1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
31 #include "xfs_ag_resv.h"
34 * Copy on Write of Shared Blocks
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
129 xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
137 bool find_end_of_shared)
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152 xfs_btree_del_cursor(cur, error);
154 xfs_trans_brelse(tp, agbp);
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
169 xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
187 trace_xfs_reflink_trim_around_shared(ip, irec);
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 aglen, &fbno, &flen, true);
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
202 } else if (fbno == agbno) {
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
209 irec->br_blockcount = flen;
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
219 irec->br_blockcount = fbno - agbno;
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
242 xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
257 if (got.br_startoff >= offset_fsb + count_fsb)
259 if (got.br_state == XFS_EXT_NORM)
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
281 xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
286 struct xfs_mount *mp = ip->i_mount;
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
294 xfs_ilock(ip, XFS_ILOCK_EXCL);
295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
306 xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 struct xfs_bmbt_irec *cmap,
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
326 xfs_trim_extent(imap, imap->br_startoff,
327 cmap->br_startoff - imap->br_startoff);
328 return xfs_bmap_trim_cow(ip, imap, shared);
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
345 xfs_reflink_allocate_cow(
346 struct xfs_inode *ip,
347 struct xfs_bmbt_irec *imap,
348 struct xfs_bmbt_irec *cmap,
353 struct xfs_mount *mp = ip->i_mount;
354 xfs_fileoff_t offset_fsb = imap->br_startoff;
355 xfs_filblks_t count_fsb = imap->br_blockcount;
356 struct xfs_trans *tp;
357 int nimaps, error = 0;
359 xfs_filblks_t resaligned;
360 xfs_extlen_t resblks = 0;
362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
364 ASSERT(!xfs_is_reflink_inode(ip));
365 xfs_ifork_init_cow(ip);
368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 if (error || !*shared)
374 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
378 xfs_iunlock(ip, *lockmode);
381 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
386 *lockmode = XFS_ILOCK_EXCL;
389 * Check for an overlapping extent again now that we dropped the ilock.
391 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 if (error || !*shared)
393 goto out_trans_cancel;
395 xfs_trans_cancel(tp);
399 /* Allocate the entire reservation as unwritten blocks. */
401 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
405 goto out_trans_cancel;
407 xfs_inode_set_cowblocks_tag(ip);
408 error = xfs_trans_commit(tp);
413 * Allocation succeeded but the requested range was not even partially
414 * satisfied? Bail out!
419 xfs_trim_extent(cmap, offset_fsb, count_fsb);
421 * COW fork extents are supposed to remain unwritten until we're ready
422 * to initiate a disk write. For direct I/O we are going to write the
423 * data and need the conversion, but for buffered writes we're done.
425 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
427 trace_xfs_reflink_convert_cow(ip, cmap);
428 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
430 cmap->br_state = XFS_EXT_NORM;
434 xfs_trans_cancel(tp);
439 * Cancel CoW reservations for some block range of an inode.
441 * If cancel_real is true this function cancels all COW fork extents for the
442 * inode; if cancel_real is false, real extents are not cleared.
444 * Caller must have already joined the inode to the current transaction. The
445 * inode will be joined to the transaction returned to the caller.
448 xfs_reflink_cancel_cow_blocks(
449 struct xfs_inode *ip,
450 struct xfs_trans **tpp,
451 xfs_fileoff_t offset_fsb,
452 xfs_fileoff_t end_fsb,
455 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
456 struct xfs_bmbt_irec got, del;
457 struct xfs_iext_cursor icur;
460 if (!xfs_inode_has_cow_data(ip))
462 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
465 /* Walk backwards until we're out of the I/O range... */
466 while (got.br_startoff + got.br_blockcount > offset_fsb) {
468 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
470 /* Extent delete may have bumped ext forward */
471 if (!del.br_blockcount) {
472 xfs_iext_prev(ifp, &icur);
476 trace_xfs_reflink_cancel_cow(ip, &del);
478 if (isnullstartblock(del.br_startblock)) {
479 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
483 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
484 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
486 /* Free the CoW orphan record. */
487 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
490 xfs_free_extent_later(*tpp, del.br_startblock,
491 del.br_blockcount, NULL);
493 /* Roll the transaction */
494 error = xfs_defer_finish(tpp);
498 /* Remove the mapping from the CoW fork. */
499 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
501 /* Remove the quota reservation */
502 error = xfs_quota_unreserve_blkres(ip,
507 /* Didn't do anything, push cursor back. */
508 xfs_iext_prev(ifp, &icur);
511 if (!xfs_iext_get_extent(ifp, &icur, &got))
515 /* clear tag if cow fork is emptied */
517 xfs_inode_clear_cowblocks_tag(ip);
522 * Cancel CoW reservations for some byte range of an inode.
524 * If cancel_real is true this function cancels all COW fork extents for the
525 * inode; if cancel_real is false, real extents are not cleared.
528 xfs_reflink_cancel_cow_range(
529 struct xfs_inode *ip,
534 struct xfs_trans *tp;
535 xfs_fileoff_t offset_fsb;
536 xfs_fileoff_t end_fsb;
539 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
542 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
543 if (count == NULLFILEOFF)
544 end_fsb = NULLFILEOFF;
546 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
548 /* Start a rolling transaction to remove the mappings */
549 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
554 xfs_ilock(ip, XFS_ILOCK_EXCL);
555 xfs_trans_ijoin(tp, ip, 0);
557 /* Scrape out the old CoW reservations */
558 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
563 error = xfs_trans_commit(tp);
565 xfs_iunlock(ip, XFS_ILOCK_EXCL);
569 xfs_trans_cancel(tp);
570 xfs_iunlock(ip, XFS_ILOCK_EXCL);
572 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
577 * Remap part of the CoW fork into the data fork.
579 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
580 * into the data fork; this function will remap what it can (at the end of the
581 * range) and update @end_fsb appropriately. Each remap gets its own
582 * transaction because we can end up merging and splitting bmbt blocks for
583 * every remap operation and we'd like to keep the block reservation
584 * requirements as low as possible.
587 xfs_reflink_end_cow_extent(
588 struct xfs_inode *ip,
589 xfs_fileoff_t offset_fsb,
590 xfs_fileoff_t *end_fsb)
592 struct xfs_bmbt_irec got, del;
593 struct xfs_iext_cursor icur;
594 struct xfs_mount *mp = ip->i_mount;
595 struct xfs_trans *tp;
596 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
598 unsigned int resblks;
601 /* No COW extents? That's easy! */
602 if (ifp->if_bytes == 0) {
603 *end_fsb = offset_fsb;
607 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
608 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
609 XFS_TRANS_RESERVE, &tp);
614 * Lock the inode. We have to ijoin without automatic unlock because
615 * the lead transaction is the refcountbt record deletion; the data
616 * fork update follows as a deferred log item.
618 xfs_ilock(ip, XFS_ILOCK_EXCL);
619 xfs_trans_ijoin(tp, ip, 0);
621 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
622 XFS_IEXT_REFLINK_END_COW_CNT);
627 * In case of racing, overlapping AIO writes no COW extents might be
628 * left by the time I/O completes for the loser of the race. In that
631 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
632 got.br_startoff + got.br_blockcount <= offset_fsb) {
633 *end_fsb = offset_fsb;
638 * Structure copy @got into @del, then trim @del to the range that we
639 * were asked to remap. We preserve @got for the eventual CoW fork
640 * deletion; from now on @del represents the mapping that we're
641 * actually remapping.
644 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
646 ASSERT(del.br_blockcount > 0);
649 * Only remap real extents that contain data. With AIO, speculative
650 * preallocations can leak into the range we are called upon, and we
653 if (!xfs_bmap_is_written_extent(&got)) {
654 *end_fsb = del.br_startoff;
658 /* Unmap the old blocks in the data fork. */
659 rlen = del.br_blockcount;
660 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
664 /* Trim the extent to whatever got unmapped. */
665 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
666 trace_xfs_reflink_cow_remap(ip, &del);
668 /* Free the CoW orphan record. */
669 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
671 /* Map the new blocks into the data fork. */
672 xfs_bmap_map_extent(tp, ip, &del);
674 /* Charge this new data fork mapping to the on-disk quota. */
675 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
676 (long)del.br_blockcount);
678 /* Remove the mapping from the CoW fork. */
679 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
681 error = xfs_trans_commit(tp);
682 xfs_iunlock(ip, XFS_ILOCK_EXCL);
686 /* Update the caller about how much progress we made. */
687 *end_fsb = del.br_startoff;
691 xfs_trans_cancel(tp);
692 xfs_iunlock(ip, XFS_ILOCK_EXCL);
697 * Remap parts of a file's data fork after a successful CoW.
701 struct xfs_inode *ip,
705 xfs_fileoff_t offset_fsb;
706 xfs_fileoff_t end_fsb;
709 trace_xfs_reflink_end_cow(ip, offset, count);
711 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
712 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
715 * Walk backwards until we're out of the I/O range. The loop function
716 * repeatedly cycles the ILOCK to allocate one transaction per remapped
719 * If we're being called by writeback then the pages will still
720 * have PageWriteback set, which prevents races with reflink remapping
721 * and truncate. Reflink remapping prevents races with writeback by
722 * taking the iolock and mmaplock before flushing the pages and
723 * remapping, which means there won't be any further writeback or page
724 * cache dirtying until the reflink completes.
726 * We should never have two threads issuing writeback for the same file
727 * region. There are also have post-eof checks in the writeback
728 * preparation code so that we don't bother writing out pages that are
729 * about to be truncated.
731 * If we're being called as part of directio write completion, the dio
732 * count is still elevated, which reflink and truncate will wait for.
733 * Reflink remapping takes the iolock and mmaplock and waits for
734 * pending dio to finish, which should prevent any directio until the
735 * remap completes. Multiple concurrent directio writes to the same
736 * region are handled by end_cow processing only occurring for the
737 * threads which succeed; the outcome of multiple overlapping direct
738 * writes is not well defined anyway.
740 * It's possible that a buffered write and a direct write could collide
741 * here (the buffered write stumbles in after the dio flushes and
742 * invalidates the page cache and immediately queues writeback), but we
743 * have never supported this 100%. If either disk write succeeds the
744 * blocks will be remapped.
746 while (end_fsb > offset_fsb && !error)
747 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
750 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
755 * Free all CoW staging blocks that are still referenced by the ondisk refcount
756 * metadata. The ondisk metadata does not track which inode created the
757 * staging extent, so callers must ensure that there are no cached inodes with
758 * live CoW staging extents.
761 xfs_reflink_recover_cow(
762 struct xfs_mount *mp)
764 struct xfs_perag *pag;
768 if (!xfs_has_reflink(mp))
771 for_each_perag(mp, agno, pag) {
772 error = xfs_refcount_recover_cow_leftovers(mp, pag);
783 * Reflinking (Block) Ranges of Two Files Together
785 * First, ensure that the reflink flag is set on both inodes. The flag is an
786 * optimization to avoid unnecessary refcount btree lookups in the write path.
788 * Now we can iteratively remap the range of extents (and holes) in src to the
789 * corresponding ranges in dest. Let drange and srange denote the ranges of
790 * logical blocks in dest and src touched by the reflink operation.
792 * While the length of drange is greater than zero,
793 * - Read src's bmbt at the start of srange ("imap")
794 * - If imap doesn't exist, make imap appear to start at the end of srange
796 * - If imap starts before srange, advance imap to start at srange.
797 * - If imap goes beyond srange, truncate imap to end at the end of srange.
798 * - Punch (imap start - srange start + imap len) blocks from dest at
799 * offset (drange start).
800 * - If imap points to a real range of pblks,
801 * > Increase the refcount of the imap's pblks
802 * > Map imap's pblks into dest at the offset
803 * (drange start + imap start - srange start)
804 * - Advance drange and srange by (imap start - srange start + imap len)
806 * Finally, if the reflink made dest longer, update both the in-core and
807 * on-disk file sizes.
809 * ASCII Art Demonstration:
811 * Let's say we want to reflink this source file:
813 * ----SSSSSSS-SSSSS----SSSSSS (src file)
814 * <-------------------->
816 * into this destination file:
818 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
819 * <-------------------->
820 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
821 * Observe that the range has different logical offsets in either file.
823 * Consider that the first extent in the source file doesn't line up with our
824 * reflink range. Unmapping and remapping are separate operations, so we can
825 * unmap more blocks from the destination file than we remap.
827 * ----SSSSSSS-SSSSS----SSSSSS
829 * --DDDDD---------DDDDD--DDD
832 * Now remap the source extent into the destination file:
834 * ----SSSSSSS-SSSSS----SSSSSS
836 * --DDDDD--SSSSSSSDDDDD--DDD
839 * Do likewise with the second hole and extent in our range. Holes in the
840 * unmap range don't affect our operation.
842 * ----SSSSSSS-SSSSS----SSSSSS
844 * --DDDDD--SSSSSSS-SSSSS-DDD
847 * Finally, unmap and remap part of the third extent. This will increase the
848 * size of the destination file.
850 * ----SSSSSSS-SSSSS----SSSSSS
852 * --DDDDD--SSSSSSS-SSSSS----SSS
855 * Once we update the destination file's i_size, we're done.
859 * Ensure the reflink bit is set in both inodes.
862 xfs_reflink_set_inode_flag(
863 struct xfs_inode *src,
864 struct xfs_inode *dest)
866 struct xfs_mount *mp = src->i_mount;
868 struct xfs_trans *tp;
870 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
873 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
877 /* Lock both files against IO */
878 if (src->i_ino == dest->i_ino)
879 xfs_ilock(src, XFS_ILOCK_EXCL);
881 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883 if (!xfs_is_reflink_inode(src)) {
884 trace_xfs_reflink_set_inode_flag(src);
885 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
886 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
887 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
888 xfs_ifork_init_cow(src);
890 xfs_iunlock(src, XFS_ILOCK_EXCL);
892 if (src->i_ino == dest->i_ino)
895 if (!xfs_is_reflink_inode(dest)) {
896 trace_xfs_reflink_set_inode_flag(dest);
897 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
898 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
899 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
900 xfs_ifork_init_cow(dest);
902 xfs_iunlock(dest, XFS_ILOCK_EXCL);
905 error = xfs_trans_commit(tp);
911 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
916 * Update destination inode size & cowextsize hint, if necessary.
919 xfs_reflink_update_dest(
920 struct xfs_inode *dest,
922 xfs_extlen_t cowextsize,
923 unsigned int remap_flags)
925 struct xfs_mount *mp = dest->i_mount;
926 struct xfs_trans *tp;
929 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
932 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
936 xfs_ilock(dest, XFS_ILOCK_EXCL);
937 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939 if (newlen > i_size_read(VFS_I(dest))) {
940 trace_xfs_reflink_update_inode_size(dest, newlen);
941 i_size_write(VFS_I(dest), newlen);
942 dest->i_disk_size = newlen;
946 dest->i_cowextsize = cowextsize;
947 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
950 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
952 error = xfs_trans_commit(tp);
958 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
963 * Do we have enough reserve in this AG to handle a reflink? The refcount
964 * btree already reserved all the space it needs, but the rmap btree can grow
965 * infinitely, so we won't allow more reflinks when the AG is down to the
969 xfs_reflink_ag_has_free_space(
970 struct xfs_mount *mp,
973 struct xfs_perag *pag;
976 if (!xfs_has_rmapbt(mp))
979 pag = xfs_perag_get(mp, agno);
980 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
981 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
988 * Remap the given extent into the file. The dmap blockcount will be set to
989 * the number of blocks that were actually remapped.
992 xfs_reflink_remap_extent(
993 struct xfs_inode *ip,
994 struct xfs_bmbt_irec *dmap,
997 struct xfs_bmbt_irec smap;
998 struct xfs_mount *mp = ip->i_mount;
999 struct xfs_trans *tp;
1002 unsigned int resblks;
1003 bool quota_reserved = true;
1005 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1011 * Start a rolling transaction to switch the mappings.
1013 * Adding a written extent to the extent map can cause a bmbt split,
1014 * and removing a mapped extent from the extent can cause a bmbt split.
1015 * The two operations cannot both cause a split since they operate on
1016 * the same index in the bmap btree, so we only need a reservation for
1017 * one bmbt split if either thing is happening. However, we haven't
1018 * locked the inode yet, so we reserve assuming this is the case.
1020 * The first allocation call tries to reserve enough space to handle
1021 * mapping dmap into a sparse part of the file plus the bmbt split. We
1022 * haven't locked the inode or read the existing mapping yet, so we do
1023 * not know for sure that we need the space. This should succeed most
1026 * If the first attempt fails, try again but reserving only enough
1027 * space to handle a bmbt split. This is the hard minimum requirement,
1028 * and we revisit quota reservations later when we know more about what
1031 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1032 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1033 resblks + dmap->br_blockcount, 0, false, &tp);
1034 if (error == -EDQUOT || error == -ENOSPC) {
1035 quota_reserved = false;
1036 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1037 resblks, 0, false, &tp);
1043 * Read what's currently mapped in the destination file into smap.
1044 * If smap isn't a hole, we will have to remove it before we can add
1045 * dmap to the destination file.
1048 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1052 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1053 smap_real = xfs_bmap_is_real_extent(&smap);
1056 * We can only remap as many blocks as the smaller of the two extent
1057 * maps, because we can only remap one extent at a time.
1059 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1060 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1062 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1065 * Two extents mapped to the same physical block must not have
1066 * different states; that's filesystem corruption. Move on to the next
1067 * extent if they're both holes or both the same physical extent.
1069 if (dmap->br_startblock == smap.br_startblock) {
1070 if (dmap->br_state != smap.br_state)
1071 error = -EFSCORRUPTED;
1075 /* If both extents are unwritten, leave them alone. */
1076 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1077 smap.br_state == XFS_EXT_UNWRITTEN)
1080 /* No reflinking if the AG of the dest mapping is low on space. */
1082 error = xfs_reflink_ag_has_free_space(mp,
1083 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1089 * Increase quota reservation if we think the quota block counter for
1090 * this file could increase.
1092 * If we are mapping a written extent into the file, we need to have
1093 * enough quota block count reservation to handle the blocks in that
1094 * extent. We log only the delta to the quota block counts, so if the
1095 * extent we're unmapping also has blocks allocated to it, we don't
1096 * need a quota reservation for the extent itself.
1098 * Note that if we're replacing a delalloc reservation with a written
1099 * extent, we have to take the full quota reservation because removing
1100 * the delalloc reservation gives the block count back to the quota
1101 * count. This is suboptimal, but the VFS flushed the dest range
1102 * before we started. That should have removed all the delalloc
1103 * reservations, but we code defensively.
1105 * xfs_trans_alloc_inode above already tried to grab an even larger
1106 * quota reservation, and kicked off a blockgc scan if it couldn't.
1107 * If we can't get a potentially smaller quota reservation now, we're
1110 if (!quota_reserved && !smap_real && dmap_written) {
1111 error = xfs_trans_reserve_quota_nblks(tp, ip,
1112 dmap->br_blockcount, 0, false);
1123 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1129 * If the extent we're unmapping is backed by storage (written
1130 * or not), unmap the extent and drop its refcount.
1132 xfs_bmap_unmap_extent(tp, ip, &smap);
1133 xfs_refcount_decrease_extent(tp, &smap);
1134 qdelta -= smap.br_blockcount;
1135 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1136 xfs_filblks_t len = smap.br_blockcount;
1139 * If the extent we're unmapping is a delalloc reservation,
1140 * we can use the regular bunmapi function to release the
1141 * incore state. Dropping the delalloc reservation takes care
1142 * of the quota reservation for us.
1144 error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1151 * If the extent we're sharing is backed by written storage, increase
1152 * its refcount and map it into the file.
1155 xfs_refcount_increase_extent(tp, dmap);
1156 xfs_bmap_map_extent(tp, ip, dmap);
1157 qdelta += dmap->br_blockcount;
1160 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1162 /* Update dest isize if needed. */
1163 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1164 newlen = min_t(xfs_off_t, newlen, new_isize);
1165 if (newlen > i_size_read(VFS_I(ip))) {
1166 trace_xfs_reflink_update_inode_size(ip, newlen);
1167 i_size_write(VFS_I(ip), newlen);
1168 ip->i_disk_size = newlen;
1169 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1172 /* Commit everything and unlock. */
1173 error = xfs_trans_commit(tp);
1177 xfs_trans_cancel(tp);
1179 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1182 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1186 /* Remap a range of one file to the other. */
1188 xfs_reflink_remap_blocks(
1189 struct xfs_inode *src,
1191 struct xfs_inode *dest,
1196 struct xfs_bmbt_irec imap;
1197 struct xfs_mount *mp = src->i_mount;
1198 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1199 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1201 xfs_filblks_t remapped_len = 0;
1202 xfs_off_t new_isize = pos_out + remap_len;
1206 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1209 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1212 unsigned int lock_mode;
1214 /* Read extent from the source file */
1216 lock_mode = xfs_ilock_data_map_shared(src);
1217 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1218 xfs_iunlock(src, lock_mode);
1222 * The caller supposedly flushed all dirty pages in the source
1223 * file range, which means that writeback should have allocated
1224 * or deleted all delalloc reservations in that range. If we
1225 * find one, that's a good sign that something is seriously
1228 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1229 if (imap.br_startblock == DELAYSTARTBLOCK) {
1230 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1231 error = -EFSCORRUPTED;
1235 trace_xfs_reflink_remap_extent_src(src, &imap);
1237 /* Remap into the destination file at the given offset. */
1238 imap.br_startoff = destoff;
1239 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1243 if (fatal_signal_pending(current)) {
1248 /* Advance drange/srange */
1249 srcoff += imap.br_blockcount;
1250 destoff += imap.br_blockcount;
1251 len -= imap.br_blockcount;
1252 remapped_len += imap.br_blockcount;
1256 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1257 *remapped = min_t(loff_t, remap_len,
1258 XFS_FSB_TO_B(src->i_mount, remapped_len));
1263 * If we're reflinking to a point past the destination file's EOF, we must
1264 * zero any speculative post-EOF preallocations that sit between the old EOF
1265 * and the destination file offset.
1268 xfs_reflink_zero_posteof(
1269 struct xfs_inode *ip,
1272 loff_t isize = i_size_read(VFS_I(ip));
1277 trace_xfs_zero_eof(ip, isize, pos - isize);
1278 return xfs_zero_range(ip, isize, pos - isize, NULL);
1282 * Prepare two files for range cloning. Upon a successful return both inodes
1283 * will have the iolock and mmaplock held, the page cache of the out file will
1284 * be truncated, and any leases on the out file will have been broken. This
1285 * function borrows heavily from xfs_file_aio_write_checks.
1287 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1288 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1289 * EOF block in the source dedupe range because it's not a complete block match,
1290 * hence can introduce a corruption into the file that has it's block replaced.
1292 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1293 * "block aligned" for the purposes of cloning entire files. However, if the
1294 * source file range includes the EOF block and it lands within the existing EOF
1295 * of the destination file, then we can expose stale data from beyond the source
1296 * file EOF in the destination file.
1298 * XFS doesn't support partial block sharing, so in both cases we have check
1299 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1300 * down to the previous whole block and ignore the partial EOF block. While this
1301 * means we can't dedupe the last block of a file, this is an acceptible
1302 * tradeoff for simplicity on implementation.
1304 * For cloning, we want to share the partial EOF block if it is also the new EOF
1305 * block of the destination file. If the partial EOF block lies inside the
1306 * existing destination EOF, then we have to abort the clone to avoid exposing
1307 * stale data in the destination file. Hence we reject these clone attempts with
1308 * -EINVAL in this case.
1311 xfs_reflink_remap_prep(
1312 struct file *file_in,
1314 struct file *file_out,
1317 unsigned int remap_flags)
1319 struct inode *inode_in = file_inode(file_in);
1320 struct xfs_inode *src = XFS_I(inode_in);
1321 struct inode *inode_out = file_inode(file_out);
1322 struct xfs_inode *dest = XFS_I(inode_out);
1325 /* Lock both files against IO */
1326 ret = xfs_ilock2_io_mmap(src, dest);
1330 /* Check file eligibility and prepare for block sharing. */
1332 /* Don't reflink realtime inodes */
1333 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1336 /* Don't share DAX file data for now. */
1337 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1340 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1342 if (ret || *len == 0)
1345 /* Attach dquots to dest inode before changing block map */
1346 ret = xfs_qm_dqattach(dest);
1351 * Zero existing post-eof speculative preallocations in the destination
1354 ret = xfs_reflink_zero_posteof(dest, pos_out);
1358 /* Set flags and remap blocks. */
1359 ret = xfs_reflink_set_inode_flag(src, dest);
1364 * If pos_out > EOF, we may have dirtied blocks between EOF and
1365 * pos_out. In that case, we need to extend the flush and unmap to cover
1366 * from EOF to the end of the copy length.
1368 if (pos_out > XFS_ISIZE(dest)) {
1369 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1370 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1372 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1379 xfs_iunlock2_io_mmap(src, dest);
1383 /* Does this inode need the reflink flag? */
1385 xfs_reflink_inode_has_shared_extents(
1386 struct xfs_trans *tp,
1387 struct xfs_inode *ip,
1390 struct xfs_bmbt_irec got;
1391 struct xfs_mount *mp = ip->i_mount;
1392 struct xfs_ifork *ifp;
1393 xfs_agnumber_t agno;
1394 xfs_agblock_t agbno;
1398 struct xfs_iext_cursor icur;
1402 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1403 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1407 *has_shared = false;
1408 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1410 if (isnullstartblock(got.br_startblock) ||
1411 got.br_state != XFS_EXT_NORM)
1413 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1414 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1415 aglen = got.br_blockcount;
1417 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1418 &rbno, &rlen, false);
1421 /* Is there still a shared block here? */
1422 if (rbno != NULLAGBLOCK) {
1427 found = xfs_iext_next_extent(ifp, &icur, &got);
1434 * Clear the inode reflink flag if there are no shared extents.
1436 * The caller is responsible for joining the inode to the transaction passed in.
1437 * The inode will be joined to the transaction that is returned to the caller.
1440 xfs_reflink_clear_inode_flag(
1441 struct xfs_inode *ip,
1442 struct xfs_trans **tpp)
1447 ASSERT(xfs_is_reflink_inode(ip));
1449 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1450 if (error || needs_flag)
1454 * We didn't find any shared blocks so turn off the reflink flag.
1455 * First, get rid of any leftover CoW mappings.
1457 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1462 /* Clear the inode flag. */
1463 trace_xfs_reflink_unset_inode_flag(ip);
1464 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1465 xfs_inode_clear_cowblocks_tag(ip);
1466 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1472 * Clear the inode reflink flag if there are no shared extents and the size
1476 xfs_reflink_try_clear_inode_flag(
1477 struct xfs_inode *ip)
1479 struct xfs_mount *mp = ip->i_mount;
1480 struct xfs_trans *tp;
1483 /* Start a rolling transaction to remove the mappings */
1484 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1488 xfs_ilock(ip, XFS_ILOCK_EXCL);
1489 xfs_trans_ijoin(tp, ip, 0);
1491 error = xfs_reflink_clear_inode_flag(ip, &tp);
1495 error = xfs_trans_commit(tp);
1499 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1502 xfs_trans_cancel(tp);
1504 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1509 * Pre-COW all shared blocks within a given byte range of a file and turn off
1510 * the reflink flag if we unshare all of the file's blocks.
1513 xfs_reflink_unshare(
1514 struct xfs_inode *ip,
1518 struct inode *inode = VFS_I(ip);
1521 if (!xfs_is_reflink_inode(ip))
1524 trace_xfs_reflink_unshare(ip, offset, len);
1526 inode_dio_wait(inode);
1528 error = iomap_file_unshare(inode, offset, len,
1529 &xfs_buffered_write_iomap_ops);
1533 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1538 /* Turn off the reflink flag if possible. */
1539 error = xfs_reflink_try_clear_inode_flag(ip);
1545 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);