1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
31 #include "xfs_ag_resv.h"
34 * Copy on Write of Shared Blocks
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
129 xfs_reflink_find_shared(
130 struct xfs_perag *pag,
131 struct xfs_trans *tp,
136 bool find_end_of_shared)
138 struct xfs_buf *agbp;
139 struct xfs_btree_cur *cur;
142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
151 xfs_btree_del_cursor(cur, error);
153 xfs_trans_brelse(tp, agbp);
158 * Trim the mapping to the next block where there's a change in the
159 * shared/unshared status. More specifically, this means that we
160 * find the lowest-numbered extent of shared blocks that coincides with
161 * the given block mapping. If the shared extent overlaps the start of
162 * the mapping, trim the mapping to the end of the shared extent. If
163 * the shared region intersects the mapping, trim the mapping to the
164 * start of the shared extent. If there are no shared regions that
165 * overlap, just return the original extent.
168 xfs_reflink_trim_around_shared(
169 struct xfs_inode *ip,
170 struct xfs_bmbt_irec *irec,
173 struct xfs_mount *mp = ip->i_mount;
174 struct xfs_perag *pag;
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
187 trace_xfs_reflink_trim_around_shared(ip, irec);
189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 aglen = irec->br_blockcount;
193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
200 if (fbno == NULLAGBLOCK) {
201 /* No shared blocks at all. */
207 * The start of this extent is shared. Truncate the
208 * mapping at the end of the shared region so that a
209 * subsequent iteration starts at the start of the
212 irec->br_blockcount = flen;
218 * There's a shared extent midway through this extent.
219 * Truncate the mapping at the start of the shared
220 * extent so that a subsequent iteration starts at the
221 * start of the shared region.
223 irec->br_blockcount = fbno - agbno;
229 struct xfs_inode *ip,
230 struct xfs_bmbt_irec *imap,
233 /* We can't update any real extents in always COW mode. */
234 if (xfs_is_always_cow_inode(ip) &&
235 !isnullstartblock(imap->br_startblock)) {
240 /* Trim the mapping to the nearest shared extent boundary. */
241 return xfs_reflink_trim_around_shared(ip, imap, shared);
245 xfs_reflink_convert_cow_locked(
246 struct xfs_inode *ip,
247 xfs_fileoff_t offset_fsb,
248 xfs_filblks_t count_fsb)
250 struct xfs_iext_cursor icur;
251 struct xfs_bmbt_irec got;
252 struct xfs_btree_cur *dummy_cur = NULL;
256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
260 if (got.br_startoff >= offset_fsb + count_fsb)
262 if (got.br_state == XFS_EXT_NORM)
264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
267 xfs_trim_extent(&got, offset_fsb, count_fsb);
268 if (!got.br_blockcount)
271 got.br_state = XFS_EXT_NORM;
272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
273 XFS_COW_FORK, &icur, &dummy_cur, &got,
277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
284 xfs_reflink_convert_cow(
285 struct xfs_inode *ip,
289 struct xfs_mount *mp = ip->i_mount;
290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
292 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
297 xfs_ilock(ip, XFS_ILOCK_EXCL);
298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
299 xfs_iunlock(ip, XFS_ILOCK_EXCL);
304 * Find the extent that maps the given range in the COW fork. Even if the extent
305 * is not shared we might have a preallocation for it in the COW fork. If so we
306 * use it that rather than trigger a new allocation.
309 xfs_find_trim_cow_extent(
310 struct xfs_inode *ip,
311 struct xfs_bmbt_irec *imap,
312 struct xfs_bmbt_irec *cmap,
316 xfs_fileoff_t offset_fsb = imap->br_startoff;
317 xfs_filblks_t count_fsb = imap->br_blockcount;
318 struct xfs_iext_cursor icur;
323 * If we don't find an overlapping extent, trim the range we need to
324 * allocate to fit the hole we found.
326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
327 cmap->br_startoff = offset_fsb + count_fsb;
328 if (cmap->br_startoff > offset_fsb) {
329 xfs_trim_extent(imap, imap->br_startoff,
330 cmap->br_startoff - imap->br_startoff);
331 return xfs_bmap_trim_cow(ip, imap, shared);
335 if (isnullstartblock(cmap->br_startblock)) {
336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
340 /* real extent found - no need to allocate */
341 xfs_trim_extent(cmap, offset_fsb, count_fsb);
347 xfs_reflink_convert_unwritten(
348 struct xfs_inode *ip,
349 struct xfs_bmbt_irec *imap,
350 struct xfs_bmbt_irec *cmap,
353 xfs_fileoff_t offset_fsb = imap->br_startoff;
354 xfs_filblks_t count_fsb = imap->br_blockcount;
358 * cmap might larger than imap due to cowextsize hint.
360 xfs_trim_extent(cmap, offset_fsb, count_fsb);
363 * COW fork extents are supposed to remain unwritten until we're ready
364 * to initiate a disk write. For direct I/O we are going to write the
365 * data and need the conversion, but for buffered writes we're done.
367 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
370 trace_xfs_reflink_convert_cow(ip, cmap);
372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
374 cmap->br_state = XFS_EXT_NORM;
380 xfs_reflink_fill_cow_hole(
381 struct xfs_inode *ip,
382 struct xfs_bmbt_irec *imap,
383 struct xfs_bmbt_irec *cmap,
388 struct xfs_mount *mp = ip->i_mount;
389 struct xfs_trans *tp;
390 xfs_filblks_t resaligned;
391 xfs_extlen_t resblks;
396 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
397 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
400 xfs_iunlock(ip, *lockmode);
403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
408 *lockmode = XFS_ILOCK_EXCL;
410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
411 if (error || !*shared)
412 goto out_trans_cancel;
415 xfs_trans_cancel(tp);
419 ASSERT(cmap->br_startoff > imap->br_startoff);
421 /* Allocate the entire reservation as unwritten blocks. */
423 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
427 goto out_trans_cancel;
429 xfs_inode_set_cowblocks_tag(ip);
430 error = xfs_trans_commit(tp);
435 * Allocation succeeded but the requested range was not even partially
436 * satisfied? Bail out!
442 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
445 xfs_trans_cancel(tp);
450 xfs_reflink_fill_delalloc(
451 struct xfs_inode *ip,
452 struct xfs_bmbt_irec *imap,
453 struct xfs_bmbt_irec *cmap,
458 struct xfs_mount *mp = ip->i_mount;
459 struct xfs_trans *tp;
465 xfs_iunlock(ip, *lockmode);
468 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
473 *lockmode = XFS_ILOCK_EXCL;
475 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
477 if (error || !*shared)
478 goto out_trans_cancel;
481 xfs_trans_cancel(tp);
485 ASSERT(isnullstartblock(cmap->br_startblock) ||
486 cmap->br_startblock == DELAYSTARTBLOCK);
489 * Replace delalloc reservation with an unwritten extent.
492 error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
494 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
497 goto out_trans_cancel;
499 xfs_inode_set_cowblocks_tag(ip);
500 error = xfs_trans_commit(tp);
505 * Allocation succeeded but the requested range was not even
506 * partially satisfied? Bail out!
510 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
512 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
515 xfs_trans_cancel(tp);
519 /* Allocate all CoW reservations covering a range of blocks in a file. */
521 xfs_reflink_allocate_cow(
522 struct xfs_inode *ip,
523 struct xfs_bmbt_irec *imap,
524 struct xfs_bmbt_irec *cmap,
532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
534 ASSERT(!xfs_is_reflink_inode(ip));
535 xfs_ifork_init_cow(ip);
538 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
539 if (error || !*shared)
542 /* CoW fork has a real extent */
544 return xfs_reflink_convert_unwritten(ip, imap, cmap,
548 * CoW fork does not have an extent and data extent is shared.
549 * Allocate a real extent in the CoW fork.
551 if (cmap->br_startoff > imap->br_startoff)
552 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
553 lockmode, convert_now);
556 * CoW fork has a delalloc reservation. Replace it with a real extent.
557 * There may or may not be a data fork mapping.
559 if (isnullstartblock(cmap->br_startblock) ||
560 cmap->br_startblock == DELAYSTARTBLOCK)
561 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
562 lockmode, convert_now);
564 /* Shouldn't get here. */
566 return -EFSCORRUPTED;
570 * Cancel CoW reservations for some block range of an inode.
572 * If cancel_real is true this function cancels all COW fork extents for the
573 * inode; if cancel_real is false, real extents are not cleared.
575 * Caller must have already joined the inode to the current transaction. The
576 * inode will be joined to the transaction returned to the caller.
579 xfs_reflink_cancel_cow_blocks(
580 struct xfs_inode *ip,
581 struct xfs_trans **tpp,
582 xfs_fileoff_t offset_fsb,
583 xfs_fileoff_t end_fsb,
586 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
587 struct xfs_bmbt_irec got, del;
588 struct xfs_iext_cursor icur;
591 if (!xfs_inode_has_cow_data(ip))
593 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
596 /* Walk backwards until we're out of the I/O range... */
597 while (got.br_startoff + got.br_blockcount > offset_fsb) {
599 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
601 /* Extent delete may have bumped ext forward */
602 if (!del.br_blockcount) {
603 xfs_iext_prev(ifp, &icur);
607 trace_xfs_reflink_cancel_cow(ip, &del);
609 if (isnullstartblock(del.br_startblock)) {
610 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
614 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
615 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
617 /* Free the CoW orphan record. */
618 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
621 xfs_free_extent_later(*tpp, del.br_startblock,
622 del.br_blockcount, NULL);
624 /* Roll the transaction */
625 error = xfs_defer_finish(tpp);
629 /* Remove the mapping from the CoW fork. */
630 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
632 /* Remove the quota reservation */
633 error = xfs_quota_unreserve_blkres(ip,
638 /* Didn't do anything, push cursor back. */
639 xfs_iext_prev(ifp, &icur);
642 if (!xfs_iext_get_extent(ifp, &icur, &got))
646 /* clear tag if cow fork is emptied */
648 xfs_inode_clear_cowblocks_tag(ip);
653 * Cancel CoW reservations for some byte range of an inode.
655 * If cancel_real is true this function cancels all COW fork extents for the
656 * inode; if cancel_real is false, real extents are not cleared.
659 xfs_reflink_cancel_cow_range(
660 struct xfs_inode *ip,
665 struct xfs_trans *tp;
666 xfs_fileoff_t offset_fsb;
667 xfs_fileoff_t end_fsb;
670 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
673 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
674 if (count == NULLFILEOFF)
675 end_fsb = NULLFILEOFF;
677 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
679 /* Start a rolling transaction to remove the mappings */
680 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
685 xfs_ilock(ip, XFS_ILOCK_EXCL);
686 xfs_trans_ijoin(tp, ip, 0);
688 /* Scrape out the old CoW reservations */
689 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
694 error = xfs_trans_commit(tp);
696 xfs_iunlock(ip, XFS_ILOCK_EXCL);
700 xfs_trans_cancel(tp);
701 xfs_iunlock(ip, XFS_ILOCK_EXCL);
703 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
708 * Remap part of the CoW fork into the data fork.
710 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
711 * into the data fork; this function will remap what it can (at the end of the
712 * range) and update @end_fsb appropriately. Each remap gets its own
713 * transaction because we can end up merging and splitting bmbt blocks for
714 * every remap operation and we'd like to keep the block reservation
715 * requirements as low as possible.
718 xfs_reflink_end_cow_extent(
719 struct xfs_inode *ip,
720 xfs_fileoff_t *offset_fsb,
721 xfs_fileoff_t end_fsb)
723 struct xfs_iext_cursor icur;
724 struct xfs_bmbt_irec got, del, data;
725 struct xfs_mount *mp = ip->i_mount;
726 struct xfs_trans *tp;
727 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
728 unsigned int resblks;
732 /* No COW extents? That's easy! */
733 if (ifp->if_bytes == 0) {
734 *offset_fsb = end_fsb;
738 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
739 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
740 XFS_TRANS_RESERVE, &tp);
745 * Lock the inode. We have to ijoin without automatic unlock because
746 * the lead transaction is the refcountbt record deletion; the data
747 * fork update follows as a deferred log item.
749 xfs_ilock(ip, XFS_ILOCK_EXCL);
750 xfs_trans_ijoin(tp, ip, 0);
752 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
753 XFS_IEXT_REFLINK_END_COW_CNT);
755 error = xfs_iext_count_upgrade(tp, ip,
756 XFS_IEXT_REFLINK_END_COW_CNT);
761 * In case of racing, overlapping AIO writes no COW extents might be
762 * left by the time I/O completes for the loser of the race. In that
765 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
766 got.br_startoff >= end_fsb) {
767 *offset_fsb = end_fsb;
772 * Only remap real extents that contain data. With AIO, speculative
773 * preallocations can leak into the range we are called upon, and we
774 * need to skip them. Preserve @got for the eventual CoW fork
775 * deletion; from now on @del represents the mapping that we're
776 * actually remapping.
778 while (!xfs_bmap_is_written_extent(&got)) {
779 if (!xfs_iext_next_extent(ifp, &icur, &got) ||
780 got.br_startoff >= end_fsb) {
781 *offset_fsb = end_fsb;
787 /* Grab the corresponding mapping in the data fork. */
789 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
794 /* We can only remap the smaller of the two extent sizes. */
795 data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
796 del.br_blockcount = data.br_blockcount;
798 trace_xfs_reflink_cow_remap_from(ip, &del);
799 trace_xfs_reflink_cow_remap_to(ip, &data);
801 if (xfs_bmap_is_real_extent(&data)) {
803 * If the extent we're remapping is backed by storage (written
804 * or not), unmap the extent and drop its refcount.
806 xfs_bmap_unmap_extent(tp, ip, &data);
807 xfs_refcount_decrease_extent(tp, &data);
808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
809 -data.br_blockcount);
810 } else if (data.br_startblock == DELAYSTARTBLOCK) {
814 * If the extent we're remapping is a delalloc reservation,
815 * we can use the regular bunmapi function to release the
816 * incore state. Dropping the delalloc reservation takes care
817 * of the quota reservation for us.
819 error = xfs_bunmapi(NULL, ip, data.br_startoff,
820 data.br_blockcount, 0, 1, &done);
826 /* Free the CoW orphan record. */
827 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
829 /* Map the new blocks into the data fork. */
830 xfs_bmap_map_extent(tp, ip, &del);
832 /* Charge this new data fork mapping to the on-disk quota. */
833 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
834 (long)del.br_blockcount);
836 /* Remove the mapping from the CoW fork. */
837 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
839 error = xfs_trans_commit(tp);
840 xfs_iunlock(ip, XFS_ILOCK_EXCL);
844 /* Update the caller about how much progress we made. */
845 *offset_fsb = del.br_startoff + del.br_blockcount;
849 xfs_trans_cancel(tp);
850 xfs_iunlock(ip, XFS_ILOCK_EXCL);
855 * Remap parts of a file's data fork after a successful CoW.
859 struct xfs_inode *ip,
863 xfs_fileoff_t offset_fsb;
864 xfs_fileoff_t end_fsb;
867 trace_xfs_reflink_end_cow(ip, offset, count);
869 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
870 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
873 * Walk forwards until we've remapped the I/O range. The loop function
874 * repeatedly cycles the ILOCK to allocate one transaction per remapped
877 * If we're being called by writeback then the pages will still
878 * have PageWriteback set, which prevents races with reflink remapping
879 * and truncate. Reflink remapping prevents races with writeback by
880 * taking the iolock and mmaplock before flushing the pages and
881 * remapping, which means there won't be any further writeback or page
882 * cache dirtying until the reflink completes.
884 * We should never have two threads issuing writeback for the same file
885 * region. There are also have post-eof checks in the writeback
886 * preparation code so that we don't bother writing out pages that are
887 * about to be truncated.
889 * If we're being called as part of directio write completion, the dio
890 * count is still elevated, which reflink and truncate will wait for.
891 * Reflink remapping takes the iolock and mmaplock and waits for
892 * pending dio to finish, which should prevent any directio until the
893 * remap completes. Multiple concurrent directio writes to the same
894 * region are handled by end_cow processing only occurring for the
895 * threads which succeed; the outcome of multiple overlapping direct
896 * writes is not well defined anyway.
898 * It's possible that a buffered write and a direct write could collide
899 * here (the buffered write stumbles in after the dio flushes and
900 * invalidates the page cache and immediately queues writeback), but we
901 * have never supported this 100%. If either disk write succeeds the
902 * blocks will be remapped.
904 while (end_fsb > offset_fsb && !error)
905 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
908 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
913 * Free all CoW staging blocks that are still referenced by the ondisk refcount
914 * metadata. The ondisk metadata does not track which inode created the
915 * staging extent, so callers must ensure that there are no cached inodes with
916 * live CoW staging extents.
919 xfs_reflink_recover_cow(
920 struct xfs_mount *mp)
922 struct xfs_perag *pag;
926 if (!xfs_has_reflink(mp))
929 for_each_perag(mp, agno, pag) {
930 error = xfs_refcount_recover_cow_leftovers(mp, pag);
941 * Reflinking (Block) Ranges of Two Files Together
943 * First, ensure that the reflink flag is set on both inodes. The flag is an
944 * optimization to avoid unnecessary refcount btree lookups in the write path.
946 * Now we can iteratively remap the range of extents (and holes) in src to the
947 * corresponding ranges in dest. Let drange and srange denote the ranges of
948 * logical blocks in dest and src touched by the reflink operation.
950 * While the length of drange is greater than zero,
951 * - Read src's bmbt at the start of srange ("imap")
952 * - If imap doesn't exist, make imap appear to start at the end of srange
954 * - If imap starts before srange, advance imap to start at srange.
955 * - If imap goes beyond srange, truncate imap to end at the end of srange.
956 * - Punch (imap start - srange start + imap len) blocks from dest at
957 * offset (drange start).
958 * - If imap points to a real range of pblks,
959 * > Increase the refcount of the imap's pblks
960 * > Map imap's pblks into dest at the offset
961 * (drange start + imap start - srange start)
962 * - Advance drange and srange by (imap start - srange start + imap len)
964 * Finally, if the reflink made dest longer, update both the in-core and
965 * on-disk file sizes.
967 * ASCII Art Demonstration:
969 * Let's say we want to reflink this source file:
971 * ----SSSSSSS-SSSSS----SSSSSS (src file)
972 * <-------------------->
974 * into this destination file:
976 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
977 * <-------------------->
978 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
979 * Observe that the range has different logical offsets in either file.
981 * Consider that the first extent in the source file doesn't line up with our
982 * reflink range. Unmapping and remapping are separate operations, so we can
983 * unmap more blocks from the destination file than we remap.
985 * ----SSSSSSS-SSSSS----SSSSSS
987 * --DDDDD---------DDDDD--DDD
990 * Now remap the source extent into the destination file:
992 * ----SSSSSSS-SSSSS----SSSSSS
994 * --DDDDD--SSSSSSSDDDDD--DDD
997 * Do likewise with the second hole and extent in our range. Holes in the
998 * unmap range don't affect our operation.
1000 * ----SSSSSSS-SSSSS----SSSSSS
1002 * --DDDDD--SSSSSSS-SSSSS-DDD
1005 * Finally, unmap and remap part of the third extent. This will increase the
1006 * size of the destination file.
1008 * ----SSSSSSS-SSSSS----SSSSSS
1010 * --DDDDD--SSSSSSS-SSSSS----SSS
1013 * Once we update the destination file's i_size, we're done.
1017 * Ensure the reflink bit is set in both inodes.
1020 xfs_reflink_set_inode_flag(
1021 struct xfs_inode *src,
1022 struct xfs_inode *dest)
1024 struct xfs_mount *mp = src->i_mount;
1026 struct xfs_trans *tp;
1028 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1031 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1035 /* Lock both files against IO */
1036 if (src->i_ino == dest->i_ino)
1037 xfs_ilock(src, XFS_ILOCK_EXCL);
1039 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1041 if (!xfs_is_reflink_inode(src)) {
1042 trace_xfs_reflink_set_inode_flag(src);
1043 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1044 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1045 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1046 xfs_ifork_init_cow(src);
1048 xfs_iunlock(src, XFS_ILOCK_EXCL);
1050 if (src->i_ino == dest->i_ino)
1053 if (!xfs_is_reflink_inode(dest)) {
1054 trace_xfs_reflink_set_inode_flag(dest);
1055 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1056 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1057 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1058 xfs_ifork_init_cow(dest);
1060 xfs_iunlock(dest, XFS_ILOCK_EXCL);
1063 error = xfs_trans_commit(tp);
1069 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1074 * Update destination inode size & cowextsize hint, if necessary.
1077 xfs_reflink_update_dest(
1078 struct xfs_inode *dest,
1080 xfs_extlen_t cowextsize,
1081 unsigned int remap_flags)
1083 struct xfs_mount *mp = dest->i_mount;
1084 struct xfs_trans *tp;
1087 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1090 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1094 xfs_ilock(dest, XFS_ILOCK_EXCL);
1095 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1097 if (newlen > i_size_read(VFS_I(dest))) {
1098 trace_xfs_reflink_update_inode_size(dest, newlen);
1099 i_size_write(VFS_I(dest), newlen);
1100 dest->i_disk_size = newlen;
1104 dest->i_cowextsize = cowextsize;
1105 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1108 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1110 error = xfs_trans_commit(tp);
1116 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1121 * Do we have enough reserve in this AG to handle a reflink? The refcount
1122 * btree already reserved all the space it needs, but the rmap btree can grow
1123 * infinitely, so we won't allow more reflinks when the AG is down to the
1127 xfs_reflink_ag_has_free_space(
1128 struct xfs_mount *mp,
1129 xfs_agnumber_t agno)
1131 struct xfs_perag *pag;
1134 if (!xfs_has_rmapbt(mp))
1137 pag = xfs_perag_get(mp, agno);
1138 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1139 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1146 * Remap the given extent into the file. The dmap blockcount will be set to
1147 * the number of blocks that were actually remapped.
1150 xfs_reflink_remap_extent(
1151 struct xfs_inode *ip,
1152 struct xfs_bmbt_irec *dmap,
1153 xfs_off_t new_isize)
1155 struct xfs_bmbt_irec smap;
1156 struct xfs_mount *mp = ip->i_mount;
1157 struct xfs_trans *tp;
1160 unsigned int resblks;
1161 bool quota_reserved = true;
1163 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1169 * Start a rolling transaction to switch the mappings.
1171 * Adding a written extent to the extent map can cause a bmbt split,
1172 * and removing a mapped extent from the extent can cause a bmbt split.
1173 * The two operations cannot both cause a split since they operate on
1174 * the same index in the bmap btree, so we only need a reservation for
1175 * one bmbt split if either thing is happening. However, we haven't
1176 * locked the inode yet, so we reserve assuming this is the case.
1178 * The first allocation call tries to reserve enough space to handle
1179 * mapping dmap into a sparse part of the file plus the bmbt split. We
1180 * haven't locked the inode or read the existing mapping yet, so we do
1181 * not know for sure that we need the space. This should succeed most
1184 * If the first attempt fails, try again but reserving only enough
1185 * space to handle a bmbt split. This is the hard minimum requirement,
1186 * and we revisit quota reservations later when we know more about what
1189 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1190 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1191 resblks + dmap->br_blockcount, 0, false, &tp);
1192 if (error == -EDQUOT || error == -ENOSPC) {
1193 quota_reserved = false;
1194 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1195 resblks, 0, false, &tp);
1201 * Read what's currently mapped in the destination file into smap.
1202 * If smap isn't a hole, we will have to remove it before we can add
1203 * dmap to the destination file.
1206 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1210 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1211 smap_real = xfs_bmap_is_real_extent(&smap);
1214 * We can only remap as many blocks as the smaller of the two extent
1215 * maps, because we can only remap one extent at a time.
1217 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1218 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1220 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1223 * Two extents mapped to the same physical block must not have
1224 * different states; that's filesystem corruption. Move on to the next
1225 * extent if they're both holes or both the same physical extent.
1227 if (dmap->br_startblock == smap.br_startblock) {
1228 if (dmap->br_state != smap.br_state)
1229 error = -EFSCORRUPTED;
1233 /* If both extents are unwritten, leave them alone. */
1234 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1235 smap.br_state == XFS_EXT_UNWRITTEN)
1238 /* No reflinking if the AG of the dest mapping is low on space. */
1240 error = xfs_reflink_ag_has_free_space(mp,
1241 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1247 * Increase quota reservation if we think the quota block counter for
1248 * this file could increase.
1250 * If we are mapping a written extent into the file, we need to have
1251 * enough quota block count reservation to handle the blocks in that
1252 * extent. We log only the delta to the quota block counts, so if the
1253 * extent we're unmapping also has blocks allocated to it, we don't
1254 * need a quota reservation for the extent itself.
1256 * Note that if we're replacing a delalloc reservation with a written
1257 * extent, we have to take the full quota reservation because removing
1258 * the delalloc reservation gives the block count back to the quota
1259 * count. This is suboptimal, but the VFS flushed the dest range
1260 * before we started. That should have removed all the delalloc
1261 * reservations, but we code defensively.
1263 * xfs_trans_alloc_inode above already tried to grab an even larger
1264 * quota reservation, and kicked off a blockgc scan if it couldn't.
1265 * If we can't get a potentially smaller quota reservation now, we're
1268 if (!quota_reserved && !smap_real && dmap_written) {
1269 error = xfs_trans_reserve_quota_nblks(tp, ip,
1270 dmap->br_blockcount, 0, false);
1281 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1282 if (error == -EFBIG)
1283 error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1289 * If the extent we're unmapping is backed by storage (written
1290 * or not), unmap the extent and drop its refcount.
1292 xfs_bmap_unmap_extent(tp, ip, &smap);
1293 xfs_refcount_decrease_extent(tp, &smap);
1294 qdelta -= smap.br_blockcount;
1295 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1299 * If the extent we're unmapping is a delalloc reservation,
1300 * we can use the regular bunmapi function to release the
1301 * incore state. Dropping the delalloc reservation takes care
1302 * of the quota reservation for us.
1304 error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1305 smap.br_blockcount, 0, 1, &done);
1312 * If the extent we're sharing is backed by written storage, increase
1313 * its refcount and map it into the file.
1316 xfs_refcount_increase_extent(tp, dmap);
1317 xfs_bmap_map_extent(tp, ip, dmap);
1318 qdelta += dmap->br_blockcount;
1321 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1323 /* Update dest isize if needed. */
1324 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1325 newlen = min_t(xfs_off_t, newlen, new_isize);
1326 if (newlen > i_size_read(VFS_I(ip))) {
1327 trace_xfs_reflink_update_inode_size(ip, newlen);
1328 i_size_write(VFS_I(ip), newlen);
1329 ip->i_disk_size = newlen;
1330 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1333 /* Commit everything and unlock. */
1334 error = xfs_trans_commit(tp);
1338 xfs_trans_cancel(tp);
1340 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1343 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1347 /* Remap a range of one file to the other. */
1349 xfs_reflink_remap_blocks(
1350 struct xfs_inode *src,
1352 struct xfs_inode *dest,
1357 struct xfs_bmbt_irec imap;
1358 struct xfs_mount *mp = src->i_mount;
1359 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1360 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1362 xfs_filblks_t remapped_len = 0;
1363 xfs_off_t new_isize = pos_out + remap_len;
1367 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1370 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1373 unsigned int lock_mode;
1375 /* Read extent from the source file */
1377 lock_mode = xfs_ilock_data_map_shared(src);
1378 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1379 xfs_iunlock(src, lock_mode);
1383 * The caller supposedly flushed all dirty pages in the source
1384 * file range, which means that writeback should have allocated
1385 * or deleted all delalloc reservations in that range. If we
1386 * find one, that's a good sign that something is seriously
1389 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1390 if (imap.br_startblock == DELAYSTARTBLOCK) {
1391 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1392 error = -EFSCORRUPTED;
1396 trace_xfs_reflink_remap_extent_src(src, &imap);
1398 /* Remap into the destination file at the given offset. */
1399 imap.br_startoff = destoff;
1400 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1404 if (fatal_signal_pending(current)) {
1409 /* Advance drange/srange */
1410 srcoff += imap.br_blockcount;
1411 destoff += imap.br_blockcount;
1412 len -= imap.br_blockcount;
1413 remapped_len += imap.br_blockcount;
1417 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1418 *remapped = min_t(loff_t, remap_len,
1419 XFS_FSB_TO_B(src->i_mount, remapped_len));
1424 * If we're reflinking to a point past the destination file's EOF, we must
1425 * zero any speculative post-EOF preallocations that sit between the old EOF
1426 * and the destination file offset.
1429 xfs_reflink_zero_posteof(
1430 struct xfs_inode *ip,
1433 loff_t isize = i_size_read(VFS_I(ip));
1438 trace_xfs_zero_eof(ip, isize, pos - isize);
1439 return xfs_zero_range(ip, isize, pos - isize, NULL);
1443 * Prepare two files for range cloning. Upon a successful return both inodes
1444 * will have the iolock and mmaplock held, the page cache of the out file will
1445 * be truncated, and any leases on the out file will have been broken. This
1446 * function borrows heavily from xfs_file_aio_write_checks.
1448 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1449 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1450 * EOF block in the source dedupe range because it's not a complete block match,
1451 * hence can introduce a corruption into the file that has it's block replaced.
1453 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1454 * "block aligned" for the purposes of cloning entire files. However, if the
1455 * source file range includes the EOF block and it lands within the existing EOF
1456 * of the destination file, then we can expose stale data from beyond the source
1457 * file EOF in the destination file.
1459 * XFS doesn't support partial block sharing, so in both cases we have check
1460 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1461 * down to the previous whole block and ignore the partial EOF block. While this
1462 * means we can't dedupe the last block of a file, this is an acceptible
1463 * tradeoff for simplicity on implementation.
1465 * For cloning, we want to share the partial EOF block if it is also the new EOF
1466 * block of the destination file. If the partial EOF block lies inside the
1467 * existing destination EOF, then we have to abort the clone to avoid exposing
1468 * stale data in the destination file. Hence we reject these clone attempts with
1469 * -EINVAL in this case.
1472 xfs_reflink_remap_prep(
1473 struct file *file_in,
1475 struct file *file_out,
1478 unsigned int remap_flags)
1480 struct inode *inode_in = file_inode(file_in);
1481 struct xfs_inode *src = XFS_I(inode_in);
1482 struct inode *inode_out = file_inode(file_out);
1483 struct xfs_inode *dest = XFS_I(inode_out);
1486 /* Lock both files against IO */
1487 ret = xfs_ilock2_io_mmap(src, dest);
1491 /* Check file eligibility and prepare for block sharing. */
1493 /* Don't reflink realtime inodes */
1494 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1497 /* Don't share DAX file data with non-DAX file. */
1498 if (IS_DAX(inode_in) != IS_DAX(inode_out))
1501 if (!IS_DAX(inode_in))
1502 ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1503 pos_out, len, remap_flags);
1505 ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1506 pos_out, len, remap_flags, &xfs_read_iomap_ops);
1507 if (ret || *len == 0)
1510 /* Attach dquots to dest inode before changing block map */
1511 ret = xfs_qm_dqattach(dest);
1516 * Zero existing post-eof speculative preallocations in the destination
1519 ret = xfs_reflink_zero_posteof(dest, pos_out);
1523 /* Set flags and remap blocks. */
1524 ret = xfs_reflink_set_inode_flag(src, dest);
1529 * If pos_out > EOF, we may have dirtied blocks between EOF and
1530 * pos_out. In that case, we need to extend the flush and unmap to cover
1531 * from EOF to the end of the copy length.
1533 if (pos_out > XFS_ISIZE(dest)) {
1534 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1535 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1537 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1544 xfs_iunlock2_io_mmap(src, dest);
1548 /* Does this inode need the reflink flag? */
1550 xfs_reflink_inode_has_shared_extents(
1551 struct xfs_trans *tp,
1552 struct xfs_inode *ip,
1555 struct xfs_bmbt_irec got;
1556 struct xfs_mount *mp = ip->i_mount;
1557 struct xfs_ifork *ifp;
1558 struct xfs_iext_cursor icur;
1562 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1563 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1567 *has_shared = false;
1568 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1570 struct xfs_perag *pag;
1571 xfs_agblock_t agbno;
1576 if (isnullstartblock(got.br_startblock) ||
1577 got.br_state != XFS_EXT_NORM)
1580 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1581 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1582 aglen = got.br_blockcount;
1583 error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1584 &rbno, &rlen, false);
1589 /* Is there still a shared block here? */
1590 if (rbno != NULLAGBLOCK) {
1595 found = xfs_iext_next_extent(ifp, &icur, &got);
1602 * Clear the inode reflink flag if there are no shared extents.
1604 * The caller is responsible for joining the inode to the transaction passed in.
1605 * The inode will be joined to the transaction that is returned to the caller.
1608 xfs_reflink_clear_inode_flag(
1609 struct xfs_inode *ip,
1610 struct xfs_trans **tpp)
1615 ASSERT(xfs_is_reflink_inode(ip));
1617 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1618 if (error || needs_flag)
1622 * We didn't find any shared blocks so turn off the reflink flag.
1623 * First, get rid of any leftover CoW mappings.
1625 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1630 /* Clear the inode flag. */
1631 trace_xfs_reflink_unset_inode_flag(ip);
1632 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1633 xfs_inode_clear_cowblocks_tag(ip);
1634 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1640 * Clear the inode reflink flag if there are no shared extents and the size
1644 xfs_reflink_try_clear_inode_flag(
1645 struct xfs_inode *ip)
1647 struct xfs_mount *mp = ip->i_mount;
1648 struct xfs_trans *tp;
1651 /* Start a rolling transaction to remove the mappings */
1652 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1656 xfs_ilock(ip, XFS_ILOCK_EXCL);
1657 xfs_trans_ijoin(tp, ip, 0);
1659 error = xfs_reflink_clear_inode_flag(ip, &tp);
1663 error = xfs_trans_commit(tp);
1667 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670 xfs_trans_cancel(tp);
1672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1677 * Pre-COW all shared blocks within a given byte range of a file and turn off
1678 * the reflink flag if we unshare all of the file's blocks.
1681 xfs_reflink_unshare(
1682 struct xfs_inode *ip,
1686 struct inode *inode = VFS_I(ip);
1689 if (!xfs_is_reflink_inode(ip))
1692 trace_xfs_reflink_unshare(ip, offset, len);
1694 inode_dio_wait(inode);
1696 error = iomap_file_unshare(inode, offset, len,
1697 &xfs_buffered_write_iomap_ops);
1701 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1706 /* Turn off the reflink flag if possible. */
1707 error = xfs_reflink_try_clear_inode_flag(ip);
1713 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);