1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
20 #include "xfs_error.h"
22 #include <linux/iversion.h>
24 struct kmem_cache *xfs_ili_cache; /* inode log item */
26 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28 return container_of(lip, struct xfs_inode_log_item, ili_item);
32 * The logged size of an inode fork is always the current size of the inode
33 * fork. This means that when an inode fork is relogged, the size of the logged
34 * region is determined by the current state, not the combination of the
35 * previously logged state + the current state. This is different relogging
36 * behaviour to most other log items which will retain the size of the
37 * previously logged changes when smaller regions are relogged.
39 * Hence operations that remove data from the inode fork (e.g. shortform
40 * dir/attr remove, extent form extent removal, etc), the size of the relogged
41 * inode gets -smaller- rather than stays the same size as the previously logged
42 * size and this can result in the committing transaction reducing the amount of
43 * space being consumed by the CIL.
46 xfs_inode_item_data_fork_size(
47 struct xfs_inode_log_item *iip,
51 struct xfs_inode *ip = iip->ili_inode;
53 switch (ip->i_df.if_format) {
54 case XFS_DINODE_FMT_EXTENTS:
55 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
56 ip->i_df.if_nextents > 0 &&
57 ip->i_df.if_bytes > 0) {
58 /* worst case, doesn't subtract delalloc extents */
59 *nbytes += XFS_IFORK_DSIZE(ip);
63 case XFS_DINODE_FMT_BTREE:
64 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
65 ip->i_df.if_broot_bytes > 0) {
66 *nbytes += ip->i_df.if_broot_bytes;
70 case XFS_DINODE_FMT_LOCAL:
71 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
72 ip->i_df.if_bytes > 0) {
73 *nbytes += roundup(ip->i_df.if_bytes, 4);
78 case XFS_DINODE_FMT_DEV:
87 xfs_inode_item_attr_fork_size(
88 struct xfs_inode_log_item *iip,
92 struct xfs_inode *ip = iip->ili_inode;
94 switch (ip->i_afp->if_format) {
95 case XFS_DINODE_FMT_EXTENTS:
96 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 ip->i_afp->if_nextents > 0 &&
98 ip->i_afp->if_bytes > 0) {
99 /* worst case, doesn't subtract unused space */
100 *nbytes += XFS_IFORK_ASIZE(ip);
104 case XFS_DINODE_FMT_BTREE:
105 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
106 ip->i_afp->if_broot_bytes > 0) {
107 *nbytes += ip->i_afp->if_broot_bytes;
111 case XFS_DINODE_FMT_LOCAL:
112 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
113 ip->i_afp->if_bytes > 0) {
114 *nbytes += roundup(ip->i_afp->if_bytes, 4);
125 * This returns the number of iovecs needed to log the given inode item.
127 * We need one iovec for the inode log format structure, one for the
128 * inode core, and possibly one for the inode data/extents/b-tree root
129 * and one for the inode attribute data/extents/b-tree root.
133 struct xfs_log_item *lip,
137 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
138 struct xfs_inode *ip = iip->ili_inode;
141 *nbytes += sizeof(struct xfs_inode_log_format) +
142 xfs_log_dinode_size(ip->i_mount);
144 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
146 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
150 xfs_inode_item_format_data_fork(
151 struct xfs_inode_log_item *iip,
152 struct xfs_inode_log_format *ilf,
153 struct xfs_log_vec *lv,
154 struct xfs_log_iovec **vecp)
156 struct xfs_inode *ip = iip->ili_inode;
159 switch (ip->i_df.if_format) {
160 case XFS_DINODE_FMT_EXTENTS:
162 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
164 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
165 ip->i_df.if_nextents > 0 &&
166 ip->i_df.if_bytes > 0) {
167 struct xfs_bmbt_rec *p;
169 ASSERT(xfs_iext_count(&ip->i_df) > 0);
171 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
172 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
173 xlog_finish_iovec(lv, *vecp, data_bytes);
175 ASSERT(data_bytes <= ip->i_df.if_bytes);
177 ilf->ilf_dsize = data_bytes;
180 iip->ili_fields &= ~XFS_ILOG_DEXT;
183 case XFS_DINODE_FMT_BTREE:
185 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
187 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
188 ip->i_df.if_broot_bytes > 0) {
189 ASSERT(ip->i_df.if_broot != NULL);
190 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
192 ip->i_df.if_broot_bytes);
193 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
196 ASSERT(!(iip->ili_fields &
198 iip->ili_fields &= ~XFS_ILOG_DBROOT;
201 case XFS_DINODE_FMT_LOCAL:
203 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
204 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 ip->i_df.if_bytes > 0) {
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed
209 * to be there by xfs_idata_realloc().
211 data_bytes = roundup(ip->i_df.if_bytes, 4);
212 ASSERT(ip->i_df.if_u1.if_data != NULL);
213 ASSERT(ip->i_disk_size > 0);
214 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
215 ip->i_df.if_u1.if_data, data_bytes);
216 ilf->ilf_dsize = (unsigned)data_bytes;
219 iip->ili_fields &= ~XFS_ILOG_DDATA;
222 case XFS_DINODE_FMT_DEV:
224 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
225 if (iip->ili_fields & XFS_ILOG_DEV)
226 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
235 xfs_inode_item_format_attr_fork(
236 struct xfs_inode_log_item *iip,
237 struct xfs_inode_log_format *ilf,
238 struct xfs_log_vec *lv,
239 struct xfs_log_iovec **vecp)
241 struct xfs_inode *ip = iip->ili_inode;
244 switch (ip->i_afp->if_format) {
245 case XFS_DINODE_FMT_EXTENTS:
247 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
249 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
250 ip->i_afp->if_nextents > 0 &&
251 ip->i_afp->if_bytes > 0) {
252 struct xfs_bmbt_rec *p;
254 ASSERT(xfs_iext_count(ip->i_afp) ==
255 ip->i_afp->if_nextents);
257 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
258 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
259 xlog_finish_iovec(lv, *vecp, data_bytes);
261 ilf->ilf_asize = data_bytes;
264 iip->ili_fields &= ~XFS_ILOG_AEXT;
267 case XFS_DINODE_FMT_BTREE:
269 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
271 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
272 ip->i_afp->if_broot_bytes > 0) {
273 ASSERT(ip->i_afp->if_broot != NULL);
275 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
277 ip->i_afp->if_broot_bytes);
278 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
281 iip->ili_fields &= ~XFS_ILOG_ABROOT;
284 case XFS_DINODE_FMT_LOCAL:
286 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
288 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
289 ip->i_afp->if_bytes > 0) {
291 * Round i_bytes up to a word boundary.
292 * The underlying memory is guaranteed
293 * to be there by xfs_idata_realloc().
295 data_bytes = roundup(ip->i_afp->if_bytes, 4);
296 ASSERT(ip->i_afp->if_u1.if_data != NULL);
297 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
298 ip->i_afp->if_u1.if_data,
300 ilf->ilf_asize = (unsigned)data_bytes;
303 iip->ili_fields &= ~XFS_ILOG_ADATA;
313 * Convert an incore timestamp to a log timestamp. Note that the log format
314 * specifies host endian format!
316 static inline xfs_log_timestamp_t
317 xfs_inode_to_log_dinode_ts(
318 struct xfs_inode *ip,
319 const struct timespec64 tv)
321 struct xfs_log_legacy_timestamp *lits;
322 xfs_log_timestamp_t its;
324 if (xfs_inode_has_bigtime(ip))
325 return xfs_inode_encode_bigtime(tv);
327 lits = (struct xfs_log_legacy_timestamp *)&its;
328 lits->t_sec = tv.tv_sec;
329 lits->t_nsec = tv.tv_nsec;
335 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
336 * but not in the in-memory one. But we are guaranteed to have an inode buffer
337 * in memory when logging an inode, so we can just copy it from the on-disk
338 * inode to the in-log inode here so that recovery of file system with these
339 * fields set to non-zero values doesn't lose them. For all other cases we zero
343 xfs_copy_dm_fields_to_log_dinode(
344 struct xfs_inode *ip,
345 struct xfs_log_dinode *to)
347 struct xfs_dinode *dip;
349 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
350 ip->i_imap.im_boffset);
352 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
353 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
354 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
362 xfs_inode_to_log_dinode(
363 struct xfs_inode *ip,
364 struct xfs_log_dinode *to,
367 struct inode *inode = VFS_I(ip);
369 to->di_magic = XFS_DINODE_MAGIC;
370 to->di_format = xfs_ifork_format(&ip->i_df);
371 to->di_uid = i_uid_read(inode);
372 to->di_gid = i_gid_read(inode);
373 to->di_projid_lo = ip->i_projid & 0xffff;
374 to->di_projid_hi = ip->i_projid >> 16;
376 memset(to->di_pad, 0, sizeof(to->di_pad));
377 memset(to->di_pad3, 0, sizeof(to->di_pad3));
378 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
379 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
380 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
381 to->di_nlink = inode->i_nlink;
382 to->di_gen = inode->i_generation;
383 to->di_mode = inode->i_mode;
385 to->di_size = ip->i_disk_size;
386 to->di_nblocks = ip->i_nblocks;
387 to->di_extsize = ip->i_extsize;
388 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
389 to->di_anextents = xfs_ifork_nextents(ip->i_afp);
390 to->di_forkoff = ip->i_forkoff;
391 to->di_aformat = xfs_ifork_format(ip->i_afp);
392 to->di_flags = ip->i_diflags;
394 xfs_copy_dm_fields_to_log_dinode(ip, to);
396 /* log a dummy value to ensure log structure is fully initialised */
397 to->di_next_unlinked = NULLAGINO;
399 if (xfs_has_v3inodes(ip->i_mount)) {
401 to->di_changecount = inode_peek_iversion(inode);
402 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
403 to->di_flags2 = ip->i_diflags2;
404 to->di_cowextsize = ip->i_cowextsize;
405 to->di_ino = ip->i_ino;
407 memset(to->di_pad2, 0, sizeof(to->di_pad2));
408 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
409 to->di_flushiter = 0;
412 to->di_flushiter = ip->i_flushiter;
417 * Format the inode core. Current timestamp data is only in the VFS inode
418 * fields, so we need to grab them from there. Hence rather than just copying
419 * the XFS inode core structure, format the fields directly into the iovec.
422 xfs_inode_item_format_core(
423 struct xfs_inode *ip,
424 struct xfs_log_vec *lv,
425 struct xfs_log_iovec **vecp)
427 struct xfs_log_dinode *dic;
429 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
430 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
431 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
435 * This is called to fill in the vector of log iovecs for the given inode
436 * log item. It fills the first item with an inode log format structure,
437 * the second with the on-disk inode structure, and a possible third and/or
438 * fourth with the inode data/extents/b-tree root and inode attributes
439 * data/extents/b-tree root.
441 * Note: Always use the 64 bit inode log format structure so we don't
442 * leave an uninitialised hole in the format item on 64 bit systems. Log
443 * recovery on 32 bit systems handles this just fine, so there's no reason
444 * for not using an initialising the properly padded structure all the time.
447 xfs_inode_item_format(
448 struct xfs_log_item *lip,
449 struct xfs_log_vec *lv)
451 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
452 struct xfs_inode *ip = iip->ili_inode;
453 struct xfs_log_iovec *vecp = NULL;
454 struct xfs_inode_log_format *ilf;
456 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
457 ilf->ilf_type = XFS_LI_INODE;
458 ilf->ilf_ino = ip->i_ino;
459 ilf->ilf_blkno = ip->i_imap.im_blkno;
460 ilf->ilf_len = ip->i_imap.im_len;
461 ilf->ilf_boffset = ip->i_imap.im_boffset;
462 ilf->ilf_fields = XFS_ILOG_CORE;
463 ilf->ilf_size = 2; /* format + core */
466 * make sure we don't leak uninitialised data into the log in the case
467 * when we don't log every field in the inode.
472 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
474 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
476 xfs_inode_item_format_core(ip, lv, &vecp);
477 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
478 if (XFS_IFORK_Q(ip)) {
479 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
482 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
485 /* update the format with the exact fields we actually logged */
486 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
490 * This is called to pin the inode associated with the inode log
491 * item in memory so it cannot be written out.
495 struct xfs_log_item *lip)
497 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
502 trace_xfs_inode_pin(ip, _RET_IP_);
503 atomic_inc(&ip->i_pincount);
508 * This is called to unpin the inode associated with the inode log
509 * item which was previously pinned with a call to xfs_inode_item_pin().
511 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
513 * Note that unpin can race with inode cluster buffer freeing marking the buffer
514 * stale. In that case, flush completions are run from the buffer unpin call,
515 * which may happen before the inode is unpinned. If we lose the race, there
516 * will be no buffer attached to the log item, but the inode will be marked
520 xfs_inode_item_unpin(
521 struct xfs_log_item *lip,
524 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
526 trace_xfs_inode_unpin(ip, _RET_IP_);
527 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
528 ASSERT(atomic_read(&ip->i_pincount) > 0);
529 if (atomic_dec_and_test(&ip->i_pincount))
530 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
535 struct xfs_log_item *lip,
536 struct list_head *buffer_list)
537 __releases(&lip->li_ailp->ail_lock)
538 __acquires(&lip->li_ailp->ail_lock)
540 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
541 struct xfs_inode *ip = iip->ili_inode;
542 struct xfs_buf *bp = lip->li_buf;
543 uint rval = XFS_ITEM_SUCCESS;
546 ASSERT(iip->ili_item.li_buf);
548 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
549 (ip->i_flags & XFS_ISTALE))
550 return XFS_ITEM_PINNED;
552 if (xfs_iflags_test(ip, XFS_IFLUSHING))
553 return XFS_ITEM_FLUSHING;
555 if (!xfs_buf_trylock(bp))
556 return XFS_ITEM_LOCKED;
558 spin_unlock(&lip->li_ailp->ail_lock);
561 * We need to hold a reference for flushing the cluster buffer as it may
562 * fail the buffer without IO submission. In which case, we better get a
563 * reference for that completion because otherwise we don't get a
564 * reference for IO until we queue the buffer for delwri submission.
567 error = xfs_iflush_cluster(bp);
569 if (!xfs_buf_delwri_queue(bp, buffer_list))
570 rval = XFS_ITEM_FLUSHING;
574 * Release the buffer if we were unable to flush anything. On
575 * any other error, the buffer has already been released.
577 if (error == -EAGAIN)
579 rval = XFS_ITEM_LOCKED;
582 spin_lock(&lip->li_ailp->ail_lock);
587 * Unlock the inode associated with the inode log item.
590 xfs_inode_item_release(
591 struct xfs_log_item *lip)
593 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
594 struct xfs_inode *ip = iip->ili_inode;
595 unsigned short lock_flags;
597 ASSERT(ip->i_itemp != NULL);
598 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
600 lock_flags = iip->ili_lock_flags;
601 iip->ili_lock_flags = 0;
603 xfs_iunlock(ip, lock_flags);
607 * This is called to find out where the oldest active copy of the inode log
608 * item in the on disk log resides now that the last log write of it completed
609 * at the given lsn. Since we always re-log all dirty data in an inode, the
610 * latest copy in the on disk log is the only one that matters. Therefore,
611 * simply return the given lsn.
613 * If the inode has been marked stale because the cluster is being freed, we
614 * don't want to (re-)insert this inode into the AIL. There is a race condition
615 * where the cluster buffer may be unpinned before the inode is inserted into
616 * the AIL during transaction committed processing. If the buffer is unpinned
617 * before the inode item has been committed and inserted, then it is possible
618 * for the buffer to be written and IO completes before the inode is inserted
619 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
620 * AIL which will never get removed. It will, however, get reclaimed which
621 * triggers an assert in xfs_inode_free() complaining about freein an inode
624 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
625 * transaction committed code knows that it does not need to do any further
626 * processing on the item.
629 xfs_inode_item_committed(
630 struct xfs_log_item *lip,
633 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
634 struct xfs_inode *ip = iip->ili_inode;
636 if (xfs_iflags_test(ip, XFS_ISTALE)) {
637 xfs_inode_item_unpin(lip, 0);
644 xfs_inode_item_committing(
645 struct xfs_log_item *lip,
648 INODE_ITEM(lip)->ili_commit_seq = seq;
649 return xfs_inode_item_release(lip);
652 static const struct xfs_item_ops xfs_inode_item_ops = {
653 .iop_size = xfs_inode_item_size,
654 .iop_format = xfs_inode_item_format,
655 .iop_pin = xfs_inode_item_pin,
656 .iop_unpin = xfs_inode_item_unpin,
657 .iop_release = xfs_inode_item_release,
658 .iop_committed = xfs_inode_item_committed,
659 .iop_push = xfs_inode_item_push,
660 .iop_committing = xfs_inode_item_committing,
665 * Initialize the inode log item for a newly allocated (in-core) inode.
669 struct xfs_inode *ip,
670 struct xfs_mount *mp)
672 struct xfs_inode_log_item *iip;
674 ASSERT(ip->i_itemp == NULL);
675 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
676 GFP_KERNEL | __GFP_NOFAIL);
679 spin_lock_init(&iip->ili_lock);
680 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
681 &xfs_inode_item_ops);
685 * Free the inode log item and any memory hanging off of it.
688 xfs_inode_item_destroy(
689 struct xfs_inode *ip)
691 struct xfs_inode_log_item *iip = ip->i_itemp;
693 ASSERT(iip->ili_item.li_buf == NULL);
696 kmem_free(iip->ili_item.li_lv_shadow);
697 kmem_cache_free(xfs_ili_cache, iip);
702 * We only want to pull the item from the AIL if it is actually there
703 * and its location in the log has not changed since we started the
704 * flush. Thus, we only bother if the inode's lsn has not changed.
707 xfs_iflush_ail_updates(
708 struct xfs_ail *ailp,
709 struct list_head *list)
711 struct xfs_log_item *lip;
712 xfs_lsn_t tail_lsn = 0;
714 /* this is an opencoded batch version of xfs_trans_ail_delete */
715 spin_lock(&ailp->ail_lock);
716 list_for_each_entry(lip, list, li_bio_list) {
719 clear_bit(XFS_LI_FAILED, &lip->li_flags);
720 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
723 lsn = xfs_ail_delete_one(ailp, lip);
724 if (!tail_lsn && lsn)
727 xfs_ail_update_finish(ailp, tail_lsn);
731 * Walk the list of inodes that have completed their IOs. If they are clean
732 * remove them from the list and dissociate them from the buffer. Buffers that
733 * are still dirty remain linked to the buffer and on the list. Caller must
734 * handle them appropriately.
739 struct list_head *list)
741 struct xfs_log_item *lip, *n;
743 list_for_each_entry_safe(lip, n, list, li_bio_list) {
744 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
745 bool drop_buffer = false;
747 spin_lock(&iip->ili_lock);
750 * Remove the reference to the cluster buffer if the inode is
751 * clean in memory and drop the buffer reference once we've
752 * dropped the locks we hold.
754 ASSERT(iip->ili_item.li_buf == bp);
755 if (!iip->ili_fields) {
756 iip->ili_item.li_buf = NULL;
757 list_del_init(&lip->li_bio_list);
760 iip->ili_last_fields = 0;
761 iip->ili_flush_lsn = 0;
762 spin_unlock(&iip->ili_lock);
763 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
770 * Inode buffer IO completion routine. It is responsible for removing inodes
771 * attached to the buffer from the AIL if they have not been re-logged and
772 * completing the inode flush.
775 xfs_buf_inode_iodone(
778 struct xfs_log_item *lip, *n;
779 LIST_HEAD(flushed_inodes);
780 LIST_HEAD(ail_updates);
783 * Pull the attached inodes from the buffer one at a time and take the
784 * appropriate action on them.
786 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
787 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
789 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
790 xfs_iflush_abort(iip->ili_inode);
793 if (!iip->ili_last_fields)
796 /* Do an unlocked check for needing the AIL lock. */
797 if (iip->ili_flush_lsn == lip->li_lsn ||
798 test_bit(XFS_LI_FAILED, &lip->li_flags))
799 list_move_tail(&lip->li_bio_list, &ail_updates);
801 list_move_tail(&lip->li_bio_list, &flushed_inodes);
804 if (!list_empty(&ail_updates)) {
805 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
806 list_splice_tail(&ail_updates, &flushed_inodes);
809 xfs_iflush_finish(bp, &flushed_inodes);
810 if (!list_empty(&flushed_inodes))
811 list_splice_tail(&flushed_inodes, &bp->b_li_list);
815 xfs_buf_inode_io_fail(
818 struct xfs_log_item *lip;
820 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
821 set_bit(XFS_LI_FAILED, &lip->li_flags);
825 * This is the inode flushing abort routine. It is called when
826 * the filesystem is shutting down to clean up the inode state. It is
827 * responsible for removing the inode item from the AIL if it has not been
828 * re-logged and clearing the inode's flush state.
832 struct xfs_inode *ip)
834 struct xfs_inode_log_item *iip = ip->i_itemp;
835 struct xfs_buf *bp = NULL;
839 * Clear the failed bit before removing the item from the AIL so
840 * xfs_trans_ail_delete() doesn't try to clear and release the
841 * buffer attached to the log item before we are done with it.
843 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
844 xfs_trans_ail_delete(&iip->ili_item, 0);
847 * Clear the inode logging fields so no more flushes are
850 spin_lock(&iip->ili_lock);
851 iip->ili_last_fields = 0;
853 iip->ili_fsync_fields = 0;
854 iip->ili_flush_lsn = 0;
855 bp = iip->ili_item.li_buf;
856 iip->ili_item.li_buf = NULL;
857 list_del_init(&iip->ili_item.li_bio_list);
858 spin_unlock(&iip->ili_lock);
860 xfs_iflags_clear(ip, XFS_IFLUSHING);
866 * convert an xfs_inode_log_format struct from the old 32 bit version
867 * (which can have different field alignments) to the native 64 bit version
870 xfs_inode_item_format_convert(
871 struct xfs_log_iovec *buf,
872 struct xfs_inode_log_format *in_f)
874 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
876 if (buf->i_len != sizeof(*in_f32)) {
877 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
878 return -EFSCORRUPTED;
881 in_f->ilf_type = in_f32->ilf_type;
882 in_f->ilf_size = in_f32->ilf_size;
883 in_f->ilf_fields = in_f32->ilf_fields;
884 in_f->ilf_asize = in_f32->ilf_asize;
885 in_f->ilf_dsize = in_f32->ilf_dsize;
886 in_f->ilf_ino = in_f32->ilf_ino;
887 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
888 in_f->ilf_blkno = in_f32->ilf_blkno;
889 in_f->ilf_len = in_f32->ilf_len;
890 in_f->ilf_boffset = in_f32->ilf_boffset;