2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_error.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_dinode.h"
43 #include "xfs_trace.h"
47 * Allocation group level functions.
50 xfs_ialloc_cluster_alignment(
51 xfs_alloc_arg_t *args)
53 if (xfs_sb_version_hasalign(&args->mp->m_sb) &&
54 args->mp->m_sb.sb_inoalignmt >=
55 XFS_B_TO_FSBT(args->mp, args->mp->m_inode_cluster_size))
56 return args->mp->m_sb.sb_inoalignmt;
61 * Lookup a record by ino in the btree given by cur.
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_freecount = 0;
72 cur->bc_rec.i.ir_free = 0;
73 return xfs_btree_lookup(cur, dir, stat);
77 * Update the record referred to by cur to the value given.
78 * This either works (return 0) or gets an EFSCORRUPTED error.
80 STATIC int /* error */
82 struct xfs_btree_cur *cur, /* btree cursor */
83 xfs_inobt_rec_incore_t *irec) /* btree record */
85 union xfs_btree_rec rec;
87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
88 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
89 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
90 return xfs_btree_update(cur, &rec);
94 * Get the data from the pointed-to record.
98 struct xfs_btree_cur *cur, /* btree cursor */
99 xfs_inobt_rec_incore_t *irec, /* btree record */
100 int *stat) /* output: success/failure */
102 union xfs_btree_rec *rec;
105 error = xfs_btree_get_rec(cur, &rec, stat);
106 if (!error && *stat == 1) {
107 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
108 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
109 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
115 * Verify that the number of free inodes in the AGI is correct.
119 xfs_check_agi_freecount(
120 struct xfs_btree_cur *cur,
123 if (cur->bc_nlevels == 1) {
124 xfs_inobt_rec_incore_t rec;
129 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
134 error = xfs_inobt_get_rec(cur, &rec, &i);
139 freecount += rec.ir_freecount;
140 error = xfs_btree_increment(cur, 0, &i);
146 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
147 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
152 #define xfs_check_agi_freecount(cur, agi) 0
156 * Initialise a new set of inodes. When called without a transaction context
157 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
158 * than logging them (which in a transaction context puts them into the AIL
159 * for writeback rather than the xfsbufd queue).
162 xfs_ialloc_inode_init(
163 struct xfs_mount *mp,
164 struct xfs_trans *tp,
165 struct list_head *buffer_list,
168 xfs_agblock_t length,
171 struct xfs_buf *fbuf;
172 struct xfs_dinode *free;
173 int nbufs, blks_per_cluster, inodes_per_cluster;
180 * Loop over the new block(s), filling in the inodes. For small block
181 * sizes, manipulate the inodes in buffers which are multiples of the
184 blks_per_cluster = xfs_icluster_size_fsb(mp);
185 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
186 nbufs = length / blks_per_cluster;
189 * Figure out what version number to use in the inodes we create. If
190 * the superblock version has caught up to the one that supports the new
191 * inode format, then use the new inode version. Otherwise use the old
192 * version so that old kernels will continue to be able to use the file
195 * For v3 inodes, we also need to write the inode number into the inode,
196 * so calculate the first inode number of the chunk here as
197 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
198 * across multiple filesystem blocks (such as a cluster) and so cannot
199 * be used in the cluster buffer loop below.
201 * Further, because we are writing the inode directly into the buffer
202 * and calculating a CRC on the entire inode, we have ot log the entire
203 * inode so that the entire range the CRC covers is present in the log.
204 * That means for v3 inode we log the entire buffer rather than just the
207 if (xfs_sb_version_hascrc(&mp->m_sb)) {
209 ino = XFS_AGINO_TO_INO(mp, agno,
210 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
213 * log the initialisation that is about to take place as an
214 * logical operation. This means the transaction does not
215 * need to log the physical changes to the inode buffers as log
216 * recovery will know what initialisation is actually needed.
217 * Hence we only need to log the buffers as "ordered" buffers so
218 * they track in the AIL as if they were physically logged.
221 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
222 mp->m_sb.sb_inodesize, length, gen);
223 } else if (xfs_sb_version_hasnlink(&mp->m_sb))
228 for (j = 0; j < nbufs; j++) {
232 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
233 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
234 mp->m_bsize * blks_per_cluster,
239 /* Initialize the inode buffers and log them appropriately. */
240 fbuf->b_ops = &xfs_inode_buf_ops;
241 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
242 for (i = 0; i < inodes_per_cluster; i++) {
243 int ioffset = i << mp->m_sb.sb_inodelog;
244 uint isize = xfs_dinode_size(version);
246 free = xfs_make_iptr(mp, fbuf, i);
247 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
248 free->di_version = version;
249 free->di_gen = cpu_to_be32(gen);
250 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
253 free->di_ino = cpu_to_be64(ino);
255 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
256 xfs_dinode_calc_crc(mp, free);
258 /* just log the inode core */
259 xfs_trans_log_buf(tp, fbuf, ioffset,
260 ioffset + isize - 1);
266 * Mark the buffer as an inode allocation buffer so it
267 * sticks in AIL at the point of this allocation
268 * transaction. This ensures the they are on disk before
269 * the tail of the log can be moved past this
270 * transaction (i.e. by preventing relogging from moving
271 * it forward in the log).
273 xfs_trans_inode_alloc_buf(tp, fbuf);
276 * Mark the buffer as ordered so that they are
277 * not physically logged in the transaction but
278 * still tracked in the AIL as part of the
279 * transaction and pin the log appropriately.
281 xfs_trans_ordered_buf(tp, fbuf);
282 xfs_trans_log_buf(tp, fbuf, 0,
283 BBTOB(fbuf->b_length) - 1);
286 fbuf->b_flags |= XBF_DONE;
287 xfs_buf_delwri_queue(fbuf, buffer_list);
295 * Allocate new inodes in the allocation group specified by agbp.
296 * Return 0 for success, else error code.
298 STATIC int /* error code or 0 */
300 xfs_trans_t *tp, /* transaction pointer */
301 xfs_buf_t *agbp, /* alloc group buffer */
304 xfs_agi_t *agi; /* allocation group header */
305 xfs_alloc_arg_t args; /* allocation argument structure */
306 xfs_btree_cur_t *cur; /* inode btree cursor */
310 xfs_agino_t newino; /* new first inode's number */
311 xfs_agino_t newlen; /* new number of inodes */
312 xfs_agino_t thisino; /* current inode number, for loop */
313 int isaligned = 0; /* inode allocation at stripe unit */
315 struct xfs_perag *pag;
317 memset(&args, 0, sizeof(args));
319 args.mp = tp->t_mountp;
322 * Locking will ensure that we don't have two callers in here
325 newlen = args.mp->m_ialloc_inos;
326 if (args.mp->m_maxicount &&
327 args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount)
328 return XFS_ERROR(ENOSPC);
329 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
331 * First try to allocate inodes contiguous with the last-allocated
332 * chunk of inodes. If the filesystem is striped, this will fill
333 * an entire stripe unit with inodes.
335 agi = XFS_BUF_TO_AGI(agbp);
336 newino = be32_to_cpu(agi->agi_newino);
337 agno = be32_to_cpu(agi->agi_seqno);
338 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
339 args.mp->m_ialloc_blks;
340 if (likely(newino != NULLAGINO &&
341 (args.agbno < be32_to_cpu(agi->agi_length)))) {
342 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
343 args.type = XFS_ALLOCTYPE_THIS_BNO;
347 * We need to take into account alignment here to ensure that
348 * we don't modify the free list if we fail to have an exact
349 * block. If we don't have an exact match, and every oher
350 * attempt allocation attempt fails, we'll end up cancelling
351 * a dirty transaction and shutting down.
353 * For an exact allocation, alignment must be 1,
354 * however we need to take cluster alignment into account when
355 * fixing up the freelist. Use the minalignslop field to
356 * indicate that extra blocks might be required for alignment,
357 * but not to use them in the actual exact allocation.
360 args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1;
362 /* Allow space for the inode btree to split. */
363 args.minleft = args.mp->m_in_maxlevels - 1;
364 if ((error = xfs_alloc_vextent(&args)))
367 args.fsbno = NULLFSBLOCK;
369 if (unlikely(args.fsbno == NULLFSBLOCK)) {
371 * Set the alignment for the allocation.
372 * If stripe alignment is turned on then align at stripe unit
374 * If the cluster size is smaller than a filesystem block
375 * then we're doing I/O for inodes in filesystem block size
376 * pieces, so don't need alignment anyway.
379 if (args.mp->m_sinoalign) {
380 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
381 args.alignment = args.mp->m_dalign;
384 args.alignment = xfs_ialloc_cluster_alignment(&args);
386 * Need to figure out where to allocate the inode blocks.
387 * Ideally they should be spaced out through the a.g.
388 * For now, just allocate blocks up front.
390 args.agbno = be32_to_cpu(agi->agi_root);
391 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
393 * Allocate a fixed-size extent of inodes.
395 args.type = XFS_ALLOCTYPE_NEAR_BNO;
398 * Allow space for the inode btree to split.
400 args.minleft = args.mp->m_in_maxlevels - 1;
401 if ((error = xfs_alloc_vextent(&args)))
406 * If stripe alignment is turned on, then try again with cluster
409 if (isaligned && args.fsbno == NULLFSBLOCK) {
410 args.type = XFS_ALLOCTYPE_NEAR_BNO;
411 args.agbno = be32_to_cpu(agi->agi_root);
412 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
413 args.alignment = xfs_ialloc_cluster_alignment(&args);
414 if ((error = xfs_alloc_vextent(&args)))
418 if (args.fsbno == NULLFSBLOCK) {
422 ASSERT(args.len == args.minlen);
425 * Stamp and write the inode buffers.
427 * Seed the new inode cluster with a random generation number. This
428 * prevents short-term reuse of generation numbers if a chunk is
429 * freed and then immediately reallocated. We use random numbers
430 * rather than a linear progression to prevent the next generation
431 * number from being easily guessable.
433 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
434 args.len, prandom_u32());
439 * Convert the results.
441 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
442 be32_add_cpu(&agi->agi_count, newlen);
443 be32_add_cpu(&agi->agi_freecount, newlen);
444 pag = xfs_perag_get(args.mp, agno);
445 pag->pagi_freecount += newlen;
447 agi->agi_newino = cpu_to_be32(newino);
450 * Insert records describing the new inode chunk into the btree.
452 cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno);
453 for (thisino = newino;
454 thisino < newino + newlen;
455 thisino += XFS_INODES_PER_CHUNK) {
456 cur->bc_rec.i.ir_startino = thisino;
457 cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK;
458 cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE;
459 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i);
461 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
465 error = xfs_btree_insert(cur, &i);
467 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
472 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
474 * Log allocation group header fields
476 xfs_ialloc_log_agi(tp, agbp,
477 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
479 * Modify/log superblock values for inode count and inode free count.
481 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
482 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
487 STATIC xfs_agnumber_t
493 spin_lock(&mp->m_agirotor_lock);
494 agno = mp->m_agirotor;
495 if (++mp->m_agirotor >= mp->m_maxagi)
497 spin_unlock(&mp->m_agirotor_lock);
503 * Select an allocation group to look for a free inode in, based on the parent
504 * inode and the mode. Return the allocation group buffer.
506 STATIC xfs_agnumber_t
507 xfs_ialloc_ag_select(
508 xfs_trans_t *tp, /* transaction pointer */
509 xfs_ino_t parent, /* parent directory inode number */
510 umode_t mode, /* bits set to indicate file type */
511 int okalloc) /* ok to allocate more space */
513 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
514 xfs_agnumber_t agno; /* current ag number */
515 int flags; /* alloc buffer locking flags */
516 xfs_extlen_t ineed; /* blocks needed for inode allocation */
517 xfs_extlen_t longest = 0; /* longest extent available */
518 xfs_mount_t *mp; /* mount point structure */
519 int needspace; /* file mode implies space allocated */
520 xfs_perag_t *pag; /* per allocation group data */
521 xfs_agnumber_t pagno; /* parent (starting) ag number */
525 * Files of these types need at least one block if length > 0
526 * (and they won't fit in the inode, but that's hard to figure out).
528 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
530 agcount = mp->m_maxagi;
532 pagno = xfs_ialloc_next_ag(mp);
534 pagno = XFS_INO_TO_AGNO(mp, parent);
535 if (pagno >= agcount)
539 ASSERT(pagno < agcount);
542 * Loop through allocation groups, looking for one with a little
543 * free space in it. Note we don't look for free inodes, exactly.
544 * Instead, we include whether there is a need to allocate inodes
545 * to mean that blocks must be allocated for them,
546 * if none are currently free.
549 flags = XFS_ALLOC_FLAG_TRYLOCK;
551 pag = xfs_perag_get(mp, agno);
552 if (!pag->pagi_inodeok) {
553 xfs_ialloc_next_ag(mp);
557 if (!pag->pagi_init) {
558 error = xfs_ialloc_pagi_init(mp, tp, agno);
563 if (pag->pagi_freecount) {
571 if (!pag->pagf_init) {
572 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
578 * Is there enough free space for the file plus a block of
579 * inodes? (if we need to allocate some)?
581 ineed = mp->m_ialloc_blks;
582 longest = pag->pagf_longest;
584 longest = pag->pagf_flcount > 0;
586 if (pag->pagf_freeblks >= needspace + ineed &&
594 * No point in iterating over the rest, if we're shutting
597 if (XFS_FORCED_SHUTDOWN(mp))
611 * Try to retrieve the next record to the left/right from the current one.
615 struct xfs_btree_cur *cur,
616 xfs_inobt_rec_incore_t *rec,
624 error = xfs_btree_decrement(cur, 0, &i);
626 error = xfs_btree_increment(cur, 0, &i);
632 error = xfs_inobt_get_rec(cur, rec, &i);
635 XFS_WANT_CORRUPTED_RETURN(i == 1);
643 struct xfs_btree_cur *cur,
645 xfs_inobt_rec_incore_t *rec,
651 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
656 error = xfs_inobt_get_rec(cur, rec, &i);
659 XFS_WANT_CORRUPTED_RETURN(i == 1);
668 * The caller selected an AG for us, and made sure that free inodes are
673 struct xfs_trans *tp,
674 struct xfs_buf *agbp,
678 struct xfs_mount *mp = tp->t_mountp;
679 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
680 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
681 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
682 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
683 struct xfs_perag *pag;
684 struct xfs_btree_cur *cur, *tcur;
685 struct xfs_inobt_rec_incore rec, trec;
691 pag = xfs_perag_get(mp, agno);
693 ASSERT(pag->pagi_init);
694 ASSERT(pag->pagi_inodeok);
695 ASSERT(pag->pagi_freecount > 0);
698 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
700 * If pagino is 0 (this is the root inode allocation) use newino.
701 * This must work because we've just allocated some.
704 pagino = be32_to_cpu(agi->agi_newino);
706 error = xfs_check_agi_freecount(cur, agi);
711 * If in the same AG as the parent, try to get near the parent.
714 int doneleft; /* done, to the left */
715 int doneright; /* done, to the right */
716 int searchdistance = 10;
718 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
721 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
723 error = xfs_inobt_get_rec(cur, &rec, &j);
726 XFS_WANT_CORRUPTED_GOTO(j == 1, error0);
728 if (rec.ir_freecount > 0) {
730 * Found a free inode in the same chunk
731 * as the parent, done.
738 * In the same AG as parent, but parent's chunk is full.
741 /* duplicate the cursor, search left & right simultaneously */
742 error = xfs_btree_dup_cursor(cur, &tcur);
747 * Skip to last blocks looked up if same parent inode.
749 if (pagino != NULLAGINO &&
750 pag->pagl_pagino == pagino &&
751 pag->pagl_leftrec != NULLAGINO &&
752 pag->pagl_rightrec != NULLAGINO) {
753 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
758 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
763 /* search left with tcur, back up 1 record */
764 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
768 /* search right with cur, go forward 1 record. */
769 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
775 * Loop until we find an inode chunk with a free inode.
777 while (!doneleft || !doneright) {
778 int useleft; /* using left inode chunk this time */
780 if (!--searchdistance) {
782 * Not in range - save last search
783 * location and allocate a new inode
785 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
786 pag->pagl_leftrec = trec.ir_startino;
787 pag->pagl_rightrec = rec.ir_startino;
788 pag->pagl_pagino = pagino;
792 /* figure out the closer block if both are valid. */
793 if (!doneleft && !doneright) {
795 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
796 rec.ir_startino - pagino;
801 /* free inodes to the left? */
802 if (useleft && trec.ir_freecount) {
804 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
807 pag->pagl_leftrec = trec.ir_startino;
808 pag->pagl_rightrec = rec.ir_startino;
809 pag->pagl_pagino = pagino;
813 /* free inodes to the right? */
814 if (!useleft && rec.ir_freecount) {
815 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
817 pag->pagl_leftrec = trec.ir_startino;
818 pag->pagl_rightrec = rec.ir_startino;
819 pag->pagl_pagino = pagino;
823 /* get next record to check */
825 error = xfs_ialloc_next_rec(tcur, &trec,
828 error = xfs_ialloc_next_rec(cur, &rec,
836 * We've reached the end of the btree. because
837 * we are only searching a small chunk of the
838 * btree each search, there is obviously free
839 * inodes closer to the parent inode than we
840 * are now. restart the search again.
842 pag->pagl_pagino = NULLAGINO;
843 pag->pagl_leftrec = NULLAGINO;
844 pag->pagl_rightrec = NULLAGINO;
845 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
846 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
851 * In a different AG from the parent.
852 * See if the most recently allocated block has any free.
855 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
856 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
862 error = xfs_inobt_get_rec(cur, &rec, &j);
866 if (j == 1 && rec.ir_freecount > 0) {
868 * The last chunk allocated in the group
869 * still has a free inode.
877 * None left in the last group, search the whole AG
879 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
882 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
885 error = xfs_inobt_get_rec(cur, &rec, &i);
888 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
889 if (rec.ir_freecount > 0)
891 error = xfs_btree_increment(cur, 0, &i);
894 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
898 offset = xfs_lowbit64(rec.ir_free);
900 ASSERT(offset < XFS_INODES_PER_CHUNK);
901 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
902 XFS_INODES_PER_CHUNK) == 0);
903 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
904 rec.ir_free &= ~XFS_INOBT_MASK(offset);
906 error = xfs_inobt_update(cur, &rec);
909 be32_add_cpu(&agi->agi_freecount, -1);
910 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
911 pag->pagi_freecount--;
913 error = xfs_check_agi_freecount(cur, agi);
917 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
918 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
923 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
925 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
931 * Allocate an inode on disk.
933 * Mode is used to tell whether the new inode will need space, and whether it
936 * This function is designed to be called twice if it has to do an allocation
937 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
938 * If an inode is available without having to performn an allocation, an inode
939 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
940 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
941 * The caller should then commit the current transaction, allocate a
942 * new transaction, and call xfs_dialloc() again, passing in the previous value
943 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
944 * buffer is locked across the two calls, the second call is guaranteed to have
945 * a free inode available.
947 * Once we successfully pick an inode its number is returned and the on-disk
948 * data structures are updated. The inode itself is not read in, since doing so
949 * would break ordering constraints with xfs_reclaim.
953 struct xfs_trans *tp,
957 struct xfs_buf **IO_agbp,
960 struct xfs_mount *mp = tp->t_mountp;
961 struct xfs_buf *agbp;
966 xfs_agnumber_t start_agno;
967 struct xfs_perag *pag;
971 * If the caller passes in a pointer to the AGI buffer,
972 * continue where we left off before. In this case, we
973 * know that the allocation group has free inodes.
980 * We do not have an agbp, so select an initial allocation
981 * group for inode allocation.
983 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
984 if (start_agno == NULLAGNUMBER) {
990 * If we have already hit the ceiling of inode blocks then clear
991 * okalloc so we scan all available agi structures for a free
994 if (mp->m_maxicount &&
995 mp->m_sb.sb_icount + mp->m_ialloc_inos > mp->m_maxicount) {
1001 * Loop until we find an allocation group that either has free inodes
1002 * or in which we can allocate some inodes. Iterate through the
1003 * allocation groups upward, wrapping at the end.
1007 pag = xfs_perag_get(mp, agno);
1008 if (!pag->pagi_inodeok) {
1009 xfs_ialloc_next_ag(mp);
1013 if (!pag->pagi_init) {
1014 error = xfs_ialloc_pagi_init(mp, tp, agno);
1020 * Do a first racy fast path check if this AG is usable.
1022 if (!pag->pagi_freecount && !okalloc)
1026 * Then read in the AGI buffer and recheck with the AGI buffer
1029 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1033 if (pag->pagi_freecount) {
1039 goto nextag_relse_buffer;
1042 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1044 xfs_trans_brelse(tp, agbp);
1046 if (error != ENOSPC)
1056 * We successfully allocated some inodes, return
1057 * the current context to the caller so that it
1058 * can commit the current transaction and call
1059 * us again where we left off.
1061 ASSERT(pag->pagi_freecount > 0);
1069 nextag_relse_buffer:
1070 xfs_trans_brelse(tp, agbp);
1073 if (++agno == mp->m_sb.sb_agcount)
1075 if (agno == start_agno) {
1077 return noroom ? ENOSPC : 0;
1083 return xfs_dialloc_ag(tp, agbp, parent, inop);
1086 return XFS_ERROR(error);
1090 * Free disk inode. Carefully avoids touching the incore inode, all
1091 * manipulations incore are the caller's responsibility.
1092 * The on-disk inode is not changed by this operation, only the
1093 * btree (free inode mask) is changed.
1097 xfs_trans_t *tp, /* transaction pointer */
1098 xfs_ino_t inode, /* inode to be freed */
1099 xfs_bmap_free_t *flist, /* extents to free */
1100 int *delete, /* set if inode cluster was deleted */
1101 xfs_ino_t *first_ino) /* first inode in deleted cluster */
1104 xfs_agblock_t agbno; /* block number containing inode */
1105 xfs_buf_t *agbp; /* buffer containing allocation group header */
1106 xfs_agino_t agino; /* inode number relative to allocation group */
1107 xfs_agnumber_t agno; /* allocation group number */
1108 xfs_agi_t *agi; /* allocation group header */
1109 xfs_btree_cur_t *cur; /* inode btree cursor */
1110 int error; /* error return value */
1111 int i; /* result code */
1112 int ilen; /* inodes in an inode cluster */
1113 xfs_mount_t *mp; /* mount structure for filesystem */
1114 int off; /* offset of inode in inode chunk */
1115 xfs_inobt_rec_incore_t rec; /* btree record */
1116 struct xfs_perag *pag;
1121 * Break up inode number into its components.
1123 agno = XFS_INO_TO_AGNO(mp, inode);
1124 if (agno >= mp->m_sb.sb_agcount) {
1125 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1126 __func__, agno, mp->m_sb.sb_agcount);
1128 return XFS_ERROR(EINVAL);
1130 agino = XFS_INO_TO_AGINO(mp, inode);
1131 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1132 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1133 __func__, (unsigned long long)inode,
1134 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1136 return XFS_ERROR(EINVAL);
1138 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1139 if (agbno >= mp->m_sb.sb_agblocks) {
1140 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1141 __func__, agbno, mp->m_sb.sb_agblocks);
1143 return XFS_ERROR(EINVAL);
1146 * Get the allocation group header.
1148 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1150 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1154 agi = XFS_BUF_TO_AGI(agbp);
1155 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1156 ASSERT(agbno < be32_to_cpu(agi->agi_length));
1158 * Initialize the cursor.
1160 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1162 error = xfs_check_agi_freecount(cur, agi);
1167 * Look for the entry describing this inode.
1169 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1170 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1174 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1175 error = xfs_inobt_get_rec(cur, &rec, &i);
1177 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1181 XFS_WANT_CORRUPTED_GOTO(i == 1, error0);
1183 * Get the offset in the inode chunk.
1185 off = agino - rec.ir_startino;
1186 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1187 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1189 * Mark the inode free & increment the count.
1191 rec.ir_free |= XFS_INOBT_MASK(off);
1195 * When an inode cluster is free, it becomes eligible for removal
1197 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1198 (rec.ir_freecount == mp->m_ialloc_inos)) {
1201 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1204 * Remove the inode cluster from the AGI B+Tree, adjust the
1205 * AGI and Superblock inode counts, and mark the disk space
1206 * to be freed when the transaction is committed.
1208 ilen = mp->m_ialloc_inos;
1209 be32_add_cpu(&agi->agi_count, -ilen);
1210 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1211 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1212 pag = xfs_perag_get(mp, agno);
1213 pag->pagi_freecount -= ilen - 1;
1215 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1216 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1218 if ((error = xfs_btree_delete(cur, &i))) {
1219 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1224 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1225 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1226 mp->m_ialloc_blks, flist, mp);
1230 error = xfs_inobt_update(cur, &rec);
1232 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1238 * Change the inode free counts and log the ag/sb changes.
1240 be32_add_cpu(&agi->agi_freecount, 1);
1241 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1242 pag = xfs_perag_get(mp, agno);
1243 pag->pagi_freecount++;
1245 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1248 error = xfs_check_agi_freecount(cur, agi);
1252 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1256 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1262 struct xfs_mount *mp,
1263 struct xfs_trans *tp,
1264 xfs_agnumber_t agno,
1266 xfs_agblock_t agbno,
1267 xfs_agblock_t *chunk_agbno,
1268 xfs_agblock_t *offset_agbno,
1271 struct xfs_inobt_rec_incore rec;
1272 struct xfs_btree_cur *cur;
1273 struct xfs_buf *agbp;
1277 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1280 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1281 __func__, error, agno);
1286 * Lookup the inode record for the given agino. If the record cannot be
1287 * found, then it's an invalid inode number and we should abort. Once
1288 * we have a record, we need to ensure it contains the inode number
1289 * we are looking up.
1291 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno);
1292 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1295 error = xfs_inobt_get_rec(cur, &rec, &i);
1296 if (!error && i == 0)
1300 xfs_trans_brelse(tp, agbp);
1301 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1305 /* check that the returned record contains the required inode */
1306 if (rec.ir_startino > agino ||
1307 rec.ir_startino + mp->m_ialloc_inos <= agino)
1310 /* for untrusted inodes check it is allocated first */
1311 if ((flags & XFS_IGET_UNTRUSTED) &&
1312 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1315 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1316 *offset_agbno = agbno - *chunk_agbno;
1321 * Return the location of the inode in imap, for mapping it into a buffer.
1325 xfs_mount_t *mp, /* file system mount structure */
1326 xfs_trans_t *tp, /* transaction pointer */
1327 xfs_ino_t ino, /* inode to locate */
1328 struct xfs_imap *imap, /* location map structure */
1329 uint flags) /* flags for inode btree lookup */
1331 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1332 xfs_agino_t agino; /* inode number within alloc group */
1333 xfs_agnumber_t agno; /* allocation group number */
1334 int blks_per_cluster; /* num blocks per inode cluster */
1335 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1336 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1337 int error; /* error code */
1338 int offset; /* index of inode in its buffer */
1339 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1341 ASSERT(ino != NULLFSINO);
1344 * Split up the inode number into its parts.
1346 agno = XFS_INO_TO_AGNO(mp, ino);
1347 agino = XFS_INO_TO_AGINO(mp, ino);
1348 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1349 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1350 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1353 * Don't output diagnostic information for untrusted inodes
1354 * as they can be invalid without implying corruption.
1356 if (flags & XFS_IGET_UNTRUSTED)
1357 return XFS_ERROR(EINVAL);
1358 if (agno >= mp->m_sb.sb_agcount) {
1360 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1361 __func__, agno, mp->m_sb.sb_agcount);
1363 if (agbno >= mp->m_sb.sb_agblocks) {
1365 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1366 __func__, (unsigned long long)agbno,
1367 (unsigned long)mp->m_sb.sb_agblocks);
1369 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1371 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1373 XFS_AGINO_TO_INO(mp, agno, agino));
1377 return XFS_ERROR(EINVAL);
1380 blks_per_cluster = xfs_icluster_size_fsb(mp);
1383 * For bulkstat and handle lookups, we have an untrusted inode number
1384 * that we have to verify is valid. We cannot do this just by reading
1385 * the inode buffer as it may have been unlinked and removed leaving
1386 * inodes in stale state on disk. Hence we have to do a btree lookup
1387 * in all cases where an untrusted inode number is passed.
1389 if (flags & XFS_IGET_UNTRUSTED) {
1390 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1391 &chunk_agbno, &offset_agbno, flags);
1398 * If the inode cluster size is the same as the blocksize or
1399 * smaller we get to the buffer by simple arithmetics.
1401 if (blks_per_cluster == 1) {
1402 offset = XFS_INO_TO_OFFSET(mp, ino);
1403 ASSERT(offset < mp->m_sb.sb_inopblock);
1405 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1406 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1407 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1412 * If the inode chunks are aligned then use simple maths to
1413 * find the location. Otherwise we have to do a btree
1414 * lookup to find the location.
1416 if (mp->m_inoalign_mask) {
1417 offset_agbno = agbno & mp->m_inoalign_mask;
1418 chunk_agbno = agbno - offset_agbno;
1420 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1421 &chunk_agbno, &offset_agbno, flags);
1427 ASSERT(agbno >= chunk_agbno);
1428 cluster_agbno = chunk_agbno +
1429 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1430 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1431 XFS_INO_TO_OFFSET(mp, ino);
1433 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1434 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1435 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1438 * If the inode number maps to a block outside the bounds
1439 * of the file system then return NULL rather than calling
1440 * read_buf and panicing when we get an error from the
1443 if ((imap->im_blkno + imap->im_len) >
1444 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1446 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1447 __func__, (unsigned long long) imap->im_blkno,
1448 (unsigned long long) imap->im_len,
1449 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1450 return XFS_ERROR(EINVAL);
1456 * Compute and fill in value of m_in_maxlevels.
1459 xfs_ialloc_compute_maxlevels(
1460 xfs_mount_t *mp) /* file system mount structure */
1468 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1469 XFS_INODES_PER_CHUNK_LOG;
1470 minleafrecs = mp->m_alloc_mnr[0];
1471 minnoderecs = mp->m_alloc_mnr[1];
1472 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1473 for (level = 1; maxblocks > 1; level++)
1474 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1475 mp->m_in_maxlevels = level;
1479 * Log specified fields for the ag hdr (inode section)
1483 xfs_trans_t *tp, /* transaction pointer */
1484 xfs_buf_t *bp, /* allocation group header buffer */
1485 int fields) /* bitmask of fields to log */
1487 int first; /* first byte number */
1488 int last; /* last byte number */
1489 static const short offsets[] = { /* field starting offsets */
1490 /* keep in sync with bit definitions */
1491 offsetof(xfs_agi_t, agi_magicnum),
1492 offsetof(xfs_agi_t, agi_versionnum),
1493 offsetof(xfs_agi_t, agi_seqno),
1494 offsetof(xfs_agi_t, agi_length),
1495 offsetof(xfs_agi_t, agi_count),
1496 offsetof(xfs_agi_t, agi_root),
1497 offsetof(xfs_agi_t, agi_level),
1498 offsetof(xfs_agi_t, agi_freecount),
1499 offsetof(xfs_agi_t, agi_newino),
1500 offsetof(xfs_agi_t, agi_dirino),
1501 offsetof(xfs_agi_t, agi_unlinked),
1505 xfs_agi_t *agi; /* allocation group header */
1507 agi = XFS_BUF_TO_AGI(bp);
1508 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1511 * Compute byte offsets for the first and last fields.
1513 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS, &first, &last);
1515 * Log the allocation group inode header buffer.
1517 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
1518 xfs_trans_log_buf(tp, bp, first, last);
1523 xfs_check_agi_unlinked(
1524 struct xfs_agi *agi)
1528 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
1529 ASSERT(agi->agi_unlinked[i]);
1532 #define xfs_check_agi_unlinked(agi)
1539 struct xfs_mount *mp = bp->b_target->bt_mount;
1540 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
1542 if (xfs_sb_version_hascrc(&mp->m_sb) &&
1543 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
1546 * Validate the magic number of the agi block.
1548 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
1550 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
1554 * during growfs operations, the perag is not fully initialised,
1555 * so we can't use it for any useful checking. growfs ensures we can't
1556 * use it by using uncached buffers that don't have the perag attached
1557 * so we can detect and avoid this problem.
1559 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
1562 xfs_check_agi_unlinked(agi);
1567 xfs_agi_read_verify(
1570 struct xfs_mount *mp = bp->b_target->bt_mount;
1573 if (xfs_sb_version_hascrc(&mp->m_sb))
1574 agi_ok = xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
1575 offsetof(struct xfs_agi, agi_crc));
1576 agi_ok = agi_ok && xfs_agi_verify(bp);
1578 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IALLOC_READ_AGI,
1579 XFS_RANDOM_IALLOC_READ_AGI))) {
1580 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1581 xfs_buf_ioerror(bp, EFSCORRUPTED);
1586 xfs_agi_write_verify(
1589 struct xfs_mount *mp = bp->b_target->bt_mount;
1590 struct xfs_buf_log_item *bip = bp->b_fspriv;
1592 if (!xfs_agi_verify(bp)) {
1593 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
1594 xfs_buf_ioerror(bp, EFSCORRUPTED);
1598 if (!xfs_sb_version_hascrc(&mp->m_sb))
1602 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
1603 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
1604 offsetof(struct xfs_agi, agi_crc));
1607 const struct xfs_buf_ops xfs_agi_buf_ops = {
1608 .verify_read = xfs_agi_read_verify,
1609 .verify_write = xfs_agi_write_verify,
1613 * Read in the allocation group header (inode allocation section)
1617 struct xfs_mount *mp, /* file system mount structure */
1618 struct xfs_trans *tp, /* transaction pointer */
1619 xfs_agnumber_t agno, /* allocation group number */
1620 struct xfs_buf **bpp) /* allocation group hdr buf */
1624 trace_xfs_read_agi(mp, agno);
1626 ASSERT(agno != NULLAGNUMBER);
1627 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1628 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1629 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1633 ASSERT(!xfs_buf_geterror(*bpp));
1634 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
1639 xfs_ialloc_read_agi(
1640 struct xfs_mount *mp, /* file system mount structure */
1641 struct xfs_trans *tp, /* transaction pointer */
1642 xfs_agnumber_t agno, /* allocation group number */
1643 struct xfs_buf **bpp) /* allocation group hdr buf */
1645 struct xfs_agi *agi; /* allocation group header */
1646 struct xfs_perag *pag; /* per allocation group data */
1649 trace_xfs_ialloc_read_agi(mp, agno);
1651 error = xfs_read_agi(mp, tp, agno, bpp);
1655 agi = XFS_BUF_TO_AGI(*bpp);
1656 pag = xfs_perag_get(mp, agno);
1657 if (!pag->pagi_init) {
1658 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
1659 pag->pagi_count = be32_to_cpu(agi->agi_count);
1664 * It's possible for these to be out of sync if
1665 * we are in the middle of a forced shutdown.
1667 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
1668 XFS_FORCED_SHUTDOWN(mp));
1674 * Read in the agi to initialise the per-ag data in the mount structure
1677 xfs_ialloc_pagi_init(
1678 xfs_mount_t *mp, /* file system mount structure */
1679 xfs_trans_t *tp, /* transaction pointer */
1680 xfs_agnumber_t agno) /* allocation group number */
1682 xfs_buf_t *bp = NULL;
1685 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
1689 xfs_trans_brelse(tp, bp);