3 * ZFS filesystem ported to u-boot by
4 * Jorgen Lundman <lundman at lundman.net>
6 * GRUB -- GRand Unified Bootloader
7 * Copyright (C) 1999,2000,2001,2002,2003,2004
8 * Free Software Foundation, Inc.
9 * Copyright 2004 Sun Microsystems, Inc.
11 * SPDX-License-Identifier: GPL-2.0+
16 #include <linux/stat.h>
17 #include <linux/time.h>
18 #include <linux/ctype.h>
19 #include <asm/byteorder.h>
20 #include "zfs_common.h"
23 struct blk_desc *zfs_dev_desc;
26 * The zfs plug-in routines for GRUB are:
28 * zfs_mount() - locates a valid uberblock of the root pool and reads
29 * in its MOS at the memory address MOS.
31 * zfs_open() - locates a plain file object by following the MOS
32 * and places its dnode at the memory address DNODE.
34 * zfs_read() - read in the data blocks pointed by the DNODE.
40 #include <zfs/dnode.h>
41 #include <zfs/uberblock_impl.h>
42 #include <zfs/vdev_impl.h>
43 #include <zfs/zio_checksum.h>
44 #include <zfs/zap_impl.h>
45 #include <zfs/zap_leaf.h>
46 #include <zfs/zfs_znode.h>
48 #include <zfs/dmu_objset.h>
49 #include <zfs/sa_impl.h>
50 #include <zfs/dsl_dir.h>
51 #include <zfs/dsl_dataset.h>
54 #define ZPOOL_PROP_BOOTFS "bootfs"
58 * For nvlist manipulation. (from nvpair.h)
60 #define NV_ENCODE_NATIVE 0
61 #define NV_ENCODE_XDR 1
62 #define NV_BIG_ENDIAN 0
63 #define NV_LITTLE_ENDIAN 1
64 #define DATA_TYPE_UINT64 8
65 #define DATA_TYPE_STRING 9
66 #define DATA_TYPE_NVLIST 19
67 #define DATA_TYPE_NVLIST_ARRAY 20
71 * Macros to get fields in a bp or DVA.
73 #define P2PHASE(x, align) ((x) & ((align) - 1))
74 #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
75 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
78 * return x rounded down to an align boundary
79 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
80 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
81 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
82 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
84 #define P2ALIGN(x, align) ((x) & -(align))
87 * FAT ZAP data structures
89 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
90 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
91 #define CHAIN_END 0xffff /* end of the chunk chain */
94 * The amount of space within the chunk available for the array is:
95 * chunk size - space for type (1) - space for next pointer (2)
97 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
99 #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
100 #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
101 #define LEAF_HASH(bs, h) \
102 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
103 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
106 * The amount of space available for chunks is:
107 * block size shift - hash entry size (2) * number of hash
108 * entries - header space (2*chunksize)
110 #define ZAP_LEAF_NUMCHUNKS(bs) \
111 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
112 ZAP_LEAF_CHUNKSIZE - 2)
115 * The chunks start immediately after the hash table. The end of the
116 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
119 #define ZAP_LEAF_CHUNK(l, bs, idx) \
120 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
121 #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
125 * Decompression Entry - lzjb
133 typedef int zfs_decomp_func_t(void *s_start, void *d_start,
134 uint32_t s_len, uint32_t d_len);
135 typedef struct decomp_entry {
137 zfs_decomp_func_t *decomp_func;
140 typedef struct dnode_end {
146 /* cache for a file block of the currently zfs_open()-ed file */
151 /* XXX: ashift is per vdev, not per pool. We currently only ever touch
152 * a single vdev, but when/if raid-z or stripes are supported, this
155 uint64_t vdev_ashift;
159 /* cache for a dnode block */
160 dnode_phys_t *dnode_buf;
161 dnode_phys_t *dnode_mdn;
162 uint64_t dnode_start;
164 zfs_endian_t dnode_endian;
166 uberblock_t current_uberblock;
172 uint64_t vdev_phys_sector;
174 int (*userhook)(const char *, const struct zfs_dirhook_info *);
175 struct zfs_dirhook_info *dirinfo;
183 zlib_decompress(void *s, void *d,
184 uint32_t slen, uint32_t dlen)
186 if (zlib_decompress(s, d, slen, dlen) < 0)
187 return ZFS_ERR_BAD_FS;
191 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
192 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
193 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
194 {"off", NULL}, /* ZIO_COMPRESS_OFF */
195 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
196 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
197 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
198 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
199 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
200 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
201 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
202 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
203 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
204 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
205 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
210 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
211 void *buf, struct zfs_data *data);
214 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
215 size_t *size, struct zfs_data *data);
218 * Our own version of log2(). Same thing as highbit()-1.
221 zfs_log2(uint64_t num)
234 /* Checksum Functions */
236 zio_checksum_off(const void *buf __attribute__ ((unused)),
237 uint64_t size __attribute__ ((unused)),
238 zfs_endian_t endian __attribute__ ((unused)),
241 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
244 /* Checksum Table and Values */
245 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
246 {NULL, 0, 0, "inherit"},
248 {zio_checksum_off, 0, 0, "off"},
249 {zio_checksum_SHA256, 1, 1, "label"},
250 {zio_checksum_SHA256, 1, 1, "gang_header"},
251 {NULL, 0, 0, "zilog"},
252 {fletcher_2_endian, 0, 0, "fletcher2"},
253 {fletcher_4_endian, 1, 0, "fletcher4"},
254 {zio_checksum_SHA256, 1, 0, "SHA256"},
255 {NULL, 0, 0, "zilog2"},
259 * zio_checksum_verify: Provides support for checksum verification.
261 * Fletcher2, Fletcher4, and SHA256 are supported.
265 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
266 zfs_endian_t endian, char *buf, int size)
268 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
269 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
270 zio_cksum_t actual_cksum, expected_cksum;
272 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
273 printf("zfs unknown checksum function %d\n", checksum);
274 return ZFS_ERR_NOT_IMPLEMENTED_YET;
278 expected_cksum = zec->zec_cksum;
280 ci->ci_func(buf, size, endian, &actual_cksum);
281 zec->zec_cksum = expected_cksum;
284 ci->ci_func(buf, size, endian, &actual_cksum);
287 if ((actual_cksum.zc_word[0] != zc.zc_word[0])
288 || (actual_cksum.zc_word[1] != zc.zc_word[1])
289 || (actual_cksum.zc_word[2] != zc.zc_word[2])
290 || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
291 return ZFS_ERR_BAD_FS;
298 * vdev_uberblock_compare takes two uberblock structures and returns an integer
299 * indicating the more recent of the two.
300 * Return Value = 1 if ub2 is more recent
301 * Return Value = -1 if ub1 is more recent
302 * The most recent uberblock is determined using its transaction number and
303 * timestamp. The uberblock with the highest transaction number is
304 * considered "newer". If the transaction numbers of the two blocks match, the
305 * timestamps are compared to determine the "newer" of the two.
308 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
310 zfs_endian_t ub1_endian, ub2_endian;
311 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
312 ub1_endian = LITTLE_ENDIAN;
314 ub1_endian = BIG_ENDIAN;
315 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
316 ub2_endian = LITTLE_ENDIAN;
318 ub2_endian = BIG_ENDIAN;
320 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
321 < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
323 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
324 > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
327 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
328 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
330 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
331 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
338 * Three pieces of information are needed to verify an uberblock: the magic
339 * number, the version number, and the checksum.
341 * Currently Implemented: version number, magic number, label txg
342 * Need to Implement: checksum
346 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
349 zfs_endian_t endian = UNKNOWN_ENDIAN;
352 if (uber->ub_txg < data->label_txg) {
353 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
354 uber->ub_txg, data->label_txg);
355 return ZFS_ERR_BAD_FS;
358 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
359 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
360 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
361 endian = LITTLE_ENDIAN;
363 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
364 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
365 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
368 if (endian == UNKNOWN_ENDIAN) {
369 printf("invalid uberblock magic\n");
370 return ZFS_ERR_BAD_FS;
373 memset(&zc, 0, sizeof(zc));
374 zc.zc_word[0] = cpu_to_zfs64(offset, endian);
375 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
376 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
379 /* Check that the data pointed by the rootbp is usable. */
382 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
385 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
386 printf("uberblock rootbp points to invalid data\n");
387 return ZFS_ERR_BAD_FS;
395 * Find the best uberblock.
397 * Success - Pointer to the best uberblock.
400 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
402 const uint64_t sector = data->vdev_phys_sector;
403 uberblock_t *ubbest = NULL;
405 unsigned int i, offset, pickedub = 0;
406 int err = ZFS_ERR_NONE;
408 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
409 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
411 for (i = 0; i < UBCOUNT; i++) {
412 ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
413 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
415 err = uberblock_verify(ubnext, offset, data);
419 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
426 debug("zfs Found best uberblock at idx %d, txg %llu\n",
427 pickedub, (unsigned long long) ubbest->ub_txg);
433 get_psize(blkptr_t *bp, zfs_endian_t endian)
435 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
436 << SPA_MINBLOCKSHIFT;
440 dva_get_offset(dva_t *dva, zfs_endian_t endian)
442 return zfs_to_cpu64((dva)->dva_word[1],
443 endian) << SPA_MINBLOCKSHIFT;
447 * Read a block of data based on the gang block address dva,
448 * and put its data in buf.
452 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
453 struct zfs_data *data)
455 zio_gbh_phys_t *zio_gb;
456 uint64_t offset, sector;
461 memset(&zc, 0, sizeof(zc));
463 zio_gb = malloc(SPA_GANGBLOCKSIZE);
465 return ZFS_ERR_OUT_OF_MEMORY;
467 offset = dva_get_offset(dva, endian);
468 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
470 /* read in the gang block header */
471 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
479 /* self checksuming the gang block header */
480 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
481 dva_get_offset(dva, endian), bp->blk_birth, 0);
482 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
483 (char *) zio_gb, SPA_GANGBLOCKSIZE);
489 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
491 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
492 if (zio_gb->zg_blkptr[i].blk_birth == 0)
495 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
500 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
507 * Read in a block of raw data to buf.
510 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
511 struct zfs_data *data)
514 int err = ZFS_ERR_NONE;
516 psize = get_psize(bp, endian);
518 /* pick a good dva from the block pointer */
519 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
520 uint64_t offset, sector;
522 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
525 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
526 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
528 /* read in a data block */
529 offset = dva_get_offset(&bp->blk_dva[i], endian);
530 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
532 err = zfs_devread(sector, 0, psize, buf);
536 /*Check the underlying checksum before we rule this DVA as "good"*/
537 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
539 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
544 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
548 printf("couldn't find a valid DVA\n");
549 err = ZFS_ERR_BAD_FS;
556 * Read in a block of data, verify its checksum, decompress if needed,
557 * and put the uncompressed data in buf.
560 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
561 size_t *size, struct zfs_data *data)
565 char *compbuf = NULL;
570 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
571 lsize = (BP_IS_HOLE(bp) ? 0 :
572 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
573 << SPA_MINBLOCKSHIFT));
574 psize = get_psize(bp, endian);
579 if (comp >= ZIO_COMPRESS_FUNCTIONS) {
580 printf("compression algorithm %u not supported\n", (unsigned int) comp);
581 return ZFS_ERR_NOT_IMPLEMENTED_YET;
584 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
585 printf("compression algorithm %s not supported\n", decomp_table[comp].name);
586 return ZFS_ERR_NOT_IMPLEMENTED_YET;
589 if (comp != ZIO_COMPRESS_OFF) {
590 compbuf = malloc(psize);
592 return ZFS_ERR_OUT_OF_MEMORY;
594 compbuf = *buf = malloc(lsize);
597 err = zio_read_data(bp, endian, compbuf, data);
604 if (comp != ZIO_COMPRESS_OFF) {
605 *buf = malloc(lsize);
608 return ZFS_ERR_OUT_OF_MEMORY;
611 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
624 * Get the block from a block id.
625 * push the block onto the stack.
629 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
630 zfs_endian_t *endian_out, struct zfs_data *data)
633 blkptr_t *bp_array = dn->dn.dn_blkptr;
634 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
638 int err = ZFS_ERR_NONE;
640 bp = malloc(sizeof(blkptr_t));
642 return ZFS_ERR_OUT_OF_MEMORY;
645 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
646 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
648 if (bp_array != dn->dn.dn_blkptr) {
653 if (BP_IS_HOLE(bp)) {
654 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
656 << SPA_MINBLOCKSHIFT;
659 err = ZFS_ERR_OUT_OF_MEMORY;
662 memset(*buf, 0, size);
663 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
667 err = zio_read(bp, endian, buf, 0, data);
668 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
671 err = zio_read(bp, endian, &tmpbuf, 0, data);
672 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
677 if (bp_array != dn->dn.dn_blkptr)
680 *endian_out = endian;
687 * mzap_lookup: Looks up property described by "name" and returns the value
691 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
692 int objsize, char *name, uint64_t * value)
695 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
697 chunks = objsize / MZAP_ENT_LEN - 1;
698 for (i = 0; i < chunks; i++) {
699 if (strcmp(mzap_ent[i].mze_name, name) == 0) {
700 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
705 printf("couldn't find '%s'\n", name);
706 return ZFS_ERR_FILE_NOT_FOUND;
710 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
711 int (*hook)(const char *name,
713 struct zfs_data *data),
714 struct zfs_data *data)
717 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
719 chunks = objsize / MZAP_ENT_LEN - 1;
720 for (i = 0; i < chunks; i++) {
721 if (hook(mzap_ent[i].mze_name,
722 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
731 zap_hash(uint64_t salt, const char *name)
733 static uint64_t table[256];
738 if (table[128] == 0) {
741 for (i = 0; i < 256; i++) {
742 for (ct = table + i, *ct = i, j = 8; j > 0; j--)
743 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
747 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
748 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
751 * Only use 28 bits, since we need 4 bits in the cookie for the
752 * collision differentiator. We MUST use the high bits, since
753 * those are the onces that we first pay attention to when
754 * chosing the bucket.
756 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
762 * Only to be used on 8-bit arrays.
763 * array_len is actual len in bytes (not encoded le_value_length).
764 * buf is null-terminated.
768 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
769 int blksft, int chunk, int array_len, const char *buf)
773 while (bseen < array_len) {
774 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
775 int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
777 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
780 if (memcmp(la->la_array, buf + bseen, toread) != 0)
782 chunk = zfs_to_cpu16(la->la_next, endian);
785 return (bseen == array_len);
790 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
791 int chunk, int array_len, char *buf)
795 while (bseen < array_len) {
796 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
797 int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
799 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
800 /* Don't use errno because this error is to be ignored. */
801 return ZFS_ERR_BAD_FS;
803 memcpy(buf + bseen, la->la_array, toread);
804 chunk = zfs_to_cpu16(la->la_next, endian);
812 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
813 * value for the property "name".
818 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
819 int blksft, uint64_t h,
820 const char *name, uint64_t *value)
823 struct zap_leaf_entry *le;
825 /* Verify if this is a valid leaf block */
826 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
827 printf("invalid leaf type\n");
828 return ZFS_ERR_BAD_FS;
830 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
831 printf("invalid leaf magic\n");
832 return ZFS_ERR_BAD_FS;
835 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
836 chunk != CHAIN_END; chunk = le->le_next) {
838 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
839 printf("invalid chunk number\n");
840 return ZFS_ERR_BAD_FS;
843 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
845 /* Verify the chunk entry */
846 if (le->le_type != ZAP_CHUNK_ENTRY) {
847 printf("invalid chunk entry\n");
848 return ZFS_ERR_BAD_FS;
851 if (zfs_to_cpu64(le->le_hash, endian) != h)
854 if (zap_leaf_array_equal(l, endian, blksft,
855 zfs_to_cpu16(le->le_name_chunk, endian),
856 zfs_to_cpu16(le->le_name_length, endian),
858 struct zap_leaf_array *la;
860 if (le->le_int_size != 8 || le->le_value_length != 1) {
861 printf("invalid leaf chunk entry\n");
862 return ZFS_ERR_BAD_FS;
864 /* get the uint64_t property value */
865 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
867 *value = be64_to_cpu(la->la_array64);
873 printf("couldn't find '%s'\n", name);
874 return ZFS_ERR_FILE_NOT_FOUND;
878 /* Verify if this is a fat zap header block */
880 zap_verify(zap_phys_t *zap)
882 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
883 printf("bad ZAP magic\n");
884 return ZFS_ERR_BAD_FS;
887 if (zap->zap_flags != 0) {
888 printf("bad ZAP flags\n");
889 return ZFS_ERR_BAD_FS;
892 if (zap->zap_salt == 0) {
893 printf("bad ZAP salt\n");
894 return ZFS_ERR_BAD_FS;
906 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
907 char *name, uint64_t *value, struct zfs_data *data)
910 uint64_t hash, idx, blkid;
911 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
912 zap_dnode->endian) << DNODE_SHIFT);
914 zfs_endian_t leafendian;
916 err = zap_verify(zap);
920 hash = zap_hash(zap->zap_salt, name);
922 /* get block id from index */
923 if (zap->zap_ptrtbl.zt_numblks != 0) {
924 printf("external pointer tables not supported\n");
925 return ZFS_ERR_NOT_IMPLEMENTED_YET;
927 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
928 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
930 /* Get the leaf block */
931 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
932 printf("ZAP leaf is too small\n");
933 return ZFS_ERR_BAD_FS;
935 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
939 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
946 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
947 int (*hook)(const char *name,
949 struct zfs_data *data),
950 struct zfs_data *data)
956 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
957 zap_dnode->endian) << DNODE_SHIFT);
964 /* get block id from index */
965 if (zap->zap_ptrtbl.zt_numblks != 0) {
966 printf("external pointer tables not supported\n");
969 /* Get the leaf block */
970 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
971 printf("ZAP leaf is too small\n");
974 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
975 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
977 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
982 /* Verify if this is a valid leaf block */
983 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
987 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
992 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
994 struct zap_leaf_array *la;
995 struct zap_leaf_entry *le;
997 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
999 /* Verify the chunk entry */
1000 if (le->le_type != ZAP_CHUNK_ENTRY)
1003 buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1005 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1006 le->le_name_length, buf)) {
1010 buf[le->le_name_length] = 0;
1012 if (le->le_int_size != 8
1013 || zfs_to_cpu16(le->le_value_length, endian) != 1)
1016 /* get the uint64_t property value */
1017 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1018 val = be64_to_cpu(la->la_array64);
1019 if (hook(buf, val, data))
1029 * Read in the data of a zap object and find the value for a matching
1034 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1035 struct zfs_data *data)
1037 uint64_t block_type;
1041 zfs_endian_t endian;
1043 /* Read in the first block of the zap object data. */
1044 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1045 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1046 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1049 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1051 if (block_type == ZBT_MICRO) {
1052 err = (mzap_lookup(zapbuf, endian, size, name, val));
1055 } else if (block_type == ZBT_HEADER) {
1056 /* this is a fat zap */
1057 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1062 printf("unknown ZAP type\n");
1064 return ZFS_ERR_BAD_FS;
1068 zap_iterate(dnode_end_t *zap_dnode,
1069 int (*hook)(const char *name, uint64_t val,
1070 struct zfs_data *data),
1071 struct zfs_data *data)
1073 uint64_t block_type;
1078 zfs_endian_t endian;
1080 /* Read in the first block of the zap object data. */
1081 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1082 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1085 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1087 if (block_type == ZBT_MICRO) {
1088 ret = mzap_iterate(zapbuf, endian, size, hook, data);
1091 } else if (block_type == ZBT_HEADER) {
1092 /* this is a fat zap */
1093 ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1097 printf("unknown ZAP type\n");
1104 * Get the dnode of an object number from the metadnode of an object set.
1107 * mdn - metadnode to get the object dnode
1108 * objnum - object number for the object dnode
1109 * buf - data buffer that holds the returning dnode
1112 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1113 dnode_end_t *buf, struct zfs_data *data)
1115 uint64_t blkid, blksz; /* the block id this object dnode is in */
1116 int epbs; /* shift of number of dnodes in a block */
1117 int idx; /* index within a block */
1120 zfs_endian_t endian;
1122 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1123 mdn->endian) << SPA_MINBLOCKSHIFT;
1125 epbs = zfs_log2(blksz) - DNODE_SHIFT;
1126 blkid = objnum >> epbs;
1127 idx = objnum & ((1 << epbs) - 1);
1129 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1131 && objnum >= data->dnode_start && objnum < data->dnode_end) {
1132 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1133 buf->endian = data->dnode_endian;
1134 if (type && buf->dn.dn_type != type) {
1135 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1136 return ZFS_ERR_BAD_FS;
1138 return ZFS_ERR_NONE;
1141 err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1145 free(data->dnode_buf);
1146 free(data->dnode_mdn);
1147 data->dnode_mdn = malloc(sizeof(*mdn));
1148 if (!data->dnode_mdn) {
1149 data->dnode_buf = 0;
1151 memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1152 data->dnode_buf = dnbuf;
1153 data->dnode_start = blkid << epbs;
1154 data->dnode_end = (blkid + 1) << epbs;
1155 data->dnode_endian = endian;
1158 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1159 buf->endian = endian;
1160 if (type && buf->dn.dn_type != type) {
1161 printf("incorrect dnode type\n");
1162 return ZFS_ERR_BAD_FS;
1165 return ZFS_ERR_NONE;
1169 * Get the file dnode for a given file name where mdn is the meta dnode
1170 * for this ZFS object set. When found, place the file dnode in dn.
1171 * The 'path' argument will be mangled.
1175 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1176 struct zfs_data *data)
1178 uint64_t objnum, version;
1180 int err = ZFS_ERR_NONE;
1181 char *path, *path_buf;
1182 struct dnode_chain {
1183 struct dnode_chain *next;
1186 struct dnode_chain *dnode_path = 0, *dn_new, *root;
1188 dn_new = malloc(sizeof(*dn_new));
1190 return ZFS_ERR_OUT_OF_MEMORY;
1192 dnode_path = root = dn_new;
1194 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1195 &(dnode_path->dn), data);
1201 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1206 if (version > ZPL_VERSION) {
1208 printf("too new ZPL version\n");
1209 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1212 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1218 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1224 path = path_buf = strdup(path_in);
1227 return ZFS_ERR_OUT_OF_MEMORY;
1231 /* skip leading slashes */
1232 while (*path == '/')
1236 /* get the next component name */
1238 while (*path && *path != '/')
1241 if (cname + 1 == path && cname[0] == '.')
1243 /* Handle double dot. */
1244 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
1246 dn_new = dnode_path;
1247 dnode_path = dn_new->next;
1250 printf("can't resolve ..\n");
1251 err = ZFS_ERR_FILE_NOT_FOUND;
1258 *path = 0; /* ensure null termination */
1260 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1262 printf("not a directory\n");
1263 return ZFS_ERR_BAD_FILE_TYPE;
1265 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1269 dn_new = malloc(sizeof(*dn_new));
1271 err = ZFS_ERR_OUT_OF_MEMORY;
1274 dn_new->next = dnode_path;
1275 dnode_path = dn_new;
1277 objnum = ZFS_DIRENT_OBJ(objnum);
1278 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1286 memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1288 while (dnode_path) {
1289 dn_new = dnode_path->next;
1291 dnode_path = dn_new;
1299 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1300 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1303 * If no fsname and no obj are given, return the DSL_DIR metadnode.
1304 * If fsname is given, return its metadnode and its matching object number.
1305 * If only obj is given, return the metadnode for this object number.
1309 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1310 dnode_end_t *mdn, struct zfs_data *data)
1315 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1316 DMU_OT_OBJECT_DIRECTORY, mdn, data);
1320 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1324 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1332 while (*fsname == '/')
1335 if (!*fsname || *fsname == '@')
1339 while (*fsname && !isspace(*fsname) && *fsname != '/')
1344 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1345 err = dnode_get(mosmdn, childobj,
1346 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1350 err = zap_lookup(mdn, cname, &objnum, data);
1354 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1360 return ZFS_ERR_NONE;
1364 make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1371 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1372 err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1375 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1377 printf("too small osp\n");
1378 return ZFS_ERR_BAD_FS;
1381 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1382 memmove((char *) &(mdn->dn),
1383 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1385 return ZFS_ERR_NONE;
1389 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1390 uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1391 struct zfs_data *data)
1393 char *fsname, *snapname;
1394 const char *ptr_at, *filename;
1398 ptr_at = strchr(fullpath, '@');
1403 fsname = strdup(fullpath);
1405 const char *ptr_slash = strchr(ptr_at, '/');
1408 fsname = malloc(ptr_at - fullpath + 1);
1410 return ZFS_ERR_OUT_OF_MEMORY;
1411 memcpy(fsname, fullpath, ptr_at - fullpath);
1412 fsname[ptr_at - fullpath] = 0;
1413 if (ptr_at[1] && ptr_at[1] != '/') {
1414 snapname = malloc(ptr_slash - ptr_at);
1417 return ZFS_ERR_OUT_OF_MEMORY;
1419 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1420 snapname[ptr_slash - ptr_at - 1] = 0;
1425 filename = ptr_slash;
1428 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1429 fsname, snapname, filename);
1433 err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1441 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1443 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1453 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1455 err = dnode_get(&(data->mos), snapobj,
1456 DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1458 err = zap_lookup(mdn, snapname, &headobj, data);
1460 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1471 make_mdn(mdn, data);
1476 return ZFS_ERR_NONE;
1478 err = dnode_get_path(mdn, filename, dn, data);
1485 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1487 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1489 * encoding method/host endian (4 bytes)
1490 * nvl_version (4 bytes)
1491 * nvl_nvflag (4 bytes)
1493 * encoded size of the nvpair (4 bytes)
1494 * decoded size of the nvpair (4 bytes)
1495 * name string size (4 bytes)
1496 * name string data (sizeof(NV_ALIGN4(string))
1497 * data type (4 bytes)
1498 * # of elements in the nvpair (4 bytes)
1500 * 2 zero's for the last nvpair
1501 * (end of the entire list) (8 bytes)
1506 nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1507 size_t *size_out, size_t *nelm_out)
1509 int name_len, type, encode_size;
1510 char *nvpair, *nvp_name;
1512 /* Verify if the 1st and 2nd byte in the nvlist are valid. */
1513 /* NOTE: independently of what endianness header announces all
1514 subsequent values are big-endian. */
1515 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1516 && nvlist[1] != NV_BIG_ENDIAN)) {
1517 printf("zfs incorrect nvlist header\n");
1518 return ZFS_ERR_BAD_FS;
1521 /* skip the header, nvl_version, and nvl_nvflag */
1522 nvlist = nvlist + 4 * 3;
1524 * Loop thru the nvpair list
1525 * The XDR representation of an integer is in big-endian byte order.
1527 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1530 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
1532 name_len = be32_to_cpu(*(uint32_t *) nvpair);
1536 nvpair = nvpair + ((name_len + 3) & ~3); /* align */
1538 type = be32_to_cpu(*(uint32_t *) nvpair);
1541 nelm = be32_to_cpu(*(uint32_t *) nvpair);
1543 printf("empty nvpair\n");
1544 return ZFS_ERR_BAD_FS;
1549 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1551 *size_out = encode_size;
1557 nvlist += encode_size; /* goto the next nvpair */
1563 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1569 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1572 if (size < sizeof(uint64_t)) {
1573 printf("invalid uint64\n");
1574 return ZFS_ERR_BAD_FS;
1577 *out = be64_to_cpu(*(uint64_t *) nvpair);
1582 zfs_nvlist_lookup_string(char *nvlist, char *name)
1590 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1594 printf("invalid string\n");
1597 slen = be32_to_cpu(*(uint32_t *) nvpair);
1598 if (slen > size - 4)
1600 ret = malloc(slen + 1);
1603 memcpy(ret, nvpair + 4, slen);
1609 zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1616 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1620 ret = calloc(1, size + 3 * sizeof(uint32_t));
1623 memcpy(ret, nvlist, sizeof(uint32_t));
1625 memcpy(ret + sizeof(uint32_t), nvpair, size);
1630 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1636 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1644 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1647 char *nvpair, *nvpairptr;
1654 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1658 if (index >= nelm) {
1659 printf("trying to lookup past nvlist array\n");
1665 for (i = 0; i < index; i++) {
1666 uint32_t encode_size;
1668 /* skip the header, nvl_version, and nvl_nvflag */
1669 nvpairptr = nvpairptr + 4 * 2;
1671 while (nvpairptr < nvpair + size
1672 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1673 nvlist += encode_size; /* goto the next nvpair */
1675 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1678 if (nvpairptr >= nvpair + size
1679 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1681 printf("incorrect nvlist array\n");
1685 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1686 + 3 * sizeof(uint32_t));
1689 memcpy(ret, nvlist, sizeof(uint32_t));
1691 memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1696 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1700 *nvlist = malloc(VDEV_PHYS_SIZE);
1701 /* Read in the vdev name-value pair list (112K). */
1702 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1708 return ZFS_ERR_NONE;
1712 * Check the disk label information and retrieve needed vdev name-value pairs.
1716 check_pool_label(struct zfs_data *data)
1718 uint64_t pool_state;
1719 char *nvlist; /* for the pool */
1720 char *vdevnvlist; /* for the vdev */
1726 err = int_zfs_fetch_nvlist(data, &nvlist);
1730 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1734 printf("zfs pool state not found\n");
1735 return ZFS_ERR_BAD_FS;
1738 if (pool_state == POOL_STATE_DESTROYED) {
1740 printf("zpool is marked as destroyed\n");
1741 return ZFS_ERR_BAD_FS;
1744 data->label_txg = 0;
1745 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1749 printf("zfs pool txg not found\n");
1750 return ZFS_ERR_BAD_FS;
1753 /* not an active device */
1754 if (data->label_txg == 0) {
1756 printf("zpool is not active\n");
1757 return ZFS_ERR_BAD_FS;
1760 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1764 printf("zpool config version not found\n");
1765 return ZFS_ERR_BAD_FS;
1768 if (version > SPA_VERSION) {
1770 printf("SPA version too new %llu > %llu\n",
1771 (unsigned long long) version,
1772 (unsigned long long) SPA_VERSION);
1773 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1776 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1779 printf("ZFS config vdev tree not found\n");
1780 return ZFS_ERR_BAD_FS;
1783 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1784 &data->vdev_ashift);
1788 printf("ZPOOL config ashift not found\n");
1789 return ZFS_ERR_BAD_FS;
1792 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1795 printf("ZPOOL config guid not found\n");
1796 return ZFS_ERR_BAD_FS;
1799 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1802 printf("ZPOOL config pool guid not found\n");
1803 return ZFS_ERR_BAD_FS;
1808 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1809 (unsigned long long) data->pool_guid,
1810 (unsigned long long) data->pool_guid,
1811 (unsigned long long) diskguid,
1812 (unsigned long long) diskguid,
1813 (unsigned long long) data->label_txg,
1814 (unsigned long long) version,
1815 (unsigned long long) data->vdev_ashift);
1817 return ZFS_ERR_NONE;
1821 * vdev_label_start returns the physical disk offset (in bytes) of
1824 static uint64_t vdev_label_start(uint64_t psize, int l)
1826 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1828 VDEV_LABELS * sizeof(vdev_label_t)));
1832 zfs_unmount(struct zfs_data *data)
1834 free(data->dnode_buf);
1835 free(data->dnode_mdn);
1836 free(data->file_buf);
1841 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1842 * to the memory address MOS.
1846 zfs_mount(device_t dev)
1848 struct zfs_data *data = 0;
1849 int label = 0, bestlabel = -1;
1851 uberblock_t *ubbest;
1852 uberblock_t *ubcur = NULL;
1857 data = malloc(sizeof(*data));
1860 memset(data, 0, sizeof(*data));
1862 ub_array = malloc(VDEV_UBERBLOCK_RING);
1868 ubbest = malloc(sizeof(*ubbest));
1874 memset(ubbest, 0, sizeof(*ubbest));
1877 * some eltorito stacks don't give us a size and
1878 * we end up setting the size to MAXUINT, further
1879 * some of these devices stop working once a single
1880 * read past the end has been issued. Checking
1881 * for a maximum part_length and skipping the backup
1882 * labels at the end of the slice/partition/device
1883 * avoids breaking down on such devices.
1886 dev->part_length == 0 ?
1887 VDEV_LABELS / 2 : VDEV_LABELS;
1889 /* Size in bytes of the device (disk or partition) aligned to label size*/
1890 uint64_t device_size =
1891 dev->part_length << SECTOR_BITS;
1893 const uint64_t alignedbytes =
1894 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1896 for (label = 0; label < vdevnum; label++) {
1897 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1898 uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1900 debug("zfs reading label %d at sector %llu (byte %llu)\n",
1901 label, (unsigned long long) labelstart,
1902 (unsigned long long) labelstartbytes);
1904 data->vdev_phys_sector = labelstart +
1905 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1907 err = check_pool_label(data);
1909 printf("zfs error checking label %d\n", label);
1913 /* Read in the uberblock ring (128K). */
1914 err = zfs_devread(data->vdev_phys_sector +
1915 (VDEV_PHYS_SIZE >> SECTOR_BITS),
1916 0, VDEV_UBERBLOCK_RING, ub_array);
1918 printf("zfs error reading uberblock ring for label %d\n", label);
1922 ubcur = find_bestub(ub_array, data);
1924 printf("zfs No good uberblocks found in label %d\n", label);
1928 if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1929 /* Looks like the block is good, so use it.*/
1930 memcpy(ubbest, ubcur, sizeof(*ubbest));
1932 debug("zfs Current best uberblock found in label %d\n", label);
1937 /* We zero'd the structure to begin with. If we never assigned to it,
1938 magic will still be zero. */
1939 if (!ubbest->ub_magic) {
1940 printf("couldn't find a valid ZFS label\n");
1946 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1948 zfs_endian_t ub_endian =
1949 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1950 ? LITTLE_ENDIAN : BIG_ENDIAN;
1952 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1954 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1957 printf("couldn't zio_read object directory\n");
1964 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1965 printf("osp too small\n");
1972 /* Got the MOS. Save it at the memory addr MOS. */
1973 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1975 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
1976 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
1985 zfs_fetch_nvlist(device_t dev, char **nvlist)
1987 struct zfs_data *zfs;
1990 zfs = zfs_mount(dev);
1992 return ZFS_ERR_BAD_FS;
1993 err = int_zfs_fetch_nvlist(zfs, nvlist);
1999 * zfs_open() locates a file in the rootpool by following the
2000 * MOS and places the dnode of the file in the memory address DNODE.
2003 zfs_open(struct zfs_file *file, const char *fsfilename)
2005 struct zfs_data *data;
2009 data = zfs_mount(file->device);
2011 return ZFS_ERR_BAD_FS;
2013 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2014 &(data->dnode), &isfs, data);
2022 printf("Missing @ or / separator\n");
2023 return ZFS_ERR_FILE_NOT_FOUND;
2026 /* We found the dnode for this file. Verify if it is a plain file. */
2027 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2029 printf("not a file\n");
2030 return ZFS_ERR_BAD_FILE_TYPE;
2033 /* get the file size and set the file position to 0 */
2036 * For DMU_OT_SA we will need to locate the SIZE attribute
2037 * attribute, which could be either in the bonus buffer
2038 * or the "spill" block.
2040 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2044 if (data->dnode.dn.dn_bonuslen != 0) {
2045 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2046 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2047 blkptr_t *bp = &data->dnode.dn.dn_spill;
2049 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2053 printf("filesystem is corrupt :(\n");
2054 return ZFS_ERR_BAD_FS;
2057 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2058 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
2059 if ((data->dnode.dn.dn_bonuslen == 0) &&
2060 (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2063 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2069 return ZFS_ERR_NONE;
2073 zfs_read(zfs_file_t file, char *buf, uint64_t len)
2075 struct zfs_data *data = (struct zfs_data *) file->data;
2076 int blksz, movesize;
2081 if (data->file_buf == NULL) {
2082 data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2083 if (!data->file_buf)
2085 data->file_start = data->file_end = 0;
2089 * If offset is in memory, move it into the buffer provided and return.
2091 if (file->offset >= data->file_start
2092 && file->offset + len <= data->file_end) {
2093 memmove(buf, data->file_buf + file->offset - data->file_start,
2098 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2099 data->dnode.endian) << SPA_MINBLOCKSHIFT;
2102 * Entire Dnode is too big to fit into the space available. We
2103 * will need to read it in chunks. This could be optimized to
2104 * read in as large a chunk as there is space available, but for
2105 * now, this only reads in one data block at a time.
2112 * Find requested blkid and the offset within that block.
2114 uint64_t blkid = file->offset + red;
2115 blkid = do_div(blkid, blksz);
2116 free(data->file_buf);
2119 err = dmu_read(&(data->dnode), blkid, &t,
2125 data->file_start = blkid * blksz;
2126 data->file_end = data->file_start + blksz;
2128 movesize = min(length, data->file_end - (int)file->offset - red);
2130 memmove(buf, data->file_buf + file->offset + red
2131 - data->file_start, movesize);
2141 zfs_close(zfs_file_t file)
2143 zfs_unmount((struct zfs_data *) file->data);
2144 return ZFS_ERR_NONE;
2148 zfs_getmdnobj(device_t dev, const char *fsfilename,
2151 struct zfs_data *data;
2155 data = zfs_mount(dev);
2157 return ZFS_ERR_BAD_FS;
2159 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2160 &(data->dnode), &isfs, data);
2166 fill_fs_info(struct zfs_dirhook_info *info,
2167 dnode_end_t mdn, struct zfs_data *data)
2174 memset(info, 0, sizeof(*info));
2178 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2179 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2181 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2183 printf("zfs failed here 1\n");
2187 make_mdn(&mdn, data);
2188 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2191 printf("zfs failed here 2\n");
2195 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2197 printf("zfs failed here 3\n");
2201 err = dnode_get(&mdn, objnum, 0, &dn, data);
2203 printf("zfs failed here 4\n");
2208 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2213 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2215 struct zfs_dirhook_info info;
2218 memset(&info, 0, sizeof(info));
2220 dnode_get(&(data->mdn), val, 0, &dn, data);
2222 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2223 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2224 debug("zfs type=%d, name=%s\n",
2225 (int)dn.dn.dn_type, (char *)name);
2226 if (!data->userhook)
2228 return data->userhook(name, &info);
2231 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2233 struct zfs_dirhook_info info;
2236 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2239 if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2242 fill_fs_info(&info, mdn, data);
2244 if (!data->userhook)
2246 return data->userhook(name, &info);
2249 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2251 struct zfs_dirhook_info info;
2257 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2261 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2264 fill_fs_info(&info, mdn, data);
2266 name2 = malloc(strlen(name) + 2);
2268 memcpy(name2 + 1, name, strlen(name) + 1);
2270 ret = data->userhook(name2, &info);
2276 zfs_ls(device_t device, const char *path,
2277 int (*hook)(const char *, const struct zfs_dirhook_info *))
2279 struct zfs_data *data;
2283 data = zfs_mount(device);
2285 return ZFS_ERR_BAD_FS;
2287 data->userhook = hook;
2289 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2295 uint64_t childobj, headobj;
2298 struct zfs_dirhook_info info;
2300 fill_fs_info(&info, data->dnode, data);
2303 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2304 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2305 err = dnode_get(&(data->mos), childobj,
2306 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2313 zap_iterate(&dn, iterate_zap_fs, data);
2315 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2321 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2323 err = dnode_get(&(data->mos), snapobj,
2324 DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2330 zap_iterate(&dn, iterate_zap_snap, data);
2332 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2334 printf("not a directory\n");
2335 return ZFS_ERR_BAD_FILE_TYPE;
2337 zap_iterate(&(data->dnode), iterate_zap, data);
2340 return ZFS_ERR_NONE;