2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
53 xlog_clear_stale_blocks(
58 xlog_recover_check_summary(
61 #define xlog_recover_check_summary(log)
65 * This structure is used during recovery to record the buf log items which
66 * have been canceled and should not be replayed.
68 struct xfs_buf_cancel {
72 struct list_head bc_list;
76 * Sector aligned buffer routines for buffer create/read/write/access
80 * Verify the given count of basic blocks is valid number of blocks
81 * to specify for an operation involving the given XFS log buffer.
82 * Returns nonzero if the count is valid, 0 otherwise.
86 xlog_buf_bbcount_valid(
90 return bbcount > 0 && bbcount <= log->l_logBBsize;
94 * Allocate a buffer to hold log data. The buffer needs to be able
95 * to map to a range of nbblks basic blocks at any valid (basic
96 * block) offset within the log.
105 if (!xlog_buf_bbcount_valid(log, nbblks)) {
106 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
113 * We do log I/O in units of log sectors (a power-of-2
114 * multiple of the basic block size), so we round up the
115 * requested size to accommodate the basic blocks required
116 * for complete log sectors.
118 * In addition, the buffer may be used for a non-sector-
119 * aligned block offset, in which case an I/O of the
120 * requested size could extend beyond the end of the
121 * buffer. If the requested size is only 1 basic block it
122 * will never straddle a sector boundary, so this won't be
123 * an issue. Nor will this be a problem if the log I/O is
124 * done in basic blocks (sector size 1). But otherwise we
125 * extend the buffer by one extra log sector to ensure
126 * there's space to accommodate this possibility.
128 if (nbblks > 1 && log->l_sectBBsize > 1)
129 nbblks += log->l_sectBBsize;
130 nbblks = round_up(nbblks, log->l_sectBBsize);
132 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
146 * Return the address of the start of the given block number's data
147 * in a log buffer. The buffer covers a log sector-aligned region.
156 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158 ASSERT(offset + nbblks <= bp->b_length);
159 return bp->b_addr + BBTOB(offset);
164 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
175 if (!xlog_buf_bbcount_valid(log, nbblks)) {
176 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
182 blk_no = round_down(blk_no, log->l_sectBBsize);
183 nbblks = round_up(nbblks, log->l_sectBBsize);
186 ASSERT(nbblks <= bp->b_length);
188 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 bp->b_io_length = nbblks;
193 xfsbdstrat(log->l_mp, bp);
194 error = xfs_buf_iowait(bp);
196 xfs_buf_ioerror_alert(bp, __func__);
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
214 *offset = xlog_align(log, blk_no, nbblks, bp);
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
230 xfs_caddr_t orig_offset = bp->b_addr;
231 int orig_len = BBTOB(bp->b_length);
234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
240 /* must reset buffer pointer even on error */
241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
272 ASSERT(nbblks <= bp->b_length);
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
278 bp->b_io_length = nbblks;
281 error = xfs_bwrite(bp);
283 xfs_buf_ioerror_alert(bp, __func__);
290 * dump debug superblock and log record information
293 xlog_header_check_dump(
295 xlog_rec_header_t *head)
297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
303 #define xlog_header_check_dump(mp, head)
307 * check log record header for recovery
310 xlog_header_check_recover(
312 xlog_rec_header_t *head)
314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
323 "dirty log written in incompatible format - can't recover");
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
327 return XFS_ERROR(EFSCORRUPTED);
328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
330 "dirty log entry has mismatched uuid - can't recover");
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
334 return XFS_ERROR(EFSCORRUPTED);
340 * read the head block of the log and check the header
343 xlog_header_check_mount(
345 xlog_rec_header_t *head)
347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
349 if (uuid_is_nil(&head->h_fs_uuid)) {
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
355 xfs_warn(mp, "nil uuid in log - IRIX style log");
356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 xfs_warn(mp, "log has mismatched uuid - can't recover");
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
361 return XFS_ERROR(EFSCORRUPTED);
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
375 xfs_buf_ioerror_alert(bp, __func__);
376 xfs_force_shutdown(bp->b_target->bt_mount,
377 SHUTDOWN_META_IO_ERROR);
380 xfs_buf_ioend(bp, 0);
384 * This routine finds (to an approximation) the first block in the physical
385 * log which contains the given cycle. It uses a binary search algorithm.
386 * Note that the algorithm can not be perfect because the disk will not
387 * necessarily be perfect.
390 xlog_find_cycle_start(
393 xfs_daddr_t first_blk,
394 xfs_daddr_t *last_blk,
404 mid_blk = BLK_AVG(first_blk, end_blk);
405 while (mid_blk != first_blk && mid_blk != end_blk) {
406 error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 mid_cycle = xlog_get_cycle(offset);
410 if (mid_cycle == cycle)
411 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
413 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
414 mid_blk = BLK_AVG(first_blk, end_blk);
416 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
417 (mid_blk == end_blk && mid_blk-1 == first_blk));
425 * Check that a range of blocks does not contain stop_on_cycle_no.
426 * Fill in *new_blk with the block offset where such a block is
427 * found, or with -1 (an invalid block number) if there is no such
428 * block in the range. The scan needs to occur from front to back
429 * and the pointer into the region must be updated since a later
430 * routine will need to perform another test.
433 xlog_find_verify_cycle(
435 xfs_daddr_t start_blk,
437 uint stop_on_cycle_no,
438 xfs_daddr_t *new_blk)
444 xfs_caddr_t buf = NULL;
448 * Greedily allocate a buffer big enough to handle the full
449 * range of basic blocks we'll be examining. If that fails,
450 * try a smaller size. We need to be able to read at least
451 * a log sector, or we're out of luck.
453 bufblks = 1 << ffs(nbblks);
454 while (bufblks > log->l_logBBsize)
456 while (!(bp = xlog_get_bp(log, bufblks))) {
458 if (bufblks < log->l_sectBBsize)
462 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 bcount = min(bufblks, (start_blk + nbblks - i));
467 error = xlog_bread(log, i, bcount, bp, &buf);
471 for (j = 0; j < bcount; j++) {
472 cycle = xlog_get_cycle(buf);
473 if (cycle == stop_on_cycle_no) {
490 * Potentially backup over partial log record write.
492 * In the typical case, last_blk is the number of the block directly after
493 * a good log record. Therefore, we subtract one to get the block number
494 * of the last block in the given buffer. extra_bblks contains the number
495 * of blocks we would have read on a previous read. This happens when the
496 * last log record is split over the end of the physical log.
498 * extra_bblks is the number of blocks potentially verified on a previous
499 * call to this routine.
502 xlog_find_verify_log_record(
504 xfs_daddr_t start_blk,
505 xfs_daddr_t *last_blk,
510 xfs_caddr_t offset = NULL;
511 xlog_rec_header_t *head = NULL;
514 int num_blks = *last_blk - start_blk;
517 ASSERT(start_blk != 0 || *last_blk != start_blk);
519 if (!(bp = xlog_get_bp(log, num_blks))) {
520 if (!(bp = xlog_get_bp(log, 1)))
524 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 offset += ((num_blks - 1) << BBSHIFT);
530 for (i = (*last_blk) - 1; i >= 0; i--) {
532 /* valid log record not found */
534 "Log inconsistent (didn't find previous header)");
536 error = XFS_ERROR(EIO);
541 error = xlog_bread(log, i, 1, bp, &offset);
546 head = (xlog_rec_header_t *)offset;
548 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
556 * We hit the beginning of the physical log & still no header. Return
557 * to caller. If caller can handle a return of -1, then this routine
558 * will be called again for the end of the physical log.
566 * We have the final block of the good log (the first block
567 * of the log record _before_ the head. So we check the uuid.
569 if ((error = xlog_header_check_mount(log->l_mp, head)))
573 * We may have found a log record header before we expected one.
574 * last_blk will be the 1st block # with a given cycle #. We may end
575 * up reading an entire log record. In this case, we don't want to
576 * reset last_blk. Only when last_blk points in the middle of a log
577 * record do we update last_blk.
579 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
580 uint h_size = be32_to_cpu(head->h_size);
582 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
583 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 if (*last_blk - i + extra_bblks !=
590 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
599 * Head is defined to be the point of the log where the next log write
600 * write could go. This means that incomplete LR writes at the end are
601 * eliminated when calculating the head. We aren't guaranteed that previous
602 * LR have complete transactions. We only know that a cycle number of
603 * current cycle number -1 won't be present in the log if we start writing
604 * from our current block number.
606 * last_blk contains the block number of the first block with a given
609 * Return: zero if normal, non-zero if error.
614 xfs_daddr_t *return_head_blk)
618 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
620 uint first_half_cycle, last_half_cycle;
622 int error, log_bbnum = log->l_logBBsize;
624 /* Is the end of the log device zeroed? */
625 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
626 *return_head_blk = first_blk;
628 /* Is the whole lot zeroed? */
630 /* Linux XFS shouldn't generate totally zeroed logs -
631 * mkfs etc write a dummy unmount record to a fresh
632 * log so we can store the uuid in there
634 xfs_warn(log->l_mp, "totally zeroed log");
639 xfs_warn(log->l_mp, "empty log check failed");
643 first_blk = 0; /* get cycle # of 1st block */
644 bp = xlog_get_bp(log, 1);
648 error = xlog_bread(log, 0, 1, bp, &offset);
652 first_half_cycle = xlog_get_cycle(offset);
654 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
655 error = xlog_bread(log, last_blk, 1, bp, &offset);
659 last_half_cycle = xlog_get_cycle(offset);
660 ASSERT(last_half_cycle != 0);
663 * If the 1st half cycle number is equal to the last half cycle number,
664 * then the entire log is stamped with the same cycle number. In this
665 * case, head_blk can't be set to zero (which makes sense). The below
666 * math doesn't work out properly with head_blk equal to zero. Instead,
667 * we set it to log_bbnum which is an invalid block number, but this
668 * value makes the math correct. If head_blk doesn't changed through
669 * all the tests below, *head_blk is set to zero at the very end rather
670 * than log_bbnum. In a sense, log_bbnum and zero are the same block
671 * in a circular file.
673 if (first_half_cycle == last_half_cycle) {
675 * In this case we believe that the entire log should have
676 * cycle number last_half_cycle. We need to scan backwards
677 * from the end verifying that there are no holes still
678 * containing last_half_cycle - 1. If we find such a hole,
679 * then the start of that hole will be the new head. The
680 * simple case looks like
681 * x | x ... | x - 1 | x
682 * Another case that fits this picture would be
683 * x | x + 1 | x ... | x
684 * In this case the head really is somewhere at the end of the
685 * log, as one of the latest writes at the beginning was
688 * x | x + 1 | x ... | x - 1 | x
689 * This is really the combination of the above two cases, and
690 * the head has to end up at the start of the x-1 hole at the
693 * In the 256k log case, we will read from the beginning to the
694 * end of the log and search for cycle numbers equal to x-1.
695 * We don't worry about the x+1 blocks that we encounter,
696 * because we know that they cannot be the head since the log
699 head_blk = log_bbnum;
700 stop_on_cycle = last_half_cycle - 1;
703 * In this case we want to find the first block with cycle
704 * number matching last_half_cycle. We expect the log to be
706 * x + 1 ... | x ... | x
707 * The first block with cycle number x (last_half_cycle) will
708 * be where the new head belongs. First we do a binary search
709 * for the first occurrence of last_half_cycle. The binary
710 * search may not be totally accurate, so then we scan back
711 * from there looking for occurrences of last_half_cycle before
712 * us. If that backwards scan wraps around the beginning of
713 * the log, then we look for occurrences of last_half_cycle - 1
714 * at the end of the log. The cases we're looking for look
716 * v binary search stopped here
717 * x + 1 ... | x | x + 1 | x ... | x
718 * ^ but we want to locate this spot
720 * <---------> less than scan distance
721 * x + 1 ... | x ... | x - 1 | x
722 * ^ we want to locate this spot
724 stop_on_cycle = last_half_cycle;
725 if ((error = xlog_find_cycle_start(log, bp, first_blk,
726 &head_blk, last_half_cycle)))
731 * Now validate the answer. Scan back some number of maximum possible
732 * blocks and make sure each one has the expected cycle number. The
733 * maximum is determined by the total possible amount of buffering
734 * in the in-core log. The following number can be made tighter if
735 * we actually look at the block size of the filesystem.
737 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
738 if (head_blk >= num_scan_bblks) {
740 * We are guaranteed that the entire check can be performed
743 start_blk = head_blk - num_scan_bblks;
744 if ((error = xlog_find_verify_cycle(log,
745 start_blk, num_scan_bblks,
746 stop_on_cycle, &new_blk)))
750 } else { /* need to read 2 parts of log */
752 * We are going to scan backwards in the log in two parts.
753 * First we scan the physical end of the log. In this part
754 * of the log, we are looking for blocks with cycle number
755 * last_half_cycle - 1.
756 * If we find one, then we know that the log starts there, as
757 * we've found a hole that didn't get written in going around
758 * the end of the physical log. The simple case for this is
759 * x + 1 ... | x ... | x - 1 | x
760 * <---------> less than scan distance
761 * If all of the blocks at the end of the log have cycle number
762 * last_half_cycle, then we check the blocks at the start of
763 * the log looking for occurrences of last_half_cycle. If we
764 * find one, then our current estimate for the location of the
765 * first occurrence of last_half_cycle is wrong and we move
766 * back to the hole we've found. This case looks like
767 * x + 1 ... | x | x + 1 | x ...
768 * ^ binary search stopped here
769 * Another case we need to handle that only occurs in 256k
771 * x + 1 ... | x ... | x+1 | x ...
772 * ^ binary search stops here
773 * In a 256k log, the scan at the end of the log will see the
774 * x + 1 blocks. We need to skip past those since that is
775 * certainly not the head of the log. By searching for
776 * last_half_cycle-1 we accomplish that.
778 ASSERT(head_blk <= INT_MAX &&
779 (xfs_daddr_t) num_scan_bblks >= head_blk);
780 start_blk = log_bbnum - (num_scan_bblks - head_blk);
781 if ((error = xlog_find_verify_cycle(log, start_blk,
782 num_scan_bblks - (int)head_blk,
783 (stop_on_cycle - 1), &new_blk)))
791 * Scan beginning of log now. The last part of the physical
792 * log is good. This scan needs to verify that it doesn't find
793 * the last_half_cycle.
796 ASSERT(head_blk <= INT_MAX);
797 if ((error = xlog_find_verify_cycle(log,
798 start_blk, (int)head_blk,
799 stop_on_cycle, &new_blk)))
807 * Now we need to make sure head_blk is not pointing to a block in
808 * the middle of a log record.
810 num_scan_bblks = XLOG_REC_SHIFT(log);
811 if (head_blk >= num_scan_bblks) {
812 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
814 /* start ptr at last block ptr before head_blk */
815 if ((error = xlog_find_verify_log_record(log, start_blk,
816 &head_blk, 0)) == -1) {
817 error = XFS_ERROR(EIO);
823 ASSERT(head_blk <= INT_MAX);
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 /* We hit the beginning of the log during our search */
827 start_blk = log_bbnum - (num_scan_bblks - head_blk);
829 ASSERT(start_blk <= INT_MAX &&
830 (xfs_daddr_t) log_bbnum-start_blk >= 0);
831 ASSERT(head_blk <= INT_MAX);
832 if ((error = xlog_find_verify_log_record(log,
834 (int)head_blk)) == -1) {
835 error = XFS_ERROR(EIO);
839 if (new_blk != log_bbnum)
846 if (head_blk == log_bbnum)
847 *return_head_blk = 0;
849 *return_head_blk = head_blk;
851 * When returning here, we have a good block number. Bad block
852 * means that during a previous crash, we didn't have a clean break
853 * from cycle number N to cycle number N-1. In this case, we need
854 * to find the first block with cycle number N-1.
862 xfs_warn(log->l_mp, "failed to find log head");
867 * Find the sync block number or the tail of the log.
869 * This will be the block number of the last record to have its
870 * associated buffers synced to disk. Every log record header has
871 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
872 * to get a sync block number. The only concern is to figure out which
873 * log record header to believe.
875 * The following algorithm uses the log record header with the largest
876 * lsn. The entire log record does not need to be valid. We only care
877 * that the header is valid.
879 * We could speed up search by using current head_blk buffer, but it is not
885 xfs_daddr_t *head_blk,
886 xfs_daddr_t *tail_blk)
888 xlog_rec_header_t *rhead;
889 xlog_op_header_t *op_head;
890 xfs_caddr_t offset = NULL;
893 xfs_daddr_t umount_data_blk;
894 xfs_daddr_t after_umount_blk;
901 * Find previous log record
903 if ((error = xlog_find_head(log, head_blk)))
906 bp = xlog_get_bp(log, 1);
909 if (*head_blk == 0) { /* special case */
910 error = xlog_bread(log, 0, 1, bp, &offset);
914 if (xlog_get_cycle(offset) == 0) {
916 /* leave all other log inited values alone */
922 * Search backwards looking for log record header block
924 ASSERT(*head_blk < INT_MAX);
925 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
926 error = xlog_bread(log, i, 1, bp, &offset);
930 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
936 * If we haven't found the log record header block, start looking
937 * again from the end of the physical log. XXXmiken: There should be
938 * a check here to make sure we didn't search more than N blocks in
942 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
943 error = xlog_bread(log, i, 1, bp, &offset);
947 if (*(__be32 *)offset ==
948 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
955 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
957 return XFS_ERROR(EIO);
960 /* find blk_no of tail of log */
961 rhead = (xlog_rec_header_t *)offset;
962 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
965 * Reset log values according to the state of the log when we
966 * crashed. In the case where head_blk == 0, we bump curr_cycle
967 * one because the next write starts a new cycle rather than
968 * continuing the cycle of the last good log record. At this
969 * point we have guaranteed that all partial log records have been
970 * accounted for. Therefore, we know that the last good log record
971 * written was complete and ended exactly on the end boundary
972 * of the physical log.
974 log->l_prev_block = i;
975 log->l_curr_block = (int)*head_blk;
976 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
979 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
980 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
981 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
982 BBTOB(log->l_curr_block));
983 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
984 BBTOB(log->l_curr_block));
987 * Look for unmount record. If we find it, then we know there
988 * was a clean unmount. Since 'i' could be the last block in
989 * the physical log, we convert to a log block before comparing
992 * Save the current tail lsn to use to pass to
993 * xlog_clear_stale_blocks() below. We won't want to clear the
994 * unmount record if there is one, so we pass the lsn of the
995 * unmount record rather than the block after it.
997 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
998 int h_size = be32_to_cpu(rhead->h_size);
999 int h_version = be32_to_cpu(rhead->h_version);
1001 if ((h_version & XLOG_VERSION_2) &&
1002 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1003 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1004 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012 after_umount_blk = (i + hblks + (int)
1013 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1014 tail_lsn = atomic64_read(&log->l_tail_lsn);
1015 if (*head_blk == after_umount_blk &&
1016 be32_to_cpu(rhead->h_num_logops) == 1) {
1017 umount_data_blk = (i + hblks) % log->l_logBBsize;
1018 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1022 op_head = (xlog_op_header_t *)offset;
1023 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1025 * Set tail and last sync so that newly written
1026 * log records will point recovery to after the
1027 * current unmount record.
1029 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1030 log->l_curr_cycle, after_umount_blk);
1031 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1032 log->l_curr_cycle, after_umount_blk);
1033 *tail_blk = after_umount_blk;
1036 * Note that the unmount was clean. If the unmount
1037 * was not clean, we need to know this to rebuild the
1038 * superblock counters from the perag headers if we
1039 * have a filesystem using non-persistent counters.
1041 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1046 * Make sure that there are no blocks in front of the head
1047 * with the same cycle number as the head. This can happen
1048 * because we allow multiple outstanding log writes concurrently,
1049 * and the later writes might make it out before earlier ones.
1051 * We use the lsn from before modifying it so that we'll never
1052 * overwrite the unmount record after a clean unmount.
1054 * Do this only if we are going to recover the filesystem
1056 * NOTE: This used to say "if (!readonly)"
1057 * However on Linux, we can & do recover a read-only filesystem.
1058 * We only skip recovery if NORECOVERY is specified on mount,
1059 * in which case we would not be here.
1061 * But... if the -device- itself is readonly, just skip this.
1062 * We can't recover this device anyway, so it won't matter.
1064 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1065 error = xlog_clear_stale_blocks(log, tail_lsn);
1071 xfs_warn(log->l_mp, "failed to locate log tail");
1076 * Is the log zeroed at all?
1078 * The last binary search should be changed to perform an X block read
1079 * once X becomes small enough. You can then search linearly through
1080 * the X blocks. This will cut down on the number of reads we need to do.
1082 * If the log is partially zeroed, this routine will pass back the blkno
1083 * of the first block with cycle number 0. It won't have a complete LR
1087 * 0 => the log is completely written to
1088 * -1 => use *blk_no as the first block of the log
1089 * >0 => error has occurred
1094 xfs_daddr_t *blk_no)
1098 uint first_cycle, last_cycle;
1099 xfs_daddr_t new_blk, last_blk, start_blk;
1100 xfs_daddr_t num_scan_bblks;
1101 int error, log_bbnum = log->l_logBBsize;
1105 /* check totally zeroed log */
1106 bp = xlog_get_bp(log, 1);
1109 error = xlog_bread(log, 0, 1, bp, &offset);
1113 first_cycle = xlog_get_cycle(offset);
1114 if (first_cycle == 0) { /* completely zeroed log */
1120 /* check partially zeroed log */
1121 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1125 last_cycle = xlog_get_cycle(offset);
1126 if (last_cycle != 0) { /* log completely written to */
1129 } else if (first_cycle != 1) {
1131 * If the cycle of the last block is zero, the cycle of
1132 * the first block must be 1. If it's not, maybe we're
1133 * not looking at a log... Bail out.
1136 "Log inconsistent or not a log (last==0, first!=1)");
1137 return XFS_ERROR(EINVAL);
1140 /* we have a partially zeroed log */
1141 last_blk = log_bbnum-1;
1142 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1146 * Validate the answer. Because there is no way to guarantee that
1147 * the entire log is made up of log records which are the same size,
1148 * we scan over the defined maximum blocks. At this point, the maximum
1149 * is not chosen to mean anything special. XXXmiken
1151 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1152 ASSERT(num_scan_bblks <= INT_MAX);
1154 if (last_blk < num_scan_bblks)
1155 num_scan_bblks = last_blk;
1156 start_blk = last_blk - num_scan_bblks;
1159 * We search for any instances of cycle number 0 that occur before
1160 * our current estimate of the head. What we're trying to detect is
1161 * 1 ... | 0 | 1 | 0...
1162 * ^ binary search ends here
1164 if ((error = xlog_find_verify_cycle(log, start_blk,
1165 (int)num_scan_bblks, 0, &new_blk)))
1171 * Potentially backup over partial log record write. We don't need
1172 * to search the end of the log because we know it is zero.
1174 if ((error = xlog_find_verify_log_record(log, start_blk,
1175 &last_blk, 0)) == -1) {
1176 error = XFS_ERROR(EIO);
1190 * These are simple subroutines used by xlog_clear_stale_blocks() below
1191 * to initialize a buffer full of empty log record headers and write
1192 * them into the log.
1203 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1205 memset(buf, 0, BBSIZE);
1206 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1207 recp->h_cycle = cpu_to_be32(cycle);
1208 recp->h_version = cpu_to_be32(
1209 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1210 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1211 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1212 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1213 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1217 xlog_write_log_records(
1228 int sectbb = log->l_sectBBsize;
1229 int end_block = start_block + blocks;
1235 * Greedily allocate a buffer big enough to handle the full
1236 * range of basic blocks to be written. If that fails, try
1237 * a smaller size. We need to be able to write at least a
1238 * log sector, or we're out of luck.
1240 bufblks = 1 << ffs(blocks);
1241 while (bufblks > log->l_logBBsize)
1243 while (!(bp = xlog_get_bp(log, bufblks))) {
1245 if (bufblks < sectbb)
1249 /* We may need to do a read at the start to fill in part of
1250 * the buffer in the starting sector not covered by the first
1253 balign = round_down(start_block, sectbb);
1254 if (balign != start_block) {
1255 error = xlog_bread_noalign(log, start_block, 1, bp);
1259 j = start_block - balign;
1262 for (i = start_block; i < end_block; i += bufblks) {
1263 int bcount, endcount;
1265 bcount = min(bufblks, end_block - start_block);
1266 endcount = bcount - j;
1268 /* We may need to do a read at the end to fill in part of
1269 * the buffer in the final sector not covered by the write.
1270 * If this is the same sector as the above read, skip it.
1272 ealign = round_down(end_block, sectbb);
1273 if (j == 0 && (start_block + endcount > ealign)) {
1274 offset = bp->b_addr + BBTOB(ealign - start_block);
1275 error = xlog_bread_offset(log, ealign, sectbb,
1282 offset = xlog_align(log, start_block, endcount, bp);
1283 for (; j < endcount; j++) {
1284 xlog_add_record(log, offset, cycle, i+j,
1285 tail_cycle, tail_block);
1288 error = xlog_bwrite(log, start_block, endcount, bp);
1291 start_block += endcount;
1301 * This routine is called to blow away any incomplete log writes out
1302 * in front of the log head. We do this so that we won't become confused
1303 * if we come up, write only a little bit more, and then crash again.
1304 * If we leave the partial log records out there, this situation could
1305 * cause us to think those partial writes are valid blocks since they
1306 * have the current cycle number. We get rid of them by overwriting them
1307 * with empty log records with the old cycle number rather than the
1310 * The tail lsn is passed in rather than taken from
1311 * the log so that we will not write over the unmount record after a
1312 * clean unmount in a 512 block log. Doing so would leave the log without
1313 * any valid log records in it until a new one was written. If we crashed
1314 * during that time we would not be able to recover.
1317 xlog_clear_stale_blocks(
1321 int tail_cycle, head_cycle;
1322 int tail_block, head_block;
1323 int tail_distance, max_distance;
1327 tail_cycle = CYCLE_LSN(tail_lsn);
1328 tail_block = BLOCK_LSN(tail_lsn);
1329 head_cycle = log->l_curr_cycle;
1330 head_block = log->l_curr_block;
1333 * Figure out the distance between the new head of the log
1334 * and the tail. We want to write over any blocks beyond the
1335 * head that we may have written just before the crash, but
1336 * we don't want to overwrite the tail of the log.
1338 if (head_cycle == tail_cycle) {
1340 * The tail is behind the head in the physical log,
1341 * so the distance from the head to the tail is the
1342 * distance from the head to the end of the log plus
1343 * the distance from the beginning of the log to the
1346 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1347 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1348 XFS_ERRLEVEL_LOW, log->l_mp);
1349 return XFS_ERROR(EFSCORRUPTED);
1351 tail_distance = tail_block + (log->l_logBBsize - head_block);
1354 * The head is behind the tail in the physical log,
1355 * so the distance from the head to the tail is just
1356 * the tail block minus the head block.
1358 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1359 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1360 XFS_ERRLEVEL_LOW, log->l_mp);
1361 return XFS_ERROR(EFSCORRUPTED);
1363 tail_distance = tail_block - head_block;
1367 * If the head is right up against the tail, we can't clear
1370 if (tail_distance <= 0) {
1371 ASSERT(tail_distance == 0);
1375 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1377 * Take the smaller of the maximum amount of outstanding I/O
1378 * we could have and the distance to the tail to clear out.
1379 * We take the smaller so that we don't overwrite the tail and
1380 * we don't waste all day writing from the head to the tail
1383 max_distance = MIN(max_distance, tail_distance);
1385 if ((head_block + max_distance) <= log->l_logBBsize) {
1387 * We can stomp all the blocks we need to without
1388 * wrapping around the end of the log. Just do it
1389 * in a single write. Use the cycle number of the
1390 * current cycle minus one so that the log will look like:
1393 error = xlog_write_log_records(log, (head_cycle - 1),
1394 head_block, max_distance, tail_cycle,
1400 * We need to wrap around the end of the physical log in
1401 * order to clear all the blocks. Do it in two separate
1402 * I/Os. The first write should be from the head to the
1403 * end of the physical log, and it should use the current
1404 * cycle number minus one just like above.
1406 distance = log->l_logBBsize - head_block;
1407 error = xlog_write_log_records(log, (head_cycle - 1),
1408 head_block, distance, tail_cycle,
1415 * Now write the blocks at the start of the physical log.
1416 * This writes the remainder of the blocks we want to clear.
1417 * It uses the current cycle number since we're now on the
1418 * same cycle as the head so that we get:
1419 * n ... n ... | n - 1 ...
1420 * ^^^^^ blocks we're writing
1422 distance = max_distance - (log->l_logBBsize - head_block);
1423 error = xlog_write_log_records(log, head_cycle, 0, distance,
1424 tail_cycle, tail_block);
1432 /******************************************************************************
1434 * Log recover routines
1436 ******************************************************************************
1439 STATIC xlog_recover_t *
1440 xlog_recover_find_tid(
1441 struct hlist_head *head,
1444 xlog_recover_t *trans;
1445 struct hlist_node *n;
1447 hlist_for_each_entry(trans, n, head, r_list) {
1448 if (trans->r_log_tid == tid)
1455 xlog_recover_new_tid(
1456 struct hlist_head *head,
1460 xlog_recover_t *trans;
1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 trans->r_log_tid = tid;
1465 INIT_LIST_HEAD(&trans->r_itemq);
1467 INIT_HLIST_NODE(&trans->r_list);
1468 hlist_add_head(&trans->r_list, head);
1472 xlog_recover_add_item(
1473 struct list_head *head)
1475 xlog_recover_item_t *item;
1477 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1478 INIT_LIST_HEAD(&item->ri_list);
1479 list_add_tail(&item->ri_list, head);
1483 xlog_recover_add_to_cont_trans(
1485 struct xlog_recover *trans,
1489 xlog_recover_item_t *item;
1490 xfs_caddr_t ptr, old_ptr;
1493 if (list_empty(&trans->r_itemq)) {
1494 /* finish copying rest of trans header */
1495 xlog_recover_add_item(&trans->r_itemq);
1496 ptr = (xfs_caddr_t) &trans->r_theader +
1497 sizeof(xfs_trans_header_t) - len;
1498 memcpy(ptr, dp, len); /* d, s, l */
1501 /* take the tail entry */
1502 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1504 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1505 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1507 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1508 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1509 item->ri_buf[item->ri_cnt-1].i_len += len;
1510 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1511 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1516 * The next region to add is the start of a new region. It could be
1517 * a whole region or it could be the first part of a new region. Because
1518 * of this, the assumption here is that the type and size fields of all
1519 * format structures fit into the first 32 bits of the structure.
1521 * This works because all regions must be 32 bit aligned. Therefore, we
1522 * either have both fields or we have neither field. In the case we have
1523 * neither field, the data part of the region is zero length. We only have
1524 * a log_op_header and can throw away the header since a new one will appear
1525 * later. If we have at least 4 bytes, then we can determine how many regions
1526 * will appear in the current log item.
1529 xlog_recover_add_to_trans(
1531 struct xlog_recover *trans,
1535 xfs_inode_log_format_t *in_f; /* any will do */
1536 xlog_recover_item_t *item;
1541 if (list_empty(&trans->r_itemq)) {
1542 /* we need to catch log corruptions here */
1543 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1544 xfs_warn(log->l_mp, "%s: bad header magic number",
1547 return XFS_ERROR(EIO);
1549 if (len == sizeof(xfs_trans_header_t))
1550 xlog_recover_add_item(&trans->r_itemq);
1551 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1555 ptr = kmem_alloc(len, KM_SLEEP);
1556 memcpy(ptr, dp, len);
1557 in_f = (xfs_inode_log_format_t *)ptr;
1559 /* take the tail entry */
1560 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1561 if (item->ri_total != 0 &&
1562 item->ri_total == item->ri_cnt) {
1563 /* tail item is in use, get a new one */
1564 xlog_recover_add_item(&trans->r_itemq);
1565 item = list_entry(trans->r_itemq.prev,
1566 xlog_recover_item_t, ri_list);
1569 if (item->ri_total == 0) { /* first region to be added */
1570 if (in_f->ilf_size == 0 ||
1571 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1573 "bad number of regions (%d) in inode log format",
1576 return XFS_ERROR(EIO);
1579 item->ri_total = in_f->ilf_size;
1581 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1584 ASSERT(item->ri_total > item->ri_cnt);
1585 /* Description region is ri_buf[0] */
1586 item->ri_buf[item->ri_cnt].i_addr = ptr;
1587 item->ri_buf[item->ri_cnt].i_len = len;
1589 trace_xfs_log_recover_item_add(log, trans, item, 0);
1594 * Sort the log items in the transaction. Cancelled buffers need
1595 * to be put first so they are processed before any items that might
1596 * modify the buffers. If they are cancelled, then the modifications
1597 * don't need to be replayed.
1600 xlog_recover_reorder_trans(
1602 struct xlog_recover *trans,
1605 xlog_recover_item_t *item, *n;
1606 LIST_HEAD(sort_list);
1608 list_splice_init(&trans->r_itemq, &sort_list);
1609 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1610 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1612 switch (ITEM_TYPE(item)) {
1614 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1615 trace_xfs_log_recover_item_reorder_head(log,
1617 list_move(&item->ri_list, &trans->r_itemq);
1622 case XFS_LI_QUOTAOFF:
1625 trace_xfs_log_recover_item_reorder_tail(log,
1627 list_move_tail(&item->ri_list, &trans->r_itemq);
1631 "%s: unrecognized type of log operation",
1634 return XFS_ERROR(EIO);
1637 ASSERT(list_empty(&sort_list));
1642 * Build up the table of buf cancel records so that we don't replay
1643 * cancelled data in the second pass. For buffer records that are
1644 * not cancel records, there is nothing to do here so we just return.
1646 * If we get a cancel record which is already in the table, this indicates
1647 * that the buffer was cancelled multiple times. In order to ensure
1648 * that during pass 2 we keep the record in the table until we reach its
1649 * last occurrence in the log, we keep a reference count in the cancel
1650 * record in the table to tell us how many times we expect to see this
1651 * record during the second pass.
1654 xlog_recover_buffer_pass1(
1656 struct xlog_recover_item *item)
1658 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1659 struct list_head *bucket;
1660 struct xfs_buf_cancel *bcp;
1663 * If this isn't a cancel buffer item, then just return.
1665 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1666 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1671 * Insert an xfs_buf_cancel record into the hash table of them.
1672 * If there is already an identical record, bump its reference count.
1674 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1675 list_for_each_entry(bcp, bucket, bc_list) {
1676 if (bcp->bc_blkno == buf_f->blf_blkno &&
1677 bcp->bc_len == buf_f->blf_len) {
1679 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1684 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1685 bcp->bc_blkno = buf_f->blf_blkno;
1686 bcp->bc_len = buf_f->blf_len;
1687 bcp->bc_refcount = 1;
1688 list_add_tail(&bcp->bc_list, bucket);
1690 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1695 * Check to see whether the buffer being recovered has a corresponding
1696 * entry in the buffer cancel record table. If it does then return 1
1697 * so that it will be cancelled, otherwise return 0. If the buffer is
1698 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1699 * the refcount on the entry in the table and remove it from the table
1700 * if this is the last reference.
1702 * We remove the cancel record from the table when we encounter its
1703 * last occurrence in the log so that if the same buffer is re-used
1704 * again after its last cancellation we actually replay the changes
1705 * made at that point.
1708 xlog_check_buffer_cancelled(
1714 struct list_head *bucket;
1715 struct xfs_buf_cancel *bcp;
1717 if (log->l_buf_cancel_table == NULL) {
1719 * There is nothing in the table built in pass one,
1720 * so this buffer must not be cancelled.
1722 ASSERT(!(flags & XFS_BLF_CANCEL));
1727 * Search for an entry in the cancel table that matches our buffer.
1729 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1730 list_for_each_entry(bcp, bucket, bc_list) {
1731 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1736 * We didn't find a corresponding entry in the table, so return 0 so
1737 * that the buffer is NOT cancelled.
1739 ASSERT(!(flags & XFS_BLF_CANCEL));
1744 * We've go a match, so return 1 so that the recovery of this buffer
1745 * is cancelled. If this buffer is actually a buffer cancel log
1746 * item, then decrement the refcount on the one in the table and
1747 * remove it if this is the last reference.
1749 if (flags & XFS_BLF_CANCEL) {
1750 if (--bcp->bc_refcount == 0) {
1751 list_del(&bcp->bc_list);
1759 * Perform recovery for a buffer full of inodes. In these buffers, the only
1760 * data which should be recovered is that which corresponds to the
1761 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1762 * data for the inodes is always logged through the inodes themselves rather
1763 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1765 * The only time when buffers full of inodes are fully recovered is when the
1766 * buffer is full of newly allocated inodes. In this case the buffer will
1767 * not be marked as an inode buffer and so will be sent to
1768 * xlog_recover_do_reg_buffer() below during recovery.
1771 xlog_recover_do_inode_buffer(
1772 struct xfs_mount *mp,
1773 xlog_recover_item_t *item,
1775 xfs_buf_log_format_t *buf_f)
1781 int reg_buf_offset = 0;
1782 int reg_buf_bytes = 0;
1783 int next_unlinked_offset;
1785 xfs_agino_t *logged_nextp;
1786 xfs_agino_t *buffer_nextp;
1788 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1790 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1791 for (i = 0; i < inodes_per_buf; i++) {
1792 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1793 offsetof(xfs_dinode_t, di_next_unlinked);
1795 while (next_unlinked_offset >=
1796 (reg_buf_offset + reg_buf_bytes)) {
1798 * The next di_next_unlinked field is beyond
1799 * the current logged region. Find the next
1800 * logged region that contains or is beyond
1801 * the current di_next_unlinked field.
1804 bit = xfs_next_bit(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1808 * If there are no more logged regions in the
1809 * buffer, then we're done.
1814 nbits = xfs_contig_bits(buf_f->blf_data_map,
1815 buf_f->blf_map_size, bit);
1817 reg_buf_offset = bit << XFS_BLF_SHIFT;
1818 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1823 * If the current logged region starts after the current
1824 * di_next_unlinked field, then move on to the next
1825 * di_next_unlinked field.
1827 if (next_unlinked_offset < reg_buf_offset)
1830 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1831 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1832 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1833 BBTOB(bp->b_io_length));
1836 * The current logged region contains a copy of the
1837 * current di_next_unlinked field. Extract its value
1838 * and copy it to the buffer copy.
1840 logged_nextp = item->ri_buf[item_index].i_addr +
1841 next_unlinked_offset - reg_buf_offset;
1842 if (unlikely(*logged_nextp == 0)) {
1844 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1845 "Trying to replay bad (0) inode di_next_unlinked field.",
1847 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1848 XFS_ERRLEVEL_LOW, mp);
1849 return XFS_ERROR(EFSCORRUPTED);
1852 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1853 next_unlinked_offset);
1854 *buffer_nextp = *logged_nextp;
1861 * Perform a 'normal' buffer recovery. Each logged region of the
1862 * buffer should be copied over the corresponding region in the
1863 * given buffer. The bitmap in the buf log format structure indicates
1864 * where to place the logged data.
1867 xlog_recover_do_reg_buffer(
1868 struct xfs_mount *mp,
1869 xlog_recover_item_t *item,
1871 xfs_buf_log_format_t *buf_f)
1878 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1881 i = 1; /* 0 is the buf format structure */
1883 bit = xfs_next_bit(buf_f->blf_data_map,
1884 buf_f->blf_map_size, bit);
1887 nbits = xfs_contig_bits(buf_f->blf_data_map,
1888 buf_f->blf_map_size, bit);
1890 ASSERT(item->ri_buf[i].i_addr != NULL);
1891 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1892 ASSERT(BBTOB(bp->b_io_length) >=
1893 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1896 * Do a sanity check if this is a dquot buffer. Just checking
1897 * the first dquot in the buffer should do. XXXThis is
1898 * probably a good thing to do for other buf types also.
1901 if (buf_f->blf_flags &
1902 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1903 if (item->ri_buf[i].i_addr == NULL) {
1905 "XFS: NULL dquot in %s.", __func__);
1908 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1910 "XFS: dquot too small (%d) in %s.",
1911 item->ri_buf[i].i_len, __func__);
1914 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1915 -1, 0, XFS_QMOPT_DOWARN,
1916 "dquot_buf_recover");
1921 memcpy(xfs_buf_offset(bp,
1922 (uint)bit << XFS_BLF_SHIFT), /* dest */
1923 item->ri_buf[i].i_addr, /* source */
1924 nbits<<XFS_BLF_SHIFT); /* length */
1930 /* Shouldn't be any more regions */
1931 ASSERT(i == item->ri_total);
1935 * Do some primitive error checking on ondisk dquot data structures.
1939 struct xfs_mount *mp,
1940 xfs_disk_dquot_t *ddq,
1942 uint type, /* used only when IO_dorepair is true */
1946 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1950 * We can encounter an uninitialized dquot buffer for 2 reasons:
1951 * 1. If we crash while deleting the quotainode(s), and those blks got
1952 * used for user data. This is because we take the path of regular
1953 * file deletion; however, the size field of quotainodes is never
1954 * updated, so all the tricks that we play in itruncate_finish
1955 * don't quite matter.
1957 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1958 * But the allocation will be replayed so we'll end up with an
1959 * uninitialized quota block.
1961 * This is all fine; things are still consistent, and we haven't lost
1962 * any quota information. Just don't complain about bad dquot blks.
1964 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1965 if (flags & XFS_QMOPT_DOWARN)
1967 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1968 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1971 if (ddq->d_version != XFS_DQUOT_VERSION) {
1972 if (flags & XFS_QMOPT_DOWARN)
1974 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1975 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1979 if (ddq->d_flags != XFS_DQ_USER &&
1980 ddq->d_flags != XFS_DQ_PROJ &&
1981 ddq->d_flags != XFS_DQ_GROUP) {
1982 if (flags & XFS_QMOPT_DOWARN)
1984 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1985 str, id, ddq->d_flags);
1989 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1990 if (flags & XFS_QMOPT_DOWARN)
1992 "%s : ondisk-dquot 0x%p, ID mismatch: "
1993 "0x%x expected, found id 0x%x",
1994 str, ddq, id, be32_to_cpu(ddq->d_id));
1998 if (!errs && ddq->d_id) {
1999 if (ddq->d_blk_softlimit &&
2000 be64_to_cpu(ddq->d_bcount) >
2001 be64_to_cpu(ddq->d_blk_softlimit)) {
2002 if (!ddq->d_btimer) {
2003 if (flags & XFS_QMOPT_DOWARN)
2005 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2006 str, (int)be32_to_cpu(ddq->d_id), ddq);
2010 if (ddq->d_ino_softlimit &&
2011 be64_to_cpu(ddq->d_icount) >
2012 be64_to_cpu(ddq->d_ino_softlimit)) {
2013 if (!ddq->d_itimer) {
2014 if (flags & XFS_QMOPT_DOWARN)
2016 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2017 str, (int)be32_to_cpu(ddq->d_id), ddq);
2021 if (ddq->d_rtb_softlimit &&
2022 be64_to_cpu(ddq->d_rtbcount) >
2023 be64_to_cpu(ddq->d_rtb_softlimit)) {
2024 if (!ddq->d_rtbtimer) {
2025 if (flags & XFS_QMOPT_DOWARN)
2027 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2028 str, (int)be32_to_cpu(ddq->d_id), ddq);
2034 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2037 if (flags & XFS_QMOPT_DOWARN)
2038 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2041 * Typically, a repair is only requested by quotacheck.
2044 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2045 memset(d, 0, sizeof(xfs_dqblk_t));
2047 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2048 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2049 d->dd_diskdq.d_flags = type;
2050 d->dd_diskdq.d_id = cpu_to_be32(id);
2056 * Perform a dquot buffer recovery.
2057 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2058 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2059 * Else, treat it as a regular buffer and do recovery.
2062 xlog_recover_do_dquot_buffer(
2063 struct xfs_mount *mp,
2065 struct xlog_recover_item *item,
2067 struct xfs_buf_log_format *buf_f)
2071 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2074 * Filesystems are required to send in quota flags at mount time.
2076 if (mp->m_qflags == 0) {
2081 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2082 type |= XFS_DQ_USER;
2083 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2084 type |= XFS_DQ_PROJ;
2085 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2086 type |= XFS_DQ_GROUP;
2088 * This type of quotas was turned off, so ignore this buffer
2090 if (log->l_quotaoffs_flag & type)
2093 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2097 * This routine replays a modification made to a buffer at runtime.
2098 * There are actually two types of buffer, regular and inode, which
2099 * are handled differently. Inode buffers are handled differently
2100 * in that we only recover a specific set of data from them, namely
2101 * the inode di_next_unlinked fields. This is because all other inode
2102 * data is actually logged via inode records and any data we replay
2103 * here which overlaps that may be stale.
2105 * When meta-data buffers are freed at run time we log a buffer item
2106 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2107 * of the buffer in the log should not be replayed at recovery time.
2108 * This is so that if the blocks covered by the buffer are reused for
2109 * file data before we crash we don't end up replaying old, freed
2110 * meta-data into a user's file.
2112 * To handle the cancellation of buffer log items, we make two passes
2113 * over the log during recovery. During the first we build a table of
2114 * those buffers which have been cancelled, and during the second we
2115 * only replay those buffers which do not have corresponding cancel
2116 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2117 * for more details on the implementation of the table of cancel records.
2120 xlog_recover_buffer_pass2(
2122 struct list_head *buffer_list,
2123 struct xlog_recover_item *item)
2125 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2126 xfs_mount_t *mp = log->l_mp;
2132 * In this pass we only want to recover all the buffers which have
2133 * not been cancelled and are not cancellation buffers themselves.
2135 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2136 buf_f->blf_len, buf_f->blf_flags)) {
2137 trace_xfs_log_recover_buf_cancel(log, buf_f);
2141 trace_xfs_log_recover_buf_recover(log, buf_f);
2144 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2145 buf_flags |= XBF_UNMAPPED;
2147 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2150 return XFS_ERROR(ENOMEM);
2151 error = bp->b_error;
2153 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2158 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2159 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2160 } else if (buf_f->blf_flags &
2161 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2162 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2164 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2167 return XFS_ERROR(error);
2170 * Perform delayed write on the buffer. Asynchronous writes will be
2171 * slower when taking into account all the buffers to be flushed.
2173 * Also make sure that only inode buffers with good sizes stay in
2174 * the buffer cache. The kernel moves inodes in buffers of 1 block
2175 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2176 * buffers in the log can be a different size if the log was generated
2177 * by an older kernel using unclustered inode buffers or a newer kernel
2178 * running with a different inode cluster size. Regardless, if the
2179 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2180 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2181 * the buffer out of the buffer cache so that the buffer won't
2182 * overlap with future reads of those inodes.
2184 if (XFS_DINODE_MAGIC ==
2185 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2186 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2187 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2189 error = xfs_bwrite(bp);
2191 ASSERT(bp->b_target->bt_mount == mp);
2192 bp->b_iodone = xlog_recover_iodone;
2193 xfs_buf_delwri_queue(bp, buffer_list);
2201 xlog_recover_inode_pass2(
2203 struct list_head *buffer_list,
2204 struct xlog_recover_item *item)
2206 xfs_inode_log_format_t *in_f;
2207 xfs_mount_t *mp = log->l_mp;
2216 xfs_icdinode_t *dicp;
2219 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2220 in_f = item->ri_buf[0].i_addr;
2222 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2224 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2230 * Inode buffers can be freed, look out for it,
2231 * and do not replay the inode.
2233 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2234 in_f->ilf_len, 0)) {
2236 trace_xfs_log_recover_inode_cancel(log, in_f);
2239 trace_xfs_log_recover_inode_recover(log, in_f);
2241 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2247 error = bp->b_error;
2249 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2253 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2254 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2257 * Make sure the place we're flushing out to really looks
2260 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2263 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2264 __func__, dip, bp, in_f->ilf_ino);
2265 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2266 XFS_ERRLEVEL_LOW, mp);
2267 error = EFSCORRUPTED;
2270 dicp = item->ri_buf[1].i_addr;
2271 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2274 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2275 __func__, item, in_f->ilf_ino);
2276 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2277 XFS_ERRLEVEL_LOW, mp);
2278 error = EFSCORRUPTED;
2282 /* Skip replay when the on disk inode is newer than the log one */
2283 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2285 * Deal with the wrap case, DI_MAX_FLUSH is less
2286 * than smaller numbers
2288 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2289 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2293 trace_xfs_log_recover_inode_skip(log, in_f);
2298 /* Take the opportunity to reset the flush iteration count */
2299 dicp->di_flushiter = 0;
2301 if (unlikely(S_ISREG(dicp->di_mode))) {
2302 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2303 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2304 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2305 XFS_ERRLEVEL_LOW, mp, dicp);
2308 "%s: Bad regular inode log record, rec ptr 0x%p, "
2309 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2310 __func__, item, dip, bp, in_f->ilf_ino);
2311 error = EFSCORRUPTED;
2314 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2315 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2316 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2317 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2318 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2319 XFS_ERRLEVEL_LOW, mp, dicp);
2322 "%s: Bad dir inode log record, rec ptr 0x%p, "
2323 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2324 __func__, item, dip, bp, in_f->ilf_ino);
2325 error = EFSCORRUPTED;
2329 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2330 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2331 XFS_ERRLEVEL_LOW, mp, dicp);
2334 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2335 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2336 __func__, item, dip, bp, in_f->ilf_ino,
2337 dicp->di_nextents + dicp->di_anextents,
2339 error = EFSCORRUPTED;
2342 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2343 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2344 XFS_ERRLEVEL_LOW, mp, dicp);
2347 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2348 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2349 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2350 error = EFSCORRUPTED;
2353 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2354 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2355 XFS_ERRLEVEL_LOW, mp, dicp);
2358 "%s: Bad inode log record length %d, rec ptr 0x%p",
2359 __func__, item->ri_buf[1].i_len, item);
2360 error = EFSCORRUPTED;
2364 /* The core is in in-core format */
2365 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2367 /* the rest is in on-disk format */
2368 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2369 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2370 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2371 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2374 fields = in_f->ilf_fields;
2375 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2377 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2380 memcpy(XFS_DFORK_DPTR(dip),
2381 &in_f->ilf_u.ilfu_uuid,
2386 if (in_f->ilf_size == 2)
2387 goto write_inode_buffer;
2388 len = item->ri_buf[2].i_len;
2389 src = item->ri_buf[2].i_addr;
2390 ASSERT(in_f->ilf_size <= 4);
2391 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2392 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2393 (len == in_f->ilf_dsize));
2395 switch (fields & XFS_ILOG_DFORK) {
2396 case XFS_ILOG_DDATA:
2398 memcpy(XFS_DFORK_DPTR(dip), src, len);
2401 case XFS_ILOG_DBROOT:
2402 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2403 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2404 XFS_DFORK_DSIZE(dip, mp));
2409 * There are no data fork flags set.
2411 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2416 * If we logged any attribute data, recover it. There may or
2417 * may not have been any other non-core data logged in this
2420 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2421 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2426 len = item->ri_buf[attr_index].i_len;
2427 src = item->ri_buf[attr_index].i_addr;
2428 ASSERT(len == in_f->ilf_asize);
2430 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2431 case XFS_ILOG_ADATA:
2433 dest = XFS_DFORK_APTR(dip);
2434 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2435 memcpy(dest, src, len);
2438 case XFS_ILOG_ABROOT:
2439 dest = XFS_DFORK_APTR(dip);
2440 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2441 len, (xfs_bmdr_block_t*)dest,
2442 XFS_DFORK_ASIZE(dip, mp));
2446 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2455 ASSERT(bp->b_target->bt_mount == mp);
2456 bp->b_iodone = xlog_recover_iodone;
2457 xfs_buf_delwri_queue(bp, buffer_list);
2462 return XFS_ERROR(error);
2466 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2467 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2471 xlog_recover_quotaoff_pass1(
2473 struct xlog_recover_item *item)
2475 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2479 * The logitem format's flag tells us if this was user quotaoff,
2480 * group/project quotaoff or both.
2482 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2483 log->l_quotaoffs_flag |= XFS_DQ_USER;
2484 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2485 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2486 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2487 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2493 * Recover a dquot record
2496 xlog_recover_dquot_pass2(
2498 struct list_head *buffer_list,
2499 struct xlog_recover_item *item)
2501 xfs_mount_t *mp = log->l_mp;
2503 struct xfs_disk_dquot *ddq, *recddq;
2505 xfs_dq_logformat_t *dq_f;
2510 * Filesystems are required to send in quota flags at mount time.
2512 if (mp->m_qflags == 0)
2515 recddq = item->ri_buf[1].i_addr;
2516 if (recddq == NULL) {
2517 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2518 return XFS_ERROR(EIO);
2520 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2521 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2522 item->ri_buf[1].i_len, __func__);
2523 return XFS_ERROR(EIO);
2527 * This type of quotas was turned off, so ignore this record.
2529 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2531 if (log->l_quotaoffs_flag & type)
2535 * At this point we know that quota was _not_ turned off.
2536 * Since the mount flags are not indicating to us otherwise, this
2537 * must mean that quota is on, and the dquot needs to be replayed.
2538 * Remember that we may not have fully recovered the superblock yet,
2539 * so we can't do the usual trick of looking at the SB quota bits.
2541 * The other possibility, of course, is that the quota subsystem was
2542 * removed since the last mount - ENOSYS.
2544 dq_f = item->ri_buf[0].i_addr;
2546 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2547 "xlog_recover_dquot_pass2 (log copy)");
2549 return XFS_ERROR(EIO);
2550 ASSERT(dq_f->qlf_len == 1);
2552 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2553 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2559 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2562 * At least the magic num portion should be on disk because this
2563 * was among a chunk of dquots created earlier, and we did some
2564 * minimal initialization then.
2566 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2567 "xlog_recover_dquot_pass2");
2570 return XFS_ERROR(EIO);
2573 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2575 ASSERT(dq_f->qlf_size == 2);
2576 ASSERT(bp->b_target->bt_mount == mp);
2577 bp->b_iodone = xlog_recover_iodone;
2578 xfs_buf_delwri_queue(bp, buffer_list);
2585 * This routine is called to create an in-core extent free intent
2586 * item from the efi format structure which was logged on disk.
2587 * It allocates an in-core efi, copies the extents from the format
2588 * structure into it, and adds the efi to the AIL with the given
2592 xlog_recover_efi_pass2(
2594 struct xlog_recover_item *item,
2598 xfs_mount_t *mp = log->l_mp;
2599 xfs_efi_log_item_t *efip;
2600 xfs_efi_log_format_t *efi_formatp;
2602 efi_formatp = item->ri_buf[0].i_addr;
2604 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2605 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2606 &(efip->efi_format)))) {
2607 xfs_efi_item_free(efip);
2610 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2612 spin_lock(&log->l_ailp->xa_lock);
2614 * xfs_trans_ail_update() drops the AIL lock.
2616 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2622 * This routine is called when an efd format structure is found in
2623 * a committed transaction in the log. It's purpose is to cancel
2624 * the corresponding efi if it was still in the log. To do this
2625 * it searches the AIL for the efi with an id equal to that in the
2626 * efd format structure. If we find it, we remove the efi from the
2630 xlog_recover_efd_pass2(
2632 struct xlog_recover_item *item)
2634 xfs_efd_log_format_t *efd_formatp;
2635 xfs_efi_log_item_t *efip = NULL;
2636 xfs_log_item_t *lip;
2638 struct xfs_ail_cursor cur;
2639 struct xfs_ail *ailp = log->l_ailp;
2641 efd_formatp = item->ri_buf[0].i_addr;
2642 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2643 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2644 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2645 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2646 efi_id = efd_formatp->efd_efi_id;
2649 * Search for the efi with the id in the efd format structure
2652 spin_lock(&ailp->xa_lock);
2653 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2654 while (lip != NULL) {
2655 if (lip->li_type == XFS_LI_EFI) {
2656 efip = (xfs_efi_log_item_t *)lip;
2657 if (efip->efi_format.efi_id == efi_id) {
2659 * xfs_trans_ail_delete() drops the
2662 xfs_trans_ail_delete(ailp, lip,
2663 SHUTDOWN_CORRUPT_INCORE);
2664 xfs_efi_item_free(efip);
2665 spin_lock(&ailp->xa_lock);
2669 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2671 xfs_trans_ail_cursor_done(ailp, &cur);
2672 spin_unlock(&ailp->xa_lock);
2678 * Free up any resources allocated by the transaction
2680 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2683 xlog_recover_free_trans(
2684 struct xlog_recover *trans)
2686 xlog_recover_item_t *item, *n;
2689 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2690 /* Free the regions in the item. */
2691 list_del(&item->ri_list);
2692 for (i = 0; i < item->ri_cnt; i++)
2693 kmem_free(item->ri_buf[i].i_addr);
2694 /* Free the item itself */
2695 kmem_free(item->ri_buf);
2698 /* Free the transaction recover structure */
2703 xlog_recover_commit_pass1(
2705 struct xlog_recover *trans,
2706 struct xlog_recover_item *item)
2708 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2710 switch (ITEM_TYPE(item)) {
2712 return xlog_recover_buffer_pass1(log, item);
2713 case XFS_LI_QUOTAOFF:
2714 return xlog_recover_quotaoff_pass1(log, item);
2719 /* nothing to do in pass 1 */
2722 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2723 __func__, ITEM_TYPE(item));
2725 return XFS_ERROR(EIO);
2730 xlog_recover_commit_pass2(
2732 struct xlog_recover *trans,
2733 struct list_head *buffer_list,
2734 struct xlog_recover_item *item)
2736 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2738 switch (ITEM_TYPE(item)) {
2740 return xlog_recover_buffer_pass2(log, buffer_list, item);
2742 return xlog_recover_inode_pass2(log, buffer_list, item);
2744 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2746 return xlog_recover_efd_pass2(log, item);
2748 return xlog_recover_dquot_pass2(log, buffer_list, item);
2749 case XFS_LI_QUOTAOFF:
2750 /* nothing to do in pass2 */
2753 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2754 __func__, ITEM_TYPE(item));
2756 return XFS_ERROR(EIO);
2761 * Perform the transaction.
2763 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2764 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2767 xlog_recover_commit_trans(
2769 struct xlog_recover *trans,
2772 int error = 0, error2;
2773 xlog_recover_item_t *item;
2774 LIST_HEAD (buffer_list);
2776 hlist_del(&trans->r_list);
2778 error = xlog_recover_reorder_trans(log, trans, pass);
2782 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2784 case XLOG_RECOVER_PASS1:
2785 error = xlog_recover_commit_pass1(log, trans, item);
2787 case XLOG_RECOVER_PASS2:
2788 error = xlog_recover_commit_pass2(log, trans,
2789 &buffer_list, item);
2799 xlog_recover_free_trans(trans);
2802 error2 = xfs_buf_delwri_submit(&buffer_list);
2803 return error ? error : error2;
2807 xlog_recover_unmount_trans(
2809 struct xlog_recover *trans)
2811 /* Do nothing now */
2812 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2817 * There are two valid states of the r_state field. 0 indicates that the
2818 * transaction structure is in a normal state. We have either seen the
2819 * start of the transaction or the last operation we added was not a partial
2820 * operation. If the last operation we added to the transaction was a
2821 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2823 * NOTE: skip LRs with 0 data length.
2826 xlog_recover_process_data(
2828 struct hlist_head rhash[],
2829 struct xlog_rec_header *rhead,
2835 xlog_op_header_t *ohead;
2836 xlog_recover_t *trans;
2842 lp = dp + be32_to_cpu(rhead->h_len);
2843 num_logops = be32_to_cpu(rhead->h_num_logops);
2845 /* check the log format matches our own - else we can't recover */
2846 if (xlog_header_check_recover(log->l_mp, rhead))
2847 return (XFS_ERROR(EIO));
2849 while ((dp < lp) && num_logops) {
2850 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2851 ohead = (xlog_op_header_t *)dp;
2852 dp += sizeof(xlog_op_header_t);
2853 if (ohead->oh_clientid != XFS_TRANSACTION &&
2854 ohead->oh_clientid != XFS_LOG) {
2855 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2856 __func__, ohead->oh_clientid);
2858 return (XFS_ERROR(EIO));
2860 tid = be32_to_cpu(ohead->oh_tid);
2861 hash = XLOG_RHASH(tid);
2862 trans = xlog_recover_find_tid(&rhash[hash], tid);
2863 if (trans == NULL) { /* not found; add new tid */
2864 if (ohead->oh_flags & XLOG_START_TRANS)
2865 xlog_recover_new_tid(&rhash[hash], tid,
2866 be64_to_cpu(rhead->h_lsn));
2868 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2869 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2870 __func__, be32_to_cpu(ohead->oh_len));
2872 return (XFS_ERROR(EIO));
2874 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2875 if (flags & XLOG_WAS_CONT_TRANS)
2876 flags &= ~XLOG_CONTINUE_TRANS;
2878 case XLOG_COMMIT_TRANS:
2879 error = xlog_recover_commit_trans(log,
2882 case XLOG_UNMOUNT_TRANS:
2883 error = xlog_recover_unmount_trans(log, trans);
2885 case XLOG_WAS_CONT_TRANS:
2886 error = xlog_recover_add_to_cont_trans(log,
2888 be32_to_cpu(ohead->oh_len));
2890 case XLOG_START_TRANS:
2891 xfs_warn(log->l_mp, "%s: bad transaction",
2894 error = XFS_ERROR(EIO);
2897 case XLOG_CONTINUE_TRANS:
2898 error = xlog_recover_add_to_trans(log, trans,
2899 dp, be32_to_cpu(ohead->oh_len));
2902 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2905 error = XFS_ERROR(EIO);
2911 dp += be32_to_cpu(ohead->oh_len);
2918 * Process an extent free intent item that was recovered from
2919 * the log. We need to free the extents that it describes.
2922 xlog_recover_process_efi(
2924 xfs_efi_log_item_t *efip)
2926 xfs_efd_log_item_t *efdp;
2931 xfs_fsblock_t startblock_fsb;
2933 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2936 * First check the validity of the extents described by the
2937 * EFI. If any are bad, then assume that all are bad and
2938 * just toss the EFI.
2940 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2941 extp = &(efip->efi_format.efi_extents[i]);
2942 startblock_fsb = XFS_BB_TO_FSB(mp,
2943 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2944 if ((startblock_fsb == 0) ||
2945 (extp->ext_len == 0) ||
2946 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2947 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2949 * This will pull the EFI from the AIL and
2950 * free the memory associated with it.
2952 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2953 return XFS_ERROR(EIO);
2957 tp = xfs_trans_alloc(mp, 0);
2958 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2961 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2963 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2964 extp = &(efip->efi_format.efi_extents[i]);
2965 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2968 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2972 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2973 error = xfs_trans_commit(tp, 0);
2977 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2982 * When this is called, all of the EFIs which did not have
2983 * corresponding EFDs should be in the AIL. What we do now
2984 * is free the extents associated with each one.
2986 * Since we process the EFIs in normal transactions, they
2987 * will be removed at some point after the commit. This prevents
2988 * us from just walking down the list processing each one.
2989 * We'll use a flag in the EFI to skip those that we've already
2990 * processed and use the AIL iteration mechanism's generation
2991 * count to try to speed this up at least a bit.
2993 * When we start, we know that the EFIs are the only things in
2994 * the AIL. As we process them, however, other items are added
2995 * to the AIL. Since everything added to the AIL must come after
2996 * everything already in the AIL, we stop processing as soon as
2997 * we see something other than an EFI in the AIL.
3000 xlog_recover_process_efis(
3003 xfs_log_item_t *lip;
3004 xfs_efi_log_item_t *efip;
3006 struct xfs_ail_cursor cur;
3007 struct xfs_ail *ailp;
3010 spin_lock(&ailp->xa_lock);
3011 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3012 while (lip != NULL) {
3014 * We're done when we see something other than an EFI.
3015 * There should be no EFIs left in the AIL now.
3017 if (lip->li_type != XFS_LI_EFI) {
3019 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3020 ASSERT(lip->li_type != XFS_LI_EFI);
3026 * Skip EFIs that we've already processed.
3028 efip = (xfs_efi_log_item_t *)lip;
3029 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3030 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3034 spin_unlock(&ailp->xa_lock);
3035 error = xlog_recover_process_efi(log->l_mp, efip);
3036 spin_lock(&ailp->xa_lock);
3039 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3042 xfs_trans_ail_cursor_done(ailp, &cur);
3043 spin_unlock(&ailp->xa_lock);
3048 * This routine performs a transaction to null out a bad inode pointer
3049 * in an agi unlinked inode hash bucket.
3052 xlog_recover_clear_agi_bucket(
3054 xfs_agnumber_t agno,
3063 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3064 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3069 error = xfs_read_agi(mp, tp, agno, &agibp);
3073 agi = XFS_BUF_TO_AGI(agibp);
3074 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3075 offset = offsetof(xfs_agi_t, agi_unlinked) +
3076 (sizeof(xfs_agino_t) * bucket);
3077 xfs_trans_log_buf(tp, agibp, offset,
3078 (offset + sizeof(xfs_agino_t) - 1));
3080 error = xfs_trans_commit(tp, 0);
3086 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3088 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3093 xlog_recover_process_one_iunlink(
3094 struct xfs_mount *mp,
3095 xfs_agnumber_t agno,
3099 struct xfs_buf *ibp;
3100 struct xfs_dinode *dip;
3101 struct xfs_inode *ip;
3105 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3106 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3111 * Get the on disk inode to find the next inode in the bucket.
3113 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3117 ASSERT(ip->i_d.di_nlink == 0);
3118 ASSERT(ip->i_d.di_mode != 0);
3120 /* setup for the next pass */
3121 agino = be32_to_cpu(dip->di_next_unlinked);
3125 * Prevent any DMAPI event from being sent when the reference on
3126 * the inode is dropped.
3128 ip->i_d.di_dmevmask = 0;
3137 * We can't read in the inode this bucket points to, or this inode
3138 * is messed up. Just ditch this bucket of inodes. We will lose
3139 * some inodes and space, but at least we won't hang.
3141 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3142 * clear the inode pointer in the bucket.
3144 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3149 * xlog_iunlink_recover
3151 * This is called during recovery to process any inodes which
3152 * we unlinked but not freed when the system crashed. These
3153 * inodes will be on the lists in the AGI blocks. What we do
3154 * here is scan all the AGIs and fully truncate and free any
3155 * inodes found on the lists. Each inode is removed from the
3156 * lists when it has been fully truncated and is freed. The
3157 * freeing of the inode and its removal from the list must be
3161 xlog_recover_process_iunlinks(
3165 xfs_agnumber_t agno;
3176 * Prevent any DMAPI event from being sent while in this function.
3178 mp_dmevmask = mp->m_dmevmask;
3181 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3183 * Find the agi for this ag.
3185 error = xfs_read_agi(mp, NULL, agno, &agibp);
3188 * AGI is b0rked. Don't process it.
3190 * We should probably mark the filesystem as corrupt
3191 * after we've recovered all the ag's we can....
3196 * Unlock the buffer so that it can be acquired in the normal
3197 * course of the transaction to truncate and free each inode.
3198 * Because we are not racing with anyone else here for the AGI
3199 * buffer, we don't even need to hold it locked to read the
3200 * initial unlinked bucket entries out of the buffer. We keep
3201 * buffer reference though, so that it stays pinned in memory
3202 * while we need the buffer.
3204 agi = XFS_BUF_TO_AGI(agibp);
3205 xfs_buf_unlock(agibp);
3207 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3208 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3209 while (agino != NULLAGINO) {
3210 agino = xlog_recover_process_one_iunlink(mp,
3211 agno, agino, bucket);
3214 xfs_buf_rele(agibp);
3217 mp->m_dmevmask = mp_dmevmask;
3221 * Upack the log buffer data and crc check it. If the check fails, issue a
3222 * warning if and only if the CRC in the header is non-zero. This makes the
3223 * check an advisory warning, and the zero CRC check will prevent failure
3224 * warnings from being emitted when upgrading the kernel from one that does not
3225 * add CRCs by default.
3227 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3228 * corruption failure
3231 xlog_unpack_data_crc(
3232 struct xlog_rec_header *rhead,
3238 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3239 if (crc != rhead->h_crc) {
3240 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3241 xfs_alert(log->l_mp,
3242 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3243 be32_to_cpu(rhead->h_crc),
3245 xfs_hex_dump(dp, 32);
3249 * If we've detected a log record corruption, then we can't
3250 * recover past this point. Abort recovery if we are enforcing
3251 * CRC protection by punting an error back up the stack.
3253 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3254 return EFSCORRUPTED;
3262 struct xlog_rec_header *rhead,
3269 error = xlog_unpack_data_crc(rhead, dp, log);
3273 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3274 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3275 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3279 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3280 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3281 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3282 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3283 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3284 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3293 xlog_valid_rec_header(
3295 struct xlog_rec_header *rhead,
3300 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3301 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3302 XFS_ERRLEVEL_LOW, log->l_mp);
3303 return XFS_ERROR(EFSCORRUPTED);
3306 (!rhead->h_version ||
3307 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3308 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3309 __func__, be32_to_cpu(rhead->h_version));
3310 return XFS_ERROR(EIO);
3313 /* LR body must have data or it wouldn't have been written */
3314 hlen = be32_to_cpu(rhead->h_len);
3315 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3316 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3317 XFS_ERRLEVEL_LOW, log->l_mp);
3318 return XFS_ERROR(EFSCORRUPTED);
3320 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3321 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3322 XFS_ERRLEVEL_LOW, log->l_mp);
3323 return XFS_ERROR(EFSCORRUPTED);
3329 * Read the log from tail to head and process the log records found.
3330 * Handle the two cases where the tail and head are in the same cycle
3331 * and where the active portion of the log wraps around the end of
3332 * the physical log separately. The pass parameter is passed through
3333 * to the routines called to process the data and is not looked at
3337 xlog_do_recovery_pass(
3339 xfs_daddr_t head_blk,
3340 xfs_daddr_t tail_blk,
3343 xlog_rec_header_t *rhead;
3346 xfs_buf_t *hbp, *dbp;
3347 int error = 0, h_size;
3348 int bblks, split_bblks;
3349 int hblks, split_hblks, wrapped_hblks;
3350 struct hlist_head rhash[XLOG_RHASH_SIZE];
3352 ASSERT(head_blk != tail_blk);
3355 * Read the header of the tail block and get the iclog buffer size from
3356 * h_size. Use this to tell how many sectors make up the log header.
3358 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3360 * When using variable length iclogs, read first sector of
3361 * iclog header and extract the header size from it. Get a
3362 * new hbp that is the correct size.
3364 hbp = xlog_get_bp(log, 1);
3368 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3372 rhead = (xlog_rec_header_t *)offset;
3373 error = xlog_valid_rec_header(log, rhead, tail_blk);
3376 h_size = be32_to_cpu(rhead->h_size);
3377 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3378 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3379 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3380 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3383 hbp = xlog_get_bp(log, hblks);
3388 ASSERT(log->l_sectBBsize == 1);
3390 hbp = xlog_get_bp(log, 1);
3391 h_size = XLOG_BIG_RECORD_BSIZE;
3396 dbp = xlog_get_bp(log, BTOBB(h_size));
3402 memset(rhash, 0, sizeof(rhash));
3403 if (tail_blk <= head_blk) {
3404 for (blk_no = tail_blk; blk_no < head_blk; ) {
3405 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3409 rhead = (xlog_rec_header_t *)offset;
3410 error = xlog_valid_rec_header(log, rhead, blk_no);
3414 /* blocks in data section */
3415 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3416 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3421 error = xlog_unpack_data(rhead, offset, log);
3425 error = xlog_recover_process_data(log,
3426 rhash, rhead, offset, pass);
3429 blk_no += bblks + hblks;
3433 * Perform recovery around the end of the physical log.
3434 * When the head is not on the same cycle number as the tail,
3435 * we can't do a sequential recovery as above.
3438 while (blk_no < log->l_logBBsize) {
3440 * Check for header wrapping around physical end-of-log
3442 offset = hbp->b_addr;
3445 if (blk_no + hblks <= log->l_logBBsize) {
3446 /* Read header in one read */
3447 error = xlog_bread(log, blk_no, hblks, hbp,
3452 /* This LR is split across physical log end */
3453 if (blk_no != log->l_logBBsize) {
3454 /* some data before physical log end */
3455 ASSERT(blk_no <= INT_MAX);
3456 split_hblks = log->l_logBBsize - (int)blk_no;
3457 ASSERT(split_hblks > 0);
3458 error = xlog_bread(log, blk_no,
3466 * Note: this black magic still works with
3467 * large sector sizes (non-512) only because:
3468 * - we increased the buffer size originally
3469 * by 1 sector giving us enough extra space
3470 * for the second read;
3471 * - the log start is guaranteed to be sector
3473 * - we read the log end (LR header start)
3474 * _first_, then the log start (LR header end)
3475 * - order is important.
3477 wrapped_hblks = hblks - split_hblks;
3478 error = xlog_bread_offset(log, 0,
3480 offset + BBTOB(split_hblks));
3484 rhead = (xlog_rec_header_t *)offset;
3485 error = xlog_valid_rec_header(log, rhead,
3486 split_hblks ? blk_no : 0);
3490 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3493 /* Read in data for log record */
3494 if (blk_no + bblks <= log->l_logBBsize) {
3495 error = xlog_bread(log, blk_no, bblks, dbp,
3500 /* This log record is split across the
3501 * physical end of log */
3502 offset = dbp->b_addr;
3504 if (blk_no != log->l_logBBsize) {
3505 /* some data is before the physical
3507 ASSERT(!wrapped_hblks);
3508 ASSERT(blk_no <= INT_MAX);
3510 log->l_logBBsize - (int)blk_no;
3511 ASSERT(split_bblks > 0);
3512 error = xlog_bread(log, blk_no,
3520 * Note: this black magic still works with
3521 * large sector sizes (non-512) only because:
3522 * - we increased the buffer size originally
3523 * by 1 sector giving us enough extra space
3524 * for the second read;
3525 * - the log start is guaranteed to be sector
3527 * - we read the log end (LR header start)
3528 * _first_, then the log start (LR header end)
3529 * - order is important.
3531 error = xlog_bread_offset(log, 0,
3532 bblks - split_bblks, dbp,
3533 offset + BBTOB(split_bblks));
3538 error = xlog_unpack_data(rhead, offset, log);
3542 error = xlog_recover_process_data(log, rhash,
3543 rhead, offset, pass);
3549 ASSERT(blk_no >= log->l_logBBsize);
3550 blk_no -= log->l_logBBsize;
3552 /* read first part of physical log */
3553 while (blk_no < head_blk) {
3554 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3558 rhead = (xlog_rec_header_t *)offset;
3559 error = xlog_valid_rec_header(log, rhead, blk_no);
3563 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3564 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3569 error = xlog_unpack_data(rhead, offset, log);
3573 error = xlog_recover_process_data(log, rhash,
3574 rhead, offset, pass);
3577 blk_no += bblks + hblks;
3589 * Do the recovery of the log. We actually do this in two phases.
3590 * The two passes are necessary in order to implement the function
3591 * of cancelling a record written into the log. The first pass
3592 * determines those things which have been cancelled, and the
3593 * second pass replays log items normally except for those which
3594 * have been cancelled. The handling of the replay and cancellations
3595 * takes place in the log item type specific routines.
3597 * The table of items which have cancel records in the log is allocated
3598 * and freed at this level, since only here do we know when all of
3599 * the log recovery has been completed.
3602 xlog_do_log_recovery(
3604 xfs_daddr_t head_blk,
3605 xfs_daddr_t tail_blk)
3609 ASSERT(head_blk != tail_blk);
3612 * First do a pass to find all of the cancelled buf log items.
3613 * Store them in the buf_cancel_table for use in the second pass.
3615 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3616 sizeof(struct list_head),
3618 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3619 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3621 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3622 XLOG_RECOVER_PASS1);
3624 kmem_free(log->l_buf_cancel_table);
3625 log->l_buf_cancel_table = NULL;
3629 * Then do a second pass to actually recover the items in the log.
3630 * When it is complete free the table of buf cancel items.
3632 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3633 XLOG_RECOVER_PASS2);
3638 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3639 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3643 kmem_free(log->l_buf_cancel_table);
3644 log->l_buf_cancel_table = NULL;
3650 * Do the actual recovery
3655 xfs_daddr_t head_blk,
3656 xfs_daddr_t tail_blk)
3663 * First replay the images in the log.
3665 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3670 * If IO errors happened during recovery, bail out.
3672 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3677 * We now update the tail_lsn since much of the recovery has completed
3678 * and there may be space available to use. If there were no extent
3679 * or iunlinks, we can free up the entire log and set the tail_lsn to
3680 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3681 * lsn of the last known good LR on disk. If there are extent frees
3682 * or iunlinks they will have some entries in the AIL; so we look at
3683 * the AIL to determine how to set the tail_lsn.
3685 xlog_assign_tail_lsn(log->l_mp);
3688 * Now that we've finished replaying all buffer and inode
3689 * updates, re-read in the superblock and reverify it.
3691 bp = xfs_getsb(log->l_mp, 0);
3693 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3695 XFS_BUF_UNASYNC(bp);
3696 bp->b_ops = &xfs_sb_buf_ops;
3697 xfsbdstrat(log->l_mp, bp);
3698 error = xfs_buf_iowait(bp);
3700 xfs_buf_ioerror_alert(bp, __func__);
3706 /* Convert superblock from on-disk format */
3707 sbp = &log->l_mp->m_sb;
3708 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3709 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3710 ASSERT(xfs_sb_good_version(sbp));
3713 /* We've re-read the superblock so re-initialize per-cpu counters */
3714 xfs_icsb_reinit_counters(log->l_mp);
3716 xlog_recover_check_summary(log);
3718 /* Normal transactions can now occur */
3719 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3724 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3726 * Return error or zero.
3732 xfs_daddr_t head_blk, tail_blk;
3735 /* find the tail of the log */
3736 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3739 if (tail_blk != head_blk) {
3740 /* There used to be a comment here:
3742 * disallow recovery on read-only mounts. note -- mount
3743 * checks for ENOSPC and turns it into an intelligent
3745 * ...but this is no longer true. Now, unless you specify
3746 * NORECOVERY (in which case this function would never be
3747 * called), we just go ahead and recover. We do this all
3748 * under the vfs layer, so we can get away with it unless
3749 * the device itself is read-only, in which case we fail.
3751 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3755 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3756 log->l_mp->m_logname ? log->l_mp->m_logname
3759 error = xlog_do_recover(log, head_blk, tail_blk);
3760 log->l_flags |= XLOG_RECOVERY_NEEDED;
3766 * In the first part of recovery we replay inodes and buffers and build
3767 * up the list of extent free items which need to be processed. Here
3768 * we process the extent free items and clean up the on disk unlinked
3769 * inode lists. This is separated from the first part of recovery so
3770 * that the root and real-time bitmap inodes can be read in from disk in
3771 * between the two stages. This is necessary so that we can free space
3772 * in the real-time portion of the file system.
3775 xlog_recover_finish(
3779 * Now we're ready to do the transactions needed for the
3780 * rest of recovery. Start with completing all the extent
3781 * free intent records and then process the unlinked inode
3782 * lists. At this point, we essentially run in normal mode
3783 * except that we're still performing recovery actions
3784 * rather than accepting new requests.
3786 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3788 error = xlog_recover_process_efis(log);
3790 xfs_alert(log->l_mp, "Failed to recover EFIs");
3794 * Sync the log to get all the EFIs out of the AIL.
3795 * This isn't absolutely necessary, but it helps in
3796 * case the unlink transactions would have problems
3797 * pushing the EFIs out of the way.
3799 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3801 xlog_recover_process_iunlinks(log);
3803 xlog_recover_check_summary(log);
3805 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3806 log->l_mp->m_logname ? log->l_mp->m_logname
3808 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3810 xfs_info(log->l_mp, "Ending clean mount");
3818 * Read all of the agf and agi counters and check that they
3819 * are consistent with the superblock counters.
3822 xlog_recover_check_summary(
3829 xfs_agnumber_t agno;
3830 __uint64_t freeblks;
3840 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3841 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3843 xfs_alert(mp, "%s agf read failed agno %d error %d",
3844 __func__, agno, error);
3846 agfp = XFS_BUF_TO_AGF(agfbp);
3847 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3848 be32_to_cpu(agfp->agf_flcount);
3849 xfs_buf_relse(agfbp);
3852 error = xfs_read_agi(mp, NULL, agno, &agibp);
3854 xfs_alert(mp, "%s agi read failed agno %d error %d",
3855 __func__, agno, error);
3857 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3859 itotal += be32_to_cpu(agi->agi_count);
3860 ifree += be32_to_cpu(agi->agi_freecount);
3861 xfs_buf_relse(agibp);