1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
43 xfs_uuid_table_free(void)
45 if (xfs_uuid_table_size == 0)
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
66 if (xfs_has_nouuid(mp))
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
103 struct xfs_mount *mp)
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
108 if (xfs_has_nouuid(mp))
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
129 xfs_sb_validate_fsb_count(
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
145 * Does the initial read of the superblock.
149 struct xfs_mount *mp,
152 unsigned int sector_size;
154 struct xfs_sb *sbp = &mp->m_sb;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
192 * Initialize the mount structure from the superblock.
194 xfs_sb_from_disk(sbp, bp->b_addr);
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
202 xfs_warn(mp, "Invalid superblock magic number");
208 * We must be able to do sector-sized and sector-aligned IO.
210 if (sector_size > sbp->sb_sectsize) {
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
218 if (buf_ops == NULL) {
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
251 xfs_check_new_dalign(
252 struct xfs_mount *mp,
256 struct xfs_sb *sbp = &mp->m_sb;
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
262 if (sbp->sb_rootino == calc_ino) {
268 "Cannot change stripe alignment; would require moving root inode.");
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
287 xfs_validate_new_dalign(
288 struct xfs_mount *mp)
290 if (mp->m_dalign == 0)
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
305 * Convert the stripe unit and width to FSBs.
307 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
308 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 "alignment check failed: sunit/swidth vs. agsize(%d)",
311 mp->m_sb.sb_agblocks);
313 } else if (mp->m_dalign) {
314 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
317 "alignment check failed: sunit(%d) less than bsize(%d)",
318 mp->m_dalign, mp->m_sb.sb_blocksize);
323 if (!xfs_has_dalign(mp)) {
325 "cannot change alignment: superblock does not support data alignment");
332 /* Update alignment values based on mount options and sb values. */
334 xfs_update_alignment(
335 struct xfs_mount *mp)
337 struct xfs_sb *sbp = &mp->m_sb;
343 if (sbp->sb_unit == mp->m_dalign &&
344 sbp->sb_width == mp->m_swidth)
347 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
348 if (error || !update_sb)
351 sbp->sb_unit = mp->m_dalign;
352 sbp->sb_width = mp->m_swidth;
353 mp->m_update_sb = true;
354 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
355 mp->m_dalign = sbp->sb_unit;
356 mp->m_swidth = sbp->sb_width;
363 * precalculate the low space thresholds for dynamic speculative preallocation.
366 xfs_set_low_space_thresholds(
367 struct xfs_mount *mp)
369 uint64_t dblocks = mp->m_sb.sb_dblocks;
370 uint64_t rtexts = mp->m_sb.sb_rextents;
373 do_div(dblocks, 100);
376 for (i = 0; i < XFS_LOWSP_MAX; i++) {
377 mp->m_low_space[i] = dblocks * (i + 1);
378 mp->m_low_rtexts[i] = rtexts * (i + 1);
383 * Check that the data (and log if separate) is an ok size.
387 struct xfs_mount *mp)
393 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
394 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
395 xfs_warn(mp, "filesystem size mismatch detected");
398 error = xfs_buf_read_uncached(mp->m_ddev_targp,
399 d - XFS_FSS_TO_BB(mp, 1),
400 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
402 xfs_warn(mp, "last sector read failed");
407 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
412 xfs_warn(mp, "log size mismatch detected");
415 error = xfs_buf_read_uncached(mp->m_logdev_targp,
416 d - XFS_FSB_TO_BB(mp, 1),
417 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
419 xfs_warn(mp, "log device read failed");
427 * Clear the quotaflags in memory and in the superblock.
430 xfs_mount_reset_sbqflags(
431 struct xfs_mount *mp)
435 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
436 if (mp->m_sb.sb_qflags == 0)
438 spin_lock(&mp->m_sb_lock);
439 mp->m_sb.sb_qflags = 0;
440 spin_unlock(&mp->m_sb_lock);
442 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 return xfs_sync_sb(mp, false);
449 xfs_default_resblks(xfs_mount_t *mp)
454 * We default to 5% or 8192 fsbs of space reserved, whichever is
455 * smaller. This is intended to cover concurrent allocation
456 * transactions when we initially hit enospc. These each require a 4
457 * block reservation. Hence by default we cover roughly 2000 concurrent
458 * allocation reservations.
460 resblks = mp->m_sb.sb_dblocks;
462 resblks = min_t(uint64_t, resblks, 8192);
466 /* Ensure the summary counts are correct. */
468 xfs_check_summary_counts(
469 struct xfs_mount *mp)
472 * The AG0 superblock verifier rejects in-progress filesystems,
473 * so we should never see the flag set this far into mounting.
475 if (mp->m_sb.sb_inprogress) {
476 xfs_err(mp, "sb_inprogress set after log recovery??");
478 return -EFSCORRUPTED;
482 * Now the log is mounted, we know if it was an unclean shutdown or
483 * not. If it was, with the first phase of recovery has completed, we
484 * have consistent AG blocks on disk. We have not recovered EFIs yet,
485 * but they are recovered transactionally in the second recovery phase
488 * If the log was clean when we mounted, we can check the summary
489 * counters. If any of them are obviously incorrect, we can recompute
490 * them from the AGF headers in the next step.
492 if (xfs_is_clean(mp) &&
493 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
494 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
495 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
496 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
499 * We can safely re-initialise incore superblock counters from the
500 * per-ag data. These may not be correct if the filesystem was not
501 * cleanly unmounted, so we waited for recovery to finish before doing
504 * If the filesystem was cleanly unmounted or the previous check did
505 * not flag anything weird, then we can trust the values in the
506 * superblock to be correct and we don't need to do anything here.
507 * Otherwise, recalculate the summary counters.
509 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
510 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
513 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
517 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
518 * internal inode structures can be sitting in the CIL and AIL at this point,
519 * so we need to unpin them, write them back and/or reclaim them before unmount
520 * can proceed. In other words, callers are required to have inactivated all
523 * An inode cluster that has been freed can have its buffer still pinned in
524 * memory because the transaction is still sitting in a iclog. The stale inodes
525 * on that buffer will be pinned to the buffer until the transaction hits the
526 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
527 * may never see the pinned buffer, so nothing will push out the iclog and
530 * Hence we need to force the log to unpin everything first. However, log
531 * forces don't wait for the discards they issue to complete, so we have to
532 * explicitly wait for them to complete here as well.
534 * Then we can tell the world we are unmounting so that error handling knows
535 * that the filesystem is going away and we should error out anything that we
536 * have been retrying in the background. This will prevent never-ending
537 * retries in AIL pushing from hanging the unmount.
539 * Finally, we can push the AIL to clean all the remaining dirty objects, then
540 * reclaim the remaining inodes that are still in memory at this point in time.
543 xfs_unmount_flush_inodes(
544 struct xfs_mount *mp)
546 xfs_log_force(mp, XFS_LOG_SYNC);
547 xfs_extent_busy_wait_all(mp);
548 flush_workqueue(xfs_discard_wq);
550 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
552 xfs_ail_push_all_sync(mp->m_ail);
553 xfs_inodegc_stop(mp);
554 cancel_delayed_work_sync(&mp->m_reclaim_work);
555 xfs_reclaim_inodes(mp);
556 xfs_health_unmount(mp);
560 xfs_mount_setup_inode_geom(
561 struct xfs_mount *mp)
563 struct xfs_ino_geometry *igeo = M_IGEO(mp);
565 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
566 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
568 xfs_ialloc_setup_geometry(mp);
571 /* Compute maximum possible height for per-AG btree types for this fs. */
573 xfs_agbtree_compute_maxlevels(
574 struct xfs_mount *mp)
578 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
579 levels = max(levels, mp->m_rmap_maxlevels);
580 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
584 * This function does the following on an initial mount of a file system:
585 * - reads the superblock from disk and init the mount struct
586 * - if we're a 32-bit kernel, do a size check on the superblock
587 * so we don't mount terabyte filesystems
588 * - init mount struct realtime fields
589 * - allocate inode hash table for fs
590 * - init directory manager
591 * - perform recovery and init the log manager
595 struct xfs_mount *mp)
597 struct xfs_sb *sbp = &(mp->m_sb);
598 struct xfs_inode *rip;
599 struct xfs_ino_geometry *igeo = M_IGEO(mp);
605 xfs_sb_mount_common(mp, sbp);
608 * Check for a mismatched features2 values. Older kernels read & wrote
609 * into the wrong sb offset for sb_features2 on some platforms due to
610 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
611 * which made older superblock reading/writing routines swap it as a
614 * For backwards compatibility, we make both slots equal.
616 * If we detect a mismatched field, we OR the set bits into the existing
617 * features2 field in case it has already been modified; we don't want
618 * to lose any features. We then update the bad location with the ORed
619 * value so that older kernels will see any features2 flags. The
620 * superblock writeback code ensures the new sb_features2 is copied to
621 * sb_bad_features2 before it is logged or written to disk.
623 if (xfs_sb_has_mismatched_features2(sbp)) {
624 xfs_warn(mp, "correcting sb_features alignment problem");
625 sbp->sb_features2 |= sbp->sb_bad_features2;
626 mp->m_update_sb = true;
630 /* always use v2 inodes by default now */
631 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
632 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
633 mp->m_features |= XFS_FEAT_NLINK;
634 mp->m_update_sb = true;
638 * If we were given new sunit/swidth options, do some basic validation
639 * checks and convert the incore dalign and swidth values to the
640 * same units (FSB) that everything else uses. This /must/ happen
641 * before computing the inode geometry.
643 error = xfs_validate_new_dalign(mp);
647 xfs_alloc_compute_maxlevels(mp);
648 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
649 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
650 xfs_mount_setup_inode_geom(mp);
651 xfs_rmapbt_compute_maxlevels(mp);
652 xfs_refcountbt_compute_maxlevels(mp);
654 xfs_agbtree_compute_maxlevels(mp);
657 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
658 * is NOT aligned turn off m_dalign since allocator alignment is within
659 * an ag, therefore ag has to be aligned at stripe boundary. Note that
660 * we must compute the free space and rmap btree geometry before doing
663 error = xfs_update_alignment(mp);
667 /* enable fail_at_unmount as default */
668 mp->m_fail_unmount = true;
670 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
671 NULL, mp->m_super->s_id);
675 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
676 &mp->m_kobj, "stats");
678 goto out_remove_sysfs;
680 error = xfs_error_sysfs_init(mp);
684 error = xfs_errortag_init(mp);
686 goto out_remove_error_sysfs;
688 error = xfs_uuid_mount(mp);
690 goto out_remove_errortag;
693 * Update the preferred write size based on the information from the
694 * on-disk superblock.
696 mp->m_allocsize_log =
697 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
698 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
700 /* set the low space thresholds for dynamic preallocation */
701 xfs_set_low_space_thresholds(mp);
704 * If enabled, sparse inode chunk alignment is expected to match the
705 * cluster size. Full inode chunk alignment must match the chunk size,
706 * but that is checked on sb read verification...
708 if (xfs_has_sparseinodes(mp) &&
709 mp->m_sb.sb_spino_align !=
710 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
712 "Sparse inode block alignment (%u) must match cluster size (%llu).",
713 mp->m_sb.sb_spino_align,
714 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
716 goto out_remove_uuid;
720 * Check that the data (and log if separate) is an ok size.
722 error = xfs_check_sizes(mp);
724 goto out_remove_uuid;
727 * Initialize realtime fields in the mount structure
729 error = xfs_rtmount_init(mp);
731 xfs_warn(mp, "RT mount failed");
732 goto out_remove_uuid;
736 * Copies the low order bits of the timestamp and the randomly
737 * set "sequence" number out of a UUID.
740 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
741 get_unaligned_be16(&sbp->sb_uuid.b[4]);
742 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
744 error = xfs_da_mount(mp);
746 xfs_warn(mp, "Failed dir/attr init: %d", error);
747 goto out_remove_uuid;
751 * Initialize the precomputed transaction reservations values.
756 * Allocate and initialize the per-ag data.
758 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
760 xfs_warn(mp, "Failed per-ag init: %d", error);
764 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
765 xfs_warn(mp, "no log defined");
766 error = -EFSCORRUPTED;
770 error = xfs_inodegc_register_shrinker(mp);
775 * Log's mount-time initialization. The first part of recovery can place
776 * some items on the AIL, to be handled when recovery is finished or
779 error = xfs_log_mount(mp, mp->m_logdev_targp,
780 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
781 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
783 xfs_warn(mp, "log mount failed");
784 goto out_inodegc_shrinker;
787 /* Make sure the summary counts are ok. */
788 error = xfs_check_summary_counts(mp);
790 goto out_log_dealloc;
792 /* Enable background inode inactivation workers. */
793 xfs_inodegc_start(mp);
794 xfs_blockgc_start(mp);
797 * Now that we've recovered any pending superblock feature bit
798 * additions, we can finish setting up the attr2 behaviour for the
799 * mount. The noattr2 option overrides the superblock flag, so only
800 * check the superblock feature flag if the mount option is not set.
802 if (xfs_has_noattr2(mp)) {
803 mp->m_features &= ~XFS_FEAT_ATTR2;
804 } else if (!xfs_has_attr2(mp) &&
805 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
806 mp->m_features |= XFS_FEAT_ATTR2;
810 * Get and sanity-check the root inode.
811 * Save the pointer to it in the mount structure.
813 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
814 XFS_ILOCK_EXCL, &rip);
817 "Failed to read root inode 0x%llx, error %d",
818 sbp->sb_rootino, -error);
819 goto out_log_dealloc;
824 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
825 xfs_warn(mp, "corrupted root inode %llu: not a directory",
826 (unsigned long long)rip->i_ino);
827 xfs_iunlock(rip, XFS_ILOCK_EXCL);
828 error = -EFSCORRUPTED;
831 mp->m_rootip = rip; /* save it */
833 xfs_iunlock(rip, XFS_ILOCK_EXCL);
836 * Initialize realtime inode pointers in the mount structure
838 error = xfs_rtmount_inodes(mp);
841 * Free up the root inode.
843 xfs_warn(mp, "failed to read RT inodes");
848 * If this is a read-only mount defer the superblock updates until
849 * the next remount into writeable mode. Otherwise we would never
850 * perform the update e.g. for the root filesystem.
852 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
853 error = xfs_sync_sb(mp, false);
855 xfs_warn(mp, "failed to write sb changes");
861 * Initialise the XFS quota management subsystem for this mount
863 if (XFS_IS_QUOTA_ON(mp)) {
864 error = xfs_qm_newmount(mp, "amount, "aflags);
869 * If a file system had quotas running earlier, but decided to
870 * mount without -o uquota/pquota/gquota options, revoke the
871 * quotachecked license.
873 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
874 xfs_notice(mp, "resetting quota flags");
875 error = xfs_mount_reset_sbqflags(mp);
882 * Finish recovering the file system. This part needed to be delayed
883 * until after the root and real-time bitmap inodes were consistently
884 * read in. Temporarily create per-AG space reservations for metadata
885 * btree shape changes because space freeing transactions (for inode
886 * inactivation) require the per-AG reservation in lieu of reserving
889 error = xfs_fs_reserve_ag_blocks(mp);
890 if (error && error == -ENOSPC)
892 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
893 error = xfs_log_mount_finish(mp);
894 xfs_fs_unreserve_ag_blocks(mp);
896 xfs_warn(mp, "log mount finish failed");
901 * Now the log is fully replayed, we can transition to full read-only
902 * mode for read-only mounts. This will sync all the metadata and clean
903 * the log so that the recovery we just performed does not have to be
904 * replayed again on the next mount.
906 * We use the same quiesce mechanism as the rw->ro remount, as they are
907 * semantically identical operations.
909 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
913 * Complete the quota initialisation, post-log-replay component.
916 ASSERT(mp->m_qflags == 0);
917 mp->m_qflags = quotaflags;
919 xfs_qm_mount_quotas(mp);
923 * Now we are mounted, reserve a small amount of unused space for
924 * privileged transactions. This is needed so that transaction
925 * space required for critical operations can dip into this pool
926 * when at ENOSPC. This is needed for operations like create with
927 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
928 * are not allowed to use this reserved space.
930 * This may drive us straight to ENOSPC on mount, but that implies
931 * we were already there on the last unmount. Warn if this occurs.
933 if (!xfs_is_readonly(mp)) {
934 resblks = xfs_default_resblks(mp);
935 error = xfs_reserve_blocks(mp, &resblks, NULL);
938 "Unable to allocate reserve blocks. Continuing without reserve pool.");
940 /* Reserve AG blocks for future btree expansion. */
941 error = xfs_fs_reserve_ag_blocks(mp);
942 if (error && error != -ENOSPC)
949 xfs_fs_unreserve_ag_blocks(mp);
950 xfs_qm_unmount_quotas(mp);
952 xfs_rtunmount_inodes(mp);
955 /* Clean out dquots that might be in memory after quotacheck. */
959 * Inactivate all inodes that might still be in memory after a log
960 * intent recovery failure so that reclaim can free them. Metadata
961 * inodes and the root directory shouldn't need inactivation, but the
962 * mount failed for some reason, so pull down all the state and flee.
964 xfs_inodegc_flush(mp);
967 * Flush all inode reclamation work and flush the log.
968 * We have to do this /after/ rtunmount and qm_unmount because those
969 * two will have scheduled delayed reclaim for the rt/quota inodes.
971 * This is slightly different from the unmountfs call sequence
972 * because we could be tearing down a partially set up mount. In
973 * particular, if log_mount_finish fails we bail out without calling
974 * qm_unmount_quotas and therefore rely on qm_unmount to release the
977 xfs_unmount_flush_inodes(mp);
979 xfs_log_mount_cancel(mp);
980 out_inodegc_shrinker:
981 unregister_shrinker(&mp->m_inodegc_shrinker);
983 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
984 xfs_buftarg_drain(mp->m_logdev_targp);
985 xfs_buftarg_drain(mp->m_ddev_targp);
991 xfs_uuid_unmount(mp);
993 xfs_errortag_del(mp);
994 out_remove_error_sysfs:
995 xfs_error_sysfs_del(mp);
997 xfs_sysfs_del(&mp->m_stats.xs_kobj);
999 xfs_sysfs_del(&mp->m_kobj);
1005 * This flushes out the inodes,dquots and the superblock, unmounts the
1006 * log and makes sure that incore structures are freed.
1010 struct xfs_mount *mp)
1016 * Perform all on-disk metadata updates required to inactivate inodes
1017 * that the VFS evicted earlier in the unmount process. Freeing inodes
1018 * and discarding CoW fork preallocations can cause shape changes to
1019 * the free inode and refcount btrees, respectively, so we must finish
1020 * this before we discard the metadata space reservations. Metadata
1021 * inodes and the root directory do not require inactivation.
1023 xfs_inodegc_flush(mp);
1025 xfs_blockgc_stop(mp);
1026 xfs_fs_unreserve_ag_blocks(mp);
1027 xfs_qm_unmount_quotas(mp);
1028 xfs_rtunmount_inodes(mp);
1029 xfs_irele(mp->m_rootip);
1031 xfs_unmount_flush_inodes(mp);
1036 * Unreserve any blocks we have so that when we unmount we don't account
1037 * the reserved free space as used. This is really only necessary for
1038 * lazy superblock counting because it trusts the incore superblock
1039 * counters to be absolutely correct on clean unmount.
1041 * We don't bother correcting this elsewhere for lazy superblock
1042 * counting because on mount of an unclean filesystem we reconstruct the
1043 * correct counter value and this is irrelevant.
1045 * For non-lazy counter filesystems, this doesn't matter at all because
1046 * we only every apply deltas to the superblock and hence the incore
1047 * value does not matter....
1050 error = xfs_reserve_blocks(mp, &resblks, NULL);
1052 xfs_warn(mp, "Unable to free reserved block pool. "
1053 "Freespace may not be correct on next mount.");
1055 xfs_log_unmount(mp);
1057 xfs_uuid_unmount(mp);
1060 xfs_errortag_clearall(mp);
1062 unregister_shrinker(&mp->m_inodegc_shrinker);
1065 xfs_errortag_del(mp);
1066 xfs_error_sysfs_del(mp);
1067 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1068 xfs_sysfs_del(&mp->m_kobj);
1072 * Determine whether modifications can proceed. The caller specifies the minimum
1073 * freeze level for which modifications should not be allowed. This allows
1074 * certain operations to proceed while the freeze sequence is in progress, if
1079 struct xfs_mount *mp,
1082 ASSERT(level > SB_UNFROZEN);
1083 if ((mp->m_super->s_writers.frozen >= level) ||
1084 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1092 struct xfs_mount *mp,
1103 * If the reserve pool is depleted, put blocks back into it
1104 * first. Most of the time the pool is full.
1106 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1107 percpu_counter_add(&mp->m_fdblocks, delta);
1111 spin_lock(&mp->m_sb_lock);
1112 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1114 if (res_used > delta) {
1115 mp->m_resblks_avail += delta;
1118 mp->m_resblks_avail = mp->m_resblks;
1119 percpu_counter_add(&mp->m_fdblocks, delta);
1121 spin_unlock(&mp->m_sb_lock);
1126 * Taking blocks away, need to be more accurate the closer we
1129 * If the counter has a value of less than 2 * max batch size,
1130 * then make everything serialise as we are real close to
1133 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1134 XFS_FDBLOCKS_BATCH) < 0)
1137 batch = XFS_FDBLOCKS_BATCH;
1140 * Set aside allocbt blocks because these blocks are tracked as free
1141 * space but not available for allocation. Technically this means that a
1142 * single reservation cannot consume all remaining free space, but the
1143 * ratio of allocbt blocks to usable free blocks should be rather small.
1144 * The tradeoff without this is that filesystems that maintain high
1145 * perag block reservations can over reserve physical block availability
1146 * and fail physical allocation, which leads to much more serious
1147 * problems (i.e. transaction abort, pagecache discards, etc.) than
1148 * slightly premature -ENOSPC.
1150 set_aside = xfs_fdblocks_unavailable(mp);
1151 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1152 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1153 XFS_FDBLOCKS_BATCH) >= 0) {
1159 * lock up the sb for dipping into reserves before releasing the space
1160 * that took us to ENOSPC.
1162 spin_lock(&mp->m_sb_lock);
1163 percpu_counter_add(&mp->m_fdblocks, -delta);
1165 goto fdblocks_enospc;
1167 lcounter = (long long)mp->m_resblks_avail + delta;
1168 if (lcounter >= 0) {
1169 mp->m_resblks_avail = lcounter;
1170 spin_unlock(&mp->m_sb_lock);
1174 "Reserve blocks depleted! Consider increasing reserve pool size.");
1177 spin_unlock(&mp->m_sb_lock);
1183 struct xfs_mount *mp,
1189 spin_lock(&mp->m_sb_lock);
1190 lcounter = mp->m_sb.sb_frextents + delta;
1194 mp->m_sb.sb_frextents = lcounter;
1195 spin_unlock(&mp->m_sb_lock);
1200 * Used to free the superblock along various error paths.
1204 struct xfs_mount *mp)
1206 struct xfs_buf *bp = mp->m_sb_bp;
1214 * If the underlying (data/log/rt) device is readonly, there are some
1215 * operations that cannot proceed.
1218 xfs_dev_is_read_only(
1219 struct xfs_mount *mp,
1222 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1223 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1224 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1225 xfs_notice(mp, "%s required on read-only device.", message);
1226 xfs_notice(mp, "write access unavailable, cannot proceed.");
1232 /* Force the summary counters to be recalculated at next mount. */
1234 xfs_force_summary_recalc(
1235 struct xfs_mount *mp)
1237 if (!xfs_has_lazysbcount(mp))
1240 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1244 * Enable a log incompat feature flag in the primary superblock. The caller
1245 * cannot have any other transactions in progress.
1248 xfs_add_incompat_log_feature(
1249 struct xfs_mount *mp,
1252 struct xfs_dsb *dsb;
1255 ASSERT(hweight32(feature) == 1);
1256 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1259 * Force the log to disk and kick the background AIL thread to reduce
1260 * the chances that the bwrite will stall waiting for the AIL to unpin
1261 * the primary superblock buffer. This isn't a data integrity
1262 * operation, so we don't need a synchronous push.
1264 error = xfs_log_force(mp, XFS_LOG_SYNC);
1267 xfs_ail_push_all(mp->m_ail);
1270 * Lock the primary superblock buffer to serialize all callers that
1271 * are trying to set feature bits.
1273 xfs_buf_lock(mp->m_sb_bp);
1274 xfs_buf_hold(mp->m_sb_bp);
1276 if (xfs_is_shutdown(mp)) {
1281 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1285 * Write the primary superblock to disk immediately, because we need
1286 * the log_incompat bit to be set in the primary super now to protect
1287 * the log items that we're going to commit later.
1289 dsb = mp->m_sb_bp->b_addr;
1290 xfs_sb_to_disk(dsb, &mp->m_sb);
1291 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1292 error = xfs_bwrite(mp->m_sb_bp);
1297 * Add the feature bits to the incore superblock before we unlock the
1300 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1301 xfs_buf_relse(mp->m_sb_bp);
1303 /* Log the superblock to disk. */
1304 return xfs_sync_sb(mp, false);
1306 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1308 xfs_buf_relse(mp->m_sb_bp);
1313 * Clear all the log incompat flags from the superblock.
1315 * The caller cannot be in a transaction, must ensure that the log does not
1316 * contain any log items protected by any log incompat bit, and must ensure
1317 * that there are no other threads that depend on the state of the log incompat
1318 * feature flags in the primary super.
1320 * Returns true if the superblock is dirty.
1323 xfs_clear_incompat_log_features(
1324 struct xfs_mount *mp)
1328 if (!xfs_has_crc(mp) ||
1329 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1330 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1331 xfs_is_shutdown(mp))
1335 * Update the incore superblock. We synchronize on the primary super
1336 * buffer lock to be consistent with the add function, though at least
1337 * in theory this shouldn't be necessary.
1339 xfs_buf_lock(mp->m_sb_bp);
1340 xfs_buf_hold(mp->m_sb_bp);
1342 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1343 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1344 xfs_info(mp, "Clearing log incompat feature flags.");
1345 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1349 xfs_buf_relse(mp->m_sb_bp);
1354 * Update the in-core delayed block counter.
1356 * We prefer to update the counter without having to take a spinlock for every
1357 * counter update (i.e. batching). Each change to delayed allocation
1358 * reservations can change can easily exceed the default percpu counter
1359 * batching, so we use a larger batch factor here.
1361 * Note that we don't currently have any callers requiring fast summation
1362 * (e.g. percpu_counter_read) so we can use a big batch value here.
1364 #define XFS_DELALLOC_BATCH (4096)
1367 struct xfs_mount *mp,
1370 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1371 XFS_DELALLOC_BATCH);