1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
23 #include <linux/iversion.h>
25 struct kmem_cache *xfs_ili_cache; /* inode log item */
27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29 return container_of(lip, struct xfs_inode_log_item, ili_item);
34 struct xfs_log_item *lip)
36 return INODE_ITEM(lip)->ili_inode->i_ino;
40 * Prior to finally logging the inode, we have to ensure that all the
41 * per-modification inode state changes are applied. This includes VFS inode
42 * state updates, format conversions, verifier state synchronisation and
43 * ensuring the inode buffer remains in memory whilst the inode is dirty.
45 * We have to be careful when we grab the inode cluster buffer due to lock
46 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
47 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
48 * not locked until ->precommit, so it happens after everything else has been
51 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
52 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
53 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
54 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
55 * AGF lock modifying directory blocks.
57 * Rather than force a complete rework of all the transactions to call
58 * xfs_trans_log_inode() once and once only at the end of every transaction, we
59 * move the pinning of the inode cluster buffer to a ->precommit operation. This
60 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
61 * ensures that the inode cluster buffer locking is always done last in a
62 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
65 * If we return the inode number as the precommit sort key then we'll also
66 * guarantee that the order all inode cluster buffer locking is the same all the
67 * inodes and unlink items in the transaction.
70 xfs_inode_item_precommit(
72 struct xfs_log_item *lip)
74 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
75 struct xfs_inode *ip = iip->ili_inode;
76 struct inode *inode = VFS_I(ip);
77 unsigned int flags = iip->ili_dirty_flags;
80 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
81 * don't matter - we either will need an extra transaction in 24 hours
82 * to log the timestamps, or will clear already cleared fields in the
85 if (inode->i_state & I_DIRTY_TIME) {
86 spin_lock(&inode->i_lock);
87 inode->i_state &= ~I_DIRTY_TIME;
88 spin_unlock(&inode->i_lock);
92 * If we're updating the inode core or the timestamps and it's possible
93 * to upgrade this inode to bigtime format, do so now.
95 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
96 xfs_has_bigtime(ip->i_mount) &&
97 !xfs_inode_has_bigtime(ip)) {
98 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
99 flags |= XFS_ILOG_CORE;
103 * Inode verifiers do not check that the extent size hint is an integer
104 * multiple of the rt extent size on a directory with both rtinherit
105 * and extszinherit flags set. If we're logging a directory that is
106 * misconfigured in this way, clear the hint.
108 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
109 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
110 (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) {
111 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
112 XFS_DIFLAG_EXTSZINHERIT);
114 flags |= XFS_ILOG_CORE;
118 * Record the specific change for fdatasync optimisation. This allows
119 * fdatasync to skip log forces for inodes that are only timestamp
120 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
121 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
122 * (ili_fields) correctly tracks that the version has changed.
124 spin_lock(&iip->ili_lock);
125 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
126 if (flags & XFS_ILOG_IVERSION)
127 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129 if (!iip->ili_item.li_buf) {
134 * We hold the ILOCK here, so this inode is not going to be
135 * flushed while we are here. Further, because there is no
136 * buffer attached to the item, we know that there is no IO in
137 * progress, so nothing will clear the ili_fields while we read
138 * in the buffer. Hence we can safely drop the spin lock and
139 * read the buffer knowing that the state will not change from
142 spin_unlock(&iip->ili_lock);
143 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
148 * We need an explicit buffer reference for the log item but
149 * don't want the buffer to remain attached to the transaction.
150 * Hold the buffer but release the transaction reference once
151 * we've attached the inode log item to the buffer log item
155 spin_lock(&iip->ili_lock);
156 iip->ili_item.li_buf = bp;
157 bp->b_flags |= _XBF_INODES;
158 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
159 xfs_trans_brelse(tp, bp);
163 * Always OR in the bits from the ili_last_fields field. This is to
164 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
165 * in the eventual clearing of the ili_fields bits. See the big comment
166 * in xfs_iflush() for an explanation of this coordination mechanism.
168 iip->ili_fields |= (flags | iip->ili_last_fields);
169 spin_unlock(&iip->ili_lock);
172 * We are done with the log item transaction dirty state, so clear it so
173 * that it doesn't pollute future transactions.
175 iip->ili_dirty_flags = 0;
180 * The logged size of an inode fork is always the current size of the inode
181 * fork. This means that when an inode fork is relogged, the size of the logged
182 * region is determined by the current state, not the combination of the
183 * previously logged state + the current state. This is different relogging
184 * behaviour to most other log items which will retain the size of the
185 * previously logged changes when smaller regions are relogged.
187 * Hence operations that remove data from the inode fork (e.g. shortform
188 * dir/attr remove, extent form extent removal, etc), the size of the relogged
189 * inode gets -smaller- rather than stays the same size as the previously logged
190 * size and this can result in the committing transaction reducing the amount of
191 * space being consumed by the CIL.
194 xfs_inode_item_data_fork_size(
195 struct xfs_inode_log_item *iip,
199 struct xfs_inode *ip = iip->ili_inode;
201 switch (ip->i_df.if_format) {
202 case XFS_DINODE_FMT_EXTENTS:
203 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
204 ip->i_df.if_nextents > 0 &&
205 ip->i_df.if_bytes > 0) {
206 /* worst case, doesn't subtract delalloc extents */
207 *nbytes += xfs_inode_data_fork_size(ip);
211 case XFS_DINODE_FMT_BTREE:
212 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
213 ip->i_df.if_broot_bytes > 0) {
214 *nbytes += ip->i_df.if_broot_bytes;
218 case XFS_DINODE_FMT_LOCAL:
219 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
220 ip->i_df.if_bytes > 0) {
221 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
226 case XFS_DINODE_FMT_DEV:
235 xfs_inode_item_attr_fork_size(
236 struct xfs_inode_log_item *iip,
240 struct xfs_inode *ip = iip->ili_inode;
242 switch (ip->i_af.if_format) {
243 case XFS_DINODE_FMT_EXTENTS:
244 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
245 ip->i_af.if_nextents > 0 &&
246 ip->i_af.if_bytes > 0) {
247 /* worst case, doesn't subtract unused space */
248 *nbytes += xfs_inode_attr_fork_size(ip);
252 case XFS_DINODE_FMT_BTREE:
253 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
254 ip->i_af.if_broot_bytes > 0) {
255 *nbytes += ip->i_af.if_broot_bytes;
259 case XFS_DINODE_FMT_LOCAL:
260 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
261 ip->i_af.if_bytes > 0) {
262 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
273 * This returns the number of iovecs needed to log the given inode item.
275 * We need one iovec for the inode log format structure, one for the
276 * inode core, and possibly one for the inode data/extents/b-tree root
277 * and one for the inode attribute data/extents/b-tree root.
281 struct xfs_log_item *lip,
285 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
286 struct xfs_inode *ip = iip->ili_inode;
289 *nbytes += sizeof(struct xfs_inode_log_format) +
290 xfs_log_dinode_size(ip->i_mount);
292 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
293 if (xfs_inode_has_attr_fork(ip))
294 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
298 xfs_inode_item_format_data_fork(
299 struct xfs_inode_log_item *iip,
300 struct xfs_inode_log_format *ilf,
301 struct xfs_log_vec *lv,
302 struct xfs_log_iovec **vecp)
304 struct xfs_inode *ip = iip->ili_inode;
307 switch (ip->i_df.if_format) {
308 case XFS_DINODE_FMT_EXTENTS:
310 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
313 ip->i_df.if_nextents > 0 &&
314 ip->i_df.if_bytes > 0) {
315 struct xfs_bmbt_rec *p;
317 ASSERT(xfs_iext_count(&ip->i_df) > 0);
319 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
320 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
321 xlog_finish_iovec(lv, *vecp, data_bytes);
323 ASSERT(data_bytes <= ip->i_df.if_bytes);
325 ilf->ilf_dsize = data_bytes;
328 iip->ili_fields &= ~XFS_ILOG_DEXT;
331 case XFS_DINODE_FMT_BTREE:
333 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
336 ip->i_df.if_broot_bytes > 0) {
337 ASSERT(ip->i_df.if_broot != NULL);
338 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340 ip->i_df.if_broot_bytes);
341 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
344 ASSERT(!(iip->ili_fields &
346 iip->ili_fields &= ~XFS_ILOG_DBROOT;
349 case XFS_DINODE_FMT_LOCAL:
351 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
352 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
353 ip->i_df.if_bytes > 0) {
354 ASSERT(ip->i_df.if_u1.if_data != NULL);
355 ASSERT(ip->i_disk_size > 0);
356 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
357 ip->i_df.if_u1.if_data,
359 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
362 iip->ili_fields &= ~XFS_ILOG_DDATA;
365 case XFS_DINODE_FMT_DEV:
367 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368 if (iip->ili_fields & XFS_ILOG_DEV)
369 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
378 xfs_inode_item_format_attr_fork(
379 struct xfs_inode_log_item *iip,
380 struct xfs_inode_log_format *ilf,
381 struct xfs_log_vec *lv,
382 struct xfs_log_iovec **vecp)
384 struct xfs_inode *ip = iip->ili_inode;
387 switch (ip->i_af.if_format) {
388 case XFS_DINODE_FMT_EXTENTS:
390 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
392 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393 ip->i_af.if_nextents > 0 &&
394 ip->i_af.if_bytes > 0) {
395 struct xfs_bmbt_rec *p;
397 ASSERT(xfs_iext_count(&ip->i_af) ==
398 ip->i_af.if_nextents);
400 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402 xlog_finish_iovec(lv, *vecp, data_bytes);
404 ilf->ilf_asize = data_bytes;
407 iip->ili_fields &= ~XFS_ILOG_AEXT;
410 case XFS_DINODE_FMT_BTREE:
412 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
414 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415 ip->i_af.if_broot_bytes > 0) {
416 ASSERT(ip->i_af.if_broot != NULL);
418 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
420 ip->i_af.if_broot_bytes);
421 ilf->ilf_asize = ip->i_af.if_broot_bytes;
424 iip->ili_fields &= ~XFS_ILOG_ABROOT;
427 case XFS_DINODE_FMT_LOCAL:
429 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
431 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432 ip->i_af.if_bytes > 0) {
433 ASSERT(ip->i_af.if_u1.if_data != NULL);
434 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435 ip->i_af.if_u1.if_data,
437 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
440 iip->ili_fields &= ~XFS_ILOG_ADATA;
450 * Convert an incore timestamp to a log timestamp. Note that the log format
451 * specifies host endian format!
453 static inline xfs_log_timestamp_t
454 xfs_inode_to_log_dinode_ts(
455 struct xfs_inode *ip,
456 const struct timespec64 tv)
458 struct xfs_log_legacy_timestamp *lits;
459 xfs_log_timestamp_t its;
461 if (xfs_inode_has_bigtime(ip))
462 return xfs_inode_encode_bigtime(tv);
464 lits = (struct xfs_log_legacy_timestamp *)&its;
465 lits->t_sec = tv.tv_sec;
466 lits->t_nsec = tv.tv_nsec;
472 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
473 * but not in the in-memory one. But we are guaranteed to have an inode buffer
474 * in memory when logging an inode, so we can just copy it from the on-disk
475 * inode to the in-log inode here so that recovery of file system with these
476 * fields set to non-zero values doesn't lose them. For all other cases we zero
480 xfs_copy_dm_fields_to_log_dinode(
481 struct xfs_inode *ip,
482 struct xfs_log_dinode *to)
484 struct xfs_dinode *dip;
486 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
487 ip->i_imap.im_boffset);
489 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
490 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
491 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
499 xfs_inode_to_log_dinode_iext_counters(
500 struct xfs_inode *ip,
501 struct xfs_log_dinode *to)
503 if (xfs_inode_has_large_extent_counts(ip)) {
504 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
505 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
506 to->di_nrext64_pad = 0;
508 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
509 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
514 xfs_inode_to_log_dinode(
515 struct xfs_inode *ip,
516 struct xfs_log_dinode *to,
519 struct inode *inode = VFS_I(ip);
521 to->di_magic = XFS_DINODE_MAGIC;
522 to->di_format = xfs_ifork_format(&ip->i_df);
523 to->di_uid = i_uid_read(inode);
524 to->di_gid = i_gid_read(inode);
525 to->di_projid_lo = ip->i_projid & 0xffff;
526 to->di_projid_hi = ip->i_projid >> 16;
528 memset(to->di_pad3, 0, sizeof(to->di_pad3));
529 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
530 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
531 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
532 to->di_nlink = inode->i_nlink;
533 to->di_gen = inode->i_generation;
534 to->di_mode = inode->i_mode;
536 to->di_size = ip->i_disk_size;
537 to->di_nblocks = ip->i_nblocks;
538 to->di_extsize = ip->i_extsize;
539 to->di_forkoff = ip->i_forkoff;
540 to->di_aformat = xfs_ifork_format(&ip->i_af);
541 to->di_flags = ip->i_diflags;
543 xfs_copy_dm_fields_to_log_dinode(ip, to);
545 /* log a dummy value to ensure log structure is fully initialised */
546 to->di_next_unlinked = NULLAGINO;
548 if (xfs_has_v3inodes(ip->i_mount)) {
550 to->di_changecount = inode_peek_iversion(inode);
551 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
552 to->di_flags2 = ip->i_diflags2;
553 to->di_cowextsize = ip->i_cowextsize;
554 to->di_ino = ip->i_ino;
556 memset(to->di_pad2, 0, sizeof(to->di_pad2));
557 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
561 to->di_flushiter = ip->i_flushiter;
562 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
565 xfs_inode_to_log_dinode_iext_counters(ip, to);
569 * Format the inode core. Current timestamp data is only in the VFS inode
570 * fields, so we need to grab them from there. Hence rather than just copying
571 * the XFS inode core structure, format the fields directly into the iovec.
574 xfs_inode_item_format_core(
575 struct xfs_inode *ip,
576 struct xfs_log_vec *lv,
577 struct xfs_log_iovec **vecp)
579 struct xfs_log_dinode *dic;
581 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
582 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
583 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
587 * This is called to fill in the vector of log iovecs for the given inode
588 * log item. It fills the first item with an inode log format structure,
589 * the second with the on-disk inode structure, and a possible third and/or
590 * fourth with the inode data/extents/b-tree root and inode attributes
591 * data/extents/b-tree root.
593 * Note: Always use the 64 bit inode log format structure so we don't
594 * leave an uninitialised hole in the format item on 64 bit systems. Log
595 * recovery on 32 bit systems handles this just fine, so there's no reason
596 * for not using an initialising the properly padded structure all the time.
599 xfs_inode_item_format(
600 struct xfs_log_item *lip,
601 struct xfs_log_vec *lv)
603 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
604 struct xfs_inode *ip = iip->ili_inode;
605 struct xfs_log_iovec *vecp = NULL;
606 struct xfs_inode_log_format *ilf;
608 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
609 ilf->ilf_type = XFS_LI_INODE;
610 ilf->ilf_ino = ip->i_ino;
611 ilf->ilf_blkno = ip->i_imap.im_blkno;
612 ilf->ilf_len = ip->i_imap.im_len;
613 ilf->ilf_boffset = ip->i_imap.im_boffset;
614 ilf->ilf_fields = XFS_ILOG_CORE;
615 ilf->ilf_size = 2; /* format + core */
618 * make sure we don't leak uninitialised data into the log in the case
619 * when we don't log every field in the inode.
624 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
626 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
628 xfs_inode_item_format_core(ip, lv, &vecp);
629 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
630 if (xfs_inode_has_attr_fork(ip)) {
631 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
634 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
637 /* update the format with the exact fields we actually logged */
638 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
642 * This is called to pin the inode associated with the inode log
643 * item in memory so it cannot be written out.
647 struct xfs_log_item *lip)
649 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
651 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
654 trace_xfs_inode_pin(ip, _RET_IP_);
655 atomic_inc(&ip->i_pincount);
660 * This is called to unpin the inode associated with the inode log
661 * item which was previously pinned with a call to xfs_inode_item_pin().
663 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
665 * Note that unpin can race with inode cluster buffer freeing marking the buffer
666 * stale. In that case, flush completions are run from the buffer unpin call,
667 * which may happen before the inode is unpinned. If we lose the race, there
668 * will be no buffer attached to the log item, but the inode will be marked
672 xfs_inode_item_unpin(
673 struct xfs_log_item *lip,
676 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
678 trace_xfs_inode_unpin(ip, _RET_IP_);
679 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
680 ASSERT(atomic_read(&ip->i_pincount) > 0);
681 if (atomic_dec_and_test(&ip->i_pincount))
682 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
687 struct xfs_log_item *lip,
688 struct list_head *buffer_list)
689 __releases(&lip->li_ailp->ail_lock)
690 __acquires(&lip->li_ailp->ail_lock)
692 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
693 struct xfs_inode *ip = iip->ili_inode;
694 struct xfs_buf *bp = lip->li_buf;
695 uint rval = XFS_ITEM_SUCCESS;
698 if (!bp || (ip->i_flags & XFS_ISTALE)) {
700 * Inode item/buffer is being aborted due to cluster
701 * buffer deletion. Trigger a log force to have that operation
702 * completed and items removed from the AIL before the next push
705 return XFS_ITEM_PINNED;
708 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
709 return XFS_ITEM_PINNED;
711 if (xfs_iflags_test(ip, XFS_IFLUSHING))
712 return XFS_ITEM_FLUSHING;
714 if (!xfs_buf_trylock(bp))
715 return XFS_ITEM_LOCKED;
717 spin_unlock(&lip->li_ailp->ail_lock);
720 * We need to hold a reference for flushing the cluster buffer as it may
721 * fail the buffer without IO submission. In which case, we better get a
722 * reference for that completion because otherwise we don't get a
723 * reference for IO until we queue the buffer for delwri submission.
726 error = xfs_iflush_cluster(bp);
728 if (!xfs_buf_delwri_queue(bp, buffer_list))
729 rval = XFS_ITEM_FLUSHING;
733 * Release the buffer if we were unable to flush anything. On
734 * any other error, the buffer has already been released.
736 if (error == -EAGAIN)
738 rval = XFS_ITEM_LOCKED;
741 spin_lock(&lip->li_ailp->ail_lock);
746 * Unlock the inode associated with the inode log item.
749 xfs_inode_item_release(
750 struct xfs_log_item *lip)
752 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
753 struct xfs_inode *ip = iip->ili_inode;
754 unsigned short lock_flags;
756 ASSERT(ip->i_itemp != NULL);
757 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
759 lock_flags = iip->ili_lock_flags;
760 iip->ili_lock_flags = 0;
762 xfs_iunlock(ip, lock_flags);
766 * This is called to find out where the oldest active copy of the inode log
767 * item in the on disk log resides now that the last log write of it completed
768 * at the given lsn. Since we always re-log all dirty data in an inode, the
769 * latest copy in the on disk log is the only one that matters. Therefore,
770 * simply return the given lsn.
772 * If the inode has been marked stale because the cluster is being freed, we
773 * don't want to (re-)insert this inode into the AIL. There is a race condition
774 * where the cluster buffer may be unpinned before the inode is inserted into
775 * the AIL during transaction committed processing. If the buffer is unpinned
776 * before the inode item has been committed and inserted, then it is possible
777 * for the buffer to be written and IO completes before the inode is inserted
778 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
779 * AIL which will never get removed. It will, however, get reclaimed which
780 * triggers an assert in xfs_inode_free() complaining about freein an inode
783 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
784 * transaction committed code knows that it does not need to do any further
785 * processing on the item.
788 xfs_inode_item_committed(
789 struct xfs_log_item *lip,
792 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
793 struct xfs_inode *ip = iip->ili_inode;
795 if (xfs_iflags_test(ip, XFS_ISTALE)) {
796 xfs_inode_item_unpin(lip, 0);
803 xfs_inode_item_committing(
804 struct xfs_log_item *lip,
807 INODE_ITEM(lip)->ili_commit_seq = seq;
808 return xfs_inode_item_release(lip);
811 static const struct xfs_item_ops xfs_inode_item_ops = {
812 .iop_sort = xfs_inode_item_sort,
813 .iop_precommit = xfs_inode_item_precommit,
814 .iop_size = xfs_inode_item_size,
815 .iop_format = xfs_inode_item_format,
816 .iop_pin = xfs_inode_item_pin,
817 .iop_unpin = xfs_inode_item_unpin,
818 .iop_release = xfs_inode_item_release,
819 .iop_committed = xfs_inode_item_committed,
820 .iop_push = xfs_inode_item_push,
821 .iop_committing = xfs_inode_item_committing,
826 * Initialize the inode log item for a newly allocated (in-core) inode.
830 struct xfs_inode *ip,
831 struct xfs_mount *mp)
833 struct xfs_inode_log_item *iip;
835 ASSERT(ip->i_itemp == NULL);
836 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
837 GFP_KERNEL | __GFP_NOFAIL);
840 spin_lock_init(&iip->ili_lock);
841 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
842 &xfs_inode_item_ops);
846 * Free the inode log item and any memory hanging off of it.
849 xfs_inode_item_destroy(
850 struct xfs_inode *ip)
852 struct xfs_inode_log_item *iip = ip->i_itemp;
854 ASSERT(iip->ili_item.li_buf == NULL);
857 kmem_free(iip->ili_item.li_lv_shadow);
858 kmem_cache_free(xfs_ili_cache, iip);
863 * We only want to pull the item from the AIL if it is actually there
864 * and its location in the log has not changed since we started the
865 * flush. Thus, we only bother if the inode's lsn has not changed.
868 xfs_iflush_ail_updates(
869 struct xfs_ail *ailp,
870 struct list_head *list)
872 struct xfs_log_item *lip;
873 xfs_lsn_t tail_lsn = 0;
875 /* this is an opencoded batch version of xfs_trans_ail_delete */
876 spin_lock(&ailp->ail_lock);
877 list_for_each_entry(lip, list, li_bio_list) {
880 clear_bit(XFS_LI_FAILED, &lip->li_flags);
881 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
885 * dgc: Not sure how this happens, but it happens very
886 * occassionaly via generic/388. xfs_iflush_abort() also
887 * silently handles this same "under writeback but not in AIL at
888 * shutdown" condition via xfs_trans_ail_delete().
890 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
891 ASSERT(xlog_is_shutdown(lip->li_log));
895 lsn = xfs_ail_delete_one(ailp, lip);
896 if (!tail_lsn && lsn)
899 xfs_ail_update_finish(ailp, tail_lsn);
903 * Walk the list of inodes that have completed their IOs. If they are clean
904 * remove them from the list and dissociate them from the buffer. Buffers that
905 * are still dirty remain linked to the buffer and on the list. Caller must
906 * handle them appropriately.
911 struct list_head *list)
913 struct xfs_log_item *lip, *n;
915 list_for_each_entry_safe(lip, n, list, li_bio_list) {
916 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
917 bool drop_buffer = false;
919 spin_lock(&iip->ili_lock);
922 * Remove the reference to the cluster buffer if the inode is
923 * clean in memory and drop the buffer reference once we've
924 * dropped the locks we hold.
926 ASSERT(iip->ili_item.li_buf == bp);
927 if (!iip->ili_fields) {
928 iip->ili_item.li_buf = NULL;
929 list_del_init(&lip->li_bio_list);
932 iip->ili_last_fields = 0;
933 iip->ili_flush_lsn = 0;
934 spin_unlock(&iip->ili_lock);
935 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
942 * Inode buffer IO completion routine. It is responsible for removing inodes
943 * attached to the buffer from the AIL if they have not been re-logged and
944 * completing the inode flush.
947 xfs_buf_inode_iodone(
950 struct xfs_log_item *lip, *n;
951 LIST_HEAD(flushed_inodes);
952 LIST_HEAD(ail_updates);
955 * Pull the attached inodes from the buffer one at a time and take the
956 * appropriate action on them.
958 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
959 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
961 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
962 xfs_iflush_abort(iip->ili_inode);
965 if (!iip->ili_last_fields)
968 /* Do an unlocked check for needing the AIL lock. */
969 if (iip->ili_flush_lsn == lip->li_lsn ||
970 test_bit(XFS_LI_FAILED, &lip->li_flags))
971 list_move_tail(&lip->li_bio_list, &ail_updates);
973 list_move_tail(&lip->li_bio_list, &flushed_inodes);
976 if (!list_empty(&ail_updates)) {
977 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
978 list_splice_tail(&ail_updates, &flushed_inodes);
981 xfs_iflush_finish(bp, &flushed_inodes);
982 if (!list_empty(&flushed_inodes))
983 list_splice_tail(&flushed_inodes, &bp->b_li_list);
987 xfs_buf_inode_io_fail(
990 struct xfs_log_item *lip;
992 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
993 set_bit(XFS_LI_FAILED, &lip->li_flags);
997 * Clear the inode logging fields so no more flushes are attempted. If we are
998 * on a buffer list, it is now safe to remove it because the buffer is
999 * guaranteed to be locked. The caller will drop the reference to the buffer
1000 * the log item held.
1003 xfs_iflush_abort_clean(
1004 struct xfs_inode_log_item *iip)
1006 iip->ili_last_fields = 0;
1007 iip->ili_fields = 0;
1008 iip->ili_fsync_fields = 0;
1009 iip->ili_flush_lsn = 0;
1010 iip->ili_item.li_buf = NULL;
1011 list_del_init(&iip->ili_item.li_bio_list);
1015 * Abort flushing the inode from a context holding the cluster buffer locked.
1017 * This is the normal runtime method of aborting writeback of an inode that is
1018 * attached to a cluster buffer. It occurs when the inode and the backing
1019 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1020 * flushing or buffer IO completion encounters a log shutdown situation.
1022 * If we need to abort inode writeback and we don't already hold the buffer
1023 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1024 * necessary in a shutdown situation.
1028 struct xfs_inode *ip)
1030 struct xfs_inode_log_item *iip = ip->i_itemp;
1034 /* clean inode, nothing to do */
1035 xfs_iflags_clear(ip, XFS_IFLUSHING);
1040 * Remove the inode item from the AIL before we clear its internal
1041 * state. Whilst the inode is in the AIL, it should have a valid buffer
1042 * pointer for push operations to access - it is only safe to remove the
1043 * inode from the buffer once it has been removed from the AIL.
1045 * We also clear the failed bit before removing the item from the AIL
1046 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1047 * references the inode item owns and needs to hold until we've fully
1048 * aborted the inode log item and detached it from the buffer.
1050 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1051 xfs_trans_ail_delete(&iip->ili_item, 0);
1054 * Grab the inode buffer so can we release the reference the inode log
1057 spin_lock(&iip->ili_lock);
1058 bp = iip->ili_item.li_buf;
1059 xfs_iflush_abort_clean(iip);
1060 spin_unlock(&iip->ili_lock);
1062 xfs_iflags_clear(ip, XFS_IFLUSHING);
1068 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1069 * from anywhere with just an inode reference and does not require holding the
1070 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1071 * it will grab and lock it safely, then abort the inode flush.
1074 xfs_iflush_shutdown_abort(
1075 struct xfs_inode *ip)
1077 struct xfs_inode_log_item *iip = ip->i_itemp;
1081 /* clean inode, nothing to do */
1082 xfs_iflags_clear(ip, XFS_IFLUSHING);
1086 spin_lock(&iip->ili_lock);
1087 bp = iip->ili_item.li_buf;
1089 spin_unlock(&iip->ili_lock);
1090 xfs_iflush_abort(ip);
1095 * We have to take a reference to the buffer so that it doesn't get
1096 * freed when we drop the ili_lock and then wait to lock the buffer.
1097 * We'll clean up the extra reference after we pick up the ili_lock
1101 spin_unlock(&iip->ili_lock);
1104 spin_lock(&iip->ili_lock);
1105 if (!iip->ili_item.li_buf) {
1107 * Raced with another removal, hold the only reference
1108 * to bp now. Inode should not be in the AIL now, so just clean
1111 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1112 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1113 xfs_iflush_abort_clean(iip);
1114 spin_unlock(&iip->ili_lock);
1115 xfs_iflags_clear(ip, XFS_IFLUSHING);
1121 * Got two references to bp. The first will get dropped by
1122 * xfs_iflush_abort() when the item is removed from the buffer list, but
1123 * we can't drop our reference until _abort() returns because we have to
1124 * unlock the buffer as well. Hence we abort and then unlock and release
1125 * our reference to the buffer.
1127 ASSERT(iip->ili_item.li_buf == bp);
1128 spin_unlock(&iip->ili_lock);
1129 xfs_iflush_abort(ip);
1135 * convert an xfs_inode_log_format struct from the old 32 bit version
1136 * (which can have different field alignments) to the native 64 bit version
1139 xfs_inode_item_format_convert(
1140 struct xfs_log_iovec *buf,
1141 struct xfs_inode_log_format *in_f)
1143 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1145 if (buf->i_len != sizeof(*in_f32)) {
1146 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1147 return -EFSCORRUPTED;
1150 in_f->ilf_type = in_f32->ilf_type;
1151 in_f->ilf_size = in_f32->ilf_size;
1152 in_f->ilf_fields = in_f32->ilf_fields;
1153 in_f->ilf_asize = in_f32->ilf_asize;
1154 in_f->ilf_dsize = in_f32->ilf_dsize;
1155 in_f->ilf_ino = in_f32->ilf_ino;
1156 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1157 in_f->ilf_blkno = in_f32->ilf_blkno;
1158 in_f->ilf_len = in_f32->ilf_len;
1159 in_f->ilf_boffset = in_f32->ilf_boffset;