1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GAS.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
27 #include "safe-ctype.h"
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
36 #include "dwarf2dbg.h"
38 /* Types of processor to assemble for. */
40 #define CPU_DEFAULT AARCH64_ARCH_V8
43 #define streq(a, b) (strcmp (a, b) == 0)
45 #define END_OF_INSN '\0'
47 static aarch64_feature_set cpu_variant;
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
59 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60 static symbolS *GOT_symbol;
62 /* Which ABI to use. */
69 /* AArch64 ABI for the output file. */
70 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
72 /* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
76 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
89 /* Bits for DEFINED field in neon_type_el. */
91 #define NTA_HASINDEX 2
95 enum neon_el_type type;
96 unsigned char defined;
101 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105 bfd_reloc_code_real_type type;
108 enum aarch64_opnd opnd;
110 unsigned need_libopcodes_p : 1;
113 struct aarch64_instruction
115 /* libopcodes structure for instruction intermediate representation. */
117 /* Record assembly errors found during the parsing. */
120 enum aarch64_operand_error_kind kind;
123 /* The condition that appears in the assembly line. */
125 /* Relocation information (including the GAS internal fixup). */
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
131 typedef struct aarch64_instruction aarch64_instruction;
133 static aarch64_instruction inst;
135 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
138 /* Diagnostics inline function utilites.
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
162 static inline bfd_boolean
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
168 static inline const char *
169 get_error_message (void)
171 return inst.parsing_error.error;
174 static inline enum aarch64_operand_error_kind
175 get_error_kind (void)
177 return inst.parsing_error.kind;
181 set_error (enum aarch64_operand_error_kind kind, const char *error)
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
188 set_recoverable_error (const char *error)
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
193 /* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
196 set_default_error (void)
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
202 set_syntax_error (const char *error)
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
208 set_first_syntax_error (const char *error)
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
215 set_fatal_syntax_error (const char *error)
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
220 /* Number of littlenums required to hold an extended precision number. */
221 #define MAX_LITTLENUMS 6
223 /* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
226 #define PARSE_FAIL -1
228 /* This is an invalid condition code that means no conditional field is
230 #define COND_ALWAYS 0x10
234 const char *template;
240 const char *template;
247 bfd_reloc_code_real_type reloc;
250 /* Structure for a hash table entry for a register. */
254 unsigned char number;
256 unsigned char builtin;
259 /* Macros to define the register types and masks for the purpose
262 #undef AARCH64_REG_TYPES
263 #define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
298 #undef BASIC_REG_TYPE
299 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
300 #undef MULTI_REG_TYPE
301 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
303 /* Register type enumerators. */
306 /* A list of REG_TYPE_*. */
310 #undef BASIC_REG_TYPE
311 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
313 #define REG_TYPE(T) (1 << REG_TYPE_##T)
314 #undef MULTI_REG_TYPE
315 #define MULTI_REG_TYPE(T,V) V,
317 /* Values indexed by aarch64_reg_type to assist the type checking. */
318 static const unsigned reg_type_masks[] =
323 #undef BASIC_REG_TYPE
325 #undef MULTI_REG_TYPE
326 #undef AARCH64_REG_TYPES
328 /* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
332 get_reg_expected_msg (aarch64_reg_type reg_type)
339 msg = N_("integer 32-bit register expected");
342 msg = N_("integer 64-bit register expected");
345 msg = N_("integer register expected");
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
351 msg = N_("8-bit SIMD scalar register expected");
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
370 msg = N_("C0 - C15 expected");
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
382 as_fatal (_("invalid register type %d"), reg_type);
387 /* Some well known registers that we refer to directly elsewhere. */
390 /* Instructions take 4 bytes in the object file. */
393 /* Define some common error messages. */
394 #define BAD_SP _("SP not allowed here")
396 static struct hash_control *aarch64_ops_hsh;
397 static struct hash_control *aarch64_cond_hsh;
398 static struct hash_control *aarch64_shift_hsh;
399 static struct hash_control *aarch64_sys_regs_hsh;
400 static struct hash_control *aarch64_pstatefield_hsh;
401 static struct hash_control *aarch64_sys_regs_ic_hsh;
402 static struct hash_control *aarch64_sys_regs_dc_hsh;
403 static struct hash_control *aarch64_sys_regs_at_hsh;
404 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405 static struct hash_control *aarch64_reg_hsh;
406 static struct hash_control *aarch64_barrier_opt_hsh;
407 static struct hash_control *aarch64_nzcv_hsh;
408 static struct hash_control *aarch64_pldop_hsh;
410 /* Stuff needed to resolve the label ambiguity
419 static symbolS *last_label_seen;
421 /* Literal pool structure. Held on a per-section
422 and per-sub-section basis. */
424 #define MAX_LITERAL_POOL_SIZE 1024
425 typedef struct literal_expression
428 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
429 LITTLENUM_TYPE * bignum;
430 } literal_expression;
432 typedef struct literal_pool
434 literal_expression literals[MAX_LITERAL_POOL_SIZE];
435 unsigned int next_free_entry;
441 struct literal_pool *next;
444 /* Pointer to a linked list of literal pools. */
445 static literal_pool *list_of_pools = NULL;
449 /* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful. */
451 const char comment_chars[] = "";
453 /* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output. */
456 /* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459 /* Also note that comments like this one will always work. */
460 const char line_comment_chars[] = "#";
462 const char line_separator_chars[] = ";";
464 /* Chars that can be used to separate mant
465 from exp in floating point numbers. */
466 const char EXP_CHARS[] = "eE";
468 /* Chars that mean this number is a floating point constant. */
472 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
474 /* Prefix character that indicates the start of an immediate value. */
475 #define is_immediate_prefix(C) ((C) == '#')
477 /* Separator character handling. */
479 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
481 static inline bfd_boolean
482 skip_past_char (char **str, char c)
493 #define skip_past_comma(str) skip_past_char (str, ',')
495 /* Arithmetic expressions (possibly involving symbols). */
497 static bfd_boolean in_my_get_expression_p = FALSE;
499 /* Third argument to my_get_expression. */
500 #define GE_NO_PREFIX 0
501 #define GE_OPT_PREFIX 1
503 /* Return TRUE if the string pointed by *STR is successfully parsed
504 as an valid expression; *EP will be filled with the information of
505 such an expression. Otherwise return FALSE. */
508 my_get_expression (expressionS * ep, char **str, int prefix_mode,
513 int prefix_present_p = 0;
520 if (is_immediate_prefix (**str))
523 prefix_present_p = 1;
530 memset (ep, 0, sizeof (expressionS));
532 save_in = input_line_pointer;
533 input_line_pointer = *str;
534 in_my_get_expression_p = TRUE;
535 seg = expression (ep);
536 in_my_get_expression_p = FALSE;
538 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
540 /* We found a bad expression in md_operand(). */
541 *str = input_line_pointer;
542 input_line_pointer = save_in;
543 if (prefix_present_p && ! error_p ())
544 set_fatal_syntax_error (_("bad expression"));
546 set_first_syntax_error (_("bad expression"));
551 if (seg != absolute_section
552 && seg != text_section
553 && seg != data_section
554 && seg != bss_section && seg != undefined_section)
556 set_syntax_error (_("bad segment"));
557 *str = input_line_pointer;
558 input_line_pointer = save_in;
565 *str = input_line_pointer;
566 input_line_pointer = save_in;
570 /* Turn a string in input_line_pointer into a floating point constant
571 of type TYPE, and store the appropriate bytes in *LITP. The number
572 of LITTLENUMS emitted is stored in *SIZEP. An error message is
573 returned, or NULL on OK. */
576 md_atof (int type, char *litP, int *sizeP)
578 return ieee_md_atof (type, litP, sizeP, target_big_endian);
581 /* We handle all bad expressions here, so that we can report the faulty
582 instruction in the error message. */
584 md_operand (expressionS * exp)
586 if (in_my_get_expression_p)
587 exp->X_op = O_illegal;
590 /* Immediate values. */
592 /* Errors may be set multiple times during parsing or bit encoding
593 (particularly in the Neon bits), but usually the earliest error which is set
594 will be the most meaningful. Avoid overwriting it with later (cascading)
595 errors by calling this function. */
598 first_error (const char *error)
601 set_syntax_error (error);
604 /* Similiar to first_error, but this function accepts formatted error
607 first_error_fmt (const char *format, ...)
612 /* N.B. this single buffer will not cause error messages for different
613 instructions to pollute each other; this is because at the end of
614 processing of each assembly line, error message if any will be
615 collected by as_bad. */
616 static char buffer[size];
620 int ret ATTRIBUTE_UNUSED;
621 va_start (args, format);
622 ret = vsnprintf (buffer, size, format, args);
623 know (ret <= size - 1 && ret >= 0);
625 set_syntax_error (buffer);
629 /* Register parsing. */
631 /* Generic register parser which is called by other specialized
633 CCP points to what should be the beginning of a register name.
634 If it is indeed a valid register name, advance CCP over it and
635 return the reg_entry structure; otherwise return NULL.
636 It does not issue diagnostics. */
639 parse_reg (char **ccp)
645 #ifdef REGISTER_PREFIX
646 if (*start != REGISTER_PREFIX)
652 if (!ISALPHA (*p) || !is_name_beginner (*p))
657 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
659 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
668 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
671 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
673 if (reg->type == type)
678 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
679 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
680 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
681 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
682 case REG_TYPE_VN: /* Vector register. */
683 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
684 return ((reg_type_masks[reg->type] & reg_type_masks[type])
685 == reg_type_masks[reg->type]);
687 as_fatal ("unhandled type %d", type);
692 /* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
693 Return the register number otherwise. *ISREG32 is set to one if the
694 register is 32-bit wide; *ISREGZERO is set to one if the register is
695 of type Z_32 or Z_64.
696 Note that this function does not issue any diagnostics. */
699 aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
700 int *isreg32, int *isregzero)
703 const reg_entry *reg = parse_reg (&str);
708 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
717 *isreg32 = reg->type == REG_TYPE_SP_32;
722 *isreg32 = reg->type == REG_TYPE_R_32;
729 *isreg32 = reg->type == REG_TYPE_Z_32;
741 /* Parse the qualifier of a SIMD vector register or a SIMD vector element.
742 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
743 otherwise return FALSE.
745 Accept only one occurrence of:
746 8b 16b 4h 8h 2s 4s 1d 2d
749 parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
753 unsigned element_size;
754 enum neon_el_type type;
764 width = strtoul (ptr, &ptr, 10);
765 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
767 first_error_fmt (_("bad size %d in vector width specifier"), width);
772 switch (TOLOWER (*ptr))
800 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
802 first_error (_("missing element size"));
805 if (width != 0 && width * element_size != 64 && width * element_size != 128)
808 ("invalid element size %d and vector size combination %c"),
814 parsed_type->type = type;
815 parsed_type->width = width;
822 /* Parse a single type, e.g. ".8b", leading period included.
823 Only applicable to Vn registers.
825 Return TRUE on success; otherwise return FALSE. */
827 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
833 if (! parse_neon_type_for_operand (vectype, &str))
835 first_error (_("vector type expected"));
847 /* Parse a register of the type TYPE.
849 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
850 name or the parsed register is not of TYPE.
852 Otherwise return the register number, and optionally fill in the actual
853 type of the register in *RTYPE when multiple alternatives were given, and
854 return the register shape and element index information in *TYPEINFO.
856 IN_REG_LIST should be set with TRUE if the caller is parsing a register
860 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
861 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
864 const reg_entry *reg = parse_reg (&str);
865 struct neon_type_el atype;
866 struct neon_type_el parsetype;
867 bfd_boolean is_typed_vecreg = FALSE;
870 atype.type = NT_invtype;
878 set_default_error ();
882 if (! aarch64_check_reg_type (reg, type))
884 DEBUG_TRACE ("reg type check failed");
885 set_default_error ();
890 if (type == REG_TYPE_VN
891 && parse_neon_operand_type (&parsetype, &str))
893 /* Register if of the form Vn.[bhsdq]. */
894 is_typed_vecreg = TRUE;
896 if (parsetype.width == 0)
897 /* Expect index. In the new scheme we cannot have
898 Vn.[bhsdq] represent a scalar. Therefore any
899 Vn.[bhsdq] should have an index following it.
900 Except in reglists ofcourse. */
901 atype.defined |= NTA_HASINDEX;
903 atype.defined |= NTA_HASTYPE;
905 atype.type = parsetype.type;
906 atype.width = parsetype.width;
909 if (skip_past_char (&str, '['))
913 /* Reject Sn[index] syntax. */
914 if (!is_typed_vecreg)
916 first_error (_("this type of register can't be indexed"));
920 if (in_reg_list == TRUE)
922 first_error (_("index not allowed inside register list"));
926 atype.defined |= NTA_HASINDEX;
928 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
930 if (exp.X_op != O_constant)
932 first_error (_("constant expression required"));
936 if (! skip_past_char (&str, ']'))
939 atype.index = exp.X_add_number;
941 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
943 /* Indexed vector register expected. */
944 first_error (_("indexed vector register expected"));
948 /* A vector reg Vn should be typed or indexed. */
949 if (type == REG_TYPE_VN && atype.defined == 0)
951 first_error (_("invalid use of vector register"));
967 Return the register number on success; return PARSE_FAIL otherwise.
969 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
970 the register (e.g. NEON double or quad reg when either has been requested).
972 If this is a NEON vector register with additional type information, fill
973 in the struct pointed to by VECTYPE (if non-NULL).
975 This parser does not handle register list. */
978 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
979 aarch64_reg_type *rtype, struct neon_type_el *vectype)
981 struct neon_type_el atype;
983 int reg = parse_typed_reg (&str, type, rtype, &atype,
984 /*in_reg_list= */ FALSE);
986 if (reg == PARSE_FAIL)
997 static inline bfd_boolean
998 eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1002 && e1.defined == e2.defined
1003 && e1.width == e2.width && e1.index == e2.index;
1006 /* This function parses the NEON register list. On success, it returns
1007 the parsed register list information in the following encoded format:
1009 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1010 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1012 The information of the register shape and/or index is returned in
1015 It returns PARSE_FAIL if the register list is invalid.
1017 The list contains one to four registers.
1018 Each register can be one of:
1021 All <T> should be identical.
1022 All <index> should be identical.
1023 There are restrictions on <Vt> numbers which are checked later
1024 (by reg_list_valid_p). */
1027 parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1031 struct neon_type_el typeinfo, typeinfo_first;
1036 bfd_boolean error = FALSE;
1037 bfd_boolean expect_index = FALSE;
1041 set_syntax_error (_("expecting {"));
1047 typeinfo_first.defined = 0;
1048 typeinfo_first.type = NT_invtype;
1049 typeinfo_first.width = -1;
1050 typeinfo_first.index = 0;
1059 str++; /* skip over '-' */
1062 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1063 /*in_reg_list= */ TRUE);
1064 if (val == PARSE_FAIL)
1066 set_first_syntax_error (_("invalid vector register in list"));
1070 /* reject [bhsd]n */
1071 if (typeinfo.defined == 0)
1073 set_first_syntax_error (_("invalid scalar register in list"));
1078 if (typeinfo.defined & NTA_HASINDEX)
1079 expect_index = TRUE;
1083 if (val < val_range)
1085 set_first_syntax_error
1086 (_("invalid range in vector register list"));
1095 typeinfo_first = typeinfo;
1096 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1098 set_first_syntax_error
1099 (_("type mismatch in vector register list"));
1104 for (i = val_range; i <= val; i++)
1106 ret_val |= i << (5 * nb_regs);
1111 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1113 skip_whitespace (str);
1116 set_first_syntax_error (_("end of vector register list not found"));
1121 skip_whitespace (str);
1125 if (skip_past_char (&str, '['))
1129 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1130 if (exp.X_op != O_constant)
1132 set_first_syntax_error (_("constant expression required."));
1135 if (! skip_past_char (&str, ']'))
1138 typeinfo_first.index = exp.X_add_number;
1142 set_first_syntax_error (_("expected index"));
1149 set_first_syntax_error (_("too many registers in vector register list"));
1152 else if (nb_regs == 0)
1154 set_first_syntax_error (_("empty vector register list"));
1160 *vectype = typeinfo_first;
1162 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1165 /* Directives: register aliases. */
1168 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1173 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1176 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1179 /* Only warn about a redefinition if it's not defined as the
1181 else if (new->number != number || new->type != type)
1182 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1187 name = xstrdup (str);
1188 new = xmalloc (sizeof (reg_entry));
1191 new->number = number;
1193 new->builtin = FALSE;
1195 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1201 /* Look for the .req directive. This is of the form:
1203 new_register_name .req existing_register_name
1205 If we find one, or if it looks sufficiently like one that we want to
1206 handle any error here, return TRUE. Otherwise return FALSE. */
1209 create_register_alias (char *newname, char *p)
1211 const reg_entry *old;
1212 char *oldname, *nbuf;
1215 /* The input scrubber ensures that whitespace after the mnemonic is
1216 collapsed to single spaces. */
1218 if (strncmp (oldname, " .req ", 6) != 0)
1222 if (*oldname == '\0')
1225 old = hash_find (aarch64_reg_hsh, oldname);
1228 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1232 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1233 the desired alias name, and p points to its end. If not, then
1234 the desired alias name is in the global original_case_string. */
1235 #ifdef TC_CASE_SENSITIVE
1238 newname = original_case_string;
1239 nlen = strlen (newname);
1242 nbuf = alloca (nlen + 1);
1243 memcpy (nbuf, newname, nlen);
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1251 for (p = nbuf; *p; p++)
1254 if (strncmp (nbuf, newname, nlen))
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1269 for (p = nbuf; *p; p++)
1272 if (strncmp (nbuf, newname, nlen))
1273 insert_reg_alias (nbuf, old->number, old->type);
1279 /* Should never be called, as .req goes between the alias and the
1280 register name, not at the beginning of the line. */
1282 s_req (int a ATTRIBUTE_UNUSED)
1284 as_bad (_("invalid syntax for .req directive"));
1287 /* The .unreq directive deletes an alias which was previously defined
1288 by .req. For example:
1294 s_unreq (int a ATTRIBUTE_UNUSED)
1299 name = input_line_pointer;
1301 while (*input_line_pointer != 0
1302 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1303 ++input_line_pointer;
1305 saved_char = *input_line_pointer;
1306 *input_line_pointer = 0;
1309 as_bad (_("invalid syntax for .unreq directive"));
1312 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1315 as_bad (_("unknown register alias '%s'"), name);
1316 else if (reg->builtin)
1317 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1324 hash_delete (aarch64_reg_hsh, name, FALSE);
1325 free ((char *) reg->name);
1328 /* Also locate the all upper case and all lower case versions.
1329 Do not complain if we cannot find one or the other as it
1330 was probably deleted above. */
1332 nbuf = strdup (name);
1333 for (p = nbuf; *p; p++)
1335 reg = hash_find (aarch64_reg_hsh, nbuf);
1338 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1339 free ((char *) reg->name);
1343 for (p = nbuf; *p; p++)
1345 reg = hash_find (aarch64_reg_hsh, nbuf);
1348 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1349 free ((char *) reg->name);
1357 *input_line_pointer = saved_char;
1358 demand_empty_rest_of_line ();
1361 /* Directives: Instruction set selection. */
1364 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1365 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1366 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1367 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1369 /* Create a new mapping symbol for the transition to STATE. */
1372 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1375 const char *symname;
1382 type = BSF_NO_FLAGS;
1386 type = BSF_NO_FLAGS;
1392 symbolP = symbol_new (symname, now_seg, value, frag);
1393 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1395 /* Save the mapping symbols for future reference. Also check that
1396 we do not place two mapping symbols at the same offset within a
1397 frag. We'll handle overlap between frags in
1398 check_mapping_symbols.
1400 If .fill or other data filling directive generates zero sized data,
1401 the mapping symbol for the following code will have the same value
1402 as the one generated for the data filling directive. In this case,
1403 we replace the old symbol with the new one at the same address. */
1406 if (frag->tc_frag_data.first_map != NULL)
1408 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1409 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1412 frag->tc_frag_data.first_map = symbolP;
1414 if (frag->tc_frag_data.last_map != NULL)
1416 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1417 S_GET_VALUE (symbolP));
1418 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1419 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1422 frag->tc_frag_data.last_map = symbolP;
1425 /* We must sometimes convert a region marked as code to data during
1426 code alignment, if an odd number of bytes have to be padded. The
1427 code mapping symbol is pushed to an aligned address. */
1430 insert_data_mapping_symbol (enum mstate state,
1431 valueT value, fragS * frag, offsetT bytes)
1433 /* If there was already a mapping symbol, remove it. */
1434 if (frag->tc_frag_data.last_map != NULL
1435 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1436 frag->fr_address + value)
1438 symbolS *symp = frag->tc_frag_data.last_map;
1442 know (frag->tc_frag_data.first_map == symp);
1443 frag->tc_frag_data.first_map = NULL;
1445 frag->tc_frag_data.last_map = NULL;
1446 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1449 make_mapping_symbol (MAP_DATA, value, frag);
1450 make_mapping_symbol (state, value + bytes, frag);
1453 static void mapping_state_2 (enum mstate state, int max_chars);
1455 /* Set the mapping state to STATE. Only call this when about to
1456 emit some STATE bytes to the file. */
1459 mapping_state (enum mstate state)
1461 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1463 if (mapstate == state)
1464 /* The mapping symbol has already been emitted.
1465 There is nothing else to do. */
1468 if (state == MAP_INSN)
1469 /* AArch64 instructions require 4-byte alignment. When emitting
1470 instructions into any section, record the appropriate section
1472 record_alignment (now_seg, 2);
1474 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1475 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1476 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1477 evaluated later in the next else. */
1479 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1481 /* Only add the symbol if the offset is > 0:
1482 if we're at the first frag, check it's size > 0;
1483 if we're not at the first frag, then for sure
1484 the offset is > 0. */
1485 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1486 const int add_symbol = (frag_now != frag_first)
1487 || (frag_now_fix () > 0);
1490 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1494 mapping_state_2 (state, 0);
1497 /* Same as mapping_state, but MAX_CHARS bytes have already been
1498 allocated. Put the mapping symbol that far back. */
1501 mapping_state_2 (enum mstate state, int max_chars)
1503 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1505 if (!SEG_NORMAL (now_seg))
1508 if (mapstate == state)
1509 /* The mapping symbol has already been emitted.
1510 There is nothing else to do. */
1513 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1514 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1517 #define mapping_state(x) /* nothing */
1518 #define mapping_state_2(x, y) /* nothing */
1521 /* Directives: sectioning and alignment. */
1524 s_bss (int ignore ATTRIBUTE_UNUSED)
1526 /* We don't support putting frags in the BSS segment, we fake it by
1527 marking in_bss, then looking at s_skip for clues. */
1528 subseg_set (bss_section, 0);
1529 demand_empty_rest_of_line ();
1530 mapping_state (MAP_DATA);
1534 s_even (int ignore ATTRIBUTE_UNUSED)
1536 /* Never make frag if expect extra pass. */
1538 frag_align (1, 0, 0);
1540 record_alignment (now_seg, 1);
1542 demand_empty_rest_of_line ();
1545 /* Directives: Literal pools. */
1547 static literal_pool *
1548 find_literal_pool (int size)
1552 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1554 if (pool->section == now_seg
1555 && pool->sub_section == now_subseg && pool->size == size)
1562 static literal_pool *
1563 find_or_make_literal_pool (int size)
1565 /* Next literal pool ID number. */
1566 static unsigned int latest_pool_num = 1;
1569 pool = find_literal_pool (size);
1573 /* Create a new pool. */
1574 pool = xmalloc (sizeof (*pool));
1578 /* Currently we always put the literal pool in the current text
1579 section. If we were generating "small" model code where we
1580 knew that all code and initialised data was within 1MB then
1581 we could output literals to mergeable, read-only data
1584 pool->next_free_entry = 0;
1585 pool->section = now_seg;
1586 pool->sub_section = now_subseg;
1588 pool->next = list_of_pools;
1589 pool->symbol = NULL;
1591 /* Add it to the list. */
1592 list_of_pools = pool;
1595 /* New pools, and emptied pools, will have a NULL symbol. */
1596 if (pool->symbol == NULL)
1598 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1599 (valueT) 0, &zero_address_frag);
1600 pool->id = latest_pool_num++;
1607 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1608 Return TRUE on success, otherwise return FALSE. */
1610 add_to_lit_pool (expressionS *exp, int size)
1615 pool = find_or_make_literal_pool (size);
1617 /* Check if this literal value is already in the pool. */
1618 for (entry = 0; entry < pool->next_free_entry; entry++)
1620 expressionS * litexp = & pool->literals[entry].exp;
1622 if ((litexp->X_op == exp->X_op)
1623 && (exp->X_op == O_constant)
1624 && (litexp->X_add_number == exp->X_add_number)
1625 && (litexp->X_unsigned == exp->X_unsigned))
1628 if ((litexp->X_op == exp->X_op)
1629 && (exp->X_op == O_symbol)
1630 && (litexp->X_add_number == exp->X_add_number)
1631 && (litexp->X_add_symbol == exp->X_add_symbol)
1632 && (litexp->X_op_symbol == exp->X_op_symbol))
1636 /* Do we need to create a new entry? */
1637 if (entry == pool->next_free_entry)
1639 if (entry >= MAX_LITERAL_POOL_SIZE)
1641 set_syntax_error (_("literal pool overflow"));
1645 pool->literals[entry].exp = *exp;
1646 pool->next_free_entry += 1;
1647 if (exp->X_op == O_big)
1649 /* PR 16688: Bignums are held in a single global array. We must
1650 copy and preserve that value now, before it is overwritten. */
1651 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1652 memcpy (pool->literals[entry].bignum, generic_bignum,
1653 CHARS_PER_LITTLENUM * exp->X_add_number);
1656 pool->literals[entry].bignum = NULL;
1659 exp->X_op = O_symbol;
1660 exp->X_add_number = ((int) entry) * size;
1661 exp->X_add_symbol = pool->symbol;
1666 /* Can't use symbol_new here, so have to create a symbol and then at
1667 a later date assign it a value. Thats what these functions do. */
1670 symbol_locate (symbolS * symbolP,
1671 const char *name,/* It is copied, the caller can modify. */
1672 segT segment, /* Segment identifier (SEG_<something>). */
1673 valueT valu, /* Symbol value. */
1674 fragS * frag) /* Associated fragment. */
1677 char *preserved_copy_of_name;
1679 name_length = strlen (name) + 1; /* +1 for \0. */
1680 obstack_grow (¬es, name, name_length);
1681 preserved_copy_of_name = obstack_finish (¬es);
1683 #ifdef tc_canonicalize_symbol_name
1684 preserved_copy_of_name =
1685 tc_canonicalize_symbol_name (preserved_copy_of_name);
1688 S_SET_NAME (symbolP, preserved_copy_of_name);
1690 S_SET_SEGMENT (symbolP, segment);
1691 S_SET_VALUE (symbolP, valu);
1692 symbol_clear_list_pointers (symbolP);
1694 symbol_set_frag (symbolP, frag);
1696 /* Link to end of symbol chain. */
1698 extern int symbol_table_frozen;
1700 if (symbol_table_frozen)
1704 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1706 obj_symbol_new_hook (symbolP);
1708 #ifdef tc_symbol_new_hook
1709 tc_symbol_new_hook (symbolP);
1713 verify_symbol_chain (symbol_rootP, symbol_lastP);
1714 #endif /* DEBUG_SYMS */
1719 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1726 for (align = 2; align <= 4; align++)
1728 int size = 1 << align;
1730 pool = find_literal_pool (size);
1731 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1734 mapping_state (MAP_DATA);
1736 /* Align pool as you have word accesses.
1737 Only make a frag if we have to. */
1739 frag_align (align, 0, 0);
1741 record_alignment (now_seg, align);
1743 sprintf (sym_name, "$$lit_\002%x", pool->id);
1745 symbol_locate (pool->symbol, sym_name, now_seg,
1746 (valueT) frag_now_fix (), frag_now);
1747 symbol_table_insert (pool->symbol);
1749 for (entry = 0; entry < pool->next_free_entry; entry++)
1751 expressionS * exp = & pool->literals[entry].exp;
1753 if (exp->X_op == O_big)
1755 /* PR 16688: Restore the global bignum value. */
1756 gas_assert (pool->literals[entry].bignum != NULL);
1757 memcpy (generic_bignum, pool->literals[entry].bignum,
1758 CHARS_PER_LITTLENUM * exp->X_add_number);
1761 /* First output the expression in the instruction to the pool. */
1762 emit_expr (exp, size); /* .word|.xword */
1764 if (exp->X_op == O_big)
1766 free (pool->literals[entry].bignum);
1767 pool->literals[entry].bignum = NULL;
1771 /* Mark the pool as empty. */
1772 pool->next_free_entry = 0;
1773 pool->symbol = NULL;
1778 /* Forward declarations for functions below, in the MD interface
1780 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1781 static struct reloc_table_entry * find_reloc_table_entry (char **);
1783 /* Directives: Data. */
1784 /* N.B. the support for relocation suffix in this directive needs to be
1785 implemented properly. */
1788 s_aarch64_elf_cons (int nbytes)
1792 #ifdef md_flush_pending_output
1793 md_flush_pending_output ();
1796 if (is_it_end_of_statement ())
1798 demand_empty_rest_of_line ();
1802 #ifdef md_cons_align
1803 md_cons_align (nbytes);
1806 mapping_state (MAP_DATA);
1809 struct reloc_table_entry *reloc;
1813 if (exp.X_op != O_symbol)
1814 emit_expr (&exp, (unsigned int) nbytes);
1817 skip_past_char (&input_line_pointer, '#');
1818 if (skip_past_char (&input_line_pointer, ':'))
1820 reloc = find_reloc_table_entry (&input_line_pointer);
1822 as_bad (_("unrecognized relocation suffix"));
1824 as_bad (_("unimplemented relocation suffix"));
1825 ignore_rest_of_line ();
1829 emit_expr (&exp, (unsigned int) nbytes);
1832 while (*input_line_pointer++ == ',');
1834 /* Put terminator back into stream. */
1835 input_line_pointer--;
1836 demand_empty_rest_of_line ();
1839 #endif /* OBJ_ELF */
1841 /* Output a 32-bit word, but mark as an instruction. */
1844 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1848 #ifdef md_flush_pending_output
1849 md_flush_pending_output ();
1852 if (is_it_end_of_statement ())
1854 demand_empty_rest_of_line ();
1858 /* Sections are assumed to start aligned. In executable section, there is no
1859 MAP_DATA symbol pending. So we only align the address during
1860 MAP_DATA --> MAP_INSN transition.
1861 For other sections, this is not guaranteed, align it anyway. */
1862 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1863 if (!need_pass_2 && ((subseg_text_p (now_seg) && mapstate == MAP_DATA)
1864 || !subseg_text_p (now_seg)))
1865 frag_align_code (2, 0);
1868 mapping_state (MAP_INSN);
1874 if (exp.X_op != O_constant)
1876 as_bad (_("constant expression required"));
1877 ignore_rest_of_line ();
1881 if (target_big_endian)
1883 unsigned int val = exp.X_add_number;
1884 exp.X_add_number = SWAP_32 (val);
1886 emit_expr (&exp, 4);
1888 while (*input_line_pointer++ == ',');
1890 /* Put terminator back into stream. */
1891 input_line_pointer--;
1892 demand_empty_rest_of_line ();
1896 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1899 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1903 /* Since we're just labelling the code, there's no need to define a
1906 /* Make sure there is enough room in this frag for the following
1907 blr. This trick only works if the blr follows immediately after
1908 the .tlsdesc directive. */
1910 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1911 BFD_RELOC_AARCH64_TLSDESC_CALL);
1913 demand_empty_rest_of_line ();
1915 #endif /* OBJ_ELF */
1917 static void s_aarch64_arch (int);
1918 static void s_aarch64_cpu (int);
1919 static void s_aarch64_arch_extension (int);
1921 /* This table describes all the machine specific pseudo-ops the assembler
1922 has to support. The fields are:
1923 pseudo-op name without dot
1924 function to call to execute this pseudo-op
1925 Integer arg to pass to the function. */
1927 const pseudo_typeS md_pseudo_table[] = {
1928 /* Never called because '.req' does not start a line. */
1930 {"unreq", s_unreq, 0},
1932 {"even", s_even, 0},
1933 {"ltorg", s_ltorg, 0},
1934 {"pool", s_ltorg, 0},
1935 {"cpu", s_aarch64_cpu, 0},
1936 {"arch", s_aarch64_arch, 0},
1937 {"arch_extension", s_aarch64_arch_extension, 0},
1938 {"inst", s_aarch64_inst, 0},
1940 {"tlsdesccall", s_tlsdesccall, 0},
1941 {"word", s_aarch64_elf_cons, 4},
1942 {"long", s_aarch64_elf_cons, 4},
1943 {"xword", s_aarch64_elf_cons, 8},
1944 {"dword", s_aarch64_elf_cons, 8},
1950 /* Check whether STR points to a register name followed by a comma or the
1951 end of line; REG_TYPE indicates which register types are checked
1952 against. Return TRUE if STR is such a register name; otherwise return
1953 FALSE. The function does not intend to produce any diagnostics, but since
1954 the register parser aarch64_reg_parse, which is called by this function,
1955 does produce diagnostics, we call clear_error to clear any diagnostics
1956 that may be generated by aarch64_reg_parse.
1957 Also, the function returns FALSE directly if there is any user error
1958 present at the function entry. This prevents the existing diagnostics
1959 state from being spoiled.
1960 The function currently serves parse_constant_immediate and
1961 parse_big_immediate only. */
1963 reg_name_p (char *str, aarch64_reg_type reg_type)
1967 /* Prevent the diagnostics state from being spoiled. */
1971 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1973 /* Clear the parsing error that may be set by the reg parser. */
1976 if (reg == PARSE_FAIL)
1979 skip_whitespace (str);
1980 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1986 /* Parser functions used exclusively in instruction operands. */
1988 /* Parse an immediate expression which may not be constant.
1990 To prevent the expression parser from pushing a register name
1991 into the symbol table as an undefined symbol, firstly a check is
1992 done to find out whether STR is a valid register name followed
1993 by a comma or the end of line. Return FALSE if STR is such a
1997 parse_immediate_expression (char **str, expressionS *exp)
1999 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2001 set_recoverable_error (_("immediate operand required"));
2005 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2007 if (exp->X_op == O_absent)
2009 set_fatal_syntax_error (_("missing immediate expression"));
2016 /* Constant immediate-value read function for use in insn parsing.
2017 STR points to the beginning of the immediate (with the optional
2018 leading #); *VAL receives the value.
2020 Return TRUE on success; otherwise return FALSE. */
2023 parse_constant_immediate (char **str, int64_t * val)
2027 if (! parse_immediate_expression (str, &exp))
2030 if (exp.X_op != O_constant)
2032 set_syntax_error (_("constant expression required"));
2036 *val = exp.X_add_number;
2041 encode_imm_float_bits (uint32_t imm)
2043 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2044 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2047 /* Return TRUE if the single-precision floating-point value encoded in IMM
2048 can be expressed in the AArch64 8-bit signed floating-point format with
2049 3-bit exponent and normalized 4 bits of precision; in other words, the
2050 floating-point value must be expressable as
2051 (+/-) n / 16 * power (2, r)
2052 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2055 aarch64_imm_float_p (uint32_t imm)
2057 /* If a single-precision floating-point value has the following bit
2058 pattern, it can be expressed in the AArch64 8-bit floating-point
2061 3 32222222 2221111111111
2062 1 09876543 21098765432109876543210
2063 n Eeeeeexx xxxx0000000000000000000
2065 where n, e and each x are either 0 or 1 independently, with
2070 /* Prepare the pattern for 'Eeeeee'. */
2071 if (((imm >> 30) & 0x1) == 0)
2072 pattern = 0x3e000000;
2074 pattern = 0x40000000;
2076 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2077 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2080 /* Like aarch64_imm_float_p but for a double-precision floating-point value.
2082 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2083 8-bit signed floating-point format with 3-bit exponent and normalized 4
2084 bits of precision (i.e. can be used in an FMOV instruction); return the
2085 equivalent single-precision encoding in *FPWORD.
2087 Otherwise return FALSE. */
2090 aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2092 /* If a double-precision floating-point value has the following bit
2093 pattern, it can be expressed in the AArch64 8-bit floating-point
2096 6 66655555555 554444444...21111111111
2097 3 21098765432 109876543...098765432109876543210
2098 n Eeeeeeeeexx xxxx00000...000000000000000000000
2100 where n, e and each x are either 0 or 1 independently, with
2104 uint32_t high32 = imm >> 32;
2106 /* Lower 32 bits need to be 0s. */
2107 if ((imm & 0xffffffff) != 0)
2110 /* Prepare the pattern for 'Eeeeeeeee'. */
2111 if (((high32 >> 30) & 0x1) == 0)
2112 pattern = 0x3fc00000;
2114 pattern = 0x40000000;
2116 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2117 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2119 /* Convert to the single-precision encoding.
2121 n Eeeeeeeeexx xxxx00000...000000000000000000000
2123 n Eeeeeexx xxxx0000000000000000000. */
2124 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2125 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2132 /* Parse a floating-point immediate. Return TRUE on success and return the
2133 value in *IMMED in the format of IEEE754 single-precision encoding.
2134 *CCP points to the start of the string; DP_P is TRUE when the immediate
2135 is expected to be in double-precision (N.B. this only matters when
2136 hexadecimal representation is involved).
2138 N.B. 0.0 is accepted by this function. */
2141 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
2145 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2146 int found_fpchar = 0;
2148 unsigned fpword = 0;
2149 bfd_boolean hex_p = FALSE;
2151 skip_past_char (&str, '#');
2154 skip_whitespace (fpnum);
2156 if (strncmp (fpnum, "0x", 2) == 0)
2158 /* Support the hexadecimal representation of the IEEE754 encoding.
2159 Double-precision is expected when DP_P is TRUE, otherwise the
2160 representation should be in single-precision. */
2161 if (! parse_constant_immediate (&str, &val))
2166 if (! aarch64_double_precision_fmovable (val, &fpword))
2169 else if ((uint64_t) val > 0xffffffff)
2178 /* We must not accidentally parse an integer as a floating-point number.
2179 Make sure that the value we parse is not an integer by checking for
2180 special characters '.' or 'e'. */
2181 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2182 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2196 if ((str = atof_ieee (str, 's', words)) == NULL)
2199 /* Our FP word must be 32 bits (single-precision FP). */
2200 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2202 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2207 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2215 set_fatal_syntax_error (_("invalid floating-point constant"));
2219 /* Less-generic immediate-value read function with the possibility of loading
2220 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2223 To prevent the expression parser from pushing a register name into the
2224 symbol table as an undefined symbol, a check is firstly done to find
2225 out whether STR is a valid register name followed by a comma or the end
2226 of line. Return FALSE if STR is such a register. */
2229 parse_big_immediate (char **str, int64_t *imm)
2233 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2235 set_syntax_error (_("immediate operand required"));
2239 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2241 if (inst.reloc.exp.X_op == O_constant)
2242 *imm = inst.reloc.exp.X_add_number;
2249 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2250 if NEED_LIBOPCODES is non-zero, the fixup will need
2251 assistance from the libopcodes. */
2254 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2255 const aarch64_opnd_info *operand,
2256 int need_libopcodes_p)
2258 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2259 reloc->opnd = operand->type;
2260 if (need_libopcodes_p)
2261 reloc->need_libopcodes_p = 1;
2264 /* Return TRUE if the instruction needs to be fixed up later internally by
2265 the GAS; otherwise return FALSE. */
2267 static inline bfd_boolean
2268 aarch64_gas_internal_fixup_p (void)
2270 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2273 /* Assign the immediate value to the relavant field in *OPERAND if
2274 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2275 needs an internal fixup in a later stage.
2276 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2277 IMM.VALUE that may get assigned with the constant. */
2279 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2280 aarch64_opnd_info *operand,
2282 int need_libopcodes_p,
2285 if (reloc->exp.X_op == O_constant)
2288 operand->addr.offset.imm = reloc->exp.X_add_number;
2290 operand->imm.value = reloc->exp.X_add_number;
2291 reloc->type = BFD_RELOC_UNUSED;
2295 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2296 /* Tell libopcodes to ignore this operand or not. This is helpful
2297 when one of the operands needs to be fixed up later but we need
2298 libopcodes to check the other operands. */
2299 operand->skip = skip_p;
2303 /* Relocation modifiers. Each entry in the table contains the textual
2304 name for the relocation which may be placed before a symbol used as
2305 a load/store offset, or add immediate. It must be surrounded by a
2306 leading and trailing colon, for example:
2308 ldr x0, [x1, #:rello:varsym]
2309 add x0, x1, #:rello:varsym */
2311 struct reloc_table_entry
2315 bfd_reloc_code_real_type adr_type;
2316 bfd_reloc_code_real_type adrp_type;
2317 bfd_reloc_code_real_type movw_type;
2318 bfd_reloc_code_real_type add_type;
2319 bfd_reloc_code_real_type ldst_type;
2320 bfd_reloc_code_real_type ld_literal_type;
2323 static struct reloc_table_entry reloc_table[] = {
2324 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2329 BFD_RELOC_AARCH64_ADD_LO12,
2330 BFD_RELOC_AARCH64_LDST_LO12,
2333 /* Higher 21 bits of pc-relative page offset: ADRP */
2336 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2342 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2345 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2351 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2355 BFD_RELOC_AARCH64_MOVW_G0,
2360 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2364 BFD_RELOC_AARCH64_MOVW_G0_S,
2369 /* Less significant bits 0-15 of address/value: MOVK, no check */
2373 BFD_RELOC_AARCH64_MOVW_G0_NC,
2378 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2382 BFD_RELOC_AARCH64_MOVW_G1,
2387 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2391 BFD_RELOC_AARCH64_MOVW_G1_S,
2396 /* Less significant bits 16-31 of address/value: MOVK, no check */
2400 BFD_RELOC_AARCH64_MOVW_G1_NC,
2405 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2409 BFD_RELOC_AARCH64_MOVW_G2,
2414 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2418 BFD_RELOC_AARCH64_MOVW_G2_S,
2423 /* Less significant bits 32-47 of address/value: MOVK, no check */
2427 BFD_RELOC_AARCH64_MOVW_G2_NC,
2432 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2436 BFD_RELOC_AARCH64_MOVW_G3,
2441 /* Get to the page containing GOT entry for a symbol. */
2444 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2448 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2450 /* 12 bit offset into the page containing GOT entry for that symbol. */
2456 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2459 /* Get to the page containing GOT TLS entry for a symbol */
2461 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2462 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2468 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2473 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2477 /* Get to the page containing GOT TLS entry for a symbol */
2479 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2480 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2484 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2486 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2491 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
2492 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2495 /* Get to the page containing GOT TLS entry for a symbol */
2498 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2502 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2504 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2505 {"gottprel_lo12", 0,
2510 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2513 /* Get tp offset for a symbol. */
2518 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2522 /* Get tp offset for a symbol. */
2527 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2531 /* Get tp offset for a symbol. */
2536 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2540 /* Get tp offset for a symbol. */
2541 {"tprel_lo12_nc", 0,
2545 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2549 /* Most significant bits 32-47 of address/value: MOVZ. */
2553 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2558 /* Most significant bits 16-31 of address/value: MOVZ. */
2562 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2567 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2571 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2576 /* Most significant bits 0-15 of address/value: MOVZ. */
2580 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2585 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2589 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2595 /* Given the address of a pointer pointing to the textual name of a
2596 relocation as may appear in assembler source, attempt to find its
2597 details in reloc_table. The pointer will be updated to the character
2598 after the trailing colon. On failure, NULL will be returned;
2599 otherwise return the reloc_table_entry. */
2601 static struct reloc_table_entry *
2602 find_reloc_table_entry (char **str)
2605 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2607 int length = strlen (reloc_table[i].name);
2609 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2610 && (*str)[length] == ':')
2612 *str += (length + 1);
2613 return &reloc_table[i];
2620 /* Mode argument to parse_shift and parser_shifter_operand. */
2621 enum parse_shift_mode
2623 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2625 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2627 SHIFTED_LSL, /* bare "lsl #n" */
2628 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2629 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2632 /* Parse a <shift> operator on an AArch64 data processing instruction.
2633 Return TRUE on success; otherwise return FALSE. */
2635 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2637 const struct aarch64_name_value_pair *shift_op;
2638 enum aarch64_modifier_kind kind;
2644 for (p = *str; ISALPHA (*p); p++)
2649 set_syntax_error (_("shift expression expected"));
2653 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2655 if (shift_op == NULL)
2657 set_syntax_error (_("shift operator expected"));
2661 kind = aarch64_get_operand_modifier (shift_op);
2663 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2665 set_syntax_error (_("invalid use of 'MSL'"));
2671 case SHIFTED_LOGIC_IMM:
2672 if (aarch64_extend_operator_p (kind) == TRUE)
2674 set_syntax_error (_("extending shift is not permitted"));
2679 case SHIFTED_ARITH_IMM:
2680 if (kind == AARCH64_MOD_ROR)
2682 set_syntax_error (_("'ROR' shift is not permitted"));
2688 if (kind != AARCH64_MOD_LSL)
2690 set_syntax_error (_("only 'LSL' shift is permitted"));
2695 case SHIFTED_REG_OFFSET:
2696 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2697 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2699 set_fatal_syntax_error
2700 (_("invalid shift for the register offset addressing mode"));
2705 case SHIFTED_LSL_MSL:
2706 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2708 set_syntax_error (_("invalid shift operator"));
2717 /* Whitespace can appear here if the next thing is a bare digit. */
2718 skip_whitespace (p);
2720 /* Parse shift amount. */
2722 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2723 exp.X_op = O_absent;
2726 if (is_immediate_prefix (*p))
2731 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2733 if (exp.X_op == O_absent)
2735 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2737 set_syntax_error (_("missing shift amount"));
2740 operand->shifter.amount = 0;
2742 else if (exp.X_op != O_constant)
2744 set_syntax_error (_("constant shift amount required"));
2747 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2749 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2754 operand->shifter.amount = exp.X_add_number;
2755 operand->shifter.amount_present = 1;
2758 operand->shifter.operator_present = 1;
2759 operand->shifter.kind = kind;
2765 /* Parse a <shifter_operand> for a data processing instruction:
2768 #<immediate>, LSL #imm
2770 Validation of immediate operands is deferred to md_apply_fix.
2772 Return TRUE on success; otherwise return FALSE. */
2775 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2776 enum parse_shift_mode mode)
2780 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2785 /* Accept an immediate expression. */
2786 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2789 /* Accept optional LSL for arithmetic immediate values. */
2790 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2791 if (! parse_shift (&p, operand, SHIFTED_LSL))
2794 /* Not accept any shifter for logical immediate values. */
2795 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2796 && parse_shift (&p, operand, mode))
2798 set_syntax_error (_("unexpected shift operator"));
2806 /* Parse a <shifter_operand> for a data processing instruction:
2811 #<immediate>, LSL #imm
2813 where <shift> is handled by parse_shift above, and the last two
2814 cases are handled by the function above.
2816 Validation of immediate operands is deferred to md_apply_fix.
2818 Return TRUE on success; otherwise return FALSE. */
2821 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2822 enum parse_shift_mode mode)
2825 int isreg32, isregzero;
2826 enum aarch64_operand_class opd_class
2827 = aarch64_get_operand_class (operand->type);
2830 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2832 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2834 set_syntax_error (_("unexpected register in the immediate operand"));
2838 if (!isregzero && reg == REG_SP)
2840 set_syntax_error (BAD_SP);
2844 operand->reg.regno = reg;
2845 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2847 /* Accept optional shift operation on register. */
2848 if (! skip_past_comma (str))
2851 if (! parse_shift (str, operand, mode))
2856 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2859 (_("integer register expected in the extended/shifted operand "
2864 /* We have a shifted immediate variable. */
2865 return parse_shifter_operand_imm (str, operand, mode);
2868 /* Return TRUE on success; return FALSE otherwise. */
2871 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2872 enum parse_shift_mode mode)
2876 /* Determine if we have the sequence of characters #: or just :
2877 coming next. If we do, then we check for a :rello: relocation
2878 modifier. If we don't, punt the whole lot to
2879 parse_shifter_operand. */
2881 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2883 struct reloc_table_entry *entry;
2891 /* Try to parse a relocation. Anything else is an error. */
2892 if (!(entry = find_reloc_table_entry (str)))
2894 set_syntax_error (_("unknown relocation modifier"));
2898 if (entry->add_type == 0)
2901 (_("this relocation modifier is not allowed on this instruction"));
2905 /* Save str before we decompose it. */
2908 /* Next, we parse the expression. */
2909 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2912 /* Record the relocation type (use the ADD variant here). */
2913 inst.reloc.type = entry->add_type;
2914 inst.reloc.pc_rel = entry->pc_rel;
2916 /* If str is empty, we've reached the end, stop here. */
2920 /* Otherwise, we have a shifted reloc modifier, so rewind to
2921 recover the variable name and continue parsing for the shifter. */
2923 return parse_shifter_operand_imm (str, operand, mode);
2926 return parse_shifter_operand (str, operand, mode);
2929 /* Parse all forms of an address expression. Information is written
2930 to *OPERAND and/or inst.reloc.
2932 The A64 instruction set has the following addressing modes:
2935 [base] // in SIMD ld/st structure
2936 [base{,#0}] // in ld/st exclusive
2938 [base,Xm{,LSL #imm}]
2939 [base,Xm,SXTX {#imm}]
2940 [base,Wm,(S|U)XTW {#imm}]
2945 [base],Xm // in SIMD ld/st structure
2946 PC-relative (literal)
2950 (As a convenience, the notation "=immediate" is permitted in conjunction
2951 with the pc-relative literal load instructions to automatically place an
2952 immediate value or symbolic address in a nearby literal pool and generate
2953 a hidden label which references it.)
2955 Upon a successful parsing, the address structure in *OPERAND will be
2956 filled in the following way:
2958 .base_regno = <base>
2959 .offset.is_reg // 1 if the offset is a register
2961 .offset.regno = <Rm>
2963 For different addressing modes defined in the A64 ISA:
2966 .pcrel=0; .preind=1; .postind=0; .writeback=0
2968 .pcrel=0; .preind=1; .postind=0; .writeback=1
2970 .pcrel=0; .preind=0; .postind=1; .writeback=1
2971 PC-relative (literal)
2972 .pcrel=1; .preind=1; .postind=0; .writeback=0
2974 The shift/extension information, if any, will be stored in .shifter.
2976 It is the caller's responsibility to check for addressing modes not
2977 supported by the instruction, and to set inst.reloc.type. */
2980 parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2981 int accept_reg_post_index)
2985 int isreg32, isregzero;
2986 expressionS *exp = &inst.reloc.exp;
2988 if (! skip_past_char (&p, '['))
2990 /* =immediate or label. */
2991 operand->addr.pcrel = 1;
2992 operand->addr.preind = 1;
2994 /* #:<reloc_op>:<symbol> */
2995 skip_past_char (&p, '#');
2996 if (reloc && skip_past_char (&p, ':'))
2998 bfd_reloc_code_real_type ty;
2999 struct reloc_table_entry *entry;
3001 /* Try to parse a relocation modifier. Anything else is
3003 entry = find_reloc_table_entry (&p);
3006 set_syntax_error (_("unknown relocation modifier"));
3010 switch (operand->type)
3012 case AARCH64_OPND_ADDR_PCREL21:
3014 ty = entry->adr_type;
3018 ty = entry->ld_literal_type;
3025 (_("this relocation modifier is not allowed on this "
3031 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3033 set_syntax_error (_("invalid relocation expression"));
3037 /* #:<reloc_op>:<expr> */
3038 /* Record the relocation type. */
3039 inst.reloc.type = ty;
3040 inst.reloc.pc_rel = entry->pc_rel;
3045 if (skip_past_char (&p, '='))
3046 /* =immediate; need to generate the literal in the literal pool. */
3047 inst.gen_lit_pool = 1;
3049 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3051 set_syntax_error (_("invalid address"));
3062 /* Accept SP and reject ZR */
3063 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3064 if (reg == PARSE_FAIL || isreg32)
3066 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3069 operand->addr.base_regno = reg;
3072 if (skip_past_comma (&p))
3075 operand->addr.preind = 1;
3077 /* Reject SP and accept ZR */
3078 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3079 if (reg != PARSE_FAIL)
3082 operand->addr.offset.regno = reg;
3083 operand->addr.offset.is_reg = 1;
3084 /* Shifted index. */
3085 if (skip_past_comma (&p))
3088 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3089 /* Use the diagnostics set in parse_shift, so not set new
3090 error message here. */
3094 [base,Xm{,LSL #imm}]
3095 [base,Xm,SXTX {#imm}]
3096 [base,Wm,(S|U)XTW {#imm}] */
3097 if (operand->shifter.kind == AARCH64_MOD_NONE
3098 || operand->shifter.kind == AARCH64_MOD_LSL
3099 || operand->shifter.kind == AARCH64_MOD_SXTX)
3103 set_syntax_error (_("invalid use of 32-bit register offset"));
3109 set_syntax_error (_("invalid use of 64-bit register offset"));
3115 /* [Xn,#:<reloc_op>:<symbol> */
3116 skip_past_char (&p, '#');
3117 if (reloc && skip_past_char (&p, ':'))
3119 struct reloc_table_entry *entry;
3121 /* Try to parse a relocation modifier. Anything else is
3123 if (!(entry = find_reloc_table_entry (&p)))
3125 set_syntax_error (_("unknown relocation modifier"));
3129 if (entry->ldst_type == 0)
3132 (_("this relocation modifier is not allowed on this "
3137 /* [Xn,#:<reloc_op>: */
3138 /* We now have the group relocation table entry corresponding to
3139 the name in the assembler source. Next, we parse the
3141 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3143 set_syntax_error (_("invalid relocation expression"));
3147 /* [Xn,#:<reloc_op>:<expr> */
3148 /* Record the load/store relocation type. */
3149 inst.reloc.type = entry->ldst_type;
3150 inst.reloc.pc_rel = entry->pc_rel;
3152 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3154 set_syntax_error (_("invalid expression in the address"));
3161 if (! skip_past_char (&p, ']'))
3163 set_syntax_error (_("']' expected"));
3167 if (skip_past_char (&p, '!'))
3169 if (operand->addr.preind && operand->addr.offset.is_reg)
3171 set_syntax_error (_("register offset not allowed in pre-indexed "
3172 "addressing mode"));
3176 operand->addr.writeback = 1;
3178 else if (skip_past_comma (&p))
3181 operand->addr.postind = 1;
3182 operand->addr.writeback = 1;
3184 if (operand->addr.preind)
3186 set_syntax_error (_("cannot combine pre- and post-indexing"));
3190 if (accept_reg_post_index
3191 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3192 &isregzero)) != PARSE_FAIL)
3197 set_syntax_error (_("invalid 32-bit register offset"));
3200 operand->addr.offset.regno = reg;
3201 operand->addr.offset.is_reg = 1;
3203 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3206 set_syntax_error (_("invalid expression in the address"));
3211 /* If at this point neither .preind nor .postind is set, we have a
3212 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3213 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3215 if (operand->addr.writeback)
3218 set_syntax_error (_("missing offset in the pre-indexed address"));
3221 operand->addr.preind = 1;
3222 inst.reloc.exp.X_op = O_constant;
3223 inst.reloc.exp.X_add_number = 0;
3230 /* Return TRUE on success; otherwise return FALSE. */
3232 parse_address (char **str, aarch64_opnd_info *operand,
3233 int accept_reg_post_index)
3235 return parse_address_main (str, operand, 0, accept_reg_post_index);
3238 /* Return TRUE on success; otherwise return FALSE. */
3240 parse_address_reloc (char **str, aarch64_opnd_info *operand)
3242 return parse_address_main (str, operand, 1, 0);
3245 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3246 Return TRUE on success; otherwise return FALSE. */
3248 parse_half (char **str, int *internal_fixup_p)
3254 skip_past_char (&p, '#');
3256 gas_assert (internal_fixup_p);
3257 *internal_fixup_p = 0;
3261 struct reloc_table_entry *entry;
3263 /* Try to parse a relocation. Anything else is an error. */
3265 if (!(entry = find_reloc_table_entry (&p)))
3267 set_syntax_error (_("unknown relocation modifier"));
3271 if (entry->movw_type == 0)
3274 (_("this relocation modifier is not allowed on this instruction"));
3278 inst.reloc.type = entry->movw_type;
3281 *internal_fixup_p = 1;
3283 /* Avoid parsing a register as a general symbol. */
3285 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3289 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3296 /* Parse an operand for an ADRP instruction:
3298 Return TRUE on success; otherwise return FALSE. */
3301 parse_adrp (char **str)
3308 struct reloc_table_entry *entry;
3310 /* Try to parse a relocation. Anything else is an error. */
3312 if (!(entry = find_reloc_table_entry (&p)))
3314 set_syntax_error (_("unknown relocation modifier"));
3318 if (entry->adrp_type == 0)
3321 (_("this relocation modifier is not allowed on this instruction"));
3325 inst.reloc.type = entry->adrp_type;
3328 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3330 inst.reloc.pc_rel = 1;
3332 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3339 /* Miscellaneous. */
3341 /* Parse an option for a preload instruction. Returns the encoding for the
3342 option, or PARSE_FAIL. */
3345 parse_pldop (char **str)
3348 const struct aarch64_name_value_pair *o;
3351 while (ISALNUM (*q))
3354 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3362 /* Parse an option for a barrier instruction. Returns the encoding for the
3363 option, or PARSE_FAIL. */
3366 parse_barrier (char **str)
3369 const asm_barrier_opt *o;
3372 while (ISALPHA (*q))
3375 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3383 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3384 Returns the encoding for the option, or PARSE_FAIL.
3386 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3387 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3390 parse_sys_reg (char **str, struct hash_control *sys_regs, int imple_defined_p)
3394 const aarch64_sys_reg *o;
3398 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3400 *p++ = TOLOWER (*q);
3402 /* Assert that BUF be large enough. */
3403 gas_assert (p - buf == q - *str);
3405 o = hash_find (sys_regs, buf);
3408 if (!imple_defined_p)
3412 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3413 unsigned int op0, op1, cn, cm, op2;
3415 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3418 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3420 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3425 if (aarch64_sys_reg_deprecated_p (o))
3426 as_warn (_("system register name '%s' is deprecated and may be "
3427 "removed in a future release"), buf);
3435 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3436 for the option, or NULL. */
3438 static const aarch64_sys_ins_reg *
3439 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3443 const aarch64_sys_ins_reg *o;
3446 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3448 *p++ = TOLOWER (*q);
3451 o = hash_find (sys_ins_regs, buf);
3459 #define po_char_or_fail(chr) do { \
3460 if (! skip_past_char (&str, chr)) \
3464 #define po_reg_or_fail(regtype) do { \
3465 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3466 if (val == PARSE_FAIL) \
3468 set_default_error (); \
3473 #define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3474 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3475 &isreg32, &isregzero); \
3476 if (val == PARSE_FAIL) \
3478 set_default_error (); \
3481 info->reg.regno = val; \
3483 info->qualifier = AARCH64_OPND_QLF_W; \
3485 info->qualifier = AARCH64_OPND_QLF_X; \
3488 #define po_imm_nc_or_fail() do { \
3489 if (! parse_constant_immediate (&str, &val)) \
3493 #define po_imm_or_fail(min, max) do { \
3494 if (! parse_constant_immediate (&str, &val)) \
3496 if (val < min || val > max) \
3498 set_fatal_syntax_error (_("immediate value out of range "\
3499 #min " to "#max)); \
3504 #define po_misc_or_fail(expr) do { \
3509 /* encode the 12-bit imm field of Add/sub immediate */
3510 static inline uint32_t
3511 encode_addsub_imm (uint32_t imm)
3516 /* encode the shift amount field of Add/sub immediate */
3517 static inline uint32_t
3518 encode_addsub_imm_shift_amount (uint32_t cnt)
3524 /* encode the imm field of Adr instruction */
3525 static inline uint32_t
3526 encode_adr_imm (uint32_t imm)
3528 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3529 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3532 /* encode the immediate field of Move wide immediate */
3533 static inline uint32_t
3534 encode_movw_imm (uint32_t imm)
3539 /* encode the 26-bit offset of unconditional branch */
3540 static inline uint32_t
3541 encode_branch_ofs_26 (uint32_t ofs)
3543 return ofs & ((1 << 26) - 1);
3546 /* encode the 19-bit offset of conditional branch and compare & branch */
3547 static inline uint32_t
3548 encode_cond_branch_ofs_19 (uint32_t ofs)
3550 return (ofs & ((1 << 19) - 1)) << 5;
3553 /* encode the 19-bit offset of ld literal */
3554 static inline uint32_t
3555 encode_ld_lit_ofs_19 (uint32_t ofs)
3557 return (ofs & ((1 << 19) - 1)) << 5;
3560 /* Encode the 14-bit offset of test & branch. */
3561 static inline uint32_t
3562 encode_tst_branch_ofs_14 (uint32_t ofs)
3564 return (ofs & ((1 << 14) - 1)) << 5;
3567 /* Encode the 16-bit imm field of svc/hvc/smc. */
3568 static inline uint32_t
3569 encode_svc_imm (uint32_t imm)
3574 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
3575 static inline uint32_t
3576 reencode_addsub_switch_add_sub (uint32_t opcode)
3578 return opcode ^ (1 << 30);
3581 static inline uint32_t
3582 reencode_movzn_to_movz (uint32_t opcode)
3584 return opcode | (1 << 30);
3587 static inline uint32_t
3588 reencode_movzn_to_movn (uint32_t opcode)
3590 return opcode & ~(1 << 30);
3593 /* Overall per-instruction processing. */
3595 /* We need to be able to fix up arbitrary expressions in some statements.
3596 This is so that we can handle symbols that are an arbitrary distance from
3597 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3598 which returns part of an address in a form which will be valid for
3599 a data instruction. We do this by pushing the expression into a symbol
3600 in the expr_section, and creating a fix for that. */
3603 fix_new_aarch64 (fragS * frag,
3605 short int size, expressionS * exp, int pc_rel, int reloc)
3615 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3619 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3626 /* Diagnostics on operands errors. */
3628 /* By default, output verbose error message.
3629 Disable the verbose error message by -mno-verbose-error. */
3630 static int verbose_error_p = 1;
3632 #ifdef DEBUG_AARCH64
3633 /* N.B. this is only for the purpose of debugging. */
3634 const char* operand_mismatch_kind_names[] =
3637 "AARCH64_OPDE_RECOVERABLE",
3638 "AARCH64_OPDE_SYNTAX_ERROR",
3639 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3640 "AARCH64_OPDE_INVALID_VARIANT",
3641 "AARCH64_OPDE_OUT_OF_RANGE",
3642 "AARCH64_OPDE_UNALIGNED",
3643 "AARCH64_OPDE_REG_LIST",
3644 "AARCH64_OPDE_OTHER_ERROR",
3646 #endif /* DEBUG_AARCH64 */
3648 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3650 When multiple errors of different kinds are found in the same assembly
3651 line, only the error of the highest severity will be picked up for
3652 issuing the diagnostics. */
3654 static inline bfd_boolean
3655 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3656 enum aarch64_operand_error_kind rhs)
3658 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3659 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3660 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3661 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3662 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3663 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3664 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3665 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3669 /* Helper routine to get the mnemonic name from the assembly instruction
3670 line; should only be called for the diagnosis purpose, as there is
3671 string copy operation involved, which may affect the runtime
3672 performance if used in elsewhere. */
3675 get_mnemonic_name (const char *str)
3677 static char mnemonic[32];
3680 /* Get the first 15 bytes and assume that the full name is included. */
3681 strncpy (mnemonic, str, 31);
3682 mnemonic[31] = '\0';
3684 /* Scan up to the end of the mnemonic, which must end in white space,
3685 '.', or end of string. */
3686 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3691 /* Append '...' to the truncated long name. */
3692 if (ptr - mnemonic == 31)
3693 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3699 reset_aarch64_instruction (aarch64_instruction *instruction)
3701 memset (instruction, '\0', sizeof (aarch64_instruction));
3702 instruction->reloc.type = BFD_RELOC_UNUSED;
3705 /* Data strutures storing one user error in the assembly code related to
3708 struct operand_error_record
3710 const aarch64_opcode *opcode;
3711 aarch64_operand_error detail;
3712 struct operand_error_record *next;
3715 typedef struct operand_error_record operand_error_record;
3717 struct operand_errors
3719 operand_error_record *head;
3720 operand_error_record *tail;
3723 typedef struct operand_errors operand_errors;
3725 /* Top-level data structure reporting user errors for the current line of
3727 The way md_assemble works is that all opcodes sharing the same mnemonic
3728 name are iterated to find a match to the assembly line. In this data
3729 structure, each of the such opcodes will have one operand_error_record
3730 allocated and inserted. In other words, excessive errors related with
3731 a single opcode are disregarded. */
3732 operand_errors operand_error_report;
3734 /* Free record nodes. */
3735 static operand_error_record *free_opnd_error_record_nodes = NULL;
3737 /* Initialize the data structure that stores the operand mismatch
3738 information on assembling one line of the assembly code. */
3740 init_operand_error_report (void)
3742 if (operand_error_report.head != NULL)
3744 gas_assert (operand_error_report.tail != NULL);
3745 operand_error_report.tail->next = free_opnd_error_record_nodes;
3746 free_opnd_error_record_nodes = operand_error_report.head;
3747 operand_error_report.head = NULL;
3748 operand_error_report.tail = NULL;
3751 gas_assert (operand_error_report.tail == NULL);
3754 /* Return TRUE if some operand error has been recorded during the
3755 parsing of the current assembly line using the opcode *OPCODE;
3756 otherwise return FALSE. */
3757 static inline bfd_boolean
3758 opcode_has_operand_error_p (const aarch64_opcode *opcode)
3760 operand_error_record *record = operand_error_report.head;
3761 return record && record->opcode == opcode;
3764 /* Add the error record *NEW_RECORD to operand_error_report. The record's
3765 OPCODE field is initialized with OPCODE.
3766 N.B. only one record for each opcode, i.e. the maximum of one error is
3767 recorded for each instruction template. */
3770 add_operand_error_record (const operand_error_record* new_record)
3772 const aarch64_opcode *opcode = new_record->opcode;
3773 operand_error_record* record = operand_error_report.head;
3775 /* The record may have been created for this opcode. If not, we need
3777 if (! opcode_has_operand_error_p (opcode))
3779 /* Get one empty record. */
3780 if (free_opnd_error_record_nodes == NULL)
3782 record = xmalloc (sizeof (operand_error_record));
3788 record = free_opnd_error_record_nodes;
3789 free_opnd_error_record_nodes = record->next;
3791 record->opcode = opcode;
3792 /* Insert at the head. */
3793 record->next = operand_error_report.head;
3794 operand_error_report.head = record;
3795 if (operand_error_report.tail == NULL)
3796 operand_error_report.tail = record;
3798 else if (record->detail.kind != AARCH64_OPDE_NIL
3799 && record->detail.index <= new_record->detail.index
3800 && operand_error_higher_severity_p (record->detail.kind,
3801 new_record->detail.kind))
3803 /* In the case of multiple errors found on operands related with a
3804 single opcode, only record the error of the leftmost operand and
3805 only if the error is of higher severity. */
3806 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3807 " the existing error %s on operand %d",
3808 operand_mismatch_kind_names[new_record->detail.kind],
3809 new_record->detail.index,
3810 operand_mismatch_kind_names[record->detail.kind],
3811 record->detail.index);
3815 record->detail = new_record->detail;
3819 record_operand_error_info (const aarch64_opcode *opcode,
3820 aarch64_operand_error *error_info)
3822 operand_error_record record;
3823 record.opcode = opcode;
3824 record.detail = *error_info;
3825 add_operand_error_record (&record);
3828 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3829 error message *ERROR, for operand IDX (count from 0). */
3832 record_operand_error (const aarch64_opcode *opcode, int idx,
3833 enum aarch64_operand_error_kind kind,
3836 aarch64_operand_error info;
3837 memset(&info, 0, sizeof (info));
3841 record_operand_error_info (opcode, &info);
3845 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3846 enum aarch64_operand_error_kind kind,
3847 const char* error, const int *extra_data)
3849 aarch64_operand_error info;
3853 info.data[0] = extra_data[0];
3854 info.data[1] = extra_data[1];
3855 info.data[2] = extra_data[2];
3856 record_operand_error_info (opcode, &info);
3860 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3861 const char* error, int lower_bound,
3864 int data[3] = {lower_bound, upper_bound, 0};
3865 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3869 /* Remove the operand error record for *OPCODE. */
3870 static void ATTRIBUTE_UNUSED
3871 remove_operand_error_record (const aarch64_opcode *opcode)
3873 if (opcode_has_operand_error_p (opcode))
3875 operand_error_record* record = operand_error_report.head;
3876 gas_assert (record != NULL && operand_error_report.tail != NULL);
3877 operand_error_report.head = record->next;
3878 record->next = free_opnd_error_record_nodes;
3879 free_opnd_error_record_nodes = record;
3880 if (operand_error_report.head == NULL)
3882 gas_assert (operand_error_report.tail == record);
3883 operand_error_report.tail = NULL;
3888 /* Given the instruction in *INSTR, return the index of the best matched
3889 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3891 Return -1 if there is no qualifier sequence; return the first match
3892 if there is multiple matches found. */
3895 find_best_match (const aarch64_inst *instr,
3896 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3898 int i, num_opnds, max_num_matched, idx;
3900 num_opnds = aarch64_num_of_operands (instr->opcode);
3903 DEBUG_TRACE ("no operand");
3907 max_num_matched = 0;
3910 /* For each pattern. */
3911 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3914 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3916 /* Most opcodes has much fewer patterns in the list. */
3917 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3919 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3920 if (i != 0 && idx == -1)
3921 /* If nothing has been matched, return the 1st sequence. */
3926 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3927 if (*qualifiers == instr->operands[j].qualifier)
3930 if (num_matched > max_num_matched)
3932 max_num_matched = num_matched;
3937 DEBUG_TRACE ("return with %d", idx);
3941 /* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3942 corresponding operands in *INSTR. */
3945 assign_qualifier_sequence (aarch64_inst *instr,
3946 const aarch64_opnd_qualifier_t *qualifiers)
3949 int num_opnds = aarch64_num_of_operands (instr->opcode);
3950 gas_assert (num_opnds);
3951 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3952 instr->operands[i].qualifier = *qualifiers;
3955 /* Print operands for the diagnosis purpose. */
3958 print_operands (char *buf, const aarch64_opcode *opcode,
3959 const aarch64_opnd_info *opnds)
3963 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3965 const size_t size = 128;
3968 /* We regard the opcode operand info more, however we also look into
3969 the inst->operands to support the disassembling of the optional
3971 The two operand code should be the same in all cases, apart from
3972 when the operand can be optional. */
3973 if (opcode->operands[i] == AARCH64_OPND_NIL
3974 || opnds[i].type == AARCH64_OPND_NIL)
3977 /* Generate the operand string in STR. */
3978 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
3982 strcat (buf, i == 0 ? " " : ",");
3984 /* Append the operand string. */
3989 /* Send to stderr a string as information. */
3992 output_info (const char *format, ...)
3998 as_where (&file, &line);
4002 fprintf (stderr, "%s:%u: ", file, line);
4004 fprintf (stderr, "%s: ", file);
4006 fprintf (stderr, _("Info: "));
4007 va_start (args, format);
4008 vfprintf (stderr, format, args);
4010 (void) putc ('\n', stderr);
4013 /* Output one operand error record. */
4016 output_operand_error_record (const operand_error_record *record, char *str)
4018 const aarch64_operand_error *detail = &record->detail;
4019 int idx = detail->index;
4020 const aarch64_opcode *opcode = record->opcode;
4021 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4022 : AARCH64_OPND_NIL);
4024 switch (detail->kind)
4026 case AARCH64_OPDE_NIL:
4030 case AARCH64_OPDE_SYNTAX_ERROR:
4031 case AARCH64_OPDE_RECOVERABLE:
4032 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4033 case AARCH64_OPDE_OTHER_ERROR:
4034 /* Use the prepared error message if there is, otherwise use the
4035 operand description string to describe the error. */
4036 if (detail->error != NULL)
4039 as_bad (_("%s -- `%s'"), detail->error, str);
4041 as_bad (_("%s at operand %d -- `%s'"),
4042 detail->error, idx + 1, str);
4046 gas_assert (idx >= 0);
4047 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
4048 aarch64_get_operand_desc (opd_code), str);
4052 case AARCH64_OPDE_INVALID_VARIANT:
4053 as_bad (_("operand mismatch -- `%s'"), str);
4054 if (verbose_error_p)
4056 /* We will try to correct the erroneous instruction and also provide
4057 more information e.g. all other valid variants.
4059 The string representation of the corrected instruction and other
4060 valid variants are generated by
4062 1) obtaining the intermediate representation of the erroneous
4064 2) manipulating the IR, e.g. replacing the operand qualifier;
4065 3) printing out the instruction by calling the printer functions
4066 shared with the disassembler.
4068 The limitation of this method is that the exact input assembly
4069 line cannot be accurately reproduced in some cases, for example an
4070 optional operand present in the actual assembly line will be
4071 omitted in the output; likewise for the optional syntax rules,
4072 e.g. the # before the immediate. Another limitation is that the
4073 assembly symbols and relocation operations in the assembly line
4074 currently cannot be printed out in the error report. Last but not
4075 least, when there is other error(s) co-exist with this error, the
4076 'corrected' instruction may be still incorrect, e.g. given
4077 'ldnp h0,h1,[x0,#6]!'
4078 this diagnosis will provide the version:
4079 'ldnp s0,s1,[x0,#6]!'
4080 which is still not right. */
4081 size_t len = strlen (get_mnemonic_name (str));
4084 const size_t size = 2048;
4086 aarch64_inst *inst_base = &inst.base;
4087 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4090 reset_aarch64_instruction (&inst);
4091 inst_base->opcode = opcode;
4093 /* Reset the error report so that there is no side effect on the
4094 following operand parsing. */
4095 init_operand_error_report ();
4098 result = parse_operands (str + len, opcode)
4099 && programmer_friendly_fixup (&inst);
4100 gas_assert (result);
4101 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4103 gas_assert (!result);
4105 /* Find the most matched qualifier sequence. */
4106 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4107 gas_assert (qlf_idx > -1);
4109 /* Assign the qualifiers. */
4110 assign_qualifier_sequence (inst_base,
4111 opcode->qualifiers_list[qlf_idx]);
4113 /* Print the hint. */
4114 output_info (_(" did you mean this?"));
4115 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4116 print_operands (buf, opcode, inst_base->operands);
4117 output_info (_(" %s"), buf);
4119 /* Print out other variant(s) if there is any. */
4121 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4122 output_info (_(" other valid variant(s):"));
4124 /* For each pattern. */
4125 qualifiers_list = opcode->qualifiers_list;
4126 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4128 /* Most opcodes has much fewer patterns in the list.
4129 First NIL qualifier indicates the end in the list. */
4130 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4135 /* Mnemonics name. */
4136 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4138 /* Assign the qualifiers. */
4139 assign_qualifier_sequence (inst_base, *qualifiers_list);
4141 /* Print instruction. */
4142 print_operands (buf, opcode, inst_base->operands);
4144 output_info (_(" %s"), buf);
4150 case AARCH64_OPDE_OUT_OF_RANGE:
4151 if (detail->data[0] != detail->data[1])
4152 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4153 detail->error ? detail->error : _("immediate value"),
4154 detail->data[0], detail->data[1], idx + 1, str);
4156 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4157 detail->error ? detail->error : _("immediate value"),
4158 detail->data[0], idx + 1, str);
4161 case AARCH64_OPDE_REG_LIST:
4162 if (detail->data[0] == 1)
4163 as_bad (_("invalid number of registers in the list; "
4164 "only 1 register is expected at operand %d -- `%s'"),
4167 as_bad (_("invalid number of registers in the list; "
4168 "%d registers are expected at operand %d -- `%s'"),
4169 detail->data[0], idx + 1, str);
4172 case AARCH64_OPDE_UNALIGNED:
4173 as_bad (_("immediate value should be a multiple of "
4174 "%d at operand %d -- `%s'"),
4175 detail->data[0], idx + 1, str);
4184 /* Process and output the error message about the operand mismatching.
4186 When this function is called, the operand error information had
4187 been collected for an assembly line and there will be multiple
4188 errors in the case of mulitple instruction templates; output the
4189 error message that most closely describes the problem. */
4192 output_operand_error_report (char *str)
4194 int largest_error_pos;
4195 const char *msg = NULL;
4196 enum aarch64_operand_error_kind kind;
4197 operand_error_record *curr;
4198 operand_error_record *head = operand_error_report.head;
4199 operand_error_record *record = NULL;
4201 /* No error to report. */
4205 gas_assert (head != NULL && operand_error_report.tail != NULL);
4207 /* Only one error. */
4208 if (head == operand_error_report.tail)
4210 DEBUG_TRACE ("single opcode entry with error kind: %s",
4211 operand_mismatch_kind_names[head->detail.kind]);
4212 output_operand_error_record (head, str);
4216 /* Find the error kind of the highest severity. */
4217 DEBUG_TRACE ("multiple opcode entres with error kind");
4218 kind = AARCH64_OPDE_NIL;
4219 for (curr = head; curr != NULL; curr = curr->next)
4221 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4222 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4223 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4224 kind = curr->detail.kind;
4226 gas_assert (kind != AARCH64_OPDE_NIL);
4228 /* Pick up one of errors of KIND to report. */
4229 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4230 for (curr = head; curr != NULL; curr = curr->next)
4232 if (curr->detail.kind != kind)
4234 /* If there are multiple errors, pick up the one with the highest
4235 mismatching operand index. In the case of multiple errors with
4236 the equally highest operand index, pick up the first one or the
4237 first one with non-NULL error message. */
4238 if (curr->detail.index > largest_error_pos
4239 || (curr->detail.index == largest_error_pos && msg == NULL
4240 && curr->detail.error != NULL))
4242 largest_error_pos = curr->detail.index;
4244 msg = record->detail.error;
4248 gas_assert (largest_error_pos != -2 && record != NULL);
4249 DEBUG_TRACE ("Pick up error kind %s to report",
4250 operand_mismatch_kind_names[record->detail.kind]);
4253 output_operand_error_record (record, str);
4256 /* Write an AARCH64 instruction to buf - always little-endian. */
4258 put_aarch64_insn (char *buf, uint32_t insn)
4260 unsigned char *where = (unsigned char *) buf;
4262 where[1] = insn >> 8;
4263 where[2] = insn >> 16;
4264 where[3] = insn >> 24;
4268 get_aarch64_insn (char *buf)
4270 unsigned char *where = (unsigned char *) buf;
4272 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4277 output_inst (struct aarch64_inst *new_inst)
4281 to = frag_more (INSN_SIZE);
4283 frag_now->tc_frag_data.recorded = 1;
4285 put_aarch64_insn (to, inst.base.value);
4287 if (inst.reloc.type != BFD_RELOC_UNUSED)
4289 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4290 INSN_SIZE, &inst.reloc.exp,
4293 DEBUG_TRACE ("Prepared relocation fix up");
4294 /* Don't check the addend value against the instruction size,
4295 that's the job of our code in md_apply_fix(). */
4296 fixp->fx_no_overflow = 1;
4297 if (new_inst != NULL)
4298 fixp->tc_fix_data.inst = new_inst;
4299 if (aarch64_gas_internal_fixup_p ())
4301 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4302 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4303 fixp->fx_addnumber = inst.reloc.flags;
4307 dwarf2_emit_insn (INSN_SIZE);
4310 /* Link together opcodes of the same name. */
4314 aarch64_opcode *opcode;
4315 struct templates *next;
4318 typedef struct templates templates;
4321 lookup_mnemonic (const char *start, int len)
4323 templates *templ = NULL;
4325 templ = hash_find_n (aarch64_ops_hsh, start, len);
4329 /* Subroutine of md_assemble, responsible for looking up the primary
4330 opcode from the mnemonic the user wrote. STR points to the
4331 beginning of the mnemonic. */
4334 opcode_lookup (char **str)
4337 const aarch64_cond *cond;
4341 /* Scan up to the end of the mnemonic, which must end in white space,
4342 '.', or end of string. */
4343 for (base = end = *str; is_part_of_name(*end); end++)
4350 inst.cond = COND_ALWAYS;
4352 /* Handle a possible condition. */
4355 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4358 inst.cond = cond->value;
4372 if (inst.cond == COND_ALWAYS)
4374 /* Look for unaffixed mnemonic. */
4375 return lookup_mnemonic (base, len);
4379 /* append ".c" to mnemonic if conditional */
4380 memcpy (condname, base, len);
4381 memcpy (condname + len, ".c", 2);
4384 return lookup_mnemonic (base, len);
4390 /* Internal helper routine converting a vector neon_type_el structure
4391 *VECTYPE to a corresponding operand qualifier. */
4393 static inline aarch64_opnd_qualifier_t
4394 vectype_to_qualifier (const struct neon_type_el *vectype)
4396 /* Element size in bytes indexed by neon_el_type. */
4397 const unsigned char ele_size[5]
4400 if (!vectype->defined || vectype->type == NT_invtype)
4401 goto vectype_conversion_fail;
4403 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4405 if (vectype->defined & NTA_HASINDEX)
4406 /* Vector element register. */
4407 return AARCH64_OPND_QLF_S_B + vectype->type;
4410 /* Vector register. */
4411 int reg_size = ele_size[vectype->type] * vectype->width;
4413 if (reg_size != 16 && reg_size != 8)
4414 goto vectype_conversion_fail;
4415 /* The conversion is calculated based on the relation of the order of
4416 qualifiers to the vector element size and vector register size. */
4417 offset = (vectype->type == NT_q)
4418 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4419 gas_assert (offset <= 8);
4420 return AARCH64_OPND_QLF_V_8B + offset;
4423 vectype_conversion_fail:
4424 first_error (_("bad vector arrangement type"));
4425 return AARCH64_OPND_QLF_NIL;
4428 /* Process an optional operand that is found omitted from the assembly line.
4429 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4430 instruction's opcode entry while IDX is the index of this omitted operand.
4434 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4435 int idx, aarch64_opnd_info *operand)
4437 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4438 gas_assert (optional_operand_p (opcode, idx));
4439 gas_assert (!operand->present);
4443 case AARCH64_OPND_Rd:
4444 case AARCH64_OPND_Rn:
4445 case AARCH64_OPND_Rm:
4446 case AARCH64_OPND_Rt:
4447 case AARCH64_OPND_Rt2:
4448 case AARCH64_OPND_Rs:
4449 case AARCH64_OPND_Ra:
4450 case AARCH64_OPND_Rt_SYS:
4451 case AARCH64_OPND_Rd_SP:
4452 case AARCH64_OPND_Rn_SP:
4453 case AARCH64_OPND_Fd:
4454 case AARCH64_OPND_Fn:
4455 case AARCH64_OPND_Fm:
4456 case AARCH64_OPND_Fa:
4457 case AARCH64_OPND_Ft:
4458 case AARCH64_OPND_Ft2:
4459 case AARCH64_OPND_Sd:
4460 case AARCH64_OPND_Sn:
4461 case AARCH64_OPND_Sm:
4462 case AARCH64_OPND_Vd:
4463 case AARCH64_OPND_Vn:
4464 case AARCH64_OPND_Vm:
4465 case AARCH64_OPND_VdD1:
4466 case AARCH64_OPND_VnD1:
4467 operand->reg.regno = default_value;
4470 case AARCH64_OPND_Ed:
4471 case AARCH64_OPND_En:
4472 case AARCH64_OPND_Em:
4473 operand->reglane.regno = default_value;
4476 case AARCH64_OPND_IDX:
4477 case AARCH64_OPND_BIT_NUM:
4478 case AARCH64_OPND_IMMR:
4479 case AARCH64_OPND_IMMS:
4480 case AARCH64_OPND_SHLL_IMM:
4481 case AARCH64_OPND_IMM_VLSL:
4482 case AARCH64_OPND_IMM_VLSR:
4483 case AARCH64_OPND_CCMP_IMM:
4484 case AARCH64_OPND_FBITS:
4485 case AARCH64_OPND_UIMM4:
4486 case AARCH64_OPND_UIMM3_OP1:
4487 case AARCH64_OPND_UIMM3_OP2:
4488 case AARCH64_OPND_IMM:
4489 case AARCH64_OPND_WIDTH:
4490 case AARCH64_OPND_UIMM7:
4491 case AARCH64_OPND_NZCV:
4492 operand->imm.value = default_value;
4495 case AARCH64_OPND_EXCEPTION:
4496 inst.reloc.type = BFD_RELOC_UNUSED;
4499 case AARCH64_OPND_BARRIER_ISB:
4500 operand->barrier = aarch64_barrier_options + default_value;
4507 /* Process the relocation type for move wide instructions.
4508 Return TRUE on success; otherwise return FALSE. */
4511 process_movw_reloc_info (void)
4516 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4518 if (inst.base.opcode->op == OP_MOVK)
4519 switch (inst.reloc.type)
4521 case BFD_RELOC_AARCH64_MOVW_G0_S:
4522 case BFD_RELOC_AARCH64_MOVW_G1_S:
4523 case BFD_RELOC_AARCH64_MOVW_G2_S:
4524 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4525 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4526 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4528 (_("the specified relocation type is not allowed for MOVK"));
4534 switch (inst.reloc.type)
4536 case BFD_RELOC_AARCH64_MOVW_G0:
4537 case BFD_RELOC_AARCH64_MOVW_G0_S:
4538 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4539 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4540 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4543 case BFD_RELOC_AARCH64_MOVW_G1:
4544 case BFD_RELOC_AARCH64_MOVW_G1_S:
4545 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4546 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4547 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4550 case BFD_RELOC_AARCH64_MOVW_G2:
4551 case BFD_RELOC_AARCH64_MOVW_G2_S:
4552 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4553 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4556 set_fatal_syntax_error
4557 (_("the specified relocation type is not allowed for 32-bit "
4563 case BFD_RELOC_AARCH64_MOVW_G3:
4566 set_fatal_syntax_error
4567 (_("the specified relocation type is not allowed for 32-bit "
4574 /* More cases should be added when more MOVW-related relocation types
4575 are supported in GAS. */
4576 gas_assert (aarch64_gas_internal_fixup_p ());
4577 /* The shift amount should have already been set by the parser. */
4580 inst.base.operands[1].shifter.amount = shift;
4584 /* A primitive log caculator. */
4586 static inline unsigned int
4587 get_logsz (unsigned int size)
4589 const unsigned char ls[16] =
4590 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4596 gas_assert (ls[size - 1] != (unsigned char)-1);
4597 return ls[size - 1];
4600 /* Determine and return the real reloc type code for an instruction
4601 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4603 static inline bfd_reloc_code_real_type
4604 ldst_lo12_determine_real_reloc_type (void)
4607 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4608 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4610 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4611 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4612 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4613 BFD_RELOC_AARCH64_LDST128_LO12
4616 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4617 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4619 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4621 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4623 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4625 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4626 gas_assert (logsz >= 0 && logsz <= 4);
4628 return reloc_ldst_lo12[logsz];
4631 /* Check whether a register list REGINFO is valid. The registers must be
4632 numbered in increasing order (modulo 32), in increments of one or two.
4634 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4637 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4640 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4642 uint32_t i, nb_regs, prev_regno, incr;
4644 nb_regs = 1 + (reginfo & 0x3);
4646 prev_regno = reginfo & 0x1f;
4647 incr = accept_alternate ? 2 : 1;
4649 for (i = 1; i < nb_regs; ++i)
4651 uint32_t curr_regno;
4653 curr_regno = reginfo & 0x1f;
4654 if (curr_regno != ((prev_regno + incr) & 0x1f))
4656 prev_regno = curr_regno;
4662 /* Generic instruction operand parser. This does no encoding and no
4663 semantic validation; it merely squirrels values away in the inst
4664 structure. Returns TRUE or FALSE depending on whether the
4665 specified grammar matched. */
4668 parse_operands (char *str, const aarch64_opcode *opcode)
4671 char *backtrack_pos = 0;
4672 const enum aarch64_opnd *operands = opcode->operands;
4675 skip_whitespace (str);
4677 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4680 int isreg32, isregzero;
4681 int comma_skipped_p = 0;
4682 aarch64_reg_type rtype;
4683 struct neon_type_el vectype;
4684 aarch64_opnd_info *info = &inst.base.operands[i];
4686 DEBUG_TRACE ("parse operand %d", i);
4688 /* Assign the operand code. */
4689 info->type = operands[i];
4691 if (optional_operand_p (opcode, i))
4693 /* Remember where we are in case we need to backtrack. */
4694 gas_assert (!backtrack_pos);
4695 backtrack_pos = str;
4698 /* Expect comma between operands; the backtrack mechanizm will take
4699 care of cases of omitted optional operand. */
4700 if (i > 0 && ! skip_past_char (&str, ','))
4702 set_syntax_error (_("comma expected between operands"));
4706 comma_skipped_p = 1;
4708 switch (operands[i])
4710 case AARCH64_OPND_Rd:
4711 case AARCH64_OPND_Rn:
4712 case AARCH64_OPND_Rm:
4713 case AARCH64_OPND_Rt:
4714 case AARCH64_OPND_Rt2:
4715 case AARCH64_OPND_Rs:
4716 case AARCH64_OPND_Ra:
4717 case AARCH64_OPND_Rt_SYS:
4718 case AARCH64_OPND_PAIRREG:
4719 po_int_reg_or_fail (1, 0);
4722 case AARCH64_OPND_Rd_SP:
4723 case AARCH64_OPND_Rn_SP:
4724 po_int_reg_or_fail (0, 1);
4727 case AARCH64_OPND_Rm_EXT:
4728 case AARCH64_OPND_Rm_SFT:
4729 po_misc_or_fail (parse_shifter_operand
4730 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4732 : SHIFTED_LOGIC_IMM)));
4733 if (!info->shifter.operator_present)
4735 /* Default to LSL if not present. Libopcodes prefers shifter
4736 kind to be explicit. */
4737 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4738 info->shifter.kind = AARCH64_MOD_LSL;
4739 /* For Rm_EXT, libopcodes will carry out further check on whether
4740 or not stack pointer is used in the instruction (Recall that
4741 "the extend operator is not optional unless at least one of
4742 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4746 case AARCH64_OPND_Fd:
4747 case AARCH64_OPND_Fn:
4748 case AARCH64_OPND_Fm:
4749 case AARCH64_OPND_Fa:
4750 case AARCH64_OPND_Ft:
4751 case AARCH64_OPND_Ft2:
4752 case AARCH64_OPND_Sd:
4753 case AARCH64_OPND_Sn:
4754 case AARCH64_OPND_Sm:
4755 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4756 if (val == PARSE_FAIL)
4758 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4761 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4763 info->reg.regno = val;
4764 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4767 case AARCH64_OPND_Vd:
4768 case AARCH64_OPND_Vn:
4769 case AARCH64_OPND_Vm:
4770 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4771 if (val == PARSE_FAIL)
4773 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4776 if (vectype.defined & NTA_HASINDEX)
4779 info->reg.regno = val;
4780 info->qualifier = vectype_to_qualifier (&vectype);
4781 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4785 case AARCH64_OPND_VdD1:
4786 case AARCH64_OPND_VnD1:
4787 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4788 if (val == PARSE_FAIL)
4790 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4793 if (vectype.type != NT_d || vectype.index != 1)
4795 set_fatal_syntax_error
4796 (_("the top half of a 128-bit FP/SIMD register is expected"));
4799 info->reg.regno = val;
4800 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4801 here; it is correct for the purpose of encoding/decoding since
4802 only the register number is explicitly encoded in the related
4803 instructions, although this appears a bit hacky. */
4804 info->qualifier = AARCH64_OPND_QLF_S_D;
4807 case AARCH64_OPND_Ed:
4808 case AARCH64_OPND_En:
4809 case AARCH64_OPND_Em:
4810 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4811 if (val == PARSE_FAIL)
4813 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4816 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4819 info->reglane.regno = val;
4820 info->reglane.index = vectype.index;
4821 info->qualifier = vectype_to_qualifier (&vectype);
4822 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4826 case AARCH64_OPND_LVn:
4827 case AARCH64_OPND_LVt:
4828 case AARCH64_OPND_LVt_AL:
4829 case AARCH64_OPND_LEt:
4830 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4832 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4834 set_fatal_syntax_error (_("invalid register list"));
4837 info->reglist.first_regno = (val >> 2) & 0x1f;
4838 info->reglist.num_regs = (val & 0x3) + 1;
4839 if (operands[i] == AARCH64_OPND_LEt)
4841 if (!(vectype.defined & NTA_HASINDEX))
4843 info->reglist.has_index = 1;
4844 info->reglist.index = vectype.index;
4846 else if (!(vectype.defined & NTA_HASTYPE))
4848 info->qualifier = vectype_to_qualifier (&vectype);
4849 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4853 case AARCH64_OPND_Cn:
4854 case AARCH64_OPND_Cm:
4855 po_reg_or_fail (REG_TYPE_CN);
4858 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4861 inst.base.operands[i].reg.regno = val;
4864 case AARCH64_OPND_SHLL_IMM:
4865 case AARCH64_OPND_IMM_VLSR:
4866 po_imm_or_fail (1, 64);
4867 info->imm.value = val;
4870 case AARCH64_OPND_CCMP_IMM:
4871 case AARCH64_OPND_FBITS:
4872 case AARCH64_OPND_UIMM4:
4873 case AARCH64_OPND_UIMM3_OP1:
4874 case AARCH64_OPND_UIMM3_OP2:
4875 case AARCH64_OPND_IMM_VLSL:
4876 case AARCH64_OPND_IMM:
4877 case AARCH64_OPND_WIDTH:
4878 po_imm_nc_or_fail ();
4879 info->imm.value = val;
4882 case AARCH64_OPND_UIMM7:
4883 po_imm_or_fail (0, 127);
4884 info->imm.value = val;
4887 case AARCH64_OPND_IDX:
4888 case AARCH64_OPND_BIT_NUM:
4889 case AARCH64_OPND_IMMR:
4890 case AARCH64_OPND_IMMS:
4891 po_imm_or_fail (0, 63);
4892 info->imm.value = val;
4895 case AARCH64_OPND_IMM0:
4896 po_imm_nc_or_fail ();
4899 set_fatal_syntax_error (_("immediate zero expected"));
4902 info->imm.value = 0;
4905 case AARCH64_OPND_FPIMM0:
4908 bfd_boolean res1 = FALSE, res2 = FALSE;
4909 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4910 it is probably not worth the effort to support it. */
4911 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
4912 && !(res2 = parse_constant_immediate (&str, &val)))
4914 if ((res1 && qfloat == 0) || (res2 && val == 0))
4916 info->imm.value = 0;
4917 info->imm.is_fp = 1;
4920 set_fatal_syntax_error (_("immediate zero expected"));
4924 case AARCH64_OPND_IMM_MOV:
4927 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4928 reg_name_p (str, REG_TYPE_VN))
4931 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4933 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4934 later. fix_mov_imm_insn will try to determine a machine
4935 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4936 message if the immediate cannot be moved by a single
4938 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4939 inst.base.operands[i].skip = 1;
4943 case AARCH64_OPND_SIMD_IMM:
4944 case AARCH64_OPND_SIMD_IMM_SFT:
4945 if (! parse_big_immediate (&str, &val))
4947 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4949 /* need_libopcodes_p */ 1,
4952 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4953 shift, we don't check it here; we leave the checking to
4954 the libopcodes (operand_general_constraint_met_p). By
4955 doing this, we achieve better diagnostics. */
4956 if (skip_past_comma (&str)
4957 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4959 if (!info->shifter.operator_present
4960 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4962 /* Default to LSL if not present. Libopcodes prefers shifter
4963 kind to be explicit. */
4964 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4965 info->shifter.kind = AARCH64_MOD_LSL;
4969 case AARCH64_OPND_FPIMM:
4970 case AARCH64_OPND_SIMD_FPIMM:
4974 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
4976 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
4980 set_fatal_syntax_error (_("invalid floating-point constant"));
4983 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
4984 inst.base.operands[i].imm.is_fp = 1;
4988 case AARCH64_OPND_LIMM:
4989 po_misc_or_fail (parse_shifter_operand (&str, info,
4990 SHIFTED_LOGIC_IMM));
4991 if (info->shifter.operator_present)
4993 set_fatal_syntax_error
4994 (_("shift not allowed for bitmask immediate"));
4997 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4999 /* need_libopcodes_p */ 1,
5003 case AARCH64_OPND_AIMM:
5004 if (opcode->op == OP_ADD)
5005 /* ADD may have relocation types. */
5006 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5007 SHIFTED_ARITH_IMM));
5009 po_misc_or_fail (parse_shifter_operand (&str, info,
5010 SHIFTED_ARITH_IMM));
5011 switch (inst.reloc.type)
5013 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5014 info->shifter.amount = 12;
5016 case BFD_RELOC_UNUSED:
5017 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5018 if (info->shifter.kind != AARCH64_MOD_NONE)
5019 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5020 inst.reloc.pc_rel = 0;
5025 info->imm.value = 0;
5026 if (!info->shifter.operator_present)
5028 /* Default to LSL if not present. Libopcodes prefers shifter
5029 kind to be explicit. */
5030 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5031 info->shifter.kind = AARCH64_MOD_LSL;
5035 case AARCH64_OPND_HALF:
5037 /* #<imm16> or relocation. */
5038 int internal_fixup_p;
5039 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5040 if (internal_fixup_p)
5041 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5042 skip_whitespace (str);
5043 if (skip_past_comma (&str))
5045 /* {, LSL #<shift>} */
5046 if (! aarch64_gas_internal_fixup_p ())
5048 set_fatal_syntax_error (_("can't mix relocation modifier "
5049 "with explicit shift"));
5052 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5055 inst.base.operands[i].shifter.amount = 0;
5056 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5057 inst.base.operands[i].imm.value = 0;
5058 if (! process_movw_reloc_info ())
5063 case AARCH64_OPND_EXCEPTION:
5064 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5065 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5067 /* need_libopcodes_p */ 0,
5071 case AARCH64_OPND_NZCV:
5073 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5077 info->imm.value = nzcv->value;
5080 po_imm_or_fail (0, 15);
5081 info->imm.value = val;
5085 case AARCH64_OPND_COND:
5086 case AARCH64_OPND_COND1:
5087 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5089 if (info->cond == NULL)
5091 set_syntax_error (_("invalid condition"));
5094 else if (operands[i] == AARCH64_OPND_COND1
5095 && (info->cond->value & 0xe) == 0xe)
5097 /* Not allow AL or NV. */
5098 set_default_error ();
5103 case AARCH64_OPND_ADDR_ADRP:
5104 po_misc_or_fail (parse_adrp (&str));
5105 /* Clear the value as operand needs to be relocated. */
5106 info->imm.value = 0;
5109 case AARCH64_OPND_ADDR_PCREL14:
5110 case AARCH64_OPND_ADDR_PCREL19:
5111 case AARCH64_OPND_ADDR_PCREL21:
5112 case AARCH64_OPND_ADDR_PCREL26:
5113 po_misc_or_fail (parse_address_reloc (&str, info));
5114 if (!info->addr.pcrel)
5116 set_syntax_error (_("invalid pc-relative address"));
5119 if (inst.gen_lit_pool
5120 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5122 /* Only permit "=value" in the literal load instructions.
5123 The literal will be generated by programmer_friendly_fixup. */
5124 set_syntax_error (_("invalid use of \"=immediate\""));
5127 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5129 set_syntax_error (_("unrecognized relocation suffix"));
5132 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5134 info->imm.value = inst.reloc.exp.X_add_number;
5135 inst.reloc.type = BFD_RELOC_UNUSED;
5139 info->imm.value = 0;
5140 if (inst.reloc.type == BFD_RELOC_UNUSED)
5141 switch (opcode->iclass)
5145 /* e.g. CBZ or B.COND */
5146 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5147 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5151 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5152 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5156 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5158 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5159 : BFD_RELOC_AARCH64_JUMP26;
5162 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5163 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5166 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5167 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5173 inst.reloc.pc_rel = 1;
5177 case AARCH64_OPND_ADDR_SIMPLE:
5178 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5179 /* [<Xn|SP>{, #<simm>}] */
5180 po_char_or_fail ('[');
5181 po_reg_or_fail (REG_TYPE_R64_SP);
5182 /* Accept optional ", #0". */
5183 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5184 && skip_past_char (&str, ','))
5186 skip_past_char (&str, '#');
5187 if (! skip_past_char (&str, '0'))
5189 set_fatal_syntax_error
5190 (_("the optional immediate offset can only be 0"));
5194 po_char_or_fail (']');
5195 info->addr.base_regno = val;
5198 case AARCH64_OPND_ADDR_REGOFF:
5199 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5200 po_misc_or_fail (parse_address (&str, info, 0));
5201 if (info->addr.pcrel || !info->addr.offset.is_reg
5202 || !info->addr.preind || info->addr.postind
5203 || info->addr.writeback)
5205 set_syntax_error (_("invalid addressing mode"));
5208 if (!info->shifter.operator_present)
5210 /* Default to LSL if not present. Libopcodes prefers shifter
5211 kind to be explicit. */
5212 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5213 info->shifter.kind = AARCH64_MOD_LSL;
5215 /* Qualifier to be deduced by libopcodes. */
5218 case AARCH64_OPND_ADDR_SIMM7:
5219 po_misc_or_fail (parse_address (&str, info, 0));
5220 if (info->addr.pcrel || info->addr.offset.is_reg
5221 || (!info->addr.preind && !info->addr.postind))
5223 set_syntax_error (_("invalid addressing mode"));
5226 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5228 /* need_libopcodes_p */ 1,
5232 case AARCH64_OPND_ADDR_SIMM9:
5233 case AARCH64_OPND_ADDR_SIMM9_2:
5234 po_misc_or_fail (parse_address_reloc (&str, info));
5235 if (info->addr.pcrel || info->addr.offset.is_reg
5236 || (!info->addr.preind && !info->addr.postind)
5237 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5238 && info->addr.writeback))
5240 set_syntax_error (_("invalid addressing mode"));
5243 if (inst.reloc.type != BFD_RELOC_UNUSED)
5245 set_syntax_error (_("relocation not allowed"));
5248 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5250 /* need_libopcodes_p */ 1,
5254 case AARCH64_OPND_ADDR_UIMM12:
5255 po_misc_or_fail (parse_address_reloc (&str, info));
5256 if (info->addr.pcrel || info->addr.offset.is_reg
5257 || !info->addr.preind || info->addr.writeback)
5259 set_syntax_error (_("invalid addressing mode"));
5262 if (inst.reloc.type == BFD_RELOC_UNUSED)
5263 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5264 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5265 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5266 /* Leave qualifier to be determined by libopcodes. */
5269 case AARCH64_OPND_SIMD_ADDR_POST:
5270 /* [<Xn|SP>], <Xm|#<amount>> */
5271 po_misc_or_fail (parse_address (&str, info, 1));
5272 if (!info->addr.postind || !info->addr.writeback)
5274 set_syntax_error (_("invalid addressing mode"));
5277 if (!info->addr.offset.is_reg)
5279 if (inst.reloc.exp.X_op == O_constant)
5280 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5283 set_fatal_syntax_error
5284 (_("writeback value should be an immediate constant"));
5291 case AARCH64_OPND_SYSREG:
5292 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1))
5295 set_syntax_error (_("unknown or missing system register name"));
5298 inst.base.operands[i].sysreg = val;
5301 case AARCH64_OPND_PSTATEFIELD:
5302 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0))
5305 set_syntax_error (_("unknown or missing PSTATE field name"));
5308 inst.base.operands[i].pstatefield = val;
5311 case AARCH64_OPND_SYSREG_IC:
5312 inst.base.operands[i].sysins_op =
5313 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5315 case AARCH64_OPND_SYSREG_DC:
5316 inst.base.operands[i].sysins_op =
5317 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5319 case AARCH64_OPND_SYSREG_AT:
5320 inst.base.operands[i].sysins_op =
5321 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5323 case AARCH64_OPND_SYSREG_TLBI:
5324 inst.base.operands[i].sysins_op =
5325 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5327 if (inst.base.operands[i].sysins_op == NULL)
5329 set_fatal_syntax_error ( _("unknown or missing operation name"));
5334 case AARCH64_OPND_BARRIER:
5335 case AARCH64_OPND_BARRIER_ISB:
5336 val = parse_barrier (&str);
5337 if (val != PARSE_FAIL
5338 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5340 /* ISB only accepts options name 'sy'. */
5342 (_("the specified option is not accepted in ISB"));
5343 /* Turn off backtrack as this optional operand is present. */
5347 /* This is an extension to accept a 0..15 immediate. */
5348 if (val == PARSE_FAIL)
5349 po_imm_or_fail (0, 15);
5350 info->barrier = aarch64_barrier_options + val;
5353 case AARCH64_OPND_PRFOP:
5354 val = parse_pldop (&str);
5355 /* This is an extension to accept a 0..31 immediate. */
5356 if (val == PARSE_FAIL)
5357 po_imm_or_fail (0, 31);
5358 inst.base.operands[i].prfop = aarch64_prfops + val;
5362 as_fatal (_("unhandled operand code %d"), operands[i]);
5365 /* If we get here, this operand was successfully parsed. */
5366 inst.base.operands[i].present = 1;
5370 /* The parse routine should already have set the error, but in case
5371 not, set a default one here. */
5373 set_default_error ();
5375 if (! backtrack_pos)
5376 goto parse_operands_return;
5379 /* We reach here because this operand is marked as optional, and
5380 either no operand was supplied or the operand was supplied but it
5381 was syntactically incorrect. In the latter case we report an
5382 error. In the former case we perform a few more checks before
5383 dropping through to the code to insert the default operand. */
5385 char *tmp = backtrack_pos;
5386 char endchar = END_OF_INSN;
5388 if (i != (aarch64_num_of_operands (opcode) - 1))
5390 skip_past_char (&tmp, ',');
5392 if (*tmp != endchar)
5393 /* The user has supplied an operand in the wrong format. */
5394 goto parse_operands_return;
5396 /* Make sure there is not a comma before the optional operand.
5397 For example the fifth operand of 'sys' is optional:
5399 sys #0,c0,c0,#0, <--- wrong
5400 sys #0,c0,c0,#0 <--- correct. */
5401 if (comma_skipped_p && i && endchar == END_OF_INSN)
5403 set_fatal_syntax_error
5404 (_("unexpected comma before the omitted optional operand"));
5405 goto parse_operands_return;
5409 /* Reaching here means we are dealing with an optional operand that is
5410 omitted from the assembly line. */
5411 gas_assert (optional_operand_p (opcode, i));
5413 process_omitted_operand (operands[i], opcode, i, info);
5415 /* Try again, skipping the optional operand at backtrack_pos. */
5416 str = backtrack_pos;
5419 /* Clear any error record after the omitted optional operand has been
5420 successfully handled. */
5424 /* Check if we have parsed all the operands. */
5425 if (*str != '\0' && ! error_p ())
5427 /* Set I to the index of the last present operand; this is
5428 for the purpose of diagnostics. */
5429 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5431 set_fatal_syntax_error
5432 (_("unexpected characters following instruction"));
5435 parse_operands_return:
5439 DEBUG_TRACE ("parsing FAIL: %s - %s",
5440 operand_mismatch_kind_names[get_error_kind ()],
5441 get_error_message ());
5442 /* Record the operand error properly; this is useful when there
5443 are multiple instruction templates for a mnemonic name, so that
5444 later on, we can select the error that most closely describes
5446 record_operand_error (opcode, i, get_error_kind (),
5447 get_error_message ());
5452 DEBUG_TRACE ("parsing SUCCESS");
5457 /* It does some fix-up to provide some programmer friendly feature while
5458 keeping the libopcodes happy, i.e. libopcodes only accepts
5459 the preferred architectural syntax.
5460 Return FALSE if there is any failure; otherwise return TRUE. */
5463 programmer_friendly_fixup (aarch64_instruction *instr)
5465 aarch64_inst *base = &instr->base;
5466 const aarch64_opcode *opcode = base->opcode;
5467 enum aarch64_op op = opcode->op;
5468 aarch64_opnd_info *operands = base->operands;
5470 DEBUG_TRACE ("enter");
5472 switch (opcode->iclass)
5475 /* TBNZ Xn|Wn, #uimm6, label
5476 Test and Branch Not Zero: conditionally jumps to label if bit number
5477 uimm6 in register Xn is not zero. The bit number implies the width of
5478 the register, which may be written and should be disassembled as Wn if
5479 uimm is less than 32. */
5480 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5482 if (operands[1].imm.value >= 32)
5484 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5488 operands[0].qualifier = AARCH64_OPND_QLF_X;
5492 /* LDR Wt, label | =value
5493 As a convenience assemblers will typically permit the notation
5494 "=value" in conjunction with the pc-relative literal load instructions
5495 to automatically place an immediate value or symbolic address in a
5496 nearby literal pool and generate a hidden label which references it.
5497 ISREG has been set to 0 in the case of =value. */
5498 if (instr->gen_lit_pool
5499 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5501 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5502 if (op == OP_LDRSW_LIT)
5504 if (instr->reloc.exp.X_op != O_constant
5505 && instr->reloc.exp.X_op != O_big
5506 && instr->reloc.exp.X_op != O_symbol)
5508 record_operand_error (opcode, 1,
5509 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5510 _("constant expression expected"));
5513 if (! add_to_lit_pool (&instr->reloc.exp, size))
5515 record_operand_error (opcode, 1,
5516 AARCH64_OPDE_OTHER_ERROR,
5517 _("literal pool insertion failed"));
5525 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5526 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5527 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5528 A programmer-friendly assembler should accept a destination Xd in
5529 place of Wd, however that is not the preferred form for disassembly.
5531 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5532 && operands[1].qualifier == AARCH64_OPND_QLF_W
5533 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5534 operands[0].qualifier = AARCH64_OPND_QLF_W;
5539 /* In the 64-bit form, the final register operand is written as Wm
5540 for all but the (possibly omitted) UXTX/LSL and SXTX
5542 As a programmer-friendly assembler, we accept e.g.
5543 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5544 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5545 int idx = aarch64_operand_index (opcode->operands,
5546 AARCH64_OPND_Rm_EXT);
5547 gas_assert (idx == 1 || idx == 2);
5548 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5549 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5550 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5551 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5552 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5553 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5561 DEBUG_TRACE ("exit with SUCCESS");
5565 /* Check for loads and stores that will cause unpredictable behavior. */
5568 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5570 aarch64_inst *base = &instr->base;
5571 const aarch64_opcode *opcode = base->opcode;
5572 const aarch64_opnd_info *opnds = base->operands;
5573 switch (opcode->iclass)
5579 /* Loading/storing the base register is unpredictable if writeback. */
5580 if ((aarch64_get_operand_class (opnds[0].type)
5581 == AARCH64_OPND_CLASS_INT_REG)
5582 && opnds[0].reg.regno == opnds[1].addr.base_regno
5583 && opnds[1].addr.base_regno != REG_SP
5584 && opnds[1].addr.writeback)
5585 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5588 case ldstnapair_offs:
5589 case ldstpair_indexed:
5590 /* Loading/storing the base register is unpredictable if writeback. */
5591 if ((aarch64_get_operand_class (opnds[0].type)
5592 == AARCH64_OPND_CLASS_INT_REG)
5593 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5594 || opnds[1].reg.regno == opnds[2].addr.base_regno)
5595 && opnds[2].addr.base_regno != REG_SP
5596 && opnds[2].addr.writeback)
5597 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5598 /* Load operations must load different registers. */
5599 if ((opcode->opcode & (1 << 22))
5600 && opnds[0].reg.regno == opnds[1].reg.regno)
5601 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5608 /* A wrapper function to interface with libopcodes on encoding and
5609 record the error message if there is any.
5611 Return TRUE on success; otherwise return FALSE. */
5614 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5617 aarch64_operand_error error_info;
5618 error_info.kind = AARCH64_OPDE_NIL;
5619 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5623 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5624 record_operand_error_info (opcode, &error_info);
5629 #ifdef DEBUG_AARCH64
5631 dump_opcode_operands (const aarch64_opcode *opcode)
5634 while (opcode->operands[i] != AARCH64_OPND_NIL)
5636 aarch64_verbose ("\t\t opnd%d: %s", i,
5637 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5638 ? aarch64_get_operand_name (opcode->operands[i])
5639 : aarch64_get_operand_desc (opcode->operands[i]));
5643 #endif /* DEBUG_AARCH64 */
5645 /* This is the guts of the machine-dependent assembler. STR points to a
5646 machine dependent instruction. This function is supposed to emit
5647 the frags/bytes it assembles to. */
5650 md_assemble (char *str)
5653 templates *template;
5654 aarch64_opcode *opcode;
5655 aarch64_inst *inst_base;
5656 unsigned saved_cond;
5658 /* Align the previous label if needed. */
5659 if (last_label_seen != NULL)
5661 symbol_set_frag (last_label_seen, frag_now);
5662 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5663 S_SET_SEGMENT (last_label_seen, now_seg);
5666 inst.reloc.type = BFD_RELOC_UNUSED;
5668 DEBUG_TRACE ("\n\n");
5669 DEBUG_TRACE ("==============================");
5670 DEBUG_TRACE ("Enter md_assemble with %s", str);
5672 template = opcode_lookup (&p);
5675 /* It wasn't an instruction, but it might be a register alias of
5676 the form alias .req reg directive. */
5677 if (!create_register_alias (str, p))
5678 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5683 skip_whitespace (p);
5686 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5687 get_mnemonic_name (str), str);
5691 init_operand_error_report ();
5693 saved_cond = inst.cond;
5694 reset_aarch64_instruction (&inst);
5695 inst.cond = saved_cond;
5697 /* Iterate through all opcode entries with the same mnemonic name. */
5700 opcode = template->opcode;
5702 DEBUG_TRACE ("opcode %s found", opcode->name);
5703 #ifdef DEBUG_AARCH64
5705 dump_opcode_operands (opcode);
5706 #endif /* DEBUG_AARCH64 */
5708 /* Sections are assumed to start aligned. In executable section, there is no
5709 MAP_DATA symbol pending. So we only align the address during
5710 MAP_DATA --> MAP_INSN transition.
5711 For other sections, this is not guaranteed, align it anyway. */
5712 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
5713 if (!need_pass_2 && ((subseg_text_p (now_seg) && mapstate == MAP_DATA)
5714 || !subseg_text_p (now_seg)))
5715 frag_align_code (2, 0);
5717 mapping_state (MAP_INSN);
5719 inst_base = &inst.base;
5720 inst_base->opcode = opcode;
5722 /* Truly conditionally executed instructions, e.g. b.cond. */
5723 if (opcode->flags & F_COND)
5725 gas_assert (inst.cond != COND_ALWAYS);
5726 inst_base->cond = get_cond_from_value (inst.cond);
5727 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5729 else if (inst.cond != COND_ALWAYS)
5731 /* It shouldn't arrive here, where the assembly looks like a
5732 conditional instruction but the found opcode is unconditional. */
5737 if (parse_operands (p, opcode)
5738 && programmer_friendly_fixup (&inst)
5739 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5741 /* Check that this instruction is supported for this CPU. */
5742 if (!opcode->avariant
5743 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5745 as_bad (_("selected processor does not support `%s'"), str);
5749 warn_unpredictable_ldst (&inst, str);
5751 if (inst.reloc.type == BFD_RELOC_UNUSED
5752 || !inst.reloc.need_libopcodes_p)
5756 /* If there is relocation generated for the instruction,
5757 store the instruction information for the future fix-up. */
5758 struct aarch64_inst *copy;
5759 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5760 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5762 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5768 template = template->next;
5769 if (template != NULL)
5771 reset_aarch64_instruction (&inst);
5772 inst.cond = saved_cond;
5775 while (template != NULL);
5777 /* Issue the error messages if any. */
5778 output_operand_error_report (str);
5781 /* Various frobbings of labels and their addresses. */
5784 aarch64_start_line_hook (void)
5786 last_label_seen = NULL;
5790 aarch64_frob_label (symbolS * sym)
5792 last_label_seen = sym;
5794 dwarf2_emit_label (sym);
5798 aarch64_data_in_code (void)
5800 if (!strncmp (input_line_pointer + 1, "data:", 5))
5802 *input_line_pointer = '/';
5803 input_line_pointer += 5;
5804 *input_line_pointer = 0;
5812 aarch64_canonicalize_symbol_name (char *name)
5816 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5817 *(name + len - 5) = 0;
5822 /* Table of all register names defined by default. The user can
5823 define additional names with .req. Note that all register names
5824 should appear in both upper and lowercase variants. Some registers
5825 also have mixed-case names. */
5827 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5828 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
5829 #define REGSET31(p,t) \
5830 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5831 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5832 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5833 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5834 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5835 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5836 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5837 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5838 #define REGSET(p,t) \
5839 REGSET31(p,t), REGNUM(p,31,t)
5841 /* These go into aarch64_reg_hsh hash-table. */
5842 static const reg_entry reg_names[] = {
5843 /* Integer registers. */
5844 REGSET31 (x, R_64), REGSET31 (X, R_64),
5845 REGSET31 (w, R_32), REGSET31 (W, R_32),
5847 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5848 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5850 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5851 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5853 /* Coprocessor register numbers. */
5854 REGSET (c, CN), REGSET (C, CN),
5856 /* Floating-point single precision registers. */
5857 REGSET (s, FP_S), REGSET (S, FP_S),
5859 /* Floating-point double precision registers. */
5860 REGSET (d, FP_D), REGSET (D, FP_D),
5862 /* Floating-point half precision registers. */
5863 REGSET (h, FP_H), REGSET (H, FP_H),
5865 /* Floating-point byte precision registers. */
5866 REGSET (b, FP_B), REGSET (B, FP_B),
5868 /* Floating-point quad precision registers. */
5869 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5871 /* FP/SIMD registers. */
5872 REGSET (v, VN), REGSET (V, VN),
5887 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5888 static const asm_nzcv nzcv_names[] = {
5889 {"nzcv", B (n, z, c, v)},
5890 {"nzcV", B (n, z, c, V)},
5891 {"nzCv", B (n, z, C, v)},
5892 {"nzCV", B (n, z, C, V)},
5893 {"nZcv", B (n, Z, c, v)},
5894 {"nZcV", B (n, Z, c, V)},
5895 {"nZCv", B (n, Z, C, v)},
5896 {"nZCV", B (n, Z, C, V)},
5897 {"Nzcv", B (N, z, c, v)},
5898 {"NzcV", B (N, z, c, V)},
5899 {"NzCv", B (N, z, C, v)},
5900 {"NzCV", B (N, z, C, V)},
5901 {"NZcv", B (N, Z, c, v)},
5902 {"NZcV", B (N, Z, c, V)},
5903 {"NZCv", B (N, Z, C, v)},
5904 {"NZCV", B (N, Z, C, V)}
5917 /* MD interface: bits in the object file. */
5919 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5920 for use in the a.out file, and stores them in the array pointed to by buf.
5921 This knows about the endian-ness of the target machine and does
5922 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5923 2 (short) and 4 (long) Floating numbers are put out as a series of
5924 LITTLENUMS (shorts, here at least). */
5927 md_number_to_chars (char *buf, valueT val, int n)
5929 if (target_big_endian)
5930 number_to_chars_bigendian (buf, val, n);
5932 number_to_chars_littleendian (buf, val, n);
5935 /* MD interface: Sections. */
5937 /* Estimate the size of a frag before relaxing. Assume everything fits in
5941 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5947 /* Round up a section size to the appropriate boundary. */
5950 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5955 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
5956 of an rs_align_code fragment.
5958 Here we fill the frag with the appropriate info for padding the
5959 output stream. The resulting frag will consist of a fixed (fr_fix)
5960 and of a repeating (fr_var) part.
5962 The fixed content is always emitted before the repeating content and
5963 these two parts are used as follows in constructing the output:
5964 - the fixed part will be used to align to a valid instruction word
5965 boundary, in case that we start at a misaligned address; as no
5966 executable instruction can live at the misaligned location, we
5967 simply fill with zeros;
5968 - the variable part will be used to cover the remaining padding and
5969 we fill using the AArch64 NOP instruction.
5971 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
5972 enough storage space for up to 3 bytes for padding the back to a valid
5973 instruction alignment and exactly 4 bytes to store the NOP pattern. */
5976 aarch64_handle_align (fragS * fragP)
5978 /* NOP = d503201f */
5979 /* AArch64 instructions are always little-endian. */
5980 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
5982 int bytes, fix, noop_size;
5985 if (fragP->fr_type != rs_align_code)
5988 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5989 p = fragP->fr_literal + fragP->fr_fix;
5992 gas_assert (fragP->tc_frag_data.recorded);
5995 noop_size = sizeof (aarch64_noop);
5997 fix = bytes & (noop_size - 1);
6001 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6005 fragP->fr_fix += fix;
6009 memcpy (p, aarch64_noop, noop_size);
6010 fragP->fr_var = noop_size;
6013 /* Perform target specific initialisation of a frag.
6014 Note - despite the name this initialisation is not done when the frag
6015 is created, but only when its type is assigned. A frag can be created
6016 and used a long time before its type is set, so beware of assuming that
6017 this initialisationis performed first. */
6021 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6022 int max_chars ATTRIBUTE_UNUSED)
6026 #else /* OBJ_ELF is defined. */
6028 aarch64_init_frag (fragS * fragP, int max_chars)
6030 /* Record a mapping symbol for alignment frags. We will delete this
6031 later if the alignment ends up empty. */
6032 if (!fragP->tc_frag_data.recorded)
6034 fragP->tc_frag_data.recorded = 1;
6035 switch (fragP->fr_type)
6040 mapping_state_2 (MAP_DATA, max_chars);
6043 mapping_state_2 (MAP_INSN, max_chars);
6051 /* Initialize the DWARF-2 unwind information for this procedure. */
6054 tc_aarch64_frame_initial_instructions (void)
6056 cfi_add_CFA_def_cfa (REG_SP, 0);
6058 #endif /* OBJ_ELF */
6060 /* Convert REGNAME to a DWARF-2 register number. */
6063 tc_aarch64_regname_to_dw2regnum (char *regname)
6065 const reg_entry *reg = parse_reg (®name);
6071 case REG_TYPE_SP_32:
6072 case REG_TYPE_SP_64:
6082 return reg->number + 64;
6090 /* Implement DWARF2_ADDR_SIZE. */
6093 aarch64_dwarf2_addr_size (void)
6095 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6099 return bfd_arch_bits_per_address (stdoutput) / 8;
6102 /* MD interface: Symbol and relocation handling. */
6104 /* Return the address within the segment that a PC-relative fixup is
6105 relative to. For AArch64 PC-relative fixups applied to instructions
6106 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6109 md_pcrel_from_section (fixS * fixP, segT seg)
6111 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6113 /* If this is pc-relative and we are going to emit a relocation
6114 then we just want to put out any pipeline compensation that the linker
6115 will need. Otherwise we want to use the calculated base. */
6117 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6118 || aarch64_force_relocation (fixP)))
6121 /* AArch64 should be consistent for all pc-relative relocations. */
6122 return base + AARCH64_PCREL_OFFSET;
6125 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6126 Otherwise we have no need to default values of symbols. */
6129 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6132 if (name[0] == '_' && name[1] == 'G'
6133 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6137 if (symbol_find (name))
6138 as_bad (_("GOT already in the symbol table"));
6140 GOT_symbol = symbol_new (name, undefined_section,
6141 (valueT) 0, &zero_address_frag);
6151 /* Return non-zero if the indicated VALUE has overflowed the maximum
6152 range expressible by a unsigned number with the indicated number of
6156 unsigned_overflow (valueT value, unsigned bits)
6159 if (bits >= sizeof (valueT) * 8)
6161 lim = (valueT) 1 << bits;
6162 return (value >= lim);
6166 /* Return non-zero if the indicated VALUE has overflowed the maximum
6167 range expressible by an signed number with the indicated number of
6171 signed_overflow (offsetT value, unsigned bits)
6174 if (bits >= sizeof (offsetT) * 8)
6176 lim = (offsetT) 1 << (bits - 1);
6177 return (value < -lim || value >= lim);
6180 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6181 unsigned immediate offset load/store instruction, try to encode it as
6182 an unscaled, 9-bit, signed immediate offset load/store instruction.
6183 Return TRUE if it is successful; otherwise return FALSE.
6185 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6186 in response to the standard LDR/STR mnemonics when the immediate offset is
6187 unambiguous, i.e. when it is negative or unaligned. */
6190 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6193 enum aarch64_op new_op;
6194 const aarch64_opcode *new_opcode;
6196 gas_assert (instr->opcode->iclass == ldst_pos);
6198 switch (instr->opcode->op)
6200 case OP_LDRB_POS:new_op = OP_LDURB; break;
6201 case OP_STRB_POS: new_op = OP_STURB; break;
6202 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6203 case OP_LDRH_POS: new_op = OP_LDURH; break;
6204 case OP_STRH_POS: new_op = OP_STURH; break;
6205 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6206 case OP_LDR_POS: new_op = OP_LDUR; break;
6207 case OP_STR_POS: new_op = OP_STUR; break;
6208 case OP_LDRF_POS: new_op = OP_LDURV; break;
6209 case OP_STRF_POS: new_op = OP_STURV; break;
6210 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6211 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6212 default: new_op = OP_NIL; break;
6215 if (new_op == OP_NIL)
6218 new_opcode = aarch64_get_opcode (new_op);
6219 gas_assert (new_opcode != NULL);
6221 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6222 instr->opcode->op, new_opcode->op);
6224 aarch64_replace_opcode (instr, new_opcode);
6226 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6227 qualifier matching may fail because the out-of-date qualifier will
6228 prevent the operand being updated with a new and correct qualifier. */
6229 idx = aarch64_operand_index (instr->opcode->operands,
6230 AARCH64_OPND_ADDR_SIMM9);
6231 gas_assert (idx == 1);
6232 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6234 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6236 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6242 /* Called by fix_insn to fix a MOV immediate alias instruction.
6244 Operand for a generic move immediate instruction, which is an alias
6245 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6246 a 32-bit/64-bit immediate value into general register. An assembler error
6247 shall result if the immediate cannot be created by a single one of these
6248 instructions. If there is a choice, then to ensure reversability an
6249 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6252 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6254 const aarch64_opcode *opcode;
6256 /* Need to check if the destination is SP/ZR. The check has to be done
6257 before any aarch64_replace_opcode. */
6258 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6259 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6261 instr->operands[1].imm.value = value;
6262 instr->operands[1].skip = 0;
6266 /* Try the MOVZ alias. */
6267 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6268 aarch64_replace_opcode (instr, opcode);
6269 if (aarch64_opcode_encode (instr->opcode, instr,
6270 &instr->value, NULL, NULL))
6272 put_aarch64_insn (buf, instr->value);
6275 /* Try the MOVK alias. */
6276 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6277 aarch64_replace_opcode (instr, opcode);
6278 if (aarch64_opcode_encode (instr->opcode, instr,
6279 &instr->value, NULL, NULL))
6281 put_aarch64_insn (buf, instr->value);
6286 if (try_mov_bitmask_p)
6288 /* Try the ORR alias. */
6289 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6290 aarch64_replace_opcode (instr, opcode);
6291 if (aarch64_opcode_encode (instr->opcode, instr,
6292 &instr->value, NULL, NULL))
6294 put_aarch64_insn (buf, instr->value);
6299 as_bad_where (fixP->fx_file, fixP->fx_line,
6300 _("immediate cannot be moved by a single instruction"));
6303 /* An instruction operand which is immediate related may have symbol used
6304 in the assembly, e.g.
6307 .set u32, 0x00ffff00
6309 At the time when the assembly instruction is parsed, a referenced symbol,
6310 like 'u32' in the above example may not have been seen; a fixS is created
6311 in such a case and is handled here after symbols have been resolved.
6312 Instruction is fixed up with VALUE using the information in *FIXP plus
6313 extra information in FLAGS.
6315 This function is called by md_apply_fix to fix up instructions that need
6316 a fix-up described above but does not involve any linker-time relocation. */
6319 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6323 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6324 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6325 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6329 /* Now the instruction is about to be fixed-up, so the operand that
6330 was previously marked as 'ignored' needs to be unmarked in order
6331 to get the encoding done properly. */
6332 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6333 new_inst->operands[idx].skip = 0;
6336 gas_assert (opnd != AARCH64_OPND_NIL);
6340 case AARCH64_OPND_EXCEPTION:
6341 if (unsigned_overflow (value, 16))
6342 as_bad_where (fixP->fx_file, fixP->fx_line,
6343 _("immediate out of range"));
6344 insn = get_aarch64_insn (buf);
6345 insn |= encode_svc_imm (value);
6346 put_aarch64_insn (buf, insn);
6349 case AARCH64_OPND_AIMM:
6350 /* ADD or SUB with immediate.
6351 NOTE this assumes we come here with a add/sub shifted reg encoding
6352 3 322|2222|2 2 2 21111 111111
6353 1 098|7654|3 2 1 09876 543210 98765 43210
6354 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6355 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6356 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6357 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6359 3 322|2222|2 2 221111111111
6360 1 098|7654|3 2 109876543210 98765 43210
6361 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6362 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6363 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6364 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6365 Fields sf Rn Rd are already set. */
6366 insn = get_aarch64_insn (buf);
6370 insn = reencode_addsub_switch_add_sub (insn);
6374 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6375 && unsigned_overflow (value, 12))
6377 /* Try to shift the value by 12 to make it fit. */
6378 if (((value >> 12) << 12) == value
6379 && ! unsigned_overflow (value, 12 + 12))
6382 insn |= encode_addsub_imm_shift_amount (1);
6386 if (unsigned_overflow (value, 12))
6387 as_bad_where (fixP->fx_file, fixP->fx_line,
6388 _("immediate out of range"));
6390 insn |= encode_addsub_imm (value);
6392 put_aarch64_insn (buf, insn);
6395 case AARCH64_OPND_SIMD_IMM:
6396 case AARCH64_OPND_SIMD_IMM_SFT:
6397 case AARCH64_OPND_LIMM:
6398 /* Bit mask immediate. */
6399 gas_assert (new_inst != NULL);
6400 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6401 new_inst->operands[idx].imm.value = value;
6402 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6403 &new_inst->value, NULL, NULL))
6404 put_aarch64_insn (buf, new_inst->value);
6406 as_bad_where (fixP->fx_file, fixP->fx_line,
6407 _("invalid immediate"));
6410 case AARCH64_OPND_HALF:
6411 /* 16-bit unsigned immediate. */
6412 if (unsigned_overflow (value, 16))
6413 as_bad_where (fixP->fx_file, fixP->fx_line,
6414 _("immediate out of range"));
6415 insn = get_aarch64_insn (buf);
6416 insn |= encode_movw_imm (value & 0xffff);
6417 put_aarch64_insn (buf, insn);
6420 case AARCH64_OPND_IMM_MOV:
6421 /* Operand for a generic move immediate instruction, which is
6422 an alias instruction that generates a single MOVZ, MOVN or ORR
6423 instruction to loads a 32-bit/64-bit immediate value into general
6424 register. An assembler error shall result if the immediate cannot be
6425 created by a single one of these instructions. If there is a choice,
6426 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6427 and MOVZ or MOVN to ORR. */
6428 gas_assert (new_inst != NULL);
6429 fix_mov_imm_insn (fixP, buf, new_inst, value);
6432 case AARCH64_OPND_ADDR_SIMM7:
6433 case AARCH64_OPND_ADDR_SIMM9:
6434 case AARCH64_OPND_ADDR_SIMM9_2:
6435 case AARCH64_OPND_ADDR_UIMM12:
6436 /* Immediate offset in an address. */
6437 insn = get_aarch64_insn (buf);
6439 gas_assert (new_inst != NULL && new_inst->value == insn);
6440 gas_assert (new_inst->opcode->operands[1] == opnd
6441 || new_inst->opcode->operands[2] == opnd);
6443 /* Get the index of the address operand. */
6444 if (new_inst->opcode->operands[1] == opnd)
6445 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6448 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6451 /* Update the resolved offset value. */
6452 new_inst->operands[idx].addr.offset.imm = value;
6454 /* Encode/fix-up. */
6455 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6456 &new_inst->value, NULL, NULL))
6458 put_aarch64_insn (buf, new_inst->value);
6461 else if (new_inst->opcode->iclass == ldst_pos
6462 && try_to_encode_as_unscaled_ldst (new_inst))
6464 put_aarch64_insn (buf, new_inst->value);
6468 as_bad_where (fixP->fx_file, fixP->fx_line,
6469 _("immediate offset out of range"));
6474 as_fatal (_("unhandled operand code %d"), opnd);
6478 /* Apply a fixup (fixP) to segment data, once it has been determined
6479 by our caller that we have all the info we need to fix it up.
6481 Parameter valP is the pointer to the value of the bits. */
6484 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6486 offsetT value = *valP;
6488 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6490 unsigned flags = fixP->fx_addnumber;
6492 DEBUG_TRACE ("\n\n");
6493 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6494 DEBUG_TRACE ("Enter md_apply_fix");
6496 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6498 /* Note whether this will delete the relocation. */
6500 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6503 /* Process the relocations. */
6504 switch (fixP->fx_r_type)
6506 case BFD_RELOC_NONE:
6507 /* This will need to go in the object file. */
6512 case BFD_RELOC_8_PCREL:
6513 if (fixP->fx_done || !seg->use_rela_p)
6514 md_number_to_chars (buf, value, 1);
6518 case BFD_RELOC_16_PCREL:
6519 if (fixP->fx_done || !seg->use_rela_p)
6520 md_number_to_chars (buf, value, 2);
6524 case BFD_RELOC_32_PCREL:
6525 if (fixP->fx_done || !seg->use_rela_p)
6526 md_number_to_chars (buf, value, 4);
6530 case BFD_RELOC_64_PCREL:
6531 if (fixP->fx_done || !seg->use_rela_p)
6532 md_number_to_chars (buf, value, 8);
6535 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6536 /* We claim that these fixups have been processed here, even if
6537 in fact we generate an error because we do not have a reloc
6538 for them, so tc_gen_reloc() will reject them. */
6540 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6542 as_bad_where (fixP->fx_file, fixP->fx_line,
6543 _("undefined symbol %s used as an immediate value"),
6544 S_GET_NAME (fixP->fx_addsy));
6545 goto apply_fix_return;
6547 fix_insn (fixP, flags, value);
6550 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
6551 if (fixP->fx_done || !seg->use_rela_p)
6554 as_bad_where (fixP->fx_file, fixP->fx_line,
6555 _("pc-relative load offset not word aligned"));
6556 if (signed_overflow (value, 21))
6557 as_bad_where (fixP->fx_file, fixP->fx_line,
6558 _("pc-relative load offset out of range"));
6559 insn = get_aarch64_insn (buf);
6560 insn |= encode_ld_lit_ofs_19 (value >> 2);
6561 put_aarch64_insn (buf, insn);
6565 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6566 if (fixP->fx_done || !seg->use_rela_p)
6568 if (signed_overflow (value, 21))
6569 as_bad_where (fixP->fx_file, fixP->fx_line,
6570 _("pc-relative address offset out of range"));
6571 insn = get_aarch64_insn (buf);
6572 insn |= encode_adr_imm (value);
6573 put_aarch64_insn (buf, insn);
6577 case BFD_RELOC_AARCH64_BRANCH19:
6578 if (fixP->fx_done || !seg->use_rela_p)
6581 as_bad_where (fixP->fx_file, fixP->fx_line,
6582 _("conditional branch target not word aligned"));
6583 if (signed_overflow (value, 21))
6584 as_bad_where (fixP->fx_file, fixP->fx_line,
6585 _("conditional branch out of range"));
6586 insn = get_aarch64_insn (buf);
6587 insn |= encode_cond_branch_ofs_19 (value >> 2);
6588 put_aarch64_insn (buf, insn);
6592 case BFD_RELOC_AARCH64_TSTBR14:
6593 if (fixP->fx_done || !seg->use_rela_p)
6596 as_bad_where (fixP->fx_file, fixP->fx_line,
6597 _("conditional branch target not word aligned"));
6598 if (signed_overflow (value, 16))
6599 as_bad_where (fixP->fx_file, fixP->fx_line,
6600 _("conditional branch out of range"));
6601 insn = get_aarch64_insn (buf);
6602 insn |= encode_tst_branch_ofs_14 (value >> 2);
6603 put_aarch64_insn (buf, insn);
6607 case BFD_RELOC_AARCH64_JUMP26:
6608 case BFD_RELOC_AARCH64_CALL26:
6609 if (fixP->fx_done || !seg->use_rela_p)
6612 as_bad_where (fixP->fx_file, fixP->fx_line,
6613 _("branch target not word aligned"));
6614 if (signed_overflow (value, 28))
6615 as_bad_where (fixP->fx_file, fixP->fx_line,
6616 _("branch out of range"));
6617 insn = get_aarch64_insn (buf);
6618 insn |= encode_branch_ofs_26 (value >> 2);
6619 put_aarch64_insn (buf, insn);
6623 case BFD_RELOC_AARCH64_MOVW_G0:
6624 case BFD_RELOC_AARCH64_MOVW_G0_S:
6625 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6628 case BFD_RELOC_AARCH64_MOVW_G1:
6629 case BFD_RELOC_AARCH64_MOVW_G1_S:
6630 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6633 case BFD_RELOC_AARCH64_MOVW_G2:
6634 case BFD_RELOC_AARCH64_MOVW_G2_S:
6635 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6638 case BFD_RELOC_AARCH64_MOVW_G3:
6641 if (fixP->fx_done || !seg->use_rela_p)
6643 insn = get_aarch64_insn (buf);
6647 /* REL signed addend must fit in 16 bits */
6648 if (signed_overflow (value, 16))
6649 as_bad_where (fixP->fx_file, fixP->fx_line,
6650 _("offset out of range"));
6654 /* Check for overflow and scale. */
6655 switch (fixP->fx_r_type)
6657 case BFD_RELOC_AARCH64_MOVW_G0:
6658 case BFD_RELOC_AARCH64_MOVW_G1:
6659 case BFD_RELOC_AARCH64_MOVW_G2:
6660 case BFD_RELOC_AARCH64_MOVW_G3:
6661 if (unsigned_overflow (value, scale + 16))
6662 as_bad_where (fixP->fx_file, fixP->fx_line,
6663 _("unsigned value out of range"));
6665 case BFD_RELOC_AARCH64_MOVW_G0_S:
6666 case BFD_RELOC_AARCH64_MOVW_G1_S:
6667 case BFD_RELOC_AARCH64_MOVW_G2_S:
6668 /* NOTE: We can only come here with movz or movn. */
6669 if (signed_overflow (value, scale + 16))
6670 as_bad_where (fixP->fx_file, fixP->fx_line,
6671 _("signed value out of range"));
6674 /* Force use of MOVN. */
6676 insn = reencode_movzn_to_movn (insn);
6680 /* Force use of MOVZ. */
6681 insn = reencode_movzn_to_movz (insn);
6685 /* Unchecked relocations. */
6691 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6692 insn |= encode_movw_imm (value & 0xffff);
6694 put_aarch64_insn (buf, insn);
6698 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6699 fixP->fx_r_type = (ilp32_p
6700 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6701 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6702 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6703 /* Should always be exported to object file, see
6704 aarch64_force_relocation(). */
6705 gas_assert (!fixP->fx_done);
6706 gas_assert (seg->use_rela_p);
6709 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6710 fixP->fx_r_type = (ilp32_p
6711 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6712 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6713 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6714 /* Should always be exported to object file, see
6715 aarch64_force_relocation(). */
6716 gas_assert (!fixP->fx_done);
6717 gas_assert (seg->use_rela_p);
6720 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6721 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6722 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6723 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6724 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6725 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6726 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6727 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6728 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6729 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6730 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6731 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6732 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6733 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6734 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6735 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6736 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6737 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6738 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6739 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6740 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6741 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6742 /* Should always be exported to object file, see
6743 aarch64_force_relocation(). */
6744 gas_assert (!fixP->fx_done);
6745 gas_assert (seg->use_rela_p);
6748 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6749 /* Should always be exported to object file, see
6750 aarch64_force_relocation(). */
6751 fixP->fx_r_type = (ilp32_p
6752 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6753 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6754 gas_assert (!fixP->fx_done);
6755 gas_assert (seg->use_rela_p);
6758 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6759 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6760 case BFD_RELOC_AARCH64_ADD_LO12:
6761 case BFD_RELOC_AARCH64_LDST8_LO12:
6762 case BFD_RELOC_AARCH64_LDST16_LO12:
6763 case BFD_RELOC_AARCH64_LDST32_LO12:
6764 case BFD_RELOC_AARCH64_LDST64_LO12:
6765 case BFD_RELOC_AARCH64_LDST128_LO12:
6766 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6767 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6768 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6769 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6770 /* Should always be exported to object file, see
6771 aarch64_force_relocation(). */
6772 gas_assert (!fixP->fx_done);
6773 gas_assert (seg->use_rela_p);
6776 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6777 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6778 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6781 case BFD_RELOC_UNUSED:
6782 /* An error will already have been reported. */
6786 as_bad_where (fixP->fx_file, fixP->fx_line,
6787 _("unexpected %s fixup"),
6788 bfd_get_reloc_code_name (fixP->fx_r_type));
6793 /* Free the allocated the struct aarch64_inst.
6794 N.B. currently there are very limited number of fix-up types actually use
6795 this field, so the impact on the performance should be minimal . */
6796 if (fixP->tc_fix_data.inst != NULL)
6797 free (fixP->tc_fix_data.inst);
6802 /* Translate internal representation of relocation info to BFD target
6806 tc_gen_reloc (asection * section, fixS * fixp)
6809 bfd_reloc_code_real_type code;
6811 reloc = xmalloc (sizeof (arelent));
6813 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6814 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6815 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6819 if (section->use_rela_p)
6820 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6822 fixp->fx_offset = reloc->address;
6824 reloc->addend = fixp->fx_offset;
6826 code = fixp->fx_r_type;
6831 code = BFD_RELOC_16_PCREL;
6836 code = BFD_RELOC_32_PCREL;
6841 code = BFD_RELOC_64_PCREL;
6848 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6849 if (reloc->howto == NULL)
6851 as_bad_where (fixp->fx_file, fixp->fx_line,
6853 ("cannot represent %s relocation in this object file format"),
6854 bfd_get_reloc_code_name (code));
6861 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6864 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6866 bfd_reloc_code_real_type type;
6870 FIXME: @@ Should look at CPU word size. */
6877 type = BFD_RELOC_16;
6880 type = BFD_RELOC_32;
6883 type = BFD_RELOC_64;
6886 as_bad (_("cannot do %u-byte relocation"), size);
6887 type = BFD_RELOC_UNUSED;
6891 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6895 aarch64_force_relocation (struct fix *fixp)
6897 switch (fixp->fx_r_type)
6899 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6900 /* Perform these "immediate" internal relocations
6901 even if the symbol is extern or weak. */
6904 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6905 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6906 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6907 /* Pseudo relocs that need to be fixed up according to
6911 case BFD_RELOC_AARCH64_ADD_LO12:
6912 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6913 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6914 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6915 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6916 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6917 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6918 case BFD_RELOC_AARCH64_LDST128_LO12:
6919 case BFD_RELOC_AARCH64_LDST16_LO12:
6920 case BFD_RELOC_AARCH64_LDST32_LO12:
6921 case BFD_RELOC_AARCH64_LDST64_LO12:
6922 case BFD_RELOC_AARCH64_LDST8_LO12:
6923 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6924 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6925 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6926 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6927 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6928 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6929 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6930 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6931 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6932 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6933 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6934 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6935 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6936 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6937 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6938 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6939 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6940 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6941 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6942 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6943 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6944 /* Always leave these relocations for the linker. */
6951 return generic_force_reloc (fixp);
6957 elf64_aarch64_target_format (void)
6959 if (target_big_endian)
6960 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
6962 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
6966 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6968 elf_frob_symbol (symp, puntp);
6972 /* MD interface: Finalization. */
6974 /* A good place to do this, although this was probably not intended
6975 for this kind of use. We need to dump the literal pool before
6976 references are made to a null symbol pointer. */
6979 aarch64_cleanup (void)
6983 for (pool = list_of_pools; pool; pool = pool->next)
6985 /* Put it at the end of the relevant section. */
6986 subseg_set (pool->section, pool->sub_section);
6992 /* Remove any excess mapping symbols generated for alignment frags in
6993 SEC. We may have created a mapping symbol before a zero byte
6994 alignment; remove it if there's a mapping symbol after the
6997 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
6998 void *dummy ATTRIBUTE_UNUSED)
7000 segment_info_type *seginfo = seg_info (sec);
7003 if (seginfo == NULL || seginfo->frchainP == NULL)
7006 for (fragp = seginfo->frchainP->frch_root;
7007 fragp != NULL; fragp = fragp->fr_next)
7009 symbolS *sym = fragp->tc_frag_data.last_map;
7010 fragS *next = fragp->fr_next;
7012 /* Variable-sized frags have been converted to fixed size by
7013 this point. But if this was variable-sized to start with,
7014 there will be a fixed-size frag after it. So don't handle
7016 if (sym == NULL || next == NULL)
7019 if (S_GET_VALUE (sym) < next->fr_address)
7020 /* Not at the end of this frag. */
7022 know (S_GET_VALUE (sym) == next->fr_address);
7026 if (next->tc_frag_data.first_map != NULL)
7028 /* Next frag starts with a mapping symbol. Discard this
7030 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7034 if (next->fr_next == NULL)
7036 /* This mapping symbol is at the end of the section. Discard
7038 know (next->fr_fix == 0 && next->fr_var == 0);
7039 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7043 /* As long as we have empty frags without any mapping symbols,
7045 /* If the next frag is non-empty and does not start with a
7046 mapping symbol, then this mapping symbol is required. */
7047 if (next->fr_address != next->fr_next->fr_address)
7050 next = next->fr_next;
7052 while (next != NULL);
7057 /* Adjust the symbol table. */
7060 aarch64_adjust_symtab (void)
7063 /* Remove any overlapping mapping symbols generated by alignment frags. */
7064 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7065 /* Now do generic ELF adjustments. */
7066 elf_adjust_symtab ();
7071 checked_hash_insert (struct hash_control *table, const char *key, void *value)
7073 const char *hash_err;
7075 hash_err = hash_insert (table, key, value);
7077 printf ("Internal Error: Can't hash %s\n", key);
7081 fill_instruction_hash_table (void)
7083 aarch64_opcode *opcode = aarch64_opcode_table;
7085 while (opcode->name != NULL)
7087 templates *templ, *new_templ;
7088 templ = hash_find (aarch64_ops_hsh, opcode->name);
7090 new_templ = (templates *) xmalloc (sizeof (templates));
7091 new_templ->opcode = opcode;
7092 new_templ->next = NULL;
7095 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7098 new_templ->next = templ->next;
7099 templ->next = new_templ;
7106 convert_to_upper (char *dst, const char *src, size_t num)
7109 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7110 *dst = TOUPPER (*src);
7114 /* Assume STR point to a lower-case string, allocate, convert and return
7115 the corresponding upper-case string. */
7116 static inline const char*
7117 get_upper_str (const char *str)
7120 size_t len = strlen (str);
7121 if ((ret = xmalloc (len + 1)) == NULL)
7123 convert_to_upper (ret, str, len);
7127 /* MD interface: Initialization. */
7135 if ((aarch64_ops_hsh = hash_new ()) == NULL
7136 || (aarch64_cond_hsh = hash_new ()) == NULL
7137 || (aarch64_shift_hsh = hash_new ()) == NULL
7138 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7139 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7140 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7141 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7142 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7143 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7144 || (aarch64_reg_hsh = hash_new ()) == NULL
7145 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7146 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7147 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7148 as_fatal (_("virtual memory exhausted"));
7150 fill_instruction_hash_table ();
7152 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7153 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7154 (void *) (aarch64_sys_regs + i));
7156 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7157 checked_hash_insert (aarch64_pstatefield_hsh,
7158 aarch64_pstatefields[i].name,
7159 (void *) (aarch64_pstatefields + i));
7161 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7162 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7163 aarch64_sys_regs_ic[i].template,
7164 (void *) (aarch64_sys_regs_ic + i));
7166 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7167 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7168 aarch64_sys_regs_dc[i].template,
7169 (void *) (aarch64_sys_regs_dc + i));
7171 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7172 checked_hash_insert (aarch64_sys_regs_at_hsh,
7173 aarch64_sys_regs_at[i].template,
7174 (void *) (aarch64_sys_regs_at + i));
7176 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7177 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7178 aarch64_sys_regs_tlbi[i].template,
7179 (void *) (aarch64_sys_regs_tlbi + i));
7181 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7182 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7183 (void *) (reg_names + i));
7185 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7186 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7187 (void *) (nzcv_names + i));
7189 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7191 const char *name = aarch64_operand_modifiers[i].name;
7192 checked_hash_insert (aarch64_shift_hsh, name,
7193 (void *) (aarch64_operand_modifiers + i));
7194 /* Also hash the name in the upper case. */
7195 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7196 (void *) (aarch64_operand_modifiers + i));
7199 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7202 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7203 the same condition code. */
7204 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7206 const char *name = aarch64_conds[i].names[j];
7209 checked_hash_insert (aarch64_cond_hsh, name,
7210 (void *) (aarch64_conds + i));
7211 /* Also hash the name in the upper case. */
7212 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7213 (void *) (aarch64_conds + i));
7217 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7219 const char *name = aarch64_barrier_options[i].name;
7220 /* Skip xx00 - the unallocated values of option. */
7223 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7224 (void *) (aarch64_barrier_options + i));
7225 /* Also hash the name in the upper case. */
7226 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7227 (void *) (aarch64_barrier_options + i));
7230 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7232 const char* name = aarch64_prfops[i].name;
7233 /* Skip the unallocated hint encodings. */
7236 checked_hash_insert (aarch64_pldop_hsh, name,
7237 (void *) (aarch64_prfops + i));
7238 /* Also hash the name in the upper case. */
7239 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7240 (void *) (aarch64_prfops + i));
7243 /* Set the cpu variant based on the command-line options. */
7245 mcpu_cpu_opt = march_cpu_opt;
7248 mcpu_cpu_opt = &cpu_default;
7250 cpu_variant = *mcpu_cpu_opt;
7252 /* Record the CPU type. */
7253 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
7255 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7258 /* Command line processing. */
7260 const char *md_shortopts = "m:";
7262 #ifdef AARCH64_BI_ENDIAN
7263 #define OPTION_EB (OPTION_MD_BASE + 0)
7264 #define OPTION_EL (OPTION_MD_BASE + 1)
7266 #if TARGET_BYTES_BIG_ENDIAN
7267 #define OPTION_EB (OPTION_MD_BASE + 0)
7269 #define OPTION_EL (OPTION_MD_BASE + 1)
7273 struct option md_longopts[] = {
7275 {"EB", no_argument, NULL, OPTION_EB},
7278 {"EL", no_argument, NULL, OPTION_EL},
7280 {NULL, no_argument, NULL, 0}
7283 size_t md_longopts_size = sizeof (md_longopts);
7285 struct aarch64_option_table
7287 char *option; /* Option name to match. */
7288 char *help; /* Help information. */
7289 int *var; /* Variable to change. */
7290 int value; /* What to change it to. */
7291 char *deprecated; /* If non-null, print this message. */
7294 static struct aarch64_option_table aarch64_opts[] = {
7295 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7296 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7298 #ifdef DEBUG_AARCH64
7299 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7300 #endif /* DEBUG_AARCH64 */
7301 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7303 {"mno-verbose-error", N_("do not output verbose error messages"),
7304 &verbose_error_p, 0, NULL},
7305 {NULL, NULL, NULL, 0, NULL}
7308 struct aarch64_cpu_option_table
7311 const aarch64_feature_set value;
7312 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7314 const char *canonical_name;
7317 /* This list should, at a minimum, contain all the cpu names
7318 recognized by GCC. */
7319 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7320 {"all", AARCH64_ANY, NULL},
7321 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7322 AARCH64_FEATURE_CRC), "Cortex-A53"},
7323 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7324 AARCH64_FEATURE_CRC), "Cortex-A57"},
7325 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7326 AARCH64_FEATURE_CRC), "Cortex-A72"},
7327 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7328 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7329 "Samsung Exynos M1"},
7330 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7331 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7333 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7334 in earlier releases and is superseded by 'xgene1' in all
7336 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
7337 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
7338 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7339 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
7340 {"generic", AARCH64_ARCH_V8, NULL},
7342 {NULL, AARCH64_ARCH_NONE, NULL}
7345 struct aarch64_arch_option_table
7348 const aarch64_feature_set value;
7351 /* This list should, at a minimum, contain all the architecture names
7352 recognized by GCC. */
7353 static const struct aarch64_arch_option_table aarch64_archs[] = {
7354 {"all", AARCH64_ANY},
7355 {"armv8-a", AARCH64_ARCH_V8},
7356 {NULL, AARCH64_ARCH_NONE}
7359 /* ISA extensions. */
7360 struct aarch64_option_cpu_value_table
7363 const aarch64_feature_set value;
7366 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
7367 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
7368 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7369 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
7370 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
7371 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
7372 {NULL, AARCH64_ARCH_NONE}
7375 struct aarch64_long_option_table
7377 char *option; /* Substring to match. */
7378 char *help; /* Help information. */
7379 int (*func) (char *subopt); /* Function to decode sub-option. */
7380 char *deprecated; /* If non-null, print this message. */
7384 aarch64_parse_features (char *str, const aarch64_feature_set **opt_p,
7385 bfd_boolean ext_only)
7387 /* We insist on extensions being added before being removed. We achieve
7388 this by using the ADDING_VALUE variable to indicate whether we are
7389 adding an extension (1) or removing it (0) and only allowing it to
7390 change in the order -1 -> 1 -> 0. */
7391 int adding_value = -1;
7392 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7394 /* Copy the feature set, so that we can modify it. */
7398 while (str != NULL && *str != 0)
7400 const struct aarch64_option_cpu_value_table *opt;
7408 as_bad (_("invalid architectural extension"));
7412 ext = strchr (++str, '+');
7418 optlen = strlen (str);
7420 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7422 if (adding_value != 0)
7427 else if (optlen > 0)
7429 if (adding_value == -1)
7431 else if (adding_value != 1)
7433 as_bad (_("must specify extensions to add before specifying "
7434 "those to remove"));
7441 as_bad (_("missing architectural extension"));
7445 gas_assert (adding_value != -1);
7447 for (opt = aarch64_features; opt->name != NULL; opt++)
7448 if (strncmp (opt->name, str, optlen) == 0)
7450 /* Add or remove the extension. */
7452 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7454 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7458 if (opt->name == NULL)
7460 as_bad (_("unknown architectural extension `%s'"), str);
7471 aarch64_parse_cpu (char *str)
7473 const struct aarch64_cpu_option_table *opt;
7474 char *ext = strchr (str, '+');
7480 optlen = strlen (str);
7484 as_bad (_("missing cpu name `%s'"), str);
7488 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7489 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7491 mcpu_cpu_opt = &opt->value;
7493 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
7498 as_bad (_("unknown cpu `%s'"), str);
7503 aarch64_parse_arch (char *str)
7505 const struct aarch64_arch_option_table *opt;
7506 char *ext = strchr (str, '+');
7512 optlen = strlen (str);
7516 as_bad (_("missing architecture name `%s'"), str);
7520 for (opt = aarch64_archs; opt->name != NULL; opt++)
7521 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7523 march_cpu_opt = &opt->value;
7525 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
7530 as_bad (_("unknown architecture `%s'\n"), str);
7535 struct aarch64_option_abi_value_table
7538 enum aarch64_abi_type value;
7541 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7542 {"ilp32", AARCH64_ABI_ILP32},
7543 {"lp64", AARCH64_ABI_LP64},
7548 aarch64_parse_abi (char *str)
7550 const struct aarch64_option_abi_value_table *opt;
7551 size_t optlen = strlen (str);
7555 as_bad (_("missing abi name `%s'"), str);
7559 for (opt = aarch64_abis; opt->name != NULL; opt++)
7560 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7562 aarch64_abi = opt->value;
7566 as_bad (_("unknown abi `%s'\n"), str);
7570 static struct aarch64_long_option_table aarch64_long_opts[] = {
7572 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7573 aarch64_parse_abi, NULL},
7574 #endif /* OBJ_ELF */
7575 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7576 aarch64_parse_cpu, NULL},
7577 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7578 aarch64_parse_arch, NULL},
7579 {NULL, NULL, 0, NULL}
7583 md_parse_option (int c, char *arg)
7585 struct aarch64_option_table *opt;
7586 struct aarch64_long_option_table *lopt;
7592 target_big_endian = 1;
7598 target_big_endian = 0;
7603 /* Listing option. Just ignore these, we don't support additional
7608 for (opt = aarch64_opts; opt->option != NULL; opt++)
7610 if (c == opt->option[0]
7611 && ((arg == NULL && opt->option[1] == 0)
7612 || streq (arg, opt->option + 1)))
7614 /* If the option is deprecated, tell the user. */
7615 if (opt->deprecated != NULL)
7616 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7617 arg ? arg : "", _(opt->deprecated));
7619 if (opt->var != NULL)
7620 *opt->var = opt->value;
7626 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7628 /* These options are expected to have an argument. */
7629 if (c == lopt->option[0]
7631 && strncmp (arg, lopt->option + 1,
7632 strlen (lopt->option + 1)) == 0)
7634 /* If the option is deprecated, tell the user. */
7635 if (lopt->deprecated != NULL)
7636 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7637 _(lopt->deprecated));
7639 /* Call the sup-option parser. */
7640 return lopt->func (arg + strlen (lopt->option) - 1);
7651 md_show_usage (FILE * fp)
7653 struct aarch64_option_table *opt;
7654 struct aarch64_long_option_table *lopt;
7656 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7658 for (opt = aarch64_opts; opt->option != NULL; opt++)
7659 if (opt->help != NULL)
7660 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7662 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7663 if (lopt->help != NULL)
7664 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7668 -EB assemble code for a big-endian cpu\n"));
7673 -EL assemble code for a little-endian cpu\n"));
7677 /* Parse a .cpu directive. */
7680 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7682 const struct aarch64_cpu_option_table *opt;
7688 name = input_line_pointer;
7689 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7690 input_line_pointer++;
7691 saved_char = *input_line_pointer;
7692 *input_line_pointer = 0;
7694 ext = strchr (name, '+');
7697 optlen = ext - name;
7699 optlen = strlen (name);
7701 /* Skip the first "all" entry. */
7702 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7703 if (strlen (opt->name) == optlen
7704 && strncmp (name, opt->name, optlen) == 0)
7706 mcpu_cpu_opt = &opt->value;
7708 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
7711 cpu_variant = *mcpu_cpu_opt;
7713 *input_line_pointer = saved_char;
7714 demand_empty_rest_of_line ();
7717 as_bad (_("unknown cpu `%s'"), name);
7718 *input_line_pointer = saved_char;
7719 ignore_rest_of_line ();
7723 /* Parse a .arch directive. */
7726 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7728 const struct aarch64_arch_option_table *opt;
7734 name = input_line_pointer;
7735 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7736 input_line_pointer++;
7737 saved_char = *input_line_pointer;
7738 *input_line_pointer = 0;
7740 ext = strchr (name, '+');
7743 optlen = ext - name;
7745 optlen = strlen (name);
7747 /* Skip the first "all" entry. */
7748 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7749 if (strlen (opt->name) == optlen
7750 && strncmp (name, opt->name, optlen) == 0)
7752 mcpu_cpu_opt = &opt->value;
7754 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
7757 cpu_variant = *mcpu_cpu_opt;
7759 *input_line_pointer = saved_char;
7760 demand_empty_rest_of_line ();
7764 as_bad (_("unknown architecture `%s'\n"), name);
7765 *input_line_pointer = saved_char;
7766 ignore_rest_of_line ();
7769 /* Parse a .arch_extension directive. */
7772 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
7775 char *ext = input_line_pointer;;
7777 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7778 input_line_pointer++;
7779 saved_char = *input_line_pointer;
7780 *input_line_pointer = 0;
7782 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
7785 cpu_variant = *mcpu_cpu_opt;
7787 *input_line_pointer = saved_char;
7788 demand_empty_rest_of_line ();
7791 /* Copy symbol information. */
7794 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7796 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);