1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_trans.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_alloc.h"
27 #include "xfs_ialloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_cksum.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_error.h"
35 #include "xfs_rmap_item.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_refcount_item.h"
38 #include "xfs_bmap_item.h"
40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
47 xlog_clear_stale_blocks(
52 xlog_recover_check_summary(
55 #define xlog_recover_check_summary(log)
58 xlog_do_recovery_pass(
59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
62 * This structure is used during recovery to record the buf log items which
63 * have been canceled and should not be replayed.
65 struct xfs_buf_cancel {
69 struct list_head bc_list;
73 * Sector aligned buffer routines for buffer create/read/write/access
77 * Verify the log-relative block number and length in basic blocks are valid for
78 * an operation involving the given XFS log buffer. Returns true if the fields
79 * are valid, false otherwise.
87 if (blk_no < 0 || blk_no >= log->l_logBBsize)
89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
107 * Pass log block 0 since we don't have an addr yet, buffer will be
110 if (!xlog_verify_bp(log, 0, nbblks)) {
111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
120 * requested size to accommodate the basic blocks required
121 * for complete log sectors.
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
131 * there's space to accommodate this possibility.
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
163 ASSERT(offset + nbblks <= bp->b_length);
164 return bp->b_addr + BBTOB(offset);
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
180 if (!xlog_verify_bp(log, blk_no, nbblks)) {
182 "Invalid log block/length (0x%llx, 0x%x) for buffer",
184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
185 return -EFSCORRUPTED;
188 blk_no = round_down(blk_no, log->l_sectBBsize);
189 nbblks = round_up(nbblks, log->l_sectBBsize);
192 ASSERT(nbblks <= bp->b_length);
194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
195 bp->b_flags |= XBF_READ;
196 bp->b_io_length = nbblks;
199 error = xfs_buf_submit(bp);
200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
201 xfs_buf_ioerror_alert(bp, __func__);
215 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
219 *offset = xlog_align(log, blk_no, nbblks, bp);
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
230 xfs_daddr_t blk_no, /* block to read from */
231 int nbblks, /* blocks to read */
235 char *orig_offset = bp->b_addr;
236 int orig_len = BBTOB(bp->b_length);
239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
243 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245 /* must reset buffer pointer even on error */
246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
266 if (!xlog_verify_bp(log, blk_no, nbblks)) {
268 "Invalid log block/length (0x%llx, 0x%x) for buffer",
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 return -EFSCORRUPTED;
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
278 ASSERT(nbblks <= bp->b_length);
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
283 bp->b_io_length = nbblks;
286 error = xfs_bwrite(bp);
288 xfs_buf_ioerror_alert(bp, __func__);
295 * dump debug superblock and log record information
298 xlog_header_check_dump(
300 xlog_rec_header_t *head)
302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
304 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
308 #define xlog_header_check_dump(mp, head)
312 * check log record header for recovery
315 xlog_header_check_recover(
317 xlog_rec_header_t *head)
319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
322 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 * a dirty log created in IRIX.
326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 "dirty log written in incompatible format - can't recover");
329 xlog_header_check_dump(mp, head);
330 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 XFS_ERRLEVEL_HIGH, mp);
332 return -EFSCORRUPTED;
333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 "dirty log entry has mismatched uuid - can't recover");
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 XFS_ERRLEVEL_HIGH, mp);
339 return -EFSCORRUPTED;
345 * read the head block of the log and check the header
348 xlog_header_check_mount(
350 xlog_rec_header_t *head)
352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354 if (uuid_is_null(&head->h_fs_uuid)) {
356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
357 * h_fs_uuid is null, we assume this log was last mounted
358 * by IRIX and continue.
360 xfs_warn(mp, "null uuid in log - IRIX style log");
361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
362 xfs_warn(mp, "log has mismatched uuid - can't recover");
363 xlog_header_check_dump(mp, head);
364 XFS_ERROR_REPORT("xlog_header_check_mount",
365 XFS_ERRLEVEL_HIGH, mp);
366 return -EFSCORRUPTED;
377 * We're not going to bother about retrying
378 * this during recovery. One strike!
380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
388 * On v5 supers, a bli could be attached to update the metadata LSN.
392 xfs_buf_item_relse(bp);
393 ASSERT(bp->b_log_item == NULL);
400 * This routine finds (to an approximation) the first block in the physical
401 * log which contains the given cycle. It uses a binary search algorithm.
402 * Note that the algorithm can not be perfect because the disk will not
403 * necessarily be perfect.
406 xlog_find_cycle_start(
409 xfs_daddr_t first_blk,
410 xfs_daddr_t *last_blk,
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 while (mid_blk != first_blk && mid_blk != end_blk) {
422 error = xlog_bread(log, mid_blk, 1, bp, &offset);
425 mid_cycle = xlog_get_cycle(offset);
426 if (mid_cycle == cycle)
427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
430 mid_blk = BLK_AVG(first_blk, end_blk);
432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
433 (mid_blk == end_blk && mid_blk-1 == first_blk));
441 * Check that a range of blocks does not contain stop_on_cycle_no.
442 * Fill in *new_blk with the block offset where such a block is
443 * found, or with -1 (an invalid block number) if there is no such
444 * block in the range. The scan needs to occur from front to back
445 * and the pointer into the region must be updated since a later
446 * routine will need to perform another test.
449 xlog_find_verify_cycle(
451 xfs_daddr_t start_blk,
453 uint stop_on_cycle_no,
454 xfs_daddr_t *new_blk)
464 * Greedily allocate a buffer big enough to handle the full
465 * range of basic blocks we'll be examining. If that fails,
466 * try a smaller size. We need to be able to read at least
467 * a log sector, or we're out of luck.
469 bufblks = 1 << ffs(nbblks);
470 while (bufblks > log->l_logBBsize)
472 while (!(bp = xlog_get_bp(log, bufblks))) {
474 if (bufblks < log->l_sectBBsize)
478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
481 bcount = min(bufblks, (start_blk + nbblks - i));
483 error = xlog_bread(log, i, bcount, bp, &buf);
487 for (j = 0; j < bcount; j++) {
488 cycle = xlog_get_cycle(buf);
489 if (cycle == stop_on_cycle_no) {
506 * Potentially backup over partial log record write.
508 * In the typical case, last_blk is the number of the block directly after
509 * a good log record. Therefore, we subtract one to get the block number
510 * of the last block in the given buffer. extra_bblks contains the number
511 * of blocks we would have read on a previous read. This happens when the
512 * last log record is split over the end of the physical log.
514 * extra_bblks is the number of blocks potentially verified on a previous
515 * call to this routine.
518 xlog_find_verify_log_record(
520 xfs_daddr_t start_blk,
521 xfs_daddr_t *last_blk,
527 xlog_rec_header_t *head = NULL;
530 int num_blks = *last_blk - start_blk;
533 ASSERT(start_blk != 0 || *last_blk != start_blk);
535 if (!(bp = xlog_get_bp(log, num_blks))) {
536 if (!(bp = xlog_get_bp(log, 1)))
540 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
543 offset += ((num_blks - 1) << BBSHIFT);
546 for (i = (*last_blk) - 1; i >= 0; i--) {
548 /* valid log record not found */
550 "Log inconsistent (didn't find previous header)");
557 error = xlog_bread(log, i, 1, bp, &offset);
562 head = (xlog_rec_header_t *)offset;
564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
572 * We hit the beginning of the physical log & still no header. Return
573 * to caller. If caller can handle a return of -1, then this routine
574 * will be called again for the end of the physical log.
582 * We have the final block of the good log (the first block
583 * of the log record _before_ the head. So we check the uuid.
585 if ((error = xlog_header_check_mount(log->l_mp, head)))
589 * We may have found a log record header before we expected one.
590 * last_blk will be the 1st block # with a given cycle #. We may end
591 * up reading an entire log record. In this case, we don't want to
592 * reset last_blk. Only when last_blk points in the middle of a log
593 * record do we update last_blk.
595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
596 uint h_size = be32_to_cpu(head->h_size);
598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
599 if (h_size % XLOG_HEADER_CYCLE_SIZE)
605 if (*last_blk - i + extra_bblks !=
606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
615 * Head is defined to be the point of the log where the next log write
616 * could go. This means that incomplete LR writes at the end are
617 * eliminated when calculating the head. We aren't guaranteed that previous
618 * LR have complete transactions. We only know that a cycle number of
619 * current cycle number -1 won't be present in the log if we start writing
620 * from our current block number.
622 * last_blk contains the block number of the first block with a given
625 * Return: zero if normal, non-zero if error.
630 xfs_daddr_t *return_head_blk)
634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
636 uint first_half_cycle, last_half_cycle;
638 int error, log_bbnum = log->l_logBBsize;
640 /* Is the end of the log device zeroed? */
641 error = xlog_find_zeroed(log, &first_blk);
643 xfs_warn(log->l_mp, "empty log check failed");
647 *return_head_blk = first_blk;
649 /* Is the whole lot zeroed? */
651 /* Linux XFS shouldn't generate totally zeroed logs -
652 * mkfs etc write a dummy unmount record to a fresh
653 * log so we can store the uuid in there
655 xfs_warn(log->l_mp, "totally zeroed log");
661 first_blk = 0; /* get cycle # of 1st block */
662 bp = xlog_get_bp(log, 1);
666 error = xlog_bread(log, 0, 1, bp, &offset);
670 first_half_cycle = xlog_get_cycle(offset);
672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
673 error = xlog_bread(log, last_blk, 1, bp, &offset);
677 last_half_cycle = xlog_get_cycle(offset);
678 ASSERT(last_half_cycle != 0);
681 * If the 1st half cycle number is equal to the last half cycle number,
682 * then the entire log is stamped with the same cycle number. In this
683 * case, head_blk can't be set to zero (which makes sense). The below
684 * math doesn't work out properly with head_blk equal to zero. Instead,
685 * we set it to log_bbnum which is an invalid block number, but this
686 * value makes the math correct. If head_blk doesn't changed through
687 * all the tests below, *head_blk is set to zero at the very end rather
688 * than log_bbnum. In a sense, log_bbnum and zero are the same block
689 * in a circular file.
691 if (first_half_cycle == last_half_cycle) {
693 * In this case we believe that the entire log should have
694 * cycle number last_half_cycle. We need to scan backwards
695 * from the end verifying that there are no holes still
696 * containing last_half_cycle - 1. If we find such a hole,
697 * then the start of that hole will be the new head. The
698 * simple case looks like
699 * x | x ... | x - 1 | x
700 * Another case that fits this picture would be
701 * x | x + 1 | x ... | x
702 * In this case the head really is somewhere at the end of the
703 * log, as one of the latest writes at the beginning was
706 * x | x + 1 | x ... | x - 1 | x
707 * This is really the combination of the above two cases, and
708 * the head has to end up at the start of the x-1 hole at the
711 * In the 256k log case, we will read from the beginning to the
712 * end of the log and search for cycle numbers equal to x-1.
713 * We don't worry about the x+1 blocks that we encounter,
714 * because we know that they cannot be the head since the log
717 head_blk = log_bbnum;
718 stop_on_cycle = last_half_cycle - 1;
721 * In this case we want to find the first block with cycle
722 * number matching last_half_cycle. We expect the log to be
724 * x + 1 ... | x ... | x
725 * The first block with cycle number x (last_half_cycle) will
726 * be where the new head belongs. First we do a binary search
727 * for the first occurrence of last_half_cycle. The binary
728 * search may not be totally accurate, so then we scan back
729 * from there looking for occurrences of last_half_cycle before
730 * us. If that backwards scan wraps around the beginning of
731 * the log, then we look for occurrences of last_half_cycle - 1
732 * at the end of the log. The cases we're looking for look
734 * v binary search stopped here
735 * x + 1 ... | x | x + 1 | x ... | x
736 * ^ but we want to locate this spot
738 * <---------> less than scan distance
739 * x + 1 ... | x ... | x - 1 | x
740 * ^ we want to locate this spot
742 stop_on_cycle = last_half_cycle;
743 if ((error = xlog_find_cycle_start(log, bp, first_blk,
744 &head_blk, last_half_cycle)))
749 * Now validate the answer. Scan back some number of maximum possible
750 * blocks and make sure each one has the expected cycle number. The
751 * maximum is determined by the total possible amount of buffering
752 * in the in-core log. The following number can be made tighter if
753 * we actually look at the block size of the filesystem.
755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
756 if (head_blk >= num_scan_bblks) {
758 * We are guaranteed that the entire check can be performed
761 start_blk = head_blk - num_scan_bblks;
762 if ((error = xlog_find_verify_cycle(log,
763 start_blk, num_scan_bblks,
764 stop_on_cycle, &new_blk)))
768 } else { /* need to read 2 parts of log */
770 * We are going to scan backwards in the log in two parts.
771 * First we scan the physical end of the log. In this part
772 * of the log, we are looking for blocks with cycle number
773 * last_half_cycle - 1.
774 * If we find one, then we know that the log starts there, as
775 * we've found a hole that didn't get written in going around
776 * the end of the physical log. The simple case for this is
777 * x + 1 ... | x ... | x - 1 | x
778 * <---------> less than scan distance
779 * If all of the blocks at the end of the log have cycle number
780 * last_half_cycle, then we check the blocks at the start of
781 * the log looking for occurrences of last_half_cycle. If we
782 * find one, then our current estimate for the location of the
783 * first occurrence of last_half_cycle is wrong and we move
784 * back to the hole we've found. This case looks like
785 * x + 1 ... | x | x + 1 | x ...
786 * ^ binary search stopped here
787 * Another case we need to handle that only occurs in 256k
789 * x + 1 ... | x ... | x+1 | x ...
790 * ^ binary search stops here
791 * In a 256k log, the scan at the end of the log will see the
792 * x + 1 blocks. We need to skip past those since that is
793 * certainly not the head of the log. By searching for
794 * last_half_cycle-1 we accomplish that.
796 ASSERT(head_blk <= INT_MAX &&
797 (xfs_daddr_t) num_scan_bblks >= head_blk);
798 start_blk = log_bbnum - (num_scan_bblks - head_blk);
799 if ((error = xlog_find_verify_cycle(log, start_blk,
800 num_scan_bblks - (int)head_blk,
801 (stop_on_cycle - 1), &new_blk)))
809 * Scan beginning of log now. The last part of the physical
810 * log is good. This scan needs to verify that it doesn't find
811 * the last_half_cycle.
814 ASSERT(head_blk <= INT_MAX);
815 if ((error = xlog_find_verify_cycle(log,
816 start_blk, (int)head_blk,
817 stop_on_cycle, &new_blk)))
825 * Now we need to make sure head_blk is not pointing to a block in
826 * the middle of a log record.
828 num_scan_bblks = XLOG_REC_SHIFT(log);
829 if (head_blk >= num_scan_bblks) {
830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
832 /* start ptr at last block ptr before head_blk */
833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
840 ASSERT(head_blk <= INT_MAX);
841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
845 /* We hit the beginning of the log during our search */
846 start_blk = log_bbnum - (num_scan_bblks - head_blk);
848 ASSERT(start_blk <= INT_MAX &&
849 (xfs_daddr_t) log_bbnum-start_blk >= 0);
850 ASSERT(head_blk <= INT_MAX);
851 error = xlog_find_verify_log_record(log, start_blk,
852 &new_blk, (int)head_blk);
857 if (new_blk != log_bbnum)
864 if (head_blk == log_bbnum)
865 *return_head_blk = 0;
867 *return_head_blk = head_blk;
869 * When returning here, we have a good block number. Bad block
870 * means that during a previous crash, we didn't have a clean break
871 * from cycle number N to cycle number N-1. In this case, we need
872 * to find the first block with cycle number N-1.
880 xfs_warn(log->l_mp, "failed to find log head");
885 * Seek backwards in the log for log record headers.
887 * Given a starting log block, walk backwards until we find the provided number
888 * of records or hit the provided tail block. The return value is the number of
889 * records encountered or a negative error code. The log block and buffer
890 * pointer of the last record seen are returned in rblk and rhead respectively.
893 xlog_rseek_logrec_hdr(
895 xfs_daddr_t head_blk,
896 xfs_daddr_t tail_blk,
900 struct xlog_rec_header **rhead,
912 * Walk backwards from the head block until we hit the tail or the first
915 end_blk = head_blk > tail_blk ? tail_blk : 0;
916 for (i = (int) head_blk - 1; i >= end_blk; i--) {
917 error = xlog_bread(log, i, 1, bp, &offset);
921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
923 *rhead = (struct xlog_rec_header *) offset;
924 if (++found == count)
930 * If we haven't hit the tail block or the log record header count,
931 * start looking again from the end of the physical log. Note that
932 * callers can pass head == tail if the tail is not yet known.
934 if (tail_blk >= head_blk && found != count) {
935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
936 error = xlog_bread(log, i, 1, bp, &offset);
940 if (*(__be32 *)offset ==
941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
944 *rhead = (struct xlog_rec_header *) offset;
945 if (++found == count)
958 * Seek forward in the log for log record headers.
960 * Given head and tail blocks, walk forward from the tail block until we find
961 * the provided number of records or hit the head block. The return value is the
962 * number of records encountered or a negative error code. The log block and
963 * buffer pointer of the last record seen are returned in rblk and rhead
967 xlog_seek_logrec_hdr(
969 xfs_daddr_t head_blk,
970 xfs_daddr_t tail_blk,
974 struct xlog_rec_header **rhead,
986 * Walk forward from the tail block until we hit the head or the last
989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
990 for (i = (int) tail_blk; i <= end_blk; i++) {
991 error = xlog_bread(log, i, 1, bp, &offset);
995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
997 *rhead = (struct xlog_rec_header *) offset;
998 if (++found == count)
1004 * If we haven't hit the head block or the log record header count,
1005 * start looking again from the start of the physical log.
1007 if (tail_blk > head_blk && found != count) {
1008 for (i = 0; i < (int) head_blk; i++) {
1009 error = xlog_bread(log, i, 1, bp, &offset);
1013 if (*(__be32 *)offset ==
1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1017 *rhead = (struct xlog_rec_header *) offset;
1018 if (++found == count)
1031 * Calculate distance from head to tail (i.e., unused space in the log).
1036 xfs_daddr_t head_blk,
1037 xfs_daddr_t tail_blk)
1039 if (head_blk < tail_blk)
1040 return tail_blk - head_blk;
1042 return tail_blk + (log->l_logBBsize - head_blk);
1046 * Verify the log tail. This is particularly important when torn or incomplete
1047 * writes have been detected near the front of the log and the head has been
1048 * walked back accordingly.
1050 * We also have to handle the case where the tail was pinned and the head
1051 * blocked behind the tail right before a crash. If the tail had been pushed
1052 * immediately prior to the crash and the subsequent checkpoint was only
1053 * partially written, it's possible it overwrote the last referenced tail in the
1054 * log with garbage. This is not a coherency problem because the tail must have
1055 * been pushed before it can be overwritten, but appears as log corruption to
1056 * recovery because we have no way to know the tail was updated if the
1057 * subsequent checkpoint didn't write successfully.
1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060 * offending record is within max iclog bufs from the head, walk the tail
1061 * forward and retry until a valid tail is found or corruption is detected out
1062 * of the range of a possible overwrite.
1067 xfs_daddr_t head_blk,
1068 xfs_daddr_t *tail_blk,
1071 struct xlog_rec_header *thead;
1073 xfs_daddr_t first_bad;
1076 xfs_daddr_t tmp_tail;
1077 xfs_daddr_t orig_tail = *tail_blk;
1079 bp = xlog_get_bp(log, 1);
1084 * Make sure the tail points to a record (returns positive count on
1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1088 &tmp_tail, &thead, &wrapped);
1091 if (*tail_blk != tmp_tail)
1092 *tail_blk = tmp_tail;
1095 * Run a CRC check from the tail to the head. We can't just check
1096 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 * blocks cleared during the search for the head/tail. These blocks are
1098 * overwritten with zero-length records and thus record count is not a
1099 * reliable indicator of the iclog state before a crash.
1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1103 XLOG_RECOVER_CRCPASS, &first_bad);
1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1108 * Is corruption within range of the head? If so, retry from
1109 * the next record. Otherwise return an error.
1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1115 /* skip to the next record; returns positive count on success */
1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1117 &tmp_tail, &thead, &wrapped);
1121 *tail_blk = tmp_tail;
1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1124 XLOG_RECOVER_CRCPASS, &first_bad);
1127 if (!error && *tail_blk != orig_tail)
1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 orig_tail, *tail_blk);
1137 * Detect and trim torn writes from the head of the log.
1139 * Storage without sector atomicity guarantees can result in torn writes in the
1140 * log in the event of a crash. Our only means to detect this scenario is via
1141 * CRC verification. While we can't always be certain that CRC verification
1142 * failure is due to a torn write vs. an unrelated corruption, we do know that
1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145 * the log and treat failures in this range as torn writes as a matter of
1146 * policy. In the event of CRC failure, the head is walked back to the last good
1147 * record in the log and the tail is updated from that record and verified.
1152 xfs_daddr_t *head_blk, /* in/out: unverified head */
1153 xfs_daddr_t *tail_blk, /* out: tail block */
1155 xfs_daddr_t *rhead_blk, /* start blk of last record */
1156 struct xlog_rec_header **rhead, /* ptr to last record */
1157 bool *wrapped) /* last rec. wraps phys. log */
1159 struct xlog_rec_header *tmp_rhead;
1160 struct xfs_buf *tmp_bp;
1161 xfs_daddr_t first_bad;
1162 xfs_daddr_t tmp_rhead_blk;
1168 * Check the head of the log for torn writes. Search backwards from the
1169 * head until we hit the tail or the maximum number of log record I/Os
1170 * that could have been in flight at one time. Use a temporary buffer so
1171 * we don't trash the rhead/bp pointers from the caller.
1173 tmp_bp = xlog_get_bp(log, 1);
1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1178 &tmp_rhead, &tmp_wrapped);
1179 xlog_put_bp(tmp_bp);
1184 * Now run a CRC verification pass over the records starting at the
1185 * block found above to the current head. If a CRC failure occurs, the
1186 * log block of the first bad record is saved in first_bad.
1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1189 XLOG_RECOVER_CRCPASS, &first_bad);
1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1192 * We've hit a potential torn write. Reset the error and warn
1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 first_bad, *head_blk);
1201 * Get the header block and buffer pointer for the last good
1202 * record before the bad record.
1204 * Note that xlog_find_tail() clears the blocks at the new head
1205 * (i.e., the records with invalid CRC) if the cycle number
1206 * matches the the current cycle.
1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1209 rhead_blk, rhead, wrapped);
1212 if (found == 0) /* XXX: right thing to do here? */
1216 * Reset the head block to the starting block of the first bad
1217 * log record and set the tail block based on the last good
1220 * Bail out if the updated head/tail match as this indicates
1221 * possible corruption outside of the acceptable
1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1224 *head_blk = first_bad;
1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1226 if (*head_blk == *tail_blk) {
1234 return xlog_verify_tail(log, *head_blk, tail_blk,
1235 be32_to_cpu((*rhead)->h_size));
1239 * We need to make sure we handle log wrapping properly, so we can't use the
1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244 * operation here and cast it back to a 64 bit daddr on return.
1246 static inline xfs_daddr_t
1253 div_s64_rem(bno, log->l_logBBsize, &mod);
1258 * Check whether the head of the log points to an unmount record. In other
1259 * words, determine whether the log is clean. If so, update the in-core state
1263 xlog_check_unmount_rec(
1265 xfs_daddr_t *head_blk,
1266 xfs_daddr_t *tail_blk,
1267 struct xlog_rec_header *rhead,
1268 xfs_daddr_t rhead_blk,
1272 struct xlog_op_header *op_head;
1273 xfs_daddr_t umount_data_blk;
1274 xfs_daddr_t after_umount_blk;
1282 * Look for unmount record. If we find it, then we know there was a
1283 * clean unmount. Since 'i' could be the last block in the physical
1284 * log, we convert to a log block before comparing to the head_blk.
1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 * below. We won't want to clear the unmount record if there is one, so
1288 * we pass the lsn of the unmount record rather than the block after it.
1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1291 int h_size = be32_to_cpu(rhead->h_size);
1292 int h_version = be32_to_cpu(rhead->h_version);
1294 if ((h_version & XLOG_VERSION_2) &&
1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1297 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1306 after_umount_blk = xlog_wrap_logbno(log,
1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1309 if (*head_blk == after_umount_blk &&
1310 be32_to_cpu(rhead->h_num_logops) == 1) {
1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1316 op_head = (struct xlog_op_header *)offset;
1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1319 * Set tail and last sync so that newly written log
1320 * records will point recovery to after the current
1323 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1324 log->l_curr_cycle, after_umount_blk);
1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1326 log->l_curr_cycle, after_umount_blk);
1327 *tail_blk = after_umount_blk;
1339 xfs_daddr_t head_blk,
1340 struct xlog_rec_header *rhead,
1341 xfs_daddr_t rhead_blk,
1345 * Reset log values according to the state of the log when we
1346 * crashed. In the case where head_blk == 0, we bump curr_cycle
1347 * one because the next write starts a new cycle rather than
1348 * continuing the cycle of the last good log record. At this
1349 * point we have guaranteed that all partial log records have been
1350 * accounted for. Therefore, we know that the last good log record
1351 * written was complete and ended exactly on the end boundary
1352 * of the physical log.
1354 log->l_prev_block = rhead_blk;
1355 log->l_curr_block = (int)head_blk;
1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1358 log->l_curr_cycle++;
1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1362 BBTOB(log->l_curr_block));
1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1364 BBTOB(log->l_curr_block));
1368 * Find the sync block number or the tail of the log.
1370 * This will be the block number of the last record to have its
1371 * associated buffers synced to disk. Every log record header has
1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1373 * to get a sync block number. The only concern is to figure out which
1374 * log record header to believe.
1376 * The following algorithm uses the log record header with the largest
1377 * lsn. The entire log record does not need to be valid. We only care
1378 * that the header is valid.
1380 * We could speed up search by using current head_blk buffer, but it is not
1386 xfs_daddr_t *head_blk,
1387 xfs_daddr_t *tail_blk)
1389 xlog_rec_header_t *rhead;
1390 char *offset = NULL;
1393 xfs_daddr_t rhead_blk;
1395 bool wrapped = false;
1399 * Find previous log record
1401 if ((error = xlog_find_head(log, head_blk)))
1403 ASSERT(*head_blk < INT_MAX);
1405 bp = xlog_get_bp(log, 1);
1408 if (*head_blk == 0) { /* special case */
1409 error = xlog_bread(log, 0, 1, bp, &offset);
1413 if (xlog_get_cycle(offset) == 0) {
1415 /* leave all other log inited values alone */
1421 * Search backwards through the log looking for the log record header
1422 * block. This wraps all the way back around to the head so something is
1423 * seriously wrong if we can't find it.
1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1426 &rhead_blk, &rhead, &wrapped);
1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1436 * Set the log state based on the current head record.
1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1439 tail_lsn = atomic64_read(&log->l_tail_lsn);
1442 * Look for an unmount record at the head of the log. This sets the log
1443 * state to determine whether recovery is necessary.
1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1446 rhead_blk, bp, &clean);
1451 * Verify the log head if the log is not clean (e.g., we have anything
1452 * but an unmount record at the head). This uses CRC verification to
1453 * detect and trim torn writes. If discovered, CRC failures are
1454 * considered torn writes and the log head is trimmed accordingly.
1456 * Note that we can only run CRC verification when the log is dirty
1457 * because there's no guarantee that the log data behind an unmount
1458 * record is compatible with the current architecture.
1461 xfs_daddr_t orig_head = *head_blk;
1463 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1464 &rhead_blk, &rhead, &wrapped);
1468 /* update in-core state again if the head changed */
1469 if (*head_blk != orig_head) {
1470 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1472 tail_lsn = atomic64_read(&log->l_tail_lsn);
1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1474 rhead, rhead_blk, bp,
1482 * Note that the unmount was clean. If the unmount was not clean, we
1483 * need to know this to rebuild the superblock counters from the perag
1484 * headers if we have a filesystem using non-persistent counters.
1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1490 * Make sure that there are no blocks in front of the head
1491 * with the same cycle number as the head. This can happen
1492 * because we allow multiple outstanding log writes concurrently,
1493 * and the later writes might make it out before earlier ones.
1495 * We use the lsn from before modifying it so that we'll never
1496 * overwrite the unmount record after a clean unmount.
1498 * Do this only if we are going to recover the filesystem
1500 * NOTE: This used to say "if (!readonly)"
1501 * However on Linux, we can & do recover a read-only filesystem.
1502 * We only skip recovery if NORECOVERY is specified on mount,
1503 * in which case we would not be here.
1505 * But... if the -device- itself is readonly, just skip this.
1506 * We can't recover this device anyway, so it won't matter.
1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1509 error = xlog_clear_stale_blocks(log, tail_lsn);
1515 xfs_warn(log->l_mp, "failed to locate log tail");
1520 * Is the log zeroed at all?
1522 * The last binary search should be changed to perform an X block read
1523 * once X becomes small enough. You can then search linearly through
1524 * the X blocks. This will cut down on the number of reads we need to do.
1526 * If the log is partially zeroed, this routine will pass back the blkno
1527 * of the first block with cycle number 0. It won't have a complete LR
1531 * 0 => the log is completely written to
1532 * 1 => use *blk_no as the first block of the log
1533 * <0 => error has occurred
1538 xfs_daddr_t *blk_no)
1542 uint first_cycle, last_cycle;
1543 xfs_daddr_t new_blk, last_blk, start_blk;
1544 xfs_daddr_t num_scan_bblks;
1545 int error, log_bbnum = log->l_logBBsize;
1549 /* check totally zeroed log */
1550 bp = xlog_get_bp(log, 1);
1553 error = xlog_bread(log, 0, 1, bp, &offset);
1557 first_cycle = xlog_get_cycle(offset);
1558 if (first_cycle == 0) { /* completely zeroed log */
1564 /* check partially zeroed log */
1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1569 last_cycle = xlog_get_cycle(offset);
1570 if (last_cycle != 0) { /* log completely written to */
1575 /* we have a partially zeroed log */
1576 last_blk = log_bbnum-1;
1577 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1581 * Validate the answer. Because there is no way to guarantee that
1582 * the entire log is made up of log records which are the same size,
1583 * we scan over the defined maximum blocks. At this point, the maximum
1584 * is not chosen to mean anything special. XXXmiken
1586 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1587 ASSERT(num_scan_bblks <= INT_MAX);
1589 if (last_blk < num_scan_bblks)
1590 num_scan_bblks = last_blk;
1591 start_blk = last_blk - num_scan_bblks;
1594 * We search for any instances of cycle number 0 that occur before
1595 * our current estimate of the head. What we're trying to detect is
1596 * 1 ... | 0 | 1 | 0...
1597 * ^ binary search ends here
1599 if ((error = xlog_find_verify_cycle(log, start_blk,
1600 (int)num_scan_bblks, 0, &new_blk)))
1606 * Potentially backup over partial log record write. We don't need
1607 * to search the end of the log because we know it is zero.
1609 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1624 * These are simple subroutines used by xlog_clear_stale_blocks() below
1625 * to initialize a buffer full of empty log record headers and write
1626 * them into the log.
1637 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1639 memset(buf, 0, BBSIZE);
1640 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1641 recp->h_cycle = cpu_to_be32(cycle);
1642 recp->h_version = cpu_to_be32(
1643 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1644 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1645 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1646 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1647 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1651 xlog_write_log_records(
1662 int sectbb = log->l_sectBBsize;
1663 int end_block = start_block + blocks;
1669 * Greedily allocate a buffer big enough to handle the full
1670 * range of basic blocks to be written. If that fails, try
1671 * a smaller size. We need to be able to write at least a
1672 * log sector, or we're out of luck.
1674 bufblks = 1 << ffs(blocks);
1675 while (bufblks > log->l_logBBsize)
1677 while (!(bp = xlog_get_bp(log, bufblks))) {
1679 if (bufblks < sectbb)
1683 /* We may need to do a read at the start to fill in part of
1684 * the buffer in the starting sector not covered by the first
1687 balign = round_down(start_block, sectbb);
1688 if (balign != start_block) {
1689 error = xlog_bread_noalign(log, start_block, 1, bp);
1693 j = start_block - balign;
1696 for (i = start_block; i < end_block; i += bufblks) {
1697 int bcount, endcount;
1699 bcount = min(bufblks, end_block - start_block);
1700 endcount = bcount - j;
1702 /* We may need to do a read at the end to fill in part of
1703 * the buffer in the final sector not covered by the write.
1704 * If this is the same sector as the above read, skip it.
1706 ealign = round_down(end_block, sectbb);
1707 if (j == 0 && (start_block + endcount > ealign)) {
1708 offset = bp->b_addr + BBTOB(ealign - start_block);
1709 error = xlog_bread_offset(log, ealign, sectbb,
1716 offset = xlog_align(log, start_block, endcount, bp);
1717 for (; j < endcount; j++) {
1718 xlog_add_record(log, offset, cycle, i+j,
1719 tail_cycle, tail_block);
1722 error = xlog_bwrite(log, start_block, endcount, bp);
1725 start_block += endcount;
1735 * This routine is called to blow away any incomplete log writes out
1736 * in front of the log head. We do this so that we won't become confused
1737 * if we come up, write only a little bit more, and then crash again.
1738 * If we leave the partial log records out there, this situation could
1739 * cause us to think those partial writes are valid blocks since they
1740 * have the current cycle number. We get rid of them by overwriting them
1741 * with empty log records with the old cycle number rather than the
1744 * The tail lsn is passed in rather than taken from
1745 * the log so that we will not write over the unmount record after a
1746 * clean unmount in a 512 block log. Doing so would leave the log without
1747 * any valid log records in it until a new one was written. If we crashed
1748 * during that time we would not be able to recover.
1751 xlog_clear_stale_blocks(
1755 int tail_cycle, head_cycle;
1756 int tail_block, head_block;
1757 int tail_distance, max_distance;
1761 tail_cycle = CYCLE_LSN(tail_lsn);
1762 tail_block = BLOCK_LSN(tail_lsn);
1763 head_cycle = log->l_curr_cycle;
1764 head_block = log->l_curr_block;
1767 * Figure out the distance between the new head of the log
1768 * and the tail. We want to write over any blocks beyond the
1769 * head that we may have written just before the crash, but
1770 * we don't want to overwrite the tail of the log.
1772 if (head_cycle == tail_cycle) {
1774 * The tail is behind the head in the physical log,
1775 * so the distance from the head to the tail is the
1776 * distance from the head to the end of the log plus
1777 * the distance from the beginning of the log to the
1780 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1781 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1782 XFS_ERRLEVEL_LOW, log->l_mp);
1783 return -EFSCORRUPTED;
1785 tail_distance = tail_block + (log->l_logBBsize - head_block);
1788 * The head is behind the tail in the physical log,
1789 * so the distance from the head to the tail is just
1790 * the tail block minus the head block.
1792 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1793 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1794 XFS_ERRLEVEL_LOW, log->l_mp);
1795 return -EFSCORRUPTED;
1797 tail_distance = tail_block - head_block;
1801 * If the head is right up against the tail, we can't clear
1804 if (tail_distance <= 0) {
1805 ASSERT(tail_distance == 0);
1809 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1811 * Take the smaller of the maximum amount of outstanding I/O
1812 * we could have and the distance to the tail to clear out.
1813 * We take the smaller so that we don't overwrite the tail and
1814 * we don't waste all day writing from the head to the tail
1817 max_distance = min(max_distance, tail_distance);
1819 if ((head_block + max_distance) <= log->l_logBBsize) {
1821 * We can stomp all the blocks we need to without
1822 * wrapping around the end of the log. Just do it
1823 * in a single write. Use the cycle number of the
1824 * current cycle minus one so that the log will look like:
1827 error = xlog_write_log_records(log, (head_cycle - 1),
1828 head_block, max_distance, tail_cycle,
1834 * We need to wrap around the end of the physical log in
1835 * order to clear all the blocks. Do it in two separate
1836 * I/Os. The first write should be from the head to the
1837 * end of the physical log, and it should use the current
1838 * cycle number minus one just like above.
1840 distance = log->l_logBBsize - head_block;
1841 error = xlog_write_log_records(log, (head_cycle - 1),
1842 head_block, distance, tail_cycle,
1849 * Now write the blocks at the start of the physical log.
1850 * This writes the remainder of the blocks we want to clear.
1851 * It uses the current cycle number since we're now on the
1852 * same cycle as the head so that we get:
1853 * n ... n ... | n - 1 ...
1854 * ^^^^^ blocks we're writing
1856 distance = max_distance - (log->l_logBBsize - head_block);
1857 error = xlog_write_log_records(log, head_cycle, 0, distance,
1858 tail_cycle, tail_block);
1866 /******************************************************************************
1868 * Log recover routines
1870 ******************************************************************************
1874 * Sort the log items in the transaction.
1876 * The ordering constraints are defined by the inode allocation and unlink
1877 * behaviour. The rules are:
1879 * 1. Every item is only logged once in a given transaction. Hence it
1880 * represents the last logged state of the item. Hence ordering is
1881 * dependent on the order in which operations need to be performed so
1882 * required initial conditions are always met.
1884 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1885 * there's nothing to replay from them so we can simply cull them
1886 * from the transaction. However, we can't do that until after we've
1887 * replayed all the other items because they may be dependent on the
1888 * cancelled buffer and replaying the cancelled buffer can remove it
1889 * form the cancelled buffer table. Hence they have tobe done last.
1891 * 3. Inode allocation buffers must be replayed before inode items that
1892 * read the buffer and replay changes into it. For filesystems using the
1893 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1894 * treated the same as inode allocation buffers as they create and
1895 * initialise the buffers directly.
1897 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1898 * This ensures that inodes are completely flushed to the inode buffer
1899 * in a "free" state before we remove the unlinked inode list pointer.
1901 * Hence the ordering needs to be inode allocation buffers first, inode items
1902 * second, inode unlink buffers third and cancelled buffers last.
1904 * But there's a problem with that - we can't tell an inode allocation buffer
1905 * apart from a regular buffer, so we can't separate them. We can, however,
1906 * tell an inode unlink buffer from the others, and so we can separate them out
1907 * from all the other buffers and move them to last.
1909 * Hence, 4 lists, in order from head to tail:
1910 * - buffer_list for all buffers except cancelled/inode unlink buffers
1911 * - item_list for all non-buffer items
1912 * - inode_buffer_list for inode unlink buffers
1913 * - cancel_list for the cancelled buffers
1915 * Note that we add objects to the tail of the lists so that first-to-last
1916 * ordering is preserved within the lists. Adding objects to the head of the
1917 * list means when we traverse from the head we walk them in last-to-first
1918 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1919 * but for all other items there may be specific ordering that we need to
1923 xlog_recover_reorder_trans(
1925 struct xlog_recover *trans,
1928 xlog_recover_item_t *item, *n;
1930 LIST_HEAD(sort_list);
1931 LIST_HEAD(cancel_list);
1932 LIST_HEAD(buffer_list);
1933 LIST_HEAD(inode_buffer_list);
1934 LIST_HEAD(inode_list);
1936 list_splice_init(&trans->r_itemq, &sort_list);
1937 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1938 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1940 switch (ITEM_TYPE(item)) {
1941 case XFS_LI_ICREATE:
1942 list_move_tail(&item->ri_list, &buffer_list);
1945 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1946 trace_xfs_log_recover_item_reorder_head(log,
1948 list_move(&item->ri_list, &cancel_list);
1951 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1952 list_move(&item->ri_list, &inode_buffer_list);
1955 list_move_tail(&item->ri_list, &buffer_list);
1959 case XFS_LI_QUOTAOFF:
1968 trace_xfs_log_recover_item_reorder_tail(log,
1970 list_move_tail(&item->ri_list, &inode_list);
1974 "%s: unrecognized type of log operation",
1978 * return the remaining items back to the transaction
1979 * item list so they can be freed in caller.
1981 if (!list_empty(&sort_list))
1982 list_splice_init(&sort_list, &trans->r_itemq);
1988 ASSERT(list_empty(&sort_list));
1989 if (!list_empty(&buffer_list))
1990 list_splice(&buffer_list, &trans->r_itemq);
1991 if (!list_empty(&inode_list))
1992 list_splice_tail(&inode_list, &trans->r_itemq);
1993 if (!list_empty(&inode_buffer_list))
1994 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1995 if (!list_empty(&cancel_list))
1996 list_splice_tail(&cancel_list, &trans->r_itemq);
2001 * Build up the table of buf cancel records so that we don't replay
2002 * cancelled data in the second pass. For buffer records that are
2003 * not cancel records, there is nothing to do here so we just return.
2005 * If we get a cancel record which is already in the table, this indicates
2006 * that the buffer was cancelled multiple times. In order to ensure
2007 * that during pass 2 we keep the record in the table until we reach its
2008 * last occurrence in the log, we keep a reference count in the cancel
2009 * record in the table to tell us how many times we expect to see this
2010 * record during the second pass.
2013 xlog_recover_buffer_pass1(
2015 struct xlog_recover_item *item)
2017 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2018 struct list_head *bucket;
2019 struct xfs_buf_cancel *bcp;
2022 * If this isn't a cancel buffer item, then just return.
2024 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2025 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2030 * Insert an xfs_buf_cancel record into the hash table of them.
2031 * If there is already an identical record, bump its reference count.
2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2034 list_for_each_entry(bcp, bucket, bc_list) {
2035 if (bcp->bc_blkno == buf_f->blf_blkno &&
2036 bcp->bc_len == buf_f->blf_len) {
2038 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2043 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2044 bcp->bc_blkno = buf_f->blf_blkno;
2045 bcp->bc_len = buf_f->blf_len;
2046 bcp->bc_refcount = 1;
2047 list_add_tail(&bcp->bc_list, bucket);
2049 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2054 * Check to see whether the buffer being recovered has a corresponding
2055 * entry in the buffer cancel record table. If it is, return the cancel
2056 * buffer structure to the caller.
2058 STATIC struct xfs_buf_cancel *
2059 xlog_peek_buffer_cancelled(
2063 unsigned short flags)
2065 struct list_head *bucket;
2066 struct xfs_buf_cancel *bcp;
2068 if (!log->l_buf_cancel_table) {
2069 /* empty table means no cancelled buffers in the log */
2070 ASSERT(!(flags & XFS_BLF_CANCEL));
2074 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2075 list_for_each_entry(bcp, bucket, bc_list) {
2076 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2081 * We didn't find a corresponding entry in the table, so return 0 so
2082 * that the buffer is NOT cancelled.
2084 ASSERT(!(flags & XFS_BLF_CANCEL));
2089 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2090 * otherwise return 0. If the buffer is actually a buffer cancel item
2091 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2092 * table and remove it from the table if this is the last reference.
2094 * We remove the cancel record from the table when we encounter its last
2095 * occurrence in the log so that if the same buffer is re-used again after its
2096 * last cancellation we actually replay the changes made at that point.
2099 xlog_check_buffer_cancelled(
2103 unsigned short flags)
2105 struct xfs_buf_cancel *bcp;
2107 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2112 * We've go a match, so return 1 so that the recovery of this buffer
2113 * is cancelled. If this buffer is actually a buffer cancel log
2114 * item, then decrement the refcount on the one in the table and
2115 * remove it if this is the last reference.
2117 if (flags & XFS_BLF_CANCEL) {
2118 if (--bcp->bc_refcount == 0) {
2119 list_del(&bcp->bc_list);
2127 * Perform recovery for a buffer full of inodes. In these buffers, the only
2128 * data which should be recovered is that which corresponds to the
2129 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2130 * data for the inodes is always logged through the inodes themselves rather
2131 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2133 * The only time when buffers full of inodes are fully recovered is when the
2134 * buffer is full of newly allocated inodes. In this case the buffer will
2135 * not be marked as an inode buffer and so will be sent to
2136 * xlog_recover_do_reg_buffer() below during recovery.
2139 xlog_recover_do_inode_buffer(
2140 struct xfs_mount *mp,
2141 xlog_recover_item_t *item,
2143 xfs_buf_log_format_t *buf_f)
2149 int reg_buf_offset = 0;
2150 int reg_buf_bytes = 0;
2151 int next_unlinked_offset;
2153 xfs_agino_t *logged_nextp;
2154 xfs_agino_t *buffer_nextp;
2156 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159 * Post recovery validation only works properly on CRC enabled
2162 if (xfs_sb_version_hascrc(&mp->m_sb))
2163 bp->b_ops = &xfs_inode_buf_ops;
2165 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2166 for (i = 0; i < inodes_per_buf; i++) {
2167 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2168 offsetof(xfs_dinode_t, di_next_unlinked);
2170 while (next_unlinked_offset >=
2171 (reg_buf_offset + reg_buf_bytes)) {
2173 * The next di_next_unlinked field is beyond
2174 * the current logged region. Find the next
2175 * logged region that contains or is beyond
2176 * the current di_next_unlinked field.
2179 bit = xfs_next_bit(buf_f->blf_data_map,
2180 buf_f->blf_map_size, bit);
2183 * If there are no more logged regions in the
2184 * buffer, then we're done.
2189 nbits = xfs_contig_bits(buf_f->blf_data_map,
2190 buf_f->blf_map_size, bit);
2192 reg_buf_offset = bit << XFS_BLF_SHIFT;
2193 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2198 * If the current logged region starts after the current
2199 * di_next_unlinked field, then move on to the next
2200 * di_next_unlinked field.
2202 if (next_unlinked_offset < reg_buf_offset)
2205 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2206 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2207 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2208 BBTOB(bp->b_io_length));
2211 * The current logged region contains a copy of the
2212 * current di_next_unlinked field. Extract its value
2213 * and copy it to the buffer copy.
2215 logged_nextp = item->ri_buf[item_index].i_addr +
2216 next_unlinked_offset - reg_buf_offset;
2217 if (unlikely(*logged_nextp == 0)) {
2219 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2220 "Trying to replay bad (0) inode di_next_unlinked field.",
2222 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2223 XFS_ERRLEVEL_LOW, mp);
2224 return -EFSCORRUPTED;
2227 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2228 *buffer_nextp = *logged_nextp;
2231 * If necessary, recalculate the CRC in the on-disk inode. We
2232 * have to leave the inode in a consistent state for whoever
2235 xfs_dinode_calc_crc(mp,
2236 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2244 * V5 filesystems know the age of the buffer on disk being recovered. We can
2245 * have newer objects on disk than we are replaying, and so for these cases we
2246 * don't want to replay the current change as that will make the buffer contents
2247 * temporarily invalid on disk.
2249 * The magic number might not match the buffer type we are going to recover
2250 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2251 * extract the LSN of the existing object in the buffer based on it's current
2252 * magic number. If we don't recognise the magic number in the buffer, then
2253 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2254 * so can recover the buffer.
2256 * Note: we cannot rely solely on magic number matches to determine that the
2257 * buffer has a valid LSN - we also need to verify that it belongs to this
2258 * filesystem, so we need to extract the object's LSN and compare it to that
2259 * which we read from the superblock. If the UUIDs don't match, then we've got a
2260 * stale metadata block from an old filesystem instance that we need to recover
2264 xlog_recover_get_buf_lsn(
2265 struct xfs_mount *mp,
2271 void *blk = bp->b_addr;
2275 /* v4 filesystems always recover immediately */
2276 if (!xfs_sb_version_hascrc(&mp->m_sb))
2277 goto recover_immediately;
2279 magic32 = be32_to_cpu(*(__be32 *)blk);
2281 case XFS_ABTB_CRC_MAGIC:
2282 case XFS_ABTC_CRC_MAGIC:
2283 case XFS_ABTB_MAGIC:
2284 case XFS_ABTC_MAGIC:
2285 case XFS_RMAP_CRC_MAGIC:
2286 case XFS_REFC_CRC_MAGIC:
2287 case XFS_IBT_CRC_MAGIC:
2288 case XFS_IBT_MAGIC: {
2289 struct xfs_btree_block *btb = blk;
2291 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2292 uuid = &btb->bb_u.s.bb_uuid;
2295 case XFS_BMAP_CRC_MAGIC:
2296 case XFS_BMAP_MAGIC: {
2297 struct xfs_btree_block *btb = blk;
2299 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2300 uuid = &btb->bb_u.l.bb_uuid;
2304 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2305 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2307 case XFS_AGFL_MAGIC:
2308 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2309 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2313 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2315 case XFS_SYMLINK_MAGIC:
2316 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2317 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2319 case XFS_DIR3_BLOCK_MAGIC:
2320 case XFS_DIR3_DATA_MAGIC:
2321 case XFS_DIR3_FREE_MAGIC:
2322 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2323 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2325 case XFS_ATTR3_RMT_MAGIC:
2327 * Remote attr blocks are written synchronously, rather than
2328 * being logged. That means they do not contain a valid LSN
2329 * (i.e. transactionally ordered) in them, and hence any time we
2330 * see a buffer to replay over the top of a remote attribute
2331 * block we should simply do so.
2333 goto recover_immediately;
2336 * superblock uuids are magic. We may or may not have a
2337 * sb_meta_uuid on disk, but it will be set in the in-core
2338 * superblock. We set the uuid pointer for verification
2339 * according to the superblock feature mask to ensure we check
2340 * the relevant UUID in the superblock.
2342 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2343 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2344 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2346 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2352 if (lsn != (xfs_lsn_t)-1) {
2353 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2354 goto recover_immediately;
2358 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2360 case XFS_DIR3_LEAF1_MAGIC:
2361 case XFS_DIR3_LEAFN_MAGIC:
2362 case XFS_DA3_NODE_MAGIC:
2363 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2364 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2370 if (lsn != (xfs_lsn_t)-1) {
2371 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2372 goto recover_immediately;
2377 * We do individual object checks on dquot and inode buffers as they
2378 * have their own individual LSN records. Also, we could have a stale
2379 * buffer here, so we have to at least recognise these buffer types.
2381 * A notd complexity here is inode unlinked list processing - it logs
2382 * the inode directly in the buffer, but we don't know which inodes have
2383 * been modified, and there is no global buffer LSN. Hence we need to
2384 * recover all inode buffer types immediately. This problem will be
2385 * fixed by logical logging of the unlinked list modifications.
2387 magic16 = be16_to_cpu(*(__be16 *)blk);
2389 case XFS_DQUOT_MAGIC:
2390 case XFS_DINODE_MAGIC:
2391 goto recover_immediately;
2396 /* unknown buffer contents, recover immediately */
2398 recover_immediately:
2399 return (xfs_lsn_t)-1;
2404 * Validate the recovered buffer is of the correct type and attach the
2405 * appropriate buffer operations to them for writeback. Magic numbers are in a
2407 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2408 * the first 32 bits of the buffer (most blocks),
2409 * inside a struct xfs_da_blkinfo at the start of the buffer.
2412 xlog_recover_validate_buf_type(
2413 struct xfs_mount *mp,
2415 xfs_buf_log_format_t *buf_f,
2416 xfs_lsn_t current_lsn)
2418 struct xfs_da_blkinfo *info = bp->b_addr;
2422 char *warnmsg = NULL;
2425 * We can only do post recovery validation on items on CRC enabled
2426 * fielsystems as we need to know when the buffer was written to be able
2427 * to determine if we should have replayed the item. If we replay old
2428 * metadata over a newer buffer, then it will enter a temporarily
2429 * inconsistent state resulting in verification failures. Hence for now
2430 * just avoid the verification stage for non-crc filesystems
2432 if (!xfs_sb_version_hascrc(&mp->m_sb))
2435 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2436 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2437 magicda = be16_to_cpu(info->magic);
2438 switch (xfs_blft_from_flags(buf_f)) {
2439 case XFS_BLFT_BTREE_BUF:
2441 case XFS_ABTB_CRC_MAGIC:
2442 case XFS_ABTB_MAGIC:
2443 bp->b_ops = &xfs_bnobt_buf_ops;
2445 case XFS_ABTC_CRC_MAGIC:
2446 case XFS_ABTC_MAGIC:
2447 bp->b_ops = &xfs_cntbt_buf_ops;
2449 case XFS_IBT_CRC_MAGIC:
2451 bp->b_ops = &xfs_inobt_buf_ops;
2453 case XFS_FIBT_CRC_MAGIC:
2454 case XFS_FIBT_MAGIC:
2455 bp->b_ops = &xfs_finobt_buf_ops;
2457 case XFS_BMAP_CRC_MAGIC:
2458 case XFS_BMAP_MAGIC:
2459 bp->b_ops = &xfs_bmbt_buf_ops;
2461 case XFS_RMAP_CRC_MAGIC:
2462 bp->b_ops = &xfs_rmapbt_buf_ops;
2464 case XFS_REFC_CRC_MAGIC:
2465 bp->b_ops = &xfs_refcountbt_buf_ops;
2468 warnmsg = "Bad btree block magic!";
2472 case XFS_BLFT_AGF_BUF:
2473 if (magic32 != XFS_AGF_MAGIC) {
2474 warnmsg = "Bad AGF block magic!";
2477 bp->b_ops = &xfs_agf_buf_ops;
2479 case XFS_BLFT_AGFL_BUF:
2480 if (magic32 != XFS_AGFL_MAGIC) {
2481 warnmsg = "Bad AGFL block magic!";
2484 bp->b_ops = &xfs_agfl_buf_ops;
2486 case XFS_BLFT_AGI_BUF:
2487 if (magic32 != XFS_AGI_MAGIC) {
2488 warnmsg = "Bad AGI block magic!";
2491 bp->b_ops = &xfs_agi_buf_ops;
2493 case XFS_BLFT_UDQUOT_BUF:
2494 case XFS_BLFT_PDQUOT_BUF:
2495 case XFS_BLFT_GDQUOT_BUF:
2496 #ifdef CONFIG_XFS_QUOTA
2497 if (magic16 != XFS_DQUOT_MAGIC) {
2498 warnmsg = "Bad DQUOT block magic!";
2501 bp->b_ops = &xfs_dquot_buf_ops;
2504 "Trying to recover dquots without QUOTA support built in!");
2508 case XFS_BLFT_DINO_BUF:
2509 if (magic16 != XFS_DINODE_MAGIC) {
2510 warnmsg = "Bad INODE block magic!";
2513 bp->b_ops = &xfs_inode_buf_ops;
2515 case XFS_BLFT_SYMLINK_BUF:
2516 if (magic32 != XFS_SYMLINK_MAGIC) {
2517 warnmsg = "Bad symlink block magic!";
2520 bp->b_ops = &xfs_symlink_buf_ops;
2522 case XFS_BLFT_DIR_BLOCK_BUF:
2523 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2524 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2525 warnmsg = "Bad dir block magic!";
2528 bp->b_ops = &xfs_dir3_block_buf_ops;
2530 case XFS_BLFT_DIR_DATA_BUF:
2531 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2532 magic32 != XFS_DIR3_DATA_MAGIC) {
2533 warnmsg = "Bad dir data magic!";
2536 bp->b_ops = &xfs_dir3_data_buf_ops;
2538 case XFS_BLFT_DIR_FREE_BUF:
2539 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2540 magic32 != XFS_DIR3_FREE_MAGIC) {
2541 warnmsg = "Bad dir3 free magic!";
2544 bp->b_ops = &xfs_dir3_free_buf_ops;
2546 case XFS_BLFT_DIR_LEAF1_BUF:
2547 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2548 magicda != XFS_DIR3_LEAF1_MAGIC) {
2549 warnmsg = "Bad dir leaf1 magic!";
2552 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2554 case XFS_BLFT_DIR_LEAFN_BUF:
2555 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2556 magicda != XFS_DIR3_LEAFN_MAGIC) {
2557 warnmsg = "Bad dir leafn magic!";
2560 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2562 case XFS_BLFT_DA_NODE_BUF:
2563 if (magicda != XFS_DA_NODE_MAGIC &&
2564 magicda != XFS_DA3_NODE_MAGIC) {
2565 warnmsg = "Bad da node magic!";
2568 bp->b_ops = &xfs_da3_node_buf_ops;
2570 case XFS_BLFT_ATTR_LEAF_BUF:
2571 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2572 magicda != XFS_ATTR3_LEAF_MAGIC) {
2573 warnmsg = "Bad attr leaf magic!";
2576 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2578 case XFS_BLFT_ATTR_RMT_BUF:
2579 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2580 warnmsg = "Bad attr remote magic!";
2583 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2585 case XFS_BLFT_SB_BUF:
2586 if (magic32 != XFS_SB_MAGIC) {
2587 warnmsg = "Bad SB block magic!";
2590 bp->b_ops = &xfs_sb_buf_ops;
2592 #ifdef CONFIG_XFS_RT
2593 case XFS_BLFT_RTBITMAP_BUF:
2594 case XFS_BLFT_RTSUMMARY_BUF:
2595 /* no magic numbers for verification of RT buffers */
2596 bp->b_ops = &xfs_rtbuf_ops;
2598 #endif /* CONFIG_XFS_RT */
2600 xfs_warn(mp, "Unknown buffer type %d!",
2601 xfs_blft_from_flags(buf_f));
2606 * Nothing else to do in the case of a NULL current LSN as this means
2607 * the buffer is more recent than the change in the log and will be
2610 if (current_lsn == NULLCOMMITLSN)
2614 xfs_warn(mp, warnmsg);
2619 * We must update the metadata LSN of the buffer as it is written out to
2620 * ensure that older transactions never replay over this one and corrupt
2621 * the buffer. This can occur if log recovery is interrupted at some
2622 * point after the current transaction completes, at which point a
2623 * subsequent mount starts recovery from the beginning.
2625 * Write verifiers update the metadata LSN from log items attached to
2626 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2627 * the verifier. We'll clean it up in our ->iodone() callback.
2630 struct xfs_buf_log_item *bip;
2632 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2633 bp->b_iodone = xlog_recover_iodone;
2634 xfs_buf_item_init(bp, mp);
2635 bip = bp->b_log_item;
2636 bip->bli_item.li_lsn = current_lsn;
2641 * Perform a 'normal' buffer recovery. Each logged region of the
2642 * buffer should be copied over the corresponding region in the
2643 * given buffer. The bitmap in the buf log format structure indicates
2644 * where to place the logged data.
2647 xlog_recover_do_reg_buffer(
2648 struct xfs_mount *mp,
2649 xlog_recover_item_t *item,
2651 xfs_buf_log_format_t *buf_f,
2652 xfs_lsn_t current_lsn)
2659 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2662 i = 1; /* 0 is the buf format structure */
2664 bit = xfs_next_bit(buf_f->blf_data_map,
2665 buf_f->blf_map_size, bit);
2668 nbits = xfs_contig_bits(buf_f->blf_data_map,
2669 buf_f->blf_map_size, bit);
2671 ASSERT(item->ri_buf[i].i_addr != NULL);
2672 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2673 ASSERT(BBTOB(bp->b_io_length) >=
2674 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2677 * The dirty regions logged in the buffer, even though
2678 * contiguous, may span multiple chunks. This is because the
2679 * dirty region may span a physical page boundary in a buffer
2680 * and hence be split into two separate vectors for writing into
2681 * the log. Hence we need to trim nbits back to the length of
2682 * the current region being copied out of the log.
2684 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2685 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2688 * Do a sanity check if this is a dquot buffer. Just checking
2689 * the first dquot in the buffer should do. XXXThis is
2690 * probably a good thing to do for other buf types also.
2693 if (buf_f->blf_flags &
2694 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2695 if (item->ri_buf[i].i_addr == NULL) {
2697 "XFS: NULL dquot in %s.", __func__);
2700 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2702 "XFS: dquot too small (%d) in %s.",
2703 item->ri_buf[i].i_len, __func__);
2706 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2710 "dquot corrupt at %pS trying to replay into block 0x%llx",
2716 memcpy(xfs_buf_offset(bp,
2717 (uint)bit << XFS_BLF_SHIFT), /* dest */
2718 item->ri_buf[i].i_addr, /* source */
2719 nbits<<XFS_BLF_SHIFT); /* length */
2725 /* Shouldn't be any more regions */
2726 ASSERT(i == item->ri_total);
2728 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2732 * Perform a dquot buffer recovery.
2733 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2734 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2735 * Else, treat it as a regular buffer and do recovery.
2737 * Return false if the buffer was tossed and true if we recovered the buffer to
2738 * indicate to the caller if the buffer needs writing.
2741 xlog_recover_do_dquot_buffer(
2742 struct xfs_mount *mp,
2744 struct xlog_recover_item *item,
2746 struct xfs_buf_log_format *buf_f)
2750 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2753 * Filesystems are required to send in quota flags at mount time.
2759 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2760 type |= XFS_DQ_USER;
2761 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2762 type |= XFS_DQ_PROJ;
2763 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2764 type |= XFS_DQ_GROUP;
2766 * This type of quotas was turned off, so ignore this buffer
2768 if (log->l_quotaoffs_flag & type)
2771 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2776 * This routine replays a modification made to a buffer at runtime.
2777 * There are actually two types of buffer, regular and inode, which
2778 * are handled differently. Inode buffers are handled differently
2779 * in that we only recover a specific set of data from them, namely
2780 * the inode di_next_unlinked fields. This is because all other inode
2781 * data is actually logged via inode records and any data we replay
2782 * here which overlaps that may be stale.
2784 * When meta-data buffers are freed at run time we log a buffer item
2785 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2786 * of the buffer in the log should not be replayed at recovery time.
2787 * This is so that if the blocks covered by the buffer are reused for
2788 * file data before we crash we don't end up replaying old, freed
2789 * meta-data into a user's file.
2791 * To handle the cancellation of buffer log items, we make two passes
2792 * over the log during recovery. During the first we build a table of
2793 * those buffers which have been cancelled, and during the second we
2794 * only replay those buffers which do not have corresponding cancel
2795 * records in the table. See xlog_recover_buffer_pass[1,2] above
2796 * for more details on the implementation of the table of cancel records.
2799 xlog_recover_buffer_pass2(
2801 struct list_head *buffer_list,
2802 struct xlog_recover_item *item,
2803 xfs_lsn_t current_lsn)
2805 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2806 xfs_mount_t *mp = log->l_mp;
2813 * In this pass we only want to recover all the buffers which have
2814 * not been cancelled and are not cancellation buffers themselves.
2816 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2817 buf_f->blf_len, buf_f->blf_flags)) {
2818 trace_xfs_log_recover_buf_cancel(log, buf_f);
2822 trace_xfs_log_recover_buf_recover(log, buf_f);
2825 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2826 buf_flags |= XBF_UNMAPPED;
2828 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2832 error = bp->b_error;
2834 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2839 * Recover the buffer only if we get an LSN from it and it's less than
2840 * the lsn of the transaction we are replaying.
2842 * Note that we have to be extremely careful of readahead here.
2843 * Readahead does not attach verfiers to the buffers so if we don't
2844 * actually do any replay after readahead because of the LSN we found
2845 * in the buffer if more recent than that current transaction then we
2846 * need to attach the verifier directly. Failure to do so can lead to
2847 * future recovery actions (e.g. EFI and unlinked list recovery) can
2848 * operate on the buffers and they won't get the verifier attached. This
2849 * can lead to blocks on disk having the correct content but a stale
2852 * It is safe to assume these clean buffers are currently up to date.
2853 * If the buffer is dirtied by a later transaction being replayed, then
2854 * the verifier will be reset to match whatever recover turns that
2857 lsn = xlog_recover_get_buf_lsn(mp, bp);
2858 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2859 trace_xfs_log_recover_buf_skip(log, buf_f);
2860 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2864 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2865 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2868 } else if (buf_f->blf_flags &
2869 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2872 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2876 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2880 * Perform delayed write on the buffer. Asynchronous writes will be
2881 * slower when taking into account all the buffers to be flushed.
2883 * Also make sure that only inode buffers with good sizes stay in
2884 * the buffer cache. The kernel moves inodes in buffers of 1 block
2885 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2886 * buffers in the log can be a different size if the log was generated
2887 * by an older kernel using unclustered inode buffers or a newer kernel
2888 * running with a different inode cluster size. Regardless, if the
2889 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
2890 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2891 * the buffer out of the buffer cache so that the buffer won't
2892 * overlap with future reads of those inodes.
2894 if (XFS_DINODE_MAGIC ==
2895 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2896 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
2897 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2899 error = xfs_bwrite(bp);
2901 ASSERT(bp->b_target->bt_mount == mp);
2902 bp->b_iodone = xlog_recover_iodone;
2903 xfs_buf_delwri_queue(bp, buffer_list);
2912 * Inode fork owner changes
2914 * If we have been told that we have to reparent the inode fork, it's because an
2915 * extent swap operation on a CRC enabled filesystem has been done and we are
2916 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2919 * The complexity here is that we don't have an inode context to work with, so
2920 * after we've replayed the inode we need to instantiate one. This is where the
2923 * We are in the middle of log recovery, so we can't run transactions. That
2924 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2925 * that will result in the corresponding iput() running the inode through
2926 * xfs_inactive(). If we've just replayed an inode core that changes the link
2927 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2928 * transactions (bad!).
2930 * So, to avoid this, we instantiate an inode directly from the inode core we've
2931 * just recovered. We have the buffer still locked, and all we really need to
2932 * instantiate is the inode core and the forks being modified. We can do this
2933 * manually, then run the inode btree owner change, and then tear down the
2934 * xfs_inode without having to run any transactions at all.
2936 * Also, because we don't have a transaction context available here but need to
2937 * gather all the buffers we modify for writeback so we pass the buffer_list
2938 * instead for the operation to use.
2942 xfs_recover_inode_owner_change(
2943 struct xfs_mount *mp,
2944 struct xfs_dinode *dip,
2945 struct xfs_inode_log_format *in_f,
2946 struct list_head *buffer_list)
2948 struct xfs_inode *ip;
2951 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2953 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2957 /* instantiate the inode */
2958 xfs_inode_from_disk(ip, dip);
2959 ASSERT(ip->i_d.di_version >= 3);
2961 error = xfs_iformat_fork(ip, dip);
2965 if (!xfs_inode_verify_forks(ip)) {
2966 error = -EFSCORRUPTED;
2970 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2971 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2972 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2973 ip->i_ino, buffer_list);
2978 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2979 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2980 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2981 ip->i_ino, buffer_list);
2992 xlog_recover_inode_pass2(
2994 struct list_head *buffer_list,
2995 struct xlog_recover_item *item,
2996 xfs_lsn_t current_lsn)
2998 struct xfs_inode_log_format *in_f;
2999 xfs_mount_t *mp = log->l_mp;
3008 struct xfs_log_dinode *ldip;
3012 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3013 in_f = item->ri_buf[0].i_addr;
3015 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3017 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3023 * Inode buffers can be freed, look out for it,
3024 * and do not replay the inode.
3026 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3027 in_f->ilf_len, 0)) {
3029 trace_xfs_log_recover_inode_cancel(log, in_f);
3032 trace_xfs_log_recover_inode_recover(log, in_f);
3034 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3035 &xfs_inode_buf_ops);
3040 error = bp->b_error;
3042 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3045 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3046 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3049 * Make sure the place we're flushing out to really looks
3052 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
3054 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3055 __func__, dip, bp, in_f->ilf_ino);
3056 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3057 XFS_ERRLEVEL_LOW, mp);
3058 error = -EFSCORRUPTED;
3061 ldip = item->ri_buf[1].i_addr;
3062 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3064 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3065 __func__, item, in_f->ilf_ino);
3066 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3067 XFS_ERRLEVEL_LOW, mp);
3068 error = -EFSCORRUPTED;
3073 * If the inode has an LSN in it, recover the inode only if it's less
3074 * than the lsn of the transaction we are replaying. Note: we still
3075 * need to replay an owner change even though the inode is more recent
3076 * than the transaction as there is no guarantee that all the btree
3077 * blocks are more recent than this transaction, too.
3079 if (dip->di_version >= 3) {
3080 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3082 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3083 trace_xfs_log_recover_inode_skip(log, in_f);
3085 goto out_owner_change;
3090 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3091 * are transactional and if ordering is necessary we can determine that
3092 * more accurately by the LSN field in the V3 inode core. Don't trust
3093 * the inode versions we might be changing them here - use the
3094 * superblock flag to determine whether we need to look at di_flushiter
3095 * to skip replay when the on disk inode is newer than the log one
3097 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3098 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3100 * Deal with the wrap case, DI_MAX_FLUSH is less
3101 * than smaller numbers
3103 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3104 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3107 trace_xfs_log_recover_inode_skip(log, in_f);
3113 /* Take the opportunity to reset the flush iteration count */
3114 ldip->di_flushiter = 0;
3116 if (unlikely(S_ISREG(ldip->di_mode))) {
3117 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3118 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3119 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3120 XFS_ERRLEVEL_LOW, mp, ldip,
3123 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3124 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3125 __func__, item, dip, bp, in_f->ilf_ino);
3126 error = -EFSCORRUPTED;
3129 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3130 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3131 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3132 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3133 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3134 XFS_ERRLEVEL_LOW, mp, ldip,
3137 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3138 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3139 __func__, item, dip, bp, in_f->ilf_ino);
3140 error = -EFSCORRUPTED;
3144 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3145 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3146 XFS_ERRLEVEL_LOW, mp, ldip,
3149 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3150 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3151 __func__, item, dip, bp, in_f->ilf_ino,
3152 ldip->di_nextents + ldip->di_anextents,
3154 error = -EFSCORRUPTED;
3157 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3158 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3159 XFS_ERRLEVEL_LOW, mp, ldip,
3162 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3163 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3164 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3165 error = -EFSCORRUPTED;
3168 isize = xfs_log_dinode_size(ldip->di_version);
3169 if (unlikely(item->ri_buf[1].i_len > isize)) {
3170 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3171 XFS_ERRLEVEL_LOW, mp, ldip,
3174 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3175 __func__, item->ri_buf[1].i_len, item);
3176 error = -EFSCORRUPTED;
3180 /* recover the log dinode inode into the on disk inode */
3181 xfs_log_dinode_to_disk(ldip, dip);
3183 fields = in_f->ilf_fields;
3184 if (fields & XFS_ILOG_DEV)
3185 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3187 if (in_f->ilf_size == 2)
3188 goto out_owner_change;
3189 len = item->ri_buf[2].i_len;
3190 src = item->ri_buf[2].i_addr;
3191 ASSERT(in_f->ilf_size <= 4);
3192 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3193 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3194 (len == in_f->ilf_dsize));
3196 switch (fields & XFS_ILOG_DFORK) {
3197 case XFS_ILOG_DDATA:
3199 memcpy(XFS_DFORK_DPTR(dip), src, len);
3202 case XFS_ILOG_DBROOT:
3203 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3204 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3205 XFS_DFORK_DSIZE(dip, mp));
3210 * There are no data fork flags set.
3212 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3217 * If we logged any attribute data, recover it. There may or
3218 * may not have been any other non-core data logged in this
3221 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3222 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3227 len = item->ri_buf[attr_index].i_len;
3228 src = item->ri_buf[attr_index].i_addr;
3229 ASSERT(len == in_f->ilf_asize);
3231 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3232 case XFS_ILOG_ADATA:
3234 dest = XFS_DFORK_APTR(dip);
3235 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3236 memcpy(dest, src, len);
3239 case XFS_ILOG_ABROOT:
3240 dest = XFS_DFORK_APTR(dip);
3241 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3242 len, (xfs_bmdr_block_t*)dest,
3243 XFS_DFORK_ASIZE(dip, mp));
3247 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3255 /* Recover the swapext owner change unless inode has been deleted */
3256 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3257 (dip->di_mode != 0))
3258 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3260 /* re-generate the checksum. */
3261 xfs_dinode_calc_crc(log->l_mp, dip);
3263 ASSERT(bp->b_target->bt_mount == mp);
3264 bp->b_iodone = xlog_recover_iodone;
3265 xfs_buf_delwri_queue(bp, buffer_list);
3276 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3277 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3281 xlog_recover_quotaoff_pass1(
3283 struct xlog_recover_item *item)
3285 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3289 * The logitem format's flag tells us if this was user quotaoff,
3290 * group/project quotaoff or both.
3292 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3293 log->l_quotaoffs_flag |= XFS_DQ_USER;
3294 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3295 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3296 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3297 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3303 * Recover a dquot record
3306 xlog_recover_dquot_pass2(
3308 struct list_head *buffer_list,
3309 struct xlog_recover_item *item,
3310 xfs_lsn_t current_lsn)
3312 xfs_mount_t *mp = log->l_mp;
3314 struct xfs_disk_dquot *ddq, *recddq;
3317 xfs_dq_logformat_t *dq_f;
3322 * Filesystems are required to send in quota flags at mount time.
3324 if (mp->m_qflags == 0)
3327 recddq = item->ri_buf[1].i_addr;
3328 if (recddq == NULL) {
3329 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3332 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3333 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3334 item->ri_buf[1].i_len, __func__);
3339 * This type of quotas was turned off, so ignore this record.
3341 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3343 if (log->l_quotaoffs_flag & type)
3347 * At this point we know that quota was _not_ turned off.
3348 * Since the mount flags are not indicating to us otherwise, this
3349 * must mean that quota is on, and the dquot needs to be replayed.
3350 * Remember that we may not have fully recovered the superblock yet,
3351 * so we can't do the usual trick of looking at the SB quota bits.
3353 * The other possibility, of course, is that the quota subsystem was
3354 * removed since the last mount - ENOSYS.
3356 dq_f = item->ri_buf[0].i_addr;
3358 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3360 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3364 ASSERT(dq_f->qlf_len == 1);
3367 * At this point we are assuming that the dquots have been allocated
3368 * and hence the buffer has valid dquots stamped in it. It should,
3369 * therefore, pass verifier validation. If the dquot is bad, then the
3370 * we'll return an error here, so we don't need to specifically check
3371 * the dquot in the buffer after the verifier has run.
3373 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3374 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3375 &xfs_dquot_buf_ops);
3380 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3383 * If the dquot has an LSN in it, recover the dquot only if it's less
3384 * than the lsn of the transaction we are replaying.
3386 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3387 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3388 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3390 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3395 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3396 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3397 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3401 ASSERT(dq_f->qlf_size == 2);
3402 ASSERT(bp->b_target->bt_mount == mp);
3403 bp->b_iodone = xlog_recover_iodone;
3404 xfs_buf_delwri_queue(bp, buffer_list);
3412 * This routine is called to create an in-core extent free intent
3413 * item from the efi format structure which was logged on disk.
3414 * It allocates an in-core efi, copies the extents from the format
3415 * structure into it, and adds the efi to the AIL with the given
3419 xlog_recover_efi_pass2(
3421 struct xlog_recover_item *item,
3425 struct xfs_mount *mp = log->l_mp;
3426 struct xfs_efi_log_item *efip;
3427 struct xfs_efi_log_format *efi_formatp;
3429 efi_formatp = item->ri_buf[0].i_addr;
3431 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3432 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3434 xfs_efi_item_free(efip);
3437 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3439 spin_lock(&log->l_ailp->ail_lock);
3441 * The EFI has two references. One for the EFD and one for EFI to ensure
3442 * it makes it into the AIL. Insert the EFI into the AIL directly and
3443 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3446 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3447 xfs_efi_release(efip);
3453 * This routine is called when an EFD format structure is found in a committed
3454 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3455 * was still in the log. To do this it searches the AIL for the EFI with an id
3456 * equal to that in the EFD format structure. If we find it we drop the EFD
3457 * reference, which removes the EFI from the AIL and frees it.
3460 xlog_recover_efd_pass2(
3462 struct xlog_recover_item *item)
3464 xfs_efd_log_format_t *efd_formatp;
3465 xfs_efi_log_item_t *efip = NULL;
3466 xfs_log_item_t *lip;
3468 struct xfs_ail_cursor cur;
3469 struct xfs_ail *ailp = log->l_ailp;
3471 efd_formatp = item->ri_buf[0].i_addr;
3472 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3473 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3474 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3475 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3476 efi_id = efd_formatp->efd_efi_id;
3479 * Search for the EFI with the id in the EFD format structure in the
3482 spin_lock(&ailp->ail_lock);
3483 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3484 while (lip != NULL) {
3485 if (lip->li_type == XFS_LI_EFI) {
3486 efip = (xfs_efi_log_item_t *)lip;
3487 if (efip->efi_format.efi_id == efi_id) {
3489 * Drop the EFD reference to the EFI. This
3490 * removes the EFI from the AIL and frees it.
3492 spin_unlock(&ailp->ail_lock);
3493 xfs_efi_release(efip);
3494 spin_lock(&ailp->ail_lock);
3498 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3501 xfs_trans_ail_cursor_done(&cur);
3502 spin_unlock(&ailp->ail_lock);
3508 * This routine is called to create an in-core extent rmap update
3509 * item from the rui format structure which was logged on disk.
3510 * It allocates an in-core rui, copies the extents from the format
3511 * structure into it, and adds the rui to the AIL with the given
3515 xlog_recover_rui_pass2(
3517 struct xlog_recover_item *item,
3521 struct xfs_mount *mp = log->l_mp;
3522 struct xfs_rui_log_item *ruip;
3523 struct xfs_rui_log_format *rui_formatp;
3525 rui_formatp = item->ri_buf[0].i_addr;
3527 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3528 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3530 xfs_rui_item_free(ruip);
3533 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3535 spin_lock(&log->l_ailp->ail_lock);
3537 * The RUI has two references. One for the RUD and one for RUI to ensure
3538 * it makes it into the AIL. Insert the RUI into the AIL directly and
3539 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3542 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3543 xfs_rui_release(ruip);
3549 * This routine is called when an RUD format structure is found in a committed
3550 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3551 * was still in the log. To do this it searches the AIL for the RUI with an id
3552 * equal to that in the RUD format structure. If we find it we drop the RUD
3553 * reference, which removes the RUI from the AIL and frees it.
3556 xlog_recover_rud_pass2(
3558 struct xlog_recover_item *item)
3560 struct xfs_rud_log_format *rud_formatp;
3561 struct xfs_rui_log_item *ruip = NULL;
3562 struct xfs_log_item *lip;
3564 struct xfs_ail_cursor cur;
3565 struct xfs_ail *ailp = log->l_ailp;
3567 rud_formatp = item->ri_buf[0].i_addr;
3568 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3569 rui_id = rud_formatp->rud_rui_id;
3572 * Search for the RUI with the id in the RUD format structure in the
3575 spin_lock(&ailp->ail_lock);
3576 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3577 while (lip != NULL) {
3578 if (lip->li_type == XFS_LI_RUI) {
3579 ruip = (struct xfs_rui_log_item *)lip;
3580 if (ruip->rui_format.rui_id == rui_id) {
3582 * Drop the RUD reference to the RUI. This
3583 * removes the RUI from the AIL and frees it.
3585 spin_unlock(&ailp->ail_lock);
3586 xfs_rui_release(ruip);
3587 spin_lock(&ailp->ail_lock);
3591 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3594 xfs_trans_ail_cursor_done(&cur);
3595 spin_unlock(&ailp->ail_lock);
3601 * Copy an CUI format buffer from the given buf, and into the destination
3602 * CUI format structure. The CUI/CUD items were designed not to need any
3603 * special alignment handling.
3606 xfs_cui_copy_format(
3607 struct xfs_log_iovec *buf,
3608 struct xfs_cui_log_format *dst_cui_fmt)
3610 struct xfs_cui_log_format *src_cui_fmt;
3613 src_cui_fmt = buf->i_addr;
3614 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3616 if (buf->i_len == len) {
3617 memcpy(dst_cui_fmt, src_cui_fmt, len);
3620 return -EFSCORRUPTED;
3624 * This routine is called to create an in-core extent refcount update
3625 * item from the cui format structure which was logged on disk.
3626 * It allocates an in-core cui, copies the extents from the format
3627 * structure into it, and adds the cui to the AIL with the given
3631 xlog_recover_cui_pass2(
3633 struct xlog_recover_item *item,
3637 struct xfs_mount *mp = log->l_mp;
3638 struct xfs_cui_log_item *cuip;
3639 struct xfs_cui_log_format *cui_formatp;
3641 cui_formatp = item->ri_buf[0].i_addr;
3643 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3644 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3646 xfs_cui_item_free(cuip);
3649 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3651 spin_lock(&log->l_ailp->ail_lock);
3653 * The CUI has two references. One for the CUD and one for CUI to ensure
3654 * it makes it into the AIL. Insert the CUI into the AIL directly and
3655 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3658 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3659 xfs_cui_release(cuip);
3665 * This routine is called when an CUD format structure is found in a committed
3666 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3667 * was still in the log. To do this it searches the AIL for the CUI with an id
3668 * equal to that in the CUD format structure. If we find it we drop the CUD
3669 * reference, which removes the CUI from the AIL and frees it.
3672 xlog_recover_cud_pass2(
3674 struct xlog_recover_item *item)
3676 struct xfs_cud_log_format *cud_formatp;
3677 struct xfs_cui_log_item *cuip = NULL;
3678 struct xfs_log_item *lip;
3680 struct xfs_ail_cursor cur;
3681 struct xfs_ail *ailp = log->l_ailp;
3683 cud_formatp = item->ri_buf[0].i_addr;
3684 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3685 return -EFSCORRUPTED;
3686 cui_id = cud_formatp->cud_cui_id;
3689 * Search for the CUI with the id in the CUD format structure in the
3692 spin_lock(&ailp->ail_lock);
3693 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3694 while (lip != NULL) {
3695 if (lip->li_type == XFS_LI_CUI) {
3696 cuip = (struct xfs_cui_log_item *)lip;
3697 if (cuip->cui_format.cui_id == cui_id) {
3699 * Drop the CUD reference to the CUI. This
3700 * removes the CUI from the AIL and frees it.
3702 spin_unlock(&ailp->ail_lock);
3703 xfs_cui_release(cuip);
3704 spin_lock(&ailp->ail_lock);
3708 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3711 xfs_trans_ail_cursor_done(&cur);
3712 spin_unlock(&ailp->ail_lock);
3718 * Copy an BUI format buffer from the given buf, and into the destination
3719 * BUI format structure. The BUI/BUD items were designed not to need any
3720 * special alignment handling.
3723 xfs_bui_copy_format(
3724 struct xfs_log_iovec *buf,
3725 struct xfs_bui_log_format *dst_bui_fmt)
3727 struct xfs_bui_log_format *src_bui_fmt;
3730 src_bui_fmt = buf->i_addr;
3731 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3733 if (buf->i_len == len) {
3734 memcpy(dst_bui_fmt, src_bui_fmt, len);
3737 return -EFSCORRUPTED;
3741 * This routine is called to create an in-core extent bmap update
3742 * item from the bui format structure which was logged on disk.
3743 * It allocates an in-core bui, copies the extents from the format
3744 * structure into it, and adds the bui to the AIL with the given
3748 xlog_recover_bui_pass2(
3750 struct xlog_recover_item *item,
3754 struct xfs_mount *mp = log->l_mp;
3755 struct xfs_bui_log_item *buip;
3756 struct xfs_bui_log_format *bui_formatp;
3758 bui_formatp = item->ri_buf[0].i_addr;
3760 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3761 return -EFSCORRUPTED;
3762 buip = xfs_bui_init(mp);
3763 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3765 xfs_bui_item_free(buip);
3768 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3770 spin_lock(&log->l_ailp->ail_lock);
3772 * The RUI has two references. One for the RUD and one for RUI to ensure
3773 * it makes it into the AIL. Insert the RUI into the AIL directly and
3774 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3777 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3778 xfs_bui_release(buip);
3784 * This routine is called when an BUD format structure is found in a committed
3785 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3786 * was still in the log. To do this it searches the AIL for the BUI with an id
3787 * equal to that in the BUD format structure. If we find it we drop the BUD
3788 * reference, which removes the BUI from the AIL and frees it.
3791 xlog_recover_bud_pass2(
3793 struct xlog_recover_item *item)
3795 struct xfs_bud_log_format *bud_formatp;
3796 struct xfs_bui_log_item *buip = NULL;
3797 struct xfs_log_item *lip;
3799 struct xfs_ail_cursor cur;
3800 struct xfs_ail *ailp = log->l_ailp;
3802 bud_formatp = item->ri_buf[0].i_addr;
3803 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3804 return -EFSCORRUPTED;
3805 bui_id = bud_formatp->bud_bui_id;
3808 * Search for the BUI with the id in the BUD format structure in the
3811 spin_lock(&ailp->ail_lock);
3812 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3813 while (lip != NULL) {
3814 if (lip->li_type == XFS_LI_BUI) {
3815 buip = (struct xfs_bui_log_item *)lip;
3816 if (buip->bui_format.bui_id == bui_id) {
3818 * Drop the BUD reference to the BUI. This
3819 * removes the BUI from the AIL and frees it.
3821 spin_unlock(&ailp->ail_lock);
3822 xfs_bui_release(buip);
3823 spin_lock(&ailp->ail_lock);
3827 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3830 xfs_trans_ail_cursor_done(&cur);
3831 spin_unlock(&ailp->ail_lock);
3837 * This routine is called when an inode create format structure is found in a
3838 * committed transaction in the log. It's purpose is to initialise the inodes
3839 * being allocated on disk. This requires us to get inode cluster buffers that
3840 * match the range to be initialised, stamped with inode templates and written
3841 * by delayed write so that subsequent modifications will hit the cached buffer
3842 * and only need writing out at the end of recovery.
3845 xlog_recover_do_icreate_pass2(
3847 struct list_head *buffer_list,
3848 xlog_recover_item_t *item)
3850 struct xfs_mount *mp = log->l_mp;
3851 struct xfs_icreate_log *icl;
3852 xfs_agnumber_t agno;
3853 xfs_agblock_t agbno;
3856 xfs_agblock_t length;
3862 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3863 if (icl->icl_type != XFS_LI_ICREATE) {
3864 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3868 if (icl->icl_size != 1) {
3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3873 agno = be32_to_cpu(icl->icl_ag);
3874 if (agno >= mp->m_sb.sb_agcount) {
3875 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3878 agbno = be32_to_cpu(icl->icl_agbno);
3879 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3880 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3883 isize = be32_to_cpu(icl->icl_isize);
3884 if (isize != mp->m_sb.sb_inodesize) {
3885 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3888 count = be32_to_cpu(icl->icl_count);
3890 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3893 length = be32_to_cpu(icl->icl_length);
3894 if (!length || length >= mp->m_sb.sb_agblocks) {
3895 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3900 * The inode chunk is either full or sparse and we only support
3901 * m_ialloc_min_blks sized sparse allocations at this time.
3903 if (length != mp->m_ialloc_blks &&
3904 length != mp->m_ialloc_min_blks) {
3906 "%s: unsupported chunk length", __FUNCTION__);
3910 /* verify inode count is consistent with extent length */
3911 if ((count >> mp->m_sb.sb_inopblog) != length) {
3913 "%s: inconsistent inode count and chunk length",
3919 * The icreate transaction can cover multiple cluster buffers and these
3920 * buffers could have been freed and reused. Check the individual
3921 * buffers for cancellation so we don't overwrite anything written after
3924 bb_per_cluster = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster);
3925 nbufs = length / mp->m_blocks_per_cluster;
3926 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3929 daddr = XFS_AGB_TO_DADDR(mp, agno,
3930 agbno + i * mp->m_blocks_per_cluster);
3931 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3936 * We currently only use icreate for a single allocation at a time. This
3937 * means we should expect either all or none of the buffers to be
3938 * cancelled. Be conservative and skip replay if at least one buffer is
3939 * cancelled, but warn the user that something is awry if the buffers
3940 * are not consistent.
3942 * XXX: This must be refined to only skip cancelled clusters once we use
3943 * icreate for multiple chunk allocations.
3945 ASSERT(!cancel_count || cancel_count == nbufs);
3947 if (cancel_count != nbufs)
3949 "WARNING: partial inode chunk cancellation, skipped icreate.");
3950 trace_xfs_log_recover_icreate_cancel(log, icl);
3954 trace_xfs_log_recover_icreate_recover(log, icl);
3955 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3956 length, be32_to_cpu(icl->icl_gen));
3960 xlog_recover_buffer_ra_pass2(
3962 struct xlog_recover_item *item)
3964 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3965 struct xfs_mount *mp = log->l_mp;
3967 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3968 buf_f->blf_len, buf_f->blf_flags)) {
3972 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3973 buf_f->blf_len, NULL);
3977 xlog_recover_inode_ra_pass2(
3979 struct xlog_recover_item *item)
3981 struct xfs_inode_log_format ilf_buf;
3982 struct xfs_inode_log_format *ilfp;
3983 struct xfs_mount *mp = log->l_mp;
3986 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3987 ilfp = item->ri_buf[0].i_addr;
3990 memset(ilfp, 0, sizeof(*ilfp));
3991 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3996 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3999 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
4000 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
4004 xlog_recover_dquot_ra_pass2(
4006 struct xlog_recover_item *item)
4008 struct xfs_mount *mp = log->l_mp;
4009 struct xfs_disk_dquot *recddq;
4010 struct xfs_dq_logformat *dq_f;
4015 if (mp->m_qflags == 0)
4018 recddq = item->ri_buf[1].i_addr;
4021 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4024 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4026 if (log->l_quotaoffs_flag & type)
4029 dq_f = item->ri_buf[0].i_addr;
4031 ASSERT(dq_f->qlf_len == 1);
4033 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4034 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4037 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4038 &xfs_dquot_buf_ra_ops);
4042 xlog_recover_ra_pass2(
4044 struct xlog_recover_item *item)
4046 switch (ITEM_TYPE(item)) {
4048 xlog_recover_buffer_ra_pass2(log, item);
4051 xlog_recover_inode_ra_pass2(log, item);
4054 xlog_recover_dquot_ra_pass2(log, item);
4058 case XFS_LI_QUOTAOFF:
4071 xlog_recover_commit_pass1(
4073 struct xlog_recover *trans,
4074 struct xlog_recover_item *item)
4076 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4078 switch (ITEM_TYPE(item)) {
4080 return xlog_recover_buffer_pass1(log, item);
4081 case XFS_LI_QUOTAOFF:
4082 return xlog_recover_quotaoff_pass1(log, item);
4087 case XFS_LI_ICREATE:
4094 /* nothing to do in pass 1 */
4097 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4098 __func__, ITEM_TYPE(item));
4105 xlog_recover_commit_pass2(
4107 struct xlog_recover *trans,
4108 struct list_head *buffer_list,
4109 struct xlog_recover_item *item)
4111 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4113 switch (ITEM_TYPE(item)) {
4115 return xlog_recover_buffer_pass2(log, buffer_list, item,
4118 return xlog_recover_inode_pass2(log, buffer_list, item,
4121 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4123 return xlog_recover_efd_pass2(log, item);
4125 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4127 return xlog_recover_rud_pass2(log, item);
4129 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4131 return xlog_recover_cud_pass2(log, item);
4133 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4135 return xlog_recover_bud_pass2(log, item);
4137 return xlog_recover_dquot_pass2(log, buffer_list, item,
4139 case XFS_LI_ICREATE:
4140 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4141 case XFS_LI_QUOTAOFF:
4142 /* nothing to do in pass2 */
4145 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4146 __func__, ITEM_TYPE(item));
4153 xlog_recover_items_pass2(
4155 struct xlog_recover *trans,
4156 struct list_head *buffer_list,
4157 struct list_head *item_list)
4159 struct xlog_recover_item *item;
4162 list_for_each_entry(item, item_list, ri_list) {
4163 error = xlog_recover_commit_pass2(log, trans,
4173 * Perform the transaction.
4175 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4176 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4179 xlog_recover_commit_trans(
4181 struct xlog_recover *trans,
4183 struct list_head *buffer_list)
4186 int items_queued = 0;
4187 struct xlog_recover_item *item;
4188 struct xlog_recover_item *next;
4189 LIST_HEAD (ra_list);
4190 LIST_HEAD (done_list);
4192 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4194 hlist_del_init(&trans->r_list);
4196 error = xlog_recover_reorder_trans(log, trans, pass);
4200 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4202 case XLOG_RECOVER_PASS1:
4203 error = xlog_recover_commit_pass1(log, trans, item);
4205 case XLOG_RECOVER_PASS2:
4206 xlog_recover_ra_pass2(log, item);
4207 list_move_tail(&item->ri_list, &ra_list);
4209 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4210 error = xlog_recover_items_pass2(log, trans,
4211 buffer_list, &ra_list);
4212 list_splice_tail_init(&ra_list, &done_list);
4226 if (!list_empty(&ra_list)) {
4228 error = xlog_recover_items_pass2(log, trans,
4229 buffer_list, &ra_list);
4230 list_splice_tail_init(&ra_list, &done_list);
4233 if (!list_empty(&done_list))
4234 list_splice_init(&done_list, &trans->r_itemq);
4240 xlog_recover_add_item(
4241 struct list_head *head)
4243 xlog_recover_item_t *item;
4245 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4246 INIT_LIST_HEAD(&item->ri_list);
4247 list_add_tail(&item->ri_list, head);
4251 xlog_recover_add_to_cont_trans(
4253 struct xlog_recover *trans,
4257 xlog_recover_item_t *item;
4258 char *ptr, *old_ptr;
4262 * If the transaction is empty, the header was split across this and the
4263 * previous record. Copy the rest of the header.
4265 if (list_empty(&trans->r_itemq)) {
4266 ASSERT(len <= sizeof(struct xfs_trans_header));
4267 if (len > sizeof(struct xfs_trans_header)) {
4268 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4272 xlog_recover_add_item(&trans->r_itemq);
4273 ptr = (char *)&trans->r_theader +
4274 sizeof(struct xfs_trans_header) - len;
4275 memcpy(ptr, dp, len);
4279 /* take the tail entry */
4280 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4282 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4283 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4285 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4286 memcpy(&ptr[old_len], dp, len);
4287 item->ri_buf[item->ri_cnt-1].i_len += len;
4288 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4289 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4294 * The next region to add is the start of a new region. It could be
4295 * a whole region or it could be the first part of a new region. Because
4296 * of this, the assumption here is that the type and size fields of all
4297 * format structures fit into the first 32 bits of the structure.
4299 * This works because all regions must be 32 bit aligned. Therefore, we
4300 * either have both fields or we have neither field. In the case we have
4301 * neither field, the data part of the region is zero length. We only have
4302 * a log_op_header and can throw away the header since a new one will appear
4303 * later. If we have at least 4 bytes, then we can determine how many regions
4304 * will appear in the current log item.
4307 xlog_recover_add_to_trans(
4309 struct xlog_recover *trans,
4313 struct xfs_inode_log_format *in_f; /* any will do */
4314 xlog_recover_item_t *item;
4319 if (list_empty(&trans->r_itemq)) {
4320 /* we need to catch log corruptions here */
4321 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4322 xfs_warn(log->l_mp, "%s: bad header magic number",
4328 if (len > sizeof(struct xfs_trans_header)) {
4329 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4335 * The transaction header can be arbitrarily split across op
4336 * records. If we don't have the whole thing here, copy what we
4337 * do have and handle the rest in the next record.
4339 if (len == sizeof(struct xfs_trans_header))
4340 xlog_recover_add_item(&trans->r_itemq);
4341 memcpy(&trans->r_theader, dp, len);
4345 ptr = kmem_alloc(len, KM_SLEEP);
4346 memcpy(ptr, dp, len);
4347 in_f = (struct xfs_inode_log_format *)ptr;
4349 /* take the tail entry */
4350 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4351 if (item->ri_total != 0 &&
4352 item->ri_total == item->ri_cnt) {
4353 /* tail item is in use, get a new one */
4354 xlog_recover_add_item(&trans->r_itemq);
4355 item = list_entry(trans->r_itemq.prev,
4356 xlog_recover_item_t, ri_list);
4359 if (item->ri_total == 0) { /* first region to be added */
4360 if (in_f->ilf_size == 0 ||
4361 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4363 "bad number of regions (%d) in inode log format",
4370 item->ri_total = in_f->ilf_size;
4372 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4375 ASSERT(item->ri_total > item->ri_cnt);
4376 /* Description region is ri_buf[0] */
4377 item->ri_buf[item->ri_cnt].i_addr = ptr;
4378 item->ri_buf[item->ri_cnt].i_len = len;
4380 trace_xfs_log_recover_item_add(log, trans, item, 0);
4385 * Free up any resources allocated by the transaction
4387 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4390 xlog_recover_free_trans(
4391 struct xlog_recover *trans)
4393 xlog_recover_item_t *item, *n;
4396 hlist_del_init(&trans->r_list);
4398 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4399 /* Free the regions in the item. */
4400 list_del(&item->ri_list);
4401 for (i = 0; i < item->ri_cnt; i++)
4402 kmem_free(item->ri_buf[i].i_addr);
4403 /* Free the item itself */
4404 kmem_free(item->ri_buf);
4407 /* Free the transaction recover structure */
4412 * On error or completion, trans is freed.
4415 xlog_recovery_process_trans(
4417 struct xlog_recover *trans,
4422 struct list_head *buffer_list)
4425 bool freeit = false;
4427 /* mask off ophdr transaction container flags */
4428 flags &= ~XLOG_END_TRANS;
4429 if (flags & XLOG_WAS_CONT_TRANS)
4430 flags &= ~XLOG_CONTINUE_TRANS;
4433 * Callees must not free the trans structure. We'll decide if we need to
4434 * free it or not based on the operation being done and it's result.
4437 /* expected flag values */
4439 case XLOG_CONTINUE_TRANS:
4440 error = xlog_recover_add_to_trans(log, trans, dp, len);
4442 case XLOG_WAS_CONT_TRANS:
4443 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4445 case XLOG_COMMIT_TRANS:
4446 error = xlog_recover_commit_trans(log, trans, pass,
4448 /* success or fail, we are now done with this transaction. */
4452 /* unexpected flag values */
4453 case XLOG_UNMOUNT_TRANS:
4454 /* just skip trans */
4455 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4458 case XLOG_START_TRANS:
4460 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4465 if (error || freeit)
4466 xlog_recover_free_trans(trans);
4471 * Lookup the transaction recovery structure associated with the ID in the
4472 * current ophdr. If the transaction doesn't exist and the start flag is set in
4473 * the ophdr, then allocate a new transaction for future ID matches to find.
4474 * Either way, return what we found during the lookup - an existing transaction
4477 STATIC struct xlog_recover *
4478 xlog_recover_ophdr_to_trans(
4479 struct hlist_head rhash[],
4480 struct xlog_rec_header *rhead,
4481 struct xlog_op_header *ohead)
4483 struct xlog_recover *trans;
4485 struct hlist_head *rhp;
4487 tid = be32_to_cpu(ohead->oh_tid);
4488 rhp = &rhash[XLOG_RHASH(tid)];
4489 hlist_for_each_entry(trans, rhp, r_list) {
4490 if (trans->r_log_tid == tid)
4495 * skip over non-start transaction headers - we could be
4496 * processing slack space before the next transaction starts
4498 if (!(ohead->oh_flags & XLOG_START_TRANS))
4501 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4504 * This is a new transaction so allocate a new recovery container to
4505 * hold the recovery ops that will follow.
4507 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4508 trans->r_log_tid = tid;
4509 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4510 INIT_LIST_HEAD(&trans->r_itemq);
4511 INIT_HLIST_NODE(&trans->r_list);
4512 hlist_add_head(&trans->r_list, rhp);
4515 * Nothing more to do for this ophdr. Items to be added to this new
4516 * transaction will be in subsequent ophdr containers.
4522 xlog_recover_process_ophdr(
4524 struct hlist_head rhash[],
4525 struct xlog_rec_header *rhead,
4526 struct xlog_op_header *ohead,
4530 struct list_head *buffer_list)
4532 struct xlog_recover *trans;
4536 /* Do we understand who wrote this op? */
4537 if (ohead->oh_clientid != XFS_TRANSACTION &&
4538 ohead->oh_clientid != XFS_LOG) {
4539 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4540 __func__, ohead->oh_clientid);
4546 * Check the ophdr contains all the data it is supposed to contain.
4548 len = be32_to_cpu(ohead->oh_len);
4549 if (dp + len > end) {
4550 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4555 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4557 /* nothing to do, so skip over this ophdr */
4562 * The recovered buffer queue is drained only once we know that all
4563 * recovery items for the current LSN have been processed. This is
4566 * - Buffer write submission updates the metadata LSN of the buffer.
4567 * - Log recovery skips items with a metadata LSN >= the current LSN of
4568 * the recovery item.
4569 * - Separate recovery items against the same metadata buffer can share
4570 * a current LSN. I.e., consider that the LSN of a recovery item is
4571 * defined as the starting LSN of the first record in which its
4572 * transaction appears, that a record can hold multiple transactions,
4573 * and/or that a transaction can span multiple records.
4575 * In other words, we are allowed to submit a buffer from log recovery
4576 * once per current LSN. Otherwise, we may incorrectly skip recovery
4577 * items and cause corruption.
4579 * We don't know up front whether buffers are updated multiple times per
4580 * LSN. Therefore, track the current LSN of each commit log record as it
4581 * is processed and drain the queue when it changes. Use commit records
4582 * because they are ordered correctly by the logging code.
4584 if (log->l_recovery_lsn != trans->r_lsn &&
4585 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4586 error = xfs_buf_delwri_submit(buffer_list);
4589 log->l_recovery_lsn = trans->r_lsn;
4592 return xlog_recovery_process_trans(log, trans, dp, len,
4593 ohead->oh_flags, pass, buffer_list);
4597 * There are two valid states of the r_state field. 0 indicates that the
4598 * transaction structure is in a normal state. We have either seen the
4599 * start of the transaction or the last operation we added was not a partial
4600 * operation. If the last operation we added to the transaction was a
4601 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4603 * NOTE: skip LRs with 0 data length.
4606 xlog_recover_process_data(
4608 struct hlist_head rhash[],
4609 struct xlog_rec_header *rhead,
4612 struct list_head *buffer_list)
4614 struct xlog_op_header *ohead;
4619 end = dp + be32_to_cpu(rhead->h_len);
4620 num_logops = be32_to_cpu(rhead->h_num_logops);
4622 /* check the log format matches our own - else we can't recover */
4623 if (xlog_header_check_recover(log->l_mp, rhead))
4626 trace_xfs_log_recover_record(log, rhead, pass);
4627 while ((dp < end) && num_logops) {
4629 ohead = (struct xlog_op_header *)dp;
4630 dp += sizeof(*ohead);
4633 /* errors will abort recovery */
4634 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4635 dp, end, pass, buffer_list);
4639 dp += be32_to_cpu(ohead->oh_len);
4645 /* Recover the EFI if necessary. */
4647 xlog_recover_process_efi(
4648 struct xfs_mount *mp,
4649 struct xfs_ail *ailp,
4650 struct xfs_log_item *lip)
4652 struct xfs_efi_log_item *efip;
4656 * Skip EFIs that we've already processed.
4658 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4659 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4662 spin_unlock(&ailp->ail_lock);
4663 error = xfs_efi_recover(mp, efip);
4664 spin_lock(&ailp->ail_lock);
4669 /* Release the EFI since we're cancelling everything. */
4671 xlog_recover_cancel_efi(
4672 struct xfs_mount *mp,
4673 struct xfs_ail *ailp,
4674 struct xfs_log_item *lip)
4676 struct xfs_efi_log_item *efip;
4678 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4680 spin_unlock(&ailp->ail_lock);
4681 xfs_efi_release(efip);
4682 spin_lock(&ailp->ail_lock);
4685 /* Recover the RUI if necessary. */
4687 xlog_recover_process_rui(
4688 struct xfs_mount *mp,
4689 struct xfs_ail *ailp,
4690 struct xfs_log_item *lip)
4692 struct xfs_rui_log_item *ruip;
4696 * Skip RUIs that we've already processed.
4698 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4699 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4702 spin_unlock(&ailp->ail_lock);
4703 error = xfs_rui_recover(mp, ruip);
4704 spin_lock(&ailp->ail_lock);
4709 /* Release the RUI since we're cancelling everything. */
4711 xlog_recover_cancel_rui(
4712 struct xfs_mount *mp,
4713 struct xfs_ail *ailp,
4714 struct xfs_log_item *lip)
4716 struct xfs_rui_log_item *ruip;
4718 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4720 spin_unlock(&ailp->ail_lock);
4721 xfs_rui_release(ruip);
4722 spin_lock(&ailp->ail_lock);
4725 /* Recover the CUI if necessary. */
4727 xlog_recover_process_cui(
4728 struct xfs_trans *parent_tp,
4729 struct xfs_ail *ailp,
4730 struct xfs_log_item *lip)
4732 struct xfs_cui_log_item *cuip;
4736 * Skip CUIs that we've already processed.
4738 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4739 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4742 spin_unlock(&ailp->ail_lock);
4743 error = xfs_cui_recover(parent_tp, cuip);
4744 spin_lock(&ailp->ail_lock);
4749 /* Release the CUI since we're cancelling everything. */
4751 xlog_recover_cancel_cui(
4752 struct xfs_mount *mp,
4753 struct xfs_ail *ailp,
4754 struct xfs_log_item *lip)
4756 struct xfs_cui_log_item *cuip;
4758 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4760 spin_unlock(&ailp->ail_lock);
4761 xfs_cui_release(cuip);
4762 spin_lock(&ailp->ail_lock);
4765 /* Recover the BUI if necessary. */
4767 xlog_recover_process_bui(
4768 struct xfs_trans *parent_tp,
4769 struct xfs_ail *ailp,
4770 struct xfs_log_item *lip)
4772 struct xfs_bui_log_item *buip;
4776 * Skip BUIs that we've already processed.
4778 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4779 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4782 spin_unlock(&ailp->ail_lock);
4783 error = xfs_bui_recover(parent_tp, buip);
4784 spin_lock(&ailp->ail_lock);
4789 /* Release the BUI since we're cancelling everything. */
4791 xlog_recover_cancel_bui(
4792 struct xfs_mount *mp,
4793 struct xfs_ail *ailp,
4794 struct xfs_log_item *lip)
4796 struct xfs_bui_log_item *buip;
4798 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4800 spin_unlock(&ailp->ail_lock);
4801 xfs_bui_release(buip);
4802 spin_lock(&ailp->ail_lock);
4805 /* Is this log item a deferred action intent? */
4806 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4808 switch (lip->li_type) {
4819 /* Take all the collected deferred ops and finish them in order. */
4821 xlog_finish_defer_ops(
4822 struct xfs_trans *parent_tp)
4824 struct xfs_mount *mp = parent_tp->t_mountp;
4825 struct xfs_trans *tp;
4831 * We're finishing the defer_ops that accumulated as a result of
4832 * recovering unfinished intent items during log recovery. We
4833 * reserve an itruncate transaction because it is the largest
4834 * permanent transaction type. Since we're the only user of the fs
4835 * right now, take 93% (15/16) of the available free blocks. Use
4836 * weird math to avoid a 64-bit division.
4838 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4841 resblks = min_t(int64_t, UINT_MAX, freeblks);
4842 resblks = (resblks * 15) >> 4;
4843 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4844 0, XFS_TRANS_RESERVE, &tp);
4847 /* transfer all collected dfops to this transaction */
4848 xfs_defer_move(tp, parent_tp);
4850 return xfs_trans_commit(tp);
4854 * When this is called, all of the log intent items which did not have
4855 * corresponding log done items should be in the AIL. What we do now
4856 * is update the data structures associated with each one.
4858 * Since we process the log intent items in normal transactions, they
4859 * will be removed at some point after the commit. This prevents us
4860 * from just walking down the list processing each one. We'll use a
4861 * flag in the intent item to skip those that we've already processed
4862 * and use the AIL iteration mechanism's generation count to try to
4863 * speed this up at least a bit.
4865 * When we start, we know that the intents are the only things in the
4866 * AIL. As we process them, however, other items are added to the
4870 xlog_recover_process_intents(
4873 struct xfs_trans *parent_tp;
4874 struct xfs_ail_cursor cur;
4875 struct xfs_log_item *lip;
4876 struct xfs_ail *ailp;
4878 #if defined(DEBUG) || defined(XFS_WARN)
4883 * The intent recovery handlers commit transactions to complete recovery
4884 * for individual intents, but any new deferred operations that are
4885 * queued during that process are held off until the very end. The
4886 * purpose of this transaction is to serve as a container for deferred
4887 * operations. Each intent recovery handler must transfer dfops here
4888 * before its local transaction commits, and we'll finish the entire
4891 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4896 spin_lock(&ailp->ail_lock);
4897 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4898 #if defined(DEBUG) || defined(XFS_WARN)
4899 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4901 while (lip != NULL) {
4903 * We're done when we see something other than an intent.
4904 * There should be no intents left in the AIL now.
4906 if (!xlog_item_is_intent(lip)) {
4908 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4909 ASSERT(!xlog_item_is_intent(lip));
4915 * We should never see a redo item with a LSN higher than
4916 * the last transaction we found in the log at the start
4919 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4922 * NOTE: If your intent processing routine can create more
4923 * deferred ops, you /must/ attach them to the dfops in this
4924 * routine or else those subsequent intents will get
4925 * replayed in the wrong order!
4927 switch (lip->li_type) {
4929 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4932 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4935 error = xlog_recover_process_cui(parent_tp, ailp, lip);
4938 error = xlog_recover_process_bui(parent_tp, ailp, lip);
4943 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4946 xfs_trans_ail_cursor_done(&cur);
4947 spin_unlock(&ailp->ail_lock);
4949 error = xlog_finish_defer_ops(parent_tp);
4950 xfs_trans_cancel(parent_tp);
4956 * A cancel occurs when the mount has failed and we're bailing out.
4957 * Release all pending log intent items so they don't pin the AIL.
4960 xlog_recover_cancel_intents(
4963 struct xfs_log_item *lip;
4965 struct xfs_ail_cursor cur;
4966 struct xfs_ail *ailp;
4969 spin_lock(&ailp->ail_lock);
4970 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4971 while (lip != NULL) {
4973 * We're done when we see something other than an intent.
4974 * There should be no intents left in the AIL now.
4976 if (!xlog_item_is_intent(lip)) {
4978 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4979 ASSERT(!xlog_item_is_intent(lip));
4984 switch (lip->li_type) {
4986 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4989 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4992 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4995 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4999 lip = xfs_trans_ail_cursor_next(ailp, &cur);
5002 xfs_trans_ail_cursor_done(&cur);
5003 spin_unlock(&ailp->ail_lock);
5008 * This routine performs a transaction to null out a bad inode pointer
5009 * in an agi unlinked inode hash bucket.
5012 xlog_recover_clear_agi_bucket(
5014 xfs_agnumber_t agno,
5023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5027 error = xfs_read_agi(mp, tp, agno, &agibp);
5031 agi = XFS_BUF_TO_AGI(agibp);
5032 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5033 offset = offsetof(xfs_agi_t, agi_unlinked) +
5034 (sizeof(xfs_agino_t) * bucket);
5035 xfs_trans_log_buf(tp, agibp, offset,
5036 (offset + sizeof(xfs_agino_t) - 1));
5038 error = xfs_trans_commit(tp);
5044 xfs_trans_cancel(tp);
5046 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5051 xlog_recover_process_one_iunlink(
5052 struct xfs_mount *mp,
5053 xfs_agnumber_t agno,
5057 struct xfs_buf *ibp;
5058 struct xfs_dinode *dip;
5059 struct xfs_inode *ip;
5063 ino = XFS_AGINO_TO_INO(mp, agno, agino);
5064 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5069 * Get the on disk inode to find the next inode in the bucket.
5071 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5075 xfs_iflags_clear(ip, XFS_IRECOVERY);
5076 ASSERT(VFS_I(ip)->i_nlink == 0);
5077 ASSERT(VFS_I(ip)->i_mode != 0);
5079 /* setup for the next pass */
5080 agino = be32_to_cpu(dip->di_next_unlinked);
5084 * Prevent any DMAPI event from being sent when the reference on
5085 * the inode is dropped.
5087 ip->i_d.di_dmevmask = 0;
5096 * We can't read in the inode this bucket points to, or this inode
5097 * is messed up. Just ditch this bucket of inodes. We will lose
5098 * some inodes and space, but at least we won't hang.
5100 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5101 * clear the inode pointer in the bucket.
5103 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5108 * xlog_iunlink_recover
5110 * This is called during recovery to process any inodes which
5111 * we unlinked but not freed when the system crashed. These
5112 * inodes will be on the lists in the AGI blocks. What we do
5113 * here is scan all the AGIs and fully truncate and free any
5114 * inodes found on the lists. Each inode is removed from the
5115 * lists when it has been fully truncated and is freed. The
5116 * freeing of the inode and its removal from the list must be
5120 xlog_recover_process_iunlinks(
5124 xfs_agnumber_t agno;
5133 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5135 * Find the agi for this ag.
5137 error = xfs_read_agi(mp, NULL, agno, &agibp);
5140 * AGI is b0rked. Don't process it.
5142 * We should probably mark the filesystem as corrupt
5143 * after we've recovered all the ag's we can....
5148 * Unlock the buffer so that it can be acquired in the normal
5149 * course of the transaction to truncate and free each inode.
5150 * Because we are not racing with anyone else here for the AGI
5151 * buffer, we don't even need to hold it locked to read the
5152 * initial unlinked bucket entries out of the buffer. We keep
5153 * buffer reference though, so that it stays pinned in memory
5154 * while we need the buffer.
5156 agi = XFS_BUF_TO_AGI(agibp);
5157 xfs_buf_unlock(agibp);
5159 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5160 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5161 while (agino != NULLAGINO) {
5162 agino = xlog_recover_process_one_iunlink(mp,
5163 agno, agino, bucket);
5166 xfs_buf_rele(agibp);
5172 struct xlog_rec_header *rhead,
5178 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5179 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5180 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5184 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5185 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5186 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5187 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5188 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5189 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5196 * CRC check, unpack and process a log record.
5199 xlog_recover_process(
5201 struct hlist_head rhash[],
5202 struct xlog_rec_header *rhead,
5205 struct list_head *buffer_list)
5207 __le32 old_crc = rhead->h_crc;
5210 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5213 * Nothing else to do if this is a CRC verification pass. Just return
5214 * if this a record with a non-zero crc. Unfortunately, mkfs always
5215 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5216 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5217 * know precisely what failed.
5219 if (pass == XLOG_RECOVER_CRCPASS) {
5220 if (old_crc && crc != old_crc)
5226 * We're in the normal recovery path. Issue a warning if and only if the
5227 * CRC in the header is non-zero. This is an advisory warning and the
5228 * zero CRC check prevents warnings from being emitted when upgrading
5229 * the kernel from one that does not add CRCs by default.
5231 if (crc != old_crc) {
5232 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5233 xfs_alert(log->l_mp,
5234 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5235 le32_to_cpu(old_crc),
5237 xfs_hex_dump(dp, 32);
5241 * If the filesystem is CRC enabled, this mismatch becomes a
5242 * fatal log corruption failure.
5244 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5245 return -EFSCORRUPTED;
5248 xlog_unpack_data(rhead, dp, log);
5250 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5255 xlog_valid_rec_header(
5257 struct xlog_rec_header *rhead,
5262 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5263 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5264 XFS_ERRLEVEL_LOW, log->l_mp);
5265 return -EFSCORRUPTED;
5268 (!rhead->h_version ||
5269 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5270 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5271 __func__, be32_to_cpu(rhead->h_version));
5275 /* LR body must have data or it wouldn't have been written */
5276 hlen = be32_to_cpu(rhead->h_len);
5277 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5278 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5279 XFS_ERRLEVEL_LOW, log->l_mp);
5280 return -EFSCORRUPTED;
5282 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5283 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5284 XFS_ERRLEVEL_LOW, log->l_mp);
5285 return -EFSCORRUPTED;
5291 * Read the log from tail to head and process the log records found.
5292 * Handle the two cases where the tail and head are in the same cycle
5293 * and where the active portion of the log wraps around the end of
5294 * the physical log separately. The pass parameter is passed through
5295 * to the routines called to process the data and is not looked at
5299 xlog_do_recovery_pass(
5301 xfs_daddr_t head_blk,
5302 xfs_daddr_t tail_blk,
5304 xfs_daddr_t *first_bad) /* out: first bad log rec */
5306 xlog_rec_header_t *rhead;
5307 xfs_daddr_t blk_no, rblk_no;
5308 xfs_daddr_t rhead_blk;
5310 xfs_buf_t *hbp, *dbp;
5311 int error = 0, h_size, h_len;
5313 int bblks, split_bblks;
5314 int hblks, split_hblks, wrapped_hblks;
5316 struct hlist_head rhash[XLOG_RHASH_SIZE];
5317 LIST_HEAD (buffer_list);
5319 ASSERT(head_blk != tail_blk);
5320 blk_no = rhead_blk = tail_blk;
5322 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5323 INIT_HLIST_HEAD(&rhash[i]);
5326 * Read the header of the tail block and get the iclog buffer size from
5327 * h_size. Use this to tell how many sectors make up the log header.
5329 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5331 * When using variable length iclogs, read first sector of
5332 * iclog header and extract the header size from it. Get a
5333 * new hbp that is the correct size.
5335 hbp = xlog_get_bp(log, 1);
5339 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5343 rhead = (xlog_rec_header_t *)offset;
5344 error = xlog_valid_rec_header(log, rhead, tail_blk);
5349 * xfsprogs has a bug where record length is based on lsunit but
5350 * h_size (iclog size) is hardcoded to 32k. Now that we
5351 * unconditionally CRC verify the unmount record, this means the
5352 * log buffer can be too small for the record and cause an
5355 * Detect this condition here. Use lsunit for the buffer size as
5356 * long as this looks like the mkfs case. Otherwise, return an
5357 * error to avoid a buffer overrun.
5359 h_size = be32_to_cpu(rhead->h_size);
5360 h_len = be32_to_cpu(rhead->h_len);
5361 if (h_len > h_size) {
5362 if (h_len <= log->l_mp->m_logbsize &&
5363 be32_to_cpu(rhead->h_num_logops) == 1) {
5365 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5366 h_size, log->l_mp->m_logbsize);
5367 h_size = log->l_mp->m_logbsize;
5369 return -EFSCORRUPTED;
5372 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5373 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5374 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5375 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5378 hbp = xlog_get_bp(log, hblks);
5383 ASSERT(log->l_sectBBsize == 1);
5385 hbp = xlog_get_bp(log, 1);
5386 h_size = XLOG_BIG_RECORD_BSIZE;
5391 dbp = xlog_get_bp(log, BTOBB(h_size));
5397 memset(rhash, 0, sizeof(rhash));
5398 if (tail_blk > head_blk) {
5400 * Perform recovery around the end of the physical log.
5401 * When the head is not on the same cycle number as the tail,
5402 * we can't do a sequential recovery.
5404 while (blk_no < log->l_logBBsize) {
5406 * Check for header wrapping around physical end-of-log
5408 offset = hbp->b_addr;
5411 if (blk_no + hblks <= log->l_logBBsize) {
5412 /* Read header in one read */
5413 error = xlog_bread(log, blk_no, hblks, hbp,
5418 /* This LR is split across physical log end */
5419 if (blk_no != log->l_logBBsize) {
5420 /* some data before physical log end */
5421 ASSERT(blk_no <= INT_MAX);
5422 split_hblks = log->l_logBBsize - (int)blk_no;
5423 ASSERT(split_hblks > 0);
5424 error = xlog_bread(log, blk_no,
5432 * Note: this black magic still works with
5433 * large sector sizes (non-512) only because:
5434 * - we increased the buffer size originally
5435 * by 1 sector giving us enough extra space
5436 * for the second read;
5437 * - the log start is guaranteed to be sector
5439 * - we read the log end (LR header start)
5440 * _first_, then the log start (LR header end)
5441 * - order is important.
5443 wrapped_hblks = hblks - split_hblks;
5444 error = xlog_bread_offset(log, 0,
5446 offset + BBTOB(split_hblks));
5450 rhead = (xlog_rec_header_t *)offset;
5451 error = xlog_valid_rec_header(log, rhead,
5452 split_hblks ? blk_no : 0);
5456 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5460 * Read the log record data in multiple reads if it
5461 * wraps around the end of the log. Note that if the
5462 * header already wrapped, blk_no could point past the
5463 * end of the log. The record data is contiguous in
5466 if (blk_no + bblks <= log->l_logBBsize ||
5467 blk_no >= log->l_logBBsize) {
5468 rblk_no = xlog_wrap_logbno(log, blk_no);
5469 error = xlog_bread(log, rblk_no, bblks, dbp,
5474 /* This log record is split across the
5475 * physical end of log */
5476 offset = dbp->b_addr;
5478 if (blk_no != log->l_logBBsize) {
5479 /* some data is before the physical
5481 ASSERT(!wrapped_hblks);
5482 ASSERT(blk_no <= INT_MAX);
5484 log->l_logBBsize - (int)blk_no;
5485 ASSERT(split_bblks > 0);
5486 error = xlog_bread(log, blk_no,
5494 * Note: this black magic still works with
5495 * large sector sizes (non-512) only because:
5496 * - we increased the buffer size originally
5497 * by 1 sector giving us enough extra space
5498 * for the second read;
5499 * - the log start is guaranteed to be sector
5501 * - we read the log end (LR header start)
5502 * _first_, then the log start (LR header end)
5503 * - order is important.
5505 error = xlog_bread_offset(log, 0,
5506 bblks - split_bblks, dbp,
5507 offset + BBTOB(split_bblks));
5512 error = xlog_recover_process(log, rhash, rhead, offset,
5513 pass, &buffer_list);
5521 ASSERT(blk_no >= log->l_logBBsize);
5522 blk_no -= log->l_logBBsize;
5526 /* read first part of physical log */
5527 while (blk_no < head_blk) {
5528 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5532 rhead = (xlog_rec_header_t *)offset;
5533 error = xlog_valid_rec_header(log, rhead, blk_no);
5537 /* blocks in data section */
5538 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5539 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5544 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5549 blk_no += bblks + hblks;
5559 * Submit buffers that have been added from the last record processed,
5560 * regardless of error status.
5562 if (!list_empty(&buffer_list))
5563 error2 = xfs_buf_delwri_submit(&buffer_list);
5565 if (error && first_bad)
5566 *first_bad = rhead_blk;
5569 * Transactions are freed at commit time but transactions without commit
5570 * records on disk are never committed. Free any that may be left in the
5573 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5574 struct hlist_node *tmp;
5575 struct xlog_recover *trans;
5577 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5578 xlog_recover_free_trans(trans);
5581 return error ? error : error2;
5585 * Do the recovery of the log. We actually do this in two phases.
5586 * The two passes are necessary in order to implement the function
5587 * of cancelling a record written into the log. The first pass
5588 * determines those things which have been cancelled, and the
5589 * second pass replays log items normally except for those which
5590 * have been cancelled. The handling of the replay and cancellations
5591 * takes place in the log item type specific routines.
5593 * The table of items which have cancel records in the log is allocated
5594 * and freed at this level, since only here do we know when all of
5595 * the log recovery has been completed.
5598 xlog_do_log_recovery(
5600 xfs_daddr_t head_blk,
5601 xfs_daddr_t tail_blk)
5605 ASSERT(head_blk != tail_blk);
5608 * First do a pass to find all of the cancelled buf log items.
5609 * Store them in the buf_cancel_table for use in the second pass.
5611 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5612 sizeof(struct list_head),
5614 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5615 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5617 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5618 XLOG_RECOVER_PASS1, NULL);
5620 kmem_free(log->l_buf_cancel_table);
5621 log->l_buf_cancel_table = NULL;
5625 * Then do a second pass to actually recover the items in the log.
5626 * When it is complete free the table of buf cancel items.
5628 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5629 XLOG_RECOVER_PASS2, NULL);
5634 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5635 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5639 kmem_free(log->l_buf_cancel_table);
5640 log->l_buf_cancel_table = NULL;
5646 * Do the actual recovery
5651 xfs_daddr_t head_blk,
5652 xfs_daddr_t tail_blk)
5654 struct xfs_mount *mp = log->l_mp;
5659 trace_xfs_log_recover(log, head_blk, tail_blk);
5662 * First replay the images in the log.
5664 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5669 * If IO errors happened during recovery, bail out.
5671 if (XFS_FORCED_SHUTDOWN(mp)) {
5676 * We now update the tail_lsn since much of the recovery has completed
5677 * and there may be space available to use. If there were no extent
5678 * or iunlinks, we can free up the entire log and set the tail_lsn to
5679 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5680 * lsn of the last known good LR on disk. If there are extent frees
5681 * or iunlinks they will have some entries in the AIL; so we look at
5682 * the AIL to determine how to set the tail_lsn.
5684 xlog_assign_tail_lsn(mp);
5687 * Now that we've finished replaying all buffer and inode
5688 * updates, re-read in the superblock and reverify it.
5690 bp = xfs_getsb(mp, 0);
5691 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5692 ASSERT(!(bp->b_flags & XBF_WRITE));
5693 bp->b_flags |= XBF_READ;
5694 bp->b_ops = &xfs_sb_buf_ops;
5696 error = xfs_buf_submit(bp);
5698 if (!XFS_FORCED_SHUTDOWN(mp)) {
5699 xfs_buf_ioerror_alert(bp, __func__);
5706 /* Convert superblock from on-disk format */
5708 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5711 /* re-initialise in-core superblock and geometry structures */
5712 xfs_reinit_percpu_counters(mp);
5713 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5715 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5718 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5720 xlog_recover_check_summary(log);
5722 /* Normal transactions can now occur */
5723 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5728 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5730 * Return error or zero.
5736 xfs_daddr_t head_blk, tail_blk;
5739 /* find the tail of the log */
5740 error = xlog_find_tail(log, &head_blk, &tail_blk);
5745 * The superblock was read before the log was available and thus the LSN
5746 * could not be verified. Check the superblock LSN against the current
5747 * LSN now that it's known.
5749 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5750 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5753 if (tail_blk != head_blk) {
5754 /* There used to be a comment here:
5756 * disallow recovery on read-only mounts. note -- mount
5757 * checks for ENOSPC and turns it into an intelligent
5759 * ...but this is no longer true. Now, unless you specify
5760 * NORECOVERY (in which case this function would never be
5761 * called), we just go ahead and recover. We do this all
5762 * under the vfs layer, so we can get away with it unless
5763 * the device itself is read-only, in which case we fail.
5765 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5770 * Version 5 superblock log feature mask validation. We know the
5771 * log is dirty so check if there are any unknown log features
5772 * in what we need to recover. If there are unknown features
5773 * (e.g. unsupported transactions, then simply reject the
5774 * attempt at recovery before touching anything.
5776 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5777 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5778 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5780 "Superblock has unknown incompatible log features (0x%x) enabled.",
5781 (log->l_mp->m_sb.sb_features_log_incompat &
5782 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5784 "The log can not be fully and/or safely recovered by this kernel.");
5786 "Please recover the log on a kernel that supports the unknown features.");
5791 * Delay log recovery if the debug hook is set. This is debug
5792 * instrumention to coordinate simulation of I/O failures with
5795 if (xfs_globals.log_recovery_delay) {
5796 xfs_notice(log->l_mp,
5797 "Delaying log recovery for %d seconds.",
5798 xfs_globals.log_recovery_delay);
5799 msleep(xfs_globals.log_recovery_delay * 1000);
5802 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5803 log->l_mp->m_logname ? log->l_mp->m_logname
5806 error = xlog_do_recover(log, head_blk, tail_blk);
5807 log->l_flags |= XLOG_RECOVERY_NEEDED;
5813 * In the first part of recovery we replay inodes and buffers and build
5814 * up the list of extent free items which need to be processed. Here
5815 * we process the extent free items and clean up the on disk unlinked
5816 * inode lists. This is separated from the first part of recovery so
5817 * that the root and real-time bitmap inodes can be read in from disk in
5818 * between the two stages. This is necessary so that we can free space
5819 * in the real-time portion of the file system.
5822 xlog_recover_finish(
5826 * Now we're ready to do the transactions needed for the
5827 * rest of recovery. Start with completing all the extent
5828 * free intent records and then process the unlinked inode
5829 * lists. At this point, we essentially run in normal mode
5830 * except that we're still performing recovery actions
5831 * rather than accepting new requests.
5833 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5835 error = xlog_recover_process_intents(log);
5837 xfs_alert(log->l_mp, "Failed to recover intents");
5842 * Sync the log to get all the intents out of the AIL.
5843 * This isn't absolutely necessary, but it helps in
5844 * case the unlink transactions would have problems
5845 * pushing the intents out of the way.
5847 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5849 xlog_recover_process_iunlinks(log);
5851 xlog_recover_check_summary(log);
5853 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5854 log->l_mp->m_logname ? log->l_mp->m_logname
5856 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5858 xfs_info(log->l_mp, "Ending clean mount");
5864 xlog_recover_cancel(
5869 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5870 error = xlog_recover_cancel_intents(log);
5877 * Read all of the agf and agi counters and check that they
5878 * are consistent with the superblock counters.
5881 xlog_recover_check_summary(
5888 xfs_agnumber_t agno;
5899 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5900 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5902 xfs_alert(mp, "%s agf read failed agno %d error %d",
5903 __func__, agno, error);
5905 agfp = XFS_BUF_TO_AGF(agfbp);
5906 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5907 be32_to_cpu(agfp->agf_flcount);
5908 xfs_buf_relse(agfbp);
5911 error = xfs_read_agi(mp, NULL, agno, &agibp);
5913 xfs_alert(mp, "%s agi read failed agno %d error %d",
5914 __func__, agno, error);
5916 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5918 itotal += be32_to_cpu(agi->agi_count);
5919 ifree += be32_to_cpu(agi->agi_freecount);
5920 xfs_buf_relse(agibp);