1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
42 xfs_uuid_table_free(void)
44 if (xfs_uuid_table_size == 0)
46 kmem_free(xfs_uuid_table);
47 xfs_uuid_table = NULL;
48 xfs_uuid_table_size = 0;
52 * See if the UUID is unique among mounted XFS filesystems.
53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
59 uuid_t *uuid = &mp->m_sb.sb_uuid;
62 /* Publish UUID in struct super_block */
63 uuid_copy(&mp->m_super->s_uuid, uuid);
65 if (xfs_has_nouuid(mp))
68 if (uuid_is_null(uuid)) {
69 xfs_warn(mp, "Filesystem has null UUID - can't mount");
73 mutex_lock(&xfs_uuid_table_mutex);
74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 if (uuid_is_null(&xfs_uuid_table[i])) {
79 if (uuid_equal(uuid, &xfs_uuid_table[i]))
84 xfs_uuid_table = krealloc(xfs_uuid_table,
85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 GFP_KERNEL | __GFP_NOFAIL);
87 hole = xfs_uuid_table_size++;
89 xfs_uuid_table[hole] = *uuid;
90 mutex_unlock(&xfs_uuid_table_mutex);
95 mutex_unlock(&xfs_uuid_table_mutex);
96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
102 struct xfs_mount *mp)
104 uuid_t *uuid = &mp->m_sb.sb_uuid;
107 if (xfs_has_nouuid(mp))
110 mutex_lock(&xfs_uuid_table_mutex);
111 for (i = 0; i < xfs_uuid_table_size; i++) {
112 if (uuid_is_null(&xfs_uuid_table[i]))
114 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 ASSERT(i < xfs_uuid_table_size);
120 mutex_unlock(&xfs_uuid_table_mutex);
124 * Check size of device based on the (data/realtime) block count.
125 * Note: this check is used by the growfs code as well as mount.
128 xfs_sb_validate_fsb_count(
132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135 /* Limited by ULONG_MAX of page cache index */
136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
144 * Does the initial read of the superblock.
148 struct xfs_mount *mp,
151 unsigned int sector_size;
153 struct xfs_sb *sbp = &mp->m_sb;
155 int loud = !(flags & XFS_MFSI_QUIET);
156 const struct xfs_buf_ops *buf_ops;
158 ASSERT(mp->m_sb_bp == NULL);
159 ASSERT(mp->m_ddev_targp != NULL);
162 * For the initial read, we must guess at the sector
163 * size based on the block device. It's enough to
164 * get the sb_sectsize out of the superblock and
165 * then reread with the proper length.
166 * We don't verify it yet, because it may not be complete.
168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
172 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 * around at all times to optimize access to the superblock. Therefore,
174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
183 xfs_warn(mp, "SB validate failed with error %d.", error);
184 /* bad CRC means corrupted metadata */
185 if (error == -EFSBADCRC)
186 error = -EFSCORRUPTED;
191 * Initialize the mount structure from the superblock.
193 xfs_sb_from_disk(sbp, bp->b_addr);
196 * If we haven't validated the superblock, do so now before we try
197 * to check the sector size and reread the superblock appropriately.
199 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 xfs_warn(mp, "Invalid superblock magic number");
207 * We must be able to do sector-sized and sector-aligned IO.
209 if (sector_size > sbp->sb_sectsize) {
211 xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 sector_size, sbp->sb_sectsize);
217 if (buf_ops == NULL) {
219 * Re-read the superblock so the buffer is correctly sized,
220 * and properly verified.
223 sector_size = sbp->sb_sectsize;
224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
228 mp->m_features |= xfs_sb_version_to_features(sbp);
229 xfs_reinit_percpu_counters(mp);
231 /* no need to be quiet anymore, so reset the buf ops */
232 bp->b_ops = &xfs_sb_buf_ops;
244 * If the sunit/swidth change would move the precomputed root inode value, we
245 * must reject the ondisk change because repair will stumble over that.
246 * However, we allow the mount to proceed because we never rejected this
247 * combination before. Returns true to update the sb, false otherwise.
250 xfs_check_new_dalign(
251 struct xfs_mount *mp,
255 struct xfs_sb *sbp = &mp->m_sb;
258 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
259 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261 if (sbp->sb_rootino == calc_ino) {
267 "Cannot change stripe alignment; would require moving root inode.");
270 * XXX: Next time we add a new incompat feature, this should start
271 * returning -EINVAL to fail the mount. Until then, spit out a warning
272 * that we're ignoring the administrator's instructions.
274 xfs_warn(mp, "Skipping superblock stripe alignment update.");
280 * If we were provided with new sunit/swidth values as mount options, make sure
281 * that they pass basic alignment and superblock feature checks, and convert
282 * them into the same units (FSB) that everything else expects. This step
283 * /must/ be done before computing the inode geometry.
286 xfs_validate_new_dalign(
287 struct xfs_mount *mp)
289 if (mp->m_dalign == 0)
293 * If stripe unit and stripe width are not multiples
294 * of the fs blocksize turn off alignment.
296 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
297 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 "alignment check failed: sunit/swidth vs. blocksize(%d)",
300 mp->m_sb.sb_blocksize);
304 * Convert the stripe unit and width to FSBs.
306 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
307 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
309 "alignment check failed: sunit/swidth vs. agsize(%d)",
310 mp->m_sb.sb_agblocks);
312 } else if (mp->m_dalign) {
313 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
316 "alignment check failed: sunit(%d) less than bsize(%d)",
317 mp->m_dalign, mp->m_sb.sb_blocksize);
322 if (!xfs_has_dalign(mp)) {
324 "cannot change alignment: superblock does not support data alignment");
331 /* Update alignment values based on mount options and sb values. */
333 xfs_update_alignment(
334 struct xfs_mount *mp)
336 struct xfs_sb *sbp = &mp->m_sb;
342 if (sbp->sb_unit == mp->m_dalign &&
343 sbp->sb_width == mp->m_swidth)
346 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
347 if (error || !update_sb)
350 sbp->sb_unit = mp->m_dalign;
351 sbp->sb_width = mp->m_swidth;
352 mp->m_update_sb = true;
353 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
354 mp->m_dalign = sbp->sb_unit;
355 mp->m_swidth = sbp->sb_width;
362 * precalculate the low space thresholds for dynamic speculative preallocation.
365 xfs_set_low_space_thresholds(
366 struct xfs_mount *mp)
368 uint64_t dblocks = mp->m_sb.sb_dblocks;
369 uint64_t rtexts = mp->m_sb.sb_rextents;
372 do_div(dblocks, 100);
375 for (i = 0; i < XFS_LOWSP_MAX; i++) {
376 mp->m_low_space[i] = dblocks * (i + 1);
377 mp->m_low_rtexts[i] = rtexts * (i + 1);
382 * Check that the data (and log if separate) is an ok size.
386 struct xfs_mount *mp)
392 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
393 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
394 xfs_warn(mp, "filesystem size mismatch detected");
397 error = xfs_buf_read_uncached(mp->m_ddev_targp,
398 d - XFS_FSS_TO_BB(mp, 1),
399 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
401 xfs_warn(mp, "last sector read failed");
406 if (mp->m_logdev_targp == mp->m_ddev_targp)
409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
411 xfs_warn(mp, "log size mismatch detected");
414 error = xfs_buf_read_uncached(mp->m_logdev_targp,
415 d - XFS_FSB_TO_BB(mp, 1),
416 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
418 xfs_warn(mp, "log device read failed");
426 * Clear the quotaflags in memory and in the superblock.
429 xfs_mount_reset_sbqflags(
430 struct xfs_mount *mp)
434 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
435 if (mp->m_sb.sb_qflags == 0)
437 spin_lock(&mp->m_sb_lock);
438 mp->m_sb.sb_qflags = 0;
439 spin_unlock(&mp->m_sb_lock);
441 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
444 return xfs_sync_sb(mp, false);
448 xfs_default_resblks(xfs_mount_t *mp)
453 * We default to 5% or 8192 fsbs of space reserved, whichever is
454 * smaller. This is intended to cover concurrent allocation
455 * transactions when we initially hit enospc. These each require a 4
456 * block reservation. Hence by default we cover roughly 2000 concurrent
457 * allocation reservations.
459 resblks = mp->m_sb.sb_dblocks;
461 resblks = min_t(uint64_t, resblks, 8192);
465 /* Ensure the summary counts are correct. */
467 xfs_check_summary_counts(
468 struct xfs_mount *mp)
471 * The AG0 superblock verifier rejects in-progress filesystems,
472 * so we should never see the flag set this far into mounting.
474 if (mp->m_sb.sb_inprogress) {
475 xfs_err(mp, "sb_inprogress set after log recovery??");
477 return -EFSCORRUPTED;
481 * Now the log is mounted, we know if it was an unclean shutdown or
482 * not. If it was, with the first phase of recovery has completed, we
483 * have consistent AG blocks on disk. We have not recovered EFIs yet,
484 * but they are recovered transactionally in the second recovery phase
487 * If the log was clean when we mounted, we can check the summary
488 * counters. If any of them are obviously incorrect, we can recompute
489 * them from the AGF headers in the next step.
491 if (xfs_is_clean(mp) &&
492 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
493 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
494 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
495 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
498 * We can safely re-initialise incore superblock counters from the
499 * per-ag data. These may not be correct if the filesystem was not
500 * cleanly unmounted, so we waited for recovery to finish before doing
503 * If the filesystem was cleanly unmounted or the previous check did
504 * not flag anything weird, then we can trust the values in the
505 * superblock to be correct and we don't need to do anything here.
506 * Otherwise, recalculate the summary counters.
508 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
509 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
512 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
517 * internal inode structures can be sitting in the CIL and AIL at this point,
518 * so we need to unpin them, write them back and/or reclaim them before unmount
519 * can proceed. In other words, callers are required to have inactivated all
522 * An inode cluster that has been freed can have its buffer still pinned in
523 * memory because the transaction is still sitting in a iclog. The stale inodes
524 * on that buffer will be pinned to the buffer until the transaction hits the
525 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
526 * may never see the pinned buffer, so nothing will push out the iclog and
529 * Hence we need to force the log to unpin everything first. However, log
530 * forces don't wait for the discards they issue to complete, so we have to
531 * explicitly wait for them to complete here as well.
533 * Then we can tell the world we are unmounting so that error handling knows
534 * that the filesystem is going away and we should error out anything that we
535 * have been retrying in the background. This will prevent never-ending
536 * retries in AIL pushing from hanging the unmount.
538 * Finally, we can push the AIL to clean all the remaining dirty objects, then
539 * reclaim the remaining inodes that are still in memory at this point in time.
542 xfs_unmount_flush_inodes(
543 struct xfs_mount *mp)
545 xfs_log_force(mp, XFS_LOG_SYNC);
546 xfs_extent_busy_wait_all(mp);
547 flush_workqueue(xfs_discard_wq);
549 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
551 xfs_ail_push_all_sync(mp->m_ail);
552 xfs_inodegc_stop(mp);
553 cancel_delayed_work_sync(&mp->m_reclaim_work);
554 xfs_reclaim_inodes(mp);
555 xfs_health_unmount(mp);
559 xfs_mount_setup_inode_geom(
560 struct xfs_mount *mp)
562 struct xfs_ino_geometry *igeo = M_IGEO(mp);
564 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
565 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
567 xfs_ialloc_setup_geometry(mp);
570 /* Compute maximum possible height for per-AG btree types for this fs. */
572 xfs_agbtree_compute_maxlevels(
573 struct xfs_mount *mp)
577 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
578 levels = max(levels, mp->m_rmap_maxlevels);
579 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
583 * This function does the following on an initial mount of a file system:
584 * - reads the superblock from disk and init the mount struct
585 * - if we're a 32-bit kernel, do a size check on the superblock
586 * so we don't mount terabyte filesystems
587 * - init mount struct realtime fields
588 * - allocate inode hash table for fs
589 * - init directory manager
590 * - perform recovery and init the log manager
594 struct xfs_mount *mp)
596 struct xfs_sb *sbp = &(mp->m_sb);
597 struct xfs_inode *rip;
598 struct xfs_ino_geometry *igeo = M_IGEO(mp);
604 xfs_sb_mount_common(mp, sbp);
607 * Check for a mismatched features2 values. Older kernels read & wrote
608 * into the wrong sb offset for sb_features2 on some platforms due to
609 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
610 * which made older superblock reading/writing routines swap it as a
613 * For backwards compatibility, we make both slots equal.
615 * If we detect a mismatched field, we OR the set bits into the existing
616 * features2 field in case it has already been modified; we don't want
617 * to lose any features. We then update the bad location with the ORed
618 * value so that older kernels will see any features2 flags. The
619 * superblock writeback code ensures the new sb_features2 is copied to
620 * sb_bad_features2 before it is logged or written to disk.
622 if (xfs_sb_has_mismatched_features2(sbp)) {
623 xfs_warn(mp, "correcting sb_features alignment problem");
624 sbp->sb_features2 |= sbp->sb_bad_features2;
625 mp->m_update_sb = true;
629 /* always use v2 inodes by default now */
630 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
631 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
632 mp->m_features |= XFS_FEAT_NLINK;
633 mp->m_update_sb = true;
637 * If we were given new sunit/swidth options, do some basic validation
638 * checks and convert the incore dalign and swidth values to the
639 * same units (FSB) that everything else uses. This /must/ happen
640 * before computing the inode geometry.
642 error = xfs_validate_new_dalign(mp);
646 xfs_alloc_compute_maxlevels(mp);
647 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
648 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
649 xfs_mount_setup_inode_geom(mp);
650 xfs_rmapbt_compute_maxlevels(mp);
651 xfs_refcountbt_compute_maxlevels(mp);
653 xfs_agbtree_compute_maxlevels(mp);
656 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
657 * is NOT aligned turn off m_dalign since allocator alignment is within
658 * an ag, therefore ag has to be aligned at stripe boundary. Note that
659 * we must compute the free space and rmap btree geometry before doing
662 error = xfs_update_alignment(mp);
666 /* enable fail_at_unmount as default */
667 mp->m_fail_unmount = true;
669 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
670 NULL, mp->m_super->s_id);
674 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
675 &mp->m_kobj, "stats");
677 goto out_remove_sysfs;
679 error = xfs_error_sysfs_init(mp);
683 error = xfs_errortag_init(mp);
685 goto out_remove_error_sysfs;
687 error = xfs_uuid_mount(mp);
689 goto out_remove_errortag;
692 * Update the preferred write size based on the information from the
693 * on-disk superblock.
695 mp->m_allocsize_log =
696 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
697 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
699 /* set the low space thresholds for dynamic preallocation */
700 xfs_set_low_space_thresholds(mp);
703 * If enabled, sparse inode chunk alignment is expected to match the
704 * cluster size. Full inode chunk alignment must match the chunk size,
705 * but that is checked on sb read verification...
707 if (xfs_has_sparseinodes(mp) &&
708 mp->m_sb.sb_spino_align !=
709 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
711 "Sparse inode block alignment (%u) must match cluster size (%llu).",
712 mp->m_sb.sb_spino_align,
713 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
715 goto out_remove_uuid;
719 * Check that the data (and log if separate) is an ok size.
721 error = xfs_check_sizes(mp);
723 goto out_remove_uuid;
726 * Initialize realtime fields in the mount structure
728 error = xfs_rtmount_init(mp);
730 xfs_warn(mp, "RT mount failed");
731 goto out_remove_uuid;
735 * Copies the low order bits of the timestamp and the randomly
736 * set "sequence" number out of a UUID.
739 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
740 get_unaligned_be16(&sbp->sb_uuid.b[4]);
741 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
743 error = xfs_da_mount(mp);
745 xfs_warn(mp, "Failed dir/attr init: %d", error);
746 goto out_remove_uuid;
750 * Initialize the precomputed transaction reservations values.
755 * Allocate and initialize the per-ag data.
757 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
759 xfs_warn(mp, "Failed per-ag init: %d", error);
763 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
764 xfs_warn(mp, "no log defined");
765 error = -EFSCORRUPTED;
769 error = xfs_inodegc_register_shrinker(mp);
774 * Log's mount-time initialization. The first part of recovery can place
775 * some items on the AIL, to be handled when recovery is finished or
778 error = xfs_log_mount(mp, mp->m_logdev_targp,
779 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
780 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
782 xfs_warn(mp, "log mount failed");
783 goto out_inodegc_shrinker;
786 /* Make sure the summary counts are ok. */
787 error = xfs_check_summary_counts(mp);
789 goto out_log_dealloc;
791 /* Enable background inode inactivation workers. */
792 xfs_inodegc_start(mp);
793 xfs_blockgc_start(mp);
796 * Now that we've recovered any pending superblock feature bit
797 * additions, we can finish setting up the attr2 behaviour for the
798 * mount. The noattr2 option overrides the superblock flag, so only
799 * check the superblock feature flag if the mount option is not set.
801 if (xfs_has_noattr2(mp)) {
802 mp->m_features &= ~XFS_FEAT_ATTR2;
803 } else if (!xfs_has_attr2(mp) &&
804 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
805 mp->m_features |= XFS_FEAT_ATTR2;
809 * Get and sanity-check the root inode.
810 * Save the pointer to it in the mount structure.
812 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
813 XFS_ILOCK_EXCL, &rip);
816 "Failed to read root inode 0x%llx, error %d",
817 sbp->sb_rootino, -error);
818 goto out_log_dealloc;
823 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
824 xfs_warn(mp, "corrupted root inode %llu: not a directory",
825 (unsigned long long)rip->i_ino);
826 xfs_iunlock(rip, XFS_ILOCK_EXCL);
827 error = -EFSCORRUPTED;
830 mp->m_rootip = rip; /* save it */
832 xfs_iunlock(rip, XFS_ILOCK_EXCL);
835 * Initialize realtime inode pointers in the mount structure
837 error = xfs_rtmount_inodes(mp);
840 * Free up the root inode.
842 xfs_warn(mp, "failed to read RT inodes");
847 * If this is a read-only mount defer the superblock updates until
848 * the next remount into writeable mode. Otherwise we would never
849 * perform the update e.g. for the root filesystem.
851 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
852 error = xfs_sync_sb(mp, false);
854 xfs_warn(mp, "failed to write sb changes");
860 * Initialise the XFS quota management subsystem for this mount
862 if (XFS_IS_QUOTA_ON(mp)) {
863 error = xfs_qm_newmount(mp, "amount, "aflags);
868 * If a file system had quotas running earlier, but decided to
869 * mount without -o uquota/pquota/gquota options, revoke the
870 * quotachecked license.
872 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
873 xfs_notice(mp, "resetting quota flags");
874 error = xfs_mount_reset_sbqflags(mp);
881 * Finish recovering the file system. This part needed to be delayed
882 * until after the root and real-time bitmap inodes were consistently
883 * read in. Temporarily create per-AG space reservations for metadata
884 * btree shape changes because space freeing transactions (for inode
885 * inactivation) require the per-AG reservation in lieu of reserving
888 error = xfs_fs_reserve_ag_blocks(mp);
889 if (error && error == -ENOSPC)
891 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
892 error = xfs_log_mount_finish(mp);
893 xfs_fs_unreserve_ag_blocks(mp);
895 xfs_warn(mp, "log mount finish failed");
900 * Now the log is fully replayed, we can transition to full read-only
901 * mode for read-only mounts. This will sync all the metadata and clean
902 * the log so that the recovery we just performed does not have to be
903 * replayed again on the next mount.
905 * We use the same quiesce mechanism as the rw->ro remount, as they are
906 * semantically identical operations.
908 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
912 * Complete the quota initialisation, post-log-replay component.
915 ASSERT(mp->m_qflags == 0);
916 mp->m_qflags = quotaflags;
918 xfs_qm_mount_quotas(mp);
922 * Now we are mounted, reserve a small amount of unused space for
923 * privileged transactions. This is needed so that transaction
924 * space required for critical operations can dip into this pool
925 * when at ENOSPC. This is needed for operations like create with
926 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
927 * are not allowed to use this reserved space.
929 * This may drive us straight to ENOSPC on mount, but that implies
930 * we were already there on the last unmount. Warn if this occurs.
932 if (!xfs_is_readonly(mp)) {
933 resblks = xfs_default_resblks(mp);
934 error = xfs_reserve_blocks(mp, &resblks, NULL);
937 "Unable to allocate reserve blocks. Continuing without reserve pool.");
939 /* Reserve AG blocks for future btree expansion. */
940 error = xfs_fs_reserve_ag_blocks(mp);
941 if (error && error != -ENOSPC)
948 xfs_fs_unreserve_ag_blocks(mp);
949 xfs_qm_unmount_quotas(mp);
951 xfs_rtunmount_inodes(mp);
954 /* Clean out dquots that might be in memory after quotacheck. */
958 * Inactivate all inodes that might still be in memory after a log
959 * intent recovery failure so that reclaim can free them. Metadata
960 * inodes and the root directory shouldn't need inactivation, but the
961 * mount failed for some reason, so pull down all the state and flee.
963 xfs_inodegc_flush(mp);
966 * Flush all inode reclamation work and flush the log.
967 * We have to do this /after/ rtunmount and qm_unmount because those
968 * two will have scheduled delayed reclaim for the rt/quota inodes.
970 * This is slightly different from the unmountfs call sequence
971 * because we could be tearing down a partially set up mount. In
972 * particular, if log_mount_finish fails we bail out without calling
973 * qm_unmount_quotas and therefore rely on qm_unmount to release the
976 xfs_unmount_flush_inodes(mp);
978 xfs_log_mount_cancel(mp);
979 out_inodegc_shrinker:
980 unregister_shrinker(&mp->m_inodegc_shrinker);
982 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
983 xfs_buftarg_drain(mp->m_logdev_targp);
984 xfs_buftarg_drain(mp->m_ddev_targp);
990 xfs_uuid_unmount(mp);
992 xfs_errortag_del(mp);
993 out_remove_error_sysfs:
994 xfs_error_sysfs_del(mp);
996 xfs_sysfs_del(&mp->m_stats.xs_kobj);
998 xfs_sysfs_del(&mp->m_kobj);
1004 * This flushes out the inodes,dquots and the superblock, unmounts the
1005 * log and makes sure that incore structures are freed.
1009 struct xfs_mount *mp)
1015 * Perform all on-disk metadata updates required to inactivate inodes
1016 * that the VFS evicted earlier in the unmount process. Freeing inodes
1017 * and discarding CoW fork preallocations can cause shape changes to
1018 * the free inode and refcount btrees, respectively, so we must finish
1019 * this before we discard the metadata space reservations. Metadata
1020 * inodes and the root directory do not require inactivation.
1022 xfs_inodegc_flush(mp);
1024 xfs_blockgc_stop(mp);
1025 xfs_fs_unreserve_ag_blocks(mp);
1026 xfs_qm_unmount_quotas(mp);
1027 xfs_rtunmount_inodes(mp);
1028 xfs_irele(mp->m_rootip);
1030 xfs_unmount_flush_inodes(mp);
1035 * Unreserve any blocks we have so that when we unmount we don't account
1036 * the reserved free space as used. This is really only necessary for
1037 * lazy superblock counting because it trusts the incore superblock
1038 * counters to be absolutely correct on clean unmount.
1040 * We don't bother correcting this elsewhere for lazy superblock
1041 * counting because on mount of an unclean filesystem we reconstruct the
1042 * correct counter value and this is irrelevant.
1044 * For non-lazy counter filesystems, this doesn't matter at all because
1045 * we only every apply deltas to the superblock and hence the incore
1046 * value does not matter....
1049 error = xfs_reserve_blocks(mp, &resblks, NULL);
1051 xfs_warn(mp, "Unable to free reserved block pool. "
1052 "Freespace may not be correct on next mount.");
1054 xfs_log_unmount(mp);
1056 xfs_uuid_unmount(mp);
1059 xfs_errortag_clearall(mp);
1061 unregister_shrinker(&mp->m_inodegc_shrinker);
1064 xfs_errortag_del(mp);
1065 xfs_error_sysfs_del(mp);
1066 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1067 xfs_sysfs_del(&mp->m_kobj);
1071 * Determine whether modifications can proceed. The caller specifies the minimum
1072 * freeze level for which modifications should not be allowed. This allows
1073 * certain operations to proceed while the freeze sequence is in progress, if
1078 struct xfs_mount *mp,
1081 ASSERT(level > SB_UNFROZEN);
1082 if ((mp->m_super->s_writers.frozen >= level) ||
1083 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1091 struct xfs_mount *mp,
1102 * If the reserve pool is depleted, put blocks back into it
1103 * first. Most of the time the pool is full.
1105 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1106 percpu_counter_add(&mp->m_fdblocks, delta);
1110 spin_lock(&mp->m_sb_lock);
1111 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1113 if (res_used > delta) {
1114 mp->m_resblks_avail += delta;
1117 mp->m_resblks_avail = mp->m_resblks;
1118 percpu_counter_add(&mp->m_fdblocks, delta);
1120 spin_unlock(&mp->m_sb_lock);
1125 * Taking blocks away, need to be more accurate the closer we
1128 * If the counter has a value of less than 2 * max batch size,
1129 * then make everything serialise as we are real close to
1132 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1133 XFS_FDBLOCKS_BATCH) < 0)
1136 batch = XFS_FDBLOCKS_BATCH;
1139 * Set aside allocbt blocks because these blocks are tracked as free
1140 * space but not available for allocation. Technically this means that a
1141 * single reservation cannot consume all remaining free space, but the
1142 * ratio of allocbt blocks to usable free blocks should be rather small.
1143 * The tradeoff without this is that filesystems that maintain high
1144 * perag block reservations can over reserve physical block availability
1145 * and fail physical allocation, which leads to much more serious
1146 * problems (i.e. transaction abort, pagecache discards, etc.) than
1147 * slightly premature -ENOSPC.
1149 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1150 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1151 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1152 XFS_FDBLOCKS_BATCH) >= 0) {
1158 * lock up the sb for dipping into reserves before releasing the space
1159 * that took us to ENOSPC.
1161 spin_lock(&mp->m_sb_lock);
1162 percpu_counter_add(&mp->m_fdblocks, -delta);
1164 goto fdblocks_enospc;
1166 lcounter = (long long)mp->m_resblks_avail + delta;
1167 if (lcounter >= 0) {
1168 mp->m_resblks_avail = lcounter;
1169 spin_unlock(&mp->m_sb_lock);
1173 "Reserve blocks depleted! Consider increasing reserve pool size.");
1176 spin_unlock(&mp->m_sb_lock);
1182 struct xfs_mount *mp,
1188 spin_lock(&mp->m_sb_lock);
1189 lcounter = mp->m_sb.sb_frextents + delta;
1193 mp->m_sb.sb_frextents = lcounter;
1194 spin_unlock(&mp->m_sb_lock);
1199 * Used to free the superblock along various error paths.
1203 struct xfs_mount *mp)
1205 struct xfs_buf *bp = mp->m_sb_bp;
1213 * If the underlying (data/log/rt) device is readonly, there are some
1214 * operations that cannot proceed.
1217 xfs_dev_is_read_only(
1218 struct xfs_mount *mp,
1221 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1222 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1223 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1224 xfs_notice(mp, "%s required on read-only device.", message);
1225 xfs_notice(mp, "write access unavailable, cannot proceed.");
1231 /* Force the summary counters to be recalculated at next mount. */
1233 xfs_force_summary_recalc(
1234 struct xfs_mount *mp)
1236 if (!xfs_has_lazysbcount(mp))
1239 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1243 * Enable a log incompat feature flag in the primary superblock. The caller
1244 * cannot have any other transactions in progress.
1247 xfs_add_incompat_log_feature(
1248 struct xfs_mount *mp,
1251 struct xfs_dsb *dsb;
1254 ASSERT(hweight32(feature) == 1);
1255 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1258 * Force the log to disk and kick the background AIL thread to reduce
1259 * the chances that the bwrite will stall waiting for the AIL to unpin
1260 * the primary superblock buffer. This isn't a data integrity
1261 * operation, so we don't need a synchronous push.
1263 error = xfs_log_force(mp, XFS_LOG_SYNC);
1266 xfs_ail_push_all(mp->m_ail);
1269 * Lock the primary superblock buffer to serialize all callers that
1270 * are trying to set feature bits.
1272 xfs_buf_lock(mp->m_sb_bp);
1273 xfs_buf_hold(mp->m_sb_bp);
1275 if (xfs_is_shutdown(mp)) {
1280 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1284 * Write the primary superblock to disk immediately, because we need
1285 * the log_incompat bit to be set in the primary super now to protect
1286 * the log items that we're going to commit later.
1288 dsb = mp->m_sb_bp->b_addr;
1289 xfs_sb_to_disk(dsb, &mp->m_sb);
1290 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1291 error = xfs_bwrite(mp->m_sb_bp);
1296 * Add the feature bits to the incore superblock before we unlock the
1299 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1300 xfs_buf_relse(mp->m_sb_bp);
1302 /* Log the superblock to disk. */
1303 return xfs_sync_sb(mp, false);
1305 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1307 xfs_buf_relse(mp->m_sb_bp);
1312 * Clear all the log incompat flags from the superblock.
1314 * The caller cannot be in a transaction, must ensure that the log does not
1315 * contain any log items protected by any log incompat bit, and must ensure
1316 * that there are no other threads that depend on the state of the log incompat
1317 * feature flags in the primary super.
1319 * Returns true if the superblock is dirty.
1322 xfs_clear_incompat_log_features(
1323 struct xfs_mount *mp)
1327 if (!xfs_has_crc(mp) ||
1328 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1329 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1330 xfs_is_shutdown(mp))
1334 * Update the incore superblock. We synchronize on the primary super
1335 * buffer lock to be consistent with the add function, though at least
1336 * in theory this shouldn't be necessary.
1338 xfs_buf_lock(mp->m_sb_bp);
1339 xfs_buf_hold(mp->m_sb_bp);
1341 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1342 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1343 xfs_info(mp, "Clearing log incompat feature flags.");
1344 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1348 xfs_buf_relse(mp->m_sb_bp);
1353 * Update the in-core delayed block counter.
1355 * We prefer to update the counter without having to take a spinlock for every
1356 * counter update (i.e. batching). Each change to delayed allocation
1357 * reservations can change can easily exceed the default percpu counter
1358 * batching, so we use a larger batch factor here.
1360 * Note that we don't currently have any callers requiring fast summation
1361 * (e.g. percpu_counter_read) so we can use a big batch value here.
1363 #define XFS_DELALLOC_BATCH (4096)
1366 struct xfs_mount *mp,
1369 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1370 XFS_DELALLOC_BATCH);