2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_format.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trans_priv.h"
30 #include "xfs_mount.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2_format.h"
34 #include "xfs_bmap_btree.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc_btree.h"
37 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
47 #include "xfs_bmap_util.h"
48 #include "xfs_error.h"
49 #include "xfs_quota.h"
50 #include "xfs_filestream.h"
51 #include "xfs_cksum.h"
52 #include "xfs_trace.h"
53 #include "xfs_icache.h"
54 #include "xfs_symlink.h"
56 kmem_zone_t *xfs_inode_zone;
59 * Used in xfs_itruncate_extents(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 * helper function to extract extent size hint from inode
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
81 * This is a wrapper routine around the xfs_ilock() routine used to centralize
82 * some grungy code. It is used in places that wish to lock the inode solely
83 * for reading the extents. The reason these places can't just call
84 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
85 * extents from disk for a file in b-tree format. If the inode is in b-tree
86 * format, then we need to lock the inode exclusively until the extents are read
87 * in. Locking it exclusively all the time would limit our parallelism
88 * unnecessarily, though. What we do instead is check to see if the extents
89 * have been read in yet, and only lock the inode exclusively if they have not.
91 * The function returns a value which should be given to the corresponding
92 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
101 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
102 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
103 lock_mode = XFS_ILOCK_EXCL;
105 lock_mode = XFS_ILOCK_SHARED;
108 xfs_ilock(ip, lock_mode);
114 * This is simply the unlock routine to go with xfs_ilock_map_shared().
115 * All it does is call xfs_iunlock() with the given lock_mode.
118 xfs_iunlock_map_shared(
120 unsigned int lock_mode)
122 xfs_iunlock(ip, lock_mode);
126 * The xfs inode contains 2 locks: a multi-reader lock called the
127 * i_iolock and a multi-reader lock called the i_lock. This routine
128 * allows either or both of the locks to be obtained.
130 * The 2 locks should always be ordered so that the IO lock is
131 * obtained first in order to prevent deadlock.
133 * ip -- the inode being locked
134 * lock_flags -- this parameter indicates the inode's locks
135 * to be locked. It can be:
140 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
142 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
143 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
150 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
153 * You can't set both SHARED and EXCL for the same lock,
154 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
155 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
157 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
158 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
159 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
160 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
161 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
163 if (lock_flags & XFS_IOLOCK_EXCL)
164 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165 else if (lock_flags & XFS_IOLOCK_SHARED)
166 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
168 if (lock_flags & XFS_ILOCK_EXCL)
169 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170 else if (lock_flags & XFS_ILOCK_SHARED)
171 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
175 * This is just like xfs_ilock(), except that the caller
176 * is guaranteed not to sleep. It returns 1 if it gets
177 * the requested locks and 0 otherwise. If the IO lock is
178 * obtained but the inode lock cannot be, then the IO lock
179 * is dropped before returning.
181 * ip -- the inode being locked
182 * lock_flags -- this parameter indicates the inode's locks to be
183 * to be locked. See the comment for xfs_ilock() for a list
191 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
194 * You can't set both SHARED and EXCL for the same lock,
195 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
196 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
198 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
199 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
200 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
201 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
202 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
204 if (lock_flags & XFS_IOLOCK_EXCL) {
205 if (!mrtryupdate(&ip->i_iolock))
207 } else if (lock_flags & XFS_IOLOCK_SHARED) {
208 if (!mrtryaccess(&ip->i_iolock))
211 if (lock_flags & XFS_ILOCK_EXCL) {
212 if (!mrtryupdate(&ip->i_lock))
213 goto out_undo_iolock;
214 } else if (lock_flags & XFS_ILOCK_SHARED) {
215 if (!mrtryaccess(&ip->i_lock))
216 goto out_undo_iolock;
221 if (lock_flags & XFS_IOLOCK_EXCL)
222 mrunlock_excl(&ip->i_iolock);
223 else if (lock_flags & XFS_IOLOCK_SHARED)
224 mrunlock_shared(&ip->i_iolock);
230 * xfs_iunlock() is used to drop the inode locks acquired with
231 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
232 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
233 * that we know which locks to drop.
235 * ip -- the inode being unlocked
236 * lock_flags -- this parameter indicates the inode's locks to be
237 * to be unlocked. See the comment for xfs_ilock() for a list
238 * of valid values for this parameter.
247 * You can't set both SHARED and EXCL for the same lock,
248 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
249 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
251 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
252 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
253 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
254 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
255 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
256 ASSERT(lock_flags != 0);
258 if (lock_flags & XFS_IOLOCK_EXCL)
259 mrunlock_excl(&ip->i_iolock);
260 else if (lock_flags & XFS_IOLOCK_SHARED)
261 mrunlock_shared(&ip->i_iolock);
263 if (lock_flags & XFS_ILOCK_EXCL)
264 mrunlock_excl(&ip->i_lock);
265 else if (lock_flags & XFS_ILOCK_SHARED)
266 mrunlock_shared(&ip->i_lock);
268 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
272 * give up write locks. the i/o lock cannot be held nested
273 * if it is being demoted.
280 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
281 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
283 if (lock_flags & XFS_ILOCK_EXCL)
284 mrdemote(&ip->i_lock);
285 if (lock_flags & XFS_IOLOCK_EXCL)
286 mrdemote(&ip->i_iolock);
288 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
291 #if defined(DEBUG) || defined(XFS_WARN)
297 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
298 if (!(lock_flags & XFS_ILOCK_SHARED))
299 return !!ip->i_lock.mr_writer;
300 return rwsem_is_locked(&ip->i_lock.mr_lock);
303 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
304 if (!(lock_flags & XFS_IOLOCK_SHARED))
305 return !!ip->i_iolock.mr_writer;
306 return rwsem_is_locked(&ip->i_iolock.mr_lock);
316 int xfs_small_retries;
317 int xfs_middle_retries;
318 int xfs_lots_retries;
323 * Bump the subclass so xfs_lock_inodes() acquires each lock with
327 xfs_lock_inumorder(int lock_mode, int subclass)
329 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
330 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
331 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
332 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
338 * The following routine will lock n inodes in exclusive mode.
339 * We assume the caller calls us with the inodes in i_ino order.
341 * We need to detect deadlock where an inode that we lock
342 * is in the AIL and we start waiting for another inode that is locked
343 * by a thread in a long running transaction (such as truncate). This can
344 * result in deadlock since the long running trans might need to wait
345 * for the inode we just locked in order to push the tail and free space
354 int attempts = 0, i, j, try_lock;
357 ASSERT(ips && (inodes >= 2)); /* we need at least two */
363 for (; i < inodes; i++) {
366 if (i && (ips[i] == ips[i-1])) /* Already locked */
370 * If try_lock is not set yet, make sure all locked inodes
371 * are not in the AIL.
372 * If any are, set try_lock to be used later.
376 for (j = (i - 1); j >= 0 && !try_lock; j--) {
377 lp = (xfs_log_item_t *)ips[j]->i_itemp;
378 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
385 * If any of the previous locks we have locked is in the AIL,
386 * we must TRY to get the second and subsequent locks. If
387 * we can't get any, we must release all we have
392 /* try_lock must be 0 if i is 0. */
394 * try_lock means we have an inode locked
395 * that is in the AIL.
398 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
402 * Unlock all previous guys and try again.
403 * xfs_iunlock will try to push the tail
404 * if the inode is in the AIL.
407 for(j = i - 1; j >= 0; j--) {
410 * Check to see if we've already
412 * Not the first one going back,
413 * and the inode ptr is the same.
415 if ((j != (i - 1)) && ips[j] ==
419 xfs_iunlock(ips[j], lock_mode);
422 if ((attempts % 5) == 0) {
423 delay(1); /* Don't just spin the CPU */
433 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
439 if (attempts < 5) xfs_small_retries++;
440 else if (attempts < 100) xfs_middle_retries++;
441 else xfs_lots_retries++;
449 * xfs_lock_two_inodes() can only be used to lock one type of lock
450 * at a time - the iolock or the ilock, but not both at once. If
451 * we lock both at once, lockdep will report false positives saying
452 * we have violated locking orders.
464 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
465 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
466 ASSERT(ip0->i_ino != ip1->i_ino);
468 if (ip0->i_ino > ip1->i_ino) {
475 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
478 * If the first lock we have locked is in the AIL, we must TRY to get
479 * the second lock. If we can't get it, we must release the first one
482 lp = (xfs_log_item_t *)ip0->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
484 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
485 xfs_iunlock(ip0, lock_mode);
486 if ((++attempts % 5) == 0)
487 delay(1); /* Don't just spin the CPU */
491 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
498 struct xfs_inode *ip)
500 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
501 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
504 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
505 if (xfs_isiflocked(ip))
507 } while (!xfs_iflock_nowait(ip));
509 finish_wait(wq, &wait.wait);
518 if (di_flags & XFS_DIFLAG_ANY) {
519 if (di_flags & XFS_DIFLAG_REALTIME)
520 flags |= XFS_XFLAG_REALTIME;
521 if (di_flags & XFS_DIFLAG_PREALLOC)
522 flags |= XFS_XFLAG_PREALLOC;
523 if (di_flags & XFS_DIFLAG_IMMUTABLE)
524 flags |= XFS_XFLAG_IMMUTABLE;
525 if (di_flags & XFS_DIFLAG_APPEND)
526 flags |= XFS_XFLAG_APPEND;
527 if (di_flags & XFS_DIFLAG_SYNC)
528 flags |= XFS_XFLAG_SYNC;
529 if (di_flags & XFS_DIFLAG_NOATIME)
530 flags |= XFS_XFLAG_NOATIME;
531 if (di_flags & XFS_DIFLAG_NODUMP)
532 flags |= XFS_XFLAG_NODUMP;
533 if (di_flags & XFS_DIFLAG_RTINHERIT)
534 flags |= XFS_XFLAG_RTINHERIT;
535 if (di_flags & XFS_DIFLAG_PROJINHERIT)
536 flags |= XFS_XFLAG_PROJINHERIT;
537 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
538 flags |= XFS_XFLAG_NOSYMLINKS;
539 if (di_flags & XFS_DIFLAG_EXTSIZE)
540 flags |= XFS_XFLAG_EXTSIZE;
541 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
542 flags |= XFS_XFLAG_EXTSZINHERIT;
543 if (di_flags & XFS_DIFLAG_NODEFRAG)
544 flags |= XFS_XFLAG_NODEFRAG;
545 if (di_flags & XFS_DIFLAG_FILESTREAM)
546 flags |= XFS_XFLAG_FILESTREAM;
556 xfs_icdinode_t *dic = &ip->i_d;
558 return _xfs_dic2xflags(dic->di_flags) |
559 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
566 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
567 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
571 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
572 * is allowed, otherwise it has to be an exact match. If a CI match is found,
573 * ci_name->name will point to a the actual name (caller must free) or
574 * will be set to NULL if an exact match is found.
579 struct xfs_name *name,
581 struct xfs_name *ci_name)
587 trace_xfs_lookup(dp, name);
589 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
590 return XFS_ERROR(EIO);
592 lock_mode = xfs_ilock_map_shared(dp);
593 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
594 xfs_iunlock_map_shared(dp, lock_mode);
599 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
607 kmem_free(ci_name->name);
614 * Allocate an inode on disk and return a copy of its in-core version.
615 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
616 * appropriately within the inode. The uid and gid for the inode are
617 * set according to the contents of the given cred structure.
619 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
620 * has a free inode available, call xfs_iget() to obtain the in-core
621 * version of the allocated inode. Finally, fill in the inode and
622 * log its initial contents. In this case, ialloc_context would be
625 * If xfs_dialloc() does not have an available inode, it will replenish
626 * its supply by doing an allocation. Since we can only do one
627 * allocation within a transaction without deadlocks, we must commit
628 * the current transaction before returning the inode itself.
629 * In this case, therefore, we will set ialloc_context and return.
630 * The caller should then commit the current transaction, start a new
631 * transaction, and call xfs_ialloc() again to actually get the inode.
633 * To ensure that some other process does not grab the inode that
634 * was allocated during the first call to xfs_ialloc(), this routine
635 * also returns the [locked] bp pointing to the head of the freelist
636 * as ialloc_context. The caller should hold this buffer across
637 * the commit and pass it back into this routine on the second call.
639 * If we are allocating quota inodes, we do not have a parent inode
640 * to attach to or associate with (i.e. pip == NULL) because they
641 * are not linked into the directory structure - they are attached
642 * directly to the superblock - and so have no parent.
653 xfs_buf_t **ialloc_context,
656 struct xfs_mount *mp = tp->t_mountp;
665 * Call the space management code to pick
666 * the on-disk inode to be allocated.
668 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
669 ialloc_context, &ino);
672 if (*ialloc_context || ino == NULLFSINO) {
676 ASSERT(*ialloc_context == NULL);
679 * Get the in-core inode with the lock held exclusively.
680 * This is because we're setting fields here we need
681 * to prevent others from looking at until we're done.
683 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
684 XFS_ILOCK_EXCL, &ip);
689 ip->i_d.di_mode = mode;
690 ip->i_d.di_onlink = 0;
691 ip->i_d.di_nlink = nlink;
692 ASSERT(ip->i_d.di_nlink == nlink);
693 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
694 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
695 xfs_set_projid(ip, prid);
696 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
699 * If the superblock version is up to where we support new format
700 * inodes and this is currently an old format inode, then change
701 * the inode version number now. This way we only do the conversion
702 * here rather than here and in the flush/logging code.
704 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
705 ip->i_d.di_version == 1) {
706 ip->i_d.di_version = 2;
708 * We've already zeroed the old link count, the projid field,
714 * Project ids won't be stored on disk if we are using a version 1 inode.
716 if ((prid != 0) && (ip->i_d.di_version == 1))
717 xfs_bump_ino_vers2(tp, ip);
719 if (pip && XFS_INHERIT_GID(pip)) {
720 ip->i_d.di_gid = pip->i_d.di_gid;
721 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
722 ip->i_d.di_mode |= S_ISGID;
727 * If the group ID of the new file does not match the effective group
728 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
729 * (and only if the irix_sgid_inherit compatibility variable is set).
731 if ((irix_sgid_inherit) &&
732 (ip->i_d.di_mode & S_ISGID) &&
733 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
734 ip->i_d.di_mode &= ~S_ISGID;
738 ip->i_d.di_nextents = 0;
739 ASSERT(ip->i_d.di_nblocks == 0);
742 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
743 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
744 ip->i_d.di_atime = ip->i_d.di_mtime;
745 ip->i_d.di_ctime = ip->i_d.di_mtime;
748 * di_gen will have been taken care of in xfs_iread.
750 ip->i_d.di_extsize = 0;
751 ip->i_d.di_dmevmask = 0;
752 ip->i_d.di_dmstate = 0;
753 ip->i_d.di_flags = 0;
755 if (ip->i_d.di_version == 3) {
756 ASSERT(ip->i_d.di_ino == ino);
757 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
759 ip->i_d.di_changecount = 1;
761 ip->i_d.di_flags2 = 0;
762 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
763 ip->i_d.di_crtime = ip->i_d.di_mtime;
767 flags = XFS_ILOG_CORE;
768 switch (mode & S_IFMT) {
773 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
774 ip->i_df.if_u2.if_rdev = rdev;
775 ip->i_df.if_flags = 0;
776 flags |= XFS_ILOG_DEV;
780 * we can't set up filestreams until after the VFS inode
781 * is set up properly.
783 if (pip && xfs_inode_is_filestream(pip))
787 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
791 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
792 di_flags |= XFS_DIFLAG_RTINHERIT;
793 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
794 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
795 ip->i_d.di_extsize = pip->i_d.di_extsize;
797 } else if (S_ISREG(mode)) {
798 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
799 di_flags |= XFS_DIFLAG_REALTIME;
800 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
801 di_flags |= XFS_DIFLAG_EXTSIZE;
802 ip->i_d.di_extsize = pip->i_d.di_extsize;
805 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
807 di_flags |= XFS_DIFLAG_NOATIME;
808 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
810 di_flags |= XFS_DIFLAG_NODUMP;
811 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
813 di_flags |= XFS_DIFLAG_SYNC;
814 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
815 xfs_inherit_nosymlinks)
816 di_flags |= XFS_DIFLAG_NOSYMLINKS;
817 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
818 di_flags |= XFS_DIFLAG_PROJINHERIT;
819 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
820 xfs_inherit_nodefrag)
821 di_flags |= XFS_DIFLAG_NODEFRAG;
822 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
823 di_flags |= XFS_DIFLAG_FILESTREAM;
824 ip->i_d.di_flags |= di_flags;
828 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
829 ip->i_df.if_flags = XFS_IFEXTENTS;
830 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
831 ip->i_df.if_u1.if_extents = NULL;
837 * Attribute fork settings for new inode.
839 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
840 ip->i_d.di_anextents = 0;
843 * Log the new values stuffed into the inode.
845 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
846 xfs_trans_log_inode(tp, ip, flags);
848 /* now that we have an i_mode we can setup inode ops and unlock */
851 /* now we have set up the vfs inode we can associate the filestream */
853 error = xfs_filestream_associate(pip, ip);
857 xfs_iflags_set(ip, XFS_IFILESTREAM);
865 * Allocates a new inode from disk and return a pointer to the
866 * incore copy. This routine will internally commit the current
867 * transaction and allocate a new one if the Space Manager needed
868 * to do an allocation to replenish the inode free-list.
870 * This routine is designed to be called from xfs_create and
876 xfs_trans_t **tpp, /* input: current transaction;
877 output: may be a new transaction. */
878 xfs_inode_t *dp, /* directory within whose allocate
883 prid_t prid, /* project id */
884 int okalloc, /* ok to allocate new space */
885 xfs_inode_t **ipp, /* pointer to inode; it will be
893 xfs_buf_t *ialloc_context = NULL;
899 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
902 * xfs_ialloc will return a pointer to an incore inode if
903 * the Space Manager has an available inode on the free
904 * list. Otherwise, it will do an allocation and replenish
905 * the freelist. Since we can only do one allocation per
906 * transaction without deadlocks, we will need to commit the
907 * current transaction and start a new one. We will then
908 * need to call xfs_ialloc again to get the inode.
910 * If xfs_ialloc did an allocation to replenish the freelist,
911 * it returns the bp containing the head of the freelist as
912 * ialloc_context. We will hold a lock on it across the
913 * transaction commit so that no other process can steal
914 * the inode(s) that we've just allocated.
916 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
917 &ialloc_context, &ip);
920 * Return an error if we were unable to allocate a new inode.
921 * This should only happen if we run out of space on disk or
922 * encounter a disk error.
928 if (!ialloc_context && !ip) {
930 return XFS_ERROR(ENOSPC);
934 * If the AGI buffer is non-NULL, then we were unable to get an
935 * inode in one operation. We need to commit the current
936 * transaction and call xfs_ialloc() again. It is guaranteed
937 * to succeed the second time.
939 if (ialloc_context) {
940 struct xfs_trans_res tres;
943 * Normally, xfs_trans_commit releases all the locks.
944 * We call bhold to hang on to the ialloc_context across
945 * the commit. Holding this buffer prevents any other
946 * processes from doing any allocations in this
949 xfs_trans_bhold(tp, ialloc_context);
951 * Save the log reservation so we can use
952 * them in the next transaction.
954 tres.tr_logres = xfs_trans_get_log_res(tp);
955 tres.tr_logcount = xfs_trans_get_log_count(tp);
958 * We want the quota changes to be associated with the next
959 * transaction, NOT this one. So, detach the dqinfo from this
960 * and attach it to the next transaction.
965 dqinfo = (void *)tp->t_dqinfo;
967 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
968 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
971 ntp = xfs_trans_dup(tp);
972 code = xfs_trans_commit(tp, 0);
974 if (committed != NULL) {
978 * If we get an error during the commit processing,
979 * release the buffer that is still held and return
983 xfs_buf_relse(ialloc_context);
985 tp->t_dqinfo = dqinfo;
986 xfs_trans_free_dqinfo(tp);
994 * transaction commit worked ok so we can drop the extra ticket
995 * reference that we gained in xfs_trans_dup()
997 xfs_log_ticket_put(tp->t_ticket);
998 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
999 code = xfs_trans_reserve(tp, &tres, 0, 0);
1002 * Re-attach the quota info that we detached from prev trx.
1005 tp->t_dqinfo = dqinfo;
1006 tp->t_flags |= tflags;
1010 xfs_buf_relse(ialloc_context);
1015 xfs_trans_bjoin(tp, ialloc_context);
1018 * Call ialloc again. Since we've locked out all
1019 * other allocations in this allocation group,
1020 * this call should always succeed.
1022 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1023 okalloc, &ialloc_context, &ip);
1026 * If we get an error at this point, return to the caller
1027 * so that the current transaction can be aborted.
1034 ASSERT(!ialloc_context && ip);
1037 if (committed != NULL)
1048 * Decrement the link count on an inode & log the change.
1049 * If this causes the link count to go to zero, initiate the
1050 * logging activity required to truncate a file.
1059 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1061 ASSERT (ip->i_d.di_nlink > 0);
1063 drop_nlink(VFS_I(ip));
1064 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1067 if (ip->i_d.di_nlink == 0) {
1069 * We're dropping the last link to this file.
1070 * Move the on-disk inode to the AGI unlinked list.
1071 * From xfs_inactive() we will pull the inode from
1072 * the list and free it.
1074 error = xfs_iunlink(tp, ip);
1080 * This gets called when the inode's version needs to be changed from 1 to 2.
1081 * Currently this happens when the nlink field overflows the old 16-bit value
1082 * or when chproj is called to change the project for the first time.
1083 * As a side effect the superblock version will also get rev'd
1084 * to contain the NLINK bit.
1093 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1094 ASSERT(ip->i_d.di_version == 1);
1096 ip->i_d.di_version = 2;
1097 ip->i_d.di_onlink = 0;
1098 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1100 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1101 spin_lock(&mp->m_sb_lock);
1102 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1103 xfs_sb_version_addnlink(&mp->m_sb);
1104 spin_unlock(&mp->m_sb_lock);
1105 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1107 spin_unlock(&mp->m_sb_lock);
1110 /* Caller must log the inode */
1114 * Increment the link count on an inode & log the change.
1121 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1123 ASSERT(ip->i_d.di_nlink > 0);
1125 inc_nlink(VFS_I(ip));
1126 if ((ip->i_d.di_version == 1) &&
1127 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1129 * The inode has increased its number of links beyond
1130 * what can fit in an old format inode. It now needs
1131 * to be converted to a version 2 inode with a 32 bit
1132 * link count. If this is the first inode in the file
1133 * system to do this, then we need to bump the superblock
1134 * version number as well.
1136 xfs_bump_ino_vers2(tp, ip);
1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1146 struct xfs_name *name,
1151 int is_dir = S_ISDIR(mode);
1152 struct xfs_mount *mp = dp->i_mount;
1153 struct xfs_inode *ip = NULL;
1154 struct xfs_trans *tp = NULL;
1156 xfs_bmap_free_t free_list;
1157 xfs_fsblock_t first_block;
1158 bool unlock_dp_on_error = false;
1162 struct xfs_dquot *udqp = NULL;
1163 struct xfs_dquot *gdqp = NULL;
1164 struct xfs_dquot *pdqp = NULL;
1165 struct xfs_trans_res tres;
1168 trace_xfs_create(dp, name);
1170 if (XFS_FORCED_SHUTDOWN(mp))
1171 return XFS_ERROR(EIO);
1173 if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1174 prid = xfs_get_projid(dp);
1176 prid = XFS_PROJID_DEFAULT;
1179 * Make sure that we have allocated dquot(s) on disk.
1181 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1182 xfs_kgid_to_gid(current_fsgid()), prid,
1183 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1184 &udqp, &gdqp, &pdqp);
1190 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1191 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1192 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1193 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1195 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1196 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1197 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1198 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1201 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1204 * Initially assume that the file does not exist and
1205 * reserve the resources for that case. If that is not
1206 * the case we'll drop the one we have and get a more
1207 * appropriate transaction later.
1209 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1210 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1211 if (error == ENOSPC) {
1212 /* flush outstanding delalloc blocks and retry */
1213 xfs_flush_inodes(mp);
1214 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1216 if (error == ENOSPC) {
1217 /* No space at all so try a "no-allocation" reservation */
1219 error = xfs_trans_reserve(tp, &tres, 0, 0);
1223 goto out_trans_cancel;
1226 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1227 unlock_dp_on_error = true;
1229 xfs_bmap_init(&free_list, &first_block);
1232 * Reserve disk quota and the inode.
1234 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1235 pdqp, resblks, 1, 0);
1237 goto out_trans_cancel;
1239 error = xfs_dir_canenter(tp, dp, name, resblks);
1241 goto out_trans_cancel;
1244 * A newly created regular or special file just has one directory
1245 * entry pointing to them, but a directory also the "." entry
1246 * pointing to itself.
1248 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1249 prid, resblks > 0, &ip, &committed);
1251 if (error == ENOSPC)
1252 goto out_trans_cancel;
1253 goto out_trans_abort;
1257 * Now we join the directory inode to the transaction. We do not do it
1258 * earlier because xfs_dir_ialloc might commit the previous transaction
1259 * (and release all the locks). An error from here on will result in
1260 * the transaction cancel unlocking dp so don't do it explicitly in the
1263 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1264 unlock_dp_on_error = false;
1266 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1267 &first_block, &free_list, resblks ?
1268 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1270 ASSERT(error != ENOSPC);
1271 goto out_trans_abort;
1273 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1274 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1277 error = xfs_dir_init(tp, ip, dp);
1279 goto out_bmap_cancel;
1281 error = xfs_bumplink(tp, dp);
1283 goto out_bmap_cancel;
1287 * If this is a synchronous mount, make sure that the
1288 * create transaction goes to disk before returning to
1291 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1292 xfs_trans_set_sync(tp);
1295 * Attach the dquot(s) to the inodes and modify them incore.
1296 * These ids of the inode couldn't have changed since the new
1297 * inode has been locked ever since it was created.
1299 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1301 error = xfs_bmap_finish(&tp, &free_list, &committed);
1303 goto out_bmap_cancel;
1305 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1307 goto out_release_inode;
1309 xfs_qm_dqrele(udqp);
1310 xfs_qm_dqrele(gdqp);
1311 xfs_qm_dqrele(pdqp);
1317 xfs_bmap_cancel(&free_list);
1319 cancel_flags |= XFS_TRANS_ABORT;
1321 xfs_trans_cancel(tp, cancel_flags);
1324 * Wait until after the current transaction is aborted to
1325 * release the inode. This prevents recursive transactions
1326 * and deadlocks from xfs_inactive.
1331 xfs_qm_dqrele(udqp);
1332 xfs_qm_dqrele(gdqp);
1333 xfs_qm_dqrele(pdqp);
1335 if (unlock_dp_on_error)
1336 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1344 struct xfs_name *target_name)
1346 xfs_mount_t *mp = tdp->i_mount;
1349 xfs_bmap_free_t free_list;
1350 xfs_fsblock_t first_block;
1355 trace_xfs_link(tdp, target_name);
1357 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1359 if (XFS_FORCED_SHUTDOWN(mp))
1360 return XFS_ERROR(EIO);
1362 error = xfs_qm_dqattach(sip, 0);
1366 error = xfs_qm_dqattach(tdp, 0);
1370 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1371 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1372 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1373 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1374 if (error == ENOSPC) {
1376 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1383 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1385 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1386 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1389 * If we are using project inheritance, we only allow hard link
1390 * creation in our tree when the project IDs are the same; else
1391 * the tree quota mechanism could be circumvented.
1393 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1394 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1395 error = XFS_ERROR(EXDEV);
1399 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1403 xfs_bmap_init(&free_list, &first_block);
1405 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1406 &first_block, &free_list, resblks);
1409 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1410 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1412 error = xfs_bumplink(tp, sip);
1417 * If this is a synchronous mount, make sure that the
1418 * link transaction goes to disk before returning to
1421 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1422 xfs_trans_set_sync(tp);
1425 error = xfs_bmap_finish (&tp, &free_list, &committed);
1427 xfs_bmap_cancel(&free_list);
1431 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1434 cancel_flags |= XFS_TRANS_ABORT;
1436 xfs_trans_cancel(tp, cancel_flags);
1442 * Free up the underlying blocks past new_size. The new size must be smaller
1443 * than the current size. This routine can be used both for the attribute and
1444 * data fork, and does not modify the inode size, which is left to the caller.
1446 * The transaction passed to this routine must have made a permanent log
1447 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1448 * given transaction and start new ones, so make sure everything involved in
1449 * the transaction is tidy before calling here. Some transaction will be
1450 * returned to the caller to be committed. The incoming transaction must
1451 * already include the inode, and both inode locks must be held exclusively.
1452 * The inode must also be "held" within the transaction. On return the inode
1453 * will be "held" within the returned transaction. This routine does NOT
1454 * require any disk space to be reserved for it within the transaction.
1456 * If we get an error, we must return with the inode locked and linked into the
1457 * current transaction. This keeps things simple for the higher level code,
1458 * because it always knows that the inode is locked and held in the transaction
1459 * that returns to it whether errors occur or not. We don't mark the inode
1460 * dirty on error so that transactions can be easily aborted if possible.
1463 xfs_itruncate_extents(
1464 struct xfs_trans **tpp,
1465 struct xfs_inode *ip,
1467 xfs_fsize_t new_size)
1469 struct xfs_mount *mp = ip->i_mount;
1470 struct xfs_trans *tp = *tpp;
1471 struct xfs_trans *ntp;
1472 xfs_bmap_free_t free_list;
1473 xfs_fsblock_t first_block;
1474 xfs_fileoff_t first_unmap_block;
1475 xfs_fileoff_t last_block;
1476 xfs_filblks_t unmap_len;
1481 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1482 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1483 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1484 ASSERT(new_size <= XFS_ISIZE(ip));
1485 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486 ASSERT(ip->i_itemp != NULL);
1487 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1488 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1490 trace_xfs_itruncate_extents_start(ip, new_size);
1493 * Since it is possible for space to become allocated beyond
1494 * the end of the file (in a crash where the space is allocated
1495 * but the inode size is not yet updated), simply remove any
1496 * blocks which show up between the new EOF and the maximum
1497 * possible file size. If the first block to be removed is
1498 * beyond the maximum file size (ie it is the same as last_block),
1499 * then there is nothing to do.
1501 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1502 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1503 if (first_unmap_block == last_block)
1506 ASSERT(first_unmap_block < last_block);
1507 unmap_len = last_block - first_unmap_block + 1;
1509 xfs_bmap_init(&free_list, &first_block);
1510 error = xfs_bunmapi(tp, ip,
1511 first_unmap_block, unmap_len,
1512 xfs_bmapi_aflag(whichfork),
1513 XFS_ITRUNC_MAX_EXTENTS,
1514 &first_block, &free_list,
1517 goto out_bmap_cancel;
1520 * Duplicate the transaction that has the permanent
1521 * reservation and commit the old transaction.
1523 error = xfs_bmap_finish(&tp, &free_list, &committed);
1525 xfs_trans_ijoin(tp, ip, 0);
1527 goto out_bmap_cancel;
1531 * Mark the inode dirty so it will be logged and
1532 * moved forward in the log as part of every commit.
1534 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537 ntp = xfs_trans_dup(tp);
1538 error = xfs_trans_commit(tp, 0);
1541 xfs_trans_ijoin(tp, ip, 0);
1547 * Transaction commit worked ok so we can drop the extra ticket
1548 * reference that we gained in xfs_trans_dup()
1550 xfs_log_ticket_put(tp->t_ticket);
1551 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1557 * Always re-log the inode so that our permanent transaction can keep
1558 * on rolling it forward in the log.
1560 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1562 trace_xfs_itruncate_extents_end(ip, new_size);
1569 * If the bunmapi call encounters an error, return to the caller where
1570 * the transaction can be properly aborted. We just need to make sure
1571 * we're not holding any resources that we were not when we came in.
1573 xfs_bmap_cancel(&free_list);
1581 xfs_mount_t *mp = ip->i_mount;
1584 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1587 /* If this is a read-only mount, don't do this (would generate I/O) */
1588 if (mp->m_flags & XFS_MOUNT_RDONLY)
1591 if (!XFS_FORCED_SHUTDOWN(mp)) {
1595 * If we are using filestreams, and we have an unlinked
1596 * file that we are processing the last close on, then nothing
1597 * will be able to reopen and write to this file. Purge this
1598 * inode from the filestreams cache so that it doesn't delay
1599 * teardown of the inode.
1601 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1602 xfs_filestream_deassociate(ip);
1605 * If we previously truncated this file and removed old data
1606 * in the process, we want to initiate "early" writeout on
1607 * the last close. This is an attempt to combat the notorious
1608 * NULL files problem which is particularly noticeable from a
1609 * truncate down, buffered (re-)write (delalloc), followed by
1610 * a crash. What we are effectively doing here is
1611 * significantly reducing the time window where we'd otherwise
1612 * be exposed to that problem.
1614 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1616 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1617 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1618 error = -filemap_flush(VFS_I(ip)->i_mapping);
1625 if (ip->i_d.di_nlink == 0)
1628 if (xfs_can_free_eofblocks(ip, false)) {
1631 * If we can't get the iolock just skip truncating the blocks
1632 * past EOF because we could deadlock with the mmap_sem
1633 * otherwise. We'll get another chance to drop them once the
1634 * last reference to the inode is dropped, so we'll never leak
1635 * blocks permanently.
1637 * Further, check if the inode is being opened, written and
1638 * closed frequently and we have delayed allocation blocks
1639 * outstanding (e.g. streaming writes from the NFS server),
1640 * truncating the blocks past EOF will cause fragmentation to
1643 * In this case don't do the truncation, either, but we have to
1644 * be careful how we detect this case. Blocks beyond EOF show
1645 * up as i_delayed_blks even when the inode is clean, so we
1646 * need to truncate them away first before checking for a dirty
1647 * release. Hence on the first dirty close we will still remove
1648 * the speculative allocation, but after that we will leave it
1651 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1654 error = xfs_free_eofblocks(mp, ip, true);
1655 if (error && error != EAGAIN)
1658 /* delalloc blocks after truncation means it really is dirty */
1659 if (ip->i_delayed_blks)
1660 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1668 * This is called when the vnode reference count for the vnode
1669 * goes to zero. If the file has been unlinked, then it must
1670 * now be truncated. Also, we clear all of the read-ahead state
1671 * kept for the inode here since the file is now closed.
1677 xfs_bmap_free_t free_list;
1678 xfs_fsblock_t first_block;
1680 struct xfs_trans *tp;
1681 struct xfs_mount *mp;
1682 struct xfs_trans_res *resp;
1687 * If the inode is already free, then there can be nothing
1690 if (ip->i_d.di_mode == 0 || is_bad_inode(VFS_I(ip))) {
1691 ASSERT(ip->i_df.if_real_bytes == 0);
1692 ASSERT(ip->i_df.if_broot_bytes == 0);
1693 return VN_INACTIVE_CACHE;
1700 /* If this is a read-only mount, don't do this (would generate I/O) */
1701 if (mp->m_flags & XFS_MOUNT_RDONLY)
1704 if (ip->i_d.di_nlink != 0) {
1706 * force is true because we are evicting an inode from the
1707 * cache. Post-eof blocks must be freed, lest we end up with
1708 * broken free space accounting.
1710 if (xfs_can_free_eofblocks(ip, true)) {
1711 error = xfs_free_eofblocks(mp, ip, false);
1713 return VN_INACTIVE_CACHE;
1718 if (S_ISREG(ip->i_d.di_mode) &&
1719 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1720 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1723 error = xfs_qm_dqattach(ip, 0);
1725 return VN_INACTIVE_CACHE;
1727 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728 resp = (truncate || S_ISLNK(ip->i_d.di_mode)) ?
1729 &M_RES(mp)->tr_itruncate : &M_RES(mp)->tr_ifree;
1731 error = xfs_trans_reserve(tp, resp, 0, 0);
1733 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1734 xfs_trans_cancel(tp, 0);
1735 return VN_INACTIVE_CACHE;
1738 xfs_ilock(ip, XFS_ILOCK_EXCL);
1739 xfs_trans_ijoin(tp, ip, 0);
1741 if (S_ISLNK(ip->i_d.di_mode)) {
1742 error = xfs_inactive_symlink(ip, &tp);
1745 } else if (truncate) {
1746 ip->i_d.di_size = 0;
1747 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1749 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1753 ASSERT(ip->i_d.di_nextents == 0);
1757 * If there are attributes associated with the file then blow them away
1758 * now. The code calls a routine that recursively deconstructs the
1759 * attribute fork. We need to just commit the current transaction
1760 * because we can't use it for xfs_attr_inactive().
1762 if (ip->i_d.di_anextents > 0) {
1763 ASSERT(ip->i_d.di_forkoff != 0);
1765 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1769 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1771 error = xfs_attr_inactive(ip);
1775 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1776 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1778 xfs_trans_cancel(tp, 0);
1782 xfs_ilock(ip, XFS_ILOCK_EXCL);
1783 xfs_trans_ijoin(tp, ip, 0);
1787 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1789 ASSERT(ip->i_d.di_anextents == 0);
1794 xfs_bmap_init(&free_list, &first_block);
1795 error = xfs_ifree(tp, ip, &free_list);
1798 * If we fail to free the inode, shut down. The cancel
1799 * might do that, we need to make sure. Otherwise the
1800 * inode might be lost for a long time or forever.
1802 if (!XFS_FORCED_SHUTDOWN(mp)) {
1803 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1805 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1807 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1810 * Credit the quota account(s). The inode is gone.
1812 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1815 * Just ignore errors at this point. There is nothing we can
1816 * do except to try to keep going. Make sure it's not a silent
1819 error = xfs_bmap_finish(&tp, &free_list, &committed);
1821 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1823 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1825 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1830 * Release the dquots held by inode, if any.
1832 xfs_qm_dqdetach(ip);
1834 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1836 return VN_INACTIVE_CACHE;
1838 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1843 * This is called when the inode's link count goes to 0.
1844 * We place the on-disk inode on a list in the AGI. It
1845 * will be pulled from this list when the inode is freed.
1862 ASSERT(ip->i_d.di_nlink == 0);
1863 ASSERT(ip->i_d.di_mode != 0);
1868 * Get the agi buffer first. It ensures lock ordering
1871 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1874 agi = XFS_BUF_TO_AGI(agibp);
1877 * Get the index into the agi hash table for the
1878 * list this inode will go on.
1880 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1882 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1883 ASSERT(agi->agi_unlinked[bucket_index]);
1884 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1886 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1888 * There is already another inode in the bucket we need
1889 * to add ourselves to. Add us at the front of the list.
1890 * Here we put the head pointer into our next pointer,
1891 * and then we fall through to point the head at us.
1893 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1898 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1899 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1900 offset = ip->i_imap.im_boffset +
1901 offsetof(xfs_dinode_t, di_next_unlinked);
1903 /* need to recalc the inode CRC if appropriate */
1904 xfs_dinode_calc_crc(mp, dip);
1906 xfs_trans_inode_buf(tp, ibp);
1907 xfs_trans_log_buf(tp, ibp, offset,
1908 (offset + sizeof(xfs_agino_t) - 1));
1909 xfs_inobp_check(mp, ibp);
1913 * Point the bucket head pointer at the inode being inserted.
1916 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1917 offset = offsetof(xfs_agi_t, agi_unlinked) +
1918 (sizeof(xfs_agino_t) * bucket_index);
1919 xfs_trans_log_buf(tp, agibp, offset,
1920 (offset + sizeof(xfs_agino_t) - 1));
1925 * Pull the on-disk inode from the AGI unlinked list.
1938 xfs_agnumber_t agno;
1940 xfs_agino_t next_agino;
1941 xfs_buf_t *last_ibp;
1942 xfs_dinode_t *last_dip = NULL;
1944 int offset, last_offset = 0;
1948 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1951 * Get the agi buffer first. It ensures lock ordering
1954 error = xfs_read_agi(mp, tp, agno, &agibp);
1958 agi = XFS_BUF_TO_AGI(agibp);
1961 * Get the index into the agi hash table for the
1962 * list this inode will go on.
1964 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1966 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1967 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1968 ASSERT(agi->agi_unlinked[bucket_index]);
1970 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1972 * We're at the head of the list. Get the inode's on-disk
1973 * buffer to see if there is anyone after us on the list.
1974 * Only modify our next pointer if it is not already NULLAGINO.
1975 * This saves us the overhead of dealing with the buffer when
1976 * there is no need to change it.
1978 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1981 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1985 next_agino = be32_to_cpu(dip->di_next_unlinked);
1986 ASSERT(next_agino != 0);
1987 if (next_agino != NULLAGINO) {
1988 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1989 offset = ip->i_imap.im_boffset +
1990 offsetof(xfs_dinode_t, di_next_unlinked);
1992 /* need to recalc the inode CRC if appropriate */
1993 xfs_dinode_calc_crc(mp, dip);
1995 xfs_trans_inode_buf(tp, ibp);
1996 xfs_trans_log_buf(tp, ibp, offset,
1997 (offset + sizeof(xfs_agino_t) - 1));
1998 xfs_inobp_check(mp, ibp);
2000 xfs_trans_brelse(tp, ibp);
2003 * Point the bucket head pointer at the next inode.
2005 ASSERT(next_agino != 0);
2006 ASSERT(next_agino != agino);
2007 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2008 offset = offsetof(xfs_agi_t, agi_unlinked) +
2009 (sizeof(xfs_agino_t) * bucket_index);
2010 xfs_trans_log_buf(tp, agibp, offset,
2011 (offset + sizeof(xfs_agino_t) - 1));
2014 * We need to search the list for the inode being freed.
2016 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2018 while (next_agino != agino) {
2019 struct xfs_imap imap;
2022 xfs_trans_brelse(tp, last_ibp);
2025 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2027 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2030 "%s: xfs_imap returned error %d.",
2035 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2039 "%s: xfs_imap_to_bp returned error %d.",
2044 last_offset = imap.im_boffset;
2045 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2046 ASSERT(next_agino != NULLAGINO);
2047 ASSERT(next_agino != 0);
2051 * Now last_ibp points to the buffer previous to us on the
2052 * unlinked list. Pull us from the list.
2054 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2057 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2061 next_agino = be32_to_cpu(dip->di_next_unlinked);
2062 ASSERT(next_agino != 0);
2063 ASSERT(next_agino != agino);
2064 if (next_agino != NULLAGINO) {
2065 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2066 offset = ip->i_imap.im_boffset +
2067 offsetof(xfs_dinode_t, di_next_unlinked);
2069 /* need to recalc the inode CRC if appropriate */
2070 xfs_dinode_calc_crc(mp, dip);
2072 xfs_trans_inode_buf(tp, ibp);
2073 xfs_trans_log_buf(tp, ibp, offset,
2074 (offset + sizeof(xfs_agino_t) - 1));
2075 xfs_inobp_check(mp, ibp);
2077 xfs_trans_brelse(tp, ibp);
2080 * Point the previous inode on the list to the next inode.
2082 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2083 ASSERT(next_agino != 0);
2084 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2086 /* need to recalc the inode CRC if appropriate */
2087 xfs_dinode_calc_crc(mp, last_dip);
2089 xfs_trans_inode_buf(tp, last_ibp);
2090 xfs_trans_log_buf(tp, last_ibp, offset,
2091 (offset + sizeof(xfs_agino_t) - 1));
2092 xfs_inobp_check(mp, last_ibp);
2098 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2099 * inodes that are in memory - they all must be marked stale and attached to
2100 * the cluster buffer.
2104 xfs_inode_t *free_ip,
2108 xfs_mount_t *mp = free_ip->i_mount;
2109 int blks_per_cluster;
2116 xfs_inode_log_item_t *iip;
2117 xfs_log_item_t *lip;
2118 struct xfs_perag *pag;
2120 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2121 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2122 blks_per_cluster = 1;
2123 ninodes = mp->m_sb.sb_inopblock;
2124 nbufs = XFS_IALLOC_BLOCKS(mp);
2126 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2127 mp->m_sb.sb_blocksize;
2128 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2129 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2132 for (j = 0; j < nbufs; j++, inum += ninodes) {
2133 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2134 XFS_INO_TO_AGBNO(mp, inum));
2137 * We obtain and lock the backing buffer first in the process
2138 * here, as we have to ensure that any dirty inode that we
2139 * can't get the flush lock on is attached to the buffer.
2140 * If we scan the in-memory inodes first, then buffer IO can
2141 * complete before we get a lock on it, and hence we may fail
2142 * to mark all the active inodes on the buffer stale.
2144 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2145 mp->m_bsize * blks_per_cluster,
2152 * This buffer may not have been correctly initialised as we
2153 * didn't read it from disk. That's not important because we are
2154 * only using to mark the buffer as stale in the log, and to
2155 * attach stale cached inodes on it. That means it will never be
2156 * dispatched for IO. If it is, we want to know about it, and we
2157 * want it to fail. We can acheive this by adding a write
2158 * verifier to the buffer.
2160 bp->b_ops = &xfs_inode_buf_ops;
2163 * Walk the inodes already attached to the buffer and mark them
2164 * stale. These will all have the flush locks held, so an
2165 * in-memory inode walk can't lock them. By marking them all
2166 * stale first, we will not attempt to lock them in the loop
2167 * below as the XFS_ISTALE flag will be set.
2171 if (lip->li_type == XFS_LI_INODE) {
2172 iip = (xfs_inode_log_item_t *)lip;
2173 ASSERT(iip->ili_logged == 1);
2174 lip->li_cb = xfs_istale_done;
2175 xfs_trans_ail_copy_lsn(mp->m_ail,
2176 &iip->ili_flush_lsn,
2177 &iip->ili_item.li_lsn);
2178 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2180 lip = lip->li_bio_list;
2185 * For each inode in memory attempt to add it to the inode
2186 * buffer and set it up for being staled on buffer IO
2187 * completion. This is safe as we've locked out tail pushing
2188 * and flushing by locking the buffer.
2190 * We have already marked every inode that was part of a
2191 * transaction stale above, which means there is no point in
2192 * even trying to lock them.
2194 for (i = 0; i < ninodes; i++) {
2197 ip = radix_tree_lookup(&pag->pag_ici_root,
2198 XFS_INO_TO_AGINO(mp, (inum + i)));
2200 /* Inode not in memory, nothing to do */
2207 * because this is an RCU protected lookup, we could
2208 * find a recently freed or even reallocated inode
2209 * during the lookup. We need to check under the
2210 * i_flags_lock for a valid inode here. Skip it if it
2211 * is not valid, the wrong inode or stale.
2213 spin_lock(&ip->i_flags_lock);
2214 if (ip->i_ino != inum + i ||
2215 __xfs_iflags_test(ip, XFS_ISTALE)) {
2216 spin_unlock(&ip->i_flags_lock);
2220 spin_unlock(&ip->i_flags_lock);
2223 * Don't try to lock/unlock the current inode, but we
2224 * _cannot_ skip the other inodes that we did not find
2225 * in the list attached to the buffer and are not
2226 * already marked stale. If we can't lock it, back off
2229 if (ip != free_ip &&
2230 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2238 xfs_iflags_set(ip, XFS_ISTALE);
2241 * we don't need to attach clean inodes or those only
2242 * with unlogged changes (which we throw away, anyway).
2245 if (!iip || xfs_inode_clean(ip)) {
2246 ASSERT(ip != free_ip);
2248 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2252 iip->ili_last_fields = iip->ili_fields;
2253 iip->ili_fields = 0;
2254 iip->ili_logged = 1;
2255 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2256 &iip->ili_item.li_lsn);
2258 xfs_buf_attach_iodone(bp, xfs_istale_done,
2262 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2265 xfs_trans_stale_inode_buf(tp, bp);
2266 xfs_trans_binval(tp, bp);
2274 * This is called to return an inode to the inode free list.
2275 * The inode should already be truncated to 0 length and have
2276 * no pages associated with it. This routine also assumes that
2277 * the inode is already a part of the transaction.
2279 * The on-disk copy of the inode will have been added to the list
2280 * of unlinked inodes in the AGI. We need to remove the inode from
2281 * that list atomically with respect to freeing it here.
2287 xfs_bmap_free_t *flist)
2291 xfs_ino_t first_ino;
2293 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2294 ASSERT(ip->i_d.di_nlink == 0);
2295 ASSERT(ip->i_d.di_nextents == 0);
2296 ASSERT(ip->i_d.di_anextents == 0);
2297 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2298 ASSERT(ip->i_d.di_nblocks == 0);
2301 * Pull the on-disk inode from the AGI unlinked list.
2303 error = xfs_iunlink_remove(tp, ip);
2307 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2311 ip->i_d.di_mode = 0; /* mark incore inode as free */
2312 ip->i_d.di_flags = 0;
2313 ip->i_d.di_dmevmask = 0;
2314 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2315 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2316 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2318 * Bump the generation count so no one will be confused
2319 * by reincarnations of this inode.
2322 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325 error = xfs_ifree_cluster(ip, tp, first_ino);
2331 * This is called to unpin an inode. The caller must have the inode locked
2332 * in at least shared mode so that the buffer cannot be subsequently pinned
2333 * once someone is waiting for it to be unpinned.
2337 struct xfs_inode *ip)
2339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2341 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2343 /* Give the log a push to start the unpinning I/O */
2344 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2350 struct xfs_inode *ip)
2352 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2353 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2358 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2359 if (xfs_ipincount(ip))
2361 } while (xfs_ipincount(ip));
2362 finish_wait(wq, &wait.wait);
2367 struct xfs_inode *ip)
2369 if (xfs_ipincount(ip))
2370 __xfs_iunpin_wait(ip);
2376 struct xfs_name *name,
2379 xfs_mount_t *mp = dp->i_mount;
2380 xfs_trans_t *tp = NULL;
2381 int is_dir = S_ISDIR(ip->i_d.di_mode);
2383 xfs_bmap_free_t free_list;
2384 xfs_fsblock_t first_block;
2391 trace_xfs_remove(dp, name);
2393 if (XFS_FORCED_SHUTDOWN(mp))
2394 return XFS_ERROR(EIO);
2396 error = xfs_qm_dqattach(dp, 0);
2400 error = xfs_qm_dqattach(ip, 0);
2405 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2406 log_count = XFS_DEFAULT_LOG_COUNT;
2408 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2409 log_count = XFS_REMOVE_LOG_COUNT;
2411 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2414 * We try to get the real space reservation first,
2415 * allowing for directory btree deletion(s) implying
2416 * possible bmap insert(s). If we can't get the space
2417 * reservation then we use 0 instead, and avoid the bmap
2418 * btree insert(s) in the directory code by, if the bmap
2419 * insert tries to happen, instead trimming the LAST
2420 * block from the directory.
2422 resblks = XFS_REMOVE_SPACE_RES(mp);
2423 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2424 if (error == ENOSPC) {
2426 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2429 ASSERT(error != ENOSPC);
2431 goto out_trans_cancel;
2434 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2436 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2437 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2440 * If we're removing a directory perform some additional validation.
2443 ASSERT(ip->i_d.di_nlink >= 2);
2444 if (ip->i_d.di_nlink != 2) {
2445 error = XFS_ERROR(ENOTEMPTY);
2446 goto out_trans_cancel;
2448 if (!xfs_dir_isempty(ip)) {
2449 error = XFS_ERROR(ENOTEMPTY);
2450 goto out_trans_cancel;
2454 xfs_bmap_init(&free_list, &first_block);
2455 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2456 &first_block, &free_list, resblks);
2458 ASSERT(error != ENOENT);
2459 goto out_bmap_cancel;
2461 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2465 * Drop the link from ip's "..".
2467 error = xfs_droplink(tp, dp);
2469 goto out_bmap_cancel;
2472 * Drop the "." link from ip to self.
2474 error = xfs_droplink(tp, ip);
2476 goto out_bmap_cancel;
2479 * When removing a non-directory we need to log the parent
2480 * inode here. For a directory this is done implicitly
2481 * by the xfs_droplink call for the ".." entry.
2483 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2487 * Drop the link from dp to ip.
2489 error = xfs_droplink(tp, ip);
2491 goto out_bmap_cancel;
2494 * Determine if this is the last link while
2495 * we are in the transaction.
2497 link_zero = (ip->i_d.di_nlink == 0);
2500 * If this is a synchronous mount, make sure that the
2501 * remove transaction goes to disk before returning to
2504 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2505 xfs_trans_set_sync(tp);
2507 error = xfs_bmap_finish(&tp, &free_list, &committed);
2509 goto out_bmap_cancel;
2511 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2516 * If we are using filestreams, kill the stream association.
2517 * If the file is still open it may get a new one but that
2518 * will get killed on last close in xfs_close() so we don't
2519 * have to worry about that.
2521 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2522 xfs_filestream_deassociate(ip);
2527 xfs_bmap_cancel(&free_list);
2528 cancel_flags |= XFS_TRANS_ABORT;
2530 xfs_trans_cancel(tp, cancel_flags);
2536 * Enter all inodes for a rename transaction into a sorted array.
2539 xfs_sort_for_rename(
2540 xfs_inode_t *dp1, /* in: old (source) directory inode */
2541 xfs_inode_t *dp2, /* in: new (target) directory inode */
2542 xfs_inode_t *ip1, /* in: inode of old entry */
2543 xfs_inode_t *ip2, /* in: inode of new entry, if it
2544 already exists, NULL otherwise. */
2545 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2546 int *num_inodes) /* out: number of inodes in array */
2552 * i_tab contains a list of pointers to inodes. We initialize
2553 * the table here & we'll sort it. We will then use it to
2554 * order the acquisition of the inode locks.
2556 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2570 * Sort the elements via bubble sort. (Remember, there are at
2571 * most 4 elements to sort, so this is adequate.)
2573 for (i = 0; i < *num_inodes; i++) {
2574 for (j = 1; j < *num_inodes; j++) {
2575 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2577 i_tab[j] = i_tab[j-1];
2589 xfs_inode_t *src_dp,
2590 struct xfs_name *src_name,
2591 xfs_inode_t *src_ip,
2592 xfs_inode_t *target_dp,
2593 struct xfs_name *target_name,
2594 xfs_inode_t *target_ip)
2596 xfs_trans_t *tp = NULL;
2597 xfs_mount_t *mp = src_dp->i_mount;
2598 int new_parent; /* moving to a new dir */
2599 int src_is_directory; /* src_name is a directory */
2601 xfs_bmap_free_t free_list;
2602 xfs_fsblock_t first_block;
2605 xfs_inode_t *inodes[4];
2609 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2611 new_parent = (src_dp != target_dp);
2612 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2614 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2615 inodes, &num_inodes);
2617 xfs_bmap_init(&free_list, &first_block);
2618 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2619 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2620 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2621 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2622 if (error == ENOSPC) {
2624 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2627 xfs_trans_cancel(tp, 0);
2632 * Attach the dquots to the inodes
2634 error = xfs_qm_vop_rename_dqattach(inodes);
2636 xfs_trans_cancel(tp, cancel_flags);
2641 * Lock all the participating inodes. Depending upon whether
2642 * the target_name exists in the target directory, and
2643 * whether the target directory is the same as the source
2644 * directory, we can lock from 2 to 4 inodes.
2646 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2649 * Join all the inodes to the transaction. From this point on,
2650 * we can rely on either trans_commit or trans_cancel to unlock
2653 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2655 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2656 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2658 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2661 * If we are using project inheritance, we only allow renames
2662 * into our tree when the project IDs are the same; else the
2663 * tree quota mechanism would be circumvented.
2665 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2666 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2667 error = XFS_ERROR(EXDEV);
2672 * Set up the target.
2674 if (target_ip == NULL) {
2676 * If there's no space reservation, check the entry will
2677 * fit before actually inserting it.
2679 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2683 * If target does not exist and the rename crosses
2684 * directories, adjust the target directory link count
2685 * to account for the ".." reference from the new entry.
2687 error = xfs_dir_createname(tp, target_dp, target_name,
2688 src_ip->i_ino, &first_block,
2689 &free_list, spaceres);
2690 if (error == ENOSPC)
2695 xfs_trans_ichgtime(tp, target_dp,
2696 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2698 if (new_parent && src_is_directory) {
2699 error = xfs_bumplink(tp, target_dp);
2703 } else { /* target_ip != NULL */
2705 * If target exists and it's a directory, check that both
2706 * target and source are directories and that target can be
2707 * destroyed, or that neither is a directory.
2709 if (S_ISDIR(target_ip->i_d.di_mode)) {
2711 * Make sure target dir is empty.
2713 if (!(xfs_dir_isempty(target_ip)) ||
2714 (target_ip->i_d.di_nlink > 2)) {
2715 error = XFS_ERROR(EEXIST);
2721 * Link the source inode under the target name.
2722 * If the source inode is a directory and we are moving
2723 * it across directories, its ".." entry will be
2724 * inconsistent until we replace that down below.
2726 * In case there is already an entry with the same
2727 * name at the destination directory, remove it first.
2729 error = xfs_dir_replace(tp, target_dp, target_name,
2731 &first_block, &free_list, spaceres);
2735 xfs_trans_ichgtime(tp, target_dp,
2736 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2739 * Decrement the link count on the target since the target
2740 * dir no longer points to it.
2742 error = xfs_droplink(tp, target_ip);
2746 if (src_is_directory) {
2748 * Drop the link from the old "." entry.
2750 error = xfs_droplink(tp, target_ip);
2754 } /* target_ip != NULL */
2757 * Remove the source.
2759 if (new_parent && src_is_directory) {
2761 * Rewrite the ".." entry to point to the new
2764 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2766 &first_block, &free_list, spaceres);
2767 ASSERT(error != EEXIST);
2773 * We always want to hit the ctime on the source inode.
2775 * This isn't strictly required by the standards since the source
2776 * inode isn't really being changed, but old unix file systems did
2777 * it and some incremental backup programs won't work without it.
2779 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2780 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2783 * Adjust the link count on src_dp. This is necessary when
2784 * renaming a directory, either within one parent when
2785 * the target existed, or across two parent directories.
2787 if (src_is_directory && (new_parent || target_ip != NULL)) {
2790 * Decrement link count on src_directory since the
2791 * entry that's moved no longer points to it.
2793 error = xfs_droplink(tp, src_dp);
2798 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2799 &first_block, &free_list, spaceres);
2803 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2804 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2806 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2809 * If this is a synchronous mount, make sure that the
2810 * rename transaction goes to disk before returning to
2813 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2814 xfs_trans_set_sync(tp);
2817 error = xfs_bmap_finish(&tp, &free_list, &committed);
2819 xfs_bmap_cancel(&free_list);
2820 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2826 * trans_commit will unlock src_ip, target_ip & decrement
2827 * the vnode references.
2829 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2832 cancel_flags |= XFS_TRANS_ABORT;
2834 xfs_bmap_cancel(&free_list);
2835 xfs_trans_cancel(tp, cancel_flags);
2845 xfs_mount_t *mp = ip->i_mount;
2846 struct xfs_perag *pag;
2847 unsigned long first_index, mask;
2848 unsigned long inodes_per_cluster;
2850 xfs_inode_t **ilist;
2857 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2859 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2860 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2861 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2865 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2866 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2868 /* really need a gang lookup range call here */
2869 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2870 first_index, inodes_per_cluster);
2874 for (i = 0; i < nr_found; i++) {
2880 * because this is an RCU protected lookup, we could find a
2881 * recently freed or even reallocated inode during the lookup.
2882 * We need to check under the i_flags_lock for a valid inode
2883 * here. Skip it if it is not valid or the wrong inode.
2885 spin_lock(&ip->i_flags_lock);
2887 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2888 spin_unlock(&ip->i_flags_lock);
2891 spin_unlock(&ip->i_flags_lock);
2894 * Do an un-protected check to see if the inode is dirty and
2895 * is a candidate for flushing. These checks will be repeated
2896 * later after the appropriate locks are acquired.
2898 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2902 * Try to get locks. If any are unavailable or it is pinned,
2903 * then this inode cannot be flushed and is skipped.
2906 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2908 if (!xfs_iflock_nowait(iq)) {
2909 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2912 if (xfs_ipincount(iq)) {
2914 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2919 * arriving here means that this inode can be flushed. First
2920 * re-check that it's dirty before flushing.
2922 if (!xfs_inode_clean(iq)) {
2924 error = xfs_iflush_int(iq, bp);
2926 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2927 goto cluster_corrupt_out;
2933 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2937 XFS_STATS_INC(xs_icluster_flushcnt);
2938 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2949 cluster_corrupt_out:
2951 * Corruption detected in the clustering loop. Invalidate the
2952 * inode buffer and shut down the filesystem.
2956 * Clean up the buffer. If it was delwri, just release it --
2957 * brelse can handle it with no problems. If not, shut down the
2958 * filesystem before releasing the buffer.
2960 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2964 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2966 if (!bufwasdelwri) {
2968 * Just like incore_relse: if we have b_iodone functions,
2969 * mark the buffer as an error and call them. Otherwise
2970 * mark it as stale and brelse.
2975 xfs_buf_ioerror(bp, EIO);
2976 xfs_buf_ioend(bp, 0);
2984 * Unlocks the flush lock
2986 xfs_iflush_abort(iq, false);
2989 return XFS_ERROR(EFSCORRUPTED);
2993 * Flush dirty inode metadata into the backing buffer.
2995 * The caller must have the inode lock and the inode flush lock held. The
2996 * inode lock will still be held upon return to the caller, and the inode
2997 * flush lock will be released after the inode has reached the disk.
2999 * The caller must write out the buffer returned in *bpp and release it.
3003 struct xfs_inode *ip,
3004 struct xfs_buf **bpp)
3006 struct xfs_mount *mp = ip->i_mount;
3008 struct xfs_dinode *dip;
3011 XFS_STATS_INC(xs_iflush_count);
3013 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3014 ASSERT(xfs_isiflocked(ip));
3015 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3016 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3020 xfs_iunpin_wait(ip);
3023 * For stale inodes we cannot rely on the backing buffer remaining
3024 * stale in cache for the remaining life of the stale inode and so
3025 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3026 * inodes below. We have to check this after ensuring the inode is
3027 * unpinned so that it is safe to reclaim the stale inode after the
3030 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3036 * This may have been unpinned because the filesystem is shutting
3037 * down forcibly. If that's the case we must not write this inode
3038 * to disk, because the log record didn't make it to disk.
3040 * We also have to remove the log item from the AIL in this case,
3041 * as we wait for an empty AIL as part of the unmount process.
3043 if (XFS_FORCED_SHUTDOWN(mp)) {
3044 error = XFS_ERROR(EIO);
3049 * Get the buffer containing the on-disk inode.
3051 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3059 * First flush out the inode that xfs_iflush was called with.
3061 error = xfs_iflush_int(ip, bp);
3066 * If the buffer is pinned then push on the log now so we won't
3067 * get stuck waiting in the write for too long.
3069 if (xfs_buf_ispinned(bp))
3070 xfs_log_force(mp, 0);
3074 * see if other inodes can be gathered into this write
3076 error = xfs_iflush_cluster(ip, bp);
3078 goto cluster_corrupt_out;
3085 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3086 cluster_corrupt_out:
3087 error = XFS_ERROR(EFSCORRUPTED);
3090 * Unlocks the flush lock
3092 xfs_iflush_abort(ip, false);
3098 struct xfs_inode *ip,
3101 struct xfs_inode_log_item *iip = ip->i_itemp;
3102 struct xfs_dinode *dip;
3103 struct xfs_mount *mp = ip->i_mount;
3105 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3106 ASSERT(xfs_isiflocked(ip));
3107 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3108 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3109 ASSERT(iip != NULL && iip->ili_fields != 0);
3111 /* set *dip = inode's place in the buffer */
3112 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3114 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3115 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3116 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3117 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3118 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3121 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3122 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3123 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3124 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3125 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3128 if (S_ISREG(ip->i_d.di_mode)) {
3130 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3131 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3132 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3133 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3134 "%s: Bad regular inode %Lu, ptr 0x%p",
3135 __func__, ip->i_ino, ip);
3138 } else if (S_ISDIR(ip->i_d.di_mode)) {
3140 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3141 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3142 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3143 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3144 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3145 "%s: Bad directory inode %Lu, ptr 0x%p",
3146 __func__, ip->i_ino, ip);
3150 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3151 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3152 XFS_RANDOM_IFLUSH_5)) {
3153 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3154 "%s: detected corrupt incore inode %Lu, "
3155 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3156 __func__, ip->i_ino,
3157 ip->i_d.di_nextents + ip->i_d.di_anextents,
3158 ip->i_d.di_nblocks, ip);
3161 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3162 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3163 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3164 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3165 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3170 * Inode item log recovery for v1/v2 inodes are dependent on the
3171 * di_flushiter count for correct sequencing. We bump the flush
3172 * iteration count so we can detect flushes which postdate a log record
3173 * during recovery. This is redundant as we now log every change and
3174 * hence this can't happen but we need to still do it to ensure
3175 * backwards compatibility with old kernels that predate logging all
3178 if (ip->i_d.di_version < 3)
3179 ip->i_d.di_flushiter++;
3182 * Copy the dirty parts of the inode into the on-disk
3183 * inode. We always copy out the core of the inode,
3184 * because if the inode is dirty at all the core must
3187 xfs_dinode_to_disk(dip, &ip->i_d);
3189 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3190 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3191 ip->i_d.di_flushiter = 0;
3194 * If this is really an old format inode and the superblock version
3195 * has not been updated to support only new format inodes, then
3196 * convert back to the old inode format. If the superblock version
3197 * has been updated, then make the conversion permanent.
3199 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3200 if (ip->i_d.di_version == 1) {
3201 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3205 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3206 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3209 * The superblock version has already been bumped,
3210 * so just make the conversion to the new inode
3213 ip->i_d.di_version = 2;
3214 dip->di_version = 2;
3215 ip->i_d.di_onlink = 0;
3217 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3218 memset(&(dip->di_pad[0]), 0,
3219 sizeof(dip->di_pad));
3220 ASSERT(xfs_get_projid(ip) == 0);
3224 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3225 if (XFS_IFORK_Q(ip))
3226 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3227 xfs_inobp_check(mp, bp);
3230 * We've recorded everything logged in the inode, so we'd like to clear
3231 * the ili_fields bits so we don't log and flush things unnecessarily.
3232 * However, we can't stop logging all this information until the data
3233 * we've copied into the disk buffer is written to disk. If we did we
3234 * might overwrite the copy of the inode in the log with all the data
3235 * after re-logging only part of it, and in the face of a crash we
3236 * wouldn't have all the data we need to recover.
3238 * What we do is move the bits to the ili_last_fields field. When
3239 * logging the inode, these bits are moved back to the ili_fields field.
3240 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3241 * know that the information those bits represent is permanently on
3242 * disk. As long as the flush completes before the inode is logged
3243 * again, then both ili_fields and ili_last_fields will be cleared.
3245 * We can play with the ili_fields bits here, because the inode lock
3246 * must be held exclusively in order to set bits there and the flush
3247 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3248 * done routine can tell whether or not to look in the AIL. Also, store
3249 * the current LSN of the inode so that we can tell whether the item has
3250 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3251 * need the AIL lock, because it is a 64 bit value that cannot be read
3254 iip->ili_last_fields = iip->ili_fields;
3255 iip->ili_fields = 0;
3256 iip->ili_logged = 1;
3258 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3259 &iip->ili_item.li_lsn);
3262 * Attach the function xfs_iflush_done to the inode's
3263 * buffer. This will remove the inode from the AIL
3264 * and unlock the inode's flush lock when the inode is
3265 * completely written to disk.
3267 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3269 /* update the lsn in the on disk inode if required */
3270 if (ip->i_d.di_version == 3)
3271 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3273 /* generate the checksum. */
3274 xfs_dinode_calc_crc(mp, dip);
3276 ASSERT(bp->b_fspriv != NULL);
3277 ASSERT(bp->b_iodone != NULL);
3281 return XFS_ERROR(EFSCORRUPTED);