1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
6 This file is part of GAS.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
27 #include "safe-ctype.h"
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
36 #include "dwarf2dbg.h"
38 /* Types of processor to assemble for. */
40 #define CPU_DEFAULT AARCH64_ARCH_V8
43 #define streq(a, b) (strcmp (a, b) == 0)
45 #define END_OF_INSN '\0'
47 static aarch64_feature_set cpu_variant;
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
58 static const aarch64_feature_set aarch64_arch_any = AARCH64_ANY;
59 static const aarch64_feature_set aarch64_arch_none = AARCH64_ARCH_NONE;
62 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63 static symbolS *GOT_symbol;
65 /* Which ABI to use. */
72 /* AArch64 ABI for the output file. */
73 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
75 /* When non-zero, program to a 32-bit model, in which the C data types
76 int, long and all pointer types are 32-bit objects (ILP32); or to a
77 64-bit model, in which the C int type is 32-bits but the C long type
78 and all pointer types are 64-bit objects (LP64). */
79 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
92 /* Bits for DEFINED field in neon_type_el. */
94 #define NTA_HASINDEX 2
98 enum neon_el_type type;
99 unsigned char defined;
104 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
108 bfd_reloc_code_real_type type;
111 enum aarch64_opnd opnd;
113 unsigned need_libopcodes_p : 1;
116 struct aarch64_instruction
118 /* libopcodes structure for instruction intermediate representation. */
120 /* Record assembly errors found during the parsing. */
123 enum aarch64_operand_error_kind kind;
126 /* The condition that appears in the assembly line. */
128 /* Relocation information (including the GAS internal fixup). */
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
134 typedef struct aarch64_instruction aarch64_instruction;
136 static aarch64_instruction inst;
138 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
141 /* Diagnostics inline function utilites.
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
165 static inline bfd_boolean
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
171 static inline const char *
172 get_error_message (void)
174 return inst.parsing_error.error;
178 set_error_message (const char *error)
180 inst.parsing_error.error = error;
183 static inline enum aarch64_operand_error_kind
184 get_error_kind (void)
186 return inst.parsing_error.kind;
190 set_error_kind (enum aarch64_operand_error_kind kind)
192 inst.parsing_error.kind = kind;
196 set_error (enum aarch64_operand_error_kind kind, const char *error)
198 inst.parsing_error.kind = kind;
199 inst.parsing_error.error = error;
203 set_recoverable_error (const char *error)
205 set_error (AARCH64_OPDE_RECOVERABLE, error);
208 /* Use the DESC field of the corresponding aarch64_operand entry to compose
209 the error message. */
211 set_default_error (void)
213 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
217 set_syntax_error (const char *error)
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
223 set_first_syntax_error (const char *error)
226 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
230 set_fatal_syntax_error (const char *error)
232 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
235 /* Number of littlenums required to hold an extended precision number. */
236 #define MAX_LITTLENUMS 6
238 /* Return value for certain parsers when the parsing fails; those parsers
239 return the information of the parsed result, e.g. register number, on
241 #define PARSE_FAIL -1
243 /* This is an invalid condition code that means no conditional field is
245 #define COND_ALWAYS 0x10
249 const char *template;
255 const char *template;
262 bfd_reloc_code_real_type reloc;
265 /* Structure for a hash table entry for a register. */
269 unsigned char number;
271 unsigned char builtin;
274 /* Macros to define the register types and masks for the purpose
277 #undef AARCH64_REG_TYPES
278 #define AARCH64_REG_TYPES \
279 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
280 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
281 BASIC_REG_TYPE(SP_32) /* wsp */ \
282 BASIC_REG_TYPE(SP_64) /* sp */ \
283 BASIC_REG_TYPE(Z_32) /* wzr */ \
284 BASIC_REG_TYPE(Z_64) /* xzr */ \
285 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
286 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
287 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
288 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
289 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
290 BASIC_REG_TYPE(CN) /* c[0-7] */ \
291 BASIC_REG_TYPE(VN) /* v[0-31] */ \
292 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
293 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
294 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
295 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
296 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
298 /* Typecheck: any [BHSDQ]P FP. */ \
299 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
300 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
301 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
302 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
303 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
304 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
305 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
306 /* Any integer register; used for error messages only. */ \
307 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
308 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
309 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
310 /* Pseudo type to mark the end of the enumerator sequence. */ \
313 #undef BASIC_REG_TYPE
314 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
315 #undef MULTI_REG_TYPE
316 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
318 /* Register type enumerators. */
321 /* A list of REG_TYPE_*. */
325 #undef BASIC_REG_TYPE
326 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
328 #define REG_TYPE(T) (1 << REG_TYPE_##T)
329 #undef MULTI_REG_TYPE
330 #define MULTI_REG_TYPE(T,V) V,
332 /* Values indexed by aarch64_reg_type to assist the type checking. */
333 static const unsigned reg_type_masks[] =
338 #undef BASIC_REG_TYPE
340 #undef MULTI_REG_TYPE
341 #undef AARCH64_REG_TYPES
343 /* Diagnostics used when we don't get a register of the expected type.
344 Note: this has to synchronized with aarch64_reg_type definitions
347 get_reg_expected_msg (aarch64_reg_type reg_type)
354 msg = N_("integer 32-bit register expected");
357 msg = N_("integer 64-bit register expected");
360 msg = N_("integer register expected");
362 case REG_TYPE_R_Z_SP:
363 msg = N_("integer, zero or SP register expected");
366 msg = N_("8-bit SIMD scalar register expected");
369 msg = N_("16-bit SIMD scalar or floating-point half precision "
370 "register expected");
373 msg = N_("32-bit SIMD scalar or floating-point single precision "
374 "register expected");
377 msg = N_("64-bit SIMD scalar or floating-point double precision "
378 "register expected");
381 msg = N_("128-bit SIMD scalar or floating-point quad precision "
382 "register expected");
385 msg = N_("C0 - C15 expected");
387 case REG_TYPE_R_Z_BHSDQ_V:
388 msg = N_("register expected");
390 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
391 msg = N_("SIMD scalar or floating-point register expected");
393 case REG_TYPE_VN: /* any V reg */
394 msg = N_("vector register expected");
397 as_fatal (_("invalid register type %d"), reg_type);
402 /* Some well known registers that we refer to directly elsewhere. */
405 /* Instructions take 4 bytes in the object file. */
408 /* Define some common error messages. */
409 #define BAD_SP _("SP not allowed here")
411 static struct hash_control *aarch64_ops_hsh;
412 static struct hash_control *aarch64_cond_hsh;
413 static struct hash_control *aarch64_shift_hsh;
414 static struct hash_control *aarch64_sys_regs_hsh;
415 static struct hash_control *aarch64_pstatefield_hsh;
416 static struct hash_control *aarch64_sys_regs_ic_hsh;
417 static struct hash_control *aarch64_sys_regs_dc_hsh;
418 static struct hash_control *aarch64_sys_regs_at_hsh;
419 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
420 static struct hash_control *aarch64_reg_hsh;
421 static struct hash_control *aarch64_barrier_opt_hsh;
422 static struct hash_control *aarch64_nzcv_hsh;
423 static struct hash_control *aarch64_pldop_hsh;
425 /* Stuff needed to resolve the label ambiguity
434 static symbolS *last_label_seen;
436 /* Literal pool structure. Held on a per-section
437 and per-sub-section basis. */
439 #define MAX_LITERAL_POOL_SIZE 1024
440 typedef struct literal_expression
443 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
444 LITTLENUM_TYPE * bignum;
445 } literal_expression;
447 typedef struct literal_pool
449 literal_expression literals[MAX_LITERAL_POOL_SIZE];
450 unsigned int next_free_entry;
456 struct literal_pool *next;
459 /* Pointer to a linked list of literal pools. */
460 static literal_pool *list_of_pools = NULL;
464 /* This array holds the chars that always start a comment. If the
465 pre-processor is disabled, these aren't very useful. */
466 const char comment_chars[] = "";
468 /* This array holds the chars that only start a comment at the beginning of
469 a line. If the line seems to have the form '# 123 filename'
470 .line and .file directives will appear in the pre-processed output. */
471 /* Note that input_file.c hand checks for '#' at the beginning of the
472 first line of the input file. This is because the compiler outputs
473 #NO_APP at the beginning of its output. */
474 /* Also note that comments like this one will always work. */
475 const char line_comment_chars[] = "#";
477 const char line_separator_chars[] = ";";
479 /* Chars that can be used to separate mant
480 from exp in floating point numbers. */
481 const char EXP_CHARS[] = "eE";
483 /* Chars that mean this number is a floating point constant. */
487 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
489 /* Prefix character that indicates the start of an immediate value. */
490 #define is_immediate_prefix(C) ((C) == '#')
492 /* Separator character handling. */
494 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
496 static inline bfd_boolean
497 skip_past_char (char **str, char c)
508 #define skip_past_comma(str) skip_past_char (str, ',')
510 /* Arithmetic expressions (possibly involving symbols). */
512 static bfd_boolean in_my_get_expression_p = FALSE;
514 /* Third argument to my_get_expression. */
515 #define GE_NO_PREFIX 0
516 #define GE_OPT_PREFIX 1
518 /* Return TRUE if the string pointed by *STR is successfully parsed
519 as an valid expression; *EP will be filled with the information of
520 such an expression. Otherwise return FALSE. */
523 my_get_expression (expressionS * ep, char **str, int prefix_mode,
528 int prefix_present_p = 0;
535 if (is_immediate_prefix (**str))
538 prefix_present_p = 1;
545 memset (ep, 0, sizeof (expressionS));
547 save_in = input_line_pointer;
548 input_line_pointer = *str;
549 in_my_get_expression_p = TRUE;
550 seg = expression (ep);
551 in_my_get_expression_p = FALSE;
553 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
555 /* We found a bad expression in md_operand(). */
556 *str = input_line_pointer;
557 input_line_pointer = save_in;
558 if (prefix_present_p && ! error_p ())
559 set_fatal_syntax_error (_("bad expression"));
561 set_first_syntax_error (_("bad expression"));
566 if (seg != absolute_section
567 && seg != text_section
568 && seg != data_section
569 && seg != bss_section && seg != undefined_section)
571 set_syntax_error (_("bad segment"));
572 *str = input_line_pointer;
573 input_line_pointer = save_in;
580 *str = input_line_pointer;
581 input_line_pointer = save_in;
585 /* Turn a string in input_line_pointer into a floating point constant
586 of type TYPE, and store the appropriate bytes in *LITP. The number
587 of LITTLENUMS emitted is stored in *SIZEP. An error message is
588 returned, or NULL on OK. */
591 md_atof (int type, char *litP, int *sizeP)
593 return ieee_md_atof (type, litP, sizeP, target_big_endian);
596 /* We handle all bad expressions here, so that we can report the faulty
597 instruction in the error message. */
599 md_operand (expressionS * exp)
601 if (in_my_get_expression_p)
602 exp->X_op = O_illegal;
605 /* Immediate values. */
607 /* Errors may be set multiple times during parsing or bit encoding
608 (particularly in the Neon bits), but usually the earliest error which is set
609 will be the most meaningful. Avoid overwriting it with later (cascading)
610 errors by calling this function. */
613 first_error (const char *error)
616 set_syntax_error (error);
619 /* Similiar to first_error, but this function accepts formatted error
622 first_error_fmt (const char *format, ...)
627 /* N.B. this single buffer will not cause error messages for different
628 instructions to pollute each other; this is because at the end of
629 processing of each assembly line, error message if any will be
630 collected by as_bad. */
631 static char buffer[size];
635 int ret ATTRIBUTE_UNUSED;
636 va_start (args, format);
637 ret = vsnprintf (buffer, size, format, args);
638 know (ret <= size - 1 && ret >= 0);
640 set_syntax_error (buffer);
644 /* Register parsing. */
646 /* Generic register parser which is called by other specialized
648 CCP points to what should be the beginning of a register name.
649 If it is indeed a valid register name, advance CCP over it and
650 return the reg_entry structure; otherwise return NULL.
651 It does not issue diagnostics. */
654 parse_reg (char **ccp)
660 #ifdef REGISTER_PREFIX
661 if (*start != REGISTER_PREFIX)
667 if (!ISALPHA (*p) || !is_name_beginner (*p))
672 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
674 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
683 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
686 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
688 if (reg->type == type)
693 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
694 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
695 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
696 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
697 case REG_TYPE_VN: /* Vector register. */
698 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
699 return ((reg_type_masks[reg->type] & reg_type_masks[type])
700 == reg_type_masks[reg->type]);
702 as_fatal ("unhandled type %d", type);
707 /* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
708 Return the register number otherwise. *ISREG32 is set to one if the
709 register is 32-bit wide; *ISREGZERO is set to one if the register is
710 of type Z_32 or Z_64.
711 Note that this function does not issue any diagnostics. */
714 aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
715 int *isreg32, int *isregzero)
718 const reg_entry *reg = parse_reg (&str);
723 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
732 *isreg32 = reg->type == REG_TYPE_SP_32;
737 *isreg32 = reg->type == REG_TYPE_R_32;
744 *isreg32 = reg->type == REG_TYPE_Z_32;
756 /* Parse the qualifier of a SIMD vector register or a SIMD vector element.
757 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
758 otherwise return FALSE.
760 Accept only one occurrence of:
761 8b 16b 4h 8h 2s 4s 1d 2d
764 parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
768 unsigned element_size;
769 enum neon_el_type type;
779 width = strtoul (ptr, &ptr, 10);
780 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
782 first_error_fmt (_("bad size %d in vector width specifier"), width);
787 switch (TOLOWER (*ptr))
815 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
817 first_error (_("missing element size"));
820 if (width != 0 && width * element_size != 64 && width * element_size != 128)
823 ("invalid element size %d and vector size combination %c"),
829 parsed_type->type = type;
830 parsed_type->width = width;
837 /* Parse a single type, e.g. ".8b", leading period included.
838 Only applicable to Vn registers.
840 Return TRUE on success; otherwise return FALSE. */
842 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
848 if (! parse_neon_type_for_operand (vectype, &str))
850 first_error (_("vector type expected"));
862 /* Parse a register of the type TYPE.
864 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
865 name or the parsed register is not of TYPE.
867 Otherwise return the register number, and optionally fill in the actual
868 type of the register in *RTYPE when multiple alternatives were given, and
869 return the register shape and element index information in *TYPEINFO.
871 IN_REG_LIST should be set with TRUE if the caller is parsing a register
875 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
876 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
879 const reg_entry *reg = parse_reg (&str);
880 struct neon_type_el atype;
881 struct neon_type_el parsetype;
882 bfd_boolean is_typed_vecreg = FALSE;
885 atype.type = NT_invtype;
893 set_default_error ();
897 if (! aarch64_check_reg_type (reg, type))
899 DEBUG_TRACE ("reg type check failed");
900 set_default_error ();
905 if (type == REG_TYPE_VN
906 && parse_neon_operand_type (&parsetype, &str))
908 /* Register if of the form Vn.[bhsdq]. */
909 is_typed_vecreg = TRUE;
911 if (parsetype.width == 0)
912 /* Expect index. In the new scheme we cannot have
913 Vn.[bhsdq] represent a scalar. Therefore any
914 Vn.[bhsdq] should have an index following it.
915 Except in reglists ofcourse. */
916 atype.defined |= NTA_HASINDEX;
918 atype.defined |= NTA_HASTYPE;
920 atype.type = parsetype.type;
921 atype.width = parsetype.width;
924 if (skip_past_char (&str, '['))
928 /* Reject Sn[index] syntax. */
929 if (!is_typed_vecreg)
931 first_error (_("this type of register can't be indexed"));
935 if (in_reg_list == TRUE)
937 first_error (_("index not allowed inside register list"));
941 atype.defined |= NTA_HASINDEX;
943 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
945 if (exp.X_op != O_constant)
947 first_error (_("constant expression required"));
951 if (! skip_past_char (&str, ']'))
954 atype.index = exp.X_add_number;
956 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
958 /* Indexed vector register expected. */
959 first_error (_("indexed vector register expected"));
963 /* A vector reg Vn should be typed or indexed. */
964 if (type == REG_TYPE_VN && atype.defined == 0)
966 first_error (_("invalid use of vector register"));
982 Return the register number on success; return PARSE_FAIL otherwise.
984 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
985 the register (e.g. NEON double or quad reg when either has been requested).
987 If this is a NEON vector register with additional type information, fill
988 in the struct pointed to by VECTYPE (if non-NULL).
990 This parser does not handle register list. */
993 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
994 aarch64_reg_type *rtype, struct neon_type_el *vectype)
996 struct neon_type_el atype;
998 int reg = parse_typed_reg (&str, type, rtype, &atype,
999 /*in_reg_list= */ FALSE);
1001 if (reg == PARSE_FAIL)
1012 static inline bfd_boolean
1013 eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1017 && e1.defined == e2.defined
1018 && e1.width == e2.width && e1.index == e2.index;
1021 /* This function parses the NEON register list. On success, it returns
1022 the parsed register list information in the following encoded format:
1024 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1025 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1027 The information of the register shape and/or index is returned in
1030 It returns PARSE_FAIL if the register list is invalid.
1032 The list contains one to four registers.
1033 Each register can be one of:
1036 All <T> should be identical.
1037 All <index> should be identical.
1038 There are restrictions on <Vt> numbers which are checked later
1039 (by reg_list_valid_p). */
1042 parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1046 struct neon_type_el typeinfo, typeinfo_first;
1051 bfd_boolean error = FALSE;
1052 bfd_boolean expect_index = FALSE;
1056 set_syntax_error (_("expecting {"));
1062 typeinfo_first.defined = 0;
1063 typeinfo_first.type = NT_invtype;
1064 typeinfo_first.width = -1;
1065 typeinfo_first.index = 0;
1074 str++; /* skip over '-' */
1077 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1078 /*in_reg_list= */ TRUE);
1079 if (val == PARSE_FAIL)
1081 set_first_syntax_error (_("invalid vector register in list"));
1085 /* reject [bhsd]n */
1086 if (typeinfo.defined == 0)
1088 set_first_syntax_error (_("invalid scalar register in list"));
1093 if (typeinfo.defined & NTA_HASINDEX)
1094 expect_index = TRUE;
1098 if (val < val_range)
1100 set_first_syntax_error
1101 (_("invalid range in vector register list"));
1110 typeinfo_first = typeinfo;
1111 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1113 set_first_syntax_error
1114 (_("type mismatch in vector register list"));
1119 for (i = val_range; i <= val; i++)
1121 ret_val |= i << (5 * nb_regs);
1126 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1128 skip_whitespace (str);
1131 set_first_syntax_error (_("end of vector register list not found"));
1136 skip_whitespace (str);
1140 if (skip_past_char (&str, '['))
1144 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1145 if (exp.X_op != O_constant)
1147 set_first_syntax_error (_("constant expression required."));
1150 if (! skip_past_char (&str, ']'))
1153 typeinfo_first.index = exp.X_add_number;
1157 set_first_syntax_error (_("expected index"));
1164 set_first_syntax_error (_("too many registers in vector register list"));
1167 else if (nb_regs == 0)
1169 set_first_syntax_error (_("empty vector register list"));
1175 *vectype = typeinfo_first;
1177 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1180 /* Directives: register aliases. */
1183 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1188 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1191 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1194 /* Only warn about a redefinition if it's not defined as the
1196 else if (new->number != number || new->type != type)
1197 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1202 name = xstrdup (str);
1203 new = xmalloc (sizeof (reg_entry));
1206 new->number = number;
1208 new->builtin = FALSE;
1210 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1216 /* Look for the .req directive. This is of the form:
1218 new_register_name .req existing_register_name
1220 If we find one, or if it looks sufficiently like one that we want to
1221 handle any error here, return TRUE. Otherwise return FALSE. */
1224 create_register_alias (char *newname, char *p)
1226 const reg_entry *old;
1227 char *oldname, *nbuf;
1230 /* The input scrubber ensures that whitespace after the mnemonic is
1231 collapsed to single spaces. */
1233 if (strncmp (oldname, " .req ", 6) != 0)
1237 if (*oldname == '\0')
1240 old = hash_find (aarch64_reg_hsh, oldname);
1243 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1247 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1248 the desired alias name, and p points to its end. If not, then
1249 the desired alias name is in the global original_case_string. */
1250 #ifdef TC_CASE_SENSITIVE
1253 newname = original_case_string;
1254 nlen = strlen (newname);
1257 nbuf = alloca (nlen + 1);
1258 memcpy (nbuf, newname, nlen);
1261 /* Create aliases under the new name as stated; an all-lowercase
1262 version of the new name; and an all-uppercase version of the new
1264 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1266 for (p = nbuf; *p; p++)
1269 if (strncmp (nbuf, newname, nlen))
1271 /* If this attempt to create an additional alias fails, do not bother
1272 trying to create the all-lower case alias. We will fail and issue
1273 a second, duplicate error message. This situation arises when the
1274 programmer does something like:
1277 The second .req creates the "Foo" alias but then fails to create
1278 the artificial FOO alias because it has already been created by the
1280 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1284 for (p = nbuf; *p; p++)
1287 if (strncmp (nbuf, newname, nlen))
1288 insert_reg_alias (nbuf, old->number, old->type);
1294 /* Should never be called, as .req goes between the alias and the
1295 register name, not at the beginning of the line. */
1297 s_req (int a ATTRIBUTE_UNUSED)
1299 as_bad (_("invalid syntax for .req directive"));
1302 /* The .unreq directive deletes an alias which was previously defined
1303 by .req. For example:
1309 s_unreq (int a ATTRIBUTE_UNUSED)
1314 name = input_line_pointer;
1316 while (*input_line_pointer != 0
1317 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1318 ++input_line_pointer;
1320 saved_char = *input_line_pointer;
1321 *input_line_pointer = 0;
1324 as_bad (_("invalid syntax for .unreq directive"));
1327 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1330 as_bad (_("unknown register alias '%s'"), name);
1331 else if (reg->builtin)
1332 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1339 hash_delete (aarch64_reg_hsh, name, FALSE);
1340 free ((char *) reg->name);
1343 /* Also locate the all upper case and all lower case versions.
1344 Do not complain if we cannot find one or the other as it
1345 was probably deleted above. */
1347 nbuf = strdup (name);
1348 for (p = nbuf; *p; p++)
1350 reg = hash_find (aarch64_reg_hsh, nbuf);
1353 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1354 free ((char *) reg->name);
1358 for (p = nbuf; *p; p++)
1360 reg = hash_find (aarch64_reg_hsh, nbuf);
1363 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1364 free ((char *) reg->name);
1372 *input_line_pointer = saved_char;
1373 demand_empty_rest_of_line ();
1376 /* Directives: Instruction set selection. */
1379 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1380 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1381 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1382 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1384 /* Create a new mapping symbol for the transition to STATE. */
1387 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1390 const char *symname;
1397 type = BSF_NO_FLAGS;
1401 type = BSF_NO_FLAGS;
1407 symbolP = symbol_new (symname, now_seg, value, frag);
1408 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1410 /* Save the mapping symbols for future reference. Also check that
1411 we do not place two mapping symbols at the same offset within a
1412 frag. We'll handle overlap between frags in
1413 check_mapping_symbols.
1415 If .fill or other data filling directive generates zero sized data,
1416 the mapping symbol for the following code will have the same value
1417 as the one generated for the data filling directive. In this case,
1418 we replace the old symbol with the new one at the same address. */
1421 if (frag->tc_frag_data.first_map != NULL)
1423 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1424 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1427 frag->tc_frag_data.first_map = symbolP;
1429 if (frag->tc_frag_data.last_map != NULL)
1431 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1432 S_GET_VALUE (symbolP));
1433 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1434 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1437 frag->tc_frag_data.last_map = symbolP;
1440 /* We must sometimes convert a region marked as code to data during
1441 code alignment, if an odd number of bytes have to be padded. The
1442 code mapping symbol is pushed to an aligned address. */
1445 insert_data_mapping_symbol (enum mstate state,
1446 valueT value, fragS * frag, offsetT bytes)
1448 /* If there was already a mapping symbol, remove it. */
1449 if (frag->tc_frag_data.last_map != NULL
1450 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1451 frag->fr_address + value)
1453 symbolS *symp = frag->tc_frag_data.last_map;
1457 know (frag->tc_frag_data.first_map == symp);
1458 frag->tc_frag_data.first_map = NULL;
1460 frag->tc_frag_data.last_map = NULL;
1461 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1464 make_mapping_symbol (MAP_DATA, value, frag);
1465 make_mapping_symbol (state, value + bytes, frag);
1468 static void mapping_state_2 (enum mstate state, int max_chars);
1470 /* Set the mapping state to STATE. Only call this when about to
1471 emit some STATE bytes to the file. */
1474 mapping_state (enum mstate state)
1476 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1478 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1480 if (mapstate == state)
1481 /* The mapping symbol has already been emitted.
1482 There is nothing else to do. */
1484 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
1485 /* This case will be evaluated later in the next else. */
1487 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1489 /* Only add the symbol if the offset is > 0:
1490 if we're at the first frag, check it's size > 0;
1491 if we're not at the first frag, then for sure
1492 the offset is > 0. */
1493 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1494 const int add_symbol = (frag_now != frag_first)
1495 || (frag_now_fix () > 0);
1498 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1501 mapping_state_2 (state, 0);
1505 /* Same as mapping_state, but MAX_CHARS bytes have already been
1506 allocated. Put the mapping symbol that far back. */
1509 mapping_state_2 (enum mstate state, int max_chars)
1511 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1513 if (!SEG_NORMAL (now_seg))
1516 if (mapstate == state)
1517 /* The mapping symbol has already been emitted.
1518 There is nothing else to do. */
1521 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1522 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1525 #define mapping_state(x) /* nothing */
1526 #define mapping_state_2(x, y) /* nothing */
1529 /* Directives: sectioning and alignment. */
1532 s_bss (int ignore ATTRIBUTE_UNUSED)
1534 /* We don't support putting frags in the BSS segment, we fake it by
1535 marking in_bss, then looking at s_skip for clues. */
1536 subseg_set (bss_section, 0);
1537 demand_empty_rest_of_line ();
1538 mapping_state (MAP_DATA);
1542 s_even (int ignore ATTRIBUTE_UNUSED)
1544 /* Never make frag if expect extra pass. */
1546 frag_align (1, 0, 0);
1548 record_alignment (now_seg, 1);
1550 demand_empty_rest_of_line ();
1553 /* Directives: Literal pools. */
1555 static literal_pool *
1556 find_literal_pool (int size)
1560 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1562 if (pool->section == now_seg
1563 && pool->sub_section == now_subseg && pool->size == size)
1570 static literal_pool *
1571 find_or_make_literal_pool (int size)
1573 /* Next literal pool ID number. */
1574 static unsigned int latest_pool_num = 1;
1577 pool = find_literal_pool (size);
1581 /* Create a new pool. */
1582 pool = xmalloc (sizeof (*pool));
1586 /* Currently we always put the literal pool in the current text
1587 section. If we were generating "small" model code where we
1588 knew that all code and initialised data was within 1MB then
1589 we could output literals to mergeable, read-only data
1592 pool->next_free_entry = 0;
1593 pool->section = now_seg;
1594 pool->sub_section = now_subseg;
1596 pool->next = list_of_pools;
1597 pool->symbol = NULL;
1599 /* Add it to the list. */
1600 list_of_pools = pool;
1603 /* New pools, and emptied pools, will have a NULL symbol. */
1604 if (pool->symbol == NULL)
1606 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1607 (valueT) 0, &zero_address_frag);
1608 pool->id = latest_pool_num++;
1615 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1616 Return TRUE on success, otherwise return FALSE. */
1618 add_to_lit_pool (expressionS *exp, int size)
1623 pool = find_or_make_literal_pool (size);
1625 /* Check if this literal value is already in the pool. */
1626 for (entry = 0; entry < pool->next_free_entry; entry++)
1628 expressionS * litexp = & pool->literals[entry].exp;
1630 if ((litexp->X_op == exp->X_op)
1631 && (exp->X_op == O_constant)
1632 && (litexp->X_add_number == exp->X_add_number)
1633 && (litexp->X_unsigned == exp->X_unsigned))
1636 if ((litexp->X_op == exp->X_op)
1637 && (exp->X_op == O_symbol)
1638 && (litexp->X_add_number == exp->X_add_number)
1639 && (litexp->X_add_symbol == exp->X_add_symbol)
1640 && (litexp->X_op_symbol == exp->X_op_symbol))
1644 /* Do we need to create a new entry? */
1645 if (entry == pool->next_free_entry)
1647 if (entry >= MAX_LITERAL_POOL_SIZE)
1649 set_syntax_error (_("literal pool overflow"));
1653 pool->literals[entry].exp = *exp;
1654 pool->next_free_entry += 1;
1655 if (exp->X_op == O_big)
1657 /* PR 16688: Bignums are held in a single global array. We must
1658 copy and preserve that value now, before it is overwritten. */
1659 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1660 memcpy (pool->literals[entry].bignum, generic_bignum,
1661 CHARS_PER_LITTLENUM * exp->X_add_number);
1664 pool->literals[entry].bignum = NULL;
1667 exp->X_op = O_symbol;
1668 exp->X_add_number = ((int) entry) * size;
1669 exp->X_add_symbol = pool->symbol;
1674 /* Can't use symbol_new here, so have to create a symbol and then at
1675 a later date assign it a value. Thats what these functions do. */
1678 symbol_locate (symbolS * symbolP,
1679 const char *name,/* It is copied, the caller can modify. */
1680 segT segment, /* Segment identifier (SEG_<something>). */
1681 valueT valu, /* Symbol value. */
1682 fragS * frag) /* Associated fragment. */
1685 char *preserved_copy_of_name;
1687 name_length = strlen (name) + 1; /* +1 for \0. */
1688 obstack_grow (¬es, name, name_length);
1689 preserved_copy_of_name = obstack_finish (¬es);
1691 #ifdef tc_canonicalize_symbol_name
1692 preserved_copy_of_name =
1693 tc_canonicalize_symbol_name (preserved_copy_of_name);
1696 S_SET_NAME (symbolP, preserved_copy_of_name);
1698 S_SET_SEGMENT (symbolP, segment);
1699 S_SET_VALUE (symbolP, valu);
1700 symbol_clear_list_pointers (symbolP);
1702 symbol_set_frag (symbolP, frag);
1704 /* Link to end of symbol chain. */
1706 extern int symbol_table_frozen;
1708 if (symbol_table_frozen)
1712 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1714 obj_symbol_new_hook (symbolP);
1716 #ifdef tc_symbol_new_hook
1717 tc_symbol_new_hook (symbolP);
1721 verify_symbol_chain (symbol_rootP, symbol_lastP);
1722 #endif /* DEBUG_SYMS */
1727 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1734 for (align = 2; align <= 4; align++)
1736 int size = 1 << align;
1738 pool = find_literal_pool (size);
1739 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1742 mapping_state (MAP_DATA);
1744 /* Align pool as you have word accesses.
1745 Only make a frag if we have to. */
1747 frag_align (align, 0, 0);
1749 record_alignment (now_seg, align);
1751 sprintf (sym_name, "$$lit_\002%x", pool->id);
1753 symbol_locate (pool->symbol, sym_name, now_seg,
1754 (valueT) frag_now_fix (), frag_now);
1755 symbol_table_insert (pool->symbol);
1757 for (entry = 0; entry < pool->next_free_entry; entry++)
1759 expressionS * exp = & pool->literals[entry].exp;
1761 if (exp->X_op == O_big)
1763 /* PR 16688: Restore the global bignum value. */
1764 gas_assert (pool->literals[entry].bignum != NULL);
1765 memcpy (generic_bignum, pool->literals[entry].bignum,
1766 CHARS_PER_LITTLENUM * exp->X_add_number);
1769 /* First output the expression in the instruction to the pool. */
1770 emit_expr (exp, size); /* .word|.xword */
1772 if (exp->X_op == O_big)
1774 free (pool->literals[entry].bignum);
1775 pool->literals[entry].bignum = NULL;
1779 /* Mark the pool as empty. */
1780 pool->next_free_entry = 0;
1781 pool->symbol = NULL;
1786 /* Forward declarations for functions below, in the MD interface
1788 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1789 static struct reloc_table_entry * find_reloc_table_entry (char **);
1791 /* Directives: Data. */
1792 /* N.B. the support for relocation suffix in this directive needs to be
1793 implemented properly. */
1796 s_aarch64_elf_cons (int nbytes)
1800 #ifdef md_flush_pending_output
1801 md_flush_pending_output ();
1804 if (is_it_end_of_statement ())
1806 demand_empty_rest_of_line ();
1810 #ifdef md_cons_align
1811 md_cons_align (nbytes);
1814 mapping_state (MAP_DATA);
1817 struct reloc_table_entry *reloc;
1821 if (exp.X_op != O_symbol)
1822 emit_expr (&exp, (unsigned int) nbytes);
1825 skip_past_char (&input_line_pointer, '#');
1826 if (skip_past_char (&input_line_pointer, ':'))
1828 reloc = find_reloc_table_entry (&input_line_pointer);
1830 as_bad (_("unrecognized relocation suffix"));
1832 as_bad (_("unimplemented relocation suffix"));
1833 ignore_rest_of_line ();
1837 emit_expr (&exp, (unsigned int) nbytes);
1840 while (*input_line_pointer++ == ',');
1842 /* Put terminator back into stream. */
1843 input_line_pointer--;
1844 demand_empty_rest_of_line ();
1847 #endif /* OBJ_ELF */
1849 /* Output a 32-bit word, but mark as an instruction. */
1852 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1856 #ifdef md_flush_pending_output
1857 md_flush_pending_output ();
1860 if (is_it_end_of_statement ())
1862 demand_empty_rest_of_line ();
1867 frag_align_code (2, 0);
1869 mapping_state (MAP_INSN);
1875 if (exp.X_op != O_constant)
1877 as_bad (_("constant expression required"));
1878 ignore_rest_of_line ();
1882 if (target_big_endian)
1884 unsigned int val = exp.X_add_number;
1885 exp.X_add_number = SWAP_32 (val);
1887 emit_expr (&exp, 4);
1889 while (*input_line_pointer++ == ',');
1891 /* Put terminator back into stream. */
1892 input_line_pointer--;
1893 demand_empty_rest_of_line ();
1897 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1900 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1904 /* Since we're just labelling the code, there's no need to define a
1907 /* Make sure there is enough room in this frag for the following
1908 blr. This trick only works if the blr follows immediately after
1909 the .tlsdesc directive. */
1911 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1912 BFD_RELOC_AARCH64_TLSDESC_CALL);
1914 demand_empty_rest_of_line ();
1916 #endif /* OBJ_ELF */
1918 static void s_aarch64_arch (int);
1919 static void s_aarch64_cpu (int);
1921 /* This table describes all the machine specific pseudo-ops the assembler
1922 has to support. The fields are:
1923 pseudo-op name without dot
1924 function to call to execute this pseudo-op
1925 Integer arg to pass to the function. */
1927 const pseudo_typeS md_pseudo_table[] = {
1928 /* Never called because '.req' does not start a line. */
1930 {"unreq", s_unreq, 0},
1932 {"even", s_even, 0},
1933 {"ltorg", s_ltorg, 0},
1934 {"pool", s_ltorg, 0},
1935 {"cpu", s_aarch64_cpu, 0},
1936 {"arch", s_aarch64_arch, 0},
1937 {"inst", s_aarch64_inst, 0},
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1949 /* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1962 reg_name_p (char *str, aarch64_reg_type reg_type)
1966 /* Prevent the diagnostics state from being spoiled. */
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1972 /* Clear the parsing error that may be set by the reg parser. */
1975 if (reg == PARSE_FAIL)
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1985 /* Parser functions used exclusively in instruction operands. */
1987 /* Parse an immediate expression which may not be constant.
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1996 parse_immediate_expression (char **str, expressionS *exp)
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2000 set_recoverable_error (_("immediate operand required"));
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2006 if (exp->X_op == O_absent)
2008 set_fatal_syntax_error (_("missing immediate expression"));
2015 /* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2019 Return TRUE on success; otherwise return FALSE. */
2022 parse_constant_immediate (char **str, int64_t * val)
2026 if (! parse_immediate_expression (str, &exp))
2029 if (exp.X_op != O_constant)
2031 set_syntax_error (_("constant expression required"));
2035 *val = exp.X_add_number;
2040 encode_imm_float_bits (uint32_t imm)
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2046 /* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2054 aarch64_imm_float_p (uint32_t imm)
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2060 3 32222222 2221111111111
2061 1 09876543 21098765432109876543210
2062 n Eeeeeexx xxxx0000000000000000000
2064 where n, e and each x are either 0 or 1 independently, with
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
2073 pattern = 0x40000000;
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2079 /* Like aarch64_imm_float_p but for a double-precision floating-point value.
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2086 Otherwise return FALSE. */
2089 aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2099 where n, e and each x are either 0 or 1 independently, with
2103 uint32_t high32 = imm >> 32;
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2113 pattern = 0x40000000;
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2118 /* Convert to the single-precision encoding.
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2131 /* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2137 N.B. 0.0 is accepted by this function. */
2140 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
2150 skip_past_char (&str, '#');
2153 skip_whitespace (fpnum);
2155 if (strncmp (fpnum, "0x", 2) == 0)
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2168 else if ((uint64_t) val > 0xffffffff)
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2218 /* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2228 parse_big_immediate (char **str, int64_t *imm)
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2234 set_syntax_error (_("immediate operand required"));
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2248 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2253 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2263 /* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2266 static inline bfd_boolean
2267 aarch64_gas_internal_fixup_p (void)
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2272 /* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2278 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2281 int need_libopcodes_p,
2284 if (reloc->exp.X_op == O_constant)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2302 /* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2310 struct reloc_table_entry
2314 bfd_reloc_code_real_type adrp_type;
2315 bfd_reloc_code_real_type movw_type;
2316 bfd_reloc_code_real_type add_type;
2317 bfd_reloc_code_real_type ldst_type;
2320 static struct reloc_table_entry reloc_table[] = {
2321 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2325 BFD_RELOC_AARCH64_ADD_LO12,
2326 BFD_RELOC_AARCH64_LDST_LO12},
2328 /* Higher 21 bits of pc-relative page offset: ADRP */
2330 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2335 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2337 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2342 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2345 BFD_RELOC_AARCH64_MOVW_G0,
2349 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2352 BFD_RELOC_AARCH64_MOVW_G0_S,
2356 /* Less significant bits 0-15 of address/value: MOVK, no check */
2359 BFD_RELOC_AARCH64_MOVW_G0_NC,
2363 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2366 BFD_RELOC_AARCH64_MOVW_G1,
2370 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2373 BFD_RELOC_AARCH64_MOVW_G1_S,
2377 /* Less significant bits 16-31 of address/value: MOVK, no check */
2380 BFD_RELOC_AARCH64_MOVW_G1_NC,
2384 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2387 BFD_RELOC_AARCH64_MOVW_G2,
2391 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2394 BFD_RELOC_AARCH64_MOVW_G2_S,
2398 /* Less significant bits 32-47 of address/value: MOVK, no check */
2401 BFD_RELOC_AARCH64_MOVW_G2_NC,
2405 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2408 BFD_RELOC_AARCH64_MOVW_G3,
2412 /* Get to the page containing GOT entry for a symbol. */
2414 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2417 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2419 /* 12 bit offset into the page containing GOT entry for that symbol. */
2424 BFD_RELOC_AARCH64_LD_GOT_LO12_NC},
2426 /* Get to the page containing GOT TLS entry for a symbol */
2428 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2433 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2437 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2440 /* Get to the page containing GOT TLS entry for a symbol */
2442 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2447 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2451 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
2452 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC},
2454 /* Get to the page containing GOT TLS entry for a symbol */
2456 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2461 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2462 {"gottprel_lo12", 0,
2466 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC},
2468 /* Get tp offset for a symbol. */
2472 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2475 /* Get tp offset for a symbol. */
2479 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2482 /* Get tp offset for a symbol. */
2486 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2489 /* Get tp offset for a symbol. */
2490 {"tprel_lo12_nc", 0,
2493 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2496 /* Most significant bits 32-47 of address/value: MOVZ. */
2499 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2503 /* Most significant bits 16-31 of address/value: MOVZ. */
2506 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2510 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2513 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2517 /* Most significant bits 0-15 of address/value: MOVZ. */
2520 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2524 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2527 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2532 /* Given the address of a pointer pointing to the textual name of a
2533 relocation as may appear in assembler source, attempt to find its
2534 details in reloc_table. The pointer will be updated to the character
2535 after the trailing colon. On failure, NULL will be returned;
2536 otherwise return the reloc_table_entry. */
2538 static struct reloc_table_entry *
2539 find_reloc_table_entry (char **str)
2542 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2544 int length = strlen (reloc_table[i].name);
2546 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2547 && (*str)[length] == ':')
2549 *str += (length + 1);
2550 return &reloc_table[i];
2557 /* Mode argument to parse_shift and parser_shifter_operand. */
2558 enum parse_shift_mode
2560 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2562 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2564 SHIFTED_LSL, /* bare "lsl #n" */
2565 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2566 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2569 /* Parse a <shift> operator on an AArch64 data processing instruction.
2570 Return TRUE on success; otherwise return FALSE. */
2572 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2574 const struct aarch64_name_value_pair *shift_op;
2575 enum aarch64_modifier_kind kind;
2581 for (p = *str; ISALPHA (*p); p++)
2586 set_syntax_error (_("shift expression expected"));
2590 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2592 if (shift_op == NULL)
2594 set_syntax_error (_("shift operator expected"));
2598 kind = aarch64_get_operand_modifier (shift_op);
2600 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2602 set_syntax_error (_("invalid use of 'MSL'"));
2608 case SHIFTED_LOGIC_IMM:
2609 if (aarch64_extend_operator_p (kind) == TRUE)
2611 set_syntax_error (_("extending shift is not permitted"));
2616 case SHIFTED_ARITH_IMM:
2617 if (kind == AARCH64_MOD_ROR)
2619 set_syntax_error (_("'ROR' shift is not permitted"));
2625 if (kind != AARCH64_MOD_LSL)
2627 set_syntax_error (_("only 'LSL' shift is permitted"));
2632 case SHIFTED_REG_OFFSET:
2633 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2634 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2636 set_fatal_syntax_error
2637 (_("invalid shift for the register offset addressing mode"));
2642 case SHIFTED_LSL_MSL:
2643 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2645 set_syntax_error (_("invalid shift operator"));
2654 /* Whitespace can appear here if the next thing is a bare digit. */
2655 skip_whitespace (p);
2657 /* Parse shift amount. */
2659 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2660 exp.X_op = O_absent;
2663 if (is_immediate_prefix (*p))
2668 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2670 if (exp.X_op == O_absent)
2672 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2674 set_syntax_error (_("missing shift amount"));
2677 operand->shifter.amount = 0;
2679 else if (exp.X_op != O_constant)
2681 set_syntax_error (_("constant shift amount required"));
2684 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2686 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2691 operand->shifter.amount = exp.X_add_number;
2692 operand->shifter.amount_present = 1;
2695 operand->shifter.operator_present = 1;
2696 operand->shifter.kind = kind;
2702 /* Parse a <shifter_operand> for a data processing instruction:
2705 #<immediate>, LSL #imm
2707 Validation of immediate operands is deferred to md_apply_fix.
2709 Return TRUE on success; otherwise return FALSE. */
2712 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2713 enum parse_shift_mode mode)
2717 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2722 /* Accept an immediate expression. */
2723 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2726 /* Accept optional LSL for arithmetic immediate values. */
2727 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2728 if (! parse_shift (&p, operand, SHIFTED_LSL))
2731 /* Not accept any shifter for logical immediate values. */
2732 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2733 && parse_shift (&p, operand, mode))
2735 set_syntax_error (_("unexpected shift operator"));
2743 /* Parse a <shifter_operand> for a data processing instruction:
2748 #<immediate>, LSL #imm
2750 where <shift> is handled by parse_shift above, and the last two
2751 cases are handled by the function above.
2753 Validation of immediate operands is deferred to md_apply_fix.
2755 Return TRUE on success; otherwise return FALSE. */
2758 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2759 enum parse_shift_mode mode)
2762 int isreg32, isregzero;
2763 enum aarch64_operand_class opd_class
2764 = aarch64_get_operand_class (operand->type);
2767 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2769 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2771 set_syntax_error (_("unexpected register in the immediate operand"));
2775 if (!isregzero && reg == REG_SP)
2777 set_syntax_error (BAD_SP);
2781 operand->reg.regno = reg;
2782 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2784 /* Accept optional shift operation on register. */
2785 if (! skip_past_comma (str))
2788 if (! parse_shift (str, operand, mode))
2793 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2796 (_("integer register expected in the extended/shifted operand "
2801 /* We have a shifted immediate variable. */
2802 return parse_shifter_operand_imm (str, operand, mode);
2805 /* Return TRUE on success; return FALSE otherwise. */
2808 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2809 enum parse_shift_mode mode)
2813 /* Determine if we have the sequence of characters #: or just :
2814 coming next. If we do, then we check for a :rello: relocation
2815 modifier. If we don't, punt the whole lot to
2816 parse_shifter_operand. */
2818 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2820 struct reloc_table_entry *entry;
2828 /* Try to parse a relocation. Anything else is an error. */
2829 if (!(entry = find_reloc_table_entry (str)))
2831 set_syntax_error (_("unknown relocation modifier"));
2835 if (entry->add_type == 0)
2838 (_("this relocation modifier is not allowed on this instruction"));
2842 /* Save str before we decompose it. */
2845 /* Next, we parse the expression. */
2846 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2849 /* Record the relocation type (use the ADD variant here). */
2850 inst.reloc.type = entry->add_type;
2851 inst.reloc.pc_rel = entry->pc_rel;
2853 /* If str is empty, we've reached the end, stop here. */
2857 /* Otherwise, we have a shifted reloc modifier, so rewind to
2858 recover the variable name and continue parsing for the shifter. */
2860 return parse_shifter_operand_imm (str, operand, mode);
2863 return parse_shifter_operand (str, operand, mode);
2866 /* Parse all forms of an address expression. Information is written
2867 to *OPERAND and/or inst.reloc.
2869 The A64 instruction set has the following addressing modes:
2872 [base] // in SIMD ld/st structure
2873 [base{,#0}] // in ld/st exclusive
2875 [base,Xm{,LSL #imm}]
2876 [base,Xm,SXTX {#imm}]
2877 [base,Wm,(S|U)XTW {#imm}]
2882 [base],Xm // in SIMD ld/st structure
2883 PC-relative (literal)
2887 (As a convenience, the notation "=immediate" is permitted in conjunction
2888 with the pc-relative literal load instructions to automatically place an
2889 immediate value or symbolic address in a nearby literal pool and generate
2890 a hidden label which references it.)
2892 Upon a successful parsing, the address structure in *OPERAND will be
2893 filled in the following way:
2895 .base_regno = <base>
2896 .offset.is_reg // 1 if the offset is a register
2898 .offset.regno = <Rm>
2900 For different addressing modes defined in the A64 ISA:
2903 .pcrel=0; .preind=1; .postind=0; .writeback=0
2905 .pcrel=0; .preind=1; .postind=0; .writeback=1
2907 .pcrel=0; .preind=0; .postind=1; .writeback=1
2908 PC-relative (literal)
2909 .pcrel=1; .preind=1; .postind=0; .writeback=0
2911 The shift/extension information, if any, will be stored in .shifter.
2913 It is the caller's responsibility to check for addressing modes not
2914 supported by the instruction, and to set inst.reloc.type. */
2917 parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2918 int accept_reg_post_index)
2922 int isreg32, isregzero;
2923 expressionS *exp = &inst.reloc.exp;
2925 if (! skip_past_char (&p, '['))
2927 /* =immediate or label. */
2928 operand->addr.pcrel = 1;
2929 operand->addr.preind = 1;
2931 /* #:<reloc_op>:<symbol> */
2932 skip_past_char (&p, '#');
2933 if (reloc && skip_past_char (&p, ':'))
2935 struct reloc_table_entry *entry;
2937 /* Try to parse a relocation modifier. Anything else is
2939 entry = find_reloc_table_entry (&p);
2942 set_syntax_error (_("unknown relocation modifier"));
2946 if (entry->ldst_type == 0)
2949 (_("this relocation modifier is not allowed on this "
2955 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2957 set_syntax_error (_("invalid relocation expression"));
2961 /* #:<reloc_op>:<expr> */
2962 /* Record the load/store relocation type. */
2963 inst.reloc.type = entry->ldst_type;
2964 inst.reloc.pc_rel = entry->pc_rel;
2969 if (skip_past_char (&p, '='))
2970 /* =immediate; need to generate the literal in the literal pool. */
2971 inst.gen_lit_pool = 1;
2973 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2975 set_syntax_error (_("invalid address"));
2986 /* Accept SP and reject ZR */
2987 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
2988 if (reg == PARSE_FAIL || isreg32)
2990 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
2993 operand->addr.base_regno = reg;
2996 if (skip_past_comma (&p))
2999 operand->addr.preind = 1;
3001 /* Reject SP and accept ZR */
3002 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3003 if (reg != PARSE_FAIL)
3006 operand->addr.offset.regno = reg;
3007 operand->addr.offset.is_reg = 1;
3008 /* Shifted index. */
3009 if (skip_past_comma (&p))
3012 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3013 /* Use the diagnostics set in parse_shift, so not set new
3014 error message here. */
3018 [base,Xm{,LSL #imm}]
3019 [base,Xm,SXTX {#imm}]
3020 [base,Wm,(S|U)XTW {#imm}] */
3021 if (operand->shifter.kind == AARCH64_MOD_NONE
3022 || operand->shifter.kind == AARCH64_MOD_LSL
3023 || operand->shifter.kind == AARCH64_MOD_SXTX)
3027 set_syntax_error (_("invalid use of 32-bit register offset"));
3033 set_syntax_error (_("invalid use of 64-bit register offset"));
3039 /* [Xn,#:<reloc_op>:<symbol> */
3040 skip_past_char (&p, '#');
3041 if (reloc && skip_past_char (&p, ':'))
3043 struct reloc_table_entry *entry;
3045 /* Try to parse a relocation modifier. Anything else is
3047 if (!(entry = find_reloc_table_entry (&p)))
3049 set_syntax_error (_("unknown relocation modifier"));
3053 if (entry->ldst_type == 0)
3056 (_("this relocation modifier is not allowed on this "
3061 /* [Xn,#:<reloc_op>: */
3062 /* We now have the group relocation table entry corresponding to
3063 the name in the assembler source. Next, we parse the
3065 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3067 set_syntax_error (_("invalid relocation expression"));
3071 /* [Xn,#:<reloc_op>:<expr> */
3072 /* Record the load/store relocation type. */
3073 inst.reloc.type = entry->ldst_type;
3074 inst.reloc.pc_rel = entry->pc_rel;
3076 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3078 set_syntax_error (_("invalid expression in the address"));
3085 if (! skip_past_char (&p, ']'))
3087 set_syntax_error (_("']' expected"));
3091 if (skip_past_char (&p, '!'))
3093 if (operand->addr.preind && operand->addr.offset.is_reg)
3095 set_syntax_error (_("register offset not allowed in pre-indexed "
3096 "addressing mode"));
3100 operand->addr.writeback = 1;
3102 else if (skip_past_comma (&p))
3105 operand->addr.postind = 1;
3106 operand->addr.writeback = 1;
3108 if (operand->addr.preind)
3110 set_syntax_error (_("cannot combine pre- and post-indexing"));
3114 if (accept_reg_post_index
3115 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3116 &isregzero)) != PARSE_FAIL)
3121 set_syntax_error (_("invalid 32-bit register offset"));
3124 operand->addr.offset.regno = reg;
3125 operand->addr.offset.is_reg = 1;
3127 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3130 set_syntax_error (_("invalid expression in the address"));
3135 /* If at this point neither .preind nor .postind is set, we have a
3136 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3137 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3139 if (operand->addr.writeback)
3142 set_syntax_error (_("missing offset in the pre-indexed address"));
3145 operand->addr.preind = 1;
3146 inst.reloc.exp.X_op = O_constant;
3147 inst.reloc.exp.X_add_number = 0;
3154 /* Return TRUE on success; otherwise return FALSE. */
3156 parse_address (char **str, aarch64_opnd_info *operand,
3157 int accept_reg_post_index)
3159 return parse_address_main (str, operand, 0, accept_reg_post_index);
3162 /* Return TRUE on success; otherwise return FALSE. */
3164 parse_address_reloc (char **str, aarch64_opnd_info *operand)
3166 return parse_address_main (str, operand, 1, 0);
3169 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3170 Return TRUE on success; otherwise return FALSE. */
3172 parse_half (char **str, int *internal_fixup_p)
3178 skip_past_char (&p, '#');
3180 gas_assert (internal_fixup_p);
3181 *internal_fixup_p = 0;
3185 struct reloc_table_entry *entry;
3187 /* Try to parse a relocation. Anything else is an error. */
3189 if (!(entry = find_reloc_table_entry (&p)))
3191 set_syntax_error (_("unknown relocation modifier"));
3195 if (entry->movw_type == 0)
3198 (_("this relocation modifier is not allowed on this instruction"));
3202 inst.reloc.type = entry->movw_type;
3205 *internal_fixup_p = 1;
3207 /* Avoid parsing a register as a general symbol. */
3209 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3213 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3220 /* Parse an operand for an ADRP instruction:
3222 Return TRUE on success; otherwise return FALSE. */
3225 parse_adrp (char **str)
3232 struct reloc_table_entry *entry;
3234 /* Try to parse a relocation. Anything else is an error. */
3236 if (!(entry = find_reloc_table_entry (&p)))
3238 set_syntax_error (_("unknown relocation modifier"));
3242 if (entry->adrp_type == 0)
3245 (_("this relocation modifier is not allowed on this instruction"));
3249 inst.reloc.type = entry->adrp_type;
3252 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3254 inst.reloc.pc_rel = 1;
3256 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3263 /* Miscellaneous. */
3265 /* Parse an option for a preload instruction. Returns the encoding for the
3266 option, or PARSE_FAIL. */
3269 parse_pldop (char **str)
3272 const struct aarch64_name_value_pair *o;
3275 while (ISALNUM (*q))
3278 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3286 /* Parse an option for a barrier instruction. Returns the encoding for the
3287 option, or PARSE_FAIL. */
3290 parse_barrier (char **str)
3293 const asm_barrier_opt *o;
3296 while (ISALPHA (*q))
3299 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3307 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3308 Returns the encoding for the option, or PARSE_FAIL.
3310 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3311 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3314 parse_sys_reg (char **str, struct hash_control *sys_regs, int imple_defined_p)
3318 const aarch64_sys_reg *o;
3322 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3324 *p++ = TOLOWER (*q);
3326 /* Assert that BUF be large enough. */
3327 gas_assert (p - buf == q - *str);
3329 o = hash_find (sys_regs, buf);
3332 if (!imple_defined_p)
3336 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
3337 unsigned int op0, op1, cn, cm, op2;
3339 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3342 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
3344 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3349 if (aarch64_sys_reg_deprecated_p (o))
3350 as_warn (_("system register name '%s' is deprecated and may be "
3351 "removed in a future release"), buf);
3359 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3360 for the option, or NULL. */
3362 static const aarch64_sys_ins_reg *
3363 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3367 const aarch64_sys_ins_reg *o;
3370 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3372 *p++ = TOLOWER (*q);
3375 o = hash_find (sys_ins_regs, buf);
3383 #define po_char_or_fail(chr) do { \
3384 if (! skip_past_char (&str, chr)) \
3388 #define po_reg_or_fail(regtype) do { \
3389 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3390 if (val == PARSE_FAIL) \
3392 set_default_error (); \
3397 #define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3398 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3399 &isreg32, &isregzero); \
3400 if (val == PARSE_FAIL) \
3402 set_default_error (); \
3405 info->reg.regno = val; \
3407 info->qualifier = AARCH64_OPND_QLF_W; \
3409 info->qualifier = AARCH64_OPND_QLF_X; \
3412 #define po_imm_nc_or_fail() do { \
3413 if (! parse_constant_immediate (&str, &val)) \
3417 #define po_imm_or_fail(min, max) do { \
3418 if (! parse_constant_immediate (&str, &val)) \
3420 if (val < min || val > max) \
3422 set_fatal_syntax_error (_("immediate value out of range "\
3423 #min " to "#max)); \
3428 #define po_misc_or_fail(expr) do { \
3433 /* encode the 12-bit imm field of Add/sub immediate */
3434 static inline uint32_t
3435 encode_addsub_imm (uint32_t imm)
3440 /* encode the shift amount field of Add/sub immediate */
3441 static inline uint32_t
3442 encode_addsub_imm_shift_amount (uint32_t cnt)
3448 /* encode the imm field of Adr instruction */
3449 static inline uint32_t
3450 encode_adr_imm (uint32_t imm)
3452 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3453 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3456 /* encode the immediate field of Move wide immediate */
3457 static inline uint32_t
3458 encode_movw_imm (uint32_t imm)
3463 /* encode the 26-bit offset of unconditional branch */
3464 static inline uint32_t
3465 encode_branch_ofs_26 (uint32_t ofs)
3467 return ofs & ((1 << 26) - 1);
3470 /* encode the 19-bit offset of conditional branch and compare & branch */
3471 static inline uint32_t
3472 encode_cond_branch_ofs_19 (uint32_t ofs)
3474 return (ofs & ((1 << 19) - 1)) << 5;
3477 /* encode the 19-bit offset of ld literal */
3478 static inline uint32_t
3479 encode_ld_lit_ofs_19 (uint32_t ofs)
3481 return (ofs & ((1 << 19) - 1)) << 5;
3484 /* Encode the 14-bit offset of test & branch. */
3485 static inline uint32_t
3486 encode_tst_branch_ofs_14 (uint32_t ofs)
3488 return (ofs & ((1 << 14) - 1)) << 5;
3491 /* Encode the 16-bit imm field of svc/hvc/smc. */
3492 static inline uint32_t
3493 encode_svc_imm (uint32_t imm)
3498 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
3499 static inline uint32_t
3500 reencode_addsub_switch_add_sub (uint32_t opcode)
3502 return opcode ^ (1 << 30);
3505 static inline uint32_t
3506 reencode_movzn_to_movz (uint32_t opcode)
3508 return opcode | (1 << 30);
3511 static inline uint32_t
3512 reencode_movzn_to_movn (uint32_t opcode)
3514 return opcode & ~(1 << 30);
3517 /* Overall per-instruction processing. */
3519 /* We need to be able to fix up arbitrary expressions in some statements.
3520 This is so that we can handle symbols that are an arbitrary distance from
3521 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3522 which returns part of an address in a form which will be valid for
3523 a data instruction. We do this by pushing the expression into a symbol
3524 in the expr_section, and creating a fix for that. */
3527 fix_new_aarch64 (fragS * frag,
3529 short int size, expressionS * exp, int pc_rel, int reloc)
3539 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3543 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3550 /* Diagnostics on operands errors. */
3552 /* By default, output verbose error message.
3553 Disable the verbose error message by -mno-verbose-error. */
3554 static int verbose_error_p = 1;
3556 #ifdef DEBUG_AARCH64
3557 /* N.B. this is only for the purpose of debugging. */
3558 const char* operand_mismatch_kind_names[] =
3561 "AARCH64_OPDE_RECOVERABLE",
3562 "AARCH64_OPDE_SYNTAX_ERROR",
3563 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3564 "AARCH64_OPDE_INVALID_VARIANT",
3565 "AARCH64_OPDE_OUT_OF_RANGE",
3566 "AARCH64_OPDE_UNALIGNED",
3567 "AARCH64_OPDE_REG_LIST",
3568 "AARCH64_OPDE_OTHER_ERROR",
3570 #endif /* DEBUG_AARCH64 */
3572 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3574 When multiple errors of different kinds are found in the same assembly
3575 line, only the error of the highest severity will be picked up for
3576 issuing the diagnostics. */
3578 static inline bfd_boolean
3579 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3580 enum aarch64_operand_error_kind rhs)
3582 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3583 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3584 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3585 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3586 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3587 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3588 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3589 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3593 /* Helper routine to get the mnemonic name from the assembly instruction
3594 line; should only be called for the diagnosis purpose, as there is
3595 string copy operation involved, which may affect the runtime
3596 performance if used in elsewhere. */
3599 get_mnemonic_name (const char *str)
3601 static char mnemonic[32];
3604 /* Get the first 15 bytes and assume that the full name is included. */
3605 strncpy (mnemonic, str, 31);
3606 mnemonic[31] = '\0';
3608 /* Scan up to the end of the mnemonic, which must end in white space,
3609 '.', or end of string. */
3610 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3615 /* Append '...' to the truncated long name. */
3616 if (ptr - mnemonic == 31)
3617 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3623 reset_aarch64_instruction (aarch64_instruction *instruction)
3625 memset (instruction, '\0', sizeof (aarch64_instruction));
3626 instruction->reloc.type = BFD_RELOC_UNUSED;
3629 /* Data strutures storing one user error in the assembly code related to
3632 struct operand_error_record
3634 const aarch64_opcode *opcode;
3635 aarch64_operand_error detail;
3636 struct operand_error_record *next;
3639 typedef struct operand_error_record operand_error_record;
3641 struct operand_errors
3643 operand_error_record *head;
3644 operand_error_record *tail;
3647 typedef struct operand_errors operand_errors;
3649 /* Top-level data structure reporting user errors for the current line of
3651 The way md_assemble works is that all opcodes sharing the same mnemonic
3652 name are iterated to find a match to the assembly line. In this data
3653 structure, each of the such opcodes will have one operand_error_record
3654 allocated and inserted. In other words, excessive errors related with
3655 a single opcode are disregarded. */
3656 operand_errors operand_error_report;
3658 /* Free record nodes. */
3659 static operand_error_record *free_opnd_error_record_nodes = NULL;
3661 /* Initialize the data structure that stores the operand mismatch
3662 information on assembling one line of the assembly code. */
3664 init_operand_error_report (void)
3666 if (operand_error_report.head != NULL)
3668 gas_assert (operand_error_report.tail != NULL);
3669 operand_error_report.tail->next = free_opnd_error_record_nodes;
3670 free_opnd_error_record_nodes = operand_error_report.head;
3671 operand_error_report.head = NULL;
3672 operand_error_report.tail = NULL;
3675 gas_assert (operand_error_report.tail == NULL);
3678 /* Return TRUE if some operand error has been recorded during the
3679 parsing of the current assembly line using the opcode *OPCODE;
3680 otherwise return FALSE. */
3681 static inline bfd_boolean
3682 opcode_has_operand_error_p (const aarch64_opcode *opcode)
3684 operand_error_record *record = operand_error_report.head;
3685 return record && record->opcode == opcode;
3688 /* Add the error record *NEW_RECORD to operand_error_report. The record's
3689 OPCODE field is initialized with OPCODE.
3690 N.B. only one record for each opcode, i.e. the maximum of one error is
3691 recorded for each instruction template. */
3694 add_operand_error_record (const operand_error_record* new_record)
3696 const aarch64_opcode *opcode = new_record->opcode;
3697 operand_error_record* record = operand_error_report.head;
3699 /* The record may have been created for this opcode. If not, we need
3701 if (! opcode_has_operand_error_p (opcode))
3703 /* Get one empty record. */
3704 if (free_opnd_error_record_nodes == NULL)
3706 record = xmalloc (sizeof (operand_error_record));
3712 record = free_opnd_error_record_nodes;
3713 free_opnd_error_record_nodes = record->next;
3715 record->opcode = opcode;
3716 /* Insert at the head. */
3717 record->next = operand_error_report.head;
3718 operand_error_report.head = record;
3719 if (operand_error_report.tail == NULL)
3720 operand_error_report.tail = record;
3722 else if (record->detail.kind != AARCH64_OPDE_NIL
3723 && record->detail.index <= new_record->detail.index
3724 && operand_error_higher_severity_p (record->detail.kind,
3725 new_record->detail.kind))
3727 /* In the case of multiple errors found on operands related with a
3728 single opcode, only record the error of the leftmost operand and
3729 only if the error is of higher severity. */
3730 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3731 " the existing error %s on operand %d",
3732 operand_mismatch_kind_names[new_record->detail.kind],
3733 new_record->detail.index,
3734 operand_mismatch_kind_names[record->detail.kind],
3735 record->detail.index);
3739 record->detail = new_record->detail;
3743 record_operand_error_info (const aarch64_opcode *opcode,
3744 aarch64_operand_error *error_info)
3746 operand_error_record record;
3747 record.opcode = opcode;
3748 record.detail = *error_info;
3749 add_operand_error_record (&record);
3752 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3753 error message *ERROR, for operand IDX (count from 0). */
3756 record_operand_error (const aarch64_opcode *opcode, int idx,
3757 enum aarch64_operand_error_kind kind,
3760 aarch64_operand_error info;
3761 memset(&info, 0, sizeof (info));
3765 record_operand_error_info (opcode, &info);
3769 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3770 enum aarch64_operand_error_kind kind,
3771 const char* error, const int *extra_data)
3773 aarch64_operand_error info;
3777 info.data[0] = extra_data[0];
3778 info.data[1] = extra_data[1];
3779 info.data[2] = extra_data[2];
3780 record_operand_error_info (opcode, &info);
3784 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3785 const char* error, int lower_bound,
3788 int data[3] = {lower_bound, upper_bound, 0};
3789 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3793 /* Remove the operand error record for *OPCODE. */
3794 static void ATTRIBUTE_UNUSED
3795 remove_operand_error_record (const aarch64_opcode *opcode)
3797 if (opcode_has_operand_error_p (opcode))
3799 operand_error_record* record = operand_error_report.head;
3800 gas_assert (record != NULL && operand_error_report.tail != NULL);
3801 operand_error_report.head = record->next;
3802 record->next = free_opnd_error_record_nodes;
3803 free_opnd_error_record_nodes = record;
3804 if (operand_error_report.head == NULL)
3806 gas_assert (operand_error_report.tail == record);
3807 operand_error_report.tail = NULL;
3812 /* Given the instruction in *INSTR, return the index of the best matched
3813 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3815 Return -1 if there is no qualifier sequence; return the first match
3816 if there is multiple matches found. */
3819 find_best_match (const aarch64_inst *instr,
3820 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3822 int i, num_opnds, max_num_matched, idx;
3824 num_opnds = aarch64_num_of_operands (instr->opcode);
3827 DEBUG_TRACE ("no operand");
3831 max_num_matched = 0;
3834 /* For each pattern. */
3835 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3838 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3840 /* Most opcodes has much fewer patterns in the list. */
3841 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3843 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3844 if (i != 0 && idx == -1)
3845 /* If nothing has been matched, return the 1st sequence. */
3850 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3851 if (*qualifiers == instr->operands[j].qualifier)
3854 if (num_matched > max_num_matched)
3856 max_num_matched = num_matched;
3861 DEBUG_TRACE ("return with %d", idx);
3865 /* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3866 corresponding operands in *INSTR. */
3869 assign_qualifier_sequence (aarch64_inst *instr,
3870 const aarch64_opnd_qualifier_t *qualifiers)
3873 int num_opnds = aarch64_num_of_operands (instr->opcode);
3874 gas_assert (num_opnds);
3875 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3876 instr->operands[i].qualifier = *qualifiers;
3879 /* Print operands for the diagnosis purpose. */
3882 print_operands (char *buf, const aarch64_opcode *opcode,
3883 const aarch64_opnd_info *opnds)
3887 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3889 const size_t size = 128;
3892 /* We regard the opcode operand info more, however we also look into
3893 the inst->operands to support the disassembling of the optional
3895 The two operand code should be the same in all cases, apart from
3896 when the operand can be optional. */
3897 if (opcode->operands[i] == AARCH64_OPND_NIL
3898 || opnds[i].type == AARCH64_OPND_NIL)
3901 /* Generate the operand string in STR. */
3902 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
3906 strcat (buf, i == 0 ? " " : ",");
3908 /* Append the operand string. */
3913 /* Send to stderr a string as information. */
3916 output_info (const char *format, ...)
3922 as_where (&file, &line);
3926 fprintf (stderr, "%s:%u: ", file, line);
3928 fprintf (stderr, "%s: ", file);
3930 fprintf (stderr, _("Info: "));
3931 va_start (args, format);
3932 vfprintf (stderr, format, args);
3934 (void) putc ('\n', stderr);
3937 /* Output one operand error record. */
3940 output_operand_error_record (const operand_error_record *record, char *str)
3942 int idx = record->detail.index;
3943 const aarch64_opcode *opcode = record->opcode;
3944 enum aarch64_opnd opd_code = (idx != -1 ? opcode->operands[idx]
3945 : AARCH64_OPND_NIL);
3946 const aarch64_operand_error *detail = &record->detail;
3948 switch (detail->kind)
3950 case AARCH64_OPDE_NIL:
3954 case AARCH64_OPDE_SYNTAX_ERROR:
3955 case AARCH64_OPDE_RECOVERABLE:
3956 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
3957 case AARCH64_OPDE_OTHER_ERROR:
3958 gas_assert (idx >= 0);
3959 /* Use the prepared error message if there is, otherwise use the
3960 operand description string to describe the error. */
3961 if (detail->error != NULL)
3963 if (detail->index == -1)
3964 as_bad (_("%s -- `%s'"), detail->error, str);
3966 as_bad (_("%s at operand %d -- `%s'"),
3967 detail->error, detail->index + 1, str);
3970 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
3971 aarch64_get_operand_desc (opd_code), str);
3974 case AARCH64_OPDE_INVALID_VARIANT:
3975 as_bad (_("operand mismatch -- `%s'"), str);
3976 if (verbose_error_p)
3978 /* We will try to correct the erroneous instruction and also provide
3979 more information e.g. all other valid variants.
3981 The string representation of the corrected instruction and other
3982 valid variants are generated by
3984 1) obtaining the intermediate representation of the erroneous
3986 2) manipulating the IR, e.g. replacing the operand qualifier;
3987 3) printing out the instruction by calling the printer functions
3988 shared with the disassembler.
3990 The limitation of this method is that the exact input assembly
3991 line cannot be accurately reproduced in some cases, for example an
3992 optional operand present in the actual assembly line will be
3993 omitted in the output; likewise for the optional syntax rules,
3994 e.g. the # before the immediate. Another limitation is that the
3995 assembly symbols and relocation operations in the assembly line
3996 currently cannot be printed out in the error report. Last but not
3997 least, when there is other error(s) co-exist with this error, the
3998 'corrected' instruction may be still incorrect, e.g. given
3999 'ldnp h0,h1,[x0,#6]!'
4000 this diagnosis will provide the version:
4001 'ldnp s0,s1,[x0,#6]!'
4002 which is still not right. */
4003 size_t len = strlen (get_mnemonic_name (str));
4006 const size_t size = 2048;
4008 aarch64_inst *inst_base = &inst.base;
4009 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4012 reset_aarch64_instruction (&inst);
4013 inst_base->opcode = opcode;
4015 /* Reset the error report so that there is no side effect on the
4016 following operand parsing. */
4017 init_operand_error_report ();
4020 result = parse_operands (str + len, opcode)
4021 && programmer_friendly_fixup (&inst);
4022 gas_assert (result);
4023 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4025 gas_assert (!result);
4027 /* Find the most matched qualifier sequence. */
4028 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4029 gas_assert (qlf_idx > -1);
4031 /* Assign the qualifiers. */
4032 assign_qualifier_sequence (inst_base,
4033 opcode->qualifiers_list[qlf_idx]);
4035 /* Print the hint. */
4036 output_info (_(" did you mean this?"));
4037 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4038 print_operands (buf, opcode, inst_base->operands);
4039 output_info (_(" %s"), buf);
4041 /* Print out other variant(s) if there is any. */
4043 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4044 output_info (_(" other valid variant(s):"));
4046 /* For each pattern. */
4047 qualifiers_list = opcode->qualifiers_list;
4048 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4050 /* Most opcodes has much fewer patterns in the list.
4051 First NIL qualifier indicates the end in the list. */
4052 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4057 /* Mnemonics name. */
4058 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4060 /* Assign the qualifiers. */
4061 assign_qualifier_sequence (inst_base, *qualifiers_list);
4063 /* Print instruction. */
4064 print_operands (buf, opcode, inst_base->operands);
4066 output_info (_(" %s"), buf);
4072 case AARCH64_OPDE_OUT_OF_RANGE:
4073 if (detail->data[0] != detail->data[1])
4074 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4075 detail->error ? detail->error : _("immediate value"),
4076 detail->data[0], detail->data[1], detail->index + 1, str);
4078 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4079 detail->error ? detail->error : _("immediate value"),
4080 detail->data[0], detail->index + 1, str);
4083 case AARCH64_OPDE_REG_LIST:
4084 if (detail->data[0] == 1)
4085 as_bad (_("invalid number of registers in the list; "
4086 "only 1 register is expected at operand %d -- `%s'"),
4087 detail->index + 1, str);
4089 as_bad (_("invalid number of registers in the list; "
4090 "%d registers are expected at operand %d -- `%s'"),
4091 detail->data[0], detail->index + 1, str);
4094 case AARCH64_OPDE_UNALIGNED:
4095 as_bad (_("immediate value should be a multiple of "
4096 "%d at operand %d -- `%s'"),
4097 detail->data[0], detail->index + 1, str);
4106 /* Process and output the error message about the operand mismatching.
4108 When this function is called, the operand error information had
4109 been collected for an assembly line and there will be multiple
4110 errors in the case of mulitple instruction templates; output the
4111 error message that most closely describes the problem. */
4114 output_operand_error_report (char *str)
4116 int largest_error_pos;
4117 const char *msg = NULL;
4118 enum aarch64_operand_error_kind kind;
4119 operand_error_record *curr;
4120 operand_error_record *head = operand_error_report.head;
4121 operand_error_record *record = NULL;
4123 /* No error to report. */
4127 gas_assert (head != NULL && operand_error_report.tail != NULL);
4129 /* Only one error. */
4130 if (head == operand_error_report.tail)
4132 DEBUG_TRACE ("single opcode entry with error kind: %s",
4133 operand_mismatch_kind_names[head->detail.kind]);
4134 output_operand_error_record (head, str);
4138 /* Find the error kind of the highest severity. */
4139 DEBUG_TRACE ("multiple opcode entres with error kind");
4140 kind = AARCH64_OPDE_NIL;
4141 for (curr = head; curr != NULL; curr = curr->next)
4143 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4144 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4145 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4146 kind = curr->detail.kind;
4148 gas_assert (kind != AARCH64_OPDE_NIL);
4150 /* Pick up one of errors of KIND to report. */
4151 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4152 for (curr = head; curr != NULL; curr = curr->next)
4154 if (curr->detail.kind != kind)
4156 /* If there are multiple errors, pick up the one with the highest
4157 mismatching operand index. In the case of multiple errors with
4158 the equally highest operand index, pick up the first one or the
4159 first one with non-NULL error message. */
4160 if (curr->detail.index > largest_error_pos
4161 || (curr->detail.index == largest_error_pos && msg == NULL
4162 && curr->detail.error != NULL))
4164 largest_error_pos = curr->detail.index;
4166 msg = record->detail.error;
4170 gas_assert (largest_error_pos != -2 && record != NULL);
4171 DEBUG_TRACE ("Pick up error kind %s to report",
4172 operand_mismatch_kind_names[record->detail.kind]);
4175 output_operand_error_record (record, str);
4178 /* Write an AARCH64 instruction to buf - always little-endian. */
4180 put_aarch64_insn (char *buf, uint32_t insn)
4182 unsigned char *where = (unsigned char *) buf;
4184 where[1] = insn >> 8;
4185 where[2] = insn >> 16;
4186 where[3] = insn >> 24;
4190 get_aarch64_insn (char *buf)
4192 unsigned char *where = (unsigned char *) buf;
4194 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4199 output_inst (struct aarch64_inst *new_inst)
4203 to = frag_more (INSN_SIZE);
4205 frag_now->tc_frag_data.recorded = 1;
4207 put_aarch64_insn (to, inst.base.value);
4209 if (inst.reloc.type != BFD_RELOC_UNUSED)
4211 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4212 INSN_SIZE, &inst.reloc.exp,
4215 DEBUG_TRACE ("Prepared relocation fix up");
4216 /* Don't check the addend value against the instruction size,
4217 that's the job of our code in md_apply_fix(). */
4218 fixp->fx_no_overflow = 1;
4219 if (new_inst != NULL)
4220 fixp->tc_fix_data.inst = new_inst;
4221 if (aarch64_gas_internal_fixup_p ())
4223 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4224 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4225 fixp->fx_addnumber = inst.reloc.flags;
4229 dwarf2_emit_insn (INSN_SIZE);
4232 /* Link together opcodes of the same name. */
4236 aarch64_opcode *opcode;
4237 struct templates *next;
4240 typedef struct templates templates;
4243 lookup_mnemonic (const char *start, int len)
4245 templates *templ = NULL;
4247 templ = hash_find_n (aarch64_ops_hsh, start, len);
4251 /* Subroutine of md_assemble, responsible for looking up the primary
4252 opcode from the mnemonic the user wrote. STR points to the
4253 beginning of the mnemonic. */
4256 opcode_lookup (char **str)
4259 const aarch64_cond *cond;
4263 /* Scan up to the end of the mnemonic, which must end in white space,
4264 '.', or end of string. */
4265 for (base = end = *str; is_part_of_name(*end); end++)
4272 inst.cond = COND_ALWAYS;
4274 /* Handle a possible condition. */
4277 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4280 inst.cond = cond->value;
4294 if (inst.cond == COND_ALWAYS)
4296 /* Look for unaffixed mnemonic. */
4297 return lookup_mnemonic (base, len);
4301 /* append ".c" to mnemonic if conditional */
4302 memcpy (condname, base, len);
4303 memcpy (condname + len, ".c", 2);
4306 return lookup_mnemonic (base, len);
4312 /* Internal helper routine converting a vector neon_type_el structure
4313 *VECTYPE to a corresponding operand qualifier. */
4315 static inline aarch64_opnd_qualifier_t
4316 vectype_to_qualifier (const struct neon_type_el *vectype)
4318 /* Element size in bytes indexed by neon_el_type. */
4319 const unsigned char ele_size[5]
4322 if (!vectype->defined || vectype->type == NT_invtype)
4323 goto vectype_conversion_fail;
4325 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4327 if (vectype->defined & NTA_HASINDEX)
4328 /* Vector element register. */
4329 return AARCH64_OPND_QLF_S_B + vectype->type;
4332 /* Vector register. */
4333 int reg_size = ele_size[vectype->type] * vectype->width;
4335 if (reg_size != 16 && reg_size != 8)
4336 goto vectype_conversion_fail;
4337 /* The conversion is calculated based on the relation of the order of
4338 qualifiers to the vector element size and vector register size. */
4339 offset = (vectype->type == NT_q)
4340 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4341 gas_assert (offset <= 8);
4342 return AARCH64_OPND_QLF_V_8B + offset;
4345 vectype_conversion_fail:
4346 first_error (_("bad vector arrangement type"));
4347 return AARCH64_OPND_QLF_NIL;
4350 /* Process an optional operand that is found omitted from the assembly line.
4351 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4352 instruction's opcode entry while IDX is the index of this omitted operand.
4356 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4357 int idx, aarch64_opnd_info *operand)
4359 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4360 gas_assert (optional_operand_p (opcode, idx));
4361 gas_assert (!operand->present);
4365 case AARCH64_OPND_Rd:
4366 case AARCH64_OPND_Rn:
4367 case AARCH64_OPND_Rm:
4368 case AARCH64_OPND_Rt:
4369 case AARCH64_OPND_Rt2:
4370 case AARCH64_OPND_Rs:
4371 case AARCH64_OPND_Ra:
4372 case AARCH64_OPND_Rt_SYS:
4373 case AARCH64_OPND_Rd_SP:
4374 case AARCH64_OPND_Rn_SP:
4375 case AARCH64_OPND_Fd:
4376 case AARCH64_OPND_Fn:
4377 case AARCH64_OPND_Fm:
4378 case AARCH64_OPND_Fa:
4379 case AARCH64_OPND_Ft:
4380 case AARCH64_OPND_Ft2:
4381 case AARCH64_OPND_Sd:
4382 case AARCH64_OPND_Sn:
4383 case AARCH64_OPND_Sm:
4384 case AARCH64_OPND_Vd:
4385 case AARCH64_OPND_Vn:
4386 case AARCH64_OPND_Vm:
4387 case AARCH64_OPND_VdD1:
4388 case AARCH64_OPND_VnD1:
4389 operand->reg.regno = default_value;
4392 case AARCH64_OPND_Ed:
4393 case AARCH64_OPND_En:
4394 case AARCH64_OPND_Em:
4395 operand->reglane.regno = default_value;
4398 case AARCH64_OPND_IDX:
4399 case AARCH64_OPND_BIT_NUM:
4400 case AARCH64_OPND_IMMR:
4401 case AARCH64_OPND_IMMS:
4402 case AARCH64_OPND_SHLL_IMM:
4403 case AARCH64_OPND_IMM_VLSL:
4404 case AARCH64_OPND_IMM_VLSR:
4405 case AARCH64_OPND_CCMP_IMM:
4406 case AARCH64_OPND_FBITS:
4407 case AARCH64_OPND_UIMM4:
4408 case AARCH64_OPND_UIMM3_OP1:
4409 case AARCH64_OPND_UIMM3_OP2:
4410 case AARCH64_OPND_IMM:
4411 case AARCH64_OPND_WIDTH:
4412 case AARCH64_OPND_UIMM7:
4413 case AARCH64_OPND_NZCV:
4414 operand->imm.value = default_value;
4417 case AARCH64_OPND_EXCEPTION:
4418 inst.reloc.type = BFD_RELOC_UNUSED;
4421 case AARCH64_OPND_BARRIER_ISB:
4422 operand->barrier = aarch64_barrier_options + default_value;
4429 /* Process the relocation type for move wide instructions.
4430 Return TRUE on success; otherwise return FALSE. */
4433 process_movw_reloc_info (void)
4438 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4440 if (inst.base.opcode->op == OP_MOVK)
4441 switch (inst.reloc.type)
4443 case BFD_RELOC_AARCH64_MOVW_G0_S:
4444 case BFD_RELOC_AARCH64_MOVW_G1_S:
4445 case BFD_RELOC_AARCH64_MOVW_G2_S:
4446 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4447 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4448 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4449 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4450 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4452 (_("the specified relocation type is not allowed for MOVK"));
4458 switch (inst.reloc.type)
4460 case BFD_RELOC_AARCH64_MOVW_G0:
4461 case BFD_RELOC_AARCH64_MOVW_G0_S:
4462 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4463 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4464 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4467 case BFD_RELOC_AARCH64_MOVW_G1:
4468 case BFD_RELOC_AARCH64_MOVW_G1_S:
4469 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4470 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4471 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4474 case BFD_RELOC_AARCH64_MOVW_G2:
4475 case BFD_RELOC_AARCH64_MOVW_G2_S:
4476 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4477 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4480 set_fatal_syntax_error
4481 (_("the specified relocation type is not allowed for 32-bit "
4487 case BFD_RELOC_AARCH64_MOVW_G3:
4490 set_fatal_syntax_error
4491 (_("the specified relocation type is not allowed for 32-bit "
4498 /* More cases should be added when more MOVW-related relocation types
4499 are supported in GAS. */
4500 gas_assert (aarch64_gas_internal_fixup_p ());
4501 /* The shift amount should have already been set by the parser. */
4504 inst.base.operands[1].shifter.amount = shift;
4508 /* A primitive log caculator. */
4510 static inline unsigned int
4511 get_logsz (unsigned int size)
4513 const unsigned char ls[16] =
4514 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4520 gas_assert (ls[size - 1] != (unsigned char)-1);
4521 return ls[size - 1];
4524 /* Determine and return the real reloc type code for an instruction
4525 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4527 static inline bfd_reloc_code_real_type
4528 ldst_lo12_determine_real_reloc_type (void)
4531 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4532 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4534 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4535 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4536 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4537 BFD_RELOC_AARCH64_LDST128_LO12
4540 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4541 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4543 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4545 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4547 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4549 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4550 gas_assert (logsz >= 0 && logsz <= 4);
4552 return reloc_ldst_lo12[logsz];
4555 /* Check whether a register list REGINFO is valid. The registers must be
4556 numbered in increasing order (modulo 32), in increments of one or two.
4558 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4561 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4564 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4566 uint32_t i, nb_regs, prev_regno, incr;
4568 nb_regs = 1 + (reginfo & 0x3);
4570 prev_regno = reginfo & 0x1f;
4571 incr = accept_alternate ? 2 : 1;
4573 for (i = 1; i < nb_regs; ++i)
4575 uint32_t curr_regno;
4577 curr_regno = reginfo & 0x1f;
4578 if (curr_regno != ((prev_regno + incr) & 0x1f))
4580 prev_regno = curr_regno;
4586 /* Generic instruction operand parser. This does no encoding and no
4587 semantic validation; it merely squirrels values away in the inst
4588 structure. Returns TRUE or FALSE depending on whether the
4589 specified grammar matched. */
4592 parse_operands (char *str, const aarch64_opcode *opcode)
4595 char *backtrack_pos = 0;
4596 const enum aarch64_opnd *operands = opcode->operands;
4599 skip_whitespace (str);
4601 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4604 int isreg32, isregzero;
4605 int comma_skipped_p = 0;
4606 aarch64_reg_type rtype;
4607 struct neon_type_el vectype;
4608 aarch64_opnd_info *info = &inst.base.operands[i];
4610 DEBUG_TRACE ("parse operand %d", i);
4612 /* Assign the operand code. */
4613 info->type = operands[i];
4615 if (optional_operand_p (opcode, i))
4617 /* Remember where we are in case we need to backtrack. */
4618 gas_assert (!backtrack_pos);
4619 backtrack_pos = str;
4622 /* Expect comma between operands; the backtrack mechanizm will take
4623 care of cases of omitted optional operand. */
4624 if (i > 0 && ! skip_past_char (&str, ','))
4626 set_syntax_error (_("comma expected between operands"));
4630 comma_skipped_p = 1;
4632 switch (operands[i])
4634 case AARCH64_OPND_Rd:
4635 case AARCH64_OPND_Rn:
4636 case AARCH64_OPND_Rm:
4637 case AARCH64_OPND_Rt:
4638 case AARCH64_OPND_Rt2:
4639 case AARCH64_OPND_Rs:
4640 case AARCH64_OPND_Ra:
4641 case AARCH64_OPND_Rt_SYS:
4642 case AARCH64_OPND_PAIRREG:
4643 po_int_reg_or_fail (1, 0);
4646 case AARCH64_OPND_Rd_SP:
4647 case AARCH64_OPND_Rn_SP:
4648 po_int_reg_or_fail (0, 1);
4651 case AARCH64_OPND_Rm_EXT:
4652 case AARCH64_OPND_Rm_SFT:
4653 po_misc_or_fail (parse_shifter_operand
4654 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4656 : SHIFTED_LOGIC_IMM)));
4657 if (!info->shifter.operator_present)
4659 /* Default to LSL if not present. Libopcodes prefers shifter
4660 kind to be explicit. */
4661 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4662 info->shifter.kind = AARCH64_MOD_LSL;
4663 /* For Rm_EXT, libopcodes will carry out further check on whether
4664 or not stack pointer is used in the instruction (Recall that
4665 "the extend operator is not optional unless at least one of
4666 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4670 case AARCH64_OPND_Fd:
4671 case AARCH64_OPND_Fn:
4672 case AARCH64_OPND_Fm:
4673 case AARCH64_OPND_Fa:
4674 case AARCH64_OPND_Ft:
4675 case AARCH64_OPND_Ft2:
4676 case AARCH64_OPND_Sd:
4677 case AARCH64_OPND_Sn:
4678 case AARCH64_OPND_Sm:
4679 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4680 if (val == PARSE_FAIL)
4682 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4685 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4687 info->reg.regno = val;
4688 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4691 case AARCH64_OPND_Vd:
4692 case AARCH64_OPND_Vn:
4693 case AARCH64_OPND_Vm:
4694 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4695 if (val == PARSE_FAIL)
4697 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4700 if (vectype.defined & NTA_HASINDEX)
4703 info->reg.regno = val;
4704 info->qualifier = vectype_to_qualifier (&vectype);
4705 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4709 case AARCH64_OPND_VdD1:
4710 case AARCH64_OPND_VnD1:
4711 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4712 if (val == PARSE_FAIL)
4714 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4717 if (vectype.type != NT_d || vectype.index != 1)
4719 set_fatal_syntax_error
4720 (_("the top half of a 128-bit FP/SIMD register is expected"));
4723 info->reg.regno = val;
4724 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4725 here; it is correct for the purpose of encoding/decoding since
4726 only the register number is explicitly encoded in the related
4727 instructions, although this appears a bit hacky. */
4728 info->qualifier = AARCH64_OPND_QLF_S_D;
4731 case AARCH64_OPND_Ed:
4732 case AARCH64_OPND_En:
4733 case AARCH64_OPND_Em:
4734 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4735 if (val == PARSE_FAIL)
4737 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4740 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4743 info->reglane.regno = val;
4744 info->reglane.index = vectype.index;
4745 info->qualifier = vectype_to_qualifier (&vectype);
4746 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4750 case AARCH64_OPND_LVn:
4751 case AARCH64_OPND_LVt:
4752 case AARCH64_OPND_LVt_AL:
4753 case AARCH64_OPND_LEt:
4754 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4756 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4758 set_fatal_syntax_error (_("invalid register list"));
4761 info->reglist.first_regno = (val >> 2) & 0x1f;
4762 info->reglist.num_regs = (val & 0x3) + 1;
4763 if (operands[i] == AARCH64_OPND_LEt)
4765 if (!(vectype.defined & NTA_HASINDEX))
4767 info->reglist.has_index = 1;
4768 info->reglist.index = vectype.index;
4770 else if (!(vectype.defined & NTA_HASTYPE))
4772 info->qualifier = vectype_to_qualifier (&vectype);
4773 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4777 case AARCH64_OPND_Cn:
4778 case AARCH64_OPND_Cm:
4779 po_reg_or_fail (REG_TYPE_CN);
4782 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4785 inst.base.operands[i].reg.regno = val;
4788 case AARCH64_OPND_SHLL_IMM:
4789 case AARCH64_OPND_IMM_VLSR:
4790 po_imm_or_fail (1, 64);
4791 info->imm.value = val;
4794 case AARCH64_OPND_CCMP_IMM:
4795 case AARCH64_OPND_FBITS:
4796 case AARCH64_OPND_UIMM4:
4797 case AARCH64_OPND_UIMM3_OP1:
4798 case AARCH64_OPND_UIMM3_OP2:
4799 case AARCH64_OPND_IMM_VLSL:
4800 case AARCH64_OPND_IMM:
4801 case AARCH64_OPND_WIDTH:
4802 po_imm_nc_or_fail ();
4803 info->imm.value = val;
4806 case AARCH64_OPND_UIMM7:
4807 po_imm_or_fail (0, 127);
4808 info->imm.value = val;
4811 case AARCH64_OPND_IDX:
4812 case AARCH64_OPND_BIT_NUM:
4813 case AARCH64_OPND_IMMR:
4814 case AARCH64_OPND_IMMS:
4815 po_imm_or_fail (0, 63);
4816 info->imm.value = val;
4819 case AARCH64_OPND_IMM0:
4820 po_imm_nc_or_fail ();
4823 set_fatal_syntax_error (_("immediate zero expected"));
4826 info->imm.value = 0;
4829 case AARCH64_OPND_FPIMM0:
4832 bfd_boolean res1 = FALSE, res2 = FALSE;
4833 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4834 it is probably not worth the effort to support it. */
4835 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
4836 && !(res2 = parse_constant_immediate (&str, &val)))
4838 if ((res1 && qfloat == 0) || (res2 && val == 0))
4840 info->imm.value = 0;
4841 info->imm.is_fp = 1;
4844 set_fatal_syntax_error (_("immediate zero expected"));
4848 case AARCH64_OPND_IMM_MOV:
4851 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4852 reg_name_p (str, REG_TYPE_VN))
4855 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4857 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4858 later. fix_mov_imm_insn will try to determine a machine
4859 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4860 message if the immediate cannot be moved by a single
4862 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4863 inst.base.operands[i].skip = 1;
4867 case AARCH64_OPND_SIMD_IMM:
4868 case AARCH64_OPND_SIMD_IMM_SFT:
4869 if (! parse_big_immediate (&str, &val))
4871 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4873 /* need_libopcodes_p */ 1,
4876 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4877 shift, we don't check it here; we leave the checking to
4878 the libopcodes (operand_general_constraint_met_p). By
4879 doing this, we achieve better diagnostics. */
4880 if (skip_past_comma (&str)
4881 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4883 if (!info->shifter.operator_present
4884 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4886 /* Default to LSL if not present. Libopcodes prefers shifter
4887 kind to be explicit. */
4888 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4889 info->shifter.kind = AARCH64_MOD_LSL;
4893 case AARCH64_OPND_FPIMM:
4894 case AARCH64_OPND_SIMD_FPIMM:
4898 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
4900 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
4904 set_fatal_syntax_error (_("invalid floating-point constant"));
4907 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
4908 inst.base.operands[i].imm.is_fp = 1;
4912 case AARCH64_OPND_LIMM:
4913 po_misc_or_fail (parse_shifter_operand (&str, info,
4914 SHIFTED_LOGIC_IMM));
4915 if (info->shifter.operator_present)
4917 set_fatal_syntax_error
4918 (_("shift not allowed for bitmask immediate"));
4921 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4923 /* need_libopcodes_p */ 1,
4927 case AARCH64_OPND_AIMM:
4928 if (opcode->op == OP_ADD)
4929 /* ADD may have relocation types. */
4930 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
4931 SHIFTED_ARITH_IMM));
4933 po_misc_or_fail (parse_shifter_operand (&str, info,
4934 SHIFTED_ARITH_IMM));
4935 switch (inst.reloc.type)
4937 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4938 info->shifter.amount = 12;
4940 case BFD_RELOC_UNUSED:
4941 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4942 if (info->shifter.kind != AARCH64_MOD_NONE)
4943 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
4944 inst.reloc.pc_rel = 0;
4949 info->imm.value = 0;
4950 if (!info->shifter.operator_present)
4952 /* Default to LSL if not present. Libopcodes prefers shifter
4953 kind to be explicit. */
4954 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4955 info->shifter.kind = AARCH64_MOD_LSL;
4959 case AARCH64_OPND_HALF:
4961 /* #<imm16> or relocation. */
4962 int internal_fixup_p;
4963 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
4964 if (internal_fixup_p)
4965 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4966 skip_whitespace (str);
4967 if (skip_past_comma (&str))
4969 /* {, LSL #<shift>} */
4970 if (! aarch64_gas_internal_fixup_p ())
4972 set_fatal_syntax_error (_("can't mix relocation modifier "
4973 "with explicit shift"));
4976 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
4979 inst.base.operands[i].shifter.amount = 0;
4980 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
4981 inst.base.operands[i].imm.value = 0;
4982 if (! process_movw_reloc_info ())
4987 case AARCH64_OPND_EXCEPTION:
4988 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
4989 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4991 /* need_libopcodes_p */ 0,
4995 case AARCH64_OPND_NZCV:
4997 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5001 info->imm.value = nzcv->value;
5004 po_imm_or_fail (0, 15);
5005 info->imm.value = val;
5009 case AARCH64_OPND_COND:
5010 case AARCH64_OPND_COND1:
5011 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5013 if (info->cond == NULL)
5015 set_syntax_error (_("invalid condition"));
5018 else if (operands[i] == AARCH64_OPND_COND1
5019 && (info->cond->value & 0xe) == 0xe)
5021 /* Not allow AL or NV. */
5022 set_default_error ();
5027 case AARCH64_OPND_ADDR_ADRP:
5028 po_misc_or_fail (parse_adrp (&str));
5029 /* Clear the value as operand needs to be relocated. */
5030 info->imm.value = 0;
5033 case AARCH64_OPND_ADDR_PCREL14:
5034 case AARCH64_OPND_ADDR_PCREL19:
5035 case AARCH64_OPND_ADDR_PCREL21:
5036 case AARCH64_OPND_ADDR_PCREL26:
5037 po_misc_or_fail (parse_address_reloc (&str, info));
5038 if (!info->addr.pcrel)
5040 set_syntax_error (_("invalid pc-relative address"));
5043 if (inst.gen_lit_pool
5044 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5046 /* Only permit "=value" in the literal load instructions.
5047 The literal will be generated by programmer_friendly_fixup. */
5048 set_syntax_error (_("invalid use of \"=immediate\""));
5051 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5053 set_syntax_error (_("unrecognized relocation suffix"));
5056 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5058 info->imm.value = inst.reloc.exp.X_add_number;
5059 inst.reloc.type = BFD_RELOC_UNUSED;
5063 info->imm.value = 0;
5064 if (inst.reloc.type == BFD_RELOC_UNUSED)
5065 switch (opcode->iclass)
5069 /* e.g. CBZ or B.COND */
5070 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5071 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5075 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5076 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5080 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5082 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5083 : BFD_RELOC_AARCH64_JUMP26;
5086 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5087 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5090 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5091 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5097 inst.reloc.pc_rel = 1;
5101 case AARCH64_OPND_ADDR_SIMPLE:
5102 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5103 /* [<Xn|SP>{, #<simm>}] */
5104 po_char_or_fail ('[');
5105 po_reg_or_fail (REG_TYPE_R64_SP);
5106 /* Accept optional ", #0". */
5107 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5108 && skip_past_char (&str, ','))
5110 skip_past_char (&str, '#');
5111 if (! skip_past_char (&str, '0'))
5113 set_fatal_syntax_error
5114 (_("the optional immediate offset can only be 0"));
5118 po_char_or_fail (']');
5119 info->addr.base_regno = val;
5122 case AARCH64_OPND_ADDR_REGOFF:
5123 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5124 po_misc_or_fail (parse_address (&str, info, 0));
5125 if (info->addr.pcrel || !info->addr.offset.is_reg
5126 || !info->addr.preind || info->addr.postind
5127 || info->addr.writeback)
5129 set_syntax_error (_("invalid addressing mode"));
5132 if (!info->shifter.operator_present)
5134 /* Default to LSL if not present. Libopcodes prefers shifter
5135 kind to be explicit. */
5136 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5137 info->shifter.kind = AARCH64_MOD_LSL;
5139 /* Qualifier to be deduced by libopcodes. */
5142 case AARCH64_OPND_ADDR_SIMM7:
5143 po_misc_or_fail (parse_address (&str, info, 0));
5144 if (info->addr.pcrel || info->addr.offset.is_reg
5145 || (!info->addr.preind && !info->addr.postind))
5147 set_syntax_error (_("invalid addressing mode"));
5150 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5152 /* need_libopcodes_p */ 1,
5156 case AARCH64_OPND_ADDR_SIMM9:
5157 case AARCH64_OPND_ADDR_SIMM9_2:
5158 po_misc_or_fail (parse_address_reloc (&str, info));
5159 if (info->addr.pcrel || info->addr.offset.is_reg
5160 || (!info->addr.preind && !info->addr.postind)
5161 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5162 && info->addr.writeback))
5164 set_syntax_error (_("invalid addressing mode"));
5167 if (inst.reloc.type != BFD_RELOC_UNUSED)
5169 set_syntax_error (_("relocation not allowed"));
5172 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5174 /* need_libopcodes_p */ 1,
5178 case AARCH64_OPND_ADDR_UIMM12:
5179 po_misc_or_fail (parse_address_reloc (&str, info));
5180 if (info->addr.pcrel || info->addr.offset.is_reg
5181 || !info->addr.preind || info->addr.writeback)
5183 set_syntax_error (_("invalid addressing mode"));
5186 if (inst.reloc.type == BFD_RELOC_UNUSED)
5187 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5188 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5189 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5190 /* Leave qualifier to be determined by libopcodes. */
5193 case AARCH64_OPND_SIMD_ADDR_POST:
5194 /* [<Xn|SP>], <Xm|#<amount>> */
5195 po_misc_or_fail (parse_address (&str, info, 1));
5196 if (!info->addr.postind || !info->addr.writeback)
5198 set_syntax_error (_("invalid addressing mode"));
5201 if (!info->addr.offset.is_reg)
5203 if (inst.reloc.exp.X_op == O_constant)
5204 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5207 set_fatal_syntax_error
5208 (_("writeback value should be an immediate constant"));
5215 case AARCH64_OPND_SYSREG:
5216 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1))
5219 set_syntax_error (_("unknown or missing system register name"));
5222 inst.base.operands[i].sysreg = val;
5225 case AARCH64_OPND_PSTATEFIELD:
5226 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0))
5229 set_syntax_error (_("unknown or missing PSTATE field name"));
5232 inst.base.operands[i].pstatefield = val;
5235 case AARCH64_OPND_SYSREG_IC:
5236 inst.base.operands[i].sysins_op =
5237 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5239 case AARCH64_OPND_SYSREG_DC:
5240 inst.base.operands[i].sysins_op =
5241 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5243 case AARCH64_OPND_SYSREG_AT:
5244 inst.base.operands[i].sysins_op =
5245 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5247 case AARCH64_OPND_SYSREG_TLBI:
5248 inst.base.operands[i].sysins_op =
5249 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5251 if (inst.base.operands[i].sysins_op == NULL)
5253 set_fatal_syntax_error ( _("unknown or missing operation name"));
5258 case AARCH64_OPND_BARRIER:
5259 case AARCH64_OPND_BARRIER_ISB:
5260 val = parse_barrier (&str);
5261 if (val != PARSE_FAIL
5262 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5264 /* ISB only accepts options name 'sy'. */
5266 (_("the specified option is not accepted in ISB"));
5267 /* Turn off backtrack as this optional operand is present. */
5271 /* This is an extension to accept a 0..15 immediate. */
5272 if (val == PARSE_FAIL)
5273 po_imm_or_fail (0, 15);
5274 info->barrier = aarch64_barrier_options + val;
5277 case AARCH64_OPND_PRFOP:
5278 val = parse_pldop (&str);
5279 /* This is an extension to accept a 0..31 immediate. */
5280 if (val == PARSE_FAIL)
5281 po_imm_or_fail (0, 31);
5282 inst.base.operands[i].prfop = aarch64_prfops + val;
5286 as_fatal (_("unhandled operand code %d"), operands[i]);
5289 /* If we get here, this operand was successfully parsed. */
5290 inst.base.operands[i].present = 1;
5294 /* The parse routine should already have set the error, but in case
5295 not, set a default one here. */
5297 set_default_error ();
5299 if (! backtrack_pos)
5300 goto parse_operands_return;
5303 /* We reach here because this operand is marked as optional, and
5304 either no operand was supplied or the operand was supplied but it
5305 was syntactically incorrect. In the latter case we report an
5306 error. In the former case we perform a few more checks before
5307 dropping through to the code to insert the default operand. */
5309 char *tmp = backtrack_pos;
5310 char endchar = END_OF_INSN;
5312 if (i != (aarch64_num_of_operands (opcode) - 1))
5314 skip_past_char (&tmp, ',');
5316 if (*tmp != endchar)
5317 /* The user has supplied an operand in the wrong format. */
5318 goto parse_operands_return;
5320 /* Make sure there is not a comma before the optional operand.
5321 For example the fifth operand of 'sys' is optional:
5323 sys #0,c0,c0,#0, <--- wrong
5324 sys #0,c0,c0,#0 <--- correct. */
5325 if (comma_skipped_p && i && endchar == END_OF_INSN)
5327 set_fatal_syntax_error
5328 (_("unexpected comma before the omitted optional operand"));
5329 goto parse_operands_return;
5333 /* Reaching here means we are dealing with an optional operand that is
5334 omitted from the assembly line. */
5335 gas_assert (optional_operand_p (opcode, i));
5337 process_omitted_operand (operands[i], opcode, i, info);
5339 /* Try again, skipping the optional operand at backtrack_pos. */
5340 str = backtrack_pos;
5343 /* Clear any error record after the omitted optional operand has been
5344 successfully handled. */
5348 /* Check if we have parsed all the operands. */
5349 if (*str != '\0' && ! error_p ())
5351 /* Set I to the index of the last present operand; this is
5352 for the purpose of diagnostics. */
5353 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5355 set_fatal_syntax_error
5356 (_("unexpected characters following instruction"));
5359 parse_operands_return:
5363 DEBUG_TRACE ("parsing FAIL: %s - %s",
5364 operand_mismatch_kind_names[get_error_kind ()],
5365 get_error_message ());
5366 /* Record the operand error properly; this is useful when there
5367 are multiple instruction templates for a mnemonic name, so that
5368 later on, we can select the error that most closely describes
5370 record_operand_error (opcode, i, get_error_kind (),
5371 get_error_message ());
5376 DEBUG_TRACE ("parsing SUCCESS");
5381 /* It does some fix-up to provide some programmer friendly feature while
5382 keeping the libopcodes happy, i.e. libopcodes only accepts
5383 the preferred architectural syntax.
5384 Return FALSE if there is any failure; otherwise return TRUE. */
5387 programmer_friendly_fixup (aarch64_instruction *instr)
5389 aarch64_inst *base = &instr->base;
5390 const aarch64_opcode *opcode = base->opcode;
5391 enum aarch64_op op = opcode->op;
5392 aarch64_opnd_info *operands = base->operands;
5394 DEBUG_TRACE ("enter");
5396 switch (opcode->iclass)
5399 /* TBNZ Xn|Wn, #uimm6, label
5400 Test and Branch Not Zero: conditionally jumps to label if bit number
5401 uimm6 in register Xn is not zero. The bit number implies the width of
5402 the register, which may be written and should be disassembled as Wn if
5403 uimm is less than 32. */
5404 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5406 if (operands[1].imm.value >= 32)
5408 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5412 operands[0].qualifier = AARCH64_OPND_QLF_X;
5416 /* LDR Wt, label | =value
5417 As a convenience assemblers will typically permit the notation
5418 "=value" in conjunction with the pc-relative literal load instructions
5419 to automatically place an immediate value or symbolic address in a
5420 nearby literal pool and generate a hidden label which references it.
5421 ISREG has been set to 0 in the case of =value. */
5422 if (instr->gen_lit_pool
5423 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5425 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5426 if (op == OP_LDRSW_LIT)
5428 if (instr->reloc.exp.X_op != O_constant
5429 && instr->reloc.exp.X_op != O_big
5430 && instr->reloc.exp.X_op != O_symbol)
5432 record_operand_error (opcode, 1,
5433 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5434 _("constant expression expected"));
5437 if (! add_to_lit_pool (&instr->reloc.exp, size))
5439 record_operand_error (opcode, 1,
5440 AARCH64_OPDE_OTHER_ERROR,
5441 _("literal pool insertion failed"));
5449 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5450 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5451 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5452 A programmer-friendly assembler should accept a destination Xd in
5453 place of Wd, however that is not the preferred form for disassembly.
5455 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5456 && operands[1].qualifier == AARCH64_OPND_QLF_W
5457 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5458 operands[0].qualifier = AARCH64_OPND_QLF_W;
5463 /* In the 64-bit form, the final register operand is written as Wm
5464 for all but the (possibly omitted) UXTX/LSL and SXTX
5466 As a programmer-friendly assembler, we accept e.g.
5467 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5468 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5469 int idx = aarch64_operand_index (opcode->operands,
5470 AARCH64_OPND_Rm_EXT);
5471 gas_assert (idx == 1 || idx == 2);
5472 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5473 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5474 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5475 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5476 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5477 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5485 DEBUG_TRACE ("exit with SUCCESS");
5489 /* A wrapper function to interface with libopcodes on encoding and
5490 record the error message if there is any.
5492 Return TRUE on success; otherwise return FALSE. */
5495 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5498 aarch64_operand_error error_info;
5499 error_info.kind = AARCH64_OPDE_NIL;
5500 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5504 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5505 record_operand_error_info (opcode, &error_info);
5510 #ifdef DEBUG_AARCH64
5512 dump_opcode_operands (const aarch64_opcode *opcode)
5515 while (opcode->operands[i] != AARCH64_OPND_NIL)
5517 aarch64_verbose ("\t\t opnd%d: %s", i,
5518 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5519 ? aarch64_get_operand_name (opcode->operands[i])
5520 : aarch64_get_operand_desc (opcode->operands[i]));
5524 #endif /* DEBUG_AARCH64 */
5526 /* This is the guts of the machine-dependent assembler. STR points to a
5527 machine dependent instruction. This function is supposed to emit
5528 the frags/bytes it assembles to. */
5531 md_assemble (char *str)
5534 templates *template;
5535 aarch64_opcode *opcode;
5536 aarch64_inst *inst_base;
5537 unsigned saved_cond;
5539 /* Align the previous label if needed. */
5540 if (last_label_seen != NULL)
5542 symbol_set_frag (last_label_seen, frag_now);
5543 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5544 S_SET_SEGMENT (last_label_seen, now_seg);
5547 inst.reloc.type = BFD_RELOC_UNUSED;
5549 DEBUG_TRACE ("\n\n");
5550 DEBUG_TRACE ("==============================");
5551 DEBUG_TRACE ("Enter md_assemble with %s", str);
5553 template = opcode_lookup (&p);
5556 /* It wasn't an instruction, but it might be a register alias of
5557 the form alias .req reg directive. */
5558 if (!create_register_alias (str, p))
5559 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5564 skip_whitespace (p);
5567 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5568 get_mnemonic_name (str), str);
5572 init_operand_error_report ();
5574 saved_cond = inst.cond;
5575 reset_aarch64_instruction (&inst);
5576 inst.cond = saved_cond;
5578 /* Iterate through all opcode entries with the same mnemonic name. */
5581 opcode = template->opcode;
5583 DEBUG_TRACE ("opcode %s found", opcode->name);
5584 #ifdef DEBUG_AARCH64
5586 dump_opcode_operands (opcode);
5587 #endif /* DEBUG_AARCH64 */
5589 mapping_state (MAP_INSN);
5591 inst_base = &inst.base;
5592 inst_base->opcode = opcode;
5594 /* Truly conditionally executed instructions, e.g. b.cond. */
5595 if (opcode->flags & F_COND)
5597 gas_assert (inst.cond != COND_ALWAYS);
5598 inst_base->cond = get_cond_from_value (inst.cond);
5599 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5601 else if (inst.cond != COND_ALWAYS)
5603 /* It shouldn't arrive here, where the assembly looks like a
5604 conditional instruction but the found opcode is unconditional. */
5609 if (parse_operands (p, opcode)
5610 && programmer_friendly_fixup (&inst)
5611 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5613 /* Check that this instruction is supported for this CPU. */
5614 if (!opcode->avariant
5615 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5617 as_bad (_("selected processor does not support `%s'"), str);
5621 if (inst.reloc.type == BFD_RELOC_UNUSED
5622 || !inst.reloc.need_libopcodes_p)
5626 /* If there is relocation generated for the instruction,
5627 store the instruction information for the future fix-up. */
5628 struct aarch64_inst *copy;
5629 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5630 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5632 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5638 template = template->next;
5639 if (template != NULL)
5641 reset_aarch64_instruction (&inst);
5642 inst.cond = saved_cond;
5645 while (template != NULL);
5647 /* Issue the error messages if any. */
5648 output_operand_error_report (str);
5651 /* Various frobbings of labels and their addresses. */
5654 aarch64_start_line_hook (void)
5656 last_label_seen = NULL;
5660 aarch64_frob_label (symbolS * sym)
5662 last_label_seen = sym;
5664 dwarf2_emit_label (sym);
5668 aarch64_data_in_code (void)
5670 if (!strncmp (input_line_pointer + 1, "data:", 5))
5672 *input_line_pointer = '/';
5673 input_line_pointer += 5;
5674 *input_line_pointer = 0;
5682 aarch64_canonicalize_symbol_name (char *name)
5686 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5687 *(name + len - 5) = 0;
5692 /* Table of all register names defined by default. The user can
5693 define additional names with .req. Note that all register names
5694 should appear in both upper and lowercase variants. Some registers
5695 also have mixed-case names. */
5697 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5698 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
5699 #define REGSET31(p,t) \
5700 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5701 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5702 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5703 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5704 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5705 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5706 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5707 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5708 #define REGSET(p,t) \
5709 REGSET31(p,t), REGNUM(p,31,t)
5711 /* These go into aarch64_reg_hsh hash-table. */
5712 static const reg_entry reg_names[] = {
5713 /* Integer registers. */
5714 REGSET31 (x, R_64), REGSET31 (X, R_64),
5715 REGSET31 (w, R_32), REGSET31 (W, R_32),
5717 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5718 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5720 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5721 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5723 /* Coprocessor register numbers. */
5724 REGSET (c, CN), REGSET (C, CN),
5726 /* Floating-point single precision registers. */
5727 REGSET (s, FP_S), REGSET (S, FP_S),
5729 /* Floating-point double precision registers. */
5730 REGSET (d, FP_D), REGSET (D, FP_D),
5732 /* Floating-point half precision registers. */
5733 REGSET (h, FP_H), REGSET (H, FP_H),
5735 /* Floating-point byte precision registers. */
5736 REGSET (b, FP_B), REGSET (B, FP_B),
5738 /* Floating-point quad precision registers. */
5739 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5741 /* FP/SIMD registers. */
5742 REGSET (v, VN), REGSET (V, VN),
5757 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5758 static const asm_nzcv nzcv_names[] = {
5759 {"nzcv", B (n, z, c, v)},
5760 {"nzcV", B (n, z, c, V)},
5761 {"nzCv", B (n, z, C, v)},
5762 {"nzCV", B (n, z, C, V)},
5763 {"nZcv", B (n, Z, c, v)},
5764 {"nZcV", B (n, Z, c, V)},
5765 {"nZCv", B (n, Z, C, v)},
5766 {"nZCV", B (n, Z, C, V)},
5767 {"Nzcv", B (N, z, c, v)},
5768 {"NzcV", B (N, z, c, V)},
5769 {"NzCv", B (N, z, C, v)},
5770 {"NzCV", B (N, z, C, V)},
5771 {"NZcv", B (N, Z, c, v)},
5772 {"NZcV", B (N, Z, c, V)},
5773 {"NZCv", B (N, Z, C, v)},
5774 {"NZCV", B (N, Z, C, V)}
5787 /* MD interface: bits in the object file. */
5789 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5790 for use in the a.out file, and stores them in the array pointed to by buf.
5791 This knows about the endian-ness of the target machine and does
5792 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5793 2 (short) and 4 (long) Floating numbers are put out as a series of
5794 LITTLENUMS (shorts, here at least). */
5797 md_number_to_chars (char *buf, valueT val, int n)
5799 if (target_big_endian)
5800 number_to_chars_bigendian (buf, val, n);
5802 number_to_chars_littleendian (buf, val, n);
5805 /* MD interface: Sections. */
5807 /* Estimate the size of a frag before relaxing. Assume everything fits in
5811 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5817 /* Round up a section size to the appropriate boundary. */
5820 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5825 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
5826 of an rs_align_code fragment. */
5829 aarch64_handle_align (fragS * fragP)
5831 /* NOP = d503201f */
5832 /* AArch64 instructions are always little-endian. */
5833 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
5835 int bytes, fix, noop_size;
5839 if (fragP->fr_type != rs_align_code)
5842 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5843 p = fragP->fr_literal + fragP->fr_fix;
5846 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
5847 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
5850 gas_assert (fragP->tc_frag_data.recorded);
5853 noop = aarch64_noop;
5854 noop_size = sizeof (aarch64_noop);
5855 fragP->fr_var = noop_size;
5857 if (bytes & (noop_size - 1))
5859 fix = bytes & (noop_size - 1);
5861 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
5868 while (bytes >= noop_size)
5870 memcpy (p, noop, noop_size);
5876 fragP->fr_fix += fix;
5879 /* Called from md_do_align. Used to create an alignment
5880 frag in a code section. */
5883 aarch64_frag_align_code (int n, int max)
5887 /* We assume that there will never be a requirement
5888 to support alignments greater than x bytes. */
5889 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
5891 ("alignments greater than %d bytes not supported in .text sections"),
5892 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
5894 p = frag_var (rs_align_code,
5895 MAX_MEM_FOR_RS_ALIGN_CODE,
5897 (relax_substateT) max,
5898 (symbolS *) NULL, (offsetT) n, (char *) NULL);
5902 /* Perform target specific initialisation of a frag.
5903 Note - despite the name this initialisation is not done when the frag
5904 is created, but only when its type is assigned. A frag can be created
5905 and used a long time before its type is set, so beware of assuming that
5906 this initialisationis performed first. */
5910 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
5911 int max_chars ATTRIBUTE_UNUSED)
5915 #else /* OBJ_ELF is defined. */
5917 aarch64_init_frag (fragS * fragP, int max_chars)
5919 /* Record a mapping symbol for alignment frags. We will delete this
5920 later if the alignment ends up empty. */
5921 if (!fragP->tc_frag_data.recorded)
5923 fragP->tc_frag_data.recorded = 1;
5924 switch (fragP->fr_type)
5929 mapping_state_2 (MAP_DATA, max_chars);
5932 mapping_state_2 (MAP_INSN, max_chars);
5940 /* Initialize the DWARF-2 unwind information for this procedure. */
5943 tc_aarch64_frame_initial_instructions (void)
5945 cfi_add_CFA_def_cfa (REG_SP, 0);
5947 #endif /* OBJ_ELF */
5949 /* Convert REGNAME to a DWARF-2 register number. */
5952 tc_aarch64_regname_to_dw2regnum (char *regname)
5954 const reg_entry *reg = parse_reg (®name);
5960 case REG_TYPE_SP_32:
5961 case REG_TYPE_SP_64:
5971 return reg->number + 64;
5979 /* Implement DWARF2_ADDR_SIZE. */
5982 aarch64_dwarf2_addr_size (void)
5984 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5988 return bfd_arch_bits_per_address (stdoutput) / 8;
5991 /* MD interface: Symbol and relocation handling. */
5993 /* Return the address within the segment that a PC-relative fixup is
5994 relative to. For AArch64 PC-relative fixups applied to instructions
5995 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
5998 md_pcrel_from_section (fixS * fixP, segT seg)
6000 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6002 /* If this is pc-relative and we are going to emit a relocation
6003 then we just want to put out any pipeline compensation that the linker
6004 will need. Otherwise we want to use the calculated base. */
6006 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6007 || aarch64_force_relocation (fixP)))
6010 /* AArch64 should be consistent for all pc-relative relocations. */
6011 return base + AARCH64_PCREL_OFFSET;
6014 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6015 Otherwise we have no need to default values of symbols. */
6018 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6021 if (name[0] == '_' && name[1] == 'G'
6022 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6026 if (symbol_find (name))
6027 as_bad (_("GOT already in the symbol table"));
6029 GOT_symbol = symbol_new (name, undefined_section,
6030 (valueT) 0, &zero_address_frag);
6040 /* Return non-zero if the indicated VALUE has overflowed the maximum
6041 range expressible by a unsigned number with the indicated number of
6045 unsigned_overflow (valueT value, unsigned bits)
6048 if (bits >= sizeof (valueT) * 8)
6050 lim = (valueT) 1 << bits;
6051 return (value >= lim);
6055 /* Return non-zero if the indicated VALUE has overflowed the maximum
6056 range expressible by an signed number with the indicated number of
6060 signed_overflow (offsetT value, unsigned bits)
6063 if (bits >= sizeof (offsetT) * 8)
6065 lim = (offsetT) 1 << (bits - 1);
6066 return (value < -lim || value >= lim);
6069 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6070 unsigned immediate offset load/store instruction, try to encode it as
6071 an unscaled, 9-bit, signed immediate offset load/store instruction.
6072 Return TRUE if it is successful; otherwise return FALSE.
6074 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6075 in response to the standard LDR/STR mnemonics when the immediate offset is
6076 unambiguous, i.e. when it is negative or unaligned. */
6079 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6082 enum aarch64_op new_op;
6083 const aarch64_opcode *new_opcode;
6085 gas_assert (instr->opcode->iclass == ldst_pos);
6087 switch (instr->opcode->op)
6089 case OP_LDRB_POS:new_op = OP_LDURB; break;
6090 case OP_STRB_POS: new_op = OP_STURB; break;
6091 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6092 case OP_LDRH_POS: new_op = OP_LDURH; break;
6093 case OP_STRH_POS: new_op = OP_STURH; break;
6094 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6095 case OP_LDR_POS: new_op = OP_LDUR; break;
6096 case OP_STR_POS: new_op = OP_STUR; break;
6097 case OP_LDRF_POS: new_op = OP_LDURV; break;
6098 case OP_STRF_POS: new_op = OP_STURV; break;
6099 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6100 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6101 default: new_op = OP_NIL; break;
6104 if (new_op == OP_NIL)
6107 new_opcode = aarch64_get_opcode (new_op);
6108 gas_assert (new_opcode != NULL);
6110 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6111 instr->opcode->op, new_opcode->op);
6113 aarch64_replace_opcode (instr, new_opcode);
6115 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6116 qualifier matching may fail because the out-of-date qualifier will
6117 prevent the operand being updated with a new and correct qualifier. */
6118 idx = aarch64_operand_index (instr->opcode->operands,
6119 AARCH64_OPND_ADDR_SIMM9);
6120 gas_assert (idx == 1);
6121 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6123 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6125 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6131 /* Called by fix_insn to fix a MOV immediate alias instruction.
6133 Operand for a generic move immediate instruction, which is an alias
6134 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6135 a 32-bit/64-bit immediate value into general register. An assembler error
6136 shall result if the immediate cannot be created by a single one of these
6137 instructions. If there is a choice, then to ensure reversability an
6138 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6141 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6143 const aarch64_opcode *opcode;
6145 /* Need to check if the destination is SP/ZR. The check has to be done
6146 before any aarch64_replace_opcode. */
6147 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6148 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6150 instr->operands[1].imm.value = value;
6151 instr->operands[1].skip = 0;
6155 /* Try the MOVZ alias. */
6156 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6157 aarch64_replace_opcode (instr, opcode);
6158 if (aarch64_opcode_encode (instr->opcode, instr,
6159 &instr->value, NULL, NULL))
6161 put_aarch64_insn (buf, instr->value);
6164 /* Try the MOVK alias. */
6165 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6166 aarch64_replace_opcode (instr, opcode);
6167 if (aarch64_opcode_encode (instr->opcode, instr,
6168 &instr->value, NULL, NULL))
6170 put_aarch64_insn (buf, instr->value);
6175 if (try_mov_bitmask_p)
6177 /* Try the ORR alias. */
6178 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6179 aarch64_replace_opcode (instr, opcode);
6180 if (aarch64_opcode_encode (instr->opcode, instr,
6181 &instr->value, NULL, NULL))
6183 put_aarch64_insn (buf, instr->value);
6188 as_bad_where (fixP->fx_file, fixP->fx_line,
6189 _("immediate cannot be moved by a single instruction"));
6192 /* An instruction operand which is immediate related may have symbol used
6193 in the assembly, e.g.
6196 .set u32, 0x00ffff00
6198 At the time when the assembly instruction is parsed, a referenced symbol,
6199 like 'u32' in the above example may not have been seen; a fixS is created
6200 in such a case and is handled here after symbols have been resolved.
6201 Instruction is fixed up with VALUE using the information in *FIXP plus
6202 extra information in FLAGS.
6204 This function is called by md_apply_fix to fix up instructions that need
6205 a fix-up described above but does not involve any linker-time relocation. */
6208 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6212 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6213 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6214 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6218 /* Now the instruction is about to be fixed-up, so the operand that
6219 was previously marked as 'ignored' needs to be unmarked in order
6220 to get the encoding done properly. */
6221 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6222 new_inst->operands[idx].skip = 0;
6225 gas_assert (opnd != AARCH64_OPND_NIL);
6229 case AARCH64_OPND_EXCEPTION:
6230 if (unsigned_overflow (value, 16))
6231 as_bad_where (fixP->fx_file, fixP->fx_line,
6232 _("immediate out of range"));
6233 insn = get_aarch64_insn (buf);
6234 insn |= encode_svc_imm (value);
6235 put_aarch64_insn (buf, insn);
6238 case AARCH64_OPND_AIMM:
6239 /* ADD or SUB with immediate.
6240 NOTE this assumes we come here with a add/sub shifted reg encoding
6241 3 322|2222|2 2 2 21111 111111
6242 1 098|7654|3 2 1 09876 543210 98765 43210
6243 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6244 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6245 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6246 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6248 3 322|2222|2 2 221111111111
6249 1 098|7654|3 2 109876543210 98765 43210
6250 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6251 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6252 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6253 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6254 Fields sf Rn Rd are already set. */
6255 insn = get_aarch64_insn (buf);
6259 insn = reencode_addsub_switch_add_sub (insn);
6263 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6264 && unsigned_overflow (value, 12))
6266 /* Try to shift the value by 12 to make it fit. */
6267 if (((value >> 12) << 12) == value
6268 && ! unsigned_overflow (value, 12 + 12))
6271 insn |= encode_addsub_imm_shift_amount (1);
6275 if (unsigned_overflow (value, 12))
6276 as_bad_where (fixP->fx_file, fixP->fx_line,
6277 _("immediate out of range"));
6279 insn |= encode_addsub_imm (value);
6281 put_aarch64_insn (buf, insn);
6284 case AARCH64_OPND_SIMD_IMM:
6285 case AARCH64_OPND_SIMD_IMM_SFT:
6286 case AARCH64_OPND_LIMM:
6287 /* Bit mask immediate. */
6288 gas_assert (new_inst != NULL);
6289 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6290 new_inst->operands[idx].imm.value = value;
6291 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6292 &new_inst->value, NULL, NULL))
6293 put_aarch64_insn (buf, new_inst->value);
6295 as_bad_where (fixP->fx_file, fixP->fx_line,
6296 _("invalid immediate"));
6299 case AARCH64_OPND_HALF:
6300 /* 16-bit unsigned immediate. */
6301 if (unsigned_overflow (value, 16))
6302 as_bad_where (fixP->fx_file, fixP->fx_line,
6303 _("immediate out of range"));
6304 insn = get_aarch64_insn (buf);
6305 insn |= encode_movw_imm (value & 0xffff);
6306 put_aarch64_insn (buf, insn);
6309 case AARCH64_OPND_IMM_MOV:
6310 /* Operand for a generic move immediate instruction, which is
6311 an alias instruction that generates a single MOVZ, MOVN or ORR
6312 instruction to loads a 32-bit/64-bit immediate value into general
6313 register. An assembler error shall result if the immediate cannot be
6314 created by a single one of these instructions. If there is a choice,
6315 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6316 and MOVZ or MOVN to ORR. */
6317 gas_assert (new_inst != NULL);
6318 fix_mov_imm_insn (fixP, buf, new_inst, value);
6321 case AARCH64_OPND_ADDR_SIMM7:
6322 case AARCH64_OPND_ADDR_SIMM9:
6323 case AARCH64_OPND_ADDR_SIMM9_2:
6324 case AARCH64_OPND_ADDR_UIMM12:
6325 /* Immediate offset in an address. */
6326 insn = get_aarch64_insn (buf);
6328 gas_assert (new_inst != NULL && new_inst->value == insn);
6329 gas_assert (new_inst->opcode->operands[1] == opnd
6330 || new_inst->opcode->operands[2] == opnd);
6332 /* Get the index of the address operand. */
6333 if (new_inst->opcode->operands[1] == opnd)
6334 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6337 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6340 /* Update the resolved offset value. */
6341 new_inst->operands[idx].addr.offset.imm = value;
6343 /* Encode/fix-up. */
6344 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6345 &new_inst->value, NULL, NULL))
6347 put_aarch64_insn (buf, new_inst->value);
6350 else if (new_inst->opcode->iclass == ldst_pos
6351 && try_to_encode_as_unscaled_ldst (new_inst))
6353 put_aarch64_insn (buf, new_inst->value);
6357 as_bad_where (fixP->fx_file, fixP->fx_line,
6358 _("immediate offset out of range"));
6363 as_fatal (_("unhandled operand code %d"), opnd);
6367 /* Apply a fixup (fixP) to segment data, once it has been determined
6368 by our caller that we have all the info we need to fix it up.
6370 Parameter valP is the pointer to the value of the bits. */
6373 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6375 offsetT value = *valP;
6377 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6379 unsigned flags = fixP->fx_addnumber;
6381 DEBUG_TRACE ("\n\n");
6382 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6383 DEBUG_TRACE ("Enter md_apply_fix");
6385 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6387 /* Note whether this will delete the relocation. */
6389 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6392 /* Process the relocations. */
6393 switch (fixP->fx_r_type)
6395 case BFD_RELOC_NONE:
6396 /* This will need to go in the object file. */
6401 case BFD_RELOC_8_PCREL:
6402 if (fixP->fx_done || !seg->use_rela_p)
6403 md_number_to_chars (buf, value, 1);
6407 case BFD_RELOC_16_PCREL:
6408 if (fixP->fx_done || !seg->use_rela_p)
6409 md_number_to_chars (buf, value, 2);
6413 case BFD_RELOC_32_PCREL:
6414 if (fixP->fx_done || !seg->use_rela_p)
6415 md_number_to_chars (buf, value, 4);
6419 case BFD_RELOC_64_PCREL:
6420 if (fixP->fx_done || !seg->use_rela_p)
6421 md_number_to_chars (buf, value, 8);
6424 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6425 /* We claim that these fixups have been processed here, even if
6426 in fact we generate an error because we do not have a reloc
6427 for them, so tc_gen_reloc() will reject them. */
6429 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6431 as_bad_where (fixP->fx_file, fixP->fx_line,
6432 _("undefined symbol %s used as an immediate value"),
6433 S_GET_NAME (fixP->fx_addsy));
6434 goto apply_fix_return;
6436 fix_insn (fixP, flags, value);
6439 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
6440 if (fixP->fx_done || !seg->use_rela_p)
6443 as_bad_where (fixP->fx_file, fixP->fx_line,
6444 _("pc-relative load offset not word aligned"));
6445 if (signed_overflow (value, 21))
6446 as_bad_where (fixP->fx_file, fixP->fx_line,
6447 _("pc-relative load offset out of range"));
6448 insn = get_aarch64_insn (buf);
6449 insn |= encode_ld_lit_ofs_19 (value >> 2);
6450 put_aarch64_insn (buf, insn);
6454 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6455 if (fixP->fx_done || !seg->use_rela_p)
6457 if (signed_overflow (value, 21))
6458 as_bad_where (fixP->fx_file, fixP->fx_line,
6459 _("pc-relative address offset out of range"));
6460 insn = get_aarch64_insn (buf);
6461 insn |= encode_adr_imm (value);
6462 put_aarch64_insn (buf, insn);
6466 case BFD_RELOC_AARCH64_BRANCH19:
6467 if (fixP->fx_done || !seg->use_rela_p)
6470 as_bad_where (fixP->fx_file, fixP->fx_line,
6471 _("conditional branch target not word aligned"));
6472 if (signed_overflow (value, 21))
6473 as_bad_where (fixP->fx_file, fixP->fx_line,
6474 _("conditional branch out of range"));
6475 insn = get_aarch64_insn (buf);
6476 insn |= encode_cond_branch_ofs_19 (value >> 2);
6477 put_aarch64_insn (buf, insn);
6481 case BFD_RELOC_AARCH64_TSTBR14:
6482 if (fixP->fx_done || !seg->use_rela_p)
6485 as_bad_where (fixP->fx_file, fixP->fx_line,
6486 _("conditional branch target not word aligned"));
6487 if (signed_overflow (value, 16))
6488 as_bad_where (fixP->fx_file, fixP->fx_line,
6489 _("conditional branch out of range"));
6490 insn = get_aarch64_insn (buf);
6491 insn |= encode_tst_branch_ofs_14 (value >> 2);
6492 put_aarch64_insn (buf, insn);
6496 case BFD_RELOC_AARCH64_JUMP26:
6497 case BFD_RELOC_AARCH64_CALL26:
6498 if (fixP->fx_done || !seg->use_rela_p)
6501 as_bad_where (fixP->fx_file, fixP->fx_line,
6502 _("branch target not word aligned"));
6503 if (signed_overflow (value, 28))
6504 as_bad_where (fixP->fx_file, fixP->fx_line,
6505 _("branch out of range"));
6506 insn = get_aarch64_insn (buf);
6507 insn |= encode_branch_ofs_26 (value >> 2);
6508 put_aarch64_insn (buf, insn);
6512 case BFD_RELOC_AARCH64_MOVW_G0:
6513 case BFD_RELOC_AARCH64_MOVW_G0_S:
6514 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6517 case BFD_RELOC_AARCH64_MOVW_G1:
6518 case BFD_RELOC_AARCH64_MOVW_G1_S:
6519 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6522 case BFD_RELOC_AARCH64_MOVW_G2:
6523 case BFD_RELOC_AARCH64_MOVW_G2_S:
6524 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6527 case BFD_RELOC_AARCH64_MOVW_G3:
6530 if (fixP->fx_done || !seg->use_rela_p)
6532 insn = get_aarch64_insn (buf);
6536 /* REL signed addend must fit in 16 bits */
6537 if (signed_overflow (value, 16))
6538 as_bad_where (fixP->fx_file, fixP->fx_line,
6539 _("offset out of range"));
6543 /* Check for overflow and scale. */
6544 switch (fixP->fx_r_type)
6546 case BFD_RELOC_AARCH64_MOVW_G0:
6547 case BFD_RELOC_AARCH64_MOVW_G1:
6548 case BFD_RELOC_AARCH64_MOVW_G2:
6549 case BFD_RELOC_AARCH64_MOVW_G3:
6550 if (unsigned_overflow (value, scale + 16))
6551 as_bad_where (fixP->fx_file, fixP->fx_line,
6552 _("unsigned value out of range"));
6554 case BFD_RELOC_AARCH64_MOVW_G0_S:
6555 case BFD_RELOC_AARCH64_MOVW_G1_S:
6556 case BFD_RELOC_AARCH64_MOVW_G2_S:
6557 /* NOTE: We can only come here with movz or movn. */
6558 if (signed_overflow (value, scale + 16))
6559 as_bad_where (fixP->fx_file, fixP->fx_line,
6560 _("signed value out of range"));
6563 /* Force use of MOVN. */
6565 insn = reencode_movzn_to_movn (insn);
6569 /* Force use of MOVZ. */
6570 insn = reencode_movzn_to_movz (insn);
6574 /* Unchecked relocations. */
6580 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6581 insn |= encode_movw_imm (value & 0xffff);
6583 put_aarch64_insn (buf, insn);
6587 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6588 fixP->fx_r_type = (ilp32_p
6589 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6590 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6591 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6592 /* Should always be exported to object file, see
6593 aarch64_force_relocation(). */
6594 gas_assert (!fixP->fx_done);
6595 gas_assert (seg->use_rela_p);
6598 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6599 fixP->fx_r_type = (ilp32_p
6600 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6601 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6602 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6603 /* Should always be exported to object file, see
6604 aarch64_force_relocation(). */
6605 gas_assert (!fixP->fx_done);
6606 gas_assert (seg->use_rela_p);
6609 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6610 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6611 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6612 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6613 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6614 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6615 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6616 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6617 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6618 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6619 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6620 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6621 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6622 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6623 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6624 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6625 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6626 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6627 /* Should always be exported to object file, see
6628 aarch64_force_relocation(). */
6629 gas_assert (!fixP->fx_done);
6630 gas_assert (seg->use_rela_p);
6633 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6634 /* Should always be exported to object file, see
6635 aarch64_force_relocation(). */
6636 fixP->fx_r_type = (ilp32_p
6637 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6638 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6639 gas_assert (!fixP->fx_done);
6640 gas_assert (seg->use_rela_p);
6643 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6644 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6645 case BFD_RELOC_AARCH64_ADD_LO12:
6646 case BFD_RELOC_AARCH64_LDST8_LO12:
6647 case BFD_RELOC_AARCH64_LDST16_LO12:
6648 case BFD_RELOC_AARCH64_LDST32_LO12:
6649 case BFD_RELOC_AARCH64_LDST64_LO12:
6650 case BFD_RELOC_AARCH64_LDST128_LO12:
6651 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6652 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6653 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6654 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6655 /* Should always be exported to object file, see
6656 aarch64_force_relocation(). */
6657 gas_assert (!fixP->fx_done);
6658 gas_assert (seg->use_rela_p);
6661 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6662 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6663 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6666 case BFD_RELOC_UNUSED:
6667 /* An error will already have been reported. */
6671 as_bad_where (fixP->fx_file, fixP->fx_line,
6672 _("unexpected %s fixup"),
6673 bfd_get_reloc_code_name (fixP->fx_r_type));
6678 /* Free the allocated the struct aarch64_inst.
6679 N.B. currently there are very limited number of fix-up types actually use
6680 this field, so the impact on the performance should be minimal . */
6681 if (fixP->tc_fix_data.inst != NULL)
6682 free (fixP->tc_fix_data.inst);
6687 /* Translate internal representation of relocation info to BFD target
6691 tc_gen_reloc (asection * section, fixS * fixp)
6694 bfd_reloc_code_real_type code;
6696 reloc = xmalloc (sizeof (arelent));
6698 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6699 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6700 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6704 if (section->use_rela_p)
6705 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6707 fixp->fx_offset = reloc->address;
6709 reloc->addend = fixp->fx_offset;
6711 code = fixp->fx_r_type;
6716 code = BFD_RELOC_16_PCREL;
6721 code = BFD_RELOC_32_PCREL;
6726 code = BFD_RELOC_64_PCREL;
6733 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6734 if (reloc->howto == NULL)
6736 as_bad_where (fixp->fx_file, fixp->fx_line,
6738 ("cannot represent %s relocation in this object file format"),
6739 bfd_get_reloc_code_name (code));
6746 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6749 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6751 bfd_reloc_code_real_type type;
6755 FIXME: @@ Should look at CPU word size. */
6762 type = BFD_RELOC_16;
6765 type = BFD_RELOC_32;
6768 type = BFD_RELOC_64;
6771 as_bad (_("cannot do %u-byte relocation"), size);
6772 type = BFD_RELOC_UNUSED;
6776 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6780 aarch64_force_relocation (struct fix *fixp)
6782 switch (fixp->fx_r_type)
6784 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6785 /* Perform these "immediate" internal relocations
6786 even if the symbol is extern or weak. */
6789 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6790 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6791 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6792 /* Pseudo relocs that need to be fixed up according to
6796 case BFD_RELOC_AARCH64_ADD_LO12:
6797 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6798 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6799 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6800 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6801 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6802 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6803 case BFD_RELOC_AARCH64_LDST128_LO12:
6804 case BFD_RELOC_AARCH64_LDST16_LO12:
6805 case BFD_RELOC_AARCH64_LDST32_LO12:
6806 case BFD_RELOC_AARCH64_LDST64_LO12:
6807 case BFD_RELOC_AARCH64_LDST8_LO12:
6808 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6809 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6810 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6811 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6812 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6813 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6814 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6815 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6816 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6817 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6818 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6819 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6820 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6821 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6822 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6823 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6824 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6825 /* Always leave these relocations for the linker. */
6832 return generic_force_reloc (fixp);
6838 elf64_aarch64_target_format (void)
6840 if (target_big_endian)
6841 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
6843 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
6847 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6849 elf_frob_symbol (symp, puntp);
6853 /* MD interface: Finalization. */
6855 /* A good place to do this, although this was probably not intended
6856 for this kind of use. We need to dump the literal pool before
6857 references are made to a null symbol pointer. */
6860 aarch64_cleanup (void)
6864 for (pool = list_of_pools; pool; pool = pool->next)
6866 /* Put it at the end of the relevant section. */
6867 subseg_set (pool->section, pool->sub_section);
6873 /* Remove any excess mapping symbols generated for alignment frags in
6874 SEC. We may have created a mapping symbol before a zero byte
6875 alignment; remove it if there's a mapping symbol after the
6878 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
6879 void *dummy ATTRIBUTE_UNUSED)
6881 segment_info_type *seginfo = seg_info (sec);
6884 if (seginfo == NULL || seginfo->frchainP == NULL)
6887 for (fragp = seginfo->frchainP->frch_root;
6888 fragp != NULL; fragp = fragp->fr_next)
6890 symbolS *sym = fragp->tc_frag_data.last_map;
6891 fragS *next = fragp->fr_next;
6893 /* Variable-sized frags have been converted to fixed size by
6894 this point. But if this was variable-sized to start with,
6895 there will be a fixed-size frag after it. So don't handle
6897 if (sym == NULL || next == NULL)
6900 if (S_GET_VALUE (sym) < next->fr_address)
6901 /* Not at the end of this frag. */
6903 know (S_GET_VALUE (sym) == next->fr_address);
6907 if (next->tc_frag_data.first_map != NULL)
6909 /* Next frag starts with a mapping symbol. Discard this
6911 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6915 if (next->fr_next == NULL)
6917 /* This mapping symbol is at the end of the section. Discard
6919 know (next->fr_fix == 0 && next->fr_var == 0);
6920 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6924 /* As long as we have empty frags without any mapping symbols,
6926 /* If the next frag is non-empty and does not start with a
6927 mapping symbol, then this mapping symbol is required. */
6928 if (next->fr_address != next->fr_next->fr_address)
6931 next = next->fr_next;
6933 while (next != NULL);
6938 /* Adjust the symbol table. */
6941 aarch64_adjust_symtab (void)
6944 /* Remove any overlapping mapping symbols generated by alignment frags. */
6945 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
6946 /* Now do generic ELF adjustments. */
6947 elf_adjust_symtab ();
6952 checked_hash_insert (struct hash_control *table, const char *key, void *value)
6954 const char *hash_err;
6956 hash_err = hash_insert (table, key, value);
6958 printf ("Internal Error: Can't hash %s\n", key);
6962 fill_instruction_hash_table (void)
6964 aarch64_opcode *opcode = aarch64_opcode_table;
6966 while (opcode->name != NULL)
6968 templates *templ, *new_templ;
6969 templ = hash_find (aarch64_ops_hsh, opcode->name);
6971 new_templ = (templates *) xmalloc (sizeof (templates));
6972 new_templ->opcode = opcode;
6973 new_templ->next = NULL;
6976 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
6979 new_templ->next = templ->next;
6980 templ->next = new_templ;
6987 convert_to_upper (char *dst, const char *src, size_t num)
6990 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
6991 *dst = TOUPPER (*src);
6995 /* Assume STR point to a lower-case string, allocate, convert and return
6996 the corresponding upper-case string. */
6997 static inline const char*
6998 get_upper_str (const char *str)
7001 size_t len = strlen (str);
7002 if ((ret = xmalloc (len + 1)) == NULL)
7004 convert_to_upper (ret, str, len);
7008 /* MD interface: Initialization. */
7016 if ((aarch64_ops_hsh = hash_new ()) == NULL
7017 || (aarch64_cond_hsh = hash_new ()) == NULL
7018 || (aarch64_shift_hsh = hash_new ()) == NULL
7019 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7020 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7021 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7022 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7023 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7024 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7025 || (aarch64_reg_hsh = hash_new ()) == NULL
7026 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7027 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7028 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7029 as_fatal (_("virtual memory exhausted"));
7031 fill_instruction_hash_table ();
7033 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7034 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7035 (void *) (aarch64_sys_regs + i));
7037 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7038 checked_hash_insert (aarch64_pstatefield_hsh,
7039 aarch64_pstatefields[i].name,
7040 (void *) (aarch64_pstatefields + i));
7042 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7043 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7044 aarch64_sys_regs_ic[i].template,
7045 (void *) (aarch64_sys_regs_ic + i));
7047 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7048 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7049 aarch64_sys_regs_dc[i].template,
7050 (void *) (aarch64_sys_regs_dc + i));
7052 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7053 checked_hash_insert (aarch64_sys_regs_at_hsh,
7054 aarch64_sys_regs_at[i].template,
7055 (void *) (aarch64_sys_regs_at + i));
7057 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7058 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7059 aarch64_sys_regs_tlbi[i].template,
7060 (void *) (aarch64_sys_regs_tlbi + i));
7062 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7063 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7064 (void *) (reg_names + i));
7066 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7067 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7068 (void *) (nzcv_names + i));
7070 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7072 const char *name = aarch64_operand_modifiers[i].name;
7073 checked_hash_insert (aarch64_shift_hsh, name,
7074 (void *) (aarch64_operand_modifiers + i));
7075 /* Also hash the name in the upper case. */
7076 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7077 (void *) (aarch64_operand_modifiers + i));
7080 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7083 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7084 the same condition code. */
7085 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7087 const char *name = aarch64_conds[i].names[j];
7090 checked_hash_insert (aarch64_cond_hsh, name,
7091 (void *) (aarch64_conds + i));
7092 /* Also hash the name in the upper case. */
7093 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7094 (void *) (aarch64_conds + i));
7098 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7100 const char *name = aarch64_barrier_options[i].name;
7101 /* Skip xx00 - the unallocated values of option. */
7104 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7105 (void *) (aarch64_barrier_options + i));
7106 /* Also hash the name in the upper case. */
7107 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7108 (void *) (aarch64_barrier_options + i));
7111 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7113 const char* name = aarch64_prfops[i].name;
7114 /* Skip the unallocated hint encodings. */
7117 checked_hash_insert (aarch64_pldop_hsh, name,
7118 (void *) (aarch64_prfops + i));
7119 /* Also hash the name in the upper case. */
7120 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7121 (void *) (aarch64_prfops + i));
7124 /* Set the cpu variant based on the command-line options. */
7126 mcpu_cpu_opt = march_cpu_opt;
7129 mcpu_cpu_opt = &cpu_default;
7131 cpu_variant = *mcpu_cpu_opt;
7133 /* Record the CPU type. */
7134 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
7136 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7139 /* Command line processing. */
7141 const char *md_shortopts = "m:";
7143 #ifdef AARCH64_BI_ENDIAN
7144 #define OPTION_EB (OPTION_MD_BASE + 0)
7145 #define OPTION_EL (OPTION_MD_BASE + 1)
7147 #if TARGET_BYTES_BIG_ENDIAN
7148 #define OPTION_EB (OPTION_MD_BASE + 0)
7150 #define OPTION_EL (OPTION_MD_BASE + 1)
7154 struct option md_longopts[] = {
7156 {"EB", no_argument, NULL, OPTION_EB},
7159 {"EL", no_argument, NULL, OPTION_EL},
7161 {NULL, no_argument, NULL, 0}
7164 size_t md_longopts_size = sizeof (md_longopts);
7166 struct aarch64_option_table
7168 char *option; /* Option name to match. */
7169 char *help; /* Help information. */
7170 int *var; /* Variable to change. */
7171 int value; /* What to change it to. */
7172 char *deprecated; /* If non-null, print this message. */
7175 static struct aarch64_option_table aarch64_opts[] = {
7176 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7177 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7179 #ifdef DEBUG_AARCH64
7180 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7181 #endif /* DEBUG_AARCH64 */
7182 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7184 {"mno-verbose-error", N_("do not output verbose error messages"),
7185 &verbose_error_p, 0, NULL},
7186 {NULL, NULL, NULL, 0, NULL}
7189 struct aarch64_cpu_option_table
7192 const aarch64_feature_set value;
7193 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7195 const char *canonical_name;
7198 /* This list should, at a minimum, contain all the cpu names
7199 recognized by GCC. */
7200 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7201 {"all", AARCH64_ANY, NULL},
7202 {"cortex-a53", AARCH64_ARCH_V8, "Cortex-A53"},
7203 {"cortex-a57", AARCH64_ARCH_V8, "Cortex-A57"},
7204 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
7205 {"generic", AARCH64_ARCH_V8, NULL},
7207 /* These two are example CPUs supported in GCC, once we have real
7208 CPUs they will be removed. */
7209 {"example-1", AARCH64_ARCH_V8, NULL},
7210 {"example-2", AARCH64_ARCH_V8, NULL},
7212 {NULL, AARCH64_ARCH_NONE, NULL}
7215 struct aarch64_arch_option_table
7218 const aarch64_feature_set value;
7221 /* This list should, at a minimum, contain all the architecture names
7222 recognized by GCC. */
7223 static const struct aarch64_arch_option_table aarch64_archs[] = {
7224 {"all", AARCH64_ANY},
7225 {"armv8-a", AARCH64_ARCH_V8},
7226 {NULL, AARCH64_ARCH_NONE}
7229 /* ISA extensions. */
7230 struct aarch64_option_cpu_value_table
7233 const aarch64_feature_set value;
7236 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
7237 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
7238 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7239 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
7240 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
7241 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
7242 {NULL, AARCH64_ARCH_NONE}
7245 struct aarch64_long_option_table
7247 char *option; /* Substring to match. */
7248 char *help; /* Help information. */
7249 int (*func) (char *subopt); /* Function to decode sub-option. */
7250 char *deprecated; /* If non-null, print this message. */
7254 aarch64_parse_features (char *str, const aarch64_feature_set **opt_p)
7256 /* We insist on extensions being added before being removed. We achieve
7257 this by using the ADDING_VALUE variable to indicate whether we are
7258 adding an extension (1) or removing it (0) and only allowing it to
7259 change in the order -1 -> 1 -> 0. */
7260 int adding_value = -1;
7261 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7263 /* Copy the feature set, so that we can modify it. */
7267 while (str != NULL && *str != 0)
7269 const struct aarch64_option_cpu_value_table *opt;
7275 as_bad (_("invalid architectural extension"));
7280 ext = strchr (str, '+');
7285 optlen = strlen (str);
7287 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7289 if (adding_value != 0)
7294 else if (optlen > 0)
7296 if (adding_value == -1)
7298 else if (adding_value != 1)
7300 as_bad (_("must specify extensions to add before specifying "
7301 "those to remove"));
7308 as_bad (_("missing architectural extension"));
7312 gas_assert (adding_value != -1);
7314 for (opt = aarch64_features; opt->name != NULL; opt++)
7315 if (strncmp (opt->name, str, optlen) == 0)
7317 /* Add or remove the extension. */
7319 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7321 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7325 if (opt->name == NULL)
7327 as_bad (_("unknown architectural extension `%s'"), str);
7338 aarch64_parse_cpu (char *str)
7340 const struct aarch64_cpu_option_table *opt;
7341 char *ext = strchr (str, '+');
7347 optlen = strlen (str);
7351 as_bad (_("missing cpu name `%s'"), str);
7355 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7356 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7358 mcpu_cpu_opt = &opt->value;
7360 return aarch64_parse_features (ext, &mcpu_cpu_opt);
7365 as_bad (_("unknown cpu `%s'"), str);
7370 aarch64_parse_arch (char *str)
7372 const struct aarch64_arch_option_table *opt;
7373 char *ext = strchr (str, '+');
7379 optlen = strlen (str);
7383 as_bad (_("missing architecture name `%s'"), str);
7387 for (opt = aarch64_archs; opt->name != NULL; opt++)
7388 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7390 march_cpu_opt = &opt->value;
7392 return aarch64_parse_features (ext, &march_cpu_opt);
7397 as_bad (_("unknown architecture `%s'\n"), str);
7402 struct aarch64_option_abi_value_table
7405 enum aarch64_abi_type value;
7408 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7409 {"ilp32", AARCH64_ABI_ILP32},
7410 {"lp64", AARCH64_ABI_LP64},
7415 aarch64_parse_abi (char *str)
7417 const struct aarch64_option_abi_value_table *opt;
7418 size_t optlen = strlen (str);
7422 as_bad (_("missing abi name `%s'"), str);
7426 for (opt = aarch64_abis; opt->name != NULL; opt++)
7427 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7429 aarch64_abi = opt->value;
7433 as_bad (_("unknown abi `%s'\n"), str);
7437 static struct aarch64_long_option_table aarch64_long_opts[] = {
7439 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7440 aarch64_parse_abi, NULL},
7441 #endif /* OBJ_ELF */
7442 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7443 aarch64_parse_cpu, NULL},
7444 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7445 aarch64_parse_arch, NULL},
7446 {NULL, NULL, 0, NULL}
7450 md_parse_option (int c, char *arg)
7452 struct aarch64_option_table *opt;
7453 struct aarch64_long_option_table *lopt;
7459 target_big_endian = 1;
7465 target_big_endian = 0;
7470 /* Listing option. Just ignore these, we don't support additional
7475 for (opt = aarch64_opts; opt->option != NULL; opt++)
7477 if (c == opt->option[0]
7478 && ((arg == NULL && opt->option[1] == 0)
7479 || streq (arg, opt->option + 1)))
7481 /* If the option is deprecated, tell the user. */
7482 if (opt->deprecated != NULL)
7483 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7484 arg ? arg : "", _(opt->deprecated));
7486 if (opt->var != NULL)
7487 *opt->var = opt->value;
7493 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7495 /* These options are expected to have an argument. */
7496 if (c == lopt->option[0]
7498 && strncmp (arg, lopt->option + 1,
7499 strlen (lopt->option + 1)) == 0)
7501 /* If the option is deprecated, tell the user. */
7502 if (lopt->deprecated != NULL)
7503 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7504 _(lopt->deprecated));
7506 /* Call the sup-option parser. */
7507 return lopt->func (arg + strlen (lopt->option) - 1);
7518 md_show_usage (FILE * fp)
7520 struct aarch64_option_table *opt;
7521 struct aarch64_long_option_table *lopt;
7523 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7525 for (opt = aarch64_opts; opt->option != NULL; opt++)
7526 if (opt->help != NULL)
7527 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7529 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7530 if (lopt->help != NULL)
7531 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7535 -EB assemble code for a big-endian cpu\n"));
7540 -EL assemble code for a little-endian cpu\n"));
7544 /* Parse a .cpu directive. */
7547 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7549 const struct aarch64_cpu_option_table *opt;
7555 name = input_line_pointer;
7556 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7557 input_line_pointer++;
7558 saved_char = *input_line_pointer;
7559 *input_line_pointer = 0;
7561 ext = strchr (name, '+');
7564 optlen = ext - name;
7566 optlen = strlen (name);
7568 /* Skip the first "all" entry. */
7569 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7570 if (strlen (opt->name) == optlen
7571 && strncmp (name, opt->name, optlen) == 0)
7573 mcpu_cpu_opt = &opt->value;
7575 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7578 cpu_variant = *mcpu_cpu_opt;
7580 *input_line_pointer = saved_char;
7581 demand_empty_rest_of_line ();
7584 as_bad (_("unknown cpu `%s'"), name);
7585 *input_line_pointer = saved_char;
7586 ignore_rest_of_line ();
7590 /* Parse a .arch directive. */
7593 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7595 const struct aarch64_arch_option_table *opt;
7601 name = input_line_pointer;
7602 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7603 input_line_pointer++;
7604 saved_char = *input_line_pointer;
7605 *input_line_pointer = 0;
7607 ext = strchr (name, '+');
7610 optlen = ext - name;
7612 optlen = strlen (name);
7614 /* Skip the first "all" entry. */
7615 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7616 if (strlen (opt->name) == optlen
7617 && strncmp (name, opt->name, optlen) == 0)
7619 mcpu_cpu_opt = &opt->value;
7621 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7624 cpu_variant = *mcpu_cpu_opt;
7626 *input_line_pointer = saved_char;
7627 demand_empty_rest_of_line ();
7631 as_bad (_("unknown architecture `%s'\n"), name);
7632 *input_line_pointer = saved_char;
7633 ignore_rest_of_line ();
7636 /* Copy symbol information. */
7639 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7641 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);