1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
31 #include "xfs_ag_resv.h"
34 * Copy on Write of Shared Blocks
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
129 xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
137 bool find_end_of_shared)
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152 xfs_btree_del_cursor(cur, error);
154 xfs_trans_brelse(tp, agbp);
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
169 xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
187 trace_xfs_reflink_trim_around_shared(ip, irec);
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 aglen, &fbno, &flen, true);
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
202 } else if (fbno == agbno) {
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
209 irec->br_blockcount = flen;
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
219 irec->br_blockcount = fbno - agbno;
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
242 xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
257 if (got.br_startoff >= offset_fsb + count_fsb)
259 if (got.br_state == XFS_EXT_NORM)
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
281 xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
286 struct xfs_mount *mp = ip->i_mount;
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
294 xfs_ilock(ip, XFS_ILOCK_EXCL);
295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
306 xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 struct xfs_bmbt_irec *cmap,
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
326 xfs_trim_extent(imap, imap->br_startoff,
327 cmap->br_startoff - imap->br_startoff);
328 return xfs_bmap_trim_cow(ip, imap, shared);
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
345 xfs_reflink_allocate_cow(
346 struct xfs_inode *ip,
347 struct xfs_bmbt_irec *imap,
348 struct xfs_bmbt_irec *cmap,
353 struct xfs_mount *mp = ip->i_mount;
354 xfs_fileoff_t offset_fsb = imap->br_startoff;
355 xfs_filblks_t count_fsb = imap->br_blockcount;
356 struct xfs_trans *tp;
357 int nimaps, error = 0;
359 xfs_filblks_t resaligned;
360 xfs_extlen_t resblks = 0;
362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
364 ASSERT(!xfs_is_reflink_inode(ip));
365 xfs_ifork_init_cow(ip);
368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 if (error || !*shared)
374 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
378 xfs_iunlock(ip, *lockmode);
381 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
386 *lockmode = XFS_ILOCK_EXCL;
389 * Check for an overlapping extent again now that we dropped the ilock.
391 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 if (error || !*shared)
393 goto out_trans_cancel;
395 xfs_trans_cancel(tp);
399 /* Allocate the entire reservation as unwritten blocks. */
401 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
405 goto out_trans_cancel;
407 xfs_inode_set_cowblocks_tag(ip);
408 error = xfs_trans_commit(tp);
413 * Allocation succeeded but the requested range was not even partially
414 * satisfied? Bail out!
419 xfs_trim_extent(cmap, offset_fsb, count_fsb);
421 * COW fork extents are supposed to remain unwritten until we're ready
422 * to initiate a disk write. For direct I/O we are going to write the
423 * data and need the conversion, but for buffered writes we're done.
425 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
427 trace_xfs_reflink_convert_cow(ip, cmap);
428 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
431 xfs_trans_cancel(tp);
436 * Cancel CoW reservations for some block range of an inode.
438 * If cancel_real is true this function cancels all COW fork extents for the
439 * inode; if cancel_real is false, real extents are not cleared.
441 * Caller must have already joined the inode to the current transaction. The
442 * inode will be joined to the transaction returned to the caller.
445 xfs_reflink_cancel_cow_blocks(
446 struct xfs_inode *ip,
447 struct xfs_trans **tpp,
448 xfs_fileoff_t offset_fsb,
449 xfs_fileoff_t end_fsb,
452 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
453 struct xfs_bmbt_irec got, del;
454 struct xfs_iext_cursor icur;
457 if (!xfs_inode_has_cow_data(ip))
459 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
462 /* Walk backwards until we're out of the I/O range... */
463 while (got.br_startoff + got.br_blockcount > offset_fsb) {
465 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
467 /* Extent delete may have bumped ext forward */
468 if (!del.br_blockcount) {
469 xfs_iext_prev(ifp, &icur);
473 trace_xfs_reflink_cancel_cow(ip, &del);
475 if (isnullstartblock(del.br_startblock)) {
476 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
480 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
481 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
483 /* Free the CoW orphan record. */
484 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
487 xfs_free_extent_later(*tpp, del.br_startblock,
488 del.br_blockcount, NULL);
490 /* Roll the transaction */
491 error = xfs_defer_finish(tpp);
495 /* Remove the mapping from the CoW fork. */
496 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
498 /* Remove the quota reservation */
499 error = xfs_quota_unreserve_blkres(ip,
504 /* Didn't do anything, push cursor back. */
505 xfs_iext_prev(ifp, &icur);
508 if (!xfs_iext_get_extent(ifp, &icur, &got))
512 /* clear tag if cow fork is emptied */
514 xfs_inode_clear_cowblocks_tag(ip);
519 * Cancel CoW reservations for some byte range of an inode.
521 * If cancel_real is true this function cancels all COW fork extents for the
522 * inode; if cancel_real is false, real extents are not cleared.
525 xfs_reflink_cancel_cow_range(
526 struct xfs_inode *ip,
531 struct xfs_trans *tp;
532 xfs_fileoff_t offset_fsb;
533 xfs_fileoff_t end_fsb;
536 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
539 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
540 if (count == NULLFILEOFF)
541 end_fsb = NULLFILEOFF;
543 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
545 /* Start a rolling transaction to remove the mappings */
546 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
551 xfs_ilock(ip, XFS_ILOCK_EXCL);
552 xfs_trans_ijoin(tp, ip, 0);
554 /* Scrape out the old CoW reservations */
555 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
560 error = xfs_trans_commit(tp);
562 xfs_iunlock(ip, XFS_ILOCK_EXCL);
566 xfs_trans_cancel(tp);
567 xfs_iunlock(ip, XFS_ILOCK_EXCL);
569 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
574 * Remap part of the CoW fork into the data fork.
576 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
577 * into the data fork; this function will remap what it can (at the end of the
578 * range) and update @end_fsb appropriately. Each remap gets its own
579 * transaction because we can end up merging and splitting bmbt blocks for
580 * every remap operation and we'd like to keep the block reservation
581 * requirements as low as possible.
584 xfs_reflink_end_cow_extent(
585 struct xfs_inode *ip,
586 xfs_fileoff_t offset_fsb,
587 xfs_fileoff_t *end_fsb)
589 struct xfs_bmbt_irec got, del;
590 struct xfs_iext_cursor icur;
591 struct xfs_mount *mp = ip->i_mount;
592 struct xfs_trans *tp;
593 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
595 unsigned int resblks;
598 /* No COW extents? That's easy! */
599 if (ifp->if_bytes == 0) {
600 *end_fsb = offset_fsb;
604 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
605 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
606 XFS_TRANS_RESERVE, &tp);
611 * Lock the inode. We have to ijoin without automatic unlock because
612 * the lead transaction is the refcountbt record deletion; the data
613 * fork update follows as a deferred log item.
615 xfs_ilock(ip, XFS_ILOCK_EXCL);
616 xfs_trans_ijoin(tp, ip, 0);
618 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
619 XFS_IEXT_REFLINK_END_COW_CNT);
624 * In case of racing, overlapping AIO writes no COW extents might be
625 * left by the time I/O completes for the loser of the race. In that
628 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
629 got.br_startoff + got.br_blockcount <= offset_fsb) {
630 *end_fsb = offset_fsb;
635 * Structure copy @got into @del, then trim @del to the range that we
636 * were asked to remap. We preserve @got for the eventual CoW fork
637 * deletion; from now on @del represents the mapping that we're
638 * actually remapping.
641 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
643 ASSERT(del.br_blockcount > 0);
646 * Only remap real extents that contain data. With AIO, speculative
647 * preallocations can leak into the range we are called upon, and we
650 if (!xfs_bmap_is_written_extent(&got)) {
651 *end_fsb = del.br_startoff;
655 /* Unmap the old blocks in the data fork. */
656 rlen = del.br_blockcount;
657 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
661 /* Trim the extent to whatever got unmapped. */
662 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
663 trace_xfs_reflink_cow_remap(ip, &del);
665 /* Free the CoW orphan record. */
666 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
668 /* Map the new blocks into the data fork. */
669 xfs_bmap_map_extent(tp, ip, &del);
671 /* Charge this new data fork mapping to the on-disk quota. */
672 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
673 (long)del.br_blockcount);
675 /* Remove the mapping from the CoW fork. */
676 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
678 error = xfs_trans_commit(tp);
679 xfs_iunlock(ip, XFS_ILOCK_EXCL);
683 /* Update the caller about how much progress we made. */
684 *end_fsb = del.br_startoff;
688 xfs_trans_cancel(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
694 * Remap parts of a file's data fork after a successful CoW.
698 struct xfs_inode *ip,
702 xfs_fileoff_t offset_fsb;
703 xfs_fileoff_t end_fsb;
706 trace_xfs_reflink_end_cow(ip, offset, count);
708 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
709 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
712 * Walk backwards until we're out of the I/O range. The loop function
713 * repeatedly cycles the ILOCK to allocate one transaction per remapped
716 * If we're being called by writeback then the pages will still
717 * have PageWriteback set, which prevents races with reflink remapping
718 * and truncate. Reflink remapping prevents races with writeback by
719 * taking the iolock and mmaplock before flushing the pages and
720 * remapping, which means there won't be any further writeback or page
721 * cache dirtying until the reflink completes.
723 * We should never have two threads issuing writeback for the same file
724 * region. There are also have post-eof checks in the writeback
725 * preparation code so that we don't bother writing out pages that are
726 * about to be truncated.
728 * If we're being called as part of directio write completion, the dio
729 * count is still elevated, which reflink and truncate will wait for.
730 * Reflink remapping takes the iolock and mmaplock and waits for
731 * pending dio to finish, which should prevent any directio until the
732 * remap completes. Multiple concurrent directio writes to the same
733 * region are handled by end_cow processing only occurring for the
734 * threads which succeed; the outcome of multiple overlapping direct
735 * writes is not well defined anyway.
737 * It's possible that a buffered write and a direct write could collide
738 * here (the buffered write stumbles in after the dio flushes and
739 * invalidates the page cache and immediately queues writeback), but we
740 * have never supported this 100%. If either disk write succeeds the
741 * blocks will be remapped.
743 while (end_fsb > offset_fsb && !error)
744 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
747 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
752 * Free all CoW staging blocks that are still referenced by the ondisk refcount
753 * metadata. The ondisk metadata does not track which inode created the
754 * staging extent, so callers must ensure that there are no cached inodes with
755 * live CoW staging extents.
758 xfs_reflink_recover_cow(
759 struct xfs_mount *mp)
761 struct xfs_perag *pag;
765 if (!xfs_has_reflink(mp))
768 for_each_perag(mp, agno, pag) {
769 error = xfs_refcount_recover_cow_leftovers(mp, pag);
780 * Reflinking (Block) Ranges of Two Files Together
782 * First, ensure that the reflink flag is set on both inodes. The flag is an
783 * optimization to avoid unnecessary refcount btree lookups in the write path.
785 * Now we can iteratively remap the range of extents (and holes) in src to the
786 * corresponding ranges in dest. Let drange and srange denote the ranges of
787 * logical blocks in dest and src touched by the reflink operation.
789 * While the length of drange is greater than zero,
790 * - Read src's bmbt at the start of srange ("imap")
791 * - If imap doesn't exist, make imap appear to start at the end of srange
793 * - If imap starts before srange, advance imap to start at srange.
794 * - If imap goes beyond srange, truncate imap to end at the end of srange.
795 * - Punch (imap start - srange start + imap len) blocks from dest at
796 * offset (drange start).
797 * - If imap points to a real range of pblks,
798 * > Increase the refcount of the imap's pblks
799 * > Map imap's pblks into dest at the offset
800 * (drange start + imap start - srange start)
801 * - Advance drange and srange by (imap start - srange start + imap len)
803 * Finally, if the reflink made dest longer, update both the in-core and
804 * on-disk file sizes.
806 * ASCII Art Demonstration:
808 * Let's say we want to reflink this source file:
810 * ----SSSSSSS-SSSSS----SSSSSS (src file)
811 * <-------------------->
813 * into this destination file:
815 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
816 * <-------------------->
817 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
818 * Observe that the range has different logical offsets in either file.
820 * Consider that the first extent in the source file doesn't line up with our
821 * reflink range. Unmapping and remapping are separate operations, so we can
822 * unmap more blocks from the destination file than we remap.
824 * ----SSSSSSS-SSSSS----SSSSSS
826 * --DDDDD---------DDDDD--DDD
829 * Now remap the source extent into the destination file:
831 * ----SSSSSSS-SSSSS----SSSSSS
833 * --DDDDD--SSSSSSSDDDDD--DDD
836 * Do likewise with the second hole and extent in our range. Holes in the
837 * unmap range don't affect our operation.
839 * ----SSSSSSS-SSSSS----SSSSSS
841 * --DDDDD--SSSSSSS-SSSSS-DDD
844 * Finally, unmap and remap part of the third extent. This will increase the
845 * size of the destination file.
847 * ----SSSSSSS-SSSSS----SSSSSS
849 * --DDDDD--SSSSSSS-SSSSS----SSS
852 * Once we update the destination file's i_size, we're done.
856 * Ensure the reflink bit is set in both inodes.
859 xfs_reflink_set_inode_flag(
860 struct xfs_inode *src,
861 struct xfs_inode *dest)
863 struct xfs_mount *mp = src->i_mount;
865 struct xfs_trans *tp;
867 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
870 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
874 /* Lock both files against IO */
875 if (src->i_ino == dest->i_ino)
876 xfs_ilock(src, XFS_ILOCK_EXCL);
878 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
880 if (!xfs_is_reflink_inode(src)) {
881 trace_xfs_reflink_set_inode_flag(src);
882 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
883 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
884 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
885 xfs_ifork_init_cow(src);
887 xfs_iunlock(src, XFS_ILOCK_EXCL);
889 if (src->i_ino == dest->i_ino)
892 if (!xfs_is_reflink_inode(dest)) {
893 trace_xfs_reflink_set_inode_flag(dest);
894 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
895 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
896 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
897 xfs_ifork_init_cow(dest);
899 xfs_iunlock(dest, XFS_ILOCK_EXCL);
902 error = xfs_trans_commit(tp);
908 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913 * Update destination inode size & cowextsize hint, if necessary.
916 xfs_reflink_update_dest(
917 struct xfs_inode *dest,
919 xfs_extlen_t cowextsize,
920 unsigned int remap_flags)
922 struct xfs_mount *mp = dest->i_mount;
923 struct xfs_trans *tp;
926 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
929 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
933 xfs_ilock(dest, XFS_ILOCK_EXCL);
934 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
936 if (newlen > i_size_read(VFS_I(dest))) {
937 trace_xfs_reflink_update_inode_size(dest, newlen);
938 i_size_write(VFS_I(dest), newlen);
939 dest->i_disk_size = newlen;
943 dest->i_cowextsize = cowextsize;
944 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
947 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
949 error = xfs_trans_commit(tp);
955 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
960 * Do we have enough reserve in this AG to handle a reflink? The refcount
961 * btree already reserved all the space it needs, but the rmap btree can grow
962 * infinitely, so we won't allow more reflinks when the AG is down to the
966 xfs_reflink_ag_has_free_space(
967 struct xfs_mount *mp,
970 struct xfs_perag *pag;
973 if (!xfs_has_rmapbt(mp))
976 pag = xfs_perag_get(mp, agno);
977 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
978 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
985 * Remap the given extent into the file. The dmap blockcount will be set to
986 * the number of blocks that were actually remapped.
989 xfs_reflink_remap_extent(
990 struct xfs_inode *ip,
991 struct xfs_bmbt_irec *dmap,
994 struct xfs_bmbt_irec smap;
995 struct xfs_mount *mp = ip->i_mount;
996 struct xfs_trans *tp;
999 unsigned int resblks;
1000 bool quota_reserved = true;
1002 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1008 * Start a rolling transaction to switch the mappings.
1010 * Adding a written extent to the extent map can cause a bmbt split,
1011 * and removing a mapped extent from the extent can cause a bmbt split.
1012 * The two operations cannot both cause a split since they operate on
1013 * the same index in the bmap btree, so we only need a reservation for
1014 * one bmbt split if either thing is happening. However, we haven't
1015 * locked the inode yet, so we reserve assuming this is the case.
1017 * The first allocation call tries to reserve enough space to handle
1018 * mapping dmap into a sparse part of the file plus the bmbt split. We
1019 * haven't locked the inode or read the existing mapping yet, so we do
1020 * not know for sure that we need the space. This should succeed most
1023 * If the first attempt fails, try again but reserving only enough
1024 * space to handle a bmbt split. This is the hard minimum requirement,
1025 * and we revisit quota reservations later when we know more about what
1028 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1029 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1030 resblks + dmap->br_blockcount, 0, false, &tp);
1031 if (error == -EDQUOT || error == -ENOSPC) {
1032 quota_reserved = false;
1033 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1034 resblks, 0, false, &tp);
1040 * Read what's currently mapped in the destination file into smap.
1041 * If smap isn't a hole, we will have to remove it before we can add
1042 * dmap to the destination file.
1045 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1049 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1050 smap_real = xfs_bmap_is_real_extent(&smap);
1053 * We can only remap as many blocks as the smaller of the two extent
1054 * maps, because we can only remap one extent at a time.
1056 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1057 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1059 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1062 * Two extents mapped to the same physical block must not have
1063 * different states; that's filesystem corruption. Move on to the next
1064 * extent if they're both holes or both the same physical extent.
1066 if (dmap->br_startblock == smap.br_startblock) {
1067 if (dmap->br_state != smap.br_state)
1068 error = -EFSCORRUPTED;
1072 /* If both extents are unwritten, leave them alone. */
1073 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1074 smap.br_state == XFS_EXT_UNWRITTEN)
1077 /* No reflinking if the AG of the dest mapping is low on space. */
1079 error = xfs_reflink_ag_has_free_space(mp,
1080 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1086 * Increase quota reservation if we think the quota block counter for
1087 * this file could increase.
1089 * If we are mapping a written extent into the file, we need to have
1090 * enough quota block count reservation to handle the blocks in that
1091 * extent. We log only the delta to the quota block counts, so if the
1092 * extent we're unmapping also has blocks allocated to it, we don't
1093 * need a quota reservation for the extent itself.
1095 * Note that if we're replacing a delalloc reservation with a written
1096 * extent, we have to take the full quota reservation because removing
1097 * the delalloc reservation gives the block count back to the quota
1098 * count. This is suboptimal, but the VFS flushed the dest range
1099 * before we started. That should have removed all the delalloc
1100 * reservations, but we code defensively.
1102 * xfs_trans_alloc_inode above already tried to grab an even larger
1103 * quota reservation, and kicked off a blockgc scan if it couldn't.
1104 * If we can't get a potentially smaller quota reservation now, we're
1107 if (!quota_reserved && !smap_real && dmap_written) {
1108 error = xfs_trans_reserve_quota_nblks(tp, ip,
1109 dmap->br_blockcount, 0, false);
1120 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1126 * If the extent we're unmapping is backed by storage (written
1127 * or not), unmap the extent and drop its refcount.
1129 xfs_bmap_unmap_extent(tp, ip, &smap);
1130 xfs_refcount_decrease_extent(tp, &smap);
1131 qdelta -= smap.br_blockcount;
1132 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1133 xfs_filblks_t len = smap.br_blockcount;
1136 * If the extent we're unmapping is a delalloc reservation,
1137 * we can use the regular bunmapi function to release the
1138 * incore state. Dropping the delalloc reservation takes care
1139 * of the quota reservation for us.
1141 error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1148 * If the extent we're sharing is backed by written storage, increase
1149 * its refcount and map it into the file.
1152 xfs_refcount_increase_extent(tp, dmap);
1153 xfs_bmap_map_extent(tp, ip, dmap);
1154 qdelta += dmap->br_blockcount;
1157 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1159 /* Update dest isize if needed. */
1160 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1161 newlen = min_t(xfs_off_t, newlen, new_isize);
1162 if (newlen > i_size_read(VFS_I(ip))) {
1163 trace_xfs_reflink_update_inode_size(ip, newlen);
1164 i_size_write(VFS_I(ip), newlen);
1165 ip->i_disk_size = newlen;
1166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1169 /* Commit everything and unlock. */
1170 error = xfs_trans_commit(tp);
1174 xfs_trans_cancel(tp);
1176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1183 /* Remap a range of one file to the other. */
1185 xfs_reflink_remap_blocks(
1186 struct xfs_inode *src,
1188 struct xfs_inode *dest,
1193 struct xfs_bmbt_irec imap;
1194 struct xfs_mount *mp = src->i_mount;
1195 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1196 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1198 xfs_filblks_t remapped_len = 0;
1199 xfs_off_t new_isize = pos_out + remap_len;
1203 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1206 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1209 unsigned int lock_mode;
1211 /* Read extent from the source file */
1213 lock_mode = xfs_ilock_data_map_shared(src);
1214 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1215 xfs_iunlock(src, lock_mode);
1219 * The caller supposedly flushed all dirty pages in the source
1220 * file range, which means that writeback should have allocated
1221 * or deleted all delalloc reservations in that range. If we
1222 * find one, that's a good sign that something is seriously
1225 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1226 if (imap.br_startblock == DELAYSTARTBLOCK) {
1227 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1228 error = -EFSCORRUPTED;
1232 trace_xfs_reflink_remap_extent_src(src, &imap);
1234 /* Remap into the destination file at the given offset. */
1235 imap.br_startoff = destoff;
1236 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1240 if (fatal_signal_pending(current)) {
1245 /* Advance drange/srange */
1246 srcoff += imap.br_blockcount;
1247 destoff += imap.br_blockcount;
1248 len -= imap.br_blockcount;
1249 remapped_len += imap.br_blockcount;
1253 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1254 *remapped = min_t(loff_t, remap_len,
1255 XFS_FSB_TO_B(src->i_mount, remapped_len));
1260 * If we're reflinking to a point past the destination file's EOF, we must
1261 * zero any speculative post-EOF preallocations that sit between the old EOF
1262 * and the destination file offset.
1265 xfs_reflink_zero_posteof(
1266 struct xfs_inode *ip,
1269 loff_t isize = i_size_read(VFS_I(ip));
1274 trace_xfs_zero_eof(ip, isize, pos - isize);
1275 return xfs_zero_range(ip, isize, pos - isize, NULL);
1279 * Prepare two files for range cloning. Upon a successful return both inodes
1280 * will have the iolock and mmaplock held, the page cache of the out file will
1281 * be truncated, and any leases on the out file will have been broken. This
1282 * function borrows heavily from xfs_file_aio_write_checks.
1284 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1285 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1286 * EOF block in the source dedupe range because it's not a complete block match,
1287 * hence can introduce a corruption into the file that has it's block replaced.
1289 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1290 * "block aligned" for the purposes of cloning entire files. However, if the
1291 * source file range includes the EOF block and it lands within the existing EOF
1292 * of the destination file, then we can expose stale data from beyond the source
1293 * file EOF in the destination file.
1295 * XFS doesn't support partial block sharing, so in both cases we have check
1296 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1297 * down to the previous whole block and ignore the partial EOF block. While this
1298 * means we can't dedupe the last block of a file, this is an acceptible
1299 * tradeoff for simplicity on implementation.
1301 * For cloning, we want to share the partial EOF block if it is also the new EOF
1302 * block of the destination file. If the partial EOF block lies inside the
1303 * existing destination EOF, then we have to abort the clone to avoid exposing
1304 * stale data in the destination file. Hence we reject these clone attempts with
1305 * -EINVAL in this case.
1308 xfs_reflink_remap_prep(
1309 struct file *file_in,
1311 struct file *file_out,
1314 unsigned int remap_flags)
1316 struct inode *inode_in = file_inode(file_in);
1317 struct xfs_inode *src = XFS_I(inode_in);
1318 struct inode *inode_out = file_inode(file_out);
1319 struct xfs_inode *dest = XFS_I(inode_out);
1322 /* Lock both files against IO */
1323 ret = xfs_ilock2_io_mmap(src, dest);
1327 /* Check file eligibility and prepare for block sharing. */
1329 /* Don't reflink realtime inodes */
1330 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1333 /* Don't share DAX file data for now. */
1334 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1337 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1339 if (ret || *len == 0)
1342 /* Attach dquots to dest inode before changing block map */
1343 ret = xfs_qm_dqattach(dest);
1348 * Zero existing post-eof speculative preallocations in the destination
1351 ret = xfs_reflink_zero_posteof(dest, pos_out);
1355 /* Set flags and remap blocks. */
1356 ret = xfs_reflink_set_inode_flag(src, dest);
1361 * If pos_out > EOF, we may have dirtied blocks between EOF and
1362 * pos_out. In that case, we need to extend the flush and unmap to cover
1363 * from EOF to the end of the copy length.
1365 if (pos_out > XFS_ISIZE(dest)) {
1366 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1367 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1369 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1376 xfs_iunlock2_io_mmap(src, dest);
1380 /* Does this inode need the reflink flag? */
1382 xfs_reflink_inode_has_shared_extents(
1383 struct xfs_trans *tp,
1384 struct xfs_inode *ip,
1387 struct xfs_bmbt_irec got;
1388 struct xfs_mount *mp = ip->i_mount;
1389 struct xfs_ifork *ifp;
1390 xfs_agnumber_t agno;
1391 xfs_agblock_t agbno;
1395 struct xfs_iext_cursor icur;
1399 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1400 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1404 *has_shared = false;
1405 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1407 if (isnullstartblock(got.br_startblock) ||
1408 got.br_state != XFS_EXT_NORM)
1410 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1411 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1412 aglen = got.br_blockcount;
1414 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1415 &rbno, &rlen, false);
1418 /* Is there still a shared block here? */
1419 if (rbno != NULLAGBLOCK) {
1424 found = xfs_iext_next_extent(ifp, &icur, &got);
1431 * Clear the inode reflink flag if there are no shared extents.
1433 * The caller is responsible for joining the inode to the transaction passed in.
1434 * The inode will be joined to the transaction that is returned to the caller.
1437 xfs_reflink_clear_inode_flag(
1438 struct xfs_inode *ip,
1439 struct xfs_trans **tpp)
1444 ASSERT(xfs_is_reflink_inode(ip));
1446 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1447 if (error || needs_flag)
1451 * We didn't find any shared blocks so turn off the reflink flag.
1452 * First, get rid of any leftover CoW mappings.
1454 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1459 /* Clear the inode flag. */
1460 trace_xfs_reflink_unset_inode_flag(ip);
1461 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1462 xfs_inode_clear_cowblocks_tag(ip);
1463 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1469 * Clear the inode reflink flag if there are no shared extents and the size
1473 xfs_reflink_try_clear_inode_flag(
1474 struct xfs_inode *ip)
1476 struct xfs_mount *mp = ip->i_mount;
1477 struct xfs_trans *tp;
1480 /* Start a rolling transaction to remove the mappings */
1481 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1485 xfs_ilock(ip, XFS_ILOCK_EXCL);
1486 xfs_trans_ijoin(tp, ip, 0);
1488 error = xfs_reflink_clear_inode_flag(ip, &tp);
1492 error = xfs_trans_commit(tp);
1496 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1499 xfs_trans_cancel(tp);
1501 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1506 * Pre-COW all shared blocks within a given byte range of a file and turn off
1507 * the reflink flag if we unshare all of the file's blocks.
1510 xfs_reflink_unshare(
1511 struct xfs_inode *ip,
1515 struct inode *inode = VFS_I(ip);
1518 if (!xfs_is_reflink_inode(ip))
1521 trace_xfs_reflink_unshare(ip, offset, len);
1523 inode_dio_wait(inode);
1525 error = iomap_file_unshare(inode, offset, len,
1526 &xfs_buffered_write_iomap_ops);
1530 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1535 /* Turn off the reflink flag if possible. */
1536 error = xfs_reflink_try_clear_inode_flag(ip);
1542 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);