IT blocks containing more than one conditional "
21848 "instruction are performance deprecated in ARMv8-A and "
21850 now_pred.warn_deprecated = TRUE;
21854 is_last = (now_pred.mask == 0x10);
21857 now_pred.state = OUTSIDE_PRED_BLOCK;
21863 force_automatic_it_block_close (void)
21865 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21867 close_automatic_it_block ();
21868 now_pred.state = OUTSIDE_PRED_BLOCK;
21874 in_pred_block (void)
21876 if (!now_pred.state_handled)
21877 handle_pred_state ();
21879 return now_pred.state != OUTSIDE_PRED_BLOCK;
21882 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21883 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21884 here, hence the "known" in the function name. */
21887 known_t32_only_insn (const struct asm_opcode *opcode)
21889 /* Original Thumb-1 wide instruction. */
21890 if (opcode->tencode == do_t_blx
21891 || opcode->tencode == do_t_branch23
21892 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21893 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21896 /* Wide-only instruction added to ARMv8-M Baseline. */
21897 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21898 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21899 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21900 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21906 /* Whether wide instruction variant can be used if available for a valid OPCODE
21910 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21912 if (known_t32_only_insn (opcode))
21915 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21916 of variant T3 of B.W is checked in do_t_branch. */
21917 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21918 && opcode->tencode == do_t_branch)
21921 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21922 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21923 && opcode->tencode == do_t_mov_cmp
21924 /* Make sure CMP instruction is not affected. */
21925 && opcode->aencode == do_mov)
21928 /* Wide instruction variants of all instructions with narrow *and* wide
21929 variants become available with ARMv6t2. Other opcodes are either
21930 narrow-only or wide-only and are thus available if OPCODE is valid. */
21931 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21934 /* OPCODE with narrow only instruction variant or wide variant not
21940 md_assemble (char *str)
21943 const struct asm_opcode * opcode;
21945 /* Align the previous label if needed. */
21946 if (last_label_seen != NULL)
21948 symbol_set_frag (last_label_seen, frag_now);
21949 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21950 S_SET_SEGMENT (last_label_seen, now_seg);
21953 memset (&inst, '\0', sizeof (inst));
21955 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21956 inst.relocs[r].type = BFD_RELOC_UNUSED;
21958 opcode = opcode_lookup (&p);
21961 /* It wasn't an instruction, but it might be a register alias of
21962 the form alias .req reg, or a Neon .dn/.qn directive. */
21963 if (! create_register_alias (str, p)
21964 && ! create_neon_reg_alias (str, p))
21965 as_bad (_("bad instruction `%s'"), str);
21970 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21971 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21973 /* The value which unconditional instructions should have in place of the
21974 condition field. */
21975 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21979 arm_feature_set variant;
21981 variant = cpu_variant;
21982 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21983 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21984 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21985 /* Check that this instruction is supported for this CPU. */
21986 if (!opcode->tvariant
21987 || (thumb_mode == 1
21988 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21990 if (opcode->tencode == do_t_swi)
21991 as_bad (_("SVC is not permitted on this architecture"));
21993 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21996 if (inst.cond != COND_ALWAYS && !unified_syntax
21997 && opcode->tencode != do_t_branch)
21999 as_bad (_("Thumb does not support conditional execution"));
22003 /* Two things are addressed here:
22004 1) Implicit require narrow instructions on Thumb-1.
22005 This avoids relaxation accidentally introducing Thumb-2
22007 2) Reject wide instructions in non Thumb-2 cores.
22009 Only instructions with narrow and wide variants need to be handled
22010 but selecting all non wide-only instructions is easier. */
22011 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22012 && !t32_insn_ok (variant, opcode))
22014 if (inst.size_req == 0)
22016 else if (inst.size_req == 4)
22018 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22019 as_bad (_("selected processor does not support 32bit wide "
22020 "variant of instruction `%s'"), str);
22022 as_bad (_("selected processor does not support `%s' in "
22023 "Thumb-2 mode"), str);
22028 inst.instruction = opcode->tvalue;
22030 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22032 /* Prepare the pred_insn_type for those encodings that don't set
22034 it_fsm_pre_encode ();
22036 opcode->tencode ();
22038 it_fsm_post_encode ();
22041 if (!(inst.error || inst.relax))
22043 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22044 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22045 if (inst.size_req && inst.size_req != inst.size)
22047 as_bad (_("cannot honor width suffix -- `%s'"), str);
22052 /* Something has gone badly wrong if we try to relax a fixed size
22054 gas_assert (inst.size_req == 0 || !inst.relax);
22056 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22057 *opcode->tvariant);
22058 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22059 set those bits when Thumb-2 32-bit instructions are seen. The impact
22060 of relaxable instructions will be considered later after we finish all
22062 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22063 variant = arm_arch_none;
22065 variant = cpu_variant;
22066 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22067 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22070 check_neon_suffixes;
22074 mapping_state (MAP_THUMB);
22077 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22081 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22082 is_bx = (opcode->aencode == do_bx);
22084 /* Check that this instruction is supported for this CPU. */
22085 if (!(is_bx && fix_v4bx)
22086 && !(opcode->avariant &&
22087 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22089 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22094 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22098 inst.instruction = opcode->avalue;
22099 if (opcode->tag == OT_unconditionalF)
22100 inst.instruction |= 0xFU << 28;
22102 inst.instruction |= inst.cond << 28;
22103 inst.size = INSN_SIZE;
22104 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22106 it_fsm_pre_encode ();
22107 opcode->aencode ();
22108 it_fsm_post_encode ();
22110 /* Arm mode bx is marked as both v4T and v5 because it's still required
22111 on a hypothetical non-thumb v5 core. */
22113 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22115 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22116 *opcode->avariant);
22118 check_neon_suffixes;
22122 mapping_state (MAP_ARM);
22127 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22135 check_pred_blocks_finished (void)
22140 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22141 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22142 == MANUAL_PRED_BLOCK)
22144 if (now_pred.type == SCALAR_PRED)
22145 as_warn (_("section '%s' finished with an open IT block."),
22148 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22152 if (now_pred.state == MANUAL_PRED_BLOCK)
22154 if (now_pred.type == SCALAR_PRED)
22155 as_warn (_("file finished with an open IT block."));
22157 as_warn (_("file finished with an open VPT/VPST block."));
22162 /* Various frobbings of labels and their addresses. */
22165 arm_start_line_hook (void)
22167 last_label_seen = NULL;
22171 arm_frob_label (symbolS * sym)
22173 last_label_seen = sym;
22175 ARM_SET_THUMB (sym, thumb_mode);
22177 #if defined OBJ_COFF || defined OBJ_ELF
22178 ARM_SET_INTERWORK (sym, support_interwork);
22181 force_automatic_it_block_close ();
22183 /* Note - do not allow local symbols (.Lxxx) to be labelled
22184 as Thumb functions. This is because these labels, whilst
22185 they exist inside Thumb code, are not the entry points for
22186 possible ARM->Thumb calls. Also, these labels can be used
22187 as part of a computed goto or switch statement. eg gcc
22188 can generate code that looks like this:
22190 ldr r2, [pc, .Laaa]
22200 The first instruction loads the address of the jump table.
22201 The second instruction converts a table index into a byte offset.
22202 The third instruction gets the jump address out of the table.
22203 The fourth instruction performs the jump.
22205 If the address stored at .Laaa is that of a symbol which has the
22206 Thumb_Func bit set, then the linker will arrange for this address
22207 to have the bottom bit set, which in turn would mean that the
22208 address computation performed by the third instruction would end
22209 up with the bottom bit set. Since the ARM is capable of unaligned
22210 word loads, the instruction would then load the incorrect address
22211 out of the jump table, and chaos would ensue. */
22212 if (label_is_thumb_function_name
22213 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22214 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22216 /* When the address of a Thumb function is taken the bottom
22217 bit of that address should be set. This will allow
22218 interworking between Arm and Thumb functions to work
22221 THUMB_SET_FUNC (sym, 1);
22223 label_is_thumb_function_name = FALSE;
22226 dwarf2_emit_label (sym);
22230 arm_data_in_code (void)
22232 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22234 *input_line_pointer = '/';
22235 input_line_pointer += 5;
22236 *input_line_pointer = 0;
22244 arm_canonicalize_symbol_name (char * name)
22248 if (thumb_mode && (len = strlen (name)) > 5
22249 && streq (name + len - 5, "/data"))
22250 *(name + len - 5) = 0;
22255 /* Table of all register names defined by default. The user can
22256 define additional names with .req. Note that all register names
22257 should appear in both upper and lowercase variants. Some registers
22258 also have mixed-case names. */
22260 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22261 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22262 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22263 #define REGSET(p,t) \
22264 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22265 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22266 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22267 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22268 #define REGSETH(p,t) \
22269 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22270 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22271 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22272 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22273 #define REGSET2(p,t) \
22274 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22275 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22276 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22277 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22278 #define SPLRBANK(base,bank,t) \
22279 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22280 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22281 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22282 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22283 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22284 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22286 static const struct reg_entry reg_names[] =
22288 /* ARM integer registers. */
22289 REGSET(r, RN), REGSET(R, RN),
22291 /* ATPCS synonyms. */
22292 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22293 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22294 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22296 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22297 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22298 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22300 /* Well-known aliases. */
22301 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22302 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22304 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22305 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22307 /* Defining the new Zero register from ARMv8.1-M. */
22311 /* Coprocessor numbers. */
22312 REGSET(p, CP), REGSET(P, CP),
22314 /* Coprocessor register numbers. The "cr" variants are for backward
22316 REGSET(c, CN), REGSET(C, CN),
22317 REGSET(cr, CN), REGSET(CR, CN),
22319 /* ARM banked registers. */
22320 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22321 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22322 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22323 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22324 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22325 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22326 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22328 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22329 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22330 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22331 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22332 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22333 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22334 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22335 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22337 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22338 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22339 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22340 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22341 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22342 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22343 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22344 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22345 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22347 /* FPA registers. */
22348 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22349 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22351 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22352 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22354 /* VFP SP registers. */
22355 REGSET(s,VFS), REGSET(S,VFS),
22356 REGSETH(s,VFS), REGSETH(S,VFS),
22358 /* VFP DP Registers. */
22359 REGSET(d,VFD), REGSET(D,VFD),
22360 /* Extra Neon DP registers. */
22361 REGSETH(d,VFD), REGSETH(D,VFD),
22363 /* Neon QP registers. */
22364 REGSET2(q,NQ), REGSET2(Q,NQ),
22366 /* VFP control registers. */
22367 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22368 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22369 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22370 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22371 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22372 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22373 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22375 /* Maverick DSP coprocessor registers. */
22376 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22377 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22379 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22380 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22381 REGDEF(dspsc,0,DSPSC),
22383 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22384 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22385 REGDEF(DSPSC,0,DSPSC),
22387 /* iWMMXt data registers - p0, c0-15. */
22388 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22390 /* iWMMXt control registers - p1, c0-3. */
22391 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22392 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22393 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22394 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22396 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22397 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22398 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22399 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22400 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22402 /* XScale accumulator registers. */
22403 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22409 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22410 within psr_required_here. */
22411 static const struct asm_psr psrs[] =
22413 /* Backward compatibility notation. Note that "all" is no longer
22414 truly all possible PSR bits. */
22415 {"all", PSR_c | PSR_f},
22419 /* Individual flags. */
22425 /* Combinations of flags. */
22426 {"fs", PSR_f | PSR_s},
22427 {"fx", PSR_f | PSR_x},
22428 {"fc", PSR_f | PSR_c},
22429 {"sf", PSR_s | PSR_f},
22430 {"sx", PSR_s | PSR_x},
22431 {"sc", PSR_s | PSR_c},
22432 {"xf", PSR_x | PSR_f},
22433 {"xs", PSR_x | PSR_s},
22434 {"xc", PSR_x | PSR_c},
22435 {"cf", PSR_c | PSR_f},
22436 {"cs", PSR_c | PSR_s},
22437 {"cx", PSR_c | PSR_x},
22438 {"fsx", PSR_f | PSR_s | PSR_x},
22439 {"fsc", PSR_f | PSR_s | PSR_c},
22440 {"fxs", PSR_f | PSR_x | PSR_s},
22441 {"fxc", PSR_f | PSR_x | PSR_c},
22442 {"fcs", PSR_f | PSR_c | PSR_s},
22443 {"fcx", PSR_f | PSR_c | PSR_x},
22444 {"sfx", PSR_s | PSR_f | PSR_x},
22445 {"sfc", PSR_s | PSR_f | PSR_c},
22446 {"sxf", PSR_s | PSR_x | PSR_f},
22447 {"sxc", PSR_s | PSR_x | PSR_c},
22448 {"scf", PSR_s | PSR_c | PSR_f},
22449 {"scx", PSR_s | PSR_c | PSR_x},
22450 {"xfs", PSR_x | PSR_f | PSR_s},
22451 {"xfc", PSR_x | PSR_f | PSR_c},
22452 {"xsf", PSR_x | PSR_s | PSR_f},
22453 {"xsc", PSR_x | PSR_s | PSR_c},
22454 {"xcf", PSR_x | PSR_c | PSR_f},
22455 {"xcs", PSR_x | PSR_c | PSR_s},
22456 {"cfs", PSR_c | PSR_f | PSR_s},
22457 {"cfx", PSR_c | PSR_f | PSR_x},
22458 {"csf", PSR_c | PSR_s | PSR_f},
22459 {"csx", PSR_c | PSR_s | PSR_x},
22460 {"cxf", PSR_c | PSR_x | PSR_f},
22461 {"cxs", PSR_c | PSR_x | PSR_s},
22462 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22463 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22464 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22465 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22466 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22467 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22468 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22469 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22470 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22471 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22472 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22473 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22474 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22475 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22476 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22477 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22478 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22479 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22480 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22481 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22482 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22483 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22484 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22485 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22488 /* Table of V7M psr names. */
22489 static const struct asm_psr v7m_psrs[] =
22491 {"apsr", 0x0 }, {"APSR", 0x0 },
22492 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22493 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22494 {"psr", 0x3 }, {"PSR", 0x3 },
22495 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22496 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22497 {"epsr", 0x6 }, {"EPSR", 0x6 },
22498 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22499 {"msp", 0x8 }, {"MSP", 0x8 },
22500 {"psp", 0x9 }, {"PSP", 0x9 },
22501 {"msplim", 0xa }, {"MSPLIM", 0xa },
22502 {"psplim", 0xb }, {"PSPLIM", 0xb },
22503 {"primask", 0x10}, {"PRIMASK", 0x10},
22504 {"basepri", 0x11}, {"BASEPRI", 0x11},
22505 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22506 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22507 {"control", 0x14}, {"CONTROL", 0x14},
22508 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22509 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22510 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22511 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22512 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22513 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22514 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22515 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22516 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22519 /* Table of all shift-in-operand names. */
22520 static const struct asm_shift_name shift_names [] =
22522 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22523 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22524 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22525 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22526 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22527 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22528 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22531 /* Table of all explicit relocation names. */
22533 static struct reloc_entry reloc_names[] =
22535 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22536 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22537 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22538 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22539 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22540 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22541 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22542 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22543 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22544 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22545 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22546 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22547 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22548 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22549 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22550 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22551 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22552 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22553 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22554 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22555 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22556 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22557 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22558 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22559 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22560 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22561 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22565 /* Table of all conditional affixes. */
22566 static const struct asm_cond conds[] =
22570 {"cs", 0x2}, {"hs", 0x2},
22571 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22584 static const struct asm_cond vconds[] =
22590 #define UL_BARRIER(L,U,CODE,FEAT) \
22591 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22592 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22594 static struct asm_barrier_opt barrier_opt_names[] =
22596 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22597 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22598 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22599 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22600 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22601 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22602 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22603 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22604 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22605 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22606 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22607 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22608 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22609 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22610 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22611 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22616 /* Table of ARM-format instructions. */
22618 /* Macros for gluing together operand strings. N.B. In all cases
22619 other than OPS0, the trailing OP_stop comes from default
22620 zero-initialization of the unspecified elements of the array. */
22621 #define OPS0() { OP_stop, }
22622 #define OPS1(a) { OP_##a, }
22623 #define OPS2(a,b) { OP_##a,OP_##b, }
22624 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22625 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22626 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22627 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22629 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22630 This is useful when mixing operands for ARM and THUMB, i.e. using the
22631 MIX_ARM_THUMB_OPERANDS macro.
22632 In order to use these macros, prefix the number of operands with _
22634 #define OPS_1(a) { a, }
22635 #define OPS_2(a,b) { a,b, }
22636 #define OPS_3(a,b,c) { a,b,c, }
22637 #define OPS_4(a,b,c,d) { a,b,c,d, }
22638 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22639 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22641 /* These macros abstract out the exact format of the mnemonic table and
22642 save some repeated characters. */
22644 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22645 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22646 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22647 THUMB_VARIANT, do_##ae, do_##te, 0 }
22649 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22650 a T_MNEM_xyz enumerator. */
22651 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22652 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22653 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22654 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22656 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22657 infix after the third character. */
22658 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22659 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22660 THUMB_VARIANT, do_##ae, do_##te, 0 }
22661 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22662 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22663 THUMB_VARIANT, do_##ae, do_##te, 0 }
22664 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22665 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22666 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22667 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22668 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22669 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22670 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22671 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22673 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22674 field is still 0xE. Many of the Thumb variants can be executed
22675 conditionally, so this is checked separately. */
22676 #define TUE(mnem, op, top, nops, ops, ae, te) \
22677 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22678 THUMB_VARIANT, do_##ae, do_##te, 0 }
22680 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22681 Used by mnemonics that have very minimal differences in the encoding for
22682 ARM and Thumb variants and can be handled in a common function. */
22683 #define TUEc(mnem, op, top, nops, ops, en) \
22684 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22685 THUMB_VARIANT, do_##en, do_##en, 0 }
22687 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22688 condition code field. */
22689 #define TUF(mnem, op, top, nops, ops, ae, te) \
22690 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22691 THUMB_VARIANT, do_##ae, do_##te, 0 }
22693 /* ARM-only variants of all the above. */
22694 #define CE(mnem, op, nops, ops, ae) \
22695 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22697 #define C3(mnem, op, nops, ops, ae) \
22698 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22700 /* Thumb-only variants of TCE and TUE. */
22701 #define ToC(mnem, top, nops, ops, te) \
22702 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22705 #define ToU(mnem, top, nops, ops, te) \
22706 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22709 /* T_MNEM_xyz enumerator variants of ToC. */
22710 #define toC(mnem, top, nops, ops, te) \
22711 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22714 /* T_MNEM_xyz enumerator variants of ToU. */
22715 #define toU(mnem, top, nops, ops, te) \
22716 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22719 /* Legacy mnemonics that always have conditional infix after the third
22721 #define CL(mnem, op, nops, ops, ae) \
22722 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22723 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22725 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22726 #define cCE(mnem, op, nops, ops, ae) \
22727 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22729 /* mov instructions that are shared between coprocessor and MVE. */
22730 #define mcCE(mnem, op, nops, ops, ae) \
22731 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22733 /* Legacy coprocessor instructions where conditional infix and conditional
22734 suffix are ambiguous. For consistency this includes all FPA instructions,
22735 not just the potentially ambiguous ones. */
22736 #define cCL(mnem, op, nops, ops, ae) \
22737 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22738 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22740 /* Coprocessor, takes either a suffix or a position-3 infix
22741 (for an FPA corner case). */
22742 #define C3E(mnem, op, nops, ops, ae) \
22743 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22744 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22746 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22747 { m1 #m2 m3, OPS##nops ops, \
22748 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22749 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22751 #define CM(m1, m2, op, nops, ops, ae) \
22752 xCM_ (m1, , m2, op, nops, ops, ae), \
22753 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22754 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22755 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22756 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22757 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22758 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22759 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22760 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22761 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22762 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22763 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22764 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22765 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22766 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22767 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22768 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22769 xCM_ (m1, le, m2, op, nops, ops, ae), \
22770 xCM_ (m1, al, m2, op, nops, ops, ae)
22772 #define UE(mnem, op, nops, ops, ae) \
22773 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22775 #define UF(mnem, op, nops, ops, ae) \
22776 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22778 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22779 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22780 use the same encoding function for each. */
22781 #define NUF(mnem, op, nops, ops, enc) \
22782 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22783 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22785 /* Neon data processing, version which indirects through neon_enc_tab for
22786 the various overloaded versions of opcodes. */
22787 #define nUF(mnem, op, nops, ops, enc) \
22788 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22789 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22791 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22793 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22794 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22795 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22797 #define NCE(mnem, op, nops, ops, enc) \
22798 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22800 #define NCEF(mnem, op, nops, ops, enc) \
22801 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22803 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22804 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22805 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22806 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22808 #define nCE(mnem, op, nops, ops, enc) \
22809 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22811 #define nCEF(mnem, op, nops, ops, enc) \
22812 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22815 #define mCEF(mnem, op, nops, ops, enc) \
22816 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22817 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22820 /* nCEF but for MVE predicated instructions. */
22821 #define mnCEF(mnem, op, nops, ops, enc) \
22822 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22824 /* nCE but for MVE predicated instructions. */
22825 #define mnCE(mnem, op, nops, ops, enc) \
22826 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22828 /* NUF but for potentially MVE predicated instructions. */
22829 #define MNUF(mnem, op, nops, ops, enc) \
22830 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22831 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22833 /* nUF but for potentially MVE predicated instructions. */
22834 #define mnUF(mnem, op, nops, ops, enc) \
22835 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22836 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22838 /* ToC but for potentially MVE predicated instructions. */
22839 #define mToC(mnem, top, nops, ops, te) \
22840 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22843 /* NCE but for MVE predicated instructions. */
22844 #define MNCE(mnem, op, nops, ops, enc) \
22845 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22847 /* NCEF but for MVE predicated instructions. */
22848 #define MNCEF(mnem, op, nops, ops, enc) \
22849 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22852 static const struct asm_opcode insns[] =
22854 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22855 #define THUMB_VARIANT & arm_ext_v4t
22856 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22857 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22858 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22859 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22860 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22861 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22862 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22863 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22864 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22865 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22866 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22867 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22868 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22869 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22870 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22871 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22873 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22874 for setting PSR flag bits. They are obsolete in V6 and do not
22875 have Thumb equivalents. */
22876 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22877 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22878 CL("tstp", 110f000, 2, (RR, SH), cmp),
22879 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22880 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22881 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22882 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22883 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22884 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22886 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22887 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22888 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22889 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22891 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22892 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22893 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22895 OP_ADDRGLDR),ldst, t_ldst),
22896 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22898 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22899 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22900 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22901 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22902 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22903 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22905 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22906 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22909 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22910 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22911 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22912 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22914 /* Thumb-compatibility pseudo ops. */
22915 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22916 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22917 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22918 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22919 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22920 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22921 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22922 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22923 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22924 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22925 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22926 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22928 /* These may simplify to neg. */
22929 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22930 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22932 #undef THUMB_VARIANT
22933 #define THUMB_VARIANT & arm_ext_os
22935 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22936 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22938 #undef THUMB_VARIANT
22939 #define THUMB_VARIANT & arm_ext_v6
22941 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22943 /* V1 instructions with no Thumb analogue prior to V6T2. */
22944 #undef THUMB_VARIANT
22945 #define THUMB_VARIANT & arm_ext_v6t2
22947 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22948 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22949 CL("teqp", 130f000, 2, (RR, SH), cmp),
22951 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22952 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22953 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22954 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22956 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22957 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22959 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22960 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22962 /* V1 instructions with no Thumb analogue at all. */
22963 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22964 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22966 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22967 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22968 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22969 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22970 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22971 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22972 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22973 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22976 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22977 #undef THUMB_VARIANT
22978 #define THUMB_VARIANT & arm_ext_v4t
22980 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22981 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22983 #undef THUMB_VARIANT
22984 #define THUMB_VARIANT & arm_ext_v6t2
22986 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22987 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22989 /* Generic coprocessor instructions. */
22990 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22991 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22992 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22993 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22994 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22995 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22996 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22999 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23001 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23002 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23005 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23006 #undef THUMB_VARIANT
23007 #define THUMB_VARIANT & arm_ext_msr
23009 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23010 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23013 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23014 #undef THUMB_VARIANT
23015 #define THUMB_VARIANT & arm_ext_v6t2
23017 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23018 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23019 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23020 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23021 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23022 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23023 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23024 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23027 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23028 #undef THUMB_VARIANT
23029 #define THUMB_VARIANT & arm_ext_v4t
23031 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23032 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23033 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23034 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23035 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23036 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23039 #define ARM_VARIANT & arm_ext_v4t_5
23041 /* ARM Architecture 4T. */
23042 /* Note: bx (and blx) are required on V5, even if the processor does
23043 not support Thumb. */
23044 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23047 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23048 #undef THUMB_VARIANT
23049 #define THUMB_VARIANT & arm_ext_v5t
23051 /* Note: blx has 2 variants; the .value coded here is for
23052 BLX(2). Only this variant has conditional execution. */
23053 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23054 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23056 #undef THUMB_VARIANT
23057 #define THUMB_VARIANT & arm_ext_v6t2
23059 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23060 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23061 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23062 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23063 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23064 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23065 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23066 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23069 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23070 #undef THUMB_VARIANT
23071 #define THUMB_VARIANT & arm_ext_v5exp
23073 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23074 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23075 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23076 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23078 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23079 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23081 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23082 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23083 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23084 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23086 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23087 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23088 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23089 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23091 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23092 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23094 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23095 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23096 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23097 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23100 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23101 #undef THUMB_VARIANT
23102 #define THUMB_VARIANT & arm_ext_v6t2
23104 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23105 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23107 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23108 ADDRGLDRS), ldrd, t_ldstd),
23110 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23111 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23114 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23116 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23119 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23120 #undef THUMB_VARIANT
23121 #define THUMB_VARIANT & arm_ext_v6
23123 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23124 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23125 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23126 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23127 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23128 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23129 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23130 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23131 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23132 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23134 #undef THUMB_VARIANT
23135 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23137 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23138 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23140 #undef THUMB_VARIANT
23141 #define THUMB_VARIANT & arm_ext_v6t2
23143 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23144 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23146 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23147 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23149 /* ARM V6 not included in V7M. */
23150 #undef THUMB_VARIANT
23151 #define THUMB_VARIANT & arm_ext_v6_notm
23152 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23153 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23154 UF(rfeib, 9900a00, 1, (RRw), rfe),
23155 UF(rfeda, 8100a00, 1, (RRw), rfe),
23156 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23157 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23158 UF(rfefa, 8100a00, 1, (RRw), rfe),
23159 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23160 UF(rfeed, 9900a00, 1, (RRw), rfe),
23161 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23162 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23163 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23164 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23165 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23166 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23167 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23168 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23169 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23170 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23172 /* ARM V6 not included in V7M (eg. integer SIMD). */
23173 #undef THUMB_VARIANT
23174 #define THUMB_VARIANT & arm_ext_v6_dsp
23175 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23176 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23177 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23178 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23179 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23180 /* Old name for QASX. */
23181 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23182 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23183 /* Old name for QSAX. */
23184 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23185 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23186 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23187 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23188 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23189 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23190 /* Old name for SASX. */
23191 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23192 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23193 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23194 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23195 /* Old name for SHASX. */
23196 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23197 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23198 /* Old name for SHSAX. */
23199 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23200 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23201 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23202 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23203 /* Old name for SSAX. */
23204 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23205 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23206 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23207 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23208 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23209 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23210 /* Old name for UASX. */
23211 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23212 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23213 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23214 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23215 /* Old name for UHASX. */
23216 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23217 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23218 /* Old name for UHSAX. */
23219 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23220 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23221 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23222 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23223 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23224 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23225 /* Old name for UQASX. */
23226 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23227 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23228 /* Old name for UQSAX. */
23229 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23230 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23231 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23232 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23233 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23234 /* Old name for USAX. */
23235 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23236 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23237 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23238 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23239 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23240 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23241 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23242 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23243 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23244 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23245 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23246 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23247 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23248 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23249 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23250 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23251 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23252 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23253 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23254 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23255 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23256 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23257 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23258 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23259 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23260 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23261 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23262 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23263 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23264 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23265 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23266 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23267 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23268 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23271 #define ARM_VARIANT & arm_ext_v6k_v6t2
23272 #undef THUMB_VARIANT
23273 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23275 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23276 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23277 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23278 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23280 #undef THUMB_VARIANT
23281 #define THUMB_VARIANT & arm_ext_v6_notm
23282 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23284 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23285 RRnpcb), strexd, t_strexd),
23287 #undef THUMB_VARIANT
23288 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23289 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23291 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23293 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23295 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23297 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23300 #define ARM_VARIANT & arm_ext_sec
23301 #undef THUMB_VARIANT
23302 #define THUMB_VARIANT & arm_ext_sec
23304 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23307 #define ARM_VARIANT & arm_ext_virt
23308 #undef THUMB_VARIANT
23309 #define THUMB_VARIANT & arm_ext_virt
23311 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23312 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23315 #define ARM_VARIANT & arm_ext_pan
23316 #undef THUMB_VARIANT
23317 #define THUMB_VARIANT & arm_ext_pan
23319 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23322 #define ARM_VARIANT & arm_ext_v6t2
23323 #undef THUMB_VARIANT
23324 #define THUMB_VARIANT & arm_ext_v6t2
23326 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23327 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23328 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23329 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23331 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23332 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23334 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23335 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23336 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23337 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23340 #define ARM_VARIANT & arm_ext_v3
23341 #undef THUMB_VARIANT
23342 #define THUMB_VARIANT & arm_ext_v6t2
23344 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23345 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23346 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23349 #define ARM_VARIANT & arm_ext_v6t2
23350 #undef THUMB_VARIANT
23351 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23352 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23353 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23355 /* Thumb-only instructions. */
23357 #define ARM_VARIANT NULL
23358 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23359 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23361 /* ARM does not really have an IT instruction, so always allow it.
23362 The opcode is copied from Thumb in order to allow warnings in
23363 -mimplicit-it=[never | arm] modes. */
23365 #define ARM_VARIANT & arm_ext_v1
23366 #undef THUMB_VARIANT
23367 #define THUMB_VARIANT & arm_ext_v6t2
23369 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23370 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23371 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23372 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23373 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23374 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23375 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23376 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23377 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23378 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23379 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23380 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23381 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23382 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23383 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23384 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23385 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23386 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23388 /* Thumb2 only instructions. */
23390 #define ARM_VARIANT NULL
23392 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23393 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23394 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23395 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23396 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23397 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23399 /* Hardware division instructions. */
23401 #define ARM_VARIANT & arm_ext_adiv
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & arm_ext_div
23405 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23406 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23408 /* ARM V6M/V7 instructions. */
23410 #define ARM_VARIANT & arm_ext_barrier
23411 #undef THUMB_VARIANT
23412 #define THUMB_VARIANT & arm_ext_barrier
23414 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23415 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23416 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23418 /* ARM V7 instructions. */
23420 #define ARM_VARIANT & arm_ext_v7
23421 #undef THUMB_VARIANT
23422 #define THUMB_VARIANT & arm_ext_v7
23424 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23425 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23428 #define ARM_VARIANT & arm_ext_mp
23429 #undef THUMB_VARIANT
23430 #define THUMB_VARIANT & arm_ext_mp
23432 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23434 /* AArchv8 instructions. */
23436 #define ARM_VARIANT & arm_ext_v8
23438 /* Instructions shared between armv8-a and armv8-m. */
23439 #undef THUMB_VARIANT
23440 #define THUMB_VARIANT & arm_ext_atomics
23442 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23443 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23444 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23445 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23446 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23447 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23448 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23449 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23450 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23451 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23453 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23455 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23457 #undef THUMB_VARIANT
23458 #define THUMB_VARIANT & arm_ext_v8
23460 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23461 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23463 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23466 /* Defined in V8 but is in undefined encoding space for earlier
23467 architectures. However earlier architectures are required to treat
23468 this instuction as a semihosting trap as well. Hence while not explicitly
23469 defined as such, it is in fact correct to define the instruction for all
23471 #undef THUMB_VARIANT
23472 #define THUMB_VARIANT & arm_ext_v1
23474 #define ARM_VARIANT & arm_ext_v1
23475 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23477 /* ARMv8 T32 only. */
23479 #define ARM_VARIANT NULL
23480 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23481 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23482 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23484 /* FP for ARMv8. */
23486 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23487 #undef THUMB_VARIANT
23488 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23490 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23491 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23492 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23493 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23494 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23495 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23496 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23497 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23498 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23499 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23500 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23502 /* Crypto v1 extensions. */
23504 #define ARM_VARIANT & fpu_crypto_ext_armv8
23505 #undef THUMB_VARIANT
23506 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23508 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23509 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23510 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23511 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23512 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23513 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23514 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23515 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23516 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23517 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23518 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23519 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23520 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23521 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23524 #define ARM_VARIANT & crc_ext_armv8
23525 #undef THUMB_VARIANT
23526 #define THUMB_VARIANT & crc_ext_armv8
23527 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23528 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23529 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23530 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23531 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23532 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23534 /* ARMv8.2 RAS extension. */
23536 #define ARM_VARIANT & arm_ext_ras
23537 #undef THUMB_VARIANT
23538 #define THUMB_VARIANT & arm_ext_ras
23539 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23542 #define ARM_VARIANT & arm_ext_v8_3
23543 #undef THUMB_VARIANT
23544 #define THUMB_VARIANT & arm_ext_v8_3
23545 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23548 #define ARM_VARIANT & fpu_neon_ext_dotprod
23549 #undef THUMB_VARIANT
23550 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23551 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23552 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23555 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23556 #undef THUMB_VARIANT
23557 #define THUMB_VARIANT NULL
23559 cCE("wfs", e200110, 1, (RR), rd),
23560 cCE("rfs", e300110, 1, (RR), rd),
23561 cCE("wfc", e400110, 1, (RR), rd),
23562 cCE("rfc", e500110, 1, (RR), rd),
23564 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23565 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23566 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23567 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23569 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23570 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23571 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23572 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23574 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23575 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23576 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23577 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23578 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23579 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23580 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23581 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23582 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23583 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23584 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23585 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23587 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23588 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23589 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23590 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23591 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23592 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23593 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23594 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23595 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23596 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23597 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23598 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23600 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23601 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23602 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23603 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23604 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23605 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23606 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23607 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23608 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23609 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23610 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23611 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23613 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23614 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23615 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23616 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23617 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23618 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23619 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23620 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23621 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23622 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23623 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23624 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23626 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23627 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23628 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23629 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23630 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23631 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23632 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23633 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23634 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23635 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23636 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23637 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23639 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23640 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23641 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23642 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23643 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23644 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23645 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23646 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23647 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23648 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23649 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23650 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23652 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23653 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23654 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23655 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23656 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23657 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23658 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23659 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23660 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23661 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23662 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23663 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23665 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23666 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23667 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23668 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23669 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23670 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23671 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23672 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23673 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23674 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23675 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23676 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23678 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23679 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23680 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23681 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23682 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23683 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23684 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23685 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23686 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23687 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23688 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23689 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23691 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23692 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23693 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23694 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23695 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23696 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23697 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23698 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23699 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23700 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23701 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23702 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23704 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23705 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23706 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23707 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23708 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23709 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23710 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23711 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23712 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23713 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23714 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23715 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23717 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23718 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23719 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23720 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23721 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23722 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23723 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23724 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23725 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23726 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23727 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23728 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23730 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23731 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23732 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23733 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23734 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23735 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23736 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23737 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23738 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23739 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23740 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23741 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23743 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23744 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23745 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23746 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23747 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23748 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23749 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23750 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23751 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23752 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23753 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23754 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23756 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23757 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23758 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23759 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23760 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23761 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23762 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23763 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23764 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23765 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23766 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23767 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23769 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23770 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23771 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23772 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23773 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23774 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23775 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23776 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23777 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23778 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23779 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23780 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23782 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23783 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23784 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23785 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23786 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23787 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23788 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23789 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23790 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23791 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23792 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23793 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23795 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23796 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23797 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23798 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23799 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23800 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23801 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23802 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23803 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23804 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23805 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23806 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23808 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23809 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23810 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23811 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23812 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23813 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23814 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23815 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23816 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23817 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23818 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23819 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23821 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23822 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23823 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23824 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23825 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23826 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23827 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23828 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23829 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23830 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23831 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23832 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23834 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23835 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23836 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23837 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23838 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23839 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23840 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23841 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23842 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23843 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23844 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23845 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23847 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23855 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23856 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23857 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23858 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23860 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23868 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23869 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23870 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23871 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23873 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23881 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23882 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23883 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23884 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23886 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23887 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23888 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23889 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23890 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23891 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23892 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23893 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23894 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23895 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23896 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23897 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23899 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23900 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23901 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23909 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23910 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23912 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23913 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23914 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23922 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23923 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23925 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23926 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23927 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23935 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23936 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23938 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23939 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23940 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23948 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23949 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23951 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23952 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23953 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23954 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23956 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23957 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23958 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23959 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23960 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23961 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23962 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23963 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23964 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23965 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23966 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23967 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23969 /* The implementation of the FIX instruction is broken on some
23970 assemblers, in that it accepts a precision specifier as well as a
23971 rounding specifier, despite the fact that this is meaningless.
23972 To be more compatible, we accept it as well, though of course it
23973 does not set any bits. */
23974 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23975 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23976 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23977 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23978 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23979 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23980 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23981 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23982 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23983 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23984 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23985 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23986 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23988 /* Instructions that were new with the real FPA, call them V2. */
23990 #define ARM_VARIANT & fpu_fpa_ext_v2
23992 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23993 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23994 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23995 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23996 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23997 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24000 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24002 /* Moves and type conversions. */
24003 cCE("fmstat", ef1fa10, 0, (), noargs),
24004 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24005 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
24006 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24007 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24008 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24009 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24010 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24011 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24012 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24013 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24015 /* Memory operations. */
24016 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24017 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24018 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24019 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24020 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24021 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24022 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24023 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24024 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24025 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24026 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24027 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24028 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24029 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24030 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24031 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24032 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24033 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24035 /* Monadic operations. */
24036 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24037 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24038 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24040 /* Dyadic operations. */
24041 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24042 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24043 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24044 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24045 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24046 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24047 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24048 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24049 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24052 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24053 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24054 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24055 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24057 /* Double precision load/store are still present on single precision
24058 implementations. */
24059 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24060 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24061 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24062 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24063 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24064 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24065 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24066 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24067 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24068 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24071 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24073 /* Moves and type conversions. */
24074 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24075 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24076 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24077 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24078 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24079 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24080 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24081 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24082 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24083 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24084 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24085 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24087 /* Monadic operations. */
24088 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24089 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24090 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24092 /* Dyadic operations. */
24093 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24094 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24095 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24096 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24097 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24098 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24099 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24100 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24101 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24104 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24105 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24106 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24107 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24109 /* Instructions which may belong to either the Neon or VFP instruction sets.
24110 Individual encoder functions perform additional architecture checks. */
24112 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24113 #undef THUMB_VARIANT
24114 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24116 /* These mnemonics are unique to VFP. */
24117 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24118 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24119 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24120 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24121 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24122 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24123 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24124 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24126 /* Mnemonics shared by Neon and VFP. */
24127 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24129 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24130 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24131 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24132 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24133 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24134 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24136 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24137 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24138 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24139 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24142 /* NOTE: All VMOV encoding is special-cased! */
24143 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24145 #undef THUMB_VARIANT
24146 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24147 by different feature bits. Since we are setting the Thumb guard, we can
24148 require Thumb-1 which makes it a nop guard and set the right feature bit in
24149 do_vldr_vstr (). */
24150 #define THUMB_VARIANT & arm_ext_v4t
24151 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24152 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24155 #define ARM_VARIANT & arm_ext_fp16
24156 #undef THUMB_VARIANT
24157 #define THUMB_VARIANT & arm_ext_fp16
24158 /* New instructions added from v8.2, allowing the extraction and insertion of
24159 the upper 16 bits of a 32-bit vector register. */
24160 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24161 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24163 /* New backported fma/fms instructions optional in v8.2. */
24164 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24165 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24167 #undef THUMB_VARIANT
24168 #define THUMB_VARIANT & fpu_neon_ext_v1
24170 #define ARM_VARIANT & fpu_neon_ext_v1
24172 /* Data processing with three registers of the same length. */
24173 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24174 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24175 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24176 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24177 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24178 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24179 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24180 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24181 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24182 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24183 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24184 /* If not immediate, fall back to neon_dyadic_i64_su.
24185 shl_imm should accept I8 I16 I32 I64,
24186 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24187 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24188 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24189 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24190 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
24191 /* Logic ops, types optional & ignored. */
24192 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24193 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24194 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24195 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24196 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24197 /* Bitfield ops, untyped. */
24198 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24199 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24200 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24201 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24202 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24203 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24204 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24205 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24206 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24207 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24208 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24209 back to neon_dyadic_if_su. */
24210 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24211 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24212 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24213 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24214 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24215 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24216 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24217 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24218 /* Comparison. Type I8 I16 I32 F32. */
24219 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24220 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24221 /* As above, D registers only. */
24222 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24223 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24224 /* Int and float variants, signedness unimportant. */
24225 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24226 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24227 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24228 /* Add/sub take types I8 I16 I32 I64 F32. */
24229 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24230 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24231 /* vtst takes sizes 8, 16, 32. */
24232 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24233 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24234 /* VMUL takes I8 I16 I32 F32 P8. */
24235 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24236 /* VQD{R}MULH takes S16 S32. */
24237 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24238 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24239 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24240 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24241 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24242 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24243 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24244 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24245 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24246 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24247 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24248 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24249 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24250 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24251 /* ARM v8.1 extension. */
24252 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24253 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24254 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24256 /* Two address, int/float. Types S8 S16 S32 F32. */
24257 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24258 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24260 /* Data processing with two registers and a shift amount. */
24261 /* Right shifts, and variants with rounding.
24262 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24263 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24264 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24265 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24266 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24267 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24268 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24269 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24270 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24271 /* Shift and insert. Sizes accepted 8 16 32 64. */
24272 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24273 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24274 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24275 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24276 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24277 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24278 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24279 /* Right shift immediate, saturating & narrowing, with rounding variants.
24280 Types accepted S16 S32 S64 U16 U32 U64. */
24281 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24282 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24283 /* As above, unsigned. Types accepted S16 S32 S64. */
24284 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24285 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24286 /* Right shift narrowing. Types accepted I16 I32 I64. */
24287 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24288 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24289 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24290 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24291 /* CVT with optional immediate for fixed-point variant. */
24292 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24294 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24296 /* Data processing, three registers of different lengths. */
24297 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24298 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24299 /* If not scalar, fall back to neon_dyadic_long.
24300 Vector types as above, scalar types S16 S32 U16 U32. */
24301 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24302 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24303 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24304 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24305 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24306 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24307 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24308 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24309 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24310 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24311 /* Saturating doubling multiplies. Types S16 S32. */
24312 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24313 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24314 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24315 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24316 S16 S32 U16 U32. */
24317 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24319 /* Extract. Size 8. */
24320 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24321 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24323 /* Two registers, miscellaneous. */
24324 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24325 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24326 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24327 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24328 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24329 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24330 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24331 /* Vector replicate. Sizes 8 16 32. */
24332 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24333 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24334 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24335 /* VMOVN. Types I16 I32 I64. */
24336 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24337 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24338 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24339 /* VQMOVUN. Types S16 S32 S64. */
24340 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24341 /* VZIP / VUZP. Sizes 8 16 32. */
24342 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24343 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24344 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24345 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24346 /* VQABS / VQNEG. Types S8 S16 S32. */
24347 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24348 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24349 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24350 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24351 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24352 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24353 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24354 /* Reciprocal estimates. Types U32 F16 F32. */
24355 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24356 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24357 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24358 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24359 /* VCLS. Types S8 S16 S32. */
24360 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24361 /* VCLZ. Types I8 I16 I32. */
24362 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24363 /* VCNT. Size 8. */
24364 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24365 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24366 /* Two address, untyped. */
24367 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24368 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24369 /* VTRN. Sizes 8 16 32. */
24370 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24371 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24373 /* Table lookup. Size 8. */
24374 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24375 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24377 #undef THUMB_VARIANT
24378 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24380 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24382 /* Neon element/structure load/store. */
24383 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24384 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24385 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24386 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24387 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24388 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24389 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24390 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24392 #undef THUMB_VARIANT
24393 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24395 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24396 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24397 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24398 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24399 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24400 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24401 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24402 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24403 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24404 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24406 #undef THUMB_VARIANT
24407 #define THUMB_VARIANT & fpu_vfp_ext_v3
24409 #define ARM_VARIANT & fpu_vfp_ext_v3
24411 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24412 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24413 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24414 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24415 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24416 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24417 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24418 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24419 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24422 #define ARM_VARIANT & fpu_vfp_ext_fma
24423 #undef THUMB_VARIANT
24424 #define THUMB_VARIANT & fpu_vfp_ext_fma
24425 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24426 VFP FMA variant; NEON and VFP FMA always includes the NEON
24427 FMA instructions. */
24428 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24429 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24431 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24432 the v form should always be used. */
24433 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24434 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24435 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24436 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24437 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24438 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24440 #undef THUMB_VARIANT
24442 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24444 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24445 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24446 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24447 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24448 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24449 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24450 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24451 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24454 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24456 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24457 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24458 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24459 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24460 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24461 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24462 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24463 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24464 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24465 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24466 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24467 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24468 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24469 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24470 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24471 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24472 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24473 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24474 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24475 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24476 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24477 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24478 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24479 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24480 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24481 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24482 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24483 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24484 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24485 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24486 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24487 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24488 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24489 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24490 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24491 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24492 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24493 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24494 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24495 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24496 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24497 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24498 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24499 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24500 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24501 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24502 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24503 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24504 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24505 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24506 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24507 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24508 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24509 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24510 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24511 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24512 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24513 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24514 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24515 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24516 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24517 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24518 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24519 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24520 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24521 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24522 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24523 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24524 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24525 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24526 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24527 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24528 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24529 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24530 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24531 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24532 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24533 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24534 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24535 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24536 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24537 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24538 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24539 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24540 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24541 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24542 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24543 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24544 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24545 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24546 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24547 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24548 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24549 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24550 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24551 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24552 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24553 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24554 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24555 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24556 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24557 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24558 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24559 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24560 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24561 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24562 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24566 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24567 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24568 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24569 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24570 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24571 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24572 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24573 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24574 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24575 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24576 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24577 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24578 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24579 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24580 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24581 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24582 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24583 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24584 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24585 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24586 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24587 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24588 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24589 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24599 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24600 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24601 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24602 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24603 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24604 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24608 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24609 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24610 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24611 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24612 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24613 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24615 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24620 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24622 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24623 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24624 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24625 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24626 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24627 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24628 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24630 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24631 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24632 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24633 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24634 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24635 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24636 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24637 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24638 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24639 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24640 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24641 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24642 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24643 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24644 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24645 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24646 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24647 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24648 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24649 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24650 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24651 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24652 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24657 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24662 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24663 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24664 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24665 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24666 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24667 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24668 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24669 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24670 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24671 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24672 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24673 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24674 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24675 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24676 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24681 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24683 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24684 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24685 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24686 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24687 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24688 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24689 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24690 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24691 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24692 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24693 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24694 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24695 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24696 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24697 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24698 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24699 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24700 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24701 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24702 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24703 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24704 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24705 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24706 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24707 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24708 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24709 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24710 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24711 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24712 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24713 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24714 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24715 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24716 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24717 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24718 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24719 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24720 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24721 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24722 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24723 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24724 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24725 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24726 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24727 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24728 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24729 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24730 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24731 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24732 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24733 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24734 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24735 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24736 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24737 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24738 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24739 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24740 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24741 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24742 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24743 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24744 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24745 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24746 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24747 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24748 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24749 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24750 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24751 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24752 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24753 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24754 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24755 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24756 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24757 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24758 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24760 /* ARMv8.5-A instructions. */
24762 #define ARM_VARIANT & arm_ext_sb
24763 #undef THUMB_VARIANT
24764 #define THUMB_VARIANT & arm_ext_sb
24765 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24768 #define ARM_VARIANT & arm_ext_predres
24769 #undef THUMB_VARIANT
24770 #define THUMB_VARIANT & arm_ext_predres
24771 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24772 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24773 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24775 /* ARMv8-M instructions. */
24777 #define ARM_VARIANT NULL
24778 #undef THUMB_VARIANT
24779 #define THUMB_VARIANT & arm_ext_v8m
24780 ToU("sg", e97fe97f, 0, (), noargs),
24781 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24782 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24783 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24784 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24785 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24786 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24788 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24789 instructions behave as nop if no VFP is present. */
24790 #undef THUMB_VARIANT
24791 #define THUMB_VARIANT & arm_ext_v8m_main
24792 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24793 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24795 /* Armv8.1-M Mainline instructions. */
24796 #undef THUMB_VARIANT
24797 #define THUMB_VARIANT & arm_ext_v8_1m_main
24798 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24799 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24800 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24801 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24802 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24804 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24805 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24806 toU("le", _le, 2, (oLR, EXP), t_loloop),
24808 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24809 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24811 #undef THUMB_VARIANT
24812 #define THUMB_VARIANT & mve_ext
24814 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24815 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24816 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24817 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24818 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24819 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24820 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24821 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24822 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24823 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24824 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24825 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24826 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24827 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24828 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24830 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24831 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24832 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24833 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24834 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24835 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24836 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24837 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24838 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24839 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24840 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24841 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24842 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24843 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24844 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24846 /* MVE and MVE FP only. */
24847 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24848 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24849 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24850 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24851 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24852 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24853 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24854 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24855 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24856 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24857 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24858 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24859 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24860 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24861 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24862 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24863 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24865 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24866 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24867 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24868 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24869 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24870 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24871 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24872 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24873 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24874 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24875 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24876 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24877 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24878 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24879 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24880 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24881 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24882 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24883 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24884 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24886 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24887 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24888 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24889 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24890 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24891 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24892 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24893 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24894 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24895 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24896 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24897 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24898 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24899 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24900 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24901 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24902 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24904 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24905 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24906 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24907 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24908 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24909 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24910 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24911 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24912 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24913 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24914 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24915 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24916 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24917 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24918 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24919 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24920 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24921 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24922 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24923 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24925 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24926 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24927 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24928 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24929 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
24931 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24932 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24933 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24934 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24935 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24936 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24937 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24938 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24939 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24940 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24941 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24942 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24943 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24944 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
24945 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
24946 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
24947 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
24949 #undef THUMB_VARIANT
24950 #define THUMB_VARIANT & mve_fp_ext
24951 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24952 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24953 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24954 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24955 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24956 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24957 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24958 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24961 #define ARM_VARIANT & fpu_vfp_ext_v1
24962 #undef THUMB_VARIANT
24963 #define THUMB_VARIANT & arm_ext_v6t2
24964 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24965 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
24967 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24970 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24972 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24973 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24974 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24975 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24977 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24978 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24979 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24981 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24982 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24984 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24985 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24987 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24988 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24991 #define ARM_VARIANT & fpu_vfp_ext_v2
24993 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24994 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24995 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24996 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24999 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25000 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25001 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25002 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25003 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25004 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25005 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25008 #define ARM_VARIANT & fpu_neon_ext_v1
25009 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25010 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25011 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25012 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25013 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25014 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25015 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25016 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25017 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25018 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25019 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25020 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25021 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25022 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25023 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25024 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25025 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25026 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25027 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25028 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25029 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25030 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25031 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25032 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25033 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25034 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25035 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25038 #define ARM_VARIANT & arm_ext_v8_3
25039 #undef THUMB_VARIANT
25040 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25041 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25042 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25045 #undef THUMB_VARIANT
25077 /* MD interface: bits in the object file. */
25079 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25080 for use in the a.out file, and stores them in the array pointed to by buf.
25081 This knows about the endian-ness of the target machine and does
25082 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25083 2 (short) and 4 (long) Floating numbers are put out as a series of
25084 LITTLENUMS (shorts, here at least). */
25087 md_number_to_chars (char * buf, valueT val, int n)
25089 if (target_big_endian)
25090 number_to_chars_bigendian (buf, val, n);
25092 number_to_chars_littleendian (buf, val, n);
25096 md_chars_to_number (char * buf, int n)
25099 unsigned char * where = (unsigned char *) buf;
25101 if (target_big_endian)
25106 result |= (*where++ & 255);
25114 result |= (where[n] & 255);
25121 /* MD interface: Sections. */
25123 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25124 that an rs_machine_dependent frag may reach. */
25127 arm_frag_max_var (fragS *fragp)
25129 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25130 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25132 Note that we generate relaxable instructions even for cases that don't
25133 really need it, like an immediate that's a trivial constant. So we're
25134 overestimating the instruction size for some of those cases. Rather
25135 than putting more intelligence here, it would probably be better to
25136 avoid generating a relaxation frag in the first place when it can be
25137 determined up front that a short instruction will suffice. */
25139 gas_assert (fragp->fr_type == rs_machine_dependent);
25143 /* Estimate the size of a frag before relaxing. Assume everything fits in
25147 md_estimate_size_before_relax (fragS * fragp,
25148 segT segtype ATTRIBUTE_UNUSED)
25154 /* Convert a machine dependent frag. */
25157 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25159 unsigned long insn;
25160 unsigned long old_op;
25168 buf = fragp->fr_literal + fragp->fr_fix;
25170 old_op = bfd_get_16(abfd, buf);
25171 if (fragp->fr_symbol)
25173 exp.X_op = O_symbol;
25174 exp.X_add_symbol = fragp->fr_symbol;
25178 exp.X_op = O_constant;
25180 exp.X_add_number = fragp->fr_offset;
25181 opcode = fragp->fr_subtype;
25184 case T_MNEM_ldr_pc:
25185 case T_MNEM_ldr_pc2:
25186 case T_MNEM_ldr_sp:
25187 case T_MNEM_str_sp:
25194 if (fragp->fr_var == 4)
25196 insn = THUMB_OP32 (opcode);
25197 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25199 insn |= (old_op & 0x700) << 4;
25203 insn |= (old_op & 7) << 12;
25204 insn |= (old_op & 0x38) << 13;
25206 insn |= 0x00000c00;
25207 put_thumb32_insn (buf, insn);
25208 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25212 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25214 pc_rel = (opcode == T_MNEM_ldr_pc2);
25217 if (fragp->fr_var == 4)
25219 insn = THUMB_OP32 (opcode);
25220 insn |= (old_op & 0xf0) << 4;
25221 put_thumb32_insn (buf, insn);
25222 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25226 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25227 exp.X_add_number -= 4;
25235 if (fragp->fr_var == 4)
25237 int r0off = (opcode == T_MNEM_mov
25238 || opcode == T_MNEM_movs) ? 0 : 8;
25239 insn = THUMB_OP32 (opcode);
25240 insn = (insn & 0xe1ffffff) | 0x10000000;
25241 insn |= (old_op & 0x700) << r0off;
25242 put_thumb32_insn (buf, insn);
25243 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25247 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25252 if (fragp->fr_var == 4)
25254 insn = THUMB_OP32(opcode);
25255 put_thumb32_insn (buf, insn);
25256 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25259 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25263 if (fragp->fr_var == 4)
25265 insn = THUMB_OP32(opcode);
25266 insn |= (old_op & 0xf00) << 14;
25267 put_thumb32_insn (buf, insn);
25268 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25271 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25274 case T_MNEM_add_sp:
25275 case T_MNEM_add_pc:
25276 case T_MNEM_inc_sp:
25277 case T_MNEM_dec_sp:
25278 if (fragp->fr_var == 4)
25280 /* ??? Choose between add and addw. */
25281 insn = THUMB_OP32 (opcode);
25282 insn |= (old_op & 0xf0) << 4;
25283 put_thumb32_insn (buf, insn);
25284 if (opcode == T_MNEM_add_pc)
25285 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25287 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25290 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25298 if (fragp->fr_var == 4)
25300 insn = THUMB_OP32 (opcode);
25301 insn |= (old_op & 0xf0) << 4;
25302 insn |= (old_op & 0xf) << 16;
25303 put_thumb32_insn (buf, insn);
25304 if (insn & (1 << 20))
25305 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25307 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25310 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25316 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25317 (enum bfd_reloc_code_real) reloc_type);
25318 fixp->fx_file = fragp->fr_file;
25319 fixp->fx_line = fragp->fr_line;
25320 fragp->fr_fix += fragp->fr_var;
25322 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25323 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25324 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25325 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25328 /* Return the size of a relaxable immediate operand instruction.
25329 SHIFT and SIZE specify the form of the allowable immediate. */
25331 relax_immediate (fragS *fragp, int size, int shift)
25337 /* ??? Should be able to do better than this. */
25338 if (fragp->fr_symbol)
25341 low = (1 << shift) - 1;
25342 mask = (1 << (shift + size)) - (1 << shift);
25343 offset = fragp->fr_offset;
25344 /* Force misaligned offsets to 32-bit variant. */
25347 if (offset & ~mask)
25352 /* Get the address of a symbol during relaxation. */
25354 relaxed_symbol_addr (fragS *fragp, long stretch)
25360 sym = fragp->fr_symbol;
25361 sym_frag = symbol_get_frag (sym);
25362 know (S_GET_SEGMENT (sym) != absolute_section
25363 || sym_frag == &zero_address_frag);
25364 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25366 /* If frag has yet to be reached on this pass, assume it will
25367 move by STRETCH just as we did. If this is not so, it will
25368 be because some frag between grows, and that will force
25372 && sym_frag->relax_marker != fragp->relax_marker)
25376 /* Adjust stretch for any alignment frag. Note that if have
25377 been expanding the earlier code, the symbol may be
25378 defined in what appears to be an earlier frag. FIXME:
25379 This doesn't handle the fr_subtype field, which specifies
25380 a maximum number of bytes to skip when doing an
25382 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25384 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25387 stretch = - ((- stretch)
25388 & ~ ((1 << (int) f->fr_offset) - 1));
25390 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25402 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25405 relax_adr (fragS *fragp, asection *sec, long stretch)
25410 /* Assume worst case for symbols not known to be in the same section. */
25411 if (fragp->fr_symbol == NULL
25412 || !S_IS_DEFINED (fragp->fr_symbol)
25413 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25414 || S_IS_WEAK (fragp->fr_symbol))
25417 val = relaxed_symbol_addr (fragp, stretch);
25418 addr = fragp->fr_address + fragp->fr_fix;
25419 addr = (addr + 4) & ~3;
25420 /* Force misaligned targets to 32-bit variant. */
25424 if (val < 0 || val > 1020)
25429 /* Return the size of a relaxable add/sub immediate instruction. */
25431 relax_addsub (fragS *fragp, asection *sec)
25436 buf = fragp->fr_literal + fragp->fr_fix;
25437 op = bfd_get_16(sec->owner, buf);
25438 if ((op & 0xf) == ((op >> 4) & 0xf))
25439 return relax_immediate (fragp, 8, 0);
25441 return relax_immediate (fragp, 3, 0);
25444 /* Return TRUE iff the definition of symbol S could be pre-empted
25445 (overridden) at link or load time. */
25447 symbol_preemptible (symbolS *s)
25449 /* Weak symbols can always be pre-empted. */
25453 /* Non-global symbols cannot be pre-empted. */
25454 if (! S_IS_EXTERNAL (s))
25458 /* In ELF, a global symbol can be marked protected, or private. In that
25459 case it can't be pre-empted (other definitions in the same link unit
25460 would violate the ODR). */
25461 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25465 /* Other global symbols might be pre-empted. */
25469 /* Return the size of a relaxable branch instruction. BITS is the
25470 size of the offset field in the narrow instruction. */
25473 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25479 /* Assume worst case for symbols not known to be in the same section. */
25480 if (!S_IS_DEFINED (fragp->fr_symbol)
25481 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25482 || S_IS_WEAK (fragp->fr_symbol))
25486 /* A branch to a function in ARM state will require interworking. */
25487 if (S_IS_DEFINED (fragp->fr_symbol)
25488 && ARM_IS_FUNC (fragp->fr_symbol))
25492 if (symbol_preemptible (fragp->fr_symbol))
25495 val = relaxed_symbol_addr (fragp, stretch);
25496 addr = fragp->fr_address + fragp->fr_fix + 4;
25499 /* Offset is a signed value *2 */
25501 if (val >= limit || val < -limit)
25507 /* Relax a machine dependent frag. This returns the amount by which
25508 the current size of the frag should change. */
25511 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25516 oldsize = fragp->fr_var;
25517 switch (fragp->fr_subtype)
25519 case T_MNEM_ldr_pc2:
25520 newsize = relax_adr (fragp, sec, stretch);
25522 case T_MNEM_ldr_pc:
25523 case T_MNEM_ldr_sp:
25524 case T_MNEM_str_sp:
25525 newsize = relax_immediate (fragp, 8, 2);
25529 newsize = relax_immediate (fragp, 5, 2);
25533 newsize = relax_immediate (fragp, 5, 1);
25537 newsize = relax_immediate (fragp, 5, 0);
25540 newsize = relax_adr (fragp, sec, stretch);
25546 newsize = relax_immediate (fragp, 8, 0);
25549 newsize = relax_branch (fragp, sec, 11, stretch);
25552 newsize = relax_branch (fragp, sec, 8, stretch);
25554 case T_MNEM_add_sp:
25555 case T_MNEM_add_pc:
25556 newsize = relax_immediate (fragp, 8, 2);
25558 case T_MNEM_inc_sp:
25559 case T_MNEM_dec_sp:
25560 newsize = relax_immediate (fragp, 7, 2);
25566 newsize = relax_addsub (fragp, sec);
25572 fragp->fr_var = newsize;
25573 /* Freeze wide instructions that are at or before the same location as
25574 in the previous pass. This avoids infinite loops.
25575 Don't freeze them unconditionally because targets may be artificially
25576 misaligned by the expansion of preceding frags. */
25577 if (stretch <= 0 && newsize > 2)
25579 md_convert_frag (sec->owner, sec, fragp);
25583 return newsize - oldsize;
25586 /* Round up a section size to the appropriate boundary. */
25589 md_section_align (segT segment ATTRIBUTE_UNUSED,
25595 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25596 of an rs_align_code fragment. */
25599 arm_handle_align (fragS * fragP)
25601 static unsigned char const arm_noop[2][2][4] =
25604 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25605 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25608 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25609 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25612 static unsigned char const thumb_noop[2][2][2] =
25615 {0xc0, 0x46}, /* LE */
25616 {0x46, 0xc0}, /* BE */
25619 {0x00, 0xbf}, /* LE */
25620 {0xbf, 0x00} /* BE */
25623 static unsigned char const wide_thumb_noop[2][4] =
25624 { /* Wide Thumb-2 */
25625 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25626 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25629 unsigned bytes, fix, noop_size;
25631 const unsigned char * noop;
25632 const unsigned char *narrow_noop = NULL;
25637 if (fragP->fr_type != rs_align_code)
25640 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25641 p = fragP->fr_literal + fragP->fr_fix;
25644 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25645 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25647 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25649 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25651 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25652 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25654 narrow_noop = thumb_noop[1][target_big_endian];
25655 noop = wide_thumb_noop[target_big_endian];
25658 noop = thumb_noop[0][target_big_endian];
25666 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25667 ? selected_cpu : arm_arch_none,
25669 [target_big_endian];
25676 fragP->fr_var = noop_size;
25678 if (bytes & (noop_size - 1))
25680 fix = bytes & (noop_size - 1);
25682 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25684 memset (p, 0, fix);
25691 if (bytes & noop_size)
25693 /* Insert a narrow noop. */
25694 memcpy (p, narrow_noop, noop_size);
25696 bytes -= noop_size;
25700 /* Use wide noops for the remainder */
25704 while (bytes >= noop_size)
25706 memcpy (p, noop, noop_size);
25708 bytes -= noop_size;
25712 fragP->fr_fix += fix;
25715 /* Called from md_do_align. Used to create an alignment
25716 frag in a code section. */
25719 arm_frag_align_code (int n, int max)
25723 /* We assume that there will never be a requirement
25724 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25725 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25730 _("alignments greater than %d bytes not supported in .text sections."),
25731 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25732 as_fatal ("%s", err_msg);
25735 p = frag_var (rs_align_code,
25736 MAX_MEM_FOR_RS_ALIGN_CODE,
25738 (relax_substateT) max,
25745 /* Perform target specific initialisation of a frag.
25746 Note - despite the name this initialisation is not done when the frag
25747 is created, but only when its type is assigned. A frag can be created
25748 and used a long time before its type is set, so beware of assuming that
25749 this initialisation is performed first. */
25753 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25755 /* Record whether this frag is in an ARM or a THUMB area. */
25756 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25759 #else /* OBJ_ELF is defined. */
25761 arm_init_frag (fragS * fragP, int max_chars)
25763 bfd_boolean frag_thumb_mode;
25765 /* If the current ARM vs THUMB mode has not already
25766 been recorded into this frag then do so now. */
25767 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25768 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25770 /* PR 21809: Do not set a mapping state for debug sections
25771 - it just confuses other tools. */
25772 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25775 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25777 /* Record a mapping symbol for alignment frags. We will delete this
25778 later if the alignment ends up empty. */
25779 switch (fragP->fr_type)
25782 case rs_align_test:
25784 mapping_state_2 (MAP_DATA, max_chars);
25786 case rs_align_code:
25787 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25794 /* When we change sections we need to issue a new mapping symbol. */
25797 arm_elf_change_section (void)
25799 /* Link an unlinked unwind index table section to the .text section. */
25800 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25801 && elf_linked_to_section (now_seg) == NULL)
25802 elf_linked_to_section (now_seg) = text_section;
25806 arm_elf_section_type (const char * str, size_t len)
25808 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25809 return SHT_ARM_EXIDX;
25814 /* Code to deal with unwinding tables. */
25816 static void add_unwind_adjustsp (offsetT);
25818 /* Generate any deferred unwind frame offset. */
25821 flush_pending_unwind (void)
25825 offset = unwind.pending_offset;
25826 unwind.pending_offset = 0;
25828 add_unwind_adjustsp (offset);
25831 /* Add an opcode to this list for this function. Two-byte opcodes should
25832 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25836 add_unwind_opcode (valueT op, int length)
25838 /* Add any deferred stack adjustment. */
25839 if (unwind.pending_offset)
25840 flush_pending_unwind ();
25842 unwind.sp_restored = 0;
25844 if (unwind.opcode_count + length > unwind.opcode_alloc)
25846 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25847 if (unwind.opcodes)
25848 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25849 unwind.opcode_alloc);
25851 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25856 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25858 unwind.opcode_count++;
25862 /* Add unwind opcodes to adjust the stack pointer. */
25865 add_unwind_adjustsp (offsetT offset)
25869 if (offset > 0x200)
25871 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25876 /* Long form: 0xb2, uleb128. */
25877 /* This might not fit in a word so add the individual bytes,
25878 remembering the list is built in reverse order. */
25879 o = (valueT) ((offset - 0x204) >> 2);
25881 add_unwind_opcode (0, 1);
25883 /* Calculate the uleb128 encoding of the offset. */
25887 bytes[n] = o & 0x7f;
25893 /* Add the insn. */
25895 add_unwind_opcode (bytes[n - 1], 1);
25896 add_unwind_opcode (0xb2, 1);
25898 else if (offset > 0x100)
25900 /* Two short opcodes. */
25901 add_unwind_opcode (0x3f, 1);
25902 op = (offset - 0x104) >> 2;
25903 add_unwind_opcode (op, 1);
25905 else if (offset > 0)
25907 /* Short opcode. */
25908 op = (offset - 4) >> 2;
25909 add_unwind_opcode (op, 1);
25911 else if (offset < 0)
25914 while (offset > 0x100)
25916 add_unwind_opcode (0x7f, 1);
25919 op = ((offset - 4) >> 2) | 0x40;
25920 add_unwind_opcode (op, 1);
25924 /* Finish the list of unwind opcodes for this function. */
25927 finish_unwind_opcodes (void)
25931 if (unwind.fp_used)
25933 /* Adjust sp as necessary. */
25934 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25935 flush_pending_unwind ();
25937 /* After restoring sp from the frame pointer. */
25938 op = 0x90 | unwind.fp_reg;
25939 add_unwind_opcode (op, 1);
25942 flush_pending_unwind ();
25946 /* Start an exception table entry. If idx is nonzero this is an index table
25950 start_unwind_section (const segT text_seg, int idx)
25952 const char * text_name;
25953 const char * prefix;
25954 const char * prefix_once;
25955 const char * group_name;
25963 prefix = ELF_STRING_ARM_unwind;
25964 prefix_once = ELF_STRING_ARM_unwind_once;
25965 type = SHT_ARM_EXIDX;
25969 prefix = ELF_STRING_ARM_unwind_info;
25970 prefix_once = ELF_STRING_ARM_unwind_info_once;
25971 type = SHT_PROGBITS;
25974 text_name = segment_name (text_seg);
25975 if (streq (text_name, ".text"))
25978 if (strncmp (text_name, ".gnu.linkonce.t.",
25979 strlen (".gnu.linkonce.t.")) == 0)
25981 prefix = prefix_once;
25982 text_name += strlen (".gnu.linkonce.t.");
25985 sec_name = concat (prefix, text_name, (char *) NULL);
25991 /* Handle COMDAT group. */
25992 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25994 group_name = elf_group_name (text_seg);
25995 if (group_name == NULL)
25997 as_bad (_("Group section `%s' has no group signature"),
25998 segment_name (text_seg));
25999 ignore_rest_of_line ();
26002 flags |= SHF_GROUP;
26006 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26009 /* Set the section link for index tables. */
26011 elf_linked_to_section (now_seg) = text_seg;
26015 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26016 personality routine data. Returns zero, or the index table value for
26017 an inline entry. */
26020 create_unwind_entry (int have_data)
26025 /* The current word of data. */
26027 /* The number of bytes left in this word. */
26030 finish_unwind_opcodes ();
26032 /* Remember the current text section. */
26033 unwind.saved_seg = now_seg;
26034 unwind.saved_subseg = now_subseg;
26036 start_unwind_section (now_seg, 0);
26038 if (unwind.personality_routine == NULL)
26040 if (unwind.personality_index == -2)
26043 as_bad (_("handlerdata in cantunwind frame"));
26044 return 1; /* EXIDX_CANTUNWIND. */
26047 /* Use a default personality routine if none is specified. */
26048 if (unwind.personality_index == -1)
26050 if (unwind.opcode_count > 3)
26051 unwind.personality_index = 1;
26053 unwind.personality_index = 0;
26056 /* Space for the personality routine entry. */
26057 if (unwind.personality_index == 0)
26059 if (unwind.opcode_count > 3)
26060 as_bad (_("too many unwind opcodes for personality routine 0"));
26064 /* All the data is inline in the index table. */
26067 while (unwind.opcode_count > 0)
26069 unwind.opcode_count--;
26070 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26074 /* Pad with "finish" opcodes. */
26076 data = (data << 8) | 0xb0;
26083 /* We get two opcodes "free" in the first word. */
26084 size = unwind.opcode_count - 2;
26088 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26089 if (unwind.personality_index != -1)
26091 as_bad (_("attempt to recreate an unwind entry"));
26095 /* An extra byte is required for the opcode count. */
26096 size = unwind.opcode_count + 1;
26099 size = (size + 3) >> 2;
26101 as_bad (_("too many unwind opcodes"));
26103 frag_align (2, 0, 0);
26104 record_alignment (now_seg, 2);
26105 unwind.table_entry = expr_build_dot ();
26107 /* Allocate the table entry. */
26108 ptr = frag_more ((size << 2) + 4);
26109 /* PR 13449: Zero the table entries in case some of them are not used. */
26110 memset (ptr, 0, (size << 2) + 4);
26111 where = frag_now_fix () - ((size << 2) + 4);
26113 switch (unwind.personality_index)
26116 /* ??? Should this be a PLT generating relocation? */
26117 /* Custom personality routine. */
26118 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26119 BFD_RELOC_ARM_PREL31);
26124 /* Set the first byte to the number of additional words. */
26125 data = size > 0 ? size - 1 : 0;
26129 /* ABI defined personality routines. */
26131 /* Three opcodes bytes are packed into the first word. */
26138 /* The size and first two opcode bytes go in the first word. */
26139 data = ((0x80 + unwind.personality_index) << 8) | size;
26144 /* Should never happen. */
26148 /* Pack the opcodes into words (MSB first), reversing the list at the same
26150 while (unwind.opcode_count > 0)
26154 md_number_to_chars (ptr, data, 4);
26159 unwind.opcode_count--;
26161 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26164 /* Finish off the last word. */
26167 /* Pad with "finish" opcodes. */
26169 data = (data << 8) | 0xb0;
26171 md_number_to_chars (ptr, data, 4);
26176 /* Add an empty descriptor if there is no user-specified data. */
26177 ptr = frag_more (4);
26178 md_number_to_chars (ptr, 0, 4);
26185 /* Initialize the DWARF-2 unwind information for this procedure. */
26188 tc_arm_frame_initial_instructions (void)
26190 cfi_add_CFA_def_cfa (REG_SP, 0);
26192 #endif /* OBJ_ELF */
26194 /* Convert REGNAME to a DWARF-2 register number. */
26197 tc_arm_regname_to_dw2regnum (char *regname)
26199 int reg = arm_reg_parse (®name, REG_TYPE_RN);
26203 /* PR 16694: Allow VFP registers as well. */
26204 reg = arm_reg_parse (®name, REG_TYPE_VFS);
26208 reg = arm_reg_parse (®name, REG_TYPE_VFD);
26217 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26221 exp.X_op = O_secrel;
26222 exp.X_add_symbol = symbol;
26223 exp.X_add_number = 0;
26224 emit_expr (&exp, size);
26228 /* MD interface: Symbol and relocation handling. */
26230 /* Return the address within the segment that a PC-relative fixup is
26231 relative to. For ARM, PC-relative fixups applied to instructions
26232 are generally relative to the location of the fixup plus 8 bytes.
26233 Thumb branches are offset by 4, and Thumb loads relative to PC
26234 require special handling. */
26237 md_pcrel_from_section (fixS * fixP, segT seg)
26239 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26241 /* If this is pc-relative and we are going to emit a relocation
26242 then we just want to put out any pipeline compensation that the linker
26243 will need. Otherwise we want to use the calculated base.
26244 For WinCE we skip the bias for externals as well, since this
26245 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26247 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26248 || (arm_force_relocation (fixP)
26250 && !S_IS_EXTERNAL (fixP->fx_addsy)
26256 switch (fixP->fx_r_type)
26258 /* PC relative addressing on the Thumb is slightly odd as the
26259 bottom two bits of the PC are forced to zero for the
26260 calculation. This happens *after* application of the
26261 pipeline offset. However, Thumb adrl already adjusts for
26262 this, so we need not do it again. */
26263 case BFD_RELOC_ARM_THUMB_ADD:
26266 case BFD_RELOC_ARM_THUMB_OFFSET:
26267 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26268 case BFD_RELOC_ARM_T32_ADD_PC12:
26269 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26270 return (base + 4) & ~3;
26272 /* Thumb branches are simply offset by +4. */
26273 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26274 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26275 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26276 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26277 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26278 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26279 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26280 case BFD_RELOC_ARM_THUMB_BF17:
26281 case BFD_RELOC_ARM_THUMB_BF19:
26282 case BFD_RELOC_ARM_THUMB_BF13:
26283 case BFD_RELOC_ARM_THUMB_LOOP12:
26286 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26288 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26289 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26290 && ARM_IS_FUNC (fixP->fx_addsy)
26291 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26292 base = fixP->fx_where + fixP->fx_frag->fr_address;
26295 /* BLX is like branches above, but forces the low two bits of PC to
26297 case BFD_RELOC_THUMB_PCREL_BLX:
26299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26300 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26301 && THUMB_IS_FUNC (fixP->fx_addsy)
26302 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26303 base = fixP->fx_where + fixP->fx_frag->fr_address;
26304 return (base + 4) & ~3;
26306 /* ARM mode branches are offset by +8. However, the Windows CE
26307 loader expects the relocation not to take this into account. */
26308 case BFD_RELOC_ARM_PCREL_BLX:
26310 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26311 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26312 && ARM_IS_FUNC (fixP->fx_addsy)
26313 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26314 base = fixP->fx_where + fixP->fx_frag->fr_address;
26317 case BFD_RELOC_ARM_PCREL_CALL:
26319 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26320 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26321 && THUMB_IS_FUNC (fixP->fx_addsy)
26322 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26323 base = fixP->fx_where + fixP->fx_frag->fr_address;
26326 case BFD_RELOC_ARM_PCREL_BRANCH:
26327 case BFD_RELOC_ARM_PCREL_JUMP:
26328 case BFD_RELOC_ARM_PLT32:
26330 /* When handling fixups immediately, because we have already
26331 discovered the value of a symbol, or the address of the frag involved
26332 we must account for the offset by +8, as the OS loader will never see the reloc.
26333 see fixup_segment() in write.c
26334 The S_IS_EXTERNAL test handles the case of global symbols.
26335 Those need the calculated base, not just the pipe compensation the linker will need. */
26337 && fixP->fx_addsy != NULL
26338 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26339 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26347 /* ARM mode loads relative to PC are also offset by +8. Unlike
26348 branches, the Windows CE loader *does* expect the relocation
26349 to take this into account. */
26350 case BFD_RELOC_ARM_OFFSET_IMM:
26351 case BFD_RELOC_ARM_OFFSET_IMM8:
26352 case BFD_RELOC_ARM_HWLITERAL:
26353 case BFD_RELOC_ARM_LITERAL:
26354 case BFD_RELOC_ARM_CP_OFF_IMM:
26358 /* Other PC-relative relocations are un-offset. */
26364 static bfd_boolean flag_warn_syms = TRUE;
26367 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26369 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26370 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26371 does mean that the resulting code might be very confusing to the reader.
26372 Also this warning can be triggered if the user omits an operand before
26373 an immediate address, eg:
26377 GAS treats this as an assignment of the value of the symbol foo to a
26378 symbol LDR, and so (without this code) it will not issue any kind of
26379 warning or error message.
26381 Note - ARM instructions are case-insensitive but the strings in the hash
26382 table are all stored in lower case, so we must first ensure that name is
26384 if (flag_warn_syms && arm_ops_hsh)
26386 char * nbuf = strdup (name);
26389 for (p = nbuf; *p; p++)
26391 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26393 static struct hash_control * already_warned = NULL;
26395 if (already_warned == NULL)
26396 already_warned = hash_new ();
26397 /* Only warn about the symbol once. To keep the code
26398 simple we let hash_insert do the lookup for us. */
26399 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26400 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26409 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26410 Otherwise we have no need to default values of symbols. */
26413 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26416 if (name[0] == '_' && name[1] == 'G'
26417 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26421 if (symbol_find (name))
26422 as_bad (_("GOT already in the symbol table"));
26424 GOT_symbol = symbol_new (name, undefined_section,
26425 (valueT) 0, & zero_address_frag);
26435 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26436 computed as two separate immediate values, added together. We
26437 already know that this value cannot be computed by just one ARM
26440 static unsigned int
26441 validate_immediate_twopart (unsigned int val,
26442 unsigned int * highpart)
26447 for (i = 0; i < 32; i += 2)
26448 if (((a = rotate_left (val, i)) & 0xff) != 0)
26454 * highpart = (a >> 8) | ((i + 24) << 7);
26456 else if (a & 0xff0000)
26458 if (a & 0xff000000)
26460 * highpart = (a >> 16) | ((i + 16) << 7);
26464 gas_assert (a & 0xff000000);
26465 * highpart = (a >> 24) | ((i + 8) << 7);
26468 return (a & 0xff) | (i << 7);
26475 validate_offset_imm (unsigned int val, int hwse)
26477 if ((hwse && val > 255) || val > 4095)
26482 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26483 negative immediate constant by altering the instruction. A bit of
26488 by inverting the second operand, and
26491 by negating the second operand. */
26494 negate_data_op (unsigned long * instruction,
26495 unsigned long value)
26498 unsigned long negated, inverted;
26500 negated = encode_arm_immediate (-value);
26501 inverted = encode_arm_immediate (~value);
26503 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26506 /* First negates. */
26507 case OPCODE_SUB: /* ADD <-> SUB */
26508 new_inst = OPCODE_ADD;
26513 new_inst = OPCODE_SUB;
26517 case OPCODE_CMP: /* CMP <-> CMN */
26518 new_inst = OPCODE_CMN;
26523 new_inst = OPCODE_CMP;
26527 /* Now Inverted ops. */
26528 case OPCODE_MOV: /* MOV <-> MVN */
26529 new_inst = OPCODE_MVN;
26534 new_inst = OPCODE_MOV;
26538 case OPCODE_AND: /* AND <-> BIC */
26539 new_inst = OPCODE_BIC;
26544 new_inst = OPCODE_AND;
26548 case OPCODE_ADC: /* ADC <-> SBC */
26549 new_inst = OPCODE_SBC;
26554 new_inst = OPCODE_ADC;
26558 /* We cannot do anything. */
26563 if (value == (unsigned) FAIL)
26566 *instruction &= OPCODE_MASK;
26567 *instruction |= new_inst << DATA_OP_SHIFT;
26571 /* Like negate_data_op, but for Thumb-2. */
26573 static unsigned int
26574 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26578 unsigned int negated, inverted;
26580 negated = encode_thumb32_immediate (-value);
26581 inverted = encode_thumb32_immediate (~value);
26583 rd = (*instruction >> 8) & 0xf;
26584 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26587 /* ADD <-> SUB. Includes CMP <-> CMN. */
26588 case T2_OPCODE_SUB:
26589 new_inst = T2_OPCODE_ADD;
26593 case T2_OPCODE_ADD:
26594 new_inst = T2_OPCODE_SUB;
26598 /* ORR <-> ORN. Includes MOV <-> MVN. */
26599 case T2_OPCODE_ORR:
26600 new_inst = T2_OPCODE_ORN;
26604 case T2_OPCODE_ORN:
26605 new_inst = T2_OPCODE_ORR;
26609 /* AND <-> BIC. TST has no inverted equivalent. */
26610 case T2_OPCODE_AND:
26611 new_inst = T2_OPCODE_BIC;
26618 case T2_OPCODE_BIC:
26619 new_inst = T2_OPCODE_AND;
26624 case T2_OPCODE_ADC:
26625 new_inst = T2_OPCODE_SBC;
26629 case T2_OPCODE_SBC:
26630 new_inst = T2_OPCODE_ADC;
26634 /* We cannot do anything. */
26639 if (value == (unsigned int)FAIL)
26642 *instruction &= T2_OPCODE_MASK;
26643 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26647 /* Read a 32-bit thumb instruction from buf. */
26649 static unsigned long
26650 get_thumb32_insn (char * buf)
26652 unsigned long insn;
26653 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26654 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26659 /* We usually want to set the low bit on the address of thumb function
26660 symbols. In particular .word foo - . should have the low bit set.
26661 Generic code tries to fold the difference of two symbols to
26662 a constant. Prevent this and force a relocation when the first symbols
26663 is a thumb function. */
26666 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26668 if (op == O_subtract
26669 && l->X_op == O_symbol
26670 && r->X_op == O_symbol
26671 && THUMB_IS_FUNC (l->X_add_symbol))
26673 l->X_op = O_subtract;
26674 l->X_op_symbol = r->X_add_symbol;
26675 l->X_add_number -= r->X_add_number;
26679 /* Process as normal. */
26683 /* Encode Thumb2 unconditional branches and calls. The encoding
26684 for the 2 are identical for the immediate values. */
26687 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26689 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26692 addressT S, I1, I2, lo, hi;
26694 S = (value >> 24) & 0x01;
26695 I1 = (value >> 23) & 0x01;
26696 I2 = (value >> 22) & 0x01;
26697 hi = (value >> 12) & 0x3ff;
26698 lo = (value >> 1) & 0x7ff;
26699 newval = md_chars_to_number (buf, THUMB_SIZE);
26700 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26701 newval |= (S << 10) | hi;
26702 newval2 &= ~T2I1I2MASK;
26703 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26704 md_number_to_chars (buf, newval, THUMB_SIZE);
26705 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26709 md_apply_fix (fixS * fixP,
26713 offsetT value = * valP;
26715 unsigned int newimm;
26716 unsigned long temp;
26718 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26720 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26722 /* Note whether this will delete the relocation. */
26724 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26727 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26728 consistency with the behaviour on 32-bit hosts. Remember value
26730 value &= 0xffffffff;
26731 value ^= 0x80000000;
26732 value -= 0x80000000;
26735 fixP->fx_addnumber = value;
26737 /* Same treatment for fixP->fx_offset. */
26738 fixP->fx_offset &= 0xffffffff;
26739 fixP->fx_offset ^= 0x80000000;
26740 fixP->fx_offset -= 0x80000000;
26742 switch (fixP->fx_r_type)
26744 case BFD_RELOC_NONE:
26745 /* This will need to go in the object file. */
26749 case BFD_RELOC_ARM_IMMEDIATE:
26750 /* We claim that this fixup has been processed here,
26751 even if in fact we generate an error because we do
26752 not have a reloc for it, so tc_gen_reloc will reject it. */
26755 if (fixP->fx_addsy)
26757 const char *msg = 0;
26759 if (! S_IS_DEFINED (fixP->fx_addsy))
26760 msg = _("undefined symbol %s used as an immediate value");
26761 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26762 msg = _("symbol %s is in a different section");
26763 else if (S_IS_WEAK (fixP->fx_addsy))
26764 msg = _("symbol %s is weak and may be overridden later");
26768 as_bad_where (fixP->fx_file, fixP->fx_line,
26769 msg, S_GET_NAME (fixP->fx_addsy));
26774 temp = md_chars_to_number (buf, INSN_SIZE);
26776 /* If the offset is negative, we should use encoding A2 for ADR. */
26777 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26778 newimm = negate_data_op (&temp, value);
26781 newimm = encode_arm_immediate (value);
26783 /* If the instruction will fail, see if we can fix things up by
26784 changing the opcode. */
26785 if (newimm == (unsigned int) FAIL)
26786 newimm = negate_data_op (&temp, value);
26787 /* MOV accepts both ARM modified immediate (A1 encoding) and
26788 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26789 When disassembling, MOV is preferred when there is no encoding
26791 if (newimm == (unsigned int) FAIL
26792 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26793 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26794 && !((temp >> SBIT_SHIFT) & 0x1)
26795 && value >= 0 && value <= 0xffff)
26797 /* Clear bits[23:20] to change encoding from A1 to A2. */
26798 temp &= 0xff0fffff;
26799 /* Encoding high 4bits imm. Code below will encode the remaining
26801 temp |= (value & 0x0000f000) << 4;
26802 newimm = value & 0x00000fff;
26806 if (newimm == (unsigned int) FAIL)
26808 as_bad_where (fixP->fx_file, fixP->fx_line,
26809 _("invalid constant (%lx) after fixup"),
26810 (unsigned long) value);
26814 newimm |= (temp & 0xfffff000);
26815 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26818 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26820 unsigned int highpart = 0;
26821 unsigned int newinsn = 0xe1a00000; /* nop. */
26823 if (fixP->fx_addsy)
26825 const char *msg = 0;
26827 if (! S_IS_DEFINED (fixP->fx_addsy))
26828 msg = _("undefined symbol %s used as an immediate value");
26829 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26830 msg = _("symbol %s is in a different section");
26831 else if (S_IS_WEAK (fixP->fx_addsy))
26832 msg = _("symbol %s is weak and may be overridden later");
26836 as_bad_where (fixP->fx_file, fixP->fx_line,
26837 msg, S_GET_NAME (fixP->fx_addsy));
26842 newimm = encode_arm_immediate (value);
26843 temp = md_chars_to_number (buf, INSN_SIZE);
26845 /* If the instruction will fail, see if we can fix things up by
26846 changing the opcode. */
26847 if (newimm == (unsigned int) FAIL
26848 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26850 /* No ? OK - try using two ADD instructions to generate
26852 newimm = validate_immediate_twopart (value, & highpart);
26854 /* Yes - then make sure that the second instruction is
26856 if (newimm != (unsigned int) FAIL)
26858 /* Still No ? Try using a negated value. */
26859 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26860 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26861 /* Otherwise - give up. */
26864 as_bad_where (fixP->fx_file, fixP->fx_line,
26865 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26870 /* Replace the first operand in the 2nd instruction (which
26871 is the PC) with the destination register. We have
26872 already added in the PC in the first instruction and we
26873 do not want to do it again. */
26874 newinsn &= ~ 0xf0000;
26875 newinsn |= ((newinsn & 0x0f000) << 4);
26878 newimm |= (temp & 0xfffff000);
26879 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26881 highpart |= (newinsn & 0xfffff000);
26882 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26886 case BFD_RELOC_ARM_OFFSET_IMM:
26887 if (!fixP->fx_done && seg->use_rela_p)
26889 /* Fall through. */
26891 case BFD_RELOC_ARM_LITERAL:
26897 if (validate_offset_imm (value, 0) == FAIL)
26899 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26900 as_bad_where (fixP->fx_file, fixP->fx_line,
26901 _("invalid literal constant: pool needs to be closer"));
26903 as_bad_where (fixP->fx_file, fixP->fx_line,
26904 _("bad immediate value for offset (%ld)"),
26909 newval = md_chars_to_number (buf, INSN_SIZE);
26911 newval &= 0xfffff000;
26914 newval &= 0xff7ff000;
26915 newval |= value | (sign ? INDEX_UP : 0);
26917 md_number_to_chars (buf, newval, INSN_SIZE);
26920 case BFD_RELOC_ARM_OFFSET_IMM8:
26921 case BFD_RELOC_ARM_HWLITERAL:
26927 if (validate_offset_imm (value, 1) == FAIL)
26929 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26930 as_bad_where (fixP->fx_file, fixP->fx_line,
26931 _("invalid literal constant: pool needs to be closer"));
26933 as_bad_where (fixP->fx_file, fixP->fx_line,
26934 _("bad immediate value for 8-bit offset (%ld)"),
26939 newval = md_chars_to_number (buf, INSN_SIZE);
26941 newval &= 0xfffff0f0;
26944 newval &= 0xff7ff0f0;
26945 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26947 md_number_to_chars (buf, newval, INSN_SIZE);
26950 case BFD_RELOC_ARM_T32_OFFSET_U8:
26951 if (value < 0 || value > 1020 || value % 4 != 0)
26952 as_bad_where (fixP->fx_file, fixP->fx_line,
26953 _("bad immediate value for offset (%ld)"), (long) value);
26956 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26958 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26961 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26962 /* This is a complicated relocation used for all varieties of Thumb32
26963 load/store instruction with immediate offset:
26965 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26966 *4, optional writeback(W)
26967 (doubleword load/store)
26969 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26970 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26971 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26972 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26973 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26975 Uppercase letters indicate bits that are already encoded at
26976 this point. Lowercase letters are our problem. For the
26977 second block of instructions, the secondary opcode nybble
26978 (bits 8..11) is present, and bit 23 is zero, even if this is
26979 a PC-relative operation. */
26980 newval = md_chars_to_number (buf, THUMB_SIZE);
26982 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26984 if ((newval & 0xf0000000) == 0xe0000000)
26986 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26988 newval |= (1 << 23);
26991 if (value % 4 != 0)
26993 as_bad_where (fixP->fx_file, fixP->fx_line,
26994 _("offset not a multiple of 4"));
27000 as_bad_where (fixP->fx_file, fixP->fx_line,
27001 _("offset out of range"));
27006 else if ((newval & 0x000f0000) == 0x000f0000)
27008 /* PC-relative, 12-bit offset. */
27010 newval |= (1 << 23);
27015 as_bad_where (fixP->fx_file, fixP->fx_line,
27016 _("offset out of range"));
27021 else if ((newval & 0x00000100) == 0x00000100)
27023 /* Writeback: 8-bit, +/- offset. */
27025 newval |= (1 << 9);
27030 as_bad_where (fixP->fx_file, fixP->fx_line,
27031 _("offset out of range"));
27036 else if ((newval & 0x00000f00) == 0x00000e00)
27038 /* T-instruction: positive 8-bit offset. */
27039 if (value < 0 || value > 0xff)
27041 as_bad_where (fixP->fx_file, fixP->fx_line,
27042 _("offset out of range"));
27050 /* Positive 12-bit or negative 8-bit offset. */
27054 newval |= (1 << 23);
27064 as_bad_where (fixP->fx_file, fixP->fx_line,
27065 _("offset out of range"));
27072 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27073 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27076 case BFD_RELOC_ARM_SHIFT_IMM:
27077 newval = md_chars_to_number (buf, INSN_SIZE);
27078 if (((unsigned long) value) > 32
27080 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27082 as_bad_where (fixP->fx_file, fixP->fx_line,
27083 _("shift expression is too large"));
27088 /* Shifts of zero must be done as lsl. */
27090 else if (value == 32)
27092 newval &= 0xfffff07f;
27093 newval |= (value & 0x1f) << 7;
27094 md_number_to_chars (buf, newval, INSN_SIZE);
27097 case BFD_RELOC_ARM_T32_IMMEDIATE:
27098 case BFD_RELOC_ARM_T32_ADD_IMM:
27099 case BFD_RELOC_ARM_T32_IMM12:
27100 case BFD_RELOC_ARM_T32_ADD_PC12:
27101 /* We claim that this fixup has been processed here,
27102 even if in fact we generate an error because we do
27103 not have a reloc for it, so tc_gen_reloc will reject it. */
27107 && ! S_IS_DEFINED (fixP->fx_addsy))
27109 as_bad_where (fixP->fx_file, fixP->fx_line,
27110 _("undefined symbol %s used as an immediate value"),
27111 S_GET_NAME (fixP->fx_addsy));
27115 newval = md_chars_to_number (buf, THUMB_SIZE);
27117 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27120 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27121 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27122 Thumb2 modified immediate encoding (T2). */
27123 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27124 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27126 newimm = encode_thumb32_immediate (value);
27127 if (newimm == (unsigned int) FAIL)
27128 newimm = thumb32_negate_data_op (&newval, value);
27130 if (newimm == (unsigned int) FAIL)
27132 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27134 /* Turn add/sum into addw/subw. */
27135 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27136 newval = (newval & 0xfeffffff) | 0x02000000;
27137 /* No flat 12-bit imm encoding for addsw/subsw. */
27138 if ((newval & 0x00100000) == 0)
27140 /* 12 bit immediate for addw/subw. */
27144 newval ^= 0x00a00000;
27147 newimm = (unsigned int) FAIL;
27154 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27155 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27156 disassembling, MOV is preferred when there is no encoding
27158 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27159 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27160 but with the Rn field [19:16] set to 1111. */
27161 && (((newval >> 16) & 0xf) == 0xf)
27162 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27163 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27164 && value >= 0 && value <= 0xffff)
27166 /* Toggle bit[25] to change encoding from T2 to T3. */
27168 /* Clear bits[19:16]. */
27169 newval &= 0xfff0ffff;
27170 /* Encoding high 4bits imm. Code below will encode the
27171 remaining low 12bits. */
27172 newval |= (value & 0x0000f000) << 4;
27173 newimm = value & 0x00000fff;
27178 if (newimm == (unsigned int)FAIL)
27180 as_bad_where (fixP->fx_file, fixP->fx_line,
27181 _("invalid constant (%lx) after fixup"),
27182 (unsigned long) value);
27186 newval |= (newimm & 0x800) << 15;
27187 newval |= (newimm & 0x700) << 4;
27188 newval |= (newimm & 0x0ff);
27190 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27191 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27194 case BFD_RELOC_ARM_SMC:
27195 if (((unsigned long) value) > 0xffff)
27196 as_bad_where (fixP->fx_file, fixP->fx_line,
27197 _("invalid smc expression"));
27198 newval = md_chars_to_number (buf, INSN_SIZE);
27199 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27200 md_number_to_chars (buf, newval, INSN_SIZE);
27203 case BFD_RELOC_ARM_HVC:
27204 if (((unsigned long) value) > 0xffff)
27205 as_bad_where (fixP->fx_file, fixP->fx_line,
27206 _("invalid hvc expression"));
27207 newval = md_chars_to_number (buf, INSN_SIZE);
27208 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27209 md_number_to_chars (buf, newval, INSN_SIZE);
27212 case BFD_RELOC_ARM_SWI:
27213 if (fixP->tc_fix_data != 0)
27215 if (((unsigned long) value) > 0xff)
27216 as_bad_where (fixP->fx_file, fixP->fx_line,
27217 _("invalid swi expression"));
27218 newval = md_chars_to_number (buf, THUMB_SIZE);
27220 md_number_to_chars (buf, newval, THUMB_SIZE);
27224 if (((unsigned long) value) > 0x00ffffff)
27225 as_bad_where (fixP->fx_file, fixP->fx_line,
27226 _("invalid swi expression"));
27227 newval = md_chars_to_number (buf, INSN_SIZE);
27229 md_number_to_chars (buf, newval, INSN_SIZE);
27233 case BFD_RELOC_ARM_MULTI:
27234 if (((unsigned long) value) > 0xffff)
27235 as_bad_where (fixP->fx_file, fixP->fx_line,
27236 _("invalid expression in load/store multiple"));
27237 newval = value | md_chars_to_number (buf, INSN_SIZE);
27238 md_number_to_chars (buf, newval, INSN_SIZE);
27242 case BFD_RELOC_ARM_PCREL_CALL:
27244 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27246 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27247 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27248 && THUMB_IS_FUNC (fixP->fx_addsy))
27249 /* Flip the bl to blx. This is a simple flip
27250 bit here because we generate PCREL_CALL for
27251 unconditional bls. */
27253 newval = md_chars_to_number (buf, INSN_SIZE);
27254 newval = newval | 0x10000000;
27255 md_number_to_chars (buf, newval, INSN_SIZE);
27261 goto arm_branch_common;
27263 case BFD_RELOC_ARM_PCREL_JUMP:
27264 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27266 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27267 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27268 && THUMB_IS_FUNC (fixP->fx_addsy))
27270 /* This would map to a bl<cond>, b<cond>,
27271 b<always> to a Thumb function. We
27272 need to force a relocation for this particular
27274 newval = md_chars_to_number (buf, INSN_SIZE);
27277 /* Fall through. */
27279 case BFD_RELOC_ARM_PLT32:
27281 case BFD_RELOC_ARM_PCREL_BRANCH:
27283 goto arm_branch_common;
27285 case BFD_RELOC_ARM_PCREL_BLX:
27288 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27290 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27291 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27292 && ARM_IS_FUNC (fixP->fx_addsy))
27294 /* Flip the blx to a bl and warn. */
27295 const char *name = S_GET_NAME (fixP->fx_addsy);
27296 newval = 0xeb000000;
27297 as_warn_where (fixP->fx_file, fixP->fx_line,
27298 _("blx to '%s' an ARM ISA state function changed to bl"),
27300 md_number_to_chars (buf, newval, INSN_SIZE);
27306 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27307 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27311 /* We are going to store value (shifted right by two) in the
27312 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27313 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27316 as_bad_where (fixP->fx_file, fixP->fx_line,
27317 _("misaligned branch destination"));
27318 if ((value & (offsetT)0xfe000000) != (offsetT)0
27319 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27320 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27322 if (fixP->fx_done || !seg->use_rela_p)
27324 newval = md_chars_to_number (buf, INSN_SIZE);
27325 newval |= (value >> 2) & 0x00ffffff;
27326 /* Set the H bit on BLX instructions. */
27330 newval |= 0x01000000;
27332 newval &= ~0x01000000;
27334 md_number_to_chars (buf, newval, INSN_SIZE);
27338 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27339 /* CBZ can only branch forward. */
27341 /* Attempts to use CBZ to branch to the next instruction
27342 (which, strictly speaking, are prohibited) will be turned into
27345 FIXME: It may be better to remove the instruction completely and
27346 perform relaxation. */
27349 newval = md_chars_to_number (buf, THUMB_SIZE);
27350 newval = 0xbf00; /* NOP encoding T1 */
27351 md_number_to_chars (buf, newval, THUMB_SIZE);
27356 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27358 if (fixP->fx_done || !seg->use_rela_p)
27360 newval = md_chars_to_number (buf, THUMB_SIZE);
27361 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27362 md_number_to_chars (buf, newval, THUMB_SIZE);
27367 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27368 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27369 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27371 if (fixP->fx_done || !seg->use_rela_p)
27373 newval = md_chars_to_number (buf, THUMB_SIZE);
27374 newval |= (value & 0x1ff) >> 1;
27375 md_number_to_chars (buf, newval, THUMB_SIZE);
27379 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27380 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27381 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27383 if (fixP->fx_done || !seg->use_rela_p)
27385 newval = md_chars_to_number (buf, THUMB_SIZE);
27386 newval |= (value & 0xfff) >> 1;
27387 md_number_to_chars (buf, newval, THUMB_SIZE);
27391 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27393 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27394 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27395 && ARM_IS_FUNC (fixP->fx_addsy)
27396 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27398 /* Force a relocation for a branch 20 bits wide. */
27401 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27402 as_bad_where (fixP->fx_file, fixP->fx_line,
27403 _("conditional branch out of range"));
27405 if (fixP->fx_done || !seg->use_rela_p)
27408 addressT S, J1, J2, lo, hi;
27410 S = (value & 0x00100000) >> 20;
27411 J2 = (value & 0x00080000) >> 19;
27412 J1 = (value & 0x00040000) >> 18;
27413 hi = (value & 0x0003f000) >> 12;
27414 lo = (value & 0x00000ffe) >> 1;
27416 newval = md_chars_to_number (buf, THUMB_SIZE);
27417 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27418 newval |= (S << 10) | hi;
27419 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27420 md_number_to_chars (buf, newval, THUMB_SIZE);
27421 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27425 case BFD_RELOC_THUMB_PCREL_BLX:
27426 /* If there is a blx from a thumb state function to
27427 another thumb function flip this to a bl and warn
27431 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27432 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27433 && THUMB_IS_FUNC (fixP->fx_addsy))
27435 const char *name = S_GET_NAME (fixP->fx_addsy);
27436 as_warn_where (fixP->fx_file, fixP->fx_line,
27437 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27439 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27440 newval = newval | 0x1000;
27441 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27442 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27447 goto thumb_bl_common;
27449 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27450 /* A bl from Thumb state ISA to an internal ARM state function
27451 is converted to a blx. */
27453 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27454 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27455 && ARM_IS_FUNC (fixP->fx_addsy)
27456 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27458 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27459 newval = newval & ~0x1000;
27460 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27461 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27467 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27468 /* For a BLX instruction, make sure that the relocation is rounded up
27469 to a word boundary. This follows the semantics of the instruction
27470 which specifies that bit 1 of the target address will come from bit
27471 1 of the base address. */
27472 value = (value + 3) & ~ 3;
27475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27476 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27477 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27480 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27482 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27483 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27484 else if ((value & ~0x1ffffff)
27485 && ((value & ~0x1ffffff) != ~0x1ffffff))
27486 as_bad_where (fixP->fx_file, fixP->fx_line,
27487 _("Thumb2 branch out of range"));
27490 if (fixP->fx_done || !seg->use_rela_p)
27491 encode_thumb2_b_bl_offset (buf, value);
27495 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27496 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27497 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27499 if (fixP->fx_done || !seg->use_rela_p)
27500 encode_thumb2_b_bl_offset (buf, value);
27505 if (fixP->fx_done || !seg->use_rela_p)
27510 if (fixP->fx_done || !seg->use_rela_p)
27511 md_number_to_chars (buf, value, 2);
27515 case BFD_RELOC_ARM_TLS_CALL:
27516 case BFD_RELOC_ARM_THM_TLS_CALL:
27517 case BFD_RELOC_ARM_TLS_DESCSEQ:
27518 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27519 case BFD_RELOC_ARM_TLS_GOTDESC:
27520 case BFD_RELOC_ARM_TLS_GD32:
27521 case BFD_RELOC_ARM_TLS_LE32:
27522 case BFD_RELOC_ARM_TLS_IE32:
27523 case BFD_RELOC_ARM_TLS_LDM32:
27524 case BFD_RELOC_ARM_TLS_LDO32:
27525 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27528 /* Same handling as above, but with the arm_fdpic guard. */
27529 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27530 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27531 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27534 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27538 as_bad_where (fixP->fx_file, fixP->fx_line,
27539 _("Relocation supported only in FDPIC mode"));
27543 case BFD_RELOC_ARM_GOT32:
27544 case BFD_RELOC_ARM_GOTOFF:
27547 case BFD_RELOC_ARM_GOT_PREL:
27548 if (fixP->fx_done || !seg->use_rela_p)
27549 md_number_to_chars (buf, value, 4);
27552 case BFD_RELOC_ARM_TARGET2:
27553 /* TARGET2 is not partial-inplace, so we need to write the
27554 addend here for REL targets, because it won't be written out
27555 during reloc processing later. */
27556 if (fixP->fx_done || !seg->use_rela_p)
27557 md_number_to_chars (buf, fixP->fx_offset, 4);
27560 /* Relocations for FDPIC. */
27561 case BFD_RELOC_ARM_GOTFUNCDESC:
27562 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27563 case BFD_RELOC_ARM_FUNCDESC:
27566 if (fixP->fx_done || !seg->use_rela_p)
27567 md_number_to_chars (buf, 0, 4);
27571 as_bad_where (fixP->fx_file, fixP->fx_line,
27572 _("Relocation supported only in FDPIC mode"));
27577 case BFD_RELOC_RVA:
27579 case BFD_RELOC_ARM_TARGET1:
27580 case BFD_RELOC_ARM_ROSEGREL32:
27581 case BFD_RELOC_ARM_SBREL32:
27582 case BFD_RELOC_32_PCREL:
27584 case BFD_RELOC_32_SECREL:
27586 if (fixP->fx_done || !seg->use_rela_p)
27588 /* For WinCE we only do this for pcrel fixups. */
27589 if (fixP->fx_done || fixP->fx_pcrel)
27591 md_number_to_chars (buf, value, 4);
27595 case BFD_RELOC_ARM_PREL31:
27596 if (fixP->fx_done || !seg->use_rela_p)
27598 newval = md_chars_to_number (buf, 4) & 0x80000000;
27599 if ((value ^ (value >> 1)) & 0x40000000)
27601 as_bad_where (fixP->fx_file, fixP->fx_line,
27602 _("rel31 relocation overflow"));
27604 newval |= value & 0x7fffffff;
27605 md_number_to_chars (buf, newval, 4);
27610 case BFD_RELOC_ARM_CP_OFF_IMM:
27611 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27612 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27613 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27614 newval = md_chars_to_number (buf, INSN_SIZE);
27616 newval = get_thumb32_insn (buf);
27617 if ((newval & 0x0f200f00) == 0x0d000900)
27619 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27620 has permitted values that are multiples of 2, in the range 0
27622 if (value < -510 || value > 510 || (value & 1))
27623 as_bad_where (fixP->fx_file, fixP->fx_line,
27624 _("co-processor offset out of range"));
27626 else if ((newval & 0xfe001f80) == 0xec000f80)
27628 if (value < -511 || value > 512 || (value & 3))
27629 as_bad_where (fixP->fx_file, fixP->fx_line,
27630 _("co-processor offset out of range"));
27632 else if (value < -1023 || value > 1023 || (value & 3))
27633 as_bad_where (fixP->fx_file, fixP->fx_line,
27634 _("co-processor offset out of range"));
27639 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27640 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27641 newval = md_chars_to_number (buf, INSN_SIZE);
27643 newval = get_thumb32_insn (buf);
27646 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27647 newval &= 0xffffff80;
27649 newval &= 0xffffff00;
27653 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27654 newval &= 0xff7fff80;
27656 newval &= 0xff7fff00;
27657 if ((newval & 0x0f200f00) == 0x0d000900)
27659 /* This is a fp16 vstr/vldr.
27661 It requires the immediate offset in the instruction is shifted
27662 left by 1 to be a half-word offset.
27664 Here, left shift by 1 first, and later right shift by 2
27665 should get the right offset. */
27668 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27670 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27671 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27672 md_number_to_chars (buf, newval, INSN_SIZE);
27674 put_thumb32_insn (buf, newval);
27677 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27678 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27679 if (value < -255 || value > 255)
27680 as_bad_where (fixP->fx_file, fixP->fx_line,
27681 _("co-processor offset out of range"));
27683 goto cp_off_common;
27685 case BFD_RELOC_ARM_THUMB_OFFSET:
27686 newval = md_chars_to_number (buf, THUMB_SIZE);
27687 /* Exactly what ranges, and where the offset is inserted depends
27688 on the type of instruction, we can establish this from the
27690 switch (newval >> 12)
27692 case 4: /* PC load. */
27693 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27694 forced to zero for these loads; md_pcrel_from has already
27695 compensated for this. */
27697 as_bad_where (fixP->fx_file, fixP->fx_line,
27698 _("invalid offset, target not word aligned (0x%08lX)"),
27699 (((unsigned long) fixP->fx_frag->fr_address
27700 + (unsigned long) fixP->fx_where) & ~3)
27701 + (unsigned long) value);
27703 if (value & ~0x3fc)
27704 as_bad_where (fixP->fx_file, fixP->fx_line,
27705 _("invalid offset, value too big (0x%08lX)"),
27708 newval |= value >> 2;
27711 case 9: /* SP load/store. */
27712 if (value & ~0x3fc)
27713 as_bad_where (fixP->fx_file, fixP->fx_line,
27714 _("invalid offset, value too big (0x%08lX)"),
27716 newval |= value >> 2;
27719 case 6: /* Word load/store. */
27721 as_bad_where (fixP->fx_file, fixP->fx_line,
27722 _("invalid offset, value too big (0x%08lX)"),
27724 newval |= value << 4; /* 6 - 2. */
27727 case 7: /* Byte load/store. */
27729 as_bad_where (fixP->fx_file, fixP->fx_line,
27730 _("invalid offset, value too big (0x%08lX)"),
27732 newval |= value << 6;
27735 case 8: /* Halfword load/store. */
27737 as_bad_where (fixP->fx_file, fixP->fx_line,
27738 _("invalid offset, value too big (0x%08lX)"),
27740 newval |= value << 5; /* 6 - 1. */
27744 as_bad_where (fixP->fx_file, fixP->fx_line,
27745 "Unable to process relocation for thumb opcode: %lx",
27746 (unsigned long) newval);
27749 md_number_to_chars (buf, newval, THUMB_SIZE);
27752 case BFD_RELOC_ARM_THUMB_ADD:
27753 /* This is a complicated relocation, since we use it for all of
27754 the following immediate relocations:
27758 9bit ADD/SUB SP word-aligned
27759 10bit ADD PC/SP word-aligned
27761 The type of instruction being processed is encoded in the
27768 newval = md_chars_to_number (buf, THUMB_SIZE);
27770 int rd = (newval >> 4) & 0xf;
27771 int rs = newval & 0xf;
27772 int subtract = !!(newval & 0x8000);
27774 /* Check for HI regs, only very restricted cases allowed:
27775 Adjusting SP, and using PC or SP to get an address. */
27776 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27777 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27778 as_bad_where (fixP->fx_file, fixP->fx_line,
27779 _("invalid Hi register with immediate"));
27781 /* If value is negative, choose the opposite instruction. */
27785 subtract = !subtract;
27787 as_bad_where (fixP->fx_file, fixP->fx_line,
27788 _("immediate value out of range"));
27793 if (value & ~0x1fc)
27794 as_bad_where (fixP->fx_file, fixP->fx_line,
27795 _("invalid immediate for stack address calculation"));
27796 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27797 newval |= value >> 2;
27799 else if (rs == REG_PC || rs == REG_SP)
27801 /* PR gas/18541. If the addition is for a defined symbol
27802 within range of an ADR instruction then accept it. */
27805 && fixP->fx_addsy != NULL)
27809 if (! S_IS_DEFINED (fixP->fx_addsy)
27810 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27811 || S_IS_WEAK (fixP->fx_addsy))
27813 as_bad_where (fixP->fx_file, fixP->fx_line,
27814 _("address calculation needs a strongly defined nearby symbol"));
27818 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27820 /* Round up to the next 4-byte boundary. */
27825 v = S_GET_VALUE (fixP->fx_addsy) - v;
27829 as_bad_where (fixP->fx_file, fixP->fx_line,
27830 _("symbol too far away"));
27840 if (subtract || value & ~0x3fc)
27841 as_bad_where (fixP->fx_file, fixP->fx_line,
27842 _("invalid immediate for address calculation (value = 0x%08lX)"),
27843 (unsigned long) (subtract ? - value : value));
27844 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27846 newval |= value >> 2;
27851 as_bad_where (fixP->fx_file, fixP->fx_line,
27852 _("immediate value out of range"));
27853 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27854 newval |= (rd << 8) | value;
27859 as_bad_where (fixP->fx_file, fixP->fx_line,
27860 _("immediate value out of range"));
27861 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27862 newval |= rd | (rs << 3) | (value << 6);
27865 md_number_to_chars (buf, newval, THUMB_SIZE);
27868 case BFD_RELOC_ARM_THUMB_IMM:
27869 newval = md_chars_to_number (buf, THUMB_SIZE);
27870 if (value < 0 || value > 255)
27871 as_bad_where (fixP->fx_file, fixP->fx_line,
27872 _("invalid immediate: %ld is out of range"),
27875 md_number_to_chars (buf, newval, THUMB_SIZE);
27878 case BFD_RELOC_ARM_THUMB_SHIFT:
27879 /* 5bit shift value (0..32). LSL cannot take 32. */
27880 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27881 temp = newval & 0xf800;
27882 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27883 as_bad_where (fixP->fx_file, fixP->fx_line,
27884 _("invalid shift value: %ld"), (long) value);
27885 /* Shifts of zero must be encoded as LSL. */
27887 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27888 /* Shifts of 32 are encoded as zero. */
27889 else if (value == 32)
27891 newval |= value << 6;
27892 md_number_to_chars (buf, newval, THUMB_SIZE);
27895 case BFD_RELOC_VTABLE_INHERIT:
27896 case BFD_RELOC_VTABLE_ENTRY:
27900 case BFD_RELOC_ARM_MOVW:
27901 case BFD_RELOC_ARM_MOVT:
27902 case BFD_RELOC_ARM_THUMB_MOVW:
27903 case BFD_RELOC_ARM_THUMB_MOVT:
27904 if (fixP->fx_done || !seg->use_rela_p)
27906 /* REL format relocations are limited to a 16-bit addend. */
27907 if (!fixP->fx_done)
27909 if (value < -0x8000 || value > 0x7fff)
27910 as_bad_where (fixP->fx_file, fixP->fx_line,
27911 _("offset out of range"));
27913 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27914 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27919 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27922 newval = get_thumb32_insn (buf);
27923 newval &= 0xfbf08f00;
27924 newval |= (value & 0xf000) << 4;
27925 newval |= (value & 0x0800) << 15;
27926 newval |= (value & 0x0700) << 4;
27927 newval |= (value & 0x00ff);
27928 put_thumb32_insn (buf, newval);
27932 newval = md_chars_to_number (buf, 4);
27933 newval &= 0xfff0f000;
27934 newval |= value & 0x0fff;
27935 newval |= (value & 0xf000) << 4;
27936 md_number_to_chars (buf, newval, 4);
27941 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27942 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27943 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27944 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27945 gas_assert (!fixP->fx_done);
27948 bfd_boolean is_mov;
27949 bfd_vma encoded_addend = value;
27951 /* Check that addend can be encoded in instruction. */
27952 if (!seg->use_rela_p && (value < 0 || value > 255))
27953 as_bad_where (fixP->fx_file, fixP->fx_line,
27954 _("the offset 0x%08lX is not representable"),
27955 (unsigned long) encoded_addend);
27957 /* Extract the instruction. */
27958 insn = md_chars_to_number (buf, THUMB_SIZE);
27959 is_mov = (insn & 0xf800) == 0x2000;
27964 if (!seg->use_rela_p)
27965 insn |= encoded_addend;
27971 /* Extract the instruction. */
27972 /* Encoding is the following
27977 /* The following conditions must be true :
27982 rd = (insn >> 4) & 0xf;
27984 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27985 as_bad_where (fixP->fx_file, fixP->fx_line,
27986 _("Unable to process relocation for thumb opcode: %lx"),
27987 (unsigned long) insn);
27989 /* Encode as ADD immediate8 thumb 1 code. */
27990 insn = 0x3000 | (rd << 8);
27992 /* Place the encoded addend into the first 8 bits of the
27994 if (!seg->use_rela_p)
27995 insn |= encoded_addend;
27998 /* Update the instruction. */
27999 md_number_to_chars (buf, insn, THUMB_SIZE);
28003 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28004 case BFD_RELOC_ARM_ALU_PC_G0:
28005 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28006 case BFD_RELOC_ARM_ALU_PC_G1:
28007 case BFD_RELOC_ARM_ALU_PC_G2:
28008 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28009 case BFD_RELOC_ARM_ALU_SB_G0:
28010 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28011 case BFD_RELOC_ARM_ALU_SB_G1:
28012 case BFD_RELOC_ARM_ALU_SB_G2:
28013 gas_assert (!fixP->fx_done);
28014 if (!seg->use_rela_p)
28017 bfd_vma encoded_addend;
28018 bfd_vma addend_abs = llabs (value);
28020 /* Check that the absolute value of the addend can be
28021 expressed as an 8-bit constant plus a rotation. */
28022 encoded_addend = encode_arm_immediate (addend_abs);
28023 if (encoded_addend == (unsigned int) FAIL)
28024 as_bad_where (fixP->fx_file, fixP->fx_line,
28025 _("the offset 0x%08lX is not representable"),
28026 (unsigned long) addend_abs);
28028 /* Extract the instruction. */
28029 insn = md_chars_to_number (buf, INSN_SIZE);
28031 /* If the addend is positive, use an ADD instruction.
28032 Otherwise use a SUB. Take care not to destroy the S bit. */
28033 insn &= 0xff1fffff;
28039 /* Place the encoded addend into the first 12 bits of the
28041 insn &= 0xfffff000;
28042 insn |= encoded_addend;
28044 /* Update the instruction. */
28045 md_number_to_chars (buf, insn, INSN_SIZE);
28049 case BFD_RELOC_ARM_LDR_PC_G0:
28050 case BFD_RELOC_ARM_LDR_PC_G1:
28051 case BFD_RELOC_ARM_LDR_PC_G2:
28052 case BFD_RELOC_ARM_LDR_SB_G0:
28053 case BFD_RELOC_ARM_LDR_SB_G1:
28054 case BFD_RELOC_ARM_LDR_SB_G2:
28055 gas_assert (!fixP->fx_done);
28056 if (!seg->use_rela_p)
28059 bfd_vma addend_abs = llabs (value);
28061 /* Check that the absolute value of the addend can be
28062 encoded in 12 bits. */
28063 if (addend_abs >= 0x1000)
28064 as_bad_where (fixP->fx_file, fixP->fx_line,
28065 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28066 (unsigned long) addend_abs);
28068 /* Extract the instruction. */
28069 insn = md_chars_to_number (buf, INSN_SIZE);
28071 /* If the addend is negative, clear bit 23 of the instruction.
28072 Otherwise set it. */
28074 insn &= ~(1 << 23);
28078 /* Place the absolute value of the addend into the first 12 bits
28079 of the instruction. */
28080 insn &= 0xfffff000;
28081 insn |= addend_abs;
28083 /* Update the instruction. */
28084 md_number_to_chars (buf, insn, INSN_SIZE);
28088 case BFD_RELOC_ARM_LDRS_PC_G0:
28089 case BFD_RELOC_ARM_LDRS_PC_G1:
28090 case BFD_RELOC_ARM_LDRS_PC_G2:
28091 case BFD_RELOC_ARM_LDRS_SB_G0:
28092 case BFD_RELOC_ARM_LDRS_SB_G1:
28093 case BFD_RELOC_ARM_LDRS_SB_G2:
28094 gas_assert (!fixP->fx_done);
28095 if (!seg->use_rela_p)
28098 bfd_vma addend_abs = llabs (value);
28100 /* Check that the absolute value of the addend can be
28101 encoded in 8 bits. */
28102 if (addend_abs >= 0x100)
28103 as_bad_where (fixP->fx_file, fixP->fx_line,
28104 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28105 (unsigned long) addend_abs);
28107 /* Extract the instruction. */
28108 insn = md_chars_to_number (buf, INSN_SIZE);
28110 /* If the addend is negative, clear bit 23 of the instruction.
28111 Otherwise set it. */
28113 insn &= ~(1 << 23);
28117 /* Place the first four bits of the absolute value of the addend
28118 into the first 4 bits of the instruction, and the remaining
28119 four into bits 8 .. 11. */
28120 insn &= 0xfffff0f0;
28121 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28123 /* Update the instruction. */
28124 md_number_to_chars (buf, insn, INSN_SIZE);
28128 case BFD_RELOC_ARM_LDC_PC_G0:
28129 case BFD_RELOC_ARM_LDC_PC_G1:
28130 case BFD_RELOC_ARM_LDC_PC_G2:
28131 case BFD_RELOC_ARM_LDC_SB_G0:
28132 case BFD_RELOC_ARM_LDC_SB_G1:
28133 case BFD_RELOC_ARM_LDC_SB_G2:
28134 gas_assert (!fixP->fx_done);
28135 if (!seg->use_rela_p)
28138 bfd_vma addend_abs = llabs (value);
28140 /* Check that the absolute value of the addend is a multiple of
28141 four and, when divided by four, fits in 8 bits. */
28142 if (addend_abs & 0x3)
28143 as_bad_where (fixP->fx_file, fixP->fx_line,
28144 _("bad offset 0x%08lX (must be word-aligned)"),
28145 (unsigned long) addend_abs);
28147 if ((addend_abs >> 2) > 0xff)
28148 as_bad_where (fixP->fx_file, fixP->fx_line,
28149 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28150 (unsigned long) addend_abs);
28152 /* Extract the instruction. */
28153 insn = md_chars_to_number (buf, INSN_SIZE);
28155 /* If the addend is negative, clear bit 23 of the instruction.
28156 Otherwise set it. */
28158 insn &= ~(1 << 23);
28162 /* Place the addend (divided by four) into the first eight
28163 bits of the instruction. */
28164 insn &= 0xfffffff0;
28165 insn |= addend_abs >> 2;
28167 /* Update the instruction. */
28168 md_number_to_chars (buf, insn, INSN_SIZE);
28172 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28174 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28175 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28176 && ARM_IS_FUNC (fixP->fx_addsy)
28177 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28179 /* Force a relocation for a branch 5 bits wide. */
28182 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28183 as_bad_where (fixP->fx_file, fixP->fx_line,
28186 if (fixP->fx_done || !seg->use_rela_p)
28188 addressT boff = value >> 1;
28190 newval = md_chars_to_number (buf, THUMB_SIZE);
28191 newval |= (boff << 7);
28192 md_number_to_chars (buf, newval, THUMB_SIZE);
28196 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28198 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28199 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28200 && ARM_IS_FUNC (fixP->fx_addsy)
28201 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28205 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28206 as_bad_where (fixP->fx_file, fixP->fx_line,
28207 _("branch out of range"));
28209 if (fixP->fx_done || !seg->use_rela_p)
28211 newval = md_chars_to_number (buf, THUMB_SIZE);
28213 addressT boff = ((newval & 0x0780) >> 7) << 1;
28214 addressT diff = value - boff;
28218 newval |= 1 << 1; /* T bit. */
28220 else if (diff != 2)
28222 as_bad_where (fixP->fx_file, fixP->fx_line,
28223 _("out of range label-relative fixup value"));
28225 md_number_to_chars (buf, newval, THUMB_SIZE);
28229 case BFD_RELOC_ARM_THUMB_BF17:
28231 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28232 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28233 && ARM_IS_FUNC (fixP->fx_addsy)
28234 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28236 /* Force a relocation for a branch 17 bits wide. */
28240 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28241 as_bad_where (fixP->fx_file, fixP->fx_line,
28244 if (fixP->fx_done || !seg->use_rela_p)
28247 addressT immA, immB, immC;
28249 immA = (value & 0x0001f000) >> 12;
28250 immB = (value & 0x00000ffc) >> 2;
28251 immC = (value & 0x00000002) >> 1;
28253 newval = md_chars_to_number (buf, THUMB_SIZE);
28254 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28256 newval2 |= (immC << 11) | (immB << 1);
28257 md_number_to_chars (buf, newval, THUMB_SIZE);
28258 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28262 case BFD_RELOC_ARM_THUMB_BF19:
28264 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28265 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28266 && ARM_IS_FUNC (fixP->fx_addsy)
28267 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28269 /* Force a relocation for a branch 19 bits wide. */
28273 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28274 as_bad_where (fixP->fx_file, fixP->fx_line,
28277 if (fixP->fx_done || !seg->use_rela_p)
28280 addressT immA, immB, immC;
28282 immA = (value & 0x0007f000) >> 12;
28283 immB = (value & 0x00000ffc) >> 2;
28284 immC = (value & 0x00000002) >> 1;
28286 newval = md_chars_to_number (buf, THUMB_SIZE);
28287 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28289 newval2 |= (immC << 11) | (immB << 1);
28290 md_number_to_chars (buf, newval, THUMB_SIZE);
28291 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28295 case BFD_RELOC_ARM_THUMB_BF13:
28297 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28299 && ARM_IS_FUNC (fixP->fx_addsy)
28300 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28302 /* Force a relocation for a branch 13 bits wide. */
28306 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28307 as_bad_where (fixP->fx_file, fixP->fx_line,
28310 if (fixP->fx_done || !seg->use_rela_p)
28313 addressT immA, immB, immC;
28315 immA = (value & 0x00001000) >> 12;
28316 immB = (value & 0x00000ffc) >> 2;
28317 immC = (value & 0x00000002) >> 1;
28319 newval = md_chars_to_number (buf, THUMB_SIZE);
28320 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28322 newval2 |= (immC << 11) | (immB << 1);
28323 md_number_to_chars (buf, newval, THUMB_SIZE);
28324 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28328 case BFD_RELOC_ARM_THUMB_LOOP12:
28330 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28331 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28332 && ARM_IS_FUNC (fixP->fx_addsy)
28333 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28335 /* Force a relocation for a branch 12 bits wide. */
28339 bfd_vma insn = get_thumb32_insn (buf);
28340 /* le lr, <label> or le <label> */
28341 if (((insn & 0xffffffff) == 0xf00fc001)
28342 || ((insn & 0xffffffff) == 0xf02fc001))
28345 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28346 as_bad_where (fixP->fx_file, fixP->fx_line,
28348 if (fixP->fx_done || !seg->use_rela_p)
28350 addressT imml, immh;
28352 immh = (value & 0x00000ffc) >> 2;
28353 imml = (value & 0x00000002) >> 1;
28355 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28356 newval |= (imml << 11) | (immh << 1);
28357 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28361 case BFD_RELOC_ARM_V4BX:
28362 /* This will need to go in the object file. */
28366 case BFD_RELOC_UNUSED:
28368 as_bad_where (fixP->fx_file, fixP->fx_line,
28369 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28373 /* Translate internal representation of relocation info to BFD target
28377 tc_gen_reloc (asection *section, fixS *fixp)
28380 bfd_reloc_code_real_type code;
28382 reloc = XNEW (arelent);
28384 reloc->sym_ptr_ptr = XNEW (asymbol *);
28385 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28386 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28388 if (fixp->fx_pcrel)
28390 if (section->use_rela_p)
28391 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28393 fixp->fx_offset = reloc->address;
28395 reloc->addend = fixp->fx_offset;
28397 switch (fixp->fx_r_type)
28400 if (fixp->fx_pcrel)
28402 code = BFD_RELOC_8_PCREL;
28405 /* Fall through. */
28408 if (fixp->fx_pcrel)
28410 code = BFD_RELOC_16_PCREL;
28413 /* Fall through. */
28416 if (fixp->fx_pcrel)
28418 code = BFD_RELOC_32_PCREL;
28421 /* Fall through. */
28423 case BFD_RELOC_ARM_MOVW:
28424 if (fixp->fx_pcrel)
28426 code = BFD_RELOC_ARM_MOVW_PCREL;
28429 /* Fall through. */
28431 case BFD_RELOC_ARM_MOVT:
28432 if (fixp->fx_pcrel)
28434 code = BFD_RELOC_ARM_MOVT_PCREL;
28437 /* Fall through. */
28439 case BFD_RELOC_ARM_THUMB_MOVW:
28440 if (fixp->fx_pcrel)
28442 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28445 /* Fall through. */
28447 case BFD_RELOC_ARM_THUMB_MOVT:
28448 if (fixp->fx_pcrel)
28450 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28453 /* Fall through. */
28455 case BFD_RELOC_NONE:
28456 case BFD_RELOC_ARM_PCREL_BRANCH:
28457 case BFD_RELOC_ARM_PCREL_BLX:
28458 case BFD_RELOC_RVA:
28459 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28460 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28461 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28462 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28463 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28465 case BFD_RELOC_VTABLE_ENTRY:
28466 case BFD_RELOC_VTABLE_INHERIT:
28468 case BFD_RELOC_32_SECREL:
28470 code = fixp->fx_r_type;
28473 case BFD_RELOC_THUMB_PCREL_BLX:
28475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28476 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28479 code = BFD_RELOC_THUMB_PCREL_BLX;
28482 case BFD_RELOC_ARM_LITERAL:
28483 case BFD_RELOC_ARM_HWLITERAL:
28484 /* If this is called then the a literal has
28485 been referenced across a section boundary. */
28486 as_bad_where (fixp->fx_file, fixp->fx_line,
28487 _("literal referenced across section boundary"));
28491 case BFD_RELOC_ARM_TLS_CALL:
28492 case BFD_RELOC_ARM_THM_TLS_CALL:
28493 case BFD_RELOC_ARM_TLS_DESCSEQ:
28494 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28495 case BFD_RELOC_ARM_GOT32:
28496 case BFD_RELOC_ARM_GOTOFF:
28497 case BFD_RELOC_ARM_GOT_PREL:
28498 case BFD_RELOC_ARM_PLT32:
28499 case BFD_RELOC_ARM_TARGET1:
28500 case BFD_RELOC_ARM_ROSEGREL32:
28501 case BFD_RELOC_ARM_SBREL32:
28502 case BFD_RELOC_ARM_PREL31:
28503 case BFD_RELOC_ARM_TARGET2:
28504 case BFD_RELOC_ARM_TLS_LDO32:
28505 case BFD_RELOC_ARM_PCREL_CALL:
28506 case BFD_RELOC_ARM_PCREL_JUMP:
28507 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28508 case BFD_RELOC_ARM_ALU_PC_G0:
28509 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28510 case BFD_RELOC_ARM_ALU_PC_G1:
28511 case BFD_RELOC_ARM_ALU_PC_G2:
28512 case BFD_RELOC_ARM_LDR_PC_G0:
28513 case BFD_RELOC_ARM_LDR_PC_G1:
28514 case BFD_RELOC_ARM_LDR_PC_G2:
28515 case BFD_RELOC_ARM_LDRS_PC_G0:
28516 case BFD_RELOC_ARM_LDRS_PC_G1:
28517 case BFD_RELOC_ARM_LDRS_PC_G2:
28518 case BFD_RELOC_ARM_LDC_PC_G0:
28519 case BFD_RELOC_ARM_LDC_PC_G1:
28520 case BFD_RELOC_ARM_LDC_PC_G2:
28521 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28522 case BFD_RELOC_ARM_ALU_SB_G0:
28523 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28524 case BFD_RELOC_ARM_ALU_SB_G1:
28525 case BFD_RELOC_ARM_ALU_SB_G2:
28526 case BFD_RELOC_ARM_LDR_SB_G0:
28527 case BFD_RELOC_ARM_LDR_SB_G1:
28528 case BFD_RELOC_ARM_LDR_SB_G2:
28529 case BFD_RELOC_ARM_LDRS_SB_G0:
28530 case BFD_RELOC_ARM_LDRS_SB_G1:
28531 case BFD_RELOC_ARM_LDRS_SB_G2:
28532 case BFD_RELOC_ARM_LDC_SB_G0:
28533 case BFD_RELOC_ARM_LDC_SB_G1:
28534 case BFD_RELOC_ARM_LDC_SB_G2:
28535 case BFD_RELOC_ARM_V4BX:
28536 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28537 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28538 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28539 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28540 case BFD_RELOC_ARM_GOTFUNCDESC:
28541 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28542 case BFD_RELOC_ARM_FUNCDESC:
28543 case BFD_RELOC_ARM_THUMB_BF17:
28544 case BFD_RELOC_ARM_THUMB_BF19:
28545 case BFD_RELOC_ARM_THUMB_BF13:
28546 code = fixp->fx_r_type;
28549 case BFD_RELOC_ARM_TLS_GOTDESC:
28550 case BFD_RELOC_ARM_TLS_GD32:
28551 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28552 case BFD_RELOC_ARM_TLS_LE32:
28553 case BFD_RELOC_ARM_TLS_IE32:
28554 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28555 case BFD_RELOC_ARM_TLS_LDM32:
28556 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28557 /* BFD will include the symbol's address in the addend.
28558 But we don't want that, so subtract it out again here. */
28559 if (!S_IS_COMMON (fixp->fx_addsy))
28560 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28561 code = fixp->fx_r_type;
28565 case BFD_RELOC_ARM_IMMEDIATE:
28566 as_bad_where (fixp->fx_file, fixp->fx_line,
28567 _("internal relocation (type: IMMEDIATE) not fixed up"));
28570 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28571 as_bad_where (fixp->fx_file, fixp->fx_line,
28572 _("ADRL used for a symbol not defined in the same file"));
28575 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28576 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28577 case BFD_RELOC_ARM_THUMB_LOOP12:
28578 as_bad_where (fixp->fx_file, fixp->fx_line,
28579 _("%s used for a symbol not defined in the same file"),
28580 bfd_get_reloc_code_name (fixp->fx_r_type));
28583 case BFD_RELOC_ARM_OFFSET_IMM:
28584 if (section->use_rela_p)
28586 code = fixp->fx_r_type;
28590 if (fixp->fx_addsy != NULL
28591 && !S_IS_DEFINED (fixp->fx_addsy)
28592 && S_IS_LOCAL (fixp->fx_addsy))
28594 as_bad_where (fixp->fx_file, fixp->fx_line,
28595 _("undefined local label `%s'"),
28596 S_GET_NAME (fixp->fx_addsy));
28600 as_bad_where (fixp->fx_file, fixp->fx_line,
28601 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28608 switch (fixp->fx_r_type)
28610 case BFD_RELOC_NONE: type = "NONE"; break;
28611 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28612 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28613 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28614 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28615 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28616 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28617 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28618 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28619 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28620 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28621 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28622 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28623 default: type = _("<unknown>"); break;
28625 as_bad_where (fixp->fx_file, fixp->fx_line,
28626 _("cannot represent %s relocation in this object file format"),
28633 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28635 && fixp->fx_addsy == GOT_symbol)
28637 code = BFD_RELOC_ARM_GOTPC;
28638 reloc->addend = fixp->fx_offset = reloc->address;
28642 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28644 if (reloc->howto == NULL)
28646 as_bad_where (fixp->fx_file, fixp->fx_line,
28647 _("cannot represent %s relocation in this object file format"),
28648 bfd_get_reloc_code_name (code));
28652 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28653 vtable entry to be used in the relocation's section offset. */
28654 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28655 reloc->address = fixp->fx_offset;
28660 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28663 cons_fix_new_arm (fragS * frag,
28667 bfd_reloc_code_real_type reloc)
28672 FIXME: @@ Should look at CPU word size. */
28676 reloc = BFD_RELOC_8;
28679 reloc = BFD_RELOC_16;
28683 reloc = BFD_RELOC_32;
28686 reloc = BFD_RELOC_64;
28691 if (exp->X_op == O_secrel)
28693 exp->X_op = O_symbol;
28694 reloc = BFD_RELOC_32_SECREL;
28698 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28701 #if defined (OBJ_COFF)
28703 arm_validate_fix (fixS * fixP)
28705 /* If the destination of the branch is a defined symbol which does not have
28706 the THUMB_FUNC attribute, then we must be calling a function which has
28707 the (interfacearm) attribute. We look for the Thumb entry point to that
28708 function and change the branch to refer to that function instead. */
28709 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28710 && fixP->fx_addsy != NULL
28711 && S_IS_DEFINED (fixP->fx_addsy)
28712 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28714 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28721 arm_force_relocation (struct fix * fixp)
28723 #if defined (OBJ_COFF) && defined (TE_PE)
28724 if (fixp->fx_r_type == BFD_RELOC_RVA)
28728 /* In case we have a call or a branch to a function in ARM ISA mode from
28729 a thumb function or vice-versa force the relocation. These relocations
28730 are cleared off for some cores that might have blx and simple transformations
28734 switch (fixp->fx_r_type)
28736 case BFD_RELOC_ARM_PCREL_JUMP:
28737 case BFD_RELOC_ARM_PCREL_CALL:
28738 case BFD_RELOC_THUMB_PCREL_BLX:
28739 if (THUMB_IS_FUNC (fixp->fx_addsy))
28743 case BFD_RELOC_ARM_PCREL_BLX:
28744 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28745 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28746 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28747 if (ARM_IS_FUNC (fixp->fx_addsy))
28756 /* Resolve these relocations even if the symbol is extern or weak.
28757 Technically this is probably wrong due to symbol preemption.
28758 In practice these relocations do not have enough range to be useful
28759 at dynamic link time, and some code (e.g. in the Linux kernel)
28760 expects these references to be resolved. */
28761 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28762 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28763 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28764 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28765 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28766 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28767 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28768 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28769 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28770 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28771 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28772 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28773 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28774 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28777 /* Always leave these relocations for the linker. */
28778 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28779 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28780 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28783 /* Always generate relocations against function symbols. */
28784 if (fixp->fx_r_type == BFD_RELOC_32
28786 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28789 return generic_force_reloc (fixp);
28792 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28793 /* Relocations against function names must be left unadjusted,
28794 so that the linker can use this information to generate interworking
28795 stubs. The MIPS version of this function
28796 also prevents relocations that are mips-16 specific, but I do not
28797 know why it does this.
28800 There is one other problem that ought to be addressed here, but
28801 which currently is not: Taking the address of a label (rather
28802 than a function) and then later jumping to that address. Such
28803 addresses also ought to have their bottom bit set (assuming that
28804 they reside in Thumb code), but at the moment they will not. */
28807 arm_fix_adjustable (fixS * fixP)
28809 if (fixP->fx_addsy == NULL)
28812 /* Preserve relocations against symbols with function type. */
28813 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28816 if (THUMB_IS_FUNC (fixP->fx_addsy)
28817 && fixP->fx_subsy == NULL)
28820 /* We need the symbol name for the VTABLE entries. */
28821 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28822 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28825 /* Don't allow symbols to be discarded on GOT related relocs. */
28826 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28827 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28828 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28829 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28830 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28831 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28832 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28833 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28834 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28835 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28836 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28837 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28838 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28839 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28840 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28841 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28842 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28845 /* Similarly for group relocations. */
28846 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28847 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28848 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28851 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28852 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28853 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28854 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28855 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28856 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28857 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28858 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28859 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28862 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28863 offsets, so keep these symbols. */
28864 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28865 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28870 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28874 elf32_arm_target_format (void)
28877 return (target_big_endian
28878 ? "elf32-bigarm-symbian"
28879 : "elf32-littlearm-symbian");
28880 #elif defined (TE_VXWORKS)
28881 return (target_big_endian
28882 ? "elf32-bigarm-vxworks"
28883 : "elf32-littlearm-vxworks");
28884 #elif defined (TE_NACL)
28885 return (target_big_endian
28886 ? "elf32-bigarm-nacl"
28887 : "elf32-littlearm-nacl");
28891 if (target_big_endian)
28892 return "elf32-bigarm-fdpic";
28894 return "elf32-littlearm-fdpic";
28898 if (target_big_endian)
28899 return "elf32-bigarm";
28901 return "elf32-littlearm";
28907 armelf_frob_symbol (symbolS * symp,
28910 elf_frob_symbol (symp, puntp);
28914 /* MD interface: Finalization. */
28919 literal_pool * pool;
28921 /* Ensure that all the predication blocks are properly closed. */
28922 check_pred_blocks_finished ();
28924 for (pool = list_of_pools; pool; pool = pool->next)
28926 /* Put it at the end of the relevant section. */
28927 subseg_set (pool->section, pool->sub_section);
28929 arm_elf_change_section ();
28936 /* Remove any excess mapping symbols generated for alignment frags in
28937 SEC. We may have created a mapping symbol before a zero byte
28938 alignment; remove it if there's a mapping symbol after the
28941 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28942 void *dummy ATTRIBUTE_UNUSED)
28944 segment_info_type *seginfo = seg_info (sec);
28947 if (seginfo == NULL || seginfo->frchainP == NULL)
28950 for (fragp = seginfo->frchainP->frch_root;
28952 fragp = fragp->fr_next)
28954 symbolS *sym = fragp->tc_frag_data.last_map;
28955 fragS *next = fragp->fr_next;
28957 /* Variable-sized frags have been converted to fixed size by
28958 this point. But if this was variable-sized to start with,
28959 there will be a fixed-size frag after it. So don't handle
28961 if (sym == NULL || next == NULL)
28964 if (S_GET_VALUE (sym) < next->fr_address)
28965 /* Not at the end of this frag. */
28967 know (S_GET_VALUE (sym) == next->fr_address);
28971 if (next->tc_frag_data.first_map != NULL)
28973 /* Next frag starts with a mapping symbol. Discard this
28975 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28979 if (next->fr_next == NULL)
28981 /* This mapping symbol is at the end of the section. Discard
28983 know (next->fr_fix == 0 && next->fr_var == 0);
28984 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28988 /* As long as we have empty frags without any mapping symbols,
28990 /* If the next frag is non-empty and does not start with a
28991 mapping symbol, then this mapping symbol is required. */
28992 if (next->fr_address != next->fr_next->fr_address)
28995 next = next->fr_next;
28997 while (next != NULL);
29002 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29006 arm_adjust_symtab (void)
29011 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29013 if (ARM_IS_THUMB (sym))
29015 if (THUMB_IS_FUNC (sym))
29017 /* Mark the symbol as a Thumb function. */
29018 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29019 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29020 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29022 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29023 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29025 as_bad (_("%s: unexpected function type: %d"),
29026 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29028 else switch (S_GET_STORAGE_CLASS (sym))
29031 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29034 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29037 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29045 if (ARM_IS_INTERWORK (sym))
29046 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29053 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29055 if (ARM_IS_THUMB (sym))
29057 elf_symbol_type * elf_sym;
29059 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29060 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29062 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29063 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29065 /* If it's a .thumb_func, declare it as so,
29066 otherwise tag label as .code 16. */
29067 if (THUMB_IS_FUNC (sym))
29068 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29069 ST_BRANCH_TO_THUMB);
29070 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29071 elf_sym->internal_elf_sym.st_info =
29072 ELF_ST_INFO (bind, STT_ARM_16BIT);
29077 /* Remove any overlapping mapping symbols generated by alignment frags. */
29078 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29079 /* Now do generic ELF adjustments. */
29080 elf_adjust_symtab ();
29084 /* MD interface: Initialization. */
29087 set_constant_flonums (void)
29091 for (i = 0; i < NUM_FLOAT_VALS; i++)
29092 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29096 /* Auto-select Thumb mode if it's the only available instruction set for the
29097 given architecture. */
29100 autoselect_thumb_from_cpu_variant (void)
29102 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29103 opcode_select (16);
29112 if ( (arm_ops_hsh = hash_new ()) == NULL
29113 || (arm_cond_hsh = hash_new ()) == NULL
29114 || (arm_vcond_hsh = hash_new ()) == NULL
29115 || (arm_shift_hsh = hash_new ()) == NULL
29116 || (arm_psr_hsh = hash_new ()) == NULL
29117 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29118 || (arm_reg_hsh = hash_new ()) == NULL
29119 || (arm_reloc_hsh = hash_new ()) == NULL
29120 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29121 as_fatal (_("virtual memory exhausted"));
29123 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29124 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29125 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29126 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29127 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29128 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29129 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29130 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29131 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29132 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29133 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29134 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29135 (void *) (v7m_psrs + i));
29136 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29137 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29139 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29141 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29142 (void *) (barrier_opt_names + i));
29144 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29146 struct reloc_entry * entry = reloc_names + i;
29148 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29149 /* This makes encode_branch() use the EABI versions of this relocation. */
29150 entry->reloc = BFD_RELOC_UNUSED;
29152 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29156 set_constant_flonums ();
29158 /* Set the cpu variant based on the command-line options. We prefer
29159 -mcpu= over -march= if both are set (as for GCC); and we prefer
29160 -mfpu= over any other way of setting the floating point unit.
29161 Use of legacy options with new options are faulted. */
29164 if (mcpu_cpu_opt || march_cpu_opt)
29165 as_bad (_("use of old and new-style options to set CPU type"));
29167 selected_arch = *legacy_cpu;
29169 else if (mcpu_cpu_opt)
29171 selected_arch = *mcpu_cpu_opt;
29172 selected_ext = *mcpu_ext_opt;
29174 else if (march_cpu_opt)
29176 selected_arch = *march_cpu_opt;
29177 selected_ext = *march_ext_opt;
29179 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29184 as_bad (_("use of old and new-style options to set FPU type"));
29186 selected_fpu = *legacy_fpu;
29189 selected_fpu = *mfpu_opt;
29192 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29193 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29194 /* Some environments specify a default FPU. If they don't, infer it
29195 from the processor. */
29197 selected_fpu = *mcpu_fpu_opt;
29198 else if (march_fpu_opt)
29199 selected_fpu = *march_fpu_opt;
29201 selected_fpu = fpu_default;
29205 if (ARM_FEATURE_ZERO (selected_fpu))
29207 if (!no_cpu_selected ())
29208 selected_fpu = fpu_default;
29210 selected_fpu = fpu_arch_fpa;
29214 if (ARM_FEATURE_ZERO (selected_arch))
29216 selected_arch = cpu_default;
29217 selected_cpu = selected_arch;
29219 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29221 /* Autodection of feature mode: allow all features in cpu_variant but leave
29222 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29223 after all instruction have been processed and we can decide what CPU
29224 should be selected. */
29225 if (ARM_FEATURE_ZERO (selected_arch))
29226 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29228 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29231 autoselect_thumb_from_cpu_variant ();
29233 arm_arch_used = thumb_arch_used = arm_arch_none;
29235 #if defined OBJ_COFF || defined OBJ_ELF
29237 unsigned int flags = 0;
29239 #if defined OBJ_ELF
29240 flags = meabi_flags;
29242 switch (meabi_flags)
29244 case EF_ARM_EABI_UNKNOWN:
29246 /* Set the flags in the private structure. */
29247 if (uses_apcs_26) flags |= F_APCS26;
29248 if (support_interwork) flags |= F_INTERWORK;
29249 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29250 if (pic_code) flags |= F_PIC;
29251 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29252 flags |= F_SOFT_FLOAT;
29254 switch (mfloat_abi_opt)
29256 case ARM_FLOAT_ABI_SOFT:
29257 case ARM_FLOAT_ABI_SOFTFP:
29258 flags |= F_SOFT_FLOAT;
29261 case ARM_FLOAT_ABI_HARD:
29262 if (flags & F_SOFT_FLOAT)
29263 as_bad (_("hard-float conflicts with specified fpu"));
29267 /* Using pure-endian doubles (even if soft-float). */
29268 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29269 flags |= F_VFP_FLOAT;
29271 #if defined OBJ_ELF
29272 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29273 flags |= EF_ARM_MAVERICK_FLOAT;
29276 case EF_ARM_EABI_VER4:
29277 case EF_ARM_EABI_VER5:
29278 /* No additional flags to set. */
29285 bfd_set_private_flags (stdoutput, flags);
29287 /* We have run out flags in the COFF header to encode the
29288 status of ATPCS support, so instead we create a dummy,
29289 empty, debug section called .arm.atpcs. */
29294 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29298 bfd_set_section_flags
29299 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29300 bfd_set_section_size (stdoutput, sec, 0);
29301 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29307 /* Record the CPU type as well. */
29308 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29309 mach = bfd_mach_arm_iWMMXt2;
29310 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29311 mach = bfd_mach_arm_iWMMXt;
29312 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29313 mach = bfd_mach_arm_XScale;
29314 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29315 mach = bfd_mach_arm_ep9312;
29316 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29317 mach = bfd_mach_arm_5TE;
29318 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29320 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29321 mach = bfd_mach_arm_5T;
29323 mach = bfd_mach_arm_5;
29325 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29327 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29328 mach = bfd_mach_arm_4T;
29330 mach = bfd_mach_arm_4;
29332 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29333 mach = bfd_mach_arm_3M;
29334 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29335 mach = bfd_mach_arm_3;
29336 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29337 mach = bfd_mach_arm_2a;
29338 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29339 mach = bfd_mach_arm_2;
29341 mach = bfd_mach_arm_unknown;
29343 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29346 /* Command line processing. */
29349 Invocation line includes a switch not recognized by the base assembler.
29350 See if it's a processor-specific option.
29352 This routine is somewhat complicated by the need for backwards
29353 compatibility (since older releases of gcc can't be changed).
29354 The new options try to make the interface as compatible as
29357 New options (supported) are:
29359 -mcpu=<cpu name> Assemble for selected processor
29360 -march=<architecture name> Assemble for selected architecture
29361 -mfpu=<fpu architecture> Assemble for selected FPU.
29362 -EB/-mbig-endian Big-endian
29363 -EL/-mlittle-endian Little-endian
29364 -k Generate PIC code
29365 -mthumb Start in Thumb mode
29366 -mthumb-interwork Code supports ARM/Thumb interworking
29368 -m[no-]warn-deprecated Warn about deprecated features
29369 -m[no-]warn-syms Warn when symbols match instructions
29371 For now we will also provide support for:
29373 -mapcs-32 32-bit Program counter
29374 -mapcs-26 26-bit Program counter
29375 -macps-float Floats passed in FP registers
29376 -mapcs-reentrant Reentrant code
29378 (sometime these will probably be replaced with -mapcs=<list of options>
29379 and -matpcs=<list of options>)
29381 The remaining options are only supported for back-wards compatibility.
29382 Cpu variants, the arm part is optional:
29383 -m[arm]1 Currently not supported.
29384 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29385 -m[arm]3 Arm 3 processor
29386 -m[arm]6[xx], Arm 6 processors
29387 -m[arm]7[xx][t][[d]m] Arm 7 processors
29388 -m[arm]8[10] Arm 8 processors
29389 -m[arm]9[20][tdmi] Arm 9 processors
29390 -mstrongarm[110[0]] StrongARM processors
29391 -mxscale XScale processors
29392 -m[arm]v[2345[t[e]]] Arm architectures
29393 -mall All (except the ARM1)
29395 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29396 -mfpe-old (No float load/store multiples)
29397 -mvfpxd VFP Single precision
29399 -mno-fpu Disable all floating point instructions
29401 The following CPU names are recognized:
29402 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29403 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29404 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29405 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29406 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29407 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29408 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29412 const char * md_shortopts = "m:k";
29414 #ifdef ARM_BI_ENDIAN
29415 #define OPTION_EB (OPTION_MD_BASE + 0)
29416 #define OPTION_EL (OPTION_MD_BASE + 1)
29418 #if TARGET_BYTES_BIG_ENDIAN
29419 #define OPTION_EB (OPTION_MD_BASE + 0)
29421 #define OPTION_EL (OPTION_MD_BASE + 1)
29424 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29425 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29427 struct option md_longopts[] =
29430 {"EB", no_argument, NULL, OPTION_EB},
29433 {"EL", no_argument, NULL, OPTION_EL},
29435 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29437 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29439 {NULL, no_argument, NULL, 0}
29442 size_t md_longopts_size = sizeof (md_longopts);
29444 struct arm_option_table
29446 const char * option; /* Option name to match. */
29447 const char * help; /* Help information. */
29448 int * var; /* Variable to change. */
29449 int value; /* What to change it to. */
29450 const char * deprecated; /* If non-null, print this message. */
29453 struct arm_option_table arm_opts[] =
29455 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29456 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29457 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29458 &support_interwork, 1, NULL},
29459 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29460 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29461 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29463 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29464 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29465 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29466 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29469 /* These are recognized by the assembler, but have no affect on code. */
29470 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29471 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29473 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29474 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29475 &warn_on_deprecated, 0, NULL},
29476 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29477 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29478 {NULL, NULL, NULL, 0, NULL}
29481 struct arm_legacy_option_table
29483 const char * option; /* Option name to match. */
29484 const arm_feature_set ** var; /* Variable to change. */
29485 const arm_feature_set value; /* What to change it to. */
29486 const char * deprecated; /* If non-null, print this message. */
29489 const struct arm_legacy_option_table arm_legacy_opts[] =
29491 /* DON'T add any new processors to this list -- we want the whole list
29492 to go away... Add them to the processors table instead. */
29493 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29494 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29495 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29496 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29497 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29498 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29499 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29500 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29501 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29502 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29503 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29504 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29505 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29506 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29507 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29508 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29509 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29510 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29511 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29512 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29513 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29514 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29515 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29516 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29517 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29518 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29519 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29520 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29521 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29522 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29523 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29524 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29525 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29526 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29527 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29528 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29529 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29530 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29531 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29532 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29533 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29534 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29535 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29536 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29537 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29538 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29539 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29540 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29541 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29542 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29543 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29544 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29545 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29546 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29547 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29548 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29549 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29550 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29551 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29552 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29553 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29554 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29555 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29556 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29557 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29558 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29559 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29560 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29561 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29562 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29563 N_("use -mcpu=strongarm110")},
29564 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29565 N_("use -mcpu=strongarm1100")},
29566 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29567 N_("use -mcpu=strongarm1110")},
29568 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29569 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29570 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29572 /* Architecture variants -- don't add any more to this list either. */
29573 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29574 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29575 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29576 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29577 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29578 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29579 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29580 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29581 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29582 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29583 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29584 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29585 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29586 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29587 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29588 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29589 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29590 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29592 /* Floating point variants -- don't add any more to this list either. */
29593 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29594 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29595 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29596 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29597 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29599 {NULL, NULL, ARM_ARCH_NONE, NULL}
29602 struct arm_cpu_option_table
29606 const arm_feature_set value;
29607 const arm_feature_set ext;
29608 /* For some CPUs we assume an FPU unless the user explicitly sets
29610 const arm_feature_set default_fpu;
29611 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29613 const char * canonical_name;
29616 /* This list should, at a minimum, contain all the cpu names
29617 recognized by GCC. */
29618 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29620 static const struct arm_cpu_option_table arm_cpus[] =
29622 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29625 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29628 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29631 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29634 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29637 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29640 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29643 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29646 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29649 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29652 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29655 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29658 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29661 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29664 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29667 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29670 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29673 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29676 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29679 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29682 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29685 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29688 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29691 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29694 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29697 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29700 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29703 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29706 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29709 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29712 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29715 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29718 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29721 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29724 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29727 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29730 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29733 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29736 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29739 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29742 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29745 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29748 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29751 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29754 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29757 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29761 /* For V5 or later processors we default to using VFP; but the user
29762 should really set the FPU type explicitly. */
29763 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29766 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29769 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29772 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29775 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29778 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29781 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29784 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29787 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29790 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29793 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29796 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29799 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29802 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29805 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29808 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29811 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29814 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29817 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29820 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29823 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29826 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29829 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29832 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29835 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29838 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29841 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29844 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29847 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29850 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29853 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29856 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29859 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29862 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29865 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29868 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29871 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29872 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29874 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29876 FPU_ARCH_NEON_VFP_V4),
29877 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29878 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29879 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29880 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29882 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29883 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29885 FPU_ARCH_NEON_VFP_V4),
29886 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29888 FPU_ARCH_NEON_VFP_V4),
29889 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29891 FPU_ARCH_NEON_VFP_V4),
29892 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29893 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29894 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29895 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29896 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29897 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29898 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29899 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29900 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29901 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29902 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29903 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29904 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29905 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29906 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29907 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29908 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29909 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29910 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29911 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29912 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29913 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29914 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29915 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29916 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29917 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29918 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29919 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29920 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29922 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29925 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29927 FPU_ARCH_VFP_V3D16),
29928 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29929 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29931 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29932 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29933 FPU_ARCH_VFP_V3D16),
29934 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29935 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29936 FPU_ARCH_VFP_V3D16),
29937 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29938 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29939 FPU_ARCH_NEON_VFP_ARMV8),
29940 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29941 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29943 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29946 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29949 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29952 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29955 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29958 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29961 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29964 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29965 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29966 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29967 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29968 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29969 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29970 /* ??? XSCALE is really an architecture. */
29971 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29975 /* ??? iwmmxt is not a processor. */
29976 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29979 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29982 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29987 ARM_CPU_OPT ("ep9312", "ARM920T",
29988 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29989 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29991 /* Marvell processors. */
29992 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29993 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29994 FPU_ARCH_VFP_V3D16),
29995 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29996 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29997 FPU_ARCH_NEON_VFP_V4),
29999 /* APM X-Gene family. */
30000 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30002 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30003 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30004 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30005 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30007 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30011 struct arm_ext_table
30015 const arm_feature_set merge;
30016 const arm_feature_set clear;
30019 struct arm_arch_option_table
30023 const arm_feature_set value;
30024 const arm_feature_set default_fpu;
30025 const struct arm_ext_table * ext_table;
30028 /* Used to add support for +E and +noE extension. */
30029 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30030 /* Used to add support for a +E extension. */
30031 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30032 /* Used to add support for a +noE extension. */
30033 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30035 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30036 ~0 & ~FPU_ENDIAN_PURE)
30038 static const struct arm_ext_table armv5te_ext_table[] =
30040 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30041 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30044 static const struct arm_ext_table armv7_ext_table[] =
30046 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30047 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30050 static const struct arm_ext_table armv7ve_ext_table[] =
30052 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30053 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30054 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30055 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30056 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30057 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30058 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30060 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30061 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30063 /* Aliases for +simd. */
30064 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30066 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30067 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30068 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30070 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30073 static const struct arm_ext_table armv7a_ext_table[] =
30075 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30076 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30077 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30078 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30079 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30080 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30081 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30083 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30084 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30086 /* Aliases for +simd. */
30087 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30088 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30090 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30091 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30093 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30094 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30095 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30098 static const struct arm_ext_table armv7r_ext_table[] =
30100 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30101 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30102 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30103 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30104 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30105 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30106 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30107 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30108 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30111 static const struct arm_ext_table armv7em_ext_table[] =
30113 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30114 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30115 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30116 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30117 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30118 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30119 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30122 static const struct arm_ext_table armv8a_ext_table[] =
30124 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30125 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30126 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30127 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30129 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30130 should use the +simd option to turn on FP. */
30131 ARM_REMOVE ("fp", ALL_FP),
30132 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30133 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30134 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30138 static const struct arm_ext_table armv81a_ext_table[] =
30140 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30141 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30142 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30144 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30145 should use the +simd option to turn on FP. */
30146 ARM_REMOVE ("fp", ALL_FP),
30147 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30148 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30149 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30152 static const struct arm_ext_table armv82a_ext_table[] =
30154 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30155 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30156 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30157 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30158 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30159 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30161 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30162 should use the +simd option to turn on FP. */
30163 ARM_REMOVE ("fp", ALL_FP),
30164 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30165 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30166 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30169 static const struct arm_ext_table armv84a_ext_table[] =
30171 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30172 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30173 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30174 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30176 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30177 should use the +simd option to turn on FP. */
30178 ARM_REMOVE ("fp", ALL_FP),
30179 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30180 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30181 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30184 static const struct arm_ext_table armv85a_ext_table[] =
30186 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30187 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30188 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30189 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30191 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30192 should use the +simd option to turn on FP. */
30193 ARM_REMOVE ("fp", ALL_FP),
30194 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30197 static const struct arm_ext_table armv8m_main_ext_table[] =
30199 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30200 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30201 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30202 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30203 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30206 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30208 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30209 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30211 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30212 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30215 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30216 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30217 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30218 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30220 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30221 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30222 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30223 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30226 static const struct arm_ext_table armv8r_ext_table[] =
30228 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30229 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30230 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30231 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30232 ARM_REMOVE ("fp", ALL_FP),
30233 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30234 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30237 /* This list should, at a minimum, contain all the architecture names
30238 recognized by GCC. */
30239 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30240 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30241 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30243 static const struct arm_arch_option_table arm_archs[] =
30245 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30246 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30247 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30248 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30249 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30250 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30251 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30252 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30253 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30254 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30255 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30256 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30257 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30258 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30259 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30260 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30261 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30262 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30263 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30264 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30265 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30266 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30267 kept to preserve existing behaviour. */
30268 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30269 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30270 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30271 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30272 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30273 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30274 kept to preserve existing behaviour. */
30275 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30276 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30277 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30278 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30279 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30280 /* The official spelling of the ARMv7 profile variants is the dashed form.
30281 Accept the non-dashed form for compatibility with old toolchains. */
30282 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30283 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30284 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30285 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30286 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30287 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30288 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30289 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30290 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30291 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30293 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30295 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30296 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30297 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30298 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30299 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30300 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30301 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30302 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30303 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30304 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30305 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30307 #undef ARM_ARCH_OPT
30309 /* ISA extensions in the co-processor and main instruction set space. */
30311 struct arm_option_extension_value_table
30315 const arm_feature_set merge_value;
30316 const arm_feature_set clear_value;
30317 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30318 indicates that an extension is available for all architectures while
30319 ARM_ANY marks an empty entry. */
30320 const arm_feature_set allowed_archs[2];
30323 /* The following table must be in alphabetical order with a NULL last entry. */
30325 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30326 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30328 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30329 use the context sensitive approach using arm_ext_table's. */
30330 static const struct arm_option_extension_value_table arm_extensions[] =
30332 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30333 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30334 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30335 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30336 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30337 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30338 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30340 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30341 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30342 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30343 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30344 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30345 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30346 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30348 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30349 | ARM_EXT2_FP16_FML),
30350 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30351 | ARM_EXT2_FP16_FML),
30353 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30354 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30355 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30356 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30357 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30358 Thumb divide instruction. Due to this having the same name as the
30359 previous entry, this will be ignored when doing command-line parsing and
30360 only considered by build attribute selection code. */
30361 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30362 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30363 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30364 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30365 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30366 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30367 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30368 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30369 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30370 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30371 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30372 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30373 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30374 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30375 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30376 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30377 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30378 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30379 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30380 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30381 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30383 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30384 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30385 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30386 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30387 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30388 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30389 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30390 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30392 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30393 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30394 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30395 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30396 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30397 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30398 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30399 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30401 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30402 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30403 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30404 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30405 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30409 /* ISA floating-point and Advanced SIMD extensions. */
30410 struct arm_option_fpu_value_table
30413 const arm_feature_set value;
30416 /* This list should, at a minimum, contain all the fpu names
30417 recognized by GCC. */
30418 static const struct arm_option_fpu_value_table arm_fpus[] =
30420 {"softfpa", FPU_NONE},
30421 {"fpe", FPU_ARCH_FPE},
30422 {"fpe2", FPU_ARCH_FPE},
30423 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30424 {"fpa", FPU_ARCH_FPA},
30425 {"fpa10", FPU_ARCH_FPA},
30426 {"fpa11", FPU_ARCH_FPA},
30427 {"arm7500fe", FPU_ARCH_FPA},
30428 {"softvfp", FPU_ARCH_VFP},
30429 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30430 {"vfp", FPU_ARCH_VFP_V2},
30431 {"vfp9", FPU_ARCH_VFP_V2},
30432 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30433 {"vfp10", FPU_ARCH_VFP_V2},
30434 {"vfp10-r0", FPU_ARCH_VFP_V1},
30435 {"vfpxd", FPU_ARCH_VFP_V1xD},
30436 {"vfpv2", FPU_ARCH_VFP_V2},
30437 {"vfpv3", FPU_ARCH_VFP_V3},
30438 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30439 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30440 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30441 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30442 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30443 {"arm1020t", FPU_ARCH_VFP_V1},
30444 {"arm1020e", FPU_ARCH_VFP_V2},
30445 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30446 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30447 {"maverick", FPU_ARCH_MAVERICK},
30448 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30449 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30450 {"neon-fp16", FPU_ARCH_NEON_FP16},
30451 {"vfpv4", FPU_ARCH_VFP_V4},
30452 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30453 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30454 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30455 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30456 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30457 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30458 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30459 {"crypto-neon-fp-armv8",
30460 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30461 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30462 {"crypto-neon-fp-armv8.1",
30463 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30464 {NULL, ARM_ARCH_NONE}
30467 struct arm_option_value_table
30473 static const struct arm_option_value_table arm_float_abis[] =
30475 {"hard", ARM_FLOAT_ABI_HARD},
30476 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30477 {"soft", ARM_FLOAT_ABI_SOFT},
30482 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30483 static const struct arm_option_value_table arm_eabis[] =
30485 {"gnu", EF_ARM_EABI_UNKNOWN},
30486 {"4", EF_ARM_EABI_VER4},
30487 {"5", EF_ARM_EABI_VER5},
30492 struct arm_long_option_table
30494 const char * option; /* Substring to match. */
30495 const char * help; /* Help information. */
30496 int (* func) (const char * subopt); /* Function to decode sub-option. */
30497 const char * deprecated; /* If non-null, print this message. */
30501 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30502 arm_feature_set *ext_set,
30503 const struct arm_ext_table *ext_table)
30505 /* We insist on extensions being specified in alphabetical order, and with
30506 extensions being added before being removed. We achieve this by having
30507 the global ARM_EXTENSIONS table in alphabetical order, and using the
30508 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30509 or removing it (0) and only allowing it to change in the order
30511 const struct arm_option_extension_value_table * opt = NULL;
30512 const arm_feature_set arm_any = ARM_ANY;
30513 int adding_value = -1;
30515 while (str != NULL && *str != 0)
30522 as_bad (_("invalid architectural extension"));
30527 ext = strchr (str, '+');
30532 len = strlen (str);
30534 if (len >= 2 && strncmp (str, "no", 2) == 0)
30536 if (adding_value != 0)
30539 opt = arm_extensions;
30547 if (adding_value == -1)
30550 opt = arm_extensions;
30552 else if (adding_value != 1)
30554 as_bad (_("must specify extensions to add before specifying "
30555 "those to remove"));
30562 as_bad (_("missing architectural extension"));
30566 gas_assert (adding_value != -1);
30567 gas_assert (opt != NULL);
30569 if (ext_table != NULL)
30571 const struct arm_ext_table * ext_opt = ext_table;
30572 bfd_boolean found = FALSE;
30573 for (; ext_opt->name != NULL; ext_opt++)
30574 if (ext_opt->name_len == len
30575 && strncmp (ext_opt->name, str, len) == 0)
30579 if (ARM_FEATURE_ZERO (ext_opt->merge))
30580 /* TODO: Option not supported. When we remove the
30581 legacy table this case should error out. */
30584 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30588 if (ARM_FEATURE_ZERO (ext_opt->clear))
30589 /* TODO: Option not supported. When we remove the
30590 legacy table this case should error out. */
30592 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30604 /* Scan over the options table trying to find an exact match. */
30605 for (; opt->name != NULL; opt++)
30606 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30608 int i, nb_allowed_archs =
30609 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30610 /* Check we can apply the extension to this architecture. */
30611 for (i = 0; i < nb_allowed_archs; i++)
30614 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30616 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30619 if (i == nb_allowed_archs)
30621 as_bad (_("extension does not apply to the base architecture"));
30625 /* Add or remove the extension. */
30627 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30629 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30631 /* Allowing Thumb division instructions for ARMv7 in autodetection
30632 rely on this break so that duplicate extensions (extensions
30633 with the same name as a previous extension in the list) are not
30634 considered for command-line parsing. */
30638 if (opt->name == NULL)
30640 /* Did we fail to find an extension because it wasn't specified in
30641 alphabetical order, or because it does not exist? */
30643 for (opt = arm_extensions; opt->name != NULL; opt++)
30644 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30647 if (opt->name == NULL)
30648 as_bad (_("unknown architectural extension `%s'"), str);
30650 as_bad (_("architectural extensions must be specified in "
30651 "alphabetical order"));
30657 /* We should skip the extension we've just matched the next time
30669 arm_parse_cpu (const char *str)
30671 const struct arm_cpu_option_table *opt;
30672 const char *ext = strchr (str, '+');
30678 len = strlen (str);
30682 as_bad (_("missing cpu name `%s'"), str);
30686 for (opt = arm_cpus; opt->name != NULL; opt++)
30687 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30689 mcpu_cpu_opt = &opt->value;
30690 if (mcpu_ext_opt == NULL)
30691 mcpu_ext_opt = XNEW (arm_feature_set);
30692 *mcpu_ext_opt = opt->ext;
30693 mcpu_fpu_opt = &opt->default_fpu;
30694 if (opt->canonical_name)
30696 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30697 strcpy (selected_cpu_name, opt->canonical_name);
30703 if (len >= sizeof selected_cpu_name)
30704 len = (sizeof selected_cpu_name) - 1;
30706 for (i = 0; i < len; i++)
30707 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30708 selected_cpu_name[i] = 0;
30712 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30717 as_bad (_("unknown cpu `%s'"), str);
30722 arm_parse_arch (const char *str)
30724 const struct arm_arch_option_table *opt;
30725 const char *ext = strchr (str, '+');
30731 len = strlen (str);
30735 as_bad (_("missing architecture name `%s'"), str);
30739 for (opt = arm_archs; opt->name != NULL; opt++)
30740 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30742 march_cpu_opt = &opt->value;
30743 if (march_ext_opt == NULL)
30744 march_ext_opt = XNEW (arm_feature_set);
30745 *march_ext_opt = arm_arch_none;
30746 march_fpu_opt = &opt->default_fpu;
30747 strcpy (selected_cpu_name, opt->name);
30750 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30756 as_bad (_("unknown architecture `%s'\n"), str);
30761 arm_parse_fpu (const char * str)
30763 const struct arm_option_fpu_value_table * opt;
30765 for (opt = arm_fpus; opt->name != NULL; opt++)
30766 if (streq (opt->name, str))
30768 mfpu_opt = &opt->value;
30772 as_bad (_("unknown floating point format `%s'\n"), str);
30777 arm_parse_float_abi (const char * str)
30779 const struct arm_option_value_table * opt;
30781 for (opt = arm_float_abis; opt->name != NULL; opt++)
30782 if (streq (opt->name, str))
30784 mfloat_abi_opt = opt->value;
30788 as_bad (_("unknown floating point abi `%s'\n"), str);
30794 arm_parse_eabi (const char * str)
30796 const struct arm_option_value_table *opt;
30798 for (opt = arm_eabis; opt->name != NULL; opt++)
30799 if (streq (opt->name, str))
30801 meabi_flags = opt->value;
30804 as_bad (_("unknown EABI `%s'\n"), str);
30810 arm_parse_it_mode (const char * str)
30812 bfd_boolean ret = TRUE;
30814 if (streq ("arm", str))
30815 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30816 else if (streq ("thumb", str))
30817 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30818 else if (streq ("always", str))
30819 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30820 else if (streq ("never", str))
30821 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30824 as_bad (_("unknown implicit IT mode `%s', should be "\
30825 "arm, thumb, always, or never."), str);
30833 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30835 codecomposer_syntax = TRUE;
30836 arm_comment_chars[0] = ';';
30837 arm_line_separator_chars[0] = 0;
30841 struct arm_long_option_table arm_long_opts[] =
30843 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30844 arm_parse_cpu, NULL},
30845 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30846 arm_parse_arch, NULL},
30847 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30848 arm_parse_fpu, NULL},
30849 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30850 arm_parse_float_abi, NULL},
30852 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30853 arm_parse_eabi, NULL},
30855 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30856 arm_parse_it_mode, NULL},
30857 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30858 arm_ccs_mode, NULL},
30859 {NULL, NULL, 0, NULL}
30863 md_parse_option (int c, const char * arg)
30865 struct arm_option_table *opt;
30866 const struct arm_legacy_option_table *fopt;
30867 struct arm_long_option_table *lopt;
30873 target_big_endian = 1;
30879 target_big_endian = 0;
30883 case OPTION_FIX_V4BX:
30891 #endif /* OBJ_ELF */
30894 /* Listing option. Just ignore these, we don't support additional
30899 for (opt = arm_opts; opt->option != NULL; opt++)
30901 if (c == opt->option[0]
30902 && ((arg == NULL && opt->option[1] == 0)
30903 || streq (arg, opt->option + 1)))
30905 /* If the option is deprecated, tell the user. */
30906 if (warn_on_deprecated && opt->deprecated != NULL)
30907 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30908 arg ? arg : "", _(opt->deprecated));
30910 if (opt->var != NULL)
30911 *opt->var = opt->value;
30917 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30919 if (c == fopt->option[0]
30920 && ((arg == NULL && fopt->option[1] == 0)
30921 || streq (arg, fopt->option + 1)))
30923 /* If the option is deprecated, tell the user. */
30924 if (warn_on_deprecated && fopt->deprecated != NULL)
30925 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30926 arg ? arg : "", _(fopt->deprecated));
30928 if (fopt->var != NULL)
30929 *fopt->var = &fopt->value;
30935 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30937 /* These options are expected to have an argument. */
30938 if (c == lopt->option[0]
30940 && strncmp (arg, lopt->option + 1,
30941 strlen (lopt->option + 1)) == 0)
30943 /* If the option is deprecated, tell the user. */
30944 if (warn_on_deprecated && lopt->deprecated != NULL)
30945 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30946 _(lopt->deprecated));
30948 /* Call the sup-option parser. */
30949 return lopt->func (arg + strlen (lopt->option) - 1);
30960 md_show_usage (FILE * fp)
30962 struct arm_option_table *opt;
30963 struct arm_long_option_table *lopt;
30965 fprintf (fp, _(" ARM-specific assembler options:\n"));
30967 for (opt = arm_opts; opt->option != NULL; opt++)
30968 if (opt->help != NULL)
30969 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30971 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30972 if (lopt->help != NULL)
30973 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30977 -EB assemble code for a big-endian cpu\n"));
30982 -EL assemble code for a little-endian cpu\n"));
30986 --fix-v4bx Allow BX in ARMv4 code\n"));
30990 --fdpic generate an FDPIC object file\n"));
30991 #endif /* OBJ_ELF */
30999 arm_feature_set flags;
31000 } cpu_arch_ver_table;
31002 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31003 chronologically for architectures, with an exception for ARMv6-M and
31004 ARMv6S-M due to legacy reasons. No new architecture should have a
31005 special case. This allows for build attribute selection results to be
31006 stable when new architectures are added. */
31007 static const cpu_arch_ver_table cpu_arch_ver[] =
31009 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31010 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31011 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31012 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31013 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31014 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31015 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31016 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31017 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31018 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31019 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31020 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31021 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31022 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31023 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31024 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31025 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31026 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31027 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31028 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31029 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31030 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31031 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31032 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31034 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31035 always selected build attributes to match those of ARMv6-M
31036 (resp. ARMv6S-M). However, due to these architectures being a strict
31037 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31038 would be selected when fully respecting chronology of architectures.
31039 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31040 move them before ARMv7 architectures. */
31041 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31042 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31044 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31045 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31046 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31047 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31048 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31049 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31050 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31051 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31052 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31053 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31054 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31055 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31056 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31057 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31058 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31059 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31060 {-1, ARM_ARCH_NONE}
31063 /* Set an attribute if it has not already been set by the user. */
31066 aeabi_set_attribute_int (int tag, int value)
31069 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31070 || !attributes_set_explicitly[tag])
31071 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31075 aeabi_set_attribute_string (int tag, const char *value)
31078 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31079 || !attributes_set_explicitly[tag])
31080 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31083 /* Return whether features in the *NEEDED feature set are available via
31084 extensions for the architecture whose feature set is *ARCH_FSET. */
31087 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31088 const arm_feature_set *needed)
31090 int i, nb_allowed_archs;
31091 arm_feature_set ext_fset;
31092 const struct arm_option_extension_value_table *opt;
31094 ext_fset = arm_arch_none;
31095 for (opt = arm_extensions; opt->name != NULL; opt++)
31097 /* Extension does not provide any feature we need. */
31098 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31102 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31103 for (i = 0; i < nb_allowed_archs; i++)
31106 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31109 /* Extension is available, add it. */
31110 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31111 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31115 /* Can we enable all features in *needed? */
31116 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31119 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31120 a given architecture feature set *ARCH_EXT_FSET including extension feature
31121 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31122 - if true, check for an exact match of the architecture modulo extensions;
31123 - otherwise, select build attribute value of the first superset
31124 architecture released so that results remains stable when new architectures
31126 For -march/-mcpu=all the build attribute value of the most featureful
31127 architecture is returned. Tag_CPU_arch_profile result is returned in
31131 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31132 const arm_feature_set *ext_fset,
31133 char *profile, int exact_match)
31135 arm_feature_set arch_fset;
31136 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31138 /* Select most featureful architecture with all its extensions if building
31139 for -march=all as the feature sets used to set build attributes. */
31140 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31142 /* Force revisiting of decision for each new architecture. */
31143 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31145 return TAG_CPU_ARCH_V8;
31148 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31150 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31152 arm_feature_set known_arch_fset;
31154 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31157 /* Base architecture match user-specified architecture and
31158 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31159 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31164 /* Base architecture match user-specified architecture only
31165 (eg. ARMv6-M in the same case as above). Record it in case we
31166 find a match with above condition. */
31167 else if (p_ver_ret == NULL
31168 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31174 /* Architecture has all features wanted. */
31175 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31177 arm_feature_set added_fset;
31179 /* Compute features added by this architecture over the one
31180 recorded in p_ver_ret. */
31181 if (p_ver_ret != NULL)
31182 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31184 /* First architecture that match incl. with extensions, or the
31185 only difference in features over the recorded match is
31186 features that were optional and are now mandatory. */
31187 if (p_ver_ret == NULL
31188 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31194 else if (p_ver_ret == NULL)
31196 arm_feature_set needed_ext_fset;
31198 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31200 /* Architecture has all features needed when using some
31201 extensions. Record it and continue searching in case there
31202 exist an architecture providing all needed features without
31203 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31205 if (have_ext_for_needed_feat_p (&known_arch_fset,
31212 if (p_ver_ret == NULL)
31216 /* Tag_CPU_arch_profile. */
31217 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31218 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31219 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31220 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31222 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31224 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31228 return p_ver_ret->val;
31231 /* Set the public EABI object attributes. */
31234 aeabi_set_public_attributes (void)
31236 char profile = '\0';
31239 int fp16_optional = 0;
31240 int skip_exact_match = 0;
31241 arm_feature_set flags, flags_arch, flags_ext;
31243 /* Autodetection mode, choose the architecture based the instructions
31245 if (no_cpu_selected ())
31247 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31249 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31250 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31252 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31253 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31255 /* Code run during relaxation relies on selected_cpu being set. */
31256 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31257 flags_ext = arm_arch_none;
31258 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31259 selected_ext = flags_ext;
31260 selected_cpu = flags;
31262 /* Otherwise, choose the architecture based on the capabilities of the
31266 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31267 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31268 flags_ext = selected_ext;
31269 flags = selected_cpu;
31271 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31273 /* Allow the user to override the reported architecture. */
31274 if (!ARM_FEATURE_ZERO (selected_object_arch))
31276 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31277 flags_ext = arm_arch_none;
31280 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31282 /* When this function is run again after relaxation has happened there is no
31283 way to determine whether an architecture or CPU was specified by the user:
31284 - selected_cpu is set above for relaxation to work;
31285 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31286 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31287 Therefore, if not in -march=all case we first try an exact match and fall
31288 back to autodetection. */
31289 if (!skip_exact_match)
31290 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31292 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31294 as_bad (_("no architecture contains all the instructions used\n"));
31296 /* Tag_CPU_name. */
31297 if (selected_cpu_name[0])
31301 q = selected_cpu_name;
31302 if (strncmp (q, "armv", 4) == 0)
31307 for (i = 0; q[i]; i++)
31308 q[i] = TOUPPER (q[i]);
31310 aeabi_set_attribute_string (Tag_CPU_name, q);
31313 /* Tag_CPU_arch. */
31314 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31316 /* Tag_CPU_arch_profile. */
31317 if (profile != '\0')
31318 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31320 /* Tag_DSP_extension. */
31321 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31322 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31324 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31325 /* Tag_ARM_ISA_use. */
31326 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31327 || ARM_FEATURE_ZERO (flags_arch))
31328 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31330 /* Tag_THUMB_ISA_use. */
31331 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31332 || ARM_FEATURE_ZERO (flags_arch))
31336 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31337 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31339 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31343 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31346 /* Tag_VFP_arch. */
31347 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31348 aeabi_set_attribute_int (Tag_VFP_arch,
31349 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31351 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31352 aeabi_set_attribute_int (Tag_VFP_arch,
31353 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31355 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31358 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31360 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31362 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31365 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31366 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31367 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31368 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31369 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31371 /* Tag_ABI_HardFP_use. */
31372 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31373 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31374 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31376 /* Tag_WMMX_arch. */
31377 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31378 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31379 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31380 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31382 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31383 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31384 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31385 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31386 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31387 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31389 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31391 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31395 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31400 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31401 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31402 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31403 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31405 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31406 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31407 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31411 We set Tag_DIV_use to two when integer divide instructions have been used
31412 in ARM state, or when Thumb integer divide instructions have been used,
31413 but we have no architecture profile set, nor have we any ARM instructions.
31415 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31416 by the base architecture.
31418 For new architectures we will have to check these tests. */
31419 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31420 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31421 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31422 aeabi_set_attribute_int (Tag_DIV_use, 0);
31423 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31424 || (profile == '\0'
31425 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31426 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31427 aeabi_set_attribute_int (Tag_DIV_use, 2);
31429 /* Tag_MP_extension_use. */
31430 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31431 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31433 /* Tag Virtualization_use. */
31434 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31436 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31439 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31442 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31443 finished and free extension feature bits which will not be used anymore. */
31446 arm_md_post_relax (void)
31448 aeabi_set_public_attributes ();
31449 XDELETE (mcpu_ext_opt);
31450 mcpu_ext_opt = NULL;
31451 XDELETE (march_ext_opt);
31452 march_ext_opt = NULL;
31455 /* Add the default contents for the .ARM.attributes section. */
31460 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31463 aeabi_set_public_attributes ();
31465 #endif /* OBJ_ELF */
31467 /* Parse a .cpu directive. */
31470 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31472 const struct arm_cpu_option_table *opt;
31476 name = input_line_pointer;
31477 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31478 input_line_pointer++;
31479 saved_char = *input_line_pointer;
31480 *input_line_pointer = 0;
31482 /* Skip the first "all" entry. */
31483 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31484 if (streq (opt->name, name))
31486 selected_arch = opt->value;
31487 selected_ext = opt->ext;
31488 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31489 if (opt->canonical_name)
31490 strcpy (selected_cpu_name, opt->canonical_name);
31494 for (i = 0; opt->name[i]; i++)
31495 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31497 selected_cpu_name[i] = 0;
31499 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31501 *input_line_pointer = saved_char;
31502 demand_empty_rest_of_line ();
31505 as_bad (_("unknown cpu `%s'"), name);
31506 *input_line_pointer = saved_char;
31507 ignore_rest_of_line ();
31510 /* Parse a .arch directive. */
31513 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31515 const struct arm_arch_option_table *opt;
31519 name = input_line_pointer;
31520 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31521 input_line_pointer++;
31522 saved_char = *input_line_pointer;
31523 *input_line_pointer = 0;
31525 /* Skip the first "all" entry. */
31526 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31527 if (streq (opt->name, name))
31529 selected_arch = opt->value;
31530 selected_ext = arm_arch_none;
31531 selected_cpu = selected_arch;
31532 strcpy (selected_cpu_name, opt->name);
31533 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31534 *input_line_pointer = saved_char;
31535 demand_empty_rest_of_line ();
31539 as_bad (_("unknown architecture `%s'\n"), name);
31540 *input_line_pointer = saved_char;
31541 ignore_rest_of_line ();
31544 /* Parse a .object_arch directive. */
31547 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31549 const struct arm_arch_option_table *opt;
31553 name = input_line_pointer;
31554 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31555 input_line_pointer++;
31556 saved_char = *input_line_pointer;
31557 *input_line_pointer = 0;
31559 /* Skip the first "all" entry. */
31560 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31561 if (streq (opt->name, name))
31563 selected_object_arch = opt->value;
31564 *input_line_pointer = saved_char;
31565 demand_empty_rest_of_line ();
31569 as_bad (_("unknown architecture `%s'\n"), name);
31570 *input_line_pointer = saved_char;
31571 ignore_rest_of_line ();
31574 /* Parse a .arch_extension directive. */
31577 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31579 const struct arm_option_extension_value_table *opt;
31582 int adding_value = 1;
31584 name = input_line_pointer;
31585 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31586 input_line_pointer++;
31587 saved_char = *input_line_pointer;
31588 *input_line_pointer = 0;
31590 if (strlen (name) >= 2
31591 && strncmp (name, "no", 2) == 0)
31597 for (opt = arm_extensions; opt->name != NULL; opt++)
31598 if (streq (opt->name, name))
31600 int i, nb_allowed_archs =
31601 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31602 for (i = 0; i < nb_allowed_archs; i++)
31605 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31607 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31611 if (i == nb_allowed_archs)
31613 as_bad (_("architectural extension `%s' is not allowed for the "
31614 "current base architecture"), name);
31619 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31622 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31624 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31625 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31626 *input_line_pointer = saved_char;
31627 demand_empty_rest_of_line ();
31628 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31629 on this return so that duplicate extensions (extensions with the
31630 same name as a previous extension in the list) are not considered
31631 for command-line parsing. */
31635 if (opt->name == NULL)
31636 as_bad (_("unknown architecture extension `%s'\n"), name);
31638 *input_line_pointer = saved_char;
31639 ignore_rest_of_line ();
31642 /* Parse a .fpu directive. */
31645 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31647 const struct arm_option_fpu_value_table *opt;
31651 name = input_line_pointer;
31652 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31653 input_line_pointer++;
31654 saved_char = *input_line_pointer;
31655 *input_line_pointer = 0;
31657 for (opt = arm_fpus; opt->name != NULL; opt++)
31658 if (streq (opt->name, name))
31660 selected_fpu = opt->value;
31661 #ifndef CPU_DEFAULT
31662 if (no_cpu_selected ())
31663 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31666 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31667 *input_line_pointer = saved_char;
31668 demand_empty_rest_of_line ();
31672 as_bad (_("unknown floating point format `%s'\n"), name);
31673 *input_line_pointer = saved_char;
31674 ignore_rest_of_line ();
31677 /* Copy symbol information. */
31680 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31682 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31686 /* Given a symbolic attribute NAME, return the proper integer value.
31687 Returns -1 if the attribute is not known. */
31690 arm_convert_symbolic_attribute (const char *name)
31692 static const struct
31697 attribute_table[] =
31699 /* When you modify this table you should
31700 also modify the list in doc/c-arm.texi. */
31701 #define T(tag) {#tag, tag}
31702 T (Tag_CPU_raw_name),
31705 T (Tag_CPU_arch_profile),
31706 T (Tag_ARM_ISA_use),
31707 T (Tag_THUMB_ISA_use),
31711 T (Tag_Advanced_SIMD_arch),
31712 T (Tag_PCS_config),
31713 T (Tag_ABI_PCS_R9_use),
31714 T (Tag_ABI_PCS_RW_data),
31715 T (Tag_ABI_PCS_RO_data),
31716 T (Tag_ABI_PCS_GOT_use),
31717 T (Tag_ABI_PCS_wchar_t),
31718 T (Tag_ABI_FP_rounding),
31719 T (Tag_ABI_FP_denormal),
31720 T (Tag_ABI_FP_exceptions),
31721 T (Tag_ABI_FP_user_exceptions),
31722 T (Tag_ABI_FP_number_model),
31723 T (Tag_ABI_align_needed),
31724 T (Tag_ABI_align8_needed),
31725 T (Tag_ABI_align_preserved),
31726 T (Tag_ABI_align8_preserved),
31727 T (Tag_ABI_enum_size),
31728 T (Tag_ABI_HardFP_use),
31729 T (Tag_ABI_VFP_args),
31730 T (Tag_ABI_WMMX_args),
31731 T (Tag_ABI_optimization_goals),
31732 T (Tag_ABI_FP_optimization_goals),
31733 T (Tag_compatibility),
31734 T (Tag_CPU_unaligned_access),
31735 T (Tag_FP_HP_extension),
31736 T (Tag_VFP_HP_extension),
31737 T (Tag_ABI_FP_16bit_format),
31738 T (Tag_MPextension_use),
31740 T (Tag_nodefaults),
31741 T (Tag_also_compatible_with),
31742 T (Tag_conformance),
31744 T (Tag_Virtualization_use),
31745 T (Tag_DSP_extension),
31747 /* We deliberately do not include Tag_MPextension_use_legacy. */
31755 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31756 if (streq (name, attribute_table[i].name))
31757 return attribute_table[i].tag;
31762 /* Apply sym value for relocations only in the case that they are for
31763 local symbols in the same segment as the fixup and you have the
31764 respective architectural feature for blx and simple switches. */
31767 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31770 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31771 /* PR 17444: If the local symbol is in a different section then a reloc
31772 will always be generated for it, so applying the symbol value now
31773 will result in a double offset being stored in the relocation. */
31774 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31775 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31777 switch (fixP->fx_r_type)
31779 case BFD_RELOC_ARM_PCREL_BLX:
31780 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31781 if (ARM_IS_FUNC (fixP->fx_addsy))
31785 case BFD_RELOC_ARM_PCREL_CALL:
31786 case BFD_RELOC_THUMB_PCREL_BLX:
31787 if (THUMB_IS_FUNC (fixP->fx_addsy))
31798 #endif /* OBJ_ELF */