1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
29 #include <linux/posix_acl.h>
30 #include <linux/security.h>
31 #include <linux/iversion.h>
32 #include <linux/fiemap.h>
35 * Directories have different lock order w.r.t. mmap_lock compared to regular
36 * files. This is due to readdir potentially triggering page faults on a user
37 * buffer inside filldir(), and this happens with the ilock on the directory
38 * held. For regular files, the lock order is the other way around - the
39 * mmap_lock is taken during the page fault, and then we lock the ilock to do
40 * block mapping. Hence we need a different class for the directory ilock so
41 * that lockdep can tell them apart.
43 static struct lock_class_key xfs_nondir_ilock_class;
44 static struct lock_class_key xfs_dir_ilock_class;
49 const struct xattr *xattr_array,
52 const struct xattr *xattr;
53 struct xfs_inode *ip = XFS_I(inode);
56 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
57 struct xfs_da_args args = {
59 .attr_filter = XFS_ATTR_SECURE,
61 .namelen = strlen(xattr->name),
62 .value = xattr->value,
63 .valuelen = xattr->value_len,
65 error = xfs_attr_change(&args);
73 * Hook in SELinux. This is not quite correct yet, what we really need
74 * here (as we do for default ACLs) is a mechanism by which creation of
75 * these attrs can be journalled at inode creation time (along with the
76 * inode, of course, such that log replay can't cause these to be lost).
79 xfs_inode_init_security(
82 const struct qstr *qstr)
84 return security_inode_init_security(inode, dir, qstr,
85 &xfs_initxattrs, NULL);
90 struct xfs_name *namep,
91 struct dentry *dentry)
93 namep->name = dentry->d_name.name;
94 namep->len = dentry->d_name.len;
95 namep->type = XFS_DIR3_FT_UNKNOWN;
99 xfs_dentry_mode_to_name(
100 struct xfs_name *namep,
101 struct dentry *dentry,
104 namep->name = dentry->d_name.name;
105 namep->len = dentry->d_name.len;
106 namep->type = xfs_mode_to_ftype(mode);
108 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
109 return -EFSCORRUPTED;
118 struct dentry *dentry)
120 struct xfs_name teardown;
123 * If we can't add the ACL or we fail in
124 * xfs_inode_init_security we must back out.
125 * ENOSPC can hit here, among other things.
127 xfs_dentry_to_name(&teardown, dentry);
129 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
133 * Check to see if we are likely to need an extended attribute to be added to
134 * the inode we are about to allocate. This allows the attribute fork to be
135 * created during the inode allocation, reducing the number of transactions we
136 * need to do in this fast path.
138 * The security checks are optimistic, but not guaranteed. The two LSMs that
139 * require xattrs to be added here (selinux and smack) are also the only two
140 * LSMs that add a sb->s_security structure to the superblock. Hence if security
141 * is enabled and sb->s_security is set, we have a pretty good idea that we are
142 * going to be asked to add a security xattr immediately after allocating the
143 * xfs inode and instantiating the VFS inode.
146 xfs_create_need_xattr(
148 struct posix_acl *default_acl,
149 struct posix_acl *acl)
155 #if IS_ENABLED(CONFIG_SECURITY)
156 if (dir->i_sb->s_security)
165 struct user_namespace *mnt_userns,
167 struct dentry *dentry,
170 bool tmpfile) /* unnamed file */
173 struct xfs_inode *ip = NULL;
174 struct posix_acl *default_acl, *acl;
175 struct xfs_name name;
179 * Irix uses Missed'em'V split, but doesn't want to see
180 * the upper 5 bits of (14bit) major.
182 if (S_ISCHR(mode) || S_ISBLK(mode)) {
183 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
189 error = posix_acl_create(dir, &mode, &default_acl, &acl);
193 /* Verify mode is valid also for tmpfile case */
194 error = xfs_dentry_mode_to_name(&name, dentry, mode);
199 error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
200 xfs_create_need_xattr(dir, default_acl, acl),
203 error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
210 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
212 goto out_cleanup_inode;
215 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
217 goto out_cleanup_inode;
220 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
222 goto out_cleanup_inode;
229 * The VFS requires that any inode fed to d_tmpfile must have
230 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
231 * However, we created the temp file with nlink == 0 because
232 * we're not allowed to put an inode with nlink > 0 on the
233 * unlinked list. Therefore we have to set nlink to 1 so that
234 * d_tmpfile can immediately set it back to zero.
237 d_tmpfile(dentry, inode);
239 d_instantiate(dentry, inode);
241 xfs_finish_inode_setup(ip);
244 posix_acl_release(default_acl);
245 posix_acl_release(acl);
249 xfs_finish_inode_setup(ip);
251 xfs_cleanup_inode(dir, inode, dentry);
258 struct user_namespace *mnt_userns,
260 struct dentry *dentry,
264 return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false);
269 struct user_namespace *mnt_userns,
271 struct dentry *dentry,
275 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false);
280 struct user_namespace *mnt_userns,
282 struct dentry *dentry,
285 return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
289 STATIC struct dentry *
292 struct dentry *dentry,
296 struct xfs_inode *cip;
297 struct xfs_name name;
300 if (dentry->d_name.len >= MAXNAMELEN)
301 return ERR_PTR(-ENAMETOOLONG);
303 xfs_dentry_to_name(&name, dentry);
304 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
307 else if (likely(error == -ENOENT))
310 inode = ERR_PTR(error);
311 return d_splice_alias(inode, dentry);
314 STATIC struct dentry *
317 struct dentry *dentry,
320 struct xfs_inode *ip;
321 struct xfs_name xname;
322 struct xfs_name ci_name;
326 if (dentry->d_name.len >= MAXNAMELEN)
327 return ERR_PTR(-ENAMETOOLONG);
329 xfs_dentry_to_name(&xname, dentry);
330 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
331 if (unlikely(error)) {
332 if (unlikely(error != -ENOENT))
333 return ERR_PTR(error);
335 * call d_add(dentry, NULL) here when d_drop_negative_children
336 * is called in xfs_vn_mknod (ie. allow negative dentries
337 * with CI filesystems).
342 /* if exact match, just splice and exit */
344 return d_splice_alias(VFS_I(ip), dentry);
346 /* else case-insensitive match... */
347 dname.name = ci_name.name;
348 dname.len = ci_name.len;
349 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
350 kmem_free(ci_name.name);
356 struct dentry *old_dentry,
358 struct dentry *dentry)
360 struct inode *inode = d_inode(old_dentry);
361 struct xfs_name name;
364 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
368 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
373 d_instantiate(dentry, inode);
380 struct dentry *dentry)
382 struct xfs_name name;
385 xfs_dentry_to_name(&name, dentry);
387 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
392 * With unlink, the VFS makes the dentry "negative": no inode,
393 * but still hashed. This is incompatible with case-insensitive
394 * mode, so invalidate (unhash) the dentry in CI-mode.
396 if (xfs_has_asciici(XFS_M(dir->i_sb)))
397 d_invalidate(dentry);
403 struct user_namespace *mnt_userns,
405 struct dentry *dentry,
409 struct xfs_inode *cip = NULL;
410 struct xfs_name name;
415 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
416 error = xfs_dentry_mode_to_name(&name, dentry, mode);
420 error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
426 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
428 goto out_cleanup_inode;
432 d_instantiate(dentry, inode);
433 xfs_finish_inode_setup(cip);
437 xfs_finish_inode_setup(cip);
438 xfs_cleanup_inode(dir, inode, dentry);
446 struct user_namespace *mnt_userns,
448 struct dentry *odentry,
450 struct dentry *ndentry,
453 struct inode *new_inode = d_inode(ndentry);
456 struct xfs_name oname;
457 struct xfs_name nname;
459 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
462 /* if we are exchanging files, we need to set i_mode of both files */
463 if (flags & RENAME_EXCHANGE)
464 omode = d_inode(ndentry)->i_mode;
466 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
467 if (omode && unlikely(error))
470 error = xfs_dentry_mode_to_name(&nname, ndentry,
471 d_inode(odentry)->i_mode);
475 return xfs_rename(mnt_userns, XFS_I(odir), &oname,
476 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
477 new_inode ? XFS_I(new_inode) : NULL, flags);
481 * careful here - this function can get called recursively, so
482 * we need to be very careful about how much stack we use.
483 * uio is kmalloced for this reason...
487 struct dentry *dentry,
489 struct delayed_call *done)
495 return ERR_PTR(-ECHILD);
497 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
501 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
505 set_delayed_call(done, kfree_link, link);
511 return ERR_PTR(error);
516 struct xfs_inode *ip)
518 struct xfs_mount *mp = ip->i_mount;
521 * If the file blocks are being allocated from a realtime volume, then
522 * always return the realtime extent size.
524 if (XFS_IS_REALTIME_INODE(ip))
525 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
528 * Allow large block sizes to be reported to userspace programs if the
529 * "largeio" mount option is used.
531 * If compatibility mode is specified, simply return the basic unit of
532 * caching so that we don't get inefficient read/modify/write I/O from
533 * user apps. Otherwise....
535 * If the underlying volume is a stripe, then return the stripe width in
536 * bytes as the recommended I/O size. It is not a stripe and we've set a
537 * default buffered I/O size, return that, otherwise return the compat
540 if (xfs_has_large_iosize(mp)) {
542 return XFS_FSB_TO_B(mp, mp->m_swidth);
543 if (xfs_has_allocsize(mp))
544 return 1U << mp->m_allocsize_log;
552 struct user_namespace *mnt_userns,
553 const struct path *path,
556 unsigned int query_flags)
558 struct inode *inode = d_inode(path->dentry);
559 struct xfs_inode *ip = XFS_I(inode);
560 struct xfs_mount *mp = ip->i_mount;
562 trace_xfs_getattr(ip);
564 if (xfs_is_shutdown(mp))
567 stat->size = XFS_ISIZE(ip);
568 stat->dev = inode->i_sb->s_dev;
569 stat->mode = inode->i_mode;
570 stat->nlink = inode->i_nlink;
571 stat->uid = i_uid_into_mnt(mnt_userns, inode);
572 stat->gid = i_gid_into_mnt(mnt_userns, inode);
573 stat->ino = ip->i_ino;
574 stat->atime = inode->i_atime;
575 stat->mtime = inode->i_mtime;
576 stat->ctime = inode->i_ctime;
577 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
579 if (xfs_has_v3inodes(mp)) {
580 if (request_mask & STATX_BTIME) {
581 stat->result_mask |= STATX_BTIME;
582 stat->btime = ip->i_crtime;
587 * Note: If you add another clause to set an attribute flag, please
588 * update attributes_mask below.
590 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
591 stat->attributes |= STATX_ATTR_IMMUTABLE;
592 if (ip->i_diflags & XFS_DIFLAG_APPEND)
593 stat->attributes |= STATX_ATTR_APPEND;
594 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
595 stat->attributes |= STATX_ATTR_NODUMP;
597 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
601 switch (inode->i_mode & S_IFMT) {
604 stat->blksize = BLKDEV_IOSIZE;
605 stat->rdev = inode->i_rdev;
608 stat->blksize = xfs_stat_blksize(ip);
618 struct user_namespace *mnt_userns,
619 struct dentry *dentry,
622 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
624 if (xfs_is_readonly(mp))
627 if (xfs_is_shutdown(mp))
630 return setattr_prepare(mnt_userns, dentry, iattr);
634 * Set non-size attributes of an inode.
636 * Caution: The caller of this function is responsible for calling
637 * setattr_prepare() or otherwise verifying the change is fine.
641 struct user_namespace *mnt_userns,
642 struct xfs_inode *ip,
645 xfs_mount_t *mp = ip->i_mount;
646 struct inode *inode = VFS_I(ip);
647 int mask = iattr->ia_valid;
650 kuid_t uid = GLOBAL_ROOT_UID;
651 kgid_t gid = GLOBAL_ROOT_GID;
652 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
653 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL;
655 ASSERT((mask & ATTR_SIZE) == 0);
658 * If disk quotas is on, we make sure that the dquots do exist on disk,
659 * before we start any other transactions. Trying to do this later
660 * is messy. We don't care to take a readlock to look at the ids
661 * in inode here, because we can't hold it across the trans_reserve.
662 * If the IDs do change before we take the ilock, we're covered
663 * because the i_*dquot fields will get updated anyway.
665 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
668 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
669 uid = from_vfsuid(mnt_userns, i_user_ns(inode),
671 qflags |= XFS_QMOPT_UQUOTA;
675 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
676 gid = from_vfsgid(mnt_userns, i_user_ns(inode),
678 qflags |= XFS_QMOPT_GQUOTA;
684 * We take a reference when we initialize udqp and gdqp,
685 * so it is important that we never blindly double trip on
686 * the same variable. See xfs_create() for an example.
688 ASSERT(udqp == NULL);
689 ASSERT(gdqp == NULL);
690 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
691 qflags, &udqp, &gdqp, NULL);
696 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
697 has_capability_noaudit(current, CAP_FOWNER), &tp);
702 * Register quota modifications in the transaction. Must be the owner
703 * or privileged. These IDs could have changed since we last looked at
704 * them. But, we're assured that if the ownership did change while we
705 * didn't have the inode locked, inode's dquot(s) would have changed
708 if (XFS_IS_UQUOTA_ON(mp) &&
709 i_uid_needs_update(mnt_userns, iattr, inode)) {
711 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
713 if (XFS_IS_GQUOTA_ON(mp) &&
714 i_gid_needs_update(mnt_userns, iattr, inode)) {
715 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
717 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
720 setattr_copy(mnt_userns, inode, iattr);
721 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
723 XFS_STATS_INC(mp, xs_ig_attrchg);
725 if (xfs_has_wsync(mp))
726 xfs_trans_set_sync(tp);
727 error = xfs_trans_commit(tp);
730 * Release any dquot(s) the inode had kept before chown.
732 xfs_qm_dqrele(old_udqp);
733 xfs_qm_dqrele(old_gdqp);
741 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
742 * update. We could avoid this with linked transactions
743 * and passing down the transaction pointer all the way
744 * to attr_set. No previous user of the generic
745 * Posix ACL code seems to care about this issue either.
747 if (mask & ATTR_MODE) {
748 error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
762 * Truncate file. Must have write permission and not be a directory.
764 * Caution: The caller of this function is responsible for calling
765 * setattr_prepare() or otherwise verifying the change is fine.
769 struct user_namespace *mnt_userns,
770 struct xfs_inode *ip,
773 struct xfs_mount *mp = ip->i_mount;
774 struct inode *inode = VFS_I(ip);
775 xfs_off_t oldsize, newsize;
776 struct xfs_trans *tp;
779 bool did_zeroing = false;
781 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
782 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
783 ASSERT(S_ISREG(inode->i_mode));
784 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
785 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
787 oldsize = inode->i_size;
788 newsize = iattr->ia_size;
791 * Short circuit the truncate case for zero length files.
793 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
794 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
798 * Use the regular setattr path to update the timestamps.
800 iattr->ia_valid &= ~ATTR_SIZE;
801 return xfs_setattr_nonsize(mnt_userns, ip, iattr);
805 * Make sure that the dquots are attached to the inode.
807 error = xfs_qm_dqattach(ip);
812 * Wait for all direct I/O to complete.
814 inode_dio_wait(inode);
817 * File data changes must be complete before we start the transaction to
818 * modify the inode. This needs to be done before joining the inode to
819 * the transaction because the inode cannot be unlocked once it is a
820 * part of the transaction.
822 * Start with zeroing any data beyond EOF that we may expose on file
823 * extension, or zeroing out the rest of the block on a downward
826 if (newsize > oldsize) {
827 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
828 error = xfs_zero_range(ip, oldsize, newsize - oldsize,
832 * iomap won't detect a dirty page over an unwritten block (or a
833 * cow block over a hole) and subsequently skips zeroing the
834 * newly post-EOF portion of the page. Flush the new EOF to
835 * convert the block before the pagecache truncate.
837 error = filemap_write_and_wait_range(inode->i_mapping, newsize,
841 error = xfs_truncate_page(ip, newsize, &did_zeroing);
848 * We've already locked out new page faults, so now we can safely remove
849 * pages from the page cache knowing they won't get refaulted until we
850 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
851 * complete. The truncate_setsize() call also cleans partial EOF page
852 * PTEs on extending truncates and hence ensures sub-page block size
853 * filesystems are correctly handled, too.
855 * We have to do all the page cache truncate work outside the
856 * transaction context as the "lock" order is page lock->log space
857 * reservation as defined by extent allocation in the writeback path.
858 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
859 * having already truncated the in-memory version of the file (i.e. made
860 * user visible changes). There's not much we can do about this, except
861 * to hope that the caller sees ENOMEM and retries the truncate
864 * And we update in-core i_size and truncate page cache beyond newsize
865 * before writeback the [i_disk_size, newsize] range, so we're
866 * guaranteed not to write stale data past the new EOF on truncate down.
868 truncate_setsize(inode, newsize);
871 * We are going to log the inode size change in this transaction so
872 * any previous writes that are beyond the on disk EOF and the new
873 * EOF that have not been written out need to be written here. If we
874 * do not write the data out, we expose ourselves to the null files
875 * problem. Note that this includes any block zeroing we did above;
876 * otherwise those blocks may not be zeroed after a crash.
879 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
880 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
881 ip->i_disk_size, newsize - 1);
886 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
890 lock_flags |= XFS_ILOCK_EXCL;
891 xfs_ilock(ip, XFS_ILOCK_EXCL);
892 xfs_trans_ijoin(tp, ip, 0);
895 * Only change the c/mtime if we are changing the size or we are
896 * explicitly asked to change it. This handles the semantic difference
897 * between truncate() and ftruncate() as implemented in the VFS.
899 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
900 * special case where we need to update the times despite not having
901 * these flags set. For all other operations the VFS set these flags
902 * explicitly if it wants a timestamp update.
904 if (newsize != oldsize &&
905 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
906 iattr->ia_ctime = iattr->ia_mtime =
908 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
912 * The first thing we do is set the size to new_size permanently on
913 * disk. This way we don't have to worry about anyone ever being able
914 * to look at the data being freed even in the face of a crash.
915 * What we're getting around here is the case where we free a block, it
916 * is allocated to another file, it is written to, and then we crash.
917 * If the new data gets written to the file but the log buffers
918 * containing the free and reallocation don't, then we'd end up with
919 * garbage in the blocks being freed. As long as we make the new size
920 * permanent before actually freeing any blocks it doesn't matter if
921 * they get written to.
923 ip->i_disk_size = newsize;
924 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926 if (newsize <= oldsize) {
927 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
929 goto out_trans_cancel;
932 * Truncated "down", so we're removing references to old data
933 * here - if we delay flushing for a long time, we expose
934 * ourselves unduly to the notorious NULL files problem. So,
935 * we mark this inode and flush it when the file is closed,
936 * and do not wait the usual (long) time for writeout.
938 xfs_iflags_set(ip, XFS_ITRUNCATED);
940 /* A truncate down always removes post-EOF blocks. */
941 xfs_inode_clear_eofblocks_tag(ip);
944 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
945 setattr_copy(mnt_userns, inode, iattr);
946 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
948 XFS_STATS_INC(mp, xs_ig_attrchg);
950 if (xfs_has_wsync(mp))
951 xfs_trans_set_sync(tp);
953 error = xfs_trans_commit(tp);
956 xfs_iunlock(ip, lock_flags);
960 xfs_trans_cancel(tp);
966 struct user_namespace *mnt_userns,
967 struct dentry *dentry,
970 struct xfs_inode *ip = XFS_I(d_inode(dentry));
973 trace_xfs_setattr(ip);
975 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
978 return xfs_setattr_size(mnt_userns, ip, iattr);
983 struct user_namespace *mnt_userns,
984 struct dentry *dentry,
987 struct inode *inode = d_inode(dentry);
988 struct xfs_inode *ip = XFS_I(inode);
991 if (iattr->ia_valid & ATTR_SIZE) {
994 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
995 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
997 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
999 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1003 error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1004 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1006 trace_xfs_setattr(ip);
1008 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1010 error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1018 struct inode *inode,
1019 struct timespec64 *now,
1022 struct xfs_inode *ip = XFS_I(inode);
1023 struct xfs_mount *mp = ip->i_mount;
1024 int log_flags = XFS_ILOG_TIMESTAMP;
1025 struct xfs_trans *tp;
1028 trace_xfs_update_time(ip);
1030 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1031 if (!((flags & S_VERSION) &&
1032 inode_maybe_inc_iversion(inode, false)))
1033 return generic_update_time(inode, now, flags);
1035 /* Capture the iversion update that just occurred */
1036 log_flags |= XFS_ILOG_CORE;
1039 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1043 xfs_ilock(ip, XFS_ILOCK_EXCL);
1044 if (flags & S_CTIME)
1045 inode->i_ctime = *now;
1046 if (flags & S_MTIME)
1047 inode->i_mtime = *now;
1048 if (flags & S_ATIME)
1049 inode->i_atime = *now;
1051 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1052 xfs_trans_log_inode(tp, ip, log_flags);
1053 return xfs_trans_commit(tp);
1058 struct inode *inode,
1059 struct fiemap_extent_info *fieinfo,
1065 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1066 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1067 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1068 error = iomap_fiemap(inode, fieinfo, start, length,
1069 &xfs_xattr_iomap_ops);
1071 error = iomap_fiemap(inode, fieinfo, start, length,
1072 &xfs_read_iomap_ops);
1074 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1081 struct user_namespace *mnt_userns,
1083 struct dentry *dentry,
1086 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true);
1089 static const struct inode_operations xfs_inode_operations = {
1090 .get_acl = xfs_get_acl,
1091 .set_acl = xfs_set_acl,
1092 .getattr = xfs_vn_getattr,
1093 .setattr = xfs_vn_setattr,
1094 .listxattr = xfs_vn_listxattr,
1095 .fiemap = xfs_vn_fiemap,
1096 .update_time = xfs_vn_update_time,
1097 .fileattr_get = xfs_fileattr_get,
1098 .fileattr_set = xfs_fileattr_set,
1101 static const struct inode_operations xfs_dir_inode_operations = {
1102 .create = xfs_vn_create,
1103 .lookup = xfs_vn_lookup,
1104 .link = xfs_vn_link,
1105 .unlink = xfs_vn_unlink,
1106 .symlink = xfs_vn_symlink,
1107 .mkdir = xfs_vn_mkdir,
1109 * Yes, XFS uses the same method for rmdir and unlink.
1111 * There are some subtile differences deeper in the code,
1112 * but we use S_ISDIR to check for those.
1114 .rmdir = xfs_vn_unlink,
1115 .mknod = xfs_vn_mknod,
1116 .rename = xfs_vn_rename,
1117 .get_acl = xfs_get_acl,
1118 .set_acl = xfs_set_acl,
1119 .getattr = xfs_vn_getattr,
1120 .setattr = xfs_vn_setattr,
1121 .listxattr = xfs_vn_listxattr,
1122 .update_time = xfs_vn_update_time,
1123 .tmpfile = xfs_vn_tmpfile,
1124 .fileattr_get = xfs_fileattr_get,
1125 .fileattr_set = xfs_fileattr_set,
1128 static const struct inode_operations xfs_dir_ci_inode_operations = {
1129 .create = xfs_vn_create,
1130 .lookup = xfs_vn_ci_lookup,
1131 .link = xfs_vn_link,
1132 .unlink = xfs_vn_unlink,
1133 .symlink = xfs_vn_symlink,
1134 .mkdir = xfs_vn_mkdir,
1136 * Yes, XFS uses the same method for rmdir and unlink.
1138 * There are some subtile differences deeper in the code,
1139 * but we use S_ISDIR to check for those.
1141 .rmdir = xfs_vn_unlink,
1142 .mknod = xfs_vn_mknod,
1143 .rename = xfs_vn_rename,
1144 .get_acl = xfs_get_acl,
1145 .set_acl = xfs_set_acl,
1146 .getattr = xfs_vn_getattr,
1147 .setattr = xfs_vn_setattr,
1148 .listxattr = xfs_vn_listxattr,
1149 .update_time = xfs_vn_update_time,
1150 .tmpfile = xfs_vn_tmpfile,
1151 .fileattr_get = xfs_fileattr_get,
1152 .fileattr_set = xfs_fileattr_set,
1155 static const struct inode_operations xfs_symlink_inode_operations = {
1156 .get_link = xfs_vn_get_link,
1157 .getattr = xfs_vn_getattr,
1158 .setattr = xfs_vn_setattr,
1159 .listxattr = xfs_vn_listxattr,
1160 .update_time = xfs_vn_update_time,
1163 /* Figure out if this file actually supports DAX. */
1165 xfs_inode_supports_dax(
1166 struct xfs_inode *ip)
1168 struct xfs_mount *mp = ip->i_mount;
1170 /* Only supported on regular files. */
1171 if (!S_ISREG(VFS_I(ip)->i_mode))
1174 /* Only supported on non-reflinked files. */
1175 if (xfs_is_reflink_inode(ip))
1178 /* Block size must match page size */
1179 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1182 /* Device has to support DAX too. */
1183 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1187 xfs_inode_should_enable_dax(
1188 struct xfs_inode *ip)
1190 if (!IS_ENABLED(CONFIG_FS_DAX))
1192 if (xfs_has_dax_never(ip->i_mount))
1194 if (!xfs_inode_supports_dax(ip))
1196 if (xfs_has_dax_always(ip->i_mount))
1198 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1204 xfs_diflags_to_iflags(
1205 struct xfs_inode *ip,
1208 struct inode *inode = VFS_I(ip);
1209 unsigned int xflags = xfs_ip2xflags(ip);
1210 unsigned int flags = 0;
1212 ASSERT(!(IS_DAX(inode) && init));
1214 if (xflags & FS_XFLAG_IMMUTABLE)
1215 flags |= S_IMMUTABLE;
1216 if (xflags & FS_XFLAG_APPEND)
1218 if (xflags & FS_XFLAG_SYNC)
1220 if (xflags & FS_XFLAG_NOATIME)
1222 if (init && xfs_inode_should_enable_dax(ip))
1226 * S_DAX can only be set during inode initialization and is never set by
1227 * the VFS, so we cannot mask off S_DAX in i_flags.
1229 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1230 inode->i_flags |= flags;
1234 * Initialize the Linux inode.
1236 * When reading existing inodes from disk this is called directly from xfs_iget,
1237 * when creating a new inode it is called from xfs_init_new_inode after setting
1238 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1239 * leave it up to the caller to deal with unlocking the inode appropriately.
1243 struct xfs_inode *ip)
1245 struct inode *inode = &ip->i_vnode;
1248 inode->i_ino = ip->i_ino;
1249 inode->i_state |= I_NEW;
1251 inode_sb_list_add(inode);
1252 /* make the inode look hashed for the writeback code */
1253 inode_fake_hash(inode);
1255 i_size_write(inode, ip->i_disk_size);
1256 xfs_diflags_to_iflags(ip, true);
1258 if (S_ISDIR(inode->i_mode)) {
1260 * We set the i_rwsem class here to avoid potential races with
1261 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1262 * after a filehandle lookup has already found the inode in
1263 * cache before it has been unlocked via unlock_new_inode().
1265 lockdep_set_class(&inode->i_rwsem,
1266 &inode->i_sb->s_type->i_mutex_dir_key);
1267 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1269 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1273 * Ensure all page cache allocations are done from GFP_NOFS context to
1274 * prevent direct reclaim recursion back into the filesystem and blowing
1275 * stacks or deadlocking.
1277 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1278 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1281 * If there is no attribute fork no ACL can exist on this inode,
1282 * and it can't have any file capabilities attached to it either.
1284 if (!xfs_inode_has_attr_fork(ip)) {
1285 inode_has_no_xattr(inode);
1286 cache_no_acl(inode);
1292 struct xfs_inode *ip)
1294 struct inode *inode = &ip->i_vnode;
1296 switch (inode->i_mode & S_IFMT) {
1298 inode->i_op = &xfs_inode_operations;
1299 inode->i_fop = &xfs_file_operations;
1301 inode->i_mapping->a_ops = &xfs_dax_aops;
1303 inode->i_mapping->a_ops = &xfs_address_space_operations;
1306 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1307 inode->i_op = &xfs_dir_ci_inode_operations;
1309 inode->i_op = &xfs_dir_inode_operations;
1310 inode->i_fop = &xfs_dir_file_operations;
1313 inode->i_op = &xfs_symlink_inode_operations;
1316 inode->i_op = &xfs_inode_operations;
1317 init_special_inode(inode, inode->i_mode, inode->i_rdev);