1 /* atof_generic.c - turn a string of digits into a Flonum
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of GAS, the GNU Assembler.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "safe-ctype.h"
35 static void flonum_print (const FLONUM_TYPE *);
38 #define ASSUME_DECIMAL_MARK_IS_DOT
40 /***********************************************************************\
42 * Given a string of decimal digits , with optional decimal *
43 * mark and optional decimal exponent (place value) of the *
44 * lowest_order decimal digit: produce a floating point *
45 * number. The number is 'generic' floating point: our *
46 * caller will encode it for a specific machine architecture. *
49 * uses base (radix) 2 *
50 * this machine uses 2's complement binary integers *
51 * target flonums use " " " " *
52 * target flonums exponents fit in a long *
54 \***********************************************************************/
60 <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
61 <optional-sign> ::= '+' | '-' | {empty}
62 <decimal-number> ::= <integer>
63 | <integer> <radix-character>
64 | <integer> <radix-character> <integer>
65 | <radix-character> <integer>
67 <optional-exponent> ::= {empty}
68 | <exponent-character> <optional-sign> <integer>
70 <integer> ::= <digit> | <digit> <integer>
71 <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
72 <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
73 <radix-character> ::= {one character from "string_of_decimal_marks"}
78 atof_generic (/* return pointer to just AFTER number we read. */
79 char **address_of_string_pointer,
80 /* At most one per number. */
81 const char *string_of_decimal_marks,
82 const char *string_of_decimal_exponent_marks,
83 FLONUM_TYPE *address_of_generic_floating_point_number)
85 int return_value; /* 0 means OK. */
87 unsigned int number_of_digits_before_decimal;
88 unsigned int number_of_digits_after_decimal;
89 long decimal_exponent;
90 unsigned int number_of_digits_available;
91 char digits_sign_char;
94 * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
95 * It would be simpler to modify the string, but we don't; just to be nice
97 * We need to know how many digits we have, so we can allocate space for
103 int seen_significant_digit;
105 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
106 assert (string_of_decimal_marks[0] == '.'
107 && string_of_decimal_marks[1] == 0);
108 #define IS_DECIMAL_MARK(c) ((c) == '.')
110 #define IS_DECIMAL_MARK(c) (0 != strchr (string_of_decimal_marks, (c)))
113 first_digit = *address_of_string_pointer;
116 if (c == '-' || c == '+')
118 digits_sign_char = c;
122 digits_sign_char = '+';
124 switch (first_digit[0])
128 if (!strncasecmp ("nan", first_digit, 3))
130 address_of_generic_floating_point_number->sign = 0;
131 address_of_generic_floating_point_number->exponent = 0;
132 address_of_generic_floating_point_number->leader =
133 address_of_generic_floating_point_number->low;
134 *address_of_string_pointer = first_digit + 3;
141 if (!strncasecmp ("inf", first_digit, 3))
143 address_of_generic_floating_point_number->sign =
144 digits_sign_char == '+' ? 'P' : 'N';
145 address_of_generic_floating_point_number->exponent = 0;
146 address_of_generic_floating_point_number->leader =
147 address_of_generic_floating_point_number->low;
150 if (!strncasecmp ("inity", first_digit, 5))
153 *address_of_string_pointer = first_digit;
160 number_of_digits_before_decimal = 0;
161 number_of_digits_after_decimal = 0;
162 decimal_exponent = 0;
163 seen_significant_digit = 0;
164 for (p = first_digit;
166 && (!c || !IS_DECIMAL_MARK (c))
167 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
172 if (seen_significant_digit || c > '0')
174 ++number_of_digits_before_decimal;
175 seen_significant_digit = 1;
184 break; /* p -> char after pre-decimal digits. */
186 } /* For each digit before decimal mark. */
188 #ifndef OLD_FLOAT_READS
189 /* Ignore trailing 0's after the decimal point. The original code here
190 * (ifdef'd out) does not do this, and numbers like
191 * 4.29496729600000000000e+09 (2**31)
192 * come out inexact for some reason related to length of the digit
195 if (c && IS_DECIMAL_MARK (c))
197 unsigned int zeros = 0; /* Length of current string of zeros */
199 for (p++; (c = *p) && ISDIGIT (c); p++)
207 number_of_digits_after_decimal += 1 + zeros;
213 if (c && IS_DECIMAL_MARK (c))
217 && (!c || !strchr (string_of_decimal_exponent_marks, c)));
222 /* This may be retracted below. */
223 number_of_digits_after_decimal++;
225 if ( /* seen_significant_digit || */ c > '0')
227 seen_significant_digit = TRUE;
232 if (!seen_significant_digit)
234 number_of_digits_after_decimal = 0;
238 } /* For each digit after decimal mark. */
241 while (number_of_digits_after_decimal
242 && first_digit[number_of_digits_before_decimal
243 + number_of_digits_after_decimal] == '0')
244 --number_of_digits_after_decimal;
252 if (c && strchr (string_of_decimal_exponent_marks, c))
254 char digits_exponent_sign_char;
262 if (c && strchr ("+-", c))
264 digits_exponent_sign_char = c;
269 digits_exponent_sign_char = '+';
272 for (; (c); c = *++p)
276 decimal_exponent = decimal_exponent * 10 + c - '0';
278 * BUG! If we overflow here, we lose!
287 if (digits_exponent_sign_char == '-')
289 decimal_exponent = -decimal_exponent;
293 *address_of_string_pointer = p;
295 number_of_digits_available =
296 number_of_digits_before_decimal + number_of_digits_after_decimal;
298 if (number_of_digits_available == 0)
300 address_of_generic_floating_point_number->exponent = 0; /* Not strictly necessary */
301 address_of_generic_floating_point_number->leader
302 = -1 + address_of_generic_floating_point_number->low;
303 address_of_generic_floating_point_number->sign = digits_sign_char;
304 /* We have just concocted (+/-)0.0E0 */
309 int count; /* Number of useful digits left to scan. */
311 LITTLENUM_TYPE *digits_binary_low;
312 unsigned int precision;
313 unsigned int maximum_useful_digits;
314 unsigned int number_of_digits_to_use;
315 unsigned int more_than_enough_bits_for_digits;
316 unsigned int more_than_enough_littlenums_for_digits;
317 unsigned int size_of_digits_in_littlenums;
318 unsigned int size_of_digits_in_chars;
319 FLONUM_TYPE power_of_10_flonum;
320 FLONUM_TYPE digits_flonum;
322 precision = (address_of_generic_floating_point_number->high
323 - address_of_generic_floating_point_number->low
324 + 1); /* Number of destination littlenums. */
326 /* Includes guard bits (two littlenums worth) */
327 #if 0 /* The integer version below is very close, and it doesn't
328 require floating point support (which is currently buggy on
330 maximum_useful_digits = (((double) (precision - 2))
331 * ((double) (LITTLENUM_NUMBER_OF_BITS))
332 / (LOG_TO_BASE_2_OF_10))
333 + 2; /* 2 :: guard digits. */
335 maximum_useful_digits = (((precision - 2))
336 * ( (LITTLENUM_NUMBER_OF_BITS))
338 + 2; /* 2 :: guard digits. */
341 if (number_of_digits_available > maximum_useful_digits)
343 number_of_digits_to_use = maximum_useful_digits;
347 number_of_digits_to_use = number_of_digits_available;
350 /* Cast these to SIGNED LONG first, otherwise, on systems with
351 LONG wider than INT (such as Alpha OSF/1), unsignedness may
352 cause unexpected results. */
353 decimal_exponent += ((long) number_of_digits_before_decimal
354 - (long) number_of_digits_to_use);
357 more_than_enough_bits_for_digits
358 = ((((double) number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
360 more_than_enough_bits_for_digits
361 = (number_of_digits_to_use * 3321928 / 1000000 + 1);
364 more_than_enough_littlenums_for_digits
365 = (more_than_enough_bits_for_digits
366 / LITTLENUM_NUMBER_OF_BITS)
369 /* Compute (digits) part. In "12.34E56" this is the "1234" part.
370 Arithmetic is exact here. If no digits are supplied then this
371 part is a 0 valued binary integer. Allocate room to build up
372 the binary number as littlenums. We want this memory to
373 disappear when we leave this function. Assume no alignment
374 problems => (room for n objects) == n * (room for 1
377 size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
378 size_of_digits_in_chars = size_of_digits_in_littlenums
379 * sizeof (LITTLENUM_TYPE);
381 digits_binary_low = (LITTLENUM_TYPE *)
382 alloca (size_of_digits_in_chars);
384 memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
386 /* Digits_binary_low[] is allocated and zeroed. */
389 * Parse the decimal digits as if * digits_low was in the units position.
390 * Emit a binary number into digits_binary_low[].
392 * Use a large-precision version of:
393 * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
396 for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
402 * Multiply by 10. Assume can never overflow.
403 * Add this digit to digits_binary_low[].
407 LITTLENUM_TYPE *littlenum_pointer;
408 LITTLENUM_TYPE *littlenum_limit;
410 littlenum_limit = digits_binary_low
411 + more_than_enough_littlenums_for_digits
414 carry = c - '0'; /* char -> binary */
416 for (littlenum_pointer = digits_binary_low;
417 littlenum_pointer <= littlenum_limit;
422 work = carry + 10 * (long) (*littlenum_pointer);
423 *littlenum_pointer = work & LITTLENUM_MASK;
424 carry = work >> LITTLENUM_NUMBER_OF_BITS;
430 * We have a GROSS internal error.
431 * This should never happen.
433 as_fatal (_("failed sanity check"));
438 ++count; /* '.' doesn't alter digits used count. */
443 * Digits_binary_low[] properly encodes the value of the digits.
444 * Forget about any high-order littlenums that are 0.
446 while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
447 && size_of_digits_in_littlenums >= 2)
448 size_of_digits_in_littlenums--;
450 digits_flonum.low = digits_binary_low;
451 digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
452 digits_flonum.leader = digits_flonum.high;
453 digits_flonum.exponent = 0;
455 * The value of digits_flonum . sign should not be important.
456 * We have already decided the output's sign.
457 * We trust that the sign won't influence the other parts of the number!
458 * So we give it a value for these reasons:
459 * (1) courtesy to humans reading/debugging
460 * these numbers so they don't get excited about strange values
461 * (2) in future there may be more meaning attached to sign,
463 * harmless noise may become disruptive, ill-conditioned (or worse)
466 digits_flonum.sign = '+';
470 * Compute the mantssa (& exponent) of the power of 10.
471 * If successful, then multiply the power of 10 by the digits
472 * giving return_binary_mantissa and return_binary_exponent.
475 LITTLENUM_TYPE *power_binary_low;
476 int decimal_exponent_is_negative;
477 /* This refers to the "-56" in "12.34E-56". */
478 /* FALSE: decimal_exponent is positive (or 0) */
479 /* TRUE: decimal_exponent is negative */
480 FLONUM_TYPE temporary_flonum;
481 LITTLENUM_TYPE *temporary_binary_low;
482 unsigned int size_of_power_in_littlenums;
483 unsigned int size_of_power_in_chars;
485 size_of_power_in_littlenums = precision;
486 /* Precision has a built-in fudge factor so we get a few guard bits. */
488 decimal_exponent_is_negative = decimal_exponent < 0;
489 if (decimal_exponent_is_negative)
491 decimal_exponent = -decimal_exponent;
494 /* From now on: the decimal exponent is > 0. Its sign is separate. */
496 size_of_power_in_chars = size_of_power_in_littlenums
497 * sizeof (LITTLENUM_TYPE) + 2;
499 power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
500 temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
501 memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
502 *power_binary_low = 1;
503 power_of_10_flonum.exponent = 0;
504 power_of_10_flonum.low = power_binary_low;
505 power_of_10_flonum.leader = power_binary_low;
506 power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
507 power_of_10_flonum.sign = '+';
508 temporary_flonum.low = temporary_binary_low;
509 temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
512 * Space for temporary_flonum allocated.
519 * DO find next bit (with place value)
520 * multiply into power mantissa
524 int place_number_limit;
525 /* Any 10^(2^n) whose "n" exceeds this */
526 /* value will fall off the end of */
527 /* flonum_XXXX_powers_of_ten[]. */
529 const FLONUM_TYPE *multiplicand; /* -> 10^(2^n) */
531 place_number_limit = table_size_of_flonum_powers_of_ten;
533 multiplicand = (decimal_exponent_is_negative
534 ? flonum_negative_powers_of_ten
535 : flonum_positive_powers_of_ten);
537 for (place_number = 1;/* Place value of this bit of exponent. */
538 decimal_exponent;/* Quit when no more 1 bits in exponent. */
539 decimal_exponent >>= 1, place_number++)
541 if (decimal_exponent & 1)
543 if (place_number > place_number_limit)
545 /* The decimal exponent has a magnitude so great
546 that our tables can't help us fragment it.
547 Although this routine is in error because it
548 can't imagine a number that big, signal an
549 error as if it is the user's fault for
550 presenting such a big number. */
551 return_value = ERROR_EXPONENT_OVERFLOW;
552 /* quit out of loop gracefully */
553 decimal_exponent = 0;
558 printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
561 flonum_print (&power_of_10_flonum);
562 (void) putchar ('\n');
565 printf ("multiplier:\n");
566 flonum_print (multiplicand + place_number);
567 (void) putchar ('\n');
569 flonum_multip (multiplicand + place_number,
570 &power_of_10_flonum, &temporary_flonum);
572 printf ("after multiply:\n");
573 flonum_print (&temporary_flonum);
574 (void) putchar ('\n');
576 flonum_copy (&temporary_flonum, &power_of_10_flonum);
578 printf ("after copy:\n");
579 flonum_print (&power_of_10_flonum);
580 (void) putchar ('\n');
582 } /* If this bit of decimal_exponent was computable.*/
583 } /* If this bit of decimal_exponent was set. */
584 } /* For each bit of binary representation of exponent */
586 printf ("after computing power_of_10_flonum:\n");
587 flonum_print (&power_of_10_flonum);
588 (void) putchar ('\n');
595 * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
596 * It may be the number 1, in which case we don't NEED to multiply.
598 * Multiply (decimal digits) by power_of_10_flonum.
601 flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
602 /* Assert sign of the number we made is '+'. */
603 address_of_generic_floating_point_number->sign = digits_sign_char;
612 const FLONUM_TYPE *f;
615 char littlenum_format[10];
616 sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
617 #define print_littlenum(LP) (printf (littlenum_format, LP))
618 printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
619 if (f->low < f->high)
620 for (lp = f->high; lp >= f->low; lp--)
621 print_littlenum (*lp);
623 for (lp = f->low; lp <= f->high; lp++)
624 print_littlenum (*lp);
630 /* end of atof_generic.c */